

',--_ .. -

Exec FUe Plel'Jlly.;essor Page 9

(0001 expr> .. - (bOol term> [(Oinary logic op> <bool expr>]*

<binary logic op> : : = AND
OR

<b001 term) : : = (b001 factor>
(<0001 expr))
NOT (<0001 expr>)

<bo01 factor) .. - <str expr> <str op> <str expr>
<bOOl function>

<str op> :: = =
<>

The Oasic elerrent of a boolean expression (a <boo1 factor» is either a boolean
function (see the next section) or a string cOllllaI"ison, testing for equality
or inequality. These basic elenents may be cont)ined using the logical
operators ptf), (fl and NOT, with parentheses used for grouping. All these
operators function in the usual \IIay.

BoolfSl Flnrtims - EXISTS cn:i tEe

Several functions returning boolean results are provided for use ",1 ttl the
conditionalcontructs.

The EXISTS function allows you to determine Whether a file ex1sts. The
function has the following form:

EXISTS (<str expr))
where (str expr) is a string expression whose value is the name of a file.
Typically this <str expr> will be an expanded string constant (discussed
aoove), such as "%1.Obj".

The tEe function allows you to determine whether one file is newer than
another file, that is, whether its 1ast-lOOdified date is IOOre recent than the
last-IOOd1f1ed date of anther file. The function has the fOllollJing syntax:

NEWER (<str expr 1), <str expr 2))
\IIhere the <str expr)s specify file nanes. TRUE will be returned if the first
file is newer than the second. A preprocessor run-time error will occur if one
of the files does not exist.

The WRITE and WRlTELN conmands allow exec files to \IIri te text to the console
screen. This text may be used for informatory messages, �p�r�o�~�t�s�,� or for any
other purpose. The form of these conmands is:

Fred Forsman rvlarcn 9, 1983

ExecFUe~

$ WRITE [(str expr> [.. (str expr>]*]

and

$ WRlTELN [(str expr> [, (str expr>]* 1

Page 10

That is, these conmands taKe an arbitrary nurrber of string expressions,
separated by corrmas, as argurrents. The strings are II1ri tten to the current
console line, and in the case of l1.IRITELN a final carriage return is IIIritten.

ftAIl..N ~ SRaOli

The READLN and READCH commands allow exec files to read in text from the
console and to assign it to a paraneter variable. This mechanism may be used to
obtain paraneter values, to obtain values to control conditional selection,
to pause until the user indicates to continue, or for any other purpose. The
form of these corrmands is:

$ READLN (%n)

and

$ READCH <%n)

READLN will read a line from the console and II/ill assign it to the specified
pararreter. READCH will read a s1ngle character from the console (1 f <return)
is typed that character will be a blank).

me Restr1ct1on

Al thOugh you ShOuld not have to think about 1 t, the preprocessor uses percents
C",.") when it generates its t~rary, old-style exec file. This rreans that you
can prematurely generate and end-of -fHe by trying to pass two percents in a row
in a normal line (both percents would, of course, have to be literalized as
H"''''''%").

Please let rre know 1 f you find th1s to be an unbearable restriction.

Fred Forsman March 9, 1983

"---.--

~ File Pleplucesscr Page 11

Examples

Exatple 1 -- iYl EM!C file to 00 a Pascal coopile

This exec file does a Pascal cOfTl)ile and generate. Note how comrents have been
used to make the single-character WOrkShop conmands rote intelligible.

$!XEC { "comp" - perform a Pascal compile
%0 - the naJI\e of the unit to COlIl'pile }

P{Pascalcampile)%O{source}
{no list file}
{defaul t i -code file}
<esc>{no debug file - note <esc) here represents an escape chara.eter}
G{generatecode)%O
{defaul t obj file}

SENDEXEC

Exarple 2 -- al exec file to do al assentJly

This exec file performs an assentlly, and allolls for an optional output file nane
lJIhich may be different from the source nane .

$EXEC { "asselllbc, - perform an asseJllbly
%0 - the naJIle of the unit to assemble }
%l. - (optional) alternate name of OBJ output }

$DEFAULT %l. TO ~ { use source .reJRe if no output naae is g1 yen }
A{asseJllble}%O{source}
{no list file}
%l.{obj file}

SENDEXEC

~le 3 -- a nme flexible exec file to do Pascal call1lles

This exec file performs cOfTl)l1es; 1 t allollls for an output file w1 th a different
name than the souce and permits the use of an alternate intrinsic library.

Fred Forsman March 9, 1983

Exec FUe Preplt-azuI

SEXIC { Hcompl U - perform a Pascal compile
%0 - the name of the un1 t to compi Ie
%1- (optional) a.l terna.te name for OBJ file
%2 - (optional) alternate intrinsic library}

SDUAtJL'1' %1 TO %0 { if no a.l terre te OBJ na.me use sa.m.e name as source }
SIP %2 < > " 'l'HEH { use alternate intrinsic library }

P{ Pasca.l. cOlltpile }?{ option flag}
%2{alternate intrinsic lib}
%O{source}

SELSE
P{Pascalcompile}%O{source}

SENDIF
{no list file}
{defaul t i-eode file}
<esc>{nodebug file}
G{ genera. te code}%O
%.l.{OBJ file}

SENDEXEC

Exarple 4 -- yet cnJtrer exec file to dO Pascal cootliles

Page 12

Tnis corrplle exec file !lIill only perform the corrplle if either the OOject file
does not exist or the source file is nelJ18r than the Object file (1.e., the source
has Changed Since it was last corrPiled).

SIXIC { ucompZu - perform a. Pascal compile (only if really required)
%0 - the name of the unit to colltplle
%1- (optional) a.l terrete name for OBJ file
%2 - (optional) alternate intrinsic library}

SDEFAULT %9 TO %1 { set %9 to name of output OBJ file}
SDEFAULT%9 TO %0
SIF EXISTS (''%9. objU) mEN

SIF NEWER (''%0. text", "%9. obJ") 'mEN {recomp if source newer than object}
SSUBITcompl(%O,%1,%2)

SENDIF
SELSE { OBJ file doel! not exil!t, l!0 generate it}

SSUBMIT compl(%O,%1,%2)
SENDIF

SENDEXEC

It is left as an exercise as to ho~ to Change the above example to take into
account the fact that a unit may have an arbitrary nuntJer of include files in'
aCldi tion to its main source file, and that the un! t will have to be reco~i1ed if
one or ITOre of these Change.

Exartlle 5 -- exec file -chaining-

This exarrple ("maKe/Prog") uses the "smart" corrpile exec file ("co~2")

defined in the last exarrple to delTOnstrate how to "Chain" exec file execution.

Fred Forsman March 9, 1983

Exec File Plt:plOcessor

Assurre we want to generate a particular program made up of three units
(unitl. .unit3) and that we have written "link/Prog", a smart exec file which
performs a link only when one of the object files for one of the units is newer
than the linked program file. Our generation exec file will use these smart exec
files to perform the minimal required amount of ~ork, thus it may be used to
determine whether we have the latest version of the program without fear of
wasting tirre.

SEXEC { t'make/Pro(' - smart version, only recompiles & links when it has to}
$SUBI! comp2(uni t1)
SSUBITcomp2(un1tZ)
SSUBI! comp2 (uni t3)
R<link/Prog { run link exec file after compiles ha.ve run

so that it will get the correct file dates}
SENDE:cEC

Note that in the last line of the above exec file we have scheduled an exec file to
be run at a later tirre, as opposed to SUBMITting it now, so that the file dates
for the link step will be accessed after the cOfIlliles have had a chance to run.
The differences between ruming and submitting and exec files are de!TOflstrated
in the following scenario. When an exec file is submitted it is processed
immediately by the preprocessor, ~ith its output going to the temporary file,
which is then passed back to the WorkShop shell. The then shell runs the
conmands in the telJl)Orary file until it comes to the conmand to IU"1 another exec
file, at mich point it discards the remainder of the temporary file and runs the
preprocessor with the new exec command. This exec file invocation in turn
resul ts in another temporary file of conmands lIIhich is then run by the shell.

~le 6 -- a recursive exec file to dO Pascal carpiles

This corrpile exec file will perform up to 10 compiles. It takes an argurrent list
wi th the narres of the units to be compiled.

SEXIC { t\rcompu - perform axr'J number (up to 10) Pascal compiles.
It calls uCOJIll)u on its first argument ard then calls itself
recurs1velyw1th its arguments shifted left}

$ IF %0 <> " THEN
SSUBMIT comp(%O) { "compn the first one }
$SUBMIT rcomp(%1, %2, %3, %4,%5,%6,%7,%8,%9) { urcomp" the rest, less first}

SENDIF
$ENDIXEC

Exarple 7 -- a Basic ~le

This exec file demonstrates some of the constructs in the preprocessor's
meta-language, by generating the BASIC interpreter. The corments in the body of

Fred Forsman March 9,. 1983

Exec File Preproce~r Page 14

the exarrple snoulCl be sufficient to oescribe fl.lhat is taking place. The
essential 10ea is that Basic is maCJe out of three COrT;lonents, anO that fI.I8 may
Ij/ant to generate only one or rrore of them at a tine.

SEXEC { ttmake/basicn - generate the BASIC interpreter.
There are three parameters - if a parameter is a tT' (yes)
the correspon:::!ing part of the system should: be genera ted:

(0) the 'b-eode interpreter
(1) the run-time systell\
(2) the colllllland: interpreter

If no parameters are specified, the exec file will prompt to see what parts
of the systeJll should be generated. }

SWRI'n:I.N 'Starting genera t10n of the BASIC system'
SI'F!W = " AND%!. = " AND %2 = " THEN {nopa.raJIIS supplied - prompt for info}

SWRIT.E 'do you want to assemble the b-code interpreter? (y or [n])'
SlU'.A:OCH %0
S'WRITELN { this wri teln puts us on a new line for the next prompt}
S'«RITE 'do you want to compile the run-time system? (yor [n])'
SR.:EAOCH %1
S'tr'RITELN
S'WRITE 'do you want to compile the comman:i interpreter? (y or [n])'
SXEAtlCH%2
S'w'RITELN

SENDI!
S
SIFUPPERCASE(%O) = 'Y' THEN {assemble the b-code interpreter}

SSUBIT a.ssemb (int. m.in)
SENDIF
S
SIF UPPERCASE(~l) = 'Y' THEN {compile the run-time unit}

SSUBIT comp(b. rtuni t)
SENDIF
S
SIF UPPERCASE(%2) = 'Y' OR UPPERCASE(%l) = 'Y' mEN

S{ compile the comma.n:i interpreter}
S{ compile also if the run-time unit has changed }
SSUBMIT comp(b. basic)

SENDI!
S
S{ link it all together }

L{ link}-p{note that u_pu gets aroun:i a linker bug}
b.bas1c
b.rtunit
int.main
hwintl
iosfplib
1ospasl1b

basic{ executable output}
SENDEXEC

Fred Forsman March 9, 1983

Page 1.5

Exec invocation Options
A nullt)er of options are available when running the preprocessor. These options
rray be specified when invoking the preprocessor or on SUBMIT colTlllands. The
options are specified by single letter conrnands following the exec pararreter

,list. (A null paraaeter list should be used if you want to use options without
paraneters, as in lO<fooOs".) The options are as follows:

"8" indicates that the preprocessor should not trim blankS on output lines.
Normally the preprocessor 111111 trim off leading and trailing blanKs on
the lines that it outputs to the t~rary file. This a11ol#s you to indent
normal lines (lines I#hich are not exec contnand lines) I#i thout worrying
abOut generating spurious blanKs. Thus the preprocessor assumes that
leading and trailing blanKs are insignificant (I#hich 1s the case for
1#0rkShop conmandS, bUt Which rray not be true for some perverse programs
you may run via exec files). This option 1#111 tell the preprocessor not to
trim such blanKs. The option applies only to the exec file being run or
SUBMITted, and not to any nested exec files.

"I" indicates that the first line of the exec file is to be ignOred by the
preprocessor. This option is intended for deviants whO like to entled
their exec files in their program sources, in which case the first line of
the source should be a .. (..... and a "*) .. Should follo", the end of the exec
file, thus conmenting it out of the program source. (Note that "(... ,, and

w*)" ShOuld be used in preference to ,,{ .. and "}" since the latter are used
as comment characters in the preprocessor.)

lOT" indicates that the t~rary file IIIhich is created (1.e., the expanded
form of the exec file) should not be removed after 1 t 1s run. One reason to
use this option is to make it possible to rerun an exec file created III1th
the step option (see belol#) without going through the stepping prorrpts a
second time by running a previously created expanded exec file. The "R"

exec option (described belol#) 1s uSed to run old terrporary exec files.
Note that the "T" option is not allowed on SUBMIT conmandS.

"R" indicates that the a exec teftl)orary file which haS been saved 1111 th the "T"
option Should be rerun, bypassing the normal processing by I#hich the
terrporary !#as created. For eXaJll)le, "foo" may be an exec file I#hiCh
generates a corrpl1cated system via a large nullt)er of nested exec files
Which take a sign1 ficant aroount of t1me for the preprocessor to digest.
If we Know we are going to run "foo" repeatedly, we may want to generate
the t~orary file only once but run it several t1:tes. The first time we

Fred Forsman MarCh 9, 1983

Exec File PrepI.JcessOl Page 16

lIJould invOke the preprocessor fI.Iith "<fooOt" to indicate that the
temporary file should not be automatically deleted after it 1s run.
SUbsequently, we llIOuld invOke the preprocessor with "<fooOr" to rerun
the old te~orary file. Note that the "R" option will override any others
that may be specified, and it is not allowed on SUBMIT conmandS.

"S" indicates that the exec file should be processed in "Step MOde" whiCh
allows selective Skipping Of output lines and SUBMITs. If this option is
used, the follollling nessage dll appear when you invoKe the preprocessor:

Step Mode:
-- in response to "InclUde?" answer V, N, A (Abort) or K (Keep rest).
--in response to "SUbmit ?" anslller V, N, S (Step), A (Abort) or K (Keep Rest).
More details? [No]

If you repone! with "Y" (yes) to the "More details ?" pro~t you will get
further information on what each of stepping responses neans.

\I.Itlen you invoKe an exec file with the step option you will be pro~ted when
a line has been generated and is about to go into the te~orary file. The
line will be displayed follollled by "(= Include T'. A response of "Y" will
include the line in the expanded exec file. A response of "N" will cause
the displayed line to be omitted. A response of "A" will abort out of the
exec file preprocessor and no exec file will be run. A response of "K" will
Keep (include) all the remaining lines of the exec file, leaving step
roode.

When a SUBMIT conmand is encountered when stepping, the SUBMIT line will
be displayed followed by "(= Submit ?". A response of "Y" will perform the
SUBMIT unConditionally, that is, without stepping through it. A response
of "N" \tIill ignore the SUBMIT. A response of "S" will step through the
SUBMIT file. A response of "A" will abort out of the exec file
preprocessor and no exec file will be run. A response of "K" uslll Keep the
rest of the exec f11e, leaving step IlDde.

Note that a reponse of "?" to a "Submit ?" or "Include ?" pro~t will elicit
an explanation of the accepted responses:

Following are some examples of how to use the preprocessor's stepping
facility.

Stepping may be used to resure execution of an exec f11e which did not run
to termination. For exa!'lllle, if our exarrple "co~ile" exec file includes
both a co~i1e and a generate step and if we wish to resume with the
generate step we could invoKe the preprocessor wi th

Fred Forsman MarCh 9, 1983

Exec File PleplU :essor Page 17

"corrplle(foo, -f.>Jork-)s". Then, in response to the "Include?" prorrpts for
lines correspond1ng to the corrp1le step ~ would hit lOW to Skip the

lines. upon reaching the first line of the generate step we would respond
wi ttl 10K" to keep the rest of the file, and the generate step of ttle exec
process would be performed.

The stepping ITechanism may be used to run only selected parts of an exec
file. say, for instance, that we have a rrodUlar set Of exec files which
generate a wOOle system of programs, SUCh as the workShop development
system, and that one exec file called "make/all" can generate the whole
system by SUBMITting exec files for each of ttle corrponent programs. The
exec files for each ~t program (development system tool) maKe use
of other exec files to perform SUCh standard activities as colt'plling (and
generating) a Pascal unit or progrcm, performing an aSsenDly, installing
a library, or manipulating files with the IIJOrkShop' s filer. If lIIe are
performing a system bUild and find ourselves constantly having to
regenerate parts of the system dUe to bugs, late deliveries or IJIhatever,
then the ability to step by SUBMITs proves to be very useful. Arbi trary
parts of the system can be regenerated by rLming "<maKe/allOs" (1.e.,
our master exec file invoked IrIittl the stepping option) and selectively
submitting the SUb-exec files for only thOse things tJ.Ihich lIIe lIIish to
rebUild while stepping over the others.

Stepping in conjuction Id th the "T" option (for saving the teIt'pOrary file
created by the preprocessor) can be useful when we are going to be

regenerating a single ~t of a program or system a nunt)er of times
in succession, such as when we are fixing a bug in an element of a system
bUild and we expect that several iterations "ill be needed to correct the
problem. To continue our previous eX8f1llle, suppose that IIIe are having a
problem with the "FileIO" unit of ttle "ObjIOLib" library tJ.Ihile bUilding
the development system, and that an exec file called "make/ObjIOLib"
generates and installs the library, SUbmitting colt'piles and asselltllies
for all of its units, linking everything together, and finally performing
the installation. By inVOking ttle preprocessor with "make/ObjIOLib()st"
tJ.I8 can go into step lOOde and submit only those things related to the
c~ilation of the "FileIO" unit, the link, and the installation of the
library in the Intrinsic Library. Then, after each successive refinement
of "FileIO", tJ.I8 could run the saved telTporary file by running
M<maKe/OtJjIOLibOr" lllittlout having to go thru the stepping process. Our
alternatives to this procedure are creating another exec file to generate
only the selected parts, or running (and rerunning) the exec file for the

Fred Forsman f'-1arCt1 9, 1983

Exec FUe Pleplooessor Page 18

whole liorary, or running each suo-process int1ependently (whiCh requires
IOOre of your attention) .

Fred Forsman March 9, 1983

Exec Flle PlepnX:essoI Page 19

Exec Programming Tips
The following fe" points may be useful to rel1EfTt)er IIIhen creating exec files:

Use IIIX1Jlar exec files. It may helpful to think of exec files as procewres
IIIhiCh are called via the SUBMIT conmand. The IOOre IOOdular your exec files are,
the easier it \11111 be to use me stepping facility on tnem.

Create standard exec files for COI'IIOOI"l functions; for exaJT1)le, uSe one exec file
to perform all your co~ilat1ons. One adVantage of this 1s mat you only have to
ed1 t one file ",hen the interface to the tool changeS (as it has in the case of the
asserrt)ler) .

Use C4'lt1ooal. pararlEters to support features which are not allllaYs (or often) used
(SUch as the ab1l1 ty to COlJlllle against an alternate intrinsic library in your
corrplle exec file). The parameter mechanism is SUCh that you can remain
Oblivious to optional paraneters if you don't need the functions they support.

write your exec flIes to prompt for information which was not supplied in
pararreters. This wy you don't need to renentler the neaning of a large nurrt)er of
parameters.

Fred Forsman March 9, 1983

Exec FUe PxepIOcessor Page 20

Exec Errors
The preprocessor can recognize a number Of errors during its invocation and
execution. The format in lJIhiCh roost errors are reported is :

\\!here

ERROR in <err loc>
<curr line)
<err marker)
<err msg>

<err loc> 1s either 'invocation line' or 'line I<n> Of file
"(file)"'

<curr line> is the current exec line when the error was
detected

<err marker> is a line with a question mark indicating where
the preprocessor was in <curr line> when the
error was deteCted

<errmsg> is one of the nessages listed below.

10 errors are followed by an additional line Idth the text of the OS error raised
dUring the 10 operation. The errors detected are as follows:

10 Errors:

Unable to open input file "<file)".
Unable to open terrporary file" <file)" .
Unable to access file "<file)".
Unable to rerun file "<file)".

Other Errors:

File does not begin with "$EXEC" .
End of Exec file before "SENOEXEC" .
$EXEC conmand other than at start.
No Exec file specified.
More than 10 paraneters.
NO closing ") It found.
Line buffer overflow (>255 Chars).
Invalid Exec option: <option Char> .
Invalid Exec option on SUBMIT: <option char> .
End of Exec file in conment.
Invalid percent: not "%n" form.
Garbage at end of conmand.
No argurrent to SUBMIT.
ELSE, ELSEIF or ENDIF not in IF.
ELSEIF after ELSE .
File contains unfiniShed IF.
Nothing following "<tilde)" .

Fred Forsman March 9, 1983

Exec File PlepU£eSSOI

and

Out of I1eIOOry. Processing aborted.
Bad t~ file narre generated: "<file>".
NO value returned from file called as function.
RETURN I1Ii th value 1n file not called as function.

Invalid command. (token> expected.

where <token) may be

String value
"%n" paraneter
Terminating string delimiter
"=" or "()"
"0"
Boolean value
Conma (list delimiter)
"("
")"
Valid conmand keYlIIOrd
Command

Fred Forsman

Page 21

Marct'l 9, 1983

