
Lisa. Systems Software

BEGIN {main program}
{----- Initialization - Generic to all applications using QuickDraw -----}
QDInit(@heapBuf, @heapBuf[8192], @heapError);

OpenPort(@myPort);
PaintRect(thePort' . portRect);
InitIcons; {moved to here from below stuffhex}
InitScales; {moved to here from below stuffhex}

DrawStuff;
REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii () CHR(l));

PaintRect(thePort' . portRect);
SetRect(srcRect,O,O, 720,360);
myPicture := OpenPicture (srcRect);
DrawStuff;

PROCEDl.Rf Dr awfi gure(vi twAng, rOllRng, pi tChAng :
BEGIt!

vi ewAngl e(vi eWAng);
Identi ty;
Roll (rollRng) ;
Pi tc~ (pi tchAng);
Er aseRect(port1' . portRect) ;
fr aMeRect(portl' . portRect) ;
PI otGri d;

Lisa Pascal 3.0 Systems Software

Copyright

This manual and the software described in it are copyrighted with all rights
reserved. Under the copyright laws .. this manual or the software may not be
copied .. in whole or in part .. without the written consent of Apple .. except in
the normal use of t.he software or to make a backup copy. The same
proprietary and copyright notices must be affixed to any permitted copies as
were affixed to t.he originaL This exception does not allow copies to be
made for others .. whether or not sold .. but all the material purchased (with all
backup copies) may be SOld.. given, or loaned to another person. Under the
law .. copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products .. a multiuse license may
be purchased to allow the software to be used on more than one computer
ol,lmed by the purchaser .. including a shared-disk system. (Contact your
authorized Apple dealer for information on multiuse licenses.)

Licensing Requirements far Software Developers

Apple has a low-cost licensing program, which permits developers of
software for the Lisa to incorporate Apple-developed libraries and object
codes into their products. Both in-house and external distribution require a
license. Before distributing any products that incorporate Apple software,
please contact Software Licensing at the address below for both licensing and
technical information.

@1983" 1984 Apple Computer .. Inc.
20525 Mariani (fve.
Cupertino, CA 95014
(408) 996-1010

Apple.. Lisa.. ProFile" MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Computer .. Inc.

Priam is a registered t.rademark of Priam, Inc. So~/ is a registered
trademark of Sony Corporation. Centronics is a registered trademark of
Centronics Dat.a Computer Corporation. VT52 and VT100 Me trademarks of
Digital Equipment Corporation.

Simultaneously published in the U.S.A. and Canada

Reorder Apple Product 1620-6149-8.

Limited Warranty on Media and Manuals

If you discove.r physical defects in the media on which this software is
distributed, or in the manuals distributed with the software, Apple will
replace the media or manuals at. no charge to you, provided you return the
item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 9O-day period after you purchased the software. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAl, INCLUDING
IMPUED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF Tt-E ORIGINAL RETAIL PURCHASE OF THE
PRODUCT_

Even though Apple has tested the software and reviewed the documentation,
APPlE MAKES NO WARRANTY OR REPRESENTATION, EITt-ER EXPRESS
OR IMPlIED, WITH RESPECT TO THIS SOFTWARE, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE- AS A RESULT, THIS SOFTWARE IS SOlD liAS IS,· MD YOU,
THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE-

IN NO EVENT WIll APPLE BE HELD UABlE FOR DIRECT, INDIRECT,
SPECIAl, INCIDENTAl, OR CONSEQUENTIAL DAMAGES RESUlTING FROfv1
ANY DEFECT IN TI-I: SOFTWARE OR ITS DOCUMENTATION, even if advised
of the possibility of such damages. In particular .. Apple shall have no
liability for any programs or data stored in or used with Apple products,
including the costs of recovering such programs or dat.a.

THE WARRANTY AND REfvEDIES SET FORTH ABOVE ARE EXa.USIVE AI\D
IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer .. agent .. or employee is authorized to make arl'Y modification ..
extension, or addition to this WBIranty.

Some st.ates do not allow t.he ex elusion or limitation of implied warranties or
liability for incident.al or consequential damages, so the above limitat.ion or
exclusion m~1 not apply t.o you. This \h1arrant.y gives you specific legal
rights .. and you may also have other rights which vary from state to st.ate.

Wtlatls Inside

This binder contains seven documents about the Lisa" system software for
programmers' reference. The manuals are, in order:

• Operating System Reference ft.18nu81 for the Lisa.

• The OEft.1SyscalJ Unit.

• The St8l7d8Td !tppJe Numeric Environment.

• The 68t't't' Assembly-Lsngl.Jsge Sf1NE.

• The StdUnit.

• The ProgComm Unit.

• The ~ujck.Port Programmer's Guide.

In addition, elsewhere in this package of books and media, there is a copy of
Motorola's ft.16fAX'JO 16/.,":f2 Bit "'1ieropIocessor ProgrBmmer~ Reference "'1anuaJ.

Operating System
Reference Manual

for the Lisa

Chapter 1
Ir1t.rc:J(l£t1m

Contents

1.1 The Main Functions ... 1-1
1.2 using the OS Functions.. 1-1
1.3 The File System .. 1-2
1.4 Process Managefl1ent... 1-:3
1.5 Memory Management•....................................•.•..•..........•........ 1-4
1.6 Exceptions and Events 1-5
1.7 Interprocess COtTlrnUnlcatlon... 1-5
1.8 USing the OS Interface 1-6
1.9 Running Programs under the CIS ... 1-6
1.10 writing Programs That Use the OS ... 1-6

Chapter 2
TIle File System

2.1 File Names ... 2-1
2.2 The Working Directory .. 2-2
2.3 DeVices .. 2-:3
2.4 Storage Devices .. 2-:3
2.S The VOlt.lTle catalog.. 2-4
2.6 Labels..................................•................ 2-4
2.7 Logical and Physical End of File " 2-4
2.8 File Access .. 2-5
2.9 Pipes ... 2-6
2.10 File System Calls .. 2-7

~3
Processes

3.1 Process structure .. 3-2
3.2 Process Hierarchy ... 3-2
3.3 Process Creation... 3-3
3.4 Process control .. 3-3
3.5 Process SChedUling............ 3-3
3.6 Process Termination .. 3-4
3.7 A Process-Handling ExarT'lple ... 3-5
3.8 Process System calls... 3-7

Q:Jeratlng System Reference Manual contents

Chapter 4
Memory Mal aagaIBlt

4.1 Data segments.. 4-1
4.2 The Logical Data segment I\IUrnber .. 4-1
4.3 Shared Data segments ... 4-2
4.4 Private Data segments .. 4-2
4.5 Code 5egrT1ents ... 4-2
4.6 Swapping .. 4-2
4.7 Memory Management System Calls ... 4-3

~r5
ExcepUons cnl Events

5.1 Exceptions .. 5-1
5.2 System-DefIned Exceptions .. 5-2
5.3 Exception Handlers ... 5-2
5.4 Events .. 5-5
5.5 Event Channels ... 5-5
5.6 The System Clock .. 5-10
5.7 Exception Management System calls ... 5-10
5.8 Event Management System Calls ... 5-17
5.9 ClOCk System calls .. 5-27

Chapter 6
connpaUoo

6.1 Configuration System O8lls .. 6-1

~
A ~ratlng System Interface lJnlt ... A-l
B System-Reserved ExceptIon Names ... 8-1
C System-Reserved Event Types .. C-1
o Error rvtessages .. 0-1
E FS_II'F'O Fields ... E-l

Index

Preface

The contents of ThIs Mcn.Ial
This manual describes the qleratlng System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. We assume that you have read the Lisa owner's Guide and
Worksnop User's Guide for tIJe Lisa and are familiar with your Lisa system.
cnapter 1 Is a general Introauctlon to tne ~erat1ng system.
Chapter 2 describes the FUe System and the available File System calls. This
inclUdes a description of the interprocess communication facillty, pipes, and
the q:,erating system calls that allow processes to use pipes.
Chapter 3 describes the calls available to control processes, and also describes
the structure Of processes.
Chapter 4 describes hOw processes can control their use of available memory.
Chapter 5 describes the use of events and exceptions that control process
syncnronizatlon. It alSO Oescrlbes tne use of the system clocK.
Chapter 6 describes the calls you can use to find out about the configuration
of the system.
Appendix A contains the source text of Syscall, the unit that contains the
type, procedUre, and function definitions discussed in this manual.
Appendix B contains a list of system-reserved exception names.
Appenalx C contains a list Of system-reserved event names.
Appendix 0 contains a list of error messages that can De prOdUCed by the
calls documented in this manual.
Appenaix E contains a description Of the information you can Obtain from the
qleratlng System about fUes and devices.

Type end Syntax conventions
Bold-face type is used in this manual to distinguish programming Keywords and
constructs from EngliSh text. For example, fLUSH is the name of a system
call. System call names are capitalized in this manual, althoUgh Pascal does
not distinguISh between lower and upper case characters. Italics indicate a
new term whose explanation follows.

Future Releases
A few features of the Usa C4>eratlng System will be Changed In future
releases:

• Pipes will not be supported.
• Timed events wUl not be ~rted.
• configuration System calls will be Changed.

If you want your software to be upward-compatible, please take theSe Changes
Into consIderation. More Information Is provided In the appropriate sections
Of the manual.

Chapter 1
Introduction

1.1 TIle ~ Ft.IlCtlorlS .. 1-1

1.2 lJsIr1g the ()s Fl.IlCtlOllS ••• 1-1

13 TIle FUe System •••.••••••••••••••••••••••• 1-2

1.4 Process f'w1aI ~,a It .. 1-3

1.5 t1ernory ~.agerner It ... 1-4

1.6 EX'CeJJtlorlS arld Ever1ts •• 1-5

1.7 InteIPfOCeSS c:orJm.rljcatim ••••.••.•••••••••.•••.••••••..•••••.••••.••••.••••••••••••.••• 1-5

1.8 lJsIr1g ttle CIS Interface ••••••••••••••••••••••••••.•••••••.•••••••••••..••••.•••••••••••••••• 1-6

1.9

1.10 WJ1tlr1g PIOQldilS ll1at lJse the ()S .. 1-6

Introduction

The qJeraUng System (OS) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a fUe system for lID
and information storage, handles exceptions (software interrupts), and performs
memory management

1.1 The MaIn FtrlCUons
thIs chapter descrIbes the four main functional areas of the OS: the FHe
System, process management, memory management, and event and exception
handllng.

The File System provides input and output. The File system accesses devices,
volumes, and fUes. Each Object, whether a printer, disk fUe, or any other type
Of object, is referenced by a pathname. Every 110 operation is performed as
an uninterpreted byte stream. Using the File System, all 110 is device
independent. The File System also provides device-specific control operations.
A process consists of an executing program and Its associated data Several
processes can execute concurrently by multiplexIng the processor betwHen
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment Is a file
that can be placed in memory and accessed directly.
Exceptions and events are process-communIcation constructs provIded by the
os. M event is a message sent from one process to another, or from a
process to Itself, that Is dellvered to the receIvIng process only When the
process asks for that event. M exception is a special type of event that
forces Itself on the receIvIng process. There Is a set Of system-defined
exceptions (errors), and programs can define their own. System errors sUCh as
dIvIsIon by zero are examples of system-defined exceptions. You can use the
system calls provided to define any exceptions you want.

12 UslrYJ the (l3 FtIlCtlons
Both OUilt-in language features and expllclt OS system calls can access OS
routines to perform desired functions. For example, the Pascal writeln
procedUre is a built-in feature of the language. The cOde to execute wrlteln
Is supplied in IOSPASLIB, the Pascal run-time support routines library. This
COde, which is added to the program when the program is linKed, calls OS
File System routines to perform the desired output.
You can also call OS routines expllcitly. This Is usually dOne when the
language does not provide the operation you want. OS routines allow Pascal
programs, for example, to create new processes, which could not otherwise be
dOne, since Pascal does not have any bullt-in proceSS-handling functions.

1-1

t:peratlng system ReFerence MaIXJaJ

All calls to the OS are Synchronous, WhiCh means they do not return untll the
operation Is complete. Each call returns an error cOde to indicate if anything
went wrong during the operation. MY non-zero value indicates an error or
warning. Negative error COdes indicate warnings. For a list of error codes
and their meaning, see ~x D.

1.3 TIle FDe system
The File System performs all 110 as uninterpreteo oyte streams. These byte
streams can go to files on diSk or to other devices SUCh as a printer or an
alternative console. In all cases, the device or fUe has a File System name.
Except for device-control functions, the FHe System treats devices and fUes
in the same way.
The FHe System allows snaring of an types of Objects.
The FUe system provIdeS for namIng Objects (devIces, fIles, etc.~ A name In
the FIle System Is called a patmame A complete pathname consIsts of a
dIrectory name arK2 a fHe name. The file name Is meCV'llngful only for storage
devIces (deVIces tnat store byte streams for later use, SUCh as dls1<s~
Each process haS a WOrking directory assocIated wIth It. ThIs allows you to
reference objects with an Incomplete pathname. To access an object in the
working directory, you specify Its fUe name. To access an Object In a
different directory, you specify its complete pathname.

Before a device CCll be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or Oy using the Ml..NT call. see Chapter
2 for an explanatlon of this call and other File System calls. If the device is
a storage device, the mount operation makes a voltme name avaUable. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the fUes
on the volume may be accessed. The volume name can replace a device name
in a pathname used to access an Object on the diSk. The volume name allows
you to access a fUe with the same pathname no matter where the drive Is
actually connected.
A device can be accessed If It Is specIfied In the configuration list created by
the Preferences tool, Is physically connected to the Usa and is mounted.
There are some operatlons that can be performecl on unmounted devioes. Two
examples are cevICE_a:NTRtl.. calls and scavengIng. Logically mounting a
volume on a device makes fHe access to the volume possible. For storage
devices, a volume Is an actual magnetic medIum that can contain recorded
fUes. For non-storage devices, volumes and fUes are concepts used to
maIntain a lXllform Interface. FlIes on non-storage devices such as prInters
do not store data bUt act as ports for performing 110 to the devices.

1-2

tpJmtJng System Reference M8ntIal

me baSic operatlons provided by the Flle System are as follOWS:
fl'IOI.X'It and l.m'lOlIlt - make a voltme accessible/Inaccessible
open and close - make a1 object accessible/inaccessible
read and write - transfer information to and from an Object
deVice control functions - control deVice-specific functions

Some operatlons apply only to storage deVIces:

allocate and deallocate - specify size of an Object
manipulate catalog - control naming of objects and creation and

destruction of objects
manipulate attribUtes - lOOk at or Change the Characteristics of

the object
In addition to the data in an Object, the object itself has certain
characterIstics callect attrlbtltes" such as the length and creation oate of a
f11e. Calls are avaUable to access the attributes of any File System ObjeCt. In
aCk11tlon to Its system-defined attrloutes, an Object on a storage device can
have a J8IJeJ. The label Is available for programs to store Information that
they can interpret
Non-storage devices suCh as printers are accessed with a l1mltect set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are available as appropriate for the
device. Device-control fl.l1Ctions are available to perform any devlce
specific functions neectect. The fUe-name portion of the complete pathname
for a non-storage device Is not used by the FUe System, although you do haVe
to provide one When you open the device.
For storage devices, the same sequential read and write operations are valld
as for non-storage devices. storage deVices also must be mounted, and
particular files opened, before the fUes can be used. They have appropriate
deVice-control flJ1Ctlons avaUable.
When writing to a disk fUe, space for the fUe is allocated as needed. Space
for a fUe does not need to be contiguous, and in some cases this automatic
allocation can result In a fragmented fUe, whiCh may slow fUe access. To
insure rapid access, you can pre-allocate space for the fUe. Pre-allocating
the file also ensures that the process wUI not run out of space on the diSk.
Four types of objects can be stored on storage devices. These are fUes, pipes,
data segments, and event Channels. Flies, alreacJy discussed, are simply arrays
of stored data Pipes are objects that provide Interprocess communication.
Data segments are special cases of fUes that are loaded Into memory along
with program code. Event channels are pipes with a specialiZed structure
Imposed by the system.

1.4 Process Mel aagell a It
A process Is an executing program and the data associated with it several
processes can exist at one time, and they appear to run simultaneouSly
because the CPU Is multiplexed among them. The SChedUler decides what

1-3

q;eraUng System Reference Mantlal IntnJt1JcUon

process ShOUld use the CPU at MY one time. It uses a generally non
preemptive SChedUling algorium. This means that a process will not lose the
CPU unless It blOCks. The blOCked state Is explained later In thIs section.
A process can lose the CPU When one Of the fOllowing happens:

• The process oalls ~ ~ratlng System prOCedUre or function.
• The process references one of Its COde segments that is not currenUy In

memory.
If neither of these occur, the process will not lose the CPU.

Every process Is started by another process. The newly started process Is
called the son process The process that started It Is called its fatl1er process
The resulting structure is a tree of processes. See Figure 3-2 for an
illustration of a process tree.
When any process terminates, all its son processes and their descendants are
also terminated.
When the OS is bOOted, it starts a slJeJl process The shell process starts any
other processes desired by the user.
Every newly created process haS the same system-stancJard attribUtes and
capabUlties. These OCW'l be Changed by using system oalls.
Any processes can suspend, activate, or k111 any other process for Wh1ctl the
glODal 10 Is known, as long as the other process aces not proteot 1tself.
The memory accesses of ~ executing process are restrioted to its own
memory address space. Processes can communicate with other processes by
usIng Shared fUes, pipes, event channels, or shared data segments.
A process CCI'l be 1n one of three states: ready, runn1ng, or blOCked. A re8dy
pl'lJCeSS Is waiting for the SChedUler to select It to run. A J1H1lng pJVCeSS Is
currenuy using the CPU to execute Its code. A blOCked process Is waiting for
some event, SUCh as the oompletlon of an 110 operation. It wlll not be
SchedUled until the event occurs, at WhICh po1nt it becomes ready. A
tetm/natet1 process has f1niShed executing.
Each process nas a priority from 1 to 255. The higher the number, the hl~r
the priority of the process. Priorities 226 to 255 are reserved for system
processes. The SChedUler always runs the ready process with the highest
priorIty. A process can Change Its own priority, or the priority of any other
process, WhUe it Is executing.

1.5 Menmy MalIageII Bit
Memory managment Is concerned "11th what Is 1n physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 Kbytes. Memory segments are of two types: cOde segments
and data segments. The total 8fTlOI..I1t of memory used by any one process can
exceed the available R.AM of the Usa The ~rating System will swap code
segments In and out of memory as they are needed. To aid the q>eraUng

1-4

Q:Jerating system Reference MantIa} Introt1Jction

system In swappIng (jata segments, calls are provl0e0 to glve progrcms tJ'le
ability to defIne WhiCh data segnents must be In memory While a particular
part of the progrtlll Is executing.
You have control of how your program Is divided up. For executable COde
segments, you use the segmentation commands of the Pascal compUer to break
the program in pieces.
In addition to residing In memory, data segments can be stored permanently
on diSk. They can be accessed w1th calls slm11ar to F11e System calls. This
allows you to use a data segment as a direct-access fl1e--a file that Is
accessed as part of your memory space.
calls are provided for making, kUling, opening, and closing data segments.
You can also Change the size of a data segment and set its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you abiUty to
force the contents of the data segment to be swapped into main memory so
they can be accessed by your process.

1.6 ExcepUons crld EvenU
M exception is an unexpected condition in the execution of a process (an
Interrupt~ M event Is a message from another process.
M exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, illegal instruction, and Illegal address. system exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions If you want to try to recover
from the error.
User exceptions can be declared and exception handlers can be written to
process them. Your progrOO'1 can then signal this new exception.
Events are messages sent from one process to another. They are sent through
event channels.
A process that expects a message from an event channel executes a call to
walt for an event on that channel. This w111 give It the next message, If one
exists, or block the process until a message arrives.
If a process wants to know when an event arrives, but does not want to walt
for it, it can use an event-call Channel. This is set up by associating a user
exception with the event Channel When It is opened. The q,eratlng system
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess COfmUllcaUon
There are four methOds for interprocess cOfM"IUI'lication: shared fUes, pipes,
event channels, and shared data segments.

1-5

qJerating System Reference Manual Introt;lJCtion

Shared flIes are used for hIgh volume transfers of Information. It Is necessary
to coordinate the processes SOfl'lehOW to prevent them from overwriting each
Other's Information.
Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes will not be supported in future releases of the
qleraUng system.) The pipe mechanism provides for the needed
synchronlzaUm; a process will block if it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the information, so
It is no longer available. O1ly one process can read from a given pipe.
Event channels are sImllar to pipes, except that event channels transmit shOrt,
structured messages Instead of uninterpreted bytes.
A Shared data segment can be used to transmit a large amount of data
rapid! y. HaVing a Shared data segment means that this data segment is In the
memory address space of all the processes that want to use il All the
processes can then dlrecuy read and write Information in the data segment.
It Is necessary to provIde some sort of synchronizat1on to keep one process
from overwrIting another's information.

1.8 UsIrYJ the (J) Interface
The Interface to all the system calls Is provIded In the syscan lXI1t, found In
Appendix A. This lXIit can be used to provIde access to the calls. see the
WOIkShOp user's GUIde for the LIsa for more Information on usIng SyscaIl.

1.9 Rt.mlng Plogulns Ulder the os
Progrcms can be written and run by using the WorkshOp, WhIch provIdes
program development tools SUCh as edt ting and debUggIng facUlties.

1.10 writing Programs That use the OS
You can wrIte a program that calls Il) routines to perform needed functlons.
ThIs program uses the Syscall unIt and then calls the routines needed.

1-6

Chapter 2
The File System

2_1 File N8I1leS ___ 2-1
2.2 The Working Directmy ___ 2-2

2.3 De\lices ___________________________________ . ___________________________________ 2-3

2_4 storage Devices _________________________ . ___________________________________ 2-3

2..5 The Volwne catal()Q ________ • ___________ . ___________________________ . _______ 2-4

2_6 LftI)els _____________________ . ___ 2-4

2_7 Logical and ~ical End of File ___ 2-4
2_6 File Access ______________ . ___ 2-5

2.9 Pipes __ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2-6

2_10 File Symem Calls _______________ . ___ 2-7

2.10.1 MAKE FILE and MAKE PIPE 2-8
2.10.2 KILL_OBJECT -: ... 2-10
2.10.3 UNKILL FILE ._ ... 2-11
2.10.4 RENAME_ENTRY '" ., 2-12
2.10.5 LOOKUP _ ... 2-13
2.10.6 INFO ... 2-16
2.10.7 SET FILE INFO ... 2-17
2.10.8 OPEN ... :-: ... 2-18
2.10.9 CLOSE_OBJECT ... _ 2-19
2.10.10 READ_DATA and WRITE_DATA 2-20
2.10.11 READ LABEL and WRITE LABEL 2-23
2.10.12 DEVICE_CONTROL :-: 2-24

2.10.12.1 Setting Device-Control Information 2-24
2.10.12.2 Obtaining Device-Control Information 2-29

2.10.13 ALLOCATE .. 2-34
2.10.14 COMPACT ... 2-35
2.10.15 TRUNCATE ... 2-36
2.10.16 FLUSH ... 2-37
2.10.17 SET_SAFETy .. 2-38
2.10.18 SET_WORKING_DIR and GET_WORKING_DIR '" 2-39
2.10.19 RESET_CATALOG,. RESET_SUBTREE .. GET_NEXT_ENTRY,.

and LOOKUP _NEXT_ENTRy 2-40
2.10.20 MOUNT and UNMOUNT ... 2-41

The File System

The File System provides device-independent 110, storage with access
protection, and uniform fUe'-namlng conventions.

DevIce Independence means that all I/O Is performed In the same way,
whether the ultimate destination or source Is disk storage, another program, a
prInter, or anything else. In all cases, 110 Is performed to or from flles,
although those fIles can also be devices, data segments ... or programs.

Every fBe is an un interpreted stream of eight-bit bytes.

A fHe that is stored on a block-structured device .. such as a disk .. is llsted in
a catalog(also called a djrecto~ and has a name. For each such fUe the
catalog contains an entry describIng the flle's attrIbutes, InclUding the length
of the fUe .. its position on the disk .. and the last backup copy date. Arbitrary
appllcatIon-deflned information can be stored in an area called the file label
Each file has two associated measures of length, the Logjcal End of Fjle
(LEa=) and the Pl7ysjcal End of FjJe (PECF) The LECF Is a poInter to the last
byte that has meaningful data. The PECF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or wrItten Is
called the file marker.

Since 110 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block
structured devices, programs can make I/O requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 110 requested is performed
before the call returns. The actual 110 .. however, is asynChronous .. In that
processes may block when performing 110. See Section 3.5, Process Scheduling..
for more information on blOCking.

To reduce the impact of an error, the FUe System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Nemes
All the files known to the ~eratlng System at a particular time are organIzed
into catalogs. Each disk volume has a catalog that lists all the files on the
dIsk.

My object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

2-1

qJe18ting system Reference MantIal The FIle system

by the Character "-". Because the top catalog In the system has no name, all
complete paUYlames begin with "-".
For example,

-LISA-FORMAT. TEXT

refers to a file named FORMAT. TEXT on a volume nanecl LISA. The fUe
name can contain up to 32 characters. If a longer name is specified, the
name is truncated to 32 Characters. Accesses to sequential devices use an
arbitrary dUmmy filename that is ignored but must be present In the
pathname. For example, the serial port pathname

-RS232B

Is inSUfficient, bUt

-RS232B-XYZ
is accepted, even thOUgh the - XYZ portion Is ignored.
are predefined:

Certain device names

RS232A
RS232B
PARAPORT
SLOTXCHANy
MAINCONSOLE
ALTCONSOLE
UPPER
LOWER
BITBKT

serial Port A
serial Port B
Parallel Port
serial ports: x is 1, 2, or 3 and Y is 1 or 2
wrlteln and reacJln deVice
writeln and readln device
Upper DiSkette drive (Drive 1)
lower DiSkette drive (Drive 2)
Bit bUCket: data Is thrown away When directed here

see Chapter 6 for more information on devIce names.
Upper and lower case are not s1g'11fIoant In pathnames: 'TESTVCL' Is the same
Object as 'TestVol'. My ASCII Character Is legal In a pathname, IncludIng
non-printing Characters and blank spaces. However, use of ASCII 13,
RE~N, In a paUYlame Is strongly discouraged.

2.2 The WOr1dng Directory
It is sometimes inconvenient to specify a complete pathname, especially when
WOrking with a group of fUes in the same volume. To alleviate this problem,
the q>eratlng System maintains the name of a working c11rectory for each
process. When a pathname Is specified withoUt a leading "_", the name refers
to an Object In the working c11rectory. For example, if the working directory
Is -LISA the name FCRMA T. TEXT refers to the same fUe as
-LISA-FCRMAT.TEXT. The default working directory name Is the name of the
bOOt voll.l1le c11rectory.
You can find out what the working directory Is with GET_wmKII'G_DIR.
You can Change to a new workIng Olrectory with SET _ WCRKlN3_DIR.

2-2

qJeratJng System RefeJ1!l7CfJ f'18ntI81 me FIle system

2.3 DeVIces
Device names follow the same conventions as fHe names. AttribUtes like baUd
rate are controlled by using the CEVlCE_aNTRG.. call with the appropriate
pat.mame.
Each deVice has a permanently aSSigned priority. From highest to lowest, the
prlorlties are:

Power onloff bUtton
serial port A (RS232A)
serial port B (RS232B, the leftfOOst port)
1/0 slot 1
1/0 slot 2
1/0 slot 3
Keyboard, mouse, battery-powered clOCk
10 ms system timer
CRT vertical retrace interrupt
Parallel port
Diskette 1 (UPPER)
DiSkette 2 (LOWER)
VideO screen

The deVice driver associated with a device contains information aboUt the
device's physical characteristics sUCh as sector size and interleave factors for
disks.

2.4 storage DeVIces
01 storage devices such as disk drives, the File System reads or writes file
data In tenns of pages. A page Is the same size as a block. MY access to
data In a flle ultimately translates into one or more page accesses. When a
program reQUests an amount Of data that dOes not fit evenly Into some
number of pages, the FHe System reads the next highest number of WhOle
pages. SlmUarly, data Is actually written to a file only In WhOle page
increments.
A fUe dOes not need to occupy contiguous pages. The File system keeps
track of the locations of all the pages that make up a flle.
Each page on a storage device is self-identifying; the page descrJptorls stored
with the page contents to reduce the destructive Impact of an I/O error.
The eight components of the page descriptor are:

Version rlUf'It)er
Volume identifier
File identifier
Afoount of data on the page
Page naroo
Page position 1n the file
Forward link
Backward link.

2-3

Q:Jerat/ng System Reference ManusJ The FIle System

Each volume has a /VIedIum !Jescdptor Data File (/"-'fXF) wnlCh deSortbes the
various attribUtes Of the medium such as its size" page length" blOCk layout"
and the size of the boot area The MDDF Is oreated wnen the volt.me Is
initiaUzed.
The FUe System also maintains a record of Which pages on the medium are
currently allocated" and a catalog of all the fUes on the volume. EaCh f11e
contains a set of file hints" Which describe and point to the actual fUe data.

2.5 llle VOltme catalog
01 a storage device" the volume catalog provides access to the files. The
catalog Is itself a fUe that maps user names Into the internal fUe Identifiers
used by the Qleratlng System. Each catalog entry contains a variety of
Information aboUt each fUe InclUding:

Name
Type
Internal file number and address
Size
Date and time created" last modified" and last accessed
File identifier
safety switch

The safety switch Is used to avoid accidental deletions. While the safety
switch Is on, the fUe cannot be deleted. The other fle)(ls are described under
the UXKLP File System oall.
The catalog can be located anywhere on the medium.

2.6 Lema!s
!VI application can store Its own information aoout a fUe In an area called
the file label TIle label allows an application to Keep the flle data separate
from information maintained aboUt the fl1e. Labels can be used for any
object In the FHe System. The maximum label sIze Is 128 bytes. 110 to labels
Is handled separately from file data 110.

2.7 Logical em Physical End of File
A file contains some number of bytes Of data recorded in some number of
physical pages. AClditlonal pages which dO not contain any fUe data can be
allocated to the f11e. There are" therefore" two measures of the end of the
fUe. The Logical End of File (LEeF') is a pointer to the last stored byte that
has meaning to the appllcatlon. The Physical End of File (pE(F) is a count of
the number of pages allocated to the fUe.
In addition" each open fUe haS a poInter called the file ~erwtliCh poInts
to the next byte In the fUe to be read or written. When the fUe Is opened"
the fUe marker poInts to the first byte (byte number o~ The fne marker can
be positioned automatioally or expl101Uy using the read and write oalls. For
example" when a program writes to a fHe opened with Append access" the fne
marker Is automatloally posItioned to the end of the flIe before new data are
written. TIle flIe marker cannot be posItioned past LECF except by a write

2-4

cperatlng System Reference Manual TIle File System

operation that appends data to a fHe; In thIs case the fUe marker Is
posItioned one byte past LECF.
When a fUe is created, an entry for it Is made in the catalog specified in its
pathname, but no space is allocated for the fHe itself. When the flIe is
opened by a process, space can be allocated exp11citly by the process, or
automatically by the qJeratlng System. If a write operation causes the flle
marker to be positioned past the LECF marker, LECF (and PECF If necessary)
are automatically extended. The new space Is contiguous If poSSible.

2.8 File Access
The FHe System provIdes a devIce-independent bytestream interface. As far
as an appl1cation program Is concerned, a specl fled number of bytes is
transferred eIther relative to the fUe marker or at a spec1f1ed byte location
in the flIe. The physical attribUtes of the device or fne are not important to
the appl1catlon, except tnat devIces tnat do not support posl tlonlng can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's phys1cal
characteristics.
Programs can request any amount of data from a file. The actual I/O,
hOwever, Is performed in WhOle-page increments when devices are blOCk
structured. Therefore, programs can optimize I/O to such devices by setting
the fUe marker on a page boUndary and making I/O requests In whOle-page
increments.
A fUe can be open for access by more than one process concurrently. All
requests to write to the fUe are completed before any other access to the fHe
Is permitted. When one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the file. The
other processes may, nowever, have accessed the fHe in an earller state.
Data already Obtained by a program are not ohanged. The programmer must
ensure that processes maintain a consistent view of a shared f11e.
When you open a file, you specify the kind of access allowed on the fUe.
When the fUe is opened, the q>erating System allocates a fUe marker for the
calUng process and a run-time identification number called the refnum The
process must use the refnum in sUbsequent calls to refer to the fUe. Each
operation USing the refnum affects only the file marker associated with that
refnum.
Processes can share the same fUe marker. In glotJaJ access fJ'}()(1e, each
process uses the same refnum for the fUe. When a process opens a file in
glObal access mOde, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a fUe with Global_Retrun, bUt eaCh time the CPEN call Is used a
different refnum is prOdUCed. Each of thOse refnums can be passed to other
processes, and each process uslng a particular refum shares the same fUe
marker with other processes with the same refum. Processes using different

2-5

cperatlng System Reference M8I7()81 The FIle System

refnums .. hOwever, always have different flIe markers, whether or not tnose
refnums were Obtained with GlobaCRefrUn
A fUe can also be opened In private mOde .. which specifIes that no other CPEN
calls are to be allowed for that f11e. A fUe can be opened with
GlooaI_Re1run and prIvate" which opens the fUe for glObal access .. bUt allows
no other process to open that fUe. By usIng this call .. processes can control
Which other processes have access to a fUe. The opening process passes the
glObal refnun to any other process that is to haVe access .. and the system
prevents other processes from openIng the f11e.
Processes using glObal access may not be able to make any assumptions about
the location of the fUe marker from one access to the next.

2.9 Pipes
Because the ~erat1ng System supports multiple processes .. a meChanism Is
provided for interprocess communication. This mechanism is called a pipe
Pipes are simllar to the other objects In the FHe System -- they are named
according to the same rules .. and they can have labels.

I'IlTE
Pipes wlll not be supported in future releases of the ~erating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

As with a f11e .. a pipe is a byte stream. With a pipe .. however .. information is
queued In a first-In-first-out manner. Also .. a pIpe can have only one reader
at a time, and once data Is read from a pipe it is removed from the pipe.
A pipe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data into it.
Because the data read from the plpe Is consumed, the fUe marker Is always at
zero. If the pipe is empty and no processes have it open for writing, ECF (End
Of Flle) Is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satiSfy the
call arrives In the pipe .. or until all writers close the pipe.
When a pipe is created .. its size is 0 bytes. UnliKe with ordinary files, the
initiaUzing program must allocate space to the pipe before trying to write
data Into it To avoid deadlocKs between the reading process and the writers,
the qJerating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
shoUld allocate to the plpe twice as much space as the largest amount of data
In any planned read or write operation.
A pipe Is actually a circular buffer with a read pointer and a write pointer.
All writers access the pIpe through the same write pointer. Whenever eIther
pointer reaches the end of the pIpe .. it wraps bacK around to the first byte. If
the read pointer catches up with the write po1nter, the read1ng process blOCKs

2-6

qJerating System Reference Mant/81 me File System

until data are wrItten or untll all the wrIters close the pIpe. SImllarly, If the
write pointer catches up wIth the read pointer, a writing process blocks until
the pIpe reader frees up some space or until the reader closes the pIpe.
Because pipes have this structure, there are restrictions on some operations.
These restrIctions are dIscussed wIth the relevant Flle System calls.
Processes can never make read or wrIte requests bIgger than half the size of
the pipe because the q>erating system always fully satisfies each read or
wrIte request before returnIng to the program. In other words, If a process
asks for 100 bytes of data from a pipe, the q:>erating System walts until there
are 100 bytes of data in the pipe and then completes the call. Slmllarly, if a
process tries to write 100 bytes of data into a pipe, the ~rating System
walts until toore Is room for too full 100 bytes before wrIting anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be possible for a reader and a
wri ter to deadlock, with neither having room in the pIpe to satisfy Its
requests.

2.10 File System calls
ThIs section describeS all the ~rating system calls that pertaIn to the Flle
System. A summary of all the ~ratlng System calls can be found in
Appendix A The followIng specIal types are used In the FIle System calls:

Patmame = STRINi[MaX_PattYlClOO]; (* MaX_Pattf8ne = 255 *)
E_tQne = STRINi(MaX_EncJIE]; (* tIaX_EtQne = 32 tt)
Accesses = (Dread, Dwrite, ~, Private, Global_RefrUn);
t1Set = SET (F Accesses;
IottxJe = (AbSOlute, Relative, sequential);

The FS_InfO record and its associated types are described under the LOO<.lP
call. The Dctype record Is described under the CEVICE_aNTRCL call.

2-7

q;erat/ng System Reference fvIl¥JtIal

2.10.1 MAKE_FILE md MAKEYIPE FlIe System calls

MAKE_FILE (var ECOde:Integer;
Var Path: Patl'1'lclle;

Label_Slze:Integer)

MAKEYIPE (var ECOde:Integer;
var Path :PatI'1'aIe;

Label_Slze:Integer)

Ecode: Error indication
Path: Nafre of new object

me File System

Label_Size: Number of bytes for the Object1s label

MAKE_FILE and MAKE_PIPE create the specIfied type of Object with the
given name. If the pathname does not specify a directory name (more
specifiCally, If the pathname does not begin with a dash), the working
directory is used. Label_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. My error indication is returned
in ECOde.

Pipes will not be supported In future releases of the qJeratlng System.
00 not use the pipe mechanism if you want your software to be
upward-compatible.

The· MAKE_FILE example on the next page checks to see Whether the
specified fUe exists before opening It

2-8

qJeratfng system Reference fvI8nlIaI

(lH)T F1leExlsts = 890;
YM F1leReftuq, Erro1'Code:INTEGER;

F1leNcJIE: Patt1&re;
Happy: E01.ENf;
Response:DM;

EEGIN
Happy: =fAlSE;
MULE tilT Happy 00
fEGIN

The File system

REPEAT (* get a file name *)
IRITE('File name: ");
READLN(FileName);

UNTIL LENGTH(F1leName»0;
tW<E_FILE(Errorcode, FileNcIE, 0); (*no lctlel for this file-)
IF (ErrorDode<>O) THEN (* does file already exist? *)
IF (ErrorCode=FileExists) TI£N (* yes *)
~GIN
IRITE(FileNcIE,' already exists. overwrite?');
REAIl.N(Response);
Happy:=(Response IN rye, ·V·]); (*gO ahead CI1d overwrite-)

EN)
ELSE .ulELN(· Error ., ErrorCOde,' While creating file.')
ELSE HaWY: = TRLE;

EN>;
(JlEN(Errol'Code, F1leNalE, F1leReflOQ, (OWl1 te 1);

EN>;

2-9

qJeratlng System Reference Manual

2.102 KlLL_£B.:ECT File System Call

KILL_(JU:CT (var ECOde:IntegeT;
Var Path: Pattwlle)

Ecode: Error indicator
Path: Narre of object to be deleted

T/7e FIle System

K1lL_£lU::CT deletes the object given in Path from the File System. {])jects
with the safety switch on cannot be deleted. If a fHe or pipe Is open at the
time of the KILL_CB.J::CT call, its actual deletion Is postponed until it has
been closed by all processes that have it open. DurIng this period no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL tRECT call. A KILL (B.ECT call can be reversed
by LN<D...L_FILE, as long as the object is a file and is still open.

The fOllowIng program fragment deletes flIes untll RETURN Is pressed:
CONST FileNOtFound=894;
VAR FileNare :Pattfble;

Errol'Code: INlEGER;
EEGIN

REPEAT
IRITE('Flle to delete: ');
REAOlN(FileName);
If (fileName<> I ') THEN

BEGIN
KILL_(JU:CT(ElTOI'Code,fileNale);
IF (Errol'Code<>O) TI-EN
If (Errorcooe=filett>tfOllld) THEN

IRITELN(flleNaoo,' not fot.rld. I)

ELSE lIRITELN(' Error ',ErrorCOde,' lIlile deletirYJ file. ')
ELSE IRITELN(f11eName,' deleted. ');

EN>
UNTIL (FileName=");

EN>;

2-10

t:peratlng system RefeJ1JfICe Mant/al

2.10.3 LN<ILL_FILE File System Call

IN<Ill_FIlE (var ECOde:Integer;
ReflOn : Integer;

Var NeIflaE:e_f'lCIIe)

Ecode: Error indicator
RefNum: Refnum Of the Killed and open file
NeIllf1alre: New narre for the file being restored

The File system

LN<ILL_FILE reverses the effect of KILL_«R:ECT as long as the killed
Object is a fUe that Is still open. A new catalog entry Is created for the file
with the name given in Newncme. Newncme Is not a full pathname: the
resurrected file remains In the same directory.

2-11

cperatlng System Reference H817t18l

2.10.4 RENAI"'E_ENTRY Flle System Call

RENNE_ENTRY (var Erode: Integer;
Var Path:Patt11alE;
Var NeWlCJE :E_ NcDe)

Ecode: Error indicator
Path: Object's old nane
NelJJf)~: Object's ne", naroo

TI1e File System

RENAfvE_ENTRY Changes the name of an Object in the FUe System.
Newncme cannot be a full pathname. The name of the object is changed, bUt
the object remains In the same directory. The following program fragment
Changes the file name of FCRMATTER.LIST to NEWFCRMAT.TEXT.

VAA OI(J800 :Pattflane;
NewNaoo: E NciM;
Errorcode:INTEGER

f£GIN
OldName:=°-LlSA-FORMATTER.LISTo;
~:=°tt:"ORMAT. TEXT";
RENAtE_EN1RY(ErrOI'COde,OI(fbe,~);

EN);

The fUe's full pathname after renaming Is

-LISA-NEWFCRMAT. TEXT

Volume names can be renamed by specifying only the volume name in Path.
Here is a sample program fragment which changes a volume name. Note that
the leading dash (-), given in CDd\icme, Is not given in NewNcme.

YM Ol(J6re :PathNare;
NewNane: E NciM;
Errorcode:INTEGER

E£GIN
OldName:="-thomas";
Ne~: =' steams' ;
REtW£ _ENTRY (Errorcode, Ol<Rl1e, Ne~);

EN);

2-12

cperat/ng system Reference HantIal

2.10.5 UD<LP File System call
lOO<t.P (Var Ecooe:lnteger;

Var Path :Patmalne;
Var AttribUtes:Fs_InfO)

fcode: Error indicator
Path: Object to lOOkup
AttribUtes: Information returned about path

T/1e File system

UlJ<LP returns information abOUt an Object in the fUe system. For devices
and mounted volumes, call UD<LP with a pathname that names the device or
volume withoUt a fUe name component:

DevName:="-uppfR"; (* DISkette drive 1 *)
lOOKUP(ErrorGode,DevName,InfoRec);

If the device 1s currently mounted and 1s blOCk. structured, all of the record
fields of Attributes contain meaningful values; otherwise, some values are
undefined.
The Fs InfO record Is defined as follows. me meanings of the Information
fields are gIven In AppendIx E.

FS_Info = REC(H)
name: e nate;
deVrUn: INTEGER;

CASE OType : info_type CF
device t, VOIUlE t:

(icinnlel: fNTEG::R
deVt: deVtype;
slot no: INTEGER;
fs sIze: UKiINT;
vol size: LlN2INT;
bloCkstnctured,
nnnted: IID..EAN;
~: LlN3INT;
prlvatedeV,
renJJte,
lOCl<eddeV: IDl..EAN;
IIIUIt.,JJEm1ng,
tnID.Ilt J8ld1ng: BOCl..EM;
volrane,
password: e_nellle;
fsversim,
wIid,
voIrun: INlEGER;

2-13

t:pemting System Reference Manual The File System

00;

blOCkslze,
dataslze,
clusterslze,
filecot.llt: INTEGER; (*tUDer of files on VOl*)
freeccult: UNiINT; (*tUDer of free blOCks *)
OlVe, (* Date Volure Created *)
OlVB, (* Date VolllOO last Backed ~ *)
OlVS:LONGINT;(* Date Volure last ~ *)
Machine id"
ovel'llDlilt _ stanp,
nraster_copY_1d: L(NiINT;
privileged,
wr1 teJ)rotected: BO(l.EAN;
master,
copy,
scavenge_flag: BOO..EAN);

ooJect_t: (
size: LONGINT; (*aCtual no of bytes written *)
ps1ze: l(NiINT; (*JYlysical s1ze in bytes *)
lpsize: INTEGER; (*logical page size in bytes *)
ftype: f1letype;
etype: entrytype;
OTC, (* Date created *)
OTA, (* Date last Accessed *)
OTNL (* Date last Modif1ed *)
OTB: LlNJINT; (* Date last Backed ~ *)
refrun: INTEGER;
fmark: LlNJINT; (* file marker *)
acIOOde: mset; (* access IOOde *)
nreaders, (* NlIItJer of readers *)
nwr iter s, (* Number of writers *)
AJsers: INTEGER; (* tUttler of users *)
fuid: uid; (* un1que ident1fier *)
eof, (* ElF encot.I'ltered? *)
safety_~ (* safety sw1tch sett1ng *)
kswi tch : BO(l.EAN; (* has file been killed? *)
private,(* F1le opened for private access? *)
lOCked, (* I s file lOCked? *)
protected:BOOlEAN);(* F1le copy protected? *)

2-14

cpeJat/ng system Reference Manual me File system

UI0 = INTEGER;
Info_Type = (oovice_t, VOlllE_t, object_t);
Devtype = (Oi5l<00\I, pascaltxL seqdeV, biW<t, roo_io);
Filetype = (t.rldefined, tro=file, rootcat, freelist,

bcdllod<s" sysdata spooL exec" usercat" p1pe"
bOOtfile, swapdata s~, mnap, userfile,
kl11edOOject);

Entrytype... (eR1>tyentry, catentry, linkentry, fileentry,
plpeentry"ecentry, kl11edentry);

Ttle eof field of the FS_InfO record is set after an attempt to read more
bytes than are avallable from the fUe marker to the logical end of the fUe, or
after an attempt to wrIte wnen no dISk space Is available. If the flIe marKer
is at the twentieth byte of a twenty-five byte f11e, for example, you can
read up to 5 bytes withOUt setting eat, bUt If you try to read 6 bytes, the
F11e System gives you only 5 bytes of data and eat 1s set.
The following program reports hOw many bytes of data a gl van fUe has:

VAR Inf~:Fs_Info; (*information returned by UXJ<t,P cn1 Itf=O*)
FiletOe :PatnNane;
ErrorGOOe: INTEGER;

BEGIN
~ITE("Fl1e: .);
REAIl..N(Filetbne);
LOOKUP(Errorcode,FlleName"InfoRec);
IF (ErroI'COde<>O) llEN
~ITELN(" camt lOOl<~ ., Fl1eNa1e)

ELSE
~ITELN(FlleNcIRe,' has ., InfCfleC.Slze,· bytes of data ••);

00;

2-15

t:perating System Reference M817t181

2.10.6 IN=O File System call

IW-O (Val' Ecode : Integer;
Rema: Integer;

Val' RefInfO:fS_InfO)

Ecode: Error indicator

me FIle System

RefNum:
Refinfo:

Reference nuntJer of object in Flle System
Information returned about RefNum's Object

If'.FO serves a function slmllar to that of Ul:KLP bUt Is applicable only to
Objects in the File System that are open. The definition Of the FS_InfO
record Is given under LOCKLP and iri Appendix A.

2-16

qJerat/ng System Reference MantI8l

2.10.7 SET_FILE_K'O File system Call

SETJILE_IN=O (Var Ecode:Integer;
Reflt.ln : Integer;
fs1 :fS_InfO)

Ecode: Error indicator

T/7e File System

RefNum:
Fsi:

Reference nUf1t)er of object in File system
New information abOUt the object

SET_FILE_JN=O changes the status information associated with a given Object.
This call works In exactly the opposite way that LOO<lP and If\FO work, In
that the status information Is given by your program to SET_FILE_JN=a The
Fsi argument Is the same type of information record as that returned by
UD<LP ana ua The Object must be open at the time this call is made.
The followIng fleldS of the Information report may be Changed:

file_scavenged
file_clOsed by_OS
file_left_open
user_t~
user_St.tltype

2-17

t:penJtJng System ReFerence M8f1(J8}

2.1D.8 (FEN File system Call

(PEN (Var Ecode:lnteger;
Var Path: PattrlalJB;
Var RefNuR:lnteger;

f1cIllp:tlSet)

EcOde:
Path:
RefNum:
Hanip:

Error lndlcator
Narre of Object to be opened
Reference number for oDject
set of access types

Tile File system

The CPEN call opens an Object so that it can be read or wrItten to. When
you call CPEN, you spec1 fy the set of accesses that w111 be allowed on that
file or sequential device. The available access types are:

• Dread -- Allows you to read the fl1e
• Dwrite -- Allows you to write in the file (to replace existing

data)
• Append -- Allows you to add on to the end of the file
• Private -- Prevents other processes from opening the file
• Global_Refrun -- Creates a refnum that can be passed to other

processes
Note that you can gIve any number of these mOdes simultaneously. If you
specify Dwrlte and ~ in the same {PEN call" Dwrite access will be used.
See section 2.8 for more information on GIObal_Refrun and Private access
modes.

If the OOject opened already exIsts and the process calls WRITE_DATA
without having specified ~ access" the object can be overwritten. The
~rat1ng System aoes not create a temporary file and walt for the
Q..OOE_lRECT call before decid1ng what to dO with the old fUe.
M Object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the fHe without using
a global refnum, they must coordinate their fUe accesses so as to avoid
overwrIting eaCh other's data
Pipes cannot be opened for l'.)fIrlte access. You must use ~ if you want
to wrlte Into the pIpe. To set up a private pIpe .. the reader process opens the
pipe first" specifying Dread mode; the wrIter process then opens the pipe wIth
~ PrIvate access mocJe.

2-18

cperatJng System Reference Manual

2.10.9 Q,OOE_m.:ECT FUe System call
(1.OSE_lRECT (Var ECOde:lnteger;

ReftUl: Integer)

Ecode: Error indicator
RefNum: Reference number of object to be closed

me File System

If ReftUn Is not global, a...OSE_m.:ECT terminates any use of Reft.Un for 110
operations. A FLUSH operation is performed automatically and the file Is
saved In its current state. If RetN.rn Is a global refnum and other processes
have the fUe open, Refl\lrn remains valid for these processes and other
processes can st1ll access the fHe using ReftUn

The follow1ng program fragment opens a fIle, reads 512 bytes from It, and
then closes the file.

TYPE Byte=-128 .• 127;
VAR Fl1~:Pattfbe;

ErrorGode,FileRefNUm:lnteger;
ActualBytes:Long[nt;
BUffer:ARRAV[O .. 511] (F Byte;

EEGIN
lFEN(Erro1'Code, flleNcIE, fileReftt.lq, [mead]);
IF (ErroI'Code>O) Tt£N
~ITELNCCcnut ~ ',fileNcIE)

ELSE
EEGIN

READ _DATA(Errorcooe,
FileReftOn.,
(R)4(i8Jffer),
512,
ActualByteS,
sequential,
0);

If (ActualBytes<512) THEN
IRlTE('()11y read ',ActualBytes,' byteS from ',FileNclne);

CUlSEJR:ECT(EITOJ'Code, FileReftun);
00;

EN>;

2-19

t:perat/ng system Reference Manual

2.10.10 RE,AD_DATA em WRITE_DATA FHe System Calls

READ_DATA (var Ecode:Integer;
RefltIn: Integer;
Data_AOn' : LoogInt;
COU1t :LOBJInt;

Var Actual : LongInt;
Node: Itnlde;
Offset:LalgInt);

~11E_OATA (Var ECOde:Integer;
RefltIn: Integer;
Data_AOn':Longlnt;
Go.rlt : LongInt;

var Actual:LoogInt;
t10de : Itfixje;
Offset:LO'lgInt);

EcOde: Error indicator
RefNum: Reference number of object for 1/0

TIle File System

Data_Addr: Address of data (source or destination)
Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Hode : 110 fOOCIe
Offset: Offset (absolute or relative modes)

READ_DATA reads information from the device, pIpe, or fUe specified by
Re1N.rn, and WRITE DATA writes information to it. Data Addr Is the
address for the destination or source of COt.rlt bytes of data. The actual
number of bytes transferred Is returned In Actual.

f"k)de can De absolute, relative, or sequentlal. In absolute mode, Offset
specifies an absolute byte of the f11e. In relative mode, Offset specIfies a
byte relative to ttte flIe marker. In sequential mOde, Offset Is Ignored
(assumed to be zero); transfers occur relative to the fUe marker. sequential
mode (WhICh Is a special case of relative mode) 1s the only access mode
allOWed for reading or writing data in pIpes or sequential (non-disK) devIces.
Non-sequential modes are valId only on devIces that support pos1 tlonlng. The
first byte Is numbered O.
If a process attempts to write data past the Physical End of File on a disk
flle, the ~rat1ng System automatically allocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blOCks. You can use the PLU£ATE call to ensure that any newly allocated
blocks are located next to each other, althoUgh they may not be located near
tne rest of the fUe.
READ_DATA from a pipe that dOes not contain enough data to satisfy Cou1t
suspends the calUng process until the data arrives In the pipe. If there are no

2-20

tperat/ng System Reference Manllal T/Je File System

writers, the end-of-fHe Indication (error 848) is returned In Ecode. Because
pipes are circular, WRITE_DATA to a pipe with insufficient room suspendS the
call1ng process (the writer) untU enough space is avallable (untn the reader
has consumed enougn data~ If no process has the pipe open for reading and
there Is not enough space in the pipe, the end-of-fHe Indication (848) Is
returned In Ecode.

READ DATA from the MAINCO\ISCl..E or AL TCO\ISCl..E devIces must
speo1 fy CW'lt - 1.

The followIng program copies a flle. Note that you must supply the correct
location for Syscall in the second line Of the program.

PROORAt1 COpyfile;
USES (*Syscall.(I)j*) sy5Call;
TYPE By te=-128 .. 127;
VAR OldFile,NewFile:PathName;

01(Jleftt.ln, Ne~ftUn: INTEGER;
BytesRead, Byteslr1 tten : LtN3INT ;
ErrorCOde : INTEGER;
Response :DM;
Buffer:ARRAY [0 •• 511] (J=' Byte;

BEGIN
IRITE('f1Ie to copy: I);
REAIl...N(OldFile);
lFEN(ErrorGode, 01(1=11e, 01~ [mead]);
IF (Errol'COOe>O) ll£N
BEGIN

IRlTELN('Error I, ErrorDoOe, I ~ile opening ',OldFile);
EXIT(COpyfile);

EtC);
lIIUTE(I New file naJe: I);
REAIl...N(NewFile);
tW<E fILE(ErrorGode, NewF11e, 0);
£FEN(ErrorGode, NewFl1e, Ne~ftt.In, [DWri te]);
REPEAT

REAO_OATA(ErrorCOde,
OI~ftUnr
mD4(i8.tffer),
512, BytesRead, sequential., 0);

IF (Erro1'Code=O) AN) (BytesRead>O) ll£N
IRITE_DATA (ErrorCOde,

Ne~
(R)4(ill3Uffer),
8ytesRead, Bytes~1 tten, 8e(J.Iential, 0);

lIfTIL (BytesReOO=O) m (ByteSlrltten=O) m (Errorcooe>O);

2-21

t:peratJng System Reference M8/7I,/8} TI1e File System

IF (Errol'Code>O) TlEN
~ITELN('Fl1e copy enoot.Iltered error '"Errorcooe);

llJlSE_oo:ECT(ErrorCode, Ne~);
ll.OSEJRECT(ErrorCOde" Ol~ftUR);

00.

2-22

qJeratlng System Reference I'1anlIal

2.10.11 READ_LABEL em WRITE_LABEL Flle system calls

READ_LABEL (var Ecode:lnteger;
Var Path:PatlnlE;

oata _Addr :LOf'YJint;
COlrlt: LaYJInt;

Var Actual:Longlnt)

IRITE_LABEl. (var Ecode:lnteger;
Var Path:PattJlaJB;

oata _Adm": Longlnt;
COlrlt : LaYJlnt;

var Actual:LongInt)

ECOde: Error indicator
Path: Name of Object containing the label
Data Addr: Source or destination of 1/0
Count: Number of bytes to transfer
Actual: Actual number of bytes transferred

Tile File system

These calls read or write the label of an object in the File System. 110
always starts at the beglmlng of the label. COUlt is the number of bytes the
process wants transferred to or from Data_Addr, and Actual Is the actual
number of bytes transferred. M error is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-23

Operating S}·'Stem Reference ,v18lUlBl

2.10.12 DEVICE_CONTROL File System Call

IEVICE_ettmU.. (Var Ecode: Integer;
Var Path :Pathnale;
Var CPanI : Dctype)

Ecode: Error indicator
Path: Device to be controlled

The File ~·S'tem

CParm: A record of information for the device driver

DEVICE_CONTROL is used to send device-specific information to a device
driver or to obtain device-specific information from a device driver.
Regardless of whether you are setting device-control parameters or
requesting information .. you always use a record of type Dctype. The
structure of Oct.ype is:

Dctype = REJlR)
deVer-sion: INTEIiER·
deCode: ~;
dd>ata: MRAY[O .. 9] Of UNiINT
EH>;.

dcVersion: currently 2
deCode: control code for device driver
dcData: specific control or data parameters

2.10.12.1 Setting Device-Cortrol Information
Before you use a device .. you call DEVICE_CONTROL to set the device
driver. Once you begin using the device .. you call DEVICE_CONTROL as
necessary.

Table 2-1 shows which groups of device-control funct~ons must be set before
using each type of device. Table 2-2 shows which characteristics are
contained in each group. For example .. you must set Group A for RS-232
input. As you see in Table 2-2, Group A indicates the type of parity used
with the device. Each group requires a separate call to DEVICE_CONTROl,
and you can set only one characteristic from each group. If you set more
than one from the same group for a pmticular device .. the last one set will
apply.

2-24

Operating System F;teference ,..1anua}

Table 2-1
DEVICE_CONTROL Functions Required

betm-e Ui:ing a Device

The File S),.'Stem

Device Type Device Name Required Groups

Seri a1 RS232 for
input

RS232A or RS2328 A, C.I D, EI
F, G" L, M, N

Serial RS232 for
output or printer

ProFile

Parallel printer

Console screen and
keyboard

Diskette drive

RS232A or RS232B

SLOTxCHANy (where
x and y are numbers)
or PARAPORT

SLOTxCHANy (where
x and y are mrnbers)
or PARAPORT

MAINCONSOLE or
ALTCONSOLE

UPPER or LlJAER

A, 81 C, G,
H, II M, N

J

I

I

J

Here is a sample program that shows how a device-control parameter is set.
This program sets t.he parit.y attribute for the RS232B port to IIno parity."
Note that the parity attribute requires only that you set cparm..dccode and
cparmdcdab(Ol Other parameters require that you also set cparm.dcdat.e[l]
and cparm.dcdata[2l They are set in a similar manner.

vm
cpanI: dctype;
errmn: integer;
path: pathru:ne;

IBiIN
path: =' -RS232B' ;
cp8III.dcver:sion:=2; (. always set this value .)
cp8III. decode: = 1;
cpana.dcdata[O]:= 0;
lEVlCE_(D{lROl(errmn, path, cpana);

EN>;

2-25

Operating System Refel""ence "-1al11181 The File System

Table 2-2 shows how to set cparm.dccode, cparm.dcdatf(0l cparm..dcdatf(11
and cparm.dcdat8[2] for the various available attributes. Note that any
values in cparm.dcdata past cparm.dcdata[2] are ignored when you are setting
attributes documented here.

Table 2-2
DEVICE_CONTROL Output Ftn::tional Groups

flI£Tlm .decode .dcdatAOl .dcdaterl1 .dcdeW21

Group A, Pari ty :
No parity, 8 bits
of data 1 0

Odd parity, 7 bits
of data 1 1

Even parity, 7 bits
of data 1 3

8 bits of data plus
ninth bit odd parity 1 5

No pari ty, input
stripped to 7 bits 1 6

Group B, Output Handshake:
None 11
DTR handshake. 2
~IXOFF handshake 3
del ay aft er CR, IF 4 ms delay

Group C1, Baud rat e :
5 baud

Group D, Input wai t i ng duri ng Read_Data:
wait for Count bytes 6 0
return whatever rec'd 6 1

Group E2, I nput handshake:
no handshake 7

9 -1 -1 32767
DTR handshake 7
XONIXOFF handshake 8

Group f3, Input typeahead buffer:
flush only 9 -1 -2 -2
flush and resize 9 bytes -2 -2
flush, resize,
and set threshold 9 bytes low hi

2-26

Operating Sl/stem Reference fo,1anuaJ The File S).oS'tem

Table 2-2 (ctriinued)

FlJ£TIOi .decode .dcdataOl .dcdattll1 .dcdrU21
Group G, Disconnect Detection:
none 10 0 0
BREAK detected

means disconnect 10 0 nonzero

Group H, Timeout on output (handshake interval):
no timeout 12 0
timeout enabled 12 seconds

Group I, Automatic linefeed insertion:
disabled 17 0
enabled 17 1

Group JP, Disk errors (set to 1 to enable~ to 0 to disable):
enable sparing 21 sparing rewrite reread

Group 1(5, Break ccmnand (never required~ available only on serial
RS232 devi ces) :

send break 13

send break 13
while lowering DTR

Group L, Timeout on Input:
No timeout 14
Timeout enabled 14

millisecond
duration

millisecond
duration

o
seconds

Group H, BREAK during Close_Object:
enabled (default) 25 nonzero
di sabl ed 25 0

o

1

Group tfS, set Modem Timeouts (lnt'l I"D:EM A driver only):
Set timeouts 22 recovery carrier connect

Group P, Wait until modem connects (Int'l MOOEN A driver only)
Wait 24
(returns wi th
errnum=645
if no connect)

2-27

Operating System Reference ft.181U18J The File S}·'Stem

L'Using Group C, you can set baud to any standard rate. However" 3600,
7200~ and 19200 baud are available only on the RS232B port.

2. In Group E~ to specify no input handshake, first make the call with the
device control code 7, then call again with the device control code 9, as
shown.

3. Low and Hi under Group F set the low and high threshold in the typeahead
input. buffer. When Hi or more bytes are in the input buffer, XOFF is sent
or DTR is dropped. When Low or fewer bytes remain in the typeahead
buffer~ XON is sent or DTR is reasserted. The size of the typeahead buffer
(bytes) can be any value between 0 and 1024 bytes inclusive.

4. In Group J~ enabling disk sparing lets the device driver to relocate blocks
of data from areas of the disl< that are found to be bad. Enabling disk
rewrite allows the Operating System to rewrite data that it had trouble
reading, but finally managed to read. This condition is referred to as a soft
error. Enabling disk reread tells the Operating System to read data after
they are written to make certain that they were written correctly.

5. When sending a break command~ as shown in Group K~ any device control
from Group A removes the break condition even if the allotted time has not
yet elapsed. Also~ sending a break will disrupt transmission of any other
character still being sent. If you want to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a
single null character (equal to 0) just prior to calling DEVICE_CONTROL to
send the break.

6. In Group N.. reco'/ery is the minimum number of milliseconds required by
the modem between calls. Cerrier is t.he number of milliseconds without.
cm·rier detect, before the driver disconnects from the line. Connect is the
maximum number of seconds the driver will wait. when Group P
Device_Control is subsequently issued.

2-28

Operating System Reference f\1anu81 The File S}.'Stem

Table 2-3 gives a list of mnemonic constants that you can use in place of
explicit numbers when setting Decode. These mnemonics are provided in the
SysCall unit for convenience.

Decode

1
2
3
4
5
6
7
8
9

10
11
12
13

Table 2-3
Decode Mnemonics

f'tleIIuai c Dccode

dvParity 14
dvOutDTR 15
dvOutXON 16
dvOutDelay 17
dvSaud 18
dvlnWait 19
dvlnDTR 20
dvlnXON 21
dvTypeahd 22
dvDiscon 23
dvOutNoHS 24
no mnemonic 25
no mnemonic

2.10.12.2 Obtaining Device-Control Information

Mnemonic

no mnemonic
dvErrStat
dvGetEvent
dvAutoLF
no mnemonic
no mnemonic
dvDiskStat
dvDiskSpare
no mnemonic
no mnemonic
no mnemonic
no mnemonic

To use DEVICE_CONTROL to find out about the currer,tt state of a particular
device,. simply give the pathname for the particular device along with a
function code for the type of information you need. The record of type
Dctype that you supply is returned filled wit.h information.

There are three types of information requests you can make. Note t.hat. each
type applies only to some of the available devices. The request types and
the returned information are described in Table 2-4.

Table 2-5 shows the error code provided in response to a Dccode=15
information request. This code is given in cparm.dcdat.t(O]. The code .. a long
integer,. is shown in Table 2-5; the bits and bytes are numbered from the
right,. counting from O. The meaning assigned to the bit applies if the bit is
set (equals 1).

Here is a program fragment that uses DEVICE_CONTROL to get information
about the lower disket.te drive.

V~
cp8I1I: dctype;
eIrma: INTEIiER;
path: pathnale;

££GIN
path: =1_UJtJER I ;
cp8I1D.dcversion:=2; (* always set this value *)

2-29

cp&r1I. decode : = 20;
£E.VlCEJlJfllll...(errn., path, CP8l1l};
WITH Cp8I1l 00
NUlELH (dcdata[O], dcdata[1]1 dedata[2t dcdata[3t

dedata[4], dcdata[51, dcdata[6])

Table 2-4
Device Irt'arrrdion

The File ~.'Stetn

Decode Devices Returned in Dcdata

15

16

ProFiles

Console Screen
and Keyboard

[0] contains disk error status on last
hardware error (see Table 2-5)
[1] contains error retry count
since last system boot

[0] contains numbers 0-10,
which indicate events:

o = no event
1 = upper diskette inserted
2 = upper diskette button
3 = lower di sket t e insert ed
4 = lower diskette button
6 = mouse button down
7 = mouse plugged in
8 = power button
9 = mouse button up

10 = mouse unplugged
[1] contains the current state of certain
l<eys, indicated by set bits (i f the bit is
1, the key is pressed) (bits are numbered
from the right)

o = caps lock k~y
1 = shift key
2 = option key
3 = ccmnand key
4 = mouse button
5 = auto repeat

[2] contains X and Y coordinates of mouse,
X in left 2 byte~Y in right 2 bytes
[3] contains timer value in milliseconds

2-30

Oper8ting System Reference "'18m1a1 The Fl1e System

Decode Devices

18 RS232.. Modem A

19 RS232.. Modem A

Table 2-4 (contiooed)

Returned in Dcdata

Read and clear input error counters
[0] contains count of framing errors
[1] contains count of parity errors
[2] contains count of overrun errors
[3] is count of buffer overflow errors

[0] returns last value passed in
Group A.. Dcdata[O]
[1] returns last value passed in decode
for Group B.. or negative value of 'ms
delay' if 'delay after CR,Lf' was selected
[2] returns baud rate
[3] upper 16 bits: returns last value

from dcdata[O], Group 0
lower 16 bits: returns last value

from decode.. Group E
[4] returns value from 'bytes' Group f
[5] upper 16 bits: value from 'lOW' ..

Group f
lower 16 bits: value from 'hi' ..

Group f
[6] returns 'seconds' from group H
[7] upper 16 bits: value from

dcdata[l] Group G
lower 16 bits: value from

dcdata[O] Group I
[8] returns value from dcdata[Ol
Group L
[9] returns number of characters waiting
in driver's input buffer

2-31

Opel'sting System Rete.i·"enee "-"snusl The File S}.stem

Decode Devices

Table 2-.4 (continued)

Returned in Dcdata

20

23

Profile or
Diskette Drive

Modem A

(0]

[1]

[2]

[3]

[4]

[5J

[6]

contains:
o = no disk present
1 = disk present (but not

accessed yet)
The following indicate that a disk is
present and has been accessed at
least once.

2 = bad block track appears
unformatted

3 = disk formatted by some
program other than the
Operating System

4 = OS-formatted disk
contains:

o = no button press pending
1 = button press pending~

disk not yet ejected
contains number of available spare
blocks~ 0-16~ meaningful only when
DcdBta[O] = 4 and for a diskette
contains:

o = both copies of the bad-block
directory OK

1 = one copy·is corrupt
(meaningful only when
Dcdata[O] = 4)

contains:
o = sparing disabled
1 = sparing enabled

contains:
o = rewrite disabled
1 = rewrite enabled

contains:
o = reread disabled
1 = reread enabled

(0] returns Irecovery'~ Group N
[1] returns 'carrier'~ Group N
[2] returns Iconnect'~ Group N
[3] returns:

o = not connected
1 = connected

2-32

Operating System Reference Manus} The File S}·'Stem

Table 2-5
Disk d-En ... Codes

Byte 3
7 = ProFile received (> 55 to its last response
6 = Write or write/verify aborted because more than 532 bytes of

data were sent or because ProFile could not read its spare
table

5 = Host's data is no longer in RAM because ProFile updated its
spare table

4 = SEEK ERROR -- unable in 3 tries to read 3 consecutive headers
on a track

3 = ORe error (only set during actual read or verify of
write/verify, not while trying to read headers after seeking)

2 = TIMEOUT ERROR (could not find header in 9 revolutions)-- not
set while trying to read headers after seeking

1 = Not used
o = Operation unsuccessful

Byte 2
7 = SEEK ERROR -- unable in 1 try to read 3 consecutive headers on

a track
6 = Spared sector table overflow (more than 32 sectors spared)
5 = Not used
4 = Bad block table overflow (more than 100 bad blocks in table)
3 = ProFile unable to read its status sector
2 = Sparing occurred
1 = Seek to wrong track occurred
o = Not used

Byte 1
7 = ProFile has been reset
6 = Invalid block number
5 = Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
o = Not used

Byte 0
This byte contains the number of errors encountered when rereading a
block after any read. error.

2-33

t:pemtlng syitem Reference Manual

2.10.13 PLLOOATE Flle System Call

M..LOOATE (var Ecode:Integer;
Refb: Integer;
Qnt1~:800le8l;
COU'lt :LOI'YJ1nt;

Var PDtual: Integer)

Ecode: Error indicator

me File System

RefNl.ln: Reference I'U1tler of Object to be allocated space
contiguous: True = allocate contiguously
COlI'lt: NUICler of blOCks to be allocated
Actual: f'Urt)er of blOCks actually allocated

use ALLOOATE to increase the space allocated to an Objecl If possible,
AlLOOA TE adds the requeste<l number of blOCks to the space available to the
object referenced by Reft'Un. The actual number of blOCks allocated Is
returned in Actual. If COOtl~ is true, the new space is allocate<l in a
single, unfragmented space on the disk. This space Is not necessarUy adjacent
to any existing fUe blOCks.

AlLOOATE appl1es only to Objects on block-structured devices. M att~t to
allocate more space to a pipe Is successful only If tne plpe'S reacl poInter Is
less than or equal to Its wrIte pointer. If the write poInter haS wrapped
arOllld bUt tne reacl pointer has not, an allocation would cause the reader to
read inValid and trllnltlallzed data, so the FUe System returns error 1186 In
thiS case.

2-34

t:peratlng system Reference 1'1aniJ81

2.10.14 ct:JwPACT File System call

lDPACT (Var EOOde:lnteger;
ReflUO: Integer)

Ecode: Error indicator

The File System

RefNum: Reference l1Uf1t)er of object to be co~acted

C(J1)ACT changes the Physical End of File to deallocate any bloCks after the
block that contains the Logical End of File for the file referenced by ReftoUn
(see Figure 2-1.) CO"PACT applles only to Objects on block-structured
devIces. As in the case of ALLOOATE ... compaction of a pipe is legal only if
the read pointer is less than or equal to the write pointer. If the write pointer
has wrapped around ... but the read pointer has not... compaction could destroy
data In the pipe. The Flle System returns error 1188 in this case.

2-35

t:peratlng System RefeJmCe Manual

2.10.15 ~TE File system Call

TRlN!ATE (Var Ecode:Integer;
ReffUn: Integer)

EcOde: Error indicator

Tile File System

RefNum: Reference nunDer of Object to be truncated

~TE sets the Logical End Of FHe indicator to the current position of
the rUe marker. My data beyond the fUe marker are lost lRU'CATE
appl1es only to blOCk-structured devices. Truncation of a pipe can destroy
data that have been written but not yet read. As the diagram ShOws,
TR~ATE Changes only LECF. CCM>ACT, on the other hanel, Changes only
PECF.

jTRLN::AlE I ClJVPACT -l
new new

LBF PElF

t ~

_~I>..IU~>_H'« ~~ If
t t t

File Marker old old
LECF PECF

Figure 2-2
The Relationship of COVPACT ffld TRLNCATE

In this figure the bOxes represent bloCks of data Note that LECF can point to
any byte In the fUe bUt PECF always points to a block boUndary. Therefore,
TRt..t.CAlE can reset LECF to any byte in the fUe, but at1>ACT can reset
PECF only to a block boUndary.

2-36

qJell1t/ng System Refel1Jf1CfJ I'18nU81

2.10.16 FLl&i File System call

flUSH (Var Ecode:Integer;
Rem.:Integer)

Ecode: Error indicator
ReftUR: Reference f'Uft)er of cJest1nation of 1/0

The FIle System

FLUSH forces all bUffered Information deStined for the object identified by
RettUn to be written out to that object.

A side effect Of FLUSH Is that all FS buffers and data structures are flustled
(as well as the control information for the referenced fl1e~ If RettUn is -1,
only the glObal FHe System Is flust'let1. lllis Is a methOO by wtllcn an
application can ensure that the Flle system is consistent

2-37

qJeratlng $}'Stem Reference /'1antJal

2.10.17 SET_SAFETY FUe System C8l1

SET _WElY (var ECOde : Integer;
var Path:PatiitBlE;

lrl_off :8001eal)

ECOde: Error indicator
Path: Nane of object containing safety switCh
O"LOff: set safety switch:

€l1 • true
Off = false

The FIle System

Each Object In the File system has a "safety switch" to help prevent accidental
deletion. If the safety switch Is on, the Object camot be deleted.
SET_SAFETY turns the switch on or off for the object ldentifleu by path.
Processes that are Sharlng an Object ShOUld cooperate with eacn other When
setting or clearing the safety switch.

2-38

cperat/ng System Reference H8I7lI8l TtIe FIle System

2.10.18 SET_~_DIR ald GET_W£RKING_DIR File System calls

SEl_.n<IttJ_DIR (var Ecode:Integer;
Var Path:PattnlE)

~l_ W(H(INi_DIR (var ECOde: Integer;

Ecode:
Path:

Var Path :PatfTlane)

Error indicator
Working directory name

The qlerating System uses the wOrKing directory name to resolve partially
specified pathnames into complete pathnames. GET _ ~_DIR returns the
current WOrKing directory name in Path. SET_wtRKJN3_DIR sets the WOrKing
directory name.
The fOllowing program· fragment reports me current name of the working
directory and allows you to set it to something else:

VM WOI1<i~ir:Patr8JE;
Erro1'COde: INTEGER;

BEGIN
GEl_W(R(1Ni_OIR(Errol'COde,lorl<i~ir);
If (Erro1'Code<>O) 11£N
WmN('tamt get the current wrklng directory!')

ELSE WU1ELN{ 'TIle current wrking directory is: " Iorki~ir);
MUlE('New Wrklng directory raE: ');
READLN(lDrkingOir);
SEl_ImKINi_DIR(Errol'Code,lorkingOir);

EN>;

2-39

Operating SJ/stem Reference ft.1anu111 The File S}·stem

2.10.19 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY, and
LOOKUP _NEXT _ENTRY File System Calls

RESET_CATALOG (var ecode : integer;
var path : pathname)

RESET_SUBTREE (var ecode : integer;
var path : pathname)

GET_NEXT_ENTRY (var ecode : integer;
var prefix : e_name;
ver entry : e_na.e)

lOOKUP_NEXT_ENTRY (ver ecode : integer;

ecode:
petri:
prefix:
entry:

var prefi x : e_n8lDe;
var InfORec : Q_Info)

Error indicator
Name of the directory to be scanned
Find names beginning with this substring
Name of the next object (with matching
prefix) in the directory

These procedures are used to enumerate the objects contained in a
directory. RESET_CATALCXi instructs the file system that the directory
named in path is to be scanned. GET _NEXT _ENTRY returns the name of the
next object in the directory. Only names beginning with the substring Jref'ix
will be found. If prefix is the null string, then all names in the directory
will be found. If there are no more objects in the directory, an end-of-file
error (848) is returned. RESET_SUBTREE is equivalent to RESET_CATAlOG,
but indicates that the subtree rooted at the direct.ory named in path is to be
scanned. Subsequent calls to GET_NEXT_ENTRY will return names from the
subtree according to a pre-order traversal. LOOKUP _NEXT_ENTRY
combines the actions of GET_NEXT_ENTRY and QUICK_LOOKUP into one
operation, and is considerably more efficient than those two procedures
called serially. When traversing a subtree by calling LOOKUP _NEXT_ENTRY,
the level field of the Q_Irt"o record indicates the 18've1 of the object within
the directory hierarchy. Objects in the root directory of a disk volume ere
at level zero.

2-40

qJerating System Reference H8nIJaJ

2.1020 twn.NT cn2 LtfvILNT File system cans

tDJIT (var ECOde:Integer;
var VNcIIe: E Halle;
Var Pass.ord:E NcIAe
Var Devrae:EjilE>

lNOMT (VBI' Ecode:Integer;
Vat' Vt"SE:E_rae)

EcOde: Error 1na1cator
Vnare: Voll.De nane
Password: Passwrd for device (currently ignored)
Devnane: Device name

T/1e FIle System

twn.NT and LtfvILNT handle access to sequential devices or block-structured
deVices. For blOCk-structured devices, twn.NT logically attaches the volume's
catalog to the File System. The name of the volt.me mot.rlted is returned in
the ~ parameter.
LtfvILNT detaches the speCified volume from the FHe System. No object on
tnat volume can be opened after LtfvILNT has been Called. The volume
cannot be unrrtru"Ited untll all the objects on the volume have been closed by
wI processes using them.

DEM&ne Is the name of the device on whiCh a volume Is being mountect.
DEM&ne ShoUld be given withOUt a leading dash (-~

vncme Is the ncme Of the volume that was succesSfully mounte(j, and Is
returned.

2-41

Chapter 3
Processes

3.1 Process St.ructlJre •• 3-2

3.2 Process l-tlerarct1y ••• 3-2

3.3 PItlcess creaUm •......•.....•.•••.•••••••••.•.•..••....••....•••.•••••.•.•....••••.•••.•..•.. 3-3

3.4 PItlcess c:or.tIol •• 3-3

3.5 Process setm.dIrlg •• 3-3

3.6 ~ TenTdI'latlOl1 •• 3-4

3.7 A PItlcess-tiClldlIrlg ExarT1Jle ••.••••••••••••••••••••••••••••••••••••.•.•••••••••••••••••••• 3-5

3.8 PItlcess SysterTl C8Ils ••.•••••••••••••••••••• 3-7

3.8.1 M.AJ<E PROOESS •...•....•..•....•...•.••..........•.•..•..•••..•.•.•...•••.•.••••.••. 3-8
3.8.2 TERMiNATE PROCESS•...........•...........•....•.....•...•....•.••. 3-9
3.8.3 II'F"O PROOESs .•..••...•.•.••..••..••...•.••.•.••••.••..•.•••..•..•..••...•...••••.. 3-11
3.8.4 KILL:'PROCESS .. 3-13
3.8.5 SlJSPEI\I) PROCESS ... 3-14
3.8.6 ACTIVATE PROCESS •.....•..•.••.•.•.••...•.•.•••..•.•...••..•.•.......•...•..•.• 3-15
3.8.7 SETPRI~ITY PROCESS ••..•.•.•.•.•.•.•.••••.••.••.••.••••...•••...•...•..•••.. 3-16
3.8.8 YIELD CPU .:: ..•..•......•..•..•....••....••.....•.•.••.•.........•.........•.•..... 3-17
3.8.9 MY _10-: ••.•.•••.•••.•••••.••••.•••.•••••••••.•.•.•.•.••••••••.•••••••.••.•..•••••••••••• 3-18

Processes

A process is an entity in the Lisa system that performs work. When you ask
the qJerating System to run a program .. the OS creates a specific instance of
the program and its associated data. That instance is a process.
The Lisa can have a number of processes at anyone time; they appear to be
running sImultaneously. Although processes can Share code and data eaCh
process has its own stack.
011 y one process at a time can use the CPU. The SclJeduler determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an I/O
request .. for example~ At that time .. the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
When the original process later resumes execution .. it piCkS up where it left
off.
The process SChedullng state has three possibill ties. A 1lll1lJlng pR7cess Is
actually executing instructions. A .ready process is ready to execute but is
beIng held back by the Scheduler. A blOCked PIVtJeSS Is Ignored by the
Scheduler. It cannot continue its execution until something causes it to
become ready. Processes commonly become blocked whlle awaIting
completion of I/O .. although there are a number of other llkel y causes.

3-1

Processes

3.1 Process Structure
A process can use up to 16 data segments and 106 cOde segments.
The layout of the process address space for user processes is Shown in Figure
3-1.

Seg'
+--------o ,unavailable
+--------
1 I User COde Segments , ,

I
I

106 I
+--------

107 I LOSN 1
I
I (data segments)
I
I

122 I LDSN 16
+--------

123 I Stack
+--------

124 I Shared Intrinsic lJni t Data
+--------

125 I Screen
+--------

126 I Reserved
+--------

127 I Reserved
+--------

Flpe 3-1
Process Address Space Layout

Each process has an associated priority, an integer between 1 and 255. The
SCheOuler usually executes the highest-priority ready process. The higher
priorities (226 to 255) are reserved for the q,erating System.

3.2 Process H8rarchy
When the system Is first started, several system processes exist. At the base
of the process hierarchy .. Shown In Figure 3-2., Is the root process ... whiCh
handles various internal ~rating System functions. It has at least two sons:
the Memory Manager process and the shell process.
The fvIemory I'18n8ger process handles cOde and data segment swapping.

3-2

q:JeratJng system Reference MantIaJ Processes

The Shell process Is a user process tnat Is automatically started when the OS
Is InitIallzed. It Is typically a command interpreter, bUt It can be any
program. The OS simply lOOkS for the program called SYSTEM.SHELL and
executes It

Root Process

/I~ Shell
Process

Memory MlllBger I Ottler
Process U ser

Process

11\
Other User Processes

Fl~ 3-2
Process Tree

My other system process (the network control process, for example) Is a son
of the root process.

3..3 Process creatloo
When a process is created, it is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thOUght of as existing in a subtree. Many of the process
management calls affect the entire subtree of a process as well as the process
itself.

3.4 Process COOtrol
Three system calls are provIded for explicIt control of a process. These calls
allow a process to kill, suspend (blOCk)., or activate any other user process In
the system, as long as the process Identifier Is known. Process-handl1ng calls
are not allowed to control ~rat1ng System processes.

3..5 Process SChetUlrYJ
Process SChedUling is based on the priority established for the process and on
requests for C\)erating System services.
The SchedUler generally executes the highest-prtority ready process. O1Ce a
process is executing, it loses the CPU only under certain cIrcumstances. The
CPU Is lost When there Is some specIfIc request for the process to wait (for
an event, for example), when there Is an I/O request, or when there Is a
reference to a code segment that Is not In memory. A process that makes

3-3

t.pelCJllng Syslel? Refel-ent-:tJ I'1anttal Processes

any cperatlng System call may lose the CPU. The process gets the CPU back
when the cperating System is finished~ except under the following conditions:

• The running process requests input or output. The Scheduler starts the
next highest-priority process running while the first process waits for the
110 to complete.

• The runnIng process lowers Its prIorIty below that of another ready process
or sets another process's priori t y higher than 1 ts own.

• The running process expllclt1y yields the CPU to another process.
• The runnIng process activates a hIgher-prIority process.
• The running process suspends itself.
• A higher-priority process becomes ready.
• The running process needs code to be swapped into memory.

• The runnIng process executes an event -wal t call.
• The running process calls DELAY _ TlIVE.

Because the ~eratlng System cannot seIze the CPU from an executing
process except In the cases noted above, baCkground processes should be
liberally sprinkled with YIELD_CPU calls.
When the Scheduler is invoked, it saves the state Of the current process and
selects the next process to run by examIning the pool of ready processes. If
the new process requires that code or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager is already
working on a process, the Scheduler selects the highest priority process in the
ready queue that does not need anythIng swapped.

3.6 Process TerminatiCX'l
A process terminates under one of the followIng condItions:

• It calls TERMINATE_PROCESS.
• It reaches an 'EN): statement
• It is referred to in a KILL_PR«£ESS call.
• Its father process termInates.
• It runs Into an abnormal condition.

When a process begins to terminate, a SYS _ TERMINATE exception condition 1s
sIgnaled to the termInating process and all of the processes 1 t has created.
By means of the [Ea .. jlf~E_EXCEP J-VL call (described In Chapter 5), any
process can create an exception handler to catch the termInate exception and
clean up before terminating. The SYS _TERMINATE exception handler w1l1 be
executed only once. If an error occurs whIle the handler Is executIn~ the
process terminates Immediately.

3-4

qJeratfng Systen7 RefelmtJe fvlantl8.l Processes

A process can call KlLL_PRCCESS on any user process whose Proc_Id Is
known. TERMINATE_PRl£ESS, on the other hand, terminates the process that
caHea It (ana lts aescendants~ TERMINATEYROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
speclflea In the MAKE_PROCESS cal1.
Termination involves the followIng steps:

1. SIgnal the SYS _TERMINATE exception on the terminating process.
2. Execute the user's exception handler, if any.
3. Instruct all sons of the current process to termlnate.
4. Close all open fUes, data segments.pipes, and event channels left open by

the user process.
5. Send the SYS_SCN_ TERM event to the father of the termInatIng process

I f a local event channel exists.
6. Wal t for all the sons to finIsh termination.

3.7 A Process-Hand11ng Example
The following programs illustrate the use of many of the process-management
calls described In thIs Chapter. The program Father .. below .. creates a son
process and lets it run for a while. It then gives the user a chance to
activate, suspend, kilL or get information about the son.

PRffiRAf1 Fatner;
USES ("1U SCJurce:Sy5Call.(])j*) Sy5Call;
VAR Errorcode:INTEGER; (*error returns from system calls *)

proc_id:LONGINT; (* process global identifier *)
pr()(J18lOO:PattTlcloo; (* program file to execute *)
rull:NcIIestring; (* progran entry point *)
InfO_Rec:ProclnfoRec; (* information aboUt process *)
i : INTEGER;
Answer: CHAR;

3-5

Q:Jemting System Reference MantJal Processes

BEGIN
ProrIBE:='sm..OOJ'; (* this prognn is defined belOW-)
ttJll:=" ;
MAKE_PRaSS(Errol'Code, Proc_Id, ProrIBE, tt.lll, 0);
If (Errol'COde<>O) ll£N

WUTELN('Error ',Errol'Code,' 0Jr~ process magemellt. ');
Fm i:=l TO 15 00 (* idle for aWlile *)
BEGIN

IRITB..N(, father executes for a nonent. ');
VIElOJPU(Errol'Code,FN...SE); (* let son 1Ul *)

EN>;
WUTE('K(ill S(uspend A(otivate l(nfo');
REAOlN(Answer);
CASE Answer (F

'K', 'k': KILLJ~SS(Errorcooe,Proc_Id);
'S', 's': SUSPEtI) JJfU~SS(Errol'Code, Proc_Id, TRl£ (* suspend

fanily *»;
'A', 'a': ACTI VATE_PRtnSS (Errorcooe, Proo_Id, lRlE (* activate

fclllily *»; or, 'i': BEGIN
INFOJJR£nSS(ErroI'Code, Proo_Id, Info_Reo);
IRITELN(,SOO' 's rraIe is ',Info_Reo.~ttt8E);
00;

00;
If (ErroI'Code<>O) ll£N

IRITElN(• Error " Errol'Code,' during process no agenBlt. ');
00.

The program Sol 1s:
PROORAt1 SOn;
USES (*$U SOUrce: SysCall. (l)j*) SysCall;
VAR ErroI'COde: INTEGER;

rull :NaneString;
BEGIN

WULE TRl£ 00
BEGIN

WUTElN('8on executes for a IIIlABlt. ');
VIElO_(]ltJ(Errol'Code, fN...SE); (*let father process 1'lIl*)

END;
EN>.

3-6

qJeratJng system Reference ManIJal Processes

3.8 Process system calls
This section describes the (\)eratlng system calls that pertain to process
control. A summary Of all the Qleratlng system calls can be fotnl In
~ndlx A The following special types are used in process-control calls:

Pattnlle = SlRIt«2[255];
NamestrilYJ = SlRItf3[20];
P s eventblock = "'s eventblock;
S-eVentblock = T event text;
{~event_text = array [0 .. size_etext] of 1~1nt;
ProclnfoRec = record

pmpattTlaIE : patI'IlcIE;
glObal_id : longint;
father_id : Imgint;
priority : 1 •• 255;
state : (pactive, psuspellded, pwaiting);
data in : boolecl'l
end;-

3-7

cpe.ratlng System Reference HantlaJ

3.8.1 MAKE_PRoc:ESS Process System can

MAKE_PR«n:SS (var ErrtUn:lnteger;
Var Proc_Id:lcnJlnt;
Var Prot;f"11e: Patt"flc:llE;

Processes

Var EntryNalE:NcIIEString; (it NanEString = STRlt«2[20] it)
Evnt_Ohn_RefNum:lnteger)

ErrNum:
Proc Id:
progFlle:
EntryName:
Evnt_Chn_RefNum:

Error indicator
Process identifier (globally unique)
Process file nalOO
Program entry point
Communication channel between calling
process and created process

A son process is created when another process ... the father process ... calls
MAKE_PROCEss. The son process executes the program identified by the
pathname in ~Ue. If ~l1e is a null character string... the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id.
Evnt_CtIl_RefNt.m is a local event channel supplied by tne father process.
Event channels are discussed In Chapter 5. The ~erating System uses tne
event channel identlfled by Evnt_CtIl_RefNtm to send the fatner process
events regarding the son process (for example ... SYS_SCN_ TERM~ If
Evnt_ CtIl_Refl\Un Is zero ... tne fatner process Is not Informed 'When such
events are prOduCed.
EntryNcme, if non-null ... specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.
My error encountered durIng process creat10n Is reported In Errf\lm

3-8

Q'JeJC1t1ng SyStenl Reference I'-1anI.Ia1

3.82 TERMINATEJ'ROCESS Process System call

TERMINATE JlRlnSS(Var ErrttJn : Integer;
Event_ptr:P_s_eventblk}

ErrNum: Error indicator
Event_Ptr: Information sent to process's creator

Prol.:·esses

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS _TERMINATE exception to be signaled for the calling process and for all
of the processes it has created. The process can declare its own
SYS_ TERMINATE exception handler to handle whatever cleanup it needs to do
before it Is actually terminated by the system. When the terminate exception
handler Is entered" the exception Information block contains a l(OJint that
descrIbes the cause of the process termination:

Excep _DaU:{O] - 0 Process called TERMINATE_PROCESS.
1 Process executed the 'EN:J.· statement.
2 Process called KILL_PROCESS on ltself.
3 Some other process called KILL_PROCESS on the

terminating process.
4 Father process Is terminatlng.
5 Process made an invalid system call (that is" an

unknown call~
6 Process made a system call wIth an Invalid EfJ1\k.m

parameter address.
7 Process aborted due to an error while trying to swap

In a code or data segment

8 Process exceeded its maximum specified stack size.
9 Process aborted due to pOSSible lockup of the system

by a data space exceeding physical memory size.
10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be s1gnaled. The entire list
Is shown at the beginnIng of AppendIx A.

If the terminating process was created with a communication channel.. a
SYS_SC}',C TERM event Is sent to the termInating processes father. The
terminating process can specify the text Of the SYS_sCt,t TERM with the
Event_Ptr parameter. Note that the first (O"th) longlnt of the event text Is
reserved by the system. When the event Is sent to the father, the OS places
the terminatlon cause of the son process In the first longlnl ThIs Is the same
termination cause that was suppUed to the terminating process 1 tsel f In the

3-9

fJJeJ'atlng system Reference I'1antI8l Prroesses

SYS_TERMINATE exception information blocK. My user-supplled data in the
first longlnt of the event text is overwritten.
If a process specifies an event to be sent In the TERMINAlE_PROC':ESS call
but the process was created without a local event channel, no event Is sent to
the father.
If the process was created wIth a local event Channel, an event Is sent to the
father if the process calls TERMINATE_PRDJESS with a nll Event_PU or if
the process termInates by a means other than Calling TERMlNATE_PR~SS.
The event contains the termination cause In the first longlnt and zeroes In the
remaInIng event text.
P _S_everltblk Is a pointer to s_everltblk, defined as:

C(H)T size_ etext = 9;. (* event text size - 40 bytes *)
TYPE t_evet'lt_text = MRAV [0 •• slze_etext) (F LongInt;

s_eventblk = t_evet1t_text;

If a process calls TERMINATE_PRCCESS twice, the ~rat1ng System forces it
to terminate even if it has disabled the terminate exception.

3-10

qJerating System Reference Manual

3.8.3 II'FO _PROOESS Process system call

UFO_PROCESS (Var ErrNlIn:Integer;
Proc_Id:Longlnt;

Var Proc_Info:ProcInf~);

ErrNum: Error indicator
Proc Id: Global identifier of process

Processes

Proc=Info: Information about the process identified by
Proc_Id

A process can call II\FO_PRo:::ESS to get a variety of information about any
process known to the cperating System. Use the function MY _10 to get the
Proc_Id of the calling process.

ProclnfoRec is defined as:

TYPE Proclnf~ = REcmD
~'tt1'lanE :Pa'tt1'lanE;
Global_id : Longint;
Priority : 1 .. 255;
state : (PActi ve, PSuspewlded, Pwai ting);
oata _in : Boolea'l

EM);

Data_In InOlcates Whether the data space of the process Is currently In
memory.

The procedure on the next page gets information about a process and displays
some of it.

3-11

t:pemllng System Reference Manual

PROCEDURE Oisplay_Info(Proc_Id:lONGINT);
VAA ErrorCOde: INTEGER;

Info Rec:ProcInfoRec;
BEGIN -

INFO_PROCESS (ErrorDode, Proc_Id, InfO_Rec);
IF (ErrorGode=100) THEN

IRITElN("Attempt to display info about nonexistent
process. ")

ELSE
BEGIN

.Im Info Rae 00
BEGIN -

IRI TELN(I program nanE: ", P1'OC1'at:hNclle);
IRITELN(" global id: ", Global_id);
IRITELN(" priority: ", priority);
IRITE(" state: ");
CASE State (F

PActi ve : IRITELN(I active I);
PSuspended: IRIffiN(I suspended I);
Plaiting: IRITELN("waiting")

EM)
Ot)

EM)
EN);

3-12

Processes

qJeratlng System Reference Hanual

3.8.4 K1LL_PRo:::ESS Process System Call

KILL_PROCESS (var ErrtUl:lnteger;
Proc_Id:Longlnt)

ErrNum:
Proc_Id:

Error indicator
Process to be killed

Processes

KILL_PROCESS kills the process referred to by Proc_Id and all of the
processes in its sUbtree. The actual termination of the process does not occur
until the process is In one of the followIng states:

• Executing in user mode.

• Stopped due to a SUSPEI'V_PRCCESS call.
• Stopped due to a CELAY _TIM: call.
• Stopped due to a WAIT_EVENT _ a-N or SEI'V _EVENT _a-N call, or

READ_DATA or WRITE_DATA to a pipe.

3-13

cperatfng System Reference Manual

3.8.5 SLISPENJ _PRoc:ESS Process System Call

SlJSPEN) J'ROCESS (Var Errtt.ln: Integer;
Proc_Id:LongInt;
SUsp_Fanl1y:Booleal)

ErrNum: Error indicators
Proc_Id: Process to be suspended

Processes

susp-Family: If true~ suspend the entire process subtree

SLISPENJ_PRoc:ESS allows a process to suspend (block) any process In the
system. The actual suspension does not occur until the process referred to by
Proc_Id Is In one of the following states:

• Executing In user mode
• Stopped due to a DELAY _ ntvE call
• Stopped due to a WAIT_EVENT _ c::H\I call

NeIther expiration of the delay time nor receipt of the awaited event causes
a suSpended process to resume execution. SUSPEf\IJ_PRC£ESS Is the only
direct way to blOCK a process. Processes~ however~ can become blocKed durIng
I/O, by the timer (see DELAY _ TIf"'E)~ or for many other reasons.
If SUSp_Fcmlly Is true, the ~rat1ng system suspends both the process
referred to by Proo_ld and all of its descendents. If SUSpycmlly Is false~
only the process identified by Proc_Id is suspended.

3-14

t:peratlng System Reference Hanual

3.8.6 ACTlVAlE_PROOESS Process system Call

ACTIVAlE _FJRCn:SS(var ErrtQn: Integer;
Proc _ Id: LongInt;
Act_Family:Boolean)

ErrNum: Error indicator
Proc Id: Process to be activated

Processes

Act_Family: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVAlE_PRoc:Ess. A process can
activate any other process in the system. Note that ACTIVATE_PROOESS can
awaken only a suspended process. If the process is blocKed for some other
reason, ACTIVATE_PRoc:ESS cannot unblock it. If Act_Fcl1l11y is true,
ACTlVATE_PRoc:ESS also activates all the descendents of the process referred
to by Proc_Id.

3-15

cperatlng System Reference Manual

3.8. 7 SETPRIfRITY _ PRoc:ESS Process System Call

SETPRUIUTY J:lROCESS(Var ErrtU1: Integer;
Proc_Id:loogInt;
NeW_Priority:Integer)

ErrNum: Error indicator
Proc Id: Global id of process
New_Priority: Process's new priority number

Processes

SETPRIfRITY _ PRoc:ESS changes the scheduling priority of the process
referred to by Proo_ld to New_Priority. The priority value must be between 1
and 225. (qlerating System processes execute with priorities between 226
and 255.) The higher the priority ... the more likely the process is to be allowed
to execute.

3-16

cperating System Reference Manual

3.8.8 YIELD_CPU Process System Call

VIElD_CPU(Var ErrNum:lnteger;
TO_Any:Boolecl1)

ErrNum: Error indication
To_Any: Yield to any process, or only higher or equal

priority

Processes

Background processes should use YIELD _ a='U often to allow other processes to
execute when they need to. Success! ve yields by processes of the same
priority result in a "round robin" scheduling of the processes. If TO_Any is
true, YIELD_CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YlELD_a='U causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the TO_Any criterion, the calling process simply
continues execution.

3-17

t:perating System Reference Mantlal

3.8.9 MY _10 Process System Call

t1Y_ID:Longint

Processes

MY _10 Is a function that returns the unique glooal identifier (a longint) of the
call1ng process. A process can use MY _10 to perform process handllng calls
on itself.

for example:

setPriority_Process(ErrtUQ, My_Id, 100)

sets the priority of the call1ng process to 100.

3-18

Chapter 4
Memory Management

4.1 IJata ~ts ••••••••••••••.•.•••.••.••••••••••••••••• 4-1

4.2 The LoglcallJata ~ It I'tI1tJer .. 4-1

4.3 StlaJ'e(j[)ata~ts .•••••••••••••••••.••••••••••••••••••••.•••••••...•••.•••••.••••••••••• 4-2

4.4 PrIvate[)ata~ts •.••••..•.•...•......••...•.••.•••....••••.••••.••••.•.•••.•.•••••...• 4-2

4.S c:ode ~ts •••••••.••••.•••••••.•.•.•••••.••••••••••••••••••••••••••.••••••••••••••••••••••• 4-2

Il6 ~ •••.•••••••••..•••.•••••••.•.••••.•••••.•••••••••••••.••••..•••.....•••.•.•••.••••••••••• 4-2

4.7 tw1enlory to1ar.agerner It Systefn calls .. 4-3

4.7.1 MPJ<E DATASEG .•••.•.•...••....•.....••..•••••.•••••..•••.•.•...••.••.•.•••..•..• 4-4
4.7.2 KILL DATASEG ••••.•••••...•••.•..••••.•.••..••.•...•.•.•••.•••••.•.•••.•••....••.• 4-6
4.7.3 {PEN-DATASEG .•••..•••..••....••••.•••.•.••••••••••.•.•••.••.••.•.•.•.••...•••••• 4-7
4.7.4 CLosE DATASEG .•••••••.••••••••..•••.•.••••.•••••••.•••.•.•.•••.•.••..•...•.•..•• 4-8
4.7.5 FLlJSI-f"DATASEG •.•.•.•.•...•.••••..••••..••.•••••.•.•••.•..•••..•••••.•••.•.•.••. 4-9
4.7.6 SIZE DATASEG .. 4-10
4.7.7 If'.FO-OATASEG ••.•.•.•.•.•.•.•.•...••..•.•••..•••••••.•.•.••••.••.•••.•.•..••••.• 4-11
4.7.8 If\F'O-LDSN .. 4-12
4.7.9 II\F'O-~ESS .••.•...•.•.•..••...•..••.••...•.••.•.•....•....•.•.••.•.•.•••.••... 4-13
4.7.10 MEM-If\lFO •••.•••••.••••.•.•.•.•••.•.••••••••••••.......•••.•••...•••.••••••••••....• 4-14
4.7.11 SET~CESS DATASEG ... 4-15
4.7.12 BIND_DATASEGand UNBIND_DATASEG 4-16

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU~

4.1 oata SEqnents
Each process has a data segment that the qJerating System automatically
allocates to it for use as a stacK. The stacK segment's internal structures are
managed by the hardware and the qJerating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
(or local) data segments or shared data segments. Private data segments
can be accessed only by the creating process. When the process terminates"
any private data segments still in existence are destroyed. Sl7a.red data
segments can be accessed by any process that opens those segments.

The Q'Jerating System requires that data segments be in physical memory
before the data are referenced. The Scheduler automatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to ensure that the program declares all 1ts needs by assoc1atIng
itself with the needed data segments before they are needed.

This process of association is called binding. A program can bind a data
segment to itself in several ways. When a program creates a data segment by
using the MAKE_DATASEG call" the segment is automatically opened and
bound to the program. I f a program needs to open a segment that was
created by another program, the CPEN_DATASEG call is used. That call binds
the segment to the calling process" as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time" the LN3I1\D_DATASEG call is
provided to unbind the data segment without closing it. The program can then
use BII\D _OAT ASEG to bind another data segment to the program.

The Q'Jeratlng System views all data segments except the stacK as linear
arrays of bytes. Therefore, allocation, access, and interpretation Of structures
within a data segment are the responsibUity of the program.

42 The Logical Data SEqnent turner
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stacK. Each bound data segment
is associated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN~ See Figure 3-1 for an illustration Of
the address space of a process. While a data segment is bound to the process,
it is said to be a member of the wol1<ing set of the process.

4-1

cperatfng System Reference Manual MemolY Management

The process assocIates a cJata segment with a specl flc LOSN In the
MAKE_DATASEG or «FEN_DATASEG call.
The LDSN .. which has a vallcJ range of 1 to 16, Is local to the calling process.
The process uses the LDSN to keep track of where a given cJata segment can
be founcJ. More than one data segment can be associated with the same LDSN,
but only one such segment can be bouncJ to a given LDSN at any instant and
thus be a member of the working set of the process.

4.3 Shared Data 8e(Jnents
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As with local data segments, the segment
creator assigns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the sharecJ data segment
contains address pointers to data within the segment, the cooperating
processes must also use the same LOSN wIth the segment. ThIs ensures that
all logical data addresses referencIng locations within the data segment are
consistent for the processes sharing the segment. A shared data segment is
permanent until explicitly killed by a process.

4.4 Private Data 8e(Jnents
Data segments can also be private to a process. In this case, the maximum
size of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LDSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.
Suppose a process has a data segment already bound to LOSN 2. If the
program tries to bind a 2S6 Kbyte data segment to LDSN 1, the ~erating
System returns an error because the 256 Kbyte segment needs two consecutive
free LOSNs. Instead, the program should bind the segment to LDSN 3 and the
system automatically also uses LOSN 4.

4.S COde 8e(Jnents
Division of a program into multiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 S\rIap)lng
When a process executes, the following segments must be in physical memory:

• The current code segment
• All the data segments In the process workIng set (the stack and all bound

data segments)
The ~erat1ng System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedUre in a segment not in memory, a segment swap-in request is initiated.

4-2

cperatlng System Reference Manual MemolY Management

In the sImplest case, thIs request only requIres the system to allocate a block
of physical memory and to read in the segment from the disk. In a worse
case, the request may requIre that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. ThIs process Is InvISible to the program.

4.7 f'-1emory Management System calls
This section describes all the cperatlng system calls that pertain to memory
management A summary of all the cperatlng System calls can be found in
Appendix A. The following specIal types are used in memory management
calls:

Patl'lnEloo = STRINJ [255];
T€2stype = (€2S_stlaJ.'e(l, €2s...prlvate);
OsInfoRec = Record

mem_size:longint;
disc_size:longint;
ruIt>_~: integer;
LOSN: integer;
bot.fl(F : bOO 1 em;
presentF:bOOlean;
creatorf:bOOlean;
rwaccess:bOOlean;
~tr:longlnt;
volnane:e name' em; --'

E_name = string [32];

4-3

cpeJCJting System Reference Manual

4..7.1 MAKE_DATASEG Memory Ma1agement System Call

MAKE_OATASEG (Var Errtt.ln:Integer;

ErrNum:

Var ~ :Pa'tl'Ylclle;
Mem_S1ze, 01sk_S1ze:LongInt;

Var ReftOn: Integer;
Var ~r : LongInt;

Ldsn: Integer
Ostype:Tdstype)

Error indicator
Segnane: Pathname of data segment

MemolY Management

Hem Size:
Disk Size:
RefNum:

Bytes of memory to be allocated to data segment
Bytes on disk to be allocated for swapping segment
Identifier for data segment

Segptr
Ldsn:
Dstype:

Address of data segment
Logical data segment number
Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname,
5eglame, and opens it for immediate read-write access. 5eglame Is a File
System pathname.

The parameter MefTLSlze determInes hOW many bytes Of maIn memory are
allocated to the segment. The actual allocation takes place In terms of
512-byte pages. If the data segment Is private (Dstype Is dsJ)r1vate),
Mem_Size can be greater than 128 Kbytes, but you must ensure that enough
consecutive LDSNs are free to map the entire segment.

DiSk_Size determines the number of bytes Of swapping space to be allocated
to the segment on disk. If DiSk_Size is less than Mem_Slze, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident until it is killed or until its size In memory becomes less than or
equal to its DiSk_Size (see SIZE_DATASEG~ The application programmer
should be aware of the serious performance implications of forCing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its WOrking set into memory. To avoid
thraShIng, each application should ensure that all of 1 ts data segments are
swappable before it relinquishes the attention of the processor.

The call1ng process assocIates a Logical Data Segment Number (LDSN) with
the data segment. If this LDSN Is bound to another data segment at the time
of the call .. the call returns an error.

Refl\Un Is returned by the system to be used in any further references to the
data segment. The ~erat1ng System also returns 5egPtr, an address pointer to
be used to reference the contents of the segment. 5egPtr points to the base
of the data segment.

MY error condl tlons are returned In El11'Un.

4-4

cperatfng System Reference Manual Memo;y Management

When a data segment Is created, It ImmedIately becomes a member of the
working set Of the calI1ng process. You can use LN3INJ_DATASEG to free
the LDSN.

4-5

QJeratlng System Reference Manual

4.72 KILL_OAT ASEG Meroory t-1cIlagement System Call

KIll_DATASEG (var ErrNUm:lnteger;
Var SEg1cI1e: PatI'11cIre)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

MemoIY Management

When a process is finished with a shared data segment, it can issue a
KlLL_DAT ASEG call for that segment. (KILL_OAT ASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see a..OSE_DATASEG~ During the interim period,
however, after a KIlL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.
KILL_OAT ASEG does not affect the membership of the data segment in the
\\Iorking set of the process. The Refl\Un and segptr values are valid until a
a...OSE_DATASEG call is issued.
())e important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KILL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disK and
are lost when the segment is closed.

4-6

t:pemt1ng System Reference Manual

4.7.3 CPEN_DATASEG Memory Mauagemerat System Call
(lJEN_OATASEG (Var ErrtUl:Integer;

Var ~:PattTlCllE;
Var RefNUm:Integer;
Var saptr: La1gInt;

Ldsn: Integer)

ErrNum: Error indicator
Segname: Name of data segment to be opened
RefNum: Identifier for data segment

MemolY Management

segPtr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing shared data segment with (PE~LDATASEG.
The calling process must supply the name of the data segment (~) and
the Logical Data Segment Number to be associated with it. The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be nUll.

The q>erating System returns both RefN.rn, an identifier for the calling
process to use In future references to the data segment., and segpt.r, an
address pointer used to reference the contents of the segment.

When a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is ReadOnly. You can use SETACCESS_DATASEG to change the
access rights to ReadWrlte. You can use LMII'O._DATASEG to free the
LDSN.

You cannot use lPEN on a prIvate data segment, sInce callIng Q(l)E on a
pri vate data segment deletes It.

4-7

file/Clting ~ystem Reference fvlanlJal

4.7.4 CL..OOE_DATASEG Memory Mcrlagement System Gall

CLOSE_DATASEG (Var ErrtUn:lnteger;
ReftUn: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

a..OSE_DATASEG termInates any use of ReftUn for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
a..OSE_DATASEG frees that LDSN. The data segment Is removed from the
working set of the calling process. RefNt.m is made invalid. Any references
to the data segment using the orIgInal ~tr will have unpredIctable resul ts.

If RefNt.m refers to a private data segment, CUJSE_OATASEG also kills the
data segment, deallocatlng the memory and dIsk space used for the data
segment. If RefNtJn refers to a shared data segment, the contents of the
data segment are wrItten to disk as if FLLJSf-CDATASEG had been called. (If
KILL OAT ASEG Is called before UJJSE OAT ASEG, the contents of the data
segment are thrown away when the lase process closes the data segment.)

The fOllowIng procedure sets up a heap for LisaGraf usIng the memory
management calls:

PROCEOl.R: In1 toata8e(1"orL1saGraf (var ErrorCOde: Integer);
CONST HeapSize=16384; (* 16 KBytes for graphics heap *)

01SkS1ze= 16384;
VAR HeapBuf:LONGINT; (* pointer to heap for LisaGraf *)

GrafJieap:Pat~; (* data segJOOnt path ncJre *)
Heap_Refrun:INTEGER; (* refrun for heap data seg *)

BEGIN
GrafHeap:='grafheap';
£JlEN_DATASEG(ErroI'Code, GrafHeap, Heap_Refnum, ~, 1);
IF (ErrorCOde<>O) THEN
BEGIN

IJIRlTELN('lilable to open', Grafheap, 'Error Is " ErroI'Code)
ENO
ELSE

ENO;

InltHeap(POINTER(~),POINTER(HeapBuf+HeapSize),
iJHeaJ£rror) ;

4-8

t:peratlng System Reference Manual

4.7.5 FLUSI-CDATASEG Memory rvtarlagOOlel1t System Call

FLUSI'LOATASEG (Var ErrttJn:Integer;
ReftUl: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

Memory Management

FLUSH_DATASEG writes the contents of the data segment identified by
RefN.m to the disk. (Note that CLOSE_DATASEG automatically flushes the
data segment before closing it .. unless KILL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

cperatlng System Reference Manual

4.7.6 SIZE_DATASEG Memory Ma'lagement System Call

SIZE_DATASEG (Var ErrNum:Integer;

ErrNum:
RefNum:

Refrun: Integer;
DeltaMemSize:LongInt;

Var NeWlemSize : LongInt;
DeltaDiSkSize:LongInt;

Var NewDiskSize:LongInt)

Error indicator
Data segment identifier

Memo.ry Management

DeltaHemSize: AfOOunt in bytes of change in rreroory
allocation

NewHemSize:
DeltaDiskSize:
NeWOiskSize:

Ne'w actual size of segrrent in rrelOOry
Amount in bytes of change in disk allocation
New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by Refl\Un. Both Deltat-1emSize and DeltaDiSkSize can
be either positive .. negative .. or zero. The changes to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment., unless data are lost in shrinking the segment. Because the actual
allocation Is done in terms of pages (S12-byte bloCkS) .. the NewI'1emSlze and
NewDiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size Of the respective areas.
If the NewDiskSize is less than the NewMemSize .. the segment cannot be
swapped out of memory. The appl1catton programmer should Oe aware of the
serious performance impllcations of forcing a segment to be memory resident.
Because the segment cannot Oe swapped out, a new process may not be aOle
to get all of its working set into memory_ To avoid tnrashlng.. each
application should ensure that all of Its data segments are swappaOle Oefore it
relinquishes the attention of the processor.
If the necessary adjacent LDSNs are available .. SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

t:perat/ng System Reference Manual

4.7.7 IN=O_DATASEG Memory Mm.agernellt System Call

IN='O_DATASEG (var ErrM.In:Integer;
Reftt.m: Integer;

Var DsInfo:DsInfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segnent
Dslnfo: Attributes of data segment

IN=O_DATASEG returns information abOUt a data segment to the calUng
process. The structure of the OsInf~ record is:
REaR)

t1em_Size:LongInt (* Bytes of EftDry allocated to data segEt'lt *);
01sc_S1ze:LongInt (* Bytes Of d1Sk space allocated to ~t *);
tuItqlen: Integer (* DJrrent I'UItler Of processes w1 th ~t open *);
Ldsn:Integer (* LOSN for segoont b1nd1ng *);
BotnF:BoolESl (* True if SE9Blt is txuld to lDSN of calling proc *);
Presentf:Boolea1 (* True 1f segoont 1s present 1n IelDry *);
GreatorF :Booleann (* True if the call1ng process 1s the creator *)

(* Of the segIBlt *);
RWAooess:Boolea1 (* True if the calling process has write access *)

(* to segment *)
EN>;

4-11

tjJeratlng System Reference MantJal

4..7.8 If'FO_LDSN Memory Management system Call

I~O_LDSN (Var Errtt.n:Integer;
ldsn: Integer;

V~ RefNUm:Integer)

ErrNum: Error indicator
Ldsn: Logical data segnent nUfTt)er
RefNum: Data segment identifier

MemolY Management

If\FO _ LDSN returns the refnum of the data segment currently bound to ldsn.
You can then use If'FO_DATASEG to get information about that data segment.
If the LDSN specified Is not currently bound to a data segment .. the refnum
returned is -1.

4-12

cperatJng System Reference Manual

4.7.9 I~O_,AlXJRESS Memory rvatagement System call

Itf="O_AlXH:SS (Var ErrtUl:lnteger;
Address : Loogint;

Var ReftUt:lnteger)

ErrNum: Error indicator

f\1emolY Management

Address: The address about Which the program needs information
RefNum: Data segnent identifier

This call returns the refnum of the currently bound data segment that
contains the address given.

If no data segment that contalns the address given ls currently bOUnd to the
call1ng process .. an error indication Is returned in EntUn

4-13

t:peratJng system Reference fvlalXl81

4.7.10 f1:M_JN=O Memory ,..1anagemellt system Call

tEtCItf=O (var Errtt.lll: Integer;
Var swapspace;

Dataspace;
cur cooes1ze;
HaX:COdes1ze:Long1nt)

ErrNUm: Error indicator

/'1emory fvtanagement

Swapspace: Aroount, 1n bytes, of Swappable system meroory
available to the calling process

Dataspace: Amount, in bytes, of system memory that the
calling process needs for its boUnd data areas,
inclUding the process stack and the Shared
intrinsic data segment

Cur codesize: Size, in bytes, of the calling segment
Max:codesize: Size, 1n bytes, Of the largest cOde segment

within the address space of the calling process
This call retrieves Information about the memory resources used by the calUng
process.

4-14

cperaling System Reference Manual Memory Management

4.7.11 SETACCESS_DATASEG Memory Mcrlagement System call

SETAreESS_DATASEG (Var ErrtUn:lnteger;
Ref tUn: Integer;
ReadOOly:Bool~)

ErrNum: Error indicator
RefNum: Oat a segment identifier
Readonly: Access mode

A process can control the kinds of access it Is allowed to exercise on a data
segnent with the SETACCESS_DATASEG call. Refrun is the identifier for
the data segment. If ReadOnly is true, an attempt Oy the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

QJeratlng System Reference Manual Memory Management

4.7.12 BINJ_DATASEG cnl L.teJNJ_DATASEG r--1eroory fVIcIlagement System Calls

BIND_OATASEG{Var ErrNum:Integer;
Ref tUn: Integer)

lN3IND _ OATASEG{Var Errtt.In: Integer;
ReflQn: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BINJ_OATASEG binds the data segment referred to by RefNtm to its
associated Logical Data Segment Number(s~ UNBINJ_DATASEG unbinds the
data segment from its LDSNs. Blf'£) _ DA T ASEG causes the data segment to
become a member of the current working set. At the time of the
BINJ _OAT ASEG call, the necessary LDSNs must not be bound. to a different
data segment. L.te1NJ _OAT ASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
£PEN OAT ASEG and MAKE OAT ASEG define which LDSNs are associated
with a given data segment. -

4-16

Chapter 5
Exceptions and Events

5.1 E><CeJ)t1orlS •••••.••••••.••.••.•••••••••••••••••••••••• 5-1

5.2 Systern-I)efirIe ~0I1S ••• 5-2

5.3 E>CCeI)t1on l-tCIldlers •• 5-2

5.4 Ever.ts ••• 5-5

S5 Everlt c:tlafTlels ••••••••••••••.••• 5-5

5.6 TIle System ClOCk •• 5-10

5.7 E>CCeI)t1on I'1ar I8geITleflt system calls ••• 5-10

5.7.1 IJE.CLAAE EXCEP t-fDl. ••• 5-11
5.7.2 DISABLE EXCEP .: .. 5-12
5.7.3 EN.ABl.E -EXCEP .. 5-13
5.7.4 It\IFO EXCEP ... 5-14
5.7.5 SIGI\LAJ.. EXCEP ... 5-15
5.7.6 FLlJSH_EXCEP .. 5-16

5.8 Everlt t"'1aIlaQei lief It System calls ... 5-17

5.8.1 M,AJ-<E_EVENT_CHN ... 5-18
5.8.2 KILL EVENT erN .. 5-19
5.8.3 CPEN- EVENT CI-f',I .. 5-20
5.8.4 CLosE' EVENT C~ ... 5-21
5.8.5 INFO EVENT CHN ... 5-22
5.8.6 WAIf E'lE:Nf CHN .. 5-23
5.s.7 FLusi=t EVENT Cf-I\I .. 5-25
5.8.8 SEf\O _EVENT _ 6t-N .. 5-26

5.9 Clool< system calls .. 5-27

5.9.1 DELAY TIrvE .. 5-28
5.9.2 GET TIiVtE ... 5-29
5.9.3 SET LOC,AJ,. TII'1E DIFF .. 5-30
5.9.4 ca\i\lE:RT _ TIrve .. : ... 5-31

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes ..
shared data segments .. or events. Abnormal conditions .. inclUding those your
program may define .. employ exceptions (1nterrupts~ Exceptions are signals to
which the process can respond In a variety of ways under your control.

5.1 Exceptions
Normal execution of a process can be Interrupted by an exceptional condItion
(SUCh as dIvision by zero or reference to an invalid address~ Some error
COnditions are trapped by the hardware and some by the system software. The
process itself can define and signal except10ns of your choice.
When CI'l exception occurs .. the system first checks the state of the exception.
The three exception states are:

• Enabled
• Queued

• Ignored
If a system-defined exception Is enable4 the system looks for an associated
user-defined handler. If none is found .. the system invokes the default
exception handler .. which usually aborts the process that generated the
exception. If a user-defined exception is enabled .. the system invokes the
associated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.
I f the state of the exception Is llllt?l/eit the exception Is placed on a queue.
When the exception Is subsequently enabled .. the queue Is examined and the
appropriate exception hanaler Is invoKed. Processes can flush the exception
queue.
If the state of the exception is jgnore4 the system detects the occurrence of
the exception .. but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS _ TERMINATE exception .. that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.
Invocation of the exception handler causes the Scheduler to run .. so it is
possible for another process to run between the slgna11ng of the exception and
the execution of the exception handler.

5-1

cperating System Refemnce Manual Exceptions and Events

52 system-Deflned Exceptions
Certain exceptions are predefined by the q:>eratlng System. These inclUde:

• Division by zero (SYS_ZERO_DIV~ The default handler aborts the process.
• Value out of bounds (that Is" range check error) or Ulegal string Index

(SYS_ VALUEJ:m~ The default handler aborts the process.
• Arithmetic overflow (SYS_OVERFLOW~ The default handler aborts the

process.
• Process termination (SYS _ TERMINATE~ This exception is signaled when a

process termInates, or when there Is a bUS error" address error, megal
instruction" privilege violation, or 1111 emulator error. The default handler
does nothIng. This exception is different from the other system-defIned
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors" the program is allowed to
continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
~ratlng System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Exception HcrldJ.ers
A user-defined exception handler can be declared for a specific exception.
This exception handler Is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Envlronment_Ptr
and Dataytr. The ~erat1ng System ensures that these poInters are valid
When the handler is entered. Envirorment_Ptr points to an area in the stack
contaIning the interrupted envIronment: register contents, condItIon flags, and
program state. The handler can access this environment and can mOdify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
information about the specific exception.
Each exception handler must be defined at the global level of the process,
ITlUSt return, and cannot have any EXIT or global GOlD statements. Because
the ~erating system disables the exception before call1ng the exception
handler, the handler should re-enable the exception before it returns.
If an exception handler for a gIven exceptIon already exIsts when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.
An exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honc.red,placed on a queue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state Is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before call1ng the
exception handler, however. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

5-2

qJeratfng System Reference Manual Exceptions and Events

There Is an exceptlon-occurreo fla~ Ex_occurred_f .. for every OeclareO
exception; it is set whenever the corresponoing exception occurs. This flag
can be examlneO anO reset using the II'FO_EXCEP system call. ()lce the flag
Is set" it remains set untll FLL&·tEXCEP Is calleO.
The follow1ng program fragment gives an example of exception handling.
PRcx:::EO...RE HcrldIer (Envlnrment_ptr.Jl_env_blk;

Data_ptl".p _ex_data);
VAA EIIf\tm:IN1EGER;
BEGIN
(-Envln:nnent_ptr points to a reconl containing the program *)
(*COlrIter cnj all registers. Data_ptr points to an array of 12 *)
(*looglnts that contain the event header em text If this hCrldler *)
(*is associated with an event-call chCJ1ne1 (see belOW) *)

· ENMLE_EXCEp(emun.,excep _ncme);

· ENJ;

BEGIN (*Main progrcm*)

· E><eep_ncme:-"ErdlfDoo';
DEa..AAE_EXCEP _J-D.-(emun.,excep_r&ne)iHa1dler);

· SIGNPL_EXCEP(ertnun,.excep_ncme"excep_data);

At the time the exception handler is invoked for a SYS_ TERMINATE
exception, the stack is as shown in Figure 5-1.

5-3

cperatfng System Reference Manual Exceptions and Events

low add ress
LInk

Program Counter

oata_ptr !"'-...

r- Envlronment_Ptr

Terminate Flag

Exception Kind ~

Function Code (fc)
~cess ~ress (aa) Exc eption Data Block

Instruction Register (SY S _ TERt"lINA TE Exception)

Status RegIster
Program Counter

...
'---t- Program COlB1ter Exc eptlon Environment Block

Status Register
00-07 and AO-A7

Link

Program Counter

tllgn adOress

Figure 5-1
Stack at Exceptloo Haldler Invocatloo

The Exception Data Block glven here reflects the state of the stack upon a
SYS_ TERMINATE exception. The Tenn_Ex_Data record (described in Appendix
A) gives the various forms the data block can take. The Excep -,<100 field (the
first, or Oth, longlnt) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state Of
these values. The same data in the Environment block reflects the state of

5-4

cperatJng System Reference Mantlsl Exceptions and Events

these values at the tlme the exception was sIgnaled, not the values at the
t1me the exception actually occurs.
For SYS_ZERO_DIV, SYS_ VALUE_CXE, and SYS_OVERFLOW exceptions, the
Hard_EX_Data record descrIbed In AppendIx A gives the various forms that
the data block can take.
In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.
When a disabled exception is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

5.4 Events
M event is a piece of information sent by one process to another, generally
to help cooperating processes synchronIze theIr activIties. M event Is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header Is wrItten by the system .. not the sender.. and Is readable by the
receiving process. The event text Is written by the sender; its meaning is
defIned by the sendIng and receiving processes.
There are several predefined system event types. The predefined type "user" Is
assigned to all events not sent by the qJerating system.

5.5 Event OlatT1els
Event channels can be viewed as higher-level pipes. O'le important difference
Is that event channels requIre fixed-sIze data blockS, whereas pIpes can
handle an arbitrary byte stream.
M event channel can be defined globally or locally. A glObal event channel
has a glObally defined pathname catalogued In the FUe System and can be
used by any process. A local event channel, however, has no name and is
known only by the qlerating System and the process that opened it. Local
event channels can be opened by user processes only as receivers. A local
channel can be opened by the father process to receive system-generated
events pertaining to its son.
There are two types of glObal and local event channels: event-walt and
event-call. If the receiving process Is not ready to receive the event, an
event-walt type of event Channel queues an event sent to It. M event-call
type of event CI'la'lnel, t'lOWever, forces Its event on the process, In effect
treating the event as (Vl exception. In that case .. an exception name must be
given when the event-call event Chcn1e1 Is opened, and an exception handler
for that exception must be deClared. If the process readlng the event-call
channel Is suspended at the time the event Is sent, the event Is delivered
when the process beComes active.

5-5

qJe.rsting System Reference MantIal Exceptions and Events

When an event channel Is created, the q>eratIng System preallocates enough
space to the channel for typical interprocess communication. If
SENJ_E\lENT_O+IIs called when the channel dOes not have enough space for
the event, the Calling process Is blocked until enough space is freed up.
If WAIT_EVENT _ 0+1 is called When the channel Is empty, the calling process
Is blOCked until an event arrives.
The fOllowing cOde fragments use event-walt channels to handle process
synchronization. q>erating System calls used In these program fragments are
documented later in this chapter.
Process A:

.
ch1 I'BE : = 'event Chcn1el 1'·
exciption: = "; - - ,
receiver : = TRlE;
(FEN_EVENT _ CI+I (errint, CfYLnaRe, refrunl, exception, receiver);
ch1 rae : = 'event chcnlel -r.
receiver := FALSE;- - ,
€FEN_EVENT_Dfi (errint, ch1_nane, refl'Ultl, exceptim, receiver);
.aitlist.length := 1;
wa1 tlist. refrun[0] : = refrunl.;
REPEAT

eventl.J)tr" .[0] := agreed_~_value;
interval. sec : = 0; (* send event iIm1ediately *)
interval.1IISeC : = 0;
SEN) _EVENT_aft (errint, refrun2, eventl..,ptr, interval, clktilE);
WAIT_EVENT_llfl (errint, waitlist, refn.l,,-sl~lirYJ, event2..,ptr);

.
(* processirYJ perfoI'lEd here *)

.
ltflIl All.Da1e;

5-6

qJeratlng System Reference ManlJaJ Exceptions and Events

Process B:

.
em name : = &event chcnlel 2&;
exti'ptim: = &'; - -
receiver : = lRl£;
(FEN_EVENT _Dft (errint, Ch'LJ'BE, refrutl, exceptlm, receiver);
em raE := &event Chcnlel 1&;
receiver : = fM..SE;- -
(PEN_EVENT _ Dft (errint, aW'L naae, refrun1, exceptlm, receiver);
wai tlist . length : = 1;
.altlist.refnum[O] := refnum1;
REPEAT

event2-Ptr" • [0] : = agreed_~_value;
interval.sec := 0; (* sero event illlEdiately *)
interval. msec : = 0;
IAIT_EVENT_Dft (errint, waitllst, refruLsi~ling, event1..,Ptr);

(* processirg perfornm here *)

.
SfN)_EVENTJ1~ (errint, refrutz, event2JJtr, 1nterval,clktilE);

lI«Il AllDone;

The order of execution of the two processes is the same regardless of the
process priorities. Process switch always occurs at the WAIT_EVENT_a-N
call.
In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YlELO_O'U, which gives
the CPU to Process B only if Process B is ready to run.

5-7

qJeraUng System RefenJnce MsnusJ

Process ~

PfUEmE HcnJler(Env.J)tr:p_SW_blk,;
Data..,Ptr:p_ex_dlta);

..
BEGIN

everlt2Jltr" .. [0] : = agI'eed_l4Ol_ value;

(* processir¥J perfol'Ed here *)

..
Interval.sec := 0; (* send fMI1t ~ately *)
interval.1ISeC :,. 0;
SENl_EVENT_Dft (errint,refna2,eva1t2JJt!',lnterval, clktIne);
to_Sly :,. true;
YIElDJJlU (errInt, to_SlY);

00;

BEGIN (. Hain progr.-)

.
1Ea..ARE_E)((Bl-'fl.. (errint, excep_ naRe_l, iiHaldler);
em raE : = "event chcnlel 10

•

exception: = excepjae_l; - ,
receIver : = TRt£;
(JlEN_EVENT_aft (errint, ctrLnaIE, refrunl, exception, receiver);
em naE : = °event chernel 20

•

receiver := F~SE;- - ,
exceptioo: = •• ;
(FEN_EVENT_DW (errint, cRl-"liIE, ~ elaption, receiver);
SENl_EVENT_fa (errint, ~ event2J)tr,lntervaL clktIm);
to_any :- true;
YIB.D_(JIU (errint, to_SlY);

5-8

qJersting System ReferenCe Manual Exceptions and Events

Process B:

PfOEIlR: HIIldler(Env .J)tr :p_env _bll<;
Data.J)tr :p_ex_data);

.
fEGIN

event2.J)tr" • [0) := agreE~c~_value;

(* process~ perfol'Ed here *)

.
interval.sec := 0; (* sem event illlOOdlately *)
interval.mseG := 0;
SENJ_EVENT_Dfl (errInt, refrun1, event2.J)tr, intervaL clktlre);
to CI'ly : = true;
YIELD_(PIJ (errInt, to_any);

EN);

.
BEGIN (-t1aln progran *)

DEClARE_EXCEP_HDL (errlnt,excep_namej_1,aHandler)
em·11CIE := °event ChCn1el 1°·
exception:: excepjialREL1; - ,
receIver -= FN..SE;
exception: = •• ;
(JlEN_EVENT -Dfl (errint, em 3lC1E, refrUn1, exceptlm, receIver);
em naIE : = • event chCnlel 2·;
receIver : = TRlE; - -
£PEN_EVENT _ ()fl (errint, em _flCIRe, refrun2, exception, receiver);

.
EN).

5-9

t:peratlng System Reference Manual Exceptions and Events

5.6 n.e System ClOCk
A process can read the system clock time, convert it to local time, or delay
Its own continuation untU a gIven time. The year, month, day, hour, minute,
second, and millisecond are available from the Clock. The system clock is set
up through the WOrkShOp shell. For more Information, see the WoJ1<s!7Op User's
Guide for tile Lisa.

5.7 Exceptioo t-1CIecg::tilent system calls
This section describes all the qleratlng System calls that pertain to exception
management A summary of all the Q'JeraUng System calls can be found in
Appendix A The fOllowing special types are used in exception management
calls:

T_ex_f'l8E = STRIt«i[16];
LongOOr = Alonglnt;
T_eX_data = Array [0 •• 11] Of longlnt;
T ex sts = Record

- - ex occurred f : bOOlean;
ex-state: t ex state;
nliiLexcep: Integer;
hdl_adr: longOOr;

end;
T_e~state = (enabled, queued, l~red);

5-10

cperatfng System Reference Manual Exceptions and Events

5.7.1 DEQ...ARE_EXCEP -,-D. .. Exception MooageIllellt System Call

IECLARE_EXCEP -'-11 (Var ErrtUl:lnteger;
Var Excep _ NcIne: t _ex_rare;

Entry_Polnt:LongAdr)

ErrNum: Error indicator
Excep_Name: Name of exception
Entry_Point: Address of exception handler

DECLARE_EXCEP J-DL sets the q:>eratlng System so that the occurrence of
the exception referred to by Excep J'8'Tle causes the execution of the
exception handler at Entry_Point

ExcepJ".jcme 1s a character string name with up to 16 characters that is
locally defined in the process and known only to the process and the ~eratlng
System. If Entry_Point Is nU and Excep_Ncme specifies a system exception"
the system default except10n handler Is used. My prevIously declared
exoept1on handler is dissooiated by this oall. The exoeption itself is
automatically enabled.
If any Excep_Name exceptions are queued at the time of the
DECLARE_EXCEP _HJL call" the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.
You oan call DECLARE_EXCEP _.....:JL with an exception handler address omu
to dissocIate your handler from the exception. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

t:peraUng System Reference HanlJaJ

5.7.2 DISABlE_EXCEP Exceptlon Managemeflt System Call
OISAII£_E)((EJ (Var Errtt.n:lnteger;

Var Excep Ncme:t ex rae;
Queue:Boolean) -

ErrNum: Error indicator

Exceptions and Events

Excep_Name: Name of exception to be disabled
Queue: Exception queuing flag

A process can expl1citly dlsable the trapping of an exception by callIng
DISABlE_EXCEP. ExcepJ-ane Is the name of the exception to be disabled.
If QJeue is true and an exception occurs, the exception Is queued and Is
ha1dled when it is enabled again. If Queue Is false, the exception Is 19nored.
When an exception handler Is entered, the state of the exception In question
Is automatically set to queued.
If an exception handler Is assoc1ated through (PEN_EVENT_a-N with an
event channel and DIStABlE_EXCEP Is called for that exception, then:

• If Queue Is false, and If an event is sent to the event channel by
seD EVENT a-N, the SEN) EVENT a-N call succeeds, bUt it Is
equlviIent to not calling SEN5_E'iENf_a-N at all.

• If Queue Is true, and If an event Is sent to the event channel by
SEI'D EVENT ~ the SEI'D EVENT a-N call succeeds and a call to
WAlT':EVENT]::J-N receIves the event:" thUs cJequeulng the exceptIon.

5-12

tpemtlng System Reference I'18ntJaJ

5.7.3 ENABLE_EXCEP ExcepUon Mcl6gelnellt System Call

ENAfl..E_ExtE> (var ErrtUII:Integer;
Var Excep"'"'flCllE: t _ex _l1CIIE)

ErrNum: Error indicator

ExceptllY1S and Events

Excep_Name: Name of exception to be enabled

ENABlE _ EXCEP causes an exception to be handled agaln. Since the
~rating System automatically disables an exception When its exception
handler is entered (see OISABlE_EXCEP), the exception handler ShOUld
expllcltly re-enable the exception before it returns to the process.

5-13

qJerating system Reference Hanual

5.7.4 IN=O_EXCEP ExcepUm ~Ielt system Call
Iff=O_EXl2:P (Var ErrM.a:lnteger;

Var Excep_Nclne:t_ex_nene;
Var Excep_status:t_ex_sts)

ErrNum: Error indicator
Excep_Name: Nane of exception
Excep_Status: Status of exception

Exceptions and Events

IN=O_EXCEP returns Information abOut the exception specifIed by
Excep _Ncme. The parameter Excep _ status Is a record containing information
aboUt the exception. this record contains:

t_ex_sts = REaR) (* exception status *)
Ex_OCCtJrred_f:800leM; (-exceptim occurred flag *)
Ex_state:t_ex_state; (* exception status *)
ttJILexcep:1nteger; (tIflO. Of exceptions (JJeUed .)
Hdl_adr:Lcrgadr; (*exceptIon hcnUer·s address *)

EN:>;

cree EX_occurr9d_f has been set to true, only a call to FLUSl-CEXCEP can
set it to false.

5-14

qJerating System Reference Ma7f.lal

5.75 SIGNAL_EXCEP ExcepUm McI'.agellleflt System call

SI~_EXCEP (Var Er~:Integer;
Var Excep_NilE:t_ex_roIIe;
Val' Excep_Data: t_eX_data)

ErrNum: Error indicator

Exceptions and Events

Excep_natre: Nafre of exception to be sigmled
Excep _Data: Information for exception handler

A process can sIgnal the occurrence of an exception by callIng
SIGNAL_EXCEP. The exception handler associated wIth ExcepJ\8Tle 1s
entered. It is passed Excep_oa~ a data area containing information abOUt
the nature and cause of the exception. The structure of this information area
is:

array[o •• s1ze_eXdata] of Lmgint

SIGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defIned to handle system-defined exceptions.

5-15

qJemtlng system Reference Manual

5.7.6 FLlS-f_EXCEP Exception Mauagemel'lt system Call

FlUSt-CEXCEP (Var Errtl.lA:lnteger;
Var EXC9P_NcIIe :t_ex_l'DIB)

ErrNum: Error indicator

Exceptions and Events

Excep_Name: Name of exception Whose queue is flushed

FLlS·CEXCEP clears out the queue assocIated with the exception
Excep J'ene and resets Its "exception occurred" flag.

5-16

t:perat/ng System Refereme fvll!nJa1 Except/ons end Events

5.8 Event Mclageillent System Calls
ThIs section describes all the q>eratIng System calls that pertaIn to event
management A surrrnary of all the q>eratlng System calls can be found In
Appendix A The following specIal types are used In event management calls:

PattfBRe = SlRIN2[255];
T_ex_name = SlRIN;[16];
T ctn sts = Record
- - chn_type:chn_kiro;

run_events: integer;
opet'l_recv : integer;
open_send: integer;
ec _ ncJE :pattYale;

em;
chn_kind = (wit_ee, call_ec);
T waitlist = Record
- length: integer;

refrun:array [0 •• 10] of integer;
end;

P r eventblk = Ar eventblk;
R - eVentblk = Record
- event header: t eheader;

event-text: t eVent text;
end; - - -

T eheader = Recorcl
- sendjpld:longlnt;

event_type:longlnt;
end;

T _event_text = array [0 .. 9] of longlnt;
P s eventblk = AS eventblk;
s-eVentblk = T event text;
TInestnp_interV"al = Record

T111E roo = Record

sec: longint;
1IISeC: O •• 999;

end;

- year: integer;
day: 1. .366;
hour:-23 •• 23;
mirlJte: -59 .• 59;
second:O •• 59;
msec:O •• 999;

end;

5-17

t:peratlng System Reference Manual

5.8.1 MAKE_E'lENT_c:::t+I Event MCI.agemellt System Call

tw<E_EVENT_Dfi (Var ErrtUn:Integer;
Var Event _ DTl_ Hale :Pattn:Jle)

ErrNum: Error indicator
Event_Chn_Name: PattlrlalJe of event channel

ExceptIons and Events

MAKE_EVENT_c:::t+I creates an event channel \tilth the name given in
Event_OrI_Ncme. The name must be a File System pathname; it cannot be
null.

5-18

cperating System Reference Manual

5.8.2 KILL_EVENT _ Ct-I\I Event Ma1agement system Call

KILL_EVENT_CHN (Var ErrNum:lnteger;
Var Event_OTl_Nclne:Patl'1lclre)

ErrNum: Error indicator

Exceptions and Events

Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL EVENT a-N. The actual deletion is
delayed until all processes using the event channel have closed it. In the
periOd between the KILL_EVENT _CH'J call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
Knows the channel's name.

5-19

tperatlng System Reference Manual

5.8.3 CPEN_EVENT_CH\I Event Management System Call
(JlEN_EVENT_Cl-t4 (var ErrtUn:lnteger;

Var Event Chn Name:Patmane;
Var RefnUm:lnfeger;

Excep _ Nane : t _ex JlCIOO;
Recei ver : Boolean)

ErrNum: Error indicator

Exceptions and Events

Event Chn Name: Pathname of event channel
RefNum: - Identifier of event channel
Excep_Name: Exception name~ if any
Receiver: Access mode of calling process

CPEN_EVENT_CH\I opens an event channel and defines its attributes from ttle
process point of view. RefNlm is returned by the [perating System to be
used in any further references to the channel.
Event_Chn_Name determines whether the event channel is locally or globally
defined. If it Is a null strlng~ the event channel Is locally defined. If
Event_Chn_Name is not null~ it is the File System pathname of the channel.
ExcepJ~clT1e determines whettler the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise~
the channel is an event-call channel and Excep_NcJ'ne is the name of the
exception that is Signaled when an event arrives in the channel. Excep._Name
must be declared before its use in the CPEN_EVENT_a-N call.
Receiver Is a Boolean value 1ndicatIng whether the process Is opening the
channel as a sender (Receiver Is false) or a receiver (Receiver is true~ A
local Channel (one wlth a null pathname) can be opened only to receive
events. AIso~ a call-type channel can only be opened as a receiver.

5-20

cperatlng System Reference /V1anlIal

5.8.4 aJ:9:_EVENT_a-N Event Mcllagement System Call
CLOSE_EVENT_~ (Var Errton:Integer;

ReffUn: Integer)

ErrNum: Error indicator

Exceptions and Events

RefNum: Identifier of event channel to be closed

a..OSE_EVENT_CI-N closes the event channel associated with Refl\km. My
events queued in the channel remain there. The channel cannot be accessed
until it is opened again.
If the channel has previously been killed with KILL_EVENT_Cf-N, you cannot
open It after It has been closed.
If the channel has not been killed, it can be opened by CPEN_EVENT_CI-N.

5-21

Q:Jerating System Reference Mantlal

5.8.5 II'FO_EVENT _Ct-N Event Management System call

ItE'O_EVENT_Dfl (Var ErrtUl:Integer;
Ref tUn: Integer;

Var Chn_Info:t_Chn_sts)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

Exceptions and Events

IN=O_EVENT_D-N gives a process information about an event channel. The
QJerating System returns a record, etl"LInfo, with information pertaining to
the channel associated with Re1N.Jn

The definition of the type of the CtTl_InfO record is:

t cITl sts =
- -RECCRl (* event Chamel status *)

CtI'Ltype:ctTLkind; (* wait_ec or call_ec *)
Num_events:Integer; (* number of queued events *)
Open_recv:lnteger; (* rumer of processes reading cha1nel *)
Open_send: integer; (* no. of processes sending to this

chcn1el *)
Ec _ naroo: pathnaRe; (* event chan1el name *)
EN>;

5-22

cperating System Reference Manual

5.8.6 WAIT_EVENT_a-N Event Mcmgement System Call

WAIT_EVENT_CHN (Var ErrNum:Integer;
Var wait list:t .aitlist;
Var RefNUm:Inteijer;

Event _ ptr: p _r _eventblk)

ErrNum: Error indicator

Excepaons and Events

Wait List:
RefNum:
Event_Ptr:

Record with array of event channel refnums
Identifier of channel that had an event
Pointer to event data

WAIT_EVENT_a-N puts the callIng process in a waiting state pending the
arrival of an event in one of the specified channels. Walt_Ust is a pointer to
a list of event channel identifiers. When an event arrives in any of these
channels ... the process is made ready to execute. RefN.m identifies which
channel got the event ... and Event_Ptr points to the event itself.

A process can wait for any Boolean combination of events. If it must wait
for any event from a set of channels (an (R condItion) ... It should call
WAIT_EVENT_a-N with Walt_List containing the list of event channel
Identifiers. If., on the other hand, It must walt for all the events from a set
of channels (an AI'[) condition) ... then for each channel in the set ...
WAIT_EVENT _Cf-I\J should be called with Walt_List containing just that
channel identifier.

The structure of t_waltlist is:
REC(R)

length: Integer;
Refrun:Array[o .. slze_waltllst] of Integer;

EI'D;

Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:

P r eventblk = Ar eventblk;
R - eventblk = Record
- event header: t eheader;

event-text: t event text;
end; - - -

T eheOOer = Record
- sendJPid:longint;

event_type:longlnt;
end;

T_event_text = array [0 .. 9] of longlnt;

sencJJPld is the process id of the sender.

5-23

t:peratfng System Reference Manual Exceptions and Events

Currently" the possIble event type values are:

1 Event sent by user process
2 Event sent by system

When you receive the SYS_SCN_ TERM event" the fIrst longlnt of the event
text contains the termination cause of the son process. The cause is same as
that given In the SYS_ TERMINATE exceptlon gIven to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_~ on an event-call channel that has queued
events" the event Is treated just like an event in an event-walt channel. If
WAlT_EVENT_~ Is called on an event-call channel that does not have any
queued events, an error Is returned.

5-24

t:peratJng System Reference I'-1a?Ual

5.8.7 FLUS'-CEVENT_a-N Event Malagement system call

FLlJSI"LEVENTJlfl (var Ernun:Integer;
ReftOn: Integer)

ErrNum: Error indicator

£'(C/J/JtJons and Events

RefNum: Identifier of event channel to be flushed

FLUS'-LEVENT_CH\I clears out the specIfIed event channel. All events
queued in the channel are removed. If FLUst-CEVENT_Ct-N is called by a
sender, it has no effect.

5-25

t:perating system Reference Manual

5.8.8 SENJ_EVENT_CI-N Event Mcraagement System Call

SEN)_EVENTJ1~ (Var ErrtUl:lnteger;

ErrNum:
RefNum:
Event Ptr:
Interval:
Clktire:

ReflUn : Integer;
Event_ptr :p_s_eventblk;
Interval:Timestmp_interval;
Clktime:T1me_rec)

Error indicator
Channel for event
Pointer to event data
Tirer for event
Tire data for event

Exceptions and Events

SENJ_EVENT_CH\I sends an event to the channel specified by Refl\Un
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header Is added by the system.

If the event is of the event-wait type, the event is queued. Otherwise the
~eratIng System sIgnals the corresponding exception for the process receiving
the event.

If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the ~erating System places in the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, in the event text.

The Interval parameter indicates whether the event is a timed event.

I'IlTE

Tlmed events wm not be supported In future releases of the Operatlng
System. The Interval and Clktime parameters will be ignored In future
releases. If you want your software to be upward-compatible .. always
set both fields of the Interval parameter to zero.

Tlrnestrf1J_lnterval is a record containing a second and a millisecond field. If
both fields are 0, the event Is sent immediately. If the second gIven Is less
than 0, the millisecond field is ignored and the Time_rec record is used. If
the time in the Time_Tee has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event is sent that number of seconds and milliseconds from
the present

A process can time out a request to another process by sendIng 1 tsel f a timed
event and then waiting for the arrival of either the timed event or an event
IndIcating the request has been served. If the timed event Is receIved fIrst,
the request has timed out. A process can also time Its own progress by
periOdically sendIng itself a timed event through an event-call event Channel.

5-26

cperatlng System Reference tvlarK.lal Exceptlons and Events

5.9 ClOCk System calls
This section describes all the qJerating System calls that pertain to the clock.
A summary of all the qJerating System calls can be found in Appendix A.

The following special types are used in clock calls:
Timestmp_interval = Record

Time me = Record

sec: longint;
msec:O •• 999;

end;

- year: integer;
day: 1. .366;
hOUr:-23 .. 23;
mirute: -59 .. 59;
second: O •• 59;
msec:O •• 999;

end;
Hour_range = -23 .. 23
Mirute _range = -59 .. 59;

5-27

t:peratlng System Reference Manual

5.9.1 DELAY _ T11'£ ClOCk System Call

DELAY_TItE (var Errtt.ln:lnteger;
Interval:Timestmp_interval;
clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

Exceptions and Events

CELAY _1lI'£ stops execution of the calling process for the number of seconds
and milliseconds specified in the Interval record. If this time period is zero,
CELAY _TII"E has no effect If the period is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-28

cperating System Reference /'1817{)al

5.9.2 GET _ a-£ Clock System Call

GET_TIt£ (Var Errtt.m:Integer;
Var Sys_T1ae:T1me_rec)

ErrNum: Error indicator
sys_Time: Time information

Exceptions and Events

GET _ TJIVE returns the current system clock time in the record Sys_ TIme. The
msec field of S,YS_Tlme always contains a zero on return.

5-29

cperating System Reference Manual

5.9.3 SET_U:X:::AL_TIfVE_DIFF ClOCk System Call

SETJJX;AL_ TIt£_DIFF (Var ErrNun:lnteger;
Hour:Hour _ ICI1ge;
Mlnute:Mlnute_range)

ErrNum: Error indicator

Exceptions and Events

Hour: Number of hours difference from the system clock
Minute: Nuntler of minutes difference from the system clock

SET _LOCAL_ ~_DIFF informs the ~erating System of the difference in
hours and minutes between the local time and the system clock. t-IoUr and
Mirute can be negative.

5-30

cperatlng System Reference Manual

5.9.4 CCNVERT _ TII'£ ClOCk System Call

a..ERT_TItE (var ErrtU1:Integer;
Var Sys_T1IE:T1IE_rec;
Var Local T1me: T1me rec;

TO_SyS:BoolESl)-

ErrNum: Error indicator
sys_Time: System clock time
Local Time: Local time
TO_Sys: Direction of time conversion

Exceptions and Events

C(]\NERT_~ converts between local time and system clock time.
TO_Sys is a Boolean value indicating in which direction the conversion Is to
go. If To_Sys is true~ the system takes the time data in local_Time and puts
the corresponding system time in Sys_ Time. If To_Sys is false~ the system
takes the time data 1n Sys_ TIme and puts the correspondIng local time 1n
Local_Time. Both time data areas contain the year~ month~ day~ hour~ mlnute~
second~ and mlll1second.

5-31

Olapter 6
ConfigJration

6_1 Configuration System Calls ______ ... _ __ .. __ .. _______________________ . __ 6-1

6.1.1 READ PMEM .. 6-2
6.1.2 GETNXTCONFIG .. 6-3
6.1.3 MACH_INFO ... 6-5
6.1.4 CARDS_EQUIPPED .. 6-6
6.1.5 OSBOOTVOL ... 6-7

ConfigJration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in a special part of the system's
memory called Pll1"turIt!!tt!J1' memory: Every time parameter memory is
changed, a copy of the new data is made on the boot disk. If the contents
of parameter memory are lost., this disk copy is automatically restored to
parameter memory.

Several calls ere provided that allow programs to request information about
the configuration of the system.

6_1 Configuration System calls
This section describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System cells can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

6-1

Operliting S}.'Stem Reference Manus} Configuration

6.1_1 READ_PMEM Cortlgtl"ation ~em Call

REfl>J:JtEtl (Ver E'r:rNuI:lnteger; Ver Atrec:AteIIIRec)

ErrNum: Error code
PMrec: Contents of parameter memory

READ_Pf\£M returns the contents of parameter memory 1n ~ec. The
contents of ~ec are not to be interpreted by the caller. This routine
exists for the purpose of obtaining Pf¥trec so that ~ec can be passed to
the other configuration procedures described in this chapter.

6-2

Operating S}.stem Reference f\.1anual

6.1.2 GETNXTCONfIG Conriguration system Call

~IG (V8I' Er.rNt.ID:Integer;
Var: NextEntry: longi nt;
Vsr: A1rec:A1eIRec;
Var: Config:ConfigDev)

ErrNum: Error code
NextEntry: Enumeration index
PHrec: Contents of parameter memory
Config: Configuration entry

Configuration

GETNXTCONFIG is used to enumerate device configuration information.
NextEntry = 0 is passed by the caller to start the enumeration. After the
first call to GETNXTCONFIG, the caller passes the previously returned value
of NextEntry on each subsequent call to GETNXTCONFIG. The Operating
System updates the value of NextEntry with each call. The enumeration is
done using the caller's copy of parameter memory (obtained by calling
REAO_PMEM) which is input in PMrec. Upon return from the procedure,
Conf'ig holds the next configuration record that was extracted from the copy
of parameter memory. ErrNtm = 799 is returned when no more configuration
entries are available.
The Config record contains:

pos: cdJlosition;
nExtWords: byte; (*number of valid ExtWords following*)
ExtWords: array[1 .. 3] of Integer;
DriverID: longint;
OevNeme: e_neme;

where cd_position = record
slot~chan~dev: byte

end;

The pos record of three bytes indicates the position of the device being
described. DevName is a character string representation of this position.
The characteristics of the device can be obtained by calling LOOKUP and
passing -DevName as input. Table 6-1 shows the device names, as well as
the aliases, which may be substituted for De.vName in any Operating System
call.

6-3

Operating System Reference Manual Configuration

Table 6-1
Device Names

Slot Chan Dev D~Elne Alias Descril2tion
1
1
1
2
2
2
3
3
3

10
10
11
12
13
14
14
15
15

0 0 #1 SlOTl Peripheral at slot 1
x 0 fll#x SlOTICHANx at slot 1 channel x
x Y #l#xlly SLOT lCHANxDEVy at slot 1 channel x device y
0 0 #2 SLOT 2 Peripheral at slot 2
x 0 #2#x SlOT2CHANx at slot 2 channel x
x Y #2#x#y SlOT2CHANxDEVy at slot 2 channel x device y
0 0 #3 SlOT3 Peripheral at slot 3
x 0 #3#x SlOT3CHANx at slot 3 channel x
x Y #3#x#y SlOT3CHANxDEVy at slot 3 channel x device y
1 0 #10#1 RS232A Serial Port A
2 0 #10#2 RS2328 Seri al Port B
0 0 #11 PARAPrnT Parall e1 Port
0 0 #12 lPPER or PARAPCRT Hard disk on lisa 2/10
0 0 #13 lOWER Sony Drive
1 0 #14#1 lPPER Upper floppy on lisa 1
2 0 #14#2 lOlJER lower floppy on lisa 1
1 0 #15#1 Al TCCIiSOLE Alternate Console
2 0 #15#2 MAIKXJGJlE Main Console

Ext~ contains optional extension words. If the device is a printer,
Ext'Ncrdlil[1] contains the following:

REIlH>
printer_flag: boolean;
defaul t_fl ag: boolean;
printerID: 14 bits

(. = true(1) .)
(. true if it' s the default printer·)
(. unique printer ID:

32 = I..agewri ter / II lIP
33 = Daisy Wheel Printer
35 = Ink Jet Printer .)

DriverlO contains the unique driver ID:

32 = Serial Cable
33 = Parallel Cable
34 = 2 Port Card
35 = Profile
36 = Sony
37 = PriEln Card
38 = Priso Disk
39 = Archive Tape
40 = Console
42 = Modem A

6-4

Operating S}·stem Reference ,..1anuaJ Configuration

6.1.3 MAO-LINFO Contigwation system C8ll

(Var E':rItUI: Integer;
Vsr: The_info:Hinfo)

ErrNlI'n: Error code
The_info: Type of Lisa being used

MACH_INFO returns an array, The_Wo, showing the CPU board, 110 board
and memory board in use:

minfo = A:JlR)
cpu_board, iO_board, ... _size: longint
~

cpu_board always returns o. mem_size returns the number of bytes in
memory. io_board returns:

o = Lisa 1
1 = Lisa 2/10
2 = Lisa 2, Lisa 2/,j, or Lisa 1 upgraded to use micro diskettes.

6-5

Operating System Reference Manual

6.1.4 CARDS_EQUIPPED ConrigtDtion System Call

CfR)S_EWIPPED (Var fr.rtIuI:lnteger:i
Var In_Slot:Slot_array)

ErrNlMll: Error code
In_Slot: Identifies the types of cards configured

Configuration

CARDS_EQUIPPED returns an array showing t.he types of cards which are in
the vari ous card slots.

The definition of Slot_array is:

slot_BIrSV = arrsv [1. .3] of integer;

where the array values may contain:

o = no card present
2 = 2-port parallel card
5 = Priam card

6-6

Operating System Reference f>.1anus!

6.1..5 OSBOOTVOL Cort'igg-ation System Call

O'BIJT\IOI... (Var £r.rNuI:Integer; var VolNale: e_n&II8);

ErrNw: Error code

Configuration

VolName: Identifies the device name for the boot volume

OSBOOTVOL returns the device name of the boot volume. This port might
not be the port configured for the boot volume, since it is possible for the
user to override the default boot volume. Characteristics about the device
can be obtained by calling LOOKUP and passing VolName.

6-7

Appendixes

A ~raUI'lg system InterfaCe l.J'll t ... A-1

B Systefn-ReseJVe(j E><CeJ)UOI'l ~... ••••••••••••••••••••• ••••••••••• ••••••••• ••••• •••• B-1

C systern-Rese~ Everlt Types .. C-1

o Error ~ ... D-1

E FS_~O Fields ..•...•.•...•••••••••.••••.•.•.•.•••.••••••••.••.•••.••••••.•••.••••••••..••••••• E-1

Appendix A
Operating System Interface Unit

ooT syscall;
INTRINSIC;

INTERFACE

C(R)T

(* system call definitions unit *)

max erlCI1e = 32-
max:=PatrllallE =' 255;
max label size = 128;
len - exnaE = 16;
size_exdata = 11;

(* IIBXiIUR ler¥Jth of a file system mject raE *)
(* max1nun lerYJth of a file system patmalRe *)
(* maximum size of a file label, in bytes *)
(* lerYJth of exception nate *)
(* 48 bytes, exception data block shoUld haVe the

sate size as r_eventblk, received avent block *)

size etext = 9- (* event text size - 40 bytes *)
size=waitlist : 10; (* size of wait list - shoUld be same as reqptr_list *)

(* exception kind definitions for ·SYS_lERt1INAlEl exception *)
call_tenn = 0; (* process called terminate,J)rocess *)
ended = 1; (* process executed I end I statenEnt *)
selfJ<illed = 2; (* process called killJ)rocess on self *)
killed = 3; (* process was killed by CIlOther process *)
fthr _term = 4; (* process· s father is terminating *)
bad_syscall = 5; (* process made invalid sys call - stD:xJde bad *)
bad_erl'l'Uft = 6; (* process passed bad address for erl'l'Uft parm *)
s~ _error = 7; (* process cmorted we to code s~-in error *)
stk _overflow = 8; (* process exceeded max size (+ T rrYl) of stack *)
data_overflow = 9; (* process tried to exceed max data space size *)
parity_err = 10; (* process got a parity error .nile executing *)

def div zero
def-valUe 000
def-ovfw -
def=nni_key
def_I<rge
def_str_index

= 11;(* default handler for div zero exception was called *)
= 12; (* • for value 000 exceptioo ...)
= 13; (* • for overflow exception ...)
= 14; (... • for ,tll key exception *)
= 15; (* • for I SYS_VAU£_(D3 I excep we to value I<rge err *)
= 16; (... • for I SYS _VAllE _(OJ I excep dUe to string indeX err ...)

A-l

cperat/ng System Reference Manual QJeratlng system Interface U1lt

bus error = 21;
addf error = 22;
illq:inst = 23;
priv_violation = 24;
line 1010 = 26;
lint()111 = 27;

U1expected_ex = 29;

div zero = 31;
val~ oob = 32;
ovfw - • 33;
rwiJ<ey = 34;
value_range = 35;
str_imex = 36;

dVParl ty = 1;
dVOJtDTR = 2;
dVrutXOO = 3;
dVOJtOelay = 4;
dVBaOO = 5;
dvlnlait = 6;
dVlf{)TR = 7;
dVIn)((Jf = 8;
dVTypecR1 = 9;
dvOiscon = 10;
d\OJttoUfS = 11;
dvErrStat = 15;
dVGetEvent = 16;
dvAutoLf = 17;
dV01Skstat = 20;
dvOiSkSpare = 21;

TYPE

(* bus error 0CCU1'1'ed
(* address error occurred
(* illegal inst1\l}tion trap 0CCU1'1'ed
(* privilege violation trap 0CCU1'1'ed
(* 11ne 1010 enulator occurred
(* line 1111 enulator occurred

(* CI1 U1expected exception occurred

(* exception kind definitions for hardWare exception

(* excep kind for value range cni string 1mex error
(* Note that these two cause I SYS_VAllE_(XE I excep

(-RS-232*)
(-RS-232*)
(-RS-232*)
(-RS-232*)
(-RS-232*)
(-RS-232, aHnE*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(-RS-232*)
(*PRlFlLE*)
(~E*)
(-RS-232, aNnE, PARN..LEL PRINTER*) (-not yet*)
(*DISKETTE ... PfD=ILE*)
(-DISl<ETlE... PlU"ILE *)

pattflClle = string [1OaXJ)8ttmJe);
e_naRe = string [1AaX_et'81e);
OCIEstr1ng = str1ng [20 J;
prooinfoRec = record
p~ttmme : pa'ttYlaE;

global_id : longint;
father_1d : long1nt;
priority : 1. .255;
state : (pact1ve ... psusper.at pwaltlng);
data in : bOOleCl1

end; -

A-2

QJeratjng System Reference Manual t:perating System Interface Unit

Tdstype = (dS_shared, dSjprivate); (* types of data segments *)

dsinfoRec = record
mem_size : longint;
disc_size: longint;
nun1> _open: integer;
ldsn : integer;
boundf : boolean;
presentF : boolean;
creatorF : boolean;
rwaccess : boolean;
segptr : longint;
volnarre: e_natre;

end;

t _ex _ nanE = string [len _ exnatre];
longadr = "long1nt;
t __ ex_state = (enabled, queued, ignored);
p _ ex_data = "t _ex_data;

(* exception nane

(* exception state

t_ex_data = array [O .. size_eXdata] of longint;
t_ex_sts = record

(* exception data blk *)
(* exception status *)

ex occurred f : boolean;
ex-state: t ex state;
M_ excep : Integer;
hdl_adr : longadT;
end;
p_env_blk = Aenv_blk;
env blk = record

- pc longint;
sr integer;
dO longlnt;
dl longint;
d2 longlnt;

ena;

d3 longint;
d4 longlnt;
d5 longint;
d6 longlnt;
d7 longint;
aO longint;
al longint;
a2 longlnt;
a3 longint;
a4 longint;
as longlnt;
a6 longint;
a7 longint;

(* exception occurred flag *)
(* ex~~tion state *)
(* rlUIft)er of exceptions q' ed *)
(* handler address *)

(* environment block to pass to handler *)
(* program counter *)
(* status register *)
(* data registers 0 .- 7 *)

(* address registers 0 - 7 *)

A-3

tjJeratjng System Reference Manual [perating System Interface Unit

p _ term_ex_oota = "term_ex_oota;
term ex data = record (* terminate exception data block *)

case excep_kind : longint of
call tem
ended,
self killed,
killecJ,
fthr term.
ba€(syscall,
bad_errnum.
swap_error,
stk overflow,
data overflow,
parity_err : (); (* dUe to process termination *)

111~inst"
priv _violation,

line 1010,
line-llll"
def div zero,
Clef-valUe 000,
def-ovfw,-

(* dUe to illegal instruction" privilege
violation

(* dUe to line 1010" 1111 emulator

de(~nmi_key (* terminate dUe to default handler for hardware
exception *)

: (sr : integer;
pc : longint); (* at the time of occurrence *)

def_range"
def_str_indeX (* terminate dUe to defaul t handler for

"SVS_VAU£_OOB" excep for value range or string
index error *)

: (value_Check : integer;
upper_boUnd : integer;
lower bound integer;
returo-PQ longint;
caller a6 longint);

bus error,
aodr_error (* dUe to bUs error or address error

(fun_field: packed record (* one integer
filler: 0 •. $7ff; (* 11 bits
r_w_flag : booleCYl;
i_n_flag : boolean;

fun_code: 0 .. 7; (* 3 bits *)
end;

A-4

*)
*)
*)

qJerating System Reference Manual

end;

access_adr : long1nt;
inst_register : integer;
sr_error : 1nteger;
pc_error : longint};

qJerating System Interface Unit

p_t'Iaro_eX_data = "'t'Iaro_eX_data;
hard ex data = record (* hard.are exception data block *) ease excep_k1nd : long1nt of

div zero, value 000, ovfll
: (sr : 1nteger;

end;

pc : longint);
value_range, str_1ndeX
: (value_cheCk : integer;
~r_bOtn1 : 1nteger;
lower_boUld : integer;
retum-pc : longlnt;
caller_a6 : longint);

accesses = (dread, dwrite, append, private, global_reffUll);
mset = set of accesses;
i~ = (abSOlute, relative, sequent1al);

UIO = record (-unique id*)
a, b: long1nt

end;

timestmp_interval = record
sec : long1nt;
msec : 0 .. 999;

end;

(* time interval *)
(* rutIler of seconds *)
(* ru1tler of m1llisecoros within a second *)

1nfo_type = (deV1ce_t" vollllle_t, obJect_t);
deVtype = (diSkctev" pascalbd, seqdeV, bitbkt, non_io);
flletype = (lI1def1ned" ~flle" rootcat" freellst" ba(l)locks, sysdata.

spool, exec, usercat, pipe, bOOtfile, swapdata" swapcode, raEp,
userflle" k11IedobJect);

entrytype= (enptyentry" catentry, 11n<entry, f1leentry, p1peentry, ecentry,
killedentry);

A-5

Q:Jeratfng System Reference Manual

fs_lnfO = recant
nane : e nane;
(llr J)8th -: patt"flCllE;
machlne_ld : longlnt;
fs_DVerneacJ : Integer;
result_scavenge: integer;
case otype : Info_type Of
device_ t, voll.lDe_ t: (
iOCha • .e1 : integer;
devt : devtype;
slot_no : integer;
fs_size : longint;
VOl_sIze: longInt;
blOCkstructured, IIIUlted : boolea'l;
opencot.Ilt : longlnt;
privatedeV, renDte, lookeddeV : boolea'l;
IIIlU'ltJ)eOOlng, l.nDIltJ)eOOing : boolEBl;
volnaoo, passwont : e_l1are;
fsversltrl, volrun : Integer;
volld : UIO;
backl4l_voll(l : UIO;

Q:Jeraung System Interface Unit

blOCkslze, datasize, clustersize, filectUlt : integer;
label_sIze : integer;
freecol.llt : longint;
OTVe, OTCC, OTVB, OTVS : longlnt;
master_copy_id, copy_thread: longint;
overnDtllt_stalp : UIO;
boot_COde : integer;
boot_envlrm : Integer;
privileged, write-protected: boolean;
master, copy, copy_flag, scavenge_flag: boolem;
vol_left_lU.Ilted : boolea'l);

Object_t : (
sIze : longInt;
pSize : longint; (if physical file size in bytes if)
lpslze : integer; (* logIcal page sIze In bytes for thIs fIle *)
ftype : filetype;
etype : entrytype;
OTC, OTA, OTt1, OTB, OTS : longint;
refrun : integer;
fmark : longint;
8CIOOde : mset;
nreaders, nwriters, rusers : integer;
fuI(l : UIO;
user_type : integer;
user _stJ>type : Integer;

A-6

cperating System Reference Manual cperating System Interface Unit

system_type : integer;
eof, safety _ CXl, kswi tctl : booleCl'l;
private, lOCked, protected, master_file: bOOlem;
file_scavenged, file_closed_by_OS, file_left_open:boOleCl'l)

end;

ootype = record
dcversion : integer;
decode : integer;
dcdata : array [0 .. 9] of longint;

end;

t waitlist = record
- length: integer;

(* user/driver defined data

(* .ait list

refrun : array [0 .. size_waitlist] Of integer;
end;

t eheader = record
- send-pid: longint;

event_type : longint;
end;

(- event header
(* sender"s process Id
(* type of event

t_event_text = array [0 .. size_etext] of longint;
p_r_eventblk = "r_eventblk;
r_eventblk = record

event header : t eheader;
event-text : t event text;

end; - --

p_s_eventblk = "s_eventblk;
s_eventblk = t_event_text;

tinE rec = record

end;

Year : integer;
day : 1. .366;
hoUr : -23 .. 23;
mirute : -59 .. 59;
second : o .• 59;
msec : 0 .. 999;

(- Julian date *)

A-7

-)

*)

*)
*)
*)

cperat/ng System Reference Manual

Ch"Lkind = (wait_eel call_eel;
t em sts = record
- ttrl_tYP8: ctI'l_kind;

FUn_eventS: integer;
~_recv : integer;
open_send : integer;
ec _ratE : patl'r'alB;

end;

hwr_mlQe = -23 .• 23;
m1nJte_1CIlge = -59 .. 59;

{configuration stuff: }

cperat/ng System Interface unit

(* channel status *)
(* channel type *)
(* rutler of events queued *)
(* number of opens for receiving *)
(* rutler of opens for sending *)
(* event channel rlCIIE *)

tports = ('4lJ)ertwig, lowertwig, parallell
slotl11 slot121 slot 131 Slot141

slot211 slot221 slot231 slot241

slot3L slot3~ slot331 slot341

seriala, serialbl main consolel al t consolel
t_owsel t_speakerl tjixtraL t_extla21 t_extra3);

card_types = (no_cant CQlle_can1 nJ)Ort_can1 net_can1 laser_card);

slot_array = array [1. .3] Of cane types;

{ lisa Office System paraneter IlElll)ry type }

pnfJytell1itJ.le = -128 •• 127;
pt1enAec = array [1 .. 62] Of pn8ytetrli(JJe;

(* File System calls *)

pl'OCeO.lre tW<E_FllE (var ecode: integer; var path :pattnlle;
label_size: integer);

pl'OCeO.lre tw<EYIPE (var ecode: lnteger; var path :pattrlallle;
18bel_slze:1nteger);

procewre MAKE_ CATAUXi (var ecode: integer; var path :pattfalE;
label_slze:lnteger);

pl'OCeO.lre HAKE_lIN< (var ecode:lnteger; var pathl ref:pattrae;
l8bel_size:integer);

A-8

LI"lelatill5:,l ... '>j-ytell7 Referelll.i8 "falll/a]

prOCedUre KILL _ OBJ:CT (var erode : integer; var path: patlYlaloo);

procedUre LN<ILL_FILE (var ecocJe:1.nteger; refnum:1nteger; var
new_name:e_name);

procedUre OPEN (var ecode:integer; var path:pathname; var refnum:integer;
man1p:mset);

procedUre CLOSE _OBJECT (var ecode : integer; refnum: integer);

prOCedUre READ_DATA (var ecode:1nteger; refnum:1nteger; data_addr:longlnt;
count:longint; var actual:longint; mode:iomode;
offset:longlnt);

procedUre WRITE_DATA (var ecode:lnteger; refnuntinteger; data_addr:long1nt;
count: long int; var actual:longint; lOOde:iOlOOde;
offset:longint);

procedUre FLUSH (var ecooe:lnteger; refnum:lnteger);

procedUre LOOKlP (var ecOde:integer; var path:pathnaJre; var
attriootes:fs_info);

procedure INFO (var ecode: integer; refnum: integer; var refi.nfo:fs_info);

procedure ALLOCATE (var ecode:integer; refnurn:integer; contiguous:boolean;
count:longlnt; var actual:long1nt);

procedUre TRUNCATE (var ~1nteger; ref~lnteger);

procedUre COMPACT (var ~integer; refnunt1nteger);

procedure RENAME_ENTRY (var ecode:lnteger; var path:patnname; var
newnaJre:e _ nane);

procedUre READ_LABEL (var ecode:integer; var path:patt'lrane;
data_addr:longlnt; count:long1nt; var actual:long1nt);

procerure WRITE_LABEL (var ecode:lnteger; var path:pattlf1alre;
data_addr:longint; count:longint; var actual:longint);

procedure tOJNT (var ecode: integer; var \If"IafOO : e _ naIOO; var password
e _ natre ; var devnarre : e _rlaOO);

procedUre l.H1OlNf (var ecode: 1nteger; var vnafOO : e_natre);

A-9

procedure SET_WORKING_OIR (var ecode:integer; var path:pathname);

pror~re GET_WORKING_DIR (var ecode:integer; var path:pathname);

procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean);

procedure DEVICE_CONTROl (var eCOde:integer; var path:pathnatre;
var cparm : dctype);

procedure RESET_CATAlOG (var ecode:integer; var path:pattlnaJre);

pr~"'edUre GET_NEXT __ ENTRY (var ecode:integer; var prefix" entry:e_ .. narre);

procedUre SET_FILE_INFO (var ecOde :lnteger; refnum:integer; fsi:fs._lnfo);

(* Process Management system calls *)

funct ion My _IO:longlnt;

procedUre Info_Process (var er~lnteger; proc_id:longlnt; var
proc_inf~procinfoRec);

procedUre Yield_CPU (var errnum:integer; to_any:boolean);

procedure setPriority_Process (var errnum:integer; proc_id:longint;
new-prlorlty:lnteger);

procedUre SUspenoyrocess (var ermum:lnteger; proc_id:long int;
susp _ family:boolean);

procedUre Activate_Process (var errnum:integer; proc_icJ:longint;
act _ faml1y:ooolean);

procedUre Kill_Process (var errnum::lntp.ger; proc_ld:longlnt);

procedure Terminateyrocess (var errnum:integer; event-ptr:p_s_eventblk);

procedUre t1aI<eyrocess (var errnum:integer; var proc_ld:longint; var
progfile:pattname; var entrYrlafOO:naJrestring;
evnt_Chn_refnum:integer);

A-l0

(* Memory Management system calls *)

procedUre make_dataseg(Vflr errnum: integer; var segnarre: pathnatre; trem_s1. ze,
disc_.size: longint; var refnum: integer; var segptr:
long1.nt; Idsn: lnteger; ostype: Tdstype);

prOCedure k i 11_ dataseg (var errnum: integer; var segnatre:pathnatre);

procedure open_dataseg (var er~integer; var segn~pathnatre; var
refnum:integer; var segptr:longint; Idsn:integer);

procedure close_dataseg (var err~integer; refnlmtinteger);

prOCedUre size_dataseg (var errrn~integer; refrn~integer;
del tanemsize:longint; var neWfOOmsize:longint;
deltadiscslze: longint; var newdiscsize: longint);

procedure lnfO_dataseg (var errrnJfTl:lnteger; refnum:integer; var
dsinfo:dsi.nfoRec);

procedUre setac~~ss_dataseg (var errnum:integer; refnum:integer;
reacJonl y:ooo lean);

procedure unbind_.dataseg (var errnum:integer; reff1UlTtinteger);

procedUre bind_dataseg(var errnunrinteger; refnum:integer);

procedUre info_ldsn (var ermum:integer; Idsn: integer; var refnum: integer);

prOCedUre flush __ datase~l(var errnum: integer; refnum: integer);

prOCedUre mem_info(var errnum: lnteger; var swapspace, dat a space,
cur_codesize; max_COOesize: longint);

procedure info address(var errnum: integer; address: longint; var refruJm:
- lnteger);

(* Exception Nanagenent system calls *)

procedure declare_excep_hdl (var errnum:integer; var excep_nanet_ex_rk1fre;
entrY.J)Oint:longadr) ;

procedUre diSable_excep (var errnum:integer; var excep_nare:t_ex_nane;
queue:boolean) ;

A-11

L-:;,.,e/-afilJg S}:ftenl RefelC?llCe I'lal7l1ai q..,e/8t}l7f} Sy~~'fefn lote/lace (jlli!

prOCedure enable_excep (var errnuntinteger; var excep_Mre:t_ex_nafOO);

proceaure slgnal_excep (var errruJtlnteger; var excep_nane:t_ex_rkfOO;
excep _ data:t _eX_data);

prOCedUre Info_excep (var errnuntinteger; var excep_naIOO:t_ex_flaOO; var
excep _status:t _ex_ sts);

prOCedUre fluSh_excep (var errntlJtlnteger; var excep_nane:t_ex_nafOO);

(* Event Channel management system calls *)

procedUre make _event _em (var errnum:lnteger; var event _ Chn _ nanepatt'lnalTe);

procedUre kill_event_em (var errnum:lnteger; var event_Chr'l_narre:pathnarre);

procedure open_event_chn (var err~lnteger; var event_chn_narre:pathname; var
refnum:lnteger; var excep_nane:t_exJlafOO;
reeei ver:OOOleCYl);

prOCedUre close_event_Chn (var ermufftinteger; refnum:lnteger);

procedure info_event_cm (var errnum:integer; refnuntinteger; var
chn_info:t_Chn_sts);

procedUre wait_event_Chn (var err~integer; var wait_list:t_waitlist; var
refnum:integer; eventjptr:p_r_eventblk);

procedUre fluSh_event_chn (var errnundnteger; refnum:lnteger);

procedUre seM_event_chn (var errnum:lnteger; refroltinteger;
event JJtr:p _ s _ eventolk; interval:tirrestnp _interval;
clktirre:tlme_rec);

(* Timer functions system calls *)

procedUre delay_time (var errnum:integer; interval:timestmp_interval;
Clktl~tlme_rec);

procedure get_tire (var errntJn:lnteger; var gmt_tiJre:tilre_rec);

procedUre set_Iocal_time_diff (var errnuntlnteger; hOur:hOur_range;
minute:minute _.range);

A-12

prOCedUre convert_tire (var errrun:integer; var gmt_tire:tlre_rec; var
local_tire:tire_rec; to.JJ1lt:boolean);

{configuration stUff}

function OSBOOTVOl(var error : integer) : tports;

prOCedure GET_CONFIG_NAHE{ var error:integer; devpostn:tports; var
c.1evnare:e _nacre);

procedUre CARDS_EQUIPPED(var error:lnteger; var in_s!ot:slot_array);

It1PLEtENTATION

procedure MAKEjFILE; external;

procedUre MAKE_PIPE; external;

procedUre MAKE_CATALOG; external;

procedure MAKE_LINK; external;

procedUre KILL_OBJECT; external;

procedure OPEN; external;

procedure CLOSE_OBJECT; external;

procedure READ _DATA; external;

proceaure WRITE_DATA; external;

prOCedUre FLUSH; external;

procedure LOOKUP; external;

procedure INFO; external;

procedUre AlLOCATE; external;

procedure TRtH!A TE; external;

procedUre COMPACT; external;

A-13

cperating System Reference Manual

procewre REtWE_ENTRY; external;

procewre READ_lABEL; external;

proceclJre WRITE_LABEL; external;

pl'OCeWre tDJfT; external;

procewre lRUIH; external;

procedUre SET_Q1(ING_DIR; external;

procewre GET_wmKING_DIR; external;

procewre SET_SAFETY; external;

procedUre DEVICE_COOTRCI..; external;

procedUre RESET_CATALOG; external;

procewre GET _tEXT_ENTRY; external;

procedUre GET_DEY _NAt£; external;

f'-l1Ction My_ID; external;

procewre Info_Process; external;

procedUre Vield_(RJ; external;

procewre setPriori ty _Process; external;

procewre SUspend_Process; external;

procewre Activate_Process; external;

procewre Kill_Process; external;

procewre Terminate_Process; external;

procedUre Make_Process; external;

procewre Sched_Class; external;

A-14

cperating System Interface Unit

t:peratlng System Reference Manual

p1'OCeWre make_dataseg; external;

p1'OCeWre kill_dataseg; external;

p1'OCeWre open_dataseg; external;

p1'OCeWre close_dataseg; external;

p1'OCeWre size_dataseg; external;

p1'OCeWre info_dataseg; external;

procewre setaccess_dataseg; external;

p1'OCeWre l.Ilbino _ dataseg; external;

p1'OCeWre bind_dataseg; external;

procedlre info_ldsn; external;

procewre fluSh_dataseg; external;

p1'OCeWre IIEIIL info; external;

p1'OCeWre declare_excep _hdl; external;

procewre dlsallle_excep; external;

p1'OCeWre enable_excep; external;

p1'OCeWre sl{Jlal_excep; external;

procewre Info_excep; external;

procerure fluSh_excep; external;

p1'OCeWre make_ event_ chn; external;

p1'OCeWre kill_event_chn; external;

p1'OCeWre open_ event_ chn; external;

procewre close_event_clTt; external;

A-1S

cperatJng System Interface Unit

fiJerating System Reference Mantlal

proceOJre tnfo_event_ctn; external;

proceOJre .at t_event_ctn; external;

procewre fluSh_event_ct'Il; external;

procewre send_event_CfTl; external;

procewre delay_tilE; external;

procewre get_tilE; external;

procewre set_local_tilE_diff; external;

prooewre convert_tiE; external;

procewre set_file_info; external;

flllCtion ENAa.ElBi; external;

flllCtion OSBOOTV(L; external;

procewre GET_C(H=IG_NN'E; external;

flllCtion DISK_LIKELY; external;

procedure CARDS_EQUIPPED; external;

procewre Read JJt1ent external;

procewre write JJt1ent external;

end.

A-16

fiJerating System Interface unit

Appendix B
System-Reserved
Exception Names

SYS_O'JERFU1N CNerflow exception. Signaled when the TRAPV instruction is
executed and the overflow condition Is on.

SYS_ V,6Ll£_aB Value-out-of-bOund exception. Signaled when the CHK
instruction Is executed and the value is less than 0 or greater
than upper bound.

SYS_ZERO_DIV Division by zero exception. Signaled when the DIVS or DlVU
InstructIon Is executed and the dIvIsor Is zero.

SYS_ TERMINATE Termination exception. Signaled When a process is to be
terminated.

B-1

Appendix C
System-Reserved

Event Types

"Son terminate" event type. If a father process has created a son
process with a local event channel, this event is sent to the
father process when the son process terminates.

C-l

Appendix D
Error fvlessages

-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1840 Packet ended in a resumable state (Archive).
-1293 Object is not password protected.
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted, and system crashed
-1173 File was last closed by the OS
-1146 Only a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most recent boot

volume
-1060 Attempt to mount a foreign boot disk following a temporary unmount
-1059 The bad block directory of the diskette is almost full or difficult to read
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable,. but may be OK
-622 Parameter memory and the disk copy were both irwalid
-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was irwalid
-413 Event channel was sca:venged
-412 Event channel was left open and system crashed
-321 Data segment open when the system creshed. Data possibly invalid.
-320 Could not determine size of data segment
-150 Process was created, but a library used by program has been scavenged and

altered
-149 Process was created, but the specified program file has been sca:venged and

altered
-125 Specified process is already terminating
-120 Specified process is already active
-115 Specified process is already suspended
100 Specified process does not exist
101 Specified process is a system process
110 Irwalid priority specified (must be 1 .. 225)
130 Could not open program file
131 File System error while trying to read program file
132 Inv81id program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get asyslocal segment for new process

0-1

Operating SJ,-stem Reference MBnusJ

135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process
138 Error accessing program file while loading
141 Error accessing a library file while loading program
142 Cannot run protected file on this machine

Error Messages

143 Program uses an intrinsic unit not found inthe Intrinsic Library
144 Program uses an intrinsic unit whose nameltype does not agree with the

Intrinsic Library
145 Program uses a shared segment not found inthe Intrinsic Library
146 Program uses a shared segment whose name does not agree with the Intrinsic

Library
147 No space in syslocal for program file descriptor during process creation
148 No space intheshared IU data segment for the program's shared IU globals
190 No space in syslocal for program file description during List_LibFiles

operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Invalid program file (incorrect format)
195 Program uses asharedsegment not found inthe Intrinsic Library
196 Program uses a shared segment whose name does not agree with the Intrinsic

Library
198 Disk 110 error trying to read the intrinsic unit directory
199 Specified library file number does not ex ist in the Intrinsic Library
201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

Signal_Ex cep
203 Null name specified es exception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Data segment already ex ists
309 Insufficient disk space for data segment
310 An invalid size has been specified
311 Insufficient system resour ces
312 Unexpected File System error
313 Data segment not found
314 Invalid address passed to Info_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 Invalid event channel name passed to Make_Event_Chn
402 No space left in system global data area for Open_Event_Chn
403 No space left in system local data area for Open_Event_ Chn
404 Non-block -structured device specified in pathname
405 Catalog is full in Make_Event_Chn or Open_Event_Chn

0-2

Operating S),o'Stem Reference M8nUaJ

406 No such event channel exists in Kill Event Chn
410 Attempt to open a local event channel to sind
411 Attempt to open event channel to receive when event channel has a receiver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough disk space for event channel in Open_Event_Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to wait on a channel that the calling process did not open
421 Wait_Eve nt_ Chn returns empty because sender process could not complete
422 Attempt to call Wait_Event_Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned while reading from event channel not of expected

size
425 Event channel empty after being unblocked, Wait_Event_Chn
426 Bad request pointer error returned in Wait_Event_Chn
427 Wait_List h~ illegal length specified
428 Receiver unblocked because last sender closed
429 Unexpected File System error in Wait_Event_Chn
430 Attempt to send to a channel which the calling process does not have open
431 Amount of data transferred while writing to event channel not of expected

size
432 Sender unblocked because receiver closed in Send Event Chn
433 Unexpected File System error in Send_Event_Chn - -
440 Unexpected File System error in Make_Event_Chn
441 Event channel already exists in Make_Event_Chn
445 Unexpected File System error in Kill_Event_Chn
450 Unexpected File System error in Flush_Event_Chn
530 Size of stack expansion request exceeds limit specified for program
531 Cannot perform explicit stack expansion due to lack of memory
532 Insufficient disk space for explicit stack expansion
600 Attempt to perform 1/0 operation on non 110 request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot find sector on floppy diskette (disk unformatted)
608 Illegal length or disk address for transfer
609 Call to nonconfigured device driver
610 No more room insysglobal for 110 request
613 Unpermitted direct access to spare track with sparing enabled on floppy

drive
614 No disk present in drive
615 Wrong call version to floppy drive
616 Unpermitted floppy drive function
617 Checksum error on floppy diskette
618 Cannot format, or write protected, or error unclamping floppy diskette
619 No more room in sysglobal for 110 request
623 Illegal device control parameters to floppy drive
625 Scavenger indicated data ere bad

0-3

Operating System Reference ~18niJBl Eaor J..1essages

630 The time passed to Delay_Time .. Convert_Time .. or Send_Event_Chn hss
invalid year

631 Illegal timeout request parameter
632 No memory available to initialize clock
634 Illegal timed event id of-1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time passed to Delay_Time or Send_Event_Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or illegal date from system clock in

Get_Time
640 RS-232 driver called with wrong version number
641 RS-232 read or write initiated with illegal parameter
642 Unimplemented or unsupported RS-232 driver function
646 No memory available to initialize RS-232
647 Unexpected RS-232 timer interrupt
648 Unpermitted RS-232 initialization, or disconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not initialized prior to ProFile
653 No room insysglobal to initialize ProFile
654 Hard error status returned from drive
655 Wrong call version to ProFile
656 Unpermitted ProFile function
657 Illegal device control parameter to ProFile
658 Premature end of file when reading from driver
659 Corrupt File System header chain found in driver
660 Cable disconnected
662 Parity error while sending command or writing data to ProFile
663 Checksum error or CRC error or parity error in data read
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must = 1 on input)
672 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
660 Wrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 Unpermitted n-port card driver function
688 Wrong call version to n-port card driver
690 Wrong call version to perallel printer
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer

0-4

Operating System Reference "'''aOO81

694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper
698 Printer offline
699 No response from printer

Error Messllges

700 Mismatch between loader version number and Operating System version
number

701 OS exhausted its internal space during stertup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot initialize floppy disk driver
707 Cannot initialize the File System volume
708 Herd disk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devices
724 The boot tracks do not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CONFIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM. UNPACK is missing
737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
750 Position specified is out of range.
751 No device exists at the requested position.
752 Can't perform requested function while device is busy.
753 Specified pOSition is not a terminal node.
754 Built-in devices cannot be configured.
755 Isolated positions cannot be configured.
756 The specified pOSition is already configured.
757 Perallel Port doesn't ex ist on this type of machine.
758 No room in memory for more devices.
790 Can't get buffer space to load configurable driver.
791 Configurable driver code file is not executable.
792 Can't get memory space for a configurable driver.
793 I/O error reading configurable driver file.
794 Configurable driver code file not found.
795 Configurable driver has more than one segment.
801 IOResuit < > 0 on 110 using the Monitor
802 Asynchronous 110 request not completed successfully

0-5

Operating S}·stem Reference Manual

803 Bad combination of mode parameters
806 Page specified is out of range
809 Invalid arguments (page, address, offset, or count)
810 The requested page could not be read in
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized 110 for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
828 Error in parameter values (Deallocate)
829 P8ltial deallocation only (ran into unallocated region)
835 Invalid s-file number
837 Unallocated s-file or 110 error
838 Map overflow: s-file too large
839 Attempt to compact file past PEOF
840 The allocation map of t.his file is t.runcated.
841 Unallocateds-file or 110 error
843 Requested exact fit, but one could not be provided
847 Requested transfer count is (= 0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 Bad unit number
854 No free slots in s-list directory (too many s-files)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalids-file
861 Relative page is beyond PEOF (bad parameter value)
864 No sysglobal space for volume bitmap
866 l.tJrong FS version or not a valid Lisa FS volume
867 Bad unit number
868 Bad unit number
869 Unit already mounted (mount)/no unit mounted
870 No sysglobal space for DCB or MDDF
871 Parameter not a valid s-file 10
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-file 10 or s-file control block
879 Attempt to postion past LEOF
881 Attempt to read empty file
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but file was empty
885 Could not update filesize hints after a write
886 No syslocal space for 110 request list

0-6

Error f>.1essages

887 Catalog pointer does not indicate a catalog (bad parameter)
888 Entry not found in catalog
8~ Entry by that name alre~ exists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog is damaged
895 Irrv'81id entry name
896 Safety switch is on--cannot kill entry
897 Irrv'alid bootdev value
899 Attempt t.o allocate a pipe
900 Irrv'alid page count or FCB pOinter 81"gument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Irrv'alid label size
926 Pathname invalid or no such device
927 Invalid label size
941 Pathname invalid or no such device
944 Object is not a file
945 File is not in the killed state
946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file alread'y' open shared
950 Pipe already in use, requested access not possible or dwrite not allowed
951 File is alread'y' opened in private mode
952 Bad refnum
954 Badrefnum
955 Read access not allowed to specified object
956 Attempt to pOSition FMARK past LEOF not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 System resources exhausted
960 Error 'r'r'riting to pipe while an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to pOSition FMARK too far pest LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathname invalid or no such device
972 Entry not found in specified catalog
974 Badrefnum
977 Bad refnum
978 Page count is nonpositive
979 Not a block-structured device

0-7

Operating System Reference MBnusJ

981 Badrefnum
982 No space has been allocated for specified file
983 Not a block-structured device
985 Bad refnum
986 No space has been allocated for specified file
987 Not a block -structured device
988 Bad refnum
989 Caller is not a reader of the pipe
990 Not a block -structured device
994 Invalid refnum
995 Not a block -structured device
999 Asynchronous read was unblocked before it was satisfied

1002 Invalid Device_Control call for device (Priam).
1003 Unable to get SysGlobal space for disk operation (Priam).
1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname, check for I_I instring
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume is already mounted on device
1053 Attempt to mount tempor81ily unmounted boot volume just unmounted from

this Lisa
1054 The bad block directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device, not mounted, or catalog is damaged
1122 No space for catalog scan buffer (Reset_Catalog).
1124 No space for catalog scen buffer (Get_Next_Entry).
1128 Invalid pathname, device, or volume not mounted
1130 File is protected; cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file list
1135 Cannot find the open file entry to modify
1136 Boot volume not mounted
1137 Boot volume already unmounted

0-8

Operating system Reference Manual

1138 Caller cannot have higher priority than system processes when calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when cailing rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which is not the temporarily unmounted boot

volume
1145 No sysglobal space for bit map to do rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested while boot volume wes unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume is mounted on the device
1166 A valid volume is already mounted on the device
1167 Not a block-structured device
1168 Device name is invalid
1169 Could not access device before initialization using default device

parameters
1170 Could not mount volume after initialization
1171 I_I is not allowed in avolume name
1172 No space available to initialize a bitmap for the volume
1176 Cannot read from a pipe more than half of its allocated physical size
1177 Cannot cancel areadrequest for a pipe
1178 Process waiting for pipe data got unblocked because last pipe writer closed

it
1180 Cannot write to a pipe more than half of its allocated pNjsical size
1181 No system space left for request block for pipe
1182 Writer process to a pipe got unblocked before the request was satisfied
1183 Cannot cancel a write request for a pipe
1184 Process waiting for pipe space got unblocked because the reader closed the

pipe
1186 Cannot allocate space to a pipe while it hes data wrapped around
1188 Cannot compact a pipe while it hes data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 Something is still open on device--cannot unmount
1197 Volume is not formatted or cannot. be read
1198 Negative request count is illegal
1199 Function or procedure is not. yet implemented
1200 Illegal volume parameter
1201 Blank file perameter
1202 Error writing destination file
1203 Invalid UCSD directory
1204 File not found

0-9

Operating System Reference f.,18.mJsJ

1210 Boot track program not executable
1211 Boot track program too big
1212 Error reading boot track program
1213 Error writing boot track program
1214 Boot track program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too meny code segments
1218 Could not find configuration information entry
1219 Could not get enough working space
1220 Premature EOF in boot track program
1221 Position out of range
1222 No device at that position

Error fr.1essages

1225 Scavenger has detected an internal inconsistency symptomatiC of asoftware
bug

1226 Invalid device name
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment) .
1233 Cannot allocate space (SFDB segment)
1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1281 Pathname is invalid because device or object is not present.
1282 Pathname syntax is invalid.
1283 Interior pathname component does not specify a directory object.
1284 Directory cannot be deleted because it is not empty.
1285 Operation is not allowed on a volume with a flat catalog.
1286 Operation is not allowed on a directory object.
1287 Cannot allocate SysLocal space for the directory scan stack.
1288 Directory tree is inconsistent.
1289 Operation not allowed against a volume or device (Quick_Lookup)
1290 The directory that contained the file has been deleted (Unkill_File)
1294 Supplied password does not match the password on the object.
1295 The allocation map of this file is damaged and cannot be read.
1296 Bed string argument hes been passed
1297 Entry name for the object is invalid (on the volume)
1298 S-list entry for the object is invalid (on the volume)
1~7 No disk in floppy drive
1820 Ykite-protect error on floppy drive
1822 Unable to clamp floppy drive
1824 Floppy drive write error
1840 Unable to initialize disk drive (Priam).
1841 Error writing to disk (Priam) I Error reading from tape (Archive).
1842 Error reading from disk (Priam) I Error writing to tape (Archive).

0-10

1843 Error controlling tape (Archive).
1844 Packet ended in a non-resumable state (Archive).
1845 Packet command had an error (Archive).
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Irwalid p8J'ameter address
1999 Badrefnum
6001 Attempt to access unopened file
6002 Attempt to reopen a file which is not closed using an open FIB (file info block)
6003 Operation incompatible with access mode with which file was opened
6004 Printer offline
6005 File record type incompatible with cheracter device (must be byte sized)
6006 Bad integer (read)
6010 Operation incompatible with file type or access mode
6081 Premature end of exec file
6082 Irwalid exec (temporery) file name
6083 Attempt to set prefix with null name
609:> Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to reinitalize heap already in use
6152 Bad ergument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside of heap

Operating system Error Codes
The error codes listed below ere generated only when a nonrecoverable error

occurs while in Operating System code.

10050 Request block is not chained t.o a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a ~ata Segment routine

(Setup_IUInfo)
10102 Error) 0 trying to create shell (Root)
10103 Sem_Count > 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code (Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reeson other than 110 while scheduling is disabled

(SimpleScheduler)
10201 Herdwere exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep
10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def _Hdl from Enable_Excep
10213 Error in Force_ T erm_Excep, no space in EnCLEx_Data

0-11

Operllting S}JStem Reference MIlntl81

10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory parity error
10593 Unable to move memory manager segment duringstertup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (T ake_Free)
10599 Disk I/O error while swapping in an OS code segment.
10600 Error attempting to make timer pipe
1060 1 Error from Kill_Object of an ex isting timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from Open to open timer pipe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from nonconfigured

device
10609 Interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive'2
10612 Spurious interrupt from floppy drive II, or no syslocal spece for timer list

element
10613 Error from ReacCDataoftimer pipe
10614 Actual returned from Read_Data is not the same as requested from timer

pipe
10615 Error from open of the receiver's event channel
10616 Error from tnlrite_Event to the receiver's event channel
10617 Error from Close_Event_ Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down floppy disk controller while drive is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 Mismatch between loader version number and Operating System version

number
1070 1 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize floppy disk driver
10707 Cannot initialize the File System volume
10708 Herd disk mount table unreadable
10709 Cannot map screen data
10710 Toomanyslot-beseddevices
10724 The boot tracks do not know the right File System version
10725 Either d8l1laged File System or demaged contents
10726 Boot device read failed

0-12

10727 The as will not fit into the available memory
10728 SYSTEM.OS is missing
10729 SYSTEM.CONFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 tHrong driver is found. For instence, storing e. diskette loader on a ProFile
10735 SYSTEM.LLD is missing
10736 SYSTEM.UNPACK is missing
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
10738 Can't find a required driver for the boot device.
10739 Can't load a required driver for the boot device.
10740 Boot device won't initialize.
10741 Can't boot from aserial device.
11176 Found a pending write request for a pipe while in Close_Object when it is

called by the last writer of the pipe
11177 Found a pending read request for a pipe while in Close_Object when it is

called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the pipe
11180 Found a pending write request for a pipe while in tNrit e_Data to the pipe
118xx Error xx from diskette ROM (See as errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is bad

0-13

Appendix E
FS INFO Fields

* defined for mounted or unmounted devices
$ defined for mounted devices only

All otlJer fields are defined for mounted block-stnJctured devices only.

DEVICE_ T, VCl..UME_ T:

backup _ volid
blocksize

* bloCk structured
boot code
boot-environ
clustersize
copy
copy_flag
copy _thread
datasize

* devt
it dir-path

DTCC
DTVB
DTVC
DTVS
fUecount
freecount
fs _overhead

fs size
fsversion

* iochannel

label_size

$ lockeddev
machine 10
master -
master_copy _ 10

* mounted
$ mount...,pending
* name
$ opencount

overmount_ stamp
paSs\HOrd

10 of the volume of which thiS volume is a copy.
Number of bytes in a block on this device.
Flag set if this device is block-structured.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set if this volume is a copy.
count of copy operations involving this volume.
Number of data bytes in a page on this volume.
Device type.
Pathname of the volume/device.
Date/time volume was created if it is a copy.
Date/time volume was last baCked-up.
Date/time volume \Has created.
Date/time volume was last scavenged.
Count of files on this volume.
Count of free pages on this volume.
Number of pages on this volume required to store
File System data structures.
Number Of pages on this volume.
Version number of the File System under which
this volume \Has initialized.
Number of the expansion card channel through
which this device is accessed.
Size in bytes of the user-defined labels associated
with objects on this volume.
Reserved.
Machine on which this volume was initialized.
Reserved.
Reserved.
Flag set if a volume is mounted.
Reserved.
Name of this volume/device.
Count of objects open on this volume/device.
Reserved.
Pass\Hord of this volume.

E-l

cperating System Reference Manual F~/NFO Fields

$ pr1vatedev
pr1vileged

$ remote
result_scavenge
scavenge_flag

$ unmountJ)endlng
volid
vol_left_mounted

volname
volnum
voCslze

wrIte ""protected

CBJECT_T:

acmode
dlr""path
DTA
DTB
DTC
DTM
DTS
eof

etype
flle_closed_by_OS

file_left_open

file_scavenged

fmark
fs_ovemead

ftype
fuid
kswltch
locked
lpslze

Reserved.
Reserved.
Reserved.
Reserved.
Flag set by the scavenger if It has altered thIs
volume in some way.
Number of the expansion Slot holdIng the card
through which this device Is accessed.
Reserved.
unique identifier for this volume.
Flag set if this volume was mounted during a
system crash.
Volume name.
Volume number.
Total number of blocks in the F1le System volume
and boot area on this device.
Reservea.

Set of access modes associated with this refnum.
Pathname of the airectory containing this ooject.
Date/time object was last accessed.
Date/time object was last backed-up.
Date/time object was created.
Date/time object was last modified.
Date/time object was last scavenged.
Flag set if end of file has been encountered on
this object (through the given refnum~
Directory entry type.
Flag set if this Object was closed by the ~erating
System.
Flag set if this Object was open during a system
crash.
Flag set by the Scavenger if this object has been
altered in some way.
Absolute byte to which the file mark points.
Number of pages used by the FIle System to store
control information about this Object.
Cbject type.
unique identifier for this object.
Flag set when the Object Is kHled.
Reserved.
Number of data bytes on a page.

E-2

qJeralif1f:l ~'Sler17 RefeJ-etlCe f\-1anual F~lNFO Fielt1s

machIne 10
master_fhe
name
nreaders

nwriters

nusers
private
protected
pslze
refnum

resul t _scavenge
safety_on
size
system_type
user_type
user_subtype

MaChine on which this object may be opened.
Flag set if this object is a master.
Entry name of this object.
Number of processes with this object open for
reading.
Number of processes with this object open for
writing.
Number of processes with this object open.
Flag set If this Object is open for private access.
Flag set if this object is protected.
Physical size of this Object in bytes.
Reference number for this object (argument to
INFO~
Reserved.
Value Of the safety swltch for thIs Object.
Number of data bytes in this Object (LECF~
Reserved.
User-defined type field for this Object.
User-defined sUbtype field for this Object.

E-3

Index

Please note that the topic references in this Index are by section nllfTJlJer.

----------A----------
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13
Append access 2.10.8
attribUte 1.3, 2.10.5

----------8----------
baud rate 2.10.12.1
binding 4.1
8IND_DATASEG 4.7.12
blocked process 1.4,

3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,

5.5, 5.8

----------C----------
CARDS_EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE DATASEG 4.7.4
CLOSE EVENT CHN 5.8.4 - -
CLOSE_OBJECT 2.10.9
code segment 4.5
communication bet~een processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

a device 2.10.12
a process 3.4

IndeX-l

CONVERT_TIHE 5.9.4
creating

a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

----------0----------
data segment

creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
s~apping 4.6

Dccode mnemonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE_EXCEP_HDL 5.7.1
DELAY_TIME 5.9.1
deleting

a process 3.8.2, 3.8.4
an object 2.10.2

device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2.10.12.1
priority 2.3
storage 2.4

DEVICE CONTROL 2.10.12
directory 2 (introduction)
DISABlE_EXCEP 5.7.2
disk hard error codes 2.10.12.2

t:perating system Reference MantIal

division by zero 5.2, B
Dread, Owrite access 2.10.8

----------E----------
ENABLE_EXCEP 5.7.3
end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see also end of file.
error

disk hard error codes 2.10.12.2
error messages D
soft error 2.10.12.1
See also exception.

event 1.6, 5.4, C
event channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls

5.7
exception names B

----------F----------
father process 1.4, 3.6, 3.7,

3.8.1, 3.8.2
file 2 (introduction)

access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2
File System calls 2.10
FLUSH 2.10.16

Index-2

FLUSH_DATASEG 4.7.5
FLUSH EVENT CHN 5.8.7 - -
FLUSH_EXCEP 5.7.6
FS_INFO fields E

----------G----------
GET CONFIG NAME 6.1.2 - -
GET NEXT ENTRV 2.10.19
GET TINE 5.9.2
GET_WORKING_OIR 2.10.18
glObal access to files 2.8
global event channel 5.5
Global __ Refnum 2.8, 2.10.8

----------H----------
handshake 2.10.12.1
hierarchy of processes 3.2

----------1----------
INFO 2.10.6
INFO_ADDRESS 4.7.9
INFO DATASEG 4.7.7
INFO_EVENT_CHN 5.8.5
INFO_EXCEP 5.7.4
INFO_LDSN 4.7.8
INFO PROCESS 3.8.3
interface unit A

Index

interprocess communication 1.7, 2.9
I/O 2 (introduction)

----------K----------
KILL_DATASEG 4.7.2
KILL_EVENT_CHN 5.8.2
KILL_OBJECT 2.10.2
KILL_PROCESS 3.8.4

cperating system Reference Manual

----------L----------
label, file 2.6, 2.10.11
LDSN 4.2, 4.4, 4.7.8
LEOF. See end of file.
local data segment 4.1
local event channel 5.5
logical data segment number 4.2,

4.4, 4.7.8
logical end of file. See end of

file.
LOOKUP 2.10.5

----------H----------
MAKE_DATASEG 4.7.1
MAKE EVENT CHN 5.8.1 - -
HAKE FILE 2.10.1
HAKE_PIPE 2.10.1
HAKE_PROCESS 3.8.1
memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
HEM_INFO 4.7.10
mnemonics for Dccode 2.10.12.1
HOUNT 2.10.20
mounting a device 1.3, 2.10.20
MY 1D 3.8.9

----------N----------
naming an object 2.1, 2.10.1,

2.10.4

----------0----------
object 1.3

creating 2.10.1
deleting 2.10.2
naming 2.1, 2.10.1
renaming 2.10.4

Index-3

OPEN 2.10.8
OPEN_DATASEG 4.7.3
OPEN_EVENT_CHN 5.8.3
OS interface A
OSBOOTVOL 6.1.3

----------P----------
page 2.4

Index

parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file. See end of

file.
pipe 1.7,2.9.2.10.1,2.10.8
priority of devices 2.3
priority of processes 3.5, 3.8.7,

3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1 .4, 3

blocKed 1.4, 3 (introduction),
3.8.5

creating 3.3, 3.8.1
father 1.4,3.6,3.7, 3.B.1,

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8
queuing 3.5, 3.8.5-3.8.8
scheduling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7, C
starting 3.B.1, 3.B.6
stopping 3.8.2, 3.8.4
structure 3.1
termination 1.4, 3.6, 5.2, B, C

process system calls 3.B

tperating System Reference Manual

----------Q----------
queuing a process 3.5, 3.8.5-3.8.8

----------R----------
range check error 5.2, B
READ_DATA 2.10.10
READ LABEL 2.10.11
refnum 2.8; see also Global_Refnum.
RENAME_ENTRY 2.10.4
renaming an object 2.10.4
RESET CATALOG 2.10.19
running a program 1.4, 1.9, 3.B.1,

3.8.6

----------S----------
safety switch 2.5, 2.10.17
Scheduler 3
scheduling processes 3.5,

3.8.5-3.8.8
SEND_EVENT_CHN 5.8.8
SETACCESS_DATASEG 4.7.11
SETPRIORITV PROCESS 3.8.7
SET_FILE_INFO 2.10.7
SET_LOCAL_TIME_DIFF 5.9.3
SET_SAFETY 2.10.17
SET_WORKING_DIR 2.10.18
shared data segment 1 .7, 4. 1, 4. 3
shared file 1.7, 2.B
shell process 1.4, 3.2
SIGNAl_EXCEP 5.7.5
SIZE DATASEG 4.7.6
soft error 2.10.12.1
son process 1.4, 3.7, C
sparing 2.10.12
starting a process 3.8.1,
stopping a process 3.B.2,
storage device 2.4
SUSPEND_PROCESS 3.B.5

3.8.6
3.B.4

swapping 4.6
Syscall unit A
system calls

clock 5.9
configuration 6.1
event management 5.B
exception management 5.7
file 2.10
memory management 4.7
process 3.B

Index

system clock 5.6, 5.9
system-defined exceptions 5.2, B
SVS_OVERFLOW 5.2, B
SVS_SON_TERN C
SYS_TERNINATE 5.2, B
SVS_ VALIJE __ OOB 5.2, B
SVS_ZERO_DIV 5.2, B

----------T----------
terminated process 1.4, 3.6, 5.2,

B, C
TERMINATE_PROCESS 3.8.2
timed events 5.8.8
tree, process 3.2
TRUNCATE 2.10.15

----------u----------

Index-4

UNBIND_DATASEG 4.7.12
UNKILL FILE 2.10.3
UNHOUNT 2.10.20
user-defined exception handler 5.3

----------V----------
value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19
volume name 1.3

cperatlng System Reference Mamal

----------w----------
WAIT_EVENT_CHN 5.8.6
working directory 2.2
working set 4.2
WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11
writing buffered data 2.10.16

----------v----------
VIELD CPU 3.8.8

Index

Index-5

tpel"8tJng System Reference !'-1antJa/ !'-'!ail-Back Fl1J777

Apple pubUcatlons would Uke to learn about readers and what you thInk about this
manual in order to make better manuals in the future. Please fill out this form ... or
write all over It, and send it to us. We promIse to read it.

How are you using this manual?
[) learning to use the product [] reference [] both reference and learning
(]other __ ___

Is it quick and easy to find the information you need in this manual?
[] always [] often [] sometimes [] seldom [] never
CommenU __ __

What makes this manual easy to use? _________________________________ _

What makes this manual hard to use? _________________ ,

What do you l1Ke most about the manual? _________________________ _

What do you like least about the manUal? _____________ . __ _

Please comment on ... for example ... accuracy ... level of de tall ... number and usefulness of
examples ... length or brevity of explanation ... style ... use of graphiCS ... usefulness of the index"
organization" suitab1l1ty to your particular needs ... readab111ty.

What languages do you use on your Lisa? (check each)

[] Pascal [] BASIC [] ccell.. [] other _____________ _

How long have you been programming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What is your job title? _________________________________ _

Have you completed:

[J high school [] some college [] BAIBS [] MAIMS [) more
What magazines do you read? ________________________ _

Other commenU (please attach more sheets If necessary) ___________ _

.. FaO .. · ·· ·· .. ··· .. ···· · .. ·· .. ··· · · ··· .. · · .. ···

.. FaO · .. · · · .. · · · .. · ·· .. ··

t &apple! computar
POS PUblications· Department
20525 Mariani Avenue
cupertino, Callfornia 95014

TAPE tR STAPLE

[

The CEMSysCall Unit

Contents

1 lntr~iDIl ___ 1
2 ~~ ~ ___ . ___________ ___________ 2

2.1 Init Vol .. 2
2.2 EjectVol ... 3
2.3 Scavenge Vol ...•..•.•.••....•...•.•....•.•.....•......•...•...................... 4
2.4 VerifyVol 5
2.5 MakeSecure . .. 6
2.6 KillSecure. .. 7
2.7 OpenSecure .. 8
2.6 Rename Secure ... 9
2.9 VerifyPassword _ 10
2.10 ChangePassword 11

3 ~~ ____ . ___ ____ . ___ . _________________ ~

The CEMSysCalllklit

1 lrtI'oduction
The OEMSysCall unit provides interfaces to privileged procedures within the
Lisa Operating System. These privileged procedures offer facilities that fall
into two categories: disk volume management and file password protection.

Disk Volume /l-1ansgement
The OEMSysCall unit includes procedur-es to

a Initialize a disk volume.
a Eject a removable disk volume.
a Scavenge a disk volume.
a Determine if two disk volumes are identicaL

File Password Protection
A file may be protected from unauthorized access by associating a p~word
with it. Password protecUon prevents a file from being opened, killed, or
renamed without presentation of the proper password. other operations (e.g.,
Lookup, Read_Label, etc.) are unaffected by the presence of a password
protecting the specified file. The OEMSysCall unit includes procedures to

a Open a password-protected file.
a Delete a password-protected file.
a Rename a password-protected file.
a Change the password associated with a file.
a Verify the password associated with a file.

1-1

Lisa S}lStems Softwsre

2 0EMSysCal1 RcUines

2.1 Init_ Vol

Init_Vol (ver ecode : integer;
devHBlle : e_n_e;
volNaae : e_na.e;
password : e_na.e)

OEMSysC81J

ecode: Error indication (common errors are listed below)
devName: Name of the device to initialize
volName: Name to assign to the new disk volume
password: Password to assign to the new disk volume

Initialize the volume on the specified device. The volume is assigned the
name and password volName and passwmd. Volume passwords are currently
not supported by the Lisa file system. The volume may not be mounted on
the device at the time of the call.
Common errors:

618 Cannot format the volume (make sure a diskette is in

971
1167
1169

1171
1172

1390

the drive).
Device name is invalid (check configuration).
Device is not a disk.
Could not default mount the volume in order to
perform initialization.
Volume name contains the dash, "_", character.
No space in system heap for the volume allocation
map of the new volume.
Volume is mounted on the device.

1-2

Lisa Systems Software

2.2 EjectVol

EjectVol (var ecode : integer;
devH_e : e_n.e)

OEj\1SysCslJ

ecode: Error indication (common errors are listed below)
devName: Name of the device from which to eject media

Eject the removable disk media from the specified device. The device must
support ejectable media, and the volume may not be mounted on the device
at the time of the calL

Common errors:
614 No diskette present in the drive.
971 Oevice name is invalid (check configuration).

1164 Device does not support ejectable media.
1390 Volume is mounted on the device.

1-3

Lisa Systems Softw8Ie

2.3 ScavengeVol

ScavengeVol (var ecode : integer;
devName : e_n8IDe)

ecode: Error indication (common errors are listed below)
devName: Name of the device to scavenge

Scavenge the volume on the specified device. The volume may not be
mounted on the device at the time of the call.
Common errors:

614 No diskette present in the drive.
971 Device name is invalid (check configuration).

1225 Scavenger aborted.
1227 Device is not a disk.
1231 Scavenger heap overflow.
1237 Unable to repair the volume directory structure.
1240 Volume is not in a Lisa file system format.
1390 Volume is mounted on the device.

1-4

Lisa S}~ems Software

2-4 VecifYVol

VerifyYol (var ecode = integer;
sourceDev : e_nc.e;
destinDev : e_naae;
burRddr : longint;
bufSize : longint)

OEfo.1SysC81J

ecode: Error indication (common errors are listed below)
sourceDev: Name of the device being verified
destinDev: Name of the device to verify against
bufAddr: Address of the buffer
bufSize: Size of the buffer in bytes

Compare the volume on sourceDev with the volume on destinDev. The
volumes are compared track by track. The memory buffer used during the
comparison is supplied by the caller and is described by its starting address
buf'Addr and length bufSize. The buffer must be at least large enough to
accommodate two disk blocks of 536 bytes each (i.e., 1072 bytes). Neither
the source volume nor the destination volume m8¥ be mounted at the time
of the call. The error indication ecode is zero if the volumes are identical,
and 1393 if they differ.
Common errors:

614 No diskette present in the drive.
971 Source or destination device name is invalid (check

configuration).
1167 Source or destination device is not a disk.
1390 Volume is mounted on the source or destination

device.
1392 Supplied buffer is too small (bufSize < 1072).
1393 Volumes are not identical.

1-5

Lisa S}lstems Software

2.5 MakeSeaa-e

HakeSecure (var ecode : integer;
var path : pathna.e;
var password : 8_naae)

ecode: Error indication (common errors are listed below)
path: Name of the new file
password: Password to be associated with the new file

Create a new file protected by the specified password. This procedure
behaves the same as Make_File.
Common errors:

854 Volume s-file list is full.
855 Cannot allocate disk space for the file leader.
890 file already exists.
891 Volume catalog is full.
892 file name is illegal (a file name may not contain

the dash, "_", character).
921 Pathname is invalid.

1-6

Lisa S}lStems Software

2.6 KillSecla'e

Kl11Secure (var ecode : integer;
var path : pathnaae;
var password: e_naae)

OEMS;~81J

ecode: Error indication (common errors are listed below)
path: Name of the object to be deleted
password: Password associated w1th the object

Delete the fUe with the specified name and password. The deletion is not
allowed if paIIS'IIWd does not match the password assigned to the file. This
procedure behaves the same as Kill_Object.
Common errors:
-1293 Warning: the file was not password protected. The

kill operation completes normally.
894 File cannot be found.
895 File name is 1llegal.
896 File safety switch is set (the file is protected

against delet1on).
1294 Supplied password does not match the password

protecting th1s file.
1298 File cannot be accessed because its s-list entry is

damaged.

1-7

Lisa Systems Software

2.7 ()penSec:u"e
OpenSecure

ecode:
path:
refnum:
manip:
password:

(var ecode : integer;
var path : pathname;
var refma : integer;

.anip : .. set;
var password : e_name)

Error indication (common errors are listed below)
Name of object to be opened
Reference number for the object
Set of access types
Password associated with the object

Open the file with the specified name and password. The open is not done if
passwmd does not match the password assigned to the file. This procedure
behaves the same as Open.
Common errors:
-1173 Warning: this file was last closed by the Operating

System.
-1174 Warning: this file was open during a system crash.
-1175 Warning: this file has been reconstructed by the

scavenger.
-1176 Warning: the contents of this file has been

reconstructed by the scavenger.
-1293 Warning: the file was not password protected. The

open operation completes normally.
871 file cannot be accessed because its s-list entry is

damaged.
872 No space in system heap for file Control Block.
873 file is open for pri~,'ate access by another process.
946 Pathname is invalid.
947 No space in the system heap for File Refnum

Descriptor Block.
948 file cannot be found.
949 Request for pril,"ste access is disallowed because the

file is open for access by another process.
1130 Open request violates software theft protection

policy.
1294 Supplied password does not match the password

protecting this file.

1-8

Lisa Systems Software OEMSysCaJJ

2.8 RenameSecure

Ren8lleSecure (var ecode : i nt eger;
var path : pathnaae;
var nMINaae : 8_nElle;
var password : e_name)

eeode: Error indication (common errors are listed below)
path: Name of the object to be renamed
newName: New name for the object
password: Password associated with the object

Rename the file with the specified name and p~word. The rename is not
done if password does not match the p~word assigned to the file. This
procedure behaves the same as Rename_Entry.
Common errors:
-1293

1021
1022
1023

1024
1294

1296
1297

1298

Warning: the file was not password protected. The
rename operation completes normally.
Pathname is invalid.
file cannot be found.
New file name is illegal (a file name cannot contain
the dash, "_", character).
file having the new name already exists.
Supplied password does not match the password
protecting this file.
file name string variable has bad length byte.
File cannot be accessed because its leader is
damaged.
File cannot be accessed because its s-list entry is
damaged.

1-9

Lisa Systems Softw8J"e

2.9 VerityPasswOI"d

VerifyPassword (var ecode : integer;
var path : pathna.e;
var password : e_na.e)

eeode: Error indication (common errors are listed below)
path: Name of the file whose password is to be verified
password: Password to be verified

Comp8Te the specified password with the password protecting the specified
file. The error indication ecode is zero if the passwords are identical, and
1294 if they differ.
Common errors:
-1293 Warning: the file was not password protected. The

1091
1092
1297

1298

1294

verify operation completes normally.
Pathname is invalid.
file cannot be found.
file cannot be accessed because its leader is
damaged.
file cannot be accessed because its s-list entry is
damaged.
Supplied password does not match the password
protecting this file.

1-10

Lisa SJlstems Softw8Te OEfo.1SysCsJJ

2.10 ChangePasswmd

ChangePassword (var ecode : integer;
var path : pathname;
var oldPassword : e_name;
var newPassword : e_n_e)

ecode: Error indication (common errors are listed
below)

path: Name of the file whose password is to be
changed

oldPassword: Current password associated with the file
newPassword: New password to be associated with the file

Change the password associated with the specified file. The change is not
done if olcPasswm'd does not match the password assigned to the file. This
call may be used to assign a password to a file for the first time.
Common errors:
-1293 Warning: the file was not password protected. The

1091
1092
1297

1298

1294

change operation completes normally.
Pathname is invalid.
file cannot be found.
file cannot be accessed because its leader is
damaged.
file cannot be accessed because its s-list entry is
damaged.
Supplied old password does not match the password
protecting this file.

1-11

Lisa S}lStems SoftwBTe

3 Intertace

l.NIT CEMsyscall;

INTERfOCE

USES
(*SU Syscall.obj *) syscall,
(*SU Psyscall.obj *) psyscall;

procedure E.ECTVOL(ver errml1l:integer; devname:e_name);

procedure SCAVENGEVOL(var errnum:integer;devname:e_name);

procedure INIT_VOL(var errnum:integer; devname:e_name; volname:e_name;
password:e_name);

procedure VERlfYVOL(var errnum:integer;sourcedev:e_name;destdev:e_name;
buffaddr:1ongint;buffsize:longint);

procedure MAKESEOURE(var errnum:integer;var path:pathname;var
passwd : e_name);

procedure KILLSECURE(var errnum:integer;var path:pathname;var
passwd: e_nEIDe);

procedure OPENSECURE(var errnum:integer;var path:pathname;var refnum:integer;
manip:mset;var passwd:e_name);

procedure RENAMESECURE(var errnum:integer;var path:pathname;var
newname: e_name; var passwd: e_name);

procedure VERlfYPASSWORD(var errnum:integer;var path:pathname;var
passwd: e_name);

procedure CHANGEPASSWORO(var errnum:integer;var path:pathname;var
01 dpasswd : e_name; var newpasswd: e_name);

1-12

The Standard
Apple I'Uneric Environment

Contents

1 Irtrodtdioo __ 1-1
2 Data Types ___ 1-2

2.1 Choosing a Data Type .. 1-2
2.2 Values Represented ... 1-3
2.3 Range and Precision of SANE Types 1-3
2.4 Formats ... 1-5

J flr'ithrnetic {)J)erations ____________________ . ___ . _______ . ___________________ . _ _ _ _ _ _ _ 1-8

3.1 Remainder '" .. 1-8
3.2 Round to Integral Value.. 1-9

-4 Conversiors . ___ . __ e' ___ • ___ • __ e' ____ • ______________________ • _______________ • ______ 1-10
4.1 Conversions Between Extended and Single or Double 1-10
4.2 Conversions to Comp and Other Integral Formats 1-10
4.3 Conversions Between Binary and Decimal 1-11

4.3.1 Conversions from Decimal Strings to SANE Types 1-11
4.3.2 Decform Records and Conversions from SANE Types

to Decimal Strings ... 1-12
4.3.3 The Decimal Record Type .. 1-13
4.3.4 Conversions from Decimal Records to SANE Types 1-13
4.3.5 Conversions from SANE Types to Decimal Records 1-14

4.4 Conversions between Decimal Formats 1-14
4.4.1 Conversion from Decimal Strings to Decimal Records 1-14
4.4.2 Conversion from Decimal Records to Decimal Records 1-15

5 Expression Evaluation . ______ e' __________ e' _______________ • ______________________ 1-16
5.1 Using Extended Temporaries ... 1-16
5.2 Extended-Precision Expression Evaluation 1-16
5.3 Extended-Precision Expression Evaluation and the IEEE Standard .. 1-17

6 C~isorls __ e. ______ e' __________________ e. _______________ • ______________________ 1-18

7 Infinities, NaNs, and Denonnalized Numbers _. ______________ . _______________ 1-19
7.1 Infinities ... 1-19
7.2 NaNs ... 1-19
7.3 Denormalized Numbers .. 1-20

7.3.1 Why Denormalized Numbers? 1-21
7.4 Inquiries: Class and Sign .. 1-21

8 EnvirOfll1lelial CorItrol ___ 1-22

8.1 Rounding Direction ... _ .. ,. 1-22
8.2 Rounding Precision... 1-22
8.3 Exception Flags and Halts .. 1-23

8.3.1 Exceptions .. _ 1-23
8.4 Managing Environmental Settings.. 1-24

9 Miliary Procedl.l"es __________________________________ • ____________________ ._. ___ 1-27

9.1 Sign Manipulation .. 1-27
9.2 Next-After Functions .. 1-27

9.2.1 Special Cases for Next-After Functions 1-27
9.3 Binary Scale and Log Functions " 1-28

9.3.1 Special Cases for Logb .. 1-28

1() El~ t=~iCIWI_. __ . ____ . _______ . _______ . _______ . ___ . _______ . ___ . ______ . ___ 1-~
10.1 Logarithm Functions ~ ... 1-29

10.1.1 Special Cases for Logarithm Functions......................... 1-29
10.2 Exponential Functions ... 1-29

10.2.1 Special Cases for 2x, eX, exp(1)x 1-30
10.2.2 Special Cases for xi ... 1-30
10.2.3 Special Cases for xY ... 1-30

10.3 Financial Functions .. 1-30
10.3.1 Compound ... 1-30
10.3.2 Special Cases for Compoum(r,n) 1-31
10.3.3 Annuity .. 1-31
10.3.4 Special Cases for Annuity(r,n) 1~32

lOA Trigonometric Functions .. 1:-32
10.4.1 Special Cases for sin(x), cos(x) 1-32
10.4.2 Special Cases for tar(x) ... 1-32
10.4.3 Special Cases for arctar(x) 1-32

10.5 Random Number Generator 1-33

Appendixes

A Bibliograp~. A-l
B Glossary. 8-1
C other Elementary Functions ... C-l

The Standard
Apple f\Uneric Envirorment

1 Irtroduction
This manual describes the Standard Apple Numeric Environment (SANE).
Apple supports SANE on several current products and plans to support SANE
on future products. SANE gives you access to numeric facilities unavailable
on almost a.rry computer of the early 1980s--from microcomputers to
extremely fast .. extremely expensive supercomputers. The core features of
SANE are not exclusive to Apple; rather they are taken from Draft 10.0 of
Standard 754 for Binary Floating-Point Arithmetic [10) as proposed to the
Institute of Electrical and Electronics Engineers (IEEE). Thus SANE is one of
the first widely available products with the arithmetic capabilities destined
to be found on the computers of the mid-1980s and beyond.

The IEEE Standard specifies standardized data types.. arithmetic, and
conversions .. along with tools for handling limitations and exceptions .. that are
sufficient for numeric applicatiOns. SANE supports all requirements of the
IEEE Standerd. SANE goes beyond the specifications of the Standard by
including a data type designed for accounting applications and by including
several high-quality library functions for financial and scientific calculations.

IEEE arithmetic was specifically designed to provide advanced features for
numerical analysts without imposing extra burden on casual users. (This is
an admirable but rarely attainable goal: text editors and word processors, for
example .. typically suffer increased complexity with added features, meaning
more hurdles for the novice to clear before completing even the simplest
tasks.) The independence of elementary and advanced features of the IEEE
arithmetic was carried over to SANE.

1-1

The st8nd8rd Apple Numeric Environment SANE

2 Data Types
SANE provides three application data types (single, double, and comp) and
the srithmetic type (extended). Single, double, and extended store
floating-point values and comp stores integral values.

The extended type is called the arithmetic type because, to make expression
evaluation simpler and more accurate, SANE performs all arithmetic
operations in extended precision and delivers arithmetic results to the
extended type. Single, double, and camp can be thought of as space-saving
storage types for the extended-precision arithmetic. (In this manual, we
shall use the term extended precision to denote both the extended preciSion
and the extended range of the extended type.)

All values representable in single, double, and comp (as well as 16-bit and
32-bit integers) can be represented exactly in extended. Thus values can be
moved from any of these types to the extended type and back without any
loss of information.

2.1 Choosing a Data Type
Typically, picking a data type requires that you determine the trade-offs
between

• Fixed- or floating-point form,
• Precision,
• Range,
• Memory usage, and
• Speed.

The precision, range, and memory usage for each SANE data type are shown
in Table 2-1. Effects of the data types on performance (speed) vary among
the implementations of SANE. (See Section 4 for information on conversion
problems relating to precision.)

Most accounting applications require a counting type that counts things
(pennies, dollars, widgets) exactly. Accounting applications can be
implemented by representing money values as integral numbers of cents or
mils, which can be stored ex sctly in the storage format of the comp (for
computational) type. The sum, difference, or product of any two comp values
is exact if the magnitude of the result does not exceed 263 - 1 (that is,
9,223,372,036,854,775,8(7). This number is larger than the U.S. national debt
expressed in Argentine pesos. In addition, comp values (such as the results
of accounting computations) can be mixed with extended values in
floating-point computatiOns (such as compound interest).

Arithmetic with comp-type variables, like all SANE arithmetic, is done
internally using extended-precision arithmetic. There is no loss of precision,
as conversion from comp to extended is always exact. Space can be saved

1-2

The Stand8.l'd AppJe Numeric Environment StWE

by storing numbers in the comp type, which is 20 percent shorter than
extended. Nonaccounting applicatiOns will normally be better served by the
floating-point data formats.

2.2 Values Re..,esented
The floating-point storage formats (single, double, and extended) provide
binary encodings of a sign (+ or -).. an exponent, and a signific8l7d. A
represented number has the value

:!:significand • 2E!xponent

where the significand has a single bit to the left of the binary point (that is,
o i significand < 2).

2.3 Range and Precision of SAI£ Types
This table describes the range and precision of the numeric data types
supported by SANE. Decimal ranges are expressed as chopped two-digit
decimal representations of the exact binary values.

1-3

The St8l'ldBrd AppJe Numeric Environment

Type class

Type identifier

Size (bytes:bits)

Binary exponent
range

MinimlJD

Table 2-1
SANE Types

Application

Single Double

4:32 8:64

-126 -1022

SANE

Arithmetic

Comp Extended

8:64 10:80

-16383

Significand
precision
Bits
Decimal digits

24
7-8

53
15-16

63
18-19

64
19-20

----------,----------------------------
Decimal range
(approximate)
Min negative
Max neg norm
Max neg denorm·

Min pos denorm.
Min pos norm
Max positive

Infinities·

HaNs·

-3.4E+38
-1.2E-38
-1.51::-45

1.51::-45
1.2E-38
3.4E+38

Yes

Yes

-1.7E+308
-2.3E-308
-S.0E-324

S.0E-324
2.3E-308
1.7E+308

Yes

Yes

:::-9.2E18

::: 9.2E18

No

Yes

-1.1E+4932
-1.7E-4932
-1.9E-4951

1.9E-4951
1.7E-4932
1.1E+4932

Yes

Yes

• Denorms (denorm81ized number5j, N8Ns (Not-a-Number), and infinities are
defined in Section 7.

Usually numbers are stored in a n(}l'msJized form, to afford maximum
precision for a given significand width. Maximum precision is achieved if
the high order bit in the significand is 1 (that is, 1 i significand < 2).

1-4

The standard Apple Numeric Environment SANE

ExBlTtpJe

In Single.. the largest representable number has

significand = 2 - 2-23

exponent

value

= 1.111111111111111111111112

127

(2 - 2-23) * 212'7
3.403 * 1()38

the smallest representable positive normalized number has

significand = 1

exponent

value

= 1.

=

=

-126

1 * 2-126

1.175 * 10-38

and the smallest representable positive denormalized number (see Section 7)
has

significand = 2-23

= o .()()()()()()()(12

exponent = -126

value = 2-23 * 2-126
IV 1.401 * 1()-45 IV

2.4 Formats

1

lsi

This section shows the formats of the four SANE numeric data types. These
are pictorial representations and may not reflect the actual byte order in any
particular implementation.
Single
A 32-bit single format number is divided into three fields as shown below.

8 23 widths

e f

msb lsb msb lsb order

1-5

The st8ndtJrd Apple Numeric Environment

1

lsi

The value v of the number is determined by these fields as follows:

if 0 < e < 255" then v = (-1)5 * 2(1-127) * (1. f);

if e = 0 and f - 0" then v = (-1)5 * 2(-126) * (O.f);

if e = 0 and f = 0.. t hen v = (-1)5 * 0;

if e = 255 and f = 0 .. then v = (-1)5 * e;

1f e = 255 and f - 0" then v is a NeN.

See Section 7 for information on the contents of the f field for NeNs.

Double
A 54-bit double format number is divided into three fields as shown below.

11 52 widths

e f

msb Isb msb Isb order

The value v of the number is determined by these fields as follows:

if 0 < e < 2047" then v = (_1)5 * 2(e-1023) * (1.f);

if e = o and f - 0" then v = (-1)5 * 2(-1022) • (O.f);

if e = o and f = 0" then v = (-1)S * 0;

if e = 2047 and f = 0" then v = (-1)5 * e;

if e = 2047 and f ~ 0" then v is a NaN.

Comp
A 54-bit comp format number is divided into two fields as shown below.

1 63 widths

lsi d

msb lsb order

1-6

The StandlUd ~ple Numeric Environment SANE

1

lsi

The value v of the number is determined by these fields 8S follows:

if s = 1 and d = 0, then v is the unique comp NaN;

otherwise, v is the two's-complement value of the 64-bit representation.

Extended
An SO-bit extended format number is divided into four fields as shown below.

15 1 63 widths

e Ii I f

msb 1sb msb lsb order

The value v of the number is determined by these fields 8S follows:

if 0 <= e < 32767, then v = (-l)S * 2(e-16383) * (Lf);

if e =: 32767 and f = 0, then v = (-l)S * -, regardless of i;

if e = 32767 and f - 0, then v is a NaN, regardless of i.

1-7

The standard AppJe Numeric Environment SANE

3 Arithmetic Oper-ations
SANE provides the basic arithmetic operations for the SANE data types:

• Add.
• Subtract.
• Multiply.
• Divide.
• Square root.
• Remainder.
• Round to integral value.

All the basic arithmetic operations produce the best possible result: The
mathematically exact result coerced to the precision and range of the
extended type. The coercions honor the user-selectable rounding direction
and handle all exceptions according to the requirements of the IEEE Standard
(s,ee Section 8). See Sections 9 and 10 for auxiliary operations and
higher-level functions supported by SANE.

3.1 Remainder
Generally, remainder (and mod) functions are defined by the expression

x rem y = x - y * n

where n is some integral approximation to the quotient x/yo This expression
can be found even in the conventional integer-division algorithm:

n
(divisor) y) x

y * n

(integral quotient approximation)
(dividend)

x - y * n (remainder)

SANE supports the remainder function specified in the IEEE Standard:

When y ., 0, the remainder r = x rem y is defined regardless of the rounding
direction by the mathematical relation r = x - y * n, where n is the integral
value nearest the exact. value x/y; whenever In - x/yl = 1/2, n is even. The
remainder is always exact. If r = 0, its sign is that of x.

1-8

The standard Apple Numeric Environment SANE

Ex8lTtple 1

Find 5 rem 3. Here x = 5 and y = 3. Since 1 < 513 < 2 and since 5/3 =
1.66666... is closer to 2 than to 1, n is taken to be 2, so

5 rem 3 = r = 5 - 3 * 2 = -1

Exsmple 2

Find 7.0 rem 0.4. Since 17 < 7.0/0.4 < 18 and since 7.0/0.4 = 17.5 is equally
close to both 17 and 18, n is taken to be the even quotient, 18. Hence,

7.0 rem 0.4 = r = 7.0 - 0.4 * 18 = -0.2

The IEEE remainder function differs from other commonly used remainder
and mod functions. It returns 8 remainder of the smallest possible
magnitude, and it always returns an exact remainder. All the other
remainder functions can be constructed from the IEEE remainder.

32 Roood to Irte(J'a1 Value
An input argument is rounded according to the current rounding direction to
an integral value and delivered to the extended format. For example"
1234'678.87' rounds to 12345678.0 or 12345679.0. (The rounding direction,
which can be set by the user" is explained fully in Section 8.)

Note that" in each floating-point format, all values of sufficiently great
magnitude are integral. For example" in single, numbers whose magnitudes
ere at. least 223 ere integral.

1-9

The Stand8rd Apple Numeric En'lUDnment SANE

-4 CorMnions
SANE provides conversions between the extended type and each of the other
SANE types (single, double, and comp). A particular SANE implementation
will provide conversions between extended and those numeric types supported
in its particular larger environment. For example, a Pascal implementation
will have conversions between extended and the Pascal integer type.

Isinglel ___ --------___ Isystem-specificl
I double I lextendedl I integral I
1 comp I -------- I types 1

SANE implementations also provide either conversions between decimal
strings and SANE types, or conversions between a decimal record type and
SANE types, or both. Conversions between decimal records and decimal
strings may be included too.

--------_________ 1 decimal string I
Isingle I
Idouble I
Icomp I
I extended 1 ________ ----------------

t decimal record I

4.1 CorM:nions between Extended and Single or Double
A conversion to extended is always exact. A conversion from extended to
single or double moves a value to a storage type with less range and
preciSion, and sets the overflow, underflow, and inexact exception flags as
appropriate. (See Section B for a discussion of exception flags.)

4.2 Cc:nIersions to Camp and other Integral Forfl18l;s
Conversions to integral formats are done by first rounding to an integral
value (honoring the current rounding direction) and then, if possible,
delivering this value to the destination format. If the source operand of a
conversion from extended to comp is a NaN, an infinity, or out-of-range for
the comp format, then the result is the comp NaN and for infinities and
values out-of -range, the invalid ex ception is signaled. If the source operand
of a conversion to a system-specific integer type is a NaN, infinity, or
out-of-range for that format, then invalid is signaled (unless the type has an
appropriate representation for the exceptional result). NaNs, infinities, and

1-10

The St8l'ld8rd Apple Numeric Environment SANE

out-of-range values are stored in a two's-complement integer format as the
extreme negative value (for example, in the 16-bit integer format, as
-32768).

Note that IEEE rounding into integral formats differs from most common
rounding functions on halfway cases. With the default rounding direction (to
nearest), conversions to comp or to 8 system-specific integer type will round
0.5 to 0, 1.5 to 2, 2.5 to 2, and 3.5 to 4, rounding to even on halfway cases.
(Rounding is discussed in detail in Section 8.)

4.3 CorM:nions between Binary and Decimal
The IEEE Standard for binary floating-point arithmetic specifies the set of
numerical values representable within each floating-point format. It is
important to recognize that binary storage formats can exactly represent the
fractional part of decimal numbers in only a few cases; in all other cases,
the representation will be approximate. For example, O.~o, or 11210, can be
represented exactly as 0.12. On the other hand, 0.110, or 1/1Oto, is a
repeating fraction in binary: 0.00011001100 2. Its closest representation in
single is 0.0001100110011001100110011012, which is closer to O.10000000149to
than to O.l~o.
As binary storage formats generally provide only close approximations to
decimal values, it is important that conversions between the two types be as
accurate as possible. Given a rounding direction, for (Wery decimal value
there is a best (correctly rounded) binary value for each binary format.
Conversely, for any rounding direction, each binary value has a corresponding
best decimal representation for a given decimal format. Ideally,
binary-decimal conversions should obtain this best value to reduce
accumulated errors. Conversion routines in SANE implementations meet or
exceed the stringent error bounds specified by the IEEE Standard. This
means that although in extreme cases the conversions do not deliver the
correctly rounded result, the result delivered is very nearly as good as the
correctly rounded result. (See the IEEE Standard [10J for a more detailed
description of error bounds.)

4..3.1 Conversions from Decimal strings to SAI£ Types
Routines may be provided to convert numeric decimal strings to the SANE
data types. These routines are provided for the convenience of those who do
not wish to write their own parsers and scanners. Examples of acceptable
input are

123 123.4E-12 -123. .456 3e9 -0

-INf Inf NAN(12) -NaN() nan

The 12 in NA~12) is a NaN code (see Section 8).

The accepted syntax is formally defined, using Backus-Naur form, in Table
3-1:

1-11

The stsnd8rd ~pJeNumeric Environment StWE

Table 4-l.
Syrtax ror String Conversions

<decimal number> ::=
<left decimal> ::=
<unsigned decimal> ::=
<finite number> ::=
<significand> ::=
<integer> : :=
<digits> ::=
<mixed> ::=
<exponent> ::=
<infinity> ::=
<NAN> ::=

[{space I tab}] <left decimal>
[+f-) <unsigned decimal>
<finite number> I <infinity> <NAN>
<significand> [<exponent>]
<integer> I <mixed>
<digits> [.]
{O I 1 I 2 I 3 I 4 I 5 I 6 1 7 I 8 I 9}
[<digits>] <digits>
E [+1-] <digits>
INf
NAN[([<digits>])]

Note: Square brackets enclose optional items, curly brackets enclose
elements to be repeated at least once, and vertical bars separate
alternative elements; letters that appear literally, like the E marking the
exponent field, may be either upper or lower cese.

4.3.2 Oecfcmn Reards and Conversions from SANE types to Decimal Strings
Each conversion to a decimal string is controlled by a decform record, which
contains two fields:

style -- 16--bit integer (0 or 1)
digits -- 16--bit integer

Style equals 0 for floating and 1 for fixed. Digits gives the number of
significant digits for the floating style and the number of digits to the right
of the decimal pOint for the fixed style (digits may be negative if the style
is fixed). Decimal strings resulting from these conversions are always
acceptable input for conversions from decimal strings to SANE types.
Further formatting details are implementation dependent.

1-12

The Stllndl!lrd AppJe Numeric Environment SfWE

AI.3..3 The Decimal Recm'd Type
The decimal record type provides an intermediate unpacked form for
programmers who wish to do their own parsing of numeric input or
formatting of numeric output. The decimal record format has three fields:

sgn -- 16-bit integer (0 or 1)
exp -- 16-b1t integer
sig -- string (maximum length is implementation-dependent)

The value represented is

(-1)~ * sig * 1~

when the length of sig is 18 or less. (Some implementations allow additional
information in characters past the eighteenth.) Sig contains the integral
decimal significand: the initial byte of sig (sig[OD is the length byte, which
gives the length of the ASCII string that is left-justified in the remaining
bytes. Sgn is 0 for • and 1 for -. For example, if sgn = 1, exp = -3, and
8ig = 'S5' (siqO] = 2, not shown).. then the number represented is -0.085.

AI..3.4 CorMnions· tnm Decimal Records to SME Types
Conversions from the decimal record type handle any sig digit-string of
length 18 or less (with an implicit decimal point at the right end). The
following special cases apply:

• If si~:t] = '0' (zero), the decimal record is converted to zero. For
example, a decimal record with sig = '0913' is converted to zero.

• If si!i1] = 'N', the decimal record is converted to a NaN. Except when
the destination is of type comp (which has a unique NaN), the
succeeding characters of sig are interpreted as a hex representation of
the result significand: if fewer than 4 characters follow N then they are
right justified in the high-order 15 bits of the field f illustrated under
Formats in Section 2; if 4 or more characters follow N then they are
left Justified in the result's significand; if no characters, or only O's,
follow N, then the result NaN code is set to nanzero = 15 (hex).

• If si!i1] = 'I' and the destination is not of comp type, the decimal
record is converted to an infinity. If the destination is of comp type,
the decimal record is converted to a NaN and invalid is signaled.

• other special cases produce undefined results.

1-13

The stand8rd Rpple Numeric Em,'uonment SANE

43.5 Conversions from SANE Types to Decimal Records
Each conversion to a decimal record is controlled by a decform record (see
above). All implementations allow at least 18 digits to be returned in sig.
The implied decimal point is at the right end of sig, with exp set
accordingly.

Zeroes, infinities, and NaNs are converted to decimal records with sig parts
o (zero), I, and strings beginning with N .. while exp is undefined. For NaNs ..
N may be followed b'!I a hex representation of the input significand. The
third and forth hex digits following N give the NaN code. For example ..
'NOO21000000000000' has NaN code 21 (hex).
When the number of digits specified in a decform record ex ceeds an
implementation maximum (which is at least 18).. the result is undefined.

A number may be too large to represent in a chosen fixed style. For
instance, if the implementation's maximum length for sig is 18, then lOiS
(which requires 16 digits to the left of the point in fixed-style
representatiOns) is too large for a fixed-style representation specifying more
than 2 digits to the right of the point. If a number is too large for a chosen
fixed style .. then (depending on the SANE implementation) one of two results
is returned: an implementation may return the most significant digits of the
number in sig and set exp so that the decimal record contains a valid
floating-style representation of the number; alternatively, an implementation
may simply set the string sig to '?'. In any implementation, the test

(-exp <) dec'~ digits) or (sig[l] = '1')

determines whether a nonzero finite number is too large for the chosen fixed
style.

4.4 Coraversions between Decimal Formats
SANE implementations may provide conversions between decimal strings and
decimal records.

4_4_1 Corrversion from Decimal strings to Decimal Records
This conversion routine is intended as an aid to programmers doing their own
scanning. The routine is designed for use either with fixed strings or with
strings being received (interactively) character by character. An integer
argument on input gives the starting index into the string and on output is
one greater than the index of the last character in the numeric substring just
parsed. The longest possible numeric substring is parsed; if no numeric
substring is recognized, then the index remains unchanged. Also, a Boolean
argument is returned indicating 'that the input string, beginning at the input
index, is a valid numeric string or a valid prefix of a numeric string. The
accepted input for this conversion is the same as for conversions from
decimal strings to SANE types (see above). Output is the same as for
conversions from SANE types to decimal records (also above).

1-14

The St8nd8Td AppJe Numeric Environment SANE

EX8fflples

Input String Index Output Value Valid Prefix
in out

12 1 3 12 TRlE
12E 1 3 12 TRlE
12E- 1 3 12 TRlE
12E-3 1 6 12E-3 TRl.£
12E-x 1 3 12 fALSE
12E-3x 1 6 12E-3 fALSE
x 12E-3 2 7 12E-3 TRlE
IN 1 1 lffiEfIt£D TRlE
INf 1 -4 INf TRlE

4.4.2 O::nIersion from Decimal Records to Decimal SI:rir9
This conversion is controlled by the style field of a decform record (the
digits field is ignored). Input is the same as for conversions from decimal
records to SANE types .. and output formatting is the same 8S for conversions
from SANE types to decimal strings. This conversion .. actually a formatting
operation .. is exact and signals no exception.

1-15

The stand8rd Apple Numsric Environment SANE

5 Ex ion Evaluetion
SANE arithmetic is extended-based. Arithmetic operations produce results
with extended precision and extended range. For minimal loss of accuracy in
more complicated computations, you should use extended temporary variables
to store intermediate results.

'.1 UIIng Extended Tempm-mes
A programmer may use extended temporaries deliberately to reduce the
effects of round-off error .. overflow, and underflo,w on the final result.

Example 1

To compute the single-precision sum

S = X[1]*Y[1] + X[2]*Y[2] + ... + X[N]*Y[N]

where X and Y are arrays of type single, declare an extended variable XS
and compute

XS := 0;
RR I := 1 10 N III

XS := XS + X[I].Y[I];
S := XS;

{extended-precision arit~tic)
{deliver final result to single.}

Even when input and output values have only single precision, it may be very
difficult to prove that single-precision arithmetic is sufficient for a given
calculation. Using extended-precision arithmetic for intermediate values will
often improve the accuracy of single-precision results more than virtuoso
algorithms WOUld. Likewise .. using the extra range of the extended type for
intermediate results may yield correct final results in the single type in
cases when using the single type for intermediate results would cause an
overflow or a catastrophic underflow. Extended-precision arithmetic is also
useful for calculations involving double or comp variables: see Example 2.

,.2 Extended-Precislon Expression Evaluation
High-level languages that support SANE evaluate all non-integer numeric
expressions to extended preCision, regardless of the types of the operands.

1-16

The St8f'ld8rd Apple Numeric Environment S~NE

Example 2

If C is of type comp and MAXCOMP is the largest comp value, then the
right-hand side of

C : = (MAXal'P + MAXal'P) / 2

would be evaluated in extended to the exact result C = MAXCOMP, even
though the intermediate result MAXCOMP + MAXCOMP exceeds the largest
possible comp value.

5.3 Extended-Precision ExJB'ession Evaluation and the IEEE standerd
The IEEE Standard encourages extended-precision expression evaluation.
Extended evaluation will on rare occasions produce results slightly different
from those produced by other IEEE implementations that. lack ext.ended
evaluation. Thus in a single-only IEEE implementatjon,

Z := X + Y

with x, y, and z all single, is evaluated in one single-precision operation,
with at most one rounding error. Under extended evaluation, however, the
addit.ion x + y is performed in extended, then the result is coerced to the
single precision of Z, with at most two rounding errors. Both
implementations conform to the standard.

The effect of a single- or double-only IEEE implementation can be obtained
under SANE with rounding precision control, as described in Section 8.

1-17

The st8l?dsrd Apple Numeric EnvirlXtmttnt SANE

6 Compaisons
SANE supports the usual numeric comparisons: less, less-or-equal, greater,
greater-or-equal, equal, and not-equal. For real numbers, these comparisons
behave according to the familier ordering of reel numbers.
SANE comparisons handle NaNs and infinities as well as real numbers. The
usual trichotomy for real numbers is extended so that, for any SANE values a
and b, ex actly one of the following is true:

a < b
a > b
a = b
a and b are unordered

Determination is made by the rule:
If x or y is a NaN, then x and y are unordered; otherwise, x and y are less,
equal, or greater according to the ordering of the reel numbers, with the
understanding that +0 = -0 = real 0, and -CD < each real number < +CD.

(Note that a NaN always compares unordered--even with itself.)
The meaning of high-level language relational operators is a natural
extension of their old meaning based on trichotomy. For example, the Pascal
or BASIC expression x <= y is true if x is less than y or if x equal "':/, and is
false if x is greater than y or if x and y are unordered. Note that the SANE
not-equal relation means less, greater, or unordered--even if not-equal is
written <), as in Pascal and BASIC. High-level languages supporting SANE
supplement the usual comparison operators with a function that takes two
numeric arguments and returns the appropriate relation (less, equal, greater,
or unordered). This function can be used to determine whether two numeric
representations satisfy any combination of less, equal, greater, and unordered.

A high-level language comparison that involves a relational operator
containing less or greater, but not unordered, signals invalid if the operands
are unordered (that is, if either operand is a NaN). For example, in Pascal or
BASIC if x or y is a quiet NaN then x < y, x <= y, x)= y, and x) y signal
invalid, but x = y and x < > y (recall that < > contains unordered) do not. If a
comparison operand is a signaling NaN, then invalid is always Signaled, just
as in arithmetic operations.

1-18

The st.snd8l'd ~Je Numeric Environment S~NE

7 Irt'inities, NaNs, ... DelOlllBlized Numbers
In addition to the normalized numbers supported by most floating-point
packages, IEEE floating-point arithmetic also supports infinities, NaNs, and
denormalized numbers.

7.1 Infinities
An infinity is a special bit pattern that can exise in one of two WfltlS:

• When a SANE operation should produce an exact mathematical infinity
(such as 110), the result is an infinity bit pattern.

• When a SANE operation attempts to produce a number with magnitude
too great for the number's intended floating-point storage format, the
result may (depending on the current rounding direction) be an infinity
bit pattern.

These bit patterns (as well as NaNs, introduced next) are recognized in
subsequent operations and produce predictable results. The infinities, one
positive (+ INF) and one negative (-INF) , generally behave es suggested by
the theory of limits. For example, 1 added to +INF yields +INF; -1 divided
by +0 yields -INF; and 1 divided by -INF yields -0.

Each of the storage types Single, double, and extended provides unique
representations for +INF end -INF. The camp type has no representations for
infinities. (An infinity moved to the comp type becomes the camp NaN.)

72 NaNs
When a SANE operation cannot produce 8 meaningful result .. the operation
delivers a special bit pattern called a NaN (Not-a-Number). For example, 0
divided by 0, +INF added to -INF, and sqrt(-l) yield NaNs. A NaN can occur
in any of the SANE storage types (single, double, extended, and comp); but,
generally, system-specific integer types have no representation for NaNs.
NaNs propagate through exithmetic operations. Thus, the result of 3.0 added
to a NaN is the same NaN (that is, hes the same NaN COde). If two
operands of an operation exe NaNs, the result is one of the NaNs. NaNs are
of two kinds: quiet NBNs, the usual kind produced by floating-point
operations; and $ign8ling NttNs.When a signaling NaN is encountered es an
operand of an arithmetic operation, the invalid-operation exception is
signaled and, if no halt occurs, a quiet NaN is the delivered result. Signaling
NaNs could be used for uninitielized variables. They are not created by any
SANE operations. The most significant bit of the field f illustrated under
Formats in Section 2 is clear for quiet NaNs and set for signaling NaNs.
The unique comp NaN generally behaves like a quiet NaN.

A NaN in a floating-point format has an associated NaN code that indicates
the NaN's origin. (These exe listed in Table 7-1). The NaN code is the 8th
through 15th most significant bits of the field f illustrated in Section 2. The
comp NaN is unique and has no NaN code.

1-19

The sttJrtdfJrd Apple Numeric Enllironment SANE

Table 7-1.
SPI£ NaN Codes

Name Dec Hex

NfliStRT 1 $0 1
NffifOD 2 $02
N""'IV 4 $04
NfHtJL 8 $08
NIH£M 9 $09
NANASCBIN 17 $11
NANCCtP 20 $14
NAN2ERO 21 $15
NANTRIG 33 $21
NANINVTRIG 34 $22
NANLOO 36 $24
NANPOWER 37 $25
NffiFINffi 38 $26
NANINIT 255 $FF

7.3 DellCilltal1zed tanbers

Meaning

Invalid square root, such as sqrt(-l)
Invalid additio~ such as (+INF) - (+INf)
Invalid division, such as 0/0
Invalid multiplication, such as 0 * INf
I nval i d remai nder or mod such as x rem 0
Attempt to convert invalid ASCII string
Result of converting comp NeN to floating
Attempt to create a NeN with a zero code
Invalid argument to trig routine
Invalid argument to inverse trig routine
Invalid argument to log routine
Invalid argument to xi or xy routine
Invalid argument to financial function
Uninitialized storage (signaling NeN)

Whenever possible, floating-point numbers are normttJized to keep the
leading significend bit 1: this maximizes the resolution of the storage type.
When a number is too small for a normalized representation, leading zeros
are placed in the significand to produce a denormBlized representation. A
denormalized number is a nonzero number that is not normalized and whose
exponent is the minimum exponent for the storage type.

Example

The sequence below shows how a single-precision value becomes
progressively denormalized as it is repeatedly divided by 2, with rounding to
neerest. This Process is called gl'aduttJ underflow.

Ao = 1.100 1100 1100 1100 1100 1101 * 2""126 ~ 0.110 * 2""122

~ = AoI2 = 0.110 0110 0110 0110 0110 0110 * 2""126 (underflow)

~ = ~/2 = 0.011 0011 0011 0011 0011 0011 • 2""126

A;, III A.z/2 111 0.001 1001 1001 1001 1001 1010 • 2""126 (underflow)

1-20

The standard AppJe Numeric Environment

~ = Azl,/2 = 0.000 0000 0000 0000 0000 0011 • Z-126

An = ~12 = 0.000 0000 0000 0000 0000 0010 • Z-126 (underflow)

~ = Az:y'2 = 0.000 0000 0000 0000 0000 0001 • Z-126

SANE

~ = ~12 I: 0.0 (underflow)

~ ... ~ are denormalized; Az" is the smallest positive denormalized number
in single type.

7.3.1 \\bJ DeramaIized NurnbeI's?
The use of denormalized numbers makes statements like the following true
for all real numbers:

x - y = 0 if and only if x = y
This statement is not true for most older systems of computer arithmetic,
because they ex clude denormalized numbers. For these systems, the smallest
nonzero number is a normalized number with the minimum exponent; when
the result of an operation is smaller than this smallest normalized number,
the system delivers zero as the result. For such fJush-to-zttro systems, if x
- Y but x - Y is smaller than the smallest normalized number, then x - y =
o. IEEE systems do not have this defect, as x - y, although denormalized, is
not zero.

(A few old programs that rely on premature flushing to zero may require
modification to work properly under IEEE arithmetic. For example, some
programs may test x - y • 0 to determine whether x is very near y.)

7.4 Inquiries: Class and Sign
Each valid representation in a SANE data type (Single, double, comp, or
extended) belongs to exactly one of these classes:

• Signaling NaN.
• Quiet NaN.
• Infinite.
• Zero.
• Normalized.
• Denormalized.

SANE implementations provide the user with the facility to determine easily
the class and sign ot any valid representation.

Environmental controls include the rounding direction, rounding preciSion,
exception flags, and halt settings.

1-21

The Stltfit'1.8rd Apple Numeric Envirl1rlfnlmt

8 ErMronmental CalVol
8.1 Rtu1ding Direction

The available rounding directions are:

• To-nearest.
• Upward.
• Downward.
• Towerd-zero.

SANE

The rounding direction affects all conversions and arithmetic operations
except comp8l"ison and remBinder. Except for conversions between binary
and decimal (described in Section 4), all operations are computed as if with
infinite precision and range and then rounded· to the destination format
according to the current rounding direction. The rounding direction may be
interrogated and set by the user.

The default rounding direction is to-nearest. In this direction the
representable value nearest to the infinitely precise result is delivered; if the
two nearest representable values are equally near, the one with least
significant bit zero is delivered. Hence .. halfway cases round to even when
the destination is the comp or a system-specific integer type.. and when the
round-to-integer operation is used. If the magnitude of the infinitely precise
result exceeds the format's lergest value (by at least one half unit in the
lest place) .. then the corresponding signed infinity is delivered.

The other rounding directions are upward.. downw8l"d, and tow8l"d-zero. When
rounding upward, the result is the format's value (possibly INF) closest to and
no less than the infinitely precise result. When rounding downw8l"d, the
result is the format's value (possibly -INF) closest to and no greater than the
infinitely precise result. When rounding toward zero, the result is the
format's value closest to and no greater in magnitude than the infinitely
precise result. To truncate a number to an integral value, use toward-zero
rounding either with conversion. into an integer format or with the
round-to-integer operation.

8.2 Roulding Precision
Normally, SANE arithmetic computations produce results to extended
preciSion and range. To facilitate simulations of arithmetic systems that are
not extended-based .. the IEEE Standard requires that the user be able to set
the rounding precision to single or double. If the SANE user sets rounding
precision to single (or double) then all arithmetic operations produce results
that are correctly rounded and that overflow or underflow as if the
destination were single (or double).. even though results are typically delivered
to extended formats. Conversions to double and extended formats are

1-22

The stand81'd h"ppJe Numeric En',o'ironment SANE

affected if rounding precision is set to single" and conversions to extended
formats are affected if rounding precision is set to double; conversions to
decimal" comp" and system-specific integer types are not affected by the
rounding precision. Rounding preCision can be interrogated as well as set.

Setting rounding precision to single or double does not significantly enhance
performance" and in some SANE implementations may hinder performance.

8.3 Exception Flags and Halts
SANE supports five exception flags with corresponding halt settings:

• Invalid-operation (or invalid" for short).
• Underflow.
• Overflow.
• Divide-by-zero.
• Inexact.

These exceptions are signaled when detected; and" if the corresponding halt
is enabled" the SANE engine will jump to a user-specified location. (A
high-level language need not pass on to its user the facility to set this
location" but may halt the user's program). The user's program can examine
or set individual exception flags and halts" and can save and get the entire
environment (rounding direction, rounding precision, ex ception flags" and halt
settings). Further details of the halt (trap) mechanism are SANE
implementation specific.

8.3.1 Exceptions
The invalid-operation exception is signaled if an operand is invalid for the
operation to be performed. The result is a quiet NaN" provided the
destination format is Single, double, extended, or compo The invalid
conditions are these:

• (addition or subtraction) magnitude subtraction of infinities, for example"
(+INF) + (-INF).

• (multiplication) 0 * INF.

• (division) 0/0 or INF/INF.

• (remainder) x rem y, where y is zero or x is infinite.

• (square root) if the operand is less than zero.

• (conversion) to the comp format or to a system-specific integer format
when excessive magnitude" infinity, or NaN precludes a faithful
representation in that format (see Section 4 for details).

• (comparison) via predicates involving < or), but not "unordered,," when
at least one operand is a NaN.

• Any operation on a signaling NaN except sign manipulations (negate,
absolute-value, and copy-sign) and class and sign inquiries.

1-23

The standard Apple Numeric Environment SANE

The underflow exception is signaled when a floating-point result is both tiny
and inexact (and therefore, perhaps significantly less accurate than it would
be if the exponent range were unbounded). A result is considered tiny if,
befme rounding, its magnitude is smaller than its format's smallest positive
normalized number.

The divide-b}l-zero exception is signaled when a finite nonzero number is
divided by zero. It is also Signaled, in the more general case, when en
operation Gn finite operands produces an exact infinite result: for example,
10gb (0) returns -INF and signals divide-by-zero. (OVerflow, rather than
divide-by-zero, flags the production of an inexact infinite result.)
The ()f,o'eTfJow exception is sign81ed when a floating-point destination
format's largest finite number is exceeded in magnitude by what would have
been the rounded floating-point result were the exponent range unbounded.
(Invalid, rather than overflow, flags the production of an out-of-range value
for an integral destination format.)

The inexsct exception is Signaled if the rounded result of an operation is
not identical to the mathematical (exact) result. Thus, inexact is always
signaled in conjunction with overflow or underflow.

Valid operations on infinities are always exact and therefore signal no
exceptions. Invalid operations on infinities are described above.

8.4 Managing ErJIironmert.al settings
The environmental settings in SANE are global and can be explicitly changed
by the user. Thus all routines inherit these settings and are capable of
changing them. Often special precautions must be taken because a routine
requires certain environment settings, or because a routine's settings are not
intended to propagate outside the routine.

Example 1

The subroutine below uses to-nearest rounding while not affecting its caller's
rounding direction. (Examples in this section use Pascal syntax. SANE
implementations in other languages have operations with equivalent
functionality.)

var r: Round>ir; { local. atorage for rOlftting direction }

begin
r := GetRound; { save caller's rOlftting direction }
SetRound (lO£fRST); { set to-nearest nulding }

SetRoood (r) { restore caller I a rOll'ld1ng direction }
end;

1-24

The St8l'ld8rd ~pJe Numeric Environment SANE

Note that, if the subroutine is to be reentrant, then storage for the caller's
environment must be locaL

SANE implementations may provide two efficient functions for managing the
environment 8S a whole: procedure-entry and procedure-exit.

The procedure-entry function returns the current environment (for saving in
local storage) and sets the default environment: rounding direction to-nearest,
rounding precision extended, and exception flags and halts clear.

ExsmpJe 2

The following subroutine runs under the default environment while not
affecting its celler's environment.

var e: Emri.ronlenti

begin
PrlK£nby (e)i

SetEnvironlent (e)
end;

{ local storage tor eIWironIent }

{ save caller's env1rrment and }
{ set default ~ }

{ restore caller's env1ronleftt }

The procedure-exit function facilitates writing subroutines which appear to
their callers to be atomic operations (such !IS addition, sqrt, and others).
Atomic operations pass extra information back to their callers by signaling
exceptions; however, they hide internal exceptions, which may be irrelevant
or misleading. Procedure-exit, which takes a saved erwironment as
arguments, does the following:

1. It temporarily saves the exception flags (raised by the subroutine).

2. It restores the environment received as ~gument.

3. It signals the temporarily saved exceptions. (If enabled, halts could
occur at this step.)

Thus exceptions signaled between procedure-entry and procedure-exit are
hidden from the celling program unless the exceptions remain raised when
the procedure-exit function is called.

1-25

The st8nd8Id Apple Numeric Environment SANE

Example .. :~

The following function signals underflow if its result is denormal, and
overflow if its result is infinite, but hides spurious exceptions occurring from
internal computations.

fooction coapres: double;

var e: Envirornent;
c: HulClass;

begin {COBpres}
Protfntry (e);

{ local storage for enviroraent }
{ for class inquiry }

{ save caller I s enviroraent and }
{ set default environaent - }
{ now hal ts disabled }

coapres := result; { result to be returned }
c := ClassD (result); { class inquiry }
ClearXcps; { clear possibly spurious exceptions }

{ now raise specified exception flags: }
if c = INfIHIlE then SetException (OVERfUll, lA.E)
else if c = IEIOI1AI..N.t1 then SetException (ltIERFlJJf, 1A.E);
ProcExit (e) { restore caller l s envir--.t, }

{ including 8IfJ halt enables, and}
{ then signal. exceptions rna }
{ subroutine }

end {COIIpres} ;

1-26

The stsndsrd ~pJe Numeric Environment SANE

9 Auxiliary Proceckes
SANE includes a set of special routines--

negate,
absolute value,
copy-sign,
next-after,
scalb,
10gb,

--which are recommended in an appendix to the IEEE Standard as aids to
programming.

9_1 Sign Manipulaion
The sign manipulation operations change only the sign of their argument.
Negate reverses the sign of its argument. Absolute-value makes the sign of
its argument positive. Copy-sign takes two arguments and copies the sign of
one of its arguments onto the sign of its other argument.

These operations are treated as nonarithmetic in the sense that they raise no
exceptions: even signaling NeNs do not signal the invalid-operation exception.

9.2 Next-Mel" FlI1Ctions
The floating-point values representable in single, double, and extended
formats constitute a finite set of real numbers. The next-after functiOns
(one for each of these formats) generate the next representable neighbor in
the proper format, aiven an initial value x and another value y indicating a
direction from the initial value.

Each of the next-after functions takes two arguments, x and y:

nextsingle(x,y) (x and y are single)
nextdouble(x,y) (x and y are double)
nextextendec(x,Y) (x and y are extended)

As elsewhere, the names of the functions may vary with the implementation.

9~1 Speciel Cases'go Next-Arter' FtmCtioos
If the initial value and the direction value are equal, then the result is the
initial value.

If the initial value is finite but the next representable number is infinite,
then overflow and inexact are signaled.

If the next representable number lies strictly between -M and +M, where M
is the smallest positive normalized number for that format, and if the
arguments are not equal, then underflow and inexact are Signaled.

1-27

The st8l"td8rd Apple Numeric Environment SANE

9.3 Binary Scale and Log Functions
The scalb and 10gb functions ere provided for manipulating binary exponents.

Scalb efficiently scales a given number (x) by a given integer power (n) of 2,
returning x * 21".

Logb returns the binary exponent of its input argument es a signed integral
value. When the input argument is denormalized, the exponent is determined
as if the input argument had first been normalized.

9.3.1 Special cases feB' Logb
If x is infinite, logb(x) returns + INF.

If x = 0, logb(x) returns -INF and signals divide-by-zero.

1-28

The st8l?d8rd Apple Numeric Environment SANE

10 The Element.-y F...::tions
SANE provides a number of basic mathematical functions, including
logarithms, exponentials, two important financial functions, trigonometric
functions, and a random number generator. These functions are computed
using t.he basic SANE 8I'ithmetie heretofore described.

All of the elementary functions, except the random number generator, handle
NaNs, overflow, and underflow appropriately.' All signal inexact
appropriately, except that the general exponential and the financial functions
may conservatively signal inexact when determining exactness would be too
costly.

10.1 logarithm Functions
SANE provides t.hree logarithm functions.

- base-2 logarithm

- base-e or natural
logarithm

- base-e logarithm of
1 plus argwent

In(x)

lnl(x)

Ln1(x) accurately computes In(l + x). If the input argument x is small, such
as an interest rate, the computation of Inl(x) is more accurate than the
straightforward computation of lr(l + x) by adding x to 1 and taking the
natural logarithm of the result.

10.1.1 Special Cases fm- logarithm Functions
If x = +INF, then logix), In(x), and In1(x) return +INF. No exception is
signaled.

If x = 0, then logix) and In(x) return -INF and signal divide-by-zero.
Similarly, if x = -1, then Inl(x) returns -INF and signals divide-by-zero.

If x < 0, then logix) and In(x) return a NaN and signal invalid. Similarly, if
x < -1, then In1(x) returns a NaN and signals invalid.

102 Exponential Functions
SANE provides five exponential functions.

- base-2 exponential

- base-e or natural
exponential

- base-e exponential

1-29

The stsndl!Jrd Apple Nurrteric Environment SIWVE

minus 1 exp1(x)

- integer exponential (i of integer type)

- general exponential xy

Exp lex) accurately computes eX - 1. If the input argument x is small, such
es an interest rate, then the computation of exp1(x) is more accurate than
the straightforward computation of eX - 1 by exponentiation and subtraction.

102..1 Special Cases fer lX, eX, exp:l(x)
If x = +INF, then 2x, eX, and expl(x) return +INF. No exception is signaled.

If x = -INF, then 2x and eX return 0; and exp1(x) returns -1. No exception is
signaled.

102..2 Special Cases tm xi
If the integer exponent i equals 0 and x is not a NaN, then xi returns 1.
Note that with the integer exponential, xO = 1 even if x is zero or infinite.

If x is +0 and i is negative, then xi returns +INF and signals divide-by-zero.

If x is -0 and i is negative, then x i returns + INF if i is even, or - INF if i is
odd: both ceses Signal divide-by-zero.

10.2.3 Special Cases for xY
If x is +0 and y is negative, then the general exponential xy returns + INF and
signals divide-by-zero.

If x is -0 and y is integral and negative, then xY returns + INF if Y is even,
or -INF if Y is odd; both cases signal divide-by-zero.

The general exponential xY returns a NaN and signals invalid if

both x and y equal 0;

x is infinite and y equals 0;

x = 1 and y is infinite; or

x is -0 or less than 0 and y is nonintegral.

10.3 Financial Functions
SANE provides two functions, compound and annuity, that can be used to
solve various finanCial, or time-value-of-money, problems.

10.3.1 Compound
The compound function computes

compound(r,n) = (1 + r)n

1-30

The stsndttrd AppJe Numeric Environment S~NE

where r is the interest rate and n is the number (perhaps nonintegral) of
periods. When the rate r is small, compound gives a more accurate
computation than does the straightforward computation of (1 + r'ft by addition
and exponentiation.

Compound is directly applicable to computation of present and future values:

P't/
P't/ = FV. (1 + r)(-n) =

FV = pv. (1 + r)n

compound (r, n)

= P't/ * compound(r,n)

10.32 Special Cases fm Compounc(r,n)
If r = 0 and n is infinite, or if r = -1, then compounc(r,n) returns a NaN and
signals invalid.

If r = -1 and n < 0, then compounc(r,n) returns +INF and signals
divide-by-zero.

10.3.3 Amuity
The annuity function computes

1 - (1 + r)(-n)
annuity(r, n) = ------------

r
where r is the interest rate and n is the number of periods. Annuity is more
accurate than the straightforward computation of the expression above using
basic arithmetic ope.rations and exponentiation. The annuity function is
directly applicable to the computation of present and future values of
ordinary annuities:

1 - (1 + r)(-n)
P't/ = PMT. ---------

r

= PMT· annuity(r,n)

(1 + r)n - 1
FV = PMT. ----------

r
1 - (1 + r)(-n)

= PMT· (1 + r)n . ----
r

= PMT· compound(r,n) • annuity(r,n)

where PMT is the amount of one periodic payment.

1-31

The stand8l'd Apple Numeric Environment SANE

10..3.4 Special Cases tm Annuity(r,n)
If r = 0, then annuity(r,n) computes the sum of 1 + 1 + ..• + 1 aver n periods,
and therefore returns the value n and signals no exceptions (the value n
corresponds to the limit as r approaches 0).

If r < -1, then annuity(r,n) returns a NaN and signals invalid.

If r = -1 and n > 0, then annuity(r,n) returns -INF and signals divide-by-zero.

10.4 Trigonometric FU'Uions
SANE provides the basic trigonometric functions:

cosine

sine

tangent

arctangent

cos(x)

sin(x)

tan(x)

arctan(x)

The arguments for cosine, sine, and tangent and the results of arctangent are
expressed in radians. The cosine, sine, and tangent functions use an
argument reduction based on the remainder function (see Section 3) and the
nearest extended-precision approximation of pi/2. Thus the cosine, sine, and
tangent functions have periods slightly different from their mathematical
counterparts and diverge from their counterparts when their arguments
become large. Number results from arctangent lie between -pil2 and pi/2.

The remaining trigonometric functions can be easily and efficiently computed
from these four (see Appendix C).

10A.l Special Cases t ... sir(x), cos(x):
If x is infinite, then cos(x) and sir(x) return a NaN and signal invalid.

10.4.2 Special Cases tm ts(x):
If x is the nearest extended approximation to :!:pi/2, then tar(x) returns :!:INF.

If x is infinite, then tan(x) returns a NaN and signals invalid.

lOA.3 Special Case tOl" arctar(x):
If x = :!:INF, then arctan(x) returns the nearest extended approximation to
:!:pi/2.

1-32

Tlie Stsndsrd AppJe twtneric El7'lironment SANE

10..5 Random t.l.mber Generatc:l"
SANE provides a pseudorandom number generator, random. Random has one
ergument, passed by address. A sequence of (pseudo)rancJom integral values r
in the range

1 i r i 231 - 2

can be generated by initiali2ing an extended veri able r to an integral value
(the seed) in the above range and making repeated calls random (r); each call
delivers in r the next random number in the sequence.

If seed values of r are nonint.egral or outside the range

1 i r i 231 - 2

then results are unspecified.

A pseudorandom rectanguler distribution on the interval (0,1) can be obtained
by dividing the results from random by

231 - 1 = scalb (31, 1) - 1 .

1-33

The stand8:Td Apple Numeric Environment

Appendix A
Bibliography

BibJiogrsphy

1. Apple Computer, Inc. "Appendix A: The Transcend and Realmodes
Units" and "Appendix E: Floating-Point Arithmetic, 1/ ~le III Pascal
Programmer's f<.18nu8l, Volume 2, pp. 2-9 .. 56-85.

These appendixes describe the implementation of Single-precision
arithmetic in Apple III Pascal.. which was based upon Draft 8.0 of the
proposed Standard.

2. Apple Computer .. Inc. Apple III Pascal Numerics M8I7usl: A Guide to
Using the Apple III Pascal SANE and Elems Units.

This manual describes the Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units. This was Apple's first full implementation
of IEEE arithmetic.

3. Apple Computer, Inc. Apple III Pascal Numerics ft.18nu8l: A Guide to
{.ising the ~le III Pascal SANE and Elems Units.

This manual, generalized from the Apple III manual (number 2 above)..
describes the Apple II and Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units.

4. Cody, W. J. "Analysis of Proposals for the Floating-Point standard."
IEEE Computer, Vol. 14, No.3, March 1981, pp. 63-68.

This paper compares the several contending proposals presented to the
Working Group.

5. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard
for Floating-Point Arithmetic." IEEE Compute!; Vol. 13, No. 1 January
1980.

This paper is a forerunner to the work on the draft Standard.

6. Coonen, Jerome T. "Underflow and the Denormalized Numbers." IEEE
Computer, Vol. 14, No.3, March 1981 .. pp. 75-87.

7. Coonen, Jerome T. "Accurate .. Yet Economical Binary-Decimal
Conversions." To appear in ACJo.1 TrBnS'8ction..t:: on A1t1thematicaJ
SoftW8l'e..

A-l

The st8l'td8rd Apple Numeric Environment Bibliogr8ph}··

8. Demmel, James. "The Effects of Underflow on Numerical
Computation." To appear in SI~f-.1 JournsJ on Scientific and statisticsJ
Computing..

These papers examine one of the major features of the proposed
Standard, gradual underflOW, and show how problems of bounded
exponent range can be handled through the use of denormalized values.

9. ~ateman, Richard J. "High-Level Language Implications of the
Proposed IEEE Floating-Point Standard." ACf-.1 Tr8f'lSBctions on
Progr8lTlming Languages and Systems; VoL 4, No.2, April 1982, pp.
239-257.

This paper describes the significance to high-level languages,
especially FORTRAN, of various features of the IEEE proposed
Standard.

10. Floating-Point Working Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. "A Standard for Binary
Floating-Point Arithmetic." Proposed to IEEE, 345 East 47th Street,
New York, NY 10017.

The implementation of SANE is based upon Draft 10.0 of this Standard.

11. Floating-Point Working Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. "A Proposed Standard for Binary
Floating-Point Arithmetic." iEEE Computer; Vol. 14, No.3, March 1981,
pp. 51-62.

This is Draft 8.0 of the proposed Standard, which was offered for
public comment. The current Draft 10.0 is substantially Simpler than
this draft; for instance, warning mode and projective mode have been
eliminated, and the definition of underflow has changed. However, the
intent of the Standard is basically the same, and this paper includes
some excellent introductory comments by David Stevenson, Chairman
of the Floating-Point Working Group.

12. Hough, D. "Applications of the Proposed IEEE 754 Standard for
Floating-Point Arithmetic." iEEE Computer, Vol. 14, No.3, March 1981 ..
pp. 70-74.

This paper is an excellent introduction to the floating-point
environment provided by the proposed Standard, showing how it
facilitates the implementation of robust numerical computations.

13. Kahan, W. "Interval Arithmetic Options in the Proposed IEEE
Floating-Point Arithmetic Standard," Inteit.·'l!JJ f-.1athematics 1980 (ed.
K.E.L. Nickel). New York: Academic Press, New York, 1980, pp.
99-128.

This paper shows how the proposed Standard faCilitates interval
arithmetic.

A-2

The stNttl8rd Apple Numeric Environment

Appendix B
GlOSsary

GIOS$8IIY

appUC8l1on type: A data type used to store data for applications .
..w.net.ic type: A data type used to hold results of calculations inside the
computer. The SANE arithmetic type, extended, has greater range and
precision than the application types, in order to improve the mathematical
properties of the application types.
bin8ry float1ng-point number: A string of bits representing a sign, an
exponent, and a significand. Its numerical value, if 8n/, is the signed
product of the significand and two raised to the power of its exponent.
comp type: A 64-bit application data type for storing integral values of up
to 18- or 19-decimal-digit preCision. It is used for accounting applications,
among others.

denoI'malized runbeI', or denorm: A nonzero bine:ry floating-point number
that is not normalized (that is, whose significand has 8 leading bit of zero)
and whose exponent is the minimum exponent for the number'S storage type.
double type: A 64-bit application data type for storing floating-point values
of up to 15- or 16-decimal-digit precision. It is used for statistical and
fimsncial applications .. among others.
erMronrnemaJ settings: The rounding direction and rounding precision, plus
the exception flags and their respective halts.
exceptions: Special cases, specified by the IEEE Standard.. in arithmetic
operations. The exceptions are invalid, underflow, overflow, divide-by-zero,
and inexact.

exception flag: Each exception has a flag that can be set .. cleared and
tested. It is set when its respective ex ception occurs and stays set until
explicitly cleared.
exponent: The part of a binary floating-point number that indicates the
power to which two is raised in determining the value of the number. The
wider the exponent field in a numeric type, the greater range it will handle.
extended type: An SO-bit arithmetic data type for storing floating-point
values of up to 19- or 2O-decimal-digit precision. SANE uses it to hold the
results of arithmetic operations.

8-1

Tlte standard Apple NUlTteric En, ... ircmment

halt: Each exception has a halt-enable that can be set or cleared. When an
exception is signaled and the corresponding halt is enabled .• the SANE engine
will transfer control to the address in a halt vector. A high-level language
need not pass on to its user the facility to get the halt vector .. but may halt
the user's program. Halts remain set until explicitly cleared.

infinity: A special bit pattern produced when a floating-point operation
attempts to produce a number greater in magnitude than the largest
representable number in a given format. Infinities are signed.

irteger types: System types for integral values. Integer types typically use
16- or 32-bit two's complement integers. Integer types are not SANE types
but are available to SANE users.

integral value: A value in a SANE type that is exactly equal to a
mathematical integer: -2 .. -1 .. 0 .. 1, 2

NaN (Not a Number): A special bit pattern produced when a floating-point
operation cannot produce a meaningful result (for example, 010 produces a
NaN). NaNs can also be used for uninitialized storage. NaNs propagate
through arithmetic operations.

nc:JI'malized runber: A binary floating-point number in which all significand
bits are significant: that is .. the leading bit Of the significand is 1.

quiet NaN: A NaN that propagates through arithmetic operations without
signaling an exception (and hence without halting a program).

rounding direction: When the result of an arithmetic operation cannot be
represented exactly in a SANE type .. the computer must decide how to round
the result. Under SANE .. the computer resolves rounding decisiOns in one of
four directions .. chosen by the user: to-nearest (the default) .. upward ..
downward, and toward-zero.

si91 bit: The bit of a single .. double .. comp .. or extended number that
indicates the number's Sign: 0 indicates a positive number; 1, a negative
number.

siWBling NaN: A NaN that signals an invalid exception when the NaN is an
operand Of an arithmetic operation. If no halt occurs, a quiet NaN is
produced for the result. No SANE operation creates signaling NaNs.

silPficend: The part of a binmy floating-point number that indicates where
the number falls between two successive powers of two. The wider the
significand field in a numeric type" the more resolution it will have.

single type: A 32-bit application data type for storlng floating-point values
of up to 7- or S-decimal-digit precision. It is used for engineering
applications, among others.

8-2

The stBrtdlJTd Apple Numeric Environment ElementlJT1/ Functions

Appendix C
Other Elementary FlIlCtions

High quality transcendental functions which are not part of the Standard
Apple Numeric Environment (SANE) can be constructed from the functions
which SANE provides. Some common functions are provided below in
pseudo-code. It should be relatively easy to adapt them for your use.

These functions are besed on algorithms developed by Professor William
Kahan, University of California at Berkeley. They are robust and accurate.
The const.ant C is 2-33 = scalb (-33,1). It is chosen to be nearly the largest
value for which (1 - C2:) rounds to 1. All variables are extended.

Exception Handling
Unlike the SANE elementary functions, these functions do not provide
complete handling of special-cases and exceptions. The most troublesome
exceptions can be correctly handled if you:

• Begin each function with a call to procedure-entry.

• Clear the spurious exceptions indicated.

• End each function with a call to procedure-exit (see Section 6)_

Functions
Secant

sec(x) {--- 1 / cos(x)

CoSecant

csc(x) {--- 1 / sin(x)

CoTangent

cot(x) {--- 1 / tan(x)

C-l

The standflrd Apple Numeric En ironment Element81}.i' Functions

ArcSine

y (-~- Ixl
If y 1 0.3 then begin

y (--- Atan (x/sqrt ((l-x)*(l+x»)
spurious divide-by-zero may arise

end
else if y 1 C then y (--- Atan (x / (sqrt (1 - xA2))

else y <-- x
arcsin(x) (- y

ArcCosine

Sinh

Cosh

arccos(x) (- 2 ,. Atan (sqrt «1-x)/(1+x»)
spurious divide-by-zero may arise

y (-- lxl
If y 1 C then begin

y (--- expl(y)
y (--- 0.5 * (y + y/(l+y»

end
copy the sign of x onto y
sinh(x) <--- y

y (-- exp(l xl)
cosh(x) (- 0.5 • Y + 0.25 / (0.5 • y)

Tanh

Y <- Ixl
If y 1 C then begin

y (--- expl(-2*y)
y (--- -y/(2 + y)

end
copy the sign of x onto y
tanh(x) (- y

C-2

Thtt stlll'tdlJrd Apple NurntJric Environment

ArcSinh

y (-- Ixl
If y 1 C then begin

y (--- In1 (y + y / (1/y + sqrt(l + (lIy)A2) »
spurious underflow may arise

end
copy the sign of x onto y
asinh(x) (-- y

ArcCosh

y (- Ixl
acosh(x) (--- In1 ((sqrt (y-1» * (sqrt (y-1) + sqrt (y+l»)

ArcTanh

y (- Ixl
If y 1 C then y (- 1n1 (2*y/(1 - y» / 2
copy the sign of x onto y
atanh(x) (- y

C-3

The 68000
Assembly-Language SME Engine

Contents

1 lrItroductioo ___________________________________ ------ ___________ ._ __ ____ _____ ___ _ ___ 1-1
2 Basics ___________________________ . __ __ ___ _ __ _ _ _ __ _ __ _ _ ___ _ ____ _ __ __ __ _ _ __ _ ____ ___ _ ___ 1-2

2.1 Operation ForrT1S _ 1-2
2.1.1 Arithmetic and Auxiliary Operations 1-2
2.1.2 Conversions .. 1-3
2.1.3 Comparisons ... 1-3
2.1.4 other Operations .. 1-3

2.2 External Access ... 1-3
2.3 Calling Sequence _ 1-4

2.3.1 The Opword .. 1-4
2.3.2 Assembly-Language Macros _ 1-4

2.4 Arithmetic Abuse ... 1-5

3 Data Types _____________________ . ___ . ___ . _________________ . _____ . ___________________ 1-6

.. Arithmetic Operaions and Auxiliary Routines ________________ • ______________ 1-7
4.1 Add, Subtract, Multiply, and Divide 1-7
4.2 Square Root .. 1-7
4.3 Round-to-Integer .. Truncate-to-Integer 1-7
4.4 Remainder .. 1-8
4.5 Logb, Scalb... 1-8
4.6 Negate, Absolute Value, Copy-Sign 1-8
4.7 Next-After ... 1-9

5 CDn\lersions ________________ . ___ . ___ . ___ . ____ . __________________ . __________________ 1-10

5.1 Conversions Between Binary Formats 1-10
5.1.1 Conversions to Extended .. 1-10
5.1.2 Conversions from Extended 1-10

5.2 Binary-Decimal Conversions .. 1-11
5.2.1 Binary to Decimal ... 1-11
5.2.2 Decimal to Binary ... 1-11

6 COI'TIp8risorls and lrQ,Iiries ___ . ___ . ___ . _______ . ___ . __ . __ . ____ ... __ . ______________ 1-13

6.1 Comparisons .. 1-13
6.2 Inquiries. 1-14

7 EnvirorwIlerlta Cm1trol ••.•••••••••• 1-15
7.1 The Environment Word .. 1-15
7.2 Get-Environment and Set-Environment 1-16
7.3 Test-Exception and Set-Exception 1-16
7.4 Procedure-Entry and Procedure-E x it 1-16

8 ttaIts .•••.•.•.•••..••.•••.•••.••.••••.•••.•••.•••.•••••••.••.••••.•••••••.•••..••.•• 1-18
8.1 Conditions for a Halt.. 1-18
8.2 The Halt Mechanism ... 1-18
8.3 Using the tialt Mechanism ... 1-19

9 Elementary F..aiorlS•...............•.•....•...........•........ 1-21
9.1 One-Argument Functions .. 1-21
9.2 Two-Argument Functions ... 1-21
9.3 Three-Argument Functions .. 1-22

Appendixes

A 6800() SANE Access .. A-I
6 68000 SANE Macros .. 6-1
C 6800() SANE Quick Reference Guide C-I

The 68000
Assenilly-Language SAI\E Engine

1 Introduction
The purpose of the software package described in this manual is to provide
the features of the Standard Apple Numeric Environment (SANE) to
assembly-language programmers on Apple's 68000-based systems.
SANE--descrlbed in detail in The Standsrd Apple Numeric Em/ironment in
this binder--fully supports the IEEE Standard (754) for Binary Floating-Point
Arithmetic; it augments the Standard to provide greater utility for
applications in accounting .. finance .. science .. and engineering. The IEEE
Standard and SANE offer a combination of quality, predictability, and
portability heretofore unknown for numerical software.

A functionally equivalent 6502 assembly-language SANE engine is available
for Apple's 6502-based systems. Thus numerical algorithms coded in
assembly language for an Apple 68000-besed system can be readily recoded
for an Apple 6502-based system. Suggested macros for accessing the 6502
and 68000 engines have been chosen to further facilitate algorithm
portability.

This manual describes the use of the 68000 Assembly-Language SANE engine,
but does not describe SANE itself. For example, this manual explains how to
call the SANE remainder function from 68000 assembly language but does not
discuss what this function does. See The Standerd ~ppJe Numeric
Em··jronment T for information about the semantics of SANE.

See Appendix A for information about accessing the 68000 SANE engine from
the Apple 68000-based systems.

1-1

The 68C1C1(I SAlVE E.l'"fgine The 6&.'\.'\.1 SANE Engine

2 Basics
The following code illustrates a typical invocation of the SANE engine ..
FP66~<'.

PEA
PEA
FS.BS

i Push address of A (single fanaat)
i Push address of B (extended fanaat)
; Floating-point Sl8tract Single: B (- B - A

FSUBS is an assembly-language macro taken from the file listed in Appendix
B. The form of the operation in the example (8 < -- B - A, where A is a
numeric type and 8 is extended) is similar to the forms for most FP68K
operations. Also, this example is typical of SANE engine calls because
operands are passed to FP68K by pushing the addresses of the operands onto
the stack prior to the calL Details of SANE engine access are given later in
this section.

The SANE elementary functions are provided in Elems68K. Access to
Elems66K is similar to access to FP86K; details are given in Section 9.

2_1 Operation Farms
The example above illustrates the form of an FP68K binary operation. Forms
for other FP68K operations are described in this section. Examples and
further details are given in subsequent sections.

2.1.1 Arittmetic and Auxiliary Operations
Most numeric operations are either unary (one operand), like square root and
negation, or binary (two operands), like addition and multiplication.

The 68000 assembly-language SANE engine, FP68K, provides unary operatiOns
in a one-address form:

DST <-- <010> DST ... for example, B (--- sqrt(B)

The operation <op> is applied to (or operates on) the operand DST and the
result is returned to DST, overwriting the previous value. DST is called the
destination operand.

FP66K provides binary operations in a two-address form:

OST <-- DST <010> SRC ... for exampl~ B <-- B / A

The operation <op> is applied to the operands DST and SRC and the result is
returned to DST" overwriting the previous value. SRC is called the source
operand.

In order to store the result of an operation (unary or binary), the location of
the operand DST must be known to FP68K, so DST is passed by address to
FP66K. In general all operands, source and destination, are passed by
address to FP68K.

1-2

The 6&'"t'"t' S~E Engine

For most operations the storage format for a source operand (SRC) can be
one of the SANE numeric formats (single .. double .. extended, or comp). To
support the extended-b~ed SANE arithmetic .. a destination operand (OST)
must be in the extended format.

The forms for the copy-sign next-after functions are unusual and will be
discussed in Section 4.

2.1.2 CorM:nions
FP68K provides conversions between the extended format and other SANE
formats .. between extended and 16- or 32-bit integers, and between extended
and decimal records. Conversions between binary formats (single, double,
extended .. camp, and integer) and conversions from decimal to binary have
the form

DST <-- SRC

Conversions from binary to decimal have the form

DST <-- SRC according to SRC2

where SRC2 is a OecForm record specifying the decimal format for the
conversion of SRC to OST.

2.13 Comparisons
Comparisons have the form

<relation> <-- SRC.. DST

where DST is extended and SRC is Single, double, camp, or extended, and
where <relation> is less, equal, greater, or unordered according ~

DST <relation> SRC

Here the result <relation> is indicated by setting the 6fOOO CCR flags.

2.1.4 other Operations
FP68K provides inquiries for determining the class and sign of an operand
and operations for accessing the floating-point environment word and the halt
address. Forms for these operations vary and will be given as the operations
are introduced.

2.2 External Access
The SANE engine, FP68K, is reentrant, pOSition-independent code, which may
be shared in multi-process environments. It is accessed through one entry
point, labeled FP68K. Each user process h~ a static state area consisting of
one word of mode bits and error flags, and a two-word halt vector. The
package allows for different access to the state word in single and
mUlti-process environments.

The package preserves all 68000 registers across invocations.. ex cept that
REMAINDER modifies 00. The package modifies the 68000 CCR flags.
Except for binary-decimal conversions .. it uses little more stack area than is
required to save the sixteen 32-bit 68C()() registers. Since the binary-decimal

1-3

The 6&'0.,1 SIWE Engine The 68tU1 SiWE Engine

conversions themselves call the package (to perform multiplies and divides),
they use about twice the stack space of the regular operations.

The access constraints described in this section also apply to Elems68K.

2..3 CaJ.lirQ Sequence
A typical invocation of the engine consists of a sequence of PE A's to push
operand addresses followed by one of the Appendix B macros:

PEA <source address>
PEA <destination address>
<FOPMACRO>

PE A's for source operands always precede those for destination operands.

<FOPMACRO> represents a typical operation macro defined as

tINE.W <opword>,-(SP) ; Push op code .
.'9fP

The macro JSRFP in turn generates a call to FP68K; for Macintosh, it
expands to an A-line trap, while for Lisa it expands to an intrinsic unit
subroutine call

.ER fP6a(

2.3.1 The Opward
The opword is the logical OR of a operand format code and an operation
code.

The operand format code specifies the format (extended, double, Single,
integer, or comp) of one of the operands. The operand format code typically
gives the format for the source operand (SRC). At most one operand format
need be specified, since other operands' formats are implied.

The operation code specifies the operation to be performed by FP68K.

Opwords are listed in Appendix C; operand format codes and operation codes
are listed in Appendix B.

ExsropJe

The format code for single is 0200 (hex). The operation code for divide is
0006 (hex). Hence the opword 0206 (hex) indicates divide by a value of type
single.

2.32 PBsembIy-language tw1acros
The macro file in Appendix B provides macros for

MDVE.W <opword>,-(SP)
JSRFP

for most common <opword> calls to FP68K.

1-4

The 68t'l'"t? SANE Engine The 68t'"t~ SfWE Engine

Example 1

To add a single-format operand A to an extended-format operand B, simply
write:

; Push address or A
; Push address or B
; Floating-point lID Single: B <- B + A

Example 2

Compute B < -- sqrt(A), where A and B are extended.
be preserved.

PEA A ~ ; Push address or A
flEA B:fIR; Push address or B

The value of A should

FX2X i Floating-point eXtended to eXtended: B (- A
PEA B_fIR i Push address or B
FSIRTX ; Floating SQuare RooT eXtended: B (- sqrt(B)

Example .:-r

Compute C < -- A - B, where A" B, and C are in the double format. Since
destinations are extended, a temporary extended variable T is required.

PEA A fIR i Push address or A
flEA T:fIR i Push address or lo-byte tEapOrsry variable
FD2X i Fl-pt convert Double to eXtended: T (- A
PEA B ~ i Push address or B
PEA '-:fIR i Push address or tEapOrIllY
fSI.B) i Fl-pt SlBtract Double: T (- T - B
PEA T fIR ; Push address or temporlllY
PEA C:fIR i Push address or C
FX2D ; Fl-pt convert eXtended to Double: C (-

2..4 Pwlthmetic Abuse
FP68K is designed to be as robust as possible, but it is not bulletproof.
Passing the wrong number of operands to the engine will damage the stack.
Using UNDEFINED opword parameters or passing incorrect addresses will
produce undefined results.

1-5

3 Data Types
FP6BK fully supports the SANE data types

single -- 32~bit floating-point
double -- 64-bit floating-point
comp -- 64-bit integer
extended -- BO-bit floating-point

and the 68000-specific types
integer -- 16-bit two's complement integer
longint -- 32-bit two's complement integer

The 6&,,'" SfWE Engine

The 68(X)() engine uses the convention that least.:.significant bytes are stored
in high memory. For example, let us take a variable of type single with bits

s -- sign
eO ... e7 -- exponent (msb ... lsb)
fO ... f22 -- significand fraction (msb ... lsb)

The logical structure of this four-byte variable is shown below:

msb 1 sb msb 1 sb order
-------------1 I

Islel I I I 1 I lelfl I I I I I I I I I I I 1 1 I I I I I I I If I
I 101 1 I I I I 10101 I I I I 1 I I I I I I 1 1 I I I I I 1 I 121
I 101 I I I I I 17101 I I I I 1 1 1 I I 1 1 I I I I I I 1 I 1 121
I I I 1-----

1000 1001 1002 1003

If this variable is ~igned the address 1000, then its bits are distributed to
the locations 1000 to 1003 as shown. The other SANE formats (see Section
2 in The standBl'd ~ppJe Numeric Em.'iTonmentj are represented in memory in
similar fashion.

1-6

The 68.."t"C SIWE Engine The 68t"t'l1 S~E Engine

... Pai.thmetic Oper'ations and Auxiliary Rldines
The operations covered in this section follow the access schemes described
in Section 2.

unary operations: O5T <-- <op> O5T (one-address form)

PEA <05T address>
< FCPMOCRO >

binary operations: O5T <-- O5T <op> SRC (two-address form)

PEA <SRC address>
PEA <05T address>
< FOPMfCRO >

The destination operand (OST) for these operations is passed by address and
is generally in the extended format. The source operand (SRC) is also p~ed
by address and ma:y be single, double, comp, or extended. Some operations
are distinguished by requiring some specific type for SRC .. by using a
nonextended destination .. or by returning auxiliary information in the 00
register and in the processor CCR status bits. In this sect.ion" operations so
distinguished are noted. The examples employ the macros in Appendix B.

4.1 Add, Subtract, Multiply, and Divide
These are binary operations and follow the two-address form.

Example

B <-- B / A" where A is double and B is extended:

~ A_fIR; push address of A
~ B_flR; push address of B
FDIVD ; divide with source operand of type double

... .2 Sqtae Root
This is a unary operation and follows the one-address form.

Exsmple

B <-- sqrt(B) " where B is extended.

~ B_flR; push address of B
FStRTX ; square root (operand is a1~ extended)

4..3 Roenf-to-Integer-, 1iUnc8te-to-Integer
These are unary operations and follow the one-address form.

Round-to-integer rounds (according to the current rounding direction) to an
integral value in the extended format. Truncate-to-integer rounds toward
zero (regardless of the current rounding direction) to an integral value in the
extended format. The calling sequence is the usual one for unary operators ..
illustrated above for square root.

1-7

The 6&.'l?t? St'iNE Engine The 6&'t't" SfWE Engine

.4.4 Remainder
This is a binary operation and follows the two-address form.

Remainder returns auxiliary information: the low-order integer quotient
(between -127 and +127) in DO.W. The high half of OO.L is undefined. This
intrusion into the register file is extremely valuable in argument
reduction--the principal use of the remainder function. The state of DO
after an invalid remainder is undefined.

Example

B <-- B rem A ~ where A is single and B is extended.

PEA A_~ i push address of A
R::A 8_Am i push address of 8
FRB6 i ral8:i.nder with source operand of type single

.4-' Logb, SC81b
Logb is a unary operation and follows the one-address form.

ScaIb is a binary operation and follows the two-address form. Its source
operand is a 16-bit integer.

Example

B <-- B * 2I~ where B is extended.

PEA I_~; push address of I
PEA 8_Am i push address of 8
fSCAl..BX ; scalb

.4.6 NegSe, Absoh.te Value, COP,I-Sign
Negate and absolute value are unary operations and follow the one-address
form.

Copy-sign uses the calling sequence

PEA <SRC address)
PEA <OST address)
fCPYSGNX

to copy the sign of DST onto the sign of SRC. Note that cOP'Y'-sign differs
from most two-address operations in that it changes the SRC value rather
than the DST value. The formats of the operands for FCPYSGNX can be
single, double, or extended. (For efficiency, the 68000 assembly-language
programmer should copy signs directly rather than call FP68K.)

1-8

The 6&'"t'l1 SANE Engine The 68Ct.'l1 SIWE Engine

Example

Copy the sign of B (single, double, or extended) into the sign of A (single,
double, or extended).

f£A A ~ ; push address of A
f£A B-~ ; push address of B
FrPVSOtX - ; copf-sign

4.7 ~-Atter
The next-after operations use the calling sequence

PEA <SRC address>
PEA <05T address)
<next-after macro>

to effect SRC < -- next value, in the format indicated by the macro, after
SRC in the dirction of OST. Next-after operations differ from most
two-address operations in that they change SRC values rather than DST
values. Both source and destination operands must be of the same
floating-point type (single, double, or extended).

Example

A < -- next-arteriA) in the direction of B, where A and B are double (so
next-after means next-doubJe-after).

FER A_fIR; push address of A
f£A B_IIR; push address of B
F1£XTI) ; next-after: in double fODlllt

1-9

The 68(1(~1 SANE Engine The 6&1(.1(.1 SRNE Engine

5 ConversiOl'B
This section discusses conversions between binary formats and conversions
between binary and decimal formats.

5.1 Cor'M:nions Between Binary formats
FP68K provides conversions between the extended type and the SANE types
single, double, and comp.. as well as the 16- and 32-bit integer types.

5.1-1 Conversions to Extended
FP68K provides conversions of a source .. of type single .. double.. comp"
extended.. or integer, to an extended destination.

extended {--

single
double
comp
extended
integer

All operands, even integer ones" are passed by addres'S. The following
example illustrates the calling sequence.

ExampJe

Convert A to B, where A is of type comp and B is extended.

PEA
A::A
FC2X

; push address of A
; push address of B
; convert cc:np to extended

5.12 ConIer'sions trom Extended
FP68K provides conversions of an extended source to a destination of type
single, double .. comp .. extended, or integer.

single
double
comp {-- extended
extended
integer

(Conversion to a narrower format may alter values.) Contrary to the usual
scheme the destination for these conversions need not be of type extended.
All operands are passed by address. The following example illustrates the
calling sequence.

1-10

The 68Ct1O SANE Engine The 6&1(..10 SANE Engine

Example

Convert A to B where A is extended and B is double.

fER R ~ i push address of R
fER B=~; push address of B
fX2I) ; convert extended to double

5_2 Binary-Decimal Conversions
FP68K provides conve.rsions between the binary types (single.. double .. comp ..
extended.. and integer) and t.he decimal record type.

Decimal records and decform records (used to specify the form of decimal
representations) are described in Section 4 of The St8J7tiard ~ppJe Numeric
Environment. For FP68K, the maximum length of the sig digits field of a
decimal record is 20. (The value 20 is specific to this implementation:
algorithms intended to port to other SANE implementations should use no
more than 18 digits in sig.)

521 Binary to Decimal
The calling sequence for a conversion from a binary format to a decimal
record passes the address of a decform record .. the address of a binary
source operand .. and the address of a decimal-record destination. The
maximum number of significant digits that will be returned is 19.

ExBtnpJe

Convert a comp-format value A to 8 decimal record 0 according to the
decform record F.

fER
PEA
fER
fC2IJEI:

; push address of f
; push address: or R
; push address of D
; convert COip to deci.a!

Fixed-Format "Overflow"

If a number is too large for a chosen fixed style .. then FP68K returns the
string I?' in the sig field of the decimal record.

5-2-2 Decimal to Binary
The calling sequence for a conversion from decimal to binary passes the
address of a decimal-record source operand and the address of a binary
destination operand.

The maximum number of digits in sig is 19. If the length of sig is 20 .. then
sig represents its first 19 digits plus one or more additional nonzero digits
after the 19th. The exponent corresponds to the 19-digit integer represented
by the first 19 digits of sig.

1-11

The 6&.'\.'\.1 SfWE Engine

Example

Convert the decimal record 0 to a double-format value B.

FER 0 fIR i push address of 0
FER B:fIR; push address of B
fIE:2[) ; convert decill8l. to double

Tectmiques for Extreme AcclIracv

The following techniques apply to FP68K; other SANE implementations
require other techniques.

For maximum accuracy, insert or delete trailing zeros for the sig fielcl of a
decimal record in order to minimize the magnitude of the exp field. For
example~ for 1.0E60 set sig to '1000000000000000000000000000' (17 zeros) and
exp to 43, and for 3OOE-43 set sig to '3' and exp to -41-

If you are writing a parser and must handle a number with more t.han 19
significant digits, follow these rules:

• Place the implicit decimal point to the right of the 19 most significant
digits.

• If any of the discarded digits to the right of the implicit decimal point
are nonzero, then concatenate the digit '1' to sig.

1-12

The 6&~~') SIWE Engine

6 Comparisons and Inquiries

6..1 Comparisons

The 6a~,,') SANE Engine

FP68K offers two comparison operations: FCPX (which signals invalid if its
operands compere unordered) and FCMP (which does not). Each compares a
source operand (which may be single.. double.. extended.. or comp) with a
destination operand (which must be extended). The result of a comparison is
the relation (less, greater .. equal, or unordered) for which

DST <relation> SRC
is true. The result is delivered in the X, N, Z.. V, and C status bits:

<relation> Status bits
X N 2 V C

greater 0 0 0 0 0
less 1 1 0 0 1
equal 0 0 1 0 0
unordered 0 0 0 1 0

These status bit encodings reflect that floating-point comparisons have four
possible results, unlike the more familiar integer comparisons with three
possible results. It1s not necessary to learn these encodings, however; simply
use the FBxxx series of macros for branching after FCMP and FCPX.

FCMP and FCPX are both provided to facilit.ate implementation of relational
operators defined by higher level languages that do not contemplate
unordered comparisons. The IEEE standard specifies that. the invalid
exception shall be signalled whenever necessary to alert users of such
languages that an unordered comparison may have adversely affected their
program1s logic.

Example 1

Test B <= A, where A is single and B is extended;
signal if unordered.

flEA A fIlR i push address ot A

if TRUE branch to LOCi

PEA B-~; push address of B
RPXS - i compare using source of type single,

; signal. invalid if unordered
FBl.E LOC ; branch if B (= A

Example 2

Test B not-equal A, where A is double and B is extended; if TRUE branch to
LOC. (Note that not-equal is equivalent to less, greater .. or unordered, so
invalid should not be signaled on unordered.)

1-13

The 6&'"t'"t? SANE Engine The 680(..1(,1 SANE Engine

FEA A~ i push address of A
FER B=~ i push address of B
fIlA) i cc:npare using source of type double,

i do not signal irwalid if unordered
FEt£ LOC i branch if B not-equal A

6..2 Inquiries
The cl€6Sify operation provides both class and sign inquiries. This operation
takes one source operand (single, double, or extended), which is passed by
address, and places the result in a 16-bit integer destination.

The sign of the result is the sign of the source; the magnitude of the result
is

1 signaling NaN
2 quiet NaN
3 infinite
4 zero
5 normal
6 denormal

Example

Set C to sign and class of A.

JEA A_FIR; push address of A
FER C_~ i push address of resul t
FCLASSS ; classi tv si ngle

1-14

The 6&1Ct'"l SANE Engine

7 Environmental CorUol

7_1 The Environment Wm"d

The 6&.1(,1(,'"1 SANE Engine

The floating-point environment is encoded in the 16-bit intege.r format as
shown below in hexadecimal:

msb Isb
1-------------------------------1-------------------------------1
I - I r I r I x I d 1 0 I u I i I - I R 1 R 1 X I D I 0 I U I I 1
1-------------------------------1-------------------------------1
rounding exception rounding halt
direction flags precision enables

rounding directio~ bits 6000 rr
0000 -- to-nearest
2000 -- upward
4000 -- downward
6000 -- toward-zero

exception flags~ bits lFOO
0100 -- invalid i
0200 -- underflow u
0400 -- overflow 0
0800 -- division-by-zero d
1000 -- inexact x

rounding precision~ bits 0060 RR
0000 -- extended
0020 -- double
0040 -- single
0060 -- l...NDEFlNED

halt enabled~ bits OOlF
0001 -- invalid I
0002 -- underflow U
0004 -- overflow 0
0008 -- division-by-zero 0
0010 -- inexact . X

Bits 8000 and 0080 are undefined.
Note that the default environment is represented by the integer value zero.

1-15

Tbe .68C'(V S~IVE Engil7e The 68Ct'(.? SANE Engine

Ex8lTtpJe

With rounding toward-zero .. inexact and underflow exception flags raised ..
extended rounding precision .. and halt. on invalid .. overflow .. and
division-by-zero .. the most significant byte of the environment is 72 and the
least significant. byte is OD.

Access to the environment is via the operations get-environment ..
set-environment" test-exception, set-exception" procedure-entry .. and
procedure-exit.

1.2 Get-EnlJironrnEri. and Set-ElYIIirorment
Get-Environment takes one input operand: the address of a 16-bit integer
destination. The environment word is returned in the destination.

Set-Environment has one input operand: the address of a 16-bit integer ..
which is to be interpreted as an environment word.

Ex8lTtpJe

Set rounding direction to toward-zero.

PEA A fIR
flEEJfI -
tOlE.'" (RO),OO
(R.W 1$6000, DO
tOlE... DO, (RO)
PEA A fIR
fSETENV -

; DO gets enviroraent
; set rounding toward-zero
; restore A

13 Test-Exception and Set-Exception
Test-exception has one integer dest.ination operand .. which contains the hex

values

01 -- invalid
02 -- underflow
04 -- overflow
08 -- divide-by-zero
10 -- inexact

If the exception flag is set for the corresponding bit in the operand .. then
test-exception sets the destination to $100 .. otherwise" to zero.

Set-exception takes one integer source operand, which encodes an exception
in the manner described above for test-exception. Set-exception stimulates
the exception indicated in the operand.

1.4 Procedure-Entry and Procedwe-Exit
Procedure-entry saves the current floating-point environment (16-bit integer)
at the address passed as the sole operand.. and sets the operative
environment to the default state.

1-16

The 6&"0.,1 SANE Engine The 6IiO()J SNVE Engil'ltJ

Procedure-exit saves (temporarily) the exception flags, sets the environment
passed as the sole operand, and then stimulates the saved ex ceptions.
Example

Here is a procedure that appears to its callers as an atomic operation.
A11JU€PID:

flEA E_~ i push address to stare 8IW1~t
FPIU:ENlRY ; procedure enby

... ~ ot routine ...

flEA E ~ ; push address ot envir~t
FAUEUT- i procedure exit

RTS

1-17

The 6&U'" SANE Engine The ~'\,? SfWE Engine

8 Halts
FP68K provides the facility to transfer program control when selected
floating-point exceptions occur. Since this facility will be used to
implement halts in high-level languages, we refer to it s a halting
mechanism. The assembly-language programmer can write a 'halt handler'
routine to cause special actions for floating-point exceptions. The FP68K
halting mechanism differs from the traps that are an optional part of the
IEEE Standard.

8.1 Conditions tor a Halt
Any floating-point exception can, under the appropriate conditions, trigger a
halt. The halt for a particular exception is enabled when the user has set
the halt-enable bit corresponding to that exception.

8.2 The Halt ~
If the halt for a given exception is enabled, FP68K does these things when
that exception occurs:

1. FP68K returns the same result to the destination address that it would
return if the halt were not enabled.

2. It sets up the following stack frame:

top-or-stack --) [::J A word containing the opcode.

A long word containing DST address.

A long word containing SRC address.

A long word containing SRC2 address.

A long word pointing to MISC.

MIse is a record consisting of:

I1ISC: [::J A word containing halt exceptions.

[::J A word containing pending CCR.

A long word containing pending 00.

The first word of MISC contains in its five low-order bits the AND of the
halt-enable bits with the exceptions that occurred in the operation just
completing. If halts were not enabled, then (upon return from FP68K) CCR
and DO would have the values given in MISC.

1-18

The 680(1(1 SANE Engine

3. It passes control by JSR through the halt vector previously set by
FSETHV, pushing another long word containing a return address in
FP68K. If execution is to continue, the halt procedure must clear
eighteen bytes from the stack to remove the opword and the DST,
SRC, SRC2, and MISC addresses.

Set-h8Jt-~"ector has one input operand: the address of a 32-bit integer,
which is int.erpreted as the halt vect.or (that is, the address to jump to in
case a halt occurs).

Get-halt-vector has one input operand: the address of a 32-bit integer,
which receives the halt vector.

83 Using the Halt Mechanism
This example illustrates the use of the halting mechanism. The user must
set the halt vector to the starting address of a halt handle.r routine. This
particular halt handler returns control t.o FP68K which will continue as if no
halt. had occurred, returning to the next instruction in the usets program.

LEA tRJJTIl£,oo ; 00 gets address of halt routine
tIlVE.L OO,H_Am ; H_Am gets same
flEA H fIR ;
FSEllN - ; set halt vector to tRJJTIl£

flEA
<~>

tRlJTII£
tIlVE.L (SP)+,OO
fI)[).L '18, SP
.J1l (00)

; floating-point operand here
; a. floating-point call here

i call ed by FP68<.
; 00 saves return address in FP6fK
i inc:nnent stack. past 8I"guaents
; return to fP68(

The FP68K halt machanism is designed so t.hat. a halt proc:edure may be
written in Lisa PascaL This is the form of a Pascal equivalent to
HROUTINE:

1-19

The 68t't't? SANE Engine

type. lliscrec = record
hal terrors : integer i
ccrpending : integer i
DOpending : longint i

end {record} ;

procedure hal troutine
(var .isc : .iscrec ;

src2, src, dst : longint ;
opcode : integer) i

begin {haltroutine}
end {haltroutine} i

The 68t't'tl S~NE Engine

Like HROUTINE, haltroutine merely continues execution as if no halt had
occurred.

1-20

The 6&~~'"I SANE Engine The 68t,'\.'\.1 SANE Engine

9 Elementary FWlCtions
The elementary functions that are specified by the Standard Apple Numeric
Environment are made available to the 68000 assembly-language programmer
in ELEMS68K. Also included are two functiOns that compute IOQ2(l+x) and 2x

- 1 accurately. ELEMS68K calls the SANE engine (FP68K) for its basic
arithmetic. The access schemes for FP68K (described in Section 2) and
ELEMS68K are similar. Opwords and sample macros are included at the end
of the file listed in Appendix B. (These macros will be used freely in the
examples below.)

9_1 One-Argument Functions
The SANE elementary functions logz(x), lr(x), In1(x) = lr(l+x), 2x" eX" exp1(x) =
eX - 1" cos(x), sir(x).. tar(xl, atan(x)" and random(x)" together with log21(x) =
logz(l+x) and exp21(x) = 2x - I, each have one extended argument" passed by
a.ddress. These functions use the one-address calling sequence

PEA DST
<EOPNACRO>

to effect

O6T <-- <op> DST

<EOPMACRO> is one of the macros in appendix B that generate code t.o push
an op word and invoke ELEMS68K. This follows the FP68K access scheme
for unary operations" such as square root and negat.e.

Example

B < -- sinCS)" where S is of extended type.

PEA B t1lR ; push address of B
FSINX - ; B (- sin(B)

9..2 Two-Argumert. Functions
General exponentiation (xY) has two ext.ended arguments" bot.h passed by
address. The result is returned in x.

Integer exponentiat.ion (xi) also has two arguments. The extended argument.
x" passed by address, receives the result. The 16-bit integer argument i is
also passed by address.

Both exponentiation functions use the calling sequence for binary operations

PEA SA: address ; push exponent address first
PEA DST address ; push base address second
<EIJIt1fl:K»

to effect

O6T <-- DST~

1-21

The 6&'l'l'l SANE Engine The 68t'l'l1 S~E Engine

Example

B <-- BK" where the type of B is extended.

FER K_~ i push address of K
F£A B_~; push address of B
F>tAIU i integer exponentiation

9.3 Three-~gument FWlCtions
Compound and annuity use the calling sequence

F£A SA:2 address ; push address of rate first
F£A SAC address ; push address of mnber of periods second
F£A DST address i push address of destination third
<EIFtWHl>

to effect

OST <-- <op> (SRC2" SRC)

where <op> is compound or annuity, SRC2 is the rate, and SRC is the number
of periods. All arguments SRC2.. SRC.. and OST must be of the extended
type.

Ex8lTtple

C (-- (1 + R)N .. where C .. R, and N are of type extended.

i push address of R
; push address of N
i push address of C
; COIpOUnd

1-22

68.,"t"t? SANE Engine

Appendix A
68(xx) SANE Access

In your assemblies include the file TLASM/SANEMACS.TEXT, which contains
the macros mentioned in this manual. The standard version is for Macintosh.
For programs that will run on Lisa, redefine the symbol FPBYTRAP as
follows:

FPBYTRAP .EQU 0

On MaCintosh, the object code for FP68K and ELEMS68K is automatically
loaded as needed by the Package Manager. On Lisa, it suffices to link your
assembled code with the intrinsic unit file IOSFPLIB.OBJ.

A-l

6&"t"t? SANE Engine

Appendix B
68000 SAI\E Macros

6&'l't> SANE ,..1acTOS

;---
;

FILE: SANEMACS.TEXT
;

These macros and equates give assembly language access to
the 68K floating-point arithmetic routines.

;---

;--
; WARNING: set FPBYTRAP for your system.
;---
FPBYTRAP .EQU 1 ; 0 for Lisa" 1 for Macintosh

.MACRO JSRFP
. IF FPBYTRAP

.ELsE
FP68K ; defined in TOOLMACS

.REF FP68K
JSR FP68K

.Ei'OC
.EI'DM

.MACRO JSRELEMS
.IF fPBYTRAP

ELEMS68K ; defi ned in TOOLNACS
. ELsE

.REf ELEMS6BK
JSR ELENS6BK

.EI'OC
.Et{)M

---.'
; Operation code masks.
---.'
FOADD
FOSUB
F01JL
fOOIV
FOCMP
fOCPX

.EOU

.EQU

.EQU

.EQU

.EOL!

.EQU

$0000
$0002
$0004
$0006
$0008
$000 A

8-1

add
subtract
multiply
divide
compare, no exception from unordered
compare" signal invalid if unordered

6&.'l?t..? SANE Engine 68Ct.'lO S~NE fr.18cros

fCREN .EOU $OOOC remainder
fOZ2X .EQU $OOOE convert to extended
fOX2Z .EOU $0010 convert from extended
fOSORT .EOU $0012 square root
fCRTI .EQU $0014 round to integral value
fOTTI .EOO $0016 truncate to integral value
fOSCAlS .EQU $0018 binary scale
fOlOGB .EW $00lA binary log
fOClASS .EOU $00lC classify
; Ltl>Eflt£D .EQU $COlE

fOSETENV .EOU $0001 set enviroment
fOOETENV .EOU $0003 get environment
fOSETHV .EW $0005 set hal t vector
fOOETHV .EOU $0007 get hal t vect or
fOO2S .EOU $0009 convert decimal to binary
fCB20 .EOU $OOOB convert binary to decimal
fCH:G .EOU $OOOD negate
fOABS .EOU $OOOF absolute
fOCPYSGNX .EOU $0011 copy sign
fCt£XT .EOU $0013 next-after
fOSETXCP .EOU $0015 set exception
fCPROCENTRY .EOU $0017 procedure entry
fCPROCEXIT .EW $0019 procedure exit
fOTESTXCP .EOU $0018 test exception
; l.H)EFlt£O .EOU $0010
; ltDEFIt£D .EOU $C01F

;---
; Operand format masks .
. _--fFEXT .EOU $0000 extended -- SO-bit float
ffDBl .EOU $0800 double -- 64-bit float
fFSGl .EQU $1000 single -- 32-bit float
ffINT .EQU $2000 integer -- 16-bit integer
fFLNG .EOU $2800 long int -- 32-bit integer
ffCONP .EOU $3000 camp -- 64-bit integer

._--
; Precision code masks: forces a floating point output
; value to be coerced to the range and precision specified .
. _---
" fCEXT
fCOBl
FCSGl

.EOU

.EOU

.EQU

$0000
$4000
$8000

extended
; double
; single

8-2

68.."l'l? SANE Engine

--" Operation macros: operand addresses should already be on
the stack" with the destination address on top. The
suffix X" 0" S" C" I" or L determines the format of the
source operand -- extended" double" single" comp,
integer" or long integer" respectively; the destination
operand is always extended.

--
"

--" .; Addition.
---.'

• MACRO fADOX
I'1JVE.W #ffEXT+fOADD,,-(SP)
JSRfP
.EN)M

. MACRO fADDD
I'1lVE.W #ffDBL+fOADD,,-(SP)
JSRfP
.Et01

. MACRO fADOS
t1JVE.W #ffSGL+fOADD,,-(SP)
JSRfP
.ENDM

. MACRO fADDC
I'1lVE.W #ffCOMP+fOADD,,-(SP)
JSRfP
.ENDM

. MACRO fADDI
I'1JVE.W #ffINT+fOADD,,-(SP)
JSRfP
.ErD1

. MACRO fADDL
NDVE.W #ffLNG+fOADD,,-(SP)
JSRfP
.EtD1

;---
; Subtraction.
;---

.MACRO fSl.J3X

8-3

68t'l'\? SIWE Engine

tilVE.w #ffEXT+fOSUB,-(SP)
JSRfP
.ENDM

• MACRO fSUBD
t1JVE.W #ffDBL+fOSUB,-(SP)
JSRfP
.ENDM
• MACRO fSLBS
t1lVE.W #ffSGL+fOSUB,-(SP)
JSRfP
.ENDN

• MACRO fSUBC
t1lVE.W #ffCOMP+fOSUB,-(SP)
JSRfP
.Ef'DM

• MACRO fSlBI
tilVE.W #ffINT+fOSUB,-(SP)
JSRfP
.ENDM

• MACRO fSl.l3L
I1JVE J~ #ffLNG+fOSUB,-(SP)
JSRfP
.ENDN

;--
; Multiplication.
;---

• MACRO fl1.JLX
tilVE.W #ffEXT+fOMUL,-(SP)
JSRfP
.El'()M

• MACRO ft1.JLD
t1lVE.W #ffDBL+fOMUL,-(SP)
JSRfP
.Et01

• MACRO fttJLS
I1JVE.W #ffSGL+fOMUL,-(SP)
JSRfP
.EtfX1

.MA:RD ft1.JLC

8-4

MDVE.W IFFOOMP+FOMUL,-(SP)
JSRFP
.El'DM

.MACRO FI1.JLI
MDVE.W #ffINT+fOMUL,-(SP)
JSRFP
.ENDM

.MACRO fr1JLL
MDVE.W IFFLNG+fOMUL,-(SP)
JSRFP
.OOM

;---
; Division.
;---

• MACRO FDIVX
r1:lVE.W IFFEXT+fOOIV,-(SP)
JSRFP
.ENOM

• MACRO fDIVD
MOVE.W IFFDBL+FOOIV,-(SP)
JSRfP
.ENDM

. MACRO FDIVS
NOVE.W #ffSGL+fOOIV,-(SP)
JSRFP
.ENDM

• MACRO FDIVC
MDVE.W IFFCOMP+FOOIV,-(SP)
JSRFP
.8'DM

• MACRO FDIVI
r1:lVE.W #FFINT+FOOIV,-(SP)
JSRFP
.ENDM

• MACRO FDIVL
t1lVE.W IFFLNG+FOOIV,-(SP)
JSRfP
.EI'DM

8-5

6&,'\.1(,1 S~ MBcros

--.'
; Square root.
---.'

.MACRO FSORTX
NDVE.W IFOSQRT,-(SP)
JSRFP
.ENDM

;---
; Round to integer, according to the current rounding mode.
---.'

.MACRO FRINTX
MDVE.W IFDRTI,-(SP)
JSRFP
.ENDt1

---.'
; Truncate to integer, using round toward zero .
. ---------------,---.'

.MACRO FTINTX
MDVE.W #FOTTI,-(SP)
JSRFP
.ENDN

;---
; Remai nder .
;---

.MACRO FRENX
NDVE.W #FFEXT+FDREM,-(SP)
JSRFP
.ENDM

.MACRO FREMD
MDVE.W #FFDBL+FDREM,-(SP)
JSRFP
.ENDM

.MACRO FREMS
NDVE.W IFFSGL+FOREN,-(SP)
JSRFP
.ENDM

.MACRO FREMC
MDVE.W #FFCOMP+FOREM,-(SP)
JSRFP
.ENDM

8-6

68..'l'l? StWE Engine

.MACRO FREMI
MDVE.W #ffINT+fOREM~-(SP)
JSRfP
.EN)M

.MACRO fREML
NDVE.W #ffLNG+fOREM~-(SP)
JSRfP
.ENDM

;---------------------------------------
; Logb .
. --..

.MACRO fLOGBX
NDVE.W #fOLOGB .. -(SP)
JSRfP
.ENDM

.---~

; Scalb .
. ----------------------------~--------------------------.'

.MACRO fSCALBX
MDVE.W #ffINT+fOSCALB .. -(SP)
JSRfP
.ENDM

--..
; Copy-si gn .
. _---..

.MACRO fCPYSGNX
NDVE.W #fOCPYSGN .. -(SP)
JSRfP
.EfO'1

--
; Negate .
. ------------------------~--------------------------------.'

.MACRO fNEGX
MDVE.W #fONEG .. -(SP)
JSRfP
.ENDN

8-7

680L~ SflNE Macros

;--~--
; Absol ut e val ue .
;--~----------------

.MOCRO FABSX
NDVE.W #FOABS,-(SP)
JSRFP
.EtO'1

;--------------------------------------
; Next-after. NOTE: both operands are of the same
; format, as specified by the usual suffix.
;---

.MfCRO Ft£XTS
NDVE.W #FFSGL+FONEXT,-(SP)
JSRFP
.Et01

.MACRO FNEXTD
MDVE.W #FADBL+FDNEXT,-(SP)
JSRFP
.ENDM

.MACRO Ft£XTX
MDVE.W #FFEXT+FONEXT,-(SP)
JSRFP
.801

;---
; Conversion to extended.
;---

.MACRO FX2X
MDVE.W #FFEXT+FOZlX,-(SP)
JSRFP
.Et01

.MACRO FD2X
MDVE.W #FFDBL+FOZ2X,-(SP)
JSRFP
.EN>M

.MOCRO FS2X
MDVE.W #FFSGL+FOZ2X,-(SP)
JSRFP
.EN:X1

8-8

68..'l?t? SfWE Engine

.MACRO FI2X
MDVE.W #FFINT+FOZ2X~-(SP)
JSRFP
.ENDM

.MACRO FL2X
MDVE.W #FFLNG+FOZ2X~-(SP)
JSRFP
.ENDM

.MACRO FC2X
NDVE.W #FFCOMP+FOZ2X~-(SP)
JSRFP
.ENDM

68t.'l'lt." SANE f..18cTOS

;---
; Conversion from extended.
;---

• MACRO FX20
rtJVE.W #FFDBL+FOX2Z~-(SP)
JSRFP
.EtD1

• MACRO FX2S
MDVE.W #FFSGL+FOX2Z~-(SP)
JSRFP
.EI'DM

• MACRO FX21
MOVE.W #FFINT+FOX2Z~-(SP)
JSRFP
.ENDt1

• MACRO FX2L
MOVE.W #FFLNG+FOX2Z~-(SP)
JSRFP
.EN)M

• MACRO FX2C
MDVE.W #FFCOMP+FOX2Z~-(SP)
JSRFP
.EtD1

8-9

68:1C1t.,' SANE Engine

--" . MACRO FX2DEC
MOVE.~~ IFFEXT+FOB2D,,-(SP)
JSRFP
.ENDM

• MACRO FD2DEC
NDVE.W IFFDBL+FOB2D,,-(SP)
JSRFP
.ENDN

• MACRO FS2DEC
rflVE.W IFFSGL+FOB20,-(SP)
JSRFP
.801

• MACRO FC2DEC
I"DVE.W #FfCOMP+fOB2D,-(SP)
JSRFP
.Etf)M

• MACRO fl2DEC
r1JVE.W IFfINT+fOB20,-(SP)
JSRfP
.ENDM

• MACRO FL2DEC
r1JVEJ~ #FfLNG+fOB2D,-(SP)
JSRfP
.Et01

; -------- ------------------
; Decimal to binary conversion.
;--

.MACRO FDEC2X
MDVE.W IffEXT+fOO28,-(SP)
JSRFP
.EtD1

.Mf(R() fDEC2D
r1JVE.W #FFDBL+fOO28,-(SP)
JSRFP
.8'{)M

8-10

6&'t~ SIWE Engine

.MfCRO FOEC2S
MDVE.W #ffSGL+fOD28J-(SP)
JSRfP
.EN:>M

.MACRO fOEC2C
MDVE.W 'ffCOMP+fOD2BJ-(SP)
JSRfP
.EN:>M

.MOCRO fDEC21
MDVE.W #ffINT+fOO2BJ -(SP)
JSRfP
.ENDH

.MACRO fDEC2L
MDVE.W #ffLNG+fOO2BJ-(SP)
JSRfP
.EI'DM

;--
; Comp8I'e.. not signaling invalid on unordered.
;---

. MACRO fCMPX
MDVE.W 'ffEXT+fOCMPJ-(SP)
JSRfP
.ENDM

. MACRO fCf'PO
MDVE.W #ffDBL+fOCMPJ-(SP)
JSRfP
.ENDM

. MACRO fOPS
MJVE.W #ffSGL+fOCMPJ-(SP)
JSRfP
.EI'01

. MACRO fQ1JC
MDVE.W #ffCONP+fOCMP .. -(SP)
JSRfP
.Efi)M

• MACRO fO'PI
MDVE.W 'ffINT+fOCMPJ-(SP)
JSRfP
.ENDM

8-11

6&'\,'\,1 SANE Engine

.MACRO fct'PL
MDVE.W #ffLNG+fOCMP,-(SP)
JSRfP
.EN)M

68Ot.1O SANE f>.1scros

;---
; Comp8.Te, signaling invalid on unordered.
;---

. MACRO fCPXX
MDVE.W #ffEXT+fOCPX,-(SP)
JSRfP
.Eto1

. MACRO fCPXD
t'IlVE.W #ffDBL+fOCPX,-(SP)
JSRfP
.EtO'1

. MACRO fCPXS
t'IlVE.W #ffSGL+fOCPX,-(SP)
JSRfP
.Et{)I1

. MACRO fCPXC
t1lVE.W #ffOOMP+fOCPX,-(SP)
JSRfP
.Et01

. MACRO fCPXI
I'1J\IE.W #ffINT+fOCPX,-(SP)
JSRfP
.ENDM

. MACRO fCPXL
t'DVE.W DffLNG+fOCPX,-(SP)
JSRfP
.EtD1

~-Th~-f~ll~i~;-;~~;~;-defi~;-~-;;t-~f-;~=~;Il;d-fl~~ti~;---
.; branches. They preslI1Ie that the appropriate comp8.Te
; operation, macro FCMPz or fCPXz, precedes.
--,

.MACRO FBEO
EEO %1
.ENDM

8-12

68:t'l? SIWE Engine

• MACRO fBlT
BCS %1
.Et'01

• MACRO fBLE
BlS %1
.B01

• MACRO fE.GT
E1GT %1
.ENDM

• MACRO fEH:
EIGE %1
.EtD1

. MACRO fElJlT
BlT %1
.EtD1

. MACRO fBUlE
BLE %1
.EN:lM

• MACRO fBU:iT
EliI %1
.801

• MACRO fBU:iE
sec %1
.EJi)M

. MACRO fBU
BVS %1
.Et01

• MACRO fBO
eve %1
.Et01

• MACRO fEt£
EH: %1
.Ef'01

B-13

6&'l.,"" SANE Engine 6&'00 SANE Macros

.MACRO FBLE
BEQ %1
BVS %1
.EtD1

.MACRO FBLG
Et£ %1
ave %1
.801

;---
; Short branch versions.
;---

. MACRO FBEOS
BEQ.S %1
.EtD1

. MACRO FBlTS
BCS.S %1
.ENDM

. MACRO FBLES
BLS.S %1
.EtD1

. MACRO FBGTS
ooT.S %1
.ENDM

. MACRO FBGES
BGE.S %1
.EtD1

. MACRO FBUlTS
BlT.S %1
.EtD1

• MACRO FBULES
BLE.S %1
.EtD1

• MACRO FBUGTS
BHI.S %1
.801

8-14

.6&"t1t1 S~NE Engine

• MACRO FBU:iES
BCC.S %1
.EI'D1

. MACRO FElIS
BVS.S %1
.EtD1

• MACRO FBOS
BVC.S %1
.EI'DM

• MACRO FBr£S
BI'E.S %1
.ENDM

• MACRO FBlES
BEQ.S %1
BVS.S %1
.ENDM

• MACRO FBLGS
BI'E.S %1
BVC.S %1
.ENDN

;---
; Class and sign inquiries.
;---
FCSNAN .EQU 1 signaling NAN
FCONAN .EQU 2 quiet NAN
FCINF .EQU 3 infini ty
FCZERO .EOU 4 zero
FCNORM . EQU 5 normal nlsnber
FCOENCRN .EOU 6 denormal ntrnber

.MACRO FCLASSS
NDVE.W RFFSGL+FOCLASS~-(SP)
JSRFP
.ENDN

.MACRO FCLASSD
NDVE.W RFFDBL+FOCLASS~-(SP)
JSRFP
.Et01

8-15

.MfCRO FCLASSX
MDVE.W 'FFEXT+FOCLASS,-(SP)
JSRFP
.EHl'1

; ------------------------------------_ -
ABINVALID .EOU 0 invalid operation
fBUfLOW .EQU 1 ; underflow
fBOfLOW .EQU 2 ; overflow
fBD I V2ER .EQU 3 division by zero
fB I NEX ACT .EOU 4 inexact
ABRNDLO .EQU 5 ; low bit of rounding mode
A3RNDHI .EOU 6 high bit of rounding mode
fBLSTRND .EOU 7 last round result bit
ABDBL .EOU 5 double precision control
fBSGL .EOU 6 ; single precision control

;---------------------------------------
; Get and set environment.
;---

.MACRO FGETENV
MDVE.W 'fOGETENV,-(SP)
JSRFP
.EtD1

.MACRO fSETENV
MDVE.W 'FOSETENV,-(SP)
JSRfP
.EI"D1

; ---
; Test and set exception.
; ---------------------------------------

.MACRO fTESTXCP
NDVE.W #fOTESTXCP,-(SP)
JSRfP
.EI'DN

.MACRO fSETXCP
NDVE.W #fOSETXCP,-(SP)
JSRfP
.EtD1

8-16

68:«J SANE Engine

;---_._--
; Procedure entry. and exit.
;--------------------------------- ----------

.MACRO fPROCENTRY
MDVE.W #FOPROCENTRYJ-(SP)
JSRFP
.ErD1

.MACRO FPROCEXIT
NDVE.W #FOPROCEXIT,-(SP)
JSRFP
.Et01

;--
; Get and set halt vector.
;---------------------------------~----------------------

.MACRO FGETHV
MDVE.W #FOGETHVJ-(SP)
JSRFP
.ENDN

.MACRO FSETHV
MDVE.W #FOSETHVJ-(SP)
JSRfP
.ENDM

;--
; Elementary function operation code masks.
;--
fOLNX .EQU $0000 base-e log
fOLOG2X .EOU $0002 base-2 log
fOLNlX .EQU $0004 In (1 + x)
fOLo:i21X .EOU $0006 log2 (1 + x)

FCEXPX .EOU $0008 base-e exponential
fOEXP2X .EOU $000 A base-2 exponential
fCEXP1X .EOU $OOOC exp (x) - 1
fCEXP21X .EOU $OOOE exp2 (x) - 1

fOXPWRI .EOU $8010 integer exponentiation
F~Y .EOO $8012 general exponentiation
fo:xtPOlIDX .EQU $CO 14 compound
fOANtU I TYX .EOU $C016 annuity

FOSINX .EQU $0018 sine
fOCOSX .EOU $00lA cosine

8-17

FOTANX
FOATANX
FOOAl'O:t1X

.EQU $COle

.EQU $OOlE

.EOU $0020

tangent
arctangent
random

;---
; Elementary function macros.
--" .MACRO FLNX ; base-e log

MDVE.W DFOLNX,-(SP)
JSRELEMS
.ENDM

.MACRO FLOG2X base-2 log
MDVE.W #FOLOG2X,,-(SP)
JSRELEMS
.OOM

.MACRO FLNIX In (l + x)
MDVE.W DFOLNlX,,-(SP)
JSRELEMS
.ENDM

.MACRO FLOG2lX 10g2 (1 + x)
MDVE.W #FOLOG21X,,-(SP)
JSRELEMS
.Et01

.MACRO FEXPX base-e exponential
MDVE.W #FDEXPX,-(SP)
JSRELEMS
.ENDM

.MACRO FEXP2X base-2 exponential
MDVE.W #FOEXP2X,-(SP)
JSRELEMS
.ENDM

.MACRO FEXPIX exp (x) - 1
MDVE.W #FOEXPlX,-(SP)
JSRELEMS
.ENDM

.MACRO FEXP21X exp2 (x) - 1
MOVE.W #FOEXP21X,-(SP)
JSRELEMS
.ENDM

B-18

6£'t?t? SANE Engine

.MACRO F~I
NDVE.W #FOXPWRIJ-(SP)
JSRELEMS
.ENDM

.MACRO FXPWRY
MDVE.W #FOXPWRYJ-(SP)
JSRELEMS
.ENDN

6lA,U? SIWE Macros

integer exponential

general exponential

.MACRO FCOMPOUNDX ; compound
MDVE.W #FOCONPOUNDXJ-(SP)
JSRELEMS
.am

.MACRO FAN'UITYX ; annui ty
MDVE.W #FOANNUITYX,-(SP)
JSRELEMS
.ENDM

.MACRO FSINX
MDVE.W #FOSINX,-(SP)
JSRELEMS
.ENDM

.MACRO FCOSX
NDVE.W #FOCOSXJ-(SP)
JSRELEMS
.ENDM

.MACRO FTANX
MDVE.W #FOTANX,-(SP)
JSRELEMS
.ENDM

.MACRO FATANX
NDVE.W #FOATANX,-(SP)
JSRELEMS
.ENDM

sine

cosine

tangent

arctangent

.MACRO FRAtro1X ; random number generator
NDVE.W #FORAtro1XJ -(SP)
JSRELEMS
.ENDM

8-19

68.,'"1(1(,' SIWE Engine 6&.100 SflNE M8CTOS

;---
; NaN codes.
;---
NANSQRT .EQU 1 Invalid square root such as sqrt(-l).
NANADD .EOU 2 Invalid addition such as +INF - +INF.
NfN)IV .EOU 4 Invalid division such as 0/0.
NANMUL .EOU 8 Invalid multiply such as 0 * INF.
N~M .EQU 9 Invalid remainder or mod such as x REM O.
NAN~IN .EOU 17 Attempt to convert invalid ASCII string.
NANCCtP .EQU 20 Result of converting comp NeN to floating.
NAN2ERO .EOU 21 Attempt to create a NaN with a zero code.
NANTRIG .EQU 33 Invalid argument to trig routine.
NANINVTRIG .EOU 34 Invalid argument to inverse trig routine.
NANLOG .EOU 36 Invalid argument to log routine.
NANPOWER.EOU 37 Invalid argument to xAi or xAy routine.
NANfINAN .EOU 38 Invalid argument to financial function.
NANINIT .EQU 255 Uninitialized storage.
;---

8-20

quick Reference Guide

68000 SANE
Quick Reference Guide

This Guide contains diagrams of the SANE data formats and the 68K SANE
operations and errvironment word.

e.l Data Formats
Each of the diagrams below is followed by the rules for evaluating the number
v.
In each field of each diagram.. the leftmost bit is the rnsb and the rightmost is
the Isb.

fOIlltlt Diagnn ~ls

v value of number
s sign bit
e biased exponent
i explicit one's-bit (extended type only)
f fraction

Single: 32 Bits

1 8 23

lsi e f

1f 0 < e < 2".. then v = (-1)s * 2(e-127) * (1.f);
if e = 0 and f ~I 0, then v = (-1)s * 2(-126) * (O.f);
if e = 0 and f = 0 .. then v = (-1)s * 0;
if e = 2" and f = 0, then v = (-1)s * 00;
if e = 2" and f =ft-/O .. then v is a NaN.

C-1

widths

6&'"t"l' SANE Engine ~uick Reference Guide

Double: 64 Bits

1

lsi

11 52 widths

e f

if 0 < e < 2047.. then v = (-1)s * 2(e-1023) * (1.f);
if e = 0 and f ~/ 0, then v = (-1)s * 2(-1022) * (O.f);
if e = 0 and f = 0 .. then v = (-1)s * 0;
if e = 2047 and f = 0 .. then v = (-1)s * 00;
if e = 2047 and f =~/ 0 .. then v is a NaN.

Cc:ap: 64 Bits

1 63 widths

lsi d

if s = 1 and d = 0, then v is the unique camp NeN;
otherwise, v is the two's-complement value of the
54-bit representation.

Extended: II) Bits

1

lsi

15 1 63 widths

e iii f

if 0 (= e < 32767, then v = (-1)s * 2(e-16383) * (i.f);
if e = 32767 and f = 0, then v = (-1)s * 00, regardless of i;
if e = 32767 and f =~/ 0, then v is a NaN, regardless of i.

C-2

6&"«1 SANE Engine

C.2 Operations

In the operations below .. the operation's mnemonic is followed by the opword in
parentheses: the first byte is the operation code; the second is the operand
format code. For some operations, the first byte of the opword (xx) is ignored.

c.2.1 Abb"evi8tioos ... SyrnboJs

The symbols and abbreviations in this section closely parallel those in the text,
although some are shortened. In some cases, the same symbol has various
meanings, depending on context.

Opertlnds

DST destination operand (passed by address)
SAC source operand (passed by address).. pushed before DST
SRC2 second source operand (passed by address), pushed before SRC

DtJts Types

X extended (80 bits)
D double (64 bits)
S single (32 bits)
I integer (16 bits)
l longint (32 bits)
C comp (64 bits)
Dec decimal Record
Decform decform Record

68000 Processor Registers

DO data register 0
X extend bit of processor status register
N negative bit of processor status register
2 zero bit of processor status register
V overflow bit of processor status register
C carry bit of processor status register

Exceptions

I invalid operation
U underflow
o overflow
D divide-by-zero
X inexact
For each operation .. an exception marked with x indicates that the operation will
signal the exception for some input.

C-3

~uick Reference Guide

Environment and H81ts

EnWrd SANE environment word (l6-bit integer)
HltVctr SANE halt vector (32-bit longint)

C.2.2 Arithmetic Operations and Auxiliary Routines (Entry Point FP68K)

O~eration O~erands and Data T~l2es Excel2tions
fD) OST {-- OST + SOC I U 0 0 X
FADDX (0000) X X X x - x - x
FADOD (0800) X X 0 x - x - x
FADDS (1000) X X S x - x - x
FADDC (3000) X X C x - x - x
FADDI (2000) X X I x - x - x
FADDL (2800) X X L x - x - x

SlBTRfO" OST (-- OST - SRC IUOOX
FSUBX (0002) X X X x - x - x
FSUBD (0802) X X 0 x - x - x
FSUBS (1002) X X S x - x - x
FSUBC (3002) X X C x - x - x
FSUBI (2002) X X I x - x - x
FSUBL (2802) X X L x - x - x

ttl.. TIPl.. Y OST {-- OST * SRC I U 0 0 X
ft'ULX (0004) X X X x x x - x
Ft1JLO (0804) X X 0 x x x - x
Ft1JLS (1004) X X S x x x - x
FI1JLC (3004) X X C x - x - x
Ft1JLI (2004) X X I x - x - x
FI1JLL (2804) X X L x - x - x

DIYII:E OST (-- OST / SRC I U 0 0 X
FOIVX (0006) X X X x x x x x
FOIVD (0806) X X 0 x x x x x
FOIVS (1006) X X S x x x x x
FOIVC (3006) X X C x x - x x
FOIVI (2006) X X I x x - x x
FOIVL (2806) X X L x x - x x

C-4

6.&.,\,\') SANE Engine t;4Iick Reference GuidtJ

9lJME IDJT O5T (-- sqrt(DST) I U 0 0 X
FSORTX (0012) X X x - - - x

ID.Jt) 10 INT' O5T (-- rnd(DST) I U 0 0 X
fRINTX (00 14) X X x - - - x

lA.It: 10 IHT OST (- chop(OST) I U 0 0 X
FTINTX (0016) X X x - - - x

I&1AIItlER OST (-- OST REM SRC I U 0 0 X
fREMX (OOOC) X X X x - - - -
FREMD (08OC) X X 0 x - - - -
FREMS (100c) X X S x - - - -
fREMC (3OOC) X X C x - - - -
FREMI (200c) X X I x - - - -
FREML (28OC) X X L x - - - -

00 (-- integer quotient OST/SRCJ
between -127 and +127

Lm BINfRY OST (-- logb(DST) I U 0 0 X
FLOGBX (OOlA) X X x - - x -

SCALE 81MfRY' DST <-- OST It 2A SRC I U 0 0 X
FSCALBX (0018) X X I x x x - x

t£GAlE DST <-- -OST I U 0 0 X
ft'£GX (OOOD) X X - - - - -

fBSOWTE VAllE OST (-- IOSTI I U 0 0 X
FABSX (OOOF) X X - - - - -

OPY-SI9f SRC <-- SRC with OST's sign I U 0 0 X
FCPYSGNX (0011) XDorS XDorS XDorS - - - - -

I£XT-AfTER SRC (-- next after SRC toward O5T I U 0 0 X
Ft£XTX (0013) X X X x x x - x
Ft£XTD (0813) 0 0 0 x x x - x
Ft£XTS (1013) S S S x x x - x

C-5

68.,l.,l.,1 Sh'WE Engine

C2.3 Ctniersions (Entry Point FP68K)

OQeration

a:ttVERT

Bin to Bin
FX2X (0010)
FX20 (0810)
FX2S (1010)
FX2C (3010)
FX21 (2010)
FX2L (2810)

FD2X (OBOE)
FS2X (100E)
FC2X (3OOE)
FI2X (2OOE)
FL2X (2BOE)

Bin to Dec
FX2DEC (OOOB)
FD20EC (0808)
FS20EC (1008)
FC20EC (3OOB)
FI20EC (2008)
FL20EC (2808)

OQerands and Data T~ges

OST (-- SRC
X X
D X
S X
C X
I X
L X

X D
X S
X C
X I
X L

DST <- SRC according to SRC2
Dec X Decform
Dec D Decform
Dec S Decform
Dec C Decform
Dec I Decform
Dec L Decform

(First SRC2 is pushed, then SRC, then OST.)

Dec to Bin
FDEC2X (0009)
FDEC2D (0809)
FDEC2S (1009)
FDEC2C (3009)
FDEC21 (2009)
FDEC2L (2809)

DST <-- SRC
X Dec
D Dec
S Dec
C Dec
I Dec
L Dec

C-6

Exceptions

IUD 0 X
x - - - -
x x x - x
x x x - x
x - - - x
x - - - x
x - - - x

x - - - -
x - - - -

I U 0 D X
x - - - x
x - - - x
x - - - x
- - - - x
- - - - x
- - - - x

I U 0 D X
- x x - x
- x x - x
- x x - x
x - - - x
x - - - x
x - - - x

'i'UiC/(Reference Guide

C.2.4 Compare and Classify (Entry Poirt FP68K)

Operation

a:JPfI£

No invalid
far unordered
FO'PX (0008)
FCMPD (0808)
FCMPS (1008)
FCMPC (3008)
FCt'PI (2008)
FCMPL (2808)

Operands and Data Types Exceptions

Status Bits <-- <relation> 1 U a 0 X
where DST <relation> SRC

X X x----
X 0 x----
X S x----
X C x----
X 1 x----
X L x----

(invalid only for signaling NaN inputs)

Signal invalid
if unordered
FCPXX (OOOA)
FCPXD (080A)
FCPXS (looA)
FCPXC (300 A)
FCPXI (2OOA)
FCPXL (280A)

Status Bits (-- (relation> I U a 0 X

<relation>

DST > SRC
O5T (SRC
DST = SRC
DST & SRC unordered

where DST (relation> SAC
X X x----
X D x----
X S x----
X C x----
X I x----
X L x----

Status Bits
X N Z V C
o 000 0
1 1 0 0 1
o 0 100
o 0 0 1 0

ClASSIFY <class> <-- class of SRC
<sign> (-- sign of SAC

I U 0 0 X

DST <-- (-l)A<sign> • <class>

FCLASSX (00 lC) I
FCLASSD (08lC) I
FCLASSS (lOlC) I

X
o
S

C-7

~ick Reference Guide

SRC (class> I SRC (sign>

I
signaling NaN 1 I positive 0
quiet NaN 2 I negative 1
inrinite 3 I
zero 4 I
normalized 5 I
denormalized 6 I

C.2.5 Environmental Control (Ertry Point FP68K)

Operation
Q:J' DNIIUtENT
FGETENV (0003)

SET EHVIIUtENT
FSETENV (000 1)

Operands and Data Types
OST (-- EnvWrd

I

EnvWrd (-- SRC
I

Exceptions
I U 0 0 X

I U 0 0 X
x x x x x

(exceptions set by set-environment cannot cause halts)

lEST E>a:EPTIOf
FTESTXCP (00 18)

SET E>a:EPTIOf
FSETXCP (00 15)

AUBUE EN1RY
FPROCENTRY (00 17)

AUBUE EXIT
FPROCEXIT (0019)

Zbit (-- SRC Xcps clear I U 0 0 X
I -----

EnvWrd (-- EnvWrd Art) SRC I U 0 0 X
I x x x x x

OST (- EnvWrd, EnvWrd (-- 0 I U 0 0 X
I xxxxx

EnvWrd (-- SRC AND current Xcps I U 0 0 X
I xxxxx

C-8

68:aI StWE Engine

C.2.6 Halt Control (Entry Poirt FP68K)

S£T HALT VEC1lR
fSETHV (x x05)

(£f HALT VEC1lR
fGETHV (0007)

HltVctr (-- SRC
L

O5T (-- HltVctr
L

C.2.7 ElerT1lrisy Fwdions (Entry Poirt ELEMS68K)

Operation Ogerands an~ Dat§ T~es

BfH:-E UGRIl1I1 OST (-- In(OST)
fOO (0000) X X

BfH:-2 LmfRIlIf1 OST (- log2(DST)
fLOO2X (0002) X X

BfH:-E Iml (LN1) OST <-- In(l+DST)
fLN1X (0004) X X

BfH:-2 Iml OST <-- log2(1+OST)
fLOO21X (0006) X X

8&:-E f)RHJffIAL OST <-- e"OST
fEXPX (0008) X X

81&:-2 f)(Il()£NTIAI.. OST <-- 2"OST
fEXP2X (OOOA) X X

8I&:-E E)(pl OST <-- e"OST - 1
fEXP 1X (OOOC) X X

8&:-2 E)(pl OST <- 2"OST - 1
FEXP21X (OOOE) X X

C-9

t;luick Reference Guide

I U 0 0 X

I U 0 0 X

Exc~gtioD§

I U 0 0 X
x - - x x

I U 0 0 X
x - - x x

I U 0 0 X
x x - x x

I U 0 0 X
x x - x x

I U 0 0 X
x x x - x

I U 0 0 X
x x x - x

I U 0 0 X
x x x - x

I U 0 0 X
x x x - x

68.,"0) SANE Engine t;'uick Reference Guide

INTEIER DRHNTIATIot DST (-- DST"SRC I U 0 0 X
FXPWRI (80 10) X X I x x x x x

BHRAl. DRHNTIATl04 DST (-- DST"SRC I U 0 0 X
FXPWRY (8012) X X X x x x x x

aJAl.IO INIERES I DST (-- compound(SRC2,SRC) I U 0 0 X
Fcor-FClH) (CO 14) X X X x x x x x

(SRC2 is the rate; SRI: is the nunber of periods.)

fItIJITY FfI:1(R DST (- annuity(SRC2,SRC) I U 0 0 X
FfHtJlTY (C016) X X X x x x x x

(SRC2 is the rate; SRC is the number of periods.)

S1I£ DST (-- sin(DST) I U 0 0 X
FSINX (0018) X X x x - - x

DElI£: DST (-- cos(DST) I U 0 0 X
FCOSX (oolA) X X x x - - x

TfI&NT DST (-- tan(DST) I U 0 0 X
FTANX (oole) X X x x - x x

fR:T1I&NT DST (- atan(DST) I U 0 0 X
FATANX (OOlE) X X x x - - x

RfNDI DST (- random(DST) I U 0 0 X
FRANOX (0020) X X x x x - x

C-I0

61A.'l'l? SANE Engine ~ick Reference Guide

C.3 Environment Word

The floating-point environment is encoded in the 16-bit integer format as shown
below in hexadecimal:

msb lsb
I-------------------------~-----I-------------------------------I I - I r t r t x I d I 0 I u I it - I R 1 R t X 1 01 0 I U II I
1-------------------------------1-------------------------------1
rounding exception rounding halt
direction flags precision enables

rounding directio~ bits 6000 rr
0000 -- to-nearest
2000 -- upward
4000 -- dowrMard
6000 -- toward-zero

exception flags, bits 1fOO
0100 -- invalid i
0200 -- underflow u
0400 -- overflow 0
0800 -- division-by-zero d
1000 -- inexact x

rounding precisio~ bits 0060 RR
0000 -- extended
0020 -- doubl e
0040 -- single
0060 -- Lll'DEfIt£O

halt enabled, bits 001f
0001 -- invalid I
0002 -- underflow U
0004 -- overflow 0
0008 -- division-by-zero 0
0010 -- inexact X

Bits 8000 and 0080 are undefined.
Note that the default environment is represented by the integer value zero.

C-ll

The StdUnit

Contents

1 ~i~ ___ 1

2 t=tIlCti~ ~ ___ ~_ 1

2.1 Initialization _ .. 1
2.2 String and Character Manipulation _ .. _ ... _ _ . __ .. _ . _ 1
2.3 File Name Manipulation _ _. 1
2.4 Prompting _ ... _ __ ... _ 2
2.5 Error Text Retreival 2
2.6 Workshop Support ... _ .. 2
2.7 Conversions __ _ _ _ _ 3

3 Ex8lTll)Jes __ 3
4 ~~ ___ 5

The StclJnit Unit

1 Introduction
StdUnit is the "standard Unit," an intrinsic unit that provides a number of
standard functions. It contains functions dealing with:

• Character and string manipulartion.
• File name manipulation.
• Prompting.
• Error messages.
• Special Workshop features.
• Conversions.

Workshop tools should use the unit wherever possible, especially for
prompting and Operating System error reporting, to make the Workshop
interface consistent.

Note: All names in StdUnit begin with the letters SUo This avoids name
conflicts when incorporating the unit into your code and identifies where
things come from.

2 Functional Areas

2.1 Initialization
StdUnit needs to be initialized before it can be used. Using the unit without
initializing it will often result in an address or bus error.

2.2 String and a-acter Manipulation
StdUnit provides a standard string type, SUStr; a type for sets of characters;
definitions for several standard characters (such as CR and 8S); and
procedures for case converSion, trimming blanks, and appending strings and
characters.

23 File Name Manipulation
File name functions let you determine if a pathname is 8 volume or device
name only; add extensions (such as .TEXT) to the file names (the procedure
knows the conventions about when extensions should and should not be
added); splitting a pathname into its three basic components--the device,
volume, or catalog component, the file name component, and the extension
component; putting the components back together into a file name; and
modifying a file name given optional defaults for missing volume, file or
extension components.

Note: Several of the procedures return overflow flags for identifying when a
file name component has exceeded its character limit. You may choose to

1-1

Lisa System Software Standard i,lnit

ignore the overflow condition .. particularly if you think it likely to occur only
in perverse circumstances.

Not.e: The string perameters to these procedures ere typed diffe.rently ..
sometimes SUStr's, or VAR SUStr's .. or SUStrP's (pointe.rs to SUStr's). This is
to avoid problems with Pascal string t.yping when using the procedures with
strings that are not SUStr's (e.g ... PathName's), and to take into account the
cases in which the parameters ere likely to be string constants.

2.4 Prompting
StdUnit provides a number of procedures to get characters, strings, file
names, integers, yes/no responses, etc ... from the console .. providing for
default values where appropriate.

Most of the prompting procedures return a PrompState indicating whether an
escape [CLE AR] was typed, whether the default was taken, or whether there
was a request for options with 1. The states returned are given for each
procedure. You can ignore the prompt stat.es you are not. int.erested in. For
example, if you dontt want to treat 1 as an option request .. you can ignore
the SUOptions state and not treat the ? returned as a special character.

2.5 Error Text Retrieval
StdUnit provides a mechanism to retrieve single-line error messages from
specially formatted error files. Error messages can be looked up by number
in one or more error files.

You can use the OS error file OSErrs.ERR to return a real message when an
OS error occurs (see Example 2, below). Note that OS errors are also
returned via Pascal's IORESULT.

The ErrT 001 program lets you make your own compacted message files.
Using this error mechanism.. you can add and modify messages without
recompiling your program. ErrTool is described in the Workshop l.,1ser's
Guide, Chapter 11, The Utilities.

A call t.o retrieve a message opens the error file, searches the directory for
the error number, finds location of the message, and returns the text.

A program can use StdUnit to access more than one error file
simultaneously. For example, your program can access different. files for OS
error messages and your own messages.

2..6 WcB'kshop SUpport
Special Workshop functions let you:

• stop the execution of an EXEC file in progress.
• Find out the name of the boot and current prefix volumes (SysVols).
• Use a super-RESET that will try to open a file first on the prefix

volume, then on the boot volume, then on the current process volume.

1-2

Lisl1 S}lStem Software stl1nd8Td Unit

2.7 Conversions
Conversion procedures let you convert from integers and longints to strings,
and from strings to integers and longints.

3 Examples

Example 1

Assume we are going to prompt for an output file name (OutFName) and that
we already have the input file name (InFName). We will use SUSplitFN to
split the input file name into its various components. Then we will prompt
for the output file name (with SUGetFN) USing the volume and file name
components of the input file name as defaults but with a .ERR extension.
We then do a CASE on the prompt state (PState) returned by SUGetFN. The
will terminate if the file specification is an escape [CLE AR]; say that no
option are available if ? is typed as an option request; prompt again if no
file is specified, since we want to require an output file; and fall through if
the default is accepted or some other file is specified. Note that we only
have to check for the prompt states we are interested in for special
handling.

9999:
NUlE ('Hale or E'r.ror output file I);
SUSplitFH (IInfN8IIe, 1V01N, 1fN, Ext);
SlI3etFH (PrtAtale, PState, VolN, FN, • _ElRI);
CASE PState Of

SlEscape: EXIT (E:r:rfileP); {exit rr. progrlll}
SlIlptioos: I£GIN

NUlELH (INo options are available. .);
mro 9999-

EJt)- '

SIMone: ooro 9999;
EJt); {CASE}

1-3

Lisa System Software Standard /..,1nit

Example 2

Suppose we have just made a Pascal lIO call and want to report an error
(along with the OS message text) if we receive a nonzero IORESUL T. Note
that we copy IORESUL T into our IOStatus variable so that the subsequent
WRITELN will not reset the value of IORESUIL T before we get a chance to
use it. (Ervtsg should be a SUStr.)

If ImESULT <> 0 1tEN
££GIN

IOStatus := ImESULT;
NUlELN (1Er.rar opening input tile. I);
9.E:r.rText ('Os£r.rs.ERR·, lOSt at us, 1Btsg);
ItRllELN (Btsg);

EM>;

1-4

Lisa System Softw.sre Stand8l'rJ Unit

.. Hertace

t Copyri;ht 1983, 1984~-AP~le -c;;p~;:ctt~~ ~ ---------------------}}
{ }
{ This unit provides a number of standard type definitions and a collection }
{ of procedures which perform a variety of common functions. The areas }
{ covered are: }
{ (1) String and Character manipulation }
{ (2) File Name Manipulation }
{ (3) Prompting }
{ (4) Retrieval of messages from disk }
{ (5) Development System Support }
{ (6) Conversi ons }
{ }
~ Fre~~~~~~-2::~ ___ ~

{$SETC ForOS11orHigher := TRlE}

{$R-} { make it fast, no range checking}
{$S SULib }

~IT StdUni t;
INTRINSIC;

INTERFACE

USES
{$U libOSlSySCall.obj } SySCall, { for definition of PatHName, etc. }
{$U litilllPasLibCall.obj } PasLibCall,
{$U Ii bPlIPPasLibC .obj } PPasLibC;

(IN)T
Sl.t1axStrLeng = 255;
~ullStr =' ';
SUSpace = ' , ;
SlDrcr:R = 13;
Sl.t1axPNLeng = 66;
Sl.I1axVNLeng = 33·
SlJ1axFNLeng = 32;
SUVolSuffix = I_I;

TYPE

{ max length of path name }
{ max length of volume name, includes leading I-I

{ maximum length of file name }
{ suffix or end of device or volume name }

SUSetOfChar = SET OF CHAR;
SUStrP = "SUStr;

1-5

Lisa. System Software StBndBId Unit

SUStrP = ASUStr;
SUStr = STRING[255];
SlNolName = STRING [SlJ1axVNLeng];
SUfile = fILE·
SUfileP = ASUfile;
PromptState = (SUOefault~

Sl£scape~
Sl.None~
SUOptions~
SlNalid~
SUInvalid
);

the default (if any) was chosen) }
the "Clear" key was pressed }
nothing specified in response to prompt
"?" was entered--ie, an option query }
valid reponse }
invalid reponse--eg, non-number to SUGetInt}

ErrTextRet = (SUOk~
SUBadEfOpen~
SUBadEfRead, {
SUErrNNotfound {

successful }
could not open error file }
error reading error file }
error number not found }

);
ConvNState = (SUValidN~

SUNoN~
SUBadN~
SLNJverflow
);

V~

{ val i d number }
{ no number -- nothing specified}
{ invalid number }
{ overflow -- number too big }

SUOsBootV : SlJVolName; {The volume the OS was booted from }
SlJ1yProcV : SUVolName; {The volume MyProcess was started from }
SUBel1, SUBac kSp ace, SUCr~ SUTab~ Sl.Esc~
SUDl~ SUNul : CHAR; {predefined ch vars } {ff 1/23/84}

SUNullS : SUStr; { predefined str var }
SUKeyBoard : INTERACTIVE; { non-echoing console, used by SUGetCh }

{ff 2/29/84}

{============================== INIT AND DONE ===============================}
PROCEDl.RE SUI ni t;

{ Should be called before using rest of unit. On the OS this opens
"-KeyBoard" . It also initializes the. standard character variables.

PROCEDl.RE SlDone;
{ Can be called when done using unit (although this is not strictly

necessary. On the OS this closes "-KeyBoard li
•)

{============================ STRINGS AND CHARS =============================}
fl..tCTION SUUpCh (Ch : CHAR) : CHAR;

{ SWpCh returns the ch that was passed, uppercased if it was lower
case. }

1-6

Lisa System Software stt1l'1d8rd Unit

Ft...tCTION SULowCh (Ch : OiAR) : DiAR;
{ SULowCh returns the ch that was passed~ lowercased if it was upper

case. }

PROCEDl..RE SUJpStr (5: SUStrP);
{ SUUpStr uppercases the string that is passed.

PROCEDI..R:: SULowStr (5: SUStrPl;
{ SULow5tr lowercases the string that is passed. }

Fl.N:TION SlEqStr (51: SUStrP; 52: SUStrP) : EOJLEAN; {ff 2/29/64}
{ SUEqStr returns TRUE if the two strings are equal (ignoring case). }

Fl...tiCTION SLEq2Str (51: sustrP; 52: SUStr) : EOJLEAN; {ff 3fl /84}
{ SUEq2Str returns TRUE if the two strings ere equal (ignoring case).

This variant of SlEqStr allows the second parameter to be a constant.}

PROCEDURE SUTrimLeading (5: SUStrP); {ff 2/29/84}
{ SUTrimLeading removes the leading blanks and tabs in the passed

string. }

PROCEDURE SUTrimTrailing (5: SUStrP); {ff 2/29/84}
{ SUTrimTrailing removes the trailing blanks and tabs in the passed

string. }

PROCEDl.RE SUTrimBlanks (5: SUStrP);
{ SUTrimBlanks removes leading and trailing blanks and tabs in the

passed string. }

PROCEDl.RE SUAd£h (S: SUStrP; Ch : DiAR; Max5trLeng : INTEGER;
VAR Overflow : EOJLEAN);

{ SUAd£h appends the passed ch to the end of the passed string.
OverFlow is set to TRUE if adding the ch will cause the string to be
longer than Max5trLeng. }

PROCEDURE SUConcat (51: SUStrP; 52: SUStrP);
{ SUConcat appends the second passed str to the end of the first passed

string. It is assumed that the target string is of sufficient size to
accomodate the new value. }

PROCEDl.RE SUAddStr (51: SUStrP; 52: sustrP; Max5trLeng : INTEGER;
\/M Overflow : BOJLEAN);

{ SUAddStr appends the second passed str to the end of the first passed
string. OverFlow is set to TRUE if adding the second string will
cause the resulting string to be longer than MaxStrLeng. }

1-7

Liss System Software stsndsrd Unit

PROCEDURE SUSetStr (Oest: SUStrP; Src: SUStrP);
{ SUSetStr sets the target string (Oest) to the given value (Src) by

copying the value onto the target. It is assumed that the target
string is of sufficient size to accomodate the new value. }

PROCEDURE SUCopyStr (Oest: SUStrP; Src: SUStrP; Start, Count: INTEGER);
{ SUCopyStr sets the destination string (Oest) to the specified

substring of the source string (Src) by copying the appropriate part
of the source to the destination. It is assumed that the destination
string is of sufficient size to accomodate the new value, and that the
Start and Count values are reasonable. }

{================================ fILE NAMES ================================}
flH:TI~ SUIsVolNerne (fN: SUStrP): EOlLEAN;

{ SUIsVolName returns a boolean indicating whether the passed file nerne,
fN, is a volume or device name (i.e., not a full file name) }

PROCEDURE SUVolPart (PathN: SUStrP; VoIN: SUStrP); {ff 2/29/84}
{ SUVolPart extracts the volume name part of a pathname (or catalog

specification). }

PROCEDURE SUAddExtension (fN: SUStrP; OefExt: SUStr;
MaxStrLeng: INTEGER; VAR Overflow: BOOLEAN);

{ SUAddExtension will add the default extension, DefExt, to the end of
the file name, S, if the extension is not already present. If the
file name ends with a dot, the dot will be removed and no extension
will be added. If the pathname is a device or volume name only no
extension will be added. OVerflow is set true if adding the extension
will overflow the string (determined using MaxStrLeng). }

PROCEDURE SUSplitfN (PathN: sustrP; CatN: SUStrP; fN: SUStrP;
Ext: SUStrP);

{ SUSplitfN splits a PathName into its catalog, file name, and file
name extension components. }

PROCEDURE SUMakefN (PathN: SUStrP; CatN: SUStrP; fN: SUStrP; Ext: SUStr;
VAR OVerflow: BOOLEAN);

{ SUMakefN constructs a PatHName from its catalog, file nerne, and
file name extension components. The OS CatN's are assumed to have a
leading "_". Overflow is set if any of the file name components are
too long. This procedure will not create a file name over SUMaxPNLeng
chars long.}

PROCEDURE SUChkfN (fN: SUStrP; VAR PState: PromptStat e; DeNol: SUStr;
DeffN: sustr; OefExt: SUStr);

{ SUChkfN checks a file name specification, putting result type in

1-8

Lisa System Software Standard Unit

PState. If no file name is given/ then DeffN is used. If fN does not
have DefExt in i t,t then the extension is appended. If no volume is
specifed then the DefVol is used. PState is set appropriately:

PState = SUOptions if I?' is hit to ask for options
PState = SUDefault if nothing specified when a default is present
PState = SUNone if default overriden with .,. or if CR with no

default
PState = SUlnvalid if one or more of the file name components

overflowed
PState = SUYalid otherwise}

{================================ PROMPTING =================================}
PROCEDURE SUGetCh (YAR Ch: CHAR);

{ SUGetCh reads a character from the console without echoing it and}
{ wi thout interpreting (cr) as <SP>,f as Read (Ch) does. }

PROCEDURE SUGetLine (S: SUStrPi VAR PState: PromptState);
{ SUGetLine reads a line from the console a character at a time/

performing its ~Nn line editing. PState is set appropriately:
PState = SUEscape if <clear> was hit.
PState = SUValid otherwise.}

PROCEDL~ SUGetStr (S: SLStrP; YAR PState: PromptState; DefVal: SUStr);
SUGetStr reads a string from the console; it is lil<e SUGetLine wi th
the addition of defaults. PState is set appropriately:

PState = SUDefault if <cr) only was hit; S is set to DefVal.
PState = SUEscape if <clear> was the first character hit.
PState = SUValid otherwise.}

PROCEDURE SUGetfN (fN: SUStrP,; VAR PState: PromptState,; DefVol: SUStr;
DeffN: SUStr,; DefExt: SUStr);

{ SUGetfN reads a file name from the console" with result type in
PState. SUGetfN will print out any defaults in brackets (such as
[fOO] [. TEXT]) before prompting for the file name. If no file name
is give~ then DeffN is used. If fN does not have DefExt in it ..
then the extension is appended. If no volume is specifed then the
DefVol is used. PState is set appropriately:

PState = SUEscape if <clear> hit
PState = SUOptions if I?' is hit to ask for options
PState = SUDefault if nothing specified when a default is present
PState = SUNone if default overriden with I,' or if CR with no

default
PState = SUInvalid if one or more of the file name components

overflm'led
PState = SUValid otherwise}

1-9

Lis8 Sjlstem Software

PROCEfl.RE SlEetInt (VAR I: INTEGER; VAR PState: PromptState;
DeNal: INTEGER);

Sl8TIdsrd l.,1nit

{ SUGetInt reads an INTEGER from the console, with PState set as in
SUGetStr, except that PState = SUlnvalid when a non-numeric is input.}

PROCEDt...R: SlMaitEscOrSp (VAR PState: PromptState);
{ SUWaitEsdOrSp prints a message 'Type <space> to continue, <clear> to

exit.' & waits for the user to hit a <sp> or <clear>, setting PState
appropriately:

PState = SUEscape if <clear> was hit
PState = SUVa1id if <sp> was hit }

PROCEDURE SlJ.tIai tSp;
{ SUWaitSp prints a message ('Type <space> to continue.') and waits for

the user to hit a <sp>. }

PROCEDt...R: St1ietChInSet (VAR Ch: CHAR; Chars: SUSetOfChar);
{ SUGetChInSet reads characters from the console (without echoing) until

a character from the given set is typed. The accepted character is
echoed and an end-of-line is written. The character matching ignores
case. }

FLtCTlrn SLGetYesNo : BOOLEAN;
{ SUGetYesNo prints the message "(Y or N) II and reads characters from the

console (without echoing) until a 'y', 'y', In', or 'N' is typed. If
a 'y' is typed "Yes" will be printed followed by an end-of-line; if
'n' is typed "No" will be printed. The appropriate boolean value is
returned. }

F'Lt£TH1-l SlIGetBool (Default: BOOLEAN): BOOLEAN;
{ SUGetBool prints the message "(Y or N) [<defaul t >] .. and reads

characters from the console (without echoing) until a 'y', 'y', In',
'W, space or return is typed. If a 'y' is typed "Yes" will be
printed in the place of the default. If In' is typed "No" will be
printed. If a space or return is typed the default is used. The
appropriate boolean value is returned. }

{=========================== ERROR:TEXT RETRIEVAL ===========================}
PROCEDURE SUGetErrText (ErrFN: SUStr; ErrN: INTEGER; ErrNsg: sustrP;

VAR ErrRet: ErrTextRet);
{ SUGetErrText retrieves error message text, given an error number and

and error file to look the error up in. The error file should have
been generated by the error file processor. SlIGetErrText use
SUSysReset to open the error file. }

PROCEDURE SUErrText (ErrfN: SUStr; ErrN: INTEGER; ErrMsg: SUStrP);

1-10

Lisa SJ,Istem SOftw8TtJ' stlmd8rd Unit

{ SUErrText retrieves error message text, just as does SUGetErrText;
however, if the t ex tis not obt ai nabl e due to a non-SUOk ErrRet val ue
from SUErrText, SUErrText will return the string

"Error message text not available." }

{============== ••• ==.= •• = •• == DEV. SYS. SUPPORT =============================}
PRCCEDl..RE SUStoJfxec (VAR ErrNum: INTEGER);

{ Should be called to stop the current exec file if an error occurs in a
progrem running under an exec. Returns any error conditions
encountered in closing the exec file in the errnum var paremeter.
Informs the shell that the exec file was terminated due to an error. }

PROCEDl..RE Sl.CloseExec (VAR ErrNlI'R: INTEGER); {ff 3/7/84}
{ Should be called to stop the current exec file only if you want to do

so without informing the shell that the exec file was terminated due
to an error. You should probably use SUStoJ£xec unless you have a
good reason to use this alternate version. }

PROCEDl..RE SUInitSysVols;
{ Initializes "Sl.t1yProcV" and "SUJsBootV", the name of the volume on

which my process was created and the name of the volume which the OS
was booted off of. A message may be printed if there is trouble
getting this information from the OS. This can be called more than
once; it will only make the OS calls the first time. }

PROCEDl..RE SUSysReset (F : SUFileP; FN : sustr; VAR IOStatus : INTEGER);
{ SUSysReset is for opening system files, and will try the prefix, boot,

and current process volumes (in that order) when trying to access a
fi 1 e . SUSysReset assumes that the fi I e nerne fN does not have a vol ume
name. SUSysReset me:yo sometimes have to call SUlnitSysVols. }

{=============================== CONVERSIONS ================================}
PROCEDl..RE SUIntToStr (N : INTEGER; S : SUStrP);

{ SUIntToStr converts an integer into its string form; The string which
S pOints to should be of length)= 6 (5 digits + sign). }

PROCEDl..RE SULlntToStr (N : LON:iINT; S : SUStrP);
{ SULlntToStr converts an longint into its string farm; The string

which S pOints to should be of length)= 11 (10 digits + sign).

PROCEDl..RE SUStrToInt (NS : SUStrP; VAR N : INTEGER;
VAR CState : ConvNState);

{ SUStrTolnt converts a string to an INTEGER. Leading and trailing
blanks and tabs are permitted. A leading sign ['_', '+' 1 is
permitted. The CState variable (conversion state) will be set to

1-11

Lisa System Software standard Unit

indicate if the number was valid, if no number was present, if an
invalid number was specified, or if the number overflowed. }

~ SUStrToLlnt (NS : SUStrP; VAR N : LCNiINT;
VAR CState : ConvNState);

{ SUStrToLInt converts a string to a LONGINT. It behaves just like
SUStrTolnt otherwise. }

1-12

The ProgCorrm Unit

Contents

1 lrItroductioo ___ 1

2 fJrogCormn Routines ___ 1

2.1 Initialization ... _ 1
2.2 Set-Next-Run and the Return String _ 1
2.3 The Communications Buffer .. 2
2.4 Reading from and writing to the Communications Buffer 4
2.5 Internal Workshop Funct.ion ...•..... 4

3 Intert~. _______ . _______ . __ . ________________ . __ 5

The ProgCOITI'Tl llit

1 Introduction
ProgComm is an intrinsic unit in SULib that allows programs to communicate
with the shell and with other programs. Three basic mechanisms are
provided:

• Set-Next-Run Command. A program can tell the Workshop shell what
to run next. The specified program will be run after the current
program is done, taking precedence crver even an exec file in progress.

• The Program Return string. The return string can be set by your
program and accessed from the exec processor (via the RETSTR
function). This allows exec scripts to be written that make choices
based on program results.

• The Communication Buffer. The communication buffer is a lK byte
buffer global to the Workshop for communication between programs. A
set of primitives supporting character- and line-oriented I/O to and
from the buffer is provided.

These mechanisms can be used in conjunction with each other. For example,
a program can write a series of invocation arguments to the communication
buffer and then tell the shell which program to run next. This second
program can check the communication buffer to find its arguments.
Programs can be written so that, by convention, they first check the
communication buffer for their arguments, and then prompt for input from
the console only if the arguments are not found in the buffer.

2 ProgConm Routines
This section describes the ProgComm unit interface.

2.1 initialiZation
The PCInit procedure initializes the ProgComm unit so that a program may
use it.

Procedure PClnit;
PCInit should be called before using the ProgComm unit. The program's
return string (RETSTR in the exec language) is initialized to the null string.

2.2 Set-Next-Awl and the Rehw'n string
The PCSetRunCmd and PCSetRetStr procedures let a program set what
program will run next and pass back a return string to the exec processor.
The SUStr type comes from the Standard Unit (StdUnit in SULib), which
provides a number of string-manipulation routines.

1-1

Lisa S;lStem Software ProgComm

Procecb'e PCSetRunCmd (RC : sustz);
PCSetRunCmd lets a program tell the shell what program or exec file to run
after the current program terminates" allowing program chaining. RC, the
run command passed to PCSetRunCmd" should be a string with the same
program pathname or exec file invocation you would give to the Workshop
Run command. The run command set in this wfroJ will take precedence over
any keyboard type-ahead and over artoI pending exec file commands.

If you want to use PCSetRunCmd to run a Workshop tool normally invoked
from the Workshop menu linel set RC to the two-character string consisting
of an escape (CHR(27) and the appropriate menu command letter. This is
necessary because typing E to invoke the Editor is not always the same as
saying Run EditOf.OBJ. The Run command looks for Editor.OBJ on the three
prefix VOlumes, while the E menu command looks on the Workshop boot
volume first and then on the prefix volumes. (Note that only some items in
the Workshop menu are actually separate tools that can be Run.)

Starting to run an exec file while you are already funning another exec file
causes the first one to be terminated so the second can run. This means
that if exec file A runs program P, and P calls PCSetRunCmd to run exec
file B .. then, when program P terminates, exec file A will also be terminated
so exec file B can run. Exec file A will not be resumed when exec file B
has completed.

Procedla"e PCSetRetstl" (RS : SUStr);
PCSetRetStr lets a program set a return string that can be accessed through
the exec processor's RETSTR function. This lets exec files make choices
based on information passed back to the shell by cooperating programs. How
the return string is used and interpreted is up to you, and depends on what
sort of information you want to pass back to the exec processOf.

2..3 The Conmunicaion Buffer
The following procedures and functions operate on the communication buffer,
a lK byte buffer global to the Workshop shell (t.hat is .. it stfrojS around
between program invocations). The buffer can hold any type of information;
a standard set of functions is provided for Pescallike character- or
line-oriented access to the buffer.

Following are some constant" type .. and variable declarations from the
ProgComm interface which relate to the cemmunication buffer.

cmsr
{ communication buffer content types }
~one = -1; {nothing in buffer }
PeArly = 0; { for PCReset to match any content type }
PCText = 1; { text, as supported by PCGets & PCPuts }
PCBu~8X = 102~ {max buffer index, i~ bufr is lK bytes }

1-2

Lisa System Software ProgComm

TtPE
PCBuf'.rP = ~i { pointer to bufr }
PCBufr = PfDED RAY [0 .. PCBut.dtax] or DtfRi

VIR
PCButrPtr : PCBuf'.rPi { points to bufr after successful open }

The communication buffer is given a type when it is opened for writing with
PCReWrite. This type will be used to determine whether a potential reader
trying to open the buffer with PCReset will be successful. The intent is to
prevent reading of the buffer when the contents are not of the type expected
by the reader. Three predefined constants are provided for buffer-typing:
PCNone means that the buffer has no contents; PCT ext means that the buffer
contains standard text with CR line delimiters; and PCAny matches any type,
allowing a reader to override the typing mechanism. Other buffer content
types (such as mouse events) may be defined by users, choosing a number to
identify the new type that doesn't conflict with the predefined types. The
only restriction is that communicating programs must have compatible
conventions. To use the buffer for something other than text, use PCBufrPU
to access the buffer (using whatever means of interpretation of the buffer is
desired).

The buffer also has an access key; which functions in much the same WflY as
the content type (i.e., writers set it and readers must match it to gain access
to the buffer). The intent of the access key is to prevent programs from
reading the buffer when they are not the intended recipient. The access key
should be established by agreement between communicating programs. If a
buffer writer does not care about preventing unintended access to the buffer,
the null string can be used for the access key. Note that the access key is
case sensitive.

Following are the routines for opening and closing the communication buffer.

Procedure PCRe¥Irite (WriteType: INTEGER; Key: SUStr);
PCReWrite opens the communication buffer for writing. The content type
and access key are set. PCBufrptr is set to point to start of the
communication buffer. A PCReWrite will override any previous use of the
buffer; that is, it will flush any previous buffer contents. YJriteType should
be an integer identifying the type of data you plan to write to the buffer. If
you are planning to use the text-oriented primitives provided, WriteType
should be PCText; otherwise, YJrite Type should be some integer established
by agreement between the communicating programs. Key should be a string
also established by agreement between the communicating programs. A
useful form of key is one that identifies the intended reCipient, so that
contents left in the buffer are not read inadvertently by programs for which
they were not intended.

1-3

Lisa SJ,lStem Software ProgComm

Function PCReset (ReadType: INTEGER; Kev: sustr): BOOLEAN;
PCReset opens the buffer for reading. The boolean result will indicate
whether the open was successful. The open will fail if ReadType does not
match the type set by the last buffer writer or if Key does not match the
key set by the last writer.

Functioo PCClose (KillEkl'r: BOOLEAN; Kev: SlJStr): BOOLEAN;
PCClose will close (or empty) the communication buffer. If KillBufr is true,
the buffer will be emptied. In general, the buffer can be read more than
once (by multiple readers) if desired. If a reader is finished with the buffer
and knows that no one else should read the buffer, PCClose should be called
with KillBufr set to true. The call to PCClose will fail if the access key
does not match. PCClose may be used to flush buffers that were written by
someone else,. as long as you know the access key. PCClase may be called
without calling PCReset or PCReWrite first.

2.4 Reading b'c:m and 'Nriting to the Corrmunication Buffer
The following functions provide a text-oriented buffer facility with Pascallike
character- and line-oriented reads and writes.

Functioo PCPutCh (Ch: CHAR): BOOlEAN;
PCPutCh puts a cheracter into the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is full or if the
buffer was never opened successfully for writing. Note that PCPutCt(CR) is
equivalent to PCPutLine(tI).

Ftwdioo PCGetCh (VAR Ch: CHAR): BOOLEAN;
PCGetCh gets a character from the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is empty or if
the buffer was never opened successfully for reading.

Fwdioo PCPutLine (L: SUStr): BOOLEAN;
PCPutLine puts a line into the buffer. A CR is put in the buffer following
the string passed to PCPutLine. The boolean result indicates whether the
operation was successfuL It fails if the buffer is full or if the buffer was
never opened successfully for writing.

FlmCtion PCGetLine (VAR l: sustr): BOOLEAN;
PCGetLine gets a line from the buffer, where a line is the text from the
current buffer pointer to the next CR or the end of file (whichever comes
first). The boolean result indicates whether the operation was successful. It
fails if the buffer is empty or if the buffer was never opened successfully
for reading.

1-4

Lisa System Software ProgComm

2..5 InteI"nal e,...,tmkshop Function
You will notice the following function in the ProgComm interface; it is used
for special-purpose communication between the Workshop shell and various
Workshop tools.

Fooction PCShellCmd (Cmd: INTEGER; P: SUStrP): BOOlEAN;
For internal use by Workshop tools only. Don't use this function.

1-5

Lisa System Software

3 Interface

INTERFACE

USES
{$U StdUnit } StdUnitJ

{$U ShellComm } ShellComm;

CONST

ProgComm

{ communication buffer content types for use with PCReset and PCReWrite }
PCNone = -1; { nothing in buffer)
PCAny = 0; { for PCReset to match any buffer content type }
PCText = ~ { text, as supported by PCGet's and PCPut's below }

PCBufrMax = 1023; { max Bufr index, ie, comm bufr is 1K bytes }

{ command constants for PCShellCmd)
PC_SetReallyStop = ~ {determines if SUStopExec really stops exec

files) iff 3/7/84)
PC_GetReallyStop = 2;
PC_SetUnSavedEdits = 6960; { tells if unsaved edits are left in the

editor) iff 3/12/84}
PC_GetUnSavedEdits = 8751;

TYPE
PCBufrP
PCBufr

= APCBufr; { ptr to communication buffer
= PACKED ARRAY [0 •• PCBufrMax] OF CHAR;

VAR
PCBufrPtr : PCBufrP; { will point to PCBufr after successful PCReset or

PCReWrite }

PRIJCEOl.R: PCl ni t;
{ PClnit should be called before using the ProgComm unit. One effect of

note is that the program's return string (RetStr) is initialized to the null
string. }

PROCEDURE PCSetRunCmd (Re : SUStr);
{ PCSetRunCmd enables a program to tell the shell what program (or exec

file) to run after the current program terminatesJ which allows program
"chaining". The run command set in this w~ will take precedence over any
keyboard type-ahead and over any pending exec file commands. }

PRIJCEOl.R: PCSetRetStr (RS : SUStrl;
{ PCSetRetStr allows a program to set a return string which m~ be

accessed via the Exec Processor's RETSTR funciton. This allows exec files to
make choices based on information passed back to the shell by cooperating

1-6

Lisa S}/Stem Softw8ITe PJ'ogComm

programs. How the return string should be used and interpreted is up to you~
and will depend on what sort of information you want to pass back to the exec
processor. (But in order to be a good citizen it is probably best to follow
whatever system-wide conventions emerge and prevail.) }

{ The following procedures and function operate on the COMMUNICATION BUffER~
which is a lK byte buffer which is global to the Workshop shell. The buffer
can hold essentially any type of information~ but a standard set of functions
is provided for Pascal-like character or line-oriented access to the buffer.

The communication buffer is given a TYPE when it is opened for writing
with PCReWrite. This type will be used to determine whether a potential
reader trying to open the buffer with PCReset will be successful. The intent
is to prevent reading of the buffer when the contents ere not of the type
expected by the reader. Three predefined constants ere provided for buffer
typing (PCNone which means the buffer has no contents; PCText which means that
it has standerd text with OR line delimiters; and PCAny which will match any
type~ allowing a reader to override the typing mechanism). Other buffer
content types (such a mouse events) may be defined by users~ choosing some
number to identify the new type which does not conflict with the predefined
types. We make no attempt here to provide a complete set of predefined types;
the issue is simply one of having compatible conventions (agreement) between
communicating programs. To use the buffer for something other than text~ the
variable PCBufrPtr may be used to access the buffer (using whatever means of
interpretation is desired).

The buffer also has an ACCESS KEY~ which functions in very much the
same way as the content type (ie~ writers set it and readers must match it to
gain access to the buffer). The intent of the access key is to prevent
programs from reading the buffer when they ere not the intended recipient. The
access key~ again~ is something that should be established by agreement
between the communicating programs. If a buffer writer does not care about
preventing unintended access to the buffer~ the null string can be used for
the access key. Note that the access key is case sensitive. }

PROCEOI..R: PCReWrite (WriteType : INTEGER; Key : SUStr)i
{ PCReWrite opens the buffer for writing. The contents type and access

key ere set. PCBufrPtr is set to point to the communication buffer. }
Fl...NCTION PCReset (ReadType : INTEGER; Key : SUStr): BOOLEAN;

{ PCReset opens the buffer for reading. The boolean result will indicate
whether the open succeeded. The open will fail if contents type and access
key do not match the type and key set by the last buffer writer.}

Fl...NCTI~ PCClose (KillBufr : BOOLEAN; Key : SUStr): BOOLEAN; {ff 2/2/84}
{ PCClose will close the buffer. If KillBufr is true the buffer will be

emptied. In general~ the buffer can be read more than once (by multiple
readers) if desired. If a reader is finished with the buffer and knows that
no one else should read the buffer~ PCClose should be called with KillBufr set
to true. The call to PCClose will fail if the access key does not match. }

1-7

Lisa S}.'Stem Softwsre ProgComm

Fl.tCTION PCPutCh (Ch :. CHAR) : BOJLEAN;
{ PCPutCh will put a character into the buffer. The boolean result will

indicate whether the operation was successful. It will fail if the buffer is
full or if the buffer was never opened successfully for writing. }

FltCTION PCGetCh (VAR Ch : OiAR) : BOOLEAN;
{ PCGetCh will get a character from the buffer. The boolean result will

indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FUNCTIONPCPutLine (L : SUStr) : BOOLEAN;
{ PCPutLine will put a string into the buffer, followed by a CR. The

boolean result will indicate whether the operation was successful. It will
fail if the buffer is full or if the buffer was never opened successfully for
writing. }

FUNCTION PCGetLine (VAR L : SUStr) : BOOLEAN;
{ PCGetLine will get a line from the buffer. The boolean result will

indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FLKTION PCShellCmd (Cmd : INTEGER; P : SUStrP): BOOLEAN; {ff 3/7/84}

1-8

QuickPort Prograrrmer1s Guide

Contents

Chapter 1
Irtroduction

1.1
1.2
1.3

Chapter 2

What is QuickPort? ... 1-1
Types of QuickPort Applications............................ 1-1
Additional Features ... 1-1

Using QuickPort
2.1 QuickPort Program Requirements........................... 2-1
2.2 Choices for QuickPort Applications 2-1
2.3 The QuickPort Execution Environment 2-2
2.4 The QuickPort User Interface 2-3

Chapter 3
Advanced Quj.ckPort Fes..es

3.1 Introduction to the Features 3-1
3.2 Text Input and the Input Panel 3-1
3.3 Text Output and the Text Panel 3-1
3.4 Graphic Output, the Graphic Panel, and Mouse Input 3-2
3.5 Required to Change Your Program 3-4
3.6 Procedures for All Applications............................. 3-4
3.7 Procedures for Using the Text PaneL 3-7
3.8 Procedures for Using the Graphic Panel 3-10
3.9 Printer Support ... 3-12
3.10 The Terminal Emulator 3-13
3.11 Procedures for the QuickPort Hardware Interface 3-14

Chapter 4
Bringing Your Applicaion to the Lisa Desktop

4.1 Adding the USES List Elements 4-1
4.2 System Configuration ... 4-2
4.3 Generating Your TooL .. 4-3
4.4 Installing Your Tool .. 4-4
4.5 The Icon Editor .. 4-5
4.6 Shipping Your Application 4-5

Appendixes
A The Standard QuickPort Menus.............................. A-1
B v-h'iting Your Own Terminal Emulator 8-1

Preface

About This ~
This manuel describes QUickPort, a set of private and intrinsic units that
facilitate porting Pascal programs to the Lisa desktop. This manual is
written for experienced Lisa Pascal programmers who are already familiar
with the Lisa Workshop and the Lisa Operating System and who understand
the concepts and conventions used by the Lisa User Interface. In addition,
those who intend to write terminal emUlators are assumed to know ClascaL

For material not covered in this manual, refer to one of the listed documents
for additional information:

• Operating System Reference f..1anuBl for the Lisa.

• Workshop User's Guide for the LisB..

• Lisa Internals "'1snual.

• Lisa User Interface Guidelines.

• Rn Introduction to CJIBCBl.

Chapter 1
Introduction

1-1 'Nhal is ~ckPort? ___ 1-1
1.2 Types of QuickPmt Applications ______________________________________ 1-1
1..3 Additional Features ___ 1-1

Introduction

1..1 What is QuickPort?
QuickPort is a set of private and intrinsic units that provide a fast and
reliable w~ to run Pascal programs in the Lisa Office System. By using
QuickPort, you can make a few changes in a typical Pascal program.. and it
will run on the Lisa desktop. Applications t.hat use QuickPort are integrated
so that you can cut and paste to and from other Lisa applications.
QuickPort also provides st.andard menus for all applications that use it.

12 Types of QuickPort Applications
Before you can use QuickPort to port. your applicat.ion to the Desktop, your
program must

• Run in the Lisa Workshop.

• Use only readins and wri teins for text input and output.

A Pascal program that runs in the Lisa Workshop and uses readl ns and
wri teins for text input and output is called a "vanilla" Pascal program.
Vanilla Pascal programs can be ported to the desktop with very few changes.

You can also use QuickDraw calls for graphics .. use the mouse to get input ..
and use a subset of the Lisa Hardware Interface. However, the addition of a
gl"aphic panel and use of the hardware interface involves more coding to
acheive the port than a vanilla Pascal program.

13 Additional Features
QuickPort also provides a set of additonal procedures for configuring the
panels, text output, graphic output, and for applications that use the hardware
interface. Using these features, you can increase the power of your
application. The additional QuickPort features are described in Chapter 3.

1-1

Chapter 2
Using QuickPort

2_1 <;)tIIckPc:It flrogr8l1l RecJ,dret1lel'U ____________________ e. _______________ 2-1

2.2 Choices tor QuickPmt Applications __________________ . _______________ 2-1

2.3 The QuickPmt Execution ErMrOrllllEK _______________ . _______________ 2-2

2.3.1 Using Operating System Calls _. _. _ _ .. _ 2-2
2.3.1.1 yield_CPU ... 2-2
2.3.1.2 Make..Pl'ocess _ 2-2
2.3.1.3 LDSNs (Logical Data Segment Numbers) 2-2
2.3.1.4 Terminate_Process, Kill_Process 2-3
2.3.1.5 Terminating the Program Abnormally 2-3

2_4 The QuickPc:lt lJser' lr1tertace _________________________ . _______________ 2-3

Using QuickPort

2_1 QuickPc:lt Program Requiremerts
Vanilla Pascal programs need nothing but the addition of one or two list
elements to the USEs stat.ement in its main program. A vanilla Pascal
program runs in the Lisa Workshop and uses only readlns and wri telns for
input and output. You can use QuickDraw, but there are some minor changes
required. See Section 3.4.1.1, QuickDraw Requirements, in Chapter 3, for
more information. If you use the Lisa Hardware Interface, you must modify
your program and use the QuickPort Hardware Interface. The QuickPort
Hardware Interface is a subset of the Lisa Hardware Interface; it is described
in Section 3.11, Procedures for the QuickPort Hardware Interface, in Chapter
3.

If your program is a vanilla Pascal program, you can either enhance it using
the QuickPort features described in Chapter Three, or port it directly to the
Lisa Desktop. If you wish to port your program to the Lisa Desktop without
using any of the additional QuickPort features, make sure your program
works in the QuickPort execution environment described in Section 2.3, and
then turn to Chapter Four: Bringing Your Application to the Lisa DeskTop.

22 Choices fer QuickPmt Applications
You can produce several different types of applications using QuickPort:

• Applications that produce text output only.

• Applications that use QuickDraw to produce graphic and/or text output.

• Graphic applications that use the QuickPort Hardware Interface to get
mouse input in the graphic panel.

QuickPort provides three panels: the text panel, the input panel, and the
graphic paneL The text panel saves all text output, unless the Don't Save
Buffer command is chosen from the Edit menu. Any application that
produces text output only gets a text panel automatically. The input panel
displays text that has not been read by the program. You can choose to
have the input panel or not; the default is no input panel. Any application
that produces graphic output only gets a graphic panel. Such programs can
use in addition, a text panel, and/or an input panel. The default is one
panel.

The text and graphic panels can both be scrolled vertically and horizontally.
The panels can be enlarged and shrunk to provide different views of the
output. Both panels can be split vertically and horizontally, allowing the
user to see different parts of the output at the same time.

2-1

~ickPort Programmer's Guide Using QuickPOTt

2.3 The QuickPtlt Execution ErMronmert.
One of the most important things to remember when using QuickPort is that
the Lisa Desktop is a multiprocessing intergrated environment and you can
affect the state of other applications running on the desktop if you don't
keep this in mind. Be particularly careful about using functions in the
QuickPort Hardware Interface, because these functions change the state of
hardware, thus affecting all applications (including the desktop).

QuickPort programs can be run in the background (inactive window) when
they are not waiting for input. When a program running in the background
needs input, it is suspended. Programs running in the background compete
with the active window for CPU time. Programs with long CPU-bound loops
should use either Yield_CPU or CPYield_CPU to yield the CPU to the
active window.
User actions such as pulling down the menus and clicking the mouse are
processed only when your program calls call screen I/O (WRITEs and READs,
etc.). If you have a long CPU-bound loop, be sure to use either Yield_CPU
or fJPYi el d_CPU .. so that your program will be more responsive to the user.
If you have a tight loop, there is no w~ for the user to break out of the
loop, unless the debugger is loaded and you can hit the NMI key to halt the
process. Be sure to put Yield_CPU, CPYield_CPU, or PAbortFlag in any
tight loops. Note that you must call QPConfi g to pass an .-period to your
program if you need to call PRbortFlag. OPConfig is described in Section
3.6 of Chapter 3.

2.3.1 Using Opersing system Calls
You can make any operating system calls, but remember that Lisa has a
multiprocessing environment.. Whenever a document is opened, a process
may be created (tools that handle multiple documents create one process
that handles one or more documents). If two documents are opened from the
same tool.. you have two processes running separate instances of the same
program. This could result in inconsistent data if tfri te_Datas and
Read_Datas .. or Rewri tes and RESETs are performed on the same file. If
this is undesirable, you should add additional code to your application to
check whether the file can be opened by more than one process.

2.3.1.1 Yield CPU
Yield_CPU gives the CPU to any other ready process, but does not handle
any user actions, such as pulling down menus.. and moving windows.
QuickPort provides an alternative procedure, CPYield_CPU, that allows the
user to pull down menus and move the windows around.

2.3.12 MakeJ)r0C8SS
If you call aakeJD"ocess in a QuickPort application .. the resulting processes
cannot do any screen input and output.

2.3.1.3 LDSNs (Logical Data Segment Ntmbers)
You cannot use a logical data segment number less than 5, or larger than 11.
Note that LDSN 5 is, by default, used by the Pascal heap. If you use a

2-2

~ickPort Progr8mmer~ Guide I...ising ~ickPQrt

Pascal heap larger than 128K bytes,. LDSN 6 and up will be used for the
heap. You can use PLIni tHeap to change the Pascal heap to a different
LDSN,. but make sure you don't collide with the system LDSNs.

• LDSNs 1-4 -- QuickPort

• LDSN 5 -- Default Pascal heap

• LDSN 11 -- (IJfN • -printer I,. RESET.. or REWRITE I -printer I

• LDSNs 12-16 -- LisaLibraries

2.3.1.4 Tenninate_Proc8SS1 Kill_Process
QuickPort programs should not call Terminate_Process or Kill_Process.
These calls will terminate the program,. leaving the user with no chance to
do anything with the output. If you need to terminate program execution,
use halt or drop through to the end statement of your program.
PROGRAM TERMINATED will appear on the screen, and the user will
be able to save and put awe:y,. coPY .. or print.

2.3.1.5 Terminating the Pr09lllTl Abnmmally
Tr.ntExceptionHandler is the standard QuickPort exception handler for
abnormal termination of a program. You can write your own terminate
exception handler,. but you must call TnantExceptionHandler immediately
in your exception handler. If this call is not made, the system will hang
because QuickPort will not have a chance to clean up and transfer control to
the desktop manager.

2.4 The QuickPot User IrUr1ace
QuickPort provides a standard user interface for its applications that is .. with
the exception of a few menu commands .. the same as the standard Lisa user
interface. Manipulating windows and using the mouse follow the standard
Lisa user interface,. as do opening and clOSing documents.

QuickPort provides some menu commands that are different from the
standerd Lisa menu commands. These commands allow the user to control
program execution. A standard Lisa application continuously loops to get and
process events. A QuickPort program,. however, may run from beginning to
end. When a QuickPort program reaches its end,. it will not respond to input
from the keyboard, and its window will remain open to allow the user to
view the output. At this stage,. the QuickPort application is idle, waiting for
one of the following menu commands:

• Set Aside -- Places the document (Without saving) in its icon on the
desktop. If the document is reopened, the application will still be idle.

• Save & Put AwfJtl -- Saves the document. The process is then
terminated. If this document is opened again,. the program will not run

2-3

9t/ickPOl't Progrsmmer's Guide Using qUickPort

immediately -- it is waiting for the Restart command. If the user
wants to browse through the document.. it is not necessary to use the
Restart command. Instead, use Save & Put Aw~, or Set Aside.

• Restart -- Restarts program execution.

QuickPort. applications are started, from the desktop, by tearing off a
document. from the stationery pad and opening the document.

The QuickPort menus are discussed in Appendix A.

2-4

Chapter 3
Advanced QuickPort Features

3_1 Introduction to the Feat.w'es ___ 3-1

3.2 Text Input and the Inpl.t Panel _______________________________________ 3-1

33 Text 0tq1ut Md the Text Panel ______________________________________ 3-1

3.4 Graphic Otq1ut, the Graphic Panel, and Mouse 1rIJd-------------- 3-2
3.4.1 QuickDraw Requirements 3-3

3..5 Required to Change Your Program ___________________ . _______________ 3-.4

3_6 Procedures tm All Applications _______________________ . _______________ 3-4

3.6.1 Configuring the Panels -- QPConfig 3-4

3.7 Procedures tm Using the Text Panel. ________________________________ 3-7
3.7.1 Changing the Terminal Parameters -- SetupTermPara .. 3-7
3.7.2 Getting Raw Input from the Console -- Vread '" 3-B
3.7.3 Clearing the Screen -- ClearScreen 3-B
3.7.4 Controlling the Cursor -- VGotoxy and MoveCursor..... 3-9

3.7.4.1 VGotoxy .. 3-9
3.7.4.2 MOJeCursor .. 3-9

3.7.5 Setting and Clearing Tabs -- SetTab and ClearTab 3-9
3.7.5.1 SetTab .. 3-9
3.7.5.2 ClearTab .. 3-9

3.7.6 Controlling Keyboard Input -- stop Input and startInput 3-10
3.7.6.1 Stoplnput .. 3-10
3.7.6.2 StartInput .. 3-10

3.7.7 Changing the Character Style -- ChangeCharStyle 3-10

3_8 Procedla"es tm Using the Graphic Panel_. ___ . ___ . ___ . _______ . ______ 3-10
3.B.l Mouse Routines .. 3-10

3.B.l.1 VGetMouse .. 3-10
3.B.l.2 MouseButton 3-11
3.B.1.3 MouseEvent•............. 3-11
3.B.l.4 WaitMouseEvent 3-12
3.B.l.5 WaitEvent ... 3-12
3.B.1.6 QPGrafPicSize•.......... 3-12

3_9 PrirUr Support
__ . ___________ . ___ . __________________________________ 3-~

3.10 Ttae TE!I"miI1al ErrMllatm' •• _._. ___ •• ______ • _______ •• _____ • ____ • _______ • __ 3-13
3.10.1 The Standard Terminal 3-13
3.10.2 The VT100 Terminal Emulator 3-13
3.10.3 The Soroc Terminal Emulator 3-14

3_11 Procedures fcrthe QuickPort Hardware Interface _______ . __ . ______ 3-14
3.11.1 The Mouse .. 3-14

3.11.1.1 Mouse Update Frequency 3-15
3.11.1.2 Mouse Scaling 3-15

3.11.2 The Screen ,; 3-16
3.11.2.1 Screen Size -- ScreenSize 3-16
3.11.2.2 Screen Refresh Counter -- FrameCounter ... 3-16
3.11.2.3 Screen Contrast -- ScreenContrast,

SetContrast .. and RampContrast 3-16
3.11.2.4 AutQmatic Screen Dimming -- DimContrast and

SetDimContrast .. 3-17
3.11.2.5 Automatic Screen Fading -- FadeDelay and

SetF adeDelay 3-17
3.11.3 The Speaker ... 3-17

3.11.3.1 Speaker Volume -- Volume and SetVolume .. 3-17
3.11.3.2 Using the Speaker --

Noise .. Silence, and Beep 3-18
3.11.4 The Keyboard ... 3-18

3.11.4.1 Keyboard Identification -- Keyboard 3~20
3.11.4.2 Keyboard State -- KeyIsDown and KeyMap .. 3-21

3 11.5 The Timers .. 3-21
3.11.5.1 The Microsecond Timer -- MicroTimer 3-2-1
3.11.5.2 The Millisecond Timer -- Timer 3-21

3.11.6 Date and Time -- DateTime, SetDateTime, and
DateToTime ... 3-21

3.11.7 Time Stamp -- TimeStamp, SetTimeStamp
and DateToTime .. 3-22

Advanced QuickPort Features

3.1 Introduction to the Featt.es
QuickPort provides a set of features that you can use to enhance your
application. The additional procedures and functions are for

• Configuring the text and graphic panels.

• Cont.rolling t.ext. output.

• Handling graphic output using the mouse for input.

• Providing printer support.

• Using the QuickPort hardware interface.

• Making use of the terminal emulators.

You can combine any of these procedures and functions within a QuickPort
application.

You can also write your own terminal emulator. To do this you must. know
enough Clascal to understand subclasses, methods, and overriding methods.
Read An Introduction to CJascsJ before attempting to write your own
terminal emulatof. See Appendix B, Writing Your Own Terminal Emulator for
more information.

The logical device, '-printer', behaves in much t.he same wtry as it does in
the Workshop, but also interacts with the Desktop's print manager. A section
on printer support is included in this chapter.

3.2 Text Input Sld the Input Panel
QuickPort programs get input in two WfJtlS: from the keyboard, and from the
clipboard. The input panel displays the text that has not yet been consumed
by the program. Text in the input panel comes from two sources: "type
ahead" text (text which is entered from the keyboard too quickly to be
echoed immediat.ely by the program), and text from the clipboard that will be
"pasted" into the text window. The 'Read Input from Clipboard' command
places t.he select.ed text in the input buffer. When t.he program does a read,
the text in the input buffer is read firstd. If the input buffer is empty, the
read waits for input from the keyboard or from a peste command.

33 Text Output and the Text Panel
The text output panel displays the wri teln output from the program. The
text panel corresponds to the Pascal device output and the logical device

3-1

~ic:kPort Programmer's Guide A(~lBnCed ~uickPort Features

'-console'. The text panel emulates a terminal display. The default size of
the screen area is 24 lines by 80 columns. The width of the text panel can
be changed either by the program, or by the user from the Setup menu. The
Setup menu is described in Appendix, A.

The text panel has a buffer ares that saves text as It is scrolled abO\le the
screen area. The size of the buffer area is increased automatically as lines
are saved. The size of the buffer is limited to the amount of memory
available to increase the size of the buffer. When the buffer size reaches
it.s limit., the lines scrolled off the top of the buffer area will not be saved.
The limit is approximately 3500 8O-character lines. The user can choose to
save or not save scrolled output using the Setup menu. The Edit menu is
described in Appendix A.

The screen area has a cursor that is affected by readlns and writelns
from the program. The cursor position is al ways:

• Inside the screen area.
• Relative to the top left position of the screen ares.

The cursor position is the insertion point for input. No menu commands
change the logical cursor position; it is controlled solely by the program.
The cursor pOSition is always visible when there is a read from the program.
In other words, if the panel has been scrolled so that the cursor position is
hidden, QuickPort scrolls back to the cursor pOSition when encountering a
read. The cursor home position is the top left position of the screen area.

3.4 Grephic output, the Graphic Panel, and Mouse Input
Graphics in QuickPort applications are created by QuickDraw. QuickPort
provides an option that allows you to choose two panels, one for text output
and one for graphic output, or one panel for both text and graphic output.
The graphic panel corresponds to the Workshop screen. The screen size is
720 pixels wide and 364 pixels high. The entire graphic panel is equal to
the screen area in the text paneL There is no buffer area in the graphic
panel because graphic output will not be scrolled out of the graphic panel.
All graphic objects created by the program are saved in the graphic panel
using a QuickDraw picture.

In the text panel, the mouse is used to select text. In the graphic panel,
mouse clicks are saved and passed to the program. Whenever the mouse
button is pressed inside the graphic panel, a mouse event, .ouseDown, with
the mouse location is saved. When the mouse button is pressed while the
mouse is moved, another mouse event, with different locations, is saved.
When the mouse button is released, a IIOUSeUp event is saved. To see if
there are any mouse events in the queue, call HouseEvent. HouseEvent
returns one event at a time, until there are no more mouse events in the
queue. When HouseEvent is called, if the mouse button is down.. control
will not be returned to the caller until the button is released. For this

3-2

~ickPort Programmer's Guide Advanced CluickPort Features

reason, VGetHouse should not be used after a call to HouseEvent, because
the mouse may be moved. Each mouse event stores a mouse location
indicating where the mouse button was pressed. VGetHouse lets you track·
the mouse location when the mouse button is not down.

For more information on MouseEvem., Refer to Section 3.8.1.3.

3.4.1 QuickDraw Requirements
Pascal programs that run in the Lisa Workshop and use QuickDraw, call
QDINIT and OpenPort (in the QD/Support unit). To use QuickDraw you must

• Remove the call to QDINIT end OpenPort. QuickPort initializes
QuickDraw and opens a grafPort for drawing to the graphic panel.

• Not open a picture in this grafPort since QuickPort uses a picture to
save the graphic output.

• Not customize low-level QuickDraw drawing routines in this grafPort.

If your program needs to use pictures .. you can open a picture in another
grafPort. If your program needs to redefine any of the QuickDraw low-level
routines .. you can do this in another gr af Port. If your application uses
multiple grafPorts .. you must switch to the QuickPort grafPort whenever you
want to draw to the screen.

If your application calls DrawPi ct ure .. you must call another QuickDraw
drawing rout.ine before calling DrawPicture. This is because QuickPort
opens the picture when the first QuickDraw drawing routine is encountered.
If DrawPicture is the first drawing routine encountered, QUickPort's picture
will be opened incorrectly because QuickPort can handle only one picture at
a time. Here is an example showing how to avoid such collisions:

GetPort (sysportptr); {saves system port}
OpenPort ('myPort); {references alternate port}
uyPicture := OpenPicture (thePortA.portRect);

... make your OuickDraw calls here

Cl osePi cture;
SetPort (sysportptr); {switches to system grafPort}
EraseRect (thePortA.PortRect); {opens system picture

-- any drawing routing can
be used)

DrawPicture (myPicturel thePortA.PortRect);

3-3

~ick.Port ProgrBlTlmer's G~lide flt:/I.·'8nced t;iuickPort Features

If you call OpenPi ct ure while the QuickPort grafPort is the current port,
the following alert message appears on the screen and the program is
aborted:

Your QuickPort tool has called another OpenPicture inside
the QuickPort grafPort. This tool will be aborted.

The QuickDraw procedure ScrollRect is not supported by QuickPort.
ScrollRect is not supported because QuickPort uses.a picture to save the
graphic output, and the effect of ScrollRect is not saved in a picture.
This means that if the user scrolls the window, the picture is redrawn to the
window as if ScrollRect had not been called.

The size limit for the QuickPort picture is 32K bytes. When the picture
approaches this size, an alert is displayed. Subsequent graphic output is
displayed on the screen, but is not saved in the picture. As the size of the
picture increases, the redrawing that happens as the picture is scrolled or the
window moved slows. You can find out the current picture size by calling
QPGrafPicSize. Once the picture size reaches 32K bytes, the only way to
save the remaining graphic output is to EraseRect the entire screen
(thePort A .PortRect). The effect of this call is to delete the old picture
and create a new picture.

You can draw bit images in the QuickPort grafPort. The entire graphic panel,
including the bit images, can be printed. You can copy the bit images to a
LisaWrite document, but you cannot· copy bit images from a QuickPort
application to a LisaDraw document.

3.5 Required Olange to Yow- Program
Before you can call any of the additional QuickPort procedures, you must add
UQPortCall to your USES list:

{$U QuickDraw} QuickDraw,

{$U OP/UCPortCall} UOPortCall,
{SU tJPlUOuickPort} lIJuickPort; {or UQPortGraph, or

UQPortVT100, or UCPortSoroc}

3.6 Procedures tm- all Applications

3.6.1 Corf'iguring the Panels -- QPContig
You can choose several different wf!ljS to orient the panels in QuickPort
applications. The procedure OPConfig lets you rearrange the panels and
their orientations. Figure 1 shows some of the different layouts.

3-4

~ickPort Programmer's Guide Ad snced QuickPOTt Features

.basic paper. .basic paper.
input panel input panel

text panel 0
text panel graphic panel

~ graphic p ... 1 D
c :::> 01 I

.basic paper. • basic D8D81'.
input panel input panel

Ogr:iC_I~ 0 0 D
graphic panel text panel

text panel 0
FiglR i.

QuickPmt Window Layouts

Call the OPConfig procedure from your main program before any screen
input and output is performed. You must set all the fields of a global
variable of type TOPConfi gRec .

PROCEDURE OPConfig (config : TOPConfigRec);
where

TCPConfigRec = RECORD
tosaveBuffer : BOOLEAN; {save lines in

buffer}
passApplePeriod : BOOLEAN; {pass apple • _. to

&in progr}
showlnputPanel : BOOLEAN; {display input

panel}
CASE twoPanels : BOOLEAN OF {have both text

and graphic panels}

3-5

~ickPort Programmer's Guide Advanced ~ickPort Festures

EtI). ,

TRUE : (vhs YHSelecti {vertical or
horizontal split. YHSelect
is defined in QuickDraw)

grPanelSize INTEGER)i {initial width or
height in pixels, if < 0,
text panel is below or right
of the graph panel}

If QPConfig is not called, the default values are used. These defaults are
in effect only if OPConfig is never called. If you call QPConfig you must
set all fields, or else they will be undefined.. The default values are:

tosaveBuffer
passApplePeriod
showInputPanel
twoPanels

false
false
false
false

The graphic and text panels can be oriented in several different wa:ys on the
screen. To use QPConfig to set up the panels, you must first declare a
variable of type TOPConfi gRec . F or example,

.
VAR
HyConfig: TtJPConfi~ec;

QPConfig(HyConfig);

To have both a graphic and a text panel, twoPanels must be TRUE. You
must initialize the vhs field if you set twoPanels to TRUE. Once you have
two panels, you can choose to split the windows on the screen vertically or
horizontally. Refer to Figure 1 to see what the screen looks like with
vertical and horizontal splits between windows. Then you can set the
grPanelSize field to the size you want the graphic panel when the
document is first opened (the text panel will take up the remaining space in
the window).

3-6

f;'uickPorl Programmer's Guide AcAlanced t;'uickPorl Features

If OPConfi g is not called, the default values are used. Programs that
handle only text output have a default of one text panel. Programs that
handle graphic output have a default of one graphic panel.

3.7 Procedw'es r ... U!dng the Text PInt!
The procedures for QuickPort applications that produce text output allow you
to:

• Change the terminal parameters.
• Get raw input from the console.
• Clear the screen.

• Control the cursor.

• Set and clear tabs.
• Control keyboard input.
• Change the character style.

3.7.1 Changing the Terminal Ps'&meters - SetupTeZllPara
SetupTerllPara sets the terminal parameters for the screen area in the text
panel. You can call SetupTerllPara from your terminal emulator or from
your main program, but the call must be made before any screen input or
output is performed. If SetupTe11llPara is not called before performing
screen input or output, the default parameters will not be changed. If you
call SetupTerllPara you must set all parameters.

PROCEDURE SetupTermPara (tertipara : TTeriIP8l'ah
where

Ett>;

.axPosLines = 50; {_ax possible lines for any
ter.inal eRulator}

.axPosColuans = 132;

Tcursorshape = (blockshape, underscoreshape,
invisibleshape);

TTenaPara = REa:RD
rowsize
colUllnsize
toWraparound
keytoStopOutput
keytoStartOutput
tllcursorShape

I .. _axPosLines;
I .. maxPosCol .. ns;
BOOLEAN;
CHAR;
CHAR·
Tcur~orshape;

3-7

~ickPort ProgrBmITtIJT's Guide

If SetupTerllPara is not called" the default values are used:
rowsize 24 lines
eolu.nslze 80 columns
tONraparound TRUE
keytoSt opOut put .-s
keytoStartOutput '-0
t.eursorShape Block

3.7.2 Getting Raw Input from the CorBole - Vread
You can use Vread instead of read to get keyboard input and the control
keys. Vread does not echo characters as they are read.

PROCEDl.R: Vread (V~ eh: DiM; VAR kayeap: QPByte;
VAR applekey, shlftkey,
optionkey: BOOLEAN);

The keycap is useful when you need to distinguish the numeric keypad from
the main keyboard. Refer to Section 3.11.4 for the keycap definition. Note
that the option key is typically used to generate extended Lisa characters.
The extended lisa characters are those characters in the range above ASCII
127. Try not to use the option key for other purposes to avoid confusing the
users.

3.7.3 Clearing the Screen - ClearScreen
ClearSereen provides six different w~ to clear all or pert of the screen.
The six Wf!L)lS are:

• Clear the whole screen.
• Clear from the cursor pOSition to the end of the screen.
• Clear from the beginning of the screen to the cursor pOSition.

• Clear t.he whole line.
• Clear from the cursor position to the end of line.
• Clear from the beginning of the line to the cursor position.
PROCEDURE ClearScreen (clearkind : INTEGER);

{clearkind definition for ClearScreen procedure}
sclearScreen = 1; {clear the whole screen}
sclearEScreen = 2 {clear to the end of the

screen}

3-8

t;luickPort Progr8lT'tfT1eT's Guide

sclearBScreen = 3

sclearLine = 4
sci earELi ne = 5;

sci e81'8Li ne = 6;

A~lsnced t;'uickPort Features

{clear fro. the beginning
of the screen to the cursor
position}

{clear the whole line}
{clear to end of line}
{clear fro. the beginning

of the line to the cursor
position}

3.7.4 Qrirolling the Ctnm' - VGotoxy and HoveCursor
3.7.4.1 VGotoxy

VGotoxy moves the cursor to a specified position in the window.
~ VGotoxy (x, y : INTEGER);

VGotoxy is the same as the Pascal gotoxy, but fester.

3.7.42 MoveCtnm'
"oveCursor moves the cursor to a position in the window reJ8til,ooe to the
current ClJ/'$tJr position ttoveCursor allows vertical scrolling only.
~ HoveCursor (scroll : BOOLEAN; xdistance,

ydistance : INTEGER);'
For the xdistance, ydistance parameters:

• A positive value moves the cursor to the right or down.
• A negative value moves the cursor to the left or up.

If the cursor is moved down, and scroll is TRlE, the output will be
scrolled up.

3.7!i Setting tnt Cleaing Tabs - SetTab and ClearTab
3.7-'.1 SetTab

SetT ab sets a tab at a specified column, or at the current cursor position.

~ SetTab (col .. n : INTEGER);
SetTab sets tab at current cursor position if col .. n <0.

3.7.52 Cl __ Tab
ClearTab clears 8 tab at 8 specified column, or at the current cursor
position.

flIDEl.A:: ClearTab (clearAll : EID.EfIt; colum:. ~);
ClearTab cleers tab at. current cursor pOSition if col .. n <0.

3-9

t;luickPort Progr8lTimer's Guide Ad anced ~jckPort Features

3.7.6 Cortrolling Keyboard InpI& - StopI nput aDd Start Input

3.7.6.1 StopInput
Stoplnput prevents recognition of keyboard input until Startlnput is
called.

PROCEDURE StopInput;

3.7.6.1 StartInput
StartInput allows recognition of keyboard input.

PROCEDURE Start Input;

3.7.7 Clanging the Character' style - ChangeCharStyle
ChangeCharStyl e changes the character attributes to any style combination
defined by QuickDraw.

PROCE~ ChangeCharStyle (newstyle : Style);

3.8 Procedw'es fm- UiUng the Graphic Panel
The procedures for QuickPort applications that produce graphic output allow
you to use the mouse to get input. These procedures are:

• Get the current mouse location.

• Test to see if the mouse button is up or down.
• Get a mouse event.

• Get either mouse or keyboard input.
3.8.1 Mouse Routines

The mouse routines listed in this section should be used instead of the ones
in the Lisa Hardware Interface.

HouseEvent is a polling function. Programs may loop on t10useEvent to
wait for mouse input. This unnecessarily takes up CPU time. Also, if the
application is run in the background, HouseEvent will force it to run
periodically, just to find out there is no mouse input, and then control is
returned to the active window. This slows down the execution and user
response in the active window.

Wai tHouseEvent is a blocking procedure. Wai tHouseEvent will not return
to the· caller until there's a mouse event, allowing user actions to be
processed immediately when there are no mouse events. When a program
that uses Wai tHouseEvent is in the background, it is suspended and
consequently_ does not take CPU time from the active window.

3.8..1.1 YGetHouse
VGetHouse returns the current mouse location in the coordinates of the
current grafPort.

PRflCEDl.RE VGetHouse (YAR pt : Point)i

3-10

~ickPort Progr8lTtmer's Guide Advanced t;'uickPort Features

Point is a type defined in QuickDraw. Refer to The Lisa Pascal Reference
Manual, Appendix C, QuickDraw for the definition of Poi nt •

3.8.12 HouseButton
HouseButton returns the current state of the mouse button.

fltlCTION t1ouseButton : BOOLEAN;

3.8.13 HouseEvent
HouseEvent returns a mouse event if there is one in the queue, arJd returns
FALSE if there is not a mouse event in the queue. A mouse event is:

• A mouse buttondown (when the user presses the mouse button).

• Mouse motion while the button is pressed.

• A mouse buttonup (when the user releases the mouse button).

Moving the mouse without. pressing the mouse button is not a mouse event.
When HouseEvent is called, if the mouse button is down, control will not be
returned to the caller until the button is released.

fUNCTION MouseEvent (VAR 8t1ouseEvent : THouseEvent)
BOOLEAN;

where

END;

THouseEvent = RECORD
aouseLoc : POint;
clicknu. : INTEGER; {max 3 for triple clicks}
aouseDownl aeShiftl meApple, lleOption

BOOLEAN;

For each mouse down event (mouseDown = TRlE), several different
lIouseLoc events may be returned in subsequent calls. These mouseLoc
events are always ended with a mouse up event (mouseDown = fALSE).

For a double click, HouseEvent returns events of down, up, down .. up with
the clickn .. for the second mouse down event equal to two. If the mouse
button is pressed twice, but the presses do not constitute a double click, the
same sequence of events is returned, but with the clicknum for the second
mouse down event equal to one.

For a triple click, t10useEvent returns events of down, up, down, up, down,
up, with the cl i ckn .. for the third mouse down event equal to three.

If the mouseDown field is FALSE, all other fields are meaningless.

HeShi ft is TRUE if the mouse button and the Shift key are depressed.
HeAppl e is TRUE if the mouse button and the • key ere depressed.
HeOption is TRUE if the mouse button and the Option key are depressed.

3-11

t;iuickPort Programmer's Guide Advanced t;iuickPort Features

3.8.1.5 Wei tHouseEvent
Wai tHouseEvent gets a mouse event. Nei tHouseEvent blocks the caller
until there is a mouse event in the queue.

You should use this call instead of HouseEvent to avoid polling and wasting
CPU time. Wai tttouseEvent also makes a program more responsive to user
events such as pulling down menus, clicking in other windows, etc., when the
program is waiting for mouse input.

PROCEDURE WaitHouseEvent (VAR aHouseEvent
1110useEvent);

where

END;

THouseEvent = RECORD
.ouseLoc : Point;

clicknum : INTEGER; {.ax 3 for triple clicks}

.ouseDown, .eShift, .. eApple, .eOption :
BOOLEAN;

After Wei t"ouseEvent. returns, a call to HouseEvent will get the rest of
the mouse events.

3.8.1.6 Wei tEvent
Wai tEvent i s a combination of read and Wei tHouseEvent, blocking the
caller until there is either keyboard or mouse input.

You should use this call instead of HouseEvent and k8YJX'es8 if you want
both mouse and keyboard input. Nai tEvent does not reurn input. You must
call read, Yread, or HouseEvent depending on the value returned from the
calL

PROCEDURE Wai tEvent (VAR frollKeyboard : EDlLEAN);

3.8.1.7 QPGrafPicSize
QPGrafPicSize returns the size of the picture in the system grafPort.

Fl..I«:TION (JPGrafPicSize : INTEGER;

3.9 Printer SUppmt
The printer is designated -pr1nter by the Workshop. -printer is a logical
device. To open the printer, use reset or rewrite, passing -printer as
the file name. To send output to the printer, use wri teln or wri teo Use
close when you're finished sending information to the printer. Close lets
the printshop manager know that the program is done with the printer and
causes the last page to print out. If you do not call close after printing is
finished, the printer is considered in use, and is unavailable to all other Lisa
applications.

3-12

fi'uickPort Progrllm/ntJl''s Guide

The printer is shared by all applications in the printshop. When you send
something from a QuickPort application to the printer from QUickPort, you do
not get immediate output. First the document is spooled to the printer
queue by the printshop manager in the Lisa Office System. If there is
nothing in the queue, the information comes out a page at a time. If there
is something in the queue at the time of reset or rewri te, an error
message is returned.
You can change the font the printer uses by calling PrChangeFont. The
default font Is 10-point, lo-pitch Century.
Peper size, printing orientation and print resolution can be changed using the
Format for Printing command in the File/Print menu. Selections made using
the Format for Printing command take effect only after a reset or
rewrite.
The Print and Print As Is commands in the File Print menu print 811 the
output in the selected panel.

3.10 The Taminal Emul8bn
QuickPort provides three terminal environments: the standard terminal, the
VT 100 terminal emulator, and the SOROC terminal emulator. This section
summarizes the three emulators. If you went to write your own terminal
emulator, go to Appendix B, lNriting Your OWn Terminal Emulator.

3.10.1 The stMcad Terminal
The standard terminal is the terminal environment QuickPort uses unless you
specify otherWise. The standard terminal provides a set of screen and cursor
control functions. The standard terminal does not use escape sequences, but
does interpret a set of stand8l"d control keys at output: BELL, backspace,
horizontal tab, line feed, and carriage return (without line feed). Programs
that use reads and readlns will have the backspace key processed
automatically, i.e., the backspace key will not be passed to your program if
you use reads and readlns. If your program needs to get the backspace
key, use vreed instead.
The standard Lisa applications use the .-period combination to terminate
long operations. QuickPort provides an option that suspends the program when
the .-period key combination is detected. The default is to detect the
_-period combination. This option is passed in QPConfi 9, which is described
in Section 3.6. When a program is suspended, the user can select the
Resume command to resume program execution, or the Save & Put Awf!ltj
command to terminate program ex ecution.
The Setup menu (in all QuickPort applications) lets you select 80 or 132
columns per line, turn wraparound on or off, and set the tab positions.

3.102 The VT100 Terminal EInulatc:K
The QuickPort VT100 terminal emUlator interprets all VT100 and VT52 escape
sequences, with the exception of escape sequences related to host
communications. When you use the VT100 terminal emulator, the screen area

3-13

~ickPort Programmer's Guide Advsnceti t;luickPorl Features

in the text panel responds to VT100 and VT52 escape sequences from writes
and writelns.

The character styles supported by the QuickPort VT100 terminal emulator ere
bold, underline, and highlight. Since highlighted text in Lisa applications
traditionally means a selection, highlighted text .1n the VT100 screen area
will be shadowed. Double-height and double-width characters are not
supported.

To use the VT100 terminal emulator, add

{$U QP.IlJQPortVT100} uc:JtortVT100;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4.

3.10.3 The Soroc Terminal Emul&tc:l"
Pascal programs that run in the Lisa Workshop, and on the Apple II or Apple
Ill, use Soroc escape sequences for output display. QuickPort provides a
Soroe-compatible terminal emulator to help port these applications to the
Lisa desktop. The QuickPort Soroc terminal emUlator interprets all Soroc
escape sequences, with the exception of those escape sequences related to
display protection.

To use the Soroc terminal emulator, add

{SU OPlUQPortSoroc} uc:JtortSoroc;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4.

3.11 Procedures fer the QuickPort Hardware Interface
The QuickPort hardware interface is a subset of the Lisa hardware interface.
These procedures are for the mouse, the screen, the speaker, the keyboard,
the timers, and date and time.

To use the QuickPort hardware interface, you must add

{SU UP /Hardware} Hardware;

to the list elements in your program's USES statement. Refer to Chapter 4
for more information.

3.11.1 The Motae
The mouse procedures let you

• Set the frequency at which the current mouse location is updated.

• Choose the relationship between physical and logical mouse movements.

• Count mouse movements.

3-14

t;luickPort Programmer's Guide Ad 8I1Ced t;'uickPort Features

3_1Ll_l Mouse Update Fr~
The mouse location is updated periodically, rather than continuously. The
frequency of these updates can be set by calling MouseUpdates. The time
between updates can range from 0 milliseconds (continuous updating) to 28
milliseconds, in intervals of 4 milliseconds. The initial setting is 16
milliseconds.

Procedure Houseupdates (delay: MilliSeconds);
3_1L12 Mouse Scaling

MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

Procedure HouseScaling (scale:Boolean)i
Procedure HouseThresh (threshold: Pixels);

The relationship between physical mouse movements and logical mouse
movements is not necessarily a fixed linear mapping. Three alternatives are
available: unscaled, scaled for fine movement and scaled for CONse
movement. Initially mouse movements are unsealed.

When mouse movement is unsealed, a horizontal mouse movement of x units
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse V-coordinate of y pixels.
These rules apply irregardless of the speed of the mouse movement.

When mouse movement is scaled, horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. When scaling is in effect, a distinction is
made between fine (small) movements and coarse (large) movements. Fine
move- ments are slightly reduced, while coarse movements are magnified.
For scaled fine movements, a horizontal mouse movement of x units yields a
change in the X-coordinate of x pixels, but a vertical movement of y units
yields a change of (2/3)*y pixels. for scaled coarse movements, a horizontal
movement a x units yields a change of (3/2)*x pixels, while a vertical
movements of y units yields a change of y pixels.

The distinction between fine movements and coarse movements is determined
by the sum of the x and y movements each time the mouse location is
updated. If this sum is at or below the threshold, the movement is
considered to be a fine movement. Values of the threshold range from 0
(which yields all coarse movements) to 256 (which yields all fine movements).
Given the default mouse updating frequency, a threshold of about 8
(thresholds initial setting) gives 8 comfortable transition between fine and
coarse movements.

3-15

~ickPOIt Programmer's Guide

3.11.13 Mouse Odometer
MouseOdometec returns the sum of the X and Y movements of the mouse
since boot time. The value returned is in (unsealed) pixels. There ere 180
pix els per inch of mouse movement.

Function ~er: ~els;
3.11.2 The Screen

The screen procedures are used to

• Set the size of the display screen.
• Count the number of screen refreshes.
• Set the screen contrast, set automatic screen dimming.

• Set the fade delay.
3.6.2.1 Screen Size -- ScreenSize

The display screen is a bit mapped display. In other words, each pixel on
the screen is controlled by a bit in main memory. The display has 720
pixels horizontally and 364 lines vertically, and therefore requires 32,760
bytes of main memory. The screen size may be determined by calling
ScreenSize.

Procedure ScreenSize (var x: Pixels; V8I' y: Pixels);

3.11.2..2 Screen Refresh Counter -- FrameCounter
The screen display is refreshed about 60 times per second. A frame counter
is incremented between screen updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit integer which is reset to 0 each time
the machine is booted. FrarneCoooter returns this value. To minimize
flickering, an application can synchronize with the vertical retraces by
watching for changes in the value of this counter. The frame counter should
not be used as a timer; use the millisecond and mircosecond timers instead.

Function FrameCounter": Frames;

3.11.23 Screen contrast -- Sa'eenContl'ast, SetContrast and
RampContrast

The screen's contrast level is under program control. Contrast values range
from 0 to 255 ($FF), with 0 as maximum contrast and 255 as minimum.
ScreenContrast returns the contrast setting; SetContrast sets the screen
contrast. The low order two bits of the contrast value are ignored. The
initial contrast value is 128 ($80).

Function Contrast: ScreenContr"ast;

Procedure SetContrast (arirast: ScreenContrast);

3-16

~i.ckPort PrograrrtmttT's Guide Advanced Qui.ckPort Features

A sudden change in the contrast level can be jarring to the user.
RarnpContI'ast. gradually changes the contrast to the new setting over a
period of about a second. RarnpContI'ast returns immediately .. then ramps
the contrast using interrupt driven processing.

Procedure RarnpContI'ast. (contrast: Scr'eenCortrast);

3.11.2..4 Automatic Scr'een Dimming -- DimCortrast and
SetDimContrast

The screen contrast level is automatically dimmed if no user activity is
noted rNer a specified period (usually several minutes). The contrast level is
dimmed to preserve the screen phospher. OimCortrast returns the contrast
value to which the screen is dimmed; SetDimCort:rast sets this value. The
initial dim contrast setting is 176 ($80).

FWlCtion DimContrast: ScreenCortrast;

Procecbe SetDimContrst (contrast: SaeenContrast);

3.1L2.5 Al£omatic Screen Fading - FadeDelay and SetFadeDelay
The delay between the last user activity and dimming of the screen is under
software control. FadeDelay returns the fade delay; SetFadeDeiay sets it.
The actual delay will range from the specified delay to twice the specified
delay. The initial delay period is five minutes.

F..-.::tion fadeDelay: MilliSeconds;

Procedure SetFadeDeiay (delay: MilliSeconds);

3.11.3 The Speaker
The speaker routines in this section provide square w~e output from the
Lisa speaker.
The speaker procedures let you

• Set the speaker volume.

• Use the speaker.
3.11.3.1 Speaker Volume -- Volume and SetVolume

The speaker volume can be set to values in the range 0 (soft) to 7 (loud).
Volume reads the volume setting; SetVolume sets it. The initial volume
setting is 4.

Ftn::tion Voltme: SpeakerVolume;

Procedure SetVoltme (volume: SpeakerVolune);

3-17

(IuickPort Progr8mmer~ Guide Advanced ~iJickPort Features

3.11.3.2 Using the Speaker -- Noise, Silence and Beep
Noise and Silence are called in pairs to start and stop square wave output.
Beep starts square wave output which will automatically stop after the
specified period of time. The effects of Noise, Silence and Beep are
overridden by subsequent calls.

Procedure Noise (waveLength: MicroSeconds);

Procedure Silence;

Procedure Beep (Wmlelength: MicroSeconds; duration:

Noise produces a square wave of approximately the specified wavelength.
Silence shuts off the square wave. The minimum wavelength is about 8
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above t.he audible fange. The maximum wavelength is 8,191 micro
seconds, which corresponds to about 122 cycles per second.

3.11.4 The Keyboard

Three physical keyboard layouts are defined, the Old US Layout (with 73 keys
on the main keyboard and numeric keypad), the Final US Layout (76 keys) and
the European Layout (77 keys). Each key has been assigned a key-code, which
uniquely identifies the key. Keycode values range from 0 to 127. Figure 2
defines the keycodes for the Final US Layout, using the legends from the US
J.<.eyboard. The Old US Layout has three fewer keys: I\, Alpha Enter, and
Right Option are not on the old keyboard. The European Layout has one
additional key, > <, with a keycode of $43.

Two keys on the Old US Layout generate keycodes different from the
corresponding keys on the Final US La:yout. To aid in compatibility, software
changes the keycode for "'.. from $7C to $68 .. and the keycode for Right
Option from $68 to $4E.

3-18

~ick.Port Programmer's Guide AlA'sneed ~uickPort Featurss

figure 2
Keycodes for -Final US Layout-

I HI, .. 000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

0080 t~~~~~~~~~~~~t~~t~ ':::::::::::: CLEM ~::::::: :::::::::::; - E A ::::::::::: ~::::::: :::: ::::::::: - c~

DISK 1 ::::::::::: t:::::: ::::::::::::
+ .. I»

-1- INSERTED .:.:.:.:.:' - _0 6 2 .:.:.:.:.:,.:.: =
0010 III I + I & , DISK 1

~ ~f~:~ r{:~:: u 2 BUTTON ;.;.;.;.;.;. ~.; .;.;, ,.;.;;.;.;.;. \ _1 3
:::::::::::: ~.:. :.; . . :.: ;.;::::; ~:}}~:~:r~:~:~: ~ DISK 2 * I It

3 INSERTED :.:::::::::: [E ~::::::: ::::' ,~:t~: ~:.:.:.:.:.:.:.:.:.:.:. 8
0100 DISK 2 '~~tt ':. 7

~::::::: ::: ::::::::: p J % !
4 BUTTON 5 1

0101 PARALLEL :::::::::::: :.:.:.
::;:::::;:;: 8 K R Q 5 PORT ::::::::::: ~::::::: , -

HOUSE ~~:~ :~:ff f:·:·:·:·:,:
ALPHA {

9 T S 6 BUTTON t·:· :.:.:.:.:.: ~::::::::::::::: ENTER [

0111 ~~~~~ :t~~I~l~ Ell ~::::::::::: ,~.~ ~::::::::::::::::::::::: } HOUSE Y W 7 PLUG :::;::::::::::: t::::::::::::::::::::::·] .:.: -;-;.~-;.;.;

1000 POWER ~{:~ :~{t; .:.:.:.:.:.:.:.:. ...
4 :.:.:.:.:;:.:.:.: RETURN M TAB 8 BUTTON

:~: ::.:: :~: ~: ~:~: ~ ..
1001 ::::: :::::::::::: .:.:

':} :·:·:·:·:·:·:·:·f:·: 5 ::::??}: 0 F Z 9 ::::::::::::: f:::::::::: ::::::::::: L
1010 :.:.: ::::::::::::: ~.:.:.:.:.: . . :.:.:.:.:.

6 ~ ... ::::::: : G A ::::; ::::::::::::: f::: :.:. ; X

1011 ~~I f~t; ,':' , ::::::::::::::; II

B :.:.:. .:.:. (JJ :::: : : :: : : : : : : : : ~ • H 0
11 DO It~: .:.:.:.:.: ;~;~: ~:f~t::

? SPACE V LEFT
C :::::::::: i OPTION

1101 I~~t:
::;:;:::;: ;::::::: ;:::: ::::::::::::: < CAPS

0 ;.;.;.;., :}}: {{ 2 t.·.· .•.........•.. 1 , C lOCI(

1110 .:.:.:.: 3 ~: .:. .: .:.:. :.:.:.: RIGHT > B SHIFT E I·:·:·:· :.:.:.:.:.: ::::::::::: :::::::: OPTION
1111 I::;:;:: :::::::;:::: :r~:r, ~~~?: NUHERIC t: ::::

0 N
..

F I::::::::: :.: ENTER

3-19

~ickPort ProgrlNrtfnl!/l"'.s Guide Ad anced ~uick.Port Features

The keyboard procedures allow you to

• Find out the keyboard identification number.

• Find out the state of keyboard.

3.1L4.1 Keyboerd Identl1icsion -- Keyboard
The Lisa supports a host of different keyboards. Each keyboard has three
major attributes: manufacturer .. physical layout .. and legends. The chart below
describes how these three attributes are combined to form a keyboard
identification number. The keyboards self -identify when the machine is
turned on and when a new keyboard is attached. K8)Iboard returns the
identification number of the keyboard currently attached.

FWlCtion Keyboard: Keybdld;

Function Legends: Keybdld;

Keyboard identification numbers:

7 6 5 4
ManufacturEII' Layout

tvIanIacturer:
00 -- APD (Le... TKC)
01 --
10 -- Keytronics
Layout:
00 Old US (73 keys)
01
10
11

European (77 keys)
Final US (76 keys)

3 2 1
Legends

Layout/Legends
$OF -- Old US

o

$26 -- Swiss-German (proposed)
$27 -- Swiss-Frenet"1 (proposed)
$29 -- Portugue.se (proposed)
$29 -- Spanish (proposed)
$2 A -- Danish (proposed)
$2B -- Swedish
$2C -- Italian
$2D -- French
$2E -- German
$2F -- UK
$3C -- APL (proposed)
$3D -- Canadian (proposed)
$3E -- US-Dvorak
$3F -- Final US

3-20

Advsl'tced QuickPort FestlJ1'es

3.11.42 Keyboard state - KeylsDown and KeyMap
Low level access to the keyboard is provided through a pollable keyboard
state. This state information is based on the physical keycodes defined
above. KeyIsDown returns the pOSition of a single specified key. Keytwtap
returns a 128-bit map, one bit for each key.

Function KeylsDown (key: KeyCap): Boolean;

Procedure KeyMap (var keys: KeyCapSet);

A zero indicates the key is up, a one indicates down. For the mouse plug, a
zero indicates unplugged, a one indicates plugged in. Certain keys ere not
poll able; the corresponding bits will always be zero. These keys are the
diskette insertion switches, parallel port, and power switch. (The parallel
port and mouse plug keys are unreliable across reboots on older hardware.)

3.11..5 The Timers
The timer procedures let you use either the microsecond timer or the
millisecond timer.

3.11.5.1 The Microsecond Timer -- MicroTimer
The MicroTimer function simulates a continuously running 32-bit counter
which is incremented every microsecond. The time.r is reset to 0 each time
the machine is booted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

FtMlCtion MicroTirner: Microseconds;

The microsecond timer is designed for performance measurements. It has a
resolution of 2 microseconds. Calling MiaoTimer- from Pascal takes about
135 microseconds. Note that. interrupt processing will have a major effect
on microsecond timings.

3.11.52 The Millisecond Timer- -- Timer
The Timer function simUlates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to 0 each time the
machine is booted. The timer changes sign about once ~ery 25 days, and
rolls over about every 7 weeks.

Function Timer: Milliseconds;

The millisecond timer is designed for timing user interactions such as mouse
clicks and repeat. keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

3.11.6 Date and Time -- DateTime, SetDateTime and DateToTime
The date and time procedures let you

• Set the current date and time.

• Find out the date and time.

3-21

t;1uickPoTt Programmer's Gl..lide ~dvanced t;luickPoTt FeatlJTeS'

The current date and time are available as a set of 16-bit integers that
represent the year, dery, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasnlt been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. setting t.he date and time also sets the time st.amp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure DateTime (ver d&e: DateAlray);

Procedure SetDateTime (date: DateArray);

Procedure DateToTime (date: DeteArray; var time: Seconds);

3.11.7 Time stamp -- TimeStamp, SetTimeStamp and TimeToDate
The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 1901, by calling TimeStamp and SetTimeStamp. The time stamp will
roll over once every 135 years. Beware--for dates beyond the mid 1960ls,
the sign bit is set. The time stamp is based on the hardware clock/calender.
This clock continues to operate during soft power off. If the clock/calendar
hasn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeToOat.e
converts a time stamp to the date and time format defined above.

The time stamp procedures let you

• Set the time stamp.

• Convert between standard date and time and the time stamp.

F..-.ction TimeSt8lT1Jk Seconds;

Procedure SetTimeStamp (time: Seconds);

Procedure TimeTo08te (time: Seconds; var date: 08teAlrSV);

3-22

t;'tiickPort Progr8mmer~ Guide ftd'lanced t;'uick.Port Features

The current date and time are available as a set of 16-bit integers that
represent the year, day, hour, minute and second, by calling DateTime and
SetDaleTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
OateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure OateTime (var det.e: DBteArray);

Procedure SetOateTime (dale: OateArray);

Procedwe DateToTime (date: OateArray; V8I' time: Seconds);

3_11.7 Time stamp -- TimeStamp, Set.TimeStamp EIld TimeToOate
The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 1901, by calling TimeStamp and Set Timestamp. The time stamp will
roll over once every 135 years. Beware--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is based on the hardware clock/calendar.
This clock continues to operate during soft power off. If the clock/calendar
hasn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995" the time stamp is also restricted to this range. TimeToDate
converts a time stamp to the date and time format defined above.

The time stamp procedures let you

• Set the time stamp.

• Convert between standard date and time and the time stamp.

FlKlCtion Timestamp: Seconds;

Procecb"e SetTirnestamp (time: Seconds);

Procedure TimeTo08te (time: Seconds; VS' date: DateArray);

3-23

Chapter 4
Bringirg Your Application

to the Lisa Desktop

4_1 Adding the USES List Elements _______________________________________ 4-1
4.2 system Configuration ___ 4-2

4.2.1 The Development Environment _ _ 4-2
4.2.2 The Run-Time Environment 4-3

4.3 GeIler'ating Your TooI ____ · _______________ . _____________ ._. __________ eo_e. 4-3
4_4 Install~ Your Tool ________________________________ . ___________________ 4-4
4.5 TIle Icon Edit4:Jr" __ 4-5
4_6 Shipping Your AppHcation ___ 4-5

8ringirg Your Application
to the Usa Desktop

4_1 Adding the USES List Bements
Before bringing your application to the Lisa desktop you must add the
required USES list elements to your MAIN program and any of your units.
Depending on what kind of application you are portin~ you use different
USES list elements.

1. For text output only

{IU OPlUOuickPort} UQuickPort;

2. For graphic (QuickDraw) and/or text output

{SU QuickDraw} QuickDrsw,
{IU OP.lUQPortGraph} UOPortGraph;

3. If you need to use Graf3D (order of list elements important)

{IU QuickDraw} QuickDraw,
{IU QPlGrafJD .OBJ} Gr af 3D,

{IU QP.lUQPortGraph} lJJPortGraph;

4. For graphic (QuickDraw) and/or text output, and the hardware interface

{IU QuickDraw} QuickDraw,
{SU QP/UQPortGraph} UQPortGraph,

{SU UP /Hardware} Hardware;

5. To use the VT100 terminal emulator

{SU OP/lJQPortVT100} UQPortYT100i

6. To use the Soroc terminal emulator

{SU OP.lUQPortSoroc} lIJPortSoroc;

7. If you are calling the additional QuickPort procedures (order of list
elements important)

{IU QuickDraw} QuickDraw,
{SU OP/UCPortCall} UQPortCall,

{SU QPll.JQuickPort} UOuickPort; {or UQPortGraph,
utJPortVT 100,
UJPortSoroc}

4-1

UQPortCall" unlike the other units" is only an interface and contains no
code.

42 S\lStem Configuratioo
This section f6Sumes that you are using a two-ProFile system to develop
your QuickPort applications. The ProFile with the office system is called
"office" in this discussion" and the ProFile with the Workshop is called
"workshop." In the Workshop .. set the prefix to the workshop volume. If you
have a Lisa 2/10 you will not need to set the prefixes as described in this
section because all development will be done on one volume.

There are two different environments to consider:

• The development environment.. That is" the environment you use when
developing a QuickPort application. The development environment is the
Workshop.

• The run-time environment. This is the environment that the QuickPort
application runs in. The run-time environment is the Office System.

4.2.1 The Development ErMronmert
""It-len developing" you must

• Boot from the Workshop.

• From the Workshop System Manager" set the prefix to the Workshop
volume.

• Place all files listed in the USES statement on the prefix volume.

You must have the following files on your prefix volume:

• QPlUQPortCall

• QPlUQPortGraph

• QPlUQPortSm"oc

• QP/UQPOItVT100

• QPlUQuickPort

• QP/Hardware

• QP/Graf3D

• QPLib.Obj

• TKLib.Obj

• TK2Lib.Obj

• QPlPhrase

The QuickPort exec file, qp/make" must be on the workshop ProFile.

4-2

~ujckPort Programmer~ Guide Bringing Your ~ppljcliii(}n to tl',e Desktop

4.22 The Rt.Il-Time Environment
When running a QuickPort application.. you must

• Boot from the office system.
• Have all the libraries your application needs on the office system

volume.

• Have TKLib.Obj, TK2lib.Obj, and QPLib.Obj on t.he office system
volume.

43 Genecaing y(U' Tool
To generate your tool, you must run the QuickPort exec file, qplmake, or
customize qpImake to compile, assemble, and link your tool. Qp/make
assumes all source files are in Pascal. You can customize Qp/make to
assemble your files. Qp/make forces recompilation of all your application's
units, compiles your application's main program .. and then links your
application's units with the QuickPort intrinsic units. Then qplmake assigns
the tool name and creates the phrase file USing the tool number in the file
name.

Qp/make renames the object code to a file name of the form:

{TIl}obj

where II is the tool number you specified when qpImake was invoked.
Qp/make copies the phrase file to a file name of the form:

{TI'}PHRASE

If your application uses other support files, such as data files, rename the
files using the {T,." tool number as the first part of the file name, e.g.,

{T I'#)support

Then, whenever a user selects the tool's icon from the desktop, all the files
with t.he {TI'#} will be copied or deleted. Qplmake assumes that the source
files and libraries are on the prefix volume. Refer to System Configuration
above for more information.

Qp/make can be invoked in two Wf!yS, depending on how many units your
application has, and depending on whether you need to specify additional
object files that your application does not generate but needs to link to. If
your application has four or fewer units and does not need to specify
additional object files for linking, qp/make can be invoked as follows:

Run <qplmake (mainpr(9'8In, tool,." tool volume, unit&, unitb, Wlitc,
Wlitd)

where

mainprC¥"&m is the filename of your applicat.ion's main program.

tool II is the tool number you want lIsed in your
application's tool name. We recommend you use

4-3

t;'uickPort Programmer's Guide Bringing yOur ItppJication to the Desktop

tool volume

lM'lita., unitb
.... itc, unitd

your Lisa's serial number plus an offset. Using the
serial number plus an offset will prevent duplication
of tool numbers among different software
developers. F or testing you can use any number
greater than 20.

is the office disk name. The tool will be copied to
the office system.

Up to four units for your application. If you use
more than four units, use the alternate wftIJ to
invoke qp/make as described below.

If your application has more than four units, and/or needs additional units to
link against, qp/make can be invoked as follows:

Run <qpmake (mai"JK'ogr&m, tool', tool voll.me, <, UnitList, otherObj..ist)

where

meinpft9'Bfll, tool I, and tool volume are the same as above.

UnitList is a file that contains the names of all YOla units.
When you create your UnitList file, be sure to list
the units in the order they should be compiled.

Other'Obj..iSt is a file that lists any object files that your
application linkS against but. you don't generate.

Refer to some QuickPort. examples programs (qp sample .. note, text, and so
forth) on the release diskette.

4.4 Installing yOW' Tool
After you run qp/make successfully, you must install the application on the
Lisa desktop. This installation process creates a tool icon and stationery pad
for your tool. To install a tool you run InstallTool from the Workshop. After
Inst8IITool is finished, when you leave the Workshop and start the Office
System, your tool and its stationery pad will be on the desktop_

To install a tool, run InstallTool from the Workshop with the tool number you
specified in qpmake.

Run what Prt9'am? InstallTool

The InstallTool program will prompt you as follows:

Please trier the name or the device your tool is on. [PARAPORT)
This is the name of your Office System ProFile.

Please enter YCU' tool id runber
Enter the tool number you specified when you ran qplmake.
Remember, e~·~·· tool must h8l.·'e B unique number.

Does yow tool create documents? (Y or N) [YES]
If you answer no, a tool like the Calculator is created. In other

4-4

9J.;ickPort Programmer's Guide Bringing Your Rpplication to the Desktop

words .. a tool that allows only one instance of itself at a time.

Can your tool handle nue thsl one document at 8 time? If you
don't know, press retum (Y cr N) [NO]
Some tools .. such as LisaWrite .. create one process that controls
multiple documents. You must answer no for QuickPort tools.

The stationery opening rectangle is del'aulted to 10, 40, 640, 290
These values are always the same.

Do you wish to specify 8 different one? (Y m N) [NO]
If you answer yes .. you are prompted for the values for the size
of the rectangle when a document is opened. This rectangle will
be used whenever a document is opened.

Please ert.er the f'BJle or yotI" tooL
Every tool has a tool number and a tool name. When you enter a
tool name .. the install program places the tool name in the
desktop names of the tool and its stationery.

l--rool name'l has been sucessf'ully installed in the OOice System
and it will appear in the disk window associated with the device..

After you've finished running the InstallTool program .. boot the Office System.
Your application's t.ool and stat.ionery pad should be on the desktop. You
only need to run InstallTool once even if you regenerate your tool. If you do
regenerate it, however .. the tool name in the object file will be lost .. and
"Tool XX" will be listed in all the alerts. To get the tool name back in the
alerts., you must run lnstallTool again.

4.5 The Icon Editm
The icons created by the InstaIlTool program are blank (Without pictures). If
you want to design an icon for ~/Our application, contact Macintosh Technical
Support.

4.6 Shipping Your Applicalim
Your application's phrase file, as well as the object file, must be shipped.
The phrase file contains the standard QuickPort menus and alerts .. and it
must be shipped with your application.

4-5

stllftdard QuickPort "'''enus

Appendix A ..
The Standard QuickPort tv1erus

A.l FllelPrlr* fw1eru
Set Aside Everything Returns all
windows to their icons without saving
the contents.

Set Aside '\lOUr document- Returns the
current document to its icon without
saving the contents.

Save 8: Put Awf!I/ Saves the contents
of the document, closes the window,
terminates the program, and returns the
icon to its original location.

Save 8: Continue Saves the contents of
the document and leaves the window
open.

Revert to Previous Version Alw~
gray -- not supported by QuickPort.

Prirt. As Is Prints one copy of the
document.

Fm-mat tm- Printer Sets formats in the
document based on the printer that will
be used.

Prim Prints the document using the
settings from the Format for Printer
dialog box. You may choose to print
multiple copies.

IV1onitOl' the Printer' Shows the status
of the document(s) being printed.

A-l

I ..
Set Aside Everything
Set Aside I'basic Paper 05/2411

Save & N Away
Save & Cortirue
Revert to Previous Version

Prirt As Is
Fermat for Prirter ...
Prirt ...
Monitor the Prirter ...

Workshop '-lser's Guide

A.2 Edit Menu
Copy Copies the current selection
onto the Clipboard. In the text panel
the selection is done as in Lisa'Nrite.
In the graphic panel, the entire panel is
copied. If there is a text panel, and a
graphic panel, you must use Select All
Graph to make the selection.

Read Input From Clipl:Jom"d Places
what is in the Clipboard into the input
buffer.

Erase Erases the current selection.

Save Buffer- Saves the lines that
scroll off the top of the screen area.
A check next to Save Buffer indicates
that the lines will be saved.

Don1t Save Eklfer Does not save the
lines that scroll off the top of the
screen area. A check next to Don't
Save Buffer indicates that the lines
will not be saved.

Select All Text Selects all the text
in the text. panel when there is a t.ext
panel.

Flush Input Clears the input. panel.
This command is shown only when the
input panel is shown.

Select All Graph Selects the ent.ire
graphic panel when there is a graphic
panel.

A.3 Terminal Specifics
Set '4J Allows you to select 80 or
132 characters per line, and line
wraparound.

The following dialog box appears for
you to fill in:

r- Desk FilelPrirt Edit Terminal Specifics Exeotion Page l.ayott

OWad:ers Per Line

Ittapanmd

Tab 10 I

.80 D 132

.Yes DNa

A-2

Sl8nd8l'd t;ltJickPOTt ,.,1enus

Copy
Read IrliU From Clipboard

Erase
Save BtIfer

't Save BtIfer

Select All Text

Terminal Specifics
Setup
Show Tab Ruler
Hide Tab Ruler

.,

Workshop User's Guide StBflderd Quick.Porl "''fe/?us

Show Tab Ruler Disple:yos the tab
ruler.

Hide Tab Ruler Hides the tab ruler.
A.4 Execution

Restart Restarts program ex ecution.

Restme Starts program execution at
the point where it was suspended by an
j-period.

A.5 Page Layout
Preview Page Margins Shows the
page margins. Note that the default
page margins are such that the output
in the text panel will not fit in the
width of an 8/1 by 11" page. Before
printing you should adjust the left and
right margins ao that each vertical
page will fit in one 8/1 by 11" page.

Preview Page Breaks Shows the page
breaks.
Don~ Preview Pages Does not show
the page boundaries.
Set Horizontal Page Enak Sets a
horizontal page break at the position of
the last mouse click.
Set Vertical Page Ek'eak Sets a
vertical page break at the position of
the last mouse click.

Clear All Manual Breaks Cle8l's all
the page breaks set in the document.

A-3

1.JPr'Pl/iI''W Page Margins
Preview Page Breaks
Dent Preview Pages

Headings and Margins ...

Set HDrizortal Page Break
Set Vertical Page Break
[lear RII Harual Breaks

Appendix B
Writirg Y ()UI" Own Terminal Emulator

B_1 lrItr'ocildion __ B-1

B.2 T9;dTer-m ___ B-1

8.2.1 TStdTerm Fields ... 8-1
8.2.2 TStdTerm Methods You Must Override 8-2

B.2.2.1 CRE ATE .. 8-2
8.2_2.2 VWrite. .. 8-2
8.2.2.3 Vread 8-2
8.2.2.4 CtrKeyWrite. 8-2

B..3 ProcecUes Terminal Emulab:n Can can ____________ . ______ . ___ . ___ 8-2
8.3.1 Screen Control Functions B-2

8.3.1.1 Manipulating Lines -- VGetLine and VPutLine 8-3
8.3.1.2 Redrawing -- RedrawScreen and

RedrawLine .. 8-3
B.3.1.3 Scrolling -- VScrollLines 8-3
8.3.1.4 Changing the Number of Columns --

ChangeMaxColumns 8-3
8.3.1.5 Changing Fonts -- ChangeFont 8-3

8.2.4 VStrWrite 8-3

fi'uickPort Programmer's Guide lNriting a Terminal Emulator

Writing Your Own
Terminal Emulator

8.1 Introc:lJction
This appendix briefly discusses how to write your own terminal emUlator ..
using the standard terminal as a template. To write a terminal emulator,
you must understand Clascal. Specifically .. you must understand how to
extend a Clescal program by creating a subclass, overriding existing methods,
and creating new methods. This section assumes you are comfortable with
these basic Clascal concepts. If you don't understand Clescal .. contact
Macintosh Technical Support for a copy of An Introduction to
CJ~cal before reading this section.

To write a terminal emUlator .. you create a subclass of TStdTeran.
TStdTer. is the standard terminal provided by QuickkPort. The subclass
you create defines the terminal emulator you want. This appendix discusses
TStdTerII, the methods you mt.lSt override in your subcl~, and the methods
used by TStdTer •. You can also add your own methods in your subclass.

B.2 TStdTerm
TStdTer. is the standard terminal that is used by QuickPort applications
unless the VT100, Soroc, or any other terminal emulator is specified. The
TStdTem fields and methods are discussed in this section.

8.2.1 TStdTem Fields
The fields you need to know about in TStdTerlt are listed below. These
fields explain how the standard terminal beh&les. You may want to change
some or all of this behavior in your terminal emulator.

ltaxLines
ltaxCol .. ns
cursor shape

saveBuffer

wraparound
stopOutputKey

The maximum number of lines in the window.

The maximum number of columns in the window.

The shape of the cursor. The standard terminal uses
a box cursor.

To save lines as they scroll off the top of the screen
into the buffer.

BOOLEAN, whether wraparound is on or off.

Used to stop output.

startOutputKey Used to start output.

You can only chage these fileds in your CREATE method.

8-1

~lJick.Port Programmer's Guide Writing a Terminal Emu/8tor

8..2.2 TStdTera Methods You Must Override
You must override three of these four methods in your subclass. You may
want to overrideCtrKeyWri teo

8..2.2.1 CREATE
CREATE creates an object ofcless TStdTerm. You must override the
CREATE method in your subclass.

fUNCTION {TStdTerm}CREATE (object: TObjecti heap:
Theap) : TST dT era;

You must use object and heap as arguments in your CREATE method.

8..2..2.2 VNri t e
Write is called by QuickPort when the program calls a write. You must
override the VWri te method in your subclass to handle escape sequences that
apply to your terminal.

PROCEDURE {IStdT em} VWri te (VAR str : Tstr255);

8..2..2.3 Vread
Vread is called by QuickPort when the program calls a read. You must
override the Vread method in your subclass to return any escape sequences
generated from your terminal.

PROCEDt.RE {TStdTerm}Vread (VAR ach: char; VAR
keycap : Byte; VAR applekeyl
shiftkeyl optionkey; BOOLEAN);

8..2.2.4 CtrKeyWrite
CtrKeyWrite handles the control keys for the terminal emulator. You
should override this method in your subclass if you want to handle different
control keys.

PROCEDt.RE {1St dT em }CtrKeyWr1 t e (ctrch: DiM);

The control keys handled in the standard terminal are CR (no LF), LF, Bell,
Backspace, Horizontal Tab.

B.3 Procedlres Tenninal Emulab:n Can Call
The procedures listed in this section can be called by any terminal
emulators. Note that these are not methods and do not need to be
overridden in your subclass.

8.3.1 Screen Qrirol Procedt.l'es
These procedures use escape sequences.

B-2

~l.JickPort Programmer's Guide ~VtitinlJ 8 Terminal Emul8tQT

8.3.1.1 Manipulating Unes -- VGetLine and VPutLine
VGetline deletes the specified line. VPutLine inserts the line at the
specified line number.

PROCEDURE VGetLine (lineNo : INTEGER; VAR line
Tstr255; delete: BOOLEAN);

PROCEDURE VPutLine (lineNo : INTEGER; VAR line
Tstr255; insert: BOOLEAN);

B.3.1.2 Redrawing - RedrawScreen and RedrawLi ne
RedrawScreen and RedrawLine are used after YGetLine and VPutLine.
RedrawScreen repaints the entire screen after a change to the lines or a
screen size change. RedrawLine repaints a line after its attributes have
been changed.

PROCEDURE RedrawScreen;

PROCEDURE VPutLine (lineNo : INTEGER);

B.3.1.3 Scrolling -- VScrollLines
VScrollLines scrolls output on the screen without changing the dat.a
structure.

PROCEDURE VScrollLines (topRegion, bottomRegion
INTEGER; scrollhoNmanylines :
INTEGER);

A positive value for scrollhOWllanylines scrolls down.

B.3.1.4 Changing the number" fI columns -- ChangeHaxColumns
ChangettaxCollllns changes the maximum number of columns per line to t.he
specified number. When ChangeHaxColumns is called, the corresponding
character font is used. If the columns per line is 80 or less, QuickPort uses
a 12-pitch font, otherwise a 2O-pitch font is used.

PROCEDURE Changet1axColumns (newColUllns : INTEGER);

B.3.1.5 Changing Fonts - Changef ont
Changefont changes to the specified font. Because of cursor positioning,
QulckPort supports only fixed pitch fonts.

PROCEDURE ChangeFont (newfont : INTEGER);

8.2.4 VStrNri te
VStrWri t e writes the string from the cursor position. This call is the one
that does the actual display of output. Terminal emulators should call this
after determining there is no escape sequence in the string. This call
actually disple:ys the output. No control functions are allowed in the string.
This call handles wraparound.

PROCEDURE VStrWrite (VAR str : Tstr255);

B-3

Notes

