
APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

290 SW 43rd. Street
Renton, WA 98055
206-251-6548

Lisa Workshop
Supplement
Version 1.0
APDA# KMSLWI

About the Lisa Workshop Supplement

Contents: Section:

About the Lisa Workshop Supplement
Putting Together A Macintosh Application
Workshop 3.9 Update

o
1
2
3
4
5
6
7

Writeln Window
Equate and Glue Files for the Lisa Workshop
PPostEvent, NGetTrapAddress and NSetTrapAddress
Yanked Text
Resource File Builder

Disks in the Lisa Workshop Supplement
The Lisa Workshop Supplement contains the following three disks:

Lisa Workshop 1

Lisa Workshop 2

Lisa Workshop 3

Lisa Update 1,2

Lisa Workshop 3.0 formatted disk; can be used with any version of the Lisa
Workshop from version 3.0 on. Contains equate files needed when using
the Lisa Workshop to create Macintosh applications.

Lisa Workshop 3.0 formatted disk; can be used with any version of the Lisa
Workshop from verison 3.0 on. Contains object files needed when using
the Lisa Workshop to create Macintosh applications.

Lisa Workshop 3.0 formatted disk; can be used with any veri son of the Lisa
Workshop from version 3.0 on. Contains interface files needed when using
the Lisa Workshop to create Macintosh applications. Also contains the
Resource File Builder, described in Section 7 of this document.

Lisa Workshop 3.0 formatted disks; can be used with any version of the
Lisa Workshop from version 3.0 on. Contain the necessary files to update
the Lisa Workshop from version 3.0 to version 3.9. Includes new versions
of the Workshop Shell, the linker, the editor, the assemble, RMaker, and
MacCom.

Please note: The files included here are meant to replace all of the previous versions that were
sent out in previous Software Supplements. Please do no use your older versions; use these
newer copies.

About the Lisa Workshop Supplement
Lisa Workshop Supplement . Page 0-1

Contents of the Lisa Workshop Supplement Disks:

Contents of Lisa Workshop 1:

TLAsm/ATalkEqu.text
TLAsm/Fixmath.text
TLAsm/FSEqu.text
TLAsm/FSPrivate.text
TLAsm/Graf3DEqu.text
TLAsm/HardwareEqu.text
TLAsm/PackMacs.text
TLAsm/PREqu.text
TLAsm/Private.text
TLAsm/QuickEqu.text
TLAsm/SANEMacs.text
TLAsm/SCSIEqu.text
TLAsm/SonyEqu.text
TLAsm/SysEqu.text
TLAsm/SysErr.text
TLAsm/TimeEqu.text
TLAsm/ToolEqu.text
TLAsm/Traps.text

Contents of Lisa Workshop 2:

ATalk/ABPackage.obj
ATalk/ABPackage.Rsrc
ATalk/ABPackageR.text
obj/ABPasCalls.obj
obj/ABPaslntf.obj
obj/AppleTalk.obj
obj/FixMath.obj
obj/FixMathAsm.obj
obj/Graf3D.obj
obj/Graf3DAsm.obj
obj/MacPrint.obj
obj/MemTypes.obj
obj/OSlntf.obj
obj/OSTraps.obj
obj/Packlntf.obj
obj/PackTraps.obj
obj/Paslnit.obj
obj/PasLib.obj
obj/PasLibAsm.obj
obj/PasLiblntf.obj
obj/PrintCalls.obj
obj/QuickDraw.obj
obj/ResEd.obj
obj/RTLib.obj
obj/SANELib.obj
obj/SANELibAsm.obj
obj/SCSllntf.obj
obj/SCSITraps.obj
obj/Toollntf.obj

About the Lisa Workshop Supplement
Lisa Workshop Supplement Page 0-2

obj/ToolTraps.obj
obj/WritelnWindow.obj
serial/Async/Mac.obj
serial/Async/MacXL.obj
serial/AsyncR.text

Contents of Lisa Workshop 3:

intrfc/AppleTalk.text
intrfc/FixMath.text
intrfc/Graf3D.text
intrfc/MacPrint.text
intrfc/MemTypes.text
intrfc/OSlntf.text
intrfc/Packlntf.text
intrfc/PasLiblntf.text
intrfc/QuickDraw.text
intrfc/ResEd.text
intrfc/SANELib.text
intrfc/SCSlIntf.text
intrfc/Toollntf.text
intrfc/WritelnWindow.text
RFB.obj
RFB/exec.text
SOURCE/RFB.TEXT

About the Lisa Workshop Supplement
Lisa Workshop Supplement Page 0-3

Documents in the Lisa Workshop Supplement:

Putting Together A Macintosh Application describes the steps for creating an application
using the Lisa Workshop.

The Lisa Workshop Update tells how to update your verison 3.0 Lisa Workshop to version
3.9. If you have version 2.0, you must update to version 3.0 before you can use this update.

The Writeln Window is a debugging aid that you can use in your Lisa Workshop Pascal
programs to help in development of applications.

The document Equate and Glue Files for the Lisa Workshop explains the object and text
files used for development under the Lisa Workshop. .

PPostEvent, NGetTrapAddress and NSetTrapAddress detail new Trap call which have
been added.

The printout Yanked Text lists equates which have been removed from public and private include
files. The list can be searched for routines, equates, or other structures which your program may
have referenced in the past, but are no longer resolved due to their removal from the include files.

The Resource File Builder is a utility that aids in application development where lots of
resources are used. It can save time by preventing recompilation of RMaker files at each build.

About the Lisa Workshop Supplement
Lisa Workshop Supplement . Page 0-4

MACINTOSH USER EDUCATION

,Putting Together a Macintosh Application /PUTTING/TOGETHER

Modification History: First Draft (ROM 2.45) Caroline Rose 6/9/83
Second Draft (ROM 4.4) Caroline Rose 7/14/83
Third Draft (ROM 7) Caroline Rose 1/13/84
Fourth Draft Caroline Rose 4/9/84
Fifth Draft Caroline Rose 7/10/84
Sixth Draft Caroline Rose 5/5/85

ABSTRACT

This manual discusses the fundamentals of preparing, compiling or
assembling, and linking a Macintosh application program on the Lisa
Workshop development system.

Summary of significant changes and additions since last draft:

-This manual now documents Lisa Workshop version 3.0 and the May.1985
Macintosh Software Supplement. Some of the information may not apply
to Workshop version 2.0.

-Changes have been made to the interface files and the files you link
with or include in your assembly-language source.

-The sections describing the Macintosh utility programs RMover and Set
File have been removed. These programs have been superseded by other
tools in the Macintosh Software Supplement.

CONTENTS

3 About This Manual
3 Conventions
4 Getting Started
6 The Source File
7 The Resource Compiler Input File
13 Defining Your Own Resource Types
14 The Exec File
19 Dividing Your Application Into Segments
20 Notes for Assembly-Language Programmers
23 Summary of Putting Together an Application

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL

This manual discusses the fundamentals of preparing, compiling or

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-1

assembling, and linking a Macintosh application program on the Lisa
Workshop development system. It assumes the following:

-You know how to write a Macintosh application in Pascal or assembly
language. Details on this maybe found in Inside Macintosh.

-You're familiar with the Macintosh Finder, which is described in
Macintosh, the owner's guide.

You need to have a Lisa 2/5 or 2/10 with at least 1 megabyte of memory, a
Workshop development system (version 2.0 or greater), and the Macintosh
Software Supplement.

Note: This manual applies to version 3.0 of the Workshop and the May 1985
Software Supplement.

After explaining some conventions it uses, the manual begins by
presenting the first steps you should take once your Lisa has been. set up
for Macintosh application development under the Workshop. It then
discusses each of the three files you'll create to develop your
application: the source file, the Resource Compiler input file, and an
exec file.

The next section discusses how to divide an application into segments.
This is followed by important information for programmers who want to
write all or part of an application in assembly language.

Finally, there's a summary of the steps to take to put together a
Macintosh application.

Note: This manual presents a recommended scenario, not by any means the
only possible one. Details, such as what you name your files, may
vary.

Conventions

Sometimes this manual shows you what to do in a two-column table, the
first one labeled "Prompt" and the second "Response". The first column
shows what appears on the Lisa to "prompt" you; it might be a request
for a file name, or just the Workshop command line. This column will not
show all the output you'll get from a program, only the line that prompts
you. (There may have been a lot of output before that line.) The second
column shows what you type as a response. The following notation is
used:

Notation Meaning

<ret>
[]

Press the RETURN key.
Explanatory comments are enclosed in [];
you don't type them.

A space preceding <ret> is not to be typed. It's there only for
readability.

[] in the "Prompt" column actually appear in the prompt; they

Putting 'Together A Macintosh Application
Lisa Workshop Supplement Page 1-2

enclose defaults.

Except where indicated otherwise, you may type letters in any combination
of uppercase and lowercase, regardless of how they're shown in this
manual.

GETTING STARTED

Once your Lisa has been set up for Macintosh application
development, it's a good idea to orient yourself,,~to the
files installed on it. You can use the List c~and in the File
Manager to list all the file names. Certain subsets of related files
begin with the same few letters followed by a slash; some typical naming
conventions are as follows:

Beginning
of file name

Intrfc/
TlAsm/
Obj/
Work/
Back/
Example/

Description

Text files containing the Pascal interfaces
Text files to include when using assembly language
Object files
Your current working files
Backup copies of your working files
Examples provided by Macintosh Technical Support

Note: This manual assumes that your files observe the above
naming conventions.

You'll write your application to a Macintosh system disk, which means a
Macintosh disk that contains the system files needed for running an.
application. The necessary system files are on the Mac Build disk
that you received as part of the Macintosh Software Supplement. Use that
disk only to create other system disks. Here"s how:

1. Insert the Mac Build disk into the Macintosh and open it.

2. Copy the System Folder to a new Macintosh disk; the exact method you use
depends on whether you have an external drive. See the Macintosh owner's
guide for more information.

Note: One of the files in the System Folder, Imagewriter, is needed only if
you're going to print to an Imagewriter printer; to save space, you
might not want to copy it if you don't need it.

If you also need or want any of the files on the MacStuff disks included
in the Macintosh Software Supplement, copy them as well.

As described in detail in the following sections, you'll create a source
file, Resource Compiler input file, and exec file for your application,
insert your Macintosh system disk into the Lisa, and run the exec file.
The exec file will compile the source file, link the resulting object
file with other required object files, run the Resource Compiler to
create the application's resource file, and run a program called MacCom
to write the application to the Macintosh disk. When MacCom is donef..it
will eject the disk; to tryout your application, you'll insert the

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-3

ejected disk into the Macintosh and just open the application's icon.

THE SOURCE FILE

Your working files will of course include the source file for your
application. Suppose, for example, that you have an application named
Samp. The source file would be Work/Samp.Text and would have the
structure shown below.

Note: "Samp" is used as the application name in all examples in this
manual. You don't have to use the exact name 6f your application;
anyabbreviation will do.

PROGRAM Samp;

Samp -- A sample application. written in Pascal
by Macintosh User Education 5/1/85

List the following in the order shown.

USES {$U Obj/MemTypes MemTypes,
{$U Obj/QuickDraw QuickDraw,
{$U Obj/OSIntf OSIntf,
{$U Obj/ToolIntf ToolIntf,
{$U Obj/MacPrint MacPrint, OPTIONAL
{$U Obj/SANELib SANELib, OPTIONAL
{$U Obj/PackIntf PackIntf; OPTIONAL

Your LABEL, CONST, TYPE, and VAR declarations will be here.

Your application's procedures and functions will be here.]

BEGIN

[The main program will be here.]

END.

Each line in the USES clause specifies first a file name and then a unit
name (which happen to be the same in all cases here). The file contains
the compiled Pascal interface for that unit; the corresponding text file
name begins with "Intrfcl" rather than "Obj/". The Pascal interface
includes the declarations of all the routines in the unit. It also
contains any data types, predefined constants, and, in the case of
QuickDraw, Pascal global variables.

File name

Intrfc/MemTypes.Text
Intrfc/QuickDraw.Text
Intrfc/OSIntf.Text
Intrfc/ToolIntf.Text
Intrfc/MacPrint.Text
Intrfc/SANELib.Text

Interface it contains

Basic Memory Manager data types
QuickDraw
Operating System
Toolbox, except QuickDraw
Printing Manager
Floating-Point Arithmetic and

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-4

Intrfc/PackIntf.Text
Transcendental Functions Packages
Other packages

You only have to include the files for the units your application uses.
It doesn't do any harm to include them all, but it will take somewhat
longer for your program to compile. If you're using any units of your
own, just add their Pascal interface files at the end of the USES clause.

You can divide the code of an application into· several segments and have
only some of them in memory at a time. The section "Dividing Your
Application Into Segments" tells how to specify segments in your source
file. If you don't specify any, your program will consist of a single,
blank named segment.

THE RESOURCE COMPILER INPUT FILE

You'll need to create a resource file for your application. This is done
with the Resource Compiler, and you'll have among your working files an
input file to the Resource Compiler. One convention for naming
this input file is to give it the name of your source file followed by
"R" (such as Work/SampR.Text) .

The first entry in the input file specifies the name to be given to
the output file from the Resource Compiler, the resource file itself;
you'll enter "Work/" followed by the application name and ".Rsrc".
Another entry tells which file the application code segments are to be
read from. (The code segments are actually resources of the application.)
You'll enter the name of the Linker output file specified in the exec file
for building your application, as described in the next section.

If you don't want to include any resources other than the code segments,
you can have a simple input file like this:

* SampR -- Resource input for sample application
* Written by Macintosh User Education 5/1/85

Work/Samp.Rsrc

Type SAMP = STR
,0

Samp Version 1.1 -- May 1, 1985

Type CODE
Work/SampL,O

This tells the Resource Compiler to write the resulting resource file to
Work/Samp.Rsrc and to read the application code segments from Work/SampL.Obj.
It also specifies the file's signature and version
data, which the Finder needs.

It's a good idea to begin the input file with a comment that describes
its contents and shows its author, creation date, and other such
information. Any line beginning with an asterisk (*) is treated as a
comment and ignored. (You cannot have comments embedded within

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-5

lines.) The Resource Compiler also ignores the following:

-leading spaces (except before the text of a string resource)

-embedded spaces (except in file names, titles, or other text strings)

-blank lines (except for those indicated as required)

The first line that isn't ignored specifies the name to be given to
the resulting resource file. Then, for each type of resource to be
defined, there are one or more "Type statements". A Type statement
consists of the word "Type" followed by the resource type (without
quotes) and, below that, an entry of following format for each
resource:

file name!resource name,resource ID (resource attributes)
type-specific data

The punctuation shown here in the first line is typed as part of the
format. Don't enter spaces where none are shown, such as after the
comma. You must always provide a resource ID. Specifications other than
the resource ID mayor may not be required, depending on the resource
type:

-Either there will be some type-specific data defining the resource or
you'll give a file name indicating where the resource will be read from.
Even in the absence of a file name, you QmustR include the comma before
the resource ID.

-You specify a resource name along with the file name for fonts and
drivers. The Menu Manager procedures AddResMenu and InsertResMenu
will put these resource names in menus. Enter the names in the
combination of uppercase and lowercase that you want to appear in the
menus.

-Resource attributes in parentheses are optional for all types. They're
given as a number equal to the value of the resource attributes byte, and
o is assumed if none is specified. For example, for a resource that's
purgeable but has no other attributes set, the input will be "(32)".

If you want to enter a nonprinting or other unusual character in your
input file, either by itself or embedded within text, just type a back
slash (\) followed by the ASCII code of the character in hexadecimal.
For example, the Resource Compiler interprets \OD as a Return character
and \14 as the apple symbol.

The formats for the different types of resources are best explained by
example. Some examples are given below along with remarks that provide
further explanation. Here are some points to remember:

-Most examples list only one resource per Type statement, but you can
include as many resources as you like in a single statement.

-In every case, resource attributes in parentheses may be specified after
the resource ID.

-All numbers are base 10 except where hexadecimal is indicated.

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-6

-The Type statements may appear in any order in the input file.

Type WIND
,128
Status Report
40 80 120 300
Visible GoAway
o
o

Type MENU
,128

* menu for desk accessories
\14

About Samp ...

,129
Edit

Cut/X
Paste/Z
(-

Word Wrap!

Type MENU
,200
201
Patterns

Type CNTL
,128
Help
55 20 75 90
Visible
o
1
000

Type ALRT
,128
120 100 190 250
300
F721

Type DLOG
,128

* modal dialog
100 100 190 250
Visible 1 NoGoAway 0
200

,129
* modeless dialog

100 100 190 250
Visible 0 GoAway 0
300
Find and Replace

Window template
Resource ID
Window title
BoundsRect (top left bottom right)
For FALSE, use Invisible or NoGoAway
ProcID (window definition ID)
Ref Con (reference value)

Menu, standard type
Resource ID (becomes the menu ID)

Menu title (apple symbol)
Menu item
Blank line required at end of menu
Resource ID
Menu title
Menu items, one per line, with meta­

characters, ! alone for check mark
You cannot specify 'a blank item; use (-

for a disabled continuous line.
Blank line required at end of menu
Menu, nonstandard type
Resource ID [SEE NOTE 1 BELOW]
Resource ID of menu definition procedure
Menu title (may be followed by items)
Blank line required at end of menu
Control template
ResourceID
Control title
BoundsRect
For FALSE, use Invisible
ProcID (control definition ID)
Ref Con (reference value)
Value minimum maximum

Alert template
Resource ID
BoundsRect
Resource ID of item list
Stages word in hexadecimal

Dialog template
Resource ID

BoundsRect
1 is procID, 0 is ref Con
Resource ID of item list
Title (none in this case)

BoundsRect
o procID, 0 ref Con
Resource ID of item list
Title

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-7

Type DITL
,200
5
Btn1tem Enabled
60. 10 80 70
Start

ResCltem Enabled
60 30 80 100
128

StatText
10 93 26
Seed

Iconltem
10 24 42
128

Userltem
20 50 60

Type ICON
,128
0380 0000

1ECO 3180

Type ICN#
,128
2
0001 0000

0002 8000

Type CURS
,300

Disabled
130

Disabled
56

Disabled
85

7FFC . 287F
OFCO . 1FF8
0008 0008

Type PAT
,200
AADDAA66AADDAA66

Type PAT#
,136

'2
5522552255225522
FFEEDDCCFFEEDDCC

Type STR
,128

This is your string

Type STR#
,129

First string

Item list in dialog or alert
Resource ID
Number of items
Also: Chk1tem, Radio1tem
Display rectangle
Title
Blank line required between items
Control defined in control template
Display rectangle
Resource 1D of control template

Also: EditText
Display rectangle
The text (may be blank if EditText)

Also: Picltem
Display rectangle
Resource 1D of icon

Application-defined item
Display rectangle

Icon
Resource ID
The icon in hexadecimal (32 such lines
altogether)

Icon list
Resource ID
Number of icons
The icons in hexadecimal (32 such lines
altogether for each icon)

Cursor
Resource ID
The data: 64 hex digits on one line
The mask: 64 hex digits on one line
The hotSpot in hexadecimal (v h)

Pattern
Resource ID
The pattern in hexadecimal

Pattern list
Resource ID
Number of patterns
The patterns in hexadecimal, one per
line

String
Resource ID
The string on one line (leading spaces

not ignored)
String list
Resource ID
The strings

Putting Together A Macintosh Application
Lisa Workshop Supplement . Page 1-8

Second string
* note Return in next string
Third string\ODcontinued

Type DRVR
Obj/Monkey!Monkey,17 (32)

Type FREF
,128
APPL 0 TgFil

Type BNDL
,128
SAMP 0
2
ICN# 1
o 128
FREF 1
o 128

Type FONT
Obj/Griffin!Griffin,400@0
Obj/Griffin10,400@10
Obj/Griffin12,400@12

Type CODE
Obj/SampL,O

Notes:

Blank line required after last string
Desk accessory or other device driver
File name!resource name, resource ID

[SEE NOTE 2 BELOW
File reference
Resource ID
File type local ID of icon file name

(omit file name if none)
Bundle
Resource ID
Bundle owner
Number of types in bundle
Type and number of resources
Local ID o maps to resource ID 128
Type and number of resources
Local ID 0 maps to resource ID 128

Font (or FWID for font widths)
File name!resource name, resource ID
File name,resource ID SEE NOTE 3
File name, resource ID BELOW

Application code segments
Linker output file name,resource ID

[SEE NOTE 4 BELOW]

1. Notice that the input for a nonstandard menu has one extra line in it:
the resource ID of the menu definition procedure, just following the
resource ID of the menu. If that line is omitted (that is, if the menu's
resource ID is followed by a line containing text rather than a number),
the resource ID of the standard menu definition procedure (0) is assumed.

2. The Resource Compiler adds a NUL character (ASCII code 0) at the
beginning of the name you specify for a 'DRVR' type of resource. This
inclusion of a nonprinting character avoids conflict with file names that
are the same as the names of desk accessories.

3. The resource ID for a font resource has a special format:

font number @ size

The actual resource ID that the Resource Compiler assigns to the font is

(128 * font number) + size

Three font resources are listed in the example above. Size 0 is used to
provide only the name of the font (Griffin in this case); a file name
must also be specified but is ignored. The two remaining font resources
define the Griffin font in two sizes, 10 and 12.

4. For a 'CODE' type of resource, ".Obj" is appended to the given file name,
and the resource ID you specify is ignored. The Resource Compiler

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-9

always creates two resources of this type, with ID numbers 0 and 1, and
will create additional ones numbered sequentially from 2 if your
program is divided into segments.

The Type statement for a resource of type 'WDEF', 'MDEF', 'CDEF', 'FKEY',
'KEYC', 'PACK', or 'PICT' has the same format as for 'CODE': Only a file
name and a resource ID are specified. For the 'PICT' type, the file
contains the picture; for the other types, it contains the compiled code
of the resource, and the Resource Compiler appends ".Obj" to the file
name.

Note: The 'MBAR' resource type is not recognized by the Resource Compiler.

If your application is going to write to the resulting resource file as
well as read it, you should place the Type statement for the
code segments at the end of the input file. In general, any resources
that the application might change and write out to the resource file
should be listed first in the input file, and any resources that won't be
changed (like the code segments) should be listed last. The reason for
this is that the Resource Compiler stores resources in the reverse of the
order that they're listed, and it's more efficient for the Resource
Manager to do file compaction if the changed resources are at the end of
the resource file.

Defining Your Own Resource Types

You can use one of the three types GNRL, REXA, and ANYB to define
your own types of resources in the Resource Compiler input file. GNRL
allows you to specify your resource data in the manner best suited to
your particular data format; you specify the data as you want it to
appear in the resource. A code (beginning with a period) tells the
Resource Compiler how to interpret what you enter on the next line or
lines (up to the next code or the end of the Type statement). The
following illustrates all the codes:

Type GNRL
,128
.P

A Pascal string
Another Pascal string

.S
A string

. I
0

1
.L
5438
.R
526FEEC942E78EA4
OF4C
.B
MyData 36 256

General type
Resource ID
Pascal strings (with length byte), one
per line

Strings without length byte, one per
line

Integers (decimal), one per line

Long integers (decimal), one per line

Bytes in hexadecimal, any number
total, any number per line

Bytes from a file
File name number of bytes offset
Blank line required at end of statement

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-10

You can use an equal sign (=) along with the GNRL type to define a
resource of any desired format and with any four-character resource type;
for example, to define a resource of type 'MINE' consisting of the
integer 57 followed by the Pascal string 'Finance charges', you could
enter this:

Type MINE
,400
. I
57
.P

GNRL

Finance charges

The Resource Manager call GetResource('MINE',400) would return a handle
to this resource.

The types HEXA and ANYB simply offer alternatives to the .H and .B
opti~ns (respectively) of the GNRL type, as shown below.

Type HEXA
,201
526FEEC942E78EA4
OF4C

Type ANYB
MyData,200
36 256

Bytes in hexadecimal
Resource ID
The bytes (any number total, any

number per line)
Blank line required at end

Bytes from a file
File name, resource ID
Number of bytes offset in file

You can also define a new resource type that inherits the properties of
a standard type. For example,

Type XDEF = WDEF

defines the new type 'XDEF', which the Resource Compiler treats exactly
like 'WDEF'. The next line would contain a file name and resource ID
just as for a 'WDEF' resource.

THE EXEC FILE

It's useful for each application to have an exec file that does
everything necessary to build the application, including compiling,
linking, creating the resource file, and writing to a Macintosh
disk. The name of the exec file might, for example, be the
source file name followed by "X" (for "eXec"). Work/SampX.Text, the exec
file for the Samp application, is shown below.

$EXEC
P{ascal}$M+
Work/Samp
{no list file}
{default output file}
L{ink}?

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-11

+X
{no more options}
Work/Samp
Obj/QuickDraw
Obj/OSTraps
Obj/ToolTraps
Obj/PrLink
Obj/SANELibAsm
Obj/PackTraps
Obj/PasInit
Obj/PasLib
Obj/PasLibAsm
Obj/RTLib
{end of input files}
{listing to console}
Work/SampL
R{un}RMaker
Work/SampR
R{un}MacCom

OPTIONAL
OPTIONAL
OPTIONAL

F{inder info}Y{es}L{isa->Mac}Work/Samp.Rsrc
Samp
APPL
SAMP
{no bundle bit}
E{ject}Q{uit}
$ENDEXEC

The file begins with $EXEC and ends with $ENDEXEC. Everything in between
(except for comments in braces) is exactly what you would type on your
Lisa if you were not using an exec file. To show what the various
entries in this file accomplish, the table below indicates what each of
them is a response to, and shows your response as it is in the exec file
or as it would be if you were using the keyboard. The numbers on the
left are given for reference in the explanation that. follows the table.

[1]

[2]

[3]

Prompt

Workshop command line
Input file - [.TEXT]
List file - [.TEXT]
Output file - [Work/Samp] [.OBJ]

Workshop command line
Input file [.OBJ] ?
Options ?

Options ?

Input file [.OBJ] ?
Input file [.OBJ] ?
Input file [.OBJ] ?

Input file [.OBJ] ?
Input file [.OBJ] ?
Listing file [-CONSOLE] / [.TEXT]
Output file? [OBJ.]

Workshop command line

Putting Together A Macintosh Application
Lisa Workshop Supplement

Response

P [for Pascal]
Work/Samp <ret>
<ret> [for none]
<ret> [for Work/Samp.Obj]

L [for Link]
?-<ret> [for options]
+X <ret>
<ret> [no more options]
Work/Samp <ret>
Obj/QuickDraw <ret>
Obj/OSTraps <ret>
[other input files]
Obj/RTLib <ret>
<ret> [end of input files]
<ret> [for -CONSOLE]
Work/SampL <ret>

R [for Run]

Page 1-12

[4]

Run what program?
Input file [sysResDef] [.TEXT] -

Workshop command line
Run what program?
MacCom command line
Always prompt for the Finder info

when writing to a Mac file?
(Y or N) [No]

MacCom command line
Lisa files to write to Mac disk?
Copy to what Mac file?
Type? [????]
Creator? [????]
Set the Bundle Bit? (Y or N) [No]
MacCom command line
MacCom command line

RMaker <:ret>
Work/SampR <ret>

R [for Run]
MacCom <ret>
F [for Finder info]

Y [for Yes]
L [for Lisa->Mac]
Work/Samp.Rsrc <ret>
Samp <ret>
APPL <ret>
SAMP <ret>
<ret> [for No]
E [for Eject]
Q [for Quit]

Here's what you accomplish at each of the steps:

1. You compile the Pascal source code (Work/Samp.Text), resulting in an
objectfile (Work/Samp.Obj).

2. You link the application's object file with other object files (resulting
in the output file Work/SampL.Obj) .

3. You run the Resource Compiler t'o create the
application's resource file (Work/Samp.Rsrc, as specified in
Work/SampR. Text , the input file to the Resource Compiler). Included in
the resources are the application's code segments, which are read from
the Linker output file.

4. You use the MacCom program to write the resource file
to the Macintosh disk, giving the file the exact name you want your
application to have. You set its file type to 'APPL' and
its creator to the signature specified in the resource file. Since there~s
no bundle in Samp's resource file, you don't set the bundle bit. Finally,
you ask MacCom to eject the disk.

The files linked with the application's object file in step 3 are
described below. Most of them contain a trap interface, which is a set of
small assembly language routines that make it possible to call the
corresponding unit or units from Pascal. The files should be listed in the
order shown. Specify the optional files only if your application uses the
routines they apply to.

File name

Obj/MemTypes.Obj
Obj/QuickDraw.Obj

Obj/OSTraps.Obj
Obj/ToolTraps.Obj

Obj/PrLink.Obj

Description

Basic Memory Manager data types
Pascal interface to QuickDraw, needed so
the Linker will know how many QuickDraw
globals there are
Trap interface for the Operating System
Trap interface for the Toolbox (except
QuickDraw)
The Printing Manager (except low-level)

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-13

Obj/PrScreen.Obj

Obj/SANELibAsm.Obj

Obj/PackTraps.Obj

Obj/PasInit.Obj
Obj/PasLib.Obj
Obj/PasLibAsm.Obj
Obj/RTLib.Obj

The low-level Printing Manager routines;
can be specified Qinstead ofR PrLink
The Floating-Point Arithmetic and
Transcendental Functions Packages
Trap interface for other packages

\

/

\ Predefined Pascal routines,
/ such as POI'NTER and ORD4

Before running the Exec file, insert a Macintosh system disk
into the Lisa. Run the exec file as follows:

Prompt

Workshop command line
Run what program?

Response

R [fOr Run]
<Work/SampX <ret>

When the disk is ejected, remove it and insert it into the Macintosh.
To tryout your application, just open its icon.

Warning: If you don't set your application's file type and creator, either
you won't be able to open its icon in the usual way, or a

different application may start 'up when you do open it!

Notice that if you change the application's signature or the setting of
its bundle bit, step 4 of the above exec file will have to be edited
accordingly. Furthermore, if you create an icon for your application (or
modify it), you'll have to delete the invisible Desktop file, otherwise
the Finder won't know about the new icon. You can delete the Desktop
file by using the Delete command in MacCom on the Lisa, just before
copying the application to the disk with MacCom, or by holding down the
Option and Command keys when you start up the system disk on the
Macintosh.

Note: Deleting the Desktop file can also affect the folder structure on
the disk.

Before making major changes to your application, it's a good idea to back
it up. You can use the Backup command in the File Manager to back up all'
files beginning with "Work/" to files beginning with "Back/"
(Work/=, Back/=) . Also, you might want to periodically back up your
working files onto 3-1/2-inch disks.

There are several ways you could refine the exec file illustrated
here; exactly what you do will depend on your particular situation.
Some possibilities are listed below.

-You can set up the exec file to compile or link only if actually
necessary. For more information, see your Workshop documentation or the
sample general purpose exec file (Example/Exec. Text) provided in the
Macintosh Software Supplement.

-To save disk space, you can add commands to the exec file to make it

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-14

delete the two intermediate files: the object file for the application
and the Linker output file.

-If you want to keep the intermediate files around but are working on more
than one application, you can save disk space by giving the intermediate
files the same name for all applications (say, i'Work/Temp").

-You can embed the exec file in your program's
source file. To do this, you must use "(*" and "*)" around the exec part
of the file and use the I invocation option. See your Workshop
documentation for details.

DIVIDING YOUR APPLICATION INTO SEGMENTS

You can specify the beginning of a segment in your application's source file
as follows:

{$S segname}

where segname is the segment name, a Sequence of up to eight characters.
Normally you should give the main segment a blank name. For example, you
might structure your program as follows:

PROGRAM Samp;

The USES clause and your LABEL, CONST, and VAR declarations
will be here.]

{$S Segl}

[The procedures and functions in Seg1 will be here.]

{$S Seg2}

[The procedures and functions in Seg2 will be here.]

{$S

BEGIN

[The main program will be here.]

END.

You can specify the same segment name more than once; the routines will
just be accumulated into that segment. To avoid problems when moving
routines around in the source file, some programmers follow the practice
of putting a segment name specification before every routine.

Warning: Uppercase and lowercase letters QareR distinguished in segment
names. For example, "Seg1" and "SEG1" are not equivalent names.

If you don't specify a segment name before the first routine in your
file, the blank segment name will be assumed there.

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-15

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

You can write all or part of your Macintosh application in assembly
language. Suppose, for example, that you write most of it
in Pascal but have some utility routines written in assembly language.
Your working files will include a source file and object file for the
assembly-language routines (say, Work/SampA.Text and Work/SampA.Obj) .
The source file will have the structure shown below.

SampA -- Assembly-language routines for Samp
Written by Macintosh User Education 5/1/85

List .£he following in the order shown.]

. INCLUDE T1Asm/SysEqu.Text

. INCLUDE T1Asm/SysTraps.Text

. INCLUDE T1Asm/SysErr.Text

. INCLUDE T1Asm/QuickEqu.Text

. INCLUDE T1Asm/QuickTraps.Text

. INCLUDE T1Asm/ToolTraps.Text

. INCLUDE T1Asm/ToolEqu.Text

. INCLUDE T1Asm/PrEqu.Text OPTIONAL

. INCLUDE T1Asm/SANEMacs.Text OPTIONAL

. INCLUDE T1Asm/PackMacs.Text OPTIONAL

. INCLUDE T1Asm/FSEqu.Text OPTIONAL

Here there will be a .PROC or .FUNC directive for each routine,
followed by the routine itself. Two examples follow.

PROCEDURE MyRoutine (count: INTEGER);

.PROC MyRoutine

MyRoutine
[the code of MyRoutine]

FUNCTION MyOtherRoutine : LongInt;

.FUNC MyOtherRoutine

MyOtherRoutine
[the code of MyOtherRoutine]

.END

Note: The .PROC or .FUNC directive clears the symbol table, so symbols
defined in one routine can't be referred to in another (without an
explicit reference using .REF). If you want to share code between
routines, you can instead have a single .PROC directive for SampA
followed by a .DEF directive for each routine name.

Including unneeded files with .INCLUDE directives will do no harm except
make your program take longer to assemble. The files marked as optional

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-16

above are the least commonly needed; even some of the others may not be
required. Here's what the files contain:

File name

TIAsm/SysEqu.Text
TIAsm/SysTraps.Text
TIAsm/SysErr.Text
TIAsm/QuickEqu.Text
TIAsm/QuickTraps.Text
TIAsm/ToolTraps.Text
TIAsm/ToolEqu.Text
T lAsm/P rEqu . Text
TIAsm/SANEMacs.Text

TIAsm/PackMacs.Text
TIAsm/FSEqu.Text

Description

System equates
System traps
System error equates
QuickDraw equates
QuickDraw traps
Toolbox traps, except QuickDraw
Toolbox equates, except QuickDraw
Equates for Printing Manager
Macros and equates for Floating-Point
Arithmetic and Transcendental Functions
Packages
Macros and equates for other packages
File system equates

If you've created any similar files for units of your own, just add
.INCLUDE directives for them after the last .INCLUDE directive shown
above.

To specify the beginning of a segment in assembly language, you can use
the directive

.SEG 'segname'

where segname is the segment name, a sequence of up to eight characters.

For each assembly-language routine invoked from Pascal, the Pascal source
file for your application will include an external declaration. For
example:

PROCEDURE MyRoutine (count: INTEGER); EXTERNAL;
FUNCTION MyOtherRoutine: LongInt; EXTERNAL;

If the routines form a unit that may be used by other
applications, you should instead prepare a Pascal interface file for the
unit and include it in the USES clause in the application's source file.

You'll assemble the Work/SampA.Text file as shown below.

Prompt

Workshop command line
Input file - [.TEXT]
Listing file «CR> for none) - [.TEXT]
Output file - [Work/SampA] [.OBJ]

Response

A [for Assemble]
Work/SampA <ret>
<ret> [for none]
<ret> [for Work/SampA.Obj]

Note: If you do want a listing file, you may want to put a .NOLIST
directive before your first .INCLUDE and a .LIST after your last
one, so the contents of all the included files won't appear in the
listing.

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-17

You can assemble the code manually and then, after
you've created or changed the Pascal source file, use the exec
file for the application as illustrated earlier (adding
the name of the assembly-language object file to the list of Linker input
files). You may a.lso want to set up an exec file that just assembles the
assembly-language routines and links the resulting object file with
everything else, for when you've changed only those routines and not the
Pascal program. This exec file would begin with the responses listed
above and then continue with step 2 of the exec file illustrated earlier.

If the entire application is written in assembly language, the source
file will have the same structure as the one shown above, but at the beginning
of the main program you'll have a .MAIN directive:

.MAIN SampA

Even if you have nothing to link your program with, link it by itself;
the Linker will put it into a format that RMaker can accept.

SUMMARY OF PUTTING TOGETHER AN APPLICATION

This summary assumes the file-naming conventions presented in the
"Getting Started" section. Page numbers indicate where details may be
found.

ONE TIME ONLY:

-Prepare a Macintosh system disk by copying the System Folder from the
Mac Build disk to a new Macintosh disk (page 4).

-On the Lisa, use the Editor (via the Edit command) to create the
exec file (page 14).

ONCE PER VERSION OF YOUR APPLICATION'S SOURCE/RESOURCES:

-On the Lisa, use the Editor to create or edit the application
source file (page 6) or the Resource Compiler input file for your
application's resources (page 7).

-Insert the Macintosh system disk into the Lisa.

-On the Lisa, run the exec file (page 17). It will eject the Macintosh
disk when done.

-To tryout your application, remove the disk from the Lisa, insert it
into the Macintosh, and open the application's icon.

-When appropriate, back up your working files by
using the Backup command in the File Manager to copy Work/= to Back/=,
or onto a 3-1/2-inch disk (with, for example, Backup Work/= to -lower-=) .

Note: If you create an icon for your application (or modify it), you must
delete the invisible desktop file (page 17).

Putting Together A Macintosh Application
Lisa Workshop Supplement Page 1-18

Lisa Workshop Update
The Workshop 3.9 Update is an update to the Pascal Workshop 3.0 release. It contains the latest,
most up-to-date Workshop tools, including a new "Post-3.0" Pascal compiler with supporting
libraries, the latest SANE libraries, and new versions of the Workshop Shell, the linker, the editor,
the assembler, RMaker, and MacCom. The only Workshop 3.0 users who should not install the
entire update are those who are still using the "Old World" SANE floating point described in the
February Supplement.

The Workshop 3.9 Update consists of two disks, Lisa Workshop Update 1 and Lisa
Workshop Update 2. These disks have been formatted using the Lisa Pascal Workshop
version 3.0, so they cannot be readfrom a Lisa running Workshop 2.0 or from a Macintosh.
However, there is nothing on these disks which is useful to anyone who does not have Pascal
Workshop 3.0. The disks contain the following files:

Files on Lisa Workshop 3.0 disk Lisa Workshop Update 1:
Assembler.obj
Code.obj
Editor.obj
IOSPasLib.obj
IUManager.obj
Linker.obj
Mac.boot
MacCom.obj
StartUpdate.text
tmp/ContinueOrAbort.text
tmp/DoUpdate.text
tmp/GetDisk.text
tmp/YesNoFunc.text

Files on Lisa Workshop 3.0 disk Lisa Workshop Update 2:
intrfc/SANELib.text
obj/SANELib.obj
obj/SANELibAsm.obj
OSErrs.Err
Pascal.obj
PasErrs.Err
RMaker.obj
Shell.Workshop

Ho"v to install the Workshop 3.9 Update:
An automatic exec update procedure is provided to facilitate the installation of the new software. It
should work on all configurations of Workshop 3.0, even if Lisa 7/7 is installed on the same disk.
Before starting, make sure that you have at least 1000 blocks free on the hard disk that you will be
updating (this is recommended for any work with the Workshop). If necessary, you may be able
to free up some space by booting from another Workshop profile and Scavenging or booting from
Pascal 3.0 disk 1 and choosing "Repair"). Insert the Lisa Workshop Update Idisk (note
that the Workshop will not accept write-protected disks) and then invoke the
"StartUpdate. text" exec file by using the run command as follows:

R<-lower-StartUpdate

The update exec files will lead you through the rest of the update procedure (including allowing you
to choose which hard disk to update, prompting you to install Lisa Workshop Update 2 disk
when necessary, deleting the tmp/ files it uses, and finally asking you to reboot).

Lisa Workshop Update
Lisa Workshop Supplement Page 2-1

The Writeln Window

PasLib (Versions 0.6 and later) allows programmers to capture all Writeln output and
handle it in any convenient way. Using this capability, we have written WritelnWindow, a
Pascal unit that captures writelns and displays them in a regular window. This unit is
intended for DEBUGGING PURPOSES ONLY. DO NOT USE IT IN A PRODUCT FOR
RELEASE.

Features
• Automatically saves the last N lines of output. N can be any number subject

to memory limitations.
• The unit handles all events directed to the output window, including update,

activate, and mouse down events. The unit also handles resizing the window
and scrolling back through the output.

• Requires .5K of initialization code and 2K of resident code.
• Can be used with any standard Macintosh program.

Release Information

The 5/85 Workshop Supplement 1 disk contains he interface to the unit in the files
intrfcIWritelnWindow.text (human readable) and obj/WritelnWindow.obj (machine
readable). The source to the unit is in intrfc/WritelnWindow2.text on the 5/85 Workshop
Supplement 2 disk.

To use this unit, you must hook it into your Lisa Pascal application in a number of places.
NOTE: You must use V.D.7 of Paslib. (PasLib V.D.? consists of several files; it is included
on the 5/85 Workshop Supplement 1 disk). To use the unit, you should include the
following lines
in your USES statements:

{$U obj/PasLiblntf } PasLiblntf,
{$U obj/WritelnWindow } WritelnWindow;

At the start of your application, call WWlnit.

PROCEDURE WWlnit (numLines, numCharsPerLine: INTEGER);

After you have initialized the Toolbox, call WWNew. Pass this procedure the bounds for
the window, its title, whether it should have a goAway box and be visible, and the font and
font size to use for output. WWNew will allocate a window (in global storage) and setup
MacPasLib to send Writeln output to the window.

PROCEDURE WWNew (bounds: Rect; windowTitle: Str255; goAway: BOOLEAN;
visible: BOOLEAN; IinesToSave, outputFont, outputSize:
INTEGER);

Writeln Window
Lisa Workshop Supplement Page 3-1

The unit contains five other procedures; they must be called from your event loop. In each
case, you

C

must determine if the event is directed to the output window. The global variable
gDebugWindowPtr contains the WindowPtr for the output window. Test the contents of
this variable against the window receiving the 'event.

The four kinds of events are:
J

1. Activate Eve'nts: call WWActivate and pass in the modifiers field of the event
record.

PROCEDURE WWActiveateEvent (modifiers: INTEGER);

2. Update Events: call WWUpdateEvent.

PROCEDURE WWUpdateEvent;
I

3. Mouse Down Events: call WWMouseDown and pass in the value returned by
FindWindow, the mouse po'int (from the event record) and the modifiers (also
from the event record).

PROCEDURE WWMouseDown (where: INTEGER;
pt: Point;
modifiers: INTEGER);

4. Key Down Events: call WWReadChr or WWReadLn to capture characters in
your window.

FUNCTION WWReadChr: char;

PROCEDURE WWReadLn (Var s:str255);

The above is the minimum amount of code you need to use this unit in your program. You
might want to do other things; for example, if your window has a goAway box, the unit will
automatically hide the window if the user clicks in it. Your program would then need to
provide a way for the user to make the window visible again. (Call ShowWindow, passing
it the global variable gDebugWindowPtr.) If you want to handle your own scrolling, you can
call WWScro11. If you want to handle sizing the window, you also have WWlnvalGrowBox
and WWGrown.

The file example/DebugWindow.text on the 5/85 Examples 1 disk is an example
application which uses the WritelnWindow to display debugging information.

Writeln Window
Lisa Workshop Supplement . Page 3-2

Equate and Glue Files for Lisa Workshop and MDS

The following describes the organization, changes, and new features of the latest release of the
MDS and Lisa Workshop interface files. For specific details about the 128K ROM and
Hierarchical File System additions, you should refer to Inside Macintosh Vol. IV, the draft of
which is included in section 18. Also, you should refer to the the latest release of the Tech Notes
for futher descriptive information and/or "helpful hints" about using the new features.

NOTE: It is very important that you update your development system with all the latest versions of
the interface files. In addition, some routines are present only in newer Systems so you should use
the newest System Files available. The interface files for Dec2Str and Str2Dec provided in this
supplement depend on package number 7, which is present in the 128K ROM, and in System
files 3.2 (and later), but not in earlier System files.

Workshop Pascal Interfaces

A new set of the interface files needed for Lisa Pascal development for the Macintosh is included in
this release, which is a beta version of release 2.0. These files contain the additional 128K ROM
equates including the equates, traps, and data structures needed to use the new Hierarchical File
System. These files should be the basis for all future Macintosh development in Pascal.

Text Files

These files are the interface portions of the various libraries and include the relevant constants,
types, and routine definitions. New versions are marked with an *.

*intrfc/AppleTalk.text

*intrfc/FixMath.text

*intrfc/Graf3D.text

intrfc/MacPrint.text

intrfc/MemTypes.text

*intrfc/OSIntf.text

*intrfc/PackIntf.text

intrfc/PasLibIntf.text

*intrfc/QuickDraw.text

*intrfc/SANELib.text

intrfc/SpeechIntf.text

AppleTalk Pascal interface

Fixed point math

Three-dimensional graphics routines layered on top of
QuickDraw. Use with FixMath.

Device independent printing

Common types

Operating system routines (Memory Mgr, File Mgr, Sound
Driver, RAM serial driver, ...)

Packages (Standard File, International, Binary-Decimal
conversion, Disk initialization, List Manager, ...)

PasLib (non built-in) functions dealing with the heap and
Writeln redirection.

Graphics routines

Standard Apple Numerics Environment (IEEE floating point).

MacinTalk (speech synthesis)

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-1

*intrfc/Toollntf .text ToolBoxroutines (Menu Mgr, Dialog Mgr, Window Mgr, ...)

*intrfc/SCSllntf. text The interface to the SCSI port manager

intrfc/WritelnWindow. text Debugging window (not for use in products) See issue 2
(Dec. 85 Supplement) for details.

intrfc/WritelnWindow2. text Source to debugging window unit

Object Files

These files are either for use by the Pascal compiler (indicated by $USE), in which case they
include the interface definition inside the object file, or for use by the linker (indicated by LINK), in
which case they include the actual code to implement the interface, or for both. New files are
marked with an *.

*obj/ABPasCalls.obj

obj/AppleTalk.obj

*obj/FixMathAsm.obj

*obj/FixMath.obj

*obj/Graf3D.obj

*obj/Graf3DAsm.obj

obj/MacPrint.obj

obj/MemTypes.obj

*obj/OSlntf.obj

*obj/OSTraps.obj

*obj/Packlntf.obj

*obj/PackTraps.obj

obj/Paslnit.obj

obj/PasLib.obj

obj/PasLibAsm.obj

obj/PasLiblntf.obj

AppleTalk implementation. LINK with this.

AppleTalk definition. $USE only.

Fixed point Math implementation (in assembler). Required for
Graf3D. LINK with this.

Fixed point Math definition. Required for Graf3D. $USE
only.

Definition for fixed point implementation of Graf3D (requires
FixMath, does not require SANE). $USE only.

Fixed point implementation of Graf3D (written in assembler).
LINK with this.

MacPrint definition. $USE only.

MemTypes definition. $USE only.

OSIntf definition. $USE only.

OSIntf implementation. LINK with this.

PackIntf definition. $USE only.

PackIntf implementation. LINK with this.

PasLib initialization implementation of %_BEGIN, %_END
and %_TERM. LINK with this.

Pas Lib implementation portion in Pascal. LINK with this.

PasLib implementation portion in assembler. LINK with this.

PasLib definition. $USE only (if directly calling PasLib
routines).

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-2

*obj/PrintCalls.obj

*obj/QuickDraw.obj

obj/RTLib.obj

*obj/SANELib.obj

*obj/SANELibAsm.obj

*obj/SCSllntf.obj

obj/SpeechAsm.obj

obj/Speechlntf.obj

*obj/Toollntf.obj

*obj/TOolTraps.obj

obj/WritelnWindow.obj

Assembler Equates

MacPrint high-level implementation. LINK with this.

Quickdraw. $USE and LINK.

PasLib Run Time support--implementation of console I/O.
LINK with this.

SANE and Elems definition. $USE only. The routine Dec2Str
will only work with System files from 3.2 on.

SANE and Elems implementation. LINK with this. The
routine Dec2Str will only work with Systems from 3.2 on.

SCSI port manager interface. $USE only

MacinTalk (speech synthesis) implementation (written in
assembler). LINK with this.

MacinTalk (speech synthesis) definition. $USE only.

ToolIntf definition. $USE only.

ToolIntf implementation. LINK with this.

Debugging window (not for use in
products). $USE and LINK.

This release contains new versions of the equate and macro files needed for assembly language
development for the Macintosh. This release is a beta version of release 2.0. These files contain
the additions required for the 128K ROM and HFS. The files are provided in both Lisa format
(TLAsm files) and Macintosh format (for MDS, Macintosh 68000 Development System). These
files should be the basis for all future Macintosh assembly language development. New files are
marked with an *.

The equates and macros are commented somewhat within the files themselves. More detailed
documentation can be found in the appropriate sections of Inside Macintosh.

Equate Files

Lisa Workshop: MDS Files

*TLAsm/ATalkEqu.text *ATalkEqu.Txt

*TLAsm/Fixmath.text *FixMath.Txt

*TLAsm/FSPrivate.text *FSPrivate.Txt

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement

Contents

AppleTalk equates and globals

Fix-point math equates and globals
(see FixMath and Graf3D section)

Additional file system equates and
globals for debugging use only.

Page 4-3

*TLAsrn/FSEqu.text *FSEqu.Txt

*TLAsrn/Graf3D.text *Graf3D.Txt

*TLAsrn/HardwareEqu.text *HardwareEqu.Txt

MacDefs.Txt

MacTraps.Asrn

*TLAsrn/PackMacs.text *PackMacs.Txt

*TLAsm/PrEqu.text *PrEqu.Txt

*TLAsm/Private.text *Private.Txt

*TLAsm/QuickEqu.text *QuickEqu.Txt

*TLAsm/SANEMacs.text *SANEMacs.Txt

*TLAsm/SONYEqu.text *SONYEqu.Txt

*TLAsm/SysEqu.text *SysEqu.Txt

*TLAsm/SysErr.text *SysErr.Txt

*TLAsm/ToolEqu.text *ToolEqu.Txt

*TLAsm/Traps.text *Traps.Txt

File system equates and globals

Graf3D (3-D graphics) equates and
globals (see FixMath and Graf3D
section)

Hardware equates and globals (for
debugging use only)

Macros translating Lisa Workshop
assembler directives into MDS
directives

Creates MacTraps.Sym (MDS symbol
file)

Package macros

Printing equates and globals

Additional equates and globals (for
debugging use only)

QuickDraw equates and globals

Numerics macros (see SANE section)

Disk driver equates and globals (for
debugging use only)

Low-level system equates and globals

System error numbers

Toolbox equates and globals

All of the trap definitions

The files SysEqu, ToolEqu, SysErr, and QuickEqu start with an equate such as
"wholeSystem" which is used for conditional assembly. If you do not need the less common
equates after ".IF wholeSystem" you can change wholeSystem to 0 and reduce the time and space
required for your assembly.

THE NEW FEATURE FLAGS

In a previous release of the above files, two flags were defined, ROM128K and HFSUsed, that were
used to "prevent" inadvertent use of the new features. These have been removed from the interface
files. If your program defines them, these definitions have no effect (except to take up symbol
table space.)

PRIV A TE FILES

In previous releases, a distinction was made between "private" and "public" equate files. A

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement . Page 4-4

"private" file contained infonnation that was either machine specific and/or reserved for internal use
by Apple Computer, Inc. Occasionally, these "private" files were given to developers who
demonstrated a need for this infonnation.

We have decided to no longer maintain "private" files as distinct from "public" files. From now
on, the fonnerly private files are now part of the general release. However, in order to prevent
developers from inadvertently using the contents of these "dangerous" files, a comment has been
placed at the head of the file warning the user to beware. Following the comment is an equate
which effectively turns off the contents of the file through a conditional statement located
immediately following the equate. In order to use the file, the user must consciously set the equate
to 1 to tum on the conditional assembly. The following is an example of this, taken from the flie
FSPrivate:

; In order to prevent any "accidental" use of this information, it has
; been disabled using the conditional-assembly variable defined below.
; If you change this to a non-zero value, you're on your own.

The affected files are:

FSPrivate with the flag FSNonPortable
HardwareEqu with the flag HWNonPortable
Private with the flag PrNonPortable
SONYEqu with the flag SONYNonPortable

On a case by case basis, an analysis of the equate files was made that detennined whether or not
certain equates were public (that is, in Inside Macintosh or required by outside developers) or
private (that is, only for the use of Apple). In some cases, some previously available equates have
been made private. If your program does not assemble with the new equates due to undefined
labels, they have more than likely become private. If you are concerned about your application's
"private" requirements, contact Technical Support.

TRAP FILES

The original three trap files: SysTraps, ToolTraps, and QuickTraps have been merged into
one file, Traps. You will have to update your list of include files in your source to
use this new file and to remove references to the old versions.

USING THE NEW FILES

You should update your development system with all the new files, not just the ones that have
changed. There are incompatibilities between files from different releases, so it is best to use all the
files from the latest release.

You may find that your program does not compile/assemble with the newest interface files. This is
probably due to one or more of the following reasons:

1. Some equates have been moved either from a "public"
file to a "private" file. You may need to include one of the
"private" files.

2. If you are using a "private" file, you must modify the
equate at the beginning of the file in order to actually use
the equates contained therein. (See above.)

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-5

3. Throughout the process of setting up these files and with
the writing of the latest version of Inside Macintosh that
describes the new additions, some names have been changed
to better reflect the meaning associated with the particular
value. If you have or are using one of the interim releases
of these files, you may have to change a small number of
names used in your program. Sorry!

Note: Some of the routines in these new files require newer System Files. At present, Dec2Str
and Str2Dec will only work with version 3.2 or greater system files.

THE NEW PRINTING INTERFACE

In previous releases, there were two files to support printing on the Mac, PrLink and PrScreen.

Both of these files have been replaced by the file PrintCalls. This file supports the functionality
of both the previous files as well as fixing a few bugs.

FIXMA TH AND GRAF3D

Fixmath has previously been available asa library file with which you linked your program.
The 128K ROMs now include a superset of the previous version of Fixmath. In order to
accommodate programs that will be run on either 64K or 128K ROM systems, the Fixmath library
file has been modified to check for 128K ROMs. This code checks which ROMs are available and
if the 128K ROMs are present, it will call the appropriate trap; if not, it will do the work. This is
only for the calls common between the original version of Fixmath and the new version available
with the new ROMs. The new calls are only available with the 128K ROMs as traps and they are
defined in the Fixmath interface files. If you want to run only on 128K ROMs and you wish to use
Fixmath, you can find the required trap definitions in the Fixmath interface file, where they are
included as comments. You can edit this file to make these trap definitions available and remove
the references to the externally provided routines. Remember, however, that it is your
responsibility to check to see if the 128K ROMs are present!

Graf3D uses Fixmath. Its library fue has been modified to call the Fixmath trap if the 128K ROMs
are present. To use Graf3D you must link to both the Graf3D and the Fixmath library files.

The Graf3D interface for Pascal has also been modified. You must now define the pointer to the
Graf3D port in your source file. The first variable defined in your program should be:

VAR thePort3D: Port3DPtr;

This change was done in order to simplify the interface for 'e' programs. Also, nun1erous bugs in
Graf3D have been fixed.

SDOpen

Remember that the SERD resource (included in this Supplement) must be pasted into your
application in order for the serial driver calls to find it. Almost any resource mover/editor (such as
ResEdit) can be used to paste the resource.

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-6

MACINTOSH INTERFACE FILE CHANGE HISTORY

The following is a partial change history of the interface files used for the Lisa Workshop and
MDS. The files included with this Supplement are the "Beta Release" referred to below. The file
Yanked. txt contains all of the routines, equates, or other text that has been removed from the
interface files.

Assembly Equate Chan2e History

General Changes:

May 85 -> Dec 85 Supplement
ROM128K and HFSUsed Flags added as conditional assembly for all new ROM and
HFS features

Dec 85 Supplement -. > Beta Release

ROM128K and HFSUsed Flags removed as conditional assembly for all new ROM and
HFS features various equates have been moved from file to file, in some cases made
private or made public some equates have been removed from the equate files, the
following is a list:

from SysEqu
ToolDisp EQU 10
OldDisp EQU 9
NewOSTrap EQU $200
NewToolTrap EQU $600

from Syserr
FSDSlntErr EQU -127
memROZWarn EQU -99

from ToolEqu
Resorse EQU $5
gPortSize EQU 108
TopMenultem EQU $826
AtMenu8ottom EQU $828
MicroSoft EQU ApplScratch

from Private.a
tagMask EQU $COOOOOOO
bcOtfMask EQU $OFOOOOOO
bcMask EQU $OOFFFFFF
ptrMask EQU $OOFFFFFF
handleMask EQU $OOFFFFFF
HeapStart EQU $1400
DskWr11 EQU $12F
SoundLast EQU $282
Filler3A EQU $214
8asicGlob EQU $286
endofvars EQU $340
ToolVars EQU $980
Graf8egin EQU $800

Equate and Glue Files for the Lisa Workshop
Page 4-7 Lisa Workshop Supplement

GraNar
GrafEnd
IGlobals
LastTGLobal
ToolGBase
Checking
Statistics
Robust
CountMPs
DfttFlags
FSDSErr
KensOK

from HardwareEqu

EQU $824
EQU $8F2
EQU 0
EQU $AFC
EQU $980
EQU 0
EQU 0
EQU 0
EQU 0
EQU 0
EQU -59
EQU 1

all onMidMac values removed

ATALKEQU

FIXMATH

FSEQU

May 85 -> Dec 85 Supplement
capitalization changes to reflect InsideMac

Dec 85 Supplement -> Beta Release
error equates moved to SYSERR

Dec 85 Supplement -> Beta Release
new file, 128K ROM traps added

May 85 -> Dec 85 Supplement
a number of equates have been moved to SYSEQUand FSPRIV ATE
HFS equates added

Dec 85 Supplement -> Beta Release
references to TFS changed to HFS
directory master block, file entry, working directory, and PMSP equates added

FSPRIVATE

GRAF3D

Dec 85 Supplement -> Beta Release
file made public

no change

HARDWAREEQU
May 85 -> Dec 85 Supplement
VIA, sec, and disk address equates moved to SYSEQU

Dec 85 Supplement -> Beta Release
directory master block, file entry equates moved to FSEQU
all equates for "onMidMac" removed

PACKMACS
May 85 -> Dec 85 Supplement
list manager equates added

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-8

PREQU

PRIVATE

Dec 85 Supplement -> Beta Release
datahandle changed to userhandle for list manager

May 85 -> Dec 85 Supplement
PrintErr and ChooserBits moved to PRIVATE

Dec 85 Supplement -> Beta Release
PrintErr added as comment only

Dec 85 Supplement -> Beta Release
file made public

The following have been placed back into this file:

FOutError
FOutFontHandle
FOutBold
FOutltalic
FOutULOffset
FOutULShadow
FOutULThick
FOutShadow
FOutExtra
FOutAscent
FOutDescent
FOutWidMax
FOutLeading
FOutUnused
FOutNumer
FOutDenom

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$998
$99A
$99E
$99F
$9AO
$9A1
$9A2
$9A3
$9A4
$9A5
$9A6
$9A7
$9A8
$9A9
$9AA
$9AE

QUICKEQU
No changes.

QUI CKTRAP S
May 85 -> Dec 85 Supplement
128K ROM routines added

Dec 85 Supplement -> Beta Release
file contents moved to TRAPS

SANEMACS

SCSIEQU

May 85 -> Dec 85 Supplement
scanner and formatter functions added

Dec 85 Supplement -> Beta Release
bug fix to the FDecStr macro

Dec 85 Supplement -> Beta Release
error code names changed

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-9

communication error equates removed all references to TFS changed to HFS
command block equates' names changed
HFSID value changed from 'HFSl' back to 'TFSl'

SONYEQU

SYSEQU

Dec 85 Supplement -> Beta Release
file made public

May 85 -> Dec 85 Supplement
hardware equates commented out for VIA, SCC, and IWM
128K ROM and HFS additions

Dec 85 Supplement _. > Beta Release
finder and directory info record equates changed from "value+offset" to just "offset"

SYSERR

hardware equates uncommented out for VIA, SCC, and IWM .
interrupt and auto vector equates moved to HARDW AREEQU

May 85 -> Dec 85 Supplement
128K ROM and HFS additions

Dec 85 Supplement -> Beta Release
AppleTalk errors added
errors arranged in numerical order

SYSTRAPS

TIMEEQU

May 85 -> Dec 85 Supplement
HFS and memory manager traps added

Dec 85 Supplement -> Beta Release
file contents moved to TRAPS

Dec 85 Supplement - Beta Release
new file

TOOLEQU
May 85 -> Dec 85 Supplement
Taliesin font name changed to Mobile
128K ROM additions

TOOLTRAPS

TRAPS

May 85 -> Dec 85 Supplement
128K ROM traps added

Dec 85 Supplement -> Beta Release
file contents moved to TRAPS

Dec 85 Supplement -> Beta Release
new file made from QUICKTRAPS, SYSTRAPS, and TOOLTRAPS

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-10

Pascal Interface Chanee History

APPLETALK

FIXMATH

GRAF3D

No Changes

Dec 85 Supplement _. > Beta Release
new 128K ROM traps added, interface restructured to
support both RAM and ROM based calls

Dec 85 Supplement -> Beta Release
new file

MACPRINT
No changes

MEMTYPES

OSINTF

No changes

Dec 85 Supplement -> Beta Release
new HFS calls and data structures added
new 128K ROM calls added

PACKINTF
Dec 85 Supplement-> Beta Release
list manager calls and data structures added

QUICKDRAW
Dec 85 Supplement -> Beta Release
new 128K ROM calls added

SCSIINTF
Dec 85 Supplement -> Beta Release
new file

TOOLINTF
Dec 85 Supplement -> Beta Release
new 128K ROM calls and data structures added
major addition of data structures for Font Mgr

"GLUE" and .Rel File Change History

APPLETALK (ABPASCALLS)
Dec 85 Supplement -> Beta Release
bug fixes

FIXMATHASM
Dec 85 Supplement -> Beta Release
modified so that the RAM calls will call the 128K ROM if
the ROM is present

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-11

GRAF3DASM

OSTRAPS

Dec 85 Supplement -> Beta Release
modified so that the code calls the ROM-based Fixmath calls
if the ROM is present
major bug fixes

Dec 85 Supplement -> Beta Release
added glue for new HFS and 128K ROM calls
bug fixes

PACKTRAPS
Dec 85 Supplement -> Beta Release
added glue for list manager

PRINT CALLS
Dec 85 Supplement -> Beta Release
bug fixes

QUICKDRAW
No changes

SCSITRAPS
Dec 85 Supplement -> Beta Release
new file - bug fixes since preliminary release

TOOLTRAPS
Dec 85 Supplement-> Beta Release
added new 128K ROM call glue

Equate and Glue Files for the Lisa Workshop
Lisa Workshop Supplement Page 4-12

PPostEvent

Developers have clamored for a version of

FUNCTION PostEvent(eventCode: INTEGER; eventMsg: LONGINT): OSErr;

that would also return a pointer to the queue element created. Alas, the ROM actually leaves the
desired value in AD, butit gets smashed by the OS trap interface which, in this case, is set to
save/restore AD across the _PostEvent trap.

What has been added to Traps is:

.TRAP _PPostEvent $A12F

and to OSIntf

FUNCTION PPostEvent(eventCode: INTEGER; eventMsg: LONGINT; VAR qEI: EvQEI): OSErr;

NGetTrapAddress AND NSetTrapAddress
Since the Tool and OS trap tables have been disentangled and expanded to their fullest extents, the
GetTrapAddress and SetTrapAddress routines must likewise be extended. In the 64K ROM, a trap's
number in the table implied its TooVOS status, whereas in the new ROM this must be specified
separately, EXCEPT when, for compatibility, the 64K ROM numbering is used. The 64K ROM
routines are:

FUNCTION GetTrapAddress(trapNum: INTEGER): Longlnt;

PROCEDURE SetTrapAddress(trapAddr: Longlnt; trapNum: INTEGER);

Along with these, the two new routines (and a relevant enumerated type) are:

TYPE TrapType = (OSTrap, TooITrap);

FUNCTION NGetTrapAddress(trapNum: INTEGER; tTyp: TrapType): Longlnt;

PROCEDURE NSetTrapAddress(trapAddr: Longlnt; trapNum: INTEGER; tTyp: TrapType);

Internally, these amount to about the same code as the old routines, but with appropriate modifier
bits set in the trap word in order to distinguish OS and Tool requests. Two new equates have been
added to Traps to accommodate the modifier bits in the GetTrapAddress and SetTrapAddress calls:

newTool EQU
newOS EQU

$0600
$0200

PPostEvent, NGetTrapAddress and NSetTrapAddress
Lisa Workshop Supplement Page 5-1

Fi Ie: SuppYanked.txt

Uers i on 1. Oa2

Copyr i ght 1984) 1985) 1986 App Ie Comput er) Inc. A I I Right s Reserved

This is a private fi Ie. This is a special version of Yanked. txt done
for t he So ft ware Supp I ement (Uo I ume I Issue 3) (6/27/86)

jThe fol lowing items have been removed from the standard
j set 0 f inc I ude f i I es.

j--- ---------------

The following informat ion was formerly in "private" fi les that were
not released to the general developer community.

The information in this fi Ie is not needed for normal appl ication
development. These equates and macros were necessary for development
of the Macintosh ToolBox and Operating System) and are I ikely to be
dependent on their current implementation. Use of any information
in this fi Ie is I ikely to cause your software to fai I on future
versions of Macintosh system software or hardware.

WARN I NG! ! ! ! ! ! ! ! ! !
Many of the equates in this "Yanked" fi Ie are not valid for al I systems.
This information has been provided so as to make development easier
should you find that your code references something that has been
removed from the standard) non-private equate fi les.

Apple Developer Support wi I I not support any use of the fol lowing
information.

In order to prevent any "accidental" use of this information) it has
been disabled using the conditional-assembly variable defined below.
If you change this to a non-zero value) you're on your. own.

YankedNonPortable EQU 0 jexclude the NonPortable contents of this fi Ie

IF YankedNonPortable THEN

jfrom SysEqu

ToolDisp
OldDisp
NewOSTrap
NewToolTrap

EQU
EQU
EQU
EQU

10 bit =10 distinguishes Tool
bit =9 distinguishes Old
for Get/SetTrap Address
for Get/SetTrap Address

1 or OS = 0 Get/Set Trap address

jfrom Syserr

FSDSlntErr EQU
memROZWarn EQU

jfrom ToolEqu

Yanked Text

9
$200
$600

-127
-99

Lisa Workshop Supplement

Internal fi Ie system error
soft error in ROZ

o or New = 1 trap numbering

Page 6-1

Resorse EQU $5
gPortSize EQU 108
TopMenultem EQU $B26
AtMenuBottom EQU $B28
MicroSoft EQU ApplScratch

j from Private.a

FOutError EQU $998
FOutFontHandle EQU $99A
FOutBold EQU $99E
FOutltal ic EQU $99F
FOutULOffset EQU $9AO
FOutULShadow EQU $9A1
FOutULThick EQU $9A2
FOutShadow EQU $9A3
FOutExtra EQU $9A1
FOutAscent EQU $9A5
FOutDescent EQU $9A6
FOutlJidMax EQU $9A7
FOutLeading EQU $9A8
FOutUnused EQU $9A9
FOutNumer EQU $9AA
FOutDenom EQU $9AE

tagMask EQU $COOOOOOO
bcOffMask EQU $OFOOOOOO
bcMask EQU $OOFFFFFF
ptrMask EQU $OOFFFFFF
handleMask EQU $OOFFFFFF
HeapStart EQU $1100
DsklJr 11 EQU $12F
Sound Last EQU $282
F i I I er3A EQU $211
BasicGlob EQU $2B6
endofvars EQU $310
ToolUars EQU $980
GrafBegin EQU $800
GrafUar EQU $821
GrafEnd EQU $8F2

j M i sce I I aneous Constants

bit test = Resorse --- for RMGR
a grafPort is 108 bytes
(word) used for menu scrol ling
(word) flag for menu scrol ling
for Seattle [12 Bytes]

error code
handle to font bits
bolding factor
ital ic factor
under line offset
under line ha I 0

underl ine thickness
shadow factor
extra horizontal width
height above basel ine
height below basel ine
maximum width of character
space between lines
unused byte (must have even number)
point for numerators of scale factor
point for denominators of scale factor

Mask for the 2-bit Tag Field
Mask for the 1 bit Byte Count ,offset
Mask for the 21 bit Byte Count
Mask pointer to low 21 bits
Mask handle to low 21 bits
on Mac+ only

try 1-1 disk writes? [byte]
address past last sound variable
used by standard fi Ie
Basic globals [pointer]
end of final defined vars
toolbox variables
graf global area

end of graphics globals

IGlobals EQU 0 quickdraw globals accessed 0(A5)

j Miscellaneous Globals

LastTGLobal
ToolGBase

EQU $AFC
EQU $980

address of last global
base address of toolbox globals

These equates come from the old equate fi Ie HeapDefs.
These equates are private to Apple Computer} Inc. and should be used
solely for bui Iding system software.

Yanked Text
Lisa Workshop Supplement Page·6-2

Checking EQU 0 ;check arguments and data structures
Statistics EQU 0 ;gather statistics on usage
Robust EQU 0 ;enables super-robust internal checks
CountMPs EQU 0 ;enables counting of master pointers

Df I tF lags EQU 0 iChecking is on when zone is init'd

This equate comes from the old equate fi Ie SysErr,a
This equate is private to Apple Computer , Inc, and should be used
solely for bui Iding system software,

FSDSErr EQU -59 fi Ie system deep s--t error:

KensOK EQU

i from HardwareEqu

Hi I ntMask
SCClntMask
UIAlntMask
DMAlntMask
LolntMask
SCCEnblMask

ScreenLow
ROMStart
ROMBHi
SoundLow
PWMBuffer
MaX RAM

RAMMAP

SERegs
SEOvlyRegs

SEScrnHum

SEScrnlnc
SEScrnlcon
SEScrnFace
SEScrnl2

DSrectTL
DSrectBR
CtrDiff

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU

Yanked Text

during rename the old entry was deleted but could
not be restored ,

set to 0 to make it w~rk

$0700 mask for al I interrupts
$0600 SCC interrupt vector
$0400 UIA interrupt vector
$0200 DMA interrupt vector
$0100
$FDFF mask to enable SCC interrupts

$610000 top of screen screen address for vid pagel
$400000 starting address of ROM code
$40 high byte of ROM address
$OFFDOO sound buffer start address
$OFFDOl PWM bytes are low bytes
$100000 last RAM address + 1

$800000 base

ScreenLow + $AOOO
SERegs

ScreenLow + $50C7

Screen Low + $48AA
Screen Low + $4628
ScreenLow + $4809
Screen Low + $4AD9

$0078003C
$01180244
$00450040

address of MMU

Sys Error Regs w/o Overlay (uses part of spare video mem
no overlay space

Sys Error Humber Screen address = $4628+80*34 - 1
j "vaguely centered" plus 34 scanl ines -1 for extra digit
address to diddle below death number=$4628+80*8+2
centered screen addr
screen addr for face = $4628+80*6+1
screen addr for boot icon overlay=$4628+80*lS+1

top left = 120 /60
bottom right = 280 / 580
coord diff from Mac screen center

Lisa Workshop Supplement Page 6-3

scrnRowB
maxX
maxY
scrnBytes

UBase
AUBufB
AUBufA
AUBufM
AUIFR
AUIER

; IFR bits:

fCA2
fCAl
fSR
fCB2
fCBl
fT2
fTl
flRQ

TicksPrl00
OneSecConst

EQU 80
EQU 610
EQU 180
EQU 38100

EQU $E80000
EQU $E80000
EQU $E81EOO
EQU $E80000
EQU $E81AOO
EQU $E81COO

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

o
1
2
3
1
5
6
7

157
1

scrnRowB*maxY

base address
buffer B
buffer A
buffer with mouse button bit
interrupt flag register
interrupt enable register

CA2, ONESEC interrupt
CAl, *CMOCOMP signal
SR done, Ser i a I i 10 to Servo
CB2, Serial Data from Servo
CB 1, (unused as i nt errupt)
T2, INDEX pu I se counter (UBL ct r)
Tl, (unused as interrupt)
any interrupt

timer 1 setting for 100 usec intervals
gets cQnverted to $10000 for one sec constant

SCCRBase
SCCUBase

EQU $C80001 SCC base read address
EQU $C80001 SCC base write address

sccUrite EQU $0 general offset for write from read

DBase
OPhOL
OPhOH
OMtrOff
OMtrOn
OiskQ6L
OiskQ6H
OiskQ7L
OiskQ7H

EQU $080001
EQU $080001
EQU $080201
EQU $081001
EQU $081201
EQU $081801
EQU $081AOl
EQU $081COl
EQU $081EOl

; OMA (68450) addresses, offsets

OMABase
dCSR
dCER
dDCR
dOCR
dSCR
dCCR
dNIU
dEIU
dCPR
dMFC
dDFC

EQU $EOOOOO
EQU $00
EQU $01
EQU $01
EQU $05
EQU $06
EQU $07
EQU $25
EQU $27
EQU $20
EQU $29
EQU $31

Yanked Text
Lisa Workshop Supplement

disk address base
phase 0 low
phase 0 high
IUM Motor off
IUM Motor on
sh i ft reg i st er

base address
Channe I St at us Reg (byt e)
Channel Error Reg (byte)
Oevice Control Reg (byte)
Operation Control Reg (byte)
Sequence Control Reg (byte)
Channel Control Reg (byte)
Normal Interrupt Uct (byte)
Error Interrupt Uct (byte)
Channel Priority Reg (byte)
Memory Function Codes (byte)
Device Function Codes (byte)

Page 6-4

dBFC EQU $39 Base Function Codes (byte)
dMTC EQU $OA Memory Transfer Ctr (word)
dBTC EQU $lA Base Transfer Ctr (word)
dMAR EQU SOC Memory Address Reg (long)
dDAR EQU $14 Device Address Reg (~ong)
dBAR EQU $lC Base Address Reg (long)
dGCR EQU $FF General Control Reg (byte)

base address for SCSI Port

scsiRd EQU $DOOO01 i base address of SCSI interface - READ
scsiWr EQU $DOOO01 i base address of SCSI interface - WRITE
SCSIUct EQU Autolnt3 SCSI int at level 3

onesec EQU 191056 looptimes
halfsec EQU onesec/2
OneSecTicks EQU 68 ticks, of course
StlDelay EQU $60 default bus settle delay

EHDIF iend exclusion of private information

Yanked Text
Lisa Workshop Supplement Page 6-5

Resource File Builder (RFB).

Introduction
RFB is a Resource File Builder tool for the Lisa Workshop. A version of RFB for Workshop 3.9
can be found in the file RFB .obj on the Examples 3 disk. The source for the RFB tool
(including a Workshop 3.9 exec file) can be found in source/RFB. text on the same disk (see that
file for more information). Workshop 2.0 users might be able to modify the source to make it
work on their system.

In the course of development of "Please" (Hayes' database management package) for the
Macintosh, it became apparent that a lot of time could be saved by avoiding RMaker resource
compiles as much as possible. Further, as the program grew it was decided that it should be split
into separate files, to allow the user to have only those resources on online disks that were
necessary to perform the desired functions. None of the programs distributed with the Lisa Pascal
Workshop proved sufficient to the task, so Toby Nixon, Software Analyst at Hayes, wrote the
Resource File Builder (RFB) program.

RFB runs on the Lisa. It allows the developer to produce a Macintosh resource file on the Lisa
from one or more other existing resource files. There are several specific advantages gained by
using the program, including:

- Non-CODE resources, such as STR#s, ALRTs, DLOGs, CTRLs,etc., can be placed in an
RMaker input file and compiled once. A separate RMaker input file can be prepared which
specifies ONLY the CODE resources. After each Link, only the CODE resource file must be
reprocessed by RMaker. RFB combines the two resource files to produce the file that is
MacCom'ed.

- Resources such as FONTs and PICTs, which are extremely difficult to produce in the
Workshop, can be produced on the Mac (or Lisa under MacWorks), MacCom'ed onto the
Workshop disk, and combined with other resources with RFB to produce the final Mac
resource file.

- RFB allows an application to be easily split into separate resource files, such as a main file,
utility file, and help file. The application running on the Mac can open the auxiliary files
when necessary (usually because the user initiated a function that requires CODE or other
resources from that file) using OpenResFile. The Mac" Resource Manager automatically
searches all open resources files, so no special code is needed in the application to find the
resources once the files are open.

- When several programmers or other personnel (such as technical writers working on help
text) are involved in the creation of non-CODE resources, they can separately process their
work through RMaker, and distribute their files to the others. Each would run RFB to
produce the executable version of the program, without having to wait for RMaker to process
all of the other team members' work.

Running RFB ".
Execute RFB by using the Workshop "R" (run) command. RFB is most often run from an exec file
which includes all of the RFB input to produce the desired output. RFB requests the name of the
output file to be produced. It does not check to see if the file already exists. It does not currently
append any default extension, so the entire file name must be given. If a null entry is made, the
program terminates.

Resource File Builder
Lisa Workshop Supplement . Page 7-1

RFB then requests the name of the input resource file to read. The entire file name must be entered.
If the file is not found, an appropriate error message is displayed. If the file is found, it is opened
and the resource map is read into memory. If no entry is made, the output resource file map is
Written, and the output file isc1osed. RFB then returns to allow the specification of another output
file.

RFB then requests the resource type to be copied. If a null entry is made, RFB closes the input file
and requests a new input file name. If "*" is entered, then all resources of all types are copied from
the input file to the output file. Otherwise, the type code entered is search for the the input file map,
and an appropriate error message is displayed if it is not found. If it is found, an entry is made in
the output file map for that type, and processing continues.

If the type specified is CODE, RFB asks if you want to specify code segments by name rather than
number. This is very useful if the program is under active development, with frequent addition and
deletion of code segments. If YES is specified, RFB then asks for the name of the linkmap file
associated with the current input file. The linkmap file is opened and scanned, and the names and
associated numbers of all code segments are tabulated.

After the type is entered, RFB requests the resource ID numbers to copy. If a null entry is made,
RFB returns to request the next type (if no resources have been copied for the type, the type entry
is removed from the output map). If "*" is entered, all resources of the current type are copied to
the output file. If CODE segments are being specified by name, the name is translated to the CODE
resource ID number (segment number) for copying. If the specified resource is already in the
ou~ut map, an error message is displayed.

While specifying CODE segments by name, it is still possible to specify by number. When a
CODE segment name is requested, simply enter '#' followed by the number desired. This is
necessary when requesting the jump table (#0) and the blank segment (#1). Resources of type
VERS are handled a special way. When RFB starts, it gets the system date and time. When a
VERS resource is copied, the resource data from the input file is replaced by the 10-byte system
date-time stamp. All VERS resources written during a single run of RFB will have exactly the
same time stamp data. This allows the application at run time to insure that auxiliary files are of the
same version as the main program resource file, by simply doing a byte-by-byte comparision of the
VERS resources in the files.

RFB Limits
RFB is currently limited by static array bounds to:

25 resource types in the output file.
128 references to anyone type.
6144 bytes maximum input resource map size.
256 CODE segments in an input link map.

RFB files included on the Examples 3 disk:
RFB.obj Object code for RFB
RFB/ exec. text The procedure file used to build Please on the Macintosh,

included as an example of an RFB exec file.
source/RFB. text Source code for RFB

Questions can be address to Toby Nixon of Hayes Microcomputer Products at (404) 449-8791.

Resource File Builder
Lisa Workshop Supplement . Page 7-2

