The X]

ENIX™

Operating System

Installation Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of tbe agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Cruz Operation, Inc.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, California 95061 _
(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Chapter 1

(] [4
XENIX Installation Guide
1.1 Overview 1
1.2 XENIXDistributionSystems 1
1.3 WhatYouNeed 1
14 BeforeYouStart 2
1.5 installationProcedure 3
1.5.1 Starting XENIXFromaFloppyDisk 3
1.5.2 InitializingtheHardDisk = 4
1.5.3 StartingtheSystemFromtheHardDisk 6
1.54 CopyingtheXENIXSystemFiles 7
1.5.5 CreatingtheSuper—UserPassword 9
1.5.6 CreatingtheFirstUser Account 10
1.6 TheNextStep 12
1.7 UpgradelnstallationNotes 13

1.7.1 UpgradeOverview 13

1.7.2 StartingXENIXFromaFloppyDisk 13
1.7.3 UpgradingtheFileSystem 14

1.74 Startingthe SystemFromthe Hard Disk 15
1.7.5 CopyingtheXENIXSystemFiles 16
1.7.6 Restoring YourFiles 18

1.7.7 TheNextStep " 18

Introduction

1.1 Overview

The XENIX Operating System is a powerful multiuser, multitasking system of
programs for your computer. It takes the place of your existing Operating Systemand
givesyour computerthe power of amuch largerandmore expensivemachine.

To do its work, the XENIX Operating System must be installed on your computer’s
hard disk. Thisallowsthe systemtotake controlof your computer wheneveryouturnit
on. The installation procedure consists of initializing yourhard disk, thencopying the
XENIX system programs from the XENIX distribution floppydisks to the initialized
hard disk. Note: ““floppydisks’* refers tothe Sony Micro Floppydisks on which your
systemisdistributed.

. 1.2 XENIX Distribution Systems

The complete XENIX System isa set of three distribution systems:
The XENIX Operating System

The XENIX Text Processing System

The XENIX Development System

The Operating System containsthe XENIX programsyou need tocreateuser accounts,
manage file systems and perform systemmainunanceta*a.

The Text Processing System contains the XENIX programs uscd to create, edit, and
typesct documents.

The Development System contains the XENIX programs you needtocreate, compile,
link, and debug assembly and high—level language programs.

You install each package separately. Installation of the XENIX Operating System is
required before you can install the Text Processing or Development Systems. The
software for each System is write protected, except the Boot floppydisk of the
Operating System.

1.3 What You Need

V'I‘hisguidcexplainshowtoinsmlltheXENIXOpmtingSym. Todoso, youneed:

1. ALisacomputerwith atleast 512k bytesof memory It musthaveeither
a)a10megabyte internathard disk
or

b)atleastone external S megabyte ProFile™
harddisk
2. TheXENIX Operating Systemdistribution floppydisks

Ifyouhavea LISA 2/10System, (which comes with an internal 10megabyte disk), no
otherconnectionsare necessary.

If you have a LISA 2/5 System, (no internal hard disk), You must have at least one
external S megabyte ProFile disk. The first ProFile must be connected to the buitt—~in

1-1

XENIX Installation Guide

parallel port onthe back of the Lisa computer. 1f you intend to install the XENIX Text
Processing and/or the XENIX Development Systems, you will also need a second
ProFile hard disk. This second disk must be connected to the upper parallel port of a
parallel expansion board installed inexpansion slot 1 of the Lisa computer. For details
about these connections, see the hardware manuals provided with your computer and
the section called ‘‘Adding a Second ProFile Disk" in Chapter 7 of the XENIX
OperationsGuide.

1.4 Before You Start

Before you begin the installation procedure, make sure that your computer is fully
assembled andthat you are familiar with itsoperation. Inparticular, you shouldknow:

How to turn the computer on and off.
How to turn the ProFile hard disk on and off.
How to insert a floppydisk into a disk drive.

How to reset your computer with the RESET switch.

1f you have just assembled your computer for the first time, or if you are unsure about
the four items listed above, take a few moments to review the hardware manuals
provided withyourcomputerandharddisk.

Duringtheinstallation, you will needtousethekeyboardto enterinformation. Always
type requested names and numbers exactly as shown. Begin each command at the
beginning of a new line. Complete a line by pressing the RETURN key. Throughout
thisguide, theRETURNkey isreferredtoas:

RETURN

1f you make atyping error, you candelete the character you just typed by pressing the
BACKSPACE key or by holding down the APPLE key and typing the letter *h**. if you
wishto delete everything you have typed onaline, holddownthe APPLE key and type
the letter “‘u”’. Many keys and key combinations have special meanings tothe XENIX
system. These keys and key combinations have special names that are unique to the
XENIX system and may ormay not correspondto the keytop labels onyour keybcard.
For more complete details about special XENIX keystrokes, see Chapter 1 in the
XENIX OperationsGuide.

Introduction

Note

If your keyboard does not have an APPLE key (a key with an apple on it),
use the COMMAND key instead.

1.5 Installation Procedure

The installation procedure consists of six steps. You begin the installation by starting
~ the XENIX system from the ‘‘boot’* floppydisk. Next, run the hdinit program to
initialize the hard disk and copy important XENIX programs to it. Then you start the
system again (this time from the newly initialized hard disk) and run the firsttime
program to copy the rest of the XENIX system program filesto the hard disk. Finally,
youcreatethe super—user passwordandthefirstuseraccount.

The following sectionstell you howto perform each step. Whenyou have finishedthe
installation, keep this guide and the distribution floppydisks in a safe place. Youwill
needthemagainifyou wish toreinstall the system forany reason.

1.5.1 Starting XENIX From a Floppy Disk

Starting the system is the first step of the installation procedure. To do this, you will
need the distribution floppydisk labeled ‘““Boot’*. Once you have the floppydisk,
followthese steps:

1. (Forthose with external hard disks only): Turn on the power to each hard
disk.

2. (Forthose with external hard disks only): Wait for the ‘‘ready”’ light onthe
front of the hard disk drive(s)to glow a steady red.

3. Turnonthepowertothe computer.

4. Waitforaclick (listenclosely — — the click occurs soon after youturnonthe
power).

5. Hold downthe APPLE key and pressthe ENTER key onthe mmeric key pad
attheright front corner of thekeyboard. The computer will first display a set
of iconsrepresenting cach phase of its self—test sequence, andthendisplay
two numberedboxes.

6. Nowholddownthe APPLE key and press the number 3. The computer will
display amenu of icons representing each of the peripheral devicesattached
tothe system.

7. Insertthe ‘““Boot’’ distribution floppydisk into the floppy drive. Make sure
thatthe labelfacesupand that youinsertthe side with the auto— shutter first.

1-3

XENIX Installation Guide

1.502

Hold downthe APPLE key and press the number 2 which should correspond
totheicon forthe floppydisk. The computer reads the XENiX boot program
fromthe floppydisk and beginstoexecuteit. The bootprogram displaysthe

following prompt:

boot '
PresstheRETURNKey.
The boot programreads a copy of the XENIX Operating Systemkernel from
the file fd(2,0)xenix and begins to execute it. To show that it isreading this
file, the program displays the message:

: £d(2,0)xenix
Oncethe system beginstorun, it displays some copyright information, then
the following message and boot floppy prompt:

Lisa XENIX V3.0 Boot Floppy
(backspace is “h, erase line is “u)
Use “‘hdinit’’ to initialize hard disk.
Use ‘‘upgrade’’ to upgrade 2.3 to 3.0 xenix

Initializing the Hard Disk

You must now initialize the hard disk with the hdinit (for *‘hard disk initialization’")
program. This program creates a *‘file system’* onthe hard disk, then copies system
programs from the boot floppydisk to the new file system. 1f you have a second hard

disk, the program also creates a file system on this disk and prepares it for receiving
user'sdirectoriesandfiles during normal XENIX operation.

Toinitializethe disk ordisks, followthese steps:

L

Inresponsetothe prompt:
<BootFloppy>

type: ’
hdinit

and press the RETURN key. The system reads the program from the boot
floppydisk, beginsto execute it and displaysthe message:

WARNING:
This installation program will destroy
the present contents of your hard disk.
Do you want to continue <y/n>?
Ifyouhaveany files onthe harddisk that you wishtosave, type:
n
and pressRETURN. The following message appears;

Installation

At this point the system shuts down automatically, and the following
messageisdisplayed:

+¢+ Normal System Shutdown **+

Reboot your existing system, and after you have backed up everything you
wishto save, restart the XENIX installation procedure fromthe beginning.

To continue theinstallation, type:

y
and presstheRETURNKkey. Next, themessage:

Enter size of hard disk (5 or 10):

will appear. If you are installing the system on a Lisa with one S megabyte
hard disk, the correct response is *‘S*". 1f you are installing the system ona
Lisa 2/5, whichhas a SMB ProFileattached to the parallelinterface port, the
response shouldbe *‘S”". ForaLisa2/10, withaninternal 10MBhard disk,
the appropriateresponse wouldbe *“10°°.

The program creates the file system and begins to copy XENIX system files
toit, reporting itsprogressasit goes.
Making file system...

Afterthe file system is made, and the initial files copied to the hard disk, the
fsck utility isrunto verify the contents of the hard disk and displays:

/dev/root

** Phase 1 — Check Blocks and Sizes
** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts
** Phase S — Check Free List

XX files XXX blocks XXXX frce

Theboetblock willthenbe copiedtothe hard disk:
Installing hard disk Boot...
When the hdinit program is finished, it stopsthe system, preparing it forthe
nextinstallationstep. Youwill seethemessage:
Disk initialization is complete.
+ Normal System Shutdown **
You are nowready tostart the system from the hard disk.

XENIX Installation Guide

Note

If you are installing XENIX on a LISA 2/5, the hdinit
program displays the message:

drivename not on line

when a profile disk is not connected to the proper parallel
port or the disk’s power is not on. drivename is the
name of the disk drive (e.g. pfO or pf2). If you sce

the message, check the hard disk connections and make
sure power is on, then press the RESET button and start
the installation procedure from the beginning.

1.5.3

Starting the System From the Hard Disk

The third step in the installation procedure is to start the XENIX system by loading a
copyof it from the hard disk into memory. Followthese steps:

Press the On—Off button on the lower right front face of the Lisa onice, to
powerdownthe system.

Wait 5to 1Gseconds and pressthebuttonagain.
The system will first display the self—test icons, auto—joad the XENIX boot
program from the hard disk then print the prompt:

boot:

Toload the XENIX systemthathasbeenloaded ontothchard disk, type:
pf(0,0)xenix

The computer reads a copy of the XENIX Operating System from the hard
disk into memory. Once loaded, the system displays the copyright notice
andthenthe message:

Entering System Maintenance Mode
Lisa XENIX 3.0 Hard Disk Initialization
(backspace is ‘h, erase line is "u)

The system immediately begins to execute the firsttime program, and you
arereadytogoontothe next section.

loSs‘

Installation

Copying the XENIX System Files

The firsttime program copiesthe XENIX program files from the remaining distribution
floppydiskstotheharddisk. Itbegins executionimmediately after you start the system
from the hard disk, so you do not have to type its name as you did for the hdinit

program.
1.

The firsttime programbegins by first asking if there is a second ProFile disk
attached to the system, so that the software may be most efficiently
distributed onthetwodisks. The system will prompt:

Do you want /usr to be on a second profile <y/n>?

Ifyouare installingthe system onaLISA 2/10, oronly have one profile disk,
yourresponse shouldbe ‘‘n’’, andyou should goontothenext step.
Otherwise, the correct response is ‘“y**, and the system will display the
message:

Before making the /usr filesystem, the second

ProFile must be connected to the upper parallel

port of the parallcl expansion card in expansion

slot #1, and the ‘ready’ light on the disk must

be glowing a constant red.

1s the second disk connected and ready
<y/n>?

Ifthe disk is not ready, the system should be powered down, and the profile
attached as described above. Installation may be resumed by going back to
the beginning of this section. Otherwise, ifresponseis*‘y*’, the systemwill
display the following message:

Making /usr file system on device /dev/usr ... ,
The following software installation procedures will now load all files
beginning with the path /usronthe second profile.

The next step istoload inthe set of XENIX Operating System floppydisks. It
is very important in this procedure that the floppydisks be loaded in
sequentialnumeric order. The next prompt willbe:

Install Operating System distribution. <y/n>?
type:
y
and presstheRETURNkey. The programdisplaysthe followingmessage:

1-7

XENIX Installation Guide

For each floppy in the distribution set, insert the floppy
and answer ‘y’. Type the letter ‘n’ after the last floppy.
Should you ever sce the message:

tar: please mount new volume, then press RETURN
insert the next floppy and press the RETURN key.

Theinstai! program will now prompt:
First Floppy <y/n>?

Choose the first floppydisk from the distribution set. (The floppydisks are
numberedbeginning with 1.)

Insent the floppydisk into the floppy drive, andtype a “‘y"* followed by the

RETURNKkey. The program copies files fromthe floppydisk and displaysthe
nameofeachfileasitiscopied.

Wait forthe message:
Next Floppy <y/n>?

Remove the first floppydisk from the floppy drive, choose the next
floppydisk from the sct and repeat the last step. Once the system has read
thisfloppy, it willdisplay:

checking ownerships and permissions for
XENIX run—time system ...

All of the XENIX files necessary to run most
application software have now been installed.
You may choose to install the rest of the
distribution disks later, by running the program
lete/install

lfyoudonotneedthcrcstofthe “‘Operating System”” files, goontothe next
step. Otherwise, continue this procedure until all of the remaining
“‘Operating System’’ floppydisks have been read in. From time to time,
you will see other messages beginning with *‘checking ownerships and
permissions’. These are issued by initialization files that are executed
automatically asthey areread in from floppydisks.
When all floppydisks have been copied, type ‘‘n’* and press the RETURN
key whenyou seethe

Next Floppy <y,n>?
message.

Whenitisdone, theprogramdisplaysthe followingmessage:
Operating System installation complete.

The firsttime program will prompt for whether the XENIX Development
System and XENIX Text Processing System are tobe installedatthistime. If
you have only one 5 megabyte disk, you will not have sufficient disk

Installation

capacity to completely install either of these two packages. The complete
XENIX System (all three packages) requires about 7 megabytes of disk
capacity. 1f you wish toinstallthem at a later time, or not at all, you should
answer ‘‘n"’ to the following prompts. When you are ready to install these
packages, refer to the Installation Notes at the beginning of the XENIX
Programmer’ sGuide or XENIX Text Processing Guide .

Ifyou choose to install eitherorboth of the optional packagesatthistime, the
sequence of steps is identical to that for installing the XENIX Operating
System. You may refer to step 3 in this subsection. You will be prompted
with:

Install Software Development distribution <y/n>?

Answer ‘‘y’’ andinstallthis distribution set, oranswer ‘‘n"" and goontothe
nextdistribution set. You willthenbeprompted with:

install Text Processing distribution <y/n>?
Again, answer “‘y’’ or ‘‘n’’ depending on which XENIX distribution sets
youhavepurchased.
10. The last thing the firsttime program does is initialize the lost+found
directory. Themessage displayedis:
making /lost +found directory ...
11. Onceinstallationofallthe packagesiscomplete, the XENIX system displays
themessage:
Xenix Installation complete.

** Normal System Shutdown **

12. The system may now be rebooted from the hard disk by turning the system
off, then on again. Now that the full system has been installed, the boot
sequence fromtheharddisk isasfollows:

boot:
To boot XENIX from the hard disk, pressthe RETURN key. The system will
respond:

pf(0,0)xenix

and the system will be loaded. Next the system copyright message willbe
displayedandthenthe following:

Type CONTROL—d to continue with normal startup: ‘
(Type the root passwd to enter system maintenance).

You should now create the super—user password, as described in the
following section.

1.5.5 Creating the Super—User Password

The super—user password keeps the system safe from unauthorized use. It is

1-9

XENIX Installation Guide

important that you create a super—user password immediately after the system has
been installed to ensure maximum protection of the system and prevent unauthorized
use of the super—user account (for a complete description of the super—user, see the
XENIX OperationsGuide).

Tocreatethe mper—usabassword, followthese steps:

1. PresstheRETURNkey. The system displays amessageandaprompt:
Entering System Maintenance Mode
TERM = (lisa)
Pressthe RETURNkey. Thescreenwill clear, thendisplay:
Terminal type is lisa

#

2. Type
passwd root
andpresstheRETURNkey. The systemdisplaysthe message:
New password:

The new password can be any sequence of letters, numbers, and/or
punctuation marks, but must beat least S characterslong.

3. Type the new password and press the RETURN key. The system docs not
display the password as you type so type carcfully. After you press the
RETURNkey, the system displaysthemessage:

Retype new password:

4. Typethe new password once more and press the RETURN key. Make sure
you type it correctly, otherwise the program will ignore the change. If you
type it incorrectly, you should go back to step two of this section and start
overagain.

The super—user password is now in place. From now on, the password will be
required whenever you attempt to accessthe systemasthe super—user.

Do not forget the super—user password. Restoring a forgotten super—user password
requires booting the system from the XENIX Boot floppy. Refer to the chapter on
‘Solving System Problems’ section on ‘‘Replacing a Forgotten Password®’ in the
XENIX OperationsGuide .

M necessary, keep a copy of the password ina safe place.
1.5.6 Creating the First User Account

Thelast stepinthe installationistocreate the system’s first user account, “‘guest”. The
“‘guest’’ account is atemporary workspace onthe systemthat you may use topractice
with the XENIX system. Later, after installation is complete and you are familiar with
~ the XENIX commands, you can remove the ‘‘guest™ account and create private

1-10

Installation

accountsforalltheusersonthe system.
Tocreatethefirstuser account, followthese steps:

1

8.

Type
mkuser ,
and presstheRETURNkey. The systemdisplaysthemessage:
Newuser
Addausertothe system

Doyou require detailedinstructions? (y/n/q):
Type ““n’* and press the RETURN key (You cancxaminciheinstmctionnt
some othertime). The system displaysthe message:
Enter new user’s login name:

Type:
guest

and press the RETURN key. The name ‘‘guest’’ is now the login name for
the newuseraccount. Next, the program asks fortheuser’spassword.

Enter password:
Just press the RETURN key. This allows you to use the account without
giving apassword. Next, theprogram asks for a group name.

Enter group:
Type

group
andpresstheRETURNkey. Finally, the program asks forcomments.

guest account
and press the RETURN key. The program asks if you wish to change
anything.

Type “‘n’* and press the RETURN key. The program now displays
informationabout the new account and asks if you wishtocreate another.

“‘n"* andpresstheRETURNkey.

The new guest account is now ready. Later, when you turn to the XENIX User’s
Guide , you may use this account to practice logging in, making directorics, and
running programs.

XENIX Installation Guide

1.6 The Next Step

if you are familiar with the XENIX Operating System, you may continue with normal
startup and begin working. Just hold down the APPLE key and type the letter **d”".
Refer tothe explanation of normal startup inthe XENIX Operations Guide if youhave
problems. :

Ifyou are not familiar with the XENIX Operating Systém, we recommend that you halt
the system and turn to the XENIX User’s Guide and the XENIX Operations Guide to
learnhowtostartthesystem, howtologin, and howtorunprograms.

Tohaltthe system, followthese steps:

1. Type
letc/haltsys
and presstheRETURNkey. The systemdisplaysthe followingmessage:
** Normal System Shutdown **

2. Tumnoffthepowertothe computer.

3. Tumoffthepowertothcharddisk.

Make sure you see the shutdown message before you turn off the computer and hard
disk.

Installation

1.7 Upgrade Installation Notes

1.7.1 Upgrade Overview

This section is intended for Lisa 1l owners using version 2 of the XENIX operating
system who wish to upgrade to version 3.0. You will beginthe upgrade procedureby
starting the XENIX system from the “‘boot’’ floppydisk. Next, you will execute the
program called upgrade which will will convert the file system on the hard disk to
XENIX 3.0 format, and copy important utility programs to it. Thenyou will startthe
system again (this time from the newly converted hard disk) and run the secondtime
program to copy the rest of the XENIX system program files tothe hard disk. Finally,
you will restore any local files you have installed since you received your version2.3
system.

The following sectionstell you how to perform each step. Whenyou have finishedthe
installation, keep this guide and the distribution floppydisks in a safe place. Youwill
needthemagainif you wish toreinstall the system forany reason.

1.7.2 Starting XENIX From a Floppy Disk

Starting the system is the first step of the upgrade procedure. Todo this, you will need
the distribution floppydisk labeled ‘‘Boot’". Once you have the floppydisk, follow
these steps:_

1. (For those with external hard disks only): Turn on the power to each hard
disk.

2. (Forthose with external hard disks only): Wait forthe ‘‘ready’’ light onthe
front of the hard disk drive(s)to glow a steady red.

3. Turnonthepowertothe computer.

4. Waitforaclick(listenclosely — — the click occurs soon afteryouturnonthe
power).)

5. Holddownthe APPLEkey and pressthe ENTER key on the numeric key pad
attheright front corner of thekeyboard. The computer will firstdisplay a set
of iconsrepresenting each phase of its self—test sequence, andthendisplay
twonumberedboxes.

6. Nowholddownthe APPLE key and press the number 3. The computer will
display amenu of icons representing each of the peripheral devices attached
tothe system.

7. Insertthe “‘Boot’* distribution floppydisk into the floppy drive. Make sure
thatthe label facesup and that you insertthe side with the auto— shutter first.

8. Holddownthe APPLEkey andpressthe number 2 which should correspond
totheicon forthe floppydisk. The computer reads the XENIX boot program

1-13

XENIX Installation Guide

1.7.3

fromthe floppydisk and beginsto executeit. The boot program displaysthe
following prompt:
boot

PresstheRETURNkey.

The boot program reads a copy of the version3.0 XENIX Operating System
kernel from the file fd(2,0)xenix and begins toexecute it. To show thatitis.
readingthisfile, the programdisplaysthe message:

: £d(2,0)xenix

Oncethe system beginstorun, itdisplays some copyrightinformation, then
the following message and boot floppy prompt:

XENIX V3.0 Boot Floppy
(backspace is “h, erase line is "u)
Use “‘hdinit’’ to initialize hard disk.
Use ‘‘upgrade”” to upgrade 2.3 to 3.0 xenix

Upgrading the File System

You must now convert the file system on the hard disk using the upgrade program.
This program converts the file system on the hard disk to version 3.0 XENIX format,
then copies system programs from the boot floppydisk to the newly converted hard
disk file system. 1f you have a second ProFile disk, the program also converts the file
system on this disk and prepares it for receiving user’s directorics and files during
normal XENIX operation.

Toupgradethedisk ordisks, followthese steps:

1.

In respometomcprompt:
< BootFloppy>
type:
upgrade

and press the RETURN key. The system reads the program from the boot
floppydisk, beginsto execute itand displaysthe message:

converting file system to 3.0 ..

A number of other diagnostic messages will be dlsplayed as the program
readsand writesthefilesystem’s *‘super—block’’. Youneednotrespondto
any questions; they are allansweredautomatically.

The upgrade program goes onto copy essential filestothe hard disk, make
devices and install the new hard disk boot program. It also preserves your
“‘/etc/passwd’’ as ‘‘/etc/passwd.SAVE"’, then copies inthe new password
file. Upgradedisplaysone—linemessages, suchas:

copying files to hard disk ...
tokeep you informed of its progress.

Upgrade

2. Whenthe upgrade program is finished, it halts the system, in preparation
forthenextinstallationstep. You will seethemessage:
#+ Normal System Shutdown **
You are nowreadytostart the system from thehard disk.
Note

If you are installing XENIX on a LISA 2/S, the hdinit
program displays the message:

drivename not on line

when a profile disk is not connected to the proper parallel
port or the disk’s power is not on. drivename is the
name of the disk drive (e.g. pfO or pf2). If you see

the message, check the hard disk connections and make
sure power is on, then press the RESET button and start
the installation procedure from the beginning.

1.74

Starting the System From the Hard Disk

Thenext stepinthe upgrade procedure is to start the XENIX systemby loading acopy of
it fromthehard diskintomemory. Followthese steps:

1.

Press the On—Off button on the lower right front face of the Lisa once, to
powerdownthe system.

Wait S5to 10seconds andpressthebuttonagain.
The system will first display the self—test icons, auto—load the XENIX boot

program from the harddisk then print the prompt:
boot: :

Toload the XENIX systemthat hasbeencopied ontothe hard disk, type:
pf(0,0)xenix

The computer reads a copy of the XENIX Operating System from the hard
disk into memory. Once loaded, the system displays the copyright notice
andthenthe message:

Entering System Maintenance Mode

TERM = (lisa)
PresstheRETURNkey. Thedisplay screenclearsand shows:

1-15

XENIX Installation Guide

1.7.5

Terminal type is lisa

Backup your files, then run /secondtime
If you have installed any of your own files on the disk, take this time to
archive them to floppydisks. A useful tool for this purpose is tar; see the
manual page tar(C) in C section of the XENIX Reference if you are
unfamiliar with its operation. You must use format blank floppydisks

before usingthem. You canformatblank disks by using the diskutil utility.
Tousediskutil type:

/diskutil —£ /devirfd

You need not archive the file ‘‘/etc/passwd’’; the upgrade program has
preservedacopy of youroldfilein*‘/etc/passwd.SAVE"".

Onceyou have backedupallof yourfiles, type the command
/secondtime k
followedbyRETURN.

Copying the XENIX System Files

The secondtime program copics the XENIX program files from the remaining
distribution floppydiskstothehard disk.

1.

The secondtime program begins by asking if there is a second ProFile disk
attached to the system, so that the software may be most efficiently
distributedonthetwodisks. The system will prompt:

Do you want /usr to be on a second profile <y/n>?

If you are installing the system on a LISA 2/10, or only have one ProFile
disk, yourresponse shouldbe ‘‘n’’, andyou shouldgoontothe nextstep.
Otherwise, the correct response is *‘y"’, and the system will display the
message:

Before making the /ust filesystem, the second ProFile

must be connected to the upper parallel port of the
parallel expansion card in expansion slot #1.

Is the second disk connected and ready <y/n>?

Ifthe disk is not ready, the system should be powered down, and the ProFile
attached asdescribed above. Thenturnonpower tothe second ProFile, and
wait forthe ‘‘ready’’ lighttoglow aconstant red, indicatingthat its self —test
hascompleted. lnstallauonmayberemedbygomgbacktothebegmmng
ofthissection.

Ifthe disk isready, you should answer *‘y’’, andthe system will display the
followingmessage:

converting fusr file system t0 3.0 ...
During the rest of the upgrade procedure, files beginning with the path /usr

Upgrade

willbe installedonthe second ProFile.

The next stepistoload inthe set of XENIX Operating System floppydisks. It
is very important in this procedure that the floppydisks be loaded in
sequentialnumeric order. The next prompt will be:

Install Operating System distribution. <y/n>?
type:
y .
and presstheRETURNkey. The programdisplaysthe following message:

For each floppy in the distribution set, insert the floppy
and answer “‘y’". Type the letter ‘‘n’’ after the last floppy.
Should you ever see the message:

tar: please mount new volume, then press RETURN
insert the next floppy and press the RETURN key.

The install program will now prompt:
First Floppy <y/n>?

Choose the first floppydisk from the distribution set. (The floppydisks are
numberedbeginning with 1.)

Insert the floppydisk intothe floppy drive, and type a ‘‘y’’ followed by the
RETURN key. The program copics files from the floppydisk, displaying the
nameofcachfileasitiscopied.

Wait forthemessage:
Next Floppy <y/n>?

Choose the next floppydisk from the set and repeat the last step. Once the
systemhasread thisfloppy, it will display:

checking ownerships and permissions for XENIX run—time system ...

All of the XENIX files necessary to run most application software
have now been installed. You may choose to install the rest of the
distribution disks later, by running the program

letclinstall.

Ifyou do not need therest of the XENIX Operating System files, goontothe
next step. Otherwise, continue this procedure until all of the remaining
XENIX Operating System floppydiskshavebeenreadin. Fromtimetotime,
you will see other messages beginning with ‘‘checking ownerships and
permissions’. These are issued by initialization files that are executed
automatically asthey are readin from floppydisks.

When all floppydisks have beenread in, type ‘n’* and press the RETURN
key whenyou seethe

XENIX Installation Guide

Next Floppy <y,n>?
message.

8. The last thing the secondtime program does is initialize the lost-+found
directory. Themessage displayedis:

making /lost+found directory ...

9. Onceinstallationof allthe packagesiscomplete, the XENIX system displays
themessage:

XENIX Installation canplac
** Normal System Shutdown **

10. The system should now be rebooted from the hard disk by turning the
system off, then on again. Now that the full system has been installed, the
boot sequence from thehard disk isas follows:

boot:
Toboot XENIX from the hard disk, presstheRETURNkey. The system will
_respond:

pf(0,0)xenix
and the system will be loaded. Next a copyright message and some
configurationinformation will be displayed and thenthe following:

Type CONTROL~d to cominﬁe with normal startup:
(Type the root passwd to enter system maintenance).

You shouldnowrestore filesthat you hadbackedup.
1.7.6 Restoring Your Files

Press the RETURN key to enter system maintenance mode. Locate the floppydisks
with your personal files, and reinstall these files onto the hard disk. Use the df
commandtomakecertainyouhave enoughdisk space forthe restorations.

If you have modified the file /etc/passwd since you received your version 2 XENIX
system, you willhaveto edit the new 3.0/etc/passwd file nowresident onthe hard disk.
Use the text editor vi (or some other editor) and *‘Yank'’ entries, line by line, from
Jetc/passwd.SAVE (your old password file), and “‘put’’ them in /etc/passwd, being
careful not to duplicate user id numbers. Each ofthe 3. Oentnes is necessary to assure
corrcctowmmh:pofthc new XENIX system files.

1.7.7 TheNextStep

Since you are familiar with the XENIX Operating System, you may continue with
normal startup and begin working. Just hold down the APPLE key and type the letter
““d”’. Refertothe explanation of nonmal startup inthe XENIX Operations Guide if you
haveproblems.

1-18

Upgrade

Tohaltthe system, follow these steps:
1. Type
letc/altsys

and presstheRETURNKkey. The systemdisplaysthe following message:
** Normal System Shutdown **

2. Tumoffthe powertothe computer.

3. Tumnoffthepowertotheharddisk.

Make sure you see the shutdown message before you turn off the computer and hard
disk.

‘The XENIX"™

Operating System

Operations Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Iic. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Cruz Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 Introduction

Installing XENIX 1
Overview 1

The System Manager |
The Super—User Account 2
The Keyboard 2

Using This Guide 3

b bt bt bt B
[- V. I AV S

N

Starting and Stopping the System

Introduction 1

Starting the System 1

Logging In as the Super—User 2
Stopping the System 3

NN
&R e

w

Preparing XENIX for Users

Introduction 1

Adding a User Account 1
Changing a User's Password 4
Forcing a New Password. S .
Creating a Group 6

Changing a User's Login

Group

- 7 AT

7
Changing User IDs 9
Removing a User Account 10

ww WHWRWW

-]

Using File Systems

Introduction 1

File Systems 1

Permissions 4 :
Managing File Ownership 7
System Security 8

Using XENIX Accounting
Features 9

Sbbhbhbb &
QR Ba L~

Maintaining File Systems

Introduction 1
Maintaining Free Space 1
File System Integrity 6

Man @»
W N b

N

Backing Up File Systems

Introduction 1

Strategies for Backups 1
Using the sysadmin Program 1
Using the tar Command 4

aroo
E- RV N S

Using Peripheral Devices

<

1 Introduction 1

2 Using Multiple Screens |

3 Adding a Terminal 2

4 Changing Serial Line Operation 3

7.5 Setting the Terminal Type °S5

7.6 Removing a Terminal 6

7.7 Adding a Second Profile Disk 6

7.8 Adding Other Profilc Disks - 8

7.9 Adding a Parallel Lineprinter 9-

7.10 Adding a Serial Lineprinter - 9
7.11 Supporting Modems and Terminalss 10 .
7.12 Adding a Tecmar Seriat Card 12 e

8 Solving System Problems

8.1 Introduction 1
8.2 Restoring a Nonechoing = - -
Terminal
8.3 Frecing a Jammed Lmepnntcr 1
8.4 . Stopping a Runaway Process 2
8.5 Replacing a Forgottcn
Password 3 ‘
8.6 Removing Hidden Files 3
8.7 Restoring Free Space 4
8.8 Restoring Lost System Files 4
8.9 Restoring an Inoperable
System 4
8.10 Recovering from a System
Crash - 4
8.11 Changing XENIX lnmahzauon 5

I=ii

vowvww »
A B WA ==

>r>> >
& WN -

AS
A6

B
B.1
B.2
B.3
B4
B.S
B.6
B.7

B.8
B.9

Building a Micnet Network

Introduction 1

Planning a Network |
Building a Network S
Starting the Network 11
Testing a Micnet Network 12

XENIX Special Device Files

Introduction 1

File System Requirements 1
Special Filenames |1

Block Sizes 1

Gap and Block Numbers 2
Terminal and Network
Requirements 2

XENIX Directories

Introduction 1

The Root Directory 1
The /bin Directory 1
The /dev Directory 1
The /etc Directory 2
The /lib Directory 3

The /mnt Directory 3
The /tmp Directory 3
The /usr Directory 3

B.10 Log Files 4

1—iii

Chapter 1

Introduction

1.1 Installing XENIX 1

1.2 Overview 1

1.3 TheSystemManager 1
1.4 The Super—User Account 2
1.5 TheKeyboard 2

1.6 Using ThisGuide 3

Introduction

1.1 Installing XENIX

Toinstall the XENIX Operating System on your computer for the first time, you should
refertothe XENIX Installation Guide found in the front of this binder. It provides you
with step—by —step instructions on how to install the distribution floppics for allthree
XENIX packages (Operating System, Development System, and Text Processing
System), howtoinitialize yourhard disk, andhow tocreate the super—~userpassword.

If you purchased the XENIX Development System and Text Processing packages
separately from the XENIX Operating System, you should refer to the Installation
Notes included with those packages. The notes explain how to use the letclinstall
utility toinstall the distributionfloppies.

1.2 Overview

The XENIX Operating System is a powerful system of programs which allow you to
accomplish a full spectrum of tasks, from developing high—level and assembly
language programs to creating, editing, and typesetting documents. In many cases,
the XENIX system uses the full resources of your computer, giving it the power of a
much larger machine. To keep this powerful machine running smoothly, the XENIX
system requires careful control of its operationand aregular schedule of maintenance.
This guide explains how to operate and maintain the XENIX operating system on your
computer, ensuring maximum performance with the least number of system
problems.

As a special feature, this gmdc also describes how to expand a XENIX system with a
Micnet network. A Micnet network allows serial communication between all the
XENIX systems in your work environment. The Micnet programs and commands
include the netutil program, which is used to install the network, and the mail, rep,
and remote commands, which are used to pass messages, files, and commands over
the network.

1.3 The System Manager

Every XENIX system should have at least one personin charge of system maintenance
and operation Inthis guide that person is called the system manager. It is the system
manager’s duty to ensure the smooth operation of the system and to perform for other
usq'stasksmatrcquu'e special privileges.

Since a XENIX system may consist of anywhere from a single computer to dozens of
computers connected in a network, the system manager’s job canbe aonce—a—week
task or a full-time job. No matter what the size of the system, the system manager
should faithfully perform each required maintenance task, since sloppy maintenance
canaffecttheperformance of the XENIX system.

All tasks in this guide arc presented from the system manager’s point of view, but
many of them may be accomplished by an ordinary user. Since some of the tasks
dramatically change the system’s operation, we recommend that the system manager
perform these tasks whenever possible. This can prevent unwanted or unnecessary
changestothe system.

XENIX Operations Guide

1.4 The Super—User Account

The super—user account is a special account for performing system maintenance
tasks. It permits the system manager unusual privileges that ordinary users do not
have, such as accessing all files in the system and executing privileged commands.
Many of the tasks presented in this guide require that the system manager be logged in
as the super—user. To do this, the system manager must know the super—user
password created during the installation of the XENIX system (see the XENIX
InstallationGuide).

Users who are authorized to act as the super—user, including the system manager,
should log inasthe super—user only whennecessary to perform a system maintenance
task. Evenifthe system manager isthe only personusing the system, he should create
auser account for himself and usc it for day —to—day work, reserving the super—user
account for system maintenancetasksonly.

The number of individuals who are giventhe super—user passwordshouldbekept toa
minimum. Misuse of the super—user powers by naive users can result in lost data,
programs, and eventhe XENIX systemiitself.

1.5 The Keyboard

Many keys and key combinations have special meaningsto the XENIX system. These
keys and key combinations have special names that are unique to the XENIX system
and may or may not correspond to the keytop labels on your keyboard. To help you
find the special keys, the following table shows which keys on the Lisa terminal
correspond to XENIX system keys. In thistable, a hyphen (—) between keys means
“‘hold downthe firstkey while pressmgthc second.”’

XENIX Name Lisa Keytop = Action

BREAK Apple—C Stops current action and returns to the
shell. This key is also called the
INTERRUPT key.

BACKSPACE Backspace Deletes the first character to the left of
thecursor.

CNTRL-D Apple-D Signals the end of input from the
keyboard; alsoexitscurrent shell.

CNTRL-H Apple—H Deletes the first character to the left of
thecursor. AlsocalledthcERASEkey.

CNTRL-Q Apple—Q Starts printing after ithas been stopped
withCNTRL-S.

CNTRL-S Apple—$ Stops printing at the standard output

’ device (does not stopthe program).
CNTRL-U Apple—U Deletes all characters on the curremt

line. AlsocalledtheKILLkey.

Introduction

Apple—\ Quits current command and creates a
core file (Recommended for
debugging only).

ESCAPE Clear Exits the current mode; for example,

exitsinsertmode wheninthe editor vi.

Note

If your keyboard does not have an key (a key with an apple on it), usc the
COMMAND key instead.

1.6 Using This Guide

The tasks presented in this guide range from very simple tasks requiring very little
knowledge about XENIX to quite complex tasks requiring extensive knowledge about
XENIX and your computer.

To help you complete atask, each chapter explains the tools and knowledge you need
to complete the tasks described in that chapter. Insome cases you may be required to
seek instruction in another manual, such as the XENIX User’s Guide . In most cases,
however, followingthe instructions will be sufficient.

Chapter | introducesthis guide.

Chapter 2 explains how to start and stop the XENIX system and how to log in as the
super—user, the XENIX system’s special system manager account.

Chapter 3 explains howtocreate accounts for the users who work on your system, how
toassign groups, andhowtomanage userIDs.

Chapter 4 cxplains how to create and mount file systems, how to st permissions, and
howtokeepthesystemsecure.

Chapter S explains how to maintain free space on the root file system and other file
systems.

Chapter 6 explains how to create backup copies of the root file system and other file
systems.

Chapter 7 explainshowtoadd terminals and otherperipheraldevicesto the sy stem.

Chapter 8 explains how to solve system problems such as a jammed lineprinter or a
forgottenpassword.

Chapter9 explainshowtocreate amultiple systemmailing network withMicnet.

Appendix A presents a list of the XENIX system special files and explains how touse
these files whencreating and maintaining file systems.

XENIX Operations Guide

Appendix Blists the most commonly used XENIX systemdirectoricsand files.

Chapter 2
Starting and Stopping the System

2.1 introduction 1

2.2 StartingtheSystem 1
221 Booting the OperatingSystem 1
222 CleaningtheFileSystem 2
223 ChoosingtheModeof SystemOperation 2

2.3 LogginglnastheSuper—User 2
24 Stoppingthe System 3

24.1 UsingtheshutdownCommand 3
242 UsingthehaltsysCommand 4

Starting and Stopping the System

2.1 Introduction

This chapter explains how to start and stop the XENIX system. it also explainshowto
log inasthe super—user.

2.2 Starting the System

Starting a XENIX system requires more than just turning on the power. The first stepis
to install the XENIX Operating System on your computer. Refer to the XENIX
Installation Guide for instructions onhow to do that. 'You must alsoperforma senes of
steps toinitialize the system for operation. Starting the system requires:

— Bootingtheoperating system
— Cleaningthefile system (ifthe syStcmwas nnpropcrly stoppcsi)

— Choosingthe mode of systemoperation
The following sectionsdescribe each of these procedures.

2.2.1 Booting the Operating System

The first step in starting the system is to boot the operating system from the hard disk.
Followthese steps:

1. Turn on power to the hard disk. If you have two hard dlsks turn on the
powcrtobod:

2. Waitforthe * ‘ready" light on the front of the hard disk drive(s) to glow a
" steadyred.

3. Turnonpowertothecomputer.

" 4. The computer displays sclf—test icons (as when XENIX was first installed
on the computer). It then loads the XENIX “‘bootstrap’’ program from the
hard disk, and the program displaystliemessage:

Xenix boot

5. Pressthe key. mésyslcmwilldispléy
pf (0,0) xenix

and the boot strap program loads the XENIX operating system from thehard
disk.

When the system is booted itdisplays mfotmauon abou! itselfand chccks tosceifthe

“‘root file system’" (i.c., all files and directories onthe hard disk}) is clean. Ifitisclean,
youmay choosethe modc of operation. Ifnot, the systemrequires you tocleanthe ﬁle
system before choosing.

XENIX Opersations Guide

2.2.2 Cleaning the File System

Youmustcleanthefile system wheneveryou see thethe message:
Procecd with cleaning (y or n)?

while booting the system. The system displays this message if it was not stopped
properly (i.c., as described in the section ‘‘Stopping the System’’). The XENIX
operating systemrequiresaclean file systemtoperform itstasks.

To clean the file system, type y (for *‘yes’") and pressthe key. The system cleansthe
file system, repairing damaged files or deleting files that cannot be repaired, and
reportson itsprogress as each stepiscompleted. At some point, it may ask if you wish
tosalvageafile. Alwaysanswerbytyping yandpressingthe key.

When cleaning is complete, the system usually asks you to choose the mode of
operation, but itmay alsodisplay themessage:

** Normal System Shutdown **

If it displays thismessage, you must reboot the system. Youcandothisby pressingthe
RESET button and repeating the steps giveninthe previous section. (You will nothave
toturnonthe powertothehard disk(s) or computer.)

2.2.3 Choosing the Mode of System Operation

Youmay choosethe mode of XENIX operationas soonasyou see the message:

Type CONTROL ~d to continue with normal startup,
(or give the root password for system maintenance):

The system has twomodes: normal operation and system maintenance mode. Normal
operation is for ordinary work on the system. This is the mode you should choose to
allow multiple users to log in and begin work. System maintenance mode is a
specialized mode reserved for work to be done by the system manager. It does not
allowmultiple users.

To choose normal operation, press the key. The system displays a startup message
and beginstorunthe special command file/erc/rc described inChapter 7.

To choose system maintenance mode, type the super—user’s password (sometimes
called the *‘root password”") and press the key. The system displays the message of
the day and the super—user’s prompt (#). The commands in the /etc/re file are not
executed. (Choose system maintenance mode only if you must do system
maintenance work thatrequiresallotheruserstobe off the system.)

2.3 Logging In as the Super—User

Many system maintenance tasks required that you log in asthe super —user before you
may perform the task. For example, you must be logged in as the super—userto stop
the system as described inthe next section.

Before you may log in as the super—user, you need the super—user password. You
alsoneed to secthe ‘‘login:** message on your terminal's screen. 1fyou do not see the
message, pressthe key.

2-2

Starting and Stopping the System

Tolog in asthe super—user, followthesc steps:

1. Typethesuper—user'sloginname:
root
and pressthe key.

2. Typethe super—user’spassword and prcssthc key.
The system opens the super—user account and displays the message of the day and the
super—user prompt (#).
Take reasonable care when you are logged in as the super—user. In particular, you
should be very careful when deleting or modifying files or dircctories. Avoid using
wildcard designators in filenames and frequently check your current working

directory. Even small errors can cause annoying and unwanted changesto the system
and user files. Insome cases, amistake may cause irretrievable damagetoa file.

Y ou may leave the super—useraccount at any time by pressing
2.4 Stopping the System

Stopping the XENIX system takes more than just turning off the computer. You must
prepare the system to be stopped by running cither the shutdown or the haltsys
command. The following sectionsdescribe cachcommand.

2.4.1 Using the shutdown Command

The shutdown command is the normal way to stop the system and should be used
wheneverthe system is in normal operationmode. It warns otherusersthat the system
is abouttobe stopped and givesthem anopportunity to finish their work.

Tostopthe system withtheshutdown command, followthese steps:

1. Loginasthe super—user (see the section ‘‘Logging inas Super—User”” in
this chapter). The system opens the super—user account and displays the
messageoftheday andthe mpcr—usa’spmmpt‘.

2. Type:

fetc/shutdown

and press the key. The system loads the shurdown command. The
command asks for the number of mimutes before you wish to stop the
computer.

3. Type a number from O to 15 and press the key. The system displays a
warning message at each terminal, asking logged in users to finish their
workandlogout. Assoonasallusersare loggedoutorthe specifiedtime has
elapsed, the system closesallaccounts, displays the message:

** Normal System Shutdown **
and stops. Youmay nowturnoffthe computerandharddisk.

XENIX Operations Guide

24.2 Using the haltsys Command

The haltsys command may be used to hak the system immediately. In general, it
should be used only when no other users are on the system or when the system is in
system maintenancemode.

Tostopthe system withthe haltsys command, follow these steps:

1. Loginasthesuper—user(notrequired when in system maintenance mode).
The system opens the super—user account and displays the message of the
day andthe super—user prompt.

2. Type:

letc/haltsys
andpressthe key. The systemdisplaysthemessags:
** Normal Systcm Shutdown **
and stops. Youmay nowturnoffthe computerandharddisk.

Chapter 3 |
Preparing XENIX for Users

3.1 Introduction 3-1

3.2 Adding aUser Account 3-1

3.3 Changing aUser'sPassword 3-4
3.4 Forcinga NewPassword 3-5

3.5 Creatinga Group 3-6

3.6 Changing aUser’sLogin Group 3-7
3.7 Changing aUserID 3-8

3.8 Removing a User Account 3-10

Preparing XENIX for Users

3.1 Introduction

User accounts help the XENIX system manager keep track of the people using
the system, and control their access to the system’s resources. Ideally, each
user should have a user account. Each account has a unique “login name’’ and
“password” with which the user enters the system, and a “home directory”
where the user does his work.
It is the system manager’s job to create accounts for all users on the system. Itis
also the manager’s job to maintain user accounts by changing user passwords,
login groups, and user IDs when necessary.
This chapter explains how to:

— Add user accounts to the system

— Change an account’s password

— Force new passwords

— . Create agroup

~— Change an account’s login group

— Change an account's user ID

— Remove user accounts from the system

The following sections describe each in detail.

3.2 Adding a User Account

You may add a user account. to the system with the mkuser program. The
program creates a new entry in the XENIX system’s [etc/passwd file. This
entry contains information about the new user, such as login name and initial
password, that the system uses to let the user log in and begin work. The
program also creates a home directory for the user, a mailbox for use with the
mail command, and a .prefile file which contains XENIX commands that are
executed when the user logsin. '

To create a new user account, follow these steps:

1. Loginasthe super-user.

2. Type

31

XENIX Operations Guide

3-2

mkuser

and press the RETURN key. The system displays the following
message:

Newuser

Add a user to the system
Do you require detailed instructions? (y/n/q):

Type the letter y (for “yes”), if you want information about the
program, otherwise type the letter n (for “no”). (Type ¢ (for “quit”)
only if you wish to stop the program and return to the system.)

When the program continues, it asks you you to enter the new user’s
loginname:

Enter new user’s login name:

The login name is the name by which XENIX will know the user. It is
usually a short version of the user’s actual name, typed in lowercase
letters. For example, either ““johnd’ (a first name and last initial) or
“jdoe” (a first initial and last name) is acceptable for the user John
Doe.

Type the new name, and press the RETURN key. The program asks
you for the initial password:

Enter password:
The initial password is the password you assign to the new user. The

user will use the initial password to enter hisaccount for the first time.
Once in the account, the user should create a new password for

- himself, one that is hard to guess. (See the section *‘Changing Your

Password” in the XENIX User’s Guide.)

Type the password carefully, and press the RETURN key. After you
haveentered the password, the program asks for the groupname: -

Enter group:

The group name is the name of the group of users to which the user
will belong when he logsin. Usersin a group have access to a common
set of files and directories. The group name is optional. If not given,
the the XENIX system’s common group “group” (with group ID 50) is
used.

Preparing XENIX for Users

Type the group name, and press the RETURN key. If you do not wish
to enter a group name, just press the RETURN key. After you have
entered the group, the program asks for a comment:

Please enter Comment > S
>

A comment is information about the new user, such as his department
and phone extension. Although, the comment is optional, it is useful if
the finger command is often used to display information about users.
If given, the comment must be no more than 20 characters long,
including spaces. It must not contain any colons(:). The example

John Doe, 123
shows the recommended form for a comment.

Type the comment. Make sure it is 20 characters or less. If you do not
.wish to enter a comment, just press the RETURN key.

The program now shows what you have typed and the special user
entry that it has created for the new user. This entry is copied to the
special system file /etc/passwd. The entry shows the login name, the
password (encrypted), the user ID, the group ID, the comment, the
user’s home directory, and the startup program. Items in the entry
are separated by colons (:). (For a full description of each item, see
passwd(M) in the XENIX Reference Manual.)

The program then gives you an opportunity to change the user name,
password, group, or comment:

Do you want to change anything? (y/n/q):

Type the letter y(for ‘‘yes’’) and press the RETURN key, if you wish to
change something. Type n(for “no*’) and skip to step 10 if you wish to
complete the new account. (Type ¢, for “quit”’, only if you wish to
leave the program and abort the new account.)

If you type y in step 8, the program asks for the item you wishito
change: : :

username
password

group
comment

Type the name of the item you wish to change, then type the new
item. The program changes the item and returnsto step 8.

33

XENIX Operations Guide

10.

11.

Once youtype ninstep 8, the program displays the message:
Password file updated

followed by a description of the actions it has taken to add the new

user account to the system. The program then asks if you wish to add

another user to the system.

Type yif you wish to add another user. Otherwise, type n to stop the
program.andreturn to the super-user prompt.

A user can log into a new account as soon as it is created. See the XENIX User’s
Guide for details.

3.3 Changing a User’s Password

Normally, an ordinary user can change the password of his own account with
the passwd command (see the XENIX User’s Guide). Sometimes, however, it
may be necessary for the super-user to change the password for him, for
example, if the user has forgotten his password and cannot get into the account
to change it. The super-user may change the password of any user (including
himself) with the passwd command.

To change a password, follow these steps:

1.

4.

Login as the super-user.

Type

passwd login-name

~(where login-name is the user’s login name) and press the RETURN

key. The command displays the message:

New password:
Type the new password and press the RETURN key. The command
does not display the password as you type it, so type carefully. The
command asks you to type the password again:

Retype new password:

Type the password again and press the RETURN key.

To see how an ordinary user can change his own password with the passwd
command, see the RETURN User’s Guide.

3-4

Preparing XENIX for Users

3.4 Forcing a New Password
From time to time, a user account may need a higher level of security than
ordinary. Since the security of any account depends its password, it is
important to keep the password as secret-as possible. One way to provide
greater security is to force users to change their passwords on aregular basis.
You can force users to change their passwords by using the pwadmin
command. This command automatically dates each password and requires the
user to provide a new password when the specified number of weeks have
passed. The command also requires users to wait a minimum number of weeks
‘before allowing them torestore their previous password.
To use the pwadmin command, you must log in as the super-user. You also
need to choose a minimum number of weeks that a user must wait before
changing his password and a maximum number of weeks that a user may go
without changing the password. A common pair of minimum and maximum
valuesis2and8.
To set the minimum and maximum dates, type:

pwadim -min num -max num login-name

where num is a number in the range 1 to 63, and login-name is simply the login
name of the user whose password you are administering.

If you are unsure of the current minimum and maximum values for a password,
you can display them by typing:

pwadmin -d login-name

This command does not change the current values.

If you wish to force a user to change his password immediately, type:
pwadmin -f login-name

The user is asked on his next login to supply a new password.

When a password no longer requires extra security, you can remove the current
minimum and maximum values for the password by typing:

pwadmin -n login-name

The sjstem will no longer prompt for changes.

35

XENIX Operations Guide

3.5 Creating a Group

A group is a.collection of users who share a common set of files and directories.
The advantage of groups is that users who have a common interest in certain
files and directories can share these filesand directories without revealing them
to others. Initially, all users belong to the common system group named
“‘group”, but you can create new groups by modifying the XENIX system file
[ete/ group using a XENIX text editor.

To create a new group, you need to choose a group name and a group
identification number (group ID). You also need to make alist of the usersin the
new group. The group name may be any sequence of letters and numbers up to
eight characters long, and the group ID may be any number in the range 0 to
65535. Both the group name and ID must be unique, i.e., they must be not be the
same as any existing group name or ID.

To create a new group, follow these steps:

1. Loginasthe super-user.
2. Display the contentsof the /ete/groupfile by typing:
cat /etc/group

and pressing the RETURN key. The cat command displays the
contents of the /etc/groupfile. The file contains several entries, each
defining the group name, group ID, and users for a group. Each entry
has the form:

group-name::group-ID:usere

The users are shown as a list of login names separated by commas (,).
For example, a typical file may look like this:

other:x:1:demo
sys:x:2:
group::50:johnd,suex

3. Check the /ete/group file entries to see that the group name and ID
you have chosen are unique.

4. If the group name and ID are unique, invoke a XENIX text editor (see
the XENIX User’s Guide) and specify Jetc/groupasthe file to edit.

5. Locate the last line in the file, then insert the new entry in the form
given above. For example, if you wish to create a group named
“shipping’ with group ID ‘142" and users “johnd”, “marym”, and
“suex’’, type: .

3-6

Preparing XENIX for- Users

shipping::142:johnd,marym,suex
6. Exit the editor.

To make sure you have entered the-group names correctly, use the grpcheck
command to check each entry in the /etc/group file. If the new entry is free of
errors, noother changesto the file are required.
You can create any number of new groups. Each group may have any number
of members. Furthermore, any user may be a member of any number of
groups. Multiple group membership is especially convenient for users who
‘haveinterests that span a variety of areas.
If a user is a member of several groups, he can gain access toeach group by using
the newgrp command. See the XENIX User’s Guide for details.
3.6 Changing a User’s Login Group
When a user logs in, the system automatically places the user in his ‘;iogin
group”. This is the group given by the group ID in the user’s fetc/passiiid file
entry (see the section “Adding a User Account” in this chapter). You can
change the user’s login group by changing the group ID. To change the groupID -
you need the group ID.of the new login group, and you need to know how tousea
XENIX text editor (see the XENIX User’s Guide).

To change the group ID, follow these steps:

- L Login as the super-user. -

2. Use the c¢d command to change the current directory to the [ete
directory. Type:

cd Jete
3. _Usethe cp command to ma.ke a copy of the /ctc/pauwdﬁle Type
| cp passwd passwd+
v4. » Invoke atexteditor and specify [etc/passwd+ as the fileto edlt

5. Locate the desired user’s password entry. Each entry begins with the’
user’slogin name.

6. Locate the user’s group ID number in the user’s password entry. Itis

the fourth item in the entry. Items are separated by colons (). For
example, the entry

3.7

XENIX Operations Guide

marym:9iKlwp:205:50:Mary March, 122:/usr/marym:/bin/sh
hasgroup ID “50”.

7. Delete the old group ID and insert the new one. Be sure you do not
delete any other portion of the user’spassword entry.

8. Exit the editor.
8. - Use the mv command to save the old /ete/passwdfile. Type:
mv passwd passwd-

10. Use the mv command to make the edited file the new /etc/paseword
file. Type: '

mv passwd+ passwd

You can make sure you have entered the new login group correctly by using the
pwcheck command. If the new entry is correct, no other changes to the file are
required.

You must not change the group IDs for system accounts such as “cron’’ and
“root”. System accounts are any accounts whose user IDs are less than 200.
The user IDisthe third item in the password entry.

Note that changing a user’slogin group does not change the ““group ownership”’
of his files. Group ownership defines which group has access to a user’s files. If
users in the new group wish to access the user’s files, you must change the group
ownership with the chgrp (for “change group”) command. For details, see the
section “Changing Group Ownership” in Chapter 4.

3.7 Changing a User ID

Sometimes it is necessary to change the user ID in a user’s account entry to
allow a user to access files and directories transferred from other computers. In
particular, if a user has different accounts on different computers and
frequently transfers files and directories from one computer to another, then
the user IDs in each of his account entries must be made the same. You can
make them the same by modifying the account entriesin the fetc/passwdfile.

To change a user ID, follow these steps at every computer for which the user has
an account: .
1. Loginasthe super-user.

2. Use the cd command to change the current directory to the /fete
directory. Type: ‘ :

3-8

Preparing XENIX for Users:

cd fete
3. Usethecp command to make acopy of the /ete/passwdfile. Type:
cp passwd passwd+

4. Invoke a XENIX text editor and specify [ete/passwd+ as the file to
edit.

5. Locate the user’s account entry. Each entry begins with the user’s
loginname.

6. Locate and substitute the current user ID. The ID is the third item in
the entry. For example, theentry

marym:9iK1wp:205:50:Mary March, 122:/usr/marym:/bin/sh
hasuserID ““205".
7. Exit the texteditor.
8. Usethe mv command tosave theold [ete/passwdfile. Type:
mv passwd passwd- ‘

9. Use the mv command to make the edited file the new [ete/passwdfile.
Type:

myv passwd+ passwd
Noother changés tothe file are réquired.

In most cases, you can change the user ID to the same number as the user’s
most-used account. But the new number must be unique at every system for
which the user has an account. If there is any conflict (for example, if the
number already belongs to another user on one of the systems), you must
choose a new number. You can choose any number greater than 200. Just
make sure it is unique, and that you copy it to all systems on whlch the user has
an account.

Once a user’s ID has been changed, you must change the ‘‘user ownership”’ of
the user’s files and directories from the old user ID to the new one. You cando
this with the chown (for ‘‘change owner”) command described in Chapter 4,
“Using File Systems.” For example, to change the ownership of johnd’s home
directory, type:

chown johnd fusr/johnd

Note that you may use the find command described in Chapter 6, “Backing Up
File Systems,” tolocate all filesand directories with the user’sold user ID.

3-9 .

XENIX Operations Guide

3.8 Removing a User Accoun£

It is sometimes necessary to remove a user account from the system. You can
remove a user account with the rmuser program. The program deletes the
user’s entry from the /etc/passwd file and removes the user’s home directory
and mailbox.

Before you can remove the user account, you must remove all files and
directories from the user’s home directory, or move them to other directories.
If you wish to save the files, you may use the tar command to copy the filestoa
floppy disk (see the section “‘Copying Files to a tar Disk” in Chapter 6).

Toremove auser account, follow these steps:

3-10

Log in as the super-user.
Type:
cd fust/login-name

and press the RETURN key to change to the user’s home directory.
The login-name must be the user’s login name.

Make sure that you have made copies of all important files and
directories in the user’shome directory.

Use the rm (for “remove’) command to remove all files and
directories from the user’s home directory. This includes any files
that begin with a period (.). Directories can be removed by using the
—r (for “recursive’’) option of the rm command. For example, the
command

rm -r bin

removes the directory named b¢n and all files within this directory.

After removing all files and directories, make sure the user’s mailbox
isempty. Type:

cat /usr/spool/mail/logt’n-narﬁe

and press the RETURN key, where login-name is the user’s login
name. If the mailbox contains text, then type:

cat /dev/null > fusr/spool/mail/login-name

and pressthe RETURN key.

10.

Preparing XENIX for Users

When the user’s home directory and mailbox are empty, type:
ed fusr

and press the RETURN key. The user’s home directory cannot be
removed until you have moved to another directory.

Type:
rmuser

and press the RETURN key. The program displays a message
explaining how to remove a user:

ssssrmuser-remove a user from the systems++»
Press ENTER when you are ready.
The program asks for the login name of the user you wish to remove:
Enter name of id to be removed.
Type the user’slogin name. You should now see the message:
Removing user name from the system. CONFIRM? (y/n/q):
Type y (for “yes”) to remove the user from the system. Otherwise
type n (for “no’’) to stop the removal, or ¢ (for ‘‘quit”) to stop the -
program. The program removes the user’s entry from the
[ete/passwd file, the user’s mailbox, . profile file, and home directory.
The program displaysthe message:
User name removed from the system
The program now gives you a chance to remove another user:

Do you want to remove another user? (y/n/q):

Type y to remove another user. Otherwise, type n or g to stop the
program.

Note that the rmuser program will refuse to remove an account that has a

RN 1Y

system name, such as ‘‘root”, **sys”, ‘“‘sysinfo”, ““cron”, or “‘uucp”’, or a system
ID {user ID below 200). Also, the program cannot remove a user account if the
user’s mailbox still has mail in it, or if the user’s home directory contains files
other than .profile.

3-11

Chapter 4
Using File Systems

4.1

4.2

43

4.4

4.5

4.6

Introduction 1

FileSystems 1 ,

4.2.1 CreatingaFileSystem 1
4.2.2 MountingaFileSystem 2
423 UnmountingaFileSystem 3
424 FormattingFloppyDisks 3

Permissions 4

4.3.1 Displaying Permissions 4
4.3.2 ChangingPermissions S

4.3.3 ChangingtheFileCreationMask 6

ManagingFileOwnership 7

44.1 ChangingUserOwnership 7
44.2 ChangingGroupOwnership 7
SystemSecurity 8 i
45.1 PhysicalSecurity 8
45.2 AccessSecurity 8
4.5.3 EncryptingTextFiles 9
454 ProtectingSpecialFiles 9

Using XENIX AccountingFeatures 9

4.6.1 Starting Process Accounting 10

4.6.2 Changing AccountingFiles 10

46.3 Displaying Accounting Information 11

Using File Systems

4.1 Introduction

This chapter describes one of themost important responsibilities of a system manager:
controlling and recording users’ access to the files and directorics on the system. It
introducesfile systems, permissions, systcm security, andprocess accounting.

4.2 File Systems

Afile system isthe XENIX system’s way of organizing storage onmass storage devices
such as hard and floppy disks. A file system consists of program and data files,
directories, andthe informationneeded tolocate andaccessthese items.

Each XENIX system has at least one file system. This file system is called the *‘root™*
file system and is represented by the symbol *“/*°. Theroot ficls system contains allthe
XENIX program and data filesandusually containsall the user directoriesas well.

A XENIX sysiem may also have other file systems, for example, a file system that
contains only user directorics or application programs. Such file systems must be
specifically cnatcdbyauscrandthcnmountcdomothcxystcm

You cancreate a file system with the mkfs command. This command setsthe size and
format of the file system and may also copy some files to the new system. You can
mount a file system with the mount command. Once mounted, you may access the
files and directories in the file system as easily as files and directories in the root file
system. (The root file system is permanently mounted.) When you are finished with a
file system, you canunmount it with the umount command.)

One reason for creating new file systems istoexpand the available storage space of the
system. Each mounted file system adds its free space to the system’'s total storage
space. Youmay create anew file systemon ahardor floppy disk, mount it, and thenuse
its free space for your work, leaving the limited space in the root file system for XENIX
system files.

Another reason for creating new file systcms isto establish a collection of floppy dnsks
that contain application programs and data files. You may then mount and unmount
file systemsanduscthe programsand filesaccording to your nceds.

The following scctionsexplain howtocreate and use file systems.
4.2.1 Creating a File System

You can create a file system on a floppy disk with the mkfs command. You need a
formatted floppy disk, the special filename of a floppy disk drive, the disk block size,
and special numbers called the gap and block numbers. A floppy disk canbe formatted
by followingthe instructionsinthe section ‘ ‘Formatting Floppy Disks'” inthischapter.
The special filenames for the disk drives, the disk block size, and the gap and block
numbers depend onthe specific system and are givenin Appendix A.

Note that if a file system already exists on the disk, it will be destroyed by this
procedure. Forthisreason, be particularly careful not tocreate anew file system onthe
rootfile system. If youdestroytherootﬁle systcm. you w:llhavc toreinstall the XENIX
system. '

XENIX Operations Guide

Tomake afile systemona foppy disk, followthese steps:

1. Login. Youdo not have to be logged in as the super—user touse the mkfs
command.

2. Inscrtaformatted floppy disk into a floppy disk drive. Make sure theseis no
read—onlytabonthedisk jacket.

3. Type
letc/mkfs specialfile blocksize gap block
(where specialfile ,blocksize ,gap , and block are supplied by you) and press
the key. The system automatically creates the file system. 1f it discovers
dataalready onthe disk, the system displaysthe message:
mkfs: specialfile contains data. Overwrite? (y/n):

1f you are sure the disk contains nothing that you want to save, type y and
press the key to overwrite the data and continue creating the file system.
Otherwise, typen. If youtype end, no file systemiscreated.

For example, the following command creates a file system on the floppy disk drive
/dev/fd withblocksize 800 and gapandblock numbers 2and 16. .

/etc/mkfs /dev/fd 800 2 16
4.2.2 Mounting a File System

Once you have created a file system, you can mount it with the mount command. To
mount a file system you nced the the special filename of a floppy disk drive and the
name of the directory onto which the file system is to be mounted. The special filename
of the disk drive containing the disk with the file system depends onthe specific system
and is given in Appendix A. The directory to reccive the file system may be any
directory as long as it is empty (contains no files) and is not your current working
directory. Note that the directory /mnt is specifically reserved for mounted file
systems. ,

Tomountafile system, followthese steps:
1. Loginasthesuper—user.
2. Insertthedisk containingthe file systemintoafloppy disk drive.
3. Type the appropriate mount command and press the key. The command
shouldhavethe form
letc/mount specialfile directoryname

where specialfile isthe special filename of the disk drive and directoryname
is the name of the directory to reccive the file system. If the disk has a
read—only tab, make sure you include the switch ‘‘~r'* at the end of the
command.

For example, the following command mounts a file system on a disk in the disk drive
/dev/fdontothe directory named/account .

4-2

Using File Systems

letc/mount /dev/fd /account

Remember to make sure that the specified directory is empty before issuing the
command. Ifthecommanddisplaysthemessage:

mount: Structure needs cleaning

use the fsck commandto cleanthe file system and try tomount it again (sce the section
“‘File System Integrity”* in Chapter S). Ifthe commanddisplaysthe message:

mount: Device busy
cither the file system has already beenmounted and cannot be mountedtwice, ora user
18 currently inthe directory in which you wishtomountthe file system.

Tocheck that the file system was properly mounted, use the ¢d commandto change to
the directory containing the mounted system and the 1 command to list the contents.
The command displays the filesand directories (ifany) inthe file system. Besuretouse
thecd commandto leavethe directory afier finishing your work init.

Note that frequently used file systems canbe mounted automatically when startingthe
system by appending the appropriatc mount commands to the /erc/rc file. See the
section ‘‘Changingthe/etc/rc File'' inChapter 8 fordetails. -

4.2.3 Unmounting aFile System

You can unmount a mounted file system with the umount command. Unmounting a
file system does not destroy its contents. It merely removes access to the files and
directories inthe file system.

Tounmountamounted filesystem, type:
letc/umount specialfile

and pressthe key. The specialfile is the name of the special file corresponding tothe
disk drive containing the disk with the file system. The command empties the directory
that previously contained the file system and makes the directory and the
corresponding disk drive available for mounting another file system.

For example, the following command unmounts a file system from the disk drive
Idevifd:

/etc/umount /dev/fd

Before unmounting a file system, make sure that no files or directories are being
accessed by programs being run by you or by other users. The umount command
displaysthemessage:

umount: Device busy
if youoranotheruseris currently inthe directory containing the file system.

4.2.4 Formatting Floppy Disks

You can format floppy disks with the format(C) program. Formatted disks are
required whenever you create afile system and when you back up afile system with the
sysadminprogram (see Chapter6, ‘‘File System Backups'").

XENIX Operations Guide

In gcncral. the system manager should format spare floppy disks in advance. To
format afloppy disk, follow these steps:

1. Type
format —v)
and pressthe key. The —vflag specifies verbose (or interactive) mode.

2. formatwillrespond
insert disk

3. Afterthe programhas finished formatting the disk, it will prompt:
type <RETURN> to format another disk, 'q’ to quit

If you wish, you may usethe ~f flag to format your disks. The program formats the
givenfile. The defaultdeviceis/dev/rfd. The command

format —f /dev/nrfd
formatsthe disk usingthe no—eject device.

Note that formatting removes all data fromthe disk, so if you are formatting adisk that
already containsdata, make sure thatthedata isnothing you wishtosave.

4.3 Permissions

Permissions arc the way the XENIX system controls access to all the files and
directories. In XENIX, an ordinary user may access those files and directories for
which he haspermission. All other filesand directories are inaccessibletohim.

There are three different levels of permissions: user, group, and other. User
permissions apply to the owner of the file; group permissions apply to uscrs who have
the same groupID astheowner; and other permissions apply toall otherusers.

43.1 Displaying Permissions

You can display the permission settings for all the files in a directory with the 1
command. This command lists the permissions along with the name of the file's
owner, the size (in bytes), and the date and time the file was last changed. The
commanddisplay hasthe following format:

—rw—rw—-———1 johnd group 11515 Nov 17 14:21 filel

The permissions are shown as a sequence of ten characters on the left of the display.
The sequence is divided into four ficlds. The first field (the “‘type’’ ficld) has a single
character, the other fields (“‘user™”, “‘group’’, and ‘‘other’’, have three characters
each.

Using File Systems

- w— w— —_—
type user group other
Thecharactersinthe ficldshave the following meanings:

Inthe‘‘type’’ ficld:

d lndicatcsﬁxe item isadirectory

— Indicatestheitemisanordinary file

b indicatesthe item isa device special block I/Ofile

c Indicatesthe itemisadevice specialcharacter1/Ofile

ST

Inthe““user”’, “‘group’’, and ““other’’ fields:

r Indicates read permission. Read permission for a file means you may copy or
display the file. Read permission for a directory means you may display thefiles
inthat directory.

w Indicates write permission. Write permission for a filc means you may change
ormodify the file. Write permission for a directory means you may create files
orsubdirectories withinthat directory.

X Indicates execute permission (for ordinary files) or scarch permission (for
directories). Execute permission for a file means you may invoke the filc asyou
wouldaprogram. Execute permission for a directory means you may enterthat
directory withthe ed command.

- Indicatesnopermission.

Forexample, the permissions

—IWXIWXIWX

indicate an ordinary file with full read, write, and execute access for everyone (user,
group, and other).

The permissions

indicate anordinary file with read and write access for theuseronty.
The permissions
drwxr—x--x

indicate a directory with search access for everyone, read access for the user and
group, and write access foronly theuser.

4.3.2 Changing Permissions

When you create a file, the XENIX system automatically assigns the following
permissions:

XENIX Operations Guide

—rW—f——r—=

Thismeansthe cveryone may read the file, but only the user may writetoit. Whenyou
create adirectory, the systemassigns the permissions:

drwxr—xr—x

This means everyone may search and read the directory and the user may create files
and directories withinit.

You can change the permissions of a file or a directory with the chmod (for *‘change
mode’*) command. This command requires that you tell it how to change the
permissions of a specific file or directory. You do so by indicating which levels of

g o

permissions you wish tochange (user*‘u’*, group *‘g"’, or other *‘0°’), how you wish
to change them (add “* +'* or remove **—""), and which permissions you wish to

Coeg, %"

change(read ‘‘r*’, write “*w"’,orexccute *‘x’*). Forexample, the pattern:
utx

adds execute permission forthe user andthepattern
go—w

removes write permission for groupandother.

The commandhasthe form:
chmod partern name

where name is one or more file or directory names. For example, to change the
permissions of the file ‘‘receivables’™ from “‘~rw—r—-r——""10 “‘~rw—— -~

—==",ype:
chmod go—r reccivables
andpressthe key.

After using chmod use the] command to check the results. If you have made a
mistake, use chmod againtocorrectthemistake.

4.3.3 Changing the File Creation Mask

The file creation mask is a special number, kept by the system, that defines the
permissions givento cvery file and directory created by auser. Initially, the mask has
the valuc022 whichmeans every file receivesthe permissions

—rw—r——-r—-—
and every directory receivesthe permissions
drwxr—xr—x

You canchange the mask and the initial permissions your files and directoriesreceive,
by usingtheumask command.

The umask commandhasthe form:
umask value

where value is athree —digit number. Thethree digitsrepresent user, group, and other
permissions, respectively. The value of adigit defines which permissionis given:

Using File Systems

digit permission

Read, write, execute, and search
Read and write

Read, execute, and scarch

Read

Write, execute, and search
Write

Execute and scarch

No permissions

For example, the command
umask 177

sets the file creation mask so that all files and directories initially have read and write
permission for the user and nopermissions forall others.

NA AW =O

4.4 Managing File Ownership

Whenever a file is created by a user, the system automatically assigns *‘‘user
ownership' of that file to that user. This allowsthe creator to access the file according
to the ‘‘user’’ permissions. The system also assigns a *‘group ownership®* tothe file.
The group ownership defines which group may access the file according to the
‘‘group”’ permissions. The group is alwaysthe same grouptowhichtheuserbelonged
whenhe createdthe file.

Only one user and one group may have ownership of a file at any time. (These arcthe
owners displayed by the] command.) However, you may change the ownership of a
file at any time withthe chownand chgrp commands.

4.4.1 Changing User Ownership

You can change the user ownership of a file with the chown command. Thecommand
hasthe form:

chown login name ﬁles

where login name is the name of the new user and files is the names of the files tobe
changed. For example, thecommand

chown johnd projects.june
changesthe current ownerofthefile projects. juneto jobnd.

The chown command is especially useful after changing the user ID of a user (secthe
section ‘‘Changinga User’sID"in Chapter3).

Youmustbe loggedinasthe super—usertouse thiscommand.

4.4.2 Changing Group Ownership

You can change the group owncrship of a file with the chgrp command. The
commandhasthe form:

XENIX Operations Guide

chgrp group name files
where group name is the name of a group given in the /etc/group file and files are the
namesofthe filesyou wishtochange. Forexample, the command

chgrp shipping projects.june
changesthe groupownershipof thefile projects. junetothe group named shipping.

The chgrp command is especially useful if you have changed the login group of auser
(scethe section *‘Changing a User’sLoginGroup®* inChapter 3).

4.5 System Security

Every system, no matter what its size, should have some form of protection against
unauthorized access to the computer, disks, and system files. The foliuwing sections
suggest ways for a systemmanagertoprotect the system.

4.5.1 Physical Security

You canprotect the physical components of the computer, especially system disks, by
takingthese steps:

1. Keepunessential personnel out of the work arca.

- 2. Organize and lock upall disksandtapes whennot inuse. They shouldnotbe
stored withthe computeritself.

3. Keep disks away from magnetism, direct sunlight, and severe changes in
temperature.

4. Donotuseball pointpenstowrite labelsondisks.
5. Make backup copies of all floppy disks (see the section *‘Copying Floppy
Disks'’ inthischapter).
4.5.2 Access Security

You can protect the system against access by unauthorized individuals by taking these
steps:
1. Reminduserstologout of theiraccountsbefore leaving theterminal.

2. Discourage users from choosing passwords that are easy to guess.
Passwords should be at least six characters long and include lettrs, digits,
and punctuationmarks.

3. Keepthesuper—userpassword secret from allbut necessary personnel.

Using File Systems

4.5.3 Encrypting Text Files

You can usually ensure both the privacy and safety of files by setting the appropriate
permissions and maintaining system sccurity. However, these methods cannot
protect files from unauthorized individuals who have logged in as the super—-user.
You can protect files from an unauthorized super—user by using the crypt command
to encrypt the file. Encryption changes the contents of the file into meaningless
characters. The encryption is carried out by means of a key which you supply. The
process can bereversed, andthe file returned to normal, by giving the samekey.

For example, to encrypt the contents of the file pro;ects _june and store the encrypted
fileinthefile projects.secret , type:

crypt <projects.june > projects. secret
and pressthe key. The command asks forthekey with the message:
Enter key:

Type a string of characters (it may be up to eight characters long) and press the key.
The program encryptsthefile.

Torestore the encrypted file projects. secret and display it onthe screen, type:
crypt <projects.secret

and press the key. The command asks for the key. Type the same key you used to
encryptthedataandpressthe key. The programdisplaysthe restored data.

4.5.4 Protecting Special Files

You canprevent ordinary users from gaining direct access tothe dataand program files
on the system’s hard and floppy disks by protecting the system’s special files. The
XENIX special files, inthe /dev directory, are used primarily by the system to transfer
datato and from the computer’s hard and floppy disks as well as other devices, butcan
alsobe usedby ordinary userstogain direct accesstothese devices.

Since direct access bypasses the system’s normal protection scheme and allows
ordinary users to examine and change all files in the system, it is wise to protect the
special filestoensure system security.

To protect the XENIX special files, log in as the super—user and use the chmod
command to set appropriate permissions. For example, to disallow any access by
ordinary users, sct the permissions of such special files as /devimem, /devikmem,
/deviroot , and /deviusrtoread and write access for the super—useronly. Notethatyou
must not change the permissions for the tty files.

4.6 Using XENIX Accounting Features

The XENIX system provides a set of commands that allow the system manager to
perform *‘process accounting’’. Process accounting is a simple way tokeep track of
the amount of time each user spends on the system. The process accounting
commands keep a record of the number of processes (i.c., programs) invoked by a
user, how long each process lasts, andother information such ashow oftenthe process
accessesl/Odevices, and howbigthe processisinbytes.

XENIX Operations Guide

Process accounting is helpful on systems where users are being charged for their
accesstime, but it may also be used to develop adetailed record of system, command,
and systemresourceusage.)

There are several commands which may be used to do process accounting, Ofthese,
‘the most useful are accton and acctcom. The accton command starts and stops
process accounting. When invoked, the command records pertinent information
about each process invoked by logged inusersto the file named /usr/admipacct. The
acctcom command is used to display the information. The command has several
switches for displaying different typesof accounting information.

4.6.1 Starting Process Accounting

You can start process accounting with the accton command. Process accounting can
be started atany time. Typically, it is started whenthe systemitsclfis started.

Before accounting canbe started, the file/usr/adm/pacctmust be created, if it does not
already exist. Tocreate the file, follow these steps:
1. Loginasthe super—user.

2. Usetheedcommandtochangethe working directory to/usr/adm . Type:
cd fusr/adm

3. Usethecpcommandtocreatethe/usr/adm/pacct file. Type:
cp /dev/null pacct

4. Usethechmod commandtochange the file permissions. Type:
chmod 644 pacct .
Uscthe chown commandto changethe file’sownership. Type:
chown adm pacct

S. . Usethechgrpcommandtochangethefile’s groupownership. Type:
chgrp adm pacct
Oncethe/usrladm/ pacct file iscreated, you may start process accounting by typing:
accton /usr/adm/pacct
The system immediately beginsto copy process accounting informationtothe file.

4.6.2 Changing Accounting Files

Process accounting is usually conducted over a set time period, suchasaday. Atthe
end of each period the accounting information is saved and the accournting started
again witha new file. This prevents disruption of the process accounting and provides
acleanfile with which tostart each new accounting period:

Tochangethe processaccourting file, follow these steps:

Chapter 5

Maintaining File Systems

5.1 Introduction 5-1

5.2 Maintaining Free Space 5-1

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.29

Strategies for Maintaining Free Space 5-1
Displaying Free Space 5-2

Sending a System-Wide Message 5-2
Displaying Disk Usage 5-3

Displaying Blocks by Owner 5-3

Mailing a Message to aUser 5-3
LocatingFiles 5-4

Locating coreand Temporary Files 5-5
Clearing LogFiles 5-5

5.2.10 Expanding the File System 5-6

5.3 File System Integrity 5-6

5.3.1
5.3.2

Repairing theFile System 5-6
Avutomatic File System Check 57

P

Maintaining File Systéms

5.1 Introduction

File system maintenance, an important task of the system manager, keeps the
XENIX system running smoothly, keeps the file systems clean, and ensures
adequate space for all users. To maintain the file systems, the system manager
must monitor the free space in each file systen, and take corrective action
whenever it getstoo low.

This chapter explains the file system maintenance commands. These
commands report how much space is used, locate seldom-used ﬁles, and remove
or repair damaged files. -

5.2 Maintaining Free Space

The XENIX system operates best when at least 15% of the space in each file
system is free. In any system, the amount of free space depends on the size of
the disk containing the file system and the number of fileson the disk. Sinceall
disks have a fixed amount of space, it is important to carefully control the
number of files stored on the disk.

If a file system has less than 15% free space, system operation usually becomes
sluggish. If no free space is available, the system stops any attempts to write to
the file system. This means that the user’s normal work on the computer
(creating new files and expanding existing ones) stops. o

The only remedy for a file system which hasless than 15% free space is to delete
one or more files from the file system. The fo]lowmg sectlons descrlbe stra’oegles
for keeping the free space available.

5.2.1 Strategies for Maintaining Free Space

The system manager should regularly check the amount of free space of all
mounted file systems and remind users to keep their directories free of unused

files. You can remind users by including a reminder in the message of the day
file fete/motd. (See the section “Changing the /etc/motd File” in Chapter
8). .

If the amount of free space slips below 15%, the system manager should:
1. Sendasystem-wide message askingusers to remove unused files.

2. Locate exceptlonally large dlrecbones and files, and send mall to the
- owner asking him to remove unnecessary files. :

3. Locate and remove temporary files and filesnamed core.

51

XENIX Operations Guide

4. Clear the contents of system log files.

Finally, if the system is chronically short of free space, it may be necessary to
create and mount an additional file system. .

5.2.2 Displaying Free Space

You can find out how much free space exists in a particular file system with the
df (for *‘disk free”) command. This command displays the number of “blocks"’
available on the specific file system. Ablockis512 characters (or bytes) of data.

The df command has the form:
df specialfile

where specialfile can be the name of a XENIX special file corresponding to the
disk drive containing the file system (see Appendix A, “XENIX Special Device
Files”). If you do not give a special filename, then the free space of all normally
mounted file systemsisgiven.

For examplé, to display the free space of the root file system /dev/root, type:
df /dev/root

and press the RETURN key. The command displays the special filename and
the number of free blocks. You may compute the percentage of free space by
comparing the displayed value with the total number of blocks in the file
system. See Appendix A, “XENIX Special Device Files,” for a list of the total
blocks.

5.2.3 Sending a System-Wide Message

If free space is low, you may send a message to all users on the system with the
wall (for *“write to all”’) command. This command copies the messages you
type at your terminal to the terminals of all users currently logged in.

Tosend a message, type:

wall
and press the RETURN key. Type the message, pressing the RETURN key to
start a new line if necessary. After you have typed the message, press the
CNTRL-D key. The command displays the message on all terminals in the

system. To leave the wall command, press the CNTRL-D key. This removes
the link to other terminals.

52

Maintaining File Systems

5.2.4 Displaying Disk Usage
You can display the number of blocks used within a directory by using the du
command. This command is useful for finding excessively large directories and
files. '
The du command has the form:

du directory
The optional directory must be the name of a directory in a mounted file
system. If you do not give a directory name, the command displays the number

of blocksin the current directory.

For example, to display the number of blocks used in the directory /usr/joknd,
type: ’

du /usr/johnd
and press the RETURN key. The command displays the name of each file and
directory in the /usr/johnddirectory and the number of blocks used.
5.2.5 Displaying Blocks by Owner

You can display a list of users and the number of blocks they own by using the
quot (for “quota’’) command. The command hasthe form:

quot apecialfile
The specialfile must be the name of the special file corresponding to the disk
drive containing the file system (see Appendix A, “XENIX Special Devices
Files”).

For example, to display the owners of files in the file system mounted on the
disk drive /dev/fd1, type:

quot /dev/fd1

and press the RETURN key. The command displays the users who have filesin
the file system and the number of blocks in these files.

5.2.6 Mailing a Message to a User

If a particular user has excessively large directories or files, you may send a
personal message to the user with the mail command.

53

XENIX Operations Guide‘

To begin sending a message through the mail, type

mail login-name
and press the RETURN key. The login-name must be the login name of the
recipient. To send a message, type the message, press the RETURN key, and
then press the CNTRL-D key. If the message has more than one line, press the
RETURN key at the end of each line. The mail command copies the message to
the user’s mailbox, where he may view it also by using the mail command. See
the XENIX User’s Guide for details.
5.2.7 Locating Files
You may locate all files with a specified name, size, da.t,e,. owner, and/or last
access date by using the find command. The command is useful for locating
seldom-used and excessively large files.
The find command has the form:

find directory parameters
The directory must be the name of the first directory to be searched. (It will
also search all directories within that directory.) The parameters are special
names and values that tell the command what to search for (see find(C) in the
XENIX Reference Manual for complete details). The most useful parameters
are:

-name file

-atime number

-print
The “-name” parameter causes the command to look for the specified file. The
‘“-atime’ parameter causes the command to search for files which have not
been ‘accessed for the number of days. The “-print” parameter causes the
command to display the locations of any filesit finds.
For example, tolocate all files named corein the directory /usr, type:

find fusr -name core -print

and press the RETURN key. The command displays the locations of all files it
finds.

54

-

Maintaining File Systems

5.2.8 Locating core and Temporary Files
Youcanlocate core, and temporary files with the find command.

A core file contains a copy of a terminated program. The XENIX system
sometimes creates such a file when a program causes an error from which it
cannot recover. A temporary file contains data created as an intermediate step
during execution of a program. These files may be left behind if a program
contained an error or was prematurely stopped by the user. The name of a
temporary file dependson the program that created it.

In most cases, the user has no use for either ¢ ore or temporary files and they can
" be safely removed. '

When searching for core or temporary files, it is a good idea to search for files
which have not been accessed for a reasonable period of time. For example, to
find all core filesin the /uer directory which have not been accessed for a week,

type:
find /usr -name core -atime +7 -print

and pressthe RETURNkey.

5.2.9 Clearing Log Files

The XENIX system maintains a number of files, called log files, that contain
information about system usage. When new information is generated, the
system automatically appends this information to the end of the corresponding
file, preserving the file’s previous contents. This means the size of each file
grows as new information is appended. Since the log files can rapidly become
quite large, it is important to periodically clear the files by deleting their
contents.

Youcan clear alog file by typing:
cat </dev/null > filename

where filename is the full pathname of the log file you wish to clear. A log file
normally receives information to be used by one and only one program, so its
name usually refers to that program. Similarly, the format of a file depends on
the program that uses it. See Appendix B, “XENIX Files and Directories,” for
descriptions of the log files.

In some cases, clearing a file affects the subsequent output of theicorresponding :

program. For example, clearing the file fetc/ddate forces the next backup tobe
a periodic backup (see Chapter 6, “‘Backing Up File Systems’’).

55

XENIX Operations Guide

5.2.10 Expanding the File System

If free space is chronically low, it may be to your advantage to expand the
system’s storage capacity by creating and mounting a new file system. Once
mounted, you may use this new file system for your work, or even copy user or
system directories to it.

A chronic shortage of space usually results from having more users on the
system than the current hard disk can reasonably handle, or having too- many
directories or files. In either case, creating a new file system allows some of the
users and directories to be transferred from the hard disk, freeing a significant
amount of space on the existing file system and improving system operation.
For details about creating and mounting file systems, see Chapter 4, “Using
File Systems.”

5.3 File System Integrity

Since file systems are normally stored on hard and floppy disks, occasional loss
-of data from the file system through accidental damage to the disks is not
unusual. Such damage can be caused by conditions such asan improper system
shutdown, hardware errorsin the disk drives, or a wornout disk.

Such damage usually affects one or two files, making them inaccessible. In very
rare cases, the damage causesthe entire file system to become inaccessible.

The XENIX system provides a way to restore and repair a file system if it has
been damaged. The fsck (for “file system check”) command checks the
consistency of file systems and, if necessary, repairs them. The command does
its best to restore the information required to access the files, but it cannot
restore the contents of a file once they are lost. The only way to restore lost
data is to use backup files. For details about backup disks, see Chapter 6,
“Backing Up File Systems.”

5.3.1 Repairing the File System

You can repair a file system with the fsck command. The command has the
form:

fsck specialfile
The specialfile must be the name of the special file corresponding to the disk

drive containing the file system (see Appendix A, “XENIX Special Device
Files”).

5-6

Maintaining File Systems

For example, to check the file system on the disk in the disk drive /dev/fd!,
type .

fsck /dev/fdl

and press the RETURN key. The program checks the file system and feports on
its progress with the following messages.

*++ Phase 1 - Check Blocks and Sizes
s+ Phase 2 - Pathnames

*s Phase 3 - Connectivity

s Phase 4 - Reference Counts

** Phase 5 - Check Free List

If a damaged file is found during any one of these phases, the command asksif it
should be repaired or salvaged. Type y to repair a damaged file. You should
always allow the system to repair damaged files even if you have copies of the
fileselsewhere or intend to delete the damaged files.

Note that the fsck command deletesany file that it considers too damaged to be
repaired. If you suspect a file system problem and wish to try to save some of
the damaged file or files, check other possible remedies before you invoke the
command.

-

5.3.2 Automatic File System Check

The XENIX system sometimes requests a check of the file system when you first
start it. This usually occurs after an improper shutdown (for example, after a
power loss). The file system check repairs any files disrupted during the
shutdown. For details, see the section ‘‘Cleaning the File System’ in
Chapter 2.

57

Chapter 6
Backing Up File Systems

6.1 Introduction 1
6.2 Strategies forBackups 1

6.3 Usingthe sysadminProgram 1 -
6.3.1 CreatingBackups 2
6.3.2 GettingaBackupListing 2
6.3.3 RestoringaBackupFile 3

6.4 UsingthetarCommand 4
64.1 CopyingFilestoatarDisk 4
6.4.2 RestoringFilesfromatarDisk §

Backing Up File Systems

6.1 Introduction

Afile systembackupis acopy, on floppy disk, of the files in the root dircctory and other
regularly mounted file systems. A backup allowsthe system managertosave acopy of
the file systemasit wasat a specifictime. The copy may beused latertorestore filesthat
areaccidentally lost ortemporarily removed from the file systemto save space.

Thischapter explains how tocreate backups of the root directory and other file systems
and howtorestorefiles fromthe backups.

6.2 Strategies for Backups

The system manager should back up the root directory (and any other mounted file
systems) on a regular basis. In particular, he should make daily copies of all files
modified during the day, and make periodic (c.g., weekly) copies of the entire root
directory and othermountedfile systems.

The XENIX system offers two waystoback up file systems, the sysadmin program and
the tar command.

The sysadmin program is a formal maintenance program for systems that require a
rigorous schedule of file system backups. Such systemsusually have many usersanda
large number of files that are modified daily. The program automatically locates
modified files, copiesthemtodisk, and optionally producesalist ofthe files.

The tar command is useful on systems with one or two users, or on any system where
ordinary users wish to make personal copies of their directories. The command letsthe
system manager or user choose the files and directories to be oopled The command
doesnot, however, automatically locate modnﬁed files.

A typical backup schedule includes a daily backup once aday and a periodic backup
once a week. A daily backup copics only those files modified during that day; a
periodic backup copies all files in the file system. The appropriate schedule for a
system depends onhow heavily the system is used and how oftenfilesare modified. In
all cases, aperiodic backup shouldbe doncat keastonceamonth.

The system manager should schedule backups at times when few (if any) users are on
the system. Thisensuresthatthe most recent version of eachfile iscopicd correctly.

A regular schedule of backups requires a large number of floppy disks and adequate
storage for the disks. -Daily backups should be saved at least two weeks; periodic
backups should be saved indefinitely. Disks should be properly labeled with the date
of the backup and the namesof the filesand directoriescontainedinthebackup. Aftera
backuphasexpired, the disk may beusedto create newbackups

6.3 . Using the sysadmin Program

The sysadmin program performs daily and periodic backups, lists backup files, and
restores individual files from backup disks. The program presents eachtask asanitem
inamenu. To perform a task, simply choose the appropriatc item from the menu and
supply the required information.

XENIX Operations Guide

6.3.1 Creating Backups

To create backups with the sysadmin program, you need several formatted floppy
disks. The exact number depends on the number of files to be copied; for example,
some periodic backups require as many as nine disks. For details onhow to format a
floppy disk, seethe section ‘ ‘Formatting Floppy Disks’* in Chapter4.

Tocreate abackup, follow these steps:
1. Loginasthesuper—user.

2. Type: ,
sysadmin
and pressthe key. The program displaysa file system maintenance menu.

File System Maintenance

Type 1 to do daily backup
2 to do a periodic backup
3 to get a backup listing
4 to restore a file
S to quit

Type I for a daily backup or 2 for a periodic backup. Then press the key.
Note that if the system has never had a periodic backup, it automatically
performsone, evenifyouhavechosenadaily backup.

»
B

4. Insertafloppy disk indrive 1, wait for the drive to accept the disk (all drive
noise should stop), and pressthe key. The system displaysthe current date
and the date of the last backup (it displays *‘the epoch’” if there hasbeen no
backup). The system thenbeginsto copy files tothe floppy disks. Ifthe disk
runsoutof space, the programdisplaysthe message:

Change volumes

5. Removethe firstdisk and insert a new disk. Wait for the drive toaccept the
: disk, then press the key. The program continues to copy files to the new
disk. Repeatthisstepuntilthe program displaysthemessage:
‘ DONE ‘
When doing a periodic backup, you may need to repeat the last step scveral times
before the backup is complete. You should label each disk as you remove it from the

disk drive. For example, label the first disk ‘“Volume 1°°, the second ‘‘ Volume 2°°,
andsoon. .

6.3.2 Getting a Backup Listing

You can keep a record of the files you have backed up by invoking the sysadmin

program and selecting the third item inthemenu. The program copies the names of all
files from the backup disks to the temporary file /tmp/backup.list. This listing is
especially convenient if you keep detailed records of the filcs copied in each backup.

6-2

Backing Up File Systems

The backup listing isavailable after every daily or periodic backup.
Togetthelisting, follow these steps:

1. Loginasthesuper—user.

2. Type
sysadmin
andpressthe key. The program displaysthe system maintenance menu.

3. Type3andpressthe key. Theprogram asks youtoreinsert the backupdisks
inthe same orderthat you insertedthemduring the backup.

4. Insertthe first disk, wait until the drive accepts the disk, thenpressthe key.
The program automatically reads the filenames off the backup disk and
placesthem inthe list file. Whenthe program hasread all the names, it asks
forthenextdisk.

5. Removethefirstdisk and insertthe next. Wait forthedriveto acceptthe disk
andpressthekey. Repeat this stepuntilall diskshavebeenread.

You may produce a printed copy of thebackup list by printing thelist at the hncpmua
Type
Ipr Amp/backup.list

and pressthe key. Afterprinting the file, you shouldremove it from the /tmpdxrectory
with thcrmcommand to savespace.

6.3.3 Restoring a Backup File

You can restore files from the backup disks by invoking the sysadmin program and

selecting the fourth item inthe menu. You will need the complete set of backup disks
containing the latest version of the file you wish torestore. You willalsoneed the *‘full
pathname ™" of the file you wish to restore. This is the name given for the file in the
backuplisting.

Torestoreafile, followthese steps:
1. Loginasthe super—user.

2. Type
and pressthe key. The program displaysthe file system maintenance memu.

3. Type4andpressthe key. The program asks youtotypethe full pathname of
the file you wishtorestore.

4. Type the pathname and press the key. The program asks for another
pathname.

XENIX Operations Guide

S. Repeat step 4 to enter another pathname or press the key to continue the
program. Ifyoupressthe key, the program asksyoutoinsert the first disk in
the backupset.

6. lusertthe disk, wait for the drive to accept the disk, and press the key. The
program displays the inode numbers of the files you have given, then asks
forthe volume number of the backup disk containing the files.

7. Insert the disk containing the files, type the volume number, and press the
key. The program searches the disk for the specifiedfiles. 1f found, the files
are copied to your current directory. If not found, the program asks for the
nextvolume.

8. Repeatstep7umtilall fileshave been foundandcopied.

Note that the program docs nat restore the file's original name, but gives each file a
unique number called an “‘inode’” number. You can restore the file’s original name
with the mv (for *‘move' ") command. Thecommandhasthe form:

mv inode filename

The inode must be the file’s inode number. The filename mustbe thefile’s original full
pathname. Forexample, torestore the fileto/usr/johnd/ projects. june from 224, type:

mv 224 /us/johnd/projects. june
andpressthe key.

6.4 Using the tar Command

The tar command copies specified files and directories to and from floppy disks. On
systems with one or two users, it gives the system manager a direct way to make
backup copies of the filesmedificd during aday. On systems with many users, it gives
ordinary usersa waytomake personalcopies of theirown files and directories.

6.4.1 Copying Files to a tar Disk

You can copy a small number of files or dircctorics to a floppy disk with the tar
command. The commandhasthe form:

tar cvf specialfile files

The specialfile must be the name of the special file corresponding to the disk drive
containing the disk to receive the files (see Appendix A). The files are the names of the
files or directories you wishtocopy.

To use the tar command, you need a formatted floppy disk and the names of the files
- and/or directorics you wish to copy. For details about how to format a disk, see the

section ‘‘Formatting Floppy Disks'* in Chapter 4. 1f you give a directory name, the

commandcopies all files inthe directory (including subdirectories)tothe disk.

Forexample, to copy the filesa, b, and ctothedisk inthe disk drive/devifd ,type
tar cvf /dev/fdabc
andpressthe key.

6—4

Backing Up File Systems

The floppydisks can store 400 kilobyteé of information. Files larger than this can be
tarred using the k option. This option specifies the size of the archive volume and
prompts you when it ne¢dsanew floppydisk. Forexample, type

tar cvik /dev/fd 400 filename

and pressthe key. For more information on tar, refer to the XENIX Reference tar{(C)
manual page.

6.4.2 Restoring Files from a tar Disk

You may also use the tar commandtorestore files from a disk. The command simply
copies all files onthe disk to your current directory. Inthiscase, the command has the
form:

tar xvf specialfile

The specialfile must be the name of the special file comresponding to the disk drive
containingthe tar disk.

For example, torestore files fromthedisk inthedrive/devifd , type
tar xvf /dev/fd

and press the key. The command copies files on the disk in the drive to the current
directory.

Since the tar command only copies files to the current directory, make sure you are in
the desired directory before you invoke the command. You canchange tothe desired
directory withthe cd command.

~

Chapter 7
Using Peripheral Devices

7.1 Introduction 1

7.2 UsingMultipleScreens 1

7.3 AddingaTerminal 1

7.4 Changing Serial LineOperation 2
7.5 SettingSerial LineBaudRate 3
7.6 Settingthe Terminal Type 4
7.7 RemovingaTerminal 5

7.8 AddingaSecondProﬁleDiék 6
7.9 AddingOther Profile Disks 7
7.10 AddingaParallel Lineprinter 8
7.11 AddingaSerial LinePrinter 8
7.12 SupportingModemsand Terminals 9

7.13 AddingaTecmarSerialCard 10

Using Peripheral Devices

7.1 Intreduction

One important task of the system manager is to add peripheral devices such as
terminals, hard disks, and lineprinters to the system. Adding such devices lets more
usersuse the system, gives extra storage space foruser’s filesand directories, and adds
tothe system’soverall capabilities.

To add a peripheral device, the system manager must make the physical connection
between the device and the computer, then use the correct system commandstocnable
the device for operation. This chapter explainshow touse system commands to enable
adevice foruse. Italsodescribeshowtomaintainthe devices oncethey are added.

Note that all physical connections between a device and the system are device—
dependent. For information about these connections, see the hardware manual
provided withthedevice.

7.2 Using Multiple Screens

The simplest way to add an extraterminal to the system is to *‘use multiple screens’”.
The system console, the hard— wired terminal used to start and stop the system, is
actually three terminals in one, cach sharing the same keyboard and screen but
providing independent interaction with the system. You can switch fromone terminal
to another by holding down the key and pressing the key on the far right of the
keyboard (inthe numeric keypad). Nophysical connections are required.

Although all three screens may be open at the same time, only oneisactive atany given
time. Whenyou switch the system console, the system automatically displaysthe new
terminal’s screen. Any work you do atthe newterminal affectsthatterminalonly. The
old terminal’s screen and keyboard are saved until you restore them by switching the
systemconsole again.

Using multiple screens gives the user a way to accessmore thanone user account at the
same time. Any user may log into an account at one terminal, then switch to the next
terminal and log in to a different account. The user may then switch back and forth
betweenthe three terminals asneededtodo work inthe desired account. ’

For convenience, the three terminals are named console, ny0l, and #y02,
respectively. The console is always the first terminal to be active when you start the
system. The system enables #y01 and #y02 for use only after you begin multi—user
operation.

7.3 Adding a Terminal

You can give simultaneous access tothe system for two ormore users by adding extra
terminals. Add aterminal by connecting it to an RS — 232 serial line onthe system and
enabling it with the enable command. Many different terminals work well with the
XENIX operating system. An abbreviated list of recommended models is given in
terminals(M)inthe XENIX Reference .

Before you can add a terminal, you must know how to connect the terminal to a serial
line onthe computer. Physical connections for the terminal are usually explaincdinthe
terminal’s hardware manual. The names of the available serial lines onthe systemarc
givenin Appendix A of this guide. Once aterminal hasbeen connected, you maythen

7—1

XENIX Operations Guide

enable the terminal foruse withthe enable command.
Toaddaterminal, followthese steps:

1. Using the recommended procedure in the terminal’s hardware manuai,
connect the terminal to one of the RS—232 serial lines on the computer
itself. Make sure that the terminal is compatible with the line configuration
(foradescriptionofthe serial ports, sece Appendix A).

2. Loginasthesuper—user. Type:

cod /dev
mkdev serial

3. Use the enable command to enable the terminal. The command has the
form:

enable specialfile

where specialfile is the name of the serial line to which the terminal is
attached. This name depends on your system's configuration (see
Appendix A). Forexample, the command

enable /devittyOa

enables the terminal connected onserial line /dev/trv0a . Likewise, toenable
the second serial port, type:

enable /devit
tYOb (QA,\J()
4. Tum on the power to the terminal and press thelkey several times. The
system should display a ‘‘login:** message. When it does, you may log in
andbeginwork. i

If no ““login:'* message appears on the screen, if random characters appear, or if the
terminal does not respond to your attempt to log in, you may need to change the baud
rate (or *‘line speed”’) of the terminal tomatchthe serial line. You canchange thebaud
rate withthe stty command described inthe next section.

Whenusing the enable command, make sure that you wait a full minute betweeneach
useofthecommand. Failuretodosocancauscasystemcrash.

7.4 Changing Serial Line Operation

Whenever you enable a terminal with the enable command, the system automatically
sets the operating characteristics of the serial line to a set of default values. Sometimes
these values do not match the values used by the terminal, and therefore must be
changed to allow communication between the system and the terminal. You can
display and change the operating characteristics of a serial line with the stty (for ‘‘set
tty'")command.

You candisplay the current operating characteristics of aserial line by typing

stty

at the terminal connected tothat line. If it is impossible to login in at that terminal, you
may use anotherterminalto display the characteristics. Log inasthe super—userat the

7-2

Using Peripheral Devices

otherterminal andtype

stty <specialfile
where specialfile is the name of the device special file corresponding to the serial line
(see Appendix A). Forexample, the command

stty </dev/tyOa

displays the current characteristics of the serial line named /dev/tzy0a . The command
displays the baud rate, the parity scheme, and other information about the serial line.
The meaning of this informationisexplained in sty (C) inthe XENIX Reference .

One common change to a serial line is changing the baud rate. This is usually done
from a terminal comnected to ancther serial line since changing the rate disrupts
communication between the terminal and system. Log in as the super—user at the
otherterminal andtype

stty baud—rate <specialfile

where baud—rate is the terminal’s desired baud rate and specialfile is the name of the
device special file comresponding to the serial line you wish to change. The baud rate
must be in the set 50, 75, 110, 134, 150, 200, 300, 600, 1200, 2400, 4800, and 9600.
For example, the command

stty 9600 </deviityOa

changes the baud rate of the serial line /dev/try0a to 9600. Note that the ““less than®*
symbol(<)isused for both displaying and settingthe serial line from anotherterminal.

Another commen change is changing the way the system processes input and output
through the serial line. Such changes are usually made from the terminal connected to
the serial line. For example, the command

stty —tabs

causesthe system to expand tabs with spaces (used withterminals which donot expand
tabsontheirown), andthe command -

sity echoe

causes the system to remove a deleted character from the terminal screen when you
backoverit withthe key.

Note that the stty command may also be used to adapt a serial linc to an unusual
terminal or to another type of serial device which requires parity generation and
detection and special input and output processing.

For a full description of this command, sce stzy(C)inthe XENIX Reference .

7.5 Setting Serial Line Baud Rate

The changes that stty(C) makes to the baud rate of-a serial line (described in the
preceeding section) are volatile inthe sense that they disappear when the line “closes’
(usually when the current user logs out). To make a change that willcarry over tothe
nextlogin, follow these steps:

1. Log inasroot (super—user) ona serial line other than the one whose specd
you want to change. Make sure nobody is logged inonthe line you want to

7-3

- XENIX Operations Guide

change.
2. disabletheline you wanttochange. See disable(C) for instructions.

3. Edit the file /etc/ttys. The format of this file is described on the ttys(M)
mamual page. Find the entry corresponding to the serial line whose speed
you wanttochange, then change the one character ‘mode’ toreflect the new
speed. The getty(M) page furnishesatable of corresponding speeds.

4. enable the serial line. The speed change will be read by getty, and a login
message will appearat thenew baudrate onthe port.

7.6 Setting the Terminal Type

Several XENIX utility programs (for examplethe visual editor, vi, and the visual shell,
vsh), and many *‘screen—oriented’’ application programs, must make use of detailed
information about your terminal. These programs communicate with the terminal

" hardware to move the cursor, highlight an area of the screen, clear the screen, and the
like.

The standard XENIX shell sh (command interpreter) sets aside a variable, TERM, to
referto the name of yourterminal. This variable isthenpassed ontoprograms that you
invoke, soyour terminal type is available to them if they need it. The file/erc/termcap
(short for *‘terminal capabilitics"") is an ASCll database that describes features of over
100 popular terminals. A list of terminals supported by XENIX, along with their
names, may be foundin terminals(M).

The casiest way to set the TERM, variable is with the tset command. The tset
command determines the name of the line you have logged in on (e.g. 1ty0l), then
readsthe file /esc/stytype todetermine the terminaltype for that line. The/etc/ttytypefile
supplicd with aLisa XENIX distribution looks likethis:

lisa console
lisa tty0l
lisa ty02
unknown ttyCa
unknown ttyOb

,' The ﬁlc'/etc/prbﬁle, which is read and executed by the shell every time you log in,
containsthe lines:
eval ‘tset —m unknown:? —m liswb:? liswb —m lisa:? lisa —h —e —s —r*
export TERM
export TERMCAP)
1f you log in on the console, ttyOl, or tty02 (recall that these three logical devices are
attachedtotheLisakeyboard and screen), the following prompt will appear:
TERM = (lisa)

The name “‘lisa’" is short for ‘‘Lisa console in black—on—white mode™’. At this
prompt, you may press RETURN to indicate that this default value is suitable. Inthis
case, tset willclear the screen, and announce the terminal type with:

Using Peripheral Devices

Terminal type is lisa
If youloginonttyQaorttyOb, tset will readthe word * ‘unknown'* and prompt you fora
terminal type with:

TERM = (unknown)

Respond with any of the names in terminals(M), and tset will automatically set your
TERM variable, and announce the terminal type on the screen. 1f yourresponse is not
oneof the namesinterminals(M), orif youtype the name incorrectly, youmay see:

Terminal type unknown

Inthis case, you should log out and log back in again, then supply the correct name at
the prompt.

You may modify both /erc/ttytype and the tset command line in/etc/profile to suityour
particular needs. On the other hand, you may prefer to have white letters on a black
background. ifso, atthe prompt:

TERM = (lisa)
type:

liswb
and pressthe RETURNkey. The screen will clear shiftto white—on—black mode, and
display:

Terminal type is liswb

If all of the users of you Lisa prefer the white—on—black mode, you may wish to
change the werd ‘“lisa’" to ‘‘liswb’* each place it appears in/etc/ttyspe . Then you will
need only press the RETURN key at the TERM prompt. Examples are provided onthe
tset(C)mamualpage.

7.7 Removing a Terminal

From time to time it may be necessary to remove a terminal from the system, for
example, if you wish to replace it with a serial line printer. Before you can removea
terminal, youmustdisableit withthe disable command.

Toremove aterminal, follow these steps:
1. Turnoffthe powertotheterminal.
2. Loginasthesuper—useratanotherterminal.

3. Use the disable command to disable the terminal. The command has the
form: .
disable specialfile

where specialfile is the name of the serial line to which the terminal is
attached. Forexample, the command

disable /devityCa
disablestheterminal connectedtoserial line /dev/tyOa .

XENIX Operations Guide

4. Disconnecttheterminal fromthe system.
The serial line previously connected to the terminal is now free 1o accept another
device.

Whenusingthe disable command, make sure that you wait a full minute betweer each
useofthe command. Failuretodosocancauseasystemcrash.

7.8 Adding a Second Profile Disk

If your XENIX system was initially installed on only one Profile harddisk, you cangive
the system extra room for storing users’ files anddirectories by adding a second Profile
hard disk to the system, copying the /usr directory to it, then mounting it in the /usr
directory. Addinga second hard disk isoftenthe only remedy for a systemthathasone
hard disk and suffers from chronic lack of space.

Before adding the new disk, you must know how toconnect it tothe upper parallel port
of the parallel expansion card in expansion slot 1. Connecting the hard disk is
explained inthe hardware manual provided withthe disk.

Toaddasecondharddisk, followthesesteps:

1. Instalithcharddisk, thenstartthe system.

2. Tumonthepowertothcharddisk.
3. Waitforthe “rudy"lightomhc!mddisktoglowasteadyred.’
4. Loginasthe super—user(make sureno otherusersare loggedin).
5

Type:
cd /dev
mkdev pf2
/letc/mkfs /deviusr 9728 1 64
/etc/mount /deviusr /mnt

to mount the new hard disk in the directory /mnar. Make sure that the
directory isempty before you mountthe disk.
6. “‘?‘e ot =Y /st Aﬂﬂ ‘

to copy the contents of the /usr directorytothe new hard disk. Thisoperation
may take several minutes. You canthen use the le command to display the
" new contents of the disk and to make sure all files and directorics have been

copied.
7. Type:
cd/
wlcavcthc%%immy.
8. Type:

Using Peripberal Devices

rm —r fust/*

to remove all files and directories contained in the fusr directory. Before
typing this command, make surethat you have made a copy of every file and
directory.

9. Type:
/etc/umount /dev/usr
tounmount the new disk fromthe/mnt directory.

10. Type:
letc/mount /dev/usr lusr

to mount the new disk in the /usr directory. You may access all files and
directories in/usrasbefore.

Note that once the new hard disk has been added to the system, you should type the
command

/etc/mount /dev/usr /usr
7.9 Adding Other Profile Disks

Installing more Profiles reguires that a parallel expansion card be installed in slot #2.
The lower port corresponds to /devipf4 and the top port to /devipfS. Follow the
following stepstosetuppf4:

1. Type:
cd /dev

mkdev pf4
/etc/mkfs /dev/pfd 9728

2. Oncethedeviceismade, the file system will be ‘“‘mounted™” onthe directory
/uby the file /etc/rc , the next time the system isre—booted. Youmay mount
the disk nowbytyping:

/etc/mount /dev/pfd /u

Note that you may choose to mount the file system on any directory name.
Be sure to change the corresponding command in /etc/rc if you mount the
filesystemonadifferent directory.

3. You may repeat the first two steps substituting pfS and /v for pf4 and /u
respectively. Forexample:

cd /dev

mkdev pfS

/letc/mkfs /dev/pfS 9728
[letc/mount /dev/pfS /v

XENIX Operations Guide

7.10 Adding a Parallel Lineprinter

You can add the Lisa dot matrix printer to the systern by connecting it to the lower
parallel portontheparallel expansioncardinexpansionsiot 1. Toenablethe pnmer for
operationtype the following commands:

cd /dev
mkdev Ip

7.11 Adding a Serial Line Printer

The following procedure details the installation for the Apple Imagewriter Printer.
The basic outline is the same for any any serial printer, but the details of the actual
switch setting may differ. For a more detailed description of installing this printer,
refertothe Lisa2 Owner' sGuide, Section G. Toinstall a different printer, check with
themanufacturer's instructions.

1. Obtain a (null-modem) RS~232 Cable. The Apple lmagewriter is
supplied with a 2—part null-modem cable. Assembleitby connectingone
end of the straight—through cable (the longer of the two) to one end of the
short *‘modem eliminator’’ cable. Null modem cables from other vendors
may wellbe one—piece, requiring noassembly.

2. Plugoneend of the assembled mull-modem cable into the printer’s serial
interface connector (located at the lower left corner of animagewriter).

3. (Specific to the Imagewriter) plug the other end of the null—modem cable
intoport B atthe Check the DIP switch settings. Youwill tindthe DIPswitch
justinsidethe carriercoverontheright side. Setthe switchesasshownhere:

Switch _ Setting Description
SWi-1 open American character font
SW1-2 - open Americancharacter font
SWI1-3 - open Americancharacter fort
SW1-4 open 66lines/page

SWi—-5 open 8databits

SW1i-6 closed elitecharacterpitch
SW1-7 open elite characterpitch
SW1-8 open nolinefeedaftercarriage return
SW2—-1 closed 9600baud

SW2-2 closed 9600baud

SW2-3 closed XON/XOFF protocol

4. Loginassuper—userandtypethe following commands:

cd /dev
mkdev slp
disable /devitty0b

This will create a special file named /dev/lp, which is linked to the file
IdevintyOb.

Using Peripheral Devices

1f you have a printer other than the Apple Imagewriter, you may chooese to
modify the stty(C) modesinthe file /etc/lpopen. Thisisashell script that is
usedto set the appropriate modes for the serial printer.

5. The command/etc/lpopen is normally executed by the file /etc/rc when the
system isrestarted. Youmay now issuethe command:

letc/lpopen > /dev/lp &

6. Asimple waytotestthatthe printeris functioningistotype:
date > /devilp
Thisshould sendthe system datetothe printer.

7.12 Supporting Modems and Terminals

The Lisa hardware provides scrial port A with the ability to communicate to a modem.
The XENIX Operating System software can access commonly used signals such as
‘DTR’ and ‘CARRIER’, to modify system behavior based on the interpretation of
those signals. Thisisreferredtoas ‘‘modem—control’’.

For example, if a remote terminal is logged in to the system through a modem, it is
important for the system to automatically log out that terminal in the event that the
phone line is disconnected. This ensures system security: the nextusertologonviaa
modem will not be allowed unauthorized access to the discornected user’s account.
The system accomplishesthisby monitoringthe ‘CARRIER’ signal (RS232 pin #8).

Many modemsrequirethatthe ‘DTR’ signal (RS232pin #20) be assertedbefore itwill
connect with another modem. This can also be accomplished by enabling modem
controlonaserial port.

1f modem control isto be used, it is necessary that the R$232 cable used has at least the
following wires: '

2,3,4,5,6,7,8,20

Ifindoubt, usea full25—pincable. Thiscable mustbe connectedto serial port Aonthe
Lisa, as serial port B docs not support the modem—control signals.

Toconfigure port A for dial—in operation:

1. Loginassuper—userandtype:

disable /dev/ityCa
cod /dev
mkdev modem

Modemcontrol will nowbeenabledon/dev/ttyOa.
2. - Next, the file /erc/rrys must be edited to specify the baud rate desired forthe

serial port (see getty(M)). The most commen code to use for amodem port
is 3, sothatthe line in/erc/ttys would be:

03tty0Oa

XENIX Operations Guide

3. . Enableloginsby typing:
enable /deviityOa ,
The enable command will edit /esc/trys, changing the first character on the line

corresponding to tty0a from Oto 1. Then it will signal the operating system to start up
logins onthe port. i

7.13 Adding a Tecmar Serial Card

The Tecmar Serial Card is a quad asynchronous interface for up to4 RS232 terminals
(or printers) at speedsupto 9600baud. XENIX is configured to support the tecmar card
inexpansionslot 3 (the right most slot as viewed fromtheback of the machine).

The following procedure will enable accesstothese ports.

1. Install the tecmar card in expansion slot #3 (refer to the Lisa 2 Owner’s
Guide , Section G appendices for details).

2. Loginassuper—userandtypethe following commands:

cd /dev
mkdev tecmar

3. Editthefile/erc/ttys using one of the text editors. Add the following linesto
theend ofthe file. .

021ty20
02uy21
021ty22
02tty23

4. Exitthe editor and type the following for each terminal to be used as alogin
terminal:
enable /dev/tty20
enable /devity2l
enable /devity22
enable /dev/tty23
Rememberto wait a full minute between invocations of the enable command. Failure
todo somay causea system crash.

7-10

P

Chapter 8
Solving System Problems

8.1 Introduction 1

8.2 RestoringaNonechoing Terminal 1

8.3 FreeingaJammedLineprinter 1

84 StoppingaRunawayProcess 2

8.5 ReplacingaForgottenPassword 3

8.6 RemovingHiddenFiles 3

8.7 RestoringFreeSpace 3

8.8 Restoring LostSystemFiles 4

8.9 RestoringanlmperableSystem 4

8.10 RecoveringFroma SystemCrash 4

8.11 Changing XENIX Initialization 5
8.11.1 Changingthe/etc/rcFile 5

8.11.2 Changingthe .profileFiles 6
8.11.3 Changingthe/etc/motd File 6

P-SERN

Solving System Problems

8.1 Introduction

This chapter explains how to solve problems that affect the operation of the system.
The problems range in complexity from how to fix a nonechoing terminal to how to
restorelost system files.

8.2 Restoring a Nonechoing Terminal

A nonechoing terminal is any terminal that does not display characters typed at the
keyboard. This abnormal operation can occur whenever a program stops prematurcly
as aresult of an errororthe user pressing the key. The user may alsounwittingly press
CTRL-Q, which has the effect of a nonechoing terminal. CTRL~-Q is equivalent to a
NOSCROLLkey.

Torestore the terminal to normal operation, follow these steps:

1. Pressthe key. This cancels the effect of NO SCROLL (i.¢.) in case this was
the problem.

2. Pressthe key. The systemmay display an error message. Ifit does, ignore
the message.

3. Type:
stty sane
and press the key. The terminal does not display what you type, 'so type
carefully.

Afier pressing the key, the terminal should be restored and you may continue your
work.

8.3 Freeing a Jammed Lineprinter

Lineprinter errors, such as running out of paper, can cause the /pd program to *‘lock
up”’ the printing queuc, preventingthe current file and any other files in the queue from
being printed. The {pd program is the *‘lineprinter dacmon'’, the program which does
the actualprinting forthe system print commandlpr.

Tofree ajammed lineprinter, follow these steps:
1 Loginasthe super—user.
2. Type
ps —a

to find the process identification number (PID) of the Ipd program. (The PID
is inthe first column of the display.) The command display should ook like
this:

XENIX Operations Guide

PID TTY TIME COMMAND

34 01 008 sh
135 01 0:25 Ipd

Type

kill PID
and press the key. The PID is the process identification number of the the
program.

Locateand fix the errorthat caused the lineprintertobecome jammed.

Type
cd fusr/spooVipd

to change to the lineprinter spool directory. This du’ectory temporarily
holdsthe filestobe printed.

Type
rm —f lock

to remove the lineprinter spool’s lock file. This frees the queue and allows
printing tocontinue.

After freeing the lineprinter, youmust issue anotherlpr commandto start printing.

8.4

Stopping a Runaway Process

A runaway process is a program that cannot be stopped from the terminal at which it
was invoked. This occurs whenever an error inthe program ‘‘locksup’’ the terminal,
thatis, prevents anything youtype fromreaching the system.

Tostop arunaway process, follow these steps:

1.
2.

3

8~-2

Gotoaterminal thatis not lockedup.
Loginasthe super—user.
Type '

ps —a

and press the key. The system displays all current processes and their
process identification numbers (PIDs). Find the PID of the runaway

program.
Type:

kill PID
and press the key. The PID is the process identification mumber of the

Eany

Salving System Preblems

runaway program. The program should stop in a few seconds. If the
process dees not stop, type

kill -9 PID

and pressthe key.

The last step is sure to stop the process, but may leave temporary files or a nonechoing
terminal. To restore the terminal to normal operation, follow the instructions in the
section ‘‘Restoring aNonechoing Terminal’® inthischapter.

8.5 Repiacing a Forgotten Password

The XENIX operating system does not provide a way todecipheranexisting password.
If auser forgets his password, the system manager must change the passwordtoa new
one. To change an ordinary user password, follow the instructions in the section
‘‘Changing a User’s Password’" in Chapter 3. Restoring a forgotten super—user
password requires booting XENIX from the Boot floppydisk. Refertothe sectiontitled
‘‘Starting XENIX From a Floppy Disk"’ in the XENIX Installation Guide . Once you
have the booted the system from the Boot floppydisk you arc in System Maintenance
mode (i.c. youare super—user). At the pound sign prompt (#) youcannowtype

mount /dev/root /mnt

cp /mnt/etc/passwd /mnt/etc/passwd.old
cp /etc/passwd /mnt/etc

/etc/haltsys

Press the key after each line, and wait for the prompt before typing the next line. This
will copy the forgotten password into passwd.old and the blank passwd file fromthe
boot floppy into the root passwd file. You can now reboot the system as described in
the section ‘‘Copying the XENIX System Files'’ (the end of that section describes
rebooting the system). Create a new super—user password as described in the section
‘‘Creatingthe Super—UserPassword™’.

8.6 Removing Hidden Files

Ahiddenfileisany file whose name beginswithadot (). Youcanlistthchiddenfilesin
adirectory by typing:
Ic—-a
and pressingthe key. Youcanremove mostinvisible files froma directory by typing:
m Ja~z]*

and pressingthe key. Remaining filescanbe removedindividually.
8.7 Restoring Free Space

The system displays an ‘‘out of space’’ message whenever the root directory has little
ornospacelefttowork. To restore system operation, youmust delete one or more files
from the root directory. To delete files, follow the steps outlined in the section
‘‘Maintaining Free Space”” inChapter S.

XENIX Operations Guide

8.8 Restoring Lost System Files

If a system program or data file is accidentally modified or removed from the file
system, you can recover the file from the periodic backup disk with the sysadmin
program. To restore the files, follow the instructions in the section ‘‘Restoring a
BackupFile'’ inChapter6.

8.9 Restoring an Inoperable System

On very rare occasions, one or more of the critical XENIX system files may be
accidentally modified or removed, preventing the system from operating. In such a
case, youmust reinstall the XENIX system and restore userprogram anddata files from
backupdisks. Toreinstallthe system, followthe instructionsinthe XENIX Installation
Guide. To restore files from backup disks, follow the instructions in the section
‘‘Restoringa BackupFile'* inChapter6.

8.10 Recovering From a System Crash

A system crash is a sudden and dramatic disruption of system operation that stops all
work on the computer. System crashes occur very rarely and are usually the result of
hardware errors or damage to the root file system which the operating system cannot
correct by itsclf. When a system crash occurs, the system usually displays a message
explaining the cause of the error and then stops. This gives the system manager the
chance torecover from the crash by correcting the error (if possitle) and restarting the
system.

A system crash has occurred if 1) the system has displayed at the system console a
message beginning with *‘panic:”* and/or 2) the system refuses to process all input
(including and keys) fromthe system console and all otherterminals.

Torecover from asystemcrash, followthese steps:

1. Usethe error message(s) displayed on the system console to determine the
error thatcaused the crash. Ifthere is nomessage, skiptostep 3.

2. Correct the error, if possible. A complete list of error messages and
descriptions for comrecting the corresponding errors is given in
messages(M) in the XENIX Reference Manual. (Even if the problem
cannot be located or corrected, it is generally worthwhile totry torestart the
system at least once by completing theremaining steps inthis procedure.)

3. Press the RESET button at the back of the computer and follow the steps
described in Chapter 2, ‘‘Starting the System™’, torestart the system. Inthis
case, itis not necessary toturnonthe power onto the computeror harddisk.

4. Ifthe system will not restart or crashes each time it is started, the operating
system kernel may be inoperable and may need to be reinstalled. You can
first try to reinstall just the *‘Boot’* floppy. The XENIX Installation Guide
section titled ‘‘Upgrade Notes'"™ describes this procedure. Follow the
directions inthe sections listed.

84

AN

Solving System Problems

Boot XENIX from the Boot Floppydisk — ‘‘Starting XENIX from a Floppy Disk™’
Use the upgrade utility — “‘Upgrading the File System”’
Boot the system from the hard disk — *‘‘Starting the System From lhc Hard Disk”’

You may now be able to boot the system from the hard disk, then restore
damaged files. Referto Chapter 6, ‘‘Backing UpFile Systems’’.

5. If this doesn’t work, follow the procedures described in the XENIX
Installation Guide to reinstall the entire system and in Chapter 6, “‘Backing
UpFile Systems”’, torestore user's files.

6. Ifthe system cannot be started from the “ Boot™' disk in the distribution sct
for installation, the computer has a serious hardware malfunction. Contact
ahardware service representative forhelp.

8.11 Changing XENIX Initialization

One common problem is how to adapt the system initialization to suit your system
environment. This problem occurs whenever you have added new devices such as
terminals or disk automatically enabled or mounted whenever you start normal system
operation. You can adapt system initialization by modifying the system initialization
files.

The XENIX initialization files contain XENIX commands and/or data which the system
reads at system startup or whenever a user logs in. The files typically mount file
systems, start programs, and set home directories and terminal types. The
initialization files are named/etc/rc , /etc/profile ,and/etc/motd .

The system manager may modify these filesto create any desired initial environment.
The files are ordinary text files and may be modified using a text editor such as ed (see
the XENIX User’ s Guide). Note, however, thatthe /etc/rc and/etc/profile files contain
XENIX commands and comments and have the command file format described inthe
chapter ‘‘The Shell”’ inthe XENIX User’ sGuide .

8.11.1 Changing the /etc/rc File

The/etc/rcfile contains XENIX system initialization commands. The system executes
the commands at system startup. The commands display a startup message, start
various system dacmons, and mount file systems. You candisplay the contents ofthe
file withthe more command. Type

more /etc/rc
andpressthe key.

You may change the contents of the file so that the system executes any set of
commands you wish. For example, if you want the system to automatically mount a
new file system, simply append the appropriate mount command in the file. The
system will executethe command oncach startup.

Toappendacommandtothefile, followthese general steps:

1. Loginasthesuper—user.

XENIX Operations Guide

2. Invokeatexteditorand specifythe/erc/rc asthe filetobe edited.

3. Locate the place in the file you wish to insert the command (e.g., if the
commandmountsa file system, insert it with other mounting commands).

4. Insert the command on a new line. Make sure you type the command
correctly. The system willreject any incorrect command and all following
commands whenit readsthe file at system startup.

5. Exittheeditor.

No other changes to the file are required. Be careful not to dclete any commands
already inthe fileunless you are sure they are not needed.

8.11.2 Changing the .profile Files

The . profile files contain commands that initialize the envirorment for each user. The
commands inthe file are exccuted whenever the user logs in. The file usually contains
commands that set and export various system variables (e.g., TERM, PATH, MAIL).
These variables give the system information such as what terminal type is being used,
where to look for programs the user runs, where to look for the user’s mailbox, what

keys to expect for the ‘‘kill** and ‘‘backspace’” functions, and so on (see the chapter

““The Shell* inthe XENIX User’ sGuide).

There isone .profile file for each useraccount onthe system. The filesare placedinthe
user’s home directory when the account is created. An ordinary user may modify his
own .profile file or allow the system manager to make modifications. In either case,
the file canbe edited like the /etc/rc file, usmgatcxt editor. Commandscanbe added or
removedasdesired.

8.11.3 Changing the /erc/motd File

The message of the day file, /etc/motd, contains the greeting displayed whenever a
user logs in. Initially, this file contains the name and version number of the XENIX
system. It can be modified to include such messages as a reminder to clean up
directories, anotice of the next periodicbackup, and soon.

The /etc/motd file is an ordinary text file, so you can change the message by editing the
file with atext editor. One common change is to include a reminder to delete unused
files in order to preserve disk space. In general, you should limit the size of the file to
include nomore thana screenful of information.

—

Chapter 9
Building a Micnet Network

9.1 Introduction 9-1

9.2 Planning aNetwork ¢-1
9.2.1 Choosing Machine Names 9-1
9.2.2 Choosing a Network Topolegy 9-2
9.2.3 Drawing a Network Topology Map 9-3
9.2.4 Assigning Lines and Speeds 9-3
9.2.5 Choosing Aliases 9-4

9.3 Building a Network 9-5
9.3.1 Creating the MicnetFiles 9-5
9.3.2 Saving the Micnet Files 6-9
9.3.3 Restoring MicnetFiles 9-9

9.4 Starting the Netwerk 9-10

9.5 Testing a Micnet Network 9-11
9.5.1 Checking the Network Connections 9-11
9.5.2 Usingthe LOGFile toLocateaProblem 9-12
9.5.3 Stopping the Network 9-13
9.5.4 Modifying the Micnet Network 9-14

N

Building a Micnet Network

8.1 Introduction

A Micnet network allows communications between two or more independent
XENIX systems. The network consists of computers connected by serial
communication lines (that is, RS-232 ports connected by cable). Each
computer in the network runs as an independent system but allows users to
communicate with the other computersin the network through the mail, rcp,
and remote commands. These commands passinformation such as mail, files,
andeven other commands from one computer to another.

It is the system manager’s task to build and maintain a Micnet network. The
system manager must decide how the computers are to be connected, make the
“actual physical connections, then use the netutil program to define and start
the network.

This chapter explains how to plan a network and then build it with the netutsl
program. In particular, it describes

— Howto choose machine names and aliases
— Howtodraw the network topology map
— Howtoassignserial lines

— Howtocreate the Micnet files

— Howtodistribute the Micnet files

— Howtotest the Micnet network

9.2 Planning a Network

To build a Micnet network, the netutil program will require you to provide the
names of the computers that will be in the network, a description of how the
computers are to be connected, a list of the serial lines to be used, the namesof
the users who will use the network, and what aliases (if any) they will be know
by. :

To keep the task as simple as possible, you should take some time to plan the
network and make lists of the information you will be required to supply. To
help you make these lists, the following sections suggest waysto plan a network.
9.2.1 Choosing Machine Names

A Micnet network requires that each computer in the network have a unique

“machine name’’. A machine name helpsdistinguish each computer from other
computers in the network. It is best to choose machine names as the first step in

9-1

XENIX Operations Guide

planning the network. This prevents confusion later on when you build the
network with the netutil program.

A machine name should suggest the location of the computer or the people who
are users on the computer; however, you may use any name you wish. The
name must be unique and consist of letters and digits. The Micnet programs
only use the first eight characters of each name so be sure those characters are
unique.

The netutil program saves the machine name of a computer in a fetc/systemid
file. One file is created for each computer. After you have built and installed
the network, you can find out the machine name of the computer you are using
by displaying the contents of thisfile..

9.2.2 Choosing a Network Topology

The network topology is a description of how the computers in the network are
- connected. In any Micnet network, there are two general topologies from which
all topologies can be constructed. These are ““star’’ and “‘serial’’.

In a star topology, all computers are directly connected to a central computer.
All communications pass through the central computer to the desired
destination.

In a serial topology, the computers form a chain, with each computer directly
connected to no more than two others. All communications pass down the
chain to the desired destination.

A network may be strictly star, strictly serial, or a combination of star and
serial topologies. The only restriction isthat no network may form aring. For
example, you cannot close up a serial network by connecting the two.computers
ateach end.

The kind of topology you choose dependson the number of computersyou have
to connect, how quickly you want communications to proceed, and how you
want to distribute the task of passing along communications. A star topology
provides fast communication between computers, but requires both a large -
“portion of the central computer’s total operation time and a large number of
serial lines on the central computer. A serial topology distributes the
communication burden evenly, requiring only two serial lines per computer,
but is slow if the chain is very long (communication between computers can
take several minutes). Often a combination of star and serial topologies makes
the best network. In any case, make the choice you think best. If you discover
you have made a wrong choice, you may change the network at any time.

Building a Micnet Network

8.2.3 Drawing a Network Topology Map

A network topology map is a sketch of the connections between computers in
the network. You use the map to plan the number and location of the serial lines
used to make the network.

You can make Lhe map while you work out the topology. Simply arrange the
machine names of each computer in the network on paper, then mark each pair
of computers you wish to connect with serial lines. For example, the topology
map for three computers might look similar this:

Asyou draw, make sure that there isno more than one connection between any
two computers in the network. Furthermore, make sure that no rings are
formed (a ring is a series of connections that form a closed circle). Multiple
connections and rings are not permitted.

9.2.4 Assigning Lines and Speeds

Once you have made the topology map, you can decide which serial lines to use.
Since every connection between computers in the network requires exactly two
serial lines (one on each computer), you need to be very careful about assigning
the lines. Follow these steps:

1. Make a list of the serial lines (tty lines) available for use on each
computer in the network. You can display alist of the serial linesona
computer by displaying the file /etc/ttys. A line is available if it is not
connected to any device such asa terminal or modem.

2. Using the topology map, first pick a computer, then assign one and
only one serial line to each connection shown for that computer. The
serial lines must be from the list of available lines for that computer.
No line may be assigned more than once. For example, if computer
““a” has only one available serial line (tty01), then the topology map
should look like this:

8 —meemmeee |y

3. Repeat step 2 for all computers in the topology map. Make sure that
each connection is assigned a line and that no two connectionson any
given computer have the same line. When finished, the map should
look like this:

XENIX Operations Guide

B seoemseeee b ceceee- ¢
ttyOl tty02 tty03 tty04.

If a computer does not have enough available serial lines to meet its
needs, you can make the lines available by removing devices already
connected to them. If you cannot remove devices you must redraw
your topology map.

4. Using the tcpology map, assign a serial line transmission speed for
each computer pair. The speed may be any in the normal range for
XENIX serial lines (i.e., 110,3€0...19200). Transmission speeds are a
matter of preference. In general, a higher speed means a smaller
amount of time to complete a transmission, but a greater demand on
system’sinput and output capabilities.

5. After the topology map is completely filled in, make a list of all
computer pairs, showing their machine names, serial lines, and
transmission speeds. You will use this list when installing the
network.

9.2.5 Choosing Aliases

Once you have decided how to connect the computers in the network, you can
choose aliases for users in the network. An alias is a simple name that
represents both a location {computer) and an user. Aliases are used by the
mail command to allow you to refer to specific computers and users in a
network without giving the explicit machine and user names. Although not a
required part of the network, aliases can make the network easier. to use and
maintain,

There are three kinds of 2liases: standard, machine, and forward. A standard
aliasis a name for asingle user or a group of users. Amachine aliasisa name for
a computer or an entire network (called a site). A forward aliasis a temporary
_ alias for a single user or group of users. A forward alias allows users who
normally receive network communications at one computer to receive them at
another.

When you build a network with the netuiil program, you will be asked to
provide standard aliases only. (You can incorporate machine and forward
aliases into the network at your leisure.) Each standard alias must have a
unique name and a list of the login names of the users it represents. You may
choose any name you wish as long as it consists of letters and numbers, begins
with a letter, and does not have the same spelling as the login names. The name
should suggest the user or group of usersit represents. The loginnames must be
the valid login names of usersin the network.

=

N

Building a Micnet Network

To help you prepare the aliases for entry during the netuts! program, follow
these steps: .

1.

Make a list of the user aliases (i.e., the aliases that refer to just one
user) 2nd the login namesof each corresponding user.

Make a separate list of the group aliases (i.e., the aliases that refer to
two or more users) and the login names or user alizases (from the first
list) of the corresponding users. A group alias may have any number
of corresponding users.

Note that there are a number of predefined group aliases. The name all is the
predefined alias for all users in the network. The machine-names of the
computers in the network are predefined aliases for the users on each computer.

* Do not use these names when defining your own aliases.

9.3 Building a Network

You build a network with the netutil program. The program allows you to
define the machines, users, and serial lines that make up the network.

To build a network, you must first create the Micnet files that define the
network, then transfer these files to each computer in the network. After each
computer receives the files, you may start the network and use it to
communicate between computers.

The following sections describe how to build the network.

9.3.1 Creating the Micnet Files

The Micnet files are created with the install option of the netutil program. The
install option asksfor the names, aliases, and serial linesof each computer in the
network. As you supply the information, it automatically creates the files
needed for each computer. These files can then be transferred to the other
computers in the network with the save and restore options of netutil. This
means you can build the entire network from just one computer.

To use the install option, follow these steps:

1.
2.

Log in as the super-user.
Type
netutil

and pressthe RETURN key. The program displays the network utility
menu. The install option is the first item in the menu.

XENIX Operations Guide

3. Typethenumber fand press the RETURNkey. The program displays

the following message.

Compiling new network topology
Overwrite existing network files? (yes/no)?

Type y and press the RETURN key to overwrite the files. The existing
network files must be overwritten to create the new network. The
first time you install the network, these files contain default
information that need not be saved. If you install the system a second
time or expand the system, it may be wise to save a copy of these files
before starting the install option. The files can be saved on a floppy
disk with the save option described later in this chapter.

Once you have typed ythe program displaysthe following message.

Enter the name of each machine
(or press RETURN to continue installation).
Machine name:

Enter a machine-name by typing the name and pressing the RETURN
key. You may enter more than one name on a line by separating each
with a comma or a space. After you have entered all the names,
simply press the RETURN key to continue to the next step. The
program displays the names you have entered and asksif you wish to
make changes.

Type y(for “yes”) if you wish to enter all the names again. Otherwise,
type n(for “no’’) or just press the RETURN key to move on to the next
step. If youtype n, or RETURN, the program displays the message:

For each machine, enter the names of the machines
to be connected with it
Machine a: :
Connect to:

Using the list of machine pairs you created when planning the
network, enter the machine-names of the computers connected to the
given computer. You may enter more than one name on a line by
separating each name with a comma {,) or a space. When you have
entered the machine-names of all computers connected to the given
computer, press the RETURN key. The program asks for the names of
the computers connected to the next computer.

Repeat step 5 for all remaining computers. As the program asks for
each new set of connections, it will show a list of the machine-namesit
already knows to be connected with the current computer. You need
not enter these names. The program automatically checks for loops.
If it finds 2 loop, it ignores the machine-name that creates the loop and
asks for another.

10.

11.

12.

13.

14.

18.

Building a Micnet Network

Finally, when you have given the connections for all computers in the
network, the program displays alist of the connections and asks if you
wish to make corrections.

Type yif you wish to enter the connections again. Otherwise, type n
to move to the next step. If you type n, the program displays the
message:

For each machine pair, enter the tty name and tty speeds
For the a <==> b machine pair.
Tty on a:

Using the list of serial line assignments you created when planning the
network, type the serial line name or number (e.g., tty03 or 3) for first
computer in the pair and press the RETURN key. The program
displays the message:

Tty on b:

Type the serial line name for second computer in the pair and press
the RETURNkey. The program displays the message:

Speed:

Type the speed (e.g., 9600) and press the RETURN key. The program
asks for the serial lines and transmission speed of the next pair.

Repeat step 7 for all remaining machine pairs. When you have given
serial lines and speeds for all pairs, the program displays this
informationand asksif you wish to make corrections.

Type y if you wish to enter the serial lines and speeds again.
Otherwise, type n to move to the next step. The program displays the
message: .

Enter the names of users on each machine:

For machine a:
Users on a:

Enter a name by typing the login name of a user on the given
computer, then press the RETURN key. You may enter more than one
name on a line by separating each name with a comma (,) or a space.
When you have entered all names for the given computer, press the
RETURN key. The program displays the names of the users on the
computer and asks if you wish to make corrections.

Type yif you wish to enter the user names again. Otherwise, type n.
If you type n, the program asks for the users on the next computer.

9-7

XENIX Operations Guide

16.

17.

18.

19.

21.

Repeat steps 13 and 14 for all remaining computers. When you have
given names of users for every computer, the program asksif you wish
to enter aliases.

Do you wish to enter any aliases? (yes/no)?

Type yif you wish to enter aliases. Otherwise, type n to complete the
installation. If you type y, the program displaysthe message:

Each alias consists of two parts, the first is the alias name,
the second is a list of one or more of the following:

valid user names

previously defined aliases

machine names

Aliases:

Using the list of aliases you created when planning the network, type
the name of an alias and press the RETURN key. The program
displaysthe message:

Users/Aliases:

If the alias is to name a single user, type the login name of that user
and pressthe RETURN key. The program asks for another alias.

If, on the other hand, the alias is to. name several users, type the login
names of the users, OR if cne or more of the users to be named by the
zliasare already named by other aliases, type the aliasesinstead of the
login names, OR if all the users on one computer are to be named by
the alias, type the machine-name instead of the login names. In any
case, make sure that each item typed on the line is separated from the
next by a comma (,) or aspace. If there are more items than can fit on
the line, type a comma after the last item on that line and press the
RETURN key. You can then continue on the next line. After allnames

-and aliases have been typed, press the RETURN key. The program

asks for another alias.

Repeat steps 17 and 18 for all remaining user aliases in your list.
When you have given all aliases, pressthe RETURN key. The program
displays alist of all aliases and their users and asksif you wish to make
corrections. ’ ’

Type yif you wish to enter all aliases again. Otherwise, type n to
complete the installation.

Once you direct netutil to complete the installation, it copies the information
you have supplied to the network files, displaying the name of each file asit is
updated. Once the files are updated, you may use the save option to copy the
Micnet files to floppy disk.

9-8

£

N

Building a Micnet Network

9.3.2 Saving the Micnet Files
You can save copies of the Micnet files on floppy disk with the save option of the
netutil program. Saving the files allows you to transfer them to the other
computers in the network. Before you can save the files, you need to format a
floppy disk (see the section “Formatting Floppy Disks" in Chapter 4).
Tosave the files, follow these steps:

1. Loginasthesuper-user.

2. Type

netutil

and pressthe RETURN key. The program displays the network utility
menu. .

3. Insert a blank, formatted floppy disk into disk drive 1. Wait for the
drive to accept the disk.

4. Type the number 2and press the RETURN key. The program copies
the Micnet files to the floppy disk.

5. Remove the floppy disk from the drive. Using a soft tip marker (do
not use ball point pen), label the disk *“Micnet disk”’.

As soon zs all files have been copied, you can transfer them to all computersin
the network.

9.3.3 Restoring Micnet Files

The last step in building a Micnet network is to copy the Micnet files from the
Micnet disk toall computers in the network. Do this with the restore option of
the netutd{ program. For each computer in the network, follow these steps:

1. Loginasthe super-user.

2. Insert the micnet disk into disk drive 1 and wait for thedrive to accept
the disk.

3. Type:
netutil

and pressthe RETURN key. The program displaysthe network utility
menu.

9-9

XENIX Operations Guide

4. Type the number 8and press the RETURN key. The program begins
to copy the network files to the appropriate directoiries. It displays
the name of each file 2s it copiesit. Finally, it displays the message:

Enter the rame of this machine:

5. Type the machine name of the computer you are at and press the
RETURN key. The program copies this name to the new
[etc/eystemid file for the computer. If necessary, it also disables the
serial lines to be used on the computer, preparing them for use with

- the network.

When the files have been copxed you may start the network with the start
option.

9.4 Starting the Network

Once the Micnet files have been transferred to each computer of the network,
you can start the network with the start option of the netutil program. The
start option starts the Micnet programs which perform the tasks needed to
communicate between the computersin the network.

Tostart the network, follow these steps for each computer in the network:
1. Loginasthe super-user.
2. Type:
/etc/netutil

and press the RETURN key. The system displays the network utility
menu.

3. Type 4 and press the RETURN key. The program searches for the
[ete/systemid file. If it finds the file, it starts the network. If not, it
asks you to enter the machine-name of the computer and then creates
the file. The program also asks if you wish to log errors and
transmissions. In general, these are not required except when
checking or testing the network. When starting the netweork for the
first time, type n to each question and press the RETURN key.

Once the netwerk has started, you may move to the next computer and start
the network there.

Note that, for convenience, you can let each computer start the network

automatically whenever the system itself is started. Simply include the
command

9-10

VBN

Building a Micnet Network

[usr/lib/mail/daemon.mn

in the system initialization file [ete/re of each computer. To add this
command, use a text editor as described in the section “Changing the fetc/rc
File’’ in Chapter 7.

9.5 Testing a Micnet Network

After you have started a network for the first time, you should test the network
to see that it is properly installed. In particular, you must determine whether
or not each computer is connected to the network.

To test the network, you will need to know how to use the mail command (see
the section “Mail” in the XENIX User’s Guide). The following sections explain

how to test the network and how to correct the neiwork if problems are
discovered.

9.5.1 Checking the Network Connections
You can make sure that all computers are connected to the network by mailing
a short message to all (the alias for all users in the network) with the mail
command. Follow these steps:

1. Choose a computer.

2. Loginasthe super-user.

3. Usethe mail command (see the XENIX User’s Guide) and the all alias
to mail the message:

Micnet test
to all usersin the network.

4. Check the mailboxes of each user in the network to see if the message
wasreceived. To check the mailboxes, log in as the super-user at each
computer and use the cat command to display the contents of each
user’s mailbox. The name of each user’s mailbox has the form:

[usr/spool/mail/login-name
where login name is the user’s login name.
If all users have received the message, the network is properly installed. If the
users at one or more computers fail to receive the message, the computers are
not properly connected to the network. To fix the problem, you need to locate

the computer which has failed to make a connection. The next section explains
how to do this.

8-11

XENIX Operations Guide

9.5.2 Using the LOG File to Locate a Problem

You can locate a problem with connections by examining the LOG files on each
computer in the network.The LOG files contain a record of the interaction
between each pair of computers. There are two LOG files for each pair of
computers (one file on each computer). The LOG files on any given computer
are kept in subdirectories of the [usr/spool/micnet directory. Each
subdirectory has as its name the machine-name of the other computer in the
pair. You canexamine the contentsof a LOG file by typing

cat fusr/spool/micnet/machine-name/LOG

and pressing the RETURN key. The machine-name must be the name of 3
computer thatispaired with the computer you are at.

Each LOG file should contain a “startup message” which lists the name of each
computer in the pair and the serial line through which the pair is connected. It
also shows the date and time at which the network was started. The message
should look similar to:

daemon.mn: running as MASTER
Local system: a .
Remote system: b, /dev/tty02
Tue Sep 27 22:30:35 1983

A startup message is added to the file each time the network startssuccessfully.
If the message is not present, then one or more of the the network files and
directories cannot be found. Make sure that you have used the restore option to
transfer all the network files to the computer. Also, make sure that the
[etc/eystemidfile contains the correct machine-name for the given computer.

Each LOG file will contain a “handshake” message if the connection between
the computer pair has been established. The message

first handshake complete

is added to the file on a successful connection. If the message is not present,
make sure that the network has been started on the other computer in the pair.
The network must be started on both computers before any connection can be
made. If the network is started on both computers yet no handshake message
appears, then the serial line may be improperly connected or damaged. Check
the serial line to make sure that the cable is firmly seated and attached to the
correct RS-232 connectors on both computers. If necessary, replace the cable
with one known to work.

If both the startup and handshake messages appear in the LOG file but the
network is still not working, you can make the network log a record of the
errors it encountered while transmitting and a record of each transmission by
stopping and then restarting the network with the e and -x switches of the

g-12

PN

Building a Micnet Network

netutilstart option.

The -e (for *‘errors”) switch causes error messages generated by the program to
be copied to the file. Each message lists the cause of the error and the
subroutine which detected the error. For example, the message

rsync: bad Probe resp: 68

shows that the rsync subroutine received a bad response (character 68
hexadecimal) from the other computer. You may use this information to track
down the cause of the problem. One common problem is stray information
being passed down the serial line by electronic noise. Make sure that the serial
" line’s cable is properly protected against noise, e.g., make sure it does not lie
near any electric motor, generator, cr other source of electromagnetic
radiation. Also, make sure the cableisin good condition.

The -x (for “transmissions”) switch causes a record of normal transmissions
between computers to be copied to the file. Each entry lists the direction, byte
count, elasped time, and time of day of the transmission. For example, the
entry

rx: Oc 01 22:33:49
shows that 12 characters (Oc hexadecimal) were received (rz) at 22:89:49. The
elasped time for the transmission was Isecond. You can use the records to see if
messages are actually being transmitted.
To start the network with the -e or -x switches, type y (for “yes”’) when the
start option asks if you wish to log errors or transmissions.
9.5.3 Stopping the Network
You can stop the network with the step option of the netutil program. The
option stops the Micnet programs, stopping communication between
computersin the network.
To stop the network, follow these steps on each computer in the network:

1. Loginasthe super-user.

2. Type

netutil

and pressthe RETURN key. The program displaysthe network utility
menu.

3. Type 5and press the RETURN key. The program steps the network
programs running on the computer.

9-13

XENIX Operations Guide

9.5.4 Modifying the Micnet Network

You can modify a Micnet network at any time by changing one or more of the
Micnet files. You can reinstall the network with the netutil program. For very
small changes (for example, correcting the spelling of an alias), you can modify
the Micnet files directly with a text editor. The files and their contents are
described in detail in the Miscellaneous section of the XENIX Reference
Manudl.

In general, a copy of a file should be made before making any changes. You can
make a copy with the cp command. You can replace an old file with the
updated file using the mv command. Once one or more files have been changed
on one computer, the files must be transferred to the other systems in the
network using the save and restore options. These options can only be used
after you have stopped the network.

Note that changes to the aliases file will not be incorporated into the system
until the aliashash program is executed. This program produces the
aliases. hash file needed by the network to resolve aliases. See aliashash(M) in
the XENIX Reference Manuclfor a description of this command.

9-14

PN

PanN

Appendix A
XENIX Special Device Files

Al
A2
A3
A4
A.S
A.6

Introduction1

File SystemRequirements1

Special Filenames1

Block Sizes1
Gapand Block Numbers2

Terminal and Network Requirements2

XENIX Special Device Files

A.l Introduction

This appendix contains information needed to create file systems and addterminals to
the XENIX system. For a full description of the special files mentioned here, sce the
XENIX Reference Manual .

A.2 File System Requirements

Many of the file system maintenance tasks described in this guide require the use of
special filenames, block sizes, and gap and block numbers. The following sections
describe each indetail.

A.3 Special Filenames

A special filename is the name of the device special block or character /O file
corresponding to aperipheral de vice, such as ahard or floppy disk drive. These names
are required in such commands as mkfs, mount, and df to specify the device
containing the file system to be created, mounted, or searched. The following table
lists the special filenames and corresponding devices that you may use for the Apple
Lisa.

Block/'O
SpecialFilename DiskDrive
/dev/fd Fioppy Drive
f/dev/nfd No—ejectFloppy Drive
Idevipfo Profile Disk Drive 1
/deviroot
dev/pf2 Profile Disk Drive2
/deviusr

A.4 Block Sizes

The block size of a disk isthe number of blocks of storage space available onthe disk,

where ablock is 512 bytes of storage. The mkfs, df, and quot commands use block

size when creating or reporting the status of a file system. The following table liststhe
block sizes ofthediskstypically used withthe Apple Lisa.

XENIX Operations Guide

Db!(Block Size
1stProfile harddisk 7744
10MBhard disk 16456
2nd Profileharddisk 9728
Diskware floppy disk 800

Note that some of the blocks on the disks are reserved for system use and cannot be
accessed by user programs.

A.5 Gapand Block Numbers

The gap and block numbers arc used by the mkfs command to describe how the blocks
arctobearrangedonadisk. The followingtable lists the gap and block numbers for the
hard and floppy diskstypically used withthe AppleLisa.

Disks Gap Blocks
Profile Hard Disk 1 64
Diskware Floppy Disk 2 16

A.6 Terminal and Network Requirements

The enable and disable commands used to add and remove serial lines from a system

andthe install option of the nerutil programusedtobuild a network require the namesof
the serial lines through which a terminal or network istobe connected. The following
table lists the names of serial lines available onthe Apple Lisa, the location of each line
as you face the back of the computer, and the serial line type according tothe RS—232

conventions.

Serial LineName Location Type
ty0a Lefiscrialpon DTE
unyOb Rightserialpot DTE

The character /O files corresponding to these serial lines can be found in the /dev
directory. Note that the files /deviconsole, Ideviny0l, and /deviity02 represent
“*hardwired™’ devicesand are notavailable for connectiontoterminals.

When using the 1ty0b and tty0a serial lines to build a Micnet network, make sure that
you use a “‘reverse line'’ or “‘null—-modem'* cable to connect one line to another. A
reverse line cable connects pin 2 on the first computer’s serial port to pin 3 on the
second computer’s port, pin3 onthe firsttopin 2 on the second, andpin 7 onthe first to
pin 7onthe second.

Appendix B
XENIX Directories

B.1 Introduction]

B.2 TheRootDirectoryl
B.3 The/binDirectory!
B4 The/devDirectory1
B.S The/etc Directory?2
B.6 The/lib Directory3
B.7 The/mnt Directory3
B.8 The/tmp Directory3
B.9 The/usrDirectory3
B.10 LogFiles4

—

XENIX Directories

B.1 Introduction

This appendix lists the most frequently used files and directories inthe XENIX system.
Many of these files and directories are required for proper XENIX operation and must
not be removed or modified. The following sectionsbriefly describe each directory.

B.2 The Root Directory

The root directory (/)cortainsthe following systemdirectories:

/bin XENIX commanddirectory

/dev Devicespecial directory

letc Additional programand data file directory

/fd Floppy drive 1 directory (reserved for mounted file
system)

/nfd No-—eject floppy drive directory (reserved for
mounted file system)

flib Cprogramlibrarydirectory

/mnt Mountdirectory (reserved formounted file systems)

fmp Temporary directory (reserved for temporary files
created by programs)

hisr Userhomedirectories

Alldirectories are required for system operation.

The root directory also contains a few ordinary files. Of these files, the most notable is
the XENIX file which containsthe XENIX kernel image.

B.3 The /bin Directory

The /bin directory contains the most common XENIX commands, that is, the
commands likely tobe used by anyone onthe system. The following is alist of afew of
the commands.

" basenameecho m sync

cp expr sh - tar
date) fsck sleep - restor
dump mv stty

dumpdir passwd su

These commands andallothersinthe directory are required.
B.4 The/dev Directory

The /dev directory contains special device files which control access to peripheral
devices. All files in this directory are required and must not be removed. The
followingisalistof the files.

XENIX Operations Guide

/deviconsole System console

Idevifd Floppy drive

/dev/nfd Floppy drive (no—cject)

/dev/pf0 Hard disk 0

fdev/lp Lineprinter

/dev/memPhysical memory

/dev/mull Null device (used to redirect unwanted output)
‘/dev/rXX Unbuffered interface to corresponding device name
/dev/root Root file structure

/dev/swapSwap arca

/devityXX Tenminals

/devitty The terminal you are using

/dev/ityOl Screen device

/dev/tty02 Screen device

/deviityOa Built—in serial port

/devittyGb Buil—in serial port

B.S The/etc Directory

The /etc directory contains miscellancous system program and data files. All files are
required, butmany may be modified:

The following program and data files must notbe removed or modified.

/etc/mtab Mounted device table

fetc/mount . For mounting a file structure
fetc/mkfs For creating a file structure '
fetc/init First process after boot -

The following data filesmay bemodified, if desired. Nofile may beremoved.

/etc/passwd Password file

letc/rc Bootup shell script
letc/ttys Terminal set up
letchermeap Terminal capability map
Jetc/motd Message of the day

The /etc/default directory contains files which set the default conditions for the
command of the same name as the file. The present file contents are listed below. -
These may be modified, if desired. Do notremoveany file.

XENIX Directories

cron CRONLOG=NO
dump tape = /dev/rfdl
"disk = /dev/rroot
dumpdir archive = /dev/rfdl
Ipd BANNERS = 1
micnet executeall
mkuser home = fusr
shell = /binvsh
passwd MINWEEKS = 0

MAXWEEKS = 999
MINLENGTH = 0

restor archive = /dev/rfd}

su # SULOG = /usr/adm/sulog
CONSOLE = /dev/console

B.6 The/lib Directory

The /lib directory contains runtime library files for C and other language programs.
Thedirectory isrequired.

B.7 The/mnt Directory

The /mnt directory is an empty directory reserved for mounting removable file
systems. -

B.8 The /tmp Directory

The /impdirectory contains temporary files created by XENIX programs. The filesare
normally present when the corresponding program is running, but may also be left in
the directory if the program is prematurely stopped. You may remove any temporary
filethat does not belongtoarunning program.

B.9 The /usr Directory

The usr directory contains the home directories of all users on the system. It also
contains scveral other directorics which provide additional XENIX commands and
datafiles.

The /usr/bin directory contains more XENIX commands. These commands are less
frequently usedor considered nonessential to XENIX system operation.

The/usrlinclude directory containsheader files for compiling C programs.

The /usr/lib directory contains more libraries and data files used by various XENIX
commands.

The /usr/spool directory contains various directories for storing files to be printed,
mailed, or passedthrough networks.

XENIX Operations Guide

The /usr/tmpdirectory contains more temporary files.

The /usriadm directory contains data files associated with system administration and
accounting. In particular, the /usr/adm/messages file contains a record of all error
messages sent to the system console. This file is especially useful for locating
hardware problems. For example, an unusual number of disk errors on a drive

indicates a defective or misaligned drive. Since messages in the file can accumulate
rapidly, thefilemust be deleted periodically.

B.10 LogFiles

A variety of directories contain log files that grow in size during the normal course of
system operation. Many of these files must be periodically cleared to prevent them
from taking up valuable disk space (see ‘‘Clearing Log Files’' in Chapter 5). The
followingtable lists the files (by full pathname) and their contents.

Filename Description

letc/ddate recordsdate of each backup.

fusr/adm/pacct records accounting
information; grows rapidly
when process accounting is
on.

/xx/yy/noname records each use of the cron

program; grows only if

option is set in the

letc/defaulticronfile.
fusr/adm/sulog records each use of the s

command; grows only if
option is set in the

letcidefaultisulog file.

/xx/yy/noname records each use of the at
command.

/xx/yy/noname records each use of the lpr
command.

Ixx/yy/noname records spelling errors
found by the spell
command.

/xx/yy/noname , records eachuse of the uucp
command.

fusr/spooV/micnet/*/LOG records transmissions

letc/wtmp

between machine in a
Micnet network. The * must
be the name of a remote
machine connected to the
currentmachine.

records user logins and
logouts.

XENIX Directories

Index

- key, terminal switch 7-1
contents 8-5H
modification 8-6
removal 3-11
/bin directory contents
/dev directory
contents B-1
serial line
correspondence A-2
special file 4-9
/ete directory contents
/etce/group file,
modification 3-6
/ete/motd file
- contents 8-6
free space reminder 5-1
modification 8«5
modification 8-6
modification B=2
/etc/passwd file
user entry 3-3
user ID change 3-8
/ete/password file
modification B=2
/ete/profile file
modification 8-5
/ete/re file
contents 8-5
Micnet network startup 9-
11
modification 8«5
modification B-2
normal operation
startup 2-2

B-1

B-2

/ete/systemid file
machine name contents 9-2
Micnet network startup 9-
1

/ete/termcap file
modification B-2

/1lib directory contents

/mnt directory, mounted file
systems U4-2

/mnt directory, mounted
systems B-3

/tmp directory contents

/usr directory contents

BACKSPACE key 1-2

Backup system See File
system

Backup system
daily backup 6-2
description 6-1
file restoration

filename
restoration 6-U4
sysadmin procedure
sysadmin procedure

file

B-3
B-3

6-3
8-

tar. procedure 6=5
floppy disk

labeling 6-2

storage 6-1

tar command 6-U4

use 6-1

use 6-2
frequency 6-1
listing

“printing 6-3

B-3

1=1

XENIX Operations Guide

procedure 6-2
periodic backup 6-2
procedure 6-2
programs 6-1
schedule 6-1
tar command procedure 6-4

Block
arrangement on disk A-2
defined 5-2
number A-2
ownership 5«3
size A-1

Bootstrap progranm,
booting 2-1

BREAK key 1-2
nonechoing terminal
result 8-1

C program
compilation header
files B-3
library files B-3

cd command, file system
mounting check 4-3

chmod command
permissions change U-6
special file
protection 4-9

CNTRL=-D ‘
normal operation entry 2-2

super-user account
exit 2-3
CNTRL~H key 1=2
CNTRL-J, nonechoing
terminal 8-1
CNTRL-Q key 1=2
CNTRL=-S key 1=2

CNTRL-S, nonechoing
terminal 8-1

" CNTRL-U key 1-2

CNTRL~ key 1-2
Command
/ete/re file,
inclusion 8-5
location
/bin directory B-1
/usr/bin directory = B=3
Computer turnoff 23
Computer
Micnet network
connection test 9-11
machine name
Copying
directories to floppy
disk 6-U4
files to floppy disk 6-U4
core file, described 5-5
crypt command, file
encryption 4-9
CTRL-Q key
nonechoing terminal
result 8-1
Daily backup See File
system
df command
block size A-1
free space display 5-2
special filename A-1
Directories
making copies on floppy
disk 6-U
Directory
access permissions See
Permissions

access permissions See
Permissions
block usage 5-3
location 5-U4
modification, super-user
precaution 2-3
permissions See
Permissions
permissions See
Permissions
removal 3-10
disable command
serial line A-2
terminal disabling 7-5
Disk
block number A=2
block size A-1
damage See File system
free space See File .
system
gap number A-=2
security 4-8
usage 5-3
Dot (.), hidden file 8-3
du command 5=3
enable command
serial line A-2
terminal enabling 7-2
Encryption key U4-9
Error message
recordation B-i4
ESCAPE key 1=2
Execute permission #-5
File system
amount of free space 5-1
automatic check 5-7
backup See Backup system

cleaning 2-2
contents listing 4-3
creation 4-1
damage
causes 5-6
restoration 5=0
data loss 5-6
defined U-1
destruction 4-1
display free space 5-2
expansion 5-6
free space
restoration 8-3
lack of free space 5-1
maintaining free space 5-1

maintenance 5-1

mounting
automatic 4-3
backup See Backup
system
check U4=3
initialization
files 8-5
procedure 4-1
procedure 4.2

repair 5-6

root 4-1

unmounting 4-1

unmounting 4-3

File

access
permissions See
Permissions
permissions See
Permissions

backup See Backup system

XENIX Operations Guide

backup See File systenm
core 5-5 '
core file See Core file
damage See File system
data loss 5-6 :
determining block size 5-3

encryption 4-9
hidden file removal 8-3
inaccessibility 5«6
initialization file See
Initialization file
initialization file See
Initialization file
invisible See hidden file
removal
location 5-4
Log 5-5
Log clearing 5-5

- lost file restoration See
Backup system
lost file restoration See
File system
modification, super-user
precautions 2-3
permissions See
Permissions
permissions See
Permissions
printing See Printing
recovery from backup See-
Backup system
recovery from backup See
File system '
removal

unused files 5-1

repair See File system

restoration See Backup
system
restoration See File
System
system See File system
temporary 5-5
temporary file See
temporary file
time of last access 5-U4
unused file removal 5-1
Filename
restoration 6-4
special filename A-~1
Files
making copies on floppy
disk 6-U
find command 5-U4
Floppy disk
backup system See Backup
system
block number A-2
block size A-1
. damage See File system
data overwrite 4-2
file system creation 4-1
gap number A-2
Micnet file saving 9-9
security 4-8
Floppy disks
Formatting 4-3

_Formatting floppy disks U-3

Free space See File system
fsck command 5-6
Gap number A-2
Group
access 3-7
changing the ID 3-7

creation 3-6
defined 3-6
ID 3-6
name 3-6
permissions See
Permissions
permissions See
Permissions

haltsys command, system
shutdown 2-4

Hard disk
adding a second 7-6
block number A-2
block size A=1
damage See File system
gap number A=2
system booting 2-1
turnoff 2-3 '

Hidden file removal

Home directory
removal 3-10
setting, initialization
files 8-5
user account 3-1

Hyphen (=)
permissions 4-5

Initialization file
/ete/motd file See
/ete/motd file

- /ete/motd file See
/etc/motd file
/etc/profile See
/ete/profile file
/ete/re file See /etc/rec
file
/ete/re file
file

8-3

See /ete/re

-

contents 3-5

modification 8-5
Inode number, backup

system 6-4
INTERRUPT key 1=2
Jammed lineprinter See

Lineprinter
Keyboard, described
kill command

1=2

lineprinter freeing 8-2

runaway process
stopping 8-3
KILL key 1=2
1 command
file system mounting
check 4-3
permissions
change check U4-6
listing 44
Lineprinter
adding 7-8
jammed lineprinter
freeing 8-1
lock file removal 8-2
Lines, terminal
connection 7-1
LOG file
contents 9-12
Micnet network
connection error
location 9-12
files 5-5
Log in group 3-7
Log in name
Micnet network
entry 9-7
new user 3-2

Log

XENIX Operations Guide

sending mail 5-4
Logging in, super-user
Logging out, system

security 4-8

Login name
user account 3-1
login

terminal display 7-2
lpr command 8-2
lpr program error,
lineprinter jam 8-1

mail command, message 5-3

mail command
Micnet network
alias 9-4
testing 9-11
Mail

/usr/spool directory B-3

network See Micnet
network
Mailbox removal 3-11

Message of the day file See

/ete/motd file

Message of the day file See

/ete/motd file
Message

system wide message 5-2

Micnet network
/ete/systemid file
machine name
contents 9-2

system startup 9-11

alias
description 9-4
entry 9-8

preparation 9-5
composition 9=-1

computer
connection test 9-11
machine name 9-1
connection See computer
file
copying to
computers 9-9
creation 9-5
modification 9-14
restoration 9-9
saving 9-9
transfer 9«5
forward alias 9-4
group alias
creation 9-5
handshake message 9-13 .
install option 9-5
LOG file
connection error
location 9-12
contents 9-12
machine alias 9-4

~machine name

choice Q-1
file entry 9-6
saving 9-2
modification Q=14
netutil program
information
required 9-1
install option 9-5
network building 9-5
restore option 9-10
restore option 9-5
save option 9-5
save option 9-9
start option 9-10

stop option 9-14
planning 9-1
restore option 9-10
restore option 9-5
save option 9-5
save option 9-9
serial line

assignment 9-3

name entry 9-7

transmission speed 9-4

serial topology

description 9-2
standard alias 9-4
star topology

description 0-2
start option 9-10
startup

procedure 9-10
stop option 9~14
stopping 9-14
testing 9-11
topology

map 9-3

types 9-2
transmission speed

assignment 9-4

file entry 9-7

mkfs command

block number A—2'
- block size A-1

file system creation U4-1

gap number A-2

special filename A-1
mkuser program

creating a user
account 3-1
stopping 3-2

Mode
types designated 2-2

more command 8-5

mount command
file system mounting 4-1
file system mounting 4-2
special filename A-1

mv command, filename
restoration 6-4

netutil program See Micnet
network

netutil program, install
option A-2

New user 3-1

newgrp command 3-7

Nonechoing terminal See
Terminal

Normal operation
entry 2-2
system shutdown 2-3

Number sign (#), super-user

prompt 2-2
Operating system See
Systen

Out of space message 8-3
passwd command 3-U
Password, forgotten super-
user
change procedure 8-3
Password
change procedure 3-U
change procedure 8-3
complexity, system access
security U4-8 ,
forgotten See replacement

new user 3-2

XENIX Operations Guide

replacement 8-3
user account 3-1
Period (.) See Dot (.)

Periodic backup See Backup

system

Periodic backup See File
system

Permissions
block I/0 file 4-5
change 4-5
character 1/0 file 4-5
description uU-4
directory notation 4-5
display 4-4
execute permission U4-5
fields U~y
file notation 4-5
group field notations U-5
group permissions 4-U
initial assignment 4-6
levels 4-4
no permission 4-5
other field notations 4-5
other permissions Y-l
read permission 4-5
search permission U4-5
special files 4-9
type field 45
user field notations 45
user permissions 4=l
write permission H4-5

PID
killing, lineprinter
freeing 8-2
killing, runaway process
stopping 8-2

Print queue
lockup, freeing 8-1

Printing
queue See Print queue
Process stopping 8-2
Program
error, runaway process
result 8-2
start, initialization
files 8-5

stopping
nonechoing terminal
result 8-1

termination, core file
placement 5«5
quot command
block ownership
display 5-3
block
size A-1
rep command 9-1
Read permission 4-5
remote command 9-1
rm command 8-3
rmuser command
limitations 3-11
rmuser program
stopping 3-11
user account removal 3-10
root directory backup 6-1
root directory
contents B-1 -
root
password
see super=user's
password
super-user login name 2-3
symbol (/) u-1
symbol (/) B-1

Runaway process
stopping 8-2
Search permission 4-5
Serial line
baud rate setting
procedure 7-3
Micnet network
assignment 9-3
name entry 9-7
transmission speed 9-4
Serial lines A-=2
shutdown command 2-3
Shutdown
command See shutdown
command
haltsys command See
haltsys command
immediate 2-4
improper shutdown
file check 5=7
procedures 2-3
time lapse 2-3
Slash (/), root symbol U4-1
Slash (/), root symbol B=1
Special file
description 4-9
disabling command T7-5
enable command 7-2
protection 4-9
- tar command 6-5
tar program 6-U4
Special filename A-1
Startup
cleaning message 2-2
procedure 2-1
Super-user account
exit 2-3

opening 2-3
super-user password
file system
creation U4U4-1
Super-~user password
secrecy 4-8
super-user log in 2-3
system maintenance mode
entry 2-2
Super~user prompt (#)
log in 2-3
system maintenance mode
entry 2-2
Super-user
account 1-1
backup procedure 6-2
logging in 2-2
password 1=1
precautions 2-3
prompt See Super-user
prompt
restricted use 1-2
special file access 4-9
unauthorized, file -
security 4-9
sysadmin program
backup system
description, use 6-=1
file restoration 6-3
file restoration 8-U4
listing recording 6-2
multiple uses 6-1
description 6-1
System console
simultaneous access T-1
terminal disabling 7-5
System Crash
error messages 8-4

XENIX Operations Guide

System crash
rebooting from Boot
floppy 8-U4
System maintenance mode
entry 2-2
system shutdown 2-4
System manager
directory access
control 4-1
duties 1-1
file access control 4-~1
file system
maintenance 5-1

free space maintenance 5-1

initialization files
modification 8~5
Micnet network
maintenance 9-1
password change 8-=3

root directory backup 6-1

super-user account 1-1
system maintenance
mode 2-2
user account creation,
maintenance 3~1
System wide message 5-2
System _
access security. 4-8
accounts 3-11
administration
directory B-li
booting 2-1

cleaning See File system

console See System
console

inoperable system
restoration 8-4

maintenance 1-1
maintenance account 1-1
mode See Mode
physical security U4-8
reinstallation
reinstallation
security
access security 4-8
physical security U4-8
startup See Startup
storage space
expansion 4-1
terminal See Terminal

tar command

backup system
description, use 6-U4
file restoration 6-5
single user 6-1

description 6-1

form 6-U

temporary file

removal 5-5

TERM variable 7-4
Terminal

connection 7-1
disabling 7-5
enabling 7-2
lockup, runaway
process 8-2
nonechoing terminal
defined 8-1
restoration 8-1
switching 7-1
type setting
initialization
files 8-5
procedure T7-4

—

Time
file access 5-U
system shutdown 2-3
tty line See Serial line
umount command 4-1
umount command 4-3
User account
adding 3-1
comments 3-3
directory removal 3-10
file removal 3-10
group name 3-2
log in name 3-2
removal
procedure 3-10
User
block ownership
display 5=3
changing the ID 3-8
group See Group
ID 3-8
log in group See Log in
group
new user 3-1
password See Password
permissions See
Permissions
permissions See
Permissions
wall command 5=2
Write permission #4-5
xenix file B-1

XENIX keys, described 1-2

1-11

The XENIX"

Operating System

User’s Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Cruz Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

o~

Contents

Preface
Acknowledgments

1 Introduction

Overview 1—1

TheXENIX System 1-1

The XENIX Working Environment 1-—1
Using ThisManual 1-2
NotationalConventions 1-3

T bt et bt bt
WME WN -~

Demonstration

Introduction 2-1
BeforeYoulLogln 2-1

Loggingln 2-3
TypingCommands 2-2
MistakesinTyping 2-3
Read—AheadandType—Ahead 2—4
StrangeTerminal Behavior 2—4
StoppingaProgram 2-5
LoggingOut 2—-5
FurtherLearning 2-5

NNRNRNRONRNRONN
—OWNAWV LW =

o

3 BasicConcepts

Introduction 3—1
FileSystems 3-3
NamingConventions 3-4
InputandOutput 3-10

W W WL
N WA

Tasks

Introduction 4—1

Gaining AccesstotheSystem 4-—1
Configuring Your Terminal 4-2
Controlling Processes 4-—3
Editingthe CommandLine - 4—4
Getting Status Information 4-—5
ManipulatingFiles 4-6
Manipulating Directories 4—10

pPrpARREAER &
RN N EWN -

4.9

4.10
4.11
4.12
4.13

i
bt et b bt \D QO I NN BB

W -0

NNNNNNNNNN 9
=YX NR W -

(=4

MovingintheFileSystem 4—13

Finding File and Directory Permissions 4-—14
ProcessingInformation 4—17
UsingtheLineprinter 4-22
Communicating withOtherUsers 4—23

Vi: AScreenEditor

Introduction S-1
Demonstration 5—2
BasicConcepts 5—12
InvokingandExitingVi 5-16
ViCommands 5-—18
ExCommands 5-32

Start— UpFilesand Options 5—42
RegularExpressions 5—8
SpeedingThingsUp 5-50
WhenToUseEx 5—-50
Limitations 5-51
Troubleshooting - 5—51
Character Functions 5—54

Mail

Introduction 6—1
Demonstration 6—2
BasicConcepts 6—4

Tasks 6—8

Commands 6—12
ComposeEscapes 6—20
StartupFilesandOptions 6—25
AdvancedFeatures 6—29
QuickReference 631

TheShell

Introduction 7-1

BasicConcepts 7—1
RedirectinginputandOutput 7—5

Shell Variables 7-9

TheShellState 7—14
ACommand’sEnvironment 7-15
InvokingtheShell 7-16

Passing Argumentsto Shell Procedures 7—17
Controlling The Flowof Control 7—18
SpecialShellCommands 7—29

910

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17

Creationand Organizationof Shell Procedures 7—30
More About ExecutionFlags 7—32

Supporting Commandsand Features 7-— -32
Effective and Efficient Shell Programming 7—39
ShellProcedureExamples 7—42

ShellGrammar 7-51

BC: ACalculator

Introduction 8—1
Demonstration 8—1
Tasks 8-—4
LanguageReference 8—14

Building a Uncp System

Introduction 9-1

Uucp—SystemtoSystem FileCopy 9-—1
Uux—SystemtoSystem Execution 9-4
Uucico—CopyIn,CopyOut 9-6
Uuxgt—UucpCommandExecution 9-10
Uulog—UucpLoglnquiry 9-10
Uuclean—Uucp Spool Directory Cleanup 9—10
Security 9-11

InstallingaUucpSystem 9-—11
MaintainingtheSystem 9-16

The C—Shell

Introduction 10—1
InvokingtheC—shell 10—1
Using Shell Variables 10—2
Usingthe C—shell History List 10-4
Using Aliases 10—7
RedirectingInputandQOutput 10—8
Creating Background and ForegroundJobs 10—9
Using Built—InCommands 10—9
Creating CommandScripts 10—11
Usingtheargv Variable 10-11
Substituting Shell Variables 10—12
UsingExpressions 10—14
Usingthe C—shell: A samplescript 10—-15
Using Other Control Structures 10—17
Supplying InputtoCommands 10—18
Catching Interrupts 10—19
Using Other Features 10—19

10.18
10.19
10.20
10.21

StartingaLoopataTerminal 10-20
Using Braces with Arguments - 10—21
SubstitutingCommands 10—21
Special Characters 10—22

Using The Visual Shell

Whatisthe Visual Shell 11-1

Getting Started With the VisualShell 11-1
The VisualShell Screen - 112

Visual ShellReference 116

AppendixA Ed

Introduction A-—1

Demonstration A—1

BasicConcepts A-2

Tasks A-2

ContextandRegularExpressions - A—26
Speeding UpEditing A—39

Cutting and Pasting withthe Editor A-43
Editing Scripts A—45

Summary of CommandsandLine Numbers A—46

&

Chapter 1

[
Introduction
1.1 Overview 1
1.2 The XENIX System 1
1.3 The XENIX Working Environment 1
1.4 Using ThisManual 2

Introduction

1.1 Overview

This manual introduces the XENIXcw system by explaining the fundamental concepts
and software nceded to use it effectively. The XENIX system is an improved and
enhanced versionof the UNIX SYSTEM Lllaw: from Bell Laboratories. Itisintended for
use in schools, corporations, laboratories and small office environments. The system
is well known as a productive environment for software development and has been
used for many years asatextprocessing environment.

1.2 The XENIX System

The XENIX system consists of a general—purpose multiuser operating system and
over one hundred utilities and application programs. In addition to the XENIX
Operating System described in this manual, two other XENIX system packages are
available: the XENIX Development System and the XENIX Text Processing System.

1.3 The XENIX Working Environment

The XENIX system is built around the XENIX operating system. The purpose of an
operating system is to efficiently organize and control the resources of a computer so
that they can be used by real people. These resources include memory, disks,
lineprinters, terminals, and any other peripheral devices connectedtothe system. The
heart of the XENIX system is a ‘‘multiuser’’ and ‘‘multitasking’’ operating system. A
multiuser system pennits several users to use a computer simultaneously, thus
providing lower cost in computing power per user. A multitasking system permits
several programs to run at the same time and increases productivity because multiple
programscanrunsimultaneously rather thaninsequence. .

Because UNIX (and thus XENIX) has been accepted as a standard for *‘high—end”’
operating systems, a great deal of software is available for this environment. In
addition, XENIX is a bridge to the MS—DOS operating system, the most widely used
16—bit operating system in the world. For systems that support MS—DOS, XENIX
provides commands that let you access MS—DOS format files and disks. The XENIX
systemalsoincludes several widely praised enhancements developed at the University
of Californiaat Berkeley, and a visual interface similarto other Microsoft productivity
tool interfaces.

Other characteristics ofthe XENIX system include:

— A powerful command language for programming XENIX commands.
Unlike other interactive command languages, the XENIX ‘“shell”” is a full

programming language.

- Simple and consistent naming conventions. Namescanbe used absolutely,
orrelativetoany directory inthe file system.

— Device—independent input and output: each physical device, from
interactive terminalstomainmemory, istreated like a file, allowing uniform
file and device input and output.

XENIX User’s Guide

— Asectofrelatedtexteditors, including a full screeneditor.

— Flexible text processing facilities. In XENIX, commands exist to find and
extract patterns of text from files, to compare and find differences between
files, and to scarch through and compare directories. Text formatting,
typesetting, and spelling error—detection facilities, as well asa facility for
formatting and typesetting complextablesand equationsare also available.

— Asophisticated *‘desk—calculator"’ program.

— Mountable and dismountable file systems that permit addition of floppy
diskstothe file system.

— A complete set of flexible directory and file protections that allows afl
combinations of read, write, and execute access forthe owner of each fileor
directory, as well as for groups of users.

— Facilities for creating, accessing, moving, and processing files and
directories ina simple and uniform way.

1.4 Using This Manual

Thismanualisorganized as follows:

Chapter I: Introduction
This chapter givesanintroduction and overview ofthe XENLX system.

Chapter 2: Demonstration
This chaptergivesyouhands—onexperience inusing the XENIX system.

Chapter 3: Basic Concepts
This chapter explains the fundamental concepts that you need to understand
before you begin to use the system. Included here are sections on the file
system, naming conventions, commands, and input and output.

Chapter 4: Tasks
This chapter explains how to perform everyday tasks using appropriate XENIX
commands.

Chapter S: Vi
This chapterexplainshowtouse the screeneditor, vi.

Chapter 6: The Shell : :
This chapter describes use of the shell command interpreter and how to write
proceduresthatcanbe executed by the shellinterpreter.

Chapter 7: Mail
This chapter describes the XENIX mail facility and explains how to send and
receivemail.

Introduction

Chapter 8: BC: A Calculator
This chapterexplainshowtouse BC, asophtmcalcd calculatorprogram.

Chapter 9: Buildinga UUCP System
This chapter explains how 10 set up system to permit communication between
XENIX and/or Unix systemsusing dial—up communicationlines.

Chapter 10: TheC—Shell
This chapter describes how to use csh. It covers the syntax and function of
C-shell commandsand features, andhowto create shell procedures.

Chapter 11: Using The Visual Shell
This chapter describes the use and behavior of the Visual Shell, whichis a
mem—driven XENIX shell. This chapter assumes the reader is familiar with
some general XENIX concepts, but vshcanbe usedby first—time users.

Appendix A: Ed -
This chapterexplainshowtouse the editor, ed.

This manual docs not attempt to give information about installing, managing, and
maintaining the system, nor does it discuss document preparation, software
development, or many of the specialized utilities available in other XENIX system
products. These subjectsarecoveredinthe following manuals:

The XENIX Installation Guide
This guide describes how to install and set up the XENIX system on your

computer.

The XENIX Operations Guide
This manual isa guidetomanaging and maintaining the entire system.

The XENIX Reference
This manualis a compfchenswc command reference. A concise but complete
description of each command is available here. It includes manual pages for
Commands(C) and Miscellaneous(M).

The XENIX Programmer’'s Guide
This manual discuses how touse the programming tools available in the XENIX
programming environment. This mamal is part of the optional XENIX
Development System.

The XENIX Programmer’sReference
This manual discusses writing programs that interface to the XENIX operating
system. It provides manual page reference sections to system calls(S),
subroutines(CP), and file formats(F). Thismanualis part of the optional XENIX
Development System.

The XENIX Text Processing Marual
This manual explains how to use the text processing and text formatting tools
and includesthe manual pages for text commands(CT). Itis a partofthe XENIX
Text Processing System.

Chapter 2
Demonstration

. 2.1 Introduction 2-1

2.2 BeforeYouLogln 2-1

2.3 LoggingIn 2-1

2.4 Typing Commands 2-2

2.5 Mistakes in Typing 2-3

2.6 Read-Ahead and Type-Ahead 2-4
2.7 Strange Terminal Behavior 2-4
2.8 StoppingaProgram 2-4

2.9 Logging Out 2-5

2.1 Introduction

This chapter contains a demonstration run designed to help you get used tothe
XENIX system, so that you can quickly start to make effective use of it. It shows
you how to log in, how to type at your keyboard, what to do about mistakesin
typing, how to enter commands and how to log out.

2.2 Before You Log In

Before you can log in to the system, your name must be added to the XENIX user
list. Atthat time you will be given alogin name and a password. Youmay have
* to add your name yourself, or someone else may be assigned this task; it all
depends on the environment in which your system is used. In any case, see the
XENIX Operatione Guide and mkuser(C) for detailed information on adding
users.

When you are given an account on the XENIX system you will also receive a user
name, a password, and a login directory. Once you have these, all you needisa
terminal from which you can log in to the system. XENIX supports most
terminals and you should have no problem getting your terminal to work with
XENIX. Once again, see the XENIX Operations Guide for more information on
how to configure your terminal.

2.3 Logging In

Normally the system is sitting idle with a “login:” prompt on the terminal
screen. If the system displays nonsense characters when you type, then your
terminal is probably receiving information at the wrong speed and you should
check your terminal switches. If the switches areset correctly, push the BREAK
or INTERRUPT key a few times.

When you get a “‘login:” message, type your login name, then press RETURN;
the system will not-do anything until you do. If a password isrequired, you will
beasked for it. The pa.ssword that you type doesnot appear onthescreen. This
prevents others from viewing it. Don’t forget to press RETURN after you type
your password.

A successful login produces a “prompt character”, a single character that
indicates the system is ready to accept commands. The prompt is usually a
dollar sign ($) or a percent sign (%). You may also get a login message such as:

you have mail -

telling you that another system user has sent you mail.

XENIX User's Guide

2.4 Typing Commands

Once the prompt character appears, the system is ready to respond to
~ commandstyped at the terminal. Try typing

date
followed by RETURN. The system responds by displaying something like:

Mon Jun 16 14:17:10 EST 1983
Don’t forget to press the RETURN key after the command, or nothing will
happen. The RETURN key won’t be mentioned again, but don’t forget -- it has
to be entered at the end of each command line. On some terminals RETURN
may be labeled "ENTER?” or "CR”, but in all cases, the key performs the same
function.
Another command you might try is who, which lists the names of everyone
who is logged in to XENIX. A typical display from the who command might
look something like this:

you console Jan 16 14:00

joe tty0l Jan 16 09:11

ann tty02 Jan 16 09:33
The time, givenin the fourth column, indicates when the user logged in; tty nnis
‘the system name for each user’s terminal, where nn is a unique two-digit
number. The console is the special name of the master terminal that is the

default for most operations.

If you make a mistake typing the command name, you will see a message on
your screen. For example, if you type:

whom
the system responds with the message:
whom: not fokund
Note that case issignificant in XENIX. The commands
who
and
WHO

are not the same; this differs from some operating systems, where case doesn’t
matter. :

2-2

=

PN

Demonstration

Now try displaying a message on your screen using the echo command. Type
echo hello world

The Echo command does what its name implies and echoes the rest of the
command line to your terminal:

hello world
Now try this:
echo hello world > greeting.file

This time the echo command sendsits output to anew file named greeting.file,
instead of to your terminal. Note the use of the greater-than sign (>) to
“redirect” the outputof the command. Now type

Ie

to list just the name of the file, greeting.file. To look at the contents of
greeting. file, display it by typing:

cat greeting.file

Here “cat” stands for concatenate. One purpose of the cat command is to
combine the contents of several files (that is, ‘“concatenate)” and put them in
some new file. However, since your terminal display is treated like any other file
in XENIX, cat is most commonly used to display the contents of files on the
screen. Therefore the above command sends the following output to your
terminal screen:

hello world
Toremove greeting. file, type:
rm greeting.file

Note that XENIX command names are often shortened to mnemonic names.
For example, cp is short for “copy”, Is is short for “list”; rm is short for
“remove”, cat is short for ‘‘concatenate”, mkdir is short for ‘“‘make
directory”’, and chmod isshort for “change mode”’. :

2.5 Mistakes in Typing

If you make a mistake in ty ping while entering a command, there are two ways
to edit the line, provided you have not yet pressed RETURN. Pressing the BKSP
key causes the last character typed to be erased. Backspacing with the BKSP
key can erase characters back to the beginning of the line, but not beyond.
Thus, if you type badly, you can correct as you go. For example, typing

2-3

XENIX User’'s Guide

ddBKSPateRETURN
is'the same as
dateRETURN

The XENIX kill character, CNTRL-U, erases all of the characters typed so far on
the current input line. So, if the line is irretrievably fouled up, type CNTRL-U
and start the line over.

If you must enter a BKSP or CNTRL-U as part of the text, precede it with a
backslash (\), so that the character loses its special ‘“““erase””’ meaning. To
enter a BKSP or CNTRL-U in text, type “\BKSP” or “\CNTRL-U"’. The system
always prints a new line on your terminal after your CNTRL-U, evenif preceded
by a backslash. Nevertheless; the CNTRL-U will have beenrecorded.

Toerase a backslash, backspace twice with the BKSP key, asin “\BKSPBKSP”.
The backslash is used extensively in XENIX to indicate that the following
character is in some way special. Note that the functions performed by BKSP
and CNTRL-U are available on all XENIX systems; however, the keys used to
perform these functions may vary and can be set by the user with stty{C).

2.6 Read-Ahead and Type-Ahead

XENIX has full read-ahead, which means that you can type as fast as you want,
whenever you want, and XENIX will remember what you have typed. If you
enter any text while a command is.displaying text on the screen, your input
characters appear intermixed with the output characters on the screen, but
they are stored away and interpreted in the correct order. Therefore, you can
type several commands (i.e., “type ahead”) one after another without waiting
for the first to finish. Note that this doesn’t work when you login; type-ahead
does not work until after you have entered your password and the dollar sign
($) prompt appears.

2.7 Strange Terminal Behavior

Occasionally, your terminal may act strangely. You can often fix such behavior
by either turning your terminal off, then quickly turning it back on, or logging
out and logging back in; this will reset your terminal characteristics. If logging
out and back in doesn’t work, read the description of the command stty(C) in
the XENIX Reference Manual for more information about setting terminal
characteristics.

2.8 Stopping a Program

You can abort the execution of most programs and commands by pressing the
INTERRUPT key (perhaps called DEL, DELETE, CNTRL-C, or RUBOUT on your

2-4

P

Demonstration

terminal). The BREAK key found on many terminals can also be used. Inside
some programs, like most text editors, typing INTERRUPT stops whatever the
program is doing without aborting the program itself. Throughout this
manual, when we say “send an interrupt’’ we mean press the INTERRUPT key.

2.9 Logging Out

To end a session with XENIX, you must log out. This is done by typing CNTRL-
D as the first character on a line. It is not sufficient just to turn off the terminal,
since this does not log you out. Some programs can also be ended by typing
CNTRL-D, so beware.

-

Chapter 3
Basic Concepts

3.1 Introduction 3-1

3.2 Files 31
3.2.1 Ordinary Files 3-1
3.2.2 SpecialFiles 3-2
3.2.3 Directory files 3-2
3.2.4 Directory Structure 3-2

3.3 FileSystems 3-3

3.4 Naming Conventions 3-4
3.4.1 Filenames 3-4
3.4.2 Pathnames 3-5
3.4.3 Sample Names 3-5
3.4.4 Special Characters 3-6

3.5 Commands 3-8
3.5.1 Command Line 3-8
3.5.2 Syntax 3-9

3.6 Input and Output 3-10 |
3.6.1 Redirection 3-11
3.6.2 Pipes 3-12

o

Basic Concepts

3.1 Introduction

This chapter will give you an understanding of the basic concepts you need to
function in the XENIX environment. After reading this chapter you should
understand how the system’s files, directories, and devices are organized and
named, how commands are entered, and how a command’s input and output
can be manipulated. This chapter begins with a discussion of files.

3.2 Files

The file is the fundamental unit of the XENIX file system. In XENIX there are
" really three different types of files: ordinary files (what we usually mean when
we say ‘‘file”’), directories, and special files. Each of these types of files is
described below.

3.2.1 Ordinary Files
Ordinary files typically contain textual information such as documents, data,
or program sources. Executable binary files are also of this type. An ordinary
file is simply a named concatenation of 8-bit bytes. Whether these bytes are
interpreted as text characters, binary instructions, or program statements is
up to the programs that examine them. Every ordinary file has the following
attributes:

— Afilename (not necessarily unique)

— Auniquesystem number called aninode number

— Asizeinbytes

— Atimeof creation

— Atimeof modification

— Atimeoflast access

— Asetofaccess permissions
Files can be protected by assigning appropriate access permissions to assure
privacy and security. This is done by providing read-write-execute
permissions to files so that the user can control access by the owner, by a group
of users, and by anyone else. By default, the owner of a file is its creator. The
owner can read the file or write to it. By default, other users can read a file

owned by another, but not write to it. File permissions can be altered with the
chmod command. This command is discussed in Chapter 3 of this manual.

31

XENIX User’s Guide

3.2.2 Special Files

Special files correspond to physical devices such as hard and floppy disks,
lineprinters, terminals, and system memory. They are called ‘“‘device special
files”. These files are not discussed in thismanual.

3.2.3 Directory files

Directory files are read-only files containing information about the files or
directories that are conceptually (but not physically) contained within them.
This information consists of the name and inode number of each file or
directory residing within the given directory. An inode number is a unique
number associated with any given file. All files on the system have inode
numbers. A name/inode number pair is called a link. The Is command is used
to examine directory files and to list the information about the files
conceptually within the named directory. With the inode number, the Is
command can also find other information about a file.

The nesting of directories inside other directories is the way in which XENIX

implementsits characteristic tree-structured directory system. Directoriesare

discussed further in the next section.

Like ordinary files, directories can be protected by assigning appropriate access
permissions to assure privacy and security. This is done by giving read-write-
search permissions to directories so that the user can control directory access
by the owner, by a group of users, and by anyone else. Write permission
determines whether files can be added or removed from a directory. By default,
the owner of a directory is its creator and the owner canread, create or remove
files within that directory. Similarly by default, a user can read files within the
directory of another, but not add or remove files. As with file permissions,
directory permissions can be altered with the chmod command. Default
permissions can be altered with the umask command.

3.2.4 Directory Structure

With multiple users and multiple projects, the number of files in a file system
can proliferate rapidly. Fortunately, as mentioned earlier, XENIX organizes all
files into a tree-structured directory hierarchy. This tree structure should be
thought of as a physical world in which the user can move from place to place.
“Places’” are directories. Each user of the system has his own personal
directory. Within that directory, the user may have directories or other
subdirectories owned and controlled only by the user.

When you log in to XENIX, you are ““in’’ your directory. Unless you take special
action when you create a file, the new file is created in your working directory.
This file is unrelated to any other file of the same name in someone else’s

Basic Concepts

directory.

Adiagram of part of a typical user directory isshown in Figure 3-1.

adam eve mary
/ /\ \
text / \ text
text t emp

Figure 3-1. A Typical User Directory

In Figure 3-1, the uer directory contains each user’s own personal directory.
Notice that Mary’s file named tezt is unrelated to Eve’s. This is not important
if all the files of interest are in Eve’s directory, but if Eve and Mary work
together, or if they work on separate but related projects, this division of files
becomeshandy indeed. For example, Mary could print Eve’s text by typing:

pr [usrfeve/text
Similarly, Eve could find out what files Mary has by typing:

lc /usr/mary

3.3 File Systems

A file system is a set of files organized in a way fashion. In XENIX, this set of files
consists of all available resources including data files, directories, programs,
lineprinters, and disks. Thus, the XENIX file system is a system for accessing all
system resources. '

To logically structure the resources of the system, the XENIX file system is
organized hierarchically in an inverted ‘‘tree structure’. See Figure 3-2 foran
illustration of a typical tree-structured file system. In this typical tree of files,
the root of the tree is at the top and branches of the tree grow downward.
Directories correspond to nodes in the tree; ordinary files correspond to
“leaves”. If a directory contains a downward branch to other files or
directories, then those files and directories: are “contained” in the given
directory. It is possible to name any file in the system by starting at the root
(where the root is at the top) and traveling down any of the branches to the
desired file. Similarly, you can specify any file in the system, relative to any
directory. Specification of these files depends on a knowledge of the XENIX
naming conventions, discussed in the next section.

XENIX User's Guide

/
/

mail news text data

Figure 3.2. A Typical File System

In the typical tree-structured file system of Figure 3-1, the ‘‘tree”’ grows
downward. The names bin, uer, dev, doug, and nesl all represent directories,
and are all nodes in the tree. In XENIX the name of the root directory is given
the one-character name, */”. The names mail, news, test, and data all
represent normal data files, and are all “leaves’” of the tree. Note that the file
¢mdis the name of a command that can be executed. The name ttyrepresentsa
terminal andisalso represented in the tree.

3.4 Naming Conventions

Every single file, directory, and device in XENIX has both a filename and an
absolute pathname. This pathname is a map of the file or directory’s location in
the system. ‘The absolute pathname is unique to all names in the system;
filenames are unique only within directories and need not be unique system-
wide. This is similar to someone whose ‘‘global’’ name is John Albert Smithina
telephone directory, but who may be listed sxmply as John in an office phone
list.

3.4.1 Filenames

A simple filename is a sequence of one to fourteen charactersother than a slash
(/). Every single file, directory, and device in the system has a filename.
Filenames are used to uniquely identify directory contents. Thus, no two
filenames in a directory may be the same. However, filenames in different
directories may be identical.

Although you can use almost any character in a filename, it is best to confine
filenames to the alphanumeric characters and the period. Other characters,
especially control characters, are discouraged for use in filenames. When a
filename contains an initial period, it is ““hidden”, and is not displayed by the 1,
Ic, and Is commands. The dash (-) is used in specxfymg command options, a.nd
should be avoided when naming files. In addition, the question mark (?), the
asterisk (#), brackets (| and]}, and all quotation marks should never be used in
filenames, since they are treated specially when entering commands.

3-4

-~

Basic Concepts

3.4.2 Pathnames.

A pathname is a sequence of directory names followed by a simple filename,
each separated from the previous name by a slash. If 2 pathname begins with a
slash, it specifies a file that can be found by beginning a search at the root of the
entire tree. Otherwise, files are found by beginning the search at the user’s
current directory(also known as the working directory). The current directory
should be thought of as your location in the file system. Think of it as a physical
place. When you change your current directory you are moving to some other
directory or place in the file system. '

A pathname beginning with a slash is called a full (or absolute) pathname

" because it does not vary with regard to the user’s current directory. A

pathname not beginning with a slash is called a relative pathname, because it
specifies a path relative to the current directory. The user may change the
current directory at any time by using the cd command.

3.4.3 Sample Names

Some sample names follow:

/ The absolute pathname of the root directory of the entire file
system.

/bin The directory containing most of the frequently used XENIX
commands.

Jusr The directory containing each user’s personal directory. The
subdirectory, /usr/bin contains frequently used XENIX
commandsnotin fbin. -

[dev The directory containing files corresponding to physical

devices (e.g., terminals, lineprinters, and disks).

/dev/console The name of the system master terminal.

[dev/tty The name of the user’s terminal.)

[lib The directory containing files used by some standard
commands.

/tmp Thisdirectory contains temporary scratch files.

[ust [joe/project /A

A typical full pathname; this one happens to be a file named A
in the directory named project belonging to the user named
Joe.

3-5

XENIX User’s Guide

bin/x A relative pathname; it names the file zin subdirectory bsnof
the current working directory. If the current directory is /, it
names /binfz. If the current directory is /usr/joe, it names

[uer/joe/bin/z.
filel .- *Nameof anordinary filein the current directory.

When he is using the XENIX system, each user resides “in’’ a dlrectory called
the current directory. All filesand directories have a “‘parent’’ directory. This
directory is the one immediately above and ‘“contains” the given file or
directory. The XENIX file system provides special shorthand notations for this
directory and for the current directory:

The shorthand name of the current directory. Thus ./filezzz names the
same file as filezzz, if such a file exists in the current directory.

The shorthand name of the current directory’s parent directory. The
shorthand name ../.. refers to the directory that is two levels ‘“above’’
the current directory

3.4.4 Special Characters

XENIX provides a pattern-matching facility for specifying sets of filenames that
match particular patterns. For example, examine the problem that occurs
when naming the parts of a large document, such as a book. Logically, it can be
divided into many small piecessuch as chapters or sections. Physically, it must
be divided too, since the XENIX editor vi cannot handle really big files. Thus,
you should divide a large document into several files. The points at which the
document is divided should follow a-logical order. You might have a separate
file for each chapter:

chapl
chap?2
Or, if each chapterisbroken into several files, you might have:
chapl.1
chapl.2
chapl.3

.c.l;apZ.l
chap2.2

Basic Concepts

You canthen tell at a glance where a particular file fitsinto the whole.
There are other advantages to a systematic naming convention that are not so
obvious. What if you want to print the whole book on the lineprinter? You
could type

Ipr chapl.1 chapl.2 chapl.3 ...
but you will tire of this quickly and will probably even make mistakes.
Fortunately, there is a shortcut: a sequence of names contining a common
pattern can be specified with the use of special characters. The special

_charactersdiscussed in this chapter are:

*+ Matcheszero or more characters
[] Matchesany character inside the brackets
? Matchesany single character
For example, you can type:

Ipr chap#*
The asterisk (*), sometimes called “star” in XENIX, means ‘‘zero or more
characters of any type”, so this translates into ‘‘send all files whose names begin
with the word “chap’ to the lineprinter”’.
This shorthand notation is not a unique property of the lpr command; it can be
used in any command. Using this fact, you can list the names of the files in the
book by typing:

Is chap#*
Thisproduces

chapl.1

chapl.2

chapl.3
The star is not limited to the last position in a filename; it can be used anywhere
and can occur several times. A star by itself matches all filenames not
containing slashes or beginning with periods, so

cat *

displaysall files in the current directory on your terminal screen.

The star is not the only pattern-matching feature available. Suppose you want
toprint only chapters 1 through4, and 9. You can say

3.7

XENIX User’s Guide

lpr chap[12349]+

The brackets (| and]) mean “match any of the characters inside the
brackets.”” A range of consecutive letters or digits can be abbrewated S0 you
can also do this with

Ipr chap|[1-49]+

(Note that this does not match forty-nine filenames, but only five.) Letters can
also be used within brackets: *‘[a- z]” matches any character in the range “a”
through *'2"", , :

The question mark (?) matches any single chra.ra.cter,)

Is ?
lists all files that have single-character names, and

Is -1 chap?.1
lists information about the first file of each chapter (i.e., ckapl.1, ehap2.1,...).
If you need to turn off the special meaning of any of the special characters(#, ?,
and [...]) enclose the entire argument in single quotation marks. For example,
the followmg command will print out only files named “?” rather than all one
character filenames:

Is ?°

Pattern-matching features are discussed further in Chapter 7, **The Shell“.

3.5 Commands

Commands are used to invoke executable programs. When you type the name
of a command, XENIX reads the command line that you have typed, looks for a
program with the given name, and then executes the program if it finds it.
Command lines may also contain arguments that specify options or files that
the program may need. The command line and command syntax are discussed
in the next twosections.

3.5.1 Command Line

Whether you are typing commands at a terminal, or XENIX is reading
commands from a file, XENIX always reads commands from command lines.
The command line is a line of characters that is read by the shell command
interpreter to determine what actions to perform. Thisinterpreter, or ‘“shell”
as it is known, reads the names of commands from the command line, finds the
executable program corresponding to the name of the command, then executes

3-8

P

Basic Concepts

that program. When the program finishes executing, the shell resumesreading
the command line. Thus, when you are typing at a terminal, you are editinga
line of text called the command-line buffer that becomes a command line only
when you press RETURN. This command-line buffer can be edited with the
BKSP and CNTRL-U keys. Pressing RETURN causes the command-line buffer to
be submitted to the shell as a command line. The shell reads the command line
and executes the appropriate command. If you press INTERRUPT before you
press RETURN, the command-line buffer is erased. Multiple commands can be
entered on a single command line provided they are separated by a semicolon
(;). For.example, the following command line prints out the current date and
the name of the current working directory:

date ; pwd

Commands can be submitted for processing in *“the-background’’ by appending
an ampersand (&) to the command line. This mode of execution is similar to
“batch” processing on other systems. The main advantage to placing
commands in the background is that you can execute other commands from
your terminal in the *foreground” while the background commands execute.
Thus:

du fusr >diskuse&

determines the disk usage in the directory /uer, a fairly time-consuming
operation, without tying up your terminal. Note that the output is placed in
the file diskuse by redirecting output thh _the grea.t,er-than symbol.
Redirection is discussed in Section 3.5.1.

3.5.2 Syntax
The general syntax for commandsisas follows:
cmd [switches][arguments] [filenames]

By convention, command names are lowercase. Switches, also called options,
are flags that select various options available when executing the command.
They are optional and usually precede other arguments and filenames.
Switches consist of a dash prefix (-)and an identifying letter. For example, the
Is command’s -1 switch (pronounced “minus ell” } specifies a long directory
listing and the command :

Is -r

specifies a directory listing in reverse alphabetical order. In some cases,
switches can be grouped to form a single switch argument. For example, the
command

Is -rl

3-9

XENIX User's Guide

is really a combination of two switches, where the —rl switch selects the option
that lists all files in the directory in both reverse alphabetical order and with
the long format. e
Sometimes multiple switches must be given separately, asin:

copy ~v -a source destination
Here the —v switch specifies the ‘‘verbose” option, which reports copying as it
happens. The -a switch tells the copy command to ask the user for
confirmation before copying the sourceto the destination.
Other arguments can also be given, such assearch strings, asin:

grep ‘string of text “outfile
In the above example

‘string of text
is a single argument and is the search string the grep command searches for in
the file outfile. Filename is the argument that specifies the name of a file
required by the command.
Most commands are executable programs compiled by the C compiler or by
some other language compiler. Some commands are executable command files
called ‘‘shell procedures”. Shell procedures are discussed in Chapter 7, “The
Shell.”
3.8 Input and Output
By default, XENIX assumes that terminal input comes from the terminal
keyboard and output goes to the terminal screen.. To illustrate typical
command input and output, type:

cat ‘
This command now expects input from your keyboard. Asinput, it accepts as

many lines of text as you type until you press CNTRL-D as an end-of-file or end-
of-transmissionindicator.

3-10

Basic Concepts

For example, type:

this is two linesRETURN
of inputRETURN
CNTRL-D

When you press CNTRL-D, input ends and output begins.- The cat command
immediately outputs the two lines you typed-—since output is sent to the
terminal screen by default, that is where the two lines are sent. Thus, the
complete session will look like this on your terminal screen:

$ cat

this is two lines
of input

this is two lines
of input

The flow of command input and output can be ‘‘redirected’ so-that input comes
from a file instead of from the terminal keyboard and output goes to a file or
lineprinter, instead of to the terminal screen. In addition, ‘“‘pipes” can be
created that allow the output from one command to become the input to
another. Redirection and pipes are discussed in the next two subsections.

3.6.1 Redirection
In XENIX afile canreplace the terminal for either input or output. For example
Is
displaysalist of files on your terminal screen. Butif you say
Is >filelist
a list of your filesis placed in the file filelist (which is created if it does not exist).
The symbol for output redirection, the greater-than sign (>), means “put the
output from the command into the following file, rather than display it on the
terminal screen” . As another example of output redirection, you can combine
several filesinto one by capturing the output of cat in a file:

cat f1 12 13 >temp

The output append symbol (> >) operates very much like the output
redirection symbol, except that it means‘‘add to the end of”’. So

cat filel file2 file3 > >temp

means ‘‘concatenate file!, file2, and fileS to the end of whatever is already in
temp, instead of overwriting and destroying the existing contents”. As with

3-11

XENIX User’'s Guide

normal output redirection, if temp doesn’t exist, it is created for you.

In a similar way, the input redirection symbol (<) means ““take the input for a
program from the following file, instead of from the terminal”’ . Thus, you
could make a script of editing commands and put them into a file called script.
Then you could execute the commandsin thescript on a file by typing:

ed file <script

As another example, you could use ed to prepare a letter in the file letter.tzt,
thensend it to several people with:

mail adam eve mary joe <letter.txt

3.6.2 Pipes

One of the major innovations of the XENIX system is the concept of a “pipe”. A
pipe is simply a way to connect the output of one command to the input of
another, so that the two run as a sequence of commands called a pipeline.

For éxample:
sort frank.txt george.txt hank.txt

combines the three files named frank.tzt, george.tzt, and hank.tzt, then sorts
the output. Suppose that you want to then find all unique words in these files
and view theresult. You could type:

sort frank.txt george.txt hank.txt >templ
uniq <templ >temp2

more temp2 i

rm templ temp2

But thisis more work than isnecessary. What you want is to take the output of
sort and connect it to the input of uniq, then take the output of uniq and
connect it to more. You would use the following pipe:

sort frank.txt george.txt hank.txt | uniq | more
The vertical bar character (|) is used between the sort and uniq commands to
indicate that the output from sort, which would normally have beensent to the
terminal, is to be redirected from the terminal to the standard input of the
uniq command, which in turn sends its output to the more command for
viewing,. :

There are many other examplesof pipes. For example

3-12

Basic Concepts

Is | pr -3
formats and paginates a list of your files in three columns. The program wc
counts the number of lines, words, and charactersin itsinput, and who printsa
list of users currently logged on, one per line. Thus,

who | we
tellshow many people are logged in, and

Is | we
counts the number of filesin the current directory.
Any program that reads from the terminal keyboard can read from a pipe

instead. Any program that displays output to the terminal screen can send
input to apipe. You can have as many elements in a pipeline asyou wish.

3-13

e

Chapter 4
Tasks

4.1 Introduction 4-1

4.2 Gaining Accesstothe System 4-1
4.2.1 Loggirgln 4-1
4.2.2 Logging Out 4-2
4.2.3 Changing Your Password 4-2

4.3 Configuring Your Terminal 4-3
4.3.1 Changing Terminals 4-3
4.3.2 Setting Terminal Options 4-4

4.4 Editingthe CommandLine 4-4
4.4.1 EnteringaCommand Line 4-4
4.4.2 ErasingaCommandLine 4-4
4.4.3 Halting Screen Output 4-4

4.5 ManipulatingFiles 4-4
4.5.1 CreatingaFile 4-5
4.5.2 DisplayingFile Contents 4-5
4.5.3 CombiningFiles 4-7
4.5.4 MovingaFile 4-7
4.5.5 RenamingaFile 4-8
4.5.6 CopyingaFile 4-8
4.5.7 DeletingaFile 4-9
4.5.8 FindingFiles 4-9
4.5.9 LinkingaFileto AnotherFile 4-10

4.6 Manipulating Directories 4-10
4.6.1 Printing the Name of Your Working Directory -
4-11
4.6.2 Listing Directory Contents 4-11
4.6.3 CreatingaDirectory 4-13
4.6.4 RemovingaDirectory 4-13
4.6.5 RenamingaDirectory 4-13

4.6.6 MovingaDirectory 4-13
4.6.7 CopyingaDirectory 4-14

4.7 MovingintheFile System 4-14
4.7.1 Finding Out WhereYou Are 4-14
4.7.2 Changing Your Working Directory 4-14

4.8 | Using File and Directory Permissions 4-15
4.8.1 ChangingPermissions 4-17
4.8.2 ChangingDirectory Search Permissions 4-19

4.9 Processing Information 4-19
4.9.1 ComparingFiles 4-19
4.9.2 Echoing Arguments 4-20
4.9.3 SortingaFile 4-20
4.9.4 Searchingfor aPatterninaFile 4-21
4.9.5 Counting Words, Lines, and Characters 4-22
4.9.6 DelayingaProcess 4-22

4.10 Controlling Processes 4-23
4.10.1 Placing a Processin the Background 4-24
4.10.2 Killing aProcess 4-24

4.11 Getting Status Information 4-25
4.11.1 Finding Out Whois on the System 4-25
4.11.2 Finding Out What Processes Are Running 4-26
4.11.3 Getting Lineprinter Information 4-26

4.12 Using the Lineprinter 4-26
4.12.1 Sending aFile tothe Lineprinter 4-27
4.12.2 Getting Lineprinter Queue Information 4-27

4.13 Communicating with Other Users 4-27
4.13.1 Sending Mail 4-27
4.13.2 Receiving Mail 4-28
4.13.3 Writing to a Terminal 4-28

4.14 Using the System Clock and Calendar 4-29
4.14.1 Finding Out the Date and Time 4-29
4.14.2 Displaying a Calendar 4-29

4.15 Using the Automatic Reminder Service 4-30
4.16 Using Another User’s Account 4-30

4.17 Calculating. 4-30

Py

Tasks

4.1 Introduction

This chapter explains how to perform common tasks on XENIX. The individual
commands used to perform these tasks are discussed more thoroughly in the
XENIX Reference Manual.

4.2 Gaining Access to the System

To use the XENIX system, you must first gain access to it by logging in. When
you log in you are placed in your own personal working area. Logging in,
changing your password, and logging out are described below.

4.2.1 Logging In

Before you can log in to the system, you must be given a system “account”.
Your name must be added to the user list, and you must be given a password
and a mailbox.

Depending on how your system is administered, you may have to add your
name to the user list yourself, or someone else may be assigned this task. If you
must add your own account to the system, see the XENIX Operatione Guide and
mkuser(C) in the XENIX Reference Manualfor more information. This section
assumes your account hasalready been set up.

Normally, the system sitsidle and the prompt “login:’’ appears on the terminal
screen. If your screen is blank, or displays nonsense characters, press the
INTERRUPT key a few times.

When the ““login:” prompt appears, follow these steps:

1. Type your login name and press RETURN. If you make a mistake,
press CNTRL-U to start the line again. After you press RETURN the
word “Password:”’ appearson your screen.

2. Type your password carefully, then press RETURN. The letters do
not appear on your screen as you type, and the cursor does not move.
If you make a mistake, press RETURN to restart the login procedure.

If you have typed your login name and password correctly the ‘“prompt
character” appears on the screen. This is usually a dollar sign($). The prompt
tells you that the XENIX system is ready to acccept commands from the
keyboard.

If you make a mistake, the system displays the message:

#1

XENIX User’s Guide

Login incorrect
login:

If you get this message, follow the above procedure again. You must type all the
letters of your user name and password correctly before you are given access to
the system; XENIX does not allow you to correct your mistakes when typing
your password.

Depending on how your system is set up, after you log in you may see a
“banner” that says something like “Welcome to XENIX’, or an announcement
that is of interest to all users.

4.2.2 Logging Out
The logout procedure is simple—all you need to do is press
CNTRL-D

alone on a line. In general, CNTRL-D signifies the end-of-file in XENIX, and is
often used within programs to signal the end of input from the keyboard. In
such cases, CNTRL-D will not log you out; it will simply terminate input to a
particular program if you are within that program. This means that it may
sometimes be necessary to press CNTRL-D several times before you can log
yourself out. For example, if you are in the mail program you must press
CNTRL-D once to exit the mail program, then again to log out.

4.2.3 Changing Your Password

To prevent unauthorized users from zaining access to the system, each
authorized user must have a password. When you are first given an account on
a XENIX system you are assigned a password by the system administrator.
Some XENIX systems require you to change your password at regular intervals.
Whether yours does or not, it is a good idea to change your password regularly
to maintain system security. This section tells you how to change your
password.

Use the passwd command to change your password. Follow these steps:

1. Type
passwd
and pressRETURN. The following message appears:

Changing password for user:
Old password:

42

Tasks

2. Carefully type your old password. It is not displayed on the screen. If
you make a mistake, press RETURN. The message “Sorry” appears,
then the system prompt. Begin again with step 1.

3. Whenyouhave typed your old password the message

New password:
appears. Type in your new password and press RETURN.
4. The message

Retype new password:

appears. Type your new password again. If you make a mistake, press
RETURN. The message

Mismatch -- password unchanged

appears, and you must begin again with step 1. When you have
completed the procedure, the system prompt appears.

4.3 Configuring Your Terminal

On most systems, the standard console terminal is already configured for use
with XENIX. However, other terminals of various types may be connected to a
XENIX system. In these cases it is important to know how to set terminal
options and how to specify the terminal you are using. You may also want to
change the standard configuration of the standard console terminal. The
following section discusses these topics.

4.3.1 Changing Terminals

If you ever need to log in to XENIX on a terminal of a type different than the
terminal you normally use, you may need to change the shell TERM variable.
This is normally set to the proper terminal when you log in, but if you switch
terminal types you will have to reset the TERM variable. Toreset this variable,
type the following line at command level:

TERM==termname
where termname is the name of a known terminal. A list of known terminalsis

described in terminals(M). A variety of terminals are supported; terminal
capabilities are listed in the system file /etc/termeap.

43

XENIX User's Guide

4.3.2 Setting Terminal Options

There are anumber of terminal options that can be set with the command stty.
When entered without parameters, stty displays the current terminal settings.
For example, typical output might look like this:

speed 9600 baud
erase “h'; kill ""u’
even -nl

Each of the above characteristics can be set with stty For more information,
see stty(C) in the XENIX Reference Manual.

4.4 Editing the Command Line

When yousit in front of a terminal and type commandsat your keyboard, there
are a number of special keys that you can use. The most useful ones are
described below.

4.4.1 Entering a Command Line

From your terminal, entering a command line consists of typing characters
then pressing RETURN. Once you have pressed RETURN the computer reads
the command line and commands specified on that line are executed. You may
type as many command lines as you want without waiting for commands to
complete, because XENIX supports type-ahead of characters.

4.4.2 Erasing a Command Line

When entering commands, typing errors are bound to occur. To erase the
current command line, press CNTRL-U.

4.4.3 Halting Screen Output

In many cases, you will be examining the contents of a file on the terminal
screen. For longer files, the contents will often scroll off the screen faster than
you can examine them. To temporarily halt a program’s output to the terminal
screen, pressCNTRL-S. Toresume output, press CNTRL-Q.

4.5 Manipulating Files
File manipulation (creating, displaying, combining, copying, moving, naming,

and deleting files}, is one of the most important capabilities an operating system
provides. The XENIX commands-that perform these functions are described in

44

_—x

Tasks

the following sections.

4.5.1 Creating a File
To create a file and place text in it, use the editor vi, described in Chapter 5 of
this manual, “Vi: A Text Editor”. If for some reason you wish to create an
empty file, type

> filename
Where filename is the name of the empty file. In general, new files are created
by commands ae needed .

4.5.2 Displaying File Contents

The more command displays the contents of a file one screenful at a time. It has
the form

more options filename

More is useful for looking at a file when you don’t want to make changes to it.
For example, to display the contentsof the file memoe, type

more memos

More can be invoked with options that control where the display begins, and
how the fileis displayed. These optionsinclude:

+linenumber
Begins the display at the line in the file designated by linenumber.

+/teat
Begins the display two lines before tezt, where tezt is a word or
number. If tezt is two or more words, they must be enclosed in double

quotation marks.
-c ‘Redraws the screeninstead of scrolling.
-r Displays control characters, which are normally ignored by more.

To begin looking at the file memo at the first occurrence of the words “net
gain”, for example, type

more +/"net gain® memo
If the file is more than one screenful long, the percentage of the file that remains

is displayed on the bottom line of the screen. To look at more of the file, use the
following scrolling commands:

45

XENIX User's Guide

RETURN Scrolls down one line.

d Scrolls down one-half screen.

SPACE Scrolls down a full screen.

nSPACE Scrolls down nlines.

. . Repeatsthe previous command.

You cannot scroll backward, toward the beginning of the file.

You can search forward for patterns in more with the slash (/) command. For
example, tosearch for the pattern “‘net gain”, type

/net gain/
and pressRETURN. More displays the message
skipping...
at the top of the screen, and scrolls to alocation two lines above ‘net gain”.

If you are looking at a file with more.and decide you want to change the file, you
can invoke the vieditor by pressing

v
See Chapter 5, “Vi: A Text Editor” for information on using vi.

More quits automatically when it reaches the end of a file. To exit more before
the end of afile, type

q

The head and tail commands display the first and last ten lines of a file,
respectively. They are useful for checking the contents of a particular file.

For example, tolook at the first ten lines of the file memo, type
head memo

You can also specify how many lines the head and tail commands display. For
example,

tail -4 memo

displaysthe last four linesof memo.

4-6

Tasks

The cat command also displays the contents of a file. Cat scrolls the file until
you press CNTRL-S to stop it. Pressing CNTRL-Q will continue the scrolling.
Cat stops automatically at the end of a file. If you wish to stop the display
before the end of the file, press INTERRUPT. To display the contents of one file,

type
cat filel
To display the contents of more than one file, type

cat filel file2 file3

4.5.3 Combining Files

The cat command is frequently used to combine files into some other new file.
Thus, to combine the two files named filel and file2, into a new file named
bigfile, type:

cat filel file2 > bigfile
Note here that we are putting the contents of the two files into a new file with
the name bigfile. The greater than sign (>) is used to redirect output of the

cat command to the new file.

You can also use cat to append one file to the end of another file. For example,
to append file! to file2, type

cat filel > > file2

The contents of fileare added to file2. Filelstill existsasaseparate entity.

4.5.4 Moving a File

The mv command moves a file into another file in the same directory, or into
another directory. For instance, to move a file named tezt to a new file named
book, type:

mv text book

After this move is completed, no file named tezt will exist in the working
directory, because the file has been renamed book.

47

XENIX User's Guide

To move a file into another directory, give the name of the destination
directory as the final name in the mv command. For instance, to move file and
~ flle2into the directory named /tmp, type:

mv filel file2 /tmp

The two files you have moved no longer exist in your working directory, but
now exist in the directory /tmp. The above command has exactly the same
effect as typing the following t wo commands:

mv filel /tmp/filel
mv file2 /tmp/file2

The mv command always checks to see if the last argument is the name of a
directory and, if so, all files designated by filename arguments are moved into
that directory.

4.5.5 Renaming a File

To rename a file, simply ““move” it to a file with the new name: the old name of
the fileisremoved. Thus, to rename the file anon to johndoe, type:

mv anon johndoe

Note that moving and renaming a file are essentially identical operations.

4.5.86 Copying a File

There are two forms of the cp command: one in which files are copied into a
directory, and another in which a file is copied to another file. Thus, to copy
three files into a directory named file dir, type:

cp filel file2 file3 filedir

In the above command, three files are copied into the directory filedsr; the
original versions still reside in the working directory. Note that the filenames
are identical in the two directories. Like the mv command, cp alwayschecksto
see if the last argument is the name of a directory, and, if so, all files designated
by filename arguments are copied into that directory. '

To create two copies of a file in your own working directory, you must rename
the copy. To do this, the copy command can be invoked as follows:

cp file filecopy
After the above command has executed, two files with identical contentsreside

in the working directory. To learn how to copy directories, see section 4.6.7,
“CopyingaDirectory”, later in this chapter.

4-8

LN

PN

Tasks

4.5.7 Deleting a File
To delete or remove files, type:
rm filel file2

In the above command, the files file 1 and file 2are removed from your working
directory. The command

rm -i filel file2

allows you to interactively remove files by asking you if you really want to
delete each of the files filef and file 2. If you press yfollowed by a RETURN, the
given file is removed; if you press n the file is left untouched. This command is
useful when cleaning up a directory that contains many files.

4.5.8 Finding Files

The find command searches for files that have a specified name. Find is useful
for locating files that have the same name, or just for finding a file if you have
forgotten which directory it isin. The command has the form:

find pathname -name filename -print

The pathname is the pathname of the directory you want to search. Find
searches recursively, that is, it starts at the named directory and searches
downward through all files and subdirectories under the directory specified in
pathname.

The “-name’ option indicates that you are searching for files that have a
specnﬁc filename. (There are other search conditions you can use thh find; see
find(C) in the XENIX Reference Manual.) :

Filename is the name of the file you are searching for.

The ‘‘—print” option indicates you want to print the pathnames of all the files
that match filename on your terminal screen. You may direct this output toa

file instead of your screen with the output redirection symbol, >. (There are

other actions that can be performed with find, such as removing and moving

files; see find(C)in the XENIX Reference Manual.)

For example, the following command finds every file named memo in the
directory /usr/joe and all its subdirectories:

find /usr/joe -name memo —print

The output might look like this:

49

XENIX User's Guide

[usr/joe/memo

[ust /joe/accounts/memo
Jusr/joe/meetings/memo
[usr/joe/mail/memo

4.5.9 Linking a File to Another File

The In command joins two files in different directories so that when the file is
changed in one directory, it is also changed in the other directory. This can be
useful if several users need to share information, or if you want a file to appear
in more than one directory. This command has the form

In file newfile

where file is the original file, and newfile is the new, linked file. For example, the
following command links memosin /usr/joe to joememosin fusr/mary:

In /usr/joe/memos Jusr/mary/joememos

Whenever [usr/joe/memos is updated, the file /usr/mary/joememos is also
changed.

When you link files 2 name is associated with an inode. An inode specifies a
unique set of data on the disk. One or more names can be associated with this
data. Thus, the above command assures that the files dir1/file1 and dir2/file2
have identical contents.

There are three things to remember about linking files that are not
immediately obvious:

1. Linkinglarge sets of files to other parallel files can save a considerable
amount of disk space.

2. Linking files used by more than one person isrisky, because any party
can alter the file and thus aflect the contents of all fileslinked to it.

3. Removing a file from a directory does not remove other links to the
file. Thus the file is not truly deleted from the system. For example, if
you delete afile that has 4 links, 3 links remain.

For more information about linking see In{C) in the XENIX Reference Manual.

4.6 Manipulating Directories
Because of the hierarchical organization of the file system, there are many

directories and subdirectories in the XENIX system. Within the file system are
directories for each user of the system. Within your user directory you can

410

Tasks

create, delete, and copy directories. Commands that let you manipulate
directories are described in the following sections.

4.6.1 Printing the Name of Your Working Directory

All commands are executed relative to a*““working” directory. The name of this

directory is given by the pwd command, which stands for ‘“‘print working
directory”. For instance, if your current working directory is fusr/joe, when

you type:
pwd

you will get the output:
[ust/joe

Youshould always think of yourself asresiding *‘in” your working directory.

4.8.2 Listing Directory Contents
You can list the contents of a directory with the lc command. This command
sorts and lists the names of files and directories in a given directory in columns.
If no directory name is given, lc lists the contents of the current directory. The
lc command has the form

lc options name
For example, to list the contentsof the directory work, type

lc work

Your output might look like this:

accounts meetings notes
mail memos todo

If no name is specified, Ic lists the contents of the current directory. If accounts
isthe current directory, for example, the command

Ie
lists the names of the files and subdirectoriesin that directory.

The following options control the sort order and the information displayed by
the lc command:

-a Lists all files in the directory, including the “hidden” files (filenames that
begin with a dot, such as.profile and .mailre).

411

XENIX User’s Guide

-t Listsnamesinreverse alphabetical order.

-t Lists names in order of last modification, the latest (most recently
modified) first. When used with the —r option, lists the oldest first.

-R Lists all files and directories in the current directory, plus each file and
directory below the currentone. The *‘R” standsfor “‘recursive”.

-F Marks directories with »a.v backslash(\) and executable files with an

asterisk ().

The | command gives a “long’’ listing of a directory, producing an output that
might look something like this:

grp!l
grpl
grpl
grp2
grp2
grp2

272
272
592
282
72
1403

Apr
Apr
Apr
Apr
Apr
Apr

a3 DN O CN

dirl
dir2
dir3
filel
file2
file3

Reading from left to right, the information given for each file or directory

total 501

drwxr-x--- 2 boris

drwxr-x--- 2 enid

drwxr-x--- 2 iris

—~IW-T————— 1 olaf

“PW=T-mm—m 1 olaf

~IW-TF————— 1 olaf
includes:

— Permissions

— Number of links

— Owner

— Group

— Sizeinbytes

— Timeoflast modification

— Filename

The information in this listing and how to éhange permissions are discussed

below in Section 4.8, “Using File and Directory Permissions”.

The 1 command takes the same optionsasle.

For more information about listing the contents of a directory, see l¢{C) in the
XENIX Reference Manual. ; ‘

4-12

Tasks

4.6.3 Creatihg a Directory

To create a subdirectory in your working directory, use the mkdir command.
For instance, to create a new directory named phonenumbers, simply type:

mkdir phonenumbers
After this command has been executed, anew empty directory will exist in your
home directory.
4.6.4 Removing a Directory
To remove a directory located in your working directory, use the rmdir
command. For instance, to remove the directory named phonenumbers from
the current directory, simply type:

rmdir phonenumbers
Note that the directory phonenumbers must be emptybefore it can be removed;
this prevents catastrophic deletions of files and directories. If you want tolive
dangerously, it is possible to recursively remove the contents of a directory
using the rm command, but that will not be explained here. See rm(C) in the
XENIX Reference Manual for more information.

4.6.5 Renaming a Directory

To rename a directory, use the mv command. For instance, to rename the
directory little. dir to big.dir, type:

mv little.dir big.dir

Thisisasimple renaming operation; no files are moved.

4.6.86 Moving a Directory
The mv command also moves directories. This command has the form
mv oldirectory newdirectory

where Newdirectory is a directory that already exists. For example, to move
the directory fusr/joe/accountsinto fusrfjoefoverdue type

mv Jusr/joefaccounts fusr/joe/overdue

The new pathname of /usr/joe/accountsis fusr{joe/overdue/accounts.

413

XENIX User’s Guide

4.6.7 Copying a Directory

The copy command copies directories. This command has the form
copy options olddir newdir

To copy all the filesin the directory /usr/joe/memosinto Juer/joe/notes type
copy [usr/joe/memos [usr/joe/notes

The files in /uar/]oe/memoc are copied into /uar/;oe/notn The copy
command has the following options:

-1 Linksthe copied files to the original.
-m Givesthe copied files the same modification dates as the original files.
-r Copies the directory recursively, i.e., copies all the directories under the
named directory.

4.7 Moving in the File System
When using the XENIX system, it helps to imagine a large tree structure of files
and directories. Each directory should be thought of as a place that you can
move into or out of. At all times you are “someplace’ in the tree structure. This
place is called either your working directory or current directory. The
commands used to find out where you are and to move around in the tree
structure are discussed below.
4.7.1 Finding Out Where You Are
Your current location in the file system is the name of the working directory.
You can find out this name by using the pwd command, which stands for
“print working directory’’. For example, if you are in the.directory /usr then
typing the command '

pwd

prints out the name:

[usr
4.7.2 Changing Your Working Directory

Your working directory represents your location in the file system: it is ‘“where
you are” in XENIX. To alter this location in the XENIX file system, use the

4-14

—

Tasks

change directory (cd) command:
ed

This changes your working directory to your home directory. To move to any
other directory, specify that directory as an argument to cd. For instance, the
following command:

cd fusr

moves you to the fusr directory. Because you are always “in” your working
directory, changing working directories is much like ‘*‘traveling’’ from
directory to directory.

To move up one directory from your current directory, type
cd ..

For example, the above command would move you from the directory
Juer/joefworkto [usr/joe. Similarly,the command

ed /..

would move you from the directory /usr/joe/ work to [usr, moving you up two
directories.

4.8 Using File and Directory Permissions

The XENIX system allows the owner to restrict access to files and directories,
limiting who can read, write and execute filesowned by him. To determine the
permissions associated with a given file or directory, use the I command. The
output from the | command should look something like this:

total 501

drwxr-x--- 2 boris grpl 272 Apr 5 14:33 dirl
drwxr-x--- 2 enid grpl 272 Apr 5 14:33 dir2
drwxr-x--- 2 iris grpl 592 Apr 6 11:12 dir3
~ITW-F—-———— 1 olaf grp2 282 Apr 7 15:11 filel
~ITW-l-—~—— 1 olaf grp2 72 Apr 7 13:50 file2
~IW—fm——— 1 olaf grp2 1403 Apr 1 13:22 file3

Permissions are indicated by the first ten characters of the output. The
permissions for the first file in the above list, are

drwxr-x---

The first character indicates the type of file and must be one of the following:

415

XENIX User's Guide

P

Indicatesan ordinary file.

Indicates a directory.

Indicates a character special devicesuchasa lineprintgr or terminal. !
Indicates a block specialvdevice such asa hard or floppy disk.

Indicates a name special file (i.e., a semaphore used for controlling
access to some resource).

Indicates ashared data file.

Indicates a named pipe.

From left to right, the next nine charactersare interpreted as three setsof three
permissions each. Each respective set of three indicates the following
permissions:

Owner permissions
Group permissions

Allother user permissions

Within each set, the three characters indicate permission to read, to write, and
to execute the file as a command, respectively. For a directory, ‘“execute’
permission means permission to search the directory for any included files or
directories.

Ordinary file permissions have the foliowing meanings:

r

w

X

The file is readable.
The file is writeable.

The file isexecutable.

. The indicated permission is not granted.

For directories, permissions have the following meanings:

r

416

Files can be listed in the directory; the directory must also have “x’*-
permission.

Files can be created or deleted in the directory; as with “r”, the
directory itself must also have *‘x” permission.

The directory can be searched. A directory must have “x” permission
before you can move to it with the cd command (i.e., cdtoit), accessa

Tasks

file within it, or list the files in it. Remember that a user must have
“x" permission to do anything useful to the directory.

The following are some typical directory permission combinations:

e No access at all. This is the mode that denies access to the
directory to a class of users.

drwx------ Allows access by the owner to use lc, create files, delete files,
access files (subject to file permissions), and cd to the
directory. This is the typical permission for the owner of a
directory.

drwxr-x--- Allows access by members of the group to use lc, and access
files subject to file permissions. Group memberscan cd to this
directory, but cannot create or delete files in it. This is the
typical permission an owner gives to others who need access
to files in hisdirectory.

drwx--x--x With these permission settings users other than the owner
cannot use lc but can cd to the directory. Other users can
only access a file within this directory by its exact name; they
cannot use special characters. Files cannot be created or
deleted in the directory by anyone except the owner. This
mode is rarely used, but can be useful if you want to give
someone access to a specific file in a directory without
permitting access to other files in the same directory.

q

This chapter discusses ordinary files, executable files, and directories only. For

information about other types of files, see 1s(C) in the XENIX Reference

Manual.

4.8.1 Changing Permissions
The chmod command changes the read, write, execute, and search
permissions of a file or directory. This command is useful if you have created a
file in one mode, but want to give others permission to read, write or execute it.
The chmod command has the form

chmod tnetruction filename
The stnstruction segment of the command indicates which permissions you
want to change for which class of users. There are three classes of users, and
they are are indicated as follows:

u User, theowner of the file or directory

g Group, the group the owner of the file belongs to

4-17

XENIX User's Guide

o. Other, all usersof the system

a Allclassesof users
There are three types of permissions, as follows:

r Read, which allows permitted users to look at but not change or delete the
file. ,

w_Write, which allows permitted users to change or even delete the file.
x Execute, which allows permitted users to execute the file as a command.
For example, assume file! exists with the following permissions:

~IW-T-----

In the above example, the owner of the file has read and write permission, group
membershave read permission, and othershave no access at all.

Togive file I read permission for all classes of users, type:
chmod a+r filel

In the instruction segment of the command (a+r) the *‘a” stands for *all”’. The
resulting permissionsare:

~I'W-T--T--
For file1 with the attributes
[£ " ——

The following command gives write and execute permissions to members of a
group only: ’

chmod g+wx filel
This command would alters the permission attributes so they look like this:
- W-- WX~--

To remove write and execute permission by the user (owner) and group
associated with file 1, type:

chmod ug-wx filel

4-18

Tasks

4.8.2 Changing Directory Search Permissions
Directories also have an execute permissicn. This attribute signifies search
permission, rather than execute permission, since directories cannot be
executed. If this permission is denied to a particular user, then that user cannot
even list the names of the filesin the directory.
For example, assume that the directory dirf has the following attributes:
drwxr-xr-x
To remove search permission for other users to examine dir1, type:
chmod o-xr dirl

The new attributes for dirlare:

drwxr-x---

4.9 Processing Information

In many cases, files will contain information that you may want to process.
Various utility programs exist on XENIX to process information. A set of these
programs and their usesare described in the following sections.

4.9.1 Comparing Files

To compare two text files use the diff command to print out those lines that
differ between the files that you specify. For example, suppose that a file named

menhas the contents

Now is the time for all good men to
Come to the aid of their party.

and that a file named women has the following contents:

Now is the time for all good women to
Come to the aid of their party.

If thisis the case, then the command
diff men women

produces the following results:

419

XENIX User’s Guide

lcl
< Now is the time for all good men to

> Now is the time for all good women to

A three-way difference listing can be created with the diff3 command. For
information about diff3 see diff3(C) in the XENIX Reference Manual.

4.9.2 Echoing Arguments

The echo command echos arguments to the standard output. For example,
typing:

echo hello
outputs:
hello

on the terminal screen. To output several lines of text, surround the echoed
argument in double quotation marks and press RETURN between lines. A
secondary prompt will appear until you type the final double quotation mark.
For example, type:

echo "Now is the time

For all good men

To come to the

Aid of their party.”
This will output:

Now is the time

For all good men

To come to the

Aid of their party.
Echo is particularly useful if you should ever program in the shell command
ianguage. For more information about the shell, see Chapter 7, “The Shell”.
4.9.3 Sorting a File
One of the most useful file processing commands issort. By default, sort sorts
the lines of a file according to the ASCII collating sequence (i.e., it alphabetizes
them). For example, to sort a file named phonelist, type:

sort phonelist

In the above case, the sorted contents of the file are displayed on the screen. To

4-20

Tasks

create asorted versionof phonelistnamed phonéaort , type:
sort phonelist > phonesort

Note that sort is useful for sorting the output from other commands. For
example, to sort the output from execution of a who command, type:

who | sort > whosort

This command takes the output from who, sorts it, and then sends the sorted
output to the file whoeort.

A wide variety of options are available for sort. For more information, see
gort(C) in the XENIX Reference Manual.

4.9.4 Searching for a Pattern in a File

The grep command selects and extracts lines from a file, printing only those
lines that match a given pattern. For example, to print out all lines in a file
containing the word “tty38”’, type:

grep ‘tty38” file

In general, you should always enclose the pattern you are searching for in single
quotation marks (°), so that special metacharacters are not expanded
unexpectedly by the shell.

As another example, assume that you have a file named phonelist that contains
a name followed by a phone number on each line. Assume also that there are
several thousand lines in this list. You can use grep to find the phone number
of someone named Joe, whose phone number prefix is 822, asfollows:

grep ‘joe * phonelist | grep ‘822-° > joes.number

Grep finds all occurrences of lines containing the word ‘“‘joe” in the file
phonelist. The output from this command is then filtered through another
grep command, which searches for an “822-" prefix, thus removing any
unwanted joes. Finally, assuming that a unique phone number for joe exists
with the “822-"" prefix, that name and number are placed in the file
Joes.number.

For more information about grep, its relatives fgrep and egrep, and the

types of patterns it can be used to search for (called regular expressions) see
grep(C) inthe XENIX Reference Manual.

421

XENIX User’'s Guide

4.9.5 Counting Words, Lines, and Characters
We is a utility for counting words in a file. The letters ‘‘wc” stand for word
count. Words are presumed to be separated by punctuation, spaces, tabs, or
newlines. Wc also counts characters and lines; all three counts are reported by
default. For example, to count the number of lines, words, and characters in
the file teztfile, ty pe:

we textfile
Typical output describing lines, words and characters might be:

4432 18188 97808 textfile

To specify a count of characters, words, or lines only, you must use an
appropriate mnemonic switch. To illustrate, examine the following three

commandsand the output produced by each:

we —¢ textfile
97808 textfile

we -w textfile
18188 textfile

we -] textfile
4432 textfile

The first example prints out the number of characters in teztfile, the second
prints out the number of words, and the third prints out the number of lines.
4.9.8 Delaying a Process
The at program allows you to set up commands to be executed at a specified
time. It is useful if you want to execute a command when you are not planning
to be at your terminal, or evenlogged in.
The at command has the form

at time day file
Time is the time of day, in digits, followed by “am”’ or “pm”. One- and two-
digit numbers are interpreted as hours, three- and four-digit numbers as hours

and minutes. More than four digits is not permitted.

Dayis optional. It is either amonth name followed by a day number, or a day of
the week. If no day is specified, the command will be executed today.

4-22

Tasks
File is the name of the file that contains the command or commands to be
executed.

For example, if you want to find out what processes are running at 10 pm on
Tusday, place the following line in a file named use

ps a > Jusr/myname/use

See Chapter 6, ‘‘Vi: A Text Editor”’, for information on creating and insertin
Chap 8 g
text into files.)

After you have written out the file and returned to command level, type

at 10pm tues use
Press RETURN. The XENIX prompt reappears and you may continue working.
At 10 pm on Tuesday, XENIX will execute psa and place the output in the file
use. At isunaffected by logging out.

To check what files you have waiting to be processed, use the atq command.
Atq lists the files to be processed, along with the following information:

— Thefile’suserID
— Thefile’sID number
— The date and time the file will be processed
To cancel an at command, first check the list of files to be processed and note
the file ID number. Then use the atrm command to remove the file or files from
the list. The atrm command has the form:
atrm number
For example,
atrm 84.032.2300.21
removes file number 84.032.2300.21, canceling whatever commands were
included in that file. A user can only remove his own files.
4.10 Controlling Processes
In XENIX, several processes can run at the same time. For example, you may
run the sort program on a file in the “background”, and edit another file inthe
“foreground’’ while the sort program is running. Things that you directly
control at your keyboard are called “foreground” processes. Other processes,

which you can initiate but that you otherwise have little control over, are called
background processes. At any one time you can have only one foreground

423

XENIX User's Guide

process executing, but multiple background processes may execute
simultaneously. Controlling foreground and background processes is the
subject of this section.

4.10.1 Placing a Process in the Background

Normally, commands sent from the keyboard are executed in strict sequence;
one command must finish executing before the next can begin. Executing
commands of this type are called foreground processes. A background process,
in contrast, need not finish executing before you give your next command.
Background commands are especially useful for commands that may take a
long time to complete.

To place a process in the background, type an ampersand (&) at the end of the
command. For example, to count the number of words in several large files
while simultaneously continuing with whatever else you have todo, type:

we filel file2 file3 > count&

Output is collected in the file count. If output were not put in count, it would
appear on the screen at unpredictable times as you continue with your work.

When processes are placed in the background, you lose control of them as they
execute. For instance, typing INTERRUPT does not abort a background
process. You must use the kill command, described in the following section,
instead.

4.10.2 Killing a Process
To stop execution of a foreground process, press your terminal’s INTERRUPT
key. This kills whatever foreground command is currently running. To kill all
your processes executing in the background, type:

kill 0
To killonly a specified process executing in the background, first type:

ps

Ps displays the Process Identification Numbers (PIDs) of your existing
processes: :

PID TTY TIME CMD

3459 03 0:15 -sh

4831 03 1:52 cc program.s
5185 03 0:00 ps

Next, youmight type

424

Tasks

kill 4831

where 4831 is the PID of the process that you want killed.

Note

Killing a process associated with the vi editor may leave the terminal
in a strange mode. Also, temporary files that are normally created
when a command starts, and are deleted when the command finishes,
may be left behind after a kill command. Temporary files are
normally kept in the directory /tmp. This directory should be
checked periodically and old files deleted.

4.11 Getting Status Information

Because XENIX is a large, self-contained computing environment, there are
many things that you may want to find out about the system itself, such as who
is logged in, how much disk space there is, what processes are currently
running. This section explains the types of information available from the
system and how to get it.

4.11.1 Finding Out Who is on the System

The who command lists the names, terminal line numbers, and login times of
all users currently logged on to the system. For example, type:

who

This command produces something like the following output on your terminal
screen:

arnold tty02 Apr
daphne tty21 Apr
elliot = tty23 Apr
ellen tty25 Apr
gus tty26 Apr
adrian tty28 Apr

IR TP PRI
—t
[V
')
I

The finger command provides more detailed information, such as office
numbers and phone extensions. For more information, about using finger see

finger(C)in the XENIX Reference Manual.

4-25

XENIX User's Guide

4.11.2 Finding Out What Processes Are Running

Because commands can be placed in the background for processing, it is not
always obvious which processes you are responsible for. The ps command
stands for “process status’ and displays information about currently running
processes associated with your terminal. For instance, the output from a ps
command might look like this:

PID TTY TIME OMD

10308 38 1:36 ed chap02.man
49 38 0:29 -sh :

11267 38 0:00 ps

The PID column gives a unique process identification number that can be used
to kill a particular process. The TTY column shows the terminal that the
process is associated with. The TIME column shows the cumulative execution
time for the process. Processes can be killed using the kill command. See
section 4.10.2, “Killing a Process” for information on how to use the kill
command.
To find out all the processes running on the system, use the a option:

psa
To find out about the processes running on a terminal other than the terminal
you are using, specify the terminal number. For example, to find out what -
processes are associated with terminal 13, type:

ps t13
For more information about ps and its options, see ps(C) in the XENIX
Reference Manual.
4.11.3 Getting Lineprinter Information
At times it may be necessary to know how many files are queued up at the
lineprinter. This information can be found by listing the directory in which

queued filesreside, /usr/spool/lpd. To examine this directory, type:

Is -1 Jusr/spool/lpd
4.12 Using the Lineprinter

The following sections describe the commands that will help you use your
lineprinter effectively and efficiently.

4-26

Tasks

4.12.1 Sending a File to the Lineprinter

One of the most common operations that you will want to perform is printing
files on the lineprinter. The most straightforward method for doing this is to

type
lpr filel
for one file, or:
lpr filel file2 file3

for multiple files. Other common uses of lpr involve pipes. For instance, to
paginate and print a file of raw text, type:

pr textfile | lpr

The pr and lpr commands are very often used together. Asanother example,
tosort, paginate, and print a file, type:

sort datafile | pr | lpr

4.12.2 Getting Lineprinter Queue Information

XENIX does not require that a file be entirely printed before the lpr command
finishes. Instead, Ipr makes sure only that the file is placed in a special
directory where it will wait its turn to be printed.

The files in this queue are contained in the directory [usr/spoolf/lpd. To
examine this lineprinter queue, type:

Is -1 /usr/spool/lpd

4.13 Communicating with Other Users
Because the XENIX system supports multiple users, it is very convenient to

communicate with other users of the system. The various methods of
communication are described below.

4.13.1 Sending Mail

Mail is a system-wide facility that permits you and other system users to send
andreceive mail. Tosend mail to another user on the system, type:

mail joe

427

XENIX User's Guide

where joe is the name of any user of the system. Following entry of the
command, you enter the actual text of the message you want to send. Entry of
text is terminated by ty ping a CNTRL-D.

A complete session at the terminal might look like this on your screen:

mail -s "Meeting today” joe

There will be a meeting at 2:00 today
to review recent problems with the
new system.

CNTRL-D

Note the use of the —s switch to specify the subject of the message.
For practice, send mail to yourself. (This isn’t as strange as it might sound —
mail to yourself is a handy reminder mechanism.) You can also send a
previously prepared letter, and you can send mail to a number of people all at
once. For more details see Chapter 6, “Mail”, and mai{(C) in the XENIX
Reference Manual.
4.13.2 Receiving Mail
When youlogin, you may sometimes get the message:

you have mail
Toread your mail, type:

mail
A heading for each message is then displayed on your terminal screen. When
you press RETURN, the contents of the first message are displayed. Subsequent
messages are displayed, one message at a time, most recent message first, each
time you press RETURN.
After each message is displayed, mail waits for you to tell it what todo with the
message. The two basic responses are 'd, which deletes the message, and
RETURN, which does not delete the message (so it will still be there the next
time you read your mailbox). To exit mail, type q, for “quit’’. Other responses
are described in the XENIX Reference Manualunder masl(C).
4.13.3 Writing to a Terminal

To write directly to another user’s terminal, use the write command. For
example, to write to joe's terminal, ty pe:

write joe

4-28

Tasks

After you have executed the command by pressing RETURN, each subsequent
line that you type is displayed both on your own terminal screen and on joe’s.
To terminate the writing of text to joe, enter a CNTRL-D alone on a line. The
procedure for a two-way write is for each party to end each message with a
distinctive signal, normally (o) for “‘over”; when a conversation is about to be
terminated use the signal (0o) for ““over and out”".

4.14 Using the System Clock and Calendar

There are several XENIX commands that will tell you the date and time, or

display a calendar for any month or year you choose. The following sections
explain these commands.

4.14.1 Finding Out the Date and Time
The date command displays the time and date. Type

date

The date and time are displayed in the bottom left corner of the screen.

4.14.2 Displaying a Calendar

The cal command displays the calendar of any month or year you specify. This
command has the form:

cal month year

For example, to display the calendar for March, 1952 type
cal 3 1952

The result is:

March 1952
S MTu WTh F S
1

2 3 4 5 6 7 8

9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

The month must always be expressed as a digit. To display the calendar for an

entire year, leave out the month. The year must always be expressed in full; the
command “cal 84" displays the calendar for the year 84, not 1984.

4-29

XENIX User's Guide

4.15 Using the Automatic Reminder Service

An automatic reminder service is normally available for all XENIX users. Once
each day, XENIX uses the calendar command to examine each user’s home
directory for afile named calendar, the contentsof which might look something
like this:

1/23 David’s wedding
2/9 Mira’s birthday
3/30 Paul’s birthday
4/27 Meeting at 2:00
8/1 Karen’s birthday
10/3 License renewal

Calendar examines each line of the calendar file, extracting from the file those

lines containing today’s and tomorrow’s dates. These lines are then mailed to
you to remind you of the specified events.

4.18 Using Another User’s Account
You can easily access another user’s files, regardless of the permission settings,
with the su command. The su procedure resembles logging in, and you must
know the other user’spassword. For example, to become user Joe, type

su joe
and press RETURN. When the password prompt appears, type Joe’s password.
To cancel the effect of the su command and return to your own account, press
CNTRL-D.
4.17 Calculating
The be command invokes an interactive desk calculator that can be used asif it

were a hand-held calculator. A typical session with be is shown below.
Comments explain what action is performed after each input line:

430

Tasks

/* This is a comment */

123.456789 + 987.654321 [+ Add and output s/
1111.111110

9.0000000 - 9.0000001 /* Subtract and output s/

-.0000001
64/8 [+ Divide and output */
8
1.12345678934 = 2.3 /* Note precision s/
2.58395061548
19%4 [+ Find remainder s/
3
3°4 [+ Exponentiation /
81
2/1s2 /* Note precedence */
4
2/(1%2) /* Note precedence again */
1
= 46.5 /* Assign value to x ¢/
y = 525 /* Assign value to y */
x +y + 1.0000 /+ Add and output */
100.0000
obase=16 /* Set hex output base »/
15 /s Convert tohex #/
F
16 /+ Convert to hex #/
10
64 /+ Convert to hex #/
40
255 /» Convert to hex */
FF
256 /s Convert to hex */
100
512 [+ Convert to hex #/
200

quit /¢ Must type whole word »/

Also available are scaling, function definition, and programming statements
much like those in the C programming language. Other features include
assignment to named registers and subroutine calling. For more information,
see Chapter 8, “BC: A Calculator”.

4-31

Chapter 5
Vi: A Text Editor

5.1 Introduction 5-1

5.2 Demonstration 5-1
5.2.1 Entering the Editor 5-2
5.2.2 Inserting Text 5-2
5.2.3 RepeatingaCommand 5-3
5.2.4 UndoingaCommand 5-4
5.2.5 Movingthe Cursor 55
5.2.6 Deleting 5-6
5.2.7 Searchingfor aPattern 59
5.2.8 Searching and Replacing 5-11
5.2.9 LeavingVi 5-13
5.2.10 Adding Text From AnotherFile 5-14
5.2.11 Leaving Vi Temporarily 5-14
5.2.12 Changing Your Display 5-15
5.2.13 Canceling an Editing Session 5-16

5.3 Editing Tasks 5-16
5.3.1 How toEnter the Editor 5-16
5.3.2 Movingthe Cursor 5-17
5.3.3 Moving Around in aFile: Scrolling 5-20
5.3.4 Inserting TextBefore the Cursor:iandI 5-20
5.3.5 Appending After the Cursor:aand A 5-21
5.3.6 Correcting Typing Mistakes 5-21
5.3.7 OpeningaNewLine 5-22
5.3.8 Repeating the Last Insertion 5-22
5.3.9 Inserting Text From Other Files 5-22
5.3.10 Inserting Control Charactersinto Text 5-26
5.3.11 Joining and Breaking Lines 5-26
5.3.12 Deleting a Character:xand X 5-27
5.3.13 Deleting aWord: dw 5-27
5.3.14 Deleting aLine:Danddd 5-27
5.3.15 Deleting an Entire Insertion 5-28
5.3.16 Deleting and Replacing Text 5-28

5.3.17 Moving Text §5-31

5.3.18 Searching: /and? 5-35

5.3.19 Searching and Replacing 5-36
5.3.20 Pattern Matching 5-38

5.3.21 Undoing aCommand:u 5-40
5.3.22 Repeatinga Command: . 5-42
5.3.23 Leaving the Editor 5-42 '
5.3.24 Editing a Seriesof Files 5-43

5.3.25 Editing a New File Without Leaving the Editor -

5-45

5.3.26 Leaving the Editor Temporarily: Shell Escapes -

5-46

5.3.27 Performing a Series of Line-Oriented Commands:
Q 547

5.3.28 Finding Out What File You’reln 5-47

5.3.29 Finding Out What Line You'reOn 5-48

5.4 Solving Common Problems 5-48

5.5 Setting Up Your Environment 5-49

5.5.1 Settingthe Terminal Type 5-49

5.5.2 Setting Options: The set Command 5-50

5.5.3 Displaying Tabs and End-of-Line:list 5-51

5.5.4 Ignoring Case in Search Commands: ignorecase
5-51 :

5.5.5 Displaying Line Numbers: number 5-52

5.5.6 Printingthe Number of Lines Changed: report -
5-52

5.5.7 Changing the Terminal Type:term 5-52

5.5.8 Shortening Error Messages: terse 5-52

5.5.9 Turning Off Warnings: warn 5-53

5.5.10 Permitting Special Characters in Searches:
nomagic - 553

5.5.11 Limiting Searches: wrapscan 5-53

5.5.12 Turning on Messages: mesg 5-53

5.5.13 Customizing Your Environment: The .exrcFile
5-54

5.6 Summary of Commands 5-55

——

Vi: A Text Editor

6.1 Introduction

Any ASCII text file, such as a program or document, may be created and
modified using a text editor. There are two text editors available on the XENIX
system, ed and vi. Ed isdiscussed in Appendix A of this manual.

Vi (which stands for “‘visual”) combines line-oriented and screen-oriented
features into a powerful set of text editing operations that will satisfy any text
editing need.

The first part of this chapter is a demonstration that gives you some hands-on
experience with vi. It introduces the basic concepts you must be familiar with
before you can really learn to use vi, and shows you how to perform simple
editing functions. The second part is a reference that shows you how to perform
specific editing tasks. The third part describes how to set up your vi
environment and how to set optional features. The fourth part is asummary of
commands.

Because vi is such a powerful editor, it has many more commands than you can
learn at one sitting. If you have not used 2 text editor before, the best approach
is to become thoroughly comfortable with the concepts and operations
presented in the demonstration section, then refer to the second part for
specific tasks you need to perform. All the steps needed to perform a given task
are explained in each section, so some information is repeated several times.
When you are familiar with the basic vi commands you can easily learn how to
use the more advanced features.

If you have used a text editor before, you may want to turn directly to the task-
oriented part of this chapter. Begin by learning the features you will use most
often. If you are an experienced user of vi you may prefer to use Vi(C) in the
XENIX Reference Manualinstead of this chapter.

This chapter covers the basic text editing features of vi. For more advanced
topics, and features related to editing programs, refer to Vi(C) in the XENIX
Reference Manual.

5.2 Demonstration

The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before you can learn
more advanced features. You will learn how to enter and exit the editor, insert
and delete text, search for patterns and replace them, and how to insert text
from other files. This demonstration should take one hour. Remember that the
best way to learn viisto actually use it, so don’t be afraid to experiment.

Before you start the demonstration, make sure that your terminal has been

properly set up. See section 5.5.1, “Setting the Terminal Type” , for more
information about setting up your terminal for use with vi.

5-1

XENIX User's Guide

5.2.1 Entering the Editor
Toenter theeditor and create afile named temp, type -
vi temp

Your screen will look like this:

"temp” [New file]

Note that we show a twelve-line screen to save space. In reality, vi uses
whatever sizescreen you have,

You are initially editing a copy of the file, The file itself is not altered until you
save it. Saving a file is explained later in the demonstration. The top line of
your display is the only line in the file and is marked by the cursor, shown above
as an underline character. In this chapter, when the cursor is on a character
that character will be enclosed in square brackets({]).

The line containing the cursor is called the

current line.

The lines containing tildes are not part of the file: they indicate lines on the
screen only, not reallines in the file.

5.2.2 Inserting Text

To begin, create some text in the file temp by using the i (insert) command. To
do this, press:

i

5-2

Vi: A Text Editor

Next, type the following five lines to give yourself some text to experiment with.
PressRETURN at the end of each line. If you make a mistake, use the BKSP key
toerase theerror and type the word again.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

PressESCAPE when you are finished.

Like most vi commands, the i command is not shown (or “echoed”) on your
screen. The command itself switches you from command mode to insert mode.

When you are in snsert mode every
character you type is displayed on
the screen. In command mode the
characters you type are not placed in
the file as text; they are interpreted
as commands to be executed on the
file. If you are not certain which
mode you are in, press ESC until you
hear the bell. When you hear the bell
you are in command mode.

Once in insert mode, the characters you type are inserted into the file; they are
not interpreted as vi commands. To exit insert mode and reenter command
mode you will always press ESC. This switching between modesoccurs often in
vi, and it is important to get used to it now.

5.2.3 Repeating a Command

Next comes a command that you’ll use frequently in vi: the repeat command.
The repeat command repeats the most recent insert or delete command. Since
we have just executed an insert command, the repeat command repeats the
insertion, duplicating the inserted text. The repeat command is executed by
typing a period {.) or “dot” . So, to add five more lines of text, type “.”. The

5-3

XENIX User’s Guide

repeat command. is repeated relative to the location of the cursor and inserts
text below the current line. (Remember, the current line is always the line
containing the cursor.) After you type dot (.), your screen will look like this:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

5.2.4 Undoing a Command

Another command which is very useful {and which you’ll need often in the
beginning) is the undo command, u. Press

u

and notice that the five lines you just finished inserting are deleted or
‘“undone”.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now type
u
again, and the five lines are reinserted! This undo feature can be very useful in

recovering from inadvertent deletions or insertions.

5-4

Vi: A Text Editor

5.2.5 Moving the Cursor

Now let’slearn how to move the cursor around on the screen. In addition to the
arrow keys, the following letter keys also control the cursor:

h Left

1 Right
k Up

j Down

The letter keys are chosen because of their relative positions on the keyboard.
Remember that the cursor movement keys only work in command mode.

Try moving the cursor using these keys. (First make sure you are in command
mode by pressing the ESC key.) Then, type the H command to place the cursor
in the upper left corner of the screen. Then type the L command to move to the
lowest line on the screen. (Note that case issignificant in our example: L moves
to the lowest line on the screen; while 1 moves the cursor forward one
character.} Next, try moving the cursor to the last line in the file with the goto
command, G. If you type “2G” , the cursor moves to the beginning of the
second line in the file; if you have a 10,000 line file, and type “8888G”, the
cursor goes to the beginning of line 8888. (If you have a 600 line file and type
“800G”’ the cursor doesn’t move.)

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement commandsyou might
want to try out are:

W Moves forward a word
b Backs up a word
0 Moves to the beginning of a line
$ Movesto theend of aline

You can move through many lines quickly with the scrolling commands:
CNTRL-U Scrollsup 1/2screen

CNTRL-D Scrollsdown 1/2screen

CNTRL-F Serolls forward one screenful

CNTRL-B Scrollsbackward one screenful

5-5

XENIX User's Guide

5.2.86 Deleting

Now that we know how to insert and create text, and how to move around
within the file, we're ready to delete text. Many delete commands can be
combined with cursor movement commands, as explained below. The most
common delete commands are:

dd Deletes the current line (the line the cursor is on), regardlessof the
location of the cursor in the line.

dw Deletes the word above the cursor. If the cursor is in the middle of
the word, deletes from the cursor to the end of the word.

x Deletesthe character above the cursor.

d$ Deletesfrom the cursor to'the end of the line.
D Deletes from the cursor to the end of the line.
do Deletes fro.m the cursor to the start of the line.

Repeats the last change. (Use this only if your last command wasa
deletion.)

To learn how all these commands work, we'll delete various parts of the
demonstration file. To begin, press ESC to make sure you are in command
mode, then move to the first line of the file by typing

1G

At first, your file should look like this:

[Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete the first line, type

56

—~

Vi: A Text Editeyr

dd

Your file should now look like this:

[T]ext contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the word the cursor issitting on by typing
dw

After deleting, your file should look like this:

[¢]ontains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines,
Lines contain characters.
Characters form words.
Words form text.

5-7

XENIX User’s Guide

You can quickly delete the character above the cursor by pressing:
X

Thisleaves:

[o]ntains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now type a ‘“w' command to move your cursor to the beginning of the word
“lines” onthe first line. Then, to delete to theend of the line, type

d$
Your file looks like this:

ontains_

Text contains lines.

Lines contain characters.

Characters form words.

Words form text. : “
Files contain text.

Text contains lines.

Lines contain characters.

Characters form words.

Words form text.

~

To delete all the characters on the line before the cursor type:
do

Thisleaves a single space on the line:

5-8

PN

Vi: A Text Editor

Lines contain characters.
Files contain text.

Text contains lines.
Characters form words.
Words form text.

Lines contain characters.
Characters form words.
Words form text.

For review, let’srestore the first two lines of the file.

l(i’)

Press ‘i’ to enter insert mode, then type

Files contain text.
Text contains lines.

Press ESC to go back to command mode.

5.2.7 Searching for a Pattern
You can search forward for a pattern of characters by typing a slash (/)

followed by the pattern you are searching for, terminated by a RETURN. For
example, make sure you are in command mode (press ESC), then press

H
to move the cursor to the top of the screen. Now, type
[char

Don’t pressRETURN yet. Your screen should look like this:

59

XENIX User’s Guide

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

[char_

Press RETURN. The cursor moves to the beginning of the word “characters’’
on line three. To search for the next occurrence of the pattern ‘““char”, press
“n” (as in “next’) . This will take you to the beginning of the word
“characters” on the eighth line. If you keep pressing “n’’ vi searches past the
end of the file, wraps around to the beginning, and again finds the ‘*‘char” on line
three.

Note that the slash character and the pattern that you are searching for appear
at the bottom of the screen. This bottom line isthe vistatus line.

The status line appears at the
bottom of the screen. It is used to
display information, including
patterns you are searching for, line-
oriented commands (explained later
in this . demonstration), and error
messages.

5-10

o

Vi: A Text Editor

For example, to get status information about the file, press CNTRL-G. Your
screen should look like this:

Files contain text.

Text contains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.

Lines contain [c}haracters.
Characters form words.
Words form text.

"temp” [Modified] line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are editing,
whether it has been modified, the current line number, the number of lines in
the file, and your location in the file as a percentage of the number of linesin the
file. The statusline disappears asyou continue working.

5.2.8 "Searching and Replacing

Let’s say you want to change all occurrences of ““text” in the demonstration file
to ‘“‘documents”. Rather than search for “text”, then delete it and insert
“documents”, you can do it all in one command. The commands you have
learned so far have all been screen-oriented. Commandsthat can perform more
than one action (searching and replacing) are line-oriente dcommands.

5-11

XENIX User’s Guide

Screen-oriented commands are
executed at the location of the
cursor.. You do not need to tell the
computer where to perform the
operation; it takes place relative to
the cursor. Line-oriented commands
require you to specify an exact
location (called an ‘“‘address”) where
the operation is to take place.
Screen-oriented commands: are easy
to type in, and provide immediate
feedback; the change is displayed on
the screen. Line-oriented commands
are more complicated to type in, but
they can be executed independent of
the cursor, and in more than one
place in a file at a time.

All line-oriented commands are preceded by a colon which acts as a prompt on
the status line. Line-oriented commands themselves are entered on this line
and terminated with aRETURN.

In this chapter, all .instructions for
line-oriented commands will include
the colon as part of the command.

To change “text” to ‘“documents, press ESC to make sure you are in command
mode, then type:

:1,$s/text/documents/g

This command means “From the first line (1) to the end of the file ($), find tezt
and replace it with documents (s/text/documents/) everywhere it occurs on
eachline (g)".

PressRETURN. Your screen should look like this:

512

Vi: A Text Editor

Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
[W]ords form documents.

Note that “Text” in lines two and eight was not changed. Case is significant in
searches.

Just for practice, use the undo command to change “documents’ back to
“text’’. Press:

u

Your screen now looks like this:

[F]iles contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

5.2.9 Leaving Vi

All of the editing you have been doing has aflected a copy of the file, and notthe
file named temp that you specified when you invoked vi. To save the changes
you have made, exit the editor and return to the XENIX shell, type

X

Remember to press RETURN. The name of the file, and the number of lines and
charactersit contains are displayed on the statusline:

513

XENIX User's Guide

"temp” [New file] 10 lines, 214 characters

Then the XENIX prompt appears.

5.2.10 Adding Text From Another File

In this section we’ll create a new file, and insert text into it from another file.
First, create anew file named practice by typing:

vi practice
This file is empty. Let's copy the text from temp and put itin practice with the
line-oriented read command. Press ESC to make sure you are in command
mode, then type

r temp

Your file should look like this:

| [Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

The text from temp has been copied and put in the current file practice. There
is an empty line at the top of the file. Move the cursor to the empty line and
delete it with the dd command.

5.2.11 Leaving Vi Temporarily

Vi allows you to execute commands outside of the file you are editing, such as
date. Tofind out the date and time, type

:!date
Press RETURN. This displays the date, then prompts youto pressRETURN to

.reenter command mode. Go ahead and try it. Your screen should look similar
to this:

5-14

Vi: A Text Editor

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

ldate
Mon Jan 9 16:33:37 PST 1984
[Hit return to continue]_

5.2.12 Changing Your Display

Besides the set of editing commands described above, there are a number of
options that can be set either when you invoke vi, or later when editing. These
options allow you to control editing parameters such as line number display,
and whether or not case issignificant in searches. In this section we'll learn how
to turnon line numbering, and how to look at the current option settings.

To turn on automatic line numbering, ty pe
:set number

Press RETURN. Your screen is redrawn, and line numbers appear to the left of
the text. Your screen lookslike this:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

OO 00T U 0N

T et

¥

You can get a complete list of the available options by typing

5-15

XENIX User's Guide

:set all

and pressing RETURN. Setting these optionsis described in section 5.5 *‘Setting
Up Your Environment”, but it is important that you be aware of their
existence. Depending on what you are working on, and your own preferences,
you will want to alter the default settingsfor many of these options.

5.2.13 Canceling an Editing Session
Finally, toexit vi without saving the file practice, type:
:q!

and press RETURN. This cancels all the changes you have made to practice
and, since it is a new file, deletes it. The prompt appears. If practice had
already existed before this editing session, the changes you made would be
disregarded, but the file would still exist.

This completes the demonstration. You have learned how to get in and out of
vi, insert and delete text, move the cursor around, make searches and
replacements, how to execute line-oriented commands, copy text from other
files, and cancel an editing session. There are many more commands to learn,
but the fundamentals of using vi have been covered. The following sections will
give you more detailed information about these commands and about vi’sother
commands and features.

'5.3 Editing Tasks

The following sections explain how to perform common editing tasks. By
following the instructions in each section you will be able to complete each task
described. Features that are needed in several tasks are described each time
they are used, so some information isrepeated.

5.3.1 How to Enter the Editor
There are several ways to begin editing, depending on what you are planning to

do. This section describes how to start, or “‘invoke’ the editor with one

filename. To invoke vi on a series of files, see section 5.3.24, “Editing a Series of
Files”.

5.3.1.1 With a Filename

The most common way to enter vi is to type “vi’” and the name of the file you
wish to edit:

5-16

.

Vi: A Text Editor

vi filename

If filename does not already exist, 2 new, empty file is created.

5.3.1.2 At a Particular Line

You can also enter the editor at a particular place in a file. For example, if you
wish to start editing a file at line 100, type:

vi +100 filename

The cursor is placed at line 100 of filename.

5.3.1.3 At a Particular Word
If you wish to begin editing at the first occurrence of a particular word, type
vi +/word filename

_The cursor is placed at the first occurrence of word. For example, to begin
editing the file temp at the the first occurrence of **contain’, type

vi +/contain temp

5.3.2 Moving the Cursor

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in command mode.

5.3.2.1 Moving the Cursor By Characters: h,j,k,],SPACE,BKSP

The SPACE bar and the | key move the cursor forward a specified number of
characters. The BKSP key and the h key move it backward a specified number
of characters. If no number is specified, the cursor moves one character. For
example, to move backward four characters, type

4h

You can also move the cursor to a designated character on the current line. F
moves the cursor back to the specified character, f movesit forward. The cursor
rests on the specified character. For example, to move the cursor backward to
the nearest pon the current line, type:

Fp

5-17

XENIX User’s Guide

To move the cursor forward to the nearest p, type:

fp

The T and t keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the cursor
back to the space next to the nearest p in the current line, type

Tp
If the p were in the word telephone, the cursor would siton the A.

+ The cursor always remains on the same line when you use these commands. If
you specify a number greater than the number of characters on the line, the
cursor does not move beyond the beginning or end of that line.

5.3.2.2 Moving the Cursor by Words: w, W, b, B, e, E

The w key moves the cursor forward to the beginning of the specified number of
words. Punctuation and nonalphabetic characters (such as
1Q#8% &+()_+{}[]"|\' < >/) are considered words, soif a word is followed by
a comma the cursor will count the comma in the specified number. For
example, if the cursor restson the first letter of the sentence

No, I didn’t know he had returned.
and you press

6w
the cursor stopson the kin know.

W works the same way as w, but includes punctuation and nonalphabetic
charactersas part of the word. Using the above example, if you press

6W

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified number of
words. The cursor is placed on the last letter of the word. The e command
counts punctuation and nonalphabetic characters as separate words; E does
not.

B and b move the cursor back to the beginning of a specified number of words.
The cursor is placed on the first letter of the word. The b command counts
punctuation and nonalphabetic characters as separate words; B does not. Using
the above example, if the cursor ison the rin returned, type

5-18

Vi: A Text Editor

4b
and the cursor movesto the tin didn’t. Type
4B
. and the cursor movesto the first din didn’t.
The w,W,b and B commands will move the cursor to the next line if that is
where the designated word is, unlessthe currentline endsin aspace.
5.3.2.3 Moving the Cursor by Lines
Forward: j, CNTRL-N, +,RETURN, LINEFEED, $§
The RETURN, LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, tomove
the cursor forward six lines, type
6+
The j and CNTRL-N keys move the cursor forward a specified number of lines.
The cursor remains in the same place on the line, unless there isno character in

that place, in which case it moves to the last character on the line. For examp]e,
in the following two lines if the cursor is resting on the e in charactc re, pressing

(1332

j” movesit to the period at the end of the second line:

Lines contain characters.
Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of lines. For

example, to move the cursor to the last character of the line four lines down
from the current line, type:

43
Backward: k, CNTRL-P
CNTRL-P and k move the cursor backward a specified number of lines, keeping
it on the same place on the line. For example, to move the cursor backward four

linesfrom the current line, type

4k

5.3.2.4 Moving the Cursor on the Screen: H, M, L

The H, M and L keys move the cursor to the beginning of the top, middle and

5-19

‘XENIX User’s Guide
bottom linesof the screen, respectively.

5.3.3 Moving Around in a File: Scrolling

The following commands move the file so different parts can be displayed on the
screen. The cursor is placed on the first letter of the last line scrolled.

5.3.3.1 Scrolling Up‘ Part of the Screen: CNTRL-U

CNTRL-Uscrollsup one-half screen.

5.3.3.2 Scrolling Up the Full Screen: CNTRL-B

CNTRL-Bscrollsup afull screen.

5.3.3.3 Scrolling Down Part of the Screen: CNTRL-D

CNTRL-Dscrollsdown one-half screen.

5.3.3.4 Scrolling Down a Full Screen: CNTRL-F

CNTRL-F scrolls down a full screen.

5.3.3.5 Placing a Line at the Top of the Screen: z
Toscroll the current line to the top of the screen, press
z

then pressRETURN. To pla,ce aspecific line at the top of the screen, precede the
“2” with the line number, asin

33z
Press RETURN, and line 33 scrolls to the top of the screen. For information on
how to display line numbers, see section 5.5.5, “Displaying Line Numbers:
number”. ,
5.3.4 Inserting Text Before the Cursor:iand1
You can begin inserting text before the cursor anywhere on a line, or at the

begmmng of a line. In order to insert text into a file, you must be in “insert
mode”. To enter insert mode press

5-20

—

Vi: A Text Editor

i

The ““i”’ does not appear on the screen. Any text typed after the “i” becomes
part of the file you are editing. To leave insert mode and reenter command
mode, press ESC. For more explanation of modes in vi, see section 5.2.2,
“Inserting Text'".

5.3.4.1 Anywhere on a Line: i
To insert text before the cursor, use the i command. Press the i key to enter

insert mode (the i does not appear on your screen), then begin ty ping your text.
Toleave insert mode and reenter command mode, pressESC.

5.3.4.2 At the Beginning of the Line: 1
Using an uppercase I to enter insert mode also moves the cursor to the

beginning of the current line. It is used to start an insertion at the beginning of
the current line.

5.3.5 Appending After the Cursor: a and A

You can begin appending text after the cursor anywhere on a line, or at the end
of aline. PressESC to leave insert mode and reenter command mode.

5.3.5.1 Anywhere on a Line: a

To append text after the cursor, use the a command. Press the a key to enter

insert mode (the ““a” does not appear on your screen), then begin typing your
text. PressESC to leave insert mode and reenter command mode.

5.3.5.2 At the end of a Line: A

Using an uppercase A to enter insert mode also moves the cursor to the end of
the current line. It is useful for appending text at the end of the current line.

5.3.8 Correcting Typing Mistakes

If you make a mistake while you are typing, the simplest way to correct it is
with the BKSP key. Backspace across the line until you have backspaced over
the mistake, then retype the line. You can only do this, however, if the cursor is
on the same line as the error. See sections 5.3.12 through 5.3.15 for other ways
to correct ty ping mistakes.

5-21

XENIX User’s Guide

5.3.7 Opening a New Line

To open a new line above the cursor, press 0. To open a new line below the
cursor, press o. Both commands place you in insert mode, and you may begin
typing immediately. Press ESC to leave insert mode and reenter command
mode. '

You may also use the RETURN key to open new lines above and below the
cursor. To open a line above the cursor, move the cursor to the beginning of the
line, pressi to enter insert mode, then press RETURN. (For information on how
to move the cursor, see section 5.3.2, “Moving the Cursor”.) To open a line
below the cursor, move the cursor to the end of the current line, pressi to enter
insert mode, then press RETURN.

5.3.8 Repeating the Last Insertion

CNTRL-@ repeats the last insertion. Press “‘i’’ to enter insert mode, then press
CNTRL-@.

CNTRL-@ only repeats insertions of 128 characters or less. If more than 128
characters were inserted, CNTRL-@ does nothing.

For other methods of repeating an insertion, see section 5.3.8, “Repeating the
Last Insertion”, section 5.3.9, “Inserting Text From Other Files”, and section
5.3.22, “Repeating a Command’’.

5.3.9 Inserting Text From Other Files

Toinsert the contents of another file into the file you are currently editing, use
the read command. Move the cursor to the line immediately above the place
you want the new material to appear, thentype

:r filename

where filename is the file containing the material to be inserted, and press
RETURN. The text of filename appears on the line below the cursor, and the
cursor moves to the first character of the new text. This text is a copy; the
original filename still exists.

Inserting selected lines from another file is more complicated. The selected lines

are copied from the original file into a temporary holding place called a
“buffer”; then inserted into the new file.

1. Toselect the lines to be copied, save your original file with the write
command (:w}), but do not exit vi.

5-22

P

Vi: A Text Editor

Type
e filename

where filename is the file that contains the text you want to copy, and
pressRETURN.

Move the cursor to the first line you wish to select.
Type
mk

This “marks” the first line of text to be copied into the new file with
the letter “k”’.

Move the cursor to the last line of the selected text. Type
n aka

The lines from your first ‘“mark” to the cursor are placed, or
“yanked” into buffer a. They will remain in buffer s untilyoureplace
them with other lines, or until you exit the editor.

Type
e

to return to your previous file. (For more information about this
command, see section $.3.25, “Editing a New File Without Leaving
the Editor”’.) Move the cursor to the line above the place you wantthe
new text to appear, then type

n

ap

This “puts’’ a copy of the yanked lines into the file, and the cursor is
placed on the first letter of this new text. The buffer still contains the
original yanked lines.

You can have 26 buffers named g, b, ¢, up to and including z. To name and select
different buffers, replace the ain the above examples with whatever letter you

You may also delete text into a buffer, then insert it in another place. For
information on this type of deletion and insertion, see section 5.3.17, “Moving

5-23

XENIX User's Guide

5.3.9.1 Copying Lines From Elsewhere in the File

To copy lines from one place in a file to another place in the same file, use the co
(copy) command.

Coisaline-oriented command, and to use it you must know the line numbers of
the text to be copied and its destination. To find out the number of the current
line type

:nu

and press RETURN. The line number and the text of that line are displayed on
the status line. To find out the destination line number, move the cursor to the
line above where you want the copied text to appear and repeat the :nu
command. You can also make line numbers appear throughout the file with the
linenumber option. For information on how to set thisoption, see section 5.5.5,
“Displaying Line Numbers: number”. The following example uses the
linenumberoption.

1 [FJiles contain text.

2 Text contains lines.

3 Lines contain characters.
4 Characters form words.
5 Words form text.

Using the above example, to copy lines3 and 4 and put them between lines 1 and
2,type

3,4col

The result is:

5-24

Vi: A Text Editor

1 Files contain text.

2 Lines contain characters.
3 [C]haracters form words.
4 Text contains lines.

5 Lines contain characters.
6 Characters form words.
7 Words form text.

If you have text that is to be inserted several times in different places, you can
save it in a temporary storage area, called a ‘‘buffer”, and insert it whenever it
isneeded. For example, to repeat the first line of the following text after the last

line:

[Fliles contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the F in Files. Type the following line, which
will not be echoed on your screen:

ayy

This “‘yanks” the first line into buffer a. Move the cursor over the W
in Words.

Type the following line:

ap

This “puts” a copy of the yanked line into the file, and the cursor is
placed on the first letter of this new text. The buffer still contains the

525

XENIX User's Guide

originalyanked line.

Your screen looks like this:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

[Fjiles contain text.

If you wish to “‘yank’’ several consecutive lines, indicate the number of lines you
wish to yank after the name of the buffer. For example, to place three lines from
the above textin the ““a” bufler, ty pe

"adyy

For another method of placing text in a buffer, and more information about
naming buffers, see section 5.3.9, “Inserting Text From Other Files”.
5.3.10 Inserting Control Characters into Text
Many control characters have special meaning in vi, even when typed in insert
mode. To remove their special significance, press CNTRL-V béfore typing the
control character. Note that CNTRL-J, CNTRL-Q, and CNTRL-S cannot be
inserted as text. CNTRL-J is a newline character. CNTRL-Q and CNTRL-S are
meaningful to the operating system, and are trapped by it before they are
interpreted by vi..
5.3.11 Joining and Breaking Lines
To join twolines press

J

while the cursor is on the first of the two lines you wish to join.

To break one line into two lines, position the cursor on the space preceding the
first letter of what will be the second line, press

5-26

Vi: A Text Editor

r

thenpressRETURN.

5.3.12 Deleting a Character: x and X

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes the
character immediately before the cursor. If nonumber isgiven, one character is
deleted. For example, to delete three characters following the cursor (including
the character the above the cursor), type:

3x
To delete three characters preceding the cursor, type:

X

5.3.13 Deleting a Word: dw

The dw command deletes a specified number of words. If no number is given,
one word is deleted. A word is interpreted as numbers and lettersseparated by .
whitespace. When a word is deleted, the space after it is also deleted. For
example, to delete three words, type:

3dw

5.3.14 Deleting a Line: D and dd

The D command deletes all text following the cursor on that line, including the
character the cursor isresting on. The dd command deletes a specified number
of lines and closes up the space. If no number is given, only the current line is
deleted. For example, to delete three lines, type:

3dd
Another way to delete several lines is to use a line-oriented command. To use
this command it helps to know the line numbers of the text you wish to delete.
For information on how to display line numbers, see section 5.5.5, “Displaying
Line Numbers: number”’.
For example, to delete lines 200 through 250, type

:200,250d

~ PressRETURN. When the command finishes, the message

527

XENIX User's Guide

50 lines
appearson the vistatusline, indicating how many lines were deleted.
It is possible to remove lines without displaying line numbers using shorthand
“addresses’’. For example, to remove alllinesfrom the current line (the line the
cursor restson) to the end of the file, type

:.,$d

The dot {.) represents the current line, and the dollar sign stands for the last line
in the file. To delete the current line and 3 lines following it, ty pe

ty+3d
To delete the current line and 3 lines preceding it, type

t-3d
For more information on using addresses in hne-onented commands, see v¢(C)
in the XENIX Reference Manual.
5.3.15 Deleting an Entire Insertion
If you wish to delete all of the text you just typed, press CNTRL-U while you are
in insert mode. The cursor returns to the beginning of the insertion. The text of
the original insertion is still displayed, and any text you type replaces it. When
you press ESC, any text remaining from the original insertion disappears.
5.3.18 Deleting and Replacing Text
Several vi commands combine remoﬁng characters and entering insert mode.
The following sections explain how to use these commands. :
5.3.16.1 Overstriking: r and R
The r command replaces the character under the cursor with the next
character typed. To replace the character under the cursor with a “b”, for
‘example, type:

tb
If a number is given before r, that number of characters is replaced with the

next character typed. For example, to replace the character above the cursor,
plusthe next three characters, with the letter “‘b”, type

5-28

Vi: A Text Editor

4rb
Note that you now have four “b”’sin arow.

The R command replaces as many characters as you type, up to the end of the
line. To end the replacement, press ESCAPE. For example, to replace the
second line in the following text with ‘‘Spelling isimportant.”’:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the Tin Tezt. PressR, then type
Spelling is important.

Press ESC to end the replacement. If you make a mistake, use the BKSP key to
correct it. Your screen should now look like this:

Files contain text.
Spelling is important].]
Lines contain characters.
Characters form words.
Words form text.

5.3.16.2 Substituting: s and S

The s command replaces a specified number of characters, beginning with the
character under the cursor, with text you type in. For example, to substitute
zyzfor the cursor and two charactersfollowing it, type:

5-29

XENIX User’s Guide

3sxyz
The S command deletes a specified number of lines and replaces them with text
you type in. You may type in as many new lines of text as you wish; S affects
only how many lines are deleted. If no number is given, one line is deleted. For
example, to delete four lines, including the current line, type:

4S
This differs from the R command. The S command deletes the entire current
line; the R command deletes text from the cursor onward.
5.3.16.3 Replacing a Word: cw.
The ¢w command replaces a word with text you type in. For example, to
replace the word bear with the word foz, move the cursor over the b in bear.
Press

cw

_A dollar sign appears after the r in bear, marking the end of the text that is
beingreplaced. Type ‘

fox

and pressRETURN. Therest of beardisappearsand only foz remains.

5.3.16.4 Replacing the Rest of a Line: C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text of the sentence

Who's afraid of the big bad wolf?
from bigto the end, move the cursor over the bin bigand press
C

A dollar sign ($) replaces the question mark (?) at the end of the line. Type the
following:

little lamb?

PressESC. The remaining text from the original sentence disappears.

5-30

Vi: A Text Editor

5.3.16.5 Replacing a Whole Line: cc

The cc command deletes a specified number of lines, regardless of the location
of the cursor, and replaces them with text you type in. If no number isgiven, the
current line is deleted.

5.3.16.8 Replacing a Particular Word on a Line

If a word occurs several times on one line, it is often convenient to use a line-
oriented command to replace it. For example, to replace the word removing
with deletingin the following sentence:

.

In vi, removing a line is as easy as removing a letter.
Make sure the cursor is at the beginning of that line, and type
:sfremoving/deleting/g
Press RETURN. This line-oriented command means “Substitute (s) for the
word removing the word deleting, everywhere it occurs on the currentline (g)”.
If you don’t include a g at the end, only the first occurrence of removing is
changed.
For more information on using line-oriented commands to replace text, see
section 5.3.19, ““Searching and Replacing”.
5.3.17 Moving Text
To move a block of text from one place in a file to another, you can use the line-
oriented m command. You must know the line numbers of your file to use this
command. The linenumber option displays line numbers. To set this option,
press ESC to make sure you are in command mode, then type:
set linenumber
Line numbers will appear to the left of your text. (For more information on
setting the linenumber option, see section 5.5.5, ““Displaying Line Numbers:

number”.)

The following example uses the linenumber option. For other ways to display
line numbers, see section 5.3.29, “Finding Out What Line You’re On”.

§-31

XENIX User's Guide

1 [FJiles contain text.

2 Text contains lines.

3 Lines contain characters,
4 Characters form words.

5 Words form text.

Toinsertlines2and 3 betweenlines 4and 5, ﬁype
:2,3m4

Your screen should look like this:

1 Files contain text.

2 Characters form words.
3 Text contains lines.

4 Lines.contain characters.
5 [W]ords form text.

To place line 5 after line 2, type

:5m2

5-32

Vi: A Text Editor

After moving, your screen should look like this:

1 Files contain text.

2 Characters form words.
3 [W]ords form text.

4 Text contzins lines.

5 Lines contain characters.

To make line 4 the first line in the file, type
:4m0

Your screen should look like this:

1 [T]ext contains lines.

2 Files contain text.

8 Characters form words.
4 Words form text.

5 Lines contain characters.

You can also delete text into a temporary storage place, called a “buffer”’, and
insert it wherever you wish. When text is deleted it is placed in a ‘“delete
buffer”. There are nine **delete buffers”.

The first buffer always contains the most recent deletion. In other words, the
first deletion in a given editing session goes into buffer 1. The second deletion
also goes into buffer 1, and pushes the contents of the old buffer 1 into buffer 2.
The third deletion goes into buffer 1, pushing the contents of buffer 2 into buffer
3, and the contents of buffer 1 into buffer 2. When buffer 9 has been used, the
next deletion pushes the current text of buffer 9 off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until you
quit the editor, so it is possible to delete text from one file, change files without

5-33

XENIX User's Guide

leaving the editor, and place the deleted text in another file.

Delete buffers are particularly useful when you wish to remove text, store it,
and putitsomewhere else. Using the following text as an example

[Files contain text.

Text contains lines,
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by typing
dd

Delete the third line the same way. Now move the cursor to the last line in the
example and press

”lp

The line from the eeconddeletion appears:

Text contains lines,
Characters form words.
Words form text.

[L]ines contain characters.

Now type:

”Zp

5-34

Vi: A Text Editor

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.

Lines contain characters.
[FJiles contain text.

Inserting text from a delete buffer does not remove the text from the buffer.
Since the text remains in a buffer until it is either pushed off the stack or until
you quit the editor, you may use it asmany times as you wish.

It is also possible to place text in named buffers. For information on how to
create named buffers, see section 5.3.9, “‘Inserting Text From Other Files”.

5.3.18 Searching: / and ?
You can search forward and backward for patterns in vi. To search forward,
press the slash (/) key. The slash appearson the statusline. Type the characters
you wish to search for. PressRETURN. If the specified pattern exists, the cursor
will move to the first character of the pattern. For example, to search forward
in the file for the word account, type:

Jaccount

Press RETURN. The cursor is placed on the first character of the pattern. To
place the cursor at the beginning of the line above acc ount,for example, type

/account/-

To place the cursor at the beginning of the line two lines above the line that
contains account, type

Jaccount/-2
To place the cursor two lines below account, type
/account/+2

To search backward through a file, use ? instead of / to start the search. For

5-35

XENIX User’s Guide

example, to find all occurrencesof account above the cursor, type:
?account
To search for a pattern containing any of the special characters (. ¢\ [] $and

*), each special character must be preceded by a backslash. For example, tofind
the pattern U.S.A., type:

JU\S\.A\./
You can continue tosearch for a pattern by pressing
n

after each search. The pattern is unaffected by intervening vi commands, and
you can use n to search for the pattern until you type in a new pattern or quit
the editor.

Vi searches for exactly what you type. If the pattern you are searching for
contains an uppercase letter (for example, if it appears at the beginning of a
sentence), vi ignores it. To disregard case in a search command, you can set the
ignorecase option:
:set ignorecase

By default, searches “wrap around” the file. That is, if a search starts in the
middle of a file, when vi reaches the end of the file it will ““wrap around” to the
beginning, and continue until it returns to where the search began. Searches
will be completed faster if you specify forward or backward searches,
depending on where you think the pattern is.

If you do not want searches to wrap around the ﬁle, you can change the
‘“‘wrapscan’’ option setting. Type:

iset nowrapscan
and press RETURN to prevent searches from wrapping. For more information
about setting options, see section 5.5, “‘Setting Up Your Environment’'.
5.3.19 Searching and Replacing
The search and replace commands allow you to perform complex changesto a
file in 2 single command. Learning how to use these commandsis amust for the

serious user of vi.

The syntax of asearch and replace commandis:

g/patteml/s/[pqttcm?}/[optional

536

Vi: A Text Editor

Bracketsindicate optional partsof the command line. The g tells the computer
to execute the replacement on every line in the file. Otherwise the replacement
would occur only on the current line. The options are explained in the following
sections.

To explain these commands we will use the example file from the demonstration
run:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

5.3.19.1 Replacing a Word

To replace the word contasn with the word are throughout the file, type the
following command:

:g/contain [sffare [g
This command says“On each line of the file (g), ind contain and substitute for
that word (s//) the word are, everywhere it occurson that line (the second g)”.
Note that a space is included in the search pattern for contain; without the
space contains would also be replaced.

After the command executes your screen should look like this:

5-37

XENIX User'’s Guide

[Fliles are text.

Text contains lines.
Lines are characters.
Characters form words.
| Words form text.

5.3.19.2 Printing all Replacements

 Toreplace contain with are throughout the file, then print every line changed,
use the p option:

:g/contain [s/fare [gp
Press RETURN. After the command executes, each line in which contain was
replaced by are is printed on the lower part of the screen. To remove these lines,
redraw the screen by pressing CNTRL-L
5.3.19.3 Choosing a Replacement
Sometimes you may not want to replace every instance of a given pattern. The
c option displays every occurrence of pattern and waits for you to confirm that
you want to make the substitution. If you press y the substitution takes place; if
you pressRETURN the nextinstance of pattern s displayed.
Torun this command on the example file, type

:g/contain/s/[are/gc

PressRETURN. The first instance of contasn appearson the status line:

Files contai

- P airy

text.

Press y, then RETURN. The next occurrence of contain appears.
© 5.3.20 Pattern Matching

Search commmands often require, in addition to the characters you want to
find, a context in which you want to find them. For example, you may want to

5-38

Vi: A Text Editor

locate every occurrence of a word at the beginning of a line. Vi providesseveral
special characters that specify particular contexts.
5.3.20.1 Matching the Beginning of a Line
When a caret(”) is placed at the beginning of 2 pattern, only patterns found at

the beginning of a line are matched. For example, the following search pattern
only finds tezt when it occurs as the first word on aline:

] text/

To search for a caret that appears as text you must precede it with a backslash
(\)-

5.3.20.2 Matching the End of a Line

When a dollar sign ($) is placed at the end of a pattern, only patterns found at

the end of a line are matched. For example, the following search pattern only
finds tezt when it occurs asthe last word on a line:

/tgxtsl

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

5.3.20.3 Matching Any Single Character
When used in a search pattern, the period (.) matches any single character

except the newline character. For example, to find all words that end with ed,
use the following pattern:

[ed /[

Note the space between the dand the backslash.

Tosearch for a period in the text, you must precede it with a backslash (\).

5.3.20.4 Matching a Range of Characters

A set of characters enclosed in square brackets matches any single character in
the range designated. For example, the search pattern

/la-3)/

.finds any lowercase letter. The search pattern

5-39

XENIX User's Guide

/laAlpple/
finds all occurrencesof apple and Apple.
To search for a bracket that appears as text, you must precede it with a
backslash {\).
5.3.20.5 Matching Exceptions

A caret (") at the beginning of string matches.every character ezcept those
specified in string. For example the search pattern

["a-s]

finds anything but a lowercase letter or a newline.

5.3.20.6 Matching the Special Characters

To place a caret, hyphen or square bracket in a search pattern, precede it witha
backslash. To search for a caret, for example, type:

AV

If you need to search for many patterns that contain special characters, you can
reset the magsc option. To do this, type

:nomagic
This removes the special meaning from the characters ., \, $, [and . You can
include them in search and replace commands without a preceding backslash.
Note that the special meaning cannot be removed from the special characters
star () and caret ("); these must alwaysbe preceded by a backslash in searches.
To restore magsc, type

:set magic

*For more information about setting options, see section 5.5, “Setting Up Your

Environment”.
5.3.21 Undoing a Command: u
Any editing command can be reversed with the ‘‘undo” command. Undo
works on both screen-oriented and line-oriented commands. For example, if

you have deleted a line and then decide you wish to keep it, press u and the line
will reappear. Use the following line asan example:

5-40

Vi: A Text Editor

|T]ext contains lines.

Place the cursor over the ¢ in containe, then delete the word with the dw
command. Your screen should look like this:

Text [l]ines.

Press uto undo the dw command. Containereappears:

Text [c|ontains lines.

If you press u again, containsis deleted again:

5-41

XENIX User's Guide"

Text {l]ines.

It is important to remember that u only undoes the last command. For
example, if you make a global search and replace, then delete a few characters
with the x command, pressing u will undo the deletions but not the global
search and replace.

5.3.22 Repeaﬁng a Command: .

Any screen-oriented vi command can be repeated with the repeat ()
command. For example, if you have deleted two words by typing:

2dw

you may repeat this command as many times asyou wish by pressing the period
key (.). Cursor movement does not affect the repeat command, so you may
repeat acommandas many times and in as many placesin a file asyou wish.

The repeat command only repeats the last vi command. Careful planning can
save time and effort. For example, if you want to replace a word that occurs
several times in a file (and for some reason you do-not wish to use a global
command), use the cw command instead of deleting the word with the dw
command, then inserting new text with the i command. By using the cw
command you can repeat the replacement with the dot (.) command. If you
delete the word, then insert new text, dot only repeats the replacement.

5.3.23 Leaving the Editor

There are several ways to exit the editor and save any changes you may have
made to the file. One way isto type:

X
and press RETURN. This command replaces the old copy of the file with the

new one you have just edited, quits the editor, and returns you'to the XENIX
shell. Similarly,ifyou type

5-42

Vi: A Text Editor

Y44
. the same thing happens, except the old copy file is written out onlyif you have
made any changes. Note that the ZZ command is not preceded by a colon, and
isnotechoed on the screen.
To leave the editor without saving any changes you have made to the file, type
:q!

The exclamation point tells vi to quit unconditionally. If you leave out the
exclamation point:

q
viwill not let you quit. You will see the error message:

No write since last change (:quit! overrides)
This message tells you to use ““:q!”’ if you really want to leave the editor without
saving your file.
5.3.23.1 Saving a File Without Leaving the Editor
There are many occasions when you must save a file without leaving the editor,
such as when starting a new shell, or moving to another file. Before you can
perform these tasks you must first save the current file with the write
command:

w
You do not need to type the name of the file; vi remembers the name you used
when you invoked the editor. If you invoked vi without a filename, you may
name the file by typing

:w filename

where filename isthe name of the new file.

5.3.24 Editing a Series of Files

Entering and leaving vi for each new file takes time, particularly on a heavily
used system, or when you are editing large files. If you have many files to editin
one session, you can invoke vi with more than one filename, and thus edit more
than one file without leaving the editor, asin:

vi filel file2 file3 file4 file5 file6

543

XENIX User’s Guide

But typing out many filenames is tedious, and you may make a mistake. If you
mistype a filename, you must either backspace over to mistake and retype the
line, or kill the whole line and retype it, Itismore convement to mvoke viusing
the speclal characters asabbreviations.
Toinvoke vion the above files without typing each name, typei
vi files
This invokes vi on all files that begin with the letters file. You can plan your
filenames to save time in later editing. For example, if you are writing a
document that consists of many files, it would be wise to give each file the same
filename extension, such as ‘.s”. Then you can invoke vi on the entire
document: »
vies
You can also invoke vi on a selected range of files:
vi [3-5]s.8
or
vi [a-h]s
Toinvoke vionall filesthat are five letterslong, and have any extension:

......

For more information on using special characters, see Chapter 3 of thismanual,
section 3.3.4, “‘Special Characters”.

When you-invoke vi with more than one filename, you will see the following
message when the first file is displayed on the screen:

.z files to edit

After you have finished editing a file, save it with the write command {: w), then
go to the next file with the next command :

m
The next file appears, ready to edit. Itis not neceséary tospecify a ﬁléname, the
files are invoked in alphabetical (or numerical, if the filenames begm with
numbers) order. : ,

If you forget what ﬁles youare editihg, type:

:args

5-44

Vi: A Text Editor

The list of files appears on the status line. The current file is enclosed in square
brackets.
Toedit a file out of order, such as file § after file2, type

:e file4
instead of using the next command. If you type:

m
after you finish editing file4, you will go back to files.
If you wish to start again from the beginning of the list, type:

rrew
To discard the changesyou made and start again at the beginning, type:

:rew!

5.3.25 Editing a New File Without Leaving the Editor

You can start editing another file anywhere on the XENIX system without
leaving vi. This saves time when you wish to edit several files in one session that
are in different directories, or even in the same directory. For example, if you
have finished editing /usr/joe/memo and you wish to edit fusr/mary/letter,
first save the file memo with the w command (:w), then type:

:e fusr/mary fletter

Jusr/mary/letter appears onyour screen just as though you had left vi.

Note

You must write out your file with the write command (:w) if you
want to save the changes you have made. If you try to edit a second
file without writing out the first file, the message “No write since last
change (:e! overrides)’’ appears. If you use :e! all your changes to the
first file are discarded. '

If you want to switch back and forth between two files, vi remembers the name
of the last file edited. Using the above example, if you wish to go back and edit
the file fusr/joe/ memoafter you have finished with /usr/mary/letter, type

5-45

XENIX User's Guide

eff
The cursor is positioned in the same location it was when you first saved
[uer/joe/memo.
5.3.28 Leaving the Editor Temporarily: Shell Escapes
You can execute any XENIX command from within vi using the shell *‘escape’’
(as in, ‘‘escape from vi'’) command, !. For example, if you wish to find out the
date and time, type: :

!date
The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vistatus line. You can use the!
to perform any XENIX command. To send mail to joe without leaving the
editor, type . , : .

!'mail joe

Type your message and send it. (For more information about the XENIX mail
system, see Chapter 6, ‘‘Mail”.) After yousend it, the message

[Hit return to continue)
appears. Press RETURN to continue editing.

If you want to perform several XENIX commands before returning to the editor, -
you can invoke a new shell:

Jdsh

The XENIX prompt appears. You may execute as many commands as you like.
PressCNTRL-D to terminate the new shell and return toyour file.

If you have not written out your file before a shell escape, you will see the
message:

[No write since last change] -
It is a good idea to save your file with the write command (:w) before executing
an escape, just in case something goes wrong. However, once you become an
experienced vi user, you may wish to turn off this message. To turn off the “No
write” message, reset the warn option, as follows:

:set nowarn

For more information about setting options in vi, see section 5.5, ‘Setting Up
Your Environment”.

546

Vi: A Text Editor

5.3.27 Performing a Series of Line-Oriented Commands: Q

If you have several line-oriented commands to perform, you can place yourself
temporarily in line-oriented mode by typing

Q
while you are in command mode. A colon prompt appears on the status line.
Commands executed in this mode cannot be undone with the u command, nor
do they appear on the screen until you re-enter normal vi mode. To re-enter

normal vimode, type

vi

5.3.28 Finding Out What File You're In
If you forget what file you are editing, press CNTRL-G while you are in
;:izr::mand mode. A line similar to the following appears appears on the status
“memo” [Modified] line 12 of 100 --12%--
From left to right, the following information is displayed:
— The name of the file-
— Whether or not the file has been modified
— Theline number the cursor ison
— Howmany linesthere are inthe file

— Your locationin the file (expressed as a percentage)

This command is also useful when you need to know the line number of the
current line for a line-oriented command.

The same information can be obtained by typing
- file

or

5-47

XENIX User's Guide

5.3.29 Finding Out What Line You're On

To find out what line of the file youareon, tjpe

nu

and press RETURN. This command dxsplays the current line number and the
text of the line.

To display line numbers for the entire file, see sectxon 5.5.5, “Displaying Line
Numbers: number”

5.4 Solving Common Problems

The following is a list of common problems that you may encounter when usmg
vi, along with the probable solution. :

5-48

Idon't know which modeI'min.

Press ESC until the bell rings. When the bell rings you are in
command mode.

Ican’t getout of asubshell.
Press CNTRL-D to exit anj subshell. If ybu have created more than
one subshell (not a good idea, usually), keep pressing CNTRL-D until
you see the message:

[Hit return to continue]
1 made aninadvertent deletion (or‘insertion).
Press‘‘u” to undo the last dél?te or insert command.
Thereareextra characterson rhy screen.
Press CNTRL-L to redrawthe screen.

Whenl type, nothing happens.

Vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. Toreset the keyboard, slowly type:

stty sane
then press CNTRL-J or LINEFEED. Pressing CNTRL-J instead of

RETURN is important here, since it is quite possible that the RETURN
key will not work as a newline character. To make sure that other

Vi: A Text Editor

- terminal characteristics have not been altered, log off, turn your
terminal off, turn your terminal back on, and then log back in. This
should guarantee that your terminal’s characteristics are back to
normal. This procedure may vary somewhat depending on the
terminal. ‘

— Thesystemcrashedwhilelwasediting.

Normally, vi will inform you (by sending you mail) that your file has
been saved before a crash. The file can be recovered by typing

vi-r filename
Ifviwas unable to save the file before the crash, it isirretrievably lost.
— TIkeepgettingacolon on thestatus ling when I press RETURN
vYou areinline-oriented command mode. Type
vi
to return to normal vi command mode.

— ' lgettheerror message ““Unknown terminal type [Using open
mode]’’ whenlinvokevi.

Your terminal type is not set correctly. To leave open mode, press
ESC, then type

1wq

and press RETURN. Turn to section 5.5.1, “Setting the Terminal
Type” for information on how to set your terminal type correctly.

5.5 Setting Up Your Environment

There are a number of options that can be set that affect your terminal type,
how files and error messages are displayed onyour screen, and how searchesare
performed. These-options can be set with the set command while you are
editing, or they can be placed in the vi startup file, .ezrc. (The .ezrc file is
explained in section 5.5.13.) The following sections describe the most
commonly used options and how to:set them. There is a complete list of options
in vi(C)in the XENIX Reference Manual.

5.5.1 Setting the Terminal Type

Before you can use vi, you must set the terminal type, if this hasnot already
been done for you, by defining the TERM variable in your .profile file. (The

5-49

XENIX User’s Guide

.profile file is explained in the XENIX User’s Guide.) The TERM variable is a
number that tells the operating system what type of terminal you are using. To
determine this number you must find out what type of terminal you are using.
Then look up this type in Terminals(M) in the XENIX Reference Manual. If you
cannot find your terminal type or its number, consult your System
Administrator.

For these examples, we will suppose that you are using an HP 2621 terminal.
For the HP 2621, the TERM variable is ““2621"". How you define this variable
depends on whxch shell you are using. You can usually determine which shell
you are using by examining the prompt character. The Bourne shell prompts
with a dollar sign.($); the C-shell prompts with a percent sign {%).

5.5.1.1 Setting the TERM variable: The Visual Shell

If youare usihg the Visual Shell the terminal type has already been set, and you
do not need to change it.

5.5.1.2 Setting the TERM variable:The Bourne Shell

To set your terminal type to 2621 place the followmg commands in the file
profile:

TERM=2621
export TERM
5.5.1.3 Setting the TERM variable: The C Shell

To set your terminal type to 2621 for the Cshell, place the following command
in the file .login:

setenv TERM 2621

5.5.2 Setting Options: The set Command

The set command is used to display option settings and to set options.

5.5.2.1 Listing the Available Options
To get alist of the optionsavailable to you and how they are set, type
:set all

Your display should look similar to this:

§-50

Vi: A Text Editor

noautoindent open noslowopen
autoprint nooptimize tabstop==8
noautowrite paragraphs=IPLPPPQPP LIbp taglength=0
nobeautify noprompt ttytype=h19
directory=/tmp noreadonly term=h19
noerrorbells redraw noterse
hardtabs=8 report=>5 warn
noignorecase scroll=4 window=8
nolisp sections=NHSHH HU wrapscan
nolist shell=/bin/sh wrapmargin=0
magic shiftwidth=8 nowriteany
nonumber noshowmatch -

This chapter discusses only the most commonly used options. For information
about the options not covered in this chapter, see v§{C) in the XENIX Reference
Manual.

5.5.2.2 Setting an Option

To set an option, use the set command. For example, to set the sgnorecase
optionso that caseis notignored in searches, ty pe

:sét noignorecase

5.5.3 Displaying Tabs and End-of-Line: list

List causes the “hidden” characters and end-of-line to be displayed. The
default setting is nolist. To display these characters, type

iset list
Your screen is redrawn. The dollar sign ($) represents end-of-line and control-I
("I) represents the tab character. '
5.5.4 Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, type :

:set ignorecase
To change thisoption, type

:set noignorecase

§-51

XENIX User's Ghide

5.5.5 Displaying Line Numbers: number

It is often useful to know the line numBers of afile. To dicplay these numbers,
type:

:set number

This redraws your screen. Numbers appear to the left of the text. To remove
line numbers, type:

:set nonumber

5.5.6 Printing the Number of Lines Changed: report

The report option tells you the number of lines modified by a line-oriented
command. For example,

:set report==1

reports the number of lines modified, if more than one line is changed. The
default settingis =

report==5
which reports the number of lines changed when more than five lines are
modified. ' ’
5.5.7 Changing the Terminal Type:term

If you are logged in on a terminal that is a different type than the one you
. normally use, you can check the terminal type setting by typing:

set term
Press RETURN. See section 5.5.1, “‘Setting the Terminal Type” for more
information about TERM variables.
5.5.8 Shortening Error Messages: terse

After you become experienced with vi, you may want to shorten your error
messages. To change from the default (noterse), type

:set terse

Asanexample of the eflect of teree, when terse is set the message

5-52

Vi: A Text Editor

No write since last change, quit! overrides
becomes

No write

5.5.9 Turning Off Warnings: warn

After you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a shell escape
(:!) command. To turn these messagesoff, type

:set nowarn

5.5.10 Permitting Special Characters in Searches: nomagic

The nomagic option allows the inclusion of the special characters (. \ $[]) in
search patterns without a preceding backslash, This option does notaffect caret
(*) or star (#); they must be preceded by a backslash in sea.rches regardless of
magic. To set nomagic, type

:set nomagic

5.5.11 Limiting Searches: wrapscan

By default, searchesin vi ““wrap’ around the file until they return to the place
they started. To save time you may want to disable this feature. Use the
following command:

:set nowrapscan
When this option is set, forward searches go only to the end of the file, and
backward searchesstop at the beginning.
5.5.12 Turning on Messages: mesg
If someone sends you a message with the write command while you are in vi the
text of the message will appear on your screen. To remove the message from
your display you must press CNTRL-L. When you invoke vi, write permission
to your screen is automatically turned off, preventing write messages from
appearing. If you wish to receive write messages while in vi, reset thisoptionas

follows:

:set mesg

5-53

XENIX User's Guide

5.5.13 Customizing Your Environment: The .exrc File

Each time vi is invoked, it reads commands from the file named .ezrc in your
home directory. This file setsyour preferred optionsso that they do notneed to
be set each time you invoke vi. Asample .ezre file follows: :

set number
set ignorecase
set _nowarn
set report=1

Each time you invoke vi with the above options, your file is displayed with line
numbers, case is ignored in searches, warnings before shell escape commands
are turned off, and any command that modifies more than one line will display a
message indicating how many lines were changed.

5-54

5.6 Summary of Commands

Vi: A Text Editor

The following tables contain all the basic the commands discussed in this

chapter.

Entering Vi

Typing this: »
vi file

vi+n file v

vi+ file

vi+ /pattern file

vi-r file

Does this:
Startsatlinel
Starts at line n
Starts last line
Starts at pattern

Recovers file
system crash

aftelj a

5-55

XENIX User's Guide

Cursor Movement

Pressing thiskey: Doesthis:

h Moves 1 space left

] Moves 1 space right

SPACEBAR Moves 1 space right

w Moves 1 word right

b Moves 1 word left

k Moves 1line up

j Moves 1line down

RETURN Moves 1 line down

) Moves to end of sentence

(Moves to beginning of sentence

} Moves to beginning of paragraph

{ Moves to end of paragraph

CNTRL-W Moves to first character of
insertion

CNTRL-U Scrollsup 1/2screen

CNTRL-D Scrollsdown 1/2screen

CNTRL-F Scrolls down one screen

CNTRL-B Scrollsup onescreen

5-56

Vi: A Text Editor

Inserting Text

Pressing Startsinsertion:

i Before the cursor

I Before first character on the line

a After the cursor

A After last character on theline

o On next line down

0 On the line above

r _ On current character, replaces
one character only

R On current character, replaces
until ESC

Delete Commands

Command Function

dw Deletes a word

do Deletes to beginning of line
d$ Deletes to end of line

3dw Deletes 3 words

dd Deletes the current liné
5dd Deletes 5 lines

587

XENIX User's Guide

Change Commands

Command
cw

dew

cc

See

Function
Changes1 word
Changes3 words
Changescurrent line

Changesblines

Search Commands

Command

/and
fand
/" The

/[bBlox/

Function

Finds the next
occurrence of and

Finds the previous
occurrence of and

Finds next line that
starts with The

Finds the next
occurrence of boz
or Boz

Repeats the most

recent search, in
the same direction

Example

an'd, stand, grand
and, stand, grand

The, Then, There

5-58

Search and Replace Commands

Vi: A Text Editor

Command

:s/pear [peach/g

:1,8s/file/directory

:g/one/s/[1/g

Result

All pears become
peack on the
currentline

Replaces file with
directory from line
1tothe end.

Replaces every
occurrence of one
with 1.

Example

filename becomes
directoryname

one becomes 1,

oneself becomes
1self, someone
becomessomel

Pattern Matching: Special Characters

This character:

-

{l

Matches:
Beginning of a line
End of a line

Any single character

A range of characters

5-59

XENIX User’s Guide

Leaving Vi

Command Result

W Writes out the file

X Writes out the file, quits vi

:q! Quits vi without :saving
changes

:!command Executes command

:Ish Forksanewshell

leommand Executes command and

' places output on current

line

te file Edits file {save current file
with :w first)

5-60

Options

Vi: A Text Editor

all

term
ignorecase
list
number
report
terse

warn

nomagic

nowrapscan

mesg

This option:

Does this:

Lists all options

Sets terminal type

Ignores case in searches

Displays tab and end-of-line characters

Displays line numbers

Prints number of lines changed by a line-oriented command
Shortens error messages

Turns off “no write” warning before escape

Allows inclusion of special characters in search patterns
without a preceding backslash

Prevents searches from wrapping around the end or
beginning of a file.

Permits display of messages sent to your terminal with
the write command

5-61

Chapter 6
Mail

6.1 Introduction 6-1

6.2 Demonstration 6-2
6.2.1 Composing and Sending a Message 6-2
6.2.2 Reading Mail 6-3
6.2.3 LeavingMail 6-4

6.3 Basic Concepts 6-4
6.3.1 Mailboxes 6-5
6.3.2 Messages 6-5
6.3.3 Modes 6-6
6.3.4 Message-Lists 6-7
6.3.5 Headers 6-8
6.3.6 CommandSyntax 6-8

6.4 Using Mail 6-9
6.4.1 Entering and Exiting Mail 6-9
6.4.2 SendingMail 6-9
6.4.3 ReadingMail 6-10
6.4.4 Disposing of Mail 6-11

" 6.4.5 Composing Mail 6-11
6.4.6 ForwardingMail 6-12
6.4.7 Replyingto Mail 6-12
6.4.8 Specifying Messages 6-12
6.4.9 Creating Mailing Lists 6-12
6.4.10 Sending Network Mail 6-13
6.4.11 Setting Options 6-13

6.5 Commands 6-13
6.5.1 GettingHelp: helpand? 6-14
6.5.2 ReadingMail: p, +, -, and restart 6-14
6.5.3 Finding Out the Number of the Current Message:
= 6-15
6.5.4° DisplayingtheFirstFiveLines:t 6-15

6.5.5 Displaying Headers:h 6-16

6.5.6 Deleting Messages:d anddp 6-16

6.5.7 Undeleting Messages:u 6-17

6.5.8 Leavingmail:qandx 6-17

6.5.9 Saving Your Mail:s 6-17

6.5.10 Saving Your Mail: w 6-18

6.5.11 Saving Your Mail: mb. 6-18

6.5.12 Saving Your Mail: ho 6-18

6.5.13 Printing Your Mail on the Lineprinter:} 6-18

6.5.14 Sending Mail:m 6-19

6.5.15 ReplyingtoMail:randR 6-19

6.5.16 Forwarding Mail:fandF 6-19

6.5.17 Creating Mailing Lists:a 6-19

6.5.18 Setting and Unsetting Options: se anduns 6-20

6.5.19 Editing amessage:eandv 6-20

6.5.20 Executing Shell Commands:shand! 6-21

6.5.21 Finding Out the Number of Characters in a Message:
si 6-21

6.5.22 Changing the Working Directory:cd 6-21

6.5.23 Reading CommandsFrom aFile:so 6-21

6.6 Leaving Compose Mode Temporarily 6-22
6.6.1 GettingHelp:"? 6-22
6.6.2 Printing the Message: "p - 6-22
6.6.3 Editing the Message: "eand "v 6-22
6.6.4 Editing Headers: "t, "¢, b, s, "Rand "h 6-23
6.6.5 AddingaFiletothe Message: rand "d 6-24
6.6.6 Enclosing Another Message: 'mand "M 6-24
6.6.7 Savingthe MessageinaFile:"w 6-25
6.6.8 Leaving Mail Temporarily: "tand | 6-25
6.6.9 EscapingtoMail Command Mode: ”: 6-25
6.6.10 Placing a Tilde at the Beginningof aLine: "~ 6-26

6.7 Setting Up Your Environment: The .mailrcFile 6-26
6.7.1 TheSubject prompt: asksubject 6-26
6.7.2 TheCC:prompt:askcc 6-27
6.7.3 Printing the Next Message: autoprint 6-27
6.7.4 Listing Messagesin Chronological Order: chron and

mchron 6-27

6.7.5 Using thePeriod toSend a Message:dot 6-27
6.7.6 Including Yourselfin a Group: metoo 6-27

6.7.7 Saving Aborted Messages:save 6-28

6.7.8 Printing the Version Header: quiet 6-28

6.7.9 Choosing an Editor: The EDITOR String 6-28

6.7.10 Choosing an Editor: The VISUAL String 6-28

6.7.11 Choosing a Shell: The SHELL String = 6-28

6.7.12 Changing the Escape Character: The escape
String ©6-28

6.7.13 Setting Page Size: The page String 6-29

6.7.14 Saving Outgoing Mail: The record String 6-29

6.7.15 Keeping Mail in the System Mailbox: autombox -
6-29

6.7.16 Changing the top Value: The toplines String 6-29

6.7.17 Sending Mail Over Telephone Lines: ignore 6-29

6.8 Using Advanced Features 6-30
6.8.1 CommandLine Options 6-30
6.8.2 Using Mail as a Reminder Service 6-31
6.8.3 Handling Large Amounts of Mail 6-31
6.8.4 Maintenance and Administration 6-32

6.9 Quick Reference 6-32
6.9.1 Command Summary 6-32
6.9.2 ComposeEscape Summary 6-36
6.9.3 Option Summary 6-38

Mail

8.1 Introduction

The XENIX mail system is a versatile communication facility that allows
XENIX users to compose, send, receive, forward, and reply to mail. Users can
also create distribution groups and send copies of messages to multiple users.
These functions are integrated into XENIX so that all users can quickly and
easily communicate with each other.

This chapter is organized to satisfy the needs of both the beginning and
advanced user. The first sections discuss basic concepts, tasks, and commands.
Later sections discuss advanced topics and provide quick reference to the mail
program’s many functions. The major sectionsin this chapter are:

Demonstration Shows new users how to get started.

Basic Concepts Discusses the fundamental ideas and terminology
used in mail.

Using Mail Shows how to perform common mailing procedures
such as composing, sending, forwarding, and
replying to mail.

Commands Discusses each mail command.

 Leaving Compose Mode Temporarily
Discusses and gives examples of each command
available when composing a message. These
commandsare called compose escapes.

Setting Up Your Environment .
Discusses the user’s mail startup file and options
that may be set to customize functions.

Using Advanced Features

: Discusses advanced features such as using mail as a
reminder service and handling a large volume of
mail. .

Quick Reference Summarizes all commands, compose escapes, and
: options.

61

XENIX User’s Guide

8.2 Demonstration
The mail command lets you perform two distinct functions: sending mail and

disposing of mail. In this demonstration, we will show you how to send mail to
yourself, read a message, delete, it, and exit the mail program.

6.2.1 Composing and Sending a Message
To begin, type

mail self

where ‘“‘self” is your user name. Next, type the following lines, each terminated
withaRETURN:

This is a message sent to myself.
I compose a message by entering lines of text.
The message is ended by typing CNTRL-D on a newline.

As you enter the message you can use compose escapes to perform special
functions. To get alist of the available compose escapes, type

7
on anew line. Tospecify asubject, use the “s escape. For example, type:
“s Sample subject

To specify a list of people to receive carbon copies use the “c escape. For
example, type

"¢ abel

To view the message asit willappear when you send it, type:

P
This will print the following:

Message contains:

To: self

Subject: Sample subject
Cc: abel

This is a message sent to myself.
I compose a message by entering lines of text.
The message is ended by typing CNTRL-D on a newline.

6-2

Mail

Finally, to end the message and send it to those you have mentioned in the To:
and the Cec: fields, press CNTRL-D by itself on a line. This will exit the mail
program and return you to the XENIX shell. Once you have sent mail, there is
no way to undo the act, so be careful.

6.2.2 Reading Mail
Within ashort time, you should receive the message:
You have mail.

(You must press RETURN before this message will appear on your screen.) This
message informs you that the message you have just sent has arrived in your
system mailbox. To read this message and any others that may have been sent
toyou, type

mail
Mail then displays a sign-on message and a list of message headers that look

something like this:

Mail version 3.0 August 30, 1982. Type ? for help.
1 message:

I self Fri Aug 31 12:26 7/188 "Sample subject”

When there is more than one message in your mailbox, the most recent message
is displayed at the top of the list. Messages are numbered in ascending order
from least to most recent, so the message at the top of the list (the most recent
message) has the highest number. The message header includes who sent the
message, when it was sent, the number of lines and characters, and the subject
of the message. The underscore prompt prompts you to enter a mail
command. Now type

?
to get help on all the available mail commands. Next, type

P

to see the message that you sent to yourself. Mail prints the following:

6-3

XENIX User'’s Guide

From self Fri Aus 20 12: 26 52 1982
To: self -

Subject: Sample subject

This is a message sent to myself.

I compose a message by entering lines of text.’
The message is ended by typing CNTRL-D on a newline.

Note that the message you sent to yourself now contains information about the
sender of the message-- a line telling who sent the message and when it wassent.
The next line tells who the message wassent to. A subject and carbon copy (Cc:)
field can be specified by the sender. If they are present, they too are displayed
when you read the message.
6.2.3 Leaving Mail
Since this message has no real use, you can delete it by typing:

d
To get out of mail, type:

q
Mail then displays the message

0 messages held in fusr/spool/mail/sclf
and returnsyou to the XENIX shell.
This ends the demonstration. For more detmled information, see the
discussions in followmg secnons :

6.3 Basic Concepts

It is much easier to use mail if you understand the basic concepts that underlie
it. The conceptsdiscussed in this section are:

— Mailboxes

— Messages
— Modes

— Command syntax

6-4

Mail

6.3.1 Mailboxes

It is useful to think of the mail system as modeled after a typical postal system.
What is normally called a post office is called the system mailboz in this chapter.
The system mailbox contains a file for each user in the directory
Jusr/spool/mail. Your own personal or user mailboz is the file named mbozin
your home directory. Mail sent to you is put in your system mailbox; you may
choose to save mail in your user mailbox after you have read it. Note that the
user mailbox differs from a real mailbox in several respects:

1. Youdecide whether mail is to be placed in the user mailbox; it isnot
automatically placed there.

2. The user mailbox is not the place where mail isinitially routed— that
place is the system mailbox in the directory /usr/spool/ masl.

3. Mailisnot picked up from your user mailbox.

6.3.2 Messages

In mail, the message is the basic unit of exchange between users. Messages
consist of two parts: a heading and a body. The heading contains the following
fields:

To: This field is mandatory and contains one or more valid user names
corresponding to real users to whom you may send mail.

Subject: Thisoptionalfield contains text describing the message.

Cc: The carbon copy field contains one or more valid names of those
who are to receive copies of a message. Message recipients see these
namesin the received message. Thisfield can be empty.

Bec: The blind carbon copy field contains the one or more valid names of
people who are to receive copies of a message. Recipients do notsee
these namesin the received messages. Thisfield can be empty.

Return-receipt-to:
The return receipt to: field contains the valid name or names of
those who are to receive an automatic acknowlegement of the
message. This field can be empty.

The body of a message is text exclusive of the heading. The body can be empty.

6-5

XENIX User's Guide

6.3.3 Modes

Often, the biggest hurdle to using mail is understanding what modes of
operation areavailable. Thissection discusseseach mode.

When you invoke mail you are using the shell. If you want to mail a letter
without entering mail command mode, you can doso by typing

mail john <letter

Here, the file [etteris sent to the user yohn,

Note

Be very careful when mailing a file with the input redirection symbol
(<). If you accidentally type the output redirection symbol (>), you
will overwrite the file, destroying its contents.

You can enter a message from your shell by typing:
mail john

Next, enter the text of your message as follows:
This is the text of the message.

Press RETURN to start a new line, then CNTRL-D to send the message.
Messages such as the one above are created in mail's compose mode. When
entering text in compose mode, there are several special keys associated with
line editing functions: these are the same special characters that are available
to you when executing hormal XENIX commands. For example, you can kill the
line you are editing by typing the kill character, normally a CNTRL-U. To
backspace, press either CNTRL-H or the BACKSPACE key. From compose .
mode, you can issue commands called compose escapes. These are also called
tilde escapes because the command letters are preceded by a tilde (*). When
you execute these commands you are temporarily leaving or escaping from
compose mode; hence the name. Note that once you’ve pressed RETURN to end
aline, you cannot change that line from within compose mode; to change it, you
must enter edit mode. ’

The most common way of using mail isto just type
mail
This automatically places you in mail command mode. In this mode, you are

prompted by an underscore for commands that permit you to manipulate your

6-6

Mail

mail.

You can enter edit mode from either compose mode or command mode. In edit
mode, you edit the body of a message using the full capabilities of an editor. To
enter edit mode from command mode, use either the e or edit command to
enter ed, or the v or visual command to enter vi. (Vimay not be availableon
your system.) To enter edit mode from compose mode, use the compose escapes
“eand "v,respectively.

6.3.4 Message-Lists

Many mail commands take alist of messages as an argument. A message-liet is
a list of message numbers, ranges, and names, separated by spaces or tabs.
Message numbers may be either decimal numbers, which directly specify
messages, or one of the special characters *, ., or $, which specify the first,
current, or last undeleted message, respectively. Here, relevant means not

deleted.

A range of messages is two message numbers separated by a dash. To print the
first four messageson the screen, type

p1-4
and to print all the messages from the current message to the last message, type
p -$

A name is a user name. Messages can be printed by specifying the name of the
sender. For example, to print each message sent to you by jokn, type

p john

As a shorthand notation, you can specify star (*) to get all undeleted messages.
Thus,

p *

prints all messages except those that have been deleted,
ds

deletesall messages, and
u*

undeletes all deleted messages. (All three of these commands are described
later in detail in Section 6.5 “Commands.”)

6-7

. XENIX User’s Guide

6.3.5 Headers

When you enter mail, a list of message headers is displayed. A header is a
single line of text containing descriptive information about a message. (Note
that we use the word keading to describe the first part of a message, and header
to describe mail’s one-line description of a message.) The information includes:

— The number of the message » -
— Thesender

— The datesent

— The number of charactersand lines

— Thesubject (if the message containsa Subject: field)

Message headers are displayed in windows with the headers command. A
header window contains no more than 18 headers. If there are fewer than 18
messages in the mailbox, all are displayed in one header window. If there are
more than 18 messages, then the list is divided into an appropriate number of
windows. You can move forward and backward one window at 2 time with the

headers +
and
. headers -

commands.

6.3.6 Command Syntax

Each mail command has its own syntax. Some take no arguments, some take
only one, and others take several arguments. The more flexible commands,
such as print, accept combinations of message-lists and user names. For these
commands, mail first gathers all message numbers and rariges, then finds all
messages from any specified user names. The full message-list is the
intersection of these two sets of messages. Thus, the message-list ‘‘4-15 miller”’
matches all messages between 4 and 15 that are from miller. '

Each mail command is typed on a line by itself, and any arguments follow the
command word. The command need not be typed in its entirety— the first
command that matches the typed prefix isused. For example, you can type “p”’
instead of “‘print”’ for the print command and “‘h” instead of “headers” for the
headers command.

Mail

After the command itself is typed, one or more spaces should be entered to
separate the command from its arguments. If a mail command does not take
arguments, any arguments you give are ignored and no error occurs. For
commands that take message-lists as arguments, if no message-list is given, the
last message printed is used. If it does not satisfy the requirements of the
command, the search proceeds forward. If there are no messagesforward of the
current message, the search proceeds backwards, and if there are no good
messages at all, mail types:

No applicable messages

6.4 Using Mail

This section describes how to perform some basic tasks when using mail. More
detailed discussions of each of these commands are presented in later sections.

6.4.1 Entering and Exiting Mail
To begin a session with mail, type:
mail

The headers for each received message are then displayed one screenful at a
time. To display the next screenful of headers (if any), type

h+.

To end the mail session, use the quit (q) command. Allmessagesremaininthe
system mailbox unless they have been deleted with the delete (d) command,
saved with the save or write command, or held in your user mailbox with the
mbox command. Deleted messages are discarded. The —f command line
option causes mail to read in the contentsof mboz. Optionally, a filename may
be given as an argument to —f, so that the specified file is read, instead. When
you quit, mail writes all messages back to this file.

If you send mail over a noisy phone line, you will notice that many of the bad
characters turn out to be the RUBOUT or DEL character, which causes mail to
abort messages. To deal with this annoyance, you can invoke mail with the —i
option which causes these bad characters to be ignored.

6.4.2 Sending Mail

To send a message, invoke mail with the names of the people and groups you
want to receive the message. Next, type in your message. When you are
finished, press CNTRL-D at the beginning of a line. The message is
automatically sent to the specified people. While entering the text of your

6-9

'XENIX User's Guide

message, you can escape to an editor or perform other useful functions with
compose escapes. Section 6.4.5, *‘Composing Mail”, describes some features of
matlavailable to help you when composing messages. ‘

If you have 1 file that contains a written message, you can send it to sam, bob,
and john by typing:

mail sam bob john <letter

where letteris the name of the file you are sending.

Note

Be very careful when mailing a file with the input redirection symbol
(<). If you accidentally type the output redirection symbol (>}, you
will overwrite the file, destroying its contents.

If mail cannot be delivered to a specified address, you will either be notified
immediately, in which case a copy of the undeliverable message is appended to
the file dead.letter, or you will be notified viareturn mail, in which case a copy is
included in the return mail message.

 8.4.3 Reading Mail
Toread messages sent to you, type
mail

Mail then checks your mail out of the system mailbox and printsout a one-line
header of each message, one screenful at a time (to view the next screenful, type
“h+"”. The most recent message is initially the first message (numbered
highest, because messages are numbered chronologically) and may be printed
using the print command. You can move forward one message by pressing
RETURN or typing ‘+’. To move forward n messages use ““+1"”. You can move
backwardsone message with the “~’' command or move backwards n messages
and print with “~2”. You can also move to any arbitrary message and print it
by typingits number. ‘ ‘

If new messagesarrive while you are in mail, the following message appears:
New mail has arrived--type ‘restart’ to read.

Type

6-10

Mail

restart

and the headersof the new messages are displayed.

6.4.4 Disposing of Mail

After examining a message you can delete it with the delete (d) command,
reply to it with the reply (r} command, forward it with the forward (f)
command, or skip to the next message by pressing RETURN. Deletion causes
the matl program to forget about the message. This is not irreversible; the
message can be undeleted with the undelete (u) command by typing

u number

6.4.5 Composing Mail

To compose mail, you must enter compose mode. Do this from XENIX
command level by typing

mail john

where john is the name of a user to whom you want to send mail. From mail
command mode, you can enter compose mode with the mail, reply, or Reply
commands. Once in compose mode, the text that you type is appended one line
at a time to the body of the message you are sending. Normal line editing
functions are available when entering text, including CNTRL-U to kill aline and
BACKSPACE to back up one character. Note that entering two interruptsina
row (i.e., pressing INTERRUPT twice), aborts your composition.

While you are composing a message, mail treats lines beginning with the tilde
(") in a special way. This character introduces commands called compose
escapes. For example, typing

m

by itself on a line places a copy of the most recently printed message inside the
message you are composing. The copy is shifted right one tabstop. Other
escapes set up heading fields, add and delete recipients to the message, allow
you to escape to an editor, let you revise the message body, or run XENIX
commands. To get a list of the available compose escapes when in compose
mode, type:

"t

See also Section 8.6, “Compose Escapes”, later in this chapter.

6-11

XENIX User’s Guide

68.4.8 Forwarding Mail
To forward a message, use the forward (f) command. For example, type
f john

to place a copy of the current message inside a new message. The copy isshifted
right one tabstop, and the new message is forwarded to John. John will receive
a message heading indicating that you have forwarded the message. The
Forward (F) command works just like its lowercase counterpart, except that
the forwarded message isnot shifted right one tabstop.

6.4.7 Replying to Mail

You can use the reply command to set up a response to a message,
automatically addressing a reply to the person who sent the original message.
You then type in text and send the message by pressing CTNRL-D on a line by
itself. The Reply command works just like its lowercase counterpart, except
that the message is sent to others named in the original message’s “To:” and
“Ce:" fields.

6.4.8 Specifying Messages

Commands such as print and delete can be given a message-list argument to
apply to several messages at once. Thus *‘delete 23" deletes messages 2 and 3,
while ‘“‘delete 1-5" deletes messages 1 through 5. A star (+) addresses all
messages, and a dollar sign (§) addresses the last (highest numbered) message.
The top (t) command prints the first five lines of a message; hence, you can type

top *

to print the first five lines of every message. Message-lists can contain
combinations of lists, ranges, and names. For example, the following command

prints out all messages from tom or bob and numbered 2, 4, 10, 11, or 12:

p tom bob 2 4 10-12

6.4.9 Creating Mailing Lists

You can create personal mailing lists so that, for example, you can send mail to
cohorte and have it go to a group of people. Such lists are defined by placing an
aliasline like

alias cohorts bill bob barry

in the file .mailre in your home directory. The current list of such aliases can be

6-12

Mail

displayed with the alias (a) mail command. Personal aliases are expanded in
mail sent to others so that they will be able to Reply to each individual
recipient. For example, the To:field in a message sent to cohorts willread

To: bill bob barry
and not
To: cohorts

Normally, system-wide aliases are available to all users. These are installed by
whoever is in charge of your system. For more information, see section 6.8,
“Using Advanced Features’’, later in this chapter.

6.4.10 Sending Network Mail

Mail can be sent between XENIX machines connected with Micnet by specifying
amachine name and the user name on that machine, separated by a colon:

machine:user

If appropriate gateways are known to your system, you can send mail to sites
within the UUCP network using the syntax:

machineluser

(Be sure to escape the ! by preceding it with a backslash (\) when giving it ona
¢sh command line.) Mail may also interpret other characters in the mail path
when dealing with other networks. In most cases, aliases should be set up so
that specifying machine names is unnecessary. For more information about
sending network mail, see the XENIX Operations Guide.

68.4.11 Setting Options

Mail has several options that you can set from mail command mode or in the
file .matlrc in your home directory. For example, ‘‘set askcc” enables the askce
switch and causes prompting for additions to the Ce: field when you finish
composing a message. These and other options are discussed in Section 6.7
“Setting Up Your Environment: The .mailrc File”.

8.5 Commands

Thissection describes each of the commands available to you in mail command
mode. The examples in this section assume you have invoked mail and that
you have several messages you want to dispose of. Note that in general, mail
commands can be invoked with either the name of the command or 2 one- or
two-character mnemonic abbreviation. In the text of the command

6-13

XENIX User’s Guide

-descriptions below, this mnemonic abbreviation is enclosed in parentheses
after the name of the command. All commands are printed-in boldface, except
in the examples.

8.5.1 Getting Help: help and ?

The help (?) command prints out a brief summary of all mail commands, so xf
you ever get stuck-when you arein mail command mode, type

?
or

help

6.56.2 Reading Mail: p, 4+, —, and restart

To look at a specific message, use the print (p) command. For example,
pretend you have a header-list that lookslike this:

3 john Wed Sep 21 09:21 26/782 "Notice”

2 sam Tue Sep 20 22:55 6/83 "Meeting”

1 tom Mon Sep 19 01:23 6/84 "Invite”
Reading from the left, each header contains the message number, who sent it,
the day, date, and time it was sent, the number of lines and characters in the
message, and itssubject.
To examine the second message, type:

p2
Thismight cause mail torespond with:

Message 2:

From sam Tue Sep 20 22:55 1983

Subject: Meeting

Meeting everyone, please don’t forget!

Tolook at message 3, type

or to look at message 1, type

6-14

Mail

+
The commands + and — execute relative to the last message referred to, which
in our example was 2. For large numbers of messages, you can skip forward and
backward by the number of messages specified as an argument to 4 and -. For
example, typing

+3
skips forward three messages. If youtype

p *
then all messages are displayed, since the star (#) matches all messages.
Pressing RETURN prints out the next message in the header-list. You can can
always go to a message and print it by giving its message number or one of the

special characters, caret (*), dot (.), or dollar sign ($). In the example where
message 2 is the current message

‘prints the current message,

N

prints message 1, and
$
prints message 3.

When new mail arrives while you are in mail, the message “New mail has
arrived--type ‘restart’ toread”. If you wish toread the new messages, type

restart

The headers of the new messages appear.

6.5.3 Finding Out the Number of the Current Message: =

The number (=) command prints out the message number of the current
message. It takesno arguments. ’

6.5.4 Displaying the First Five Lines : t

The top {t) command takes a message-list and prints the first five lines of each
addressed message. For example

6-15

XENIX User’s Guide

top 2-12

prints out the first five lines of each of the messages 2 through 12. Note that the
number of lines printed out by top can be set with the toplines option.

6.5.5 Displaying Headers: h
The headers (h) command displays header windows or lists of headers. A
header window contains no more than 18 headers. With no argument, the
headers command displays a header window in which the current message
header is displayed at the center of the window.
Toexamine the next set of 18 headers, type:

h +
Toexamine the previousset, type:

h-
Both plus and minus take an optional numeric argument that indicates the
number of header windows to move forward or backward before printing. If a
message-list is given, then the headers command prints out the header line for
each message in the list, disregarding all windowing. For example

h joe

displays all the message 'hea.ders from joe. The following are some
characteristics of the header-list:

— Deleted messages do not appear in the listing.

— Messagessaved with the save command are flagged with astar (»).

— Messagestobesaved in your user mailbox are flagged with an “M”.

— If the automboz option is set, messages held with the hold command

are flagged with an “H".

8.5.6 Déleting Messages: d and dp
Unless yoﬁ indicate otherwise, each message you receive is automatically saved
in the system mailbox when you quit mail. Often, however, you don’t want to
save messages you have received. To delete messages, use the delete (d)

command. For example,

delete 1

6-16

Mail

prevents mail from retaining message 1 in the system mailbox. The message
will disappear altogether, along with its number.

The dp command deletes the current message and prints the next message. Itis
useful for quickly reading and disposing of mail. Using dp is the same as using
the d command with the eutoprint option set. See also the undelete command,
below.

8.5.7 Undeleting Messages: u

The undelete (u) command causes a message that has been previously deleted
with d or dp to reappear as if it had never been deleted. For example, to
undelete message 3, type

u3

You cannot undelete messages from previous mail sessions; they are gone for
good.

6.5.8 Leaving mail : q and x

When you have read all your messages, you can leave mail with the quit (q)
command. All messages are held in your system mailbox, except the following:

— Deleted messages, which are discarded irretrievably.

— Messages marked with the mbox command, which are saved in mboz
in your home directory (i.e., your user mailbox).

— Messages saved with the save and write commands are deleted from
the system mailbox. Forwarded messages are not deleted.

Note that if the automboz option is set, messages that you have read are
automatically saved in your user mailbox. If you wish to leave mail quickly
without altering either your system or user mailbox, you can use the exit (x)
command. This returns you to the shell without changing anything: no.
messages are deleted or saved. Files that you invoke with the mail —f switch
are unaffected as well.

6.5.9 Saving Your Mail: s

The save (s) command lets you save messages to files other than mboz. By
using save, you can organize your mail by putting messages in appropriate
files. The save command writes out each message to the file given as the last
argument on the command line. For example, the following command appends
messages 1-5 to the file letters:

6-17

XENIX User's Guide

s 1-5 letters

The file letters is created if it does not already exist. Saved messages are not
automatically retained in the system mailbox when you quit, nor are they
selected by the prmt command described above, unless explicitly requesced
Each saved message is marked with a star (s).

Save writes out the entire message, including the To: Subject and Ce: fields.
In comparison, the write command, discussed below, wntes outonly the bodles
of the specified messages.
6.5.10 Saving Your Mail: w

The write {w) command writes out the bodyof each message to the file given as
the last argument on the command line. Each written message ismarked witha
star (+). The syntaxissimilar to thatof the save command. For example,

w 3-17 john elliot book

writes out the bodies of all messages from john and elliot in the number range
3-17. They are concatenated to the end of the file named book.
8.5.11 Saving Your Mail: mb
The mbox (mb) command marks each message specified in a message-list, so
that all are saved in the user mailbox when a quit command is executed.
Message headers are marked with an “M” to show that they are to be saved in
mboz. ,
8.5.12 Saving Your Mail: ho
The hold (ho) command takes a message-list and marks each message so that it
is saved in your system mailbox instead of deleted or saved in mboz when you
quit. Saving of files in the system mailbox happens by default, so use hold only
when you have also set the automboz option. ,
8.5.13 Printing Your Mail on the Lineprinter: |
The lpr (1) command paginates and prints out messages to the lineprinter. It
takes a message-list as its argument, then pagmabes and prints out each
message. Forexample

I doug

prints out each message fromthe user dougon the lineprinter.

6-18

Mail

6.5.14 Sending Mail: m

To send mail to a user, use the mail (m) command. This sends mail in the
manner described for the reply command, except that you supply a list of
recipients either as an argument or by entering them in the To: field. All
compose escapes work in mail. Note that the mail command is in most ways
identical to typing mail users at the XENIX command level.

8.5.15 Replying to Mail: r and R

Often, you want to deal with a message by responding to its author right away.
The reply (r) command is useful for this purpose: it takes a message-list and
sends mail to the author of each message. The original message’s subject fieldis
copied as the reply’s subject. Each message is composed in compose mode; thus
all compose escapes work in reply, and messages are terminated by pressing
CNTRL-D.

The Reply (R) command works just like its lowercase counterpart, except that
copies of the reply are also sent to everyone shown in the original message's
*To:” and *“Ce:” fields.

6.5.16 Forwarding Mail: fand F

To forward a copy of a message, use the forward (f) command. This causesa
copy of the current message to be sent to the specified users. The message is
marked assaved, and then deleted from the system mailbox when you exit mail.

For example, to forward the current message to someone whose login name is
john, type

f john
John will receive the forwarded message, along with a heading showing that
you are the one who forwarded it. Inside the new message, the forwarded
message is indented one tab stop. An optional message number can also be
given. For example,

f 2 john bill
forwardsmessage 2 to johnand bill.
The Forward (F) command is identical to the lowercase forward command,
except that the forwarded message is not indented.

6.5.17 Creating Mailing Lists: a

The alias (a) command links a group of names with the single name given by

6-19

XENIX User's Guide

the first argument, thuscreating a mailing list. For example, you could type
alias beatles john paul george ringo '

so that whenever you used the name beatlesin a destination address (asin “mail
beatles”), it would be expanded so that you are really referring to the four
names aliased to beatles. With no arguments, alias prints out all currently-
defined aliases. With one argument, it prints out the users defined by the given
alias. :

You will probably want to define aliases in the staftup file, .mailre, so that you
don’t have to redefine them each time you invoke mail. See section 6.7,
“Setting Up Your Environment: The .mailrc File”, for more information.

6.5.18 Setting and Unsetting Optibns: se and uns

Mail switch and string options can be set with the mail commands set and
unset. A switch option is either on or off (set or unset). String options are
strings of characters that are assigned values with the syntax option==etring.
Multiple options may be specified on a line. It is most useful to place set and
unset commands in the file .mailre in your home directory, where they become
your own personal default options when you invoke mail. For example, you
might have aset command that looked like this: .

set dot metoo toplines=10 SHELL==/usr /bin/sh

The options dot and metoo are switch options; toplines and SHELL»é.r‘e étring
options. ,

The command
set ?

prints out a list of the available options. See the section “‘Setting Up Your
Environment”, for descriptions of these options.. -

6.5.19 Editing a message: e and v

To edit individual messages using the text editor, use the edit (€) command. It
takes a message-list and processes each message in turn by writing it to a
temporary file. The editor, ed, is then automatically invoked so that you can
_edit the temporary file. When you finish editing the message, write the message
out, then quit the editor. Mail reads the message back into the message buffer
and removes the temporary file.

It is often useful to be able to invoke either a line or visual editor, depending on

the type of terminal you are using. To invoke 7, you can use the visual (v)
command. (Note that v is not available on all XENIX systems.) The operation

6-20

Mail

of the visual command is otherwise identical to that of the edit command.

6.5.20 Executing Shell Commands: sh and !

To execute a shell command without leaving mail, precede the command with
an exclamation point. For example

date
prints out the current date without leaving mail. To enter a new shell, type:
sh

To exit from this new shell and return to mail command mode, press CNTRL-D.

6.5.21 Finding Out the Number of Characters in a Message: si

The size (si) command prints out the number of charactersin each messagein a
message-list. For example, the command

si 1-4
might print out:

234
1000
23
456

m e

6.5.22 Changing the Working Directory: cd

The ¢d command changes the working directory to the name of the directory
you give it as an argument. If no argument is given, the directory is changed to
your home directory. This command works just like the normal XENIX ed
command. (Note that exiting mail returns you to the directory from which
you entered mail; thus the mail cd command works only within mail.) You
may want to place a cd command in your .matlre file so that you always begin
executing mail from within the same directory.

8.5.23 Reading Commands From a File: so

The source {so) command reads in mail commands from the file Normally,
these commands are alias, set, and unset commands.

6-21

XENIX User'’s Guide

8.8 Leaving Compose Mode Temporarily

While composing a message to be sent to others, it is often useful to print a
message, invoke the text editor on a partial message, execute a shell command,
or perform some other function. Mail provides these capabilities through
compose escapes (sometimes called tilde escapes) which consist of a tilde (7) at
the beginning of a line, followed by a single character that specifies the function
to be performed. These escapes are available only when you are composing a
new message. They have no meaning when you are in- mail command mode.
The available compose escapes are described below.

8.8.1 Getting Help: "?

The help escape is the first compose escape you should know because it tells you
about all the others. For example, if you type

"7

a brief summary of the available compose escapes is printed on your screen.
Note that “h promptsfor heading fields and and does not give help.

6.6.2 Printing the Message: “p

To print the current text of a message you are composing, type:

P

This prints a line of dashes and the heading and body of the message so far.

6.6.3 Editing the Message: "e and “v

If you are dissatisfied with a message as it stands, you can edit the message by
invoking the editor, ed, with the editor escape, “e. This causes the message to
be copied into a temporary file so that you can edit it. Similarly, the “v escape
causes the message to be copied into a temporary file so that you can edit it with
the vi editor. (Note that vi is not available on all XENIX systems.) After
modifying the message to your satisfaction, write it out and quit the editor.
Mail responds by typing :

(continue)

after which you may continue composing your message.

Mail

6.6.4 Editing Headers: "t, "¢, b, s, 'R and "h
To add additional names to the list of message recipients, type the escape:

"t namel name?2 ...
You can name as many additional recipients as you wish. Note that users
originally on the recipient list will still receive the message: you cannot remove
anyone from the recipient list with “t. To remove a recipient, use the “h
command, which is discussed later in this section.
You canreplaceor add asubject field by using the “sescape:

"s line-of-teat
This replaces any previous subject with line-of-tezt. The subject, if given,
appears near the top of the message, prefixed with the heading Subject:. You
can see what the message looks like by using “p, which prints out all heading

fields along with the body of the text.

You may occasionally prefer to list certain people asrecipients of carbon copies
of a message rather than direct recipients. The escape

"¢ namel name2 ...
adds the named people to the Ce:list. The escape

“cc namel name?2 ...
performs an identical function. Similarly, the escape

“b namel name2 ...
adds the named people to the Bee: (Blind carbon copy) list. The people on this
list receive a copy of the message, but are not mentioned anywhere in the
message you send. Remember that you can always execute a “p escape to sce
what the message lookslike.
The escape

R
adds or changesthe person or persons namedin the return-receipt to: field.
The recipients of the message are given in the To: field; the subject is givenin
the Subject: field, carbon copy recipients are given in the Ce: field and the

return receipt recipient in the Return-receipt-to: field. If you wish to edit these
in waysimpossible with the “t, ”s, "¢, and "R escapes, you can use

6-23

XENIX User's Guide

“h

where h stands for “heading’’. Theescape “h prints To:followed by the current
list of recipients and leaves the cursor at the end of the line. If you type in
ordinary characters, they are appended to the end of the current list of
recipients. You can also use the normal XENIX command line editing characters
to edit these fields, so you can erase existing heading text by backspacing over
it.

When you press RETURN, mail advances to the Subject: field, where the same
~ rulesapply. Another RETURN brings you to the Ce: field, another bringsyou to
the Bee: field, and yet another to the Return-recespt-to. field. Each of these
fields can be edited in the same way. Finally, another RETURN leaves you
appending text to the end of your message body. As always, you can use “p to
print the current text of the heading fields along with the body of the message.

6.8.5 Adding a File to the Message: 'r and °d

It is often useful to be able to include the contents of some file in your message.
The escape .

“r filename
is provided for this purpose, and causes the named file to be appended to your
current message. Mail complains if the file doesn’t exist or can’t be read. If the -
read is successful, mail prints the number of lines and characters appended to
your message.
Asaspecial case of “r, the escape

“d
reads in the file dead.letterin your home directory. This is often useful because
mail copies the text of your message buffer to dead.letter whenever you abort
the creation of a message by either typing two consecutive interrupts or
entering a ~“qescape.
6.6.6 Enclosing Another Message: "m and "M
If you are sending mail from within mail’s command mode, you can insert a
message sent to you into the message you are. currently composing. For
example, you might type:

“m 4

Thisreads message 4 into the message you are composing, shifted right one tab
stop. Theescape

6-24

Mail

M 4
performs the same function, but with no right shift. You can name any
nondeleted message or list of messages.
6.6.7 Saving the Message in a File: "w
To save the current text of a message Body in a file, use:

“w filename
Mail writes out the message body to the specified file, then prints the number
of lines and characters written to the file. The “w escape does not write the
message heading to the file.
6.6.8 Leaving Mail Temporarily: ! and |
To temporarily escape to the shell, use the escape

“leommand
This executes command and returns you to mail compose mode without
altering your message. If you wish to filter the body of your message through a
shell command, use :

“Jeommand
This pipes your message through the command and uses the output as the new
text of your message. This escape is particularly useful with the fmt command
which performs simple formatting operations on the text of your message. If
the command produces no output, mail assumes that something is wrong,

retains the old version of your message, and prints:

(continue)

6.6.9 Escaping to Mail Command Mode: ~:

To temporarily escape to mail command mode, use either of the escapes
“:mail-command
"_mail-command

You can then execute any mail command that you want. Note that this escape

does not work if you enter compose mode from the XENIX shell. You will receive
the message:

6-25

XENIX User's Guide
May not execute ¢md while composing

68.6.10 Placing a Tilde at the Beginning of a Line: ™~

If you wish to send a message that contains a line begmmng with a tilde, you
must type it twice. For example, typing

" “This line begins with a tilde.
appends

“This line begins with a tilde.
to your message. The escape character can be changed to a different character
with the escape option. (For information on how to set options, see section 6.7,
“Setting Up Your Mail Environment”. If the escape character is not a tilde,
then this discussion applies to that character and not the tilde.
8.7 Setting Up Your Environment: The .mailrc File
Whenever mail is invoked, it first reads the file fusr/lib/mail/maslrc then the
file .matlre in the user’s home directory. System-wide aliases are defined in
[uer/lib/ mail/mailre. Personal aliases and set options are defined in .mailrc.
The following is a sample .mailre file:

number sign introduces comments

- # persona.l aliases oﬁ'nce and cohorts are defined below

‘vahas office bxll steve karen
alias cohorts John mary bob beth mxke

set dot lets messages be terminated by period on new line
set askee says to prompt for Ce: list after composing message
set dot askcc

cd changes directory to different current directory

cd
6.7.1 The Subject prompt: asksubject

The asksubject switch causes pfompting for the subject of each message before
you enter compose mode. If you respond to the prompt with a RETURN, then

6-26

Mail
nosubject field issent.

8.7.2 The CC: prompt; askce

The askee switch causes prompting for additional carbon copy recipients when
you finish composing a message. Responding with a RETURN signals your
satisfaction with the currentlist. Pressing INTERRUPT prints

interrupt
(continue)

so that you canreturnto editing your message.

6.7.3 Printing the Next Message: autoprint

This switch causes the delete command to behave like dp. After deleting a
message, the next message in the list is automatically printed. Printing also
occurs automatically after execution of an undelete command.

6.7.4 Listing Messages in Chronological Order: chron and
mchron

The chron switch causes messages to be listed in chronological order. By
default, messages are listed with the most recent first. Set ¢kron when you want
toread aseriesof messagesin the order they werereceived.

The mchronswitch, like chron, prints messagesin chronological order, but lists
them in the opposite order, i.e. highest-numbered, or most recent, first. Thisis
useful if you keep a large number of messages in your mailbox and you wish to
list the headers of the most recently received mail first but read the messages
themselves in chronological order.

6.7.5 Using the Period to Send a Message: dot -

The dot switch lets ydu use a period (.) as an end-of-transmission character, as
well as CNTRL-D. This option is available for those who are used to this
convention when editing with the editor, ed.

6.7.8 Including Yourself in a Group: metoo

Usually, when a group is expanded that contains name of the sender, the sender

isremoved from the expansion. Setting the metoooption causes the sender to be
included in the group.

6-27

XENIX User's Guide

8.7.7 SaQing Aborted Messages: save

The nosave switch prevents aborted messages from being appended to the file
dead.letterin your home directory; messages are saved by default. Messages are
aborted when in compose mode by typing either two interrupts or a “q compose
escape. '

8.7.8 Printing the Version Header: quiet

The guiet switch suppresses the printing of *“<n> messages:” before the

header-list and suppresses printing of the version header when mail is first
invoked.

6.7.9 Choosing an Editor: The EDITOR String
The EDITOR string coﬂbains the pathname of the text editor to use in the edit

command and "e escape. If not defined, then the default editor is used. For
example:

set EDITOR=/bin/ed

6.7.10 Choosing an Editor: The VISUAL String

The VISUAL string contains the pathname of the text editor used in the visual
command and “v escape. For example:

set VISUAL == /bin/vi

By default vi is the editor used.

8.7.11 Choosing a Shell: The SHELL String

The SHELL string contains the name of the shell to use in the ! command and
the “lescape. A default shell is used if thisoption is not defined. For example:

set SHELL==/bin/sh

6.7.12 Changing the Escape Character: The escape String

The escape string defines the character to use in place of the tilde (7) to denote
compose escapes. For example:

set escape=%

6-28

Mail
With this setting, the asterisk becomes the new compose escape character.

8.7.13 Setting Page Size: The page String

The page string causes messages to be displayed in pages of size n lines. You are
prompted with a question mark between pages. Pressing RETURN causes the
next page of the current message to be printed. By default this paging featureis
turned off.

6.7.14 Saving Outgoing Mail: The record String

The recordstring sets the pathname of the file used to record all cutgoing mail.
If not defined, then outgoing mail is not copied and saved. For example:

set record=/usr/john/recordfile
With this setting, all outgoing mail is automatically appended to the file
Juer/john/recordfile.
6.7.15 Keeping Mail in the System Mailbox: autombox
The automboz switch determines whether messages remain in the system
mailbox when you exit mail. If you set automboz, examined messages are
automatically placed in the mboz file in your home directory (your user
mailbox) and removedfrom the system mailbox when you quit. ‘

6.7.18 Changing the top Value: The toplines String

The toplines string sets the number of lines of a message to be printed out with
the top command. By default, this valueisfive. For example:

set toplines=10

With this setting, ten lines of each message are printed out when the top
command is used. ;

6.7.17 Sending Mail Over Telephone Lines: ignore
The ignore switch causes interrupt sighals from your terminal to be ignored

and echoed as at-signs .(@). This switch is normally used only when
communicating with mail over telephone lines.

6-29

XENIX User's Guide

. 6.8 Using Advanced Features

This section discusses advanced features of mail useful to those wnth some

existing familiarity with the XENIX mail system

6.8.1 Command Line Options

One very useful command line optxon to mail is the —s “subject” switch, Wnth

this switch you can specify a subject on the command line. For example, you
. could send a file named letter with the subject line, “Important Meeting at
12:00”, by typing the following:

mail -s "Important Meeting at 12:00” john bob mike <letter

To include other header fields in your message, you can use the following
options:

~-R Makes the mail session “read-only”, preventing alteration of the mail
beingread.

-b Addstheblind carbon copy field to the message header.
—¢ Addsthe carbon copy field to the message header.

-r Addsthereturn-receipt to: field to the message header.
-u Readsin user’smail. |

Mail also allows you to edit files of messages by using the -f switch on the
command line. For example,

mail -f filename
causes mail to edit illename and

mail -f
causes mail to read mboz in your home directory. All the mail commands
except hold are available to edit the messages. When you type the quit
command, mail writes the updated file back.
If you send mail over a noisy phone line, you may riotice that bad characters are
transmitted. Many of these will be the character that aborts messages: the

RUBOUT or DEL character. To ignore these bad characters, invoke mail with
the —i switch.

6-30

Mail

6.8.2 Using Mail as a Reminder Service

Besides sending and receiving mail, you can use mail as a reminder service.
Several XENIX commands have this idea built in to them. For example, the
XENIX Ipr command’s —m switch causes mail to be sent to the user after files
have been printed on the lineprinter. XENIX automatically examines the file
named calender in each user’s home directory and looks for lines containing
either today or tomorrow’s date. These lines are sent by mail as reminder of
important events.

If you program in the shell command language, you can use mail to signal the
completion of a job. For example, you might place the following two linesin a
shell procedure:

biglongjob
echo "biglongjob done” | mail self

You can also create a a logfile that you want to mail to yourself. For example,
you might have a shell procedure that looks like this:

dosomething >logfile
mail sell <logfile

For information about writing shell procedures, see Chapter 7 of this manual,

“The Shell”.

6.8.3 Handling Large Amounts of Mail

Eventual]y, you will face the problem of dealing with an accumulation of
messages in your user mailbox. There are a number of strategies that you can
employ to handle this flood of information. Keep in mind the dictum:

When in doubt, throw it out.

This means that you should only save tmportant mail in your user mailbox. If
your mailbox file becomes large, you must periodically examine its contents to
decide whether messages are still relevant. For very long messages, consxder
replacing message contents with summaries. :

Even the above measures are not usually help enough in organizing the many
messages you are likely to receive. One effective approach is to save mail in files
organized by sender, by topic, or by a combination of the two. Create these files
in a separate mail directory; you can access these mailbox files with the mail -f
Sfilename switch. However, be forewarned—thxs approach to organizing mail
quickly eats up disk space.

6-31

XENIX User’s Guide

6.8.4 Maintenance and Administration »

The following is a list of the programs and files that ma.ke up the XENIX mail
system: X

/Jusr/bin/mail Mail program
[Just flib/mail/mailre Mail system initialization file
[usr /spool/mail/+ System mailbox files

- [usr/name/mbox User mailbox
[ust/name/.mailre User mail initialization file

Jusr/lib/mail/mailhelp.cmd Mail command help file

Jusr/lib//mail/mailhelp.esc Mail compose escape help file

[ust/ lib/ mail/mailhelp.set Mail option help file

[usr/lib/mail/mailaliases System-wide aliases

[etc/newaliases Program to produce database files from
Juer/lib/ mail/aliases

A system-wide. distribution list is kept in [uer/lib/mail/aliases. A system
administrator is usually in charge of thislist. These aliases are kept in a vastly
different syntax from .matilre, and are expanded when mail is sent. You will
normally need special permission to change system-wide aliases.

6.9 Quick Referen ce

The following sections give provide quick reference to the available commands,
compose escapes, and options.

6.9.1 Command Summary

Given below are the name and syntax for each command, its abbreviated form
(in brackets), and a short description. Many commands have optional
arguments; most can be executed without any arguments at all. In particular,
commands that take a message-list argument default will to the current
message if no message-list is given. In the following descriptions, boldface
denotes the name of a command, compose escape or option. Italics are used for
arguments to commands or compose escapes. The vertical bar indicates
selection and is used to separate the arguments from which you may select. All
other text should be read literally.

6-32

RETURN

+n

-

!ohell-cmd

Alias

alias name users
cd directory

delete mesg-list

dp mesg-list

echo

edit mesg-list

exit.[!]"\'

file filename

Mail

Prints the next message.

[+] With no n argument, goes to the next message and
printsit. If given a numeric argument n, goes to the nth
message and printsit.

[-] With no n argument, goes to the previous message
and prmt.s it. If given anumeric argument n, goes to the
nth previous message and printsit.

Prints the first message.

Prints the last message.

Prints the message number of the current message.

Prints the summary of mail commands in

[uver/lib/ mail/ maslhelp.cmd.

Executes the shell command that follows. No space is
needed after the exclamation point.

Prints system-wide aliases for users.

[a] Aliases usere to name. With no name arguments,
prints all currently defined aliases. With one argument,
prints the users aliased by the given name argument.

[c] Changes the user’s ‘working directory to the
specified directory. If no directory is given, then
changes to the user’shome directory.

|d] Deletes each message in the given message-list.

Deletes the current message and prints the next
message. .

Expandsshell metacharacters.

[e] Takes the given message-list and points the text

- editor at each message in turn. On return to command

mode, the edited message is read back in. See also the
visual command.

[x] Immediately returns to the shell without modifying
the system mailbox, the user mailbox, or a file specified
with the —fswitch.

[] Prints the name of the mailbosx file.

8-33

XENIX User’s Guide

forward meeg-num user-list
[f] Takes a uachut argument and forwards the
current message to each name. The message sent to
eachisindented and shows that the sender has passed it
on. The mesg-num argument is optional, and is used to
forward the numbered message instead of the default
message.

Forward mesg-num user-list
{F] Same as forward except that the message is not
indented.

headers +n|-n| mesg-list

|h] With no argument, lists the current range of
headers, which is an 18-message group. If a plus (+)
argument is given, then the next 18-message group is
printed, and if a minus (-) argument is given, the
previous 18-message group is printed. Both plus and
minus accept an optional numeric argument indicating
the number of header-windows to move forward or
backward. If a message-list is given, then the message-
header for each message in the list isprinted.

hold mesg-list [ho] Takes a message-list and marks each message to
. be saved in the user’s system mailbox instead of in
mboz.

list Prints list of mail commands. mboz. Does not
: override the delete command. Not useful unless the
autombozoption is set.

lpr mesg-list [1] Prints each of the messages in the required
message-list on the lineprinter. Messages are piped
.through prbefore being printed.

mail fuser-list] |m] Takes an optional user-list argument and sends
mail to each name after entering compose mode.

snbox mesg-list |[mb] Marks messages given in the message-list
argument to be saved in the user mailbox when a quitis
executed. Message headers contain an initial letter “M”
to show that they are to be saved.

move mesg-list mesg-numPlaces the messages specified in meeg-list after the
message specified in mesg-num. If mesg-num is 0,
meeg-ltst moves to the top of the mailbox.

print meeg-list Ip] Takes amessage-list and pnnts each message on the
user’s terminal. .

6-34

quit

reply meesg-list

Reply mesg-list

Mail

|q] Terminates the mail session, retaining all
nondeleted, unsaved messages in the system mailbox.
If the automboz option is set, then examined messages
are saved in the user mailbox, deleted messages are
discarded, and all messages marked with the hold
command are retained in the system mailbox.

If you are executing a quit while editing a mailbox file
with the —f flag, the mailbox file is rewritten and the
user returns to the shell.

|r] Takes a message-list and sends mail to each message
author just like the mail command.

|R]1dentical to the reply command except that replies
are also sent to other users in the To: and those named
in the Ce:field:

save mesg-list filename

set

set option-list

shell -

size mesg-list
source file
top

string

undelete meeg-list

[8] Takes an optlona! message-list and a filename and
appends each message in turn to the end of the file. The
default message is the current message.

|se] Prints list of available options.

|se] With no arguments, prints all variable values.
Otherwise, sets option. Arguments are of the form
option=value, if the option is a string option or just
option, if the option is a switch. Multiple options may
be set on one line.

[sh]Invokes an interactive version of the shell.

. |si] Takes a message-list and prints the size in

charactersof each message.

[so]) Reads and executes mail commands from the
givenfile,

[t] Takes a message-list and prints the top five lines.
The number of lines printed is set by the variable
toplines.

Searchesfor stringin mesg-list. Ignores case in search.

{u] Takes a message-list and marks each one as not
being deleted. Each message in the list must previously

-~ have been deleted.

6-35

XENIX User's Guide

unset options [uns] Takes a list of option names and discards their
remembered values; this is the opposite of set.

visual mesg-list [v] Takes a message-list and invokes the of editor on
eachone.

write mesg-list filename
|w] Writes the message bodies of messages given by the
message-list to the file given by filename.

8.9.2 Compose Escape Summary

Compose escapes are used when composing messages to perform special
functions. They are only recognized at the beginning of lines. The escape
character can be set with the escape string option.(See section 6.7.14, “The

escape String'’.) Abbreviations for each escape are in brackets.

Here is asummary of the compose escapes:

- ;atring Inserts the string of text in tﬁe message prefaced by a single
tilde (7). '

°? Prints out help for compose escapes on terminal.

. Same asCNTRL-D on a new line.

“leommand Executes ashell command, then returns to compose mode.

“leommand Pipes the message body through—»the command as a filter.

Replaces the message body with the output of the filter. If
the command gives no output or terminates abnormally,
retainsthe original message body.-
“_mail-command Executesamail command, then returns to compose mode.
“:mail-command Executesa mail command, then returns to compose mode.
“alias [“a]Printslist of private aliases. *

“alias aliasname ["a]Printsnamesincludedin private alicsname.

“alias aliasname veers
| a] Adds usersto private alizsname list.

- Alias [A]Printslist of system-wide aliases.

“Alias users ["A]Printssystem-wide aliases for users.

6-36

“bee name ...
“ccname...

“dead

“editor

“headers

message mesg- -list

Mail

["b] Adds the given names to the Bec: field.
[“¢] Adds the given name to the ce: field. -

[d] Reads the file dead.letter from your home du'ectory
into the message. v

{"e] Invokes the line editor on the message being sent.
Exiting the editor returns the user to compose mode.

{"h]Edits the message heading fields by printing each one in
turn and allowing the user to modify each field.

["m] Reads the named messages into the message being
sent, shifted right one tab. If no messages are specified, reads
the current message.

"Message mesg-list| "M] Same as 'message éxcept with no right shift.

“print
“quit -
“read filename
“Return name

“shell

“subject string

“to name...

“visual

“write filename:

| p] Prints the message buffer prefaced by the message
heading. :

| "a] Aborts the message being sent, copying the message to
dead.letterinyour home directory if the save option is set.

["r]Reads the named file into the message.
["R]Addsthegiven haﬁes to the Return-receipt-to: field.
["sh] lnvokes ashell.

["s] Causes the named string to become the current subject

- field.

[7t] Adds the glven namesto the To:field.

["v] Invokes the vi editor to ednt the message buffer.

Exiting the editor returns the user to compose mode.

[w].Write‘s the meés#ge bod& to the named file.

§-37

XENIX User's Guide

6.9.3 Option Summary

Options are controlled with the set and unset commands. An bption iseither a
switch or a string. A switch iseither on or off, while a string option has a value
that is a pathname, a number, or a single character. Options are summarized

below.

askce

asksubject

autombox

autoprint

chron

dot

EDITOR=

escape char

ignore

mchron

metoo

nosave

page==n

6-38

Causes‘prompting for additional carbon copy recipients at the
end of each message. Pressing RETURN retains the current list.

Causes prompting for the subject of each message you send.
The subject is a line of text terminated by a RETURN.

Usually messages are retained in the system mailbox when the
user quits. However, if this option is set, examined messages
are automatically appended to the user mailbox.

Causes the delete command to behave like dp. Thus, after
deleting (or undeleting) a message, the next one is printed
automatically. '

Causes messages to be listed in chronological order.
Causes a single period on a newline to act asthe EOT character.
The normal end-of-transmission character, CNTRL-D, still

works.

Pathname of the text editor to use in the edit coinmand ahd “e
escape. If not defined, then a default editor isused.

If defined, sets char as the character sets the character to use in
place of the tilde () to denote compose escapes.

"Causes interrupt signals from your terminal to be ignored and

echoed as at-signs (@).

Causes messages to be listed in numerical order (most recently
received first), but displayed in chronological order.

Normally, before sending, the name of the sender is removed
from alias expansions. If metoo is set, then the name of the
sender is notremoved.

Prevents saving of the message buffer in the file dead.letter in
the home directory, after two consecutive interrupts or a “q
escape.

Specifies the number of lines(n) to be printed in a ““page” of text
when displaying messages.

quiet

record=

SHELL=

toplines=

VISUAL=

Mail
Suppresses the printing of the version when mail is first
invoked.

Sets the pathname of the file used to record all outgoing mail. If
not defined, then outgoing mail is not copied.

Pathname of the shell to use in the ! command and the ~! escape.
A default shell is used if this option is not defined.

Sets the number of lines of a message to be printed with the top
command. Default is five lines.

Pathname of the text editor to use in the visual command and
“vescape. The default is for the vieditor.

6-39

Chapter 7
The Shell

7.1

7.2

7.3

7.4

7.5

7.6

77

7.8

7.9

Introduction 7-1

Basic Concepts 7-1

7.2.1 HowShells AreCreated 7-1

7.22 Commands 7-2

7.2.3 Howthe ShellFinds Commands 7-2
7.2.4 Generation of Argument Lists 7-3
7.2.5 QuotingMechanisms 7-4

Redirecting Input and Output 7-5

7.3.1 Standard Input and Output 7-5
7.3.2 Diagnostic and Other Outputs 7-6
7.3.3 Command Lines and Pipelines 7-7
7.3.4 Command Substitution 7-8

Shell Variables 7-9

7.4.1 Positional Parameters 7-10

7.4.2 User-Defined Variables 7-10
7.4.3 Predefined Special Variables 7-13

TheShell State 7-14

7.5.1 ChangingDirectories 7-14
7.5.2 The .profileFile 7-15
7.5.3 ExecutionFlags 7-15

A Command’sEnvironment 7-15

Invoking the Shell 7-16

Passing Arguments to Shell Procedures 7-17
Controlling the Flow of Control 7-19

7.9.1 Usingtheif Statement 7-20
7.9.2 Usingthecase Statement 7-22

7.9.3 Conditional Looping: while anduntil 7-22

7.9.4 Looping Over alList: for 7-23

7.9.5 Loop Control: break and continue 7-24

7.9.6 End-of-File and exit 7-25 .

7.9.7 Command Grouping: Parentheses and Braces -
7-25

7.9.8 Input/Output Redirection and Control
Commands 7-26

7.9.9 Transfer to Another File and Back: The Dot()
Command 7-27

7.9.10 Interrupt Handling: trap 7-27

7.10 Special Shell Commands 7-29
7.11 Creation and Organization of Shell Procedures 7-31
7.12 More About Execution Flags 7-32

7.13 Supporting Commands and Features 7-33
7.13.1 Conditional Evaluation: test 7-33
7.13.2 Echoing Arguments 7-35
7.13.3 Expression Evaluation: expr 7-35
7.13.4 Trueand False 7-36
7.13.5 In-Line Input Documents 7-36
7.13.6 Input / Output Redirection Using File

Descriptors 7-37
7.13.7 Conditional Substitution 7-37
7.13.8 InvocationFlags 7-39

7.14 Effective and Efficient Shell Programming 7-39
7.14.1 Number of Processes Generated 7-40
7.14.2 Number of DataBytes Accessed 7-41
7.14.3 Shortening Directory Searches 7-42
7.14.4 Directory-Search Order and the PATH

Variable 7-42
7.14.5 Good Ways to Set Up Directories 7-43

7.15 Shell Procedure Examples 7-43

7.16 Shell Grammar 7-52

The Shell

7.1 Introduction

When users log into XENIX, they communicate with the shell command
interpreter, sh. This interpreter is a XENIX program that supports a very
powerful command language. Each invocation of this interpreter is called a
shell; and each shell has one function: to read and execute commands from its
standard input.)

Because the shell gives the user a high-level language in which to communicate
with the operating system, XENIX can perform tasks unheard of in less
sophisticated operating systems. Commands that would normally have to be
written in a traditional programming language can be written with just a few
lines in a shell procedure. In other operating systems, commands are executed
instrict sequence. With XENIX and the shell, commands can be:

Combined to form new commands

Passed positional parameters

Added or renamed by the user

Executed within loops or executed conditionally

Created for local execution without fear of name conflict with other
“user commands
o Executed in the background without interrupting a session at a
terminal

e e o o o

Furthermore, commands can “redirect” command input from one source to
another and redirect command output to a file, terminal, printer, or to another
command. This provides flexibility in tailoring a task for a particular purpose.

7.2 Basic Concepts

The shell itself (i.e., the program that reads your commands when you log in or
that isinvoked with the sh command)is a program writtenin the C language; it
isnot part of the operating system proper, but an ordinary user program.

7.2.1 How Shells-Are Created

In XENIX, a process is an executing entity complete with instructions, data,
input, and output. All processes have lives of their own, and may even start (or
“fork”) new processes. Thus, at any given moment several processes may be
executing, some of whichare ‘‘children” of other processes.

Users log into the operating system and are assigned a ‘““shell” from which they
execute. This shell is a personal copy of the shell command interpreter that is
reading commands from the keyboard: in this context, the shell is simply
another process.

In the XENIX multitasking environment, files may be created in one phase and
then sent off to be processed in the “background.” This allows the user to

7-1

XENIX User’s Guide
continue working while programs are running.

7.2.2 Commands

The most common way of using the shell is by typing simple commands at your
keyboard. A simple command is any sequence of arguments separated by
spaces or tabs. The first argument (numbered zero) specifies the name of the
command to be executed. Any remaining arguments, with a few exceptions, are
passed as arguments to that command. For example, the following command
line might be typed to request printing of the files allan, barry, and calvin:

lpr allan barry calvin

If the first argument of a command names a file that is eze cutable (as indicated
by an appropriate set of permission bits associated with that file) and isactually
a compiled program, the shell, as parent, creates a child process that
immediately executes that program. If the file is marked as being executable,
but is not a compiled program, it is assumed to be a shell procedure, i.e.,a fileof .
ordinary text containing shell command lines. In this case, the shell spawns
another instance of itself (a subskell) to read the file and execute the commands
insideit.

From the user’s viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implementation
has been used, rather than requiring the user to do so. This provides uniformity
of invocation.

7.2.3 How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in the file
system. The shell attempts to use the command name as given; if this fails, it
prepends the string /bin to the name. If the latter is unsuccessful, it prepends
[uer/bin to the command name. The effect is to search, in order, the current
directory, then the directory /bin, and finally, /usr/bin. For example, the pr
and man commands are actually the files fbin/pr and [uer/bin/man,
respectively. A more complex pathname may be given, either to locate a file
relative to the user’s current directory, or to access a command with an
absolute pathname. If a given command name begins with a slash (/) (e.g.,
Jbinfsortor [emd), the prepending is not performed. Instead, a single attempt
is made to execute the command asnamed.

This mechanism gives the user a convenient way to execute public commands
and commands in or near the current directory, as well as the ability to execute
any accessible command, regardlessof itslocation in the file structure. Because
the current directory is usually searched first, anyone can possess a private
version of a public command without affecting other users. Similarly, the
creation of a new public command does not affect a user who already has a
private command with the same name. The particular sequence of directories

7-2

The Shell

searched may be changed by resetting the shell PATH variable. (Shell variables
are discussed later in this chapter).

7.2.4 Generation of Argument Lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of this
similarity in names, the shell lets the user specify patterns that match the
filenames in a directory. If a pattern is matched by one or more filenames in a
directory, then those filenames are automatically generated by the shell as
arguments to the command.

Most characters in such a pattern match themselves, but there are also XENIX
special characters that may be included in a pattern. These special characters
are: the star (¢), which matches any string, including the null string; the
question mark (?), which matches any one character; and any sequence of
characters enclosed within brackets ([and]), which matches any one of the
enclosed characters. Inside brackets, a pair of characters separated by a dash
(-) matches any character within the range of that pair. Thus [a-de] is
equivalent to [abede].

Examples of metacharacter usage:

« T (Matches all names in the current directory) -
temp# - (Matches all names containing "temp”)

[a-1]* (Matches all names beginning with™ a” through”f’)
*.c (Matchees all namees ending in”.c")

[usr/bin/? (Matches all single-character names in [usr/bin)

This pattern-matching capability saves typing and, more importantly, makes
it possible to organize information in large collections of files that are namedin
astructured fashion, using common characters or extensions to identify related
files. '

Pattern matching has some restrictions. If the first character of a filename is a
period (.), it can be matched only by an argument that literally begins with a -
period. If a pattern does not match any filenames, then the pattern itself is
printed out as the result of the match.

Note that directory names should not contain any of the following characters:

]

If these characters are used, then infinite recursion may occur during pattern
matching attempts.

XENIX User’'s Guide

7.2.5 Quoting Mechanisms

The characters <,>,+,?.L and G have special meanings to the shell. Toremove
- the special meaning of these characters requires some form of quoting. This is
done by using single quotation marks () or double quotation marks (") to
surround a string. A backslash (\) before a single character provides this
function. (Back quotation marks (') are used only for command substitution in
the shell and do not hide the special meaningsof any characters.)

All characters within single quotation marks are taken literally. Thus
echostuff="echo $§? $*; Is » | we~

resultsin the string
echo $? $¢;1s ¢ | we .

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

Within double quotation marks, the special meaning of certain characters does
persist, while all other characters are taken literally. The characters that
retain their special meaning are the dollar sign ($), the backslash (\), the single
quotation mark (*), and the double quotation mark (") itself. Thus, within
double quotation marks, variables are expanded and command substitution
takes place (both topics are discussed in later sections). However, any
commands in a command substitution are unaflfected by double quotation
marks, so that characters such asstar (*) retain their special meaning.

To hide the special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters with
abackslash (\). Outside of double quotation marks, preceding a character with
a backslash is equivalent to placing single quotation marks around that
character. A backslash (\) followed by a newline causes that newline to be
ignored and is equivalent to a space. The backslash-newline pair is therefore
useful in allowing continuation of long command lines.

Some examples of quoting are shown below:

7-4

The Shell

Input Shell interprets as:

L The back quotation mark (*}
o’ The double quotation mark {")
“‘echo one*’ | the one word ” ‘echo one'
A" The double quotation mark (")
” ‘echo one'” | the one word "one”

nee illegal (expects another °)

‘one two the two words "one” & "two”
"one two” the one word "one two”

‘one two’ the one word "one two”

‘one * two’ the one word "one * two”
"one * two” the one word "one * two”
‘echo one’ the one word "one”

7.3 Redirecting Input and Output

In general, most commands do not know or care whether their input or output
is coming from or going to a terminal or a file. Thus, a command can be used
conveniently either at a terminal or in a pipeline. A few commands vary their
actions depending on the nature of their input or output, either for efficiency,
or to avoid useless actions (such as attempting random accessI/O on a terminal
or apipe).

7.3.1 Standard Input and Output

When a. command begins execution, it usually expects that three files are
already open: a ‘‘standard input”. a ‘“standard output”. and a *‘diagnostic
output’’; (also called “‘standard error”). A number called a file descriptoris
associated with each of these files. By convention, file descriptor 0 is associated
with the standard input, file descriptor 1 with the standard output, and file
descriptor 2 with the diagnostic output. A child process normally inheritsthese
files from its parent; all three files are initially connected to the terminal (0 to
the keyboard, 1 and 2 to the terminal screen). The shell permits the files to be
redirected elsewhere before control is passed to an invoked command.

An argument to the shell of the form “ < file” or *“> file”’ opens the specified file
as the standard input or output (in the case of output, destroying the previous
contents of file, if any). An argument of the form “>> file” directs the
standard output to the end of file, thus providing a way to append data to the
file without destroying its existing contents. In either of the two output cases,

-5

XENIX User’s Guide

the shell creates file if it does not already exist. Thus
>output

alone on a line creates a zero-length file. The following appends to file log the
list of users who are currently logged on:.

who >> log

Such redirection arguments are only subject to variable and command
substitution; neither blank interpretation nor pattern matching of filenames
occurs after these substitutions. This meansthat

echo ‘this is a test” > #.gal

produces a one-line file named #.gal. Similarly, an error message is produced by
the following command, unless you have a file with the name *?";

cat < ?

So remember, special characters are not expanded in redirection arguments.
The reason this is so is that redirection arguments are scanned by the shell
before patternrecognition and expansion takes place.

7.3.2 Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file
associated with file descriptor 2. (There is often a need for an error output file
that is different from standard output so that error messages do not get lost
down pipelines.) You can redirect this error output to a file by immediately
prepending the number of the file descriptor (2 in this case) to either output
redirection symbol (> or >>). The following line appends error messages
from the cc command to the file named ERRORS: -

cc testfile.c 2> >ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will be
passed as an argument to the command.

This method may be generalized to allow redirection of output associated with
any of the first ten file descriptors (numbered 0-9). For instance, if emd puts
output on file descriptor 9, then the following line will direct that output to the
file save data: '

cmd 9>savedata

A command often generates standard output and error output, and might even
have some other output, perhaps a data file. In this case, one can redirect

7-6

The. »Shell

independently all the different outputs. Suppose, for example, that emd directs
its standard output to file descriptor 1, its error output to file descriptor 2, and
builds a data file on file descriptor 8. The following would direct each of these
three outputs to a different file:

cmd >standard 2>error 9>data

7.3.3 Command Lines and Pipelines

A sequence of commands separated by the vertical bar (|) makes up a pipeline.
In a pipeline consisting of more than one command, each commandisrunasa
separate process connected to its neighbors by pipes, that s, { the output of each
command (except the last one) becomes the input of the next commandin line.

A filteris a command that reads its standard input, transforms it in some way,
then writes it asits standard output. A pipeline normally consists of a seriesof
filters. Although the processes in a pipeline are permitted to execute in parallel,
each program needs to read the output of its predecessor. Many commands
operate on individual lines of text, reading a line, processing it, writing it out,
and looping back for more input. Some must read large amounts of data before
producing output; sort is an example of the extreme case that requiresallinput
to be read before any output is produced. ’

The followmg isan example of a typical pipeline:
nroﬁ -mm text | col | lpr

N roffis a text formatter available in the XEN!X Text Processing System whose
output may contain reverse line motions, col converts these motions to a form
that can be printed on a terminal lacking reverse-motion capability, and Ipr
does the actual printing. The flag —mm indicates one of the commonly used
formatting options, and teztis the name of the file to be formatted

The following examples illustrate the variety of effects that can be obtained by
combining a few commands in the ways described above. It may be helpful to
try these at a terminal:

[who
Prints the list of logged-in users on the terminal screen.

e who>>log
o Appen ds t.he list of logged-in usersto the end of file log

o " who|we--] o ‘
- Prints the number of logged-in users (The arg‘ument to we is
pronounced minus ell”)

XENIX User’s Guide

e who|pr
Prints a paginated list of logged-m users.

¢ who|sort
Prints an alphabetized list of logged-m users.

s who|grepbob
Prints the list of logged-m users whose login names contain the string
bob. .

o .who|grepbob |sort|pr :
Prints an alphabetized, paginated list of logged-in users whose login
names contain the string bob.

o { date;who|we-1; } >Dlog
Appends (to file log) the current date followed by the count of logged-
in users. Be sure to place a space after the left brace and a semicolon
before the right brace. .

e who|sed—e ‘s/ .#/ [’|sort|uniq-d
Prints only the login names of all users who are logged in more than
once. Note the use of sed as a filter to remove characters trailing the
login name from each line. (The *‘.#’’ in the sed command is preceded
by aspace.)

The who command does not by stself provide options to yield all these
results—they are obtained by combining who with other commands. Note
that who just serves as the data source in these examples. As an exercise,
replace ““who |’ with “ < fetc/passwd” in the above examples to see how a file
can be used as a data source in the same way. Notice that redirection
arguments may appear anywhere on the command line, even at the start. This
means that ‘

<infile >outfile sort|pr
is the same as k

sort|pr <infile >outfile

7.3.4 Command Substitution

Any command line can be placed within back quotation marks (*...") so that
the output of the command replaces the quoted command line itself. This
concept is known as command substitution. The command or commands
enclosed between back quotation marks are first executed by the shelland then
their output replaces the whole expression, back quotation marks and all. This
feature is often used to assign to shell variables. (Shell variables are described
in the next section.) For example,

7-8

The Shell

today="date"
assigns the string representing the current date to the variable “today”; for
example “Tue Nov 27 16:01:09 EST 1982”. The following command saves the
number of logged-in usersin the shell variable users :

users="who | we -I'
Any command that writes to the standard output can be enclosed in back
quotation marks. Back quotation marks may be nested, but the inside sets
must be escaped with backslashes(\). For example:

logmsg="echo Your login directory is \"pwd\™
will display the line “your login directory is name of login directory”. Shell
variables can also be given values indirectly by using the read and line
commands. The read command takes a line from the standard input (usually
your terminal) and assigns consecutive words on that line to any variables
named.
For example,

read first init last
takesan input line of the form

G: A. Snyder
and has the same effect astyping:

first=G. init=A. last=Snyder

The read command assignsany excess “words” to the last variable.

The line command reads a line of input from the standard input and then
echoesit to the standard output.

7.4 Shell Variables

The shell has several mechanisms for creating variables. A variable is a name
representing a string value. Certain variables are referred to as posstional
parameters;these are the variables that are normally set only on the command
line. Other shell variables are simply names to which the user or the shell itself
may assign string values.

7-9

XENIX User’s Guide

7.4.1 Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the
command line is assigned to the positional parameter $0. The first command
argument is called $1, and so on. The shift command may be used to access
arguments in positions numbered higher than nine. For example, the following
shell script might be used to cycle through command line switches and then
process all succeeding files:

while test $1°
do case $1 in
-a) A==aoption ; shift ;;
-b) B=boption ; shift ;;
—c) C=coption ; shift ;;
—+) echo "bad option” ; exit 1 ;;
*} process rest of files
esac
done

One can explicitly force valuesinto these positional parameters by using the set
command. For example,

set abc def ghi

assigns the string “abc¢” to the first positional parameter, $1, the string “def” to
$2, and the string “ghi” to $3. Note that $0 may not be assigned a value in this
way—it always refers to the name of the shell procedure; or in the login shell, to
the name of the shell.

7.4.2 User-Defined Variables

The shell also recognizes alphanumeric variables to which string valuesmay be
assigned. A simple assignment has the syntax:

name=string

Thereafter, $name will yield the value string. A name is a sequence of letters,
digits, and underscores that begins with a letter or an underscore. No spaces
surround the equal sign (=) in an assignment statement. Note that positional
parameters may not appear on the left side of an assignment statement; they
can only be set as described in the previoussection. -

More than one assigmhent may appear in an assignment statement, but

beware: the shell performs the assignments from right to left. Thus, the
following command line results in the variable “ A’ acquiring the value “abc¢”’:

7-10

The Shell

A=$B B==abc

The following are examples of simple assignments. Double quotation marks
around the right-hand side allow spaces, tabs, semicolons, and newlines to be
included in a string, while also allowing variable substitution (also known as
“parameter substitution”) to occur. This means that references to positional
parameters and other variable names that are prefixed by a dollar sign ($) sre
replaced by the corresponding values, if any. Single quotation marks inhibit
variable substitution:

MAIL=/usr/mail/gas
echovar="echo $1 $2 $3 $4”

stars==*sss%
asterisks=="$stars’

In the above example, the variable “echovar” has as its value the string
consisting of the values of the first four positional parameters, separated by
spaces, plus the string “echo”. No quotation marks are needed around the
string of asterisks being assigned to stars because pattern matching (expansion
of star, the question mark, and brackets) does not apply in this context. Note
that the value of $asterieksis the literal string ‘‘$stars”, not the string ‘‘essss”,
because the single quotation marks inhibit substitution.

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example resultsin $first and $sec ondhaving the same value:

first="a string with embedded spaces’
second=$first

In accessing the values of variables, you may enclose the variable name in
braces {...} to delimit the variable name from any following string. In
particular, if the character immediately following the name is a letter, digit,or
underscore, then the braces are required. For example, examine the following
input:

a="This is a string’
echo "${a}ent test of variables.”

Here, the echo command prints:
This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for ‘‘$aent” and
print:

test of variables.

7-11

XENIX User's Guide

The following variables are maintained by the shell. Some of them are set by
the shell, and all of them can be reset by the user:

HOME Initialized by the login program to the name of the user’s login

IFS

PATH

PS1

7-12

directory, that is, the directory that becomes the current
directory upon completion of a login; ed without arguments
switches to the SHOME directory. Using this variable helps keep
full pathnames out of shell procedures. This is of great benefit
when pathnames are changed, either to balance disk loads or to
reflect administrative changes.

The variable that specifies which characters are internal field
separators. These are the characters the shell uses during blank
interpretation. (If you want to parse some delimiter-separated
data easily, you can set IFS to include that delimiter.) The shell
initially setsIFS to include the blank, tab, and newline characters.

The pathname of a file where your mail is deposited. If MAIL is
set, then the shell checks to see if anything has been added to the
file it names and announces the arrival of new mail each time you
return-to command level (e.g., by leaving the editor]. MAIL must
be set by the user and “‘exported”. (The export command is
discussed later in this chapter.) {The presence of mail in the
standard mail file is also announced at login, regardless of whether

MAIL is set.)

The variable that specifies the search path used by the shell in
finding commands. Its value is an ordered list of directory
pathnames separated by colons. The shellinitializes PATH to the
list : /bin: [usr/bin where a null argument appears in front of the
first colon. A null anywhere in the path list represents the current
directory. On some systems, a search of the current directory is
not the default and the PATH variable is initialized instead to
Jbin:/usr/bin. If you wish to search your current directory last,
rather than first, use:

PATH=/bin:/usr /bin:: .

Here, the two colons together represent a colon followed by a null,
followed by a colon, thus naming the current directory. You could
possess a personal directory of commands (say, $HOME/ bin) and
cause it to be searched before the other three directories by using:

PATH=$HOME/bin::/bin:/usr /bin
“PATH” isnormally set inyour .profile file.
The variable that specifies what string is to be used as the primary

prompt string. If the shell is interactive, it prompts with the value
of PSI when it expects input. The default value of PS1is“$ ” (a

PSs2

The Shell

dollar sign ($) followed by a blank).

The variable that specifies the secondary prompt string. If the
shell expects more input when it encounters a newline in its input,
it prompts with the value of PS2. The default value for this
variableis*> " (agreater-than symbol followed by aspace).

In general, you should be sure to export all of the above variables so that their
values are passed to all shells created from your login. Use export at the end of
your .profile file. Anexampleof an export statement follows:

export HOME IFS MAIL PATH PS1 PS2

7.4.3 Predefined Special Variables

Several variables have special meanings; the following are set onlyby the shell:

$#

$?

$$

Records the number of arguments passed to the shell, not counting
the name of the shell procedure itself. For instance, $# ylelds the
number of the hxghest set positional parameter. Thus

shemdabe

. automatically sets $# to 3. One of its primary uses is in checking for

the presence of the required number of arguments:

if test $# -1t 2 -

then v

echo ‘two or more args required ; exit
f .

Contains the exit status of the last command executed (also referred
to as “return code’, “exit code”, or “value”). Its value is a decimal
string. Most XENIX commands return zero to.indicate successful
completion. The shellitself returns the current value of $? as its éxit
status.)

The process number of the current process. Because process
numbers are unique among all existing processes, this string is often
used to generate unique names for temporary files. XENIX provides
no mechanism for the automatic creation and deletion of temporary
files; a file exists until it is explicitly removed. Temporary files are
genera]ly undesirable objects; the XENIX pipe mechanism is far
superior for many applications. However, the need for umque]y-
named temporary files does occasionally occur. :

The following example illustrates the recommended practice of
creating temporary files; note that the directories /usrand fusr/tmp

7-13

XENIX User's Guide

are cleared out if the system is rebooted.

use current process id
to form unique temp file
teinp-=/usr/temp/$$
Is > $temp
commands here, some of which use $temp
rm $temp

clean up at end

$! The process number of the last process run in the background (using
the ampersand (&)). This is a string containing from one to five
digits. ‘

$- Astring consisting of names of execution flags currently turned on in
the shell. For example, $- might have the value “xv” if you are
tracing your output.

7.5 The Shell State

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of
execution, and the current working directory.

The state of a shell may be altered in various ways. These include changing the
working directory with the cd command, setting several flags, and by reading
commands from the special file, .profile , in your login directory.

7.5.1 Changing Directories

The c¢d command changes the current directory to the one specified as its
argumeiit. This can and should be used to change to a convenient place in the
directory structure. Note that cd isoften placed within parentheses to cause a
subshell to change to a different directory and execute some commands without
affecting the original shell. .

For example, the first sequence below copies the file /[ete/ pésawd to
[usr/ you/ passwd; the second example first changes directory to /etc and then
copies the file:

cp fetc/passwd fusr/you/bin/passwd
{cd Jfetc ; cp passwd fusr/you/passwd)

Note the use of parentheses. Both command lines have the same effect.

7-14

The Shell

7.5.2 The .profile File

The file named . profile isread each time you log in to XENIX. It isnormally used
to execute special one-time-only commands and to set and export variables to
all later shells. Only after commands are read and executed from .profile, does
the shell read commands from the standard input—usually the terminal.

7.56.3 Execution Flags

The set command lets you alter the behavior of the shell by setting certain shell
flags. In particular, the —x and —v flags may be useful when invoking the shell
asacommand from the terminal. The flags-x and-v may be set by typing:

set —xv

The same flags may be turned off by typing:
set +xv

These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This flag is
particularly useful for isolating syntax errors. The commands on
. eachinputline are executed after that input line is printed.

-X Commands and their arguments are printed as they are executed.
(Shell control commands, such as for, while, etc., are not printed,
however.) Note that —x causes a trace of only those commands that
are actually executed, whereas —v prints each line of input until a
syntax error is detected.

The set command is also used to set these and other flags within shell
procedures.

7.6 A Command’s Environment

All variables and their associated values that are known to a command at the
beginning of its execution make up its environment. This environment
includes variables that the command inherits from its parent process and
variables specified as keyword parameters on the command line that invokes
the command.

The variables that a shell passes to its child processes are those that have been
named as arguments to the export command. The export command places
the named variables in the environmentsof both the shell endall its future child
processes. .

7-15

XENIX User's Guide

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line. Such
variables are placed in the environment of the procedure being invoked. For .
example:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a=keyl b=key2 keycommand
then the resulting output is:
keyl key2

Keyword parametersare not counted as arguments to the procedure and do not
affect $#.

A procedure may access the value of any variable in its environment. However,
if changes are made to the value of a variable, these changes are not reflected in
the environment; they are local to the procedure in question. In order for these
changes to be placed in the environment that the procedure passes to tte child
processes, the variable must be named as an argument to the export command
within that procedure. To obtain a list of variables that have been made
exportable from the current shell, type:
export

You will also get a list of variables that have been made readonly. To get a list
of name-value pairsin the current environment, type either

printenv
or

env

7.7 Invoking the Shell

The shell is a command and may be invoked in the same way as any other
command:

shproc|arg...] A new instance of the shell is explicitly invoked to
read proc. Arguments, if any, can be
manipulated.

7-16

sh—v proc [arg...]

proc|arg...]

The Shell

This is equivalent to putting *‘set —v”’ at the
beginning of proc. It can be used in the same way

“for the —x, —e,~u, and —n flags.

If proc is an executable file, and is not a compiled
executable program, the effect is similar to that
of:

sh proc args

An advantage of this form is that variables that
have been exported in the shell will still be
exported from proc when this form is used
(because the shell only forks to read commands
from proc). Thus any changes made within proc
to the values of exported variables will be passed
on to subsequent commands invoked from proc.

7.8 Passing Arguments to Shell Procedures

When a command line is scanned, any character sequence of the form $nis
replaced by the ath argument to the shell, counting the name of the shell
procedure itself as $0. This notation permits direct reference to the procedure
name and to as many as nine positional parameters. Additional arguments can
be processed using the shift command or by using afor loop.

The shift command shifts arguments to the left; i.e., the value of $1 is thrown
away, $2 replaces $1, $3 replaces $2, and so on. The highest-numbered
positional parameter becomes unset ($0 is never shifted). For example, in the
shell procedure ripple below, echo writesits arguments to the standard output.

ripple command

#
while test $# 1= 10
do '

echo $1 $2 $3 $4 $5 $6 $7 $8 $9

shift
done

Linesthat begin with a number sign (#) are comments. The looping command,
while, is discussed in Section 7.9.3 of this chapter. If the procedure were

invoked with
ripplea b ¢

it would print:

7-17

XENIX User’s Guide

abe
be
c

The special shell variable ‘“star” ($*) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above could be
written more compactly as:

echo $*

These two echo commands are not equivalent: the first prints at most nine
positional parameters; the second prints all of the current positional
parameters. The shell star variable ($#) is more concise and less error-prone.
One obvious application is in passing an arbitrary number of arguments to a
command: For example

we $=
counts the words of each of the filesnamed on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the input.
Variables are replaced by their values and then command substitution (via
back quotation marks) is attempted. 1/O redirection arguments are detected,
acted upon, and deleted from the command line. Next, the shell scans the
resulting command line for snternal field separators, that is, for any characters
specified by IFS to break the command line into distinct arguments; ezplsest
null arguments (specified by "” or °’) are retained, while implicit null
arguments resulting from evaluation of variables that are null or not set are
removed.. Then filename generation occurs with all metacharacters being
expanded. The resulting command line is then executed by the shell.

Sometimes, command lines are built inside a shell procedure. In this case, it is
sometimes useful to have the shell rescan the command line after all the initial
substitutions and expansions have been performed. The special command eval
is available for this purpose. Eval takes a command line as its argument and
simply rescans the line, performing any variable or command substitutions
that are specified. Consider the following (simplified) situation:

command==who
output=="1| we -1*
eval $command $output
Thissegment of code resultsin the execution of the command line

who | we -1

The output of eval cannot be redirected. However, uses of eval can be nested,
so that a command line can be evaluated several times.

7-18

The Shell

7.9 Controlling the Flow of Control

The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures. Before
describing these structures, a few termsneed to be defined.

A simple commandis any single irreducible command specified by the name of
an executable file. I/O redirection arguments can appear in a simple command
line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands separated
by vertical bars (]). In a pipeline, the standard output of each command but
the last is connected (by a pipe) to the standard input of the next command.
Each command in 2 pipeline is run separately; the shell waits for the last
command to finish. The exit status of a pipeline is nonzero if the exit status of
either the first or last processin the pipeline is nonzero.

A command list is a sequence of one or more pipelines separated by a semicolon
(;), an ampersand (&), an *“and-if”’ symbol (& &), or an “‘or-if”’ (||) symbol, and
optionally terminated by a semicolon or an ampersand. A semicolon causes
sequential execution of the previous pipeline. This means that the shell waits
for the pipeline to finish before reading the next pipeline. On the othér hand,
the ampersand (&) causes asynchronous background execution of the
preceding pipeline. Thus, both sequential and background execution are
allowed. A background pipeline continues execution until it terminates
voluntarily, or until its processes are killed.

Other uses of the ampersand include off-line printing, background
compilation, and generation of jobs to be sent to other computers. For
example, if you type :

nohup cc prog.c&

you may continue working while the C compiler runs in the background. A
command line ending with an ampersand is immune to interrupts or quits that
you might generate by typing INTERRUPT or QUIT. It is also immune to
logouts with CNTRL-D. However, CNTRL-D will abort the command if you are
operating over a dial-up line. In this case, it is wise to make the command
immune to hang-ups (i.e., logouts) as well. The nohup command is used for
this purpose. In the above example without nohup, if you log out from a dial-
up line while ce is still executing, cc will be killed and your output will
disappear.

The ampersand operator should be used with restraint, especially on heavily-
loaded systems. Other users will not consider you a good citizen if you start up
a large number of background processes without a compelling reason for doing
so.

7-19

XENIX User’s Guide

The and-if and or-if (&£& and ||) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating command
lines (but both are lower than the-ampersand (&) and the vertical bar (|)}. In
the command line

cmdl || emd2

the first command, ¢md1, is executed and its exit status examined. Only if
emd1fails (i.e., has a nonzero exit status) is cmd2executed. Thus, thisisa more
terse notation for:

if ecmdl

test $? 1= 0
then

cmd2
fi

The and-if operator (& &) operator yields a complementary test. For example,
in the following command line

cmdl && emd2

the second command is executed only if the first succeeds (and has a zero exit
status). In the sequence below, each command is executed in order until one
fails:

emdl && emd2 && cmd3 && ... &£& ¢cmdn
A simple command in a pipeline may be replaced by a command listenclosed in
either parentheses or braces. The output of all the commands so enclosed is
combined into one stream that becomes the input to the next command in the
pipeline. The following line formats and prints two separate documents:

{ nroff -mm textl; nroff -mm text2; } | lpr
Note that a space is needed after the left brace and that a semicolon should
appear before theright brace.

7.9.1 Using the if Statement

The shell provides structured conditional capability with the if command. The.
simplest if command hasthe following form:

if command-list
then command-list

fi

The command list following the if isexecuted and if the last commandin the list
has a zero exit status, then the command list that follows then isexecuted. The

7-20

The Shell

word fi indicatesthe end of the if command.

To cause an alternative set of commands to be executed when there is anonzero
exitstatus, an else clause can be given with the following structure:

if command-list
then command-list
else command-list

fi

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement (See Section 7.9.2) is better for large numbers of
tests. For example: ,

if test —f "$1”

is $1 a file?

then : pr $1

elif test —d "$1”

else, is $1 a directory?
then (cd $1; pr #)

else echo $1 is neither a file nor a directory

fi

The above example is executed as follows: if the value of the first positional
parameter is a filename (-f), then print that file; if not, then check to see ifitis
the name of a directory (-d). If so, change to that directory (¢d) and print all the
files there (pr#). Otherwise, echo the error message.

- The if command may be nested (but be sure to end each one with a fi). The
newlinesin the above examples of if may be replaced by semicolons,

The exit status of the if command is the exit status of the last command
executed in any then clause or else clause. If no such command was executed,
if returns a zero exit status.

Note that an alternate notation for the test command uses brackets to enclose
the expression being tested. For example, the previous example might have
been written as follows:.

if |-f"$17] ,

~ is $1 a file?

then pr $1

elif [-d"$1"]

else, is $1 a directory?
then (cd $1; pr) ~

else echo $1 is neither a file nor a directory

fi

Note that a space after the left bracket and one before the right bracket are
essential in this form of the syntax.

7-21

XENIX User's Guide

7.9.2 Using the case Statement

A multiple test conditional is provided by the case command The ‘basic
formatof the case statement is:

case string in
pattern) command-list ;;
pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double
semicolon (;;) serves as a break out of the case and is required after each
command list except the last. Note that only one pattern is ever matched, and
that matches are attempted in order, so that if a star (+) is the first patternina
case, no other patterns are looked at.

More than one pattern may be associated with a given command list by
specifying alternate patterns separated by vertical bars(|).

case $i in ~
*.c) cc $i
»
#.h | *.sh)
do nothing
*) , ,echo "$i of unknown type”
"
esac

In the above example, no action is taken for the second set of patterns because
the null, colon (:) command is specified. The star (¢)is used as a default pattern,
because it matches any word.

~ The exit status-of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit status.
7.9.3 Conditional Looping: while and until
A while command has the general form:
while command-list
do

command-list
done -

7-22

The Shell

The commands in the first command-list are executed, and if the exit statusof
the last command in that list is zero, then the commands in the second
command-list are executed. This sequence is repeated aslong as the exit status
of the first command-liet is zero. A loop can be executed as long as the first
command-list returns a nonzero exit status by replacing while with until.

Any newline in the above example may be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second commaend-liet. If no such command is executed, while
(or until) has a zero exit status.

7.9.4 Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set of files,
or execute some command once for each of several arguments. The for
command can be used to accomplish this. The for command has the format:

for variable in word-lsst
do

) command-list
done

Here word-list is a list of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. Variable takes
'on asits value each word from the word list, in turn. The word list is fixed after
it is evaluated the first time. For example, the following for loop causes eachof
the C source files zec.c, ¢emd.c, and word.c in the current directory to be
compared with a file of the same name in the directory fusr/erc/cmdfsh:

for CFILE in xec cmd word
do diff ${CFILE}.c fusr/src/cmd/sh/${CFILE}.c
done

Note that the first occurrence of CFILE immediately after the word for hasno
preceding dollar sign, since the name of the variable is wanted and not its value.

You can omit the ‘‘in word-list” part of a for command; this causes the
current set of positional parameters to be used in place of word-list. This is
useful when writing a command that performs the same set of commands for
each of an unknown number of arguments. Create a file named ecko2 that
contains the following shell script: ’

for word
do echo $word$word
done

Give echo2execute status:

7-23

XENIX User’s Guide

chmod +x echo2

Now type the following command: v
echo2 ma pa bo fiyo noso ta

The output from this command is:

mama
papa
bobo
fifi
yoyo
nono
S0S0
tata

7.9.5 Loop Control: break and continue

The break command can be used to terminate execution of a while or a for
loop. Continue requests the execution of the next iteration of the loop. These
commandsare eflective only when they appear between do and done.

The break command terminates execution of the smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exit from nlevelsisobtained by break n.

The continue command causes execution to resume at the nearest enclosing
for, while, or until statement, i.e., the one that begins the innermost loop
containing the continue. You can also specify an argument n to continue and
execution will resume at the nth enclosing loop:

7-24

The Shell

effect of using parentheses to group commands).
2. Control commands run slightly slower when redirected, because of

the additional overhead of creating a shell for the control command.

7.9.9 Transfer to Another File and Back: The Dot (.) Command
A command line of the form

proc
causes the shell to read commands from proc without spawning a new process.
Changes made to variables in proc are in effect after the dot command finishes.
This is a good way to gather a number of shell variable initializations into one

file. A common use of this command is to reinitialize the top level shell by
reading the . profile file with:

.profile

7.9.10 Interrupt Handling: trap

Shell procedures can use the trap command to disable a signal (c#use it to be
ignored), or redefine itsaction. The form of the trap command is:

trap arg signal-list
Here argis a string to be interpreted asa command list and signal-list consists

of one or more signal numbers as described in signal(S)) in the XENIX Reference
Manual. The most important of these signals follow:

Number Signal

00 KILL (CNTRL-U)

01 HANGUP

02 INTERRUPT character

03 QUIT v

09 KILL (cannot be caught or ignored)

11 segmentation violation {(cannot be caught or ignored)
15 software termination signal

The commandsin arg are scanned at least once, when the shell first encounters
the trap command. Because of this; it is usually wise to use single rather than
double quotation marks to surround these commands. The former inhibit
immediate command and variable substitution. This becomes important, for
instance, when one wishes to remove temporary files and the names of those
files have not yet been determined when the trap command is first read by the
shell. The following procedure will print the name of the current directory in

7-27

XENIX User’s Guide

the file errdirect when it isinterrupted, thus giving the user information as to
how much of the job was done:

trap ‘echo ‘pwd’ >errdirect’2 3 15
for i'in /bin fusr/bin fusr/gas/bin
do
cd $i
commands to be executed in directory $i here
done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the directory
from which the procedure was first executed:

(trap "echo ‘pwd’ >errdirect” 2 3 15)

Asignal 11 can never be trapped, because the shell itself needs to catch it to deal
with memory allocation. Zero is interpreted by the trap command as a signal
generated by exiting from a shell. Thisoccurs either with an exit command, or
by “falling through’ to the end of a procedure. If arg is not specified, then the
action taken upon receipt of any of the signals in the signal list is reset to the
default system action. If argis an explicit null string (*“or ””), then the signals
in the signal list are ignored by the shell.

The trap command is most frequently used to make sure that temporary files
are removed upon termination of a procedure. The preceding example would
be written more typically as follows:

temp=$HOME/temp/$$
trap rm $temp; trap 0; exit’0123 15
Is > $temp

" # commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15 (kill) is
received by the shell procedure, or whenever the shell procedure is about to
exit, the commands enclosed between the single quotation marks are executed.
The exit command must be included, or else the shell continues reading
commands where it left off when the signal was received. The ‘““trap .0” in the
above procedure turns off the original traps 1, 2; 3, and 15 on exits from the
shell, so that the exit command does not reactivate the execution of the trap
commands.

Sometimes the shell continues reading commands after executing trap
commands. The following procedure takes each directory in the current
directory, changes to that directory, prompts with its name, and executes
commands typed at the terminal until an end-of-file (ONTRL-D) or an interrupt
is received. An end-of-file causes the read command to return a nonzero exit
status, and thus the while loop terminates and the next directory cycle is
initiated. An interrupt isignored while executing the requested commands, but
causes termination of the procedure when it is waiting for input:

7-28

The Shell

d="pwd"’
for i in* '
do if test —d $d/$i
then cd $d/$i
while echo "$i."
trap exit 2
read x
do trap : 2
ignore interrupts
eval $x
done

done

Several trapsmay be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To
determine which traps are currently set, type:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received by
the shell, it is passed on to whatever child processes are currently executing.
When these (synchronous) processes terminate, normally or abnormally, the
shell polls any traps that happen t6 be set and executes the appropriate trap
commands. This process is straightforward, except in the case of traps set at
the command (outermost, or login) level. In this case, it is possible that no child
process ‘is running, so before the shell polls the traps, it waits for the
termination of the first processspawned afterthe signal was received.

When 2 signal isredefined in a shell script, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A disabled
signalis not passed. ’

For intérnal commands, the shell normally polls traps on completion of the
command. An exception to this rule is made for the read command, for which
traps are serviced immediately, so that read can be interrupted while waiting
for input.

7.10 Special Shell‘Commands :

There are several special commandsthat are internal to the shell, some of which
have already been mentioned. The shell does not fork to execute these
commands, so no additional processes are spawned. These commands should
be used whenever possible, because they are, in general, faster and more
efficient than other XENIX commands. The trade-off for this efficiency is that
redirection of input and output is not allowed for most of these special
commands.

7-29

XENIX User’s Guide

Several of the special commands have already been described because they
aflect the flow of control. They are dot (.), break, continue, exit, and trap.
The set command is also a special command. Descriptions of the remaining
special commands are given here:

The null command. This command does nothing and
can be used to insert comments in shell procedures.
Its exit status is zero (true). Its utility as a comment
character has largely been supplanted by the number
sign (#) which can be used to insert comments to the
end-of-line. Beware: any arguments to the null
command are parsed for syntactic correctness; when
in doubt, quote such arguments. Parameter
substitution takes place, just asin other commands.

cd arg Make arg the current directory. If arg is not a valid
directory, or the user is not authorized to accessit, a
nonzero exit status is returned. Specifying cd with
no arg is equivalent to typing “cd $HOME" which
takesyou to your home directory. .

execarg... If arg is a command, then the shell executes the
command without forking and returning to the
current shell. This eflectively a “goto” and no new
process is created. Input and output redirection
arguments are allowed on the command line. If only
input and output redirection arguments appear,
then the input and output of the shell itself are
modified accordingly.

newgrp arg... The newgrp command is executed, replacing the
shell. Newgrp in turn creates a new shell. Beware:
only environment variables will be known in the shell
created by the newgrp command. Any variables
that were exported will no longer be marked assuch.

read var... One line (up to a newline) is read from the standard
input and the first word is assigned to the first
variable, the second word to the second variable, and
so on. All words left over are assigned to the last
variable. The exit status of read is zero unless an
end-of-fileisread.

readonly var. .. The specified variables are made readonly so that
" no subsequent assignments may be made to them. If
no arguments are given, a list of all readonly and of

all exported variablesisgiven.

~ times The accumulated user and system times for
processesrun from the current shell are printed.

7-30

The Shell

umask nnn The user file creation mask is set to nan. If nnn is
omitted, then the current value of the mask is
printed. This bit-mask is used to set the default
permissions when ' creating files. For example, an
octal umask of 137 corresponds to the following bit-
mask and permission settings for a newly created file:

User = user | group | other
Octal 1 3 7
bit-mask 001 011 111
permissions | rw- r-- --=

See umaak(C) in the XENIX Reference Manual for
information on the value of nnn.

wait The shell waits for all currently active child processes
to terminate. The exit status of wait is always zero.
7.11 Creation and Organization of Shell Procedures
A shell procedure can be created in two simple steps. The first is building an
ordinary text file. The second is changing the mode of the ﬁle to make it
ezec utable thus permitting it to be invoked by
proc args
rather than
sh proc args
The second step may be omitted for a procedure to be used once or twice and
then discarded, but is recommended for frequently-used ones. To set up a
simple procedure, first create a file named maslall with the following contents:
LETTER=$1
shift
for iin $=
do mail $i <SLETTER
done
Next type:

chmod +x mailall

The new command might then be invoked from within the current directory by
typing:

7-31

XENIX User's Guide

- mailall letter joe bob

Here letter is the name of the file containing the message you want to send, and
joe and bob are people you want to send the message to. Note that shell
procedures must always be at least readable, so that the shell itself can read
commandsfrom the file.

If mailall were thus created in a directory whose name appears in the user’s
PATH variable, the user could change working directories and still invoke the
mailall command. o

Shell procedures may be created dynamically. A procedure may generate a file
of commands, invoke another instance of the shell to execute that file, 2nd then
remove it. An alternate approach is that of using the dot command (.) to make
the current shell read commands from the new file, allowing use of existing shell
variablesand avoiding the spawning of an additional process for another shell.

Many users prefer writing shell procedures to writing C programs. Thisistrue
for several reasons:

1. Ashell procedure is easy to create and maintain because it isonly a file
-of ordinary text.

2. Ashell procedure has no corresponding object program that must be
generated and maintained.

3. Ashell procedure is easy to create quickly, use a few times, and then
remove.

4. Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source-
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell procedures
are named bin. This name is derived from the word “binary”, and is used
because compiled and executable programs are often called ‘binaries” to
distinguish them from program source files. Most groups of users sharing
common interests have one or more bin directories set up to hold common
procedures. Some users have their PATH variable list several such directories.
Although you can have a number of such directories, it is unwise to go
overboard: it may become difficult to keep track of your environment and
efficiency may suffer.

7.12 More About Execution Flags

There are several execution flags available in the shell that can be useful in shell
procedures:

7-32

The Shell

-e This flag causes the shell to exit immediately if any command that it
executes exits with a nonzero exit status. This flag is useful for shell
procedures composed of simple command lines; it isnot intended for
use in conjunction with other conditional constructs.

-u This flag causes unset variables to be considered errors when
substituting variable values. This flag can be used to effect a global
check on variables, rather than using conditional substitution to
check each variable.

-t This flag causes the shell to exit after reading and executing the
commands on the remainder of the current input line. This flag is
typically used by C programs which call the shell to execute a single
command.

-n Thisisa “don’t execute’’ flag. On occasion, one may want to check a
procedure for syntax errors, but not execute the commands in the
procedure. Using “set -nv’’ at the beginning of a file will accomplish
this.

-k This flag causes all arguments of the form variable=value to be
treated as keyword parameters. When this flag is not set, only such
arguments that appear before the command name are treated as
keyword parameters.

7.13 Supporting Commands and Features

Shell procedures can make use of any XENIX command. The commands
described in this section are either used especially frequently in shell
procedures, or are explicitly designed for such use.

7.13.1 Conditional Evaluation: test

The test command evaluates the expression specified by its arguments and, if
the expression is true, test returns a zero exit status. Otherwise, a nonzero
{false) exit status isreturned. Teest also returns a nonzero exit statusif it hasno
arguments. Often it is convenient to use the test command as the first
command in the command list following an if or a while. Shell variables used
in test expressions should be enclosed in double quotation marks if there isany
chance of their being null or not set.

The square brackets may be used asan aliasto test, so that

| ezpression |

hasthe same effect as:

7-33

XENIX User’s Guide

test ezpresston

Note that the spaces before and after the ezpressionin bracketsare essential.

The following is a partial list of the options that can be used to construct a
conditional expression:

-1 file
-w file
-x file
-s file
-d file
~f file
-z8l
-nsl

-t fildee

81=1¢g2
ell=1s2
el

nl —eq n2

True if the named file exists and isreadable by the user.

True if the named file exists and is writable by the user.

True if the named file exists and is executable by the user.
True if the named file exists and has a size greater than zero.
True if the named file is a directory.

True if the named file is an ordinary file.

Trueif the length of string el iszero.

Trueif the length of the string e1is nonzero.

True if the open file whose file descriptor number is fildes is
associated with a terminal device. If fildesis not specified, file
descriptor 1is used by default.

Trueifstrings s1and s2areidentical.

Trueifstrings sfand s2are notidentical.

Trueif s1is not the null string.

True.if the integers nf and n2are algebraically equal; other
algebraic comparisons are indicated by —ne (not equal), —gt

(greater than), —ge (greater than or equal to), -1t (less than),
and -le (less than or equal to).

These may be combined with the following operators:

!
-3

-0

{ezpr)

7-34

Unary negation operator.
Binary logical AND operator.

Binary logical OR operator; it has lower precedence than the
Jogical AND operator (-a).

Parentheses for grouping; they must be escaped to remove
their significance to the shell. In the absence of parentheses,
evaluation proceeds from left to right.

The Shell

Note that all options, operators, filenames, etc. are separate arguments to test.

7.13.2 Echoing Arguments
The echo command has the following syntax:
echo [options | [args]
Echo copies its arguments to the standard output, each followed by a single
space, except for the last argument, which is normally followed by a newline.
Often, it is used to prompt the user for input, to issue diagnostics in sheli
procedures, or to add a few lines to an output stream in the middle of a pipeline.
Another use is to verify the argument list generation process before issuing a
command that does something drastic. The command)
Is
isoften replaced by
echo »

because the latter is faster and prints fewer lines of output.

The —n option to'echo removes the newline from the end of the echoed line.
Thus, the following two commands prompt for mput and then allow typmg on
the same line as the prompt:

echo -n ‘enter name:”’
read name

The echo command also recognizes several escape sequences described in
echo{C)inthe XENIX Reference Manual.

7.13.3 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers-and
some pattern-matching: facilities on its arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

increment $A

A='expr $a + I' :

_put third through last characters of
$1 into substring

substring=="expr "$1" : ".\(.*\) **

obtain length of $1

’

]

RN

c="expr "$1” :

7-35

XENIX User’s Guide

The most common uses of expr are in counting iterations of a loop and in using
its pattern-matching czpability to pick apart strings.

7.13.4 True and False

The true and false commands perform the functions of exiting with zero and
nonzero exit status, respectively. The true and false commands are often used
toimplement unconditional loops. For example, you might type:

while true
do echo forever
done

This willecho “‘forever’ on the screen until an INTERRUPT is typed.

7.13.5 In-Line Input Documents
Upon seeing a command line of the form
command < < eofstring

where eofstring is any arbitrary string, the shell will take the subsequent lines
as the standard input of command until a line is read consisting only of
eofstring. (By appending a minus (~) to the input redirection symbol (< <),
leading spaces and tabs are deleted from each line of the input document before
the shell passes the line to command.)

The shell creates a temporary file containing the input document and performs
variable and command substitution on its contents before passing it to the
command. Pattern matching on filenames is performed on the arguments of
command lines in command substitutions. In order to prohibit all
substitutions, you may quote any character of eofstring:

command << \eofstring

The in-line input document feature is especially useful for small amounts of
input data, where it is more convenient to place the data in the shell procedure
than to keep it in aseparate file. For instance, you could type:

cat <<-xx
This message will be printed on the
terminal with leading tabs and spaces -
removed.

XX -

This in-line input document feature is most useful in shell procedures. Note
that in-line input documents may not appear within grave accents.

7-36

- The Shell

7.13.6 input/Output Redirection Using File Descriptors

We meationed above that a command occasionally directs output to some file
associated with a file descriptor other than 1 or 2. In languages such as C, one
can associate output with any file descriptor by using the write(S) system call
(see th.e XENIX Reference Manual. The shell provides its own mechanism for
‘creating an output file associated with a particular file descriptor. By typing

fd1> & fd2

where fd1 and fd2 are valid file descriptors, one can direct output that would
normally be associated with file descriptor fdI to the file associated with fd2.
The default value for fdI and fd2is 1. If, at run time, no file is associated with
fd2, then the redirection is void. The most common use of this mechanism is
that of directing standard error output to the same file as standard output.
Thisisaccomplished by typing:

command 2> &1

If you wanted to redirect both standard output and standard error output to
the same file, you would type:

command 1> file 2>&l

The order here is significant: first, file descnpt.or 1 is associated with file; then
file descriptor 2 is associated with the same file as is currently associated with
file descriptor 1. If the order of the redirections were reversed, standard error
output would go to the terminal, and standard output would go to file, because
at the time of the error output redirection, file descriptor 1 still would have
been associated with the terminal.

“This mechanismi can also be generallzed to the redirection of standard input.
Youcould type

fda< &fdb

to cause both file descriptors fda and fdb to be associated with the same input
file. If fda or fdb is not specified, file descriptor 0 is assumed. Such input
redirection is useful for a command that uses two or more input sources.

7:13.7 Condmonal Substltutlon

Normally, the shell replaces occurrences of $variable by the string value
assigned to -variable, if any. However, there exists‘a special notation to allow
conditional substitution, dependent upon whether the variable is set or not
null. By definition, a variable is set if it has ever been assigned avalue. The
value of a variable can be the null string, which may be assxgned toavariablein
anyone of the followmg ways:

7-37

XENIX User's Guide

A=
bed=""
er8= L4

set ©* "7

The first three examples assign null to each of the corresponding shell variables.
The last example sets the first and second positional parameters to null. The
following conditional expressions dependupon whether a variable is set and not
null. Note that the meaning of braces in these expressions differs from their
meaning when used in grouping shell commands. Paremeter as used below
referstoeither a digit or avariable name.

${ vavrz'able:—string}

${variable:=string}

${variable:?string}

${variable:+string}

If variable is set and is nonnull, then substitute the
value $variable in place of this expression.
Otherwise, replace the expression with string. Note
that the value of variable is not changed by the
evaluation of thisexpression.

If variable is set and is nonnull, then substitute the
value $variable in place of this expression.
Otherwise, set variable to string, and then
substitute the value $variable in place of this
expression. Positional parameters may not be.
assigned valuesin this fashion.

If variable is set and is nonnull, then substitute the
value of variable for the expression. Otherwise,
print a message of the form

variable: string
and exit from the current shell. (If the shell is the
login shell, it is not exited.) If string is omitted in
this form, then the message

variable: parameter null or not set
is printed instead.
If variable is set and is nonnull, then substitute
string for this expression. Otherwise, substitute the

null string. Note that the value of variable is not
altered by the evaluation of this expression.

These expressions may also be used without the colon. In this variation, the
shell does not check whether the variable is null or not; it only checks whether
the variable hasever been set.

The two.examples below illustrate the use of this facility:

7-38

The Shell

1. Thisexample performs an explicit assignment to the PATH variable:
“PATH”=${PATH:- “/bin:/usr/bin }

This says, if PATH has ever been set and is not null, then keep its
current value; otherwise, set it to the string ‘: /bin: fusr/bin*.

2. Thisexample automatically assigns the HOME variable a value:.
cd ${HOME:="/usr /gas }

If HOME is set, and is not null, then change directory toit. Otherwise
- set HOME to the given value and change directory toit.

7.13.8 Invocation Flags

There are four flags that may be specified on the command line when mvokmg
the shell. These flags may not be turned on with the set command:

-i If this flag is specified, or if the shell’s input and output are both
attached to a terminal, the shell is tnteractive. In such a shell,
INTERRUPT (signal 2) is caught and ignored, and TERMINATE
(signal 15) and QUIT (signal 3) are ignored.

-s If this flag is specified or if no input/output redirection arguments
are given, the shell reads commands from standard input. Shell
output is written to file descriptor 2. The shell you get upon loggmg
into the system has the —s flag turned on.

—c When this ﬂag is turned on, the shell reads commands from the first
string following the flag. Remaining arguments are ignored. Double
quotation marks should be used to enclose a multiword string, in
order to allow for variable substitution.

7.14 Effective and Efficient Shell Programming

This section outlines strategies for writing eflicient shell procedures, ones that
do not waste resources in accomplishing their purposes. The primary reason
for choosing a shell procedure to perform a specific function is to achieve a
desired result at a minimum human cost. Emphasis should always be placed on
simplicity, clarity, and readability, but efficiency can also be gained through
awareness of a few design strategies. In many cases, an effective redesign of an
existing procedure improves its efficiency by reducing its size, and often
increases its comprehensibility. In any case, you should not worry about
optimizing shell procedures unless they are intolerably slow or are known to
consume an inordinate amount of a system’s resources.

7-3¢

XENIX User’s Guide

The same kind of iteration cycle should be applied to shell procedures as to
other programs: write code, measure it, and optimize only the few important
parts. The user should become familiar with the time command, which can be
used to measure both entire procedures and parts thereof. Its use is strongly
recommended; human intuition is notoriously unreliable when used to estimate
timings of programs, even when the style of programming is a familiar one.
Each timing test should be run several times, because the results are easily
disturbed by variations in system load.

7.14.1 Number of Processes Generated

When large numbers of short commands are executed, the actual execution
time of the commands may well be dominated by the overhead of creating
processes. The procedures that incur significant amounts of such overhead are
those that perform much looping and those that generate command sequences
to be interpreted by another shell.

If you are worried about efficiency, it is important to know which commands
are currently built into the shell, and which are not. Hereis the alphabetical list
of those that are built in:

break case ed continue eval
exec exit export ~ for if
newgrp read readonly set shift
test times trap umask until
wait while . : {}

Parentheses, (), are built into the shell, but commands enclosed within them
are executed as a child process, i.e., the shell does a fork, but no exec. Any
command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes
generated by ashell procedure. In the bulk of observed procedures, the number
of processes created (not necessarily simultaneously) can be described by:

processes = (k*n) + ¢
where kand ¢-are constants, and n may be the number of procedure arguments,
the number of lines in some input file, the number of entriesin some directory,
or some other obvious quantity. Efliciency improvements are most commonly

gained by reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n £ terms or higher powers
of nislikely to beintolerably expensive.

As an example, here is an analysis of a procedure named eplit, whose text is
given below:

7-40

The Shell

split
trap Tm temp$$; trap 0; exit' 0123 15
start1=0 start2=0
b= TA-Za-z}’
cat > temp$$
read stdin into temp file
save original lengths of $1, $2
if test —s "$1”
then startl="wc -1 < $1°
fi
if test -s "$2"
then start2="'wc -1 < $2°
fi
grep "$b” temp$$ > > $1
. # lines with letters onto $1
grep -v "$b” temp$$ | grep 10-9]" > > $2
lines with only numbers onto $2
total=""wc -1 < temp$$'”
endl=""wc -1 < $1"
end2=""wc -1 < $2"
lost=""expr $total - \($endl - $start1))\
= \($end2 - $start2\)™ v
echo. "$total read, $lost thrown away”

For each iteration of the loop, there is one expr plus either an echo or another
expr. One additional echo is executed at the end. If nis the number of lines of
input, the number of processesis2*n + 1.

Some types of procedures should not be written using the shell. For example, if
one or more processes are generated for each character in some file, it is a good
indication that the procedure should be rewrittenin C. Shell procedures should
not be used to scan or build files a character at atime.

7.14.2 Number of Data Bytes Accessed

It is worthwhile considering any action that reduces the number of bytes read
or written. This may be important for those procedures whose time is spent
passing data around among a few processes, rather than in creating large
numbers of short processes. Some filters shrink their output, others usually
increase it. It always pays to put the shrinkere first when the order is
irrelevant. For instance, the second of the following examples is likely to be
faster because theinput to sort will be much smaller:

sort file | grep pattern
grep pattern file | sort

7-41

XENIX User’s Guide

7.14.3 Shortening Directory Searches

Directory searching can consume a great deal of time, especially in-those
applications that utilize deep directory structures and long pathnames.
Judicious use of c¢d, the change directory command, can help shorten long
pathnames and bhus reduce the number of dlrectory searches needed. Asan
exercise, try the following commands:

Is -1 fusr/bin/* > /dev/null
c¢d fusr/bin; Is -1 ¢ > /dev/null

The second command will run faster because of the fewer directory searches.

'7.14.4 Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization and
sharing of procedures. However, it must be used in a sensible fashion, or the
result may be a greatincrease in system overhead.

The process of finding a command involves reading every directory included in
every pathname that precedes the needed pathname in the current PATH
variable. As an example, consider the effect of invoking nroff (i.e.,
Juer/bin/nroff) when the value of PATH is ““:/bin:/usr/bin”. The sequence of

directoriesread is:

/-

/bin

/

Jusr
{usr /bin

Thisis a total of six directories. A long path list assigned to PATH can increase
thisnumber significantly.

The vast majority of command executions are of commands found in /bin and,
to a somewhat lesser extent, in fusr/bin. Careless PATH setup may.lead to a
great deal of unnecessary searching. The following four examples are ordered
from worst to best with respect to the efficiency of command searches:

:/usr/john/bin: fusr flocalbin:/bin: /usr /bin
:/bin:/usr/john/bin: /usr/localbin: fusr /bin
:/bin:/usr/bin:/usr /john/bin: fusr/localbin
/bin::/usr/bin:/usr/john/bin: fusr/localbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of commands
keptin /binand fusr/bin.

7-42

The Shell

A procedure that is expensive because it invokes many short-lived commands
may often be speeded up by setting the PATH variable inside the procedure so
that the fewest possible directories are searched in an optimum order.

7.14.5 Good Ways to Set Up Directories

It is wise to avoid directories that are larger than necessary. You should be
aware of several special sizes. A directory that contains entries for up to 30 files
(plus the required . and..) fits in a single disk block and can be searched very
efficiently. One that has up to 286 entries is still a small directory; anything
larger is usually a disaster when used as a working directory. It is especially
important to keep login directories small, preferably one block at most. Note
that, as a rule, directories never shrink. This is very important to understand,
because if your directory ever exceeds either the 30 or 286 thresholds, searches
will be inefficient; furthermore, even if you delete files so that the number of
files is less than either threshold, the system will still continue to treat the
directory inefficiently.

7.15 Shell Procedure Examples

The power of the XENIX shell command language is most readily seen by
examining how XENIX’s many. labor-saving utilities can be combined to
perform powerful and useful commands with very little programming eflort.
This section gives examples of procedures that do just that. By studying these
examples, you will gain insight into the techniques and shortcuts that can be
used in programming shell procedures (also called “seripts”). Note the use of
the number sign (#) to introduce comments into shell procedures.

It isintended that the following steps be carried out for each procedure:

1. Placethe procedurein a file with the indicated name.
2. Givethe file execute permission with the chmod command.

3. Movethefiletoa directory in which commands are kept, such as your
own bin directory.

4. Make sure that the path of the bin directory is specified in the PATH
variable foundin.profile.

5. Executethenamed command.

7-43 .

XENIX User’s Guide
BINUNIQ

Is /bin fusr/bin | sort } uniq —-d |

This procedure determines which files are in both /bin and Juer/bsn. It is done
because files in /bin will “override” those in /usr/bin during most searches and
. duplicates need to be weeded out. If the /uer/bin fileis obsolete, then space is
being wasted; if the /bin file is outdated by a corresponding entry in /usr/bin
then the wrong version is being run and, again, space is being wasted. This is
also a good demonstration of “‘sort | uniq” to find matches and duplications.

COPYPAIRS

Usage: copypairs filel file2 ...
Copies filel to file2, file3 to file4, ...
while test "$2” 1= ""
do
cp $1 82
shift; shift
done
if test "$17 = ""
_then echo "$0: odd number of arguments”
i ‘

This procedure illustrates the use of a while loop to process a list of positional
parameters that are somehow related to one another. Here a while loop is
much better than a for loop, because you can adjust the positional parameters
with the shift command to handle related arguments.

7-44

The Shell

COPYTO

Usage: copyto dir file ...
Copies argument files to "dir”,
making sure that at least
two arguments exist, that "dir” is a directory,
¥# and that each additional argument
is a readable file.
if test $ -1t 2
then echo ”$0: usage: copyto directory file ...
elif test ! -d $1
then echo ”$0: $1 is not a directory”;
else dir=$1; shift
for eachfile
do cp $eachfile $dir
done

fi

This procedure uses an if command with several parts to screen out improper
usage. The for loop at the end of the procedure loops over all of the arguments
to copyto but the first; the original $1 is shifted off.

DISTINCT1
Usage: distinctl
Reads standard input and reports list of
alphanumeric strings that differ only in case,
giving lowercase form of each.

tr —cs "A-Za-20-9 ~ "\012 Jsort —u | \
tr ‘A-Z° “a-z | sort | uniq -d

This procedure is an example of the kind of process that is created by the left-
to-right construction of a long pipeline. Note the use of the backslash at theend
of the first line as the line continuation character. It may not be immediately
obvious how this command works. You may wish to consult tr{C), sort(C), and
un1g(C) in the XENIX Reference Manual if you are completely unfamiliar with
these commands. The tr command translates all characters except letters and
digits into newline characters, and then squeezes out repeated newline
characters. This leaves each string (in this case, any contiguous sequence of
letters and digits) on a separate line. The sort command sorts the lines and
emits only one line from any sequence of one or more repeated lines. The next
tr converts everything to lowercase, so that identifiers differing only in case
become identical. The output is sorted again to bring such duplicates together.
The “uniq-d” prints {once) only those lines that occur more than once, yielding
the desired list.

7-45

XENIX User’s Guide

The process of building such a pipeline relies on the fact that pipes and files can
usually be interchanged. The first line below is equivalent to the last two lines,
assuming that sufficient disk space ls available:

cmdl | cmd2 | cmd3

emdl > templ; < templ cmd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left to
right, each command is executed taking its input from the previous file and
putting its output in the next file. The final output is then examined to make
sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields
incomprehensible code.)

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
foriin §+
do nroffl -man $i | lpr
done

Users often write this kind of procedure for convenience in dealing with

commands that require the use of distinct flags that cannot be given default
values that are reasonable for all (or even most) users.

7-46

&

The Shell

EDFIND

Usage: edfind file arg
Finds the last occurrence in "file” of a line
whose beginning matches "arg”, then prints
3 lines (the one before, the line itself,
and the one after)
d - $§1 <<-EOF
27§27
‘,+P
q
EOF

o

Thisillustrates the practice of using ed in-line input scripts into which the shell
can substitute the values of variables.

EDLAST

Usage: edlast file
Prints the last line of file,
then deletes that line.

ed - $1 <<-\!
$p
$d
w
q
!
echo done

This procedure illustrates taking input from within the file itself up to the
exclamation point (!). Variable substitution is prohibited within the input text
because of the backslash.

7-47

XENIX User’s Guide

FSPLIT

Fededk Ik

Usage: fsplit filel file2

Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to filel, appending any line containing digits but
no letters to file2, and by throwing the rest away.

count=0 gone=0
while read next

do

done

count=""expr $count + 1"
case "$next” in
[A-Za-z])
echo "$next” >> $1;;

~ +[o-9]%)

echo "$next” >> $2;;
*)

esac

”

gone==""expr $gone + 1'”

echo "$count lines read, $gone thrown away”

Each iteration of the loop reads aline from the input and analyzesit. The loop
terminatesonly when read encounters an end-of-file. Note the use of the expr

command.

Don’t use the shell to read a line at a time unless you must—it can be an
extremely slow process.

7-48

The Shell
LISTFIELDS

grep $+ | tr 7" "\012”

This procedure lists lines containing any desired entry that is given to it as an
argument. It places any field that begins with a colon on a newline. Thus, if
given the following input

joe newman: 13509 NE 78th St: Redmond, Wa 98062
listfields will produce this:

joe newman
13509 NE 78th St
Redmond, Wa 98062

Note the use of the tr command to transpose colons to linefeeds.

MKFILES

Usage: mkfiles pref [quantity]
Makes " quantity” files, named prefl, pref2, ...
Default is 5 as determined on following line.
quantity=${2-5}
i=1
while test "$i” —le "$quantity”
do
> $18i
i=""expr $i + 17
done

The mkfiles procedure uses output redirection to create zero-length files. The
expr command is used for counting iterations of the while loop.

1-49

XENIX User's Guide
NULL

Usage: null files
Create each of the named files as an empty file.
for each file
do
>$eachfile
done

This procedure uses the fact that output redirection creates the (empty) output
fileif a file does not already exist.

PHONE

Usage: phone initials ..

Prints the phone numbers of the
people with the given initials.
echo ‘inits ext home *
grep ""$1” < <-END
itk 1234 999-2345
Ibj 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234
END

This procedure is an example of using an in-line input script to maintain a small
data base.

7-50

The Shell

TEXTFILE

if test "$1” = "-§"

then
Return condition code
shift
if test -z " "$0 $+°” # check return value
then .
exit 1
else
exit 0
fi
fi

if test $# -1t 1 ‘

then echo "$0: Usage: $0 [-s] file ...” 1> &2
exit 0

fi

file $ | fgrep “text’|sed 's/: Yk

To determine which files in a directory contain only textual information,
teztfile filters argument lists to other commands. For example, the following
command line will print all the text files in the current directory:

pr “textfile +* | lpr

This procedure also uses an —s flag which silently tests whether any of the files
in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise,. mails it to user.
echo "$17 | { write "$2” || mail "$2" ;}
This procedure illustrates the use of command grouping. The message specified

by $1 is piped to both the write command and, if write fails, to the mail
command. i

7-51

XENIX User's Guide

7.16 Shell Grammar

stem:

word
tnput-output
name == value

simple-command: item

command:

pipeline:

.andor:

command-list:

input-output:

file:

case-part:

pattern:

elae-part:

7-52

simple-command stem

ssmple-command

(command-list)

{ command-list }

for name do command-list done

for name in word do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor & & pipeline
andor || pipeline

aendor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file
<< word
>> word

word
& digit
& -

pattern) command-list ;;

» word
pattern | word

elif command-list then command-list else-part
else command-list

The Shell

empty

empty:

word: a sequence of nonblank characters

name: a eequence of letters, digits, or underscores
starting with a letter

digit: 01234567889

7-53

XENIX User's Guide

Metacharacters and Reserved Words

a. Syntactic

| Pipe symbol
&& And-ifsymbol
i Or-if symbol
; Command separator
5 Case delimiter
& Background commands
() Command grouping
Input redirection
<< Input from a here document
Output creation
Output append
Comment toend of line
b. Patterns
* Match any character(s) including none
? Match any single character .
[-] Match any of enclosed characters

c. Substitution
${...} Substituteshell variable

\ \

Substitute command output

7-54

d.

e.

The Shell

Quoting

\ Quotenext character as literal with no special meaning

e Quote enclosed characters excepting the back quotation
marks ()

nuT Quote enclosed characters excepting: $ *\”

Reserved words

if
then
else
elif
fi
case
in

esac
for
while
until
do
done

{}

7-55

Chapter 8
BC: A Calculator

8.1 Introduction 8-1
8.2 Demonstration 81

8.3 Tasks 8-3
8.3.1 Computing with Integers 8-3
8.3.2 Specifying Input and Output Bases 8-5
8.3.3 Scaling Quantities 86
8.3.4 UsingFunctions. 8-7
8.3.5 Using Subscripted Variables 8-8
8.3.6 Using Control Statements: if, while and for
8.3.7 Using Other Language Features 8-12

8.4 Language Reference 8-14
8.4.1 Tokens 814
8.4.2 Expressions 8-14
8.4.3 Function Calls 815
8.4.4 Unary Operators 8-16
8.4.5 Multiplicative Operators 8-16
8.4.6 Additive Operators 8-17
8.4.7 Assignment Operators 8-17
8.4.8 Relational Operators &-18
8.4.9 Storage Classes 818
8.4.10 Statements 8&-19

8-9

BC: A Calculator

8.1 Introduction

BC is a program that can be used as an arbitrary precision arithmetic
calculator. BC’s output is interpreted and executed by a collection of routines
which can input, output, and do arithmetic on indefinitely large integers and on
scaled fixed-point numbers. Although you can write substantial programs with
BC, it is often used as an interactive tool for performing calculator-like
computations. The language supports a complete set of control structures and
functions that can be defined and saved for later execution. The syntax of BC
has been deliberately selected to agree with the C language; those who are
familiar with C will find few surprises. A small collection of library functionsis
also available, including sin, cos, arctan, log, exponential, and Bessel functions
of integer order.

Common uses for BC are:
— Computation with large integers.
— Computations accurate to many decimal places.

— Conversions of numbers from one base to another base.
There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal. Numbers
can be converted from decimal to octal simply by setting the output base equal
to8.
The actual limit on the number of digits that can be handled depends on the
amount of storage available on the machine, so manipulation of numbers with
many hundreds of digitsis possible. ’
8.2 Demonstration
This demonstration is designed to show you:

— Howtogetintoand outof BC.

— How to perform simple computations.

— Howexpressionsare formed and evaluated.

— How toassign values toregisters.
A normal session with BC begins by invoking the program with the command:

be

Toexit BC type

81

XENIX User's Guide

quit

or press CNTRL-D. Once you have entered BC, you can use it very much like a
normal calculator. As with the XENIX shell, commands are read as command-
lines, so each line that you type must be terminated by aRETURN. Throughout
this chapter, the RETURN is implied at the end of each command line. Within
BC, normal processing of other keys, such as BKSP and INTERRUPT, also
works. :

For example, type the simple integer 5:
5

Output is immediately echoed on the next line to the standard output, whichis
normally the terminal screen:

5
Here ““5” isa simple numeric expression. However, if you type the expression
585.25

{where the star (%) is the multiplication operator) a computation is executed
and the result printed on the next line:

26.25
What has happened here is that the line *5¢5.25” has been evaluated, i.e., the '
expression has been reduced to its most elementary form, which is the number
26.25. The process of evaluation normally involves some type of computation
such as multiplication, division, addition, or subtraction. For example, all four
of these operations are involved in the following expression:

(10%5)+50-(50,/2).

When this expression is evaluated, the subexpressions within parentheses are
evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is ““50+50-25" which ultimately reduces to
the number “75”".

The simple addition

10.45+5.5555555
produces the output:

16.0055555

Note how precision is retained in the above result.

8-2

BC: A Calculator

The two-part multiplication
(8+9)s7

produces the answer:
504

The last part of this demonstration shows you how to store values in special
alphabetic registers. For example, type:

a=100 ; b=>5
What happens here is that the registers “a’ and “b” are assigned the values 100
and 5, respectively. The semicolon isused here to place multiple BC statements
on a single line, just as it is used in the XENIX shell. This command line
produces no output because assignment statements are not considered
expressions. However, the registers ‘““a” and “b” can now be used in
expressions. Thus you can now type

asb; a+b

to produce:

500
105

Toexit BC, remember to type
quit
or pressCNTRL-D.

This ends the demonstration. Following sections describe use of BC in more
detail. The final section of this chapter isaBC language reference.

8.3 Tasks

This section describes how to perform common BC tasks. Ma.stery of these
tasksshould turnyouintoa competent BC user.

8.3.1 Computing with Integers

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if youtype

142857 + 285714

83

XENIX User’s Guide

and pressRETURN, BCresponds immediately with the line:
428571 |

Other operators also can be used. The complete list inclﬁdes:
+ -/ % °

They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers
produces an integer result truncated toward zero. Division by zero producesan
€rror message.

Any term in anexpression can be prefixed with a minussign to indicate that it is
to be negated (thisis the “unary” minussign). For example, the expression

7+-3
isinterpreted to mean that -3 isto be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation (") performed first,
then multiplication (*), divisicn (/), modulo {%), 2nd finally, addition (+), and
subtraction (~). The contentsof parentheses are evaluated before expressions
outside the parentheses. All of the above operations are performed from left to
right, except exponentiation, which is performed from right to left. Thus the
following two expressions

a2"b’c and a”(b"¢)
are equivalent, asare the two expressions:
a*b*c and (asb)s*c -

BC shares with FORTRAN and C the convention that a/b*c isequivalent to
(a/b)=c. :

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way, thus
the statement

x=x+3
has the effect of increasing by 3 the value of the contents of the register named
“x”. When, as in this case, the outermost operator is the assignment operator
(=), then the assignment is performed but the result is not printed. There are
26 available named storage registers, one for each letter of the alphabet.

There is also a built-in square root function whose result is truncated to an
integer (See also Section 8.5, *“Scaling”). For example, the lines

8-4

BC: A Calculator
x = sqrt(191)
x
produce the printed result

13

8.3.2 Specifying Input and Output Bases

There are special internal quantities in BC, called sbase and obase. [base is
initially set to 10, and determines the base used for interpreting numbers that
areread by BC. For example, the lines

ibase = 8
11

produce the outputline
9

and you are all set up to do octal to decimal conversions. However, beware of
trying to change the input base back to decimal by typing:

ibase = 10

Because the number 10 is interpreted as octal, thisstatement hasno effect. For
those who deal in hexadecimal notation, the characters A-F are permitted in
numbers (no matter what base is in effect) and are interpreted as digits having
‘values 10-15, respectively. These characters must be uppercase and not
lowercase. The statement

ibase = A
changes you back to decimal input base no matter what the current input base
is. Negative and large positive input bases are permitted; however no
mechanism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

Obase is used as the base for output numbers. The value of obase is initially set
to adecimal 10. The lines

obase = 16
1000

produce the outputline:

3E8

85

XENIX User's Guide

This is interpreted as a three-digit hexadecimal number. Very large output
bases are permitted. For example, large numbers can be output in groups of
five digits by setting obaese to 100000. Even strange output bases, such as
negative bases, and 1and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal
output conversion is fast, but output of very large numbers(i.e., more than 100
digits) with other bases is rather slow.

Remember that thase and obase do not aflect the course of internal
computation or the evaluation of expressions; they only affectinput and output
conversion.

8.3.3 Scaling Quantities

A special internal quantity called scale is used to determine the scale of
calculated quantities. Numbers can have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations. We
refer to the number of digits after the decimal point of a number asitsscale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

Addition, subtraction
The scale of the result is the larger of the scales of the two
operands. There isnever any truncation of the result.

Multiplication = The scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the
scales of the operands, and subject to those two restrictions,
the scale of the result is set equal to the contents of the
internal quantity, scale.

Division The scale of a quotient is the contents of the internal
quantity, scale.

Modulo The scale of a remainder is the sum of the scales of the
quotient and the divisor.

Exponentiation The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer.

Square Root The scale of a square root is set to the maximum of the scale
of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers, with
digits being discarded when necessary. Inevery case where digits are discarded

8-6

BC: A Calculator

truncation is performed without rounding.

The contents of scale must be no greater than 99 and no less than 0, It isinitially
setto 0.

The internal quantities scale, shaee, and baee can be used in expressions just
like other variables. Theline

scale = scale + 1
increases the value of scale by one, and the line

scale
causes the current value of scale to be printed.
The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when 1base or obase are not equal to 10.
The internal computations (which are still conducted in decimal, regardlessof
the bases) are performed to the specified number of decimal digits, never
hexadecimal or octal or any other kind of digits.
8.3.4 Using Functions
The name of a function is a single lowercase letter. Function names are
permitted to use the same letters as simple variable names. Twenty-six
different defined functions are permitted in addition to the twenty-six variable
names. The line

define a(x){
begins the definition of a function with one argument. This line must be
followed by one or more statements, which make up the body of the function,
ending with aright brace (}). Return of control from a function occurs when a
return statement is executed or when the end of the function is reached. The

return statement can take either of the two forms:

return
return(x)

In the first case, the returned value of the function is 0; in the second, it is the
value of the expressionin parentheses.

Variables used in functions can be declared as automatic by a statement of the
form

auto X,y,z

There can be only one auto statement in a function and it must be the first

87

XENIX User’'s Guide

statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return. The
values of any variables with the same names outside the function are not
disturbed. Functions can be called recursively and the automatic variables at
each calllevel are protected. The parametersnamed in a function definition are
treated in the same way as the automatic variables of that function, with the
single exception that they are given a value on entry to the funchon An
example of a function definition follows:

define a(x,y){
auto z
2z = X%y
return(z)

}

The value of this function, when called, will be the product of its two
arguments.

A function is called by the appearance of its name, followed by a strins of
arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of argumentsisused.
If the function ““a’”’ is defined asshown above, then the line
a(7,3.14)
would print the result:
21.98
Similarly, the line
x = a(a(3,4),5)
would cause the value o&' “x" to become 60. -
Functions can require noirguments, but still perform some useful operatl;on or

return a useful result. Such functions are defined and called using parentheses
with nothing between them. For example:

b ()

calls the function named b.

8.3.5 Using Subscripted Variables
A single lowercase letter variable name followed by an expression'in bracketsis

called a subscripted variable and indicates an array element. The variable
name is the name of the array and the expression in brackets is called the

88

BC: A Calculator

subscript. Only one-dimensional arrays are permitted in BC. The names of
arraysare permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts
must be greater than or equal to zero and lessthan or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls and in
return statements.

Anarray name can be used as an argument to a function, asin:

fla]

Array names can also be declared as automatic in a function definition with the
use of empty brackets:

define f(a])
autoa[|

When an array name is so used, the entire contents of the array are copied for

the use of the function, then thrown away on exit from the function. Array
names that refer to whole arrays cannot be used in any other context.

8.3.6 Using Control Statements: if, while and for
The if, while, and for statements are used to alter the flow within programsor
to cause iteration. The range of each of these statements is a following
statement or compound statement consisting of a collection of statements
enclosedinbraces. They are written as follows:

if (relation) statement

while (relation) statement

for (ezpressionl; relation; ezpression?)statement

if (relation) { statements}

while(relation) { statements }

for (ezpressionl; relation; ezpression?) { statements}
A relation in one of the control statements is an expression of the form

ezpressionl rel-op ezpression?
where the two expressions are related by one of the six relational operators:
Note that a double equal sign (==) stands for “‘equal to” and an exclamation-

equal sign (!=) stands for ‘“not equal to”. The meaning of the remaining
relational operatorsistheir normal arithmetic and logical meaning.

89

XENIX User's Guide

Beware of using a single equal sign (=) instead of the double equal sign (==} in
a relational. Both of these symbols are legal, so ycu will not get a diagnostic
message. However, the operation will not perform the intended comparison.

The if statement causes execution of its range if and only if the relation is true.
Then control passes to the next statement in the sequence.

The while statement causes repeated execution of its range as long as the
relation is true. The relation is tested before each execution of its range and if
the relation is false, control passes to the next statement beyond the range of
the while statement.

The for statement begins by executing ezpreesionl. Then the relation is tested
and, if true, the statements in the range of the for statement are executed.
Then ezpression2isexecuted. The relation is tested, and soon. The typical use
of the for statement is for a controlled iteration, asin the statement

for(i=1; i<=10; i=i+1} i
which will print the integers from 1 to 10.
The following are some examples of the use of the control statements:

define f(n}{
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)

The line
f(a)

prints “‘a’ factorial if ‘a’ 1s a positive integer.

The following is the definition of a function that computes values of the
binomial coefficient { “‘m" and ‘‘n" are assumed to be positive integers):

define b(n,m){
auto X, j
x=1
for(j=1; j<=m; j=j+1) x=x%(n-j+1)/j
return(x)

8-10

BC: A Calculator

The following function computes values of the exponential function by
summing the appropriate series without regard to possible truncationerrors:

scale == 20
define e(x){
autoa, b, ¢,d, n

a=1

b=1

c=1

d=0

n=1

while(1==1){

a = asx
b = bsn
=c + afb

n=n+1
if(c===d) return(c)

d=c¢

811

XENIX User’s Guide

8.3.7 Using Other Language Features

Some language featuresthat every user should know about are listed below.

8-12

Normally, statements are typed one to a line. It is also permissible to
type several statementson aline if they are separated by semicolons.

If an assignment statement is placed in parentheses, it then has a
value and can be used anywhere that an expression can. For example,
the line :

(x=y+17)

not only makes the indicated assignment, but also prints the resulting
value.

The following is an example of a use of the value of an assignment
statement even when it is not placed in parentheses:

x == afi=i+1]

This causes a value to be assigned to “x” and also increments ‘i
before it is used as asubscript.

The following constructions work in BC in exactly the same manner
as they doin the Clanguage:

Construction | Equivalent
x=y=z x =(y=z)
x=+y X = x+y
X =-Y X = X-y

X =%y X = X*y
x=/y x=x/y
x=%y x = x%y
x="y x=x"y
xt+ {x=x+1}-1
X—— (x=x-1)+1
++x x = x+1
. x = x-1

Even if you don’t intend to use these constructions, if you type one
inadvertently, something legal but unexpected may happen. Be
aware that in some of these constructions spaces are significant.
There is a real difference between “x=-y” and “x= -y”. The first
replaces‘‘x” by “x-y”’ and the second by “~y”'.

BC: A Calculator

The comment convention is identical to the C comment convention.
Comments begin with ‘‘/#” and end with “s/”.

There isalibrary of math functions that can be obtained by typing
be -1

when you invoke BC. This command loads the library functions sine,
cosine, arctangent, natural logarithm, exponential, and Bessel
functions of integer order. These are named *“‘s”, *‘¢”, “a”, “1”, “‘e”,
and “j(n,x)”, respectively. Thislibrary sets scale to 20 by default.

If you type
be file ...
BC will read and execute the named file or files before accepting

commands from the keyboard. In this way, you can load your own
programs and function definitions.

813

XENIX User's Guide

8.4 Language Reference

This section is a comprehensive reference to the BC language. It contains a
more concise description of the features mentioned in earlier sections., -

8.4.1 Tokens

Tokens are keywords, identifiers, constants, operators, and separators. Token
separators can be blanks, tabs or comments. Newline characters or semicolons
separate statements.

Comments Comments are introduced by the characters “/+” and are
terminated by “s/”.

Identifiers There are three kinds of identifiers: ordinary identifiers,
array identifiers and function identifiers. All three types
consist of single lowercase letters. Array identifiers are
followed by square brackets, enclosing an optional expression
describing a subscript. Arrays are singly dimensioned and
can contain up to 2048 elements. Indexing begins at 0 so an
array can be indexed from 0 to 2047. Subscripts are
truncated to integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The three types
of identifiers do not conflict; a program can have a variable
named “x”’, an array named *‘x”’, and a function named ‘‘x”,
all of which are separate and distinct.

Keywords The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for
Constants Constants are arbitrarily long numbers with an optional

decimal point. The hexadecimal digits A-F are also
recognized as digits with decimal values 10-15, respectively.

8.4.2 Expressions

Allexpressions can be evaluated to a value. The value of an expression is always
printed unless the main operator is an assignment. The precedence of
expressions (i.e., the order in which they are evaluated) is asfollows:

8-14

BC: A Calculator

Function calls

Unary operators
Multiplicative operators
Additive operators
Assignment operators

Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The value
of anamed expression is the value stored in the place named. .

sdentifiers
Simple identifiers are named expressions. They have an initial
value of zero.

array-name|[ezpression)
Array elements are named expresswns They have an initial va.lue
of zero.

ecale, sbase and obase
The internal reglsters scale, tbase, and obase are all named
expressions. Scale is the number of digits after the decimal pointto
beretained in arithmetic operations and hasan initial value of zero.
Ibase and obase are the input and output number radixes
respectively. Both tbase and obase have initial values of 10.

Constants
Constants are primitive expressions that evaluate to themselves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter normal operator precedence.

Function Calls
Function calls are expressions that return values. They are discussed in
section 8.10.3.

8.4.3 Function Calls

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. The

8-15

XENIX User's Guide

syntax is as follows:
function-name ([ezpression [, ezpression ...]])

A whole array passed as an argument isspecified by the array name followed by
empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual
arguments. If the function terminates by executing a return statement, the
value of the function is the value of the expression in the parentheses of the
return statement, or 0 if no expression is provided or if there is no return
statement. Three built-in functions are listed below: :

sqrt { ezpr) The result is the square root of the expression and is
truncated in the least significant decimal place. The scale of
the result is the scale of the expression or the value of scale,
whichever is larger.

length(ezpr) The result is the total number of significant decimal digits in
the expression. The scale of the result is zero.

scale{ezpr) The result is the scale of the expression. The scale of the
resultiszero.

8.4.4 Unary Operators

The unary operators bind right to left.

—ezpr The result is the negative of the expression.

++named_ezpr The named expression is incremented by one. The result is
the value of the named expression after incrementing.

—named_ezpr The named expression is decremented by one. The result is
the value of the named expression after decrementing.

named_czpr++ The named expression is incremented by one. The result is
the value of the named expression before incrementing.

named_ezpr— The named expression is decremented by one. The result is
the value of the named expression before decrementing.

8.4.5 Multiplicative Operators

The multiplicative operators (¢, /,and %) bind from left toright.

ezprrezpr The result is the product of the two expressions. If “a” and

“b” are the scales of the two expressions, then the scale of the
resultis:

8-16

BC: A Calculator

min (a+b, max (scale,a, b))

ezprfezpr The result is the quotient of the two expressions. The scale of
the result is the value of scale.

expr%expr The modulo operator (%) produces the remainder of the
division of the two expressions. More precisely, a%b is
a-afbsb. The scale of the result is the sum of the scale of the
divisor and the value of scale.

ezpr’ ezpr The exponentiation operator binds right to left. The resultis
the first expression raised to the power of the second
expression. The second expression must be an integer. If ““a’’
is the scale of the left expression and *‘b” is the absolute value
of the right expression, then the scale of the result is:

min (a*b, max (scale,a))

8.4.8 Additive Operators
The additive operators bind left to right.

ezpr+ezpr The result is the sum of the two expressions. The scale of the
resultis the maximum of the scales of the expressions.

ezpr—-ezpr The result is the difference of the two expressions. The scale
of the result is the maximum of the scales of the expressions.

8.4.7 Assignment Operators

The assignment operators listed below assign values to the named expression
on the left side.

named_ezpr=ezpr
This expression results in assigning the value of the expression on
the right to the named expression on the left.

named_ezpr=+ezpr
The result of this expression
named_czpr=named_ezpr+ezpr.

s equivalent to

named_ezpr=—czpr
The result of this expression
named_ezpr=named_ezpr-czpr.

s equivalent to

named_ezpr= *ezpr
The result of this expression 1is equivalent to

817

XENIX User's Guide

named_ezpr==named_czprrezpr.

named_ezpr=/[ezpr
The result of this expression is equivalent to
named_ezpr==named_ezpr/ezpr.

named_ezpr=%ezpr
The result of this expression is equivalent to
named_ezpr=named_ezpr Gezpr.
named_ezpr="czpr ,
The result of this expression is equivalent to
named_ezpr=named_ezpr ezpr. -
8.4.8 Relational Operators
Unlike all other operators, the relational operators are only valid as the object
of an if or while statement, or inside a for statement. These operators are
listed below:
ezpr<ezpr
ezpr> ezpr
ezpr< =ezpr
ezpr> =ezpr

ezpr==ezpr

ezpri=ezpr

8.4.9 Storage Classés

There are only two storage classes in BC: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the auto
command. The arguments to a function are local to the function. All other
identifiersare assumed to be global and available to all functions.

All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from
the function. They, therefore, do not retain values between function calls.
Note that auto arrays are specified by the array namer, followed by empty
square brackets.

Automatic variables in BC do not work the same way asin C. On entry to a

function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the

8-18

BC: A Calculator
function, reference to these namesrefersonly to the new values.

8.4.10 Statements

Statements must be separated by a semicolon or a newline. Except where
ltered by control statements, execution is sequential. There are four typesof
statements: expression statements, compound statements, quoted string
statements, and built-in statements. Each kind of statement is discussed
below:

Expression statements
When a statement is an expression, unless the main operator
is an assignment, the value of the expression is printed,
followed by a newline character.

Compound statements
Statements can be grouped together and used when one
statement is expected by surrounding them with curly braces

({and }).

Quoted string statements
For example

"string”

prints the string inside the quotation marks.
Built-in statements

Built-in statements include auto, break, define, for, if,
quit, return, and while.
The syntax for each built-instatement isgiven below:
Auto statement
The auto statement causes the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following
the array name by empty square brackets. The auto
statement must be the first statement in a function definition.
Syntax of the auto statement is:

auto sdentifier [, identifier]

Break statement

The break statement causes termination of a for or while
statement. Syntax for the break statement is:

8-19

XENIX User's Guide

8-20

break

- Define statement

The define statement defines a function; parameters to the
function can be ordinary identifiers or array names. Array
names must be followed by empty square brackets. The
syntax of the define statement is:

define ([parameter [, parameter ...J]){#tatemente}
For statement
The for statement is the same as:

first-ezpression
while(relation) {
“statement
last-ezpression

}

All three expressions must be present. Syntax of the for
statement is:

for (ezpression; relation;ezpression) statement
If statement

The statement is executed if the relation is true. The syntax
isasfollows:

if (relation) statement
Quit statement

The quit statement stops execution of a BC program and
returns control to XENIX when it is first encountered.
Because it is not treated as an executable statement, it cannot
be used in a function definition or in an if, for, or while
statement. Note that entering a CNTRL-D at the keyboard is
the same as typing ‘“quit’’. The syntax of the quit statement
is asfollows:

qust
Return statement
The return statement terminates a function, pops its auto

variables off the stack, and specifies the result of the function.
The result of the function is the result of the expression in

BC: A Calculator
parentheses. The first form is equivalent to “‘return(0)”. The
syntax of the return statement is asfollows:

returnfezpr)
While statement
The statement is executed while the relation is true. The test
occurs before each execution of the statement. The syntax of

the while statement is as follows:

while (relation) statement

821

Chapter 9
Building a Uucp System

9.1

9.2

9.3

9.4

9.5
9.6
9.7
9.8

9.9

9.10

Introduction 1

Uucp — SystemtoSystemFileCopy 1

9.2.1
9.2.2
9.23
9.24

CopyingFilestoaLocal Destination
ReceivingFiles fromOtherSystems
SendingFilestoRemoteSystems 3
CopyingFilesBetweenSystems 4

Uux —SystemToSystemExecution 4

Uucico — Copyln,CopyOut 5

94.1
9.4.2
9.4.3
9.4.4
9.4.5

ScanningForWork 6
CallingaRemoteSystem 6
Selecting Line Protocol 7
ProcessingWork 7
TerminatingaConversation 8

Uuxqt — UucpCommand Execution 8

Uulog — UucpLoglnquiry 9

Uuclean — Uucp Spool DirectoryCleanup . 9

Security

9.9.1
9.9.2

9

k InstallingaUucpSystem 10

Modifyingthe/etc/systemidFile 10
Creatingthe RequiredFiles 11

Maintainingthe System 13

9.10.1
9.10.2
9.10.3
9.104
9.10.5

SEQF —sequencecheckfile 14
TM —temporarydatafiles 14
LOG —logentryfiles 14

STST —systemstatusfiles 15
LCK —lockfiles 15

3
3

9.10.6 CreatingShellFiles 15
9.10.7 DefiningLoginEntries 16
9.10.8 SettingFileModes 16

Building & Uucp System

9.1 Introduction

The uucp system is a series of programs designed to permit communication between
XENIX systems using dial—up communication lines. Uucp provides file transfer and
remote commard exccution through a batch—type operation. Files are created in a
spool directory for processing by the uucp daemons. Thereare threetypes of filesused
forthe executionof work:

Datafiles Contain data for transferto remote systems
Work files Containdirections for filetransfersbetween systems
Execution files Contain directions for XENIX command executions which

involvethe resources of one or more systems.

The uucp system consists of four primary and two secondary programs. The primary
programsare:

uucp This program creates work and gathers data files in the spool directary for
thetransmissionoftiles.

uux Thisprogram creates work files, execute filesand gathers data files forthe
remote executionof XENIX commands.

uucico This program cxecutesthe work files for datatransmission.

uuxqt This program exccutes the execution files for XENIX command

execution.

The secondary programs are:

uulog This program updates the log file with ncw entries and reports on the
statusofuucprequests.

uuclean Thisprogramremovesold files from the spool directory.

This chapter describes the operation of each program, the installation of the system,
the security aspects of the system, the files required for execution, and the
administrationofthe system.

For hardwired communications between XENIX systems, use the Micnet network
described inthe XENIX Operations Guide .

9.2 Uucp — System to System File Copy

The uucp program is the user’s primary interface with the system. The uucp program
wasdesignedto look like the cpcommand. The syntaxis

uucp [opuon] ... Source ... destination

where source and destination may contain the prefix system—name! which indicates
the system on which the fileor files reside or where they will be copied.

XENIX User’s Guide

The optionsinterpretedby uucp are:

-d Make directories whennecessary forcopyingthe file.
-c Don’tcopy source filestothe spool directory, butusethe specified source
whentheactual uamfenakcs_placc.

—gletter Put letterinasthe grade inthe name of the work file. (Thiscanbeusedto
changetheorderof work for aparticularmachine.)

-m Sendmail oncompletionof the work.
The following options areused primarily for debugging:
~r Queucthejobbut donot start uucicoprogram.

~sdir Usedirectory dir forthe spool directory.

—xnum Uscnumasthelevelof debugging output.

The destination may be a directory name, in which case the file name istaken from the
- last part of the source’s name. The source name may contain special shell characters
suchas 2], ifa source argument has a system—name! prefix for aremote system,
thefile name expansion will be doneconthe remote system.

Thecommand

uucp *c usglusr/dan
will set up the transfer of all files whose names end with .c tothe /usr/dan directory on
theusgmachine. '
‘The source and/or destination names may alsocontaina user prefix. Thistranslates
to the login directory on the specified system. For names with partial pathnames, the
current directory is prepended to the file name. File names with *“../"" are not
permitted.
Thecommand

uucp usglday*h dan
will sct up the transfer of files whose names end with .4 in dan’s login directory on
systemusgtodan’slocal logindirectory.
For cach source file, the program will check the source and destination filenames and
the system—part of cach toclassify the work into one of fivetypes:

—

Copy sourcetodestinationonlocal system.

2. Receivefilesfromother systems.

3. Sendfilestoaremote systems.

4. Sendfilesfromremote systemstoanotherremote system.
5

Receive files from remote systems when the source contains special shell
charactersasmentioncd above.

9-2

Building a Uucp System

Afierthe work hasbeen setupinthe spooldirectory, the uncicoprograin is startedtotry
tocontact the othermachine toexecute the work (unlessthe —ropticn was specified).

9.2.1 Copying Files to a Local Destination

A cpcommand is usedto dotype 1 work. The —dand the —moptionsare not honored
inthiscase.

9.2.2 Recelving Files from Other Systems

For type 2 work, a one line work file is created for each tile requested and put inthe
spool directory with the following ficlds, each scparated by ablank.

1] R

[2] The full pathname of the sourcc ora user/pathname. The wser part
' willbe expanded onthe remote system.
3] The full pathname of the destinationfile. Ifthe usernotationisused, it
willbe immediately expanded tobethe logindirectory fortheuser.
|4] Theuser’slogin name.
[s] A <~ followed by an option list. (Only the —m and —d options will
appearinthislist.)

9.2.3 Sending Files to Remote Systems

For type 3 work, a work file is created for cach dsource file and the source file is copied
into a data file in the spool directory. (A —c¢ option on the wucp program will prevent
the data file from being made. In this case, the file will be transmitted from the
indicated source.) The ficlds of each entry are givenbelow.

[1] s

[2] The fullpathname of the source file.

[3] Thefullpathnameofthe destinationor user/filename.

[4] The user’slogin name.

[5] A**~""followedby anoptionlist.

[6] Thenameofthe datafileinthe spool directory.

7 Thefile mode bits of the source file in octal print format (€. g. 0666).

9-3

XENIX User's Guide

9.2.4 Copying Files Between Systems

Fortype 4 and 5 work, uucp generates a uucp command line and sendsitto thc remote
machine; the remoteuucicoexecutesthe command line.

-

9.3 Uux — System To System Execution

The uux command is used to set up the execution of a XENIX command where the
exccution machine and/or some of the files are remote. The syntax of the vux
commandis

wox [— || oprion]... command—&ring

where command—string is made up of one or more arguments. All special shell
characters such as ‘‘<>|""" must be quoted cither by quoting the entirc command
string or quoting the character asa separate argument. Withinthe commandstring, the
command and file names may contain a system —name! prefix. Allarguments which
do not contain a ““!”* will not be treated as files. (They will not be copied to the
execution machine.) The — option is used to indicate that the standard input for the
given command shouldbe inherited from the standard input of the uux command. The
options, essentially fordebugging, are

-r Donot start uucicoor uuxqtafterqueuningthe job

—Xnum Use num asthe levelof debugging output.
The command
pr abc | uux - usg!lpr

will setup the output of ‘ ‘prabe’* as standard input toan lpr commandtobe executed on
sysiemusg.

Uux gencrates an execute file which contains the names of the files required for
execution (including standard input), the user’s login name, the destination of the
standard output, and the command to be executed. This file is either put in the spool
directory for local execution or sent to the remote system using a generated send
command (type 3 above).

For required files which are not on the execution machine, uux will generate receive
command files (type 2 above). These command~—files will be put on the execution
machine and executed by the uucicoprogram. (This will work only ifthe local system
has permission to put files in the remote spool directory as controlled by the remote
USERFILE .)

The execute file will be processed by the uuxgr program on the executionmachine. Itis
made up of several lines, each of which contains anidentification characterand one or
more arguments. The order of the lines in the file is not relevant and some ofthe lines
may notbe present. Eachlineisdescribedbelow.

User Line
U user system
wherethe user and system are therequester’s login name and system. -

Buiding a Uucp Systam

Required File Line
F filename real—name

where the filename is the generated name of a file for the execute machine and real—
name is the last part of the actual file name (contains no path information). Zero or
more of these lines may be present intheexecute file. The uuxgt program will check for
the existence of allrequired files before the command s executed.

Standard Input Line
1 filename

The standard input is either specified by a *‘<’" in the command-string or inherited
from the standard input of the uux command if the - option isused. 1fastandard input
is not specified, /dev/null isused.

Standard OutputLine
O filename system—name

The standard output is specified by a *‘>"" withinthe command—string. Ifa standard
output is not specificd, /dev/mull is used. (Note that the use of *‘>>"" is not
implemented.)

Command Line
C command | arguments | ...

The arguments are those specified in the command string. The standard input and
standard output will not appear on this linc. All required files will be moved to the
executiondirectory (a subdirectory of the spool directory) and the XENIX command is
executed using the Shell specified in the uucp. hheader file. In addition, a shell PATH
statement isprependedtothe command line as specified inthe uuxgrprogram.

Afterexecution, the standard output is copicd or set uptobe senttothe proper place.
9.4 Uucico — Copy In, Copy Out

The uucicoprogram will perform the following major functions:
— Scanthe spool directory forwork.
— Placcacalltoaremote system.
— Negotiatealine protocoltobe used.
— Executeallrequests fromboth systems.

— Log work requestsand work completions.

Uucicomay be started by a system dacmon, by one of the uucp , uux , uuxqt, oruucico
programs, by the user (thisis usually for testing), or by aremote system. (The uucico
program should be specified as the shell field in the /etc/passid file for the uucp
logins.)

When started by method a daemon, a program, or the user, the program is considered
tobe in MASTER mode. Inthismode, a connection will be made to aremote system. 1f

9-5

XENIX User’s Guide

started by aremote system. the programis considercdiobe inSLAVEmode.

The MASTER mode will operate inone oftwo ways. 1fnosystemname is specified (the
~soptionnot specified)the program will scanthe spool directory for systemstocall. 1f
a system name is specified, that system will be called, and work will only be done for
thatsystem.

The uucico programis generally started by another program. There are severaloptions
used for execution:

-1l Start the program in MASTER mode. This is used whenuucico is started
by aprogramorcronshell.

~ssys Do work only for system sys. If —8 is specified, a call to the specified
system will be made even if there is no work for system sys in the spool
directory. This is useful for polling systems which do not have the
hardware toinitiate a connection.

The following operions are used primarily fordebugging:
~ddir Usedirectory dir for the spool directory.

—xnum Usenumasthelevelof debuggingcutput.
The next part of this section will describe the major steps within the uucicoprogram.

9.4.1 Scanxing For Work

The names ofthe work related files inthe spool directory have format
type . system—name grade number

where type may be “‘C** for copy command file, ‘D"’ for data file, *‘X"’ for exccute
file, system—name is the remote system, grade is a character, and mumber is a four
digit, padded sequence number.
Thefile

C.res45n0031
is awork file for a file transferbetweenthe localmachine andthe res45 machine.

The scan for work is done by looking through the spool directory for work files (files
with prefix C.). A list is made of all systems to be called. Uucico will then call each
system andprocessall work files.

9.4.2 Calling a Remote System

The call is made using information from several files which reside inthe uucp program
directory. Atthe stan of the call process, alock is set to forbid multiple conversations
betweenthe sametwosystems.

The system name is found inthe L.sys file. The information contained for each system
is; .

Building a Uucp System

i] Systemname

[2] Timesto call the system (days—~ of — week andtimes —of —day)

3] Device ordevicetypetobeused forcall

(4] line speed '

Is] phone number if field[3] is *‘ACU"" or the device name (same as field[3])
ifnot

6] Logininformation (multiple fields)

Thetime fieldischecked againstthe present timetosee if the call sﬁouldbemadc.

The phone number may contain abbreviations (¢.g. mh, py, boston) which get
translated intodial sequencesusingtheL—dialcodes file.

The L—devicesfile is scanned using device type and line speed fields fromthe L. sysfile
to find an available device for the call. The program will try all devices which satisfy
these fields until the call is made, or no more devices can be tried. If a device is
successfully opened, alock file is created so that another copy of uucico will not try to
use it. If the call is complete, the login information n the last ficld of L.sys is used to
login.

The conversation between the two uucico programs begins with a handshake started
by the SLAVE system. The SLAVE sendsamessageto let the MASTER know it isready
to receive the system identification and conversation sequence number. The response
from the MASTER is verified by the SLAVE and if acceptable, protocol selection
begins. The SLAVE can also reply with a call—back required message in which case,
thecurrent conversationisterminated. .

9.4.3 Selecting Line Protocal

Theremote system sendsamessage
Pproto—list
where proto—listis a string of characters, each representing aline protocol.

The calling program checks the protocol list for a letter corresponding to an available
line protocol andreturns ause protocolmessage. The message hasthe form

Ucode

where code is either a one character protocol letter or ‘N’ which means there isno
commonprotocol. :

9.4.4 Processing Work

The initial role of MASTER or SLAVE forthe work processing is themode in which each
program starts. (The MASTER has been specified by the —r1 option.) The MASTER
program does a work search similar to the one used in the section ‘‘Scanning For
Work'’ above.

XENIX User’s Guide

There are five messages used during the work processing, each specified by lﬁc first
characterofthemessage. They are;

Sendafile

Recciveafile

Copy complete

Executeauucpcommand

- X 0O »® w»

Hangup

The MASTER will send R, §, or X messages until all work from the spool directory is
complete, at which point an H message is sert. The SLAVE will reply with the first
letter of the request and either the letter ““Y’* or ““N*’ for yes or no. For example, the
message ‘‘SY "’ indicatesthat itisokaytosendafile.

The send and receive replies are based on permission to access the requested
file/directory using the USERFILE and read/write permissions of the file/directory.
After each file is copied into the spool directory of the recciving system, a copy—
complete message is sent by the receiver of the file. The message ““CY”” willbe sent if
the file has successfully been moved from the temporary spool file to the actual
destination. Otherwise, a ‘“CN’" message is sent. (In the case of ““CN’", the
transferred file will be in the spool directory with a name beginning with ‘“TM’.) The
requestsandresults are logged onboth systems.

The hangup response is determined by the SLA VE program by a work scanof the spool
directory. If work for the remote system exists in the SLAVE's spool directory, an
““HN"’ message is sent and the programs switch roles. 1f no work exists, an ‘“‘HY"’
responseissent.

9.4.5 Terminating a Conversation’

Whena ‘‘HY '’ message isreceived by the MASTER it is echoedback tothe SLAVE and
the protocols are turned off: Each program sends a final *‘O0°’ messageto the other.

The original SLAVE program will clean up and terminate. The MASTER will proceed
to call other systems and process work as long as possible or terminate ifa —s option
was specified. ‘ :

9.5 Uuxqt — Uucp Command Execution

The uuxqt program is used to process execute files generated by uux. The uuxqr
program may be started by either the uucico or uux programs. The program scansthe
spool directory for execute files (prefix X.). Each one is checked to see if all the
required files are availableand if so, the command linc or send line isexecuted.

Theexecute fileis described in the section *‘Uux — SystemtoSystem Copy”* above.
Theexecutionisaccomplishedby executingthe shellcommand

sh —¢c
with the command line after appropriate standard input and standard output have been

9-8

Building & Uucp Sysiem

opened. it a standard output 1s spectified, the prograin will create a send command or
copy the output file as appropriate.

9.6 Uulog — Uucp Log Inquiry

The wucp programs create individual fog files for cach program invocation.

Periodically, uul/og may be exccuted to append these files to the system logfile. This
method of logging was chosen to minimize file locking of the logfile during program
execution.

The uulog program merges the individual log files and outputs specified log entries.
The output request is specified by the use of the following options:
—ssys Print entries where sys isthe remote system name

—~uuser Printentries for useruser.

The intersection of lines satisfying the two options is output. A null sysor user means
all systern names orusersrespectively.

9.7 Uuclean — Uucp Spool Directory Cleanup

This program is typically started by the daemon, once aday. Its function istoremove
files from the spool directory which are more than three days old. These are usually
files for work which can not be completed.

The optionsavailableare:
—ddir Thedirectory tobe scannedisdir.

-m Send mail to the owner of cach file being removed. (Note that most files
put into the spool directory will be owned by the owner of the uucp
programs since the setuid bit will be set on these programs. The mail wilt
therefore most oftengoto the owner ofthe uucp programs.)

—nhours Changetheagingtime from 72hoursto hourshours.

—ppre Examine files with prefix pre for deletion. (Upto 10file prefixes maybe
specified.)

—xnum Use num asthe levelof debugging output desired.
9.8 Security

The uucp system, left unrestricted, will let any outside user execute any commands
and copy in/out any file which is readable/writable by the uucp loginuser. Itisuptothe
individual sites to be aware of this and apply the protections that they fecl are
necessary.

There are several security features available aside from the normal file mode
protections. Thesemust be setup by the installer of the uucp system.

XENIX User’s Guide

Thelogin foruucpdoesnot geta standard shell. Instead, the uucicoprogramis started.
Therefore, the only work that canbe done is through uucico.

A path check is done on file names that are to be sent or received. The USERFILE
suppliesthe information for these checks. The USERFILE canalsobe set up torequire
call-back for certain login—ids. See the section ‘‘Required Files™ below in this
chapter.

A conversation sequence count can be set up so that the called system can be more
confident that the calleris whohe saysheis.

The uuxgt program comes with a list of commands that it will execute. A PATH shell
statement is prepended to the command line as specified in the uuxgt program. The
installer may modify the list orremovetherestrictions asdesired.

The L.sys file should be owned by uucp and have mode 0400 to protect the phone
numbers and login information for remote sites. (The uucp, uucico, uux , and uuxgt
shouldbe also owned by uucpand havethe setuidbit set.)

9.9 Installing a Uucp System

The uucp system provided with the XENIX Software Development System is already
configured for operation onyour computer. Toinstall the system, you must edit a few
files to provide information about your local site. The following sections provide an
overview ofthe filesto be edited and the informationrequired.

During execution of the uucp programs, the uucp system uses files fromthe following
three directories:

program (/usrilib/uucp) This is the directory used for the exccutable system

programsandthe system files.

spool (/usrispoolluucp) This is the spool directory uscd during uucp
execution.

xqtdir (lusrispooltuucp/ XQTDIR) Thisdirectory isused duringexecutionof
executefiles. B

The names given in parentheses above are the default values for the directories. The
names lib, program, xqtdir , and spool will be used in the following text to represent
the appropriate directory names.

9.9.1 Modifying the /etc/systemid File

You must choose a unique site name for each computer to be directly connected to a

uucp line and add the site name tothe /erc/systemid file of the corresponding computer
by using aXENIX texteditor. The/etc/systemidfile canactually containtwonames: the
uucp site name, which must appear on the first line of the file, and a Micnet machine
name, which must appear onthe next line. However, you may decidetohave boththe

uucp site name and Micnet machine nametobe the same, in whichcase, only one name

is required. For a description of the file, see systemid (M) in the XENIX Reference
Manual .

9-10

Building a Uucp Sysiem

9.9.2 Creating the Required Files

There are four files which are required for execution, all of which should reside inthe
programdirectory. To prepare the uucp system for execution, you must add your own
site specific informationto these tiles by editing the tiles with a XENIX text editor. The
field separator for allfiles is a space unless otherwise specified.

L~—-devices

This file contains entries for the call—unit devices and hardwired connections which
aretobe used by uucp. The specialdevice filesare assumedtobe inthe /dev directory.
The format foreachentryis

line call—unit speed

where line is the device for the line (¢.g. cul0), call—unit is the automatic call unit
associated with line (e.g. cua0), Hardwired lineshave a number *‘0** inthis field, and
speedistheline speed.

Theline
cul0 cual 300

defines a system which has device *‘cul0’’ wiredto a call —unit ‘‘cua0’’ for use at 300
baud.

L—dialcodes

Thisfile contains entries with locationabbreviationsused inthe L.sys file (e. g. py, mh,
boston). Theentry format is

abb dial—seq

where abb is the abbreviation, and dial/—seqisthe dial sequence to call that Jocation.
Theline

py 165-
causestheentry py7777tobeexpandedto 165-7777.
USERFILE :
Thisfilecontainsuseraccessibility information. It specifics

— Thefilesthat canbe accessedby anormaluser ofthe local machine
— Thefilesthat canbe accessed from aremote computer
— Theloginnameused by a particularremote coinputer

— Whether a remote computer should be called back in order to confirm its
identity
Eachline inthe tilehasthe following format
login,sys [c] pathname | pathname]

where loginisthe login name for auser or the remote computer, sys isthe system name
for a remote computer, ¢ is the optional call—back required flag, and pathname is a
pathname prefix that isacceptable foruser .

9-11

XENIX User’s Guide

it is assumed that the login name used by a remote computer to call 1o a local
computer is not the same as the login name of a normal user of that local machine.
However, several remote computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each
call. Thisname identifiesthe calling machinetothe called machine.

When the program is obcying a command stored on the local machine, MASTER
mode, the pathnames atiowed are those given for the first line inthe USERFILE thathas
alogin name that matches the login name of the user who entered the command. 1f no
suchline is found, thefirst line with a ru!llogin name isused.

Whenthe program isresponding to acommand from aremote machine, SLAVEmode, -
the pathnames allowed are those given for the first line in the file that has the system
name that matches the system name of the remote machine. lfnosuchlineisfound, the

first one with a null system nameisused.

When a remote computer logs in, the login name that it uses must appear in the
USERFILE . There may be several lines with the same login name but one of them
must either have the name ofthe remote systemor mustcontaina null system name.

If a line is found that has the appropriate login and remote system names and also
containsa‘‘c"’, the remotemachine is called back before any transactionstake place.

Theline
u,m /usr/xyz

allows machine ‘‘m”’ to login with name ‘‘u’’ and request the transfer of files whose

names start with ‘‘/usr/xyz”’.
Theline
dan, /usr/dan

allows the ordinary user ‘‘dan”” to issue commands for files whose name starts with
“‘/usr/dan’’.

Thelines

u,m /ust/xyz /ust/spool
u, /usr/spool .
allow any remote machinetologin with name “‘u’’, but if its system name isnot *‘m’”,
itcanonly asktotransferfiles whose names start with ‘‘/usr/spool””.
Thelines
root, /
, Jusr

allow any user to transfer files beginning with *‘/usr’” but the user with login “‘root
cantransfer any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp
programs. The fields are describedbelow.

system name The name of the remote system.

9-12

time

device

speed

phone

login

Building a Uucp System

This is a string which indicates the days—of — weck and times— of—day
when the system should be called (¢.g. MoTuTh0800—1730). The day
portionmay bealist containing some of

Su Mo Tu We Th Fr Sa
oritmay be ‘‘Wk"* for any week—day or *‘Any’’ for any day. The time

should be a range of times (c.g. 0800—1230). If no time portion is
specified, any time of day isassumedto be ok for the call.

Thisiseither ‘‘ACU’’ orthe hardwired device tobe used forthe call. For
the hardwired case, the last part of the special file name isused (¢. g. tty0).

Thisisthe line speed forthecall (e.g. 300).

The phone number is made up of an optional alphabetic abbreviationand
a numeric part. The abbreviation is one which appears in the L—
dialcodes file (e.g. mh5900, boston995—9980). For the hardwired
devices, this field contains the same string asused forthe device field.

The login information is given as a series of fields and subfields inthe
format

expect send | expect send | ...

where expect is the string expected to be read and send is the string to be
sent whenthe expected string is received. The expect fieldmay be made
upofsubficlds of the form

cxpect[—send—expect]]

where send is sent if the prior expect is not successfully read and expect]
isthe next expected string.

There are two special names available to be sent during the login
sequence. The string ““EOT’" sends an EOT character and the string
““BREAK"’ tries to send a BREAK character. (The BREAK character is
simulated using line speed changes and mill characters and may not work
onalldevicesand/or systems.)

AtypicalentryintheL . sysfileis
sys Any ACU 300 mh7654 login uucp ssword: word
The expect algorithm looks at the last part of the string as illustrated in the password

field.

9.10

Maintaining the System

This section indicates some cvents and files which must be maintained for the uucp
system. You may do some maintenance with shell command files, initiating the files
with crontab entries. Others will require mamal modification. Some sample shell
files are giventowardtheend of this section.

9-13

XENIX User’s Guide

9.10.1 SEQF — sequence check file

Thisfileis setupinthe programdirectory and contains anentry foreachremote system
with which you agree to perform conversation sequence checks. The initial entry is
just the system name of the remote system. The first conversation will add twoitemsto
the line, the conversation count, and the date/time of the most resent conversation.
These items will be updated with each conversation. If a sequence check fails, the
entry willhavetobe adjusted.

Use ofthis featureis notrecommend.
9.10.2 TM -~ temporary data files

These files are created inthe spool directory while files are being copied froma remote
machine. Theirnameshave the form

TM.pid.ddd

where pidisa process—id and ddd is a scquential three digit number starting at zero for
each invocationof uucicoand incremented for cach file received.

After the entire remote file is received, the TM file is moved/copied to the requested
destination. If processing isabnormally terminated orthe move/copy fails, the file will
remaininthe spool directory.

The leftover files should be periodically removed; the uuclean program isuseful inthis
regard. The command

uuclean —pTM
removesall TM filesolderthanthree days.

9.10.3 LOG — log entry files

During executionof programs, individual LOG files are created in the spool directory
with information about queued requests, calls to remote systems, exccution of uux
commands and file copy results. Thesc files should be combined intothe LOGFILE by

- using the uulog program. This program will put the new LOG files at the beginning of
theexisting LOGFILE . The command

uulog

performs the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE shouldbe removed periodically sinceitiscopiedeach
time new LOG entries arcput intothe file.

The LOG files are created initially with mode 0222. ifthe program which creates the
fileterminates normally, it changesthe mode to0666. Aborted runs may leave the files
with mode 0222 and the uulog program will not read or remove them. To remove

them, either use rm, uuclean, or change the mode to 0666 and let uulog merge them
withthe LOGFILE .

9-14

Building 3 Uucp System

9.10.4 STST — system status files

These tiles are created in the spool directory by the uucico program. They contain
information of failures such as login, dialup or sequence check and will contain a
talking status whentomachines are conversing. The form of the filename is.

STST.sys
where sysisthe remote systemname.

For ordinary failures (dialup, login), the file will prevent repeated tries for about one
hour. For sequence check failures, the file must beremoved before any future attempts
toconverse withthat remote system.

Ifthe file is left duetoanaborted run, itmay containatalking status. Inthiscase, the file
must beremoved before aconversationisatiempted.

9.10.5 LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each
system conversing. This prevents duplicate conversations and multiple attempts to
usethe same devices. The formofthe lock file name is

LCK..stir

where str is cither a device or system name. The files may be left inthe spool directory
if runs abort. They will be ignored (reused) after atime of about 24 hours. When runs
abort and calls are desiredbefore the time limit, the lock files shouldbe removed.

9.10.6 Creating Shell Files

The uucp program will spool work and attempt to start the uucico program, but the
starting of uucico will sometimes fail. (No devices available, login failures etc.).
Therefore, the uucico program should be periodically started. The command to start
uucico can be put in a shell file with a command to merge LOG files and started by a
crontabentry onanhourly basis. The file could containthe commands

program /uulog
program /uucico —rl
Notethat the — rl optionisrequired tostart the uucicoprogram inMASTER mode.

Another shell file may be set up onadaily basis toremove TM, ST, and LCK filesand
C. or D. files for work which can not be accomplished for reasons like bad phone
number, loginchangesetc. A shellfile containing commands like

program /uuclean —pTM —pC. —pD.
program /uuclean —pST —pLCK —nl2

canbeused. Note the —nl12 oﬁtion causesthe ST and LCK files older than 12 hours to
bedeleted. The absence ofthe — noptionwill use athree day time limit.

9-15

XENIX User’s Guide

9.10.7 Defining Login Entries

One or more logins should be set up for uucp . Each of the /etc/passwd entries should
have program/uucico as-the shell to be executed (where program is the directory
containing uucico). The login directory is not used, but if the system has a special
directory for use by the users for sending or receiving file, it should as the login entry.
The various logins are used in conjunction with the USERFILE to restrict file access.
Specifyingthe shellargument limitsthe logintotheuse of uucicoonly. -

4.10.8 Setting File Modes

It is suggested that the owner and file modes of various programs and files be sét as
follows.

The programs uucp , uux , uucico, and uuxqt should be owned by the uucp login with
the setuid bit set and only execute permissions (¢.g. mode 04111). This will prevent
outsiders from modifying the programsto get at a standard shell for the uucplogins.

The L.sys, SQFILE, and USERFILE files which are put in the program directory
shouldbe ownedby the uucploginand set withmode 0400.

Chapter 10

The C—Shell

10.1 Introduction 1

10.2 InvokingtheC—shell 1

10.3 UsingShell Variables 2

104 UsingtheC—ShellHistoryList 3
10.5 Using Aliases 5

10.6 RedirectingInputandOQutput = 6
10.7 Creating Background and ForegroundJobs 7
10.8 Using Built—InCommands 8

10.9 CreatingCommandScripts 9
10.10 Usingtheargv Variable 9

10.11 SubstitutingSh@ Variables 10
10.12 UsingExpressions 11

10.13 Usingthe C—Shell: A Sample Script 12
10.14 Using Other Control Structures 15
10.15 SupplyinglnputtoCommands 15
10.16 Catchinginterrupts .16

10.17 UsingOtherFeatures 16

10.18 StartingaloopataTerminal 17

10.19 Using Braces with Arguments 17
1020 SubstitutingCommands 18

10.21 SpecialCharacters 18

The C—Shell

10.1 Introduction

The C—shell program, csh, is a command language interpreter for XENIX system
users. The C—shell, like the standard XENIX shell sh, is an interface between you and
the XENIX commands and programs. It translates command lines typed at a terminal
intocorresponding system actions, gives youaccesstoinformation, such as your login
name, home directory, and mailbox, and lets you construct of shell procedures for
automating systemtasks.

This chapter explains how touse the C—shell. It alsoexplains the syntax and function
of C—shell commands and features, and showshowtousethicse featresiocreate shell
proccdures. The C—shell is fully described in ¢sh(CP) in the XENIX Reference
Manual .

10.2 Invoking the C—shell

Y ou can invoke the C—shell from another shell by using the csh command. Toinvoke
the C—shell, type:

csh

at the standard shell’s command line. You can also direct the system to invoke the
C~shell for you when you log in. 1f you have giventhe C—shell as your login shellin
your/etcipasswdfileentry, the system automatically startsthe shell whenyou log in.

After the system starts the C—shell, the shell searches your home directory for the
command files .cshrc and . login. Ifthe shell finds the files, it executesthe commands
contained inthem, thendisplaysthe C—shell prompt.

The .cshre file typically contains the commands you wish to execute each time you
start a C—shell, and the .login file contains the commands you wish to execute after
logging into the system. For example, the following is the contents of a typical . login
file:

set ignoreeof)

sct mail= (fust/spool/mail/bill)

set time=1$

set history=10

mail
This file comains severalsetcommands. The set command is exccuted directly by the
C—shell; there is no corresponding XENIX program for this command. Set sets the
C—shell variable “‘ignorecof”” which shields the C—shell from logging out if
CNTRL-D ishit. Instead of CNTRL ~D, the lagout command is used to log out of the
system. By setting the *‘mail’’ variable, the C—shell is notified that it is to waich for
incoming mail andnotify you if new mail arrives.
Next the C—shell variable ‘‘time”’ is set to 15 causing the C—shell to automatically
print out statistics lines for commands that execute for at keast 15 seconds of CPU time.
The variable “*history*" is set to 10 indicating that the C—shell will remember the last
10commandstypedinitshistory list, (describedlater).

Finally, theXENIX mailprogram isinvoked.

When the C—shell finishes processing the .login file, it begins reading commands
from the terminal, prompting for each with:

10-1

XENIX User’s Guide

%
Whenyoulogout (by givingthe logout command)the C— shell prints
logout

and executes commands from the file . logour if it exists in your home directory . After
that, the C—shellterminates and XENIX logs you off the sy siem.

10.3 Using Shell Variables

The C—shell maintains a set of variables. For example, in the above discussion, the
variables *‘history’* and ‘ ‘time’” had the values 10 and 15. Each C—shell variablehas
asits value anarray of zero or more strings. C—shell variablesmay be assigned values
by the set command, whichhasseveral {orms, the mostuseful of which is:

set name=value

C~—shell variables may be used to store values that are to be used later in commands
through a substitution mechanism. The C-—shell variables most commonty
referenced are, however, those that the C~—shell itself refers to. By changing the
valuesofthese variablesyoucandirectly affectthe behavior of the C—shell.

Onc of the most important variablesis ‘‘path’’. This variable containsalistof directory
names. When youtype acommand name at your terminal, the C— shell examineseach
named directory inturn, untilit finds an executable file whose name corresponds tothe
name you typed. The set command with no arguments displays the values of all
variables currently defined in the C—shell. The following example shows a typical
default values:

argv 0

home /ust/bill

path (. /bin /ust/bin)
prompt %

shell Min/csh

status 0

This output indicates that the variable ‘‘path’’ begins with the current directory
indicated by dot (.), then/bin, and/usr/bin. Yourownlocalcommandsmay beinthe
current directory. Normal XENIX commandsresidein/bin and/usr/bin.

Sometimes a number of locally developed programs reside in the directory /usr/local .
If you want all C—-shells that you invoke to have access to these new programs, place
the command

set path=(. /bin /ust/bin fust/local)

inthe .cshrefile in your homedirectory. Try doingthis, thcnrc—cxccuungyou login
with the command source.login. Type

set
to secthat the value assignedto *‘path”’ haschanged.

You should be aware that when you log in the C—shell examines each directory that
you insert into your path and determines which commands are contained there, except
for the current directory which the C—shell weats specially, This means that if
commands are added to a directory in your search path after you have started the C—

10-2

The C- Shelt

shell, they will not necessarily be found. Ifyou wishtouse acommand which hasbeen
added after you have loggedin, you should give the command

rehash

to the C—shell. Rehash causes the shell to recompute its internal table of command
locations, sothat it will find the newly added command. Sincethe C—shellhastolook
in the current directory on each command anyway, placing it at the end of the path
specificationusually work best andreduces overhead.
Other useful built in variables arc “‘home’’ which shows your home directory, and
“‘ignoreeof”” which can be set in your ./ogix file to tell the C—shell not to exit when it
receives an end—of —file from aterminal. The variable ‘‘ignoreeof”’ is one of several
variables whose value the C— shelldoes not care about; the C— shellis only concemed
with whether these variables are set or unset. Thus, to set “‘ignorecof™” you simply
type

set ignoreeof
andtounsetittype

unset ignoreeof

Some other useful built—in C—shell variables are ‘‘noclobber’’ and ‘‘mail’’. The
syntax

>filename

which redirects the standard output of a command just as in the regular shell,
overwrites and destroys the previous contents of the named file. Inthis way, you may
accidentally overwrite a file which is valuable. If you prefer that the C—shell not
overwrite filesinthis way youcan :

set noclobber

inyour .loginfile. typing
date > now

causesanerror message if the file now already exists. Youcantype
date >! now

if you really want to overwrite the contents of now. The ““>1"" is a special syntax
indicating that overwriting or ‘‘clobbering”’ the file is ok. (The space between the
exclamation point (!) and the word “‘now’’ is critical here, as ‘‘!now’’ would be an
invocation of the history mechanism, described below, and have a totally different
effect.)

10.4 Using the C—Shell History List

The C~shell can maintain a history list into which it places the text of previous
commands. It is possible to usc a notation that reuses commands, or words from
commands, in forming new commands. This mechanism can be used to repeat
previous commandsorto correct minor typing mistakes incommands. ‘

The following figure gives a sample session involving typical usage of the history
mechanismofthe C—shell. Boldface indicatesuser input:

10-3

XENIX User’s Guide

% cat bug.c
main()

!
’ printf("hello);

{

H

% cc 1$

cc bug.c

"bug.c”, line 4: newline in string or char constant
"bug.c”, line 5: syntax error

% ed !$

ed bug.c

29

4s/);/"&Ip
printf("hello”);

w

30

q

% !¢

cc bug.c

% a.out

hello% le

ed bug.c

30

4slo/lo\n/p
printf("hello\n”);

w

32

q

% lc —o bug

cc bug.c —o bug

% size a.out bug :

a.out: 2784+364 +1028 = 4176b = 0x10S0b
bug: 2784+364+1028 = 4176b = 0x1050b

%ls —11*

Is —1 a.out bug

—rwxr—xr—x | bill 3932 Dec 19 09:41 a.out
—rwxr—xr—x 1 bill 3932 Dec 19 09:42 bug
% bug)

hello

% pr bug.c | Ipt

Ipt: Command not found.

% “lptipr

prbug.cllpr

%

In this example, we have a very simple C program that has a bug or two in the file
bug.c, which we cat out on our terminal. We then try to run the C compiler on it,
referring to the file again as *‘!$’’, meaning the last argument to the previous
command. Here the exclamation mark (!) is the history mechanism invocation
metacharacter, and the dollar sign ($) stands for the last argument, by analogy to the
dollar sign in the editor which stands for the end—of—line. The C—shell echoed the
command, as it would have beentyped without use of the history mechanism, and then

10—4

The C—Sheil

executed the command. The compilationyielded error diagnostics, so we now editthe
file we were trying to compile, fix the bug. and run the C compiler again, this time
referring tothis command simply as “!c””, which repeats the last commandthat started
with the letter ““c”". If there were other commands begmmng with the letter “‘c”’
gxecuted recently, we could have said ‘“‘!cc”” or even *“!cc:p”’ which prints the last
.ommand starting with ‘‘cc’* without executing it, sothat you can check to see whether
youreally wanttoexecuteagivencommand.

After thisrecompilation, we ran the resulting a. out file, and then noting that there still
was abug, ranthe editor again. After fixing the program we ranthe C compiler again,
but tacked onto the command an extra *‘—o bug’’ telling the compiler to place the
resultant binary in the file bug rather than a.ous. In general, the history mechanisms
may be used anywhere in the formation of new commands, and other characters may
be placed before and afterthe substituted commands.

We then ran the size command to sce how large the binary program images we have
created were, and then we ran an ‘‘Is —1"* command with the same argument list,
denoting the argument list:

!#

Finally, weranthe program bug to secthat its output is indeed correct.

Tomake a listing of the program, we ranthe pr command onthe file bug.c . Inorderto

printthe listing at a lineprinter we pipedthe output tol pr, but misspelleditas *“Ipt”’. To
correct this we used a C—shell substitute, placing the old text and new text between
caret () characters. This is similartothe substitute command inthe editor. Finally, we
repeatedthe same command with

"
and sentitsoutput tothe lineprinter.

There arc other mechanisms available for repeating commands. The history
command prints out a numbered list of previous commands. You can then refer to
thesc commands by number. There is a way to refer to a previous command by
searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. A complete description of all these
mechanismsisgivenincsh (CP)the XENIX Reference Manual .

10.5 Using Aliases

The C—shell has an alias mechanism that can be used to make transformations on
commands immediately after they are input. This mechanism canbe usedto simplify
the commands you type, to supply default arguments to commands, or to perform
transformations on commands and their arguments. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained by using
C—shell command files, but these take place in another instance of the C—shell and
cannot directly affect the current C—shell’s environment or involve commands such
ascd whichmust be done inthe current C—shell.

For example, suppose there is a new version of the mail program on the system called
newmail that you wish to use instead of the standard mail program mail. If you place
the C—shellcommand

10-5

XENIX. User’s Guide

alias mail newmail
inyour .cshrcfile, the C— shell will transform an input line of the form

mail bill
intoacall onnewmail . Suppose you wishthe commandlstoalways show sizesoffiles,
thatis, toalwaysuse the —soption. Inthiscase, youcanuse the aliascommandtodo

alias Is Is —s
oreven
alias dir Is —s
creating anew command nameddir. If we thentype
dir bill
the C—shelltranslates thisto
Is —s /usr/bill

Note that the tilde (7) is a special C—shell symbol that represents the user’s home
directory.

Thus the alias command can be used to provide short names for commands, to provide

default arguments, and to define new short commands interms of other commands. It

is also possible todefine aliases that contain multiple commands or pipelines, showing
where the arguments to the original command are to be substituted using the facilities
ofthehistory mechanism. Thusthe definition

alias cd "cd \!'* ; Is °

specifies an. Is command after each ¢d command. We enclosed the entire alias
definition in single quotation marks (*) to prevent more substitutions from occurring
and to prevent the semicolon (;) from being recognized as a metacharacter. The
exclamationmark (!) isescaped with abackslash (\)toprevent it from being interpreted
whenthealias commandistypedin. The ‘‘\!*’* here substitutestheentire argument list
to the prealiasing cd command; no error is given if there are no arguments. The
semicolon separating.commands is used here to indicate that one command is to be
doneandthenthenext. Sumlarlythefollowmgcxampledcﬁnesacommandﬂmlooks
upitsfirst argument inthe passwordfile.

alias whois "grep \!" /etc/passwd’

The C~shell currently reads the .cshre file each time it starts up. If you place a large
number of aliasesthere, C—shells willtend to start slowly. You should try to limit the
number of aliases you have toareasonable number (10or 15 isreasonable). Toomany
aliases causes delays and makes the system scem sluggish when you execute
commands from withinaneditor orotherprograms.

10.6 Redirecting Input and Output

in addition to the standard output, commands also have a diagnostic output that is
normally directed tothe terminal even when the standard output isredirectedtoafile or
a pipe. Itis occasionally useful to direct the diagnostic output along with the standard -
output. Forinstance, if you want toredirect the output of along running command into
afile and wishtohave arecord of any error diagnostic it produces you cantype

10-6

The C--Sheli

command > & ftile

The **> &' here tellsthe C— shellto route both the diagnostic output and the standard
output into file . Similarly you can give the command

command | & lIpr

to route both standard and diagnostic output through the pipe to the lineprinter. The
form

command >&! file
isused when *‘noclobber’” is set and file alrcady exists.
Finally, usethe form

command >> file

to append output to the end of an existing file. If ‘‘nociobber’’ is set, then an error
resultsif file does not exist, otherwisctheC—shell createsfile . The form

command >>! file
letsyouappendtoafileevenifitdoesnotexistand ‘‘noclobber’’ isset.

10.7 Creating Background and Foreground Jobs

When one or more commands are typed together as a pipeline or as a sequence of

commands separated by semicolons, asingle job is created by the C—shell consisting

of these commandstogether as aunit. Single commands without pipes or semicolons

createthe simplest jobs. Usually, every line typedtothe C—shellcreatesajob. Eachof
the following linescreatesajob:

sort < data

Is —s | sort —n | head -5

mail harold
Ifthe ampersand metacharacter (&) is typed at the end of the commands, thenthe job is
started as a background job. This means that the C—shell does not wait for the job to
finish, but instead, immediately prompts for another command. The job runs in the
background at the same time that normal jobs, called foreground jobs, continue to be
read andexecutedby the C—shell. Thus

du > usage &

runs the du program, which reports onthe disk usage of your working directory, puts
the output into the file usage and returns immediately with a prompt for the next
command without waiting for duto finish. The du program continues executing inthe
background until it finishes, eventhough you cantype and execute more commands in
themeantime. Backgroundjobs arc unaffected by any signals fromthe keyboard such
as the INTERRUPT or QUIT signals.

The kill command terminates a background job immediately. Normally, this is done
by specifying the process number of the job you want killed. Process numbers can be
found with the ps command.

10-7

XENIX User’s Guide

10.8 Using Built—In Commands

This sectionexplainshowtouse some of the built —inC—shellcommands.

The alias command described above is used to assign new aliases and to display
existing aliases. If given no arguments, alias prints the list of current aliases. It may
also be given one argument, such as to show the current alias for a given string of
characters. Forexample

alias Is
printsthe currentalias for the string “Is”".

The history command displays the contents of the history list. The numbers given
with the history events can be used to reference previous events that are difficult to
reference contextually. There is also a C—shell variable named ‘‘prompt’’. By

placing an exclamation point (!) in its value the C—shell will substitute the number of
the current command inthehistory list. You canuse this numbertorefertoacommand

inahistory substitution. Forexample, youcouldtype:

set prompt="\! % °) ’
Note that the exclamation mark (!)had tobe escaped even within backslashes.
Thelogoutcommandisusedtoterminate alogin C—shellthat has *‘ignoreeof™” set.

The rehash commandcauses the C—shelltorecompute atable of command locations.
This is necessary if you add a command to a directory in the current C—shell’s search
path and want the C—shellto find it, since otherwise thehashing algorithm may tell the
C—shellthat the command wasn’tinthat directory whenthe hash table was computed.

The repeat command is used to repeat a command several times. Thus to make 5
copiesofthe file one inthe file fiveyou couldtype:

repeat 5 cat onc >> five
Thesetenvcommandcanbeusedto set variablesintheenvironment. Thus
setenv TERM adm3a

sets the value of the environment variable *“TERM’’ to ‘‘adm3a’’. The program env
existstoprint out theenvironment. Forexample, itsoutput might look like this:

HOME=/hust/bill

SHELL=/bin/csh
PATH=/ust/ucb:/bin:/ust/bin:/ust/local
TERM=adm3a

USER=bill

The source command is used to force the current C—shell to read commands from a
file. Thus

source .cshrc

canbe used after editing ina change tothe .cshrc file that you wish to take effect before
the nexttime you login.

The time command is used tocause a command to be timed no matter how much CPU
timeittakes. Thus

10-8

The C-Shell

time cp /etc/re fusr/ballire
displays: .

0.0u 0.1s 0:01 8%
Similarly

time wc /etc/rc fust/bill/re
displays:

52 178 1347 letc/rc
52 178 1347 lusribillirc
104 356 2694 total

0.1u 0.1s 0:00 13%

Thisindicates that the cpcommand used a negligible amount of usertime (u) and about

1/10th of a second system time (s); the elapsed time was | second (0:01). The word
count command wc used 0.1 seconds of user time and 0.1 seconds of system time in
less than a second of elapsed time. The percentage ‘“13%’* indicates that over the
period when it was active the we command used an average of 13 percent of the
available CPU cyclesofthe machine.

The unalias and unset commands are used to remove aliases and variable definitions
fromthe C—shell.

10.9 Creating Command Scripts

1t is possible to place commands in files and to cause C—shells to be invcked to read
and execute commands from these files, which are called C—shell scripts. This
section describesthe C— shell featuresthat are useful whencreating C—shell scripts.

10.10 Using the argv Variable

A cshcommand script may be interpretedby saying
csh script argument ...

where script is the name of the file containing a group of C—shell commands and
argument is a sequence of command arguments. The C—shellplaces these arguments
in the variable ‘‘argv’’ and then begins to read commands from scripr. These
parameters arc then available through the same mechanisms that are used toreference
any other C—shell variables.

If you make the file script executable by doing
chmod 755 script

chmod +x script

and then place a C—shell comment at the beginning of the C—shell script (i.¢., begin
the file with a number sign (#)) then/bin/csh will automatically be invoked toexecute
scriptwhenyoutype

10-9

XENIX User’s Guide

script "
Ifthe file does not begin with a number sign (#) then the standard shell/bin/sh will be
usedtoexecuteit.

10.11 Substituting Shell Variables

Afier each input line is broken into words and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed a
mechanism know as variable substitution is performed on these words. Keyed by the
dollar sign ($), this substitutionreplaces the names of variables by their values. Thus

echo Sargv

whenplacedinacommand script would cause the current value of the variable “‘argv’*
to be echoed to the output of the C—shell script. It is anerror for “‘argv’’ tobeunsetat
thispoint.
A number of notations are provided for accessing components and attributes of
variables. Thenotation

$name

expands to 1 if name is set or to O if name is not set. It is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other
forms of referencetoundefined variables causeerrors.

Thenotation
$#name

expandstothe number of elements inthe variable ‘‘name’’. Toillustrate, examinethe
followingterminal session (input isin boldface):

% set argv=(a b ¢)
1

% echo $#argv

3

% unset argv
% echo $?argv
0

% echo $argv
Undefined variable: argv.
%

Itisalsopossibletoaccessthe componentsof a variable thathas several values. Thus

Sargvi1]
givesthe first componentof ‘‘argv’’ orintheexample above “a”’. Similarly

Sargv|$ #argv|
wouldgive ““c*”,and

Sargv{1-2]
wouldgive:

10-10

The € --Shel}

ab

Other notationsusetulinC - shell scriptsare
$n

where nisaninteger Thisisshorthand for
Sargv| n |

the n 'thparameterand
s*

which isa shorthand for
Sargv

The form
$3

expands to the process mumber of the current C—shell. Since this process number is
unique inthe system, it is often used in the generation of unique temporary filenames.
The form

<

is quite special and is replaced by the next line of input read from the C—shell’s
standard input (not the script it is reading). This is useful for writing C— shell scripts
that are interactive, reading commands from the terminal, or even writing a C—shell
scriptthatactsasa filter, reading lines fromitsinput file. Thus, the sequence

echo —-n ‘yes or no?
set a=($<)

writesout the prompt
yes or no?

without anewline and thenreads the answer imo the variable “‘a’’. Inthiscase *‘$#a’"
is Oif either ablank linc or CNTRL —D is typed.

One minor difference between ““$n°* and *‘Sargvn] shouldbe notedhere. The form
“Sargvin|"’ will yield an error if nisnot inthe range 1 —$ #argv while “$n°* will never
yicld an out—of—range subscript error. This is for compatibility with the way older
shellshandle parameters.

Another important point isthat it isneveranerrortogive a subrange of the form “‘n—"’;
if there are less than ‘‘n’’ components of the given variable then no words arc
substituted. A range of the form ‘‘m—n"" likewise returns an empty vector without
giving an error when ‘‘m’’ exceeds the number of elements of the given variable,
provided the subscripi “‘n”’ isinrange.

10.12 Using Expressions

To construct useful C—shell scripts, the C—shell must be able to evaluate expressions
basedonthe values of variables. Infact, all the arithmetic operationsofthe C language
are available in the C—shell with the same precedence that they have in C. In
particular, the operations *‘==""and *‘!="" compare strings and the operators *‘ &&"*
and *‘| |’ implement the logical AND and OR operations. The special operators ‘="

1011

XENIX User's Guiie

and ““!""" are similarto “*==""and “‘!=""except that the string on the right side can
have pattern maiching characters (tike *, ?or| and]). These operators test whether the
string onthe left matchesthe pattern onthe right.

The C—shell also allows file enquiries of the form

—? filename
where question mark (?) is replaced by a number of single characters. For example,
the e xpression primitive

—e filename

tells whether filename exists. Other primitivestest forread, writc and execute accessto
thefile, whetherit isadirectory, orif ithas nonzerolength.
It is possible to test whether a command tenminates normally, by using a primitive of
the form

! command P
which returns 1 if the command exits normally with exit status 0, or 0 if the command
terminates abnormally or with exit status nonzero. 1f more detailed information about
the execution status of a command is required, it can be executed and the ‘‘status’”

variable examined in the next command. Since *‘$status’” is set by every command,
its valueis alwayschanging.

For the full list of expression components, sce ¢sh(CP). in the XENIX Reference
Manual .
10.13 Using the C—Sheli: A Sample Script

A sample C—shell script follows that uses the expression mechanism of the C—shell
and some of its control structures:)

10-12

The C - Shell

#

Copyc copies those programs mn the specified list
to the directory “/backup if they differ from the files
already in “/backup

#

set noglob

forcach i ($argv)

if ($i !” *.c) continue # not a .c file so do nothing

if (! —r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp —s $i “/backup/$ict # to sct $status

if ($status != 0) then
echo new backup of $i
cp $i “backup/Si:t
endif
end

This script uses the foreach command. The command executes the other commands
between the foreach and the matching end. for each of the values given between
parentheses with the named variable *‘i’” whichis set to successive valuesin thelist.
Within this loop we may use the command break to stop executing the loop and
continue to prematurely terminate one iterationand begin the next. Aftertheforeach
looptheiteration variable (/inthiscase)hasthe value atthelast iteration.

The *‘noglob’’ variable is set to prevent filename expansion of the members of
“‘argv’’. This is a good idea, in general, if the arguments to a C—shell script are
filenames which have already beenexpanded or ifthe arguments may contain filename
expansion metacharacters. It is also possible to quote each use of a **$’" variable
expansion, butthisisharder and lessreliable.

The othercontrolconstruct is a statement of the form
if (expression) then
command
endif

The placement of the keywords in this statement is not flexible due to the curmrent
implementation of the C—shell. The following two formats are not acceptabie to the
C—shell:

if (expression) # Won't work!
then
command

endif
and

10—13

XENIX User’s Guide

if (expression) then command endif # Won’t work
The C— shell doeshave another formof the if statement:

if (expression) command
which canbe written

if (expression) \
command
Here we have escaped the newline for the sake of appearance. The command must not
involve ““1°*, “&"* or **;"* and must not be another control command. The second
formrequiresthe final backslash (\) to immediately precede the end— of — line.

The more géncra] if statements above also admit a sequence of else—if pairs followed
by asingle elseand an endif, for example:

if (expression) then
commands

else if (expression) then
commands

clse
commands
endif

Another important mechanism used in C—shell scripts is the colon (:) modifier. We
can use the modifier :r here to extract the root of a filename or :e to extract the
extension. Thusifthe variable ‘‘i’* hasthe value/mnt/foo.barthen

echo $i $irr Sice
produces
/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing *‘.bar*’ and the :e
modifier leaves only the ‘‘bar’’. Other modifiers take off the last component of a
pathname leaving the head :h or all but the last component of a pathname leaving the
tail :t. These modifiers are fully describedinthe esh(CP) entry inthe XENIX Reference
Manual . 1t is also possible to use the command substitution mechanism to perform
modifications on stringstothenreenter the C—shell environment. Since each usage of
this mechanism involves the creation of anew process, it is much more expensive to
use than the colon (:) modification mechanism. It is also important to note that the
current implementation of the C— shell limits the number of colon modifiers ona ‘$**
substitutiontol. Thus ’

% echo $i $i:h:t
produces
/a/b/c la/bt
and does notdo what you mightexpect.

Finally, we note that the number sign character (#) lexically introduces a C—shell
comment in C—shell scripts (but not from the terminal). All subsequent characterson
the input line after a number sign are discarded by the C—shell. This character canbe
quotedusing"*" or " argument word.

10—-14

The C ~Shelk

i0.14 Using Other Control Structures

The C~ shell also has control structures while and switch similar tothose of C. These
take the forms

while (expression)

commands
end
and
switch (word)
case strl:
commands
breaksw
case strn:
commands
breaksw
defauh:
commands
breaksw
endsw

For details see the manual section foresh(CP). Cprogrammers should note that weuse
breakswtoexit from a switch while break exits a while or foreach loop. A common
mistake tomake in C—shell scriptsistousc break ratherthan breaksw in switches.

Finally, theC—shellallows a goto statement, with labels looking like they do inC:

loop:
commands

goto loop
10.15 Supplying Input to Commands

Commands run from C—shell scripts receive by default the standard input of the C—
shell which is running the script. It allows C—shell scripts to fully participate in
pipelines, butmandates extra notation for commandsthat are totake inline data.

Thus we need a metanotation for supplying inline data to commands in C—shell
scripts. Forexample, consider this script which runsthe editor to delete leading blanks
from the linesin eachargument file: .

10-15

XENIX User’s Guide

deblank — - remove leading blanks
foreach i ($argv)

ed — $i << ' EOF’

L$s [0

w

q

'EOF’

end
The notation

<< 'EOF’
means that the standard input for the ed command is to come from the text inthe C—
shell script file up to the next line consisting of exactly EOF. The fact that the EOF is
enclosed in single quotation marks ('), i.¢., it is quoted, causes the C—shell to not
perform variable substitution on the intervening lines. In general, if any part of the
word following the ‘‘ <<"* which the C—shell uscstoterminate the text tobe givento
the command is quoted then these substitutions will not be performed. In this case
since we used the form “‘1,$°" in our editor script we needed to insure that this dollar
sign was not variable substituted. We could also have insured this by preceding the
dollarsign($) withabackslash(\),i.e.:

1L\$s/ [+ _
Quotingthe EOF terminator isamorereliable way of achieving the same thing.

10.16 Catching Interrupts

=~

If our C—shell script creates temporary files, we may wish tocatch interruptions of the
C—shell script sothat wecancleanup these files. Wecanthendo

onintr label

where label is a label in our program. If aninterrupt is received the C—shell willdoa
‘‘goto label”* and we canremove the temporary files, thendo anexit command (which
is built in to the C—shell) to exit from the C—shell script. If we wish to exit with
_NONZETO Status we can write:

exit (1)
toexit withstatus 1.

10.17 Using Other Features

There are other features of the C—shell useful to writers of C—shell procedures. The
verbose and echo options and the related —v and —x command line options can be
used to help trace the actions of the C—shell. The —noption causesthe C—shell only
toread commands and not toexecute themandmay sometimesbe of use.

One other thing to note isthat the C—shell will not execute C—shell scripts that donot
begin with the number sign character (#), that is C—shell scripts that donotbegin with
acomment.

Thereisalso another quotation mechanisin using the double quotation mark (”), which
allows only some of the expansion mechanisms we have so far discussed to occuron

10—16

The C—Shell

the quoted string and servesio make this string into a single word asthe single quote(”
does)

10.18 Starting a Loop at a Terminal

1t is occasionally useful to use the foreach control structure at the terminal 1o aid in
performing a number of similar commands. For instance, if there were three shells in
use onaparticular system, /bin/sh, /bin/nsh, and/bin/c sh, you could count the number
of personsusing each shellby using the following commands:

grep —c csh$ /etc/passwd
grep —c nsh$ /etc/passwd
grep —c —v sh$ /etc/passwd

Since these commands are very similar we canuse foreachto simplify them:

$ foreach i ("csh$’ 'nsh$’ *—v sh$’)
? grep —c $i /etc/passwd
? end

Note here that the C—shell prompts for input with ‘‘?** when reading the body of the
loop. Thisoccursonly whenthe foreachcommandisenteredinteractively.

Also useful with loops are variables that contain lists of filenames or other words. For
example, examinethe following terminal session:

% set a=(‘Is‘)

% echo $a

csh.n csh.nm

% Is

csh.n

csh.rm

% echo $#a

2

The set command here gave the variable *‘a’ a list of all the filenames in the cumrent
directory as value. We can then iterate over these names to perform any chosen
function.

The output of acommand within back quotationmarks (*) is convertedby the C—shell
to alist of words. You canalso place the quoted string within double quotation marks
(")ytotake each (nonempty) line as acomponent of the variable. This preventsthe lines
from being split into words at blanks and tabs. A modifier :x exists which can be used
later to expand each component of the variable into another variable by splitting the
original varizble into separate words at embedded blanksand tabs.

10.19 Using Braces with Arguments

Another form of filename cxpansion involves the characters, *“!"* and I, These
characters specify that the contained strings, separated by commas (,) are to be
consecutively substitutedintothe containing charactersand the results expandedlefito
right. Thus

Alstr],str2,...strn!B

10—-17

XENIX User’s Guide

expandsto
AsiriB Astr2B ... AstmB

This expansion occurs before the other filename expansions, and may be applied

recursively (i.e., nested). The results of each-expanded string are sorted separately,
left to right order being preserved. The resulting filenames are not required to exist if
noother expansionmechanismsare used. This meansthat thismechanism canbeused

10 generate arguments which are not filenames, but which have common parts.

Atypicaluseofthis wouldbe
mkdir 7thdrs,retrofit,csh)

to make subdirectories Adrs, retrofirand csh inyour home directory. This mechanisnﬂ
is most useful whenthe commonprefixislonger thaninthiscxample:

chown root /usr/demo/!file] ,file2,...}
10.20 Substituting Commands

A command enclosed in accent symbols (*) is replaced, just before filenames are
expanded, by theoutput from that command. Thus, itispossibletodo

set pwd=‘pwd’
to save the current directory inthe variable ‘‘pwd’” ortodo
vi ‘grep —1 TRACE *.c*

1o run the editor vi supplying as arguments those files whose names end in .c which
have the string ““TRACE’ in them. Command expansion also occurs in input
redirected with * ‘< <"* and within quotation marks ("). Referto ¢sh(CP)inthe XENIX
Reference Manual formore information.

10.21 Special Characters

The followingtable lists the special characters of eshandthe XENIX system. A number
of these characters also have special meaning in expressions. Sce the csh manual
section foracomplete list.

Syntactic metachzracters

H Separates commandstobeexecuted sequentially
| Separates commandsinapipeline

() Bracketsexpressionsandvariable values

& Followscommandstobe executed without waiting for completion

Filename metacharacters
/ Separatescomponentsofafile’spathname

10—18

The C- Shel}

* Separatesroot pants of a filename from extensions
? Expansion char;lctermalching any single character
* Expansioncharactermatching any sequence of characters
i Expansionsequencematching any single character from a set of characters
Used atthe beginning of afilename toindicate home directories

! Usedtospecify groups of arguments withcommonparts
Quotation metacharacters
\ Preventsmeta—meaning of following single character

Preventsmeta—meaning of a group of characters

Like*, but allows variable andcommandexpansion-

Input/output metacharacters
< Indicatesredirected input
> Indicatesredirected output

Expansion/Substitution Metacharacters

3 Indicates variable substitution

! Indicateshistory substitution
Precedes substitutionmodifiers

Used in special forms of history substitution

¢ Indicatescommand substitution
Other Metacharacters
Begins scratch filenames; indicates C—shell comments

— Prefixesoption(flag) argumentsto commands

10—19

Chapter 11
Using The Visual Shell

11.2

11.3

11.4

Whatisthe VisualShell? |
Getting Started withthe Visual Shell
11.2.1 Enteringthe VisualShell
11.2.2 GettingHelp 2
11.2.3 Leavingthe Visual Shell
The Visual ShellScreen 2
11.3.1 StatusLine 2
11.3.2 MessageLine 2
11.3.3 MainMenu 2
1134 CommandOptionMenu
11.3.5 ProgramOutput 3
11.3.6 ViewWindow 3
Visual ShellReference 5
114.1 VisualShell DefaultMenu
11.4.2 Options 6

1143 Print 7

11.4.4 Quit 8

1145 Run 8

11.4.6 View 8

11.4.7 Window 8
1148 Pipes 9

1149 Count 9

11.4.10 Get 9

114.11 Head 9

11.4.12 More 9

114.13 Run 10

114.14 Sort 10

11.4.15

Tail 10

1

2

3

S

Using The Visual Sheil

11.1 What is the Visual Shell?

The Visual Shell vsh is a menu—driven XENIX shell. This chapter describes the use
1:d behavior of the vsh. 'This chapter assumes that the reader is familiar with some

“peneral XENIX concepts, specifically the structure of XENIX filesystemsandthe nature
of a XENIX ‘command’. No familiarity with any other shell, however, is assumed. if
you are a first—time user of the Visual Shell, please completely read the narrative
sections of this chapter. '

A ‘shell’ is a program which passes a command to an operating system, and displays
the result of running the command. The XENIX shells can also create ‘pipelines’ for
passing the output of one command to another command or ‘redirect” the outputinto a
file.

The other XENIX shells available arc sh and csh. These shells are called
‘command —line oriented’ shells. This means that the user enters commands one line
at a time. The sh and csh shells are full computer languages which require study and
some programming knowledge to usec effectively. These command—line shells are
powerful andefficient.

The vsh is a ‘menu—oriented’ shell. In a menu—oriented shell, the user is given the
- available commmands, or some of the available commands. The user can run the
command, by selecting from the menu.

The Visual Shell is a good shell for users who may not want to master a programming
language right away just to use XENIX or a specfic XENIX application. All Visual Shell
users shouldadditionally become familiar with some command—line shell usage.

Users familiar with command—line shells are in for a pleasant surprise if theytry the
Visual Shell. Experienced users will appreciate the efficiency and versatility of the
Visual Shell. The distinction is very much akin to the difference between a line—
oricntedtext editor anda full — screeneditor.

A menu shell canbe used effectively with very little study. Onthe other hand, amenu
shell can also restrict the user from using the operating system in creative, possibly
more efficient ways. The Microsoft Visual Shell strikes a balance in thisregard. The
Visual Shellisdesignedtodoall ofthe thingsthat the command—line shellscando.

11.2 Getting Started with the Visual Shell

This section describes how to enter, obtainhelp about, andleave the visual shell. This
section also describes what you w:ll seconthe screen while running the visual shelland
- howthe mems work.

Note the following convention for specifying keystrokes. CTRL refers to the CTRL
shift key. CTRL~Cmeans pressingthe CTRL and ‘c’ keys at the sametime. ALTrefers
to the ALT shift key. ALT—-H means pressing the ALT and ‘H’ keys at the same time.
Notethe irrelevance of case inentering Menu Selectioncharacters. For instance, press
either ‘Q’or‘q’ torunthe *‘Quit”* command from the mainmenu.

11.2.1 . Entering the Visual Shell

XENIX Operaiions Guide

Log in to XENIX. If you are not sure how to log in, consult the Operations Guide or
have someone knowlegeable about XENIX help you. When you have a shell prompt
(ypically ‘$’ or ‘%"), the operating system is waiting for a command. Enter the
command:

vsh

and pressRETURN.

11.2.2 GettingHelp

If at anytime you are not sure what to do, either run the ‘‘Help’’ Menu Sclection or
press ALT—H. Refer to the reference section of this chapter for infonnation about the
Helpcommand.

11.2.3 Leaving the Visual Shell

To exit the Visual Shell select the Quit command from the main menu. The simplest
way to do this is to simply press ‘q’ or ‘Q’. In response to the prompt ‘‘Type Y to
confinn’’, enter ‘y’ or ‘Y’. 1f you don’t want to exit the Visual Shell yet (perhaps you
pressed ‘q’ by mistake), enter any other character but ‘y’ or ‘Y". If you have invoked
the visual shell from another shell, as described above, you will necd to log out from
XENIX by entering CTRL~D or ‘logout’ and pressing RETURN. Ifthe Visual Shell is
yourdefault shell, you willautomatically be loggedout.

11.3 The Visual Shell Screen

11.3.1 Status Line

The bottom line on the screen is called the ‘status line’. The status line displays the
name of the current working directory, notifies you if you have mail, and gives the
date, timeandthe name of the operating system.

11.3.2 Message Line

The line above the ‘status line” is called the ‘message line”. The messagc line displays
specialoutput from XENIX commands, suchaserrorreports.

11.3.3 Main Menu

The next section of the screen above the message line is the ‘main menu’. The main
menudisplaysaselectionofuseful XENIX commands.

The currently selected menu command is highlighted on the screen. To select any
command, press the SPACE BAR. The next highlighted command is selected. The
BACKSPACE key will move to the previous command. Move through the menu until

11-2

Using The Visuak Shell

you have found the command you want. Torunthe currently selected command, press
RETURN. :

Y ou may also enter the first letter of a commandto select that command. 1f you enter
the first letter of the command, you donotneedtopressRETURN.

If you enteraletter whichdoes not correspondtoamenu selection, the message
Not a valid option

will be displayed. Try another option.
11.3.4 Command Option Menu

When you have selected a command, the main menu will be replaced with a command
option mem. The command optionmenu givesthe options available with the specific
command. Youmustfillinthe options with appropriate responses.

If you wish toreturnto the main menu without running the command, press CTRL—C,
(cancel). Ifyou want torunthe command withthe selected options pressRETURN.

The following keystrokesallow editing of optionresponses.

CTRL-1,CTRL-A,or‘tab’ Movetonextfieldinoptionsmenu.

CTRL-YorDEL Delete characterundercursor.

CTRL~-L Move cursortocharactertoright of current position
incurrent optionfield.

CTRL-K Move cursortocharacter toleft of current position
incurrent optionfield.

CTRL-P Move cursorto wordin current fieldtoright of the
current word.

CTRL-O Move cursorto wordin current fieldtoleft of the
current word.

11.3.5 Program Output

While running a command, commands given and output (unless redirected) will be
displayed above the menu and below the view window. The output scrolls up: moves
-from bottomtotop. Lines scrolling offthetop ofthe output window disappear.

Visual Shell command lines are listed with each argument preceded by the number in
the argument list enclosed in parenthescs. The command is named in the output
window by the menu command. Hence, if you run the command /bin/ls with the
argument — R, the output window will display the command line as follows:

Run (1) /binvls (2) =R
To change the command line format to reflect the actual XENIX command line
generatedby the Visual Shell, use the Options Output menu command.

11.3.6 View Window

A memu of currently accessible files and directories can be displayed at the top of the

11-3

XENIX Operations Guide

screen in alphabetical order, left to right, top to bottom. Note that this display is the
same as that obtained using the view command. This will be referred to as the ‘view
window' inthis chapter. Ifthe directory list is larger thanthe current window size, you
may scroll through using the key commands given below. To reset the window size,

usethe ‘Window’ mainmenucommand.

The currently selecteditem is highlighted inthe view window. Use the arrowkeys and
other key commands given at the end of this section to move the highlight around the
window.

If adirectory isbeing listed, subdirectories are shown enclosed in square brackets. To
view a subdirectory, press ‘=" while the directory is highlighted. To return to the
previous directory after viewing a subdirectory, press ‘—'. The parentdirectory of the
current directory is shown as ‘[.] The current directory is shownas .]". Executable
files are preceded by an asterisk. The last modification date of the currently selected
item is given at the right margin of the last line of the window. The name of the item in
view inthecurrent window is givenin the upperright —handcorner of the window.

The view window may also display contents of files. Highlight a file, and press ‘=".
You may scroll through the file using the key commands givenbelow. While viewing
afile, thehighlighted arcacoversoneline.

1f you press ‘=" whileanexccutable file ishighlighted, that file willbe run.

If the Visual Shell requires a file or directory name, the currently selected View
Window item can be automatically entered inthe relevent option field by pressing any
directional movement key following selection of the command. This method saves
keystrokes and reduces the chance of making typing mistakes. On the other hand, if
you wish to explicitly enter a file or directory in an option ficld, type in the name after
selectingthecommand.

Usethesekeystrokesto select files fromthe view window:

WINDOW MOTIONKEYS
CTRL~-Q Movetostart (first item alphabetically) of view window.
CTRL-Z Movetoend(last item alphabetically) of view window.

CTRL-RCTIRL—-E Scroll view window up.
CTRL-RCTRL-S Scroll view window down.
=——=—————x Vijewindicated item, either file or directory.
Ifno view window is present, the current working directory
isdisplayed.
- Return window display toparentdirectory of
currently listed directory.
If viewingafile, exit from viewing that file.
Last view window isreturnedto.

11-4

Using The Visual Shell

DIRECTIONAL MOVEMENTKEYS
ARROW UPor CTRL-E: Movchighlight upin view window.
ARROWDOWN orCTRL—-X: Movehighlightdownin view window.
ARROWLEFT orCTRL—S: Movehighlightleft in view window.
ARROWRIGHT orCTRL-D: Movehighlightrightin view window.

Movement beyond the left or right margin will proceedto the nextitem onthe previous
or next line unless at the edge of the view window. Movement beyond the top or
bottom edge of the current window will scroll the view window up ordown if there are
more items inthat direction inthe view window.

Note that there are two ways tomove thehighlight around. Eitherusethe keypad arrow
keys orthe clusterof fourkeysonthe farleft ofthekeyboard ‘e’, ‘x’, ‘s, and ‘d’ shified
withCTRL.

While viewing a file, the directicnal movement keys for up and left move the highlight
up, andthe keys for down and right move the highlighted linedown.

11.4 Visual Shell Reference

11.4.1 Visval Shell Default Mem

This section describes the default Visual Shell memu commands and options. The
menuoptionsare displayedat the bottom of the screen above the status line.

To invoke a command, move the highlight forwards through the main menu using the
space bar or the tab key, or backwards using the backspace key. Or simply press the
first letter ofthe command. '

Most commands require entering options. Move the cursor to the field using the
SPACE BAR, TAB key or BACKSPACE key, and type your response. To edit the
options, refer to the key commands listed above in the section in this chapter labelled
‘‘Command Option Menu’". To select an item from a View Window listing for
insertionina field, refertothe sectioninthischapter labelled *‘ View Window™*.

Note that some options have ‘switches’ with predefined (default) sclections. The
currently selected switch setting is highlighted. The default is the parenthesized
. setting. Forinstance, inthe switch:

Recursive: (yes) no

the default isrecursive. To change a switch, select the field and press the SPACE BAR
orBACKSPACE.

Copy

The Copy command can copy files and directories. Tocopy a file, select *‘File’’ from
the options, to copy adirectory, select ‘‘Directory””. A sub—menu willappear. Enter
the file or directory you wish copied in the from: field. Enter the file or directory you
wish copiedtotheo: field. Note that ifthe item in the to: field already exists, it willbe
overwritten, sobe careful.

The Copy Directory sub—menu has aswitch *‘recursive”’. Ifthis switch isset to yes,
all sub—directoriesand their contentsbelow the specified directory will be copied.

11-5

XENIX Operations Guide

Delete

The Delete command can remove files and directories. Inthe DELETE name: field
enter the name of the file or directory you want to remove. Note that once the file or
directory is deleted, the contents are gone forever unless you have another copy, sobe
careful.

Edit

The Edit command invokes the full—screen editor vi. The current directory will be
displayed inthe output window. Enter inthe option ficld EDIT filename: the name of
the file you wishtoeditusing vi.

To learn vi, consult the document ‘“vi: a Screen Editor’’ inthe XENIX User’s Guide ,
and the vi(C) manual page in the XENIX Reference. A vi reference card is also
available.

Help

The Help command (also available by pressing ALT ~H at any time), can give on—line
help regarding many aspects of Visual Shell use. The view window will display the
help file. Use the menu to select the topic you need help with. For instance, movethe
highlight to ‘Keyboard® using the SPACE BAR and press RETURN to view the help file
starting at the ‘Keyboard’ section. The ‘Next’ and ‘Previous® fields in the menu will
scroll through the the help file from the present location one screen at a time. Your
work will remain undisturbed. To return from Help, press CTRL-C or select the
‘Resume’ menu option. .

Mail
The Mail command enters the XENIX mail system. There are two options: ‘‘Send’’

and ‘‘Read”’ For more information about mail, refer tothe section of the XENIX Users
Guidetitled * ‘Mail"’ orrefertothe mail(C)manual page.

Name
The Name command renames anexisting file ordirectory. There aretwofields, From:

and To:. Enter the name of the file or directory you want to rename in From: and the
newnameinTo:

11.4.2 Options

The Options Main Menu Selection provides four sub—menus. These sub—menusrun
commands whichtypically areused infrequently or which have irre vocableresults.

Directory Option

The Directory commandhastwo sub—menus, Make and Usage.

Make Directory Option This command creates a new directory named what you
enterinthe name: field.

UsageDirectory Option Counts the number of disk blocksinthe directories specified
inthe name: ficld. The format is the same as the XENIX command Is —s. Refertothe
manualpagels(C).

11-6

Using The Visual Shell

FileSystem Option

FileSystem has the five sub—menus: Create, FilesCheck, SpaceFree, Mount and
Unmount.

Create FileSystem Option Create FileSystem makes a XENIX filesystem. The
Create command performs radical systein maintenance and may have irrevocable
effects. Careisadvised whenusing Create FileSystem.

The functionality is the same as mkfs(C). Consult the mkfs(C) manuat page before
running Create FileSystem. Create FileSystem will prompt you for device, block size,
gap number and block number. Refer to the XENIX Operations Guide chapter on
“‘Using File Systems®’. The section *‘Creating a File System'’ also explains this
command. .
FilesCheck FileSystem Opticn FilesCheck checks the consistency of a XENIX
filesystem and attempts repair if damage is detected. The FilesCheck command
performs radical system maintenance and may have irrevocable effects. Care is
advised whenusing FilesCheck.

The functionality is the same as fsck(C). Consult the fsck(C) manual page before
running FilesCheck. FilesCheck will prompt you forthe devicetocheck.

OutputOption

The Output Option command has one switch, commands like: VShell XENIX'”. The
default is VShell. IF VShell is set, the vsh form of commands given appear in the
upward scrolling output window. If XENIX is specified, the XENIX command line
which vsh generated will be showninstead.

Permissions Option

The Permissions Option command allows changing the access permissions on files
anddirectorics. The functionality isthe same asthe chmod(C) command. Consult the
chmod manualpage if you donotunderstandthe concept of XENIX permissions.

In the name: field enter the name of the file or directory you wish to alter the
permissionson. Youmay only alter the permissions on files and directories you own.
Thereare fourswitches, who: ,read: , write: ,andexecute: .

The who: switch has four settings, All, Me, Group and Others. Allisthedefauk. All
refers to yourself, those with the same group id as yourself and others. Me refers to
-yourself. Grouprefersandall others with your group id. Ozhersreferstothose outside
your group. ’

Theread, write and execute switches have two settings, yesandno. The defaultis yes
for Me, and no for Groupand Others . This grants the giventype of permissionto those
specified in the who: switch. No takes away the giventype of permission from those
specifiedinthe who: switch.

11.4.3 Print

The Print command puts a file or filesin the queue for your lineprinter. Inthe filename;
optionfield, enterthe file orfiles you wanttoprint.

11-7

XENLX Operations Guide

1144 Quit ;

The Quit command exits the Visual Shell. The only option is Enter Y to confirm: .
Enter ‘Y’ or ‘y’ ifyoureally wanttoquit. Any otherkey cancelsthequit.

11.4.5 Run

The Run command executes a program or shell script. The name: option takes the
name of an executable file. Inthe parameters: option ficld enter flags to pass to the
executable file. The owput: option can specify a file to redirect output to or another
program to send the output to. Enter a vertical bar ‘I’ in the output field to use the pipe
menu.

1t is also possible to run an executable file by highlighting the name of thc file inthe
View Window andpressing ‘="

11.4.6 View

The View command allows you to inspect without altering the contents of files and
directories. View is also available at any time for an item highlighted in the View
Window by pressing ‘=". See the section above labelled ‘View Window' for the
detailsofusing View.

To alter the height and characteristics of the View Window, use the ‘Window’ menu
option. Seethe sectionbelow labelled ‘“Window**,

If you have invoked View from the menu, enter the name of the file or directory you
wishto view inthe VIEW name: field, or select from adirectory view window.

Toreturn fmm any View actiontothe prev:ously displayed View Wmdow. press the
minuskey‘—

If you View a non—executable binary ﬁle. non—ascii characters are dxsplayed asthe
character‘'@’.

11.4.7 Window

The Window command alters the height and redraw characteristics of the Visual Shcll
View Wmdow

The
WINDOW redraw: Yes (No)
switchturnsonor offredraw of the view window afterrunning acommand.

The heightinlines: field changes the number of lines displayed in the view window.
The minimum window height is 1 lines. The default window height is 5 lines. The
maximum windowheight is 1 Slines.

Using The Visual Shell

11.4.8 Pipes

XENIX allows output fromone program to be passed to another program or tobe put in
afile. Thisiscalled *piping’ or ‘pipelining’. Ifthe outputisplacedinafileitis saidtobe
‘redirected’. Pipingis supportedinthe Visual Shellthrough the pipemenu.

The Pipe menu is invoked by entering a vertical bar *I° character in any option field
named ourput: . For instance, the Run main menu and the Pipe menu itself have an
output: tield. The available Pipe menu commands are Count, Get, Head, More, Run,
Sortand Tail. Each Pipe menu sub—commandalsohas anoutput: field, whichallows
construction of pipelinesof arbitrary length.

11.4.9 Count

Count counts words, lines and characters in the input pipe. The default is all of the
above. There is a switch for each type of item to count. The Count Pipe Menu option
corresponds to the XENIX command we. Consult the manual page we(C) for the
functionality .

11.4.10 Get

Get looks for patterns in the input pipe. The pattern may be verbatim, or you may
specify a ‘‘regular expression’” to look for. Regular expressions may contain
‘wildcard’ characters which represent sets of strings. Consult the manual page
grep(C) forthe available wildcard characters.

The first Get switch is Unmarched (Yes) No . 1f you specify Yes (the default), alllines
containing the given pattern will be output. If Unmatched is set to off, all lines not
containingthe givenpattern will beoutput.

The secondGet switch is ignore case: which suppresses the case while looking for the
regular expression. The defaultisoff.

The third Get switch is line numbers: , which reports the line in the input stream which
the regular expression was matched on. Thedefaultison.

11.4.11 Head

Head prints a specified number of lines of the input stream starting from the first line.
The lines: field may be set to specify the number of lines at the head of the input stream
toprint. The defaultis$ lines.

The Head Pipe Menu option corresponds to the XENIX command head. Consult the
manual page bead(C) forthe functionality.
11.4.12 More

More allows viewing an input stream one screenat atime. The More Pipe Menu option
invokes the XENIX command more. Consult the manual page more(C) for the
functionality.

11-9

XENIX Operations Guide

11.4.13 Run

" The Run Pipe Menu option allows the specification of any command not in the Pipe
menu. The functionality isthe same asthe Visual ShellMainMenu Option *‘Run’’..

11.4.14 Sort

The XENIX sort utility can be invoked through the Sort Pipe menu option. The input
stream is sorted.

The first Sort switchis order: < >_ Select *>’, the default, 1o sort in ascending order.
Select ‘<’ tosort indescending order.

The second Sort switch suppressesthe case of charactersinthe sort. The defaultisoff.

ThethirdSort switch sortsthe input streamassuming an initial numeric ficldinthe input
stream. Ifthis switch is off, initial numbers will be sorted in ascii order, which means
that a line beginning with ‘10’ will be output before the line beginning with ‘2°. The
defaultisoff.

The fourth Sort switch sortsthe input streamindictionary order, rather thanasciiorder.

The Sort Pipe Menu option corresponds to the XENIX command sort. Consult the
manual page sort(C) for the functionality.

11.4.15 Tail

Tail prints a specified number of lines of the input stream upto the end of the stream.
The lines: ficld may be set to specify the number of lines to print. The default is 15
lines.

The Tail Pipe Menu option corresponds.to the XENIX command tail. Consult the
manual page tail(C) for the functionality .

11-10

Appendix A
Ed

A.l1 Introduction A-1
A.2 Demonstration A-1

A.3 Basic Concepts A-2
A.3.1 TheEditingBuffer A-2
A3.2 Commands A-2
A.3.3 LineNumbers A-2

A.4 Tasks A-2
A.4.1 Enteringand Exiting The Editor A-3
A.4.2 Appending Text:a A-3
A.4.3 WritingOutaFileew A-4
A.44 Leaving TheEditor:q A-5
A.4.5 Editing ANewFile:e A-6
A.46 ChangingtheFileto Write Outto:f A-6
A.47 ReadinginaFile:cr A-7
A.4.8 Displaying Lines On The Screen:p A-8
A.4.9 Displaying The CurrentLine:dot(.) A-10
A.4.10 Deleting Lines:d A-12
A.4.11 Performing Text Substitutions:s A-13
A.4.12 Searching A-15
A.4.13 Changing and Inserting Text:candi A-19
A.4.14 MovingLines:m A-20
A .4.15 Performing Global Commands: gandv A-22
A.4.16 Displaying Tabs and Control Characters:1 A-24
A.4.17 Undoing Commands:u A-25
A.4.18 Marking Your SpotinaFile:k A-25
A.4.19 TransferringLines:t A-26
A.4.20 Escaping tothe Shell:! A-26

A.5 Context and Regular Expressions A-27
A5.1 Period:(.) A-28
A.5.2 Backslash: \ A-30

A.5.3 DollarSign:$ A-32

A.5.4 Caret:” A-33

Ab.5 Star:* A-33

A.5.6 Brackets:|and] A-36

A.5.7 Ampersand: & A-37

A.5.8 Substituting New Lines A-38
A.5.9 JoiningLines A-39

A.5.10 RearrangingaLine: \(and\) A-39

A.6 Speeding Up Editing A-40
A.6.1 Semicolon:; A-42
A.6.2 Interruptingthe Editor A-44

A.7 Cutting and Pasting with the Editor A-44
A.7.1 Inserting OneFilelntoAnother A-44
A.7.2 Writing OutPartofaFile A-45

A.8 Editing Scripts A-46

A.9 Summary of Commands A-47

Ed

A.l1 Introduction

Ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus edis a truly general purpose
program. Note that the line editor ez, available with other XENIX packages is
very similar to ed, and therefore this chapter can be used as an introduction to
ezaswellasto ed.

A.2 Demonstration

This section leads you through a simple session with ed, giving you a feel for
how it is used and how it works. To begin the demonstration, invoke ed by

typing:
ed

This invokes the editor and begins your editing session. An asterisk ‘‘+”
prompts for commands to be entered. Initially, you are editing a temporary file
that you can later copy to any file that you name. This temporary file is called
the “editing buffer,” because it acts as a buffer between the text you enter and
the file that you will eventually write out your changes to. Typically, the first
thing you will want to do with an empty buffer is add text to it. For example,
after the prompt, type:

a

this is line 1

this is line 2

this is line 3

this is line 4

CNTRL-D

This “appends” four lines of text to the buffer. To view these lines on your
screen, type, '

1,4p

where the ‘1,4” specifies a line number range and the p command “prints” the
specified lineson the screen.

Now type
2p
to view line number two. Next type just

p

This prints out the current line on the screen, which happens to be line number

A-l

XENIX User’s Guide
two. By default, most edcommands operate ononly the current line.

A.3 Basic Concepts

This section illustrates some of the basic conceptsthat you need to understand
to effectively use ed.

A.3.1 The Editing Buffer

Eachtime you invoke ed, an area in the memory of the computer is allocated on
which you will perform all of your editing operations This area is called the
“‘editing buffer”. When you edit a file, the file is copied into this buffer where
you will work on the copy of the original file. Only when you write out your file
doyou affect the original copy of the file.

A3.2 Commands

’Commands are entered by typmg them at your keyboard Like normal XENIX
commands, entry of acommand isended by typing a NEWLINE. After you type
NEWLINE the command is carried out. In the following examples, we will
presume that entry of each command is completed by typing a NEWLINE,
although this will not be explicitly shown in our examples. Most commands are
single characters that can be preceded by the specification of a line number or a
line number range. By default, most commands operate on the “current line”,
described below in the section on ‘‘Line Numbers’’. Many commands take
filename or string arguments that are used by the command when it is
executed.

A.3.3 Line Numbers

Any time you execute a command that changes the number of lines in the
editing buffer, ed immediately renumbers the lines. At all times, every line in
the editing buffer has a line number. Many editing commands will take either
single line numbers or line number ranges as prefixing arguments. These
arguments will normally specify the actual lines in the editing buffer that are to
be affected by the given command. By default, a special line number called
‘““‘dot”’ specifies the current line.

A.4 Tasks

This section discusses the tasks you perform in everyday editing. Frequently
used and essential tasks are discussed near the beginning of this section.
Seldom-used and special-purpose commands are discussed later.

"Ed

A.4.1 Entering and Exiting The Editor
The simplest way to invoke edisto type:
ed
The most common way, however, isto type:
ed filename
where filename is the name of a new or existing file.

Toexit the editor, allyou need to doistype:

q

If you have not yet written out the changes you have made to your file, ed warns
you that you will lose these changes by printing the message:

?

If you still want to quit, type another q. In most cases you will want to exit by
typing:

w
q

so that you first write out your changes and only then exit the editor.

A.4.2 Appending Text: a

Suppose that you want to create some text starting from scratch. This section
shows you how to put text in a file, just to get started. Later we’ll talk about
howto changeit.

When you first invoke ed, it is like working with a blank piece of paper—there
is no text or information present. These must be supplied by the person using
ed, usually by typing in the text, or by readingitin from a file. We will start by
typing insome text and discuss how toread fileslater.

In ed terminology, the text being worked on is said to be “‘kept in a buffer”.
Think of the buffer as a workspace, or simply as a place where the information
that you are going to be editing iskept. In effect, the buffer is the piece of paper
on which you will write things, make changes, and finally file away.

You tell ed what to do to your text by typing instructions called “commands”.

Most commands consist of a single letter, each typed on a separate line. Ed
prompts with an asterisk (*). This prompting can be turned on and off with the

A3

XENIX User's Guide

prompt command, P.

The first command we will discuss is append (a) written as'the letter “a” on a
line by itself. It means *“append (or add) text lines to the buffer, as they are
typedin.” Appendingislike writing new material on a piece of paper.

To enter lines of text into the buffer, just type an “a”, followed by a RETURN, .
followed by the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending, type a line that contains only a period. The period (.) tells
ed that you have finished appending. (You can also use CNTRL-D, but we will
use the period throughout this discussion.) If edseems to be ignoring you, type
an extra line with just a period (.) on it. You may find you’'ve added some
garbage lines to your text, which you will have to take out later.

After appendingis completed, the buffer contains the following three lines:

Now is the time
for all good men
to come to the aid of their party.

The aand . aren’t there, because they are not text.

To add more text to what you alrez.dy have, type another a command and
continue typing your text.

If you make an error in the commands you type to ed, it will tell you by
displaying the message:.

?
error.mcessage

A.4.3 Writing Out a File: w

You will-'probably want to save your text for later use. To write out the
contents of the buffer into a file, use the write (w) command followed by the
name of the file that you want to write to. This copies the contentsof the buffer
to the specified file, destroying any previous contents of the file. For example,
tosave the text in a file named tezt, type:

w text

Ed

Leave a space between w and the filename. Ed responds by printing the
number of charactersit has written out. For instance, edmight respond with

68

(Remember that blanks and the newline character at the end of each line are
included in the character count.) Writing out 2 file just makes a copy of the
text—the buffer’s contents are not disturbed, so you can go on adding text toit.
If you invoked ed with the command “‘ed filename’’, then by default a w
command by itself will write the buffer out to filename.

This is an important point. Edat all times works on a copy of a file, not the file
itself. No change in the contents of a file takes place until you give a w
command. Writing out the text to a file from time to time asit is being created
is a good idea. If the system crashes or if you make some horrible mistake, you
will lose all the text in the buffer, but any text that was written out to a file is
relatively safe.

A.4.4 Leaving The Editor: q

To terminate a session with ed, save the text you're working on by writing it to
afile using the w command, then type:

q

The system responds with the XENIX prompt character. If you try to quit
without writing out the file ed will print

?
At that point, write out the text if you want to save it; if not, typing another
¢q" will get you out of the editor.
Exercise
Enter edand create some text by typing:
a
... text ...
Write it out by typing:
w filename

Thenleave edby typing:

A5

XENIX User’s Guide

q

Next, use the cat command to display the file on your terminal screen to see
that everything has worked.

A.4.5 Editing A New File: e

A common way to get text into your editing buffer is to read it in from a file. -
This is what you do to edit text that you have saved with the w commandina
_ previous session. The edit { ¢) command places the entire contents of a file in
the buffer. If you had saved the three lines “Now is the time”’, etc., witha w
command in anearlier session, the ed command

e text
would place the entire contents of the file tezt into the buffer and respond with
68

which is the number of charactersin tezt. If anythingis alreadyinthe buffer, it
te deleted first.

If you use the e command to read a file into the buffer, then you don’t need to
use a filename after a subsequent w command. Edremembers the last filename
used in an e command, and w will write to thisfile. Thus, a good way to operate
is this:

ed

e file .
[editing session]
w

q

This way, you can type w from time to time and be secure in the knowledge that
if you typed the filename right in the beginning, you are writing out to the
proper file each time.

A.4.8 Changing the File to Write Out to: f

You can find out the last file written to at any time using the file (f) command.
Just type f without a filename. You can also change the name of the

remembered filename with f. Thusa useful sequenceis

ed precious
{ junk

which gets a copy of the file named precious, then usesf to save the text in the
file junk. The original file will be preserved as precious.

A-6

Ed

A.4.7 ReadinginaFile:r

Sometimes you want to read a file into the buffer without destroying what is
already there. This function is useful for combining files. This is done with the
read (r) command. The command

1 text

reads the file tezt into your editing buffer and adds it to the end of whateveris
already in the buffer. For example, pretend that you have performed a read
after anedit:

e text
r text

The buffer now contains two copies of tezt i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, after the reading operation is complete r prints
the number of charactersread in.

Exercise

Experiment with the e command by reading and printing various files. You
may get the error message

name
cannot open input file

where name is the name of a nonexistent file. This means that the file doesn't
exist, typically because you spelled the filename wrong, or perhaps because you
do not have permission to read from or write to that file. Try alternately
~ reading and appending to see how they work. Verify that the command

ed file.text

isequivalent to

ed
e file.text

A7

XENIX User's Guide

A.4.8 Displaying Lines On The Screen: p

Use the “‘print”’(p) command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want printing to
begin and where you want it to end, separated by a comma and followed by the
letter “‘p”. Thus, to print the first two lines of the buffer (that is, lines 1 through

2) type:
1,2p
Edresponds with:

Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use “1,3p” as
above if you knew there were exactly 3 lines in the buffer. But you will rarely
know how many lines there are, so ed provides a shorthand symbol for the line
number of the last line in the buffer—the dollar sign (§). Use it this way:

1,$p
This will print all the lines in the buffer {from line 1 to the last line). If you want
to stop the printing before it is finished, press the INTERRUPT key. Ed then
displays

?
interrupt

and waits for the next command.

To print the last line of the buffer, use:
$p

You can print any single line by typing the line number, followed by a p. Thus
1p |

produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line by
typing just the line number; there’s no need to type the letter p. If you type

Ed

$
ed prints the last line of the buffer.
You can also use $in combinationslike
$-1.$p

which prints the last two lines of the buffer. This helps when you want to see
how far you are in your typing.

The next step is to use address arithmetic to combine the line numbers like dot

(.) and dollar sign ($) with plus (+) and minus (-). (Note that “‘dot” is
shorthand for the current line, and is discussed in a later section.) Thus

$-1

prints the next to last line of the current file (that is, one line before the line §).
For example, to recall how far you were in a previous editing session

-5p

prints the last six lines. (Be sure you understand why it’s six, not five.) If there
aren’t six lines in the file, you’ll get an error message.

The command
.43,.+3p

prints from three lines before the current line (line dot) to three lines after. The
plus(+) can be omitted:

.-3,.3p
isidentical in meaning.

Another area in which you cansave typing effortin specifying linesisto use plus
and minus asline numbers by themselves. For example

by itself is a command to move back one line in the file. In fact, you can string
several minus signs together to move back that many lines. For example

moves back three lines, as does

-3

A8

XENIX User's Guide

Thus
-3,+3p
is also identical to

?.-3p+3p

A4.9 Disblaying The Current Line: dot (.)
Suppose your editing buffer still contains the following six lines:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Ifyou type

1,3p
eddisplays

Now is the time

for all good men

to come to the aid of their party.
Try typing:

P
Thisprints

to come to the aid of their party.
which is the third line of the buffer. In fact, it is the last (most recent) line that
you have done anything with. You can repeat this p command without line
numbers, and ed will continue to print line 3.
This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be used
instead of an explicit line number. The line most recently acted onisreferred to
with a period (.) and is called “‘dot”. Dot is a line number in the same way that

dollar ($) is; it means “the current line”, or loosely, “the line you most recently
did something to”. You can use it in several ways. One possibility is to type:

A-10

Ed

.$p

This will print all the lines from (and including) the current line clear to the end
of the buffer. In our example these are lines 3 through6.

Some commands change the value of dot, while othersdo not. The p command
sets dot to the number of the last line printed. In the example above, p sets dot
to 6.

Dotisoften used in combinations like this one:
+1

Or equivalently:
+1p

This means “‘print the next line” and is one way of stepping slowly through the
editing buffer. You can also type

~1

This means “print the line before the current line”. This enables you to go
backwards through the file if you wish. Another useful command is something
like

-~3,-1p
which printsthe previous three lines.

Don’t forget that all of these change the value of dot. You can find out what dot
isat any time by typing:

Ed responds by printing the value of dot. Essentially, p can be preceded by
zero, one, or two line numbers. If no line numberisgiven, edprintsthe *“current
line”, the line that dot refers to. If one line number is given (with or without the
letter p), ed prints that line (and dot is set there); and if two line numbers are
given, ed prints all the lines in that range (and sets dot to the last line printed).

A-11

XENIX User’s Guide

If two line numbers are specified, the first cannot be bigger than the second.

Pressing RETURN once causes printing of the next line. It isequivalent to:
+1p

Try it. Next, try typing aminussign () by itself; it is equivalent to typing

~1p

Exercise

Create some text using the a command and experiment with the p command.
You will find, for example, that you can’t print line 0 or aline beyond the end of
the buffer, and that attempts to print lines in reverse order using ‘‘3,1p” do not
work.

A.4.10 Deleting Lines: d

Suppose you want to get rid of the three extra linesin the buffer. Use the delete
(d) command. Its action is similar to that of p, except that d deletes lines
instead of printing them. The lines to be deleted are specified for d exactly as
they are for p. Thus, the command

4,8d

deletes lines 4 through the end. There are now three linesleft in our example, as
you can check by typing:

1,$p

Notice that $ now is line 3! Dot is set to the next line after the last line deleted,
unless the last line deleted is the last line in the buffer. In that case, dot is set to

$.

Exercise

Experiment with-the a, e, r, w, p, and d commands until you are sure that you
know what they do, and until you understand how dot (.), dollar ($), and line
numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a appends
lines after the line number that you specify (rather than after dot); that r reads
in a file after the line number you specify (not necessarily at the end of the
buffer}); and that w writes out exactly the lines you specify, not the whole buffer.
These variations are sometimes useful. For instance, you can insert a file at the

A-12

Ed

beginning of a buffer by typing
Or filename
andyou can enter lines at the beginning of the buffer by typing:

0a
[input teat here]

Notice that typing

W
is very different from typing

w
since the former writes out only a single line and the latter writes out the whole
file.
A.4.11 Performing Text Substitutions: s
One of the most important ed commands is the substitute (s) command. Thisis
the command that is used to change individual words or letters within a lineor
group of lines. It is the command used to correct spelling mistakes and typing
errors.
Suppose that, due to a typingerror, line 1 says:

Now is th time

The letter ‘‘e’’ has been left off of the word “the”. You canuses tofix thisupas
follows:

1s/th/the/

This substitutes for the characters ‘“th”, the characters “the”, in line 1. To
verify that the substitution has worked, type

P
to get
Now is the time

which is what you wanted. Notice that dot must be the line where the
substitution took place, since the p command printed that line. Dot is always

A-13

XENIX User’s Guide

set this way with the s command.
The syntax for the substitute command follows:
[starting-line,ending-line]s/ pattern/ replacement/ cmde

Whatever string of characters is between the first pair of slashes is replaced by
whatever is between the second pair, in all the lines between starting-line and
ending-line. Only the first occurrence on each line is changed, however.
Changing everyoccurrence is discussed later in this section. The rules for line
numbers are the same as those for p, except that dot is set to the last line
changed. (If no substitution takes place, dot is not changed. This causes
printing of the error message:

?
search string not found

Thus, you can type

1,$s/speling/spelling/
and correct the first spelling mistake on each line in the text.
If no line numbers are given, the s command assumes we mean ‘“make the
substitution on line dot”, so it changes things only on the current line. This
leads to the very common sequence

s/something/something else/p
which makes a correction on the current line, then prints it to make sure the
correction worked out right. If it didn’t, you can try again. (Notice that thep is
on the same line as the s command. With few exceptions, p can follow any
command; no other multicommand lines are legal.)
It is also legal to type

s/string//
which means ‘““change the first string of characters to nothing’’ or, in other
words, remove them. This is useful for deleting extra words in a line or
removingextraletters from words. For instance, if you had

Nowxx is the time
you could type

s/xx//[p

to get

A-14

Ed

Now is the time

Notice that two adjacent slashes mean “no characters”, not aspace. Theressa
difference.

Exercise

Experiment with the substitute command. See what happens if you substitute
aword on aline with several occurrencesof that word. For example, type:

a
the other side of the coin

.s/the/on the/p
Thisresultsin:
on the other side of the coin

A substitute command changes only the firet occurrence of the first string. You
can change all occurrences by adding a g (for “global”) to the s command, like
this:

Try using characters other than slashes to delimit the two sets of charactersin
the s command—anything should work except spaces or tabs.

. A.4.12 Searching

Now that you’ve mastered the substitute command, you can move on to
mastering another important concept: contextsearching.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains the word “their’’, so that you
can change it to the word ‘‘the’’. With only three lines in the buffer, it’s pretty
easy to keep track of which line the word “their” is on. But if the buffer
contained several hundred lines, and you’d been making changes, deleting and
rearranging lines, and so on, you would no longer really know what this line
number would be. Context searching is simply a method of specifying the
desired line, regardless of its number, by specifying a textual pattern contained
in the line.

A-15

XENIX User’s Guide

The way to say ‘‘search for a line that contains this particular string'of
characters’ is to type:

/string of characters we want to find/
For example, the edcommand
[their/

is a context search sufficient to find the desired line—it will locate the next
occurrence of the characters between the slashes (i.e., “their’’). Note that you
do not need to type the final slash. The above search command is the same as
typing:

[their

The search command sets dot to the line on which the pattern is found and
printsit for verification:

to come to the aid of their party.
“Next occurrence” means that ed starts looking for the string at line “.+1”,
searches to the end of the buffer, then continues at line 1 and searches to line
dot. (That is, the search “wrapsaround” from § to 1.) It scans all the linesin the

buffer until it either finds the desired line or gets back to dot. If the given string
of characters can’t be found in any line, edprints the error message:

?
search string not found

Otherwise, ed prints the line it found. You can also search backwards in a file
for search strings by using question marksinstead of slashes. For example

?thing?
searches backwards in the file for the word “thing” as does
?thing

This is especially handy when you realize that the string you wantisbackwards
from the current line.

The slash and question mark are the only characters you can use to delimit a

context search, though you can use any character in a substitute command. If
you get unexpected results using any of the characters

S8 [r\ &

read Section A5, “Context and Regular Expressions”.

A-16

Ed

You can do both the search for the desired line and a substitution at the same
time, like this:

/their/s/their/the/p
Thisyields:
to come to the aid of the party.

The above command contains three separate actions. The first is a context
search for the desired line, the second is the substitution, and the third is the
printing of the line.

The expression ¢ /their /" is a context search expression. In their simplest form,
all context search expressions are like this—a string of characters surrounded
by slashes. Context searches are interchangeable with line numbers, so they
can be used by themselves to find and print a desired line, or asline numbers for
some other command, like s. They were used both ways in the previous
examples.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

The edline numbers
/Now/+1
/good/
Jparty/-1

are all context search expressions, and they all refer to the same line (line 2). To
make a changein line 2, you could type

/Now/+1s/good /bad/
or

/good/s/good/bad/

or

/party/-1s/good/bad/

A-17

XENIX User’s Guide

The choice is dictated only by convenience. For instance, you could print all
three lines by ty ping

/Now/,[party/p
/Now/,/Now/+2p

or any similar combination. The first combination is better if you don’t know
howmany linesareinvolved.

The basic rule is that a context search expression is the same as a line number,
soit can be used wherever aline number is needed.

Suppose you search for
/horrible thing/
and when the line is printed you discover that it isn’t the ‘“horrible thing” that

you wanted, soit is necessary to repeat the search. Youdon’t have toretype the
search, because the construction

//
is a shorthand expression for ‘‘the previous thing that was searched for”,
whatever it was. Thiscan be repeated as many times asnecessary. You can also
go backwards, since

??

searches for the same thing, but in the reverse direction.

You can also use / / as the left side of a substitute command, to mean “the most
recent pattern”. For example, examine:

/horrible thing/

Ed printsthe line containing ” horrible thing”.

s//good/p

This changes “horrible thing” to “good”. To go backwards and change
“horrible thing” to “good”, type:

??s//good/

A-18

Ed

Exercise

Experiment with context searching. Scan through a body of text with several
occurrences of the same string of charactersusing the same context search.

Try using context searches as line numbers for the substitute, print, and delete
commands. (Context searches can also be used with the r, w, and a

commands.)

Try context searching using ?tezt? instead of /tezt/. This scans lines in the
buffer in reverse order instead of normal order, which is sometimes useful if you
go too far while looking for a string of characters. It’s an easy way to back up in
the file you're editing.

If you get unexpected results with any of the characters
R 2 R N

read Section A.4, “Context and Regular Expressions”.

A.4.13 Changing and Inserting Text: c and i

This section discusses the change (c) command, which is used to change or
replace one or more lines, and the insert (i) command, which is used for
inserting one or more lines.

The ¢ command is used to replace a number of lines with different lines that you
type at the terminal. For example, to change lines “.4+1” through “$” to
something else, type:

+1,8c
type the lines of tezt you want here ...

The lines you type between the ¢ command and the dot (.) will replace the
originally addressed lines. This is useful in replacing a line or several lines that
have errorsin them.

If only one line is specified in the ¢ command, then only that line is replaced.
(You can type in as many replacement lines as you like.) Notice the use of a
period to end the input. This works just like the period in the append command
and must appear by itself on a new line. If no line number is given, the current
line specified by dot isreplaced. The value of dot is set to the last line you typed
in. Note that the terminating period and the line referenced by dot are
completely different: the first is used simply to terminate a command, the
second points at a specific line of text.

A-19

XENIX User’s Guide

The i command issimilar to the append command. For example

/string/i
type the lines to be inserted here ...

inserts the given text before the next line that contains “string’’. The text
between i and the terminating period is ineerted before the specified line. If no
line number is specified, dotisused. Dot isset to the last line inserted.

Exercise

The ¢ command is like a combination of delete followed by insert. Experiment
to verify that

start,endd

itézt]

isalmost the same as
start,endc
[tezt]
These are not preciselythe same if the last line gets deleted.

Experiment with a and i to see that they are similar, but not the same. Observe
that

line-numbera
[teat]

appends after the given line, while
line-numberi

[tezt]

inserts before it. If no line number is given, i inserts before line dot, while a
appends after line dot. -

A.4.14 Moving Lines: m

The move (m) command lets you move a group of lines from one place to
another in the buffer. Suppose you want to put the first three lines of the buffer

A-20

Ed

at the end instead. You coulddoit by typing
1,3w temp
$r temp
1,3d

where tempis the name of a temporary file. However, you can do it more easily
with the m command:

1,3m$
This will move lines 1 through 3 to the end of the file. |
The general case is

start-line,end-linem after-this-line

There is a third line to be specified: the place where the moved text gets put. Of
course, the lines to be moved can be specified by context searches. If you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphslike this:
/Second/,fend of second/m/First/-1

Notice the -1. The moved text goes afterthe line mentioned. Dot getsset tothe
last line moved. Your file will now look like this:

Second paragraph

‘end of second paragraph

First paragraph

end of first paragraph
As another example of a frequent operation, you can reverse the order of two
adjacent lines by moving the first line after the second line. Suppose that you
are positioned at the first line. Then

m+

moves line dot to one line after the current line dot. If you are positioned onthe
second line,

m--

moves line dot to one line after the current line dot.

A-21

XENIX User’'s Guide

The m command is more succinct than writing, deleting and rereading. The
main difficulty with the m command is that if you use patterns to specify both
the lines you are moving and the target, you have to take care to specify them
properly, or you may not move the lines you want. The result of a bad m
command can be a mess. Doing the job one step at a time makes it easier for you
to verify at each step that you accomplished what you wanted. It is also a good
idea to issue a w command before doing anything complicated; then if you
make a mistake, it’s easy to back up to where you were.

For more information on moving text, see Section A.4.18, *“Marking Your Spot

inaFile:k’.

A.4.15 Performing Global Commands: g and v

The “‘global” commands g and v are used to execute one or more editing
commands on all lines that either contain (g) or don’t contain (v) a specified
pattern.

For example, the command

8/XENIX/p
prints all lines that contain the word *“XENIX"’, The pattern that goes between
the slashes can be anything that could be used in a line search or in a substitute
command; exactly the same rules and limitationsapply.
For example,

g/"\:/p
prints all the troff formatting commands in a file (lines that begin with ¢“.”).
(For an explanation of the use of the caret (") and the backslash () see Section
A.5,“Context and Regular Expressions”.
The v command is identical to g, except that it operates on those lines that do
not contain an occurrence of the pattern. (Mnemonically, the “v" can be

thought of as partof the word “inverse”,

For example

v/*\./p

A-22

Ed

prints all the linesthat don’t begin with a period (i.e., the actual text lines).

Any command can follow g or v. For example, the following command deletes
all lines that begin with **.”":

g/"\./d

Thiscommand deletes allempty lines:

g/"$/d

Probably the most useful command that can follow a global command is the
substitute command. For example, we could change the word ‘“Xenix”” to
“XENIX” every where, and verify that it really worked, with

g/Xenix/s/[XENIX/gp

Notice that we used // in the substitute command to mean ‘‘the previous
pattern”, in this case, “Xenix"”. The p command executes on each line that
matches the pattern, not just on those in which a substitution took place.

The global command makes two passes over the file. On the first pass, all lines
that match the pattern are marked. On the second pass, each marked line is
examined in turn, dot is set to that line, and the command executed. This
means that it is possible for the command that follows a g or v command to use
addresses, set dot, and so on, quite freely. For example:

g/"\.P/+

prints the line that follows each *“.P” command (the signal for a new paragraph
in some formatting packages). Remember that plus (+) means ‘“‘one line past
dot”’. And

g/topic/?"\.H?p

searches for each line that contains the word “topic”, scans backwards until it
finds a line that begins with a *“.H” (a heading) and prints it, thus showing the
headingsunder which ““topic’ ismentioned. Finally

g/ \-EQ/+,/"\.EN/-p

prints all the lines that lie between lines beginning with ‘“.EQ” and “.EN”
formatting commands.

The g and v commands can also be preceded by line numbers, in which case the
linessearched are only those in the range specified.

It is possible to give more than one command under the control of a global
command. For example, suppose the task is to change “x” to “y” and “a” to

“b” on all lines that contain *‘thing”’. Then

A-23

XENIX User's Guide
g/thing/s/x/y/\
s/a/b/

is sufficient. The backslash (\) signals the g command that the set of
commands continues on the next line; the g command terminates on the first
line that doesnot end with 2 backslash.

Note that you cannot use a substitute command to insert a new line withina g
command. Watchout for this.

The command
&g/x/s//y/\
s/a/b/

does not work asyou might expect. The remembered pattern isthelast pattern
that was actually executed, so sometimes it will be ““x” (as expected), and
sometimes it will be “a” (not expected). Youmust spell it out, like this:

g/x/s/x/y/\
s/afb/

It is also possible to execute a, ¢ and i commands as part of a global command.
As with other multiline constructions, add a backslash at the end of each line
except the last. Thus, to add an “.nf”’ and *.sp’”’ command before each “.EQ”
line, type:

8/"\EQ/i\

.nf\

.sp
There