
OPERATING SYSTEM
REFERENCE MANUAL

for the LJS/i

CONT1~

Chapter 1
INTRCIJlJCTItN

1.1 The Main Functions•.......•..........•.....•.............................• 1-3
1.2 using tne 00 FunctIons .•..•....•.•.....••...•........•••...........•.......•....•..•.... 1-3
1.3 The FIle system .••...•••.••••••••••••••..•..••...••••• I •••••••••••••••••••••••••••••••••••• 1-q.
1.4 Process Management .. 1-6
1.5 Memory Management .••••••••••••••••• t ... 1-7
1.6 Exceptions and Events .. 1-7
1.7 Interprocess Communicat1on ... 1-8
1.8 Using the OS Interface•..................................... 1-8
1.9 Running programs Under tne ()S ... 1-8
1.10 Writing Programs That Use tne OS .. 1-8

Chapter 2
TI-E FILE SYSTEM

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

File Names ... 2-3
The WOrking Dlrecrory •••...•••••..•••••...•..•.......•..••.••••••..•...........••...•.. 2-4
Devices .. 2-5
srorage Devices .•••••••••••••••.•••••..•••••••.••••••••••••••••••••••••••••.••••••••••••••• 2-5
me Volume Catalog .. 2-6
Labels ...•••••..••••••••••• I •••••••••••••••••••••••• I" I. I ••••••••••••••••••••••••••••• 1 ••.•.• 1.2-6
Logical and PhysiCal End Of FUe .•••..••••••••.•••.•••••••••••••.••.••• ow ••••••••••• 2-6
F1le ~cess .•••.••..••• II ••• 2-7

2.9 Pipes .. 2-8
2.10 File sys"tem Calls 1 •• 2-9

Chapter 3
PROCESSES

3.1 Process Structure 1 •• 1 •••• II I', •••••••••••••• 3-4
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Process H1erarchy .•..•••..••••..••••••••.•.•......•••••••••....•.•••.••••..••••••••••..••• 3-4
Process Creation ... 3-5
Process Control I ••••••••••••••••••••••••••••••••••••• I ••••••••••••••••••••••• I ••••••••• 3-5
Process scnedul1ng •••••••••.••••••••••••••••••••••••••••. 1 •••••••••••••••••••••• ' •••••••••• 3-6
Proc-ess Termination ' ' 3-7
A Process Handling Example " 3-7
Process system Calls II ••••••••••••••••••••••••••••••••• 3-9

Chapter 4
f'o'EfVKRY MAl'W3EMENT

4.1 Data Segm~3nts .••••••••••••••••••••••••• II ••• 4-3
4.2 The Logical Data segment Number•.•.••....•...••........... 4-3
4.3 Shared Data segments •••.••••••••••••••••..• 4-4
4.4 PrIvate Da1~a segments •...•..••......••.•.••.•..•..••.•••••.•....••..•.. ,.•... 4-4
4.5 Code Segm1ents ...•••.••.....•••••...•..•.•.....••.•....••.••...••..•.....••••••..•..•.•.•.•• 4-4
4.6 Swapping .. I 1.1 ... 4.-5
4.7 Memory Management System Calls .••••••••.•••••••••••••••••••••••••••.••••.•••••• 4-5

Chapter 5
EXCEPTICNS ANJ EVENTS

5.1
5.2
5.3
5.4
5.5

Exceptions I •• 5-3
System DefIned ExceptIons .•••••••..•.•••••.••..•.•.•...•..•••.•..•..•.........•..•••. 5-4-
Exception ~~andlers .•••.•.•••••••••.•....••..••••••..•••...•...•••..•...•••.••.•••.. ~ ••.... 5-4-
Even'tS ..•••. tI) ••• 5-7
Event Channels .•.•.•••.••••••.•••• I ••••••••••••• I ••••• I •••• I •••••••••••• 1 •••••••••••••••••• 5-7

S.6 Tne System ClocK .••••••••••••••••••••••••••.•••••••••••••.•••••••. I •••••• I' 1 •• 1 I ••••••• 5-12
5.7 Exception ~1anagement system Calls .. 5-12
5.8 Event Management system Calls .. 5-18
5.9 ClocK syste!m Calls .• I •••••••••••••••••• I ••• I I. II I" I ••••••••••••••••••••••••••••••• 1.1. 5-28

Olapter6
(J(J\AGLRA TICN

6.1 conflguratl(Jn System Calls .. 6-3

AppendIx A
CPERA TING SYSTEM INTERFPCE

Appendix B
SYSTEM RESERVED EXCEPTICN NAtvES

Appendix C
SYSTEM RESERVED EVENT TYPES

Appendix 0
CPERA TING SYSTEM ERRCR I"'ESSJl.GES

AppendiX E
FS_If\FO FIELDS

INJEX

2-1
2-2
2-3
2-4
2-5

TABI,FS
Device Control FlIlCtions Required Before USing a Device ••••••••••••• 2-27
Device_Control OJtput Ft.rlCtional ~ __ •• _ ••.•••••• 2-28
~ Ml'Bll'Jl()l'lics •• 2-30
Devic::e InfClrrTlatlOO ••••••••••••••••••••••••••••••••••..••••••••••••••.••.•••••••••••.•••• 2-32
DISk t-Ia,r(l l:rror ClXle's. • • • • ••• •• •• ••• ••• • ••• • • • • ••••••• •• • •• • •• ••• • • • •• • • • • •• ••••• • • • •• 2-~

2-1
2-2
3-1
3-2
5-1

FIGilll.ES

DlsI< t--Jard Error Ctlc:::IE!s ... 2-~
The Reslatlonshlp Of ~ACT and TRlJI'.CJ\TE ••••••••••••••••••••••••••• 2-38
P'rooess ~ ~ Layrut •••.. tl ••••••••••••••• I ••••••••••••••••••••••••••••••••••• 3-4
Prooess Tree ••••••••••••••••••••••••••••• a ••• 3-5
~ at Exceptloo ~er IflVOOltl00 .. 5-6

PREFACE

The COntents of this McnJal
Tnls manual oescrloes tne QJeratlng system service calls tnat are avalCaDle to
Pascal and assemble!r programs. It is written for experienced Pascal
programmers, and does not explain elementary terms and programming
teChniques. We assumj3 that you have read the Lisa OWner's Guldeand WOrks/Jop
user:r GtlJde for tile L.lsa ana are famlUar wi tn your Lisa system.
Chapter lIs a generallntrOdUCtlon to the qleratlng system.
Chapter 2 describes U18 Flle System and the available flle system calls. This
InclUOes a aescrlptlon Of me Interprocess communIcation fac111 ty, pIpes, ana tne
Q:lerating System calls that allow processes to use pipes.
Chapter 3 describes thie calls available to control processes, and also describes
the structure Of processes.
Chapter 4 describes ho,,, processes can control their use of available memory.
Chapter 5 describes the use of events and exceptions to control process
synchronization. It also descrioes the use of me system ClOCk.
Chapter 6 descriOes Ute calls you can use to find out Information aoaut tne
conflguratlon Of tne sys:tem.
Appendix A contains the source text of SYSCALL. the unit that contains the
type,proceaure,and function OOflnltlons discussealn this manual.

Appenalx B contaIns a Ust Of system-definea exceptIon names.
Appendix c contains a Ust of system-defined event names.
Appendix 0 contains Cl Ust of error coaes tnat may be proaucea oy the callS
aocumenteC1 in tnls manual.

Type ens syntax CCIlVentioos
Bold face type is used :In this manual to distinguish programming keywords and
constructs from Engl1stl text. For example, FLUSH is the name of a system call.
System call names are also capitallzea In this manual, although Pascal does not
distinguiSh between lower and upper case characters. ItaJ/csare used to indIcate
new terms that are to bE~ explained.

tJpel-at}lJg S.y.ften7 Retelf3I7t.--:e !'--/all{/al tor tile Lisa

Chapter 1
INTRODUC~rION

1.1 The Main Functions 1-3
1 r 2 Using the OS Functions " 1-3
1.3 Ttle File SysteM " 1-4
1.4 Process ManageMent " 1-6
1 . 5 MeMOry ManageMent"................. 1 -7
1.6 Exceptions and Events , .. , , .•. , .•... , ... 1-7
1.7 Interprocess COMMUnication 1-8
1.8 Using the OS Interface , 1-8
1.9 Running prograMs Under tne OS 1-8
1.10 Writing prograMs That Use the as ~ , 1-8

1-1

Int.n.7t..7t.IC tion

r..7J.]el-atj/Jf/l..s:.v~rterfJ Rett?l"6'1iCe 1'-1antlal IlJ),- tile Lis'S /l7tJ(}[/tlC tio/7

1-2

qJeJatjng s.ystem Reference "',/anlJal for tlJe Llra Int.rodlJc lion

INTRODU(:TION'
The Operating System (OS) provides an environment in which multiple processes
can coexist, with the ability to communicate and Share data. It provides a file
system for I/O and information storage, and handles exceptions (software
1nterrupts) and memory management.

1.1 me MaIn Functions
The OS has four main functional areas: the File system, Process Management,
Memory Management, and event and exception handling.
The FHe System provides input and output. The FHe System accesses aevices,
volumes, and fUes. Each Object, whether a printer, dls~(file, or any other type of
Object, Is referenced by a pathname. Ev(~ry I/O operation Is performed as an
uninterpreted byte stream. using the Flle System" all 110 Is device independent.
The File System alSO provides device specific control operations.
A process is an executing program and its associated data. Several processes can
execute concurrently by mUlt1plexing the processor between them. These
processes can be brOKen into segments wl11ctl are automatically swappea into
memory as needed.
Memory managment routines handle data sf~gments. A elata segment 1s a file that
can be placed in memory and accessed directly.
Except10ns and events are process communication constructs provided by the OS.
An event is a message sent from one process to anotl1er" or from a process to
itself, that is del1vered to the receiving process only IHhen the process asks for
that event. .A.n exception is a special type of event that forces itself on the
receiving process. There is a set of system definecl exceptions (errors), and
programs can define their own. system errors suer, as division by zero are
examples of system defIned exceptions. You can use thl9 system calls provided to
define any exceptions you want.
All four of these areas are aescrtOed further later In thIS Chapter.

1.2 usIng tile OS FunctIons
Both bullt In language features ana expll1cIt os system calls can access os
rout1nes to perform desired functions. For example, the Pascal wrtteln
procedure is a built in feature of the language. The code to execute a writeln 1s
supplled in IOSPASLIB, the pascal run time support routines library. This COde Is
addea to the program when the program is llnKed. The code provided calls as File
System routines to perform the desired output.

1-3

[pel"Bting Systern Refelc'l7Ce ;V1anual fo1:- tl7e Lisa In tJ"CJ{1l.IC (ion

You can also call OS rout1nes explicItly. ThIs Is usually done when the language
does not provide thle operation you: want. OS routines allow Pascal programs, for
example, to creat~~ new processe~, which could not otherwIse be done, since
pascal does not have any bull tin prpcess handling functions.
All calls to the as are synohronous, which means they dO not return until the
operation Is complete. Each call :retums an error COde to IndIcate if anything
went wrong during the operaUonJ, Any non zero value indicates an error or
warning. Negative error Cades Indicate warnIngs.

1..3 The FlIe system .
The FHe System performs all I/O as uninterpreted byte streams. These byte
streams can go to files on disk Glr to other devices, SUCh as a printer or an
al ternati ve consolE~. In all cases) the device or flIe has a File System name.
Except for device control functions, the FHe System treats devices and files in
the same way. .
The FHe system allows Sharing Of a~l types of Objects.
The FHe system provides for namitttg Objects (devices, files, etc.). A name in the
FIle System Is CallE!d a patllname !A complete pathname consists Of a dIrectory
name and a file name. The file rlame is meaningful only for storage devices
(devices that store t)yte streams farilater use, such as disks~
Each process has at WOrking directory associated with It. This allows you to
reference Objects with an incomp:lete pathname. To access an oOject in me
WOrkIng directory, just give Its fHe name. To access an Object in a different
dIrectory, give 1 ts complete pathnar;ne.
Before a device can be accessed, It must be mounted. Devices can be mounted
usIng the Preference toOl, or by usIng the tv1OJI'.IT call (see Chapter 2 of tills
manual~ If the devllce Is a storage device, the mount operation makes a vall/me
nafi78 avallable. A volume name is'i a logIcal name for a diSk, and Is saved on the
dIsk 1 tsel f. The mount operation logically connects the volume to the system .. so
that tile flIes on thE~ volume may be accessed. The volume name can replace a
device name in a pathoame used tQ access an Object on the diSk. The volume
name allows you to access a flIe with the same path name no matter where the
dr! ve is actually connect.ed.
If a device is specifled in the configuration list (created by the Preference tOOl)
and it is physically connected to theiLlsa, then tne device can be accessed. There
are some operations that can be performed on unmounted (unconflgured) devices.
Two examples are DEVICE_CCN~CL calls (see c~apter 2 of this manual) and
scavanglng. Logically mounting a volume on a deVIce makes flIe access to tne
volume possible. For storage deviqes, a volume is an aotual magnetio medium
that can contain recorded fUes. For non-storage devices, volumes and fUes are

1-4

Cperatil7g Systen7 Retelt3I7Ce I'-"lal7l1al lor tl7e Lisa /ntJV{illC tion

concepts used to maintain a un1 form interface. Files on non-storage devices
(SUCh as printers) do not store data, but acts as "ports" for performing I/O to the
devices.
The basic operations p~ovlded by the File System are as follows:

MOunt and unMOunt - Make a VOlUftte accessilJle/inaccessible
open and close - Make an object accessibll~/inaccessible
read and write - transfer infor![Ylation to and froM an

object
device control functions - control device specifiC

functions
Some operations apply only to storage devices:

allocate and deallocate - specify size of an object
Manipulate catalog - controls naMing of otljects and

creation and destruction of objects
Manipulate attributes - lOOk at or change the

characteristics of the object
In addition to the data in an 00 ject, the ob jt~ct i tsel f has certain characteristics.
Tnese are called 1ts att.JILJL/t.e.~ They incluC1e suCh information as the length and
creation aate of a file. Calls are available to access tne attributes Of any FHe
system Object. In addition to the system aefined attributes, Objects on a storage
device can have a label. The label is available for programs to store information
ti1at they can Interpret. .
Non-storage devices (SUCh as printers) are accesse(j with a llnllted set of
operations. They must be mounted and opened before tney can be accessed.
sequential read and/or write operations are available as appropriate for the
device. Dev1ce control functions are aval.lable to perform any device specIf1c
functions needed. The fUe name portion of the complete patnname for a
non-storage device is not used by the File System, although you dO have to
provide one when you open the device.
For storage devices, the same sequential read and write operations are valia as
for non-storage devices. Storage devices also must bE! mounted, and partiCUlar
files opened, before the files can be used. They nave appropriate device contrOl
functions available.
When writing to a d1sK fUe, space for the fHe is allocated as needed. Space for a
fHe does not need to be contiguous, and 1n some cases thIs automatic allocation
can result in a fragmented f11e, whicn may slow fUe access. To insure rapid
access, you can pre-allocate space for trle f11e. pre-allocat1ng the fUe also
ensures tnat tne process will not run out of space on tne Idisk.
Four types of objects can be stored on storage devices. These are flles, plpes,
data segments, and event channels. FlIes, already discussed, are simply arrays Of
stored data Pipes are Objects providea for inter-process communicatlon. Data

1-5

-qJeratfngSys'teln Riilenlnce Manual for tile Lisa Introctuclion

segments are special cases of files that are loaded into memory along wi th
program code. Event channels are:pipes with a special1zed structure imposed by
the system.

:L4 Process Ma1agement
A process is an executing program :and its associated data. Several processes can
exist at one time, and they appe~r to run simultaneously because the CPU is
mul tiplexed arnon~J them. The screduler decides what process should use the
CPU at anyone tin1e. It uses a generally non-preemptive scheduling algorithm.
This means that a process will not IQse the CPU unless It blocks.
A process can lose the CPU when one of the following happens:

o The process calls an Operating Syste~ procedure
or function

o The process references one of its code segMents
that is not currently in rerory

If neither Of these occur, the proce~s will not lose the CPU.
Every process Is started by another process. The newly started process Is called
tne son plVces~ The process tna~ started it is CalleO Its tatner t'Jvces~ rne
reSUlting structure ~ls a tree of proc$sses (See FIgure 3-2).
When any process termInates, all its son processes (and their descendan.ts) are
also termInated.
Wnen tne OS Is bootsd" 1 t starts a sHell process. The Shell process then starts any
otner processes destred by the user. '
Every newly created process has: the same system-standard attributes and
capabilIties. These can be Changed ~y using system calls.
My processes can suspend, activqte, or kill any other process for which the
glooal 10 Is known, as long as the other process does not protect 1 tsel f.
The memory accesses Of an executlng process are restricted to Its own memory
address space. Processes can communicate with other processes by using shared
fUes, pIpes, event cnlannels, or Shared data segments.
A process can be In one of three states: ready, running, or blocKed. A ready
process Is waiting for the sChedul~r to select it to run. A l7Jnnjngprocess Is
currently using the CPU to execut~ its code. A olockectprocess Is waiting for
some event, such as the completion of an lID operatIon. It will not be scheduled
until the event occurs, at Which polnt it becomes ready. A terminated process
has fIn1shed executing. .
EaCh process has a priority from 1 to 255. The higher the numOer ... the higher the
pr10rity Of the process. Priorit1es 226 to 255 are reserveCl for system processes.

1-6

t:peJCJtlng System Reference Manual for tlJe Lisa . Introduclion

The scheduler always runs the ready process with the hIghest priority. A process
can change its own priority, or the priority of any other process, while it Is
executlng.

15 I'1emory Management '
Memory managment Is concerned with what is in physical memory at anyone
time. Each process can use up to 128 segmE~nts. Each slegment can contain up to
128 KOytes. These segments are of two types: COde segments and data segments.
me total amount Of memory used oy anyone process can exceed the avalIable
RAM of the Lisa. The [perating system wUl swap coele segments in and out of
memory as they are needed. To aid the qJeratlng system in swapping data
segments, Calls are provided to give programs the abil1ty to define which data
segments must be in memory whUe a particular part of the program is executing.
You have control of how your program is d1vided up. For executable code
segments, you use the segmentatlon commands of the Pascal compUer to break
the program in pieces.
In addition to residing in memory, data se~~ments can 13e stored permanantly on
disK. They can Oe accessed with calls simHar to FUe system calls. This allows
you to use a data segment as a direct access file -- a fHe that Is accessed as part
of your memory space.
Calls are provided for making, kUling, opening, and closing data segments. You
can also change the size Of a data segment and set Its access made to read only or
read write. In addi tlon, you can make a pen-nanent disK copy of the contents of a
data segment at any time. Other calls giVH you abUlty to force the contents of
the data segment to Oe swapped into main memory, so they can be accessed by
your process.

1.6 Exceptions and Events
M exception Is an unexpected conClit1on In the eXt~cut1on of a process (an
Interrupt~ An event is a message from anotl1er process.
An exception can be generated by either the system or an executing program.
System exceptions are generated by various: sorts of errors suCh as divide by zero,
illegal instruction, or illegal address. System excepUon handlers are supplied
tnat termInate tne process. You can write your own e)(ception handlers for any
of these exceptions if you want to try to recover from trle error.
User exceptions can be deClared, ana exception handlers written to process
them. Your program can then sIgnal this ne\I/ exception.
Events are messages sent from one process to another. They are sent through
event cnannels.

1-7

cperaU/7g System Reference Manual for tl7e Lisa Introductjon

A process that wants to receive a ~essage from an event channel executes a call
to wait for an event on that chanqel. This will give It the next message .. 1 fane
exists .. or block the prqcess until a message arrIves.
If a process wants to know when an ~vent arrIves .. but does not want to wait for it,
it can use a call event channel. ThIS Is set up Oy associating a user exception with
the event Channel ~'hen it is opene~. Tne Operating system will then invoke the
correspondIng user exception hand~er whenever a message arrIves in the event
channel.

1.7 Interprocess comrrundcatlon ,
There are four metrlods for Interprqcess communication. These are: Shared files ..
pipes, event channells, and Shared da~a segments.

I

Shared flIes are uselo for hign vOlu~e transfers of Information. It Is necessary to
coordinate the processes somehow to prevent them from oveNr! tlng each
other"s Information.
Pipes are used for communication b~tween processes wIth an uninterpreted byte
stream. The pipe mechanism proviqes for the needed synchronization because a
process '#111 blocK if it is trying to read from an empty pipe or write to a full one.
A read from a pIpe consumes the i~formation, so it is no longer ava11able. lllly
one process can react from a given pIpe.
Event channels are~ similar to pi~es .. except they transmit short.. structured
messages Instead of unlnterpreted oytes.
A shared data segm1ent can be used! to transmit a large amount of data rapidly.
Having a shared data segment me~s that this data segment Is In the memory
address space of all the processes tt)at want to use it. All the processes can then
directly read and write informatiqn in the data segment. It is necessary to
provide some sort of synchronlza~lon to keep one process from overwriting
another's information.

1.18 USing the rn Interface
The interface to all the system oa11$ Is provided In the unit SYSCALL. This unit
can be used to provl(je access to the \ca11s. See tne WOr/(s/}op User's Guide for tile
Lisa for more Infamlation on using SlYSCALL.

1.·~ Rt.m1ng PI ogI ems lJnc1er tne OS ;
Programs can be '#n tten and run by ysing the WOrkshop.

1.10 wrIt1ng programs That Use the cs :
You can wr1te a proQlram that calls ~ routines to perform needed functions. ThIs
program USES the un! t SYSCALL, then calls the routines needed.

1-8

Ope[8ti/lfl .. '?.J.lSt81l7 Relelp.IIC8 f/a/7uai It.)[tJle Lis't.9 Tll8 File ... '>..YS!en7

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

Chapter 2
THE FILE S)~STElVI

File Naft'les 2-3
The Working Directory 2-4
Devices 2-5
Storage Devices 2-5
The VoluMe Catalog 2-6
Labels 2-6
Logical and Physical End Of File 2-6
File Access •.•............................... 2-7
Pipes ...•.................................... 2-8
File SysteM Calls 2-9
MAKE FILE •••....•..•.......•................. 2-10
MAKE-PIPE .•••.•....•.............•••......... 2-10
KILL-OBJECT ... ~ 2-12
UNKILL FILE ••.••...........•..•...........•.. 2 -13
RENAME-ENTRY 2 -14
LOOKUP -: • . • • . . . • • . • . • • . • . • • . • • . . . 2 -15
INFO ..•.....•............................... 2-18
SET FILE INFO ..•........•.........•....•... , . ,2-19
OPEN .. -: ..•.........•........................ 2-20
CLOSE_OBJECT , ...•.••......•..•. ,•... , 2-21
READ_DATA•..........•................ , .. 2-22
WRITE DATA .••...•.•.......•. ,.,., •••.•... , •.• 2-22
READ_LABEL , •• , •..... , •.....•..... , , .. , ... 2-25
WRITE_LABEL •••...•.•........•.•...•..•......• 2-25
DEVICE_CONTROL 2-26
ALLOCATE ••.•........•..•...•.•...•........... 2-36
COMPACT 2-37
TRUNCATE • . . . • . . . • • 2 - 38
FLUSH•.••••.........................•.... 2-~39
SET SAFETY•....•.......•.•...........•.. 2-40
SET=WORKING_DIR 2-41
GET WORKING OIR•...•...... 2-41
RESET_CATALOG 2-42
GET NEXT ENTRY .•.............................. 2-42
MOUNT •. -: •••••.••..••• , •••••••.•.•.••.••.•.••• 2-43
UNMOUNT I •••••••••••••• I •••••••• 2-43

2-1

opelating sy'Stern Refel"817Ce f\-lanual t01" tl7e Lisa Tne File Syste177

2-2

L7pel"8tinp .S'..VstBln R8telt:Y7C8 ,"-1817[181 fOl" /J78 Lisa

THE FILE S~rSTEJVI

Tt-Ie File system provicjes (1evlce independent I/O" stor8~}e wi t.h access protection"
and unl form file naming conventions.

Device lndependence means that all liO is performed l.n the same way" whether
t.he ultlrnate aestinat10n (or source) 1s disk storage" anotner prograrn" a printer .. or
anything else. In all cases .. I/O 1s perfOrrneCj to or frorn liles; a1 trlougrl those fUes
are Oft.en alSO aevices" aat.a segrnents .. or prograrns.
Every fHe 1s an unlnterpreted stream of eignt-bit bytes.

A file that is stored on a block structured device" SUCh as a disk" is listed in a
catalog(alSo called a tlJreclor.,0 ana nas a name. For e~aCh SUCh flIe tne catalog
contains an entry describing the file's attritJutes, incluciing the length of the file"
its posltion on the disk., and the last. baCKup copy date. Arbitrary
appllcation-defined information can be stored in an area called the lile label
EaCh file has two associated measures of llength" the 'L.ogical End of' File (LElf)
and the p!J.ysical End of' Fjle (PEa=) The LEOF is a pointer to the last byte that
has meaningful data. The PEOF 1s a count Of the numt)er of blocks allocated t.o
the file. The pointer to the next byte to be read or '~rltten Is oalled trie tlle
1178l"kBJ.-

Since I/O Is device independent, application prograrns do not have to ta~{e
account of the pnysical Characteristics Of a device. WI~len ttl8 I/O Is to or frorn a
disk, or any omer block structured devlcE~, prograrns can rnake I/O requests in
whole-block. increments" whiCh improves prograrn perforrnance.

Alllnput ana output ls syncnronous in tnat the I/O requE~ste{] 1s perforrneo Defore
the call returns. The actual I/O .. however" is: asynchronous" in that processes may
blOCk wtlen perforrnlng I/O. (see section 3.5 .. PYOCE!$S Scnedul1ng .. for roore
information on bloCking.)

To reduce the impact Of an error., the f1le systern maintains cHstritJl;tecj.,
redundant information about the flIes on storage devices. Dupl1cate cop1es Of
critical information are stored in different forrns and in different places on tt1e
media. All the files are able to identify and describe themselves, and there are
usually several ways to recover lost information. The scavenger utili ty is able to
reconstruct damaged catalogs from the information stored wi th each file.

2.1 FUe Names
All the f1les known to the Operat1ng Systern at a particular t1me are organized
into catalogs. Each disk volume has a catalOQ that lists all the files on the disk.

2-3

L/.7eJ-atil7g 1..'l}',)"'tef17 RetBl"B'I7Ce 1'-18/71..181 lOlt- tl7e Lis8 Tile File 1..)}:~tBrn

Any Object catalOQ!uea 1n the fHe system can be named by spec1 fying the volurne
on wnich the fHe resides and the' file narne. The narnes are separated by trle
Character "_". Because the top catalog in the system has no name" all complete
pathnames begin w:tth "_". '

For example,

-LISA-FORt1AT . TEXT naMeS a file on a VOlUMe naMed LISA.

The file name can contain up to 32!characters. If a longer name Is specifIed, the
narrle is truncated to 32 charact~rs. Accesses to sequential devices use an
arbitrary dummy fllename that 1s ignored but must be present' in tr!e patnname.
For example, the serial port pathname

-RS232B

is insufficient, but

-RS232B-XYZ

is accepted, even tr)Qugh the -XYZiportion is ignored. Certain device names are
predefined: -

RS232A Serial Port A
RS232B ser1al Port B
PARAPORT Parallel Port
SLOTxCHANy Ser1al port~, where xis 1, 2, or 3 ana y 1s lor 2
MAINCONSOLE ~rlteln and readln device
AL TCONSOLE wrlteln and :teaaln aevice
UPPER upper DiSkette drive (Drive 1)
LOWER Lower D1sKet;te arive (Drive 2)
BITBKT B1 t bucket: d~ta is thrown away when directed here

See Chapter 6, Configuration for m~re information on device names.

Upper and lower case are not signIfIcant in pathnames: 'TESTVOL' is the same
Object as 'TestVol'. My ASCII character Is legal in a pathname, Including tne
non-prlntlng cnaracters ana bladK spaces. (However" use Of ASCII 13, a
RETURN, in a pathname is strongly plscouraged.)

2,,2 The worKing Directory ';
It Is sometimes inconvenient to specify a complete patnname, especially when
working with a group of files in thei same volume. To alleviate this problem, the
operating system maintains the name of a working directory for each process.
When a pathname is specified witho;ut a leading It_", the name refers to an object
in the working directory. For example, if the working directory Is -LISA the
name FORMAT.TE><T refers to the same fUe as -LISA-FORMAT. TEXT. The
default working directory name is t~e name of the boot volume directory.

You can find out wrlat the working :directoryis with GET_weRKING_DIR. You
can cnange to a new worKIng alrectory wl tn SET _ WCRKING_OIR.

2-4

Q.7er8til7g ~ysten7 Relerel7ce /v18l7ual lor the Lisa Tl7e File ...)ystef17

23 Devices
Device names follow the same conventions as other file names. Attributes llke
baud rate are controlled by using the DEVICE_CCNTRa.. call with the
appropr1ate patnname.
Each device has a permanently assigned priority. From highest to lowest the
priorities are:

Power on/off button
Serial Port A (RS232A)
Serial port B (RS232B, tne leftMOst port)
I/O Slot 1
I/O Slot 2
I/O Slot 3
Keyboara, MOUSe.. battery pO'.Jerea ClOCk
10 MS systeM tiMer
CRT vertical retrace interrupt
Parallel Port
DisKette 1 (UPPER)
DisKette 2 (LOWER)
Video screen

The device driver associated with a device contains Inforrnatlon about the
device's physical characteristics SUCh as slector size and interleave factors for
diSkS.

2.4 Storage Devices
on storage dev1ces .. sucn as alSK dr1ves .. me FHe system reads or wrltes flle aata 1n
terms of pages. A page is the same size as a bloCk. Any access to data in a file
ul tlmately translates into one or more pagH accesses. When a program requests
an amount of data that does not fit evenly into some number of pages .. the FHe
system readS the next highest number of wnole pages. Slmllarly .. data Is actually
written to a file only in whole page increments.
A file does not need to occupy contiguous pages. The File System keeps track of
the locations of all the pages that make up a file.
Each page on a storage device 1s self-identifying, and the page descriptor Is
stored wi th tne page contents to reduce the :aestructi ve impact Of an I/O error.

2-5

q;er8tJl7g system ReleJc.?/7~"'e tv/anllal lot" tile Lisa

The eIght components Of the page descrIptor are:
version nu(fIber
VOlUMe 1aent1 fier
File ident,i fier
AMOunt of (lata on tne page
page naMe
page pos1 tion 1n tne file
Forward link
BaCK wara linK

Tl7e Fjle system

Each volume has a. Medillm Descriptor Data File (HOOF) which describes the
various attributes of the medium S~Ch as its. size .. page length .. blocK layout., ana
the size of the boot area. The MDDF Is created when tne volume is initialized.
The File system also maintains a record of which pages on the medium are
currently allocate() .. ana a catalo'g Of all the fUes on me volume. Eacn fIle
contains a set of f1119 hints .. which d~scrlbe and point to the actual file data.

2~.5 The Volume Catalog
On a storage device, the volume catalog provides access to the fHes. The catalog
is 1 tsel f a file that :maps user names into the internal file identi flers used by the
Operating System. Each catalog entry contains a variety Of information about
each file including:

naMe
type
internal flle nUMber ana aaaress
size
aate ana tiMe createa .. last r'lOa1 fiea .. ana last accessea
file identifier
safety sw1tch

The safety $wi tch is used to avoia accidental deletions. wnile the safety switCh
Is on, the fHe cannot be deleted.: The other fields are described under the
La::KUP file systemi call.
The catalog can be located anywhere on the meaium.

2 .. 6 Laoels
An appl1cation can store Its own il1formation about a flIe in an area called the
file latJeJ. The label allows an application to keep the fUe data separate from
Informat1on mainta:lnea about tne flle. Labels can be used for any Object in tne
file system. The nnaximurn label !s1ze 1s 128 bytes. I/O to labels is handled
separately from file data I/o.

2.,7 LogiCal and PhysiCal End of File
A fUe contains sorne numoer Of oytes Of aata recoraea in some numoer Of
physical pages. Adldi tional pages might be allocated to the file .. which dO not

2-6

Q.7eJ-atll7g .sy:rten7 RefeJ"Bl7ce fYlal7uaJ for tl7e Lb'8 Tl7e File SyS'tern

contain any fHe data. There are, therefOrE~, two measures of the end of the file
called the logical and physical end of file.. The Logical End Of File (LEOF) is a
pointer to the last stored Dyte tnat has meaning to tne appllcat1on. TIle PhysIcal
End of File (PEOF) is a count of the number of pages allocated to the file.
In addition, each open file has a pointer associated wi thl it, called the tlle marker,
that points to the next byte in the flle to be read or written. When the file is
opened, the file marker points to the first l)yte (byte number O~ Trle file mark.er
can be positioned implicitly or expllcitly using the rE~ad and write calls. For
example, when a program writes to a file opened wltlh Append access, the file
marker is automatically positioned to thB end of thH flle before new data Is
written. The file marker cannot be positioned past LECf', except by a write
operation that appends data to a fUe.
When a file is created, an entry for 1 t is made in thl3 catalog specifIed in Its
pathname, Out no space is allocatea for tne fHe it.self. 'wnen tne fHe Is openea oy
a process, space can be allocated explicitly by the process, or autornatically by
the Operating System. If a write operation causes the f1le marKer to be
posl tioned past the LEOF rnarKer, LEOF, and PEOF, 1 f necessary, are
automatically extended. The new space Is cont1guous if possible.

2.8 FlIe Access
The Flle System provides a device indepenaent byte stream interface. As far as
an applications prograrn Is concerned, a spE~cl fied nurntler of bytes 1s transferred
either relative to the fUe marker or at a specified byte location in trle file. The
physical attributes of the device or file Clre not important to the appl1cation ..
except mat devices that do not support positioning can only perform sequential
operations, and prograrns can improve performance sornewnat by taking
advantage of a device's pnysical characterhtics.
programs can request any amount Of aata from a fUe. -rne actual I/O, nowever, Is
performed In 'Whale-page increments... ~'hen aeViCE!S are block structured.
Therefore, programs can optimize I/O with SUCh devices oy setting the fHe
marker on a page boundary ana making I/O requests in '..-.'hole-page increments.
A file can be open for access simultaneously by more than one process. All
requests to write to the file are completed before any otner access to the file 1s
permitted. When one process writes to a fUe the effect of that write operation is
immediately available to all other processes reading the file. The other
processes may, however .. have accessed the file in an earlier state. Data already
obtained by a program are not Changed. The programmer must insure that
processes maintain a consistent view of a shared file.
When you open a flIe,you specify the Kina Of access allowed on the fHe. When tne
file is opened, the Operating system allocates a filH marKer for the calling
process ana a run-t1me iaent1fIcatlon nurnoer callea lfle [emllm me process
must use the refnum in SUbsequent calls to refer to trle fUe. EaCh operation using
tne refnum affects only the fUe rnarK.er associatea w1tn that refnuro.

2-7

iJpel-atjng Systenl Reference fvlal7l1al for tIle Ljsa Tl7e File .. ~'S'ten7

Processes can sharle the same fHe marker. In this access made (globa1_ refnum)
each process uses the same refnurD for the file. When a process opens a file in
global access mOde! .. the refnum it gets naCK can be passea to any other process ..
and used by any process. Note that any number of processes can open a file with
global_ refnum .. but each t1me the CPEN call is usea a different refnum Is
produced. Each Of those' refnums: can be passed to other processes .. and each
process using a particular refum Shares the same fUe marker with otrler
processes with the same refum. processes using d1 fferent refnums .. however,
always nave dlffen~nt fHe marKer$, wnetner or not those refurns were obtalnea
with glObal_refnum,.
A fHe can also be opened in priva~e mode .. which speCifies that no other (PEN
calls are to be allo\iJed for that flle~ A fUe can be opened with global_refnum and
pri v ate .. which opens the file for glObal access .. but allo'Ns no other process to
open that fUe. By using this call,iiprocesses can control whiCh other processes
have access to a file. The opening process passes the global refnum to any other
process that is to l"lave access .. and the system prevents other processes from
opening the file.
Programmers shoul(j be aware that 'processes using global access may not be able
to make any assumptions about the :location of the file marKer from one access to
the next. '

2..9 Pipes ,
Because the Operating System slip ports multiple processes .. a mechanism is
provided for interprocess commul'fjication. This meChanism is called a pJpe.
Pipes are very simi1ar to the other iObjects in the fHe system -- tney are named
according to the sanne rules, and th~Y can have labels.
As with a file, a pi.pe is a byte stream. With a pipe, however .. information is
queue a 1n a flrst-In--flrst-out mann~r. AlSO .. a pIpe can have only one reaaer at a
time, and once data is read from a Plpe it is removed frorn the pipe.
A pipe can only be accessed in sequential rnode. Although only one process can
read data from a pIpe, any number !Of processes can wr! te data 1nto 1 t. Because
the data read from the pipe is cons~med .. the fUe marker Is always at zero. If the
pipe is empty and no processes h~ve It open for wrIting.. EOF (Ena Of File) 1s
returned to the reacl1ng process. If ~ny process does have it open for writing .. the
reading process 1s suspended until ~nougrl data to satiSfy the call arrives in the
pipe .. or until all wri ters close the pipe.
wnen a pIpe Is CrE!ated, its sIze ls 0 bytes. Unl1Ke wIth ord1nary flIes, t.he
ini tiaHzing prograrn must allocate space to the pipe before trying to write data
into it. TO avoia aeaOIOCKsOetwe:en the reaa1ng process ana the wrIters .. the
Operating system does not allow a' process to read or write an amount of data
greater than half trle pnyslcal size Of the pIpe. For thiS reason, you Should
allocate to the piPE~ twice as much space as the largest amount of data in any
plannea reaa or wrIte operation.

2-8

tpel"8!inp .)ysterl7 Relel"BnCe tv/BIll/al fl.7]" tile LIsa Tile File ... ~vsterr7

A pIpe 1s actually a c1rCUlar buffer with a read po1nter anej a write pointer. All
wri ters access the pipe througn the same write pointer. Whenever ei the! pointer
reaChes the 'ena' Of trle pIpe, 1 t wraps bacK arouna to t.he first byte. If trte read
pointer catches up with the write pointer, the reading process blocks until data
are wr1tten or until all the writers close tru~ plpe. Similarly, if the write polnter
catches up with the read pointer, a wrltin£1 process blocks until the pipe reader
frees up some space or until the reader closes the pipe. Because plpes have this
structure, there are certain restrictions on some operations when dealing wi th a
p1pe. These restrict10ns are a1scussea w1m the relevant fHe system callS.
Processes can never make read or write requests bigger than half the size Of the
pipe because that the Operating System alv.1ays fUlly satisfies eaCh read or wrl te
request before returning to the program. In other words, if a process aSKs for 100
bytes Of data from a pipe, the Operating System waits until there are 100 bytes of
data in the pipe, and then ·completes the caD" Similarly, 1 f a process tries to wri te
100 bytes of data into a pipe, the Operating System wa1ts until there 1s room for
the full 100 bytes before writing anything into the pipe. If processes were
allowed to make write or read requests for qreater than hal f of a particular pipe,
it would be pOSSible for a reader and a writer to deadlock, with neither having
room in the pipe to satisfy its requests.

2.10 FUe system CallS
This section describes all the Operating system calls that pertain to the file
system. A summary Of all tne Operatlng sys'tem callS can 08 founa In Appena1x ,~
The fOllowing special types are used in the fHe system calls:

Pathnare = STRING [Max_pattlnaJYe].; (* Max_Pathnare = 255 tt)
E_NaJr"e = STRING[Max_Enarte]; (,,: Max_ENaftE = 32~)
Accesses = (DReoo, D"-Irite, Appeol, Private, GlOOal_refnUM);
MSet = SET OF Accesses;
IoMoae = (Absolute, Relative, sequential);

The fs_info recora ana its associated types are described under tne LClXUP call.
The Octype record is described under the DEVICE_CCN"rRCl. call.

2-9

l:peJ"Btil7g .S'ysten7 Relere17ce fvlal7ual lor tl7e Lisa

MAKE_FILE (var Ecoae:Integer; ,
Var Path: Pathnarte;
LaDel __ slze:Integer) ,

I

MAKE_PIPE (var EGOae: Integer;
Var Path: Pathrlafte;
LaDel __ slze : Integer)

Ecoae: Error inaication
Path: NaMe of n$w object
Label_size: NUMber of!bytes for the object's label

MAKE_fILE and MAKEYIPE crea!te the specifIed type Of object with the g1ven
name. If the pathname does not specify a directory name (more specifically .. if
the pathanme does not begIn wlith a dash), trle worKing dIrectory Is used.
Label_size specifiE!S tne initial sl?e in bytes of tne label that the application
wants to maInta1n for the object. It rnust be less than or equal to 128 bytes. The
label can grow to contain up to 1~8 bytes no matter what its in! tial size. My
error indication Is rleturnea in Ecoae.
The example bela''; checks to se:e whether the spec! fied file exists before
opening it.

CONST Fllef:xists = 890; ,
VAR FileRefNUI'l, Errorcooe: INTEGER;

F1leNal~:patnNafte; I

Happy: BOOLEAN;
Response: CHAR;

BEGIN
Happy: =FALSE;
YHILE NOT Happy DO
BEGIN

REPEAT
WRITE('File naPE: •);;
READLN(Fl1eNaPE);

(;Jt get a file nape it)

UNTIL LENGTI-t(FileNaJ'IEi))0;
MAKE_FILE(Errorcoae,fflle~, 0); (~o label for this file;Jt)
IF (Errorcoae()o) THEN (it aoes file alreaay ex1st?;Jt)
IF (ErrOTCode=Fl1eExists) THEN (;Jt yes;Jt)

BEGIN
WRITE (Fl1eNafte, • already exists. Overwr1 te? •);
READLN(Response);
Happy:: = (Response IN [t y', • V']);

END

2-10

(~ ahead and
overwr1teit)

(pelCltfl7g ,.'>j/sten7 Referel7ce I'-lal7ual for tl7e Lb'a Tl7e Flle ... ~vs't8ni

ELSE tJRlTELN(· Error I, ErrorCode, I whilH creating f lIe. I)

ELSE Happy: = TRUE;
END;

OPEN(ErrorCOde,F11eNare,F11eHefNUM,[Dwr1te]);
END;

2-11

(pel"8til7g Systen7 Reference tv/alll/a] fOl" tl7e Lisa

KILL_OBJECT (Var IECOde:Integer~
var patn : patnnarve) i

Ecode: Error lndlc~tor
Path: NaMe of object to be deleted

!

Tl7e File .)f'stern

KILL_CBJECT deletes the object gf\len in Path from the file system. Objects wi th
tne safety swl tcn on cannot be dele;ted. If a flle or pIpe Is open at t~e tlme Of t.~e
KILL_CBJECT call, its actual deletlon Is postponed until it has been closed by all
processes that have! it open. During this perIod no new processes are allowed to
open It. The ObjHct to be deleted need not be open at the time of the
KlLL_CBJECT call. A KlLL_CBJECT call can be reversed by UNKILL_FILE, as
long as the object Is a file and Is stili open.

The fallowing program fragment deletes flIesuntlI carriage return is typed:
CONST Fl1eNOtFOUnO=894;
VAR FileNarre :PatnNaJYe;

ErrorCoae: INTEGER;
BEGIN

REPEAT
YRITE('File to delete: ');
READlN(F:lleNafte);
IF (FlleNare<>' I) THEN

BEGIN i

KILL_rn3JEC~(Errorcoqe,FlleNaMe);
IF (Errorcoae<>o) THEN
IF (Errorcode=File~OtFound) THEN

WRITELN(Fl1eNafYe, II not fauna. I)
ELSE ~~ITELN('Error ',ErrorGode,' wnile deleting file. ')

ELSE lJHlTELN(Fl1eNaJYe,' deleted. t);

END
UNTIL (Fl1eNare=· .);

END;

2-12

LI.7eJCJtj17g ~'>yS'ten7 Reference j\·1al7lJal lor tl7e Ljsa

UNKILL_FILE (var Ecooe:Integer;
RefnUM : Integer;

Var New _naPl3 : e -.narre)

Ecode: Error inaicator
RefniM: RefnUM Of tne Killed and open file
New_naMe :Nel~ naMe for the file being restored

Tl7e Fjle ,.:ifsten7

UNKILL_FILE reverses tne effect of KILL._CEJECT, a.s long as the Killed object
Is a f1le that 1s still open. A new catalog entry Is createa for the flle wi tn t.ne
name given in New_name. f'-~ew _name is not a full patnnarne: the resurrected rlle
remains In tne sarne alrectory.

2-13

ClpelCltil7g Systen7 Refelc'l7Ce fv!al7ual tifr tl7e Lisa

RENAME_ENTRY (var Ecode:lnteger;
Var Path:Pathnare;
Var Newnarte:E_NafYe)

Ecode: Error indicator
Path: Object·s old naMe
NewnaMe: Object·s new naMe

Tl7e File Systen7

RENAME_ENTRY changes the nar)ne of an object in the fUe system. Newname
can not be a full pathname. The name of the object is changed,. but the object
remains in the saml3 directory. The fallowing program fragment changes the file
name of FORMA TTER.LIST to NEWFORMA T. TEXT.

VAR OlONaMe : P8tnNafte;
NewNaJYle : E_ NaPe;
Errorcoae:INTEGER

BEGIN
OldN8JY1e: = • -LISA-FORMATTER .. LIST' ;
NewNaJY1e: = • NEUFORMA T:. TEXT' ;
RENAME_ENTRY(ErrorCOde,OlONaPe,NeWNaJYe);

END;

The fUels new full pathnarne 1s '-LISA-NEWFOR.f'-1AT.TEXT'.

VOlume names can IJe renamed by specl fying only tne VOlume narne In Patn. Here
1s a sample program fragment Wh,lch changes a volurne name. Note that trle
leading dasn (-), glvlen In Oldname,.l~ not gIven in Newname.

VAR OldNarqa : PatnNarre;
NewNaMe: E Nare;
ErrorCOde:INTEGER

BEGIN
Oldn~e:='-tho~s';
NewnaMe:='stearns';:
RENAME._ENTRV (ErrorCOde, OldnaJYe, Newnarre);

END;

2-14

Operating Systen7 RefelC3nce ~lal7ual for tl7e Lisa

LOOKUP (Var Ecode:lnteger;
var patn : patnnarr-e;
Var AttriouteS:Fs_InfO)

Ecode: Error indicator
path: Object to lOOKUP
Attributes: InforMation returned about path

The File Systen7

LCD<UP returns information about an object in the flle system. For devices and
mounted vOlumes, call L(DC\UP with a patnname tnat narnes the device or
volume wi thout a file name component:

DevNaPe: = • -UPPER' ; (* DisKette drive 1 *)
LOOKUP(Errorcode, devnaJY"e, InfOHec);

If the device is currently mounted and is tllocK structured, the record fields of
AttrIbutes contain meaningful values; otherwise, some values are undefineo.
The fs_info record 1s defined as follows. Tt1e meanings Of the information fields
are gi ven in Appendix E.

fs_lnfo = RECORD
nare: e _ nafYe;
OeVflUM: INTEGER;

CASE OType : info _type OF
aevlce t, VOluMe t:

(ioChannel: INTEGER
aevt: aevtype;
slot no: INTEGER;
fs_sIze: LONGINT;
Vol_size: LONGINT;
DlOCKstructureo,
fYDUflted: BOOLEAN;
opencount: LONGINT;
pri vatedev,
rerote,
locKeddev: BOOLEAN;
rountJ)ena1ng..
unrount"'pendlng: BOOLEAN;
VOln~,
passlJord: e_naf"e,:
fsverslon,
VOlid,
vOlnuM: INTEGE!R;

2-15

Operatil7g Sys'ten7 Refelp.17t.-""'8 I'-lal7ual fi..7[tl7e Lisa Tl7e File ,SyS'ten7

END;

blocKs1ze, .
oataslze,
Clustersiz~,
filecount:i INTEGER;(~UMOer Of files on VOl*)

'freecount:! LONGINT;(*NUMber Of free blocks ~)
OTVe, ! (* Date VoluJYe Created ~)
DTVB, . (~Date VOlUMe last BacKed up ~)
OTVS:LONGINT;(~ Date VOlUMe last scavangea *)
Machine id~
overrount !staJYp,
fYlaster_coPY_1d: LONGINT;
prl vllegea~
write-protected: BOOLEAN;
~ster,
copy, ,
scavenge_flag: BOOLEAN);

object_t: (
size: LONG[NT; (~actual no of bytes written~)
psize: LONGINT; (~yslcal size 1n bytes~)
lpsize: IN~GER; (*logical page size 1n nytes~)
ftype: filetype;
etype: ¢ntrytype;
OTC, !

OTA,
DTM,
DTB: LONGINT;
refntJlYl: INTEGER;

(* Date created ~)
(* oate last Accessea *)
(* Date last Mounted ~)
(*Date last BaCKea up ~)

fMark : L ONGI NT ; (~file MarKer ~)
acroae: Mset; (* access rode ~)
nreaders, (~ NuMOer of readers *)
nwriters, (* NUMber of writers ~)
nusers: iNTEGER; (* NUf't)er Of users ~)
fuid: Uid; (~ unique identifier ~)
eaf, (* EOF encountered? ~)
safety_on,: (* safety switch setting *)
Kswltcn: 600LEAN;(* nas file Deen Killed? *)
private, (*. File opened for private access? *)
lOCked, (*;IS file locKed? ~)
protected:$OOLEAN);(* File copy protected? *)

Uid = INTEGER;
Info_Type:: (device_t, VO;llJlYe_t, ooject_t);
Devtype = (1(l1Skdev, pascalbd, seqdev, bitOkt, non_10);

2-16

Lpe.raUng System Reference fvlanual for tl7e Lila Tl7e File .System

Fl1etype = (undefined, MDDFFile, rootcat, freelist,
badblocKs, sysdata, Spool, exec, usercat,
p1pe, Dootfile, swapaata, swapcoae, rarqap,
userfl1e .. Kille'Dobject);

Entrytype = (eMPtyentry, cat entry, I1nkentry, fl1eentry,
pipeentry, ecentry, Killedentry);

The EOF field Of the fs_lnfo record Is set. after an atternpt t.o read more bytes
than are available from the flIe marker to the loglCall~nd of the file, or after an
attempt to write when no disk. space Is available. If tX,e fUe rnarker is at the
twentieth byte of a twenty-f1ve byte file, for exarnple, you can read up to 5
bytes without setting EOF, but if you try to read 6 bytes" the fHe system gives yOl~
only 5 bytes of data, and EOF 1s set.

The following program reports how many bytes of data a given f1le has:
VAR InfoRec : Fs_Info; (~lnforM8tlon returned oy LOOKUP and

INFOit')
FileNaMe:PathNaMe; .
ErrorCode:INTEGER;

BEGIN
WRlTE('File: t);
READlN(FileNaMe);
LOOKUP (ErrorCoae, FileNarre, InfoRec);
IF (ErrorGode<>O) THEN

WRlTELN(• Cannot lOOKup ., F1.1eN~)
ELSE .

lJRITELN(FlleNarre,' has ., InfoRec.SlzE!,· bytes of data ..);
END;

2-17

t7pel-atil7g ~f'sten7 RefeIBl7Ce 1'-18171.181 fai tl7e Lis8

INFO (var ECode:lnteger;
RefnUMt : Integer;

Var RefInfO:FS_InfO)

Ecode: Error indicator

Tl7e File ... ~vstefn

RefnuM:
Refinfo:

Reference i nuMber of object in file syster'1
InforMati~n returned about refnuM's object

INFO serves a function similar to. that of LCO<UP, but is applicable only to
objects in the flle system Whicn are open. The definition Of trle FS_InfO record is
gl ven under LOCKU:> and in Appendix A

2-18

t:pefating System Refel13nce fvlanual for tIle L b'8

SET_FILE_INFO (Var Ecoae:Integer;
RefnUfYl: Integer;
Fs1:Fs_Info)

Ecode:
RefnuM:
Fsi:

Error indicator
Reference nuMber of object in file systef'1
New information about the Ol:ljeot

SET _FILE_INFO changes the status information associated wi tJ\ U-le g1 \Jen object.
This call works in exactly the opposite way that LCIKtJP and INFO work .. in that
the status information is given by your program to SET_FILE_INFO. The fsi
argument is the same type of information rE~cord as that returned by LCIKUP and
INFO. The Object must be open at the time tirlis callis made.
The following fields of trle information report may be cnangecj:

o f11e_scavangea
o file_closed by_OS

o file_left_open
o user_type
o user_suotype

2-19

operating .Systen7 Relel"6'17Ce f-lanual loj- tl7e Lisa

OPEN (var Ecode:Integer;
Var Path: PathnalYe;
var RefnUM:lnteger;

Man1p:MSet)

Ecode: Error indicator
Path:
Refnufil:
Manip:

NaMe of Object to be opened
Reference nuMber for Object
Set of acc~ss types

The (PEN call opens an Object so trnat it can be read or written to. When you call
(PEN, you specify the set of accesses that will be allowed on that file or
sequential device. The available acpess types are:
a Dread -- AllowS you to read any of the file
o Dwrite -- Allows you to write anYWhere 1n the file (replaces

existing data) i

o Append -- Allows you to add; on to the end of the file
o private -- Prevents other processes froM openIng tne file
a Global_refnuM -- Creates a 'refnUM that can be passed to other

processes
Note that you can ~Jlve any nurnber Of tr,ese rnoaes slrnultaneously. If you gIve
dwri te and append in the same CPE~ call, dwri te access will be used. See Section
2.8 for more Informat10n on glooal_refnum ana prIvate access rnoaes.

i

If the object openecj already exists :and the process calls WRITE_DATA without
hav1ng speCified append access, th~ Object can be overwritten. The Operating
System does not cn~ate a temporaty fHe and wait for the CLOSEJEJECT call
before deCiding what to db wi th the Old fUe.
M Object can be opl9nea oy two separate processes (or more tnan once ny a s1ngle
process) simultaneously. If'tne processes write to the file without using a glObal
refnum, they must coordinate their:file accesses so as to avoid overwriting eaCh
otherls data

Pipes cannot be opened for dwri te access. You must use append if you want to
wri te into the pipe.

2-20

Operatjl7g .S'ysten7 RefeJ"8nce (v/al7ual fOJ" tl7e LjS8

CLOSE_OBJECT (Var Ecode: Integer;
RefnuM:Integer)

Ecoae: Error indicator
RefnufYl: Reference nuMber of object to IJe closed.

Tl7e Flle System

If refnum Is not globaL CLOSE_ffiJECT tE~rmlnates any use of Refnum for I/O
operatlons. A FLUSH operatlon 1s perforrnE~a automatlcally ana tne fHe is saved
in its current state. If Refnum 1s a global refnum .. and other processes have the
fUe open .. Refnum remains valld for tnese processes .. an(j otner processes can sU11
access the file usIng Refnum.

The fallowing program fragment opens a flIe .. reads 512 bytes frorn it .. then closes
tne fHe.

TYPE Byte=-128 .. 127;
VAR FileNafte : PatnNaJYe;

ErrorGoae, FileRefNuM: Inte~~r;
ActualByteS:Longlnt;
BUffer:ARRAV[O .. S11] OF Byte;

BEGIN
OPEN(Errorcode, FileNarE, FileHefNUfYl, [DRl3ad]);
IF (Errorcoae>o) THEN

YRlTELN('cannot open ., Fl1eNaJYe)
ELSE

BEGIN
REAO_DATA(Errorcoae,

FileRefNUl'l,
0R04-(@BUffer),
512,
ActualBytes,
Sequential,
0);

IF (ActualBytes<S12) THEN
WRlTE('Only read ',ActualBytes,' oytes froM

., FileNare);
CLOSE_OBJECT(ErrorcOde,F11eRefNUM);

END;
END;

2-21

Operatjng System Reference /V/anua} for tile Ljsa

READ_DATA (Var Ecode:lnteger;
RefnuM:Integer;
Data_Addr:Longlnt;
count: Longlnt;

Var Actual:LongInt;
MOde:loMOde; I

Offset:Longlnt);

WRITE_DATA (var Ecode:lnteger;
RefnuM : Integer;
Data_Addr:Long1nt;
'Count : LongInt;

Var Actual:Longlnt;
iMode :·IOMOO8;
Offset : LongInt);

Ecode: Error lndia:ator

Tl7e Fj}e ... ')ysten7

RefnuM:
Oata_Add:r:
count:
Actual:

Reference nuMber of object for 1/0
Address of ,data (source or destination)
NUMoer Of bytes Of aata to be transferred
Actual nuMber of bytes transferred

Moae: IIO MOde .
Offset: Offset (ab$Olute or relative MOdes)

READ_DATA reads information from the device, pipe, or file specified by
Refnum, and 'NRIll:: DATA writes' informat1on to It. Data Addr Is tne address
for the destination or source of Count bytes of data. Trle actual number of bytes
transferred 1s returned 1n Actual.
Mode can be absolute, relative, or sequential. In absolute mode, offset specifies
an absolute byte of the file. In rel~tive mode, it specifies a byte relative to the
file marker. In sequential rnode, tthe offset 1s ignored (it is assumed to be zero)
and transfers occur relative to the file mar~,er. sequential rnode (which is a
special case of relative mOde) is the only allowed access mode for read1ng or
wri ting data in pipes or sequential (ron-disk) devices. t'Ion-sequential modes are
valid only on devices that support PQsi tioning. The first byte is numbered o.
If a process attempts to wrlte data past the physical enCi Of file on a disk file, tne
Operat1ng systern autornatlcally allocates enOlJgn aCOltlonal space t.o cont.aln t.ne
data. TIlls new space, may not be contiguous with the previous bloCks. ·Y"OI; can
use t.ne ALLOCATE Gall TJD insure tnat any newlY allocatea OlOC!<S are lacelea
next to each other .. althougrl trlat will not insure trlat they are located near tt\e
rest Of tne f1le.

2-22

rpeJ"atlng .Y,.J/stern Relel"t?nCe I'--lal7/./al it}]" t17t:? Lbo

READ_DATA from a pipe trial. does not contain enougt"1 C1at.a to satisfy count
suspendS tt"le calling process until the cJata arrives in tfle pipe if any ott-'er process
has that pIpe open for writing. If there are no writers;, ttie end of fUe lndication
(error 848) 1s returnecj by Ecode. Because pIpes are circular., WRITE_DATA to a
pipe wIth insufficient roorn suspends tt"le callIng process (trle writer) until enougl'"l
space Is available (until tt"le reader has consumed enougrl data), if tJlere 1s a
reader. If no process has tt"le pipe open for reading anel trlere !s not enougl'"l ~pace
in the pipe, tt"le end of fHe indication (848) 1:s returnec~ in EcoCfe.

NOTE
READ DATA from the MAINCONSCLE or AL TCONSOLE devices must
specify count-I.

The following program copies a file. Note that you must supply the correct
location for Syscall in the second line of the program.

PROGRAM CopyFile;
USES (*Syscall.Obj*) SysCall;
TYPE By te=-128 .. 127;
VAR OldFile, NewFile : PathNafre;

OlaRefNUM, NeWRefNUfYl: INTEGER;
BytesRead,BytesUrltten:LONGINT;
Errorcoae:INTEGER;
Response:CHAR;
BUffer:ARRAY [0 .. 511] OF Byte;

BEGIN
WRlTE('File to copy: I);
REAOLN(OldFl1e);
OPEN(Errorcoae,oloF11e,OldRefNUM,[ORead]);
IF (Errorcode>O) THEN
BEGIN

URlTELN('Error " Errorcooe, I Yhile opening I, OldFl1e);
EXIT(CopyFl1e);

ENO;
WRlTE('NeW file naMe: .);
READLN(NewFl1e);
MAKE-FILE(Errorcoae,NeWfl1e,O);
OPEN(ErrorcOde, NewFile, NewRefNuJYl, [otJrite]);

Z-23

opelating Systeln Relel-e17l.-~ fvlal7ual loA tl7e Lisa

REPEAT
READ_DHTA(Errorcooe~

OldRefNUM)
ORD4(@Buffer).,

, 512,BytesRead,Sequentlal,O);
IF (ErrorCOde=O) ANDj (By tesRead> 0) THEN

URITE __ DATA (ErrorcQ<je,
NeWRefNuM,

Tile File .):vsten7

ORD4(@8uffer),
BytesR~ad,BytesWrltten,seQuent1al,O);

UNTIL (BytesReaa=O) ~ (Byteswritten=O) OR
(ErrorCO(le> 0); ,
IF (Errorcoae>o) THEN i

tJRlTELNI('File copy epcountered error ',ErrorCOde);
CLOSE_OB,JECT(ErrorCod~, NewRefNUfYl);
CLOSE_O&JECT(Errorcode,OldRefNUM);

END. '

2-24

~pelatjl7p Systen7 Reference f\--lal7l.Jal for tl7e Li'sa

READ_LABEL (Var ECOde:lnteger;
var patn:PatMaJYE;

Data_Aaar:Longint;
Count: Longlnt;

Var Actual : Longlnt)

WRITE_LABEL (var ECode:Integer;
Var pam: Patnnaf1e;

Data_Aaar:Longint;
count : Longlnt;

Var Actual: Longlnt)

EcOde: Error indicator
Patn:
Data_addr:
count:
Actual:

NaMe Of aDject containing tne lanel
Source or destination Of I/O
NUMber of bytes to transfer
Actual nUMber Of bytes transferred

These calls read or write the label of an object in trle file system. I/O always
start.s at tne oeglnnlng Of tne lanel. count Is lrte nurnoer Of bytes tne process
wants transferred to or from Oata_addr .. anef Actual is the actual nt..lrnber of bytes
tranSferred. An error is returnea If you attl~mpt to rea(~ rnore trlan tne maxlrnum
label size. A label can never be longer than 128 bytes" so you can never read or
wr1 te more tnan tr,at

2-25

Operating System Reference Manual for tl7e Lisa

DEVICE_CONTROL (Var Ecode:Integer;
VolT Patn : patnnare;
VolT CParJYl: dct we)

ECOde: Error indicatot
Path: Devite to be controlled

Tl7e Fjle s.ystem

CParM: A record of inforMation for the device driver

DEVICE CCN1RCL is used to send device-specifIc information to a device
driver .. or to obtain C1evlce-speclflc:lnforrnatlon frorn a (je\Jlce arlver.
Regardless of whether you are setting device control parameters or requesting
information .. you al \~ays use a record of type dctype. The structure of dctype is:

ootype = RfCORO
d!cVersion: INTEGER;
d'cCooe: INTEGER;
dcData: ARRAy [0 •• 9] OF LONGINT
END;

dcversion: always 2 for tne functions discussea in this
dOCUMent

deCOde: control COde for aevice ari ver
dcData: speci fic conttol or data paraMeters

DEVICE C(J\[ffia... functions that set attributes for a device driver are covered
first -

O:NTRCLLING DEVICES
Before you use a de!vice .. you Shoul~ use DEVICE _ C(]\.!TRCL in order to set the
device driver SO that 1 t properly handles the device. OIce you begin using tne
device .. you are free to call DEVICE.,;..CCNTRCl.. as necessary.
Following are two tables. The first.. Table 2-1 .. shows which "groups" of device
control functions must be set before using eacrl type of aevice. The second table
shows which type Of characteristic$ are contained in the groups. For exarnple ..
you must set Group A for RS-232 l!nput. If you look in Table 2-2, you see tnat
Group A indicates tIle type Of parity usea w1th trle device. Note that eacn group
requires a separate call to DEVIC~_a:NTR(L, and trlat you can only set one
characteristic from eaCh group. If ybu set more than one frorn the sarne group for
a particular device, trle last one set will apply.

2-26

L7j.7Bl"8til7g Systen7 Relelp.l7ce tv/Bl7l1e} li)J" tl7e Lisa

Table 2-1
DEVICE CONTROL FUNCTIONS REQUIRED

BEFORE USING A DEVICE
Device Type pevice NE,Me Required GrQups

Serial RS-232 for input RS232A or R82328 A,C,O,E,F,G

Serial RS-232 for output RS232A or R82328 A,8,C,G,H,I
or printer
Profile

Parallel printer

Console screen and
keyboard
Diskette drive

SLOTxCHANy (where
x and yare nuMbers)
or PARAPORT

SL01XCHANy (where
x and yare nUMbers)
or PARA PORT

MAINCONSOLE or
ALTCONSOLE
UPPER or LO~'ER

J

I

I

J

Here Is a sample program which shows ho'w a device control parameter is set.
Trlis prograrn sets the par1ty at.tribute for the RS232B port. to "no parity". Note
that the parity attr1bute only requires that you set cparm.dCCOde and
cparm.CfCdata(O]. Other parameters requIre trlat you also set cparm.dCdata{)] and
cparm.dCdata[2~ They are set 1n a slmllar manner.

VAR
cparfYl: Octype;
ermUfll : integer;
patn: patnnare;

BEGIN
path:='-RS232B';
cpam.dcvers1on:=2; (* always set tn:ls value *)
cpar~.dCCOde:= 1;
cparM.ocaata[o]:= 0;
DEVICE_CONTROL(errntJPl,patn,cparM);

END;

2-27

Operating ,Systen7 Reference I'-lal7ual for tl7e Lisa TI7e File SyS'ten7

Table 2-2 shows hov, to set cparm.(jccode, cparm.dCdata(01 cparrn.dCdata(11 and
cparm.dcaata[2] for the various available attributes. Note that any values In
cparm.dcdata past cparm.dcdata[2] are ignored when 'you are setting attributes
documentea here.

Table 2-2
DEVICE_CONTROL OUTPUT FUNCTIONAL GROUPS

FIINCTIQN .dccode .dcdata{O] /1cdata[1] ,dCc1ata[2]

Group A--Parity;
NO parity 1 0
Oda parity, no 1 1

input parity
CheCking

Odd parity, 1 2
input parity
errors = 00

Even parity, no 1 3
input parity
Checking

Even parity, 1 4
input parity
errors = $80

Group B--Output HandShaKe:
None 11
OTR handshaKe 2
XON/XOFF handshake 3
delay after cr, LF 4 MS delay

Group C--Baua rate:
5 baud

Group D--Input waiting:
wait for fUll line 6 0
return wnatever recla 6 1

2-28

l.7pelatil7!11..S'yst8rn Rele[el7ce 1"lal7ual fi..7[tl7e L1.h.7

Group E--Input handShaKe:

OTR handshake

7
9

7

XON/XOFF handshake 8

Group F--Input type-ahead buffer:

flush only
flush & re-size
flush, re-size,
and set threshold

9
9
9

Group G--Disconnect Detection:

none
BREAK detected
~ans disconnect

10
10

a
-1

-1
bytes
bytes

-1

-2
-,2
low

o
non-zero

Group H--Tir'leout on output (handShake interval):

no tirfleout
tiMeout enabled

, 12
12

o
secondS

Group I--AutoMatic linefeed insertion:

disable
enabled

17
17

a
1

Tl7e FjJe ... S'ystel/7

65

-2
-2
hi

Group J--Disk errors (set to 1 to enable, to 0 to disable):

enable sparing 21 sparing rewrite reread

Group K--Break COMMand (never requ1recj -- available only on
serial RS-232 devices)

send break 13 Millisecond 0
duration

send break 13 MillisE:cond 1
while lowering duration
DTR

2-29

operatil7g Systen7 Refel"817Ce f'v'al7ual fox tl7e Ljsa TI7e File ... -V'stem

using Group C, you can set baud to any standard rate. However, 3600" 7200,
and 19200 baud are available only on trle RS2328 port,

'Low' and 'Hi' under Group F set the low and high threshold in the type ahead
input buffer. When 'hi~ or more byt?s are in the input buffer XOFF is sent or
OTR 1s dropped. ThHn wrlen 'Low' or fewer bytes are in the type ahead buffer"
XON is sent or DTR is re-asserted. ! The size Of the type ahead buffer (bytes)
can be any value between 0 and 64 b~tes inclusive.

In Group J, disK spar1ng, wnen enabled, orders the aevice driver to re-locate
blocks of data from areas of the disklthat are found to be bad.

Disk rewrite, when enabled, orders the Operating Systern to rewri te data that
it had trouble reading, but finally m?naged to read. This condi tion is referred
to as a soft error.

Disk reread, when enabled, orders the Operating System to read data after
they are written, to rnake certain theat they were written correctly.

When sending a break command, sh¢>wn in Group K, any device control from
Group A removes tt'~le break condi tibn, even if the allot ted time has not yet
elapsed. Also, sending a break will disrupt transmission Of any other
character still being sent. If you w~nt to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a
single null character (equal to 0) Just prlor to call1ng DEVICE_CCNTRCL to
send tJle breaK .•

Table 2-3 gives a l1:st Of mneumonlb constants that you can use In place Of
expl1ci t nun,bers wrlHn setting dcood:e. These mneurnonlcs are provided SOlely
for convenIence. .

TOOle 2-3
DecOde ;MneUMOn1cs

occoae
1
2
3
4
5
6
I
8
9

10
11
12
13
15

Mneuronlc
avpar1ty
dvOutDTR
dvOutXON
dvOutDelay
dvBaud
dvlnWait
dvInDTR
dvlnXON
dvTypeahd
dvDiscon
dvOutNoHS
no meuMOnic
no meufYlOnic
dvErrStat

2-30

(:t.7t3Jatil7g· .. .'::;ystell7 Relerence f--Ianual lor tl7e Lisa

16 dvGetEvent
17 dvAutoLF
20 dvOlsKStat
21 dvOiskSpare

OOT AINING DEVICE C~TRCL. INFCRMATICJ".f
When you use DEVICE_CCl\JTRCl... to find out information about the current
state of a particular device" you sirnply give the pathname for the particular
device,along with a function code for the t.ype of information you need, and
the record of type dctype that you supply is returned filled witr, inforrnation.

There are tnree types Of lnforrnatlon requests you can rnaK.e. !',Jote tnat eact!
type only appl1es to sorne of the available dl9vices. Trle request types and trle
returned lnforrnation are described 1n Table 2-4.

Here 1s a program fragment that gets Inforrnation about trle upper diskette
(jrive.

VAR
cparM: dctype;
errnu~: integer;
path: pathnare;

BEGIN
path:='-UPPER';
cparM.ocverslon:=2; (~always set trlis value ~)
cparM.dccOde := 20;
DEVICE_CONTROL(errnUM"patn,CparM);
URlTELN (ocoata[0],ocoata[1],dcdata[2],dcdata(3],

acaata[4],acaata[51,acaata[6])
END;

2-31

OpeJ"atjl7g .S'ysten7 Refelt3I7Ce /V/al7l1al for tl7e Ljsa The File ... '»Istern

DCCODE

15

16

Table 2-4
Devlce ilnfOrMation

DEVICES

prOfiles

oeD RIA (returned.,

[0] contains disk error status on
last hardware error (Table 2-5)

[1] contains error retry count

console screen
and keyboard

since last systeM boot

[0] contains nuMbers 0 - 10 ..
which indicate events:
o = no event
1 = upper diskette inserted
2 = upper diskette button
3 = lower diskette inserted
4 = lower diskette button
6 = MOuse button down
7 = Mouse plugged in
8 = power button
9 = MOuse button up

10 = MOuse unplugged
[1] contains the current state

of certain keys, indicated
by set ~ (if the bit 1s
1, the Key is pressed) (bits
are nur'1bered frOM the right)
o = caps loCk key
1 = shift key
2 = option key
3 = COMMand key
4 = MOuse button
5 = auto repeat

[2] contains X and Y coordinates
Of MOuse.. X in left 2
byteS,Y in right 2 bytes

[3] contains tiMer value .. in
f'1illiseconcis

2-32

operating Sy'sten7 Refelp.l7ce 1'-1817ual tt.7]" tile Lisa Tl7e File ~~'Yste/n

20 profile or
a1sKette drive

[0] contains:
o = no disk present
1 = disk present (but not

acce s S~~d yet)
The following indicate tnat
a disk is present, and it
has been accessed at least
once.

2 bad block track appears
unfOrr'1at ted

3 = disk forMatted by SOMe
prograM otner tnan the
Operating systeM

L~ = OS forPlatted diSK
[1] contains:

o = no button press pending
1 = button press pendin~

disk not yet ejected
[2] contains nUMber of blocks

(0-16) (rfJeaningful only
when dCdata[O] = 4 and for a
diskette)

[3] conta1ns~
o = both copies Of the bad

block directory OK
1 = one copy 1s corrupt

(rleaningful only when
dCdata[O] = 4)

[4] contains:
o = sparing disabled
1 = sparing enabled

[5] contains:
o = rewrite disabled
1 = rewrite enabled

[6] contains:
o = reread disabled
1 = reread enabled

Table 2-5 shows the breakdown of the error code in response to a deCOde-iS
inforrnation request. This corle 1s given in cpijrrn.dCCjata[iO~

Tt1e COde 1s a long integer, and therefore conta1ns four tlytes. Eaen 01 t in
every byte but byte 0 rl8S rneanlng. The bytes are srl0wn in Table 2-5 brok.en

2-33

17peJCJtil7g .Sj'steIl7 RefeJ"817ce /v/al7I.Jal for the Lisa The FiJe ,System

up into bits, with thE~ bits and bytesl[lumbered frorn the right, counting from 0,
as shown in Figure 2,-1. In all cases, ~he meaning attributed to the bi t is true if
the bi t is set (equals 1). '

Byte 3
7
6

5

4

3

2

,

7 07 :.07 07 0

=

=

=

FIgure 2-1
DisK Har(J Error Codes

TOOle 2-5
Disk Hard Error Codes

Profile received <> 55 to its last response
write or write/verify aborted because MOre than 532
bytes of data were s~nt or because profile could not
reaa its spare table
Hosts data is no longer in RAM because prOfile updated
its spare table
SEEK ERROR -~ unable 'in 3 tries to read 3 consecutive
neaders on a traCK
eRe error (only set d,uring actual read or verify of
write/verify, not while trying to read headers after
seeking)
TIMEOUT ERROR (could not find header in 9 reVOlutions)
-- not set while try~ng to read headers after seeking

1 = Not useel
o Operation unsuccessful

Byte 2
7 SEEK ERROR -- unable in 1 try to read 3 consecutive

neaaers on a traCK
6 = Spar-eci sector table over-flol..) (rT1ore trlan 32 :38ctors

spared)
5 = Not used
4 = Bad blOCk table O\Jerf~Ow (r'"lore tnan 100 t)aa bloCI<'~3 in

table)
3 = profiie unable to reaa its status sector
2 = Sparing ocourred
1 = SeeK to wrong traCk occurred
o = Not used

2-34

operatIng ... ~~ste!77 Relel"8!7Ce t-lal7ual tt.7}" tne Li)"a

Byte 1
7 = profile nas been reset
6 = Invalid block nuMber
5 = Not usea
4 = Not used
3 = Not used
2 = Not used
1 = Not used
o = Not used

Byte 0

Tl7t? File S.Y~-.;'tefn

This byte contains the number of E~rrors encountered wi'"len
rereading a block after any read error.

2-35

t:peratjl7g SystenJ Refel-ence /vlanual lor tile Ljsa

ALLOCATE (Var Ecode:lnteger;
RefnUfYl:lnteger; .
Contiguous:BoOlean;
count:Long1nt;

Var ActlUal:lnteger)

Ecode: Error indicator

TI7e Fjle System

RefnuM: Reference 'nuMber Of object to be allocatee
space

Contiguous:
Count:
Actual:

True=allocate contiguouSly
NuMber Of blocks to be allocated
NUMber Of 'blocks actually allocated

use ALLOCATE to Increase ttl8 sp~ce allocated to an otlject. If possible ..
ALLOCATE adds the requested num~er of blOCKS to ttle space available to the
object. referenced tJ1y Refnum. The act.ual number Of blOCkS allocated 1s
returned in actual. If contiguous is U·ue .. the new space 1s allocated in a single ..
unfragmented space on the disk. Ttif!s space 1s not necessarily adjacent to any
existing fHe blockS.

,ALLOCATE applies only to objects on block structured devices. An atten-lpt
to allocate rflore space to a pipe 1s successful only if the p1pe's read pointer 1s
less than or equal to its write poimter. If the write pointer has wrapped
around .. nut the read pointer has noti an allocation would cause the reader to
read invalid and uninitialized data .. so the File System returns an error 1186 in
this case.

2-36

[lperatinp :.,ystefl7 Relelt3I7Ce fv!anual lor tl7e Lisa

COMPACT (Var Ecode:lnteger;
Refnul"1:Integer)

Ecode: Error indicator

Tl7e File Sy'Sten7

RefnuM: Reference nu~ber of object to be co~pacted

C(]'-1pACT deallocates any blockS after ttll3 block that contains the logical
end Of flle for the f1le referenced by refnum. (see Fl~Jure 2-1.) CCMPACT
applies only to objects on block structurE~d devices. As is the case wi th
ALLOCATE, compaction Of a pipe 1s legal only if the read pointer 1s less than
or equal to the write pointer. If the write pointer has wrapped around, but the
read pointer has not, compaction could destroy data 1n the pipe. The File
System returns an error 1188 in this case.

2-37

[lpeJ"8til7g .S}'sten7 Ret'"eJel7ce I'--1a17a81 tiJI" tl7e Lisa

TRUNCATE (Var Ecode: Integer;
RefnuM:Integer)

Ecode: Error indicator
RefnufYl: Reference nurhber of object to be truncated

TRUNCATE sets the logical end of file indicator to the current posi tion of the
f1Ie marker. Any alata beyond the: file marKer are lost. TRUNCATE applies
only to block structured devices. Truncation Of a pipe can destroy data that
have been wr1 tten t)ut not yet read,. AS me diagram snows,. TRUNCATE does
not ctiange PEOF ~ only LEOF. C(]v1PACT~ on the other hand,. changes botJ'!.

fill --TRUNCATE-....
new jCOMPACTl

I
LEOF .
and

PEOF

I
File Marker

n~w I

PE10F I

old
I

LEOF

I
old

I
PEOF

Figure 2-2
The HelationShip qf COMPACT and TRUNCA1E

In this figure the boxes represent blQCkS of data. Note that LEOF can point to
any byte in the file, but PEOF can only poInt to a block. boundary. Therefore,
TRUNCATE can reset LEOF to any byte in the fHe, but cavtPACT can only
rese t PEOF to a bloOI< boundary.

2-38

OpelC1til7g System Refe]"eI76"'e I'-lanual fo]" tl7e Lisa

FLUSH (Var Ecode : Integer;
Refnul"l:Integer)

Ecoae: Error indicator
RefnuM: Reference nuMber of ,destination Of I/O

The File ... <Jystem

FLUSH forces all buffered information destineCj for trl~~ object identified by
refnum to be written out to ttlat object.
A side effect of flush 1s L'Iat all FS buffers and data structures are fluShed (as
well as the control inforrnat1on for tj-,e referenc8ej flle). If P.8fnurn is - 1.. only
the glObal file system is flushed. This is a m~~thod by whJ.ch an application can
insure that the file system in consistent.

2-39

(j..781-ati/lg .SYSt8177 Rel81t3l7C8 1'--1a17ual foi tl7e Lisa

SET_SAFETY (var Ecode : Integer;
var patn : patnnaJ'e;

On_off:Boolean)

Ecode: Error indicator

Tile File .S'..Ystenl

Patn:
On Off:

Na~e of objectt containing safety switCh
Set saftey switch (On=true)~ or Clear it
(Off=false) :

Each object in the fHe system has a "safety switch" to help prevent accidental
deletion. If the safety sw1 tch :is on, tt"le object cannot be deleted.
SET_SAFETY turns the switch on or off for the object identifIed by path.
Processes that are sl1aring an object should cooperate with each other 'Nrlen
setting or clearing trle safety swi tch.!

2-40

LPt.?lCJtjl7g ,-.:;y:~ten7 Relerence /Vlal7ual lor tl7e Lisa

SET_WORKING_DIR (Var EcOde:lnteger;
Var path:pathnaMe)

GET_WORKING_OIR (var ECOde:lnteger;
Var Path:Pathn~)

Ecode:
Path:

Error indicator
worKing directory naMe

Tl78 F Jle .Systeni

The Operatlng System uses the name of the working directory to resolve
partially speCified pathnames into complete pathnames.
GET _ WffiKING_DIR returns the current "Jorking dirE!ctory name in Path.
SET _ WCRKING_DIR sets the WOrking dIrectory name.
The fOllowIng program fragment reports t.:'ne current name of the working
directory ana allows you to set it to something else:

VAR WOrKingDir : PathN8fie;
Errorcode:INTEGER;

BEGIN
GET _tJORKING_OIR(Errorcoae, 1JO:rt<lngDlr);
IF (Errorcode<>O) THEN

tJRlTELN('camot get tne current worJ<1.ng airectory!')
ELSE WRlTELN(' The current working directory is: .

• , IJorkingOlr);
WRlTE('New worKing directory naMe: f);
READLN(WOrkingDlr);
SET_lJORKING_DIR(ErrOrCOde,lJOrKlngDir);

END;

2-41

{7per8til7f] 5yst81n RelelEOt--"V3 ;\'18I7U81 lOJ" tile Lisa

RESET_CATALOG (Var Ecode:INTEGER;
Va~ patn:patnnaMe)

GET _NEXT_ENTRY (var Ecooe: INTE~ER;

Ecoae:
Path:
Prefix:
Entry:

var prefix, ,
Entry:E_Nare)

Error indicator
working directory naMe
Beginning Of file na~es returned
NaftfeS froM ~atalog

Tile File 5.,v.sten7

RESET _CATALOO and GET _NEXT __ ENTRY give a process access to catalogs.
RESET _CAT ALOO sets the 'catalog f1le marker' to the beginning Of the
catalog specified by Path. Path should be a root volume name.
GET _NEXT _ENTRY then performs ~equential reads througrl the catalog fHe
specified in the RESET _CATALOO call and returns file system object names.
A'1 end of file error COde (848) Is returned when C'£T _NEXT _ENTRY reaChes
trle end of the catalog. If prefix is non-null .. only those entries In the catalog
that beg1n wlt.'! that pref1x are retUrned. If pref1x 1s 'AB' .. for example .. only
flIe names trlat begin wittl tAB' are returned. Tt-Ie preftz: and catalog marker
are local to the calling process .. so several processes can s1multaneously rea(~
a catalog wl thout affectlng each otl1er.

2-42

OpelCiting S)'stefl] Refelt3I7Ce I'-lal7ual to}" tl78 Lisa

MOUNT (Var Ecode:lnteger;
Var VNare:E_Nare;
Var Password:E NaMe
Var Oevnare: E_Nare)

UNMOUNT (Var Ecoae:lnteger;
Var VnaMe:E_naMe)

Ecode: Error indicator
VnaMe: VOlUMe naMe

Tl7e File ... <:;ystern

Password: Password for device (currently ignored)
DevnaMe: Oevice naMe

MClJNT and UNMo.JNT handle access 10 sequential devices or bloCK
structured devices. For block structured dENlces .. MOJNT logically attaches
that vOlume's catalog to the f1le system. Tr1e name Of tne volume mounted 1s
returned in the pararneter Vname.

UNMo..JNT eietaches the specified volume from the fHe system. No Object on
that volume can be opened after UNMO.JNT has been called. The volume
cannot be unmounted until all the objects on the volurne have been closed by
all processes using mern.
Devnan,e 1s ttle name Of the device on willeh a volurne Is beIng rnounted.
oevname snoUld be given wltnout a leading (jash (-~

vname 1s the name Of tne volume that \;,/as successfully nlounted .. and ls
returned.

2-43

Opel-atfl7g Sj/stell7 Refel"8I7Ce tv/al7t/a} for tl7e Lisa

Chapter 3
PROCESSES

3.1 Process structure , 3-4
3.2 Process Hierarchy : 3-4
3.3 Process creation : 3-5
3.4 Process Control ! ••••••••••••••••••••••• 3-5
3.5 process SCh~~duling i •••••••••••••••••• 0 •••• 3-6
3.6 Process TerrYJination t ••••••••••••••••••••••• 3-6
3.7 A Process Handling ExaMple 3-7
3.8 Process SysteM Calls : 0 ••••• 3-9

MAKE_PROCESS .••.••.•.•• : •.•••••••.•••.........• 3-10
TERMINATE PF<OCESS •••.••• i ••••••••••••••••• 0 ••••• 3-11
INFO_PROCESS •......•....•........••........... 3-13
KILL_PROCESS •••••••••.• ' •••••••.••••••.•..•.... 3-15
SUSPEND_PROCESS ~'. 0 • • • • • • • • • • • • • • • • • 3 -16
ACTIVATE PROCESS 0 0 •••••••••••• 3-17
SETPRIORITY_PROCESS •.• oi ••• 0 ••••••••••••••••••• 3-13
YIELD_CPU ." ••••••••••• , ••••.••.•••••••••••..•. 3-19
MY _10 II ••••••••••• : •••••••••••••••••••••• • 3-20

3-1

Pll.7CeSSes

QJeratJ/75:,7 Ls:,ysten] Relel"ence tv/antla} for tl7e Lbo Processes

3-2

OpeJ-atinp , . .'=;ystelll ReleJ"Blice /,"!aliLlaJ ft.)]: ti7e L/;;a

, PROCESSES

A 1}[{JCes .. ~"ls the entity in the Lisa ~ystem that performs work. When you ask the
operating system to run a prograQl .. the OS creates a speci fic instance of the
program and its associated data. That instance is a process.

I

The Lisa can have a number of prodesses at anyone time .. and they will appear to
be running simultaneously. Alth0l19h processes can share code and data, each
process has its own stack. '

;

Actually .. only one process can use the CPU at a time. Which process is active at
a particular time is determined by the S'l.:'/713{1!.1113J." The sCheduler allows each
process to run untU some condition that would slow execution occurs (an I/O
request, for example). At that time .. the running process is saved in its current
state .. and the sCheejuler checks th~ pool of ready-to-run processes. When the
original process later resumes execution .. it piCkS up where 1 t left off.
The process sChedull1ng state has three possib1l1 ties. The process is fllnninq if it
Is actually engaginl~ the attention :Of the CPU. If it Is ready to execute .. but is
being held bacK by the SCheduler .. the process Is reacty: A process can also be
bJOCkel.i In trle blocked state .. the process Is ignored by the sCheduler. It cannot
continue Its executlon until somett;11ng causes its state to be Changed to ready.
Processes commonly become blOCktFd while awai tlng completion Of I/O .. al though
tnere are a number Of otner I1kely causes.

3-3

Operatil7p ... '>j-'S'ten7 Relel"8I7Ce f.-18171.181 for tl7e Lj~~ PrOCeS'..fes

3.1 Process Strucuure
A process can use up to 16 data segments and 106 code segments.
The layout of the process address space for user proces~:es is shown in Figure 3-1.

Seg#
1---------
o I Unavailable
t---------
1 User COde SeqMents

106
1---------

107 LDSN 1

(data segMents)

122 LDSN 16
1---------

123 I Stack
t---------

124 I Shared Intrinsic Unit Data
-t---------

125 I Screen
+--------

126 I Reserved
t---------

127 I Reserved
t---------
F1gure 3-1

PROCESS ADDRESS SPAICE LAVOUT
Each process l1as an associated priority .. an integer tJetween 1 and 255. The
process scheauler usually executes the rlighest prlori ty ready process. The r-ligher
priorities (226 to 255) are reserved for Operating system.

3.2 Process HIerarchy
When the system 1s first started, several system processes 8>dst. At the base Of
the process hierarChy 1s the root proCE~ss which nandles various internal
Operating System functions. It has at leclst three sons, the memory manager
process .. the timer process .. and the snell process.

3-4

t:peratfng System ReFerence /'1antJal For tne Ljsa Processes

The memory manager process handles code and data segment swapping.
The shell process Is a Ulser process which Is automatiCally startea wnen the OS Is
initiaUzed. It typically Is a command Interpreter"'~jut it can be any program. The
OS sImply lOOKS for the program called SYSTEM.SHELL, and executes 1 t.
me timer process hanales timIng functions SUCh as timed event channelS.

Shell

Process
Memory 'Manager I !

Process User

l~\
other User Processes

Fl~i3-2
Process: Tree

Timer
Process

MY other system process (the NetworK Control Process ... for example) Is a son of
the root process. .

3.3 Process CIeatioo
When a process Is creat~3d, it Is plaCed In the ready state, wIth a priority equal to
that of the process Which created it. All the processes created by a given process
can be thought of as existing in a sUbtre~. Many Of the process management calls
can affect the entire sut)tree of a proce$s as well as me process Itself.

3.4 Process control .
Three system calls are provided for e~l1cit control Of a process. These Calls
allow a process to KIll, suspend (OlOCK1 pr act1vate any other user process In the
system, as long as the process identifier is known. Process hanalfng Calls are not
allowed on QJeratlng System processes. '

3+5

[f-J8J-at117!:.7 .Sj':rt8177 ReleJ"BI7f.,.13 1'-1a17ual ti..7[tl7e L15'8

3.5 Process SChedUling
Process SCheduling Is based on the priori t.y establishE~d for the process and on
requests for Operating System services.
The SCheduler generally executes the hi~lhest priority ready process. once a
process is executing .. it loses the CPU only under c'~rtain circurnstances. In
practice .. the CPU is lost wilen there 1s sorne speCific request for the process to
wait (for an event for example) .. when there is an I/O request.. or when trlere is a
reference to a code segment that is not in memory. I~ process that makes any
Operating System call may lose the CPU. The process will get the CPU back
when the Operating System is finished except under the following conOi tions:
a The runn1ng process requests input or output. The scheduler will

start the next nignest-priority process running while the first
process waits for the 1/0 to COMplete.

o Tt,e running process lowers its prior:lty below tllat of another ready
process or sets another process's priority to be higher tnan its
own.

o The running process explic1 tly yieldS the CPU to another process.

o The running process activates a higher priori ty process.
o The runn1ng process suspendS 1tself.
o A higher priorti t y process beCOMeS rE~ady .

o The running process needs OOde to be swapped into f'1eMOry •

a The running process executes an event wait call"

o The runn1ng process calls DELAY_TIME.

Because the Operating System cannot seiZE~ the CPU from an executing process
except in the cases notect above .. bacKgrounct processes Shoulct oe liberally
sprinkled wi th YIELD_CPU calls.

When the scheduler is invoked .. it saves the state of trle current process and
selects the next process to run by examining the pool of ready processes. If the
new process requires that code or data tle loaded into memory .. the memory
manager process Is launChed. If the memory manager is already working on a
process .. the sChectuler selects tne higr1est priori ty process in the ready queue that
does not need anything swapped.

3.6 Process Termination
A process terminates normally when it callS TERMINATE_PROCESS" when it
reaches an 'END: staternent.. when some process calls KILL PROCESS on 1 t..
when its father process terminates., or when it runs int.o an aonorrnal concl1tion.
w'hen a process begins to terrnlnate .. a SYS._TER~·"lIl'·~ATE exception condition is
signalled to tne terminating process and all of the processes 1 t has created. Any

3-6

{Jper8tjl7g .S'yS'teI77 Ref'ert.'nce /,-,/anual f'dr tl7e Ljsa Processes

process can create an exception h,8ndler wi th the DECLARE_EXCEP _HDL call
(described in Chapter 5 of this manual) .. so the process can catch the terminate
exception and Clean up before terminat1ng. The SYS _ TERMINATE exception
handler will only ble executed once. Thus .. i f an error ooours wt,ile ttle handler is
executing" the process terminates 1',mmedlately.

i .

Termination Involves the fallowing: steps:
1. signal the SYS_ TERMINATE exception on the terp1inating

process.
2. Ex:ecute the user's except ton tlandler (i f any).

3. Instruct all sons Of the durrent process to terMinate.
4. Close all open files .. data segMents .. pipes, and event

ohannels left open by the ~ser process.
5. Send the SYS __ SON_ TERM ever1t to the father Of the terMinating

process if a local event channel exists.
6. Wait for all tne sons to ~inlsh terMination.

3.7 A Process Handli~J EXar,lle
The following programs illustrate the use of many of the process rnanagement
calls described in It)is Chapter. Th~ prograrn FATHER. creates a son process, ana
lets it run for awhlle. It then gives you a chance to activate" suspend" k.llL or get
information about Ute son.

PROGRAM Fatt1er; ,
USES (*$U Source:syscall.:Obj*) SysCall;
VAR ErrOfC(Kre:INTEGER;(~rror returns frOM systeM calls x)

proc_id::LONGINT; (~ process glObal identifier ~)
pro~~:PathnaMe; (~ prograM file to execute *)
null:N8rEStr1ng; (* prograM entry point *)
Info_Rec:ProclnfoRec; (x infOrMation abOut process x)
i:INTEGER;
Answer: GHAR;

BEGIN
progNafYe:='SON.OBJ'; ex this prograM is defined below x)
Null:=' ';
MAKE_PROGESS(Errorcooe, PrOC_IO., progNar-e., Null .. 0);
IF (Errorcoae<>o) THEN:

IJRlTELN(, Error I., Ertorcooe.,' OUTing process J'laf1agererlt. ');
FOR i:=l TO 15 DO l . (* 1elle for aunile *)
BEGIN i

WRITELN('Fatner exe6utes for a MOMent.');
YIELD __ CPU(ErrorcoaejFALSE); (x let son run x)

END;
WRITE('K(ill S(uspend ~(ctivate I(nfo");

3-7

[Jpel-atfl7g ~""'y'S'ten] Retf31l3I7Ce I'-1817ua1 lor tl7e Li:>~9

READLN(AnSwer);
CASE Answer OF

• K'" • k ': KILLYROCESS(ErrorCOde., ProG_Id):
'S', 's': SUSPEND_PROCESS(ErrorCOde,proc_Id, TRUE

(1t suspend faMily Jt»;
'A'., • a': ACTIVATE_PROCESS (Errorcode." ProC_Id, TRUE

(* activate faMily Jt));
• I '., • 1 ': BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info __ Rec);
J,JRlTELN(• Son' 's n~ 1 s '., Info_Rec . progPathNa~);
END;

END;
IF (ErrorCode<>O) THEN

WRlTELN('Error ',ErrorCodH,' during process
I'I8nagerent. •);

END.
Ttle program SON 1s:

PROGRAM son;
USES (*$U SQurce:syscall.Obj1t) SysCall;
VAR Errorcode: INTEGER;

nUll:NaMeStrlng;
BEGIN

WHILE TRUE 00,
BEGIN

I.JRlTELN('Son executes for a (Yl)Pl3nt. ');
VIELD_CPU(ErrorCOde,FAl.SE);(jtlet father process runit)

END;
END.

3-i3

cperaUng ~ystem Relerence tv/anval foJ," tl78 Ljsa ProcesseS'

:S .8 Process SysteM Galls
This section describes all th~ Operating SysteM calls that pertain to
process control. A sUMMary of a:l1 the operating SysteM calls can be found
in Appendix A. The following special types are used in process control
calls:

PathnarE! = STRING[2S5i];
NaMestring = STRING[2P];
P s eventDlock = "'s eventOlocK;
S-eventbloCK = T event text;
T=event_:text = array roo .slze_etext] Of longint;
ProcinfoRec = record;

progpathnafYe : pathnare;
global~1d : long1nt;
father .Jid : longint;
priori t:y : 1 .. 255;
state (pactive, psuspenaeo, pwaltlng);
aata_in: : boolean
em;

3-9

operatJnp ::.»'S'ten7 RelerenCe f.-18I7l.1al lOJ" tl7e Lb 9

MAKEYROCESS (Var ErrNuM: Integer;
var proc_ld : Longlnt;
Var progFile :Pathnar~;
Var EntryNarE:NarreStr1ng; (* NarrEStrlng = STRING[20] *)

Evnt_Chn_refnUM:Integer)

ErrNufYl:
Proc id:
progFile:
EntryNafY'8 :
Evnt_chn_refnu(Yl:

Error ind1.cator
Process identifier (globally unique)
Process f1.1e naMe
PrograM entry point
COP1rrrunication channel between calling
process and created process

A process is created when another procE~ss calls M/\t"<E_PROCESS. The new
process executes the program identified by the pathname" progfile. If progfile is
a null character string., the program narne of the callIng process is used. A
globally unique identifier for the created process is returned in proe_id.

Evnt_chn_refnum is a local event channel supplied by the calling process (event
Channels are discussed in Chapter 5 of th1!~ manual~ Trle Operating system uses
the event Channel Identi fied by evnt_chn_refnum to send the calling process
events regarding the created process (for eX.ample .. SYS_SOt-...J_ TEP.t'1~ If
evnt_chn_refnum is zero .. the Calling process is not inforrned when SUCh events
are produced.
Entryname" if non-nulL specifIes ttle progranl entry point where execution 1s to
begin. Because alternate entry points rlaVI~ not yet bel~n defined .. this pararneter
is currently unused.
My error encountered during process creation is reported in ErrNum.

3-10

(pelatil7f7 .:.>Ysten7 ReFerence f'vlanual fOf" tl7e Lisa

TERMINATE_PROCESS(Var ErrNuM : Integer;
Event-ptr:P_s_eventblk)

ErrNuM: Error indicator
EventJ)t:r: InforMati0t;l sent to process's creator

Proces:'l"f? S

The I1fe of a process can be ended by TERMINATE_PROCESS. TI,is call causes a
SYS _ TERMINATE E~xcept1on to be 'signalled on the calling process and on all of
the processes it has: created. The process can declare its own SYS_ TERMINATE
exception rlandler to handle whatever cleanup it needS to dO before 1 t Is actually
terminated by the systenl. When the terminate exception handler is entered, the
exception information block conta,ins a longint that describes the cause of the
process terminat1on: '

Excep_Data[O] = 0 process oalled TERMINATE PROCESS
, -

1 Process: executed the 'END.' stateMent
2 Process: called KILL_PROCESS on itself
3 SOMe other process called KILL_PROCESS on

the terMinating process
4 Father process 1s terMinating
5 Processl Made an invalid systeM call (that
. 1s~ an unknown call)
6 Process: Made a systeM call with an

invalid: errnun paraf"leter address
7 Process: aborted due to an error while

trying to swap in a code or data segMent
8 Process: exceeded its M8xi~M specified

stack size
9 Process aborted due to possible lock up

of the systeM by a data space exceeding
physical MeMOry size

10 Process,aborted due to a parity error
There are an addl tlonal twenty-slx errors that can be slgnalect The entlre Ust 1s
shown on tile first page Of Appendix A

If ttte terrnlnatlng process was cireated with a cornrnunication channeI.. a
S'(S_SQf',L TER.M event 1s sent to tile terrnlnatlng process's fattier. The
terminating process can. specify tjhe text of the SYS_sor',J_ TER.M wlt!'l tne
Event-ptr parametE!r. "fote that the first (otth) longlnt Of tr°le event text Is
reservea by the system. When ttle event is sent to the fatner., the OS places the

3-11

apelCltfl7p ,-~)~:'Uefl7 Relel-enCe /"'Ialillal tv}" t/78 Lb'B

termlnatlon cause of the son process in the first longlnt. This is the same
terrn1nation cause tt,at was supplied to tile tern,inating process itself in the
SYS_ TERI'1INATE exoeption information tllock. Any user-suppl1ed data in the
first longlnt Of tr,e event text Is overwrl tt.en.
If a process specifies an event to be sent in the TERMINATE_PROCESS calL but
the process was created without a local event channel, no event 1s sent to Ui8
fattIer.
If a process termInates by a means other than CallIng TlERMINA TE_PROCESS .. or
it specifies a nil EventJltr in the TERMIl\IATE_PRCCESS call, and the process
was created wIth a local event channel.. an event is: sent to the father trlat
contains the termination cause in the firs t longint and zeros in the remaining
event text.
P _s_eventblk is a pointer to an s_eventblk. S_eventblk 1.S defined as:

CONST size_etext = 9; (* event text size - 40 bytes *)
TYPE t_event_text = ARRAY [0 .. s:lze_etext] OF Longlnt;

s_eventblk = t_event_text;
If a process calls TERMINATE_PROCESS t~'ice, the operating systern forces it to
terminate even if it has disabled the terminate exception.

3-12

i

lJ.7eJ~::;tjl7g Systel77 ReleJ"8.oce fvlanuaJ loi tl7e Lisa

INFO_PROCESS (Var ErrNuM:Integer;
Proc_Id : Longlnt;

varPrOC_Info:ProCInfoRec);

ErrNufYl: Error indicator
Proc_Id: Global iOent1fler Of process

Processes

Proc_Info: InfOrMation about the process identified by
Proe 1d

A process can call INFO_PROCESS to get a var1ety of Informatlon about any
process known to the Operating s~stem. Use the function MY _10 to get the
Proc _1d Of the calling process. '
ProclnfoR,ec Is defined as:

TYPE ProcInfoRec = RECOR~
progpathnaMe:pathnaMe;
GlObal_10 : Longint;
priority :1 .. 255;
State :(PActivel~suspendeO,PWaltlng);
Data_in : Boolean ,

END;

Data_1n indicates whether the oata!space of the process 1s currently 1n memory_
I

The fOllowing proce'dure gets Inforr0atlOn about a process and d1splays some of It:
PROCEDURE DlsplaY_Info(p~OC_Id:LONGINT);
VAR Errorcrn1e: INTEGER;

Info _Ree: ProcInfoRec;
BEGIN

INFO_PRQ(l:SS(ErrorCOd~,Proc_Id,Info_Rec);
IF (ErrorCOde=100) THEN

WRITELN(' Attervpt tQ display info about nonexistent

ELSE
BEGIN

process. I)

WITH Info Rec 00
BEGIN -

WRlTELN(' prograM naf1e:
WRlTELN(' global: 10:
WRlTELN(' pr1ori~y:
IJRI TE (I state: '

3-13

, " ProgpathN&e);
, ~ GlObal_10);
• I priority); .);

[pe]"ating ::'>-· .. J!sten7 Relel"enCe !vlal7ual ft.7]" tl7e Lisa

CASE state OF
PAct1ve:
psuspenaed:

END
END

END
END;

Pl.Ja1tlng:

I.JRlTELN(I active I).~
IJRlTELN(I suSpende(j');
I.JRllELN(• wa1 tlng' ,)

3-14

Pn.7cesses

Operatjnp :.;ysten; Reference /v/anual fot tl7e Lb-a

KILL_PROCESS (var ErrNuM;Integer;
PrOC_Id:Longrnt)

ErrNufYl:
Proc_Id:

Error indicator
Process to be killed

KILL_PROCESS kills the process r~ferred to by proe_ld and all of the processes
in 1 ts subtree. The actual termination of the process does not occur until the
process 1s in one Of the following states:
o Executing in user MOde.
o Stopped due to a SUSPEND_PROCESS call.
a Stopped due to a DELAY_TIME: call.
a Stopped due to a WAIT_EVENT~CHN or SENO_EVENT_CHNcall~ or

READ_DATA or WHITE_DATA to a pipe.

3-15

Opel(3ijng :.;ysten7 Relel"8nCe /v18f7Ual lor the L/.)8

SUSPEND_PROCESS (var ErrNuM : Integer;
proc_ld:Longlnt.~
Susp_FaMily:BOolean)

ErrNuM: Error indicators

Proces:res

Proe 10: Process to be suspended
SUSp=F8Mily: If true.. suspena trle entire process subtree

SUSPEND_PR~SS allows a process to suspend (blOCk) any process in tr,e
system. The actual suspension does not occur until the process referred to by
proc_id 1s in one Of the following states:
o Executing in user roc~e

o Stopped due to a DELAY_TIME call
o Stopped due to a UAIT_EVENT_CHN call

Nei ther expiration of the delay time nor receipt Of trle awaited event causes a
suspended process to resume execution. SUSPEND_Pf~OCESS is the only direct
way to block a process. Processes .. however., can becorne blocked during I/O, and
by the timer (see DELAY_TIME) .. and for many ottler reasons.
If susp_family Is true .. the Operating System suspenas both the process referred to
by proc_ld and all of its descendents. If susp_family Is false .. only the process
identified by proc_id is suspended.

3-16

{lp8J-atil7g Sy~\ .. te/n Relerel7ce j\-lal7ual fol tl7e Lisa

ACTIVA TE _PROCESS (var ErrNuM : Integer;
Proc_Id:LongInt;
Act-FaMily:8001ean)

ErrNuM: Error inaicator
Proc IO: Process to be activated
Act_FaMily: If true .. ,activate the entire process
subtree

To awaken a susp,ended process, call ACTIVATE_PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
only awaken a suspE~nded process. If the process is blocked for some other reason,
ACTIVATE_PROCE:SS cannot unblock it. If act_family Is true ..
ACTIVATE_PROCESS also activates all the descendents of the process referred
to by proe_id.

3-17

Operating :.,ysten7 Reference tvlal7ual for tl7e Ljsa

SETPRIORITY _PROCESS(Var ErrNuM : Integer;
ProC_Id:Longlnt;
New_priority:lnteger)

ErrNuM: Error indicator
Proc 1d: Global 10 Of process
New_Priority: Process I s new priority nUf'iber

PlucessC?s

SETPRICFUTY _PROCESS changes UOle sCheclullng prion ty Of tr-le process referred
to by praG_ld to new -priority. The 111ghE~{ tne priorUy value (which must ~e
between 1 and 225)., the more likely the process 1s to be allowecJ to execute.
(Operating System processes execute with p:riorities between 226 and 255.)

3-18

tJperati!7fl ..)y'sten7 Relerence I'-lal7l1al for tl7e Lisa

VIELD_CPU(Var ErrNuM:lnteger;
TO_f\ny:BoOlean)

ErrNuM: Ertor indication
TO_Any: Yield to any process.. or only higrler or equal

prior1ty

If TO_Any is false, YIELD_CPU causes trle calling process to give Ule CPU to any
other read.Y-to-exE~cute process with an equal or rligrler priority. If TO_Any is
true .. YIELD_CPU causes the calling process to yield ttle CPU to any other ready
process. If no such process exists, the calling process simply continues execution.
Successive yields t)y processes Of; the same priority result in a "round-rabin"
sCheduling of the processes. Background processes should use YIELD_CPU often
to allow otrler procE~sses to executelwhen they need to.

3-19

CpeJ"Bting 5y'steln Reference f';/al7ual for tl7e Lisa Processes

MY_ID:Longint
MY _10 is a function that returns the unique global identifier (a longlnt) Of trle
callIng process. A process can use MY _IO to perform process handling calls on
itself.
For example:

SetPr10ri ty yrocess(ErrnUM.. My _Id ... 100)

sets the priority of tne calling process to 101].

3-20

[i-7eJCltil7f7 Sy.S'ten7 RefeJt3I7Ce 1'--1817ual fOJ; tl7e Lba

Chapter 4
MEMORY MANAGEMENT

/V/em01..Y /v/8I7agen7Bl7t

4.1 Data segr'18nts I .'. I •• I •• I ••••••••••••••• 4-3
4.2 The Logical Data segMentiNUMber 4-3
4.3 Shared Data segMents 4-4
4.4 private Data segMents I ••• I •• I •• I I ••••••• 4-4
4.5 COde segMents ' 4-4
4.6 swapping. I • I I • I ••• I ••• :. I •• I ••••• I •••••••••••• 4-5
4.7 MeMOry ManaqeMent SysteM :Calls I •••••••• I •••• 4-5

MAKE_OATASEG ...•..•... ' ••.. I •••••••••••••••••• 4-6
KILL_DATASEG ••••..••.• ' .•••..••..••.••.•.•..•• 4-8
OPEN_OATASEG ••• I •••• I •••••••••••• I ••••••••••• 4-9
CLOSE_DATASEG •••••.•••.•••••.•.•••.••.•..•.... 4-10
FLUSH DATASEG •••• 0 •• 0 0 o. 0 ••• 0 0 • 0 •• 0 0 ••• 0 ••• 0 •• 4-11
SIZE_DATASEG 0 •• I ••• 0 0 0 •••••••••• 0 • 0 ••••••• 0 •• 4-12
INFO DATASEG •••• I •••••••••••••••••••••••••••• 4-13
INFO=LDSN . " .•••••••••• : •••.••...••••.•.•...•.. 4-14
INFO_ADDRESS •••••.•••••••••.•••••••••.•...... 4-15
~1EM_INFO .. " I •••••••••• I •••••••••••••••••••••• 4-16
SETACCESS DATASEG •••••.•...••••••.•• I ••••••••• 4-17
BIND_DATASEG ••••..•..••••..•••.•.••....••.••• 4-18
UNBIND_DATASEG .•.•.•.•••.••..••......•••.•..•• 4-18

4-1

QJerating System Reference Manual for tile Lisa Memory Management

4-2

t:perating System ReFerence Manual For ttJe Lisa MemolY Management

Every process has a set of code and data segments Which must be 1n physical
memory when those code segments and, data segments are used. The translation
of the logical address used by the process to the physical address used by the
memory controller to access physical memory is harn11ed by tne memory
management unit (MMU~

4.1 ()ata segnents i

Each process has a delta segment that the qJeratlng System automatically
allocates to It for use as a stack. The! staCk segment's internal structures are
managed directly by the hardWare and the q>eratlng system.
A process can acquire additional data segments for uses such as heaps ana
inter-process communication. These aqdltional data segments can be pdvat6{or
local) data segments or mated data segments. Private data segments can be
accessed only by the cre!ating process. When the process terminates, any private
data segments still In existence are destroyed. Shared data segments can be
accessed by any proces;s that opens thOse segments. A Shared data segment Is
permanent untll explicitly killed by a precess.
The QJeratlng system retquires that cJata segments be In physIcal memory before
the data are referenceld. The scheduler automatically loads all of the data
segments whICh the program says it :needs. It Is the responsibIlity Of the
programmer to Insure that the program declares all its needS by associating itself
wIth the needed data segments before they are needed.
This process of assocIation Is called lJin(1lng. A program can bind a data segment
to I tsel f In several ways. When a program creates a data segment by usIng the
MPKE_DA T ASEG call, the segment Is automatically opened and bOund to the
program. If a program needS to open a segment that was already createcJ by
another program, the CPEN_DATASEG callis used. That call binds the segment
to the calling process, as well as openIng the segment for the process. Since
there may be times when a process needs to use more data segments than can be
bound at one time, the l..N3I1'O_DATAsEG callis provided, whICh leaves the
data segment open, bUt unbInds It. The program can then use BINJ_DATASEG to
bInd another data segment to the program.
The cperatlng System Vlj9WS all data segments except the staCk as linear arrays
of bytes. Therefore, allocatlon, access, and interpretation of structures wi thin a
data segment are the responsibility of ~ program.

ll2 The Logical Data segnent I\U1t)er
The address space of a process allows up to 16 data segments bOund to a process
at any Instant, In addition to the stacK .. ,Each bound data segment Is associated
wIth a specific regIon of the address spaGe with a Logical Data segment Number

4-3

l;peratlng System Reference Manual for t/Je Lisa HemoIY Management

(LOSN~ (See FIgure 3-1.) While a data segment Is bound to the process it is said
to be a member of the workIng set of the process.

The process assocIates a data segmemt ~'1 th a speel flc LOSN in the
MAKE_DATASEG or CPEN_DATASEG call.

The LDSN, WhIch has a valId range of 1 to 16, is llocal to the call1ng process. The
process uses the LDSN to keep track of Where a ~llven data ~~nt can be found.
More than one eJata segment can be associated with the same LOSN, but only one
such segment can be bound to an LDSN at any instant and thUs be a member of the
wOrking set of the process.

1I~ Shared Data seg I e Its
Cooperating processes can Share data segments. Shared segments cannot be
larger than 128 Kbytes in length. ~ with local data se~rments, the segment
creator assigns the segment a file system pattmame. All processes that want to
share that data segment then use tne same pathname. If the shared data segment
contains address pointers to data within the segrnent, the cooperating processes
must also use the same LD5t'J with the segment. This insure~; that a1110g1ea1 data
addresses referencing locations wi thin the data, segment are consistent for the
processes Sharing the segment.

4.4 PrIvate Data ~ts
Data segments can also be private to a process. In this case, the maximum size of
the segment can be greater than 128 KOytes. Ttle actual maximum size dependS
on the amount of pnysical memory in the machine and the number of adjacent
LDSN's avallable to map the segment. The process gives the desired segment
size and the base LDSN to use to map the segm~nt. The MEIDlOry Manager then
uses ascending adjacent LDSN's to map successive 128 t'<Jlyte chUnKs of the
segment. The process must insure that enough consecutive LOSf'ts are available
to map tl1e entire segment.
suppose a process has a data segment already bound to LOSN 2. If the program
tries to bind a 256 Kbyte data segment to LDSN 1, the ~rating system returns
an error beCause the 2S6 Kbyte segment need~> t\4lO consecutive free LQSI\l's.
Instead, the program ShOuld bina the segment to LOSNi 3 and the system
automatically also uses LOSN 4.

llS COde ~ts
Division of a program tnto multiple cOde segments (swappln~, units) Is dictated by
the programmer through commands to the compiler ana linker. The Mf'-1U
registers can map up to 106 code segments.

4-4

t:pen?ting System Reference l"'1anuaJ for tile iL/sa Memory Management

4.6 swapping
When a process executes, tne followIng segments must be In physIcal memory:

o The current COde segrrent

o All the data segrents in the process working set (the stack and all
bound data segrtents)

The qJeraUng System insures that this ,minimum set Of segments Is In physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-In request is initiated. In
the simplest case, this request only reqUires the system to allocate a block of
physical memory and to read in the segment from the disK. In a worse case, the
request may require ttlat other segments be swapped out first to free up
sufficient memory. A clOCk algorithm 1s usea to determine \NhlCh segments to
S'Nap out or replace. Thi~~ process is invisible to the program.

4.7 ~1emory t-1cmgerTe'lt calls
This section describes all the q>erating system calls that pertain to memory
management A summary of all the cperatlng system Calls can be found in
Appendix A The following special typesiare used in memory management calls:

PattflartE = STRIN; [255];
Tdstype = (d~;_Shared, ds-pr1vate);
Dsinfa:rec = Iitecord :

PB'I_ size: longint;
disc_size: Ipngint;
rl.I'O _open: integer;
~:int~r;
bolnf= :boolea'l;
presentF: boOlecrt;
creatorF :bOOlea1;
rwaccess: boOlecrt;
Sfgltr:long1nt;
vol.na'l3: e rare;

end; -
E_11CI'e = string [32];

4-$

cperatil7g System Reference H8171./81 for ttJe Lisa

MAKEJ)ATASEG (var ErrtUl:lnteger;
Var ~:Patt'llaPe;

MerI_Size, Oi5k_size:LongInt;
Var Reftt.A:lnteger;
Var ~r : LongInt;

Ldsn:lnteger
Ostype:Tdstype)

ErrNuM: Error indicator
Segnape: Pathnare Of data segr'ent

MemolY Management

MeM_Size: Bytes of MePDry to bl~ allocate!o to data
segl"lent
Bytes' on disk to be allocated for swapping Disk_Size:

RefNUM:
segPtr
Ldsn:
Dstype:

segrwent
Identifier for data segMent
Address of data s~~nt
Logical data segMent nuMber
Type of dataseg (shaJrea or private)

rvLAXE_DATASEG creates the data segment identified by tne patmame,
segnarne, and opens it for immediate read-write access.. Segnarne is a fUe system
pathname.
The parameter Mem_size determines how mclnY bytes of main memory the
segment is allocated. The actual allocation takes place in terms of 512 byte
pages. If the data segment Is private (OS type Is dS.J)r1vate), Mem_slze can be
greater than 128 Kbytes, out you must insure that enough consecutive LDSN's are
free to map the entire segment
Disk_size determines the number of bytes of ~,apping spaGe to be allocated to
the segment on diSK. If DiSK_size Is less than M;em_size, th~~ segment cannot be
S\tIapped out of main memory. In this case the st~gment is memory resident until
it is Killed or until its size in memory becomes lless than or E~ual tol ts diSk_size
(see SIZE_OAT~G~ The application progriammer should be aware of U1e
serious performance impl1cations of forcing a s:egment to l)e memory resident.
Because the segment cannot be swapped out, a new proces:) may not be acte to
get all of Its WOrking set into memory. To avoid thraShing, each appl1caUon
muld insure that all of its data segments are s:wappable b1efore it rel1nqulsnes
the attention of the processor.
The callIng process associates a Logical Data segment NurTlber (LOSN) wi th the
data segment. If this LDSN is bOUnd to another data segment at the time of tne
call, the call returns an error.
Refnum is returned by the system to be used in any further re!ferences to the data
segment. The qJeraUng System also returns segptr, an addre~ss pointer to be USed

4-6

t:perating system Referonce 1'1811t181 for tI7e!Llsa

to reference tne contents of the segment segptr points to tne Oase of the data
segment
MY error conditions are returned in ErrtNUm.
When a data segment Is made, It ImmecUately becomes a member of the working
set of the Calling process. You can use ueIl\D _DA T ASEG to free the LDSN.

4-7

t:perating System Reference Manual for tl7e Lisa

KILL_DATASEG (var ErrNU'l:Integer;
Var ~:Patt11are)

ErrNUM: Error indicator

Memol)l Management

5egnar-e: N~ of data segrxmt to be deleted

When a process is fIniShed wIth a shared data segml~nt, it can issue a
KILL_DATASEG call for that segment (KILL __ DATASEG cannot be used on a
private data segment) If any process, InclucJln~1 the calling process, still has the
data segment open, the actual deallocation of the segment is delayed until all
processes have closed it (see a..OSE_DATASEG~ During the interim period,
however, after a KlLL_DA T ASEG call has been Issued but tlefore the segment is
actually deallocated, no other process can open that segment
KILL_DATASEG does not affect the membershIp of the ldata segment in the
WOrking set of the process. The refnum and segptr values are valla until a
QOSE_DA T ASEG callis issued.

O1e important note: Normally, when a data segment is clo~;ed, the contents are
written to disk as a fUe with the pathname assoGiated witn tne data segment. If,
however, the program calls KILL_DATPSEG on the data se~1Oent before Closing
the data segment, the contents of the data segn1ent are not written to ct1sk, and
will be lost when the segment is cloS80.

4-8

cpen'1tJng System Reference ,"'1anllai for tl7e'Lisa

fFEN_DATASEG (var EITl~:Integer;
Var ~EA!:Patt11aPE; •
Var RefNILl'l : Integer;
Var ~tr:LongInt;

Ldsn:: Integer)

ErrNuM: Error indicator'
SegnaPe: N8I'18 of data segrent to be opened
RefNuM: Idl3ntifier for data segMent

Memory Management

segPtr PoInter to cont~nts of data segrrent
Ldsn: Logical data segMent nUMber

A process can open an existing shared ~ta segment with IFEN_DATPSEG. The
call1ng process must supply the name pf the data segment (segname) and the
logical data segment nurnber to be aSs09iated with It. The logical data segment
number g1ven must not have a data segment currently bound to it. The segment's
name is determined by the process Whic,h creates the data segment; it cannot be
nUll. i

The Cperating system re~tums both refnUm, an identifier for the calling process
to use in future references to the data segment, and segptr, an address pointer
used to reference the contents of the segment.
When a data segment Jls opened, it irhmealately becomes a member of the
WOrking set of the call1n~~ process. The access mode of the newly openea segment
Is ReadOnly. You can uSE~ SETACCESS_IDAT~G to Change the access rignts to
Readwrite. You can use 1l.J\51N) _OAT ASEG to free the LOSN.
You cannot use (FEN on a private data segment, since CallJng O-OSE on a
private data segment deletes It

4-9

cperating System Reference Manual for tl7e Lisa

Cl..OSE_DATASEG (Var Errtl.IwI:lnteger;
ReffUlJ: Integer)

ErrNUA: Error indicator
RefOUM: Data segMent identifier

MemoIY Management

a...OSE_DATASEG termInates any use of refnunl for data segment operations. If
the data segment is bound to a Logical Data Segrnent NumbE~r, a..OSE_DA T ASEG
frees that LDSN. The data segment Is removed from the wOrkIng set of the
callIng process. Refnum is made invalid. MY references to the data segment
usIng the original segptr w11l have unpredIctable results.
If Refnum refers to a prIvate data segment, CL(JSE_DATASEG also kIlls the data
segment, deallocating the memory and dISk space used for the data segment If
refnum refers to a shared data segment, the contents of the data segment are
written to dISk as If FLUSH_DATASEG had beE~n called. (If KILL_DATASEG Is
called before a..OSE_DATASEG, the contents of the data segment are thrown
away when the last process Closes tnecJata segm.~nt)
The followIng procedUre sets up a heap fo'r LlsaGraf usIng the memory
management calls: .

PR£XElflE . In1 tOataSegForL1saGraf (~:u" Errorco[2e: integer);
COOST ~1ze=16384; (it 16 KBytes for ~tcs heap -)

01 SkS1ze = 16384;
VAR ~:L(NllNT;> (it pointer to heap for lLisaGraf -)

GrafHeap :PattlNaPe; (it data segwBlt path naPE it)
Heap_ Reff'U'1: INTEGER; (it reffU'1 for heap t[1ata seg it)

BEGIN
GrafHeap: = 'grafheap' ;
(PEN_DATASEG(ErrorGode,~, fieap_RefrlJ'I,~, 1);
IF (ErrorGode<>O) THEN
BEGIN

'-I«TELN('lXlable to open', Graft-.eap, • Error 15 .,
EITOrCode)

EN)

ELSE

EN);

In1 tHeap(POINTER(HeapBuf), POINTER(HeapBlJ"f -ttteapS1ze),
~rror);

4-10

cpen~ting system Reference J"1anuai for tl7el Lisa MemolY Management

FLUSH_OATASEG (Var ErrtUl; \
. RefnuM:lnteger)

ErrNuM: Error indicator
RefnUM: Data segMent identifier

FLUSI-I_DATASEG wr1U~s the contents of the data segment identified by refnum
to the dIsk. (Note ttllat ClJlSE_DATA<)EG automatically flushes the data
segment before closing It,unless KILL_DATASEGwas called fIrst) ThIs call has
no effect upon the memory residence or bIndIng of the data segment

4-11

t:perating System Reference Manual for tile Lisa

SIZE_DATASEG (var ErrtU'!:Integer;
Refrurt: Integer;
DeltaMeMS1ze:Longlnt;

Var NeW1ePlSlze :LQfYJInt;
OeltaDiskSize:Longlnt;

Var NeWOi5kSize :LQfYJInt)

ErrNuM: Error indicator
Refnt.JM: Data SegMent identifier

HemoIY Management

DeltaMerlSize: AMount in bytes of change in MeMOry
allocation

NewMeMSlze:
DeltaDiSkSize:

NewDiskSize:

New actual size of segrvent in rrerory
AMount in bytes of change in disk
allocation
New actual diSk (swapping) allocation

SIZE_DATASEG Changes the memory and/or dISk space allocations of the data
segment referreo to by refNum. 80th deltaMemSlze and (jeltaOiskSlze can be
either posItive, negative, or zero. The Changes to the data segment take place at
the high ena of the segment and do not destroy the contJents of the segment,
unless data are lost In ShrInkIng the segment Because thE~ actual allocation Is
dOne In terms Of pages (512 byte blOCKS), the newMemSlze and newOiskSlze
returned by SIZE_DATASEGmay be larger than the oidsize pluS deltaSlze of the
respective areas.
1 f the newOiskSize is less than the newMemSlze', the segment cannot be swapped
out of memory. The application programmer ShOUld be (~ware of tne serious
performance Implicat10ns of forCing a segment to be memory resiaent. Because
the segment cannot be swapped out, a new process may not. be able to get all of
its WOrkIng set into memory_ To avoid thraShing, each appl1catlon should insure
that all of its data segments are swappaole before it relinqu1lsnes the attention of
the processor_
If the necessary adjacent LDSN's are avaUable, SIZE_OAT ASEG can increase the
size Of a private data segment beyond 128 Kbytes.

4-12

cpel'"8ting System Reference Mantia} for ttJe LIsa Memory Management

INFO_DATASEG (var ErI1~:In~r;
ReflrD'l: Integer;

Var Dslnfo : DslnfoRec)

ErrNuM: Error indicator
RefnufY1: IdE~ntlfler of data segfYent
Dslnfo: Attributes of data segMent

IN=O_DATASEG returns information. abOut a data segment to the calling
process. The structure Of the aslnforec ,record is:
RECORD
~_Size:LongInt
Disc_Size:longInt
Nl.rtlOpen: Integer
ldsn:lnteger
BotI1CF :Boolea1
PresentF : BoolecJ1
Creatorf : Boolean

RWAccess :BoolESl

EMJ;

(~"' Bytes of f'e'lJry allocated to data 5e9'er It tt);
(.,. Bytes of disk space allocated to segpent *);
(~It CUrren. t TltJ'tJer of processes wl th segpent open tt);
(* LDSN for segpent binding tt);
(lit True if ~t istxx.l1d to L~ of calling proc tt);
(~It True if segpent is present in I'e'Dry *);
(11t True if the ~lling process is the creator tt)
(ilt of the segpent *);
(ilt True If the calling process has Write access tt)
(i~ segpent tt)

4-:13

t:perating System Reference Manual for tlJe Lisa

Itf='O _ LDSN (Var Errt«.l'1: Integer;
Ldsn: Integer;

Var Reftu.: Integer)

ErrNUM: Error indicator
Ldsn: Logical data segrwent nUMber
RefNuM: Data SegMent identifier

MemOlY Management

II'FO-'_D~ returns the refnum of the data segrTlent currently bound to Ldsn. You
can then use If'FO_DATASEG to get information about that data segment. If the
LDSN specified is not currently bound to a data segment, ttle refnum returned Is
-1.

4-14

t:perating System Reference .Manual for tlJe Lisa

IN=O _ADDRESS (Var Errtu'l: Integer; i
AddreSS:Long1nt;

Var Reftl.A:Integer)

ErrNuM: Error indicator

Memo.ry Management

Address: The' address aoout whictl tne prograM needs
inforMation

RefNUM: Data segMent identifier

ThIs call returns the relFnum of the currenuy bound data segment that contains
tne address gIven.
If no data segrent is currently botJn(J to the calling process that contains
tne address given, an E~rror indicat19fl is returned 1n ErrNUfIl ..

4-15

cperating System Reference Hanual for tlJe Lisa

tEM_Itt=O (Var EI'ItUI:lnteger;
Var Swapspace;

Dataspace;
rur COdes1ze;
nax=codesize:Long1nt)

ErrNufYl: Error indicator

Memory Management

Swapspace: Arount, in bytes, o1F SWappablB systeM rerory
available to the calling process

Dataspace: Arount... in bytes... of systeM fYerory that the
calling process ne:eds for j.ts bOund data
areas, including ttle process stack and the
shared intrinsic data segrent

Cur_cOdesize: Size, in bytes, of ttlle calling s~egfYent
Max_cooesize: Size, in bytes, of ttle largest cooe segrent

within the address space of the calling
process

This call retrieves information about the memory resourcs:s used by the calling
process.

q-16

t:peratfng System ReFerenceManuaJ For tlJe Lisa

SETACCESS_OATASEG (Val' ErrNll'l: Integer;
RefrlJYt: Integer;
Readonly : Boolea1)

ErrNuPl: Error indicator
RefnuP1: Data segrrent ident1f1er
Readonly: Access rode

Memory Management

A process can control the kinds of acqess it is allowed to exercise on a oata
segment with the SET,ACCESS_DAT~G call. Refnum Is the identifier for the
data segment. If readonly is true, an attempt by the process to write to the data
segment results in an ad~jress error exception condition. To get readwrite access,
set readonly to false. '

4-17

QJeradng System Reference Hanual for tI1e Lisa

BINJ_DATASEG{Var ErrtU1:Integer;
Reft«.r1: Integer)

LteINl_OATASEG{Var ErrNl.rl:Integer;
Reft«.llt: Integer)

ErrNUM: Error indicator
RefNuM: Data segMent identifier

Memory Management

BII'V_DATASEG bInds the data segment referrled to by refnum to its associated
logical aata segment nurnber(s~ l.N3INJ _DA TASEG unbinds the data segment
from its LDSf\(s~ BIN:) _OAT ASEG causes the data segment to become a member
of the current WOrkIng set. At the time of the BIN) __ DA T ASEG call, the
necessary LOSf\(S) must not be bOund to a dIfferent data segment.
LN3I1'D_DATASEG frees the assocIated LOSf\(s~ A reference to the contents
Of an unboUnd segment gives unpredictable results. OPEN_DATASEG and
rvtAKE_DAT ASEG defIne ¥Ihlen LDS~s) Is aSSOCiated wIth a given data segment.

lI.-18

operatil7fl Sy:rtel77 Relerence f-lal7uaJ loi tl7e Lisa E:r."ceptior7s 817(j Events

Chapter 5
EXCEPTIONS AND EVENTS

5.1 Exceptions , 5-3
5.2 SysteM Defined Exceptions 5-4
5 ,3 Exception Handlers . I ••• ! ••• I ••••••••••••••••••• 5-4
5.4 Events••....................... 5-7
5.5 Event Channl~ls I •••••••••••••••••••••••••• 5-7
5.6 The SysteM ClOCk•....................... 5-12
5.7 Exception ManageMent SysteM Calls 5-12

DECLARE_EXCEP _HDL ••.• I I ••• I •••• I I ••••••••••••• 5-13
DISABLE_EXCEP ••.••••• I •••• I ••• I I • I •••••••••••• 5-14
ENABLE_EXCEfJ ..•••.•••• ' ••••••.•.•.••..•.••.•.. 5-15
INFO_EXCEP .••...••••••••••• I • I ••••••••••••••• 5-16
SIGNAL_EXCEP I. I •• I I •• I, ••••• I •• I •••• I I ••• I •••• 5-17
FLUSH_EXCEP • I •••••• I I I:' I •• I • I •• I ••••••••••••• 5-18

5.8 Event Managef'lent SysteM Calls I ••••••••••••• 5-18
i1AKE_EVENT _CHN I •••••• I .:. I •• I • I I •••• I I ••••••••• 5-20
KILL EVENT CHN ••••.••••••• I I I • I I I • I •••• I I ••••• 5-21
OPEN=EVENT=CHN I • I I I I I I I I ••• I •••••••••••••••• I • 5-22
CLOSE EVENT CHN •.• I I ••••• I •••• I •• I I •• I I I • I • I •• 5-23
INFO_EVENT _(~HN I • I I I I I • 1.' . I I I I I I I • I I I I I • I ••• I •• 5-24
WAIT _EVENT _CHN I I •••• I • " • I • I •••• I • I I •• I I •••••• 5-25
FLUSH_EVENT __ CHN I I I I •• I II I I I • I • I • I •••••••••• I • I 5-27
SEND EVENT CHN •• I •••••••••••••••••••• I •• I I I •••• 5-28

5 19 ClOCk systef"1) Calls I I •• I:' ••• I • II • I I • I I •••••• I •• 5-28
DELAY TIME •• I • I ••• I •• I ' •••• ' ••••• I I • I • I • I ••••• I 5-30
GET_TIME " 5-31
SET LOCAL TIME DIFF •••• : .••••••••.••.•••••..••• 5-32
CONVERT_TIME .-. ..•.•• I I ,. I I I ••••••• I I • I •••••••• 5-33

5-1

QJerating System Reference Manual for tile Lisa Exceptions and Events

5-2

QJeratfng System Reference J""1anllai for tlJe, Lisa Exceptions and Events

EXCEJYfIONS AND EVENTS
Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employs plpes~
shared data segments, or events. Abnormal conditions, including those your
program may deflne~ elmplay exceptions (Interrupts). Exceptions are signals ..
which the process can respond to in a variety of ways under your control.

S.! f:XCeptlons
Normal execution of a process can be interrupted by an exceptional condition
(SUCh as division by zero or reference to an Inval1C1 aCidress~ Some error
condi tions are trapped t)y the hardware and some by the system SOftware. The
process itself can define and signal exceptions of your choice.
When an exception occurs, the system :flrst checkS the state of the exception.
The three exception states are:

o Enabled
o Queued

o Ignored
If the exception Is enablled~ and defined ~y the system, the system looKs for a user
defined handler for that exception. If none Is found .. the system invOkes the
default exception handler Which usually aborts the process that generated the
exception. '
If the exception Is enabi49dand it was cre~ted by the program, the system invokes
the associated exception handler. (You 'create new exceptions by declaring and
enacllng handlers for the! exception.)
If the state of the exception is queuea the exception Is placed on a queue. When
that exception is subsequently enabled.. this queue is examined .. and the
appropriate exception ttandler is invOKed. Processes can flush the exception
queue.
If the state of the exception is 19noreati1e system still detects the occurrence of
the exception, but the lexceptlon is neither honored nor queued. Note that
ignoring a system defined exception wUl have uncertain effects. AlthOugh you
can cause the system to ignore even ;the SYS_ TERMINATE exception, that
capability is provided so that your program can clean up before terminating. You
cannot set your program to ignore fatal e~ors.

tperatlng System Reference Manual for tile Lisa Exceptions and Events

Invocation of the exception handler causes the! scheduler to run, so It is possible
for another process to run between the signalling of ttle exception and the
execution Of the except1o~ handler.

5.2 system DefIned Exceptlons
Certa1n exceptions are predefined by the qJeratlng System.. These Include:
o Division by zero (SVS_ZERO_DIV). Default handler soorts process.
o Value out of bOUnds (that is, range Check error) or illegal string

index (SVS_VALUE_OOB). Default handler ;aborts process.
o Arithf'tetlc overflow (SYS_OVERFLOtJ). Default handler abOrts

process.
a Process terMination (SVS_ TERMINATE). This except:lon is signalled

When a process terMinates, or When there is a OUS error, address
error, illegal instruction, privilege violation, or 1111 erulator
error. The default handler does nott'ling. This exception 1s
different froM the other systeM definE~d excepti()ns in that the
prograM always teminates as soon as thE~ exception occurs. In the
case of other (non-fatal) errors, trle prograM is allowed to
. continue until the exception is enabled.

Except where otheI\tJise noted, these exceptions are fatal If they occur witnin
q:>erating System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Except100 t-tcnners
A user-cJefinea exception handler can be declared for a spetclflc exception. This
exception handler is cOded as a procedUreJl but must follo~' certain conventions.
Each handler must have two input pararneters: Environment_Ptr and
Exceptlon_ptr. The qJerating system ensures tnat these pointers are valid wtten
the handler is enterea. Environment_ptr points to an area in the staCK containing
the interrupted environment: register contents, conctttion flags, and program
state. The hai1cller can access this envlromlent and can mOO1fy everything
except the program counter, register A7, anti the supervisor state bit in the
status register. The Exception_Ptr points to :an area In the staCK containing
information about the speCific exception.
Eactl exception handler must oe defIned at the global level of the process, must
return, and cannot have any EXIT or global GOTO statements. Because the
Cperatlng System dIsables the exception before call1ng ttle exception handler,
the handler should re-enable the exception before 1 t returns.
If an exception handler for a given exception already exists when another
handler Is declared for that exception, the ol(j handler bocomes dIsassociated
from the exception.

5-4

cpen9tlng System Reference l-1anuai for tI?e Lisa Exceptions and Events

An exception can occur during the exeqution of an exception handler. The state
of the exception detemlines Whether It,ls honored~laced on a queue, or Ignored.
If the second exception has the same hame as the exception that Is currently
beIng handled and its state Is enabled~ a nested call to the exception handler
occurs. (The system always dIsables th~ exception before calling the exception
handler, hOWever. ThE~refore, nested i handler Calling will only occur if you
expl1cltly enable the exeeptlon.) ;
There is an "exception occurred" flag' for every declared exception; I t Is set
whenever the corresponding exception, occurs. This flag can be examined and
reset. 01ce the flag Is SElt, 1 t remains se~ until FLUSH_EXECP Is called.
The followIng program fragment gIves an example of exception handling~

PROCEDlR:: Hcn:Iler(Env _ ptr: p _envl..blk;
loata~ptr:p _ exldata);

VAR Errt«.rl:INlEGER:; ,
BEGIN
(tt Env _ ptr points to a record containing the ProgICI'I ctUlter ,,)
(.,. and all reglster~.. Data_ptr points to an array Of 12 longints ,,)
(" that cootain the levent header aM text if this I1arKJler is ,,)
(" associated with ell event-call channel (see below) it)

· ENABLE_EXCEP(ermuf'l, e~_I1a'B);

· ENl;

BEGIN (.,. Main p~ar1 it)

· Excep _naPE: = • ErxIlflOOc' ; ,
DEClARE_EXCEP _t-D....(18rITU'1, excep_~, IHaldler);

· SIGtW..._EXCEP(erITU~ excep_rlCI'E, excep_data);

5--5

QJerating System Reference Mantlsl for ttle Lisa Exceptions and Events

At the time the exception handler Is Invoked, thl9 stack is as shown In FIgure 5-1.

low addr ess
Link

Program Counter

Data_Ptr
~

~
Environment Ptr

Terminate Flag

Exception Kind ~

Function Code (fc)

Access Address (aa) Exc 13ptlon Data Block

Instruction Register (sys ._ Terminate Exception)

Status Register

Program Counter

"---IJ. Program Counter

Status Register Ex Ct~ption Environment Block

00-07 and AO-A7

Link

Program Counter

high add ress

Figure 5-1
Stack at Except100 Hcn11er Invocation

The Exception Data BlocK gIven here ref1ect:~ the state of the stack upon a
SYS _ TERMINATE exception. The term _ ex_ dat.a record (described in AppendIx
A) gives the various forms the data block can take. The Excep_Klnd field (the
first, or Oth, longlnt) gives the cause of the exception. Thle status register and
program counter values In the data block reflect the true (current) state of these

5-6

QJemtlng System ReFerence)\.olant..ta.l For t/Je:Lisa Exceptions and Events

values. The same data in the Environment block reflects the state of these
values at the time the exception was sIgnalled, not the values at the time the
exception actually occu:rs. .
For SYS ZERO DIV, SYS VALUE oce~ and SYS OVERFLOW exceptions, the
hard_ex_data record desCrtbed in "App~ndix A gives the various forms that the
data blOCk. can take.
In the case of a bUs or adlctress error, the PC (program counter) can be 2 to 10 bytes
beyond the current instruction. The PC and A7 cannot be mOdified by the
exception handler.
When a disabled exception Is re-enabled, a queued exception may De Signalled.
In this case, the exceptllon environment reflects the state of the system at the
time the exception was re-enabled, ,not the time at Which the exception
occurred. .

5.4 Events
M event is a piece of Information sen~ by one process to another ... generally to
help cooperating processes synchronize :their activities. M event Is sent through
a kind of pipe called an event channel. The event is a fixed size data bloCk.
consisting of a header and some text. -nne header contains control information;
the identifier of the sending process arnd the type Of the event. The header is
written by the system, not the sender, and is readable by the receIvIng process.
The event text is written by the sender; its meaning is defined by the sending and
receiving processes.
There are several predefined'system ev,ent types. The predefined type "user" is
assigned to all events not sent by the ~e~ating system.

5.5 Event Charnels
Event channels can be v:lewed as higher-:-Ievel pIpes. me important dl fference Is
that event Channels require fixed size data bloCkS, Whereas pIpes can handle an
arbitrary byte stream. .

AA event Channel can be defined glObally or locally. A glObal event enamel has a
globally defined pathnarne catalogued 111 the fUe system, ana can be USed by any
process. A local event Channel, however, has no name and Is known only by the
qJerat1ng system and the process that opened it. Local event channels can only
be opened by user proce~sses as receivers. A local Channel can be opened by the
father process to reCeiVE! system generated events pertaining to its son.
There are two types of glObal and local event channels: event-walt and
event-call. If the recelvlng process i~ not ready to receIve the event, an
event -wai t type of event Channel queues an event sent to 1 t. An event-call type
of event channel, howev~~r, forces its event on the process, In effect treating the
event as an exception. In that case, an exception name must be gIven when the
event-call event channel Is opened, and 'an exception handler for that exception
must be declared. If the process reading the event-call channel Is suspended at

QJemtfng system Rere.lCYlCe JvI8ntIal For tI7e Lisa E.xceptflYlS and Events

the time the event is sent" the event Is aeU\lerea when the process becomes
active.
When an event Channel Is created, the qJeraUng systeml preallocates enough
space to the channel for typical Interprocess communication. If
SEf\O _EVENT _ a--N Is called when the channel does not tlave enough space for
the event, the calling process Is blOCked untll enough space is freed up •

. If WAIT_EVENT_a-Nls called when the channel is empty" the calling process is
blocked untll an event arrives.
The following code fragments use event-\N:ait Channels to handle process
synchronization. q:lerating System calls used in these program fragments are
documented later in this Chapter.
PRnSSA:

.
em naPe : = 'event ctaTtel 1';
exception: = ."; - -
receiver : = TRlE;
IFEN_EVENT_Dfl (errint, CITl_nare, reflru'U., exception, receiver);
chn naPe : = 'event ctaTtel 2';
receiver : = FPLSE;- -
(FEN_EVENT _CIfl (errint, ctrl_narrte, refnt.l'l2, exception, receiver);
waitlist.length := 1;
wa1tlist.ref~[O] := ref~;
REPEAT

eventlJ)tr A

• [0] := agreed_~_\Jalue;
interval. sec : = 0; (:It seoo event i.JrI'etlately :It)
interval.rrtSeC := 0;
SENl_EVENT_afl (errint, reffU'\2, eventlJ)tr,

interval,clktiMe);
YAIT_EVENT_Dfl (errint, waitlist, reffU'l_sl~~llIDJ,

event2.J)tr);

.
(it processing perfonred here *)

LMIL AllOone;

5-8

cperatlng System Reference Ivtan(Jal for tIle.Lisa Exceptions and Events

PRtD:SSB:

.
em I'la"e : = -event CI'BYlel 2- ~ - - - , exception: = I';
receiver : = TRlI:;
{PEN_EVENT_CI-fl (errint, ctrl_naPE, refruwa, exception, receiver);
ctn nape := -event CI'BYleI 1-~ - - - , receiver := FfLSE;
(PEN_EVENT _(}fl I(err1nt, ctl1_naPE, refrutl., except1on., race 1 ver);
wa1tlist.length := 1;
wa1 tlist. reflU'll[0] : = refrll'11;
REPEAT

event2J)tr A .1[0] := agreed~tp:rl_value;
interval. sec : = 0; (it seoa event irrECJlately it)
interval. P1Se(} : = 0; I

WAIT_EVENT_Dfl (errint, wait 1 1st, reffU'l_sigKllling,
eventlJ)tlr);

.
(it processi~J perfoI'l'Ed here it)

.
SENl_EVENT_Dfl (errint, retrntJ'ltl, event2.J)tr,

intervaL c:lkt1Pe);
lNTIL AllDOne;

The order of execution of the two proce~ses is the same regardless of tne process
priorities. Process switcll always occurs at the WAIT_EVENT_Ct-NcaU.
In the fOllowing example using event-caU channels, process switch may occur at
different places In the programs. Process A calls YIELD_CPU, which gives the
CPU to Process B only 1 f Process B Is readY to run.

5-9

t:perating System Reference Manual for tl7e Lisa

PR(ff.SSA

PR£XEll.R: Hcrldler(Env -ptr :p_env _bU{;
DataJ)tr :p_e~data);

.
BEGIN

event2J)tr" • [0] : = agreed_l4lOO_ value;

.
(it processlrYJ pe~Orrel tlere it)

.

Exceptions and Events

interval.sec :=0; (it send event ippejlately ttl
interval. rtSeC : = 0;
SEN>_EVENT_CI-fl (errint, reffU'l2, ENent2-ptr". interval,

clktire);
to_any : = true;
VIELD_CPU (errint, to_a1Y);

8'1);

BEGIN (it Main p~)

.
OEa..ARE_EX€El_1-IX.. (errint, excep_nare_l, entry_point);
ctTl nape : = -event ctaYlel 1-·
exception:= excep]awe_l; - ,
receiver := TRlE;
CPEN_EVENT _ (]fl (errint, ct'11_ nape, ref'rl..Al, exception, receiver);
em na'I3 : = 'event ctaYlel 2-;
receiver : = FN...SE;- -
exception: = ";
CPEN_EVENT _afl (errint, ctTt_naw1e, reflU'12, exception, receiver);
SEN>_EVENT_a-t4 (errint, reflU'12, event2Jltr, intervaL clkt1re);
to_any := true;
VIELD_(]J{j (errint, to_any);

5-10

t:perating System Reference Manual for ttJe Lisa

PROCESSB

PR£XEllft: Hcn:ller(Env Jltr :p_oov _blk;
Data...ptr :p~ eX_data);

· BEGIN
event2Jltr A

• [0] : = agreed; ... J._x)n_ value;

.
(it processing perfomed here it)

.

Exceptions and Events

interval. sec: : = 0; (it sehd event iPl'ediately 1t)
interval. PlSeC : = 0; ,
SEN) _EVENT_em (errint, reffU'd., event2Jltr, interval,

CIkt1Jre);
to_my : = true;
YIRO_a:\J (e~rrint, to_my);

ENl; ,

· BEGIN (it Main Prograrl it)

lEa...ARE_EXCEP _HDL (errint, ~_nawe_L entrY.JlOint)
chn nape := 'eVE~t channel 11;
exti'ptloo:= excep~_l; -
receiver : = FPLSE;
exceptioo: = I.; ,
CPEN_EVENT_llfl (errint, ctn_naPE, refl'U"l1, exception, receiver);
chn_naI'B := 'evE!t1t_Cha'rlel_21;
receiver : = TRUE;
(FEN_EVENT _ ~ (errint, ctrl_~, reffU112, exceptioo, receiver);

· ENl.

5~11

QJerating system Reference Manual for tile Lisa Exceptions and Events

5.6 The system ClOCk
A process can read the system clock time, convert to local time, or delay its own
continuation until a given time. The year, month, day, hour, minute, second, and
mll11secona are avallable from the clock. The system cloc~, Is set up through the
WOrkShOp shell (see the WoIkSlJOp LlSer's GuIde lor tile Lls4 "

5.7 Exception Ma.agement System cans
ThIs section describes all the qJeratlng Systern calls that pertain to exception
management A summary of all the (lleratlng System calls can be found In
AppendIx A The fallowing specIal types are' used in exception management
calls:

T_e~nare = STRINi[16];
Longadr = '"lOngint;
T_ex_oota = Array [0 .. 11] of long1nt;
T ex sts = Record
- - ex_OCCtJITed_f: :boolecrl;

ex state:t ex state;
M_excep: Integer;
hdl_ adr: lorgadr;

enct
T_ex_state = (enabled, queuE~ .. ignore:1);

5-12

t:perating System Reference Manual for tlJ~ Lisa Exceptions and Events

DECl.ARE_EXCEP _I«. (\far ErrNt.A:lnteger;
IVar Excep_~:t_e>Lfla"e;

EntrY-PQint:LongAdr)

ErrNuM: Error inolcator
Excep_nc~: Narre of ,exception
EntrYJ)oint: Address:of exception handler

DECLAAE_EXCEP _I-DL sets the qJeratlng system so that the occurrence Of the
exception referred to Iby excep_name: causes the execution of the exception
handler at entrY,J)Oinl
Excep_name is a character string name with up to 16 characters that Is lOCally
defined in the process and known only to the process and the Cperating system. If
entry-point is CllNIL, and excep_name' ~pecifies a system_exception, the system
default exception handler for that exeeption is usea, if it Is a system-aeflneo
exception. MY previOUSly declared exception handler is disassociated by this
call. The exception itself is automatically enableC1.
If some excep_name exceptions are queued up at the time Of the
DEa..ARE_EXCEP _t-DL call, the exception Is automatically enabled and the
queued exceptions are handled by the newly declared handler.
You can call DEQAAE._EXCEP _1-0.. with an exception handler address of ~IL
to disassociate your handler from the exception. If there Is no system handler
defined, and the progrann signals the exqeption, it will receive an error 201.

5-\13

cperating System Referenoe Manual for tlJe Lisa Exceptions and Events

DlSABLE_EXCEP (Var Errt-lJM:lnteger;
Var Excep_l'lCl'E: t _ e~ narE;

~:Boolean)

ErrNUM: Error indicator
Excep_naMe: Nape of exception to be disabled
Queue: Exception queuing flag

A process can explicitly disable the trapping of an exception by calling
DISABLE_EXCEP. Excep_name Is the name Of the exception to be disacled. If
queue Is true and an exception occurs, the e>c:ception is queued and is handled
when It is enabled aga1n. If queue is false ... ttle exception is ignorect When an
exception handler Is entered.. the state of the exception In question is
automatically set to queued..
If an exception handler is associated through (PEN_EVENT _ CHN with an event
Channel, and DlSABLE_EXCEP is called for that exception •. then:

o If queue is false, and if an event is sent to the event
channel by SEND_EVENT_CHN, the SEND_~~ENT_CHN call succeeds,
but it is equivalent to not calling SEND_EVENTjCHN at all.

a If queue is true, and if an event 1s sent ta ttle event
channel by SENl_EVENT_CI-fl, the SENl_E1iENT_Dfl co8ll succeeds
and a call to '-'AIl EVENT Ct-N will recl3ive the event, thUs
deque1ng the exception. -

5-14

t:pel"8ting system Reference Manual for t/]~ Lisa Exceptions and Events

ENAELE_ EX(El (var ErrM.l'l: Integer;
Var EXlcep-nal"B: t_exJ..nare)

ErrNUM: Error indicator
Excep_naMe: NaMe of exception to be enabled

ENf\BLE_EXCEP causes an exception to be handled again. Since the QJeratlng
System automatically dIsables an exception when Its exception handler Is
entered (see DI&ABlJE_EXCEP) ... the exception handler should explIcitly
re-enable the exception before It returns to the process.

t:perating System Reference Manual for tl7e Lisa

Itf=O_EXCEP (Var ErI1U'l: Integer;
Var Excep_nal'E: t_ e~ncJ'IE;
Var Excep_status:t_ex_sts)

ErrNuM: Error indicator
Excep_naMe: Narre of exception
Excep_Status: Status of exception

Exceptions and Events

II'FO_EXCEP returns information about the exception specified by excep_name.
The parameter excep _status Is a record containing Information about the
exception. This record contains:

t ex sts = REcrntl (1' exception status ,,)
Ex_ occurred_ f : Boolean; (ttexception oocurre(l flag ,,)
Ex_state:t_ex_state; (1t exception status ,,)
t«.I'1_excep : integer; (itf1O. Of excepttons queued :It)

Hdl_oor:Loogadr; (~xce~tion hCnjlerls amress ,,)
ENl;

O1ce Ex_occurred_f has been set to true, only at call to FLLJSI-I_EXCEP can set it
to false..

5-16

cperating System Reference Manual for tl7~ Lisa

SIGNAl_EXCEP (var Er:rtlA:lnteger;
Var E:xcep_l'laPe: t_ex_llCI'e;
Var Excep_data: t_~X_data)

!

ErrNuM: Error indicator

Exceptions and Events

Excep_nare: NaPe of exception to be signalled
Excep_Data: InfOrMation:for exception handler

A process can signal thE~ occurrence of ~ exception by calling SI~_EXCEPa
The exception handler associated with excep_name is entered. It 1s passed
excep _data, a data area containing information about tne nature and cause Of
the exception. The structure of tnls information area is:

array[o •• s1ze_eXdata] Of LonQint

SI~_EXCEP can be used for user:-defined exceptions.. and for testing
exception handlers defined to handle systeM-defined exceptions.

cperating System Reference Manual for the Lisa Exceptions and Events

FLUSH_EXCEP (Var EI'11U't: Integer;
Var Excep_rKl'B:t_ex_f'la'e)

ErrNuM: Error indicator
Excep_nare: Nare of exception Whose queU!e is flushed

FLUSH_EXCEP clears out the queue assoclatelj with the exception excep_name
and resets its "exception occurred·' flag.

5.8 Event Mcmgement System cans
ThIs section descrIbes all the ~erat1ng System calls that pertain to event
management A summary of all the ~erating System Galls can be found in
AppendIx A The fallowing special types are used in event n"lanagement calls:

Pattflare = SlRINi[255];
T_ex_narle = STRINi[16];
T CIT1 sts = Record
- - ctIl_type:ctYl_k1nd:

~_events:lnteger;
open_recv: integer;
open_send: integer;
ec _naPe: pathnaPle;

ern;
ctIl_kiro = (wait_ec, call_9:});
T wa1 tllst = Record
- length: integer;

reffU't: array [0 •. 10] of integer;
end;

P _r_eventblk = "'r_eventblk;
R_eventblJ< = Record

event heOOer: t eheader;
event-text: t event text;

end: - - -
T _etleader = Record

sendJPld:long~nt;
event_type: longint;

end:
T _event _text = array [0 •• 9] Of long1n1~;
P _s_eventblk = "'s_eventblk;
S_eventblk = T_event_text;
TlrEstl'p_interval = Record

sec: long1nt;
PISeC:O •• 999;

end:

5-18

C'pefi9t1ng System ReFerence frlantJa/'For tl7el Lisa

Tlre_fe(} = Record ,
year: integer;
day:! .. ~;
hoUr:-2} ... 23;
PI1rute: +59 59;
second:6 .. 59;
I'lSeC:O. ~ 999;

end; ,

Exceptions and Events

cperating System Reference Manual for the Lisa Exceptions and Events

MAKE_EVENT_~ (var ErrtUt:lnteger;
Var Event _ ctrl_l'laPB: Pattrawe)

ErrNuM: Error lndlcatc)r
Event _chn_narre: Pathnar"e of event channE~l

MAKE_EVENT_a-N creates an event channel with the name given in
event_chn_name. The name must be a fHe sysu~m pathname;it cannot be null.

5-20

cpeJ"8tlng System Reference Hanual for tne Lisa Exceptions and Events

KIll_EVENT_CHN(Var IErrNuM:lntegef;
Var IEvent_ctTt_~:Pa~)

ErrNuM: Error lno1cator
Event_ChnJ~aMe: PathnaMe of event channel

To delete an event channel, call KILL EVENT erN. The actual deletion is
aelayed until all processes using the event channel have closed It. In the pertod
between the KILL EVIENT a-N call. and the channel's actual deletion, no
processes can open It A channel can be deleted by any process that knows the
channel's name. '

5-21

t:peratJ'ng System Reference Manual for tl7e Ljsa

CPEN_EVENT _ Cffl (var ErrNll't: Integer;
Var Event ctn r\a'B: Pattn:IfE;
Var RefM:Integer;

Excep_ncA! :t_ex_nawe~~
Receiver: Boolecrl)

ErrNuM: Error indicatmr
Event_Chn_nare: PathnaPe of eVEmt Channel

Exceptions and Events

RefNUM: Identifier of E~vent channel
Excep_nare: Exception narre", if any
Receiver: Access mde of calling p:rocess

£PEN_EVENT_~ opens an event channel and defines its attributes from the
process point of view. Refnum is returned by tt1e ~erat1~1 system to be used in
any further references to the channel.
Event_Chn_name determines whether the event Channel lls locally or globally
defined. If it is a null string, the event channel Is locally defined. If
event_chn_name is not nUll., it 1s the file system pathname of the channel.
Excep _Name determines whether the channel is an event -wal t or event -call
channel. If it Is a null string., the channel is of event-wail type. Otherwise, the
ctlannells an event-call channel and excep_nClme is the name of the exception
that is signalled When an event arrives In the ctlannel. The excep _name must be
declared before Its use In the CPEN_EVENT_Q;NCalL

Receiver is a boolean value indicating whether the process is opening the
channel as a sender (receiver Is false) or a receiver (receiver is true~ A local
Channel (one with a null patJlname) can be openE~ only to re:ceive events. AlSO., a
call-type channel can only be opened as a receiver.

5-22

cperating System Reference Mantlal for ttJt1: Lisa

D-OSE_EVENT_afl (Var Errtl.A:Integer;
Refrurt: Integer)

ErrNUM: Error indicator

Exceptions and Events

Refnuf11: IdE~ntlfler of event channel to be closed

a....OSE_EVENT_a-N closes the event; channel associated with refnum. Any
events queued In the channel remaIn there. The channel cannot be accessed until
1 t Is opened agaIn.
If the channel has previously been killeo with KILL_EVENT_Ct-N,you will not be
able to open it after it hc3S been closed. :
If the channel has not been killed, it can ,be opened by CPEN_EVENT_Cf-N

5-23

t:perating System Reference Manual for tl7e Lisa Exceptions and Events

Itf=O_EVENT_afl (Var Errtt.r1:Integer;
< ReflU'1:Integer;

Var D"rl_Info:t_ctYl_sts)

ErrNuM: Error indicator
RefnuM: Identifier of event I~annel
Chn_Info: Status of event Channel

IN=O_EVENT_CIfl gives a process inforMation about an event channel. The
Operating SysteM returns a recordl chn_infol with inforMation pertaining
to the channel associated with refnUfYl.
The definition of the type of the Chn_info rl~cord is:

t_ct'rl_sts =
RECOOD
Dln_ type :CIl1_k1nd;
towl_ events: Integer;
~_recv:Integer;

~_send: integer;

Eo_nave: patt1'laPB;
EN);

(* event. ctlannel status :tt)
(* wa1t_~ or call_ec :tt)
(* nt.rtler of (JJeUEC events :tt)
(* ruwiler of proce!sses reaatng
. ~:!l :tt)

(* no. of procesSEts send1ng to
this ~~l *)

(* event ctlannel nrare *)

5-24

t:pemting System Reference Manval for tl7e Lisa

YAIT_EVENT_Cffl (var E:rrtUl:Integer~
Var ~a1t L1st:t wa1t11st;
Var Remit: Inteijerj

Event.Jltr:p_r_9ventblk)

ErrNUM: Error indicator

Exceptions am Events

Wait_list: Record witn array of event channel
refnurls

RefnUM: Identifier ,of channel that had an event
Event...ptr: Pointer to; event data

WAIT_EVENT _CI-I'J puts the call1ng process In a waiting state pendIng the
arrival of an event in one of the specifi~d channels. Wait_list Is a poInter to a list
of event Channel Identlflers. When an event arrives In any of these channels, the
process Is made ready to execute. Rafnum identifIes which channel got the
event, and event...ptr poIlnts to the event Itself.
A process can wait for Clny boolean compinatlon of events. If 1 t must walt for any
event from a set of channels (an CR conqitlon), it Should call WAIT_EVENT_Q-N
with walt_list containing the list of ev;ent channel identifiers. If", on the other
hand, it must walt for dlll the events from a set of channels (an ,AN) condition),
then for each Channel In the set, WAIT EVENT a-N Should be called with a
wait_list containing just that channel identifier. -
The structure of t_ wal Ulst Is:

RECORD
Length: Integer;
Refn.A:Ar.ray[o •• s1Ze_wa1tllst] Of Integer;

EN);

EventJ)tr is a pointer to a record containing the event header and the event text.
Its definition is:

P r eventtllk = Ar eventblk;
R-eVenttJllk = Record '
- event header: t eheader· - : - ,

event_text: t_event_ text;
end;

T eheade!r = Record
- sendJlid: longint;

event_type: longtnt;
end;

T_event_~xt = array [0 ... 9] of longint;
Send-'pid is the process i(l Of the senCfer.

5-25

cperat/ng System Reference Manual for tlJe Lisa

Currently, the possible event type values are:
1 = Event sent by user process
2 = Event sent by systeM

Exceptions and Events

When you receive the SYS_SCJ'.I_ TERM event .. the first longlnt of the event text
contains the termination cause of the son process. The Gause is same as that
given in the SYS_ TERMINATE exception given to the son process. The rest of
the event text ~an be filled by the son process.
If you call WAIT_EVENT_Ct-N on an event-call Channel Wlat has queUed events ...
tne event 1s treated just like an event in an event -wai t Channel. If
WAlT_EVENT_a-N 1s called on an event-call Channel ttllat does not have any
queued events ... an error is returned.

5-26

QJen,7ting System Reference ,"'1anual for tlJe: Lisa

FLUSH_EVENT_CI-fl (Var Er~:Integer;
Refruwt: Integer)

ErrNuM: Error indicator

Exceptions and Events

Refnul'1: IdE~nt1f1er of event channel to De flushed

FLUSH_EVENT_a-N clears out the sp~clfled event channel. All events queued
In the channel are removed. If this Is caned by a sender, 1 t has no effect

5-27

t:peraang System ReFerence Manual For t/Je Lisa

SEN) _EVENT _ (}fl (Var EI'l'tU'l: Integer;

ErrNUM:
RefnuM:
EventJ)tr:
Interval:
ClktiPe:

ReffUl: Integer;
Event-ptr:p_s_eventPlk;
Interval:T1MestMp_1nterval;
Clktire: Tire_reo)

Error indicator
Channel for event
Pointer to event data
TiPer for event
tiPe data for eVlent

Exceptions and Events

SENJ_EVENT_Cl-I'J sends an event to the channel specified by refnum.
EventJ)tr points to the event that Is to be sent. The event data area contains
only the event text; the header Is added by the system.
If the event Is of the event-wait type, the event is queued. Otherwise the
q:Jerating System SignalS the corresponding exception for the process receiving
the event.
If the channel Is open by several senders, the rE!ceiver can sort the events by the
process identifIer Which the ~erating Syste~m places in the event header.
Alternatively, the senders can place predefined identifiE~rs In the event text
wnIcn Identify the sender.
The parameter Interval, incl1eates whether the event is a timed event.
Tlmestrnp_interval is a record containing a second and a milliseCOnd field. If
bottl fields are 0, the event Is sent irnmed1ately. If the second given Is less than 0,
the millisecond field is ignored and the time_ree record is u~ed. If the time in the
time_ree has already passed, the event Is sent immediately. If the milllseconC1
field Is greater than 0, and the secona field is grE~ater than or equal to 0, the event
Is sent that number of seconds and milliseconds from the pre:sent.
A process can time out a request to another process by Sl3fldlng 1 tsel f a timed
event and then waiting for the arrival of eitJ1ler the timed event or an event
indIcating the request has been served. If the Umed event Is receIved first, the
request has timed out A process can also time Its own progress by perIodIcally
sendIng itself a timed event through an event-call event channeL"

S.9 ClOCk system calls
This section describes all the qJeratlng System calls that pe~rtain to the clock. A
summary of all the qJeratlng System calls can bE~ found in Appendix A.

5-28

t:pen9ting System Reference Itvtanual for tI7e: Lisa

The fallowing special types are used in ylOCk calls:
Tlresu,)_interval = Record

sec:long1nt;
PISeC:o •• 999;

~. t;i',1U1

Tire rec = Record
- year:1nteger;

day:l •• 366;
toJI':-23 .. 23;
Mirute: 759 •• 59;
second:O •• 59;

. MSeC:O. ~999;
em;

Hour_~lge = -23 •• 23
MirUte_rcrge' = -59 .. 59;

Exceptions and Events

Cperating System Reference Manual for tl7e Ljsa

DELAV_TItE (Var Errtl.r1:Integer;
Interval:T interval;
ClktiMe:r1Me_rec)

ErrNuM: Error indicator
Interval: Delay tiMer
ClktiMe: TiMe inforMation

Exceplions and Events

CEL.A y _ ~ stops execution of the calling process for thH number of SEC(NJS
and milliseconds speCified in the interval record. If this time period is zerol

CEL.A y _ ~ has no effect If the period Is less than zl3ro .. execution of the
orocess is delayed until the time specified by Clktime.

5-30

Q:Jerating System Reference ,Manual for tile, Lisa

GET_TItE (Var ErrtUl:Integer;
Var sys_ T1.re: Tire_lee)

ErrNuM: Error indicator
SyS_Ti~: Tl~ infomation

Exceptions and Events

GET _ TII'-'E returns the current system 'Clock time In the record Sys _Time. The
msec field of sys_ Time always contains:a 0 on return.

5-31

t:perating System Reference Manual for tile Lisa

SET _lOCAL_ TItE_OIFF (var ErI'tl.AM: Integer~~
Hour :Hour_~Je;
M1nute:Mlnute __ range)

ErrNuM: Error indicator

Exceptions and Events

Hour: NuJYiler of hours a1 fference frOM tne systeM
clock

Minute: Nuroer of Minutes difference froM tne systeM
cloCk

SET_LOCPL_ TIf'1::_DIFF informs the Cperating System of the difference in
hours and minutes between the local time and tne systeM clock. Hour and
Minute can be negative.

5-32

t:pelCJtlng System Reference Manual for tile Lisa

CONVERT _ TItE (var ElCTNl.A: Integer;
Var Sys_ Tire: T1re_IjeC;
Var·Local T1Me:T1Me reo;

TO_SYS:BooleM)'-

ErrNUM: Error indicator
SYS_TiMe: SysteM cloCk tiMe
Local_Tire: Local tiMe
TO_SYS: Direction Of tiMe conversion

Exceptions and Events

aNVERT _ ~ converts between IOC~ time and system clock time.
To_sys is a boolean value IndIcating which direction the conversion is to go. If it
Is true, the system takes the time data :In 10cal_ time and puts the corresponding
system time in sys_ Tlm,e. otherwise, It takes the time data In sys_ Time and puts
the corresponding local time in 10cal1 time. Both time data areas contain the
year, month, day, hour, nnlnute, second, ~d mIlliseCOnd.

5-33

L7peIatil1p ... ".Y:';'tern RefelPollce f\-/al/ual ft)I ti7e Lisa

Chapter 6
CONFIGURP~TION

l.-;ont~7l/ld (ion

6.1 Configuration SysteM Calls 6-3
CARDS_EQUIPPED .•...•••••.•.• I ••••••••••••••••• 6-4
GET _CONFIG_NAME ..•.•••.•.... I •••••• I •••• 1 • 1 • 1 • 6-S·
OSBOOTVOL .•..••••••••.•.•.• I ••••••••••••••••• 6-6

6-1

QJelClting System Reference Mantlal for t~ Lisa Configuration

cperatlng System Reference Manual for tl7e Lisa ConfIguration

CONFIGURA 1rION
Every Lisa system is configured using the Pref13rences tooll. Preferences places
the configuration state of the system In a special part of the system's memory
called parameter memory Although paramet1er memory is not containea on a
disK, it is supplied with battery power, so that the contents are kept even when
the system Is turnea off. Note that the batteries are Charged as long as Lisa is
plugged In, even if the unit is powered off. Also, the batteries will keep
parameter memory secured for several hOUrs:, even if line power is lost. In
addition, every time parameter memory is Changed, a copy of the new data is
made on the bOOt diSk. If the contents of parameter memory are lost, this disk
copy is automatically restored to parameter memory_
SInce the devIces actually connected may dIffer from the configuration stored In
parameter memory, three calls are provided that allow pro~lfams to request some
Informat1on about the confIguration of the syste!m.
In addItion, two calls are provided to dIrectly read and \~rite the contents of
parameter memory.

6..1 conflguratloo System Calls
This section describes all the qJerating System callIs that pertain to
configuration. A summary of all the QJeratlng System ealls can be found In
Appendix A Special data types used by configuration calls are defined along
wi th the calls.

6-3

t:pemting System Reference Manual for tile Lisa

CARDS_EWIPPED (Var ErlTU'l: Intege~;
var'In_slot:Slot_array)

ErrnuM: Error code
In_slot: Identifies the types of cards configured

configuration

This call returns an array Showing the types of cards which are in the various carel
slots.
The definition of Slot_array is:

slot_array = array [1 .. 3] of card_types;
where: '

card_types = (no_cardl

~~le_cart1
~"'port_cal'tt,
net cart1
laser_cant);

cperatlng System Reference Manual for tlJe Lisa

GET_COtt=IG_NAtE (Var Erm..aq:lnteger;
Devpostn: Tports;

Var oevnare :E_naPe)

ErrnUM: Error cOde
Devpostn: A port identifier
Devnarl3: The nar-e of the device attclched to thE~ port

configuration

This call returns the name of the device confIgured at the port given in devpostn.
See OSBCDTVCL for the definition of tports. Type e_name Is defined as:

E _naI'E = STRIOO [32];

6-5

t:pele]tlng system Rererence Mamsl ror tne Lisa configuration

OSBOOTVll... (Var ErlTllJl'1:Integer) : Tports

ErrnUM: Error Dode
Tports: loenti fies the port to which the boot volu~ 1s

attached

rsea:JTV(L Is a function that returns ~he identifier for the port attached to the
boot volume. Note that this port mlgtilt not be the port configured for the boot
volume, since it is poss:ible for the user to override the default boot. Note also
that the port ldent1fl~3r Is not the sQrne as the device name. You can use
GET _ C(N=IG_~ to find out the name of the device attached to the port.

Tports is a set that has this definition:

tports = (~'rt"lg, lowert~lg, paralleL
slot1!, slot12, slot13, slot14,
slot21, slo~ sl0t23, slot24,
slot:31, slot32, slQt33, slot34,
seriala serlalb, P:ain_console, alt_console,
t_l'DlJse, t_~er, t_extral, t_extra2,
t_extra3);

Operating SystePl ReFerence l1anual For the Lisc~ OpfJrating systePJ Interrace

Appendix A
OPERATING SYS'!'EM[INTIffiF ACE

UNIT syscall;
INTRINSIC;

INTERFACE

CONST
MaX_ enare = 32;
MaX-P8thn~ = 255;
MaX label size = 128;
len=exnarre = 16;

(~ systeM call aefinitions unit ~)

(* MaXiruM length of a file systeM oOject nafYe *)
(~ MaXiMUM length of a file systeM patnnaMe *)
(* MaXiMUM size of a file label, in bytes *)
(* length of exception naMe *)

size_exdata = 11; (* 48 bytes, exception data
blocK should have tne sarre size as r eventblK., rece1 vee
event blocK - *)

size etext = 9; (* event text size - 40 bytes *)
slze:=waitllst = 10; (* size of wait list - shOuld be serre as reqptr_Ilst *)

(* exception kind definitions for 'SVS_TERMINATE' exception *)
call_terM = 0; (* process called terMinate-process *)
ended = 1; (* process executed 'end' staterwent *)
self_killed = 2; (* process called Kill-process on self *)
Killed = 3; (* process was killed oy anotner process *)
fthr _terM = 4; (~ process' s father is terMinsiting *)
bad_syscall = 5; (* process Made invalia sys callI - sUbcoae bad *)
bad_errnuM = 6; (M process passed bad address for errnuM parM M)
swap_error = 7; (* process aOOrted due to cOC1e~ swap-in error *)
stk_overflow = 8; (M process exceeaea MaX size (~T nnn) of stacK M)
data_overflow = 9; (* process tried to exceed Ma~: data space size *)
parity_err = 10; (* process got a parity error while executing -)

def div zero
aef:::value_oob
def Ovfw
def:::nM1_Key
def_range
def_str_index

= 11; (* default haMler for d1v zero exception was called *)
= 12; (oft It for value 000 exception' *)
= 13; (* It for overflow exception -)
= 14; (* " for NMI key exception *)
= is; (.11 for 'SVS_VALUE_ooe t excep aue to value range err -)
= 16; (*" for · SVS_ VALUE_OOB • excep dUe to string index err *)

bus_error = 21;
addr error = 22;
ill~inst = 23;

(* bUs error occurred
(* address error occurrea
(* illegal instruction trap occurred

A-1

Ope.rating systePJ Rererenc'8 ttanllal ror 'ens Lisa, operating systePl Interrace

pr1v_v1olat1on = 24;
line 1010 = 26;
llne=1111 = 27;

(* privilege v1olation trap occurred
(* line 1010 eMUlator occurred
(* line 1111 eMUlator occurred

unexpected_ex = 29; (* an unexpected exception occurred

d1v zero = 31; (* e~~ept1on K1nd definitions for hardware except10n *)
value OOb III 32;
ovfw - = 33;
nfYl1_key = 34;
value_range = 35; (* exeep kind for value range and string 1ndex error *)
str_index = 36; (* Note that these ,two cause 'SVS_VALUE_OOS' excep *)

(*DEVICE_CONTROL functions*)

dvParity = 1;
dvOutDTR = 2;
dvOutXON = 3;
dvOUtDelay = 4;
OVSaua • s;
dvlnWa1 t = 6;
dvlnoTR = 7;
dvlnXON = 8;
avTypeahd = 9;
OVD1scon = 10;
OVOUtNoHS III 11;
dvErrStat = 15;
dvGetEvent III 16;
dvAutOlF = 17;
OvDiskStat = 20;
dvDiskSpare = 21;

TYPE

(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*) ,
(*RS-232~ CONSOlE*)
(*RS-232*) ,
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS'-232*)
(*PROFILE*)
(itCONSOlE*)
(*RS-232, CONSOLE, PARALLEL PRINTER*) (~ot yet*)
(*DISKETTE~ PROFILE*)
(*DISKETTE, PROFIlE*)

pathnare = string (lYlax...P8tnnare];
e_naP'e = string [Max_enaMe];
naMestrlng = str1ng [20];
procinfoRec = record
progpatnnare : pathnaMe;
glObal_iO : longInt;
father 1d : longint;
priorIty : 1 .• 255;
state : (paotive, psuspenoe~ pwa1t1ng);
data in : boolean
end; --

A,-2

Operating systePl ReFerence ttanllal For tfle Lis9 Op'erating SystBPI Interrace

Tdstype = (ds_shared, as...,pr1vate); (M types of data segrrents it)

dsinfoRec = record
MeM_s1ze : 10ng1nt;
disc_size: longint;
nuMb_open : integer;
Idsn : integer;
OoundF : 0001ean;
presentF : Doolean;
creatorF : Ooolean;
rwaccess : OOOlean;
segptr : longlnt;
volnaMe: e_naMe;
end;

t_ex_nare = string [len_exnare];
longaar = "'longint;

(* exception nare

t_ex_state = (enabled, queued, ignored);
p_ex_data = "'t_eX_data;

(* exception state

t_ex_data = array [O .. size_exdata] Of longint; (* exception data elk *)
t_ex_sts = record (* exception status *)
ex_occurrec_f : boolean; (* exception occurred flag *)
ex_state: t_ex_state; (*,except1on state~ *)
nUM_excep : integer; (.. nufWt>er of exceptions q' eel ..)
hdl_adr : longadr; (* handler adOress *)
end;
p_env_oIK = "'env_olK;
env elk = record
pc - long1nt;
sr integer;
dO long1nt;
d1 longlnt;
02 longlnt;
03 long1nt;
04 long1nt;
d5 1 ongint;
06 long1nt;
07 longint;
aO longint;
a1 longint;
a2 longlnt;
a3 longint;
a4 longint;

(* environMent block to pasS! to nandler M)
(* prograM counter *)
(* status register *)
(* data registers 0 - 7 *)

(* adaress registers 0 - 7 *)

A-3

Op6'Iating SystePl Reference t1anual ror tile Lisa Operating systePJ Interrace

a5 : long!nt;
a6 : long1nt;
a7 : long!nt;
end.:

p_terM_eX_data = ~terM_eX~data;
terM ex data = record (* t~rMlnate exceptlon data blOCk *)
case-excep_k1nd : long1nt. of
call_tern,
ena~~d,
sel1F K1lle(1
killed,
fthJr _ terft\,
bad_syscall,
bad_errnuM..
swap_error,
stK_overflow ...
data overflow,
parfcy_err : (); (* ClUe to process t~rMlnatlon *)

(*due to illegal instruction, privilege violation *)
lllQ_lnst,
pr1,,_vlolat1on,
llne 1010 ..
linE~-llll,
def __ 01 v_zero,
def __ value_COb,

(* dUe to line 1010~ 1111 eMUlator *)

Oef OVfw ..
def=nMi_key

: (sr : integer;

(* terlfttinate due to default handler for hardware
excE~ptlon *)

pc : longlnt); (* at tlrle tll"e of oc~urrence *)
def _.range,
def _.str _lndex (* terMlnate due to defqult handler for 'SYS_VAlUE_OOB ' excep for

valLIe range or string index error *)
: (value_CI1eek : integer;
upper_bound : integer;
lower_bOund integer;
return-pc longint;
caller a6 long1nt);

bus error,
add! error

: (fun_field : packed record
flller : O .. S7ff;
r_w_.flag : boolean;
l_n_flag : boolean;

(* dUe to bUs error or address error *)
(* one integer *)
(* 11 b1ts *)

A-4

Operating SystePl ReFerence tlanual For tile Lisa Cl/.7fJrating SystePl Interrace

fun_code: 0 .. 7; (~ 3 bits ~)
end;
access_adf : longint;
inst_register : integer;
sf_error : 1nteger;
pc_error : longint);
ena.:
p_hard_ex_data = fthard_eX_data;
hard ex data = record
ease-excep_kina : longint of
d1v zero, value OOb, ovfw
: (sr : integer;
pc : longint);
value_range, str_lndeX
: (value_ChecK : integer;
upper_bound : integer;
lower_bOUnd integer;
return-pc long1nt;
caller_a6 longint);
end;

(~ hardware except:lon data block M)

accesses = (dread, dwrite, append, private, glObal_refnuM);
l'1set = set of accesses;
iOMOde = (absolute, relative, sequential);

UID = record (*unlque id~)
a 0: longint
end;

tlMestMp_lnterval = record
sec : 10ng1nt;
Msec : o .. 999;
end;

(* tiMe interval :*)
(~ nuMbef of seconds ~)

(* nuf't)er of Milliseconds ~~i thin a second *)

1nfo_type = (dev1ce_t, VOIUMe_t, oOject_t);
devtype = (dlskdev, pascalbd, seqdev, bitokt, non_io);
f11etype = (undef1nea, MDDFf1le, root eat, freel1st, OadtlloCKS, sysdata

spool, exec, usercat, pipe, bOotfile, swapaata,
swapcoae, ramp, userf11(~, K111edOI)ject).:

entrytype= (eMPtyentry, eatentry, l1nkentry, fl1eentry, plpeentry, ecentry,
k11leaentry);

A-5

Opelating SystoPJ RereJ'eflCJ.9 11ama1 rOJ~ tile Lisa

fS_lnfo = record
naMe : e naMe;
dir-patn-: patnnaMe;
MaCn:1ne_id : longint;
fs_overneao : integer;
result_scavenge : integer;
case otype : info_type of
devioe_t, VOlUMe_t: (
iocnannel : integer;
devt : devtype;
Slot __ no : integer;
fs~s:lze : longint;
vol_size : long1nt;
bloc~(structured, rounted : boolean;
opencount : long1nt;
privatedeV, reMOte, lockeddev : boolean;
rount-pending, unMOUntJ)end1ng - boolean;
volnaMe, password : e_naMe; ,
fsversion, volnUM : integer;
valid : UID:
bacKup_vOliO : UID;

Operating systePl Interrace

blocks1ze, datasize, clustersize, filecQunt integer;
label_Size : integer;
freecount : longint;
DTVC, DTCC, DTVB, DTVS : long1nt;
Master_copy_id, copy_tnrea~ : longint;
overr~unt_staMp : UID;
bOOt_COde : integer;
boot_environ : integer;
priv1.leged, wr1te-protectet[1 : OOolean;
Master, copy, copy_flag, ~:avenge_flag bOOle~
vol_left_rounted : bOolean);

OOjec:t_t : (
size : longint;
ps1ze : longint;
lpsize : integer;
ftype~ : filetype;
et ype~ : entryt ype;
oTC, oTA, DTM, oTB,
refnuM : integer;
fMark : longint;
acmOe : fYtset;
nreaders, nwri ters,
fu1d : UIO;

(* physical file size in bytes *)
CM logical page 'size in bytes for this file *)

oTS longint;

nusers integer;

Operating SystePl ReTerence tlanllal Tor the Lisa Ol'Jerating systePl Interrace

user_type : integer;
user_subtype : integer;
systeM_type : integer;
eof, safety_on, kswitch : boolean;
private, locKed, protected, Master_file : boolean;
file_scavenged, file_Closec_by_oS, file_left_open:boolean)
ena;

ootype = recoro
dcversion : integer;
cccooe : integer;
dCdata : array [0 •. 9] of longint;
ena;

(~ user/driver defined data *)

t waitlist = record (~ wait list
length : integer;
refnUM : array [O .. size_waitlist] Of integer;
end;

t eheader = record
send~id : longint;
event_type : longint;
ena.:

(:~ event header
(:~ sender' s process id
(~~ type of levent

t_event_text = array [O .. size_etext] of longlnt;
p_r_eventblK = Ar_eVentblK;
r eventblK = record
event header : t eheader;
event:text : t_event_text;
end;

p_s_eventblk = As_eventblk;
s_eventblK = t_event_text;

tiMe ree = record
year - : integer;
day : 1 .. 366;
nour : -23 .• 23;
~1nute : -59 .. 59;
secona : O •• 59;
Msec : 0 .. 999;
end;

(tt julian aate tt)

Chn_kind = (wait_ee, call_ee);
t_cnn_sts = recora . (tt enannel status tt)

A-7

tt)

Opelatlng SystePl Rererenc~9 flanual ror tfle Lisa operating systePl Interrace

cnn_type : cnn_kina;
nUM~events : integer;
open._recv : integer;
open_sena : integer;
ec_n:~ : patnnare;
end;

(~ cnann'el type tt)

hour._range = -23 .. 23;
Minute_range = -59 .. 59;

{configuration stuff: }

(tt nuMber of events queuea tt)
(tt nu(Yt)e;r of opens for receiving ~)
(tt nUMOe~ Of opens for senaing *)
(tt event: channel naMe ttl

tports = (uppertwig, lowerttJig, parallel,
slottl, slot12, slot13, slot14,
slot21, slot22, slot23, slot24,
slot:~l, slot32, slot33, slot34,
seriala, serialb, Main console, alt console,
t_mtJse, t_speaker, t_extral, t_extra2,' t_extra3);

card._types = (no_card, apple_card, nJlOrt_card, net_card, laser_card);

slot __ array = array [1 .. 3] of card_types;

{ L~lsa Office systeM pararveter I"'erory type }

pMByteUn1que = -128 .. 127;
pMeMRec = array[1 .. 62] of PMByteuniqueForAllTheOaMnCry8abies;

(tt File SysteM calls ttl

procedure MAKE_FILE (var ecode:1nteger; ,var path:pathnaMe;
label_size: integer);

proce~ure MAKE_PIPE (vax eCOde : integer; ! vax path: pathnaMe;
label_size: integer!);

prOCE!dure MAKE_CATALOG (va:r ecoae:1nteger; var patn:pathnare;
label_size: integer);

operating SystePI ReFerence I1anual For tile Ll sa O/.'1erating SystePI Intel"Face

procedure MAKE_LINK (var ecode:lnteger; var path., ref:pathnarre;
label_size: integer);

procedure "KILL_OBJECT (var ecode:integer; var path:pathlaMe);
--

procedure UNKILL_FILE (var ecoae : integer; refnUM: 1ntegl3r; var
new_naMe:e_naMe);

procedure OPEN (var eCOde:1nteger; var path:pathnaMe; var refnUM:integer;
Man1p:Mset);

procedure CLOSE_OBJECT (var ecOde:integer; refnuM:integE3r);

procedure READ_DATA (var eCOde : integer;
refnUM : integer;
data_addr : longint;
count : longlnt;
var actual : longint;
rode : iOfYk)(le;
offset : longint);

procedure WRITE_DATA (var ecade integer;
refnuM : integer;
data_addr : long1nt;
count : longlnt;
var actual : longint;
rode : larooe;
offset : longint);

procedure FLUSH (var ecade:integer; refnlJl'll:lnteger);

procedure LOOKUP (var ecade : integer;
var path : pathnaMe;
var attributes : fs_info);

procedUre INFO (var ecoae:integer; refnuM:inte:ger; var l'efinfo:fs_info);

procedure ALLOCATE (var ecade : integer;
refnuM : integer;
contiguous : boolean;
count : long1nt;
var actual : longint);

A-9

Operating SystePI Reference flanlJal for tne Lisa Operating Syst8fTJ Interface

prOCedure TRUNCATE (var eeode: integer; refnUM integer);

procedure COMPACT (var ecode : integer;; refnUM: integer);

procedure RENAME_ENTRY (var ecooe:lnteger; var path:pathnaMe; var newnaMe
e_nape);

prooedure READ_LABEL (vcrr ecOde : in~eger;
var path : pathnaMe;
data_addr : longint;
count : long1nt;
var actual : longlnt);

procedure WRITE_LABEL (var ecade integer;
var path : pathnarre;
data,_addr : long1nt;
count : longlnt;
var iactual : long1nt);

procedure MOUNT (var eCOCle:integer; var vnaMe : e_nare; var password
e _n8l:te ; var devnarre : e _naMe);

proceaure UNMOUNT (var ec:ode:1nteger; var vnarre : e_naJYe);

procedure SET_WORKING_OIR (var eCOde:lnteger; var path:pathnaMe);

procedUre GET_WORKING_OIR (var ecode:lnteger; var path:patnnaMe);

procl9dure SET_SAFETY (var ecode:lnteger;var path:patnnarte;On_off:OOOlean);

procedure DEVICE_CONTROL (var eCOde:1nteger; var path:patnnarvte;
var CparM : act ype);

procedure RESET_CATALOG (var eCOde : integer; var path : pathnaMe);

procedure GET_NEXT_ENTRV (var ecoae : integer; var prefix, entry : e_naMe);

procedUre SET_FILE_INFO (var ecode : integer;
refnUM : 1nteger;
fsi fs_info ,~

OpeJ'8til7g SystePl RereJ"8I7Ce !1anual ror tne Lisa

(* Process ManageMent syste~ calls *)

funct10n My_IO : long1nt;

OpeJating systePl Interrace

procedure Info_Process (var errnUM : 1nteger; proc_Id: long1nt;
vax proc_1nfo : proc1nfoRec);

procedure Yield_CPU (var errnUM : integer; t()_any: boolean);

procedure setpriority_process (var errnUM : integer; proc_id: longint;
new-prlority : integer);

procedUre suspend_Process (var errm . .lf"l : intege~r; proc_:ld: longlnt;
SUsp_faMily : boolean);

procedure Activate_process (var errnUM : 1nte~~er; proc __ 1d: longint;
act_faMily : ooolean);

prOCedure Kill_Process (var errnuM : integer; proo_iO:: longint);

procedure TerMinate_Process (var errnUM : 1nte~ger; event-ptr:
p_S_eventblk):

procedure MaKe_Process (var errnUM : integer; var proo __ id : longint;
var progf1le : patnnare; var entryna~ : na~~str1ng;
evnt_cnn_refnuM : integer);

(* MeMOry ManageMent systeM calls *)

prOCedure MaK8_dataseg(var errnuM: integer; vetl' segnaMe:: pathnaMe;
MeM_slze, disc_size: longint; var refnuM: integer;
var segptr: long1nt; ldsn : integer; ast ype : Telst ype);

procedure kl11_dataseg (var el'rnUM : 1nteger; var segnarE pathna~);

procedure open_dataseg (var errnUM : integer; vax segnare pathnaMe;
var refnUM : integer; vax segptr : longint;
Idsn : integer);

procedure close_dataseg (var errnu~ : integer: refnu~ integer);

A-11

~-CJperatlng SysteP1 ReFerence flamal For the Lisa Operating Systel'J Interrace

procedure slze_dataseg (var errnUM : 1nteger; refnuM : integer;
del taMeMslze : longint; var neWfYeMsize: : longint;
deltadlscs1ze: long1nt; var newdlscslze: long1nt);

procecture info_dataseg (var errnUM : integer; refnUM : integer;
var dslnfo : dsinfORec);

procedure setacceSS_dataslag (var errnum : integer; refnuM : integer;
reaclonly : boolean);

procedure unbinCf_dataseg (var errnufYI : integer; refnUM : integer).:

procedure 01nd_Cfataseg(var errnUM : In~eger; refnuM : integer);

procedure info_ldsn (var E~rrnUM : lnt~er; ldsn: integer; var refnuPl:
integer); .

procedure flush_dataseg(var errnUM: in~eger; refnUM: integer);

procedure MeM_info(var erl'nul"l: integer;
var swapspace, data space,
cur ...,JDodesize, M8x_cOdeslze~: longlnt);

procedure Info_adcJress(var errnuM: integer; address: longint;
var refnUM: integer);

(* Exception ManageMent systeM calls it)'

procedure CleClare_excep_ndl (var errnUPl, : integer;
var E~xcep_nare : t_ex_naMe,; ,
entrY-PQlnt : longadr);

procedUre dlsaDle_excep (var errnuM lmteger;
var excep_nat'e : t_ex_naMe,~
queue : boolean);

I procedure enable_excep (var errnuM : ln~eger;
vat excep_naf'"e : t_ex_naMe);

procedure signal_excep (vaJr errnUM integer;
var excep_narve : t_ex_naPe;
excep_aata : t_ex_aata);

Opel·atil7g systePl Rererenoe '!ant/a1 ror tne Lisc~

proceaure lnfo_excep (var errnUM : integer;
var excep_naMe : t_ex_naMe;
var excep_status : t_ex_sts);

procedure flusn_excep (var errnuM integer;
var excep_naMe : t_ex_naMe);

(~ Event Channel ManageMent systeM calls ~)

procedure PlaKe_event_cnn (var errnurl integer;
var event_chn_naMe : pathnaMe);

procedure Kill_event_cm (var errl'llJM integer;
var event_cnn_naMe : pathnaMe);

procedure open_event_cm (var errnul"l integer;
var event_Chn_naMe : pathnaMe;
var refnul"l : integer;
var excep_naMe : t_ex_naMe;
receiver : boolean);

procedure Close_event_cnn (var errnuM : lntege'r;
refnuM : integer);

procedure info_event_cm (var errnuM : integer;
refnUM : integer;
var ann_info : t_cnn_sts);

procedure wait_event_cnn (var errnUftl integer;
var wait list : t waltlist;
var refnul"l : integer:
event-ptr : p_r_eventblk);

procedure fluSh_event_cnn (var errnuPl : intege'r;
refnuM : integer);

procedure send_event_chn (var errnul"l : integer;
refnUl"l : integer;
event-ptr : p_s_eventblk;
interval : tiMestMP_interval;
clktiMe : tiMe_ree);

A-13

oplJrating systettl Interrace

OpelCJting SysteP1 ReFerenc~'J tlanual For the Lisa

(* TiMer functions systeM callS *)

procedure delay_tiMe (var errnUM integer;
interval : tiMestf1l_interval;
clKtiMe : tiMe_ree);

procedure get_til"'e (var errnuM. : intege~;
var gMt _tiMe : tiMe _ree);

proc.~dure set_local_tlMe_dllff (var errnUM integer;
nour : hour_range;
Minute : Minute_range);

procedure convert _tiMe (valr errnuM integer;
var gMt_tiMe : tiMe_ree;
var local tiMe : tiMe rec;
to_gr1t : boOlean); -

{configuration stuff}

funetion OS800TVOl(var error : integer) tports;

procedure GET_CONFIG_NAME(var error integer;
devpostn : tports;
var Clevnar-e : e_naJYe);

procedure CARDS_EQUIPPED(var error 1nteger;
var in_slot : slot_array);

IMPlEMENTATION

procedure MAKE_FILE; exte:mal;

procE~dure MAKE_PIPE; exte:mal;
"

procecrure MAKE_CATALOG; e:><ternal;

proceaure MAKE_LINK; external;

proCEloure KILL_OBJECT; external;

A-14

Operating SystePl InterFace

operating systePl Ref'erence tlantJal ror tM LiSc9

proceaure OPEN; external;

procedure CLOSE_OBJECT; external;

proceaure READ_DATA; external;

procedure WRITE_DATA; external;

procedure FLUSH; external;

prOCedure LOOKUP; external;

procedure INFO; external;

procedure AlLOCATE; external;

procedure TRUNCATE; external;

procedure COMPACT; external;

procedure RENAME_ENTRY; external;

procedure READ_LABEL; external;

procedUre WRITE_LABEL; external;

proceoure MOUNT; external;

proceoure UNMOUNT; external;

proceaure SET_WORKING_DIR; external;

procedure GET_WORKING_DIR; external;

procedUre SET_SAFETY; external;

procedure DEVICE_CONTROL; external;

procedure RESET_CATAlOG; external;

procedure GET_NEXT_ENTRY; external;

procedure GET_DEV_NAME; external;

A-iS

Op1?ratlng systePJ Interrace

Operating s.yst8PJ ReFerenClJ !1antJal For tile Lisa

function My_ID; external;

procedure Info_Process; e>tternal;

procedure Yield_CPU; external;

proc1edure SetPriori ty _Proc:ess; external;

procedUre Suspend_process; external;

procedure Activate_process; external;

procl3aure Kill_process; e,<:ternal;

procf3aure TerMinate_proces.s; external;

pr~~dure Make_process; e~ternal;

proceaure SChed_Class; external;

procedure Make_dataseg; external;

procedure kill_dataseg; external;

procedure open_dataseg; external;

procedure close_dataseg; external;

proCE~ure size _dataseg; external;

proceaure info_dataseg; external;

proce~dure setaccess_dataselg; external;

procedure unbind_dataseg; lext erna 1;

proceoure b1nd_dataseg; external;

procedure 1nfo_ldsn; exte~,al;

prOCE!C1Ure flusn_dataseg; external;

prOCE!dUre fYW3M_1nfO; external;

A'" 16

Operating Systm InterFace

opeJatJl7g SystePl RereJ~nce tlanual raj" tne LJ~~

procedure deClare_excep_hdl; external;

procedure dlsable_excep; external;

procedure enaOle_excep; external;

procedure s1gnal_excep; external;

procedure 1nfo_excep; external;

procedure flush_excep; external;

procedure Make_event_Chn; external;

procedure Kill_event_chn; external;

procedure open_event_chn; external;

procedure Close_event_Chn; external;

procedure info_event_chn; external;

procedure wait_event_chn; external;

procedure flUSh_event_Chn; external;

proceaure send_event_Chn; external;

procedure delay_tiMe; external;

procedure get_t1Me; external;

procedure set_local_t1Me_d1ff; external;

procedure convert_t1Me; external;

procedure set_f 1 le_1nf 0; external;

funct10n ENABLEDBG; external;

funct10n OSBOOTVOL; external;

A-17

O)'J8rating SystefYJ Interrace

Opel"8ting SystePl Referenct~ tlanual for tile Lisa

procedure GET_CONFIG_NAME; external;

function OISK_LIKEL V; exte~rnal;

procedure CARDS_EQUIPPED; external;

procE~dure Read _ PMeM; exte:rnal;

procedure Write_PMeM; external;

end.

A-18

Operating SystePl Interface

EXl-C3ptjOI7 Nar17t3S

AppenruLx B
SYSTEM RESERVE:D EX~CEPTION

NAME:S

SYS_OVERFLOW

SY'S_ TERr'-'lINATE

overflow exception. Signalled if the TRAPV
instruction is executed" and the overflow condi tion
is on.

value out of bound ex.ception. signalled 1 f the CHK
Instruct10n Is executed" and tlle value 1s less Uian 0
or greater than upper bound.

division by zero exception. slgnallec1 if tne DIVS or
OIVU instruction 1s executE'ct, and the d1visor 1s
zero.

tern,ination exception. signalled when a process Is
to be terminated.

8-1

(JpeJ-atJ/7fl ... ~J.-S't8fl7 RefeJt3l7Ce ;\/8/7l1a1 ti.:JJr tl7e Lifa

Appendix C
SYSTJEM RESERVED EVENT

TYPES

Eve/] t J:.vpes

"son terminate" event type. If a father process has
created a son process with a local event channel.. this
event 1s sent to the father process when trle son process
terminates.

C-l

Operating SystePJ Reference tIl¥Jt/aJ for ttJe li~9

AppendixD
OPERATING SYST1~ EImOR

MESSAGES
-1885 Profile not present during driver ini tial1:zat1on
-1882 Proflle not present durlng drlver lnltlal1:zatlon
-1176 Data in the object has been altered by scavenger
-1175 Flle or VOIUf"e was scavengell
-1174 File was left open or VOlUMe was left rounte!d .. ana systeM craShed
-1173 F1le was last Closea by tne OS
-1146 Only a portion Of the space requested was al10cateCl

Error tlessages

-1063 Attef1)t to munt boot volUfYle frOM another l.isa or not mst recent boot
VOlUMe

-1060 Attef'lJt to rount a foreign boot d1sK follow:1ng a terrporary unrount
-1059 The bad block directory of the disKette is alrost full or difficult

to read
-696 Printer out of paper during initialization
,-660 Cable disconnected during Profile in1 tial1.zatlon
'-626 Scavenger indicated data is questionable .. l:rut May be OK
,-622 ParaJYeter JYefYKlry ana tne d1sk copy were batt) 1nval1a
'-621 Par8f1eter IYefYWJry was invaliCi bUt the disK copy was val:ld
'-620 Pararreter MefYDry was valid but the disk copy was inval:ld
'-413 Event channel was scavenged
,-412 Event channel was left open and systeM crastled
-321 Data segMent open when the systeM craShed. Data possit)ly invalid .
. -320 COUld not aeterPl1ne size Of data s~t
-150 Process was created, but a library used oy prograM has been scavenged at

alterea
,-149 Process was created .. OUt tile specified prograM file na.s been scavenged

& altered
'-125 Sepci f1ea process is alreaay terMinating
,-120 Specified process 1s already act1 ve
,-115 specified process 1s alreaay suspended
lOa speci flea process aces not exist
101 Specified process is a systeM process
:110 Invalla pr10ri ty spec1 fled (pust oe 1 •• 225)
:l30 COUld not open prograM file
131 F1le systePl error wnlle trying to reaa prograM flle
:l32 Invalid prograM file (incorrect fOrMat)
133 Coula not get a staCk segrent for new process
:L34 Could not get a syslocal segMent for new process
135 Coula not get sysglocal space for new process

0-1

Operating systePl Rerel"8I7C'8 tlal7llBl ror tile Lisa

136 Could not set up cOlTlJnicat10n Channel for new process
138 Error accessing prograM file While: lOacling
141 Error accessing a l1LJ1rary f1le Whi~e loading prograM
142 Canlt run protected file on tnis ~ine

Error ttessages

143 prograM uses an intrinsic unit not, found 1n the Intrinsic Library
144 prograM uses an intrinsic unit Whose naMe/type dOes not agree with

the Intr1nsic L1brary
145 prograM uses a shared segMent not found in the Intrinsic Library
146 PrograM uses a shared segMent WhOse naMe does not agree with te

Intrinsic Library
147 No space in syslocal for prograM file descriptor during process

creation
148 No space in the stlare'd IU data segrrent for tne prograM' s snared 1U

globals I

190 No space 1n syslocal for progr8ft1 file descr1pt1on dUring
List_LibFiles operation

191 Could not open prograM file
192 Error trying to read prograM file
193 Can't read protected prograM file
194 Invalid prograM file (1ncorrect forMat)
195 prograM uses a Shared segMent not found in tne Intrinsic Library
196 prograM uses a Shared segMent WhOse naMe dOes not agree with tne

Intrinsic Library
198 Disk I/O error trying to read the ~ntrinsic unit directory
199 Specif1ea library filB nur1)er does:not exist 1n tne Intrinsic

Library ,
201 No soon except10n n~~ declared
202 NO space left in the systeM data area for declare_execp_hOl or

signal_excep
203 Null naMe speCified as exception naMe
302 Invalid Idsn
303 No data segMent bound to the ldsn ,
304 Data segrrent already t)Qund to the ldsn
306 Data segrent too large
307 Input data SegMent path naMe 1s invalid
308 Data segMent already exists
309 Insuffic1ent disk space for data segMent
310 IAn invalid size has be~en specified :
311 InSUfficient systeM re!sources
312 unexpected file systePI error
313 Data segrent not fOUr1C1
314 Invalid address passedl to Info_Address
315 operation May cause a data lOCkout ~
317 DisK error While trying to swap in data segMent

Operating SystePJ ReFerence tlanllal For the Li::.-:a

401 Invalid event channel n8fYV3 passed to MaKH_event_cnn
402 No space left in systeM glObal data area for open_event_cnn
403 No space left in syst8Pl local data area for open_event_chn
404 Non-block structured device specified in pathnaMe
405 Catalog is full in MaI<.e_Event_Chn or open_Event_Cnn
406 No SUCh event enamel exists in Kill Event Ctm
410 AtteMpt to open a local event channel to sena

Error tlessages

411 AtteMpt to open event cnannel to receive when event enamel has a
receiver

413 unexpected file systeM error in Open_Event_Chn
416 Cannot get enough diSK space for event ctlannel 1n open_Event_Chn
417 unexpected file sySteM error in Close_EvE~t_Chn
420 Attef'l)t to wait on a channel that the calling procHss did not open
421 lJait_Event_Chn returns ef1)ty because seneler process could not

COMplete
422 AtteMpt to call wait_event_Chn on an er,lty event-cellI channel
423 Cannot find corresponding event enannel after oe1ng blocKea
424 AMount of data returned while reading fr(~ event ct~l not Of

expected size
425 Event channel ertpty after being unblockecl, Wai t_Eve~nt_Chn
426 Bad request pointer error returned in wa1.t_Event_ctln
427 Wait_List has illegal length speCified
428 Receiver unblOCKed Oecause last senaer closecJ
429 unexpectea file systeM error in Yai t_Event_Ghn
430 Attef1)t to send to a channel which the c81lling process dOes not

have open
431 AMount of data transferred While writing to event channel not of

expected size
432 Sender unblOCKed because receiver closed in Send Event Chn
433 unexpected file systeM error in send_Event_Chn - -
440 unexpected file systeM error in Make_Event_Chn
441 Event Channel already exists in Make Event Chn
445 unexpected file systeM error in Kill-Event-Chn
450 unexpected file systeM error in Flusn Event Chn
530 Size of stacK expansion request exceeds liMIt spec1.f1ed for

prograM
531 Can't perforM expl1cit staCK expansion due to potential.data space

lock out
532 Insufficient disk space for explicit stacK expans10n
600 AtteMpt to perfOrM IIO operation on non IIO request
602 NO MOre alarMS ava1lable during driver initializat10n
60S Call to non-configured device driver
606 can't fina sector on floppy diSKette (diSK unfOrMatted)
608 Illegal length or diSk aaaress for transfer
609 Call to non-configured device driver

0-3

OpelClting SystettJ ReTerenc~9 !1anual Tor tne Lisa El"lVr t1essages

610 No mre rOOM in sysglobal for 1/0 request
613 unperMitted direct access to spare track with sparing enabled

on floppy drive
614 No disk present in drive ,
615 Wrong call version to' flOPPY drive
616 unperMitted flOPPY drive function
617 ChecKsUM error on floppy disKette
618 Can't fOrMat, or write-protected, or error unc18Mping floppy

diSkette
619 No mre roOM in sysglobal for 1/0 request
623 Illegal device control paraMeters to floppy drive
625 scavenger indicated data is bad :
630 The tiMe passed to delay_tiMe, convert_tiMe, or send_event_ohn

has invalid year ,
631 Illegal TiMeout request paraMeter
632 No MeMOry available to initialize clock
634 Illegal TiMed event io of -1 ,
635 Process got unblockied preMaturely dUe to process terPlination
636 Tirer request did not cOPl)lete successfully
638 Ti~ passed to delay_ti~ or send_event_Chn MOre than 23 days

frOM current tiMe ,
639 Illegal date passed to Set_TiMe, ,or illegal date frOM systeM

clock in Get_T1Me
640 RS-232 driver ca11e(j with wrong version nuroer
641 RS-232 read or wr1tl9 in1tiated with illegal parafteter
642 unif"l)lel"'entea or un:supported RS-232 ariver function
646 No fteMOry available to init1a11z~ RS-232
647 unexpected RS-232 t:lMer interrupt
648 unperM1 ttea RS-232 1n1 t1a11zat1ort, or disconnect detected
649 Illegal aevice control pararwater~ to RS-232
652 N-port driver not init1alized prtor to PrOf11e
653 No rOOM in sysglooal to initialize PrOfile
654 Hard error status rE~turned frOM ari ve
655 wrong call version to Profile '
656 unperM1tted Prof1le function
657 Illegal device contrOl parareter ,to prOfile
658 PreMature end of file when reading frOM driver
659 corrupt file systeM header chain :found in driver
660 Cable d1sconnected
662 Parity error While sending co~ or writing data to Profile
663 CheckSUM error or CHC error or pqrity error in data read
666 Ti~out '
670 Bad COfTlanO response~ frOM dr1ve
671 Illegal lengtn spec1.fied' (f'lJst = '1 on input)
672 UnifllJleflEnted console driver fundtion

0+4

OpeJatil7g SystePI ReFeJ-ence 'fanllal For tIJe Lisa Error tfessages

671 Illegal lengtn specified (MUst = 1 on input)
672 UniMpleMented console driver function
673 No f11ePDry available to initialize console
674 Console driver called with wrong vers1,on nufYt)er
675 Illegal dev1ce control
680 wrong call version to serial driver
682 Unper~1tted serial driver function
683 No rOOM in sysglobal to initialize serial drivel'
685 Eject not allowed this oevice
686 No rOOM in sysglobal to initialize n-port card clriver
687 Unper~i ttecl n-port Card driver function
688 wrong call version to n-port card ari ver
690 wrong call version to parallel printer
691 Illegal parallel printer paraMeters
692 N-port card not initialized prior to parallel printer
693 No rOOM in sysglobal to initialize parallel printer
694 uniMPleMented parallel printer function
695 Illegal device control parareters (parallel printer)
696 printer out of paper
698 printer offline
699 NO response frOM pr1nter
700 MiSMatch between loaasr version nUf't)er and operating systeM

vers10n nufYtler
701 as eXhausted its internal space dUring startup
702 Cannot Make systeM process
703 cannot Kill pseUdo-outer process
704 Cannot create ariver
706 Cannot initialize floppy diSk driver
707 Cannot init1alize the file systeM volu~
708 Hard disk MOunt table unreadable
709 Cannot Map screen data
710 Too Many slot-based devices
724 The boot tracks don't know the right f1le syste~ version
725 Either daMaged file systeM or daMagea IDontents
726 Boot device read failed
727 The as will not fit into the available MeMOry
728 SYSTEM.OS is fYllsslng
729 SYSTEM,CONFIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SVSTEM.DEBUG2 is corrupt
732 SYSTEM. LLD is corrupt
733 LOader range error
734 wrong ari ver is found. . For instance" storing a Twiggy loader

on a Profile
735 SYSTEM.LLD 1s fYl1ss1ng

0-5

Operating systePl ReFerence t1anual For tne Lisa Error tlBssages

736 SYSTEM. UNPACK 1s r1,1Ss1ng
737 unpacK Of SYSTEM. as wi tn SYSTEM!. UNPACK failed
801 IoResult <> 0 on I/O using tne Monitor
802 Asynchronous I/O r1equest not cOfYpleted successfully
803 Bad coMbination of MOde paraMeters
806 page specified 1s lOut Of range ,
809 Inva11d argUMents (page, address, offset, or count)
810 The requestea page could not be i resa in
816 Not enough sysgloDal space for fl1e systeM Duffers
819 Bad device nuMber
820 NO space 1n sysglOIJal for asynchronous request list
821 Already init1a11ze(1 I/O for thi~ device
822 Bad device nurt:>er '
825 Error in paraMeter values (AlloCate)
826 No rore roOM to allocate pages dn device
828 Error in paraMeter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Invalid s-file nuMber
837 Unallocated s-flle or I/O error
838 Map overflow: s-file too large
839 AtteMpt to COMpact file past PEOF
841 Unallocated s-file or I/O error
843 Requested exact fl t.. bUt one couldn' t be provided
847 Requested transfer count is <= 0:
848 End-of -file encountered
849 Invalid page or Offset value in paraMeter list
852 Baa unit nurrt>er (FIUSnFS)
854 No free slots in s-list directory (too Many S-files)
855 NO available disK space for filei hints
856 oevice not rounted
857 EMPty, lOCKea, or invalid s-file
861 Relative page is oeyona PEOF (Oad paraMeter value)
864 No sysglooal space for VOlUMe bitMaP
866 wrong FS version or not a valid lisa FS volUMe
867 Bad unit nuf'tler (Re;al_MoUnt.. Real_unrrount)
868 Baa unit nuft'tJer (Def _Mount, Daf _lJrlI'fOunt)
869 unit already MOunteLl (rount)/no unit rounted (LJnf'tnlXlt)
870 No sysglooal space 'for DCB or MD~ (rount)
871 paraMeter not a valla s-file IO i

872 No sysglobal space for s-file control blocK
873 Specified file is already open fqr private access
874 Device not rounted :
875 Invalid s-f11e IO or s-f11e control bloCk
879 Atter,Jt to postion past LEOF
881 AttefYPt to read eMpty file

opeJatJng SystePI ReFerence l1anlIal For tne Lls(~

882 No space on voluPe for new data page of file
883 Attef'1)t to read past LEOF
884 Not first auto-allocation, bUt file was e1i1lty
1885 Could not update filesize hints after a w:rite
IB86 No syslocal space for I/O request list
1887 Catalog pointer does not indicate a catalog (bad paraMeter)
1688 Entry not found in catalog
.690 Entry by. that n8f1'e alreaay exists
:891 catalog is full or is daMaged
.692 Illegal nare for an entry
1694 Entry not founc1, or catalog is daMaged
895 Invalid entry naMe
896 safety switch is on--cannot kill entry
1897 Invalid bootdev value
;899 Attef'1)t to allocate a pipe
'900 InvalicJ page count or FeB pointer arglJl'llent
901 Could not satisfy al1ocat1on request
921 PathnaMe invalid or no SUCh device (MakeJ;:'ile)
922 Invalid label size (Make_File)
926 PathnaMe invalid or no such device (MakeJJipe)
927 Invalid laDe1 size (Make_Pipe)
941 PathnaMe invalid or no SUCh device (Kill_Object)
944 Object is not a file (Unki1l_File)
945 File is not in the Killed state (lJnKill_F:1le)
946 Pathnare invalid or no SUCh device (Open)
947 Not enough space in sySlocal for file systeM refdO
948 Entry not founa in spec1fied catalog (Open)

Error t/essages

1949 Private access not allowed if file alread:v open shared
950 Pipe alreaay in use, requested access not poSSible lOr dwrite not

allowed
951 File is already opened in private rode (Open)
952 8ad refnuM (Close_Object)
954 Bad refnuM (Read_data)
955 Read access not allowed to speCified Objet~t
956 Attef1)t to position FMARK past LEOF not allowed
1957 Negative request count is illegal (read_~~ta)
958 Non-sequential access is not allOwed (reae'_data)
959 SysteM resources eXhausted
960 Error writing to pipe while an unsatisflej read was pending
1,61 Bad refnUM (write_data)
·~62 NO lJRlTE or APPEND access al1oweO
963 Atter,lt to position FMARK too far past LEDF
964 Appena access not allowed in atlsolute roa~~
965 Appena access not allowed 1n relative I"'K)Cf~~
966 Internal inconsistency Of FMARK and LEOF (warning)

0-7

Ope.rating systePl Reference I1anlJal for ttJe Lisa

967 Non-sequentlal access ls not allowed: (wrl te_data)
968 Bad refnuM (FluSh)
971 PathnaJYe lnvalld or no such devlce (LOOKup)
972 Entry not found in specified catalog
974 Bad refnUfYl (Info)
977 Bad refnUM (Allocate) ,
978 page count ls non-posltlve (Allocate)
979 Not a blocK structured IQevice (Allocate)
981 Bad refnUM (Truncate)
982 No space has been allocated for speCified file
983 Not a blOCk structurea tjevlce (Truncate)
985 Bad refnuM (COf'1)aCt) .
986 No space has been alloc~3tea for spec 1 fled file
987 Not a blOCk structured (jevice (COf'1)aC;t)
988 Bad refnuPl (FlUSh_Pipe)
989 Caller is not a reader of the pipe
990 Not a block structurea (lev ice (FlUSh_Pipe)
994 Invalid refnUM (Set File InfO)
995 Not a blocK-structured devlce (Set_F~le_Info)
999 Asynchronous read was unblocked befor:e it was satisfied
1021 PathnaMe invalid or no such entry (Renare_Entry)
1022 No such entry found (RenaMe_Entry)
1023 Invalia newn8fY'e" cneCK for • -' in string (RenaMe_Entry)
1024 New naJYe already exists in catalog (Renarte_Entry)
1031 Pathnare invalid or no such entry (Reap_Label)
1032 Invalid transfer count (Read_Label)
1033 INo such entry found (Read_Laoel)
1041 PathnaMe invalid or no sUCh entry (Write_Label)
1042 Invalid transfer count (Write_Laoel)
1043 No such entry found (~rite_Label)
1051 NO oevice or vOl~ by tnat naJYe (Moun~)
1052 A VOlUMe is already rounted on device

Error tJessages

1053 Atter-pt to rount teJYpOrarily unrounted boot vOlure just unrountea froJ'fl
this Lisa

1054 Tne baa bloOl< alrectory IOf the diSKette 1s 1nvalla
1061 NO aevice or vOlure by triat naMe (unrouht)
1062 No VOlUMe is rountea on clevlce
1071 Not a valid or rounted volUMe for WOrking directory
1091 Pathnare invalla or no stJcn entry (setlSafety)
1092 No such entry found (Set._safety)
1101 Invalid aevice nar-e (DEVICE_CONTROL)
1121 Invalid device, not rounted, or catalog is daMaged (Reset_catalog)
1128 Inval1a patnnaJYe" deVlc~~" or vol~ not munted (Get_deV_nafYe)
1130 File is protected; cannot open due to protection violation
1131 No device or volure by tnat nare

OpeJatll7g systePI Rerel"8I7Ce '!anuSl ror tne Ll~G7 ErrOl~ t1eSSBl.J8S

1132
1133
1134
1135
1136
1137
1138

1141
1142
1143
1144

1145
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1176

1177
1178

1180
1181
1182

1183
1184

1186
1188
1190

NO VOlUMe is MOUnted on that device
No mre open files in the file list of ttlat device
Cannot find space in sysglooal for open file list
Cannot find the open file entry to rodify
Boot volUMe not MOUnted
Boot VOlUMe alreaay unMOunted
Caller cannot have higher priority than systeM processes When
calling utJd
Boot volure was not unrounted When calling rOd
SOMe other VOlUMe still MOUnted on the ~)Qt device when calling rbd
No sysglooal space for MOOF to do rOd
Atter,lt to rerount volUMe which 1s not ttle ter,loraJC'ily unrounted
boot volUMe
No sysglobal space for bit Map to do rbd
Track-by-track copy buffer is too SMall
Shutdown requested while boot volUMe was unMOunted
Destination device too SMall for track-b~/-track copy
Invalid final shUtdOwn rode
Power is already off
Illegal COfTlartd
Dev1ce is not a Twiggy device
No volUMe 1s MOunted on the device
A valid VOlUMe is already MOUnted on tne deVice
The Device is not bloCKstructured
Device naMe is invalid
COUld not default rount vol~ before 1n~L tialization
COUld not rount VOlUMe after 1n1tial1zatlon
I_I is not allowed in a VOlUMe naMe
No space available to initialize a tJitfYIaJ) for the volUMe
Cannot read frOM a pipe rore than half of the allooated physical
size
Cannot cancel a read request for a pipe
Process waiting for pipe data got unbloc~(ed becaus~~ last pipe writer
closed it
Cannot write to a pipe mre than half of the allocated physical size
No systeM space left for request block f()r pipe
Writer process to a pipe got unblocked bE~fore the request was
satisfied
Cannot cancel a write request for a pipe
Process waiting for pipe space got unblocked because the reader
closed the p1pe
Cannot allocate space to a pipe while it has data I~rapped around
Cannot COr,lact a pipe while it has data \Jrapped around
Attef"l)t to access a ~ge that is not allocate<l to tne pipe

0-9

Operating SystePl ReFerence flanual For the Lisa

1191 Bad para peter (F1leIO)
1193 PreMature end of file encounteredl (FileIO)
1196 SOpething is still open on devicer--cannot unrount
1197 VolUMe is not forMat.ted or cannot be read
1198 Negative request count'is 1llegal!
1199 Function or procedUre 1s not yet 1rplerented
1200 Illegal VOlUMe paraMeter
1201 Blank file paraMeter
1202 Error writing destination file
1203 Invalid UCSO directory
1204 File not found
1210 Boot tracK prograM not executable·
1211 Boot tracK prograM too Dig
1212 Error reading boot track prograM
1213 Error writing ooot track prograM
1214 Boot tracK prograM file not found
1215 Can't write OOOt tracKs on tnat device
1216 Couldn I t create/closle internal buffer
1217 Boot tracK prograM has too Plany c9de segMents
1218 Couldn't find configuration information entry
1219 Couldn't get enough I~rklng space
1220 PreMature EOF in bOOt track prograM
1221 Posi tion out Of rang1e
1222 No device at that position

Error /1essages

1225 Scavenger has detectled an internal inconsi stency syr-ptoMatlc of a
software bug

1226 Invalid device naMe
1227 Device is not blocK structured
1228 Illegal attel'1lt to scavenge tne root volurre
1229 Cannot read consistently frOM the'volure
1230 cannot write consistBntly to tne VOlUPe
1231 Cannot allocate spacE~ (Heap segMent)
1232 Cannot allocate SpacE~ (Map segMent)
1233 Cannot allocate spacH (SFOB segMelit)
1237 Error reOu1ld1ng tne VOlUMe root airectory
1240 Illegal attep'pt to So avenge a non ,OS forMattOO volUMe
1296 Bad string argUfYent tlas Oeen pass$l
1297 Entry nafYM3 for tne ot)ject is invalid (on tne VOlUfYe)
1298 S-list entry for tne OOject is invalid (on tne VOlUMe)
1807 No disK 1n floppy drj.ve • .
1820 Wr1 te protect error on floppy drlV;e
1822 Unable to ClaJ1) floppy drive
1824 Floppy ar1ve write error
1882 Bad response frOM Profile
1885 Prof1le t1rveout error

0-10

Operating SystettJ ReFerence tfanllal For tile ,!isa

1998 Invalid paraMeter address
1999 Bad refnuM

OPERATING SYSTEM ERROR CODES

Error t!essages'

The error codes listed below are generated only when a non-recoverable error
occurs while in operating systeM COde. The errors are listed by functional
rodules of the OS.

SYSTEM ERRORS FOR THE ASYNCHRONOUS CONTROL UNIT

10050 Request block is not chained to a pCb (unblk_req)
10051 bld_req is called with interrupts off

SYSTEM ERRORS IN PROCESS MANAGEMENT

10701 No space during StartUp for systeM segMent setup lj,st or global process list head
(Init_GPList and AllocSys_Segs)

10100 An error was returned frOM Setup_Directory (Get_UnitDir_Entry and
Change_Directory)

10101 Couldn' t find uni t BlkIO or segMent PasL ib during Change_Directory
10102 Error>130 trying to create shell (Root)
10103 seM_count>l (Init_SeM)
10104 Couldn' t GetSpace in syslocal for an ObjDescriptor (Ini tObjFlle)
10105 Couldn' t GetSpace in IU shared data segftent after 2'0 tries (Get_Shared...ptr)
10197 AutoMatic stack expansion fault occurre!d in systefYl code (Check_Stack)
10198 Need MeM set for current process while scheduling is disabled

(SiMPleSCheduler)
10199 Attet1)t to block for reson other than 1/0 \~hile scheduling isdisabled

(SiMPleSCheduler)

SYSTEMS ERRORS IN EXCEPTION MANAGEMENT

10200 No space left in systeM data area in Harej_excep
10201 Hardware exception occurred while in systeM code
10202 No space left frOM sigl_excep call in hard_excep
10203 No space left frOM sigl_excep call in nMi_excep
10204 Error frOM info_event_chn called in get_evt_nuM
10205 Error frOM walt_event_chn called in excepJ)rolog
10207 NO systeM data space in excep_setup
10208 No space left frOM sigl_excep call in rangeerror

0-11

Opel'8ting SystettJ Ref'erence t1anual f'or tile Lisa

10212 Error in terM_def._hdl frOM enable_excep
10213 Error in force_ terM_excep, no space in enCLex_data

SYSTEM ERRORS IN EVENT CHANNEL MANAGEMENT

10401 Error frOM close_~3vent_chn in eo_cleanup
10402 Actual returned froM write_dataifor tiMer event is not correct

SYSTEM ERRORS IN MEMORY f1ANAGEMENT

10579 Unable to swap in OS code segJYlent
10580 unagle to get space in Bld_Seg
10581 Unable to get space in MM_Setup
ID582 Unable to get space in Freeze_Seg
10590 fatal parity error .
10593 Unable to MOve MeMory Manager segMent during startup
10594 Unable to swap in a segrrent during startup
10595 Unable to get space in Extend_MMlist

Error t1essages

110596 Trying to alter size of segMent that is not data or stack (Alt_OS_Size)
10597 Trying to allocate space to an allocted segMent (Alloc_MeM)
10598 Atteftpting to allocate a non-frS,e rremry region (Take_Free)

SYSTEM ERRORS IN DRIVER CODE'

10605 Interrupt froM non-configured device
10609 Interrupt frOM non-configured device
10611 Spurious interrupt frOM Twiggy d;rive #2
10612 Spurious interrupt frOM Twiggy drive #1 tHt*Duplicate sys error ~~~~
10633 Got tiMeout interrupt with no requests to tiMeout
10637 No mre "alarMS" available for t1rreout request
10651 SpuriousPrOfl1e1nterrupt
10695 Spurious Parallel printer interrupt
10695 Spurious Parallel printer alarM d-nterrupt

SYSTEM ERRORS IN TIME MANAGEMENT

10600 Error froM f'lake-p1.pe to MaKe t1i"18r p1pe
10601 Error froM kill_Otl,ject of the extsting tiMer pipe
10602 Error froM second r'lakeJ)ipe to Mqke tirer pipe
10603 Error froM open to open tiMer pipe
10604 No syslocal space for head of ti~r list

0-12

operating systel'l Ref'el"'ence tlanual for tl7e Lisa

10610 Error froM info about tiMer pipe
10612 No syslocal space for tiMer list eleMent
10613 Error froM read_data of tiMer pipe

Error tlessages

10614 Actual returned froM read data is not the saMe as requested froM tiMer pipe
10615 Error frOM open of the receiver' s event channel
10616 Error frOM write event to the receiver's event channel
10617 Error froM Close:event_chn on the rece:lver' s plPE~

0-13

Operating systePI Re~tiJrence t/atll/al For ttJe Lisa F~INFO Fields

AppendixE
~. INFO FIELDS

DEVICE_ T, vt1.Uf'1E_ T:

bacKup_volid

blocksize
.,.. blocKstructurell

boot cOde
boot-envIron
clusterslze
copy
copy_flag
copy_thread

dataslze

.,.. devt
* dir-path

DTCC
DTVB
DTVC
DTYS
fllecount
freecount
fs _overhead

fs size
fsverslon

* lochannel

label_size

$ locKeddev
macnlne_ID
master
master_copy _ID

.,. mounted
$ mount.J)endlng
.. name
$ opencount

10 Qf the vOlume of whicn this volume Is a
copy.
Number of bytes In a blocK on this device.
FlaQ set 1f thiS dev1ce Is OlocK-structureO .
Reserved.
Reserved.
Reserved.
Reserved.
Flag set If this volume Is a copy.
Count Of copy operations Involv1ng thIs
volume.
Number of data oytes In a page on tnls
VOlume.
Device type .
Pathname Of the Volume/device.
Date/time VOlume was created 1f It 1s a copy.
Date/t1me VOlume was last baCked-Up.
Date/Ume volume was created.
Date/time VOlume was last scavengeCl.
count of fUes on th1s vOlume ..
Coumt of free pages on thIs volume.
Number of pages on thiS volume required to
stor~ fUe system data structures.
Nurrioer Of pages on thIs VOlume ..
Vers10n number of the fHe system under Which
thIs volume was Inl tlal1zed ..
Number of the expansIon card Channel
througn WhICh thiS device Is accessed.
Size' In bytes of the user-defined labels
assoCIated wI th objects on thIs volume.
ReserveCl.
Mactl1ne on Whlcn this volume was Inlt1al1zed.
Reserved.
Reservecl.
Flag, set If a volume is mounted .
Rese'rveo.
Name of this volume/device .
Count Of Objects open on thIs vOlume/aevlce.

E,-l

Operating SystePl Rererence flanual for tne Lisa F~INFO Fields

overmount_stamp
password

$ prlvatedev
prlvlleged

$ remote
result_scavenge
scavenge_flag

$ unmount..pendlng
vol1d
vol_left_mounted

vol name
volnum
val_size

wr1te-protected

Reserved.
Passwora of this volume.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set by the scavenger If It nas altered tnis
volume In some way.
Number of the expansIon slot nOldlng tne card
through which this deviee Is accessed.
Reserved.
Unique Identifier for tnl.s volume.
Flag set If tt11s volume ~'as mounted durIng
a system craSh.
Volume name.
Volume number.
Total number of bloc~~s In the flIe system
volume and IJoot area on this device.
Reserved.

* defined for mounted or unmounted (jevlces
$ defineo for mounted devices only

(all other fIelds are 09flnea for mounted block'-structured devices only)

acmOOe

dlr..J)atn

DTA
DTB
DTC
DTM

_ DTS
eof

etype
fUe_closed_by _os

flIe_left_open

fUe _scavenged

set of acc,~ss mooes associated with this
refnum.
Pathname Of the directory containing this
Object.
Date/time olOject was last accessed.
Date/Ume olOject was last oacKect-up.
Date/time O1Dject was created.
Date/time ot)ject was last mOdIfIed.
Date/time OlJject was la~3t scavenged.
Flag set 1 f eno-of-fUe n<3S been encounterect
on this Object (througn ttle given refnum~
Directory entry type.
Flag set If this otlject was Closed by
the operatl~J system.
Flag set if this Object was open auring a
system crasnl.
Flag set by the SCavenqer If this Object has
been altered in some way.

E-2

Opelating SystePl Re,ference tlanua~ Tal' tile Lisa F~INFO Fields

ftype
fula
kswitch
lOCl<ea
lpslze
machine IO
master_file
name
nreaders

nwriters

nusers
private

protecteCl
pslze
refnum

resul t_scavengE~
safety_on
size
system_type
user_type
user_subtype

AOSQlute byte at whiCh tne fHe mark polnts.
Nu"lOOr of pages used by the fUe system to
store control 1 nforma tl on about this Db ject.
Ct>jept type.
unique identifier for thiS Object.
Flagi set when the on ject Is killed.
Reserved.
N~ber of data bytes on a page.
Mactllne on Which this object may be opened.
Flagl set If this Object is a master.
Entry name of thIs object
NU",ber Of processes with this object open for
readlng.
NUnlber of processes with this object open for
wrlt~ng.
Num.ber of processes with this Object open.
Flag! set if this Object Is open for
priv,te access.
Flaglset If this object Is protected.
PhysilcaI sIze of this Object in bytes.
Reference number for thIs oOject (argument
toINFO~
Res~rved.
valu~ of the safety switch for this Object.
NumPer of data bytes 1n thIs 00 ject (LEa=).
Resdrvea.
USer~deflnea type field for th1s oOJect.
use~-aefinect suotype flelcJ for this Object.

I

Ei-3

----------A----------
accessing devices: 1.3
ACTIVATE_PROCESS: 3.8
ALLOCATE: 2.10
ALTCONSOLE: 2.1

a t t r- i bu teo: 1. 3

----------8----------
binding: 4.1

BIND_DATASEG: 4.7

BITSKT: 2.1

blocKed pr-ocess: 1.4, 3

----------c----------
CARDS_EQUIPPED: 6.1

cat a 1 09: 2, 2. 1, 2. 10
cloc\<: 5.6
- system calls: 5.9
CLOSE_DATASEG: 4.7
CLOSE_E',JENT _CHN: 5.8

CLOSE_OBJECT: 2.19
code segment: 4.5
communication between processes: 1.7
COt1Pj~CT: 2.19
configuration: 6
- system calls: 6.1
controlling a device: 2.10

- a pr-ocess: 3.4
CON~JERT _TIME: 5.9
copying a file: 2.1B
creating a data segment (MAKE_DATASEG): 4.7
- a process (MAKE_PROCESS): 3.3, 3.8
- an e t} e n t c han n e 1 <t1A K E _ EV ENT _ C HN): 5. 8

- an object <MAKE_FILE, MAKE_PIPE): 2.18

----------0----------
data ~.egment, local: 4.1

- private: 4.1 ~ 4.4

- sh<lred: 1.7,4.1,4.3
- swapping: 4.6
dc c ocje: 2. 1 a
dcdata: 2.10
dc t l'P e: 2. 1 a
dever'sian: 2.10

DECLARE_~XCEP_HDL:

DELAY_TIME: 5.9
device: 2.3

e: .,
...J • (

- names (predefined): 2.1
DEVICE_CONTROL: 2.1a
director-y: 2
DISABLE_EXCEP: 5.7
disK hard error codes: 2.1a

----------E----------
enabled exception: 5.1
ENABLE_EXCEP: 5.7
end clf f i 1 e, 109 i ca 1: 2, 2.7
- ph ys i c,~ 1: 2, 2. 7
error messages: 0
event: 1.6,5,5.4
- channe'!: 1.7, 5.5
- types: C
event mangagement system calls: 5.8
exception: 1.6, 5
- enabled: 5.1
- handler's: 5.3
- i gn or e d: 5.1
- name:·: 8
- queued~: 5.1
exception management system calls: 5.7

----------F----------
father p~ocess: 1.4
file: 2
- access: 2.8
- 1 abe 1: 2, 2.6
- marKer: 2, 2.7
- name: 2.1
- prilJate: 2.8
- shared: 1.7,2.8
f i 1 e :.ys t em: 1.3, 2
- calls: 2.19
FLUSH: 2.10
FLUSH_DATASEG: 4.7
FLUSH_EVENT_CHN: 5.8
FLUSH_EXCEP: 5.7
FS_INFO fields: E

----------G----------

GET _.CONF I G,_N~\I"1E: 6. 1
GET _,NEXT _ENTRY: 2.13

GET _,TIt1E: 5.9
GET _~,.JORKING_DI R: 2.1 B
global access to files: 2.8

----------H----------
hard error: 2.19
hi~rarchy of processes: 3.2

---------I,J---------
ignored exception: 5.1
INFO: 2.19
INFO_ADDRESS: 4.7
INFO_OATASEG: 4.7
INFO_EVENT_CHN: 5.8
INFO_EXCE: 5.7
INFO_LDSN: 4.7
INFO_PROCESS: 3.8
input & output: 2
interprocess communication: 1.7
I/O: 2

----------K----------
K I LL,_DATASEG: 4.7
KI LL._E~)ENT _CHN: 5.8
KI LL._OBJECT: 2.1 a
KILL_PROCESS: 3.8

----------L----------
1 abe 1: 1.3
LDSN: 4.2
LEDF: 2, 2.7
local data segment: 4.1
local data segment number: 4.2
logi 1cal end of file: 2, 2.7
LOOK __ UPF: 2.1 a
LOt,JEI~: 2. 1

---------M,N---------
MAINCONSOLE: 2.1
MAKE_DATASEG: 4.7
MAKE __ EVENT _CHN: 5.8
MA K E __ F I L E: 2. 1 a
MAKE __ PI PE: 2.1 a

3

MAKE_PROCESS: 3.8
t1DDF: 2.4
medium descriptor data file: 2.4
memory management: 1.5, 4
- system calls: 4.7

t1EM_INFO:: 4.7

t1t'lU: 4
t10 UNT: 2. 1 e
mounting a device: 1.3
t1Y _I D: 3.8

naming a device: 1.3
naming a file: 1.3

----------0----------
OPEN: 2.1 e
OPEN_DATASEG: 4.7

OPEN_EVENT_CHN: 5.8

OS interi'ace: A
OS_BOOT _t..}OL: 6.1

---------P,Q---------
page: 2.4
- descriptor: 2.4
parameter memory: 6
PARAPORT: 2. 1
pat h n am e: 1. 3
PEOF: 2, 2.7
physical end of file: 2,2.7

pipe: 1.7, 2.9
priority of devices: 2.3
private data segment: 4.1, 4.4
private file: 2.8
proce~.s: 1.4, 3
- blocKed: 1.4, 3
- con t r 0 1: 3.4
- crea t i o;n: 3.3
- father: 1.4
- hierarchy: 3.2
- ready: 1.4, 3
- running: 1.4,3
- schedul ing~ 3.5
- son: 1.4, 3
- structur-e: 3.1
- terminated: 1.4, 3
process system calls: 3.8

4

queued exception: 5.1

----------R----------
ready process: 1.4, 3
READ_DATA: 2.1 a
READ_LABEL: 2.19
refnum: 2.8
REN~~t1E_ENTRY: 2.1 e
RESET_CATALOG: 2.1a
RS2~l2A: 2. 1
RS2a2B: 2.1
running process: 1.4,3

----------8----------
sc h EI d u 1 e r: 3
schedul ing processes: 3.5
SEND_EVENT_CHN: 5.8
SETACCESS_DATASEG: 4.7
SETPRIORITY_PROCESS: 3.8
SET_FILE_INFO: 2.1a
SET __ LOCAL_TIME_DI FF: 5.9
SET _.SAFETY: 2.1 a
SET __ '...JORKING_DI R: 2.1 B
shared data segment: 1.7, 4.1, 4.3
shared file: 1.7, 2.8
SIGNAL_EXCEP: 5.7
SIZE_DATASEG: 4.7
SLOTxCHANy: 2.1
soft error: 2.19
son process: 1.4
storage device: 2.3
structure of processes: 3.1
SUSPEND_PROCESS: 3.8
s'",apping: 4.6
system calls, clock: 5.9
- configuration: 6.1

- event management: 5.8
- exception management: 5.7
- memory management: 4.7
- pr·oces~.: 3.8
system clock: 5.6
system defined exceptions: 5.2
S,(S_O~)ERFLOW: 8
SYS_SON_TEr<M: C
SYS~TERr1INATE: B

c
'-

S""I'S_I.)ALUE_008; 8

SYS_ZERD __ Dg}: 8

----------T----------
t e- rom ina t E~ d p r" erC E'~"~": 1. 4, 3. c.
TERMINATE_PROCESS: 3.8
TRUNCATE:: 2. j 0

----------u----------
LINBIND_D~~TASEG ~ 4.7

lJt'~ K ILL _ F I L E: 2. 1 0
UNM (I LINT: 2. 1 a
UPPER: 2.1

----------v----------
volume catalog: 2.5
volume- flame: 1.3

-------W,X,y,Z------
WAIT _EIJEf'.IT _CHN: 5.8

worKing directory:
WRITE_DATA: 2.18
WRITE_LABEL: 2.10
YIELD_CPU: 3.E:

... we use it ourselves.

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	E-01
	E-02
	E-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	X-01

