

Exec Flie Preprocessar Page 10

$ WRITE [(strexpr> [, <strexpr]+]
and
$ WRITELN [<strexpr> [, <strexpr> =]
That is, these commands take an arbitrary number of string expressions,

separated by commas, as arguments. The strings are written to the current
console line, and in the case of WRITELN a final carriage return is written.

$READLN and $READCH

The READLN and READCH commands allow exec files to read in text from the
console and to assign it to aparameter variable. This mechanismmay be used to
obtain parameter values, to gbtain values to control conditional selection,
to pause until the user indgicates to-continue, or for any other purpose. The
formof these commands is:

$ READLN <&n>
and

$ READCH <&no
READLN will read a 1ine from the console and will assign it to the specified
parameter. READCH will read a single character from the console (if <return>
is typed that character will be ablank).

One Restriction

Although you should not have to think about it, the preprocessor uses percents
("%") when it generates its temporary, old-style exec file. This means that you
can prematurely generate and end-of-file by trying to pass two percents inarow
in a normal line (both percents would, of course, have to be literalized as
""%7%").

Please let me know if you find this to be an unbearable restriction.

Fred Forsman March 8, 1983

Exec Flle Preprocessor Page i1

Examples

Example 1 -- anexec file todoaPascal compile

This exec file does a Pascal compile and generate. Note how comments have been
used to make the single-character WorkShop commands more intelligible.

$EXEC { “comp" — performa Pascal compile
%0 — the name of the unit to compile }
P{Pascal compile}%0{source}
{no list file}
{default i-code file}
<(esc>{nodebug file — note {esc> here represents an escape character}
G{generate code }%0
{default obj file}
SENDEXEC

Example 2 -- anexec file to do an assembly

This exec file performs an assembly, and allows for an optional cutput file name
which may be different from the source name.

SEXEC { “'assemb'” — perform an assembly

%0 — the name of the unit to assemble }

%1 — (optional) alternate name of OBJ cutput }
$DEFAULT %1 TO %0 { use msource name if no output name is given }
A{assemble }¥0{source}

{nolist file}
%1{cbj file}
SENDEXEC

Example 3 -- amore flexible exec file to do Pascal compiles

This exec file performs compiles; it allows for an output file with adifferent
name than the souce and permits the use of an alternate intrinsic library.

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 12

SEXEC { “compl® — performa Pascal compile
%0 — the name of the unit to compile
%1 — (optional) alternate name for OBJ file
%2 — (optional) alternate intrinsic library}
SDEFAULT %1 TO%0 { if noalternate OBJ name use same name as source }
SIF%2 <> ' THEN { use alternate intrinsic library }
P{Pascal campile}?{option flag}
%{alternate intrinsic 1ib}
%0{source}
SELSE
P{Pascal compile)}%0{source}
SENDIF
{no list file}
{default i—code file}
<esc>{nodebug file}
G{ generate code }%0
%1{OBJ file}
SENDEXEC

Example 4 -- yet another exec file to do Pascal compiles

This compile exec file will only perform the compile if either the object file
does not exist or the source file is newer than the object file (1.e., the source
has changed since it was last compiled).

SEXEC { “comp2® — performa Pascal compile (only if really required)
%0 — the name of the unit to compile
%1 — (optional) alternate name for OBJ file
%2 — (optional) alternate intrinsic library}
SDEFAULT %S TO %1 { set %9 to name of output OBJ file }
SDEFAULT %S TO %0
SIF EXISTS (*%9.0bj*) THEN
SIF NEWER (“'%0.text®, "%3.0bJ*") THEN {recomp if source newer than object}
SSUBIT compl(%0,%1,%2)
SENDIF
SELSE { OBJ file does not exist, so generate it }
SSUBMIT compl(%0,%1,%2)
SENDIF
SENDEXEC

It 1s left as an exercise as to how to change the above example to take into
account the fact that a unit may have an arbitrary number of include files in
addition to its main source file, and that the unit will have to be recompiled if
one or more of these change.

Example 5 -- exec file “"chaining”

This example (“make/Prog") uses the “smart" compile exec file (“"comp2")
defined in the last example to demonstrate how to “chain” exec file execution.

Fred Forsman March 9, 1883

Exec File Preprocessor Pzge 13

Assume we want to generate a particular program made up of three units
(unitl..unit3) and that we have written “link/Prog”, a smart exec file which
performs a 1ink only when one of the object files for one of the units is newer
than the linked program file. Our generationexec file will use these smart exec
files to perform the minimal required amount of work, thus it may be used to
dgetermine whether we have the latest version of the program without fear of
wasting time.

SEXEC { “make/Prog’ — smart version, only recompiles & 1inks when it has to}

SSUBIT comp2(uniti)
SSUBIT comp2(unit2)
SSUBIT comp2(unit3)
R<1linkProg { run 1ink exec file after compiles have run
so that it will get the correct filedates }
SENDEXEC

Note that in the last 1ine of the above exec file we have scheduled an exec file to
be run at a later time, as opposed to SUBMITting it now, so that the file dates
for the 1link step will be accessed after the compiles have had a chance to run.
The differences between running and submitting and exec files are demonstrated
in the following scenario. When an exec file is submitted it is processed
immediately by the preprocessor, with its output going to the temporary file,
which is then passed back to the WorkShop shell. The then shell runs the
commands in the temporary file until it comes to the command to run another exec
file, at which point it discards the remainder of the temporary file and runs the
preprocessor with the new exec command. This exec file invocation in turn
results in another temporary file of commands which is then runby the shell.

Example 6 -- arecursive exec file to do Pascal compiles

This compile exec file will performup to 10 compiles. It takesanargument list
with the names of the units to be compiled.

SEXEC { “rcomp® — perform any rumber (up to 10) Pascal compiles.
It calls Ycomp® onits first argument and thencalls itself
recursively with its arguments shifted left }
SIF%0<> *’ THEN
SSUBMIT comp(%0) { Pcomp®’ the first one }
SSUBMIT rcomp(%1,%2,%3, %4, %5, %6, %7, %8,%9) { “rcomp® the rest, less first }
SENDIF
SENDEXEC

Example 7 -- aBasic example

This exec file demonstrates some of the constructs in the preprocessor’s
meta-language, by generating the BASIC interpreter. The comments in the body of

fred Forsman March 9, 1983

Exec File Preprocessor Page 14

the example should be sufficient to describe what is taking place. The
essential idea is that Basic is made out of three components, and that we may
want to generate cnly one or more of themat a time.

SEXEC { “make/basic® — generate the BASIC interpreter.
There are three parameters —— if a parameter isa “Yv (yes)
the corresponding part of the systam should be generated:
(0) the b—code interpreter
(1) the run-time system
(2) the commard interpreter
If no parameters are specified, the exec file will prompt to see what parts
of the systemshould be generated. }

SWRITELN ’Starting generation of the BASIC system’

SIF%0 ="' AND%1 ="’ ANDX2 = *’ THEN {no params supplied — prompt for info}
SYRITE *do you want to assemble the b-code interpreter? (yor [n])’
SREADCH %0
SWRITEIN { this writelnputs us onanew line for the next prompt }
SWRITE ’do you want to compile the run—-time system? (yor [n])’
SREADCH %1
SWRITELN
SYRITE ’do you want to compile the command interpreter? (y or [n])’
$READCH %2
SWRITELN

SENDIF

$

SIF UPPERCASE(%0) =Y’ THEN {assemble the b—code interpreter }
$SUBIT as=semb (int.main)

SENDIF

$

SIF UPPERCASE(%1) ='Y’ THEN (compile the run—time unit }
$SUBIT comp(b.rtunit)

SENDIF

S

SIF UPPERCASE(%2) = 'Y’ OR UPPERCASE(%1) =Y’ THEN
${ compile the command interpreter }
${ compile also if the run—time unit has changed }

SSUBMIT camp(b. basic)

SENDIF

$

${ link it all together }

L{link}-p{note that *-p* getsarourd a linker bug}
b.basic

b.rtunit

int.main

hwintl

iosfplid

lospaslidb

basic{executable output}
SENDEXEC

Fred Forsman March 9, 1983

Exec File Preprocessor Fage .5

Exec invocation Options

A number of options are available when running the preprocessor. These cptions
may be specified when invoking the preprocessor or on SUBMIT commands. The
options are specified by single letter commands following the exec parameter
‘1ist. (A null parameter list should be used if you want to use options without
parameters, as in “<foo()s".) The options are as follows:

"B" indicates that the preprocessor should not trim blanks on output lines.
Normally the preprocessor will trim off leading and trailing blanks on
the lines that it outputs to the temporary file. Thisallows you to indent
normal lines (lines which are not exec command lines) without worrying
about generating spurious blanks. Thus the preprocessor assumes that
leading and trailing blanks are insignificant (which is the case for
WorkShop commands, but which may not be true for some perverse programs
you may run via exec files). Thisoptionwill tell the preprocessor not to
trim such blanks. The option applies only to the exec file being run or
SUBMITted, and not to any nested exec files.

"I" indicates that the first line of the exec file is to be ignored by the
preprocessor. This option is intended for deviants who like to embed
their exec files in their program sources, in which case the first line of
the source should be a “(*" and a “»)" should follow the end of the exec
file, thus commenting it out of the program source. (Note that “{(*" and
“#)" should be used in preference to “{" and “}" since the latter are used
as comment characters in the preprocessor.)

“T" indicates that the temporary file which is created (i.e., the expanded
form of the exec file) should not be removed after it is run. One reason to
use this option is to meke it possible to rerun an exec file created with
the step option (see below) without going through the stepping prompts a
second time by running a previously created expanded exec file. The "R"
exec option (cescribed below) is used to run old temporary exec files.
Note that the "T" option is not allowed on SUBMIT commands.

“R" indicates that the a exec temporary file which has been saved with the "T"
option should be rerun, bypassing the normal processing by which the
temporary was created. For example, “foo" may be an exec file which
generates a complicated system via a large number of nested exec files
which take a significant amount of time for the preprocessor to digest.
If we know we are going to run “foo" repeatedly, we may want to generate
the temporary file only once but run it several times. The first time we

Fred Forsman March 9, 1983

Exec File Preprocessor Page 1€

would invoke the preprocessor with “<foo()t" to indicate that the
temeorary flle should not be automatically deleted after it 1s run.
Subseguently, we would invoke the preprocessor with "<foo()r" to rerun
the old temporary file. Note that the “R" option will override any others
that may be specified, and it is not allowed on SUBMIT commands.

"S" indicates that the exec file should be processed in "Step Mode" which
allows selective skipping of output lines and SUBMITs. If thisoptionis
used, the following message will appear when you invoke the preprocessor:

Step Mode:
--inresponse to "Include ?" answer Y, N, A (Abort) or K (Keep rest).

-- inresponse to "Submit ?" answer ¥, N, S (Step), A (Abort) or K (Keep Rest).
More details ? [No]

If you repond with "Y" (yes) to the "More details ?" prompt you will get
further information on what each of stepping responses means.

¥hen you invoke an exec file with the step option you will be prompted when
a line has been generated and is about to go into the temporary file. The
line will be displayed followed by “<= Include ?". A response of "Y" will
include the 1ine in the expanded exec file. A response of “N" will cause
the displayed line to be omitted. A response of “A" will abort out of the
exec file preprocessor and no exec file will be run. Aresponse of “K* will
keep (include) all the remaining lines of the exec file, leaving step
mode.

When a SUBHIT command is encountered when stepping, the SUBHMIT line will
be displayed followed by "<= Submit ?". A responseof "Y" will performthe
SUBMIT unconditionally, that is, without stepping through it. A response
of "N" will ignore the SUBMIT. A response of “S" will step through the
SUBMIT file. A response of “A" will abort out of the exec file
preprocessor and no exec file will be run. A response of "K" will keep the
rest of the exec file, leaving step mode.

Note that a reponse of “?" toa "Submit ?" or "Include ?* prompt will elicit
an explanation of the accepted responses,

Following are some examples of how to use the preprocessor's stepping
facility.

Stepping may be used to resume execution of an exec file which did not run
to termination. For example, if our example "compile” exec file includes
both a compile and a generate step and if we wish to resume with the
generate step we could invoke the preprocessor with

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 17

“compile(foo, -work-)s". Then, in response to the “Include?” promots for
lines corresponding to the compile step we would hit “N" to skip the
lines. Upon reaching the first line of the generate step we would respond
with “K" to keep the rest of the file, and the generate step of the exec
process would be performed.

The stepping mechanism may be used to run only selected parts of an exec
file. Say, for instance, that we have a modular set of exec files which
generate a whole system of programs, such as the WorkShop development
system, and that one exec file called “make/all" can generate the whole
system by SUBMITting exec files for each of the component programs. The
exec files for each component program (development system tool) make use
of other exec files to perform such standard activities as compiling (and
generating) aPascal unit or program, performing an assembly, installing
a library, or manipulating files with the WorkShop's filer. If we are
performing a system build and find ourselves constantly having to
regenerate parts of the system due to bugs, late deliveries or whatever,
then the ability to step by SUBMITs proves to be very useful. Arbitrary
parts of the system can be regenerated by running “<makes/all()s" (i.e.,
our master exec file invoked with the stepping option) and selectively
submitting the sub-exec files for only those things which we wish to
rebuild while stepping over the others.

Stepping in conjuction with the "T" option (for saving the temporary file
created by the preprocessor) can be useful when we are going to be
regenerating a single component of a program or system a number of times
in succession, such as when we are fixing a bug in an element of a system
build and we expect that several iterations will be needed to correct the
problem. To continue our previous example, suppose that we are having a
problem with the "FileIO" unit of the "0bjIOLib" library while building
the development system, and that an exec file called "make/ObjIOLib™
generates and installs the library, submitting compiles and assemblies
for all of itsunits, 1inking everything together, and finally performing
the installation. By invoking the preprocessor with "meke/0bjIOLib()st"
we can go into step mode and submit only those things related to the
compilation of the “FileI0" unit, the link, and the installation of the
library in the Intrinsic Library. Then, after each successive refinement
of "FileI0", we could run the saved temporary file by running
"{make/0bjIOLib()r" without having to go thru the stepping process. Our
alternatives to this procedure are creating another exec file to generate
only the selected parts, or running (and rerunning) the exec file for the

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 18

whole 1ibrary, or runningeach sub-process ingependently (which reguires
more of your attention).

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 19

The following few points may be useful to remember when creating exec files:

Use modular exec files. It may helpful to think of exec files as procedures
which are called via the SUBMIT commend. The more modular your exec files are,
the easier it will be touse the stepping facility on them.

Create standard exec files for common functions; for example, use one exec file
to performall your compilations. One advantage of this is that youonly have to
edit one file when the interface to the tool changes (as it has in the case of the
assembler).

Use optional parameters to support features which are not always (or often) used
(such as the ability to compile against an alternate intrinsic library in your
compile exec file). The parameter mechanism is such that you can remain
oblivious tooptional parameters if youdon't need the functions they support.

Write your exec files to prompt for information which was not supplied in
parameters. This way you don‘t need to remember the meaning of a large number of
parameters.

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 20

ExecErrors

The preprocessor can recognize a number of errors during its invocation and
execution. The format in which most errors are reported is:

ERROR in <err loc>

<curr line>

{err marker>

{err msg>

where

{err loc> is either 'invocation line’ or ‘line #<n)> of file
“(fllex™!

<curr line> is the current exec line when the error uwas
detected

{err marker> is a 1ine with a question mark indicating where
the preprocessor was in <curr line> when the
error was detected

{err msg> : is one of the messages 1isted below.

10 errors are followed by an additional 1ine with the text of the 0S error raised
during the I0operation. The errors detected are as follows:

I0Errors:

Unable toopen input file "<file>".
Unable to open temporary file "<file>".
Unable toaccess file "<(file>".

Unable torerun file "<file>".

Other ErTOTrS:

File does not begin with "$EXEC".
End of Exec file before "$ENDEXEC".
$EXEC command other than at start.
No Exec file specified.

Hore than 10 parameters.

No closing ")" found.

Line buffer overflow (»>255 chars).
Invalid Exec option: <opticnchar>.
Invalid Exec option on SUBMIT: <optionchar>.
End of Exec file in comment.
Invalid percent: not "%n" form.
Garbage at end of command.

No argument to SUBMIT.

ELSE, ELSEIF or ENDIF not inIF.
ELSEIF after ELSE.

File containsunfinished IF.
Nothing following "<tilde>".

Fred Forsman March 9, 1983

Exec File Preprocessor _ Page 21

Qut of memory. Processing aborted.

Bad temp file name generated: "<file>".

No value returned from file called as function.
RETURN with value in file not called as function.

and
Invalid command. <token, expected.
where <token> may be

String value

"%n" parameter

Terminating string gelimiter
0l=l0 Or u(> “

" (> "

Boolean value

Comma (1ist delimiter)

wsn

valid command keyword
Command

Fred Forsman March 9, 1983

