Lisa Systems Software

| JUALCLTZA File Edit Search Type Style Print Markers

" Clipboard

v —# 24 2—-Hemisphere. TEXT

—#2# 2-Stretch. TEXT

= #2# 2-Stretch. TEXT
BEGIN { main program }

OpenPort(@myPort);

DrawStuff;

DrawStuif;

PaintRect(thePort”.portRect); imBl||| -+ 24 2-Hemisphere. TEXT |||
SetRect(srcRect,0,0,720,360); PROCEDURE DrawFigqure(viewAng, rollAng, pitchAng :

Initialization - Generic to all applications using QuickDraw
QDInit(@heapBuf, @heapBuf[8192], ®@heapError);

PaintRect(thePort” .portRect);
Initlcons; {moved to here from below stuffhex}
InitScales; {moved to here from below stuffhex}

REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii <> CHR(1));

BEGIN

myPicture := OpenPicture(srcRect); Viewenglalviewing):

Identity;
Roll(rollAng);

Pitch(pitchAng);
EraseRect(port1”.portRect);

FrameRect(porti®.portRect);
PlotGrid;

O
)
]
]
7
B

Lisa Pascal 3.0 Systems Software

Copyright

Thiz manual and the software described in it are copyrighted with all rights
reserved. Under the copyright laws, this manual or the software may not be
copied, in whole or in part, without the written consent of Apple, except in
the normal use of the software or to make & backup copy. The same
proprietary and copyright notices must be affixed to any permitted copies &s
were affixed to the original. This exception does not allow copies to be
made for others, whether or not sold, but all the material purchased (with all
backup copies) may be sold, given, or loaned to another person. Under the
law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shered-disk systemn. (Contact your
authorized Apple dealer for inforrnation on multiuse licenses.)

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which perrnits developers of
software for the Lisa to incorporate Apple-developed libraries and object
codes into their products. Both in-house and external distribution require a
licenze. Before distributing any products that incorporate Apple software,
please contact Software Licensing at the address below for both licensing and
technical information.

81983, 1984 Apple Computer, Inc.
20525 Mariani Ave.

Cupertino, CA 95014

{(408) 996-1010

Apple, Lisa, ProFile, MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.

Priam is a registered trademark of Priam, Inc. Sony is a registered
trademark of Sony Corporation. Centronics is a registered trademark of
Centronics Data Computer Corporation. Y752 and ¥T100 are trademarks of
Digital Equiprent Corporation.

Simultaneously published in the U.5.A. and Canada.
Reorder Apple Product #620-6149-E.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this software is
distributed, or in the manuals distributed with the software, Apple will
replace the media or manuals at no charge to you, provided you return the
itern to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the softweare. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THE
PRODUCT.

Even though Apple has tested the software and reviewed the documentation,
APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS SOFTWARE, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU,
THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE HELD LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS DOCUMENTATION, even if advised
of the possihility of such damages. In particular, Apple chall have no
liability for any programs or data stored in or used with Apple products,
including the costs of recovering such programs or data

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or conseguential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights which vary from state to state.

What's Inside

This binder contains seven documents about the Lise™ system software for
programmers’ reference. The manuals are, in order:

» Operating S\stem Reference Manual for the Lisa.
Fhe OEMSyscall Linit.

The Standard Apple Nurneric Environment.

The 88300 Assembly-Language SANE.

The Stdlinit.

The FrogCormm Unit.

s The QuickFort Frogrammer's Guide.

In addition, elsewhere in this package of books and medis, there is a copy of
Motorola's MSRXD 15/32 Bit Microprocessor Frogrammer's Reference Manual.

Operating System
Reference Manual
for the Lisa

Contents

Chapter 1
Introduction
1.1 The MaIN FUNCUONS.......iiiieiiriimiieiinreatensinerrennsnssseremsssstrssssnnssssssans 1-1
1.2 USING the 0S FUNCHIONS ..ccceecieereereaessnsissesessessnesarsnsessssessassssssnseransans 1-1
1.3 The FII& SYSUEM....iiiiiiieeciiiesireirinennsancaeesnsrseennnssesssassesnesresnensssessnanse 1-2
1.4 Process Management ... w 1-3
1.5 ™Memory Management1
1.6 EXCeptions @nd EVENLS.....ccccciererssesnssssssssternneersenennssasemassssssssasarsessans 1-5
1.7 Interprocess COomMMUNICALION.cccvrermreinreessrerecrteeenssstnniensesserasssssasenee 1-5
1.8 Using the 0S INLEITACEccovirerrerncsssistnnenssisenisssssssssssisasssssesnansasssacne 1-6
19 Running Programs under the 05ccccceeiiiiincceimeetssnrenissccenseeensessenaes 1-6
1.10 Wwriting Programs That Use the 0Scicccvciiiriieminennsasiiessesesennensssscae 1-6
Chapter 2
The Flle System
2.1
2.2
23
24
25
2.6
27
2.8 FIIB ACCESS cevreiierciririnicinesniansieiniieteesosnsssssssssssssassssssssiassssssssssasssassss 2-5
2.9 PIPES .oocciiceerreeretiteseseaenesatesaeessassnesssasaastesasesaterasesinssanasensessaennnin 2-6
2.10 F11E SYSLEM CallS...icieimniiiitieritimncsstmnnsaieansettessserssanssssessnssassenesssssanne 2-7
Chapter 3
Processes
3.1 PYOCESS SUUCIUTE ...ccoeeeeerciiireerannnnsnsetnnnnnnns Cessssseesnt ettt et ateesetaesenean 3-2
3.2 PrOCESS HIBTAICNY «.uurrecnncciirerectrenssererssernsesssnnsesssanessrressnsasssasessssanse
3.3 PIOCESS Creation...iciiiiiciiiniciiiinieeinierneasnnnsnssssssssssasssessannnsasnnnessssnsans
34 Process Control

3.5 Process Scheduling..
3.6 Process Termination
3.7 A Process-Handling EXBMPIEcvvieieirieeennincnie st sessaseanens 3-5
3.8 Process System CallS....cuuiiiiriiiiiiiiinenieeennunnnessssseesissiereasensssssnsess 3-7

Qperating System Reference Manual Contents

Chapter 4
Memory Management
8.1 D38 SBOMENLS...ccciiesierrereessnessressessaasnesssasaressssesssssnsssssessasssssanssasans 4-1
4.2 The Logical Data Segment NUMDETccciiirieierenssststnssasrissssssrsnsssssne a-1
8.3 Shared Datd SEOMENLS.....cicecieessersseesensarsssssssesssssssssasessesssssanessassasens 4-2
8.4 Private Data SEOMENLScciiiiieesiienecitearesesnastsnnnssssssessasssasssssanssasass -2
4.5 COote SEOIMEBNLS .iiiiiiiriniiressitiietteiienstinetinisstansrestssssssttssssteesssasases 4-2
8.6 SWADPING ...ceecrereeseeesreraraseessasssessessssssasassassasessasssessssesssessssanessnssessas 4-2
4.7 Memory Management SYStEM CallS....ccuiiiiiiimrirriirineenistsssennscesssesarseees 4-3
Chapter 5
Exceptions and Events
5.1 EXCEPUONS .c.eeereceeireeiemrennnesessserteenennsseserennsnestensansssessseeseannssssaseansens S-1
5.2 System-Defined EXCEPLIONSciiiciiiritiirienireetcreeriesesssereesssaasssenssanses 5-2
5.3 Exception HaNOIerS (... ciiiiiirieriiieneniesnenmesssseecennessesersananssssssssnarasees 5-2
Sl EVBNLS...cimmeieeerirtrieentsaeetstnre et s saasesesssssssstansesressnnssesanensnsnssnaess 5-5
5.5 EVENL ChamBIS ..iicrriiiiiniiintensrissssensrinsinsssassassssassstassssansesaessnssasase 5-5
5.6 The SYSLEM CIOCK ...ceevnvreermsnmnrecsssmeassssssissisesamstsereersnessssensasnsaranssasas 5-10
5.7 Exception Management System Callsivuicciiiiiinencaiieesesnnseseansiane S5-10
5.8 Event Management SYStEM CallScccvvviereirismneririnerneersaressasernmsnenene 5-17
5.9 Clock System CallS...cciiieiriniinirtiitisiiisiereieresesssesssestesssnssssssenssassssas 5-27
Chapter 6
Configuration
6.1 Conflguration System CallS......ucvieirisininieenennreeeesenssnnensnessssssnsssssasees 6-1
Appendixes
A Operating System INterface Unitcciiiiiiiniiinnniecccnennessnsssnseness
B System-Reserved Exception Names
C System-Reserved Event TYpes
D EXTOL MESSAGES e ceirrnrnrnnssssssssssssssssisssssssssisissesessssssssssssnssssssssssssasssssne
E FS_INFO FIBLAS «.ecceereeieesserssesasesaassesssasssnessasesasesanesasssansassassesansnsansans

Index

Preface

The Contents of This Manual
This manual describes the Operating System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. We assume that you have read the LJ/sg Owner’s Guide and
workshop Users Guide for the Lisa and are familiar with your Lisa system.

Chapter 1 is a general introouction to the Operating System.

Chapter 2 describes the File System and the available File System calls. This
includes a description of the interprocess communication facility, pipes, and
the Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
the structure of processes.

Chapter 4 describes how pracesses can control their use of available memory.

Chapter S describes the use of events and exceptions that control process
synchronization. It also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out about the configuration
of the system.

Appendix A contains the source text of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this manual.

Appendlx B contalns a list of system-reserved exception names.
Appendix C contalns a list of system-reserved event names.

Appendix D contains a list of error messages that can be produced by the
calls documented in this manual.

Appendix E contailns a description of the information you can obtain from the
Operating Systemn about files and devices.

Type and Syntax Conventions
Bold-face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. Systern call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters. //g//cs indicate a
new term whose explanation follows.

Future Releases
A few features of the Lisa Operating System will be changed in future
releases:

* Pipes will not be supported.
* Timed events will not be supported.

* Configuration System Calls will be changed.
If you want your software to be upward—-compatible, please take these changes

Into consideration. More information is provided In the appropriate sections
of the manual.

11
1.2
13
14
15
16
1.7
18
19

1.10 writing Programs That Use the 0S

Chapter 1
Introduction

The Main Functions

Using the 0S Functions....

The File System.....

Process Management

Memory Management

Exceptions and Events
Interprocess Communication

Using the OS Interface

Running Programs under the 0S5

1-1
1-1

1-3
1-4
1-5
1-5
1-6
1-6
1-6

Introduction

The Operating System (0S) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a file system for 1/0
and information storage, handles exceptions (software interrupts), and performs

memory management.

11 The Main Functions
This chapter describes the four main functional areas of the 0S: the File
System, process management, memory management, and event and exception
handling.

The File System provides input and output. The File System accesses devices,
volumes, and files. Each object, whether a printer, disk file, or any other type
of object, is referenced by a pathname. Every 1/0 operation is performed as
an uninterpreted byte stream. Using the File System, all 1/0 is device
independent. The File System also provides device-specific control operations.

A process consists of an executing program and its associated data. Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment is a file
that can be placed in memory and accessed directly.

Exceptions and events are process-communication constructs provided by the
0S. An event is a message sent from one process to another, or from a
process to Itself, that Is delivered to the recelving process only when the
process asks for that event. An exception is a special type of event that
forces itself on the recelving process. There is a set of system-defined
exceptions (errors), and programs can define their own. System errors such as
divislon by zero are examples of system-defined exceptions. You can use the
system calls provided to define any exceptions you want.

1.2 Using the 0S Functions
Both built-in language features and expiicit 0S system calls can access 0S
routines to perform desired functions. For example, the Pascal wrlteln
procedure is a built-in feature of the language. The code to execute writeln
is supplied in IOSPASLIB, the Pascal run-time support routines library. This
code, which Is added to the program when the program is linked, calls 0S
File System routines to perform the desired output.

You can also call 0S routines explicitly. This is usually done when the
language does not provide the operation you want. 0S routines allow Pascal
programs, for example. to create new processes, which could not otherwise be
done, since Pascal does not have any buflt-in process-handling functions.

1-1

(perating System Reference Markal Introguetion

All calls to the 0S are synchronous, which means they do not return until the
operation is complete. Each call returmns an error code to indicate if anything
went wrong during the operation. Any non-zero value indicates an error or
warning. Negative error codes indicate warnings. For a list of error codes
and thelr meaning, see Appendix D.

13 The File System
The File System performs all 1/0 as uninterpreted byte streams. These byte
streams can go to files on disk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device-control functions, the Flle System treats devices and flles
in the same way.

The Flle System allows sharing of all types of objects.

The File System provides for naming objects (devices, flles, etc.). A name In
the Flle System Is called a pat/mame A complete pathname consists of a
directory name and a file name. The file name Is meaningful only for storage
devices (gdevices that store byte streams for later use, such as disks).

Each process has a working directory assoclated with it. This allows you to
reference objects with an incomplete pathname. To access an object in the
working directory, you specify its file name. To access an object in a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the MOUNT call. See Chapter
2 for an explanation of this call and other File System calls. If the device is
a storage device, the mount operation makes a volume name avallable. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the volume may be accessed. The volume name can replace a device name
In a pathname used to access an object on the disk. The volume name allows
you to access a file with the same pathname no matter where the drive is
actually connected.

A device can be accessed if it is specified in the configuration list created by
the Preferences tool, Is physically connected to the Lisa, and 1s mounted.
There are some operations that can be performed on unmounted devices. Two
examples are DEVICE_CONTROL calls and scavenging. Logically mounting a
volume on a device makes file access to the volume possible. For storage
gevices, a volume is an actual magnetic medium that can contain recorded
files. For non-storage devices, volumes and flles are concepts used to
maintain a uniform interface. Files on non-storage devices such as printers
do not store data but act as ports for performing 1/0 to the devices.

1-2

Querating System Reference Merxial Introgetion

" The basic operations provided by the File System are as follows:

mount and unmount - make a volume accessible/inaccessible
open and close - make an object accessible/inaccessible
read and write - transfer Information to and from an object
device control functions ~ control device-specific functions

Some operations apply only to storage devices:

allocate and deallocate - specify size of an object

manipulate catalog - control naming of objects and creation and
destruction of objects

manipulate attributes - look at or change the characteristics of
the object

In addition to the data In an object, the object itself has certain
characteristics called aterituites such as the length and creatlon date of a
file. Calls are avallable to access the attributes of any File System object. In
addition to its system-defined attributes, an object on a storage device can
have a /abel The label is available for programs to store information that
they can Interpret.

Non-storage devices such as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are avallable as appropriate for the
device. Device-control functions are avallable to perform any device-
specific functlons needed. The file-name portion of the complete pathname
for a non-storage device is not used by the File System, although you do have
to provide one when you open the device.

For storage devices, the same sequentlial read and write operations are valid
as for non-storage devices. Storage devices also must be mounted, and
particular files opened, before the files can be used. They have appropriate
device-control functions available.

when writing to a disk file, space for the flle is allocated as needed. Space
for a file does not need to be contiguous, and in some cases this automatic
allocation can result In a fragmented file, which may slow file access. To
insure rapid access, you can pre-allocate space for the flle. Pre-allocating
the flle also ensures that the process will not run out of space on the disk.

Four types of objects can be stored on storage devices. These are flles, pipes,
data segments, and event channels. Flles, already discussed, are simply arrays
of stored data. Pipes are objects that provide Interprocess communication.
Data segments are speclal cases of files that are loaded Into memory along
with program code. Event channels are pipes with a specialized structure
imposed by the system.

1.4 Process Management
A process is an executing program and the data associated with it. Several

processes can exist at one time, and they appear to run simultaneously
because the CPU is multiplexed among them. The Scheduler decides what

1-3

(perating System Reference Manual Introguction

process should use the CPU at any one time. It uses a generally non-
preemptive scheduling algorithm. This means that a process will not lose the
CPU uniess 1t blocks. The blocked state is explained later in this section,

A process can lose the CPU when one of the following happens:
* The process calls an Operating System procedure or function.

* The process references one of its code segments that is not currently in
memory.

If neither of these occur, the process will not lose the CPU.

Every process is started by another process. The newly started process is
called the san7 process The process that started it is called its /avwer process
The resulting structure is a tree of processes. See Figure 3-2 for an
llustration of a process tree.

when any process terminates, all its son processes and their descendants are
also terminated.

When the 0S Is booted, it starts a s/ arocess The shell process starts any
other processes desired by the user.

Every newly created process has the same system-standard attributes and
capabllities. These can be changed by using system calls.

Any processes can suspend, activate, or kill any other process for which the
global ID Is known, as long as the other process does not protect itseif.

The memory accesses of an executing process are restricted to its own
memory address space. Processes can communicate with other processes by
using shared flles, pipes, event channels, or shared data segments.

A process can be in one of three states: ready, running, or blocked. A seagy
process §s walting for the Scheduler to select it to run. A suming process Is
currently using the CPU to execute its code. A blocked process is waiting for
some event, such as the completion of an 1/0 operation. It wiil not be
scheduled untl]l the event occurs, at which point it becomes ready. A
emminater processhas finished executing.

Each process has a priority from 1 to 255. The higher the number, the higher
the priority of the process. Prloritles 226 to 255 are reserved for system
processes. The Scheduler always runs the ready process with the highest
priority. A process can change its own priority, or the priority of my other
process, while it is executing.

15 M™Memory Management
Memory managment is concemed with what is In physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contaln up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amount of memory used by any ohe process can
exceed the available RAM of the Lisa. The Operating System will swap code
segments in and out of memory as they are needed. To aid the Operating

Qperating System Reference Manial Introaction

System In swapping data segments, calls are provided to glve programs the
abllity to define which data segments must be In memory while a particuiar
part of the program is executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal compiler to break
the program In pleces.

In addition to residging in memory, data segments can be stored permanently
on disk. They can be accessed with calls similar to Flle System calls. This
allows you to use a data segment as a direct-access flie--a file that is
accessed as part of your memory space.

Calls are provided for making, killing, opening, and closing data segments.
You can also change the size of a data segment and set its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you ability to
force the contents of the data segment to be swapped into maln memory so
they can be accessed by your process.

1.6 Exceptions and Events
An exception is an unexpected condition in the execution of a process (an
interrupt). An event is a message from another process.

An exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, lllegal instruction, and illegal address. System exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions if you want to try to recover
from the error.

User exceptions can be declared and exception handlers can be written to
process them. Your program can then signal this new exception.

Events are messages sent from one process to another. They are sent through
event channels.

A process that expects a message from an event channel executes a call to
walt for an event on that channel. This will give it the next message, if one
exists, or block the process until a message arrives.

If a process wants to know when an event arrives, but does not want to wait
for it, it can use an event-call channel. This Is set up by assoclating a user
exception with the event channel when it is opened. The Operating System
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess Communication
There are four methods for interprocess communication: shared files, pipes,
event channels, and shared data segments.

1-5

Querating Systerm Reference Maal Introavection

Shared flles are used for high volume transfers of information. It Is necessary
to coordinate the processes somehow to prevent them from overwriting each
other's Information.

Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes will not be supported In future releases of the
Operating System.) The pipe mechanism provides for the needed
synchronization; a process will block if it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the information, so
it is no longer avallable. Only one process can read from a given pipe.

Event channels are similar to pipes, except that event channels transmit short,
structured messages Instead of uninterpreted bytes.

A shared data segment can be used to transmit a large amount of data
rapidly. Having a shared data segment means that this data segment is In the
memory address space of all the processes that want to use it. All the
processes can then directly read and write information in the data segment.
It is necessary to provide some sort of synchronization to keep one process
from overwrliting another’s information.

1.8 Using the 0S Interface
The Interface to all the system calls is provided In the Syscall unit, found in
Appendix A. This unit can be used to provide access to the calls. See the
workshop Lisers Guice for the Lisa for more information on using Syscall.

1.9 Running Programs Under the 0S
Programs can be written and run by using the workshop, which provides
program development tools such as editing and debugging facllities.

1.10 writing Programs That Use the 0S
You can write a program that calls 0S routlnes to perform needed functions.
This program uses the Syscall unit and then calls the routines needed.

1-6

Chapter 2
The File System

21 File NBMES ... em—————————— 2-1
22 The Warking Directory __ L 2-2
23 DeVICES e amemecmeemcemeeameeem—eeee—m——————— 2-3
24 Storage Devices 2-3
25 The Yolume Calalog ... oo .. ccamencccaaaan 2-4
2.6 LADBIS ..o ———————— 2-4
27 Logical and Physical End of File 2-4
28 File ACCEBSS oot ccceeemeccevameaceeaenmaeam—eenn———— 2-5
2O PADBS oo mm————m—m—————— 2-6
210 File System Calls ... cecccemnnecnnanan 2-7
2.10.1 MAKE_FILE and MAKE_PIPE iieeeenn 2-8
2102 KILL _OBIECT . i reeeeeei e aaaans 2-10
2103 UNKILL _FILE L ieeeiee e eceeae et 2-11
2104 RENAME ENTRY ..t 2-12
2105 LOOKUP L . i, 2-13
A L R (N | o 2-16
2107 SET FILE _INFO Lttt eee e et 2-17
2308 OPEN L e 2-18
2109 CLOSE _OBJIECT oottt eee e eeee e 2-19
2.10.10 READ_DATA and WRITE_DATA ... i, 2-20
2.10.11 READ_LABEL and WRITE_LABEL ciiiiiiiiierinans 2-23
2.10.12 DEVYICE _CONTROL .. eeeee e cece e, 2-24
2.10.12.1 Setting Device-Control Information............... 2-24
2.10.12.2 Obtaining Device-Control Information 2-29
210,13 ALLOCATE ..o et 2-34
210,14 COMPRACT L oot 2-35
210,15 TRUNCATE .t et eie e caaeaaans 2-36
21016 FLUSH it etiiiieeeieereaaannaaes 2-37
210,17 SET _SAFETY ottt eeaaaaaaas 2-38
2.10.18 SET_WORKING_DIR and GET_WORKING DIR 2-39
2.10.19 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY,
and LOOKUP NEXT _ENTRY ..o eeeee 2-40
2.10.20 MOUNT and UNMOUNT 2-41

The File System

The File System provides device-independent 1/0, storage with access
protection, and uniform file-naming conventions.

Device independence means that all 1/0 Is performed in the same way,
whether the ultimate destination or source is disk storage, another program, a
printer, or anything else. In all cases, 1/0 Is performed to or from s/es
although those flles can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A file that is stored on a block-structured device, such as a disk, is listed in
a catalog(also called a a/rectory) and has a name. For each such file the
catalog contains an entry describing the file's attributes, including the length
of the file, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored in an area called the A/7e /sbel
Each file has two associated measures of length, the Logical £nd of File
LEGF) and the Physical £nd of Flie (PEOF) The LEOF is a pointer Lo the last
byte that has meaningful data. The PEOF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or written is
called the Ale markex

Since 1/0 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block-
structured devices, programs can make 1/0 requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 1/0 requested is performed
before the call returns. The actual 1/0, however, is asynchronous, in that
processes may block when performing 1/0. See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media. All the files are able to identify and describe themnselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Names
All the files known to the Operating System at a particular time are organized
into catalogs. Each disk volume has a catalog that lists all the files on the
gisk.

Any object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

(perating System Reference Maal The Flle System

by the character "-". Because the top catalog in the system has no name, all
complete pathnames beglin with “-".

For example,
-LISA-FORMAT. TEXT

refers to a file named FORMAT.TEXT on a volume named LISA. The file
name can contain up to 32 characters. If a longer name is specified, the
name Is truncated to 32 characters. Accesses to sequential devices use an
arbitrary dummy filename that is ignored but must be present in the
pathname. For example, the serial port pathname

-RS2328
is insufficlent, but
-RS232B-XYZ

Is accepted, even though the -XYZ portion is ignored. Certain device names
are predeflined:

RS232A Serial Port A

RS232B Serial Port B

PARAPORT Parallel Port

SLOTXCHANy Serial ports: x is 1, 2, or 3andy is 1 or 2
MAINCONSOLE writeln and readln device

ALTCONSOLE writeln and readln device

UPPER Upper Diskette drive (Drive 1)
LOWER Lower Diskette drive (Drive 2)
BITBKT Bit bucket: data is thrown away when directed here

See Chapter 6 for more Information on device names.

Upper and lower case are not significant In pathnames: ‘TESTVOL' is the same
object as ‘Testvol. Any ASCH character Is legal in a pathname, including
non-printing characters and blank spaces. However, use of ASCII 13,
RETURN, In a pathname is strongly discouraged.

22 The Working Directory
It is sometimes inconvenient to specify a complete pathname, especially when

working with a group of files in the same volume. To alleviate this problem,
the Operating System maintains the name of a working directory for each
process. when a pathname is specified without a leading “-*, the name refers
to an object in the working directory. For example, if the working directory
is -LISA the name FORMAT.TEXT refers to the same file as
-LISA-FORMAT.TEXT. The default working directory name is the name of the
boot volume directory.

You can find out what the working directory is with GET_WORKING_DIR.
You can change to a new working directory with SET_WORKING_DIR.

Qoerating System Reference Mokl The Flle System

23 Devices
Device names follow the same conventions as file names. Attributes like baud
rate are controlled by using the DEVICE_CONTROL call with the appropriate
pathname.

Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button

Serial port A (RS232A)

Serial port B (RS232B, the leftmost port)
I1/0 slot 1

I1/0 slot 2

I/0 slot 3

Keyboard, mouse, battery-powered clock
10 ms system timer

CRT vertical retrace interrupt
Parallel port

Diskette 1 (UPPER)

Diskette 2 (LOWER)

Video screen

The device driver associated with a device contalns information about the
device's physical characteristics such as sector size and interleave factors for
‘disks.

2.4 Storage Devices
On storage devices such as disk drives, the File System reads or writes file
data In terms of pages. A pagels the same size as a block. Any access to
data in a flle ultimately translates into one or more page accesses. when a
program requests an amount of data that does not fit evenly into some
number of pages, the File System reads the next highest number of whole
i)ages. Similarly, data Is actually written to a file only in whole page
ncrements.

A flle does not need to occupy contiguous pages. The File System keeps
track of the locations of all the pages that make up a flle.

Each page on a storage device is self-identifying; the page descriptoris stored
with the page contents to reduce the destructive Impact of an 1/0 error.

The eight components of the page descriptor are:

version number

volume ldentifier

Flle identifier

Amount of data on the page
Page name

Page position in the file
Forward link

Backward 1ink

Qoerating System Reference Marval The Flle Systemn

Each volume has a8 Mealum Descriptor Data Flle (IMOOF) which describes the
various attributes of the medium such as its size, page length, block layout,
?t}ditnle size of the boot area. The MDDF is created when the volume Is
nitialized.

The File System also malntains a record of which pages on the medium are
currently allocated, and a catalog of all the flles on the volume, Each flle
contains a set of file hints, which describe and point to the actual file data.

25 The Volume Catalog
On a storage device, the volume catalog provides access to the files. The
catalog Is itself a file that maps user names into the intermnal file 1dentifiers
used by the Operating System. Each catalog entry contains a varlety of
information about each file including:

Name
Type

Iri\ternal file number and address

Size

Date and time created, last modifled, and last accessed
File identifier

Safety switch

The safety switch is used to avoid accidental deletions. while the safety
switch is on, the file cannot be deleted. The other flelds are described under
the LOOKUP File System call.

The catalog can be located anywhere on the medium.

26 Labels
An application can store its own information about a file In an area called
the /%/e /abel The label allows an application to keep the file data separate
from information maintained about the file. Labels can be used for any
object in the File System. The maximum label size is 128 bytes. 1/0 to labels
is handled separately from file data 1/0.

2.7 Logical and Physical End of Flle
A flle contains some number of bytes of data recorded In some number of
physical pages. Additional pages which do not contain any file data can be
allocated to the file. There are, therefore, two measures of the end of the
file. The Loglical End of File (LEOF) Is a pointer to the last stored byte that
has meaning to the application. The Physical End of File (PEOF) is a count of
the number of pages allocated to the file.

In addition, each open file has a pointer called the /e manker which polints
to the next byte in the flle to be read or written. when the file Is opened,
the flle marker points to the first byte (byte number 0. The file marker can
be positioned automatically or explicitly using the read and write calls. For
example, when a program writes to a flle opened with Append access, the flle
marker is autormatically positioned to the end of the file before new data are
written. The flle marker cannot be positioned past LEOF except by a write

perating System Reference Marneal! The Flle System

operation that appends data to a file; in this case the flle marker is
positioned one byte past LECF.

when a flle is created, an entry for it is made in the catalog specified in its
pathname, but no space is allocated for the file itself. when the file is
opened by a process, space can be allocated explicitly by the process, or
automatically by the Operating System. If a write operation causes the flle
marker to be positioned past the LEOF marker, LEOF (and PEOF if necessary)
are automatically extended. The new space is contiguous if possible.

2.8 File Access
The Flle System provides a device-independent bytestream interface. As far
as an application program is concemed, a specified number of bytes is
transferred either relative to the file marker or at a specified byte location
in the file. The physical attributes of the device or file are not important to
the application, except that devices that do not support positioning can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's physical
characteristics.

Programs can reguest any amount of data from a file. The actual 1/0,
however, s performed in whole-page increments when devices are block
structured. Therefore, programs can optimize 1/0 to such devices by setting
the file marker on a page boundary and making 1/0 requests in whole-page
increments.

A file can be open for access by more than one process concurrently. All
requests to write to the file are completed before any other access to the file
is permitted. when one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the file. The
other processes may, however, have accessed the flle in an earller state.

Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consistent view of a shared file.

when you open a flle, you specify the kind of access allowed on the file,
when the file is opened, the Operating System allocates a file marker for the
calling process and a run-time identification number called the re/7w/m The
process must use the refnum in subsequent calls to refer to the file. Each
operation using the refnum affects only the file marker associated with that
refnum.

Processes can share the same flle marker. In g/otal acoess mook each
process uses the same refnum for the file. when a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a flle with Global_Refrum, but each time the OPEN call Is used a
different refnum is produced. Each of those refnums can be passed to other
processes, and each process using a particular refum shares the same flle
marker with other processes with the same refum. Processes using different

Qperating System Rererence Marial Tre Flie System

refnums, however, always have different file markers, whether or not those
refnums were obtained with Global_Refnum.

A flle can also be opened in private mode, which specifies that no other OPEN
calls are to be allowed for that file. A flle can be opened with
Global_Refrnum and private, which opens the file for global access, but allows
no other process to open that file. By using this call, processes can control
which other processes have access to a file. The opening process passes the
global refnum to any other process that is to have access, and the system
prevents other processes from opening the file.

Processes using global access may not be able to make any assumptions about
the location of the flle marker from one access to the next.

29 Pipes
Because the Operating System supports multiple processes, a mechanism is

provided for interprocess communication. This mechanism is called a pjpg
Pipes are similar to the other objects in the File System -- they are named
according to the same rules, and they can have labels.

NOTE

Plpes will not be supported In future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be

upward-compatible.

As with a file, a plpe is a byte stream. Wwith a pipe, however, information is
queued In a flrst-In~flrst-out manner. Also, a pipe can have only one reader
at a time, and once data is read from a pipe it {s removed from the pipe.

A plpe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data into it.
Because the data read from the pipe is consumed, the file marker is always at
zero. If the pipe is empty and no processes have it open for writing, EOF (End
Of Flle) Is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives in the pipe, or until all writers close the pipe.

when a pipe Is created, its size is 0 bytes. Unlike with ordinary files, the
initializing program must allocate space to the pipe before trying to write
data into it. To avold deadlocks between the reading process and the writers,
the Operating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
should allocate to the pipe twice as much space as the largest amount of data
in any planned read or write operation.

A pipe is actually a circular buffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catches up with the write pointer, the reading process blocks

Qperating System Reference Manual The File System

untll data are written or untll all the wrlters close the plpe. Simllarly, If the
write pointer catches up with the read pointer, a writing process blocks until
the pipe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant Flle System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the Operating System always fully satisfies each read or
write request before returning to the program. In other words, If a process
asks for 100 bytes of data from a pipe, the Operating System waits until there
are 100 bytes of data in the plpe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the Operating System
walts until there is room for the full 100 bytes before writing anything into
the pipe. If processes were allowed 10 make write or read requests for
greater than half of a particular plipe, it would be possible for a reader and a
writer to deadlock, with neither having room in the pipe to satisfy its

requests,

210 Flle System Calls
This section describes all the Operating System calls that pertain to the File
System. A summary of all the Operating System calls can be found in
Appendix A. The followling speclal types are used In the File System calls:

Pathname = STRING[Max_Pathname]; (* Max_Pathname = 255 *)
E_Name = STRING[Hax_Ename]; (* Hax_EName = 32 *)
Accesses = (Dread, Dwrite, Append, Private, Global_Refnum);
HSet = SET OF Accesses;

IoMode = (Absolute, Relative, Sequential):

The Fs_Info record and its associated types are described under the LOOKUP
call. The Dctype record is described under the DEVICE_CONTROL call.

Qperating System Rerferernce Marnal The Flle System

2.10.1 MAKE_FILE and MAKE_PIPE Flle System Calls

MAKE_FILE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

MAKE_PIPE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

Ecode: Error indication
Path: Name of new object
Label Size: Number of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Label_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
lto 128 bytes no matter what its initial size. Any error indication is returned
n Ecode.

NOTE

Pipes will not be supported In future releases of the Operating System.
0o not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKE_FILE examplie on the next page checks to see whether the
specified file exists before opening it.

qperating System Reference Markdl The Flle System

CONST FileExists = 890;
VAR FileRefNum, ExrorCode:INTEGER;
F1leName:PathName;
Happy : BOOLEAN;
Response:CHAR;
BEGIN
Happy : =FALSE;
WHILE NOT Happy DO
BEGIN
REPEAT (* get a file name *)
WITE('File name: °);
READLN(F1leName);
UNTIL LENGTH(FileName)>0;
MAKE_FILE(ErrorCode, FileName, 0); (*no label for this filex)
IF (ErrorCode<>0) THEN (* does file already exist? *)
IF (ErrorCode=FileExists) THEN (» yes =)
BEGIN
WRITE(FileName, * already exists. Overwrite? °);
READLN(Response)
&mpy:=(Response IN ['y','Y']); (»go ahead and overwrite*)

ELSE RITELN(Error ', ErrorCode, ' while creating file.')

ELSE Happy:=
END;

OPEN(ErrorCode, FileName, F1leRefNum, [Dwrite]);
END;

2-9

Querating System Reference Maral The Flle System

2102 KILL_0BJECT Flle System Call

KILL_OBJECT (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: Name of object to be deleted

KILL_0BJECT deletes the object given in Path from the File System. Objects
with the safety switch on cannot be deleted. If a flle or pipe is open at the
time of the KILL_OBJECT call, its actual deletion is postponed until it has
been closed by all processes that have it open. During this perlod no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL_O0BJECT call. A KILL_OBJECT call can be reversed
by UNKILL_FILE, as long as the object Is a flle and is still open.

The following program fragment deletes files until RETURN Is pressed:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode:INTEGER;
BEGIN
REPEAT
WITE('File to delete: °);
READLN(F1leName);
IF (FileName<>'') THEN
BEGIN
KILL_OBJECT(ErrorCode, FileName);
IF (ErrorCode<>0) THEN
IF (ErrorCode=FileNotFound) THEN
WRITELN(FileName, * not found.')
ELSE WRITELN('Error ', ErrorCode, ' while deleting file.®)
ELSE WRITELN(FileName, ' deleted.');
END
UNTIL (FileName="");
END;

2-10

Qperating System Referance Maual “ Trhe File System

2103 UNKILL_FILE File System Call

UNKILL_FILE (var Ecode:Integer;
RefNum:Integer;
var Newname:e_name)

Ecode: Error indicator
RefNum: Refnum of the killed and open file
Newname: New name for the file being restored

UNKILL_FILE reverses the effect of KILL_OBJECT as long as the killed
object is a file that is still open. A new catalog entry is created for the flle
with the name given in Newname. Newname is not a full pathname: the
resurrected file remains in the same directory.

2-11

Qerating System Reference Manial The Flle System

2104 RENAME_ENTRY Flle System Call

RENAME_ENTRY (Var Ecode:Integer;
var Path:Pathname;
var Newname:E_Name)

Ecode: Error indicator
Path: Object’'s old name
Newname: Object's new name

RENAME_ENTRY changes the name of an object in the Flle System.
Newname cannot be a full pathname. The name of the object is changed, but
the object remains in the same directory. The following program fragment
changes the file name of FORMATTER.LIST to NEWFORMAT.TEXT.

VAR O10Name :PathName;

NewName :E_Name;

ErrorCode: INTEGER
BEGIN
OlaName: ="' -LISA-FORMATTER.LIST
NewName : = NEWFORMAT . TEXT '
RENAME_ENTRY(ErrorCode, O1dName, NewName)
END;

The flle's full pathname after renaming is
-LISA-NEWFORMAT.TEXT

Volume names can be renamed by specifylng only the volume name In Path.
Here is a sample program fragment which changes a volume name. Note that
the leading dash (-), given in OldName, is not given in NewiName.

VAR OldName :PathName;

NewName:E_Name;

ErrorCode:INTEGER
BEGIN
OldName: ="-thomas";
NewName:="stearns";
RENAME_ENTRY(ETTOTrCcode, O10Name, NewName)
END;

2-12

Querating System Reference Manal

2.105 LOOKUP File System Call

The Flle System

LOOKUP (Var Ecode:Integer;

’

var Path:Pathname;
var Attributes:Fs_Info)

Ecode:
Path:

Attributes: Information returned about path

Error indicator
Object to lookup

LOOKUP returns information about an object in the flle system. For devices
and mounted volumes, call LOOKIUP with a pathname that names the device or
volume without a file name component:

DevName:='-UPPER";

LOOKUP(ErrorCode, Deviame, InfoRec);

If the device is currently mounted and is block structured, all of the record
flelds of Attributes contain meaningful values; otherwise, some values are

undefined.

(* Diskette drive 1)

The Fs_Info record 1s defined as follows. The meanings of the Information
flelds are given in Appendix E.

Fs_Info = RECORD
name: e_name;
devnum: INTEGER;
CASE OType:info_type OF

device_t, volume_t:

(lochannel: INTEGER
devt: deviype;
slot_no: INTEGER;
fs_size: LONGINT;
vol_size: LONGINT;
blockstructured,
mounted: BOOLEAN;
opencount: LONGINT;
privatedev,

remote,

lockeddev: BOOLEAN;
mount_pend
unmount_pending: BOOLEAN;
volname,

password: e_name;
fsversion,

volid,

volnum: INTEGER;

2-13

Qoerating System Reference Manual The File System

blocksize,

datasize,

clustersize,

filecount: INTEGER; (*Number of files on vol®)
freecount: LONGINT; (*Number of free blocks *)
pTvC, (* Date Volume Created »)
DTvB, {» Date Volume last Backed up *)
DTVS:LONGINT; (* Date Volume last scavenged *)
Machine_id,

overmount_stamp,

master_copy_id: LONGINT;

privileged,

vrite protected: BOOLEAN;

master,

copy,

scavenge_flag: BOOLEAN);

object_t: (

size: LONGINT; (=actual no of bytes written =)
psize: LONGINT; (*physical size in bytes *)
1psize: INTEGER; (*Logical page size in bytes *)
ftype: filetype;
etype: entrytype;

DTC, (* Date Created *)
DTA, (* Date last Accessed *)
o™, (* Date last Hodified =)
DTB: LONGINT; (» Date last Backed up *)

refrum: INTEGER:

fmark: LONGINT; (» file marker *)

acmode: mset; (* access mode *)
nreaders, (* Number of readers *)

neriters, (= Number of writers %)

nusers: INTEGER; (* Number of users *)
fuid: uid; (* unique identifier *)
eof, (* ECF encountered? =)
safety_on, (= safety switch setting *)
kswitch: BOOLEAN; (* has file been killed? *)
private, (* File opened for private access? *)
locked, (* Is file locked? =)
protected:BOOLEAN); (* File copy protected? =)

2-14

Qperating System Rererence Marvial The Flle System

Uid = INTEGER:

Info_Type = (device_t, volume_t, object t);

Devtype = (dlskdev, pascalbd, seqdev, bitbkt, non_io):

Filetype = (undefined, MDDFFile, rootcat, freelist,
badblocks, sysdata, Spool, exec, usercat. pipe,
bootfile, swapdata, swapcode, ramap, userfile,
killedobject);

Entrytype = (emptyentry, catentry, linkentry, flleentry,
pipeentry, ecentry, killedentry);

The eof fleld of the Fs_Info record Is set after an attempt to read more
bytes than are avallable from the flle marker to the logical end of the file, or
after an attempt to write when no disk space is avallable. If the flle marker
Is at the twentleth byte of a twenty-five byte flle, for exampie, you can
read up to 5 bytes without setting eof, but if you try to read 6 bytes, the
File System gives you only S bytes of data and eof is set.

The following program reports how many bytes of data a given file has:

VAR InfoRec:Fs_Info; (*information returned by LOOKUP and INFO*)
F1leName :PathName;
ErrorCode: INTEGER;

BEGIN
WITE(‘Flle: ‘');
READLN(F1leName);

LOOKUP(ExrorCode, FileName, InfoRec),

IF (ErrorCooe<>0) THEN

WRITELN(‘Cannot 1ookup °, FileName)

ELSE ‘

WRITELN(FileName, * has °, InfoRec.S1ze, * bytes of data.');
END;

2-15

Qoerating System Reference Manal The Flle System

2.10.6 INFO File System Call

INFO (var Ecode:Integer;
RefNum: Integer;
var RefInfo:Fs_Info)

Ecode: Error indicator
RefNum: Reference number of object in File System
Refinfo: Information returned about RefNum's object

INFO serves a function similar to that of LOOKUP but is applicable only to

objects in the File System that are open. The definition of the Fs_Info
record is given under LOOKUP and in Appendix A

2-16

Qoerating System Reference Maral The Flle System

2.10.7 SET_FILE_INFO File System Call
SET_FILE_INFO (var Ecode:Integer;

RefNum: Integer;
Fsi:Fs_Info)
Ecode: Error indicator
RefNum: Reference number of oblect in File System
Fsi: New information about the object

SET_FILE_INFO changes the status information assoclated with a given object.
This call works In exactly the opposite way that LOOKIP and INFO work, in
that the status information is given by your program to SET_FILE_INFQ. The
Fsi argument is the same type of Information record as that returned by
LOOKUP and INFO. The object must be open at the time this call s made.

The following flelds of the information report may be changed:

file_scavenged
file_closed by 0S

file left_open
user_type
user_subtype

2-17

Querating Systerm Reference Maral The Flle System

2.10.8 OPEN File System Call

OPEN (var Ecode:Integer;
var Path:Pathname;
var RefNum:Integer;

Hanip:MSet)
Ecode: Error indicator
Path: Name of object to be opened
RefNum: Reference number for object
Manip: Set of access types

The OPEN call opens an object so that it can be read or written to. When
you call OPEN, you specify the set of accesses that will be allowed on that
file or sequential device. The avallable access types are:

* Dread -- Allows you to read the flle

. Dvri;,e -- Allows you to write in the file (to replace existing
data

* Append -~ Allows you to add on to the end of the file

* Private -- Prevents other processes from opening the file

¢ Global_Refnum -- Creates a refnum that can be passed to other
processes

Note that you can give any number of these modes simultaneously. If you
specify Dwrite and Append in the same OPEN call, Dwrite access will be used.
See Section 2.8 for more Information on Global_Refrnum and Private access
modes.

If the object opened already exists and the process calls WRITE_DATA
without having specified Append access, the object can be overwritten. The
Operating System does not create a temporary file and wait for the
CLOSE_OBJECT call before deciding what to do with the old file.

An object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the file without using
a global refnum, they must coordinate their file accesses so as to avoid
overwriting each other’s data.

Pipes cannot be opened for Dwrite access. You must use Append if you want
to write Into the pipe. To set up a private pipe, the reader process opens the
pipe first, specifying Dread mode; the writer process then opens the pipe with
Append, Private access mode.

2-18

Qperating System Reference Marial The Flle System

2109 CLOSE_OBJECT Flle System Call

CLOSE_DBJECT (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be closed

If RefNum is not global, CLOSE_OBJECT terminates any use of RefNum for 1/0
operations. A FLUSH operation s performed automatically and the flle is
saved In its current state. If RefNum is a global refnum and other processes
have the flle open, ReftNum remains valld for these processes and other
processes can still access the file using RefiNum,

The following program fragment opens a file, reads 512 bytes from it, and
then closes the file.

TYPE Byte=-128..127;
VAR F1leName:PathName;
ErrorCode, FileRefNum:Integer;
ActualBytes:LongInt;
Buffer:ARRAY[0..511] OF Byte;
BEGIN
OPEN(ErrurCoce, FileName, F 11eRefNum, [DRead]);
IF (ErrorCode>0) THEN
WRITELN('Cannot open °, FileName)
ELSE
BEGIN
READ_DATA(ErrorCode,
FileRefNum,
ORDA(@Buffer),
512,
ActualBytes,
St;quential,
0).
IF (ActualBytes<512) THEN
WRITE('Only read °,ActualBytes, * bytes from *, FileName);
CLOSE_OBJECT(ErrorCode, FileRefNum);
END;
END;

2-19

Querating System Rererence Manal The Flle System

2.1010 READ_DATA and WRITE_DATA Flle System Calls

READ DATA (var Ecode:Integer;
RefNum:Integer;
Data_addr:LongInt;
Courtt :LongInt;

var Actual:LongInt;
ftode : Totode;
Offset:LongInt);

WRITE_DATA (var Ecode:Integer;
RefNum: Integer;
Data_Adar:Longint;
Count :LongInt;

var Actual:LongInt;
Hode : ToMode;
Offset:LonglInt);

Ecode: Error indicator
RefNum: Reference number of object for 1/0
Data_Addr: Address of data (source or destination)

Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Hode: 170 mode

Offset: Offset (absolute or relative modes)

READ_DATA reads information from the device, plpe, or flle specified by
RefNum, and WRITE_DATA writes information to it. Data_Addr is the
address for the destination or source of Count bytes of data. The actual
number of bytes transferred is returned in Actual.

Mode can be absolute, relative, or sequential. In absolute mode, Offset
specifies an absolute byte of the flle. In relative mode, Offset specifies a
byte relative to the flle marker. In sequential mode, Offset is ignored
(assumed to be zero); transfers occur relative to the flle marker. Sequential
mode (which Is a speclal case of relative mode) is the only access mode
allowed for reading or writing data in plpes or sequential (non-disk) devices.
Non-sequentlal modes are valld only on devices that support positioning. The
first byte Is numbered 0.

If a process attempts to write data past the Physical End of Flle on a disk
file, the Operating System automatically aliocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blocks. You can use the ALLOCATE call to ensure that any newly allocated
blocks are located next to each other, although they may not be located near
the rest of the file,

READ_DATA from a pipe that does not contain enough data to satisfy Count
suspends the calling process until the data arrives in the pipe. If there are no

2-20

Qoerating System Reference Markial The Flle System

writers, the end-of-file Indication (error 848) is returned in Ecode. Because
plpes are circular, WRITE_DATA to0 a pipe with insufficient room suspends the
calling process (the writer) until enough space Is avallable (until the reader
has consumed enough data). If no process has the pipe open for reading and
there is not enough space in the pipe, the end-of-file indication (848) is
returned in Ecode.

NOTE

READ_DATA from the MAINCONSOLE or ALTCONSOLE devices must
specify Count = 1.

The following program coples a flle. Note that you must supply the correct
location for Syscall in the second line of the program.

PROGRAM CopyFile;

USES (*Syscall.Obj*) SysCall;

TYPE By te=-128..127;

VAR (ldFile, NewFile:PathName;
O1dRefNum, NewRefNum: INTEGER;
BytesRead, BytesWritten:LONGINT;
ErrorCode:INTEGER;

Response:CHAR;
Buffer:ARRAY [0..511] OF Byte;
BEGIN
WRITE('File to copy: ')
READLN(O1cFile);

OPEN(ErrorCode, 010File, 01dRefNum, [DRead]);
IF (ErrorCode>d) THEN
BEGIN
WRITELN('Error *, ErrorCode, * while opening *, OlcFile);

EXIT(CopyFile);
END;

WRITE('New file name: °');

READLN(NewFile);

HAKE_FILE(ErrorCode, Newile, 0);
OPEN(Errorcode, Newr11e, NewPefNum, [D¥rite]);

REPEAT
READ DATA(ErrorCode,
OldRefNum,
ORD4(@Buffer),

512, BytesRead, Sequential, 0);
IF (ErrorCode=0) AND (BytesRead>0) THEN
WRITE_DATA (ErrorCode,
NewRefNum,
ORDA(@Buffer),
BytesRead, BytesWritten, Sequential, 0);
UNTIL (BytesRead=0) OR (BytesWritten=0) OR (ErrorCode>0);

2-21

perating System Rererence Mansal Tne Flle System

IF (ErrorCode>0) THEN
WRITELN('File copy encountered error °,ErrorCode);
CLOSE_0BJECT(ErrorCode, NewRefNum);
CLOSE_0BJECT(ErrorCode, 010RefNum);
END.

2-22

Querating System Reference Marial The Flle System

2.10.11 READ_| ABEL and WRITE_LABEL Flle System Calis

READ LABEL (Var Ecode:Integer;
var Path:Pathname;
Data_Addr:Longint;
Count :LongInt;
var Actual:LongInt)

WRITE_LABEL (var Ecode:Integer;
var Path:Pathname;
Data_addr:Longint;
Count :LongInt;
var Actual:LongInt)

Ecode: Error inaicator

Path: Name of object containing the label
Data_Addr: Source or destination of 1/0

Count: Number of bytes to transfer

Actual: Actual number of bytes transferred

These calls read or write the label of an object in the File System. 1/0
always starts at the beginning of the label. Count is the number of bytes the
process wants transferred to or from Data_Addr, and Actual Is the actual
number of bytes transferred. An error is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-23

Operating System Reference Manugl The File System

2.10.12 DEVICE_CONTROL File System Call

DEVICE_CONTROL (Var Ecode:Integer;
Yar Path:Pathname;
Yar CParm:Dctype)

Ecode: Exror indicator
Path: Device to be controlled
CParm: A record of information for the device driver

DEVICE_CONTROL is used to send device-specific information to a device
driver or to obtain device-specific information from a device driver.

Regardless of whether you are setting device-control parameters or
requesting information, you always use a record of type Dctype. The
structure of Dctype is:

Dctype = RECORD
dcYersion: INTEGER;

dcCode: INTEGER;
dcData: ARRAY[0..9] OF LONGINT
END;.

dcversion: currently 2
dcCode: control code for device driver
dcData: specific control or data parameters

210121 Setting Device-Cortrol Information
Before you use a device, you call DEYICE_CONTROL to set the device
driver. Once you begin using the device, you call DEVICE_CONTROL as
necessary.

Table 2-1 shows which groups of device-control functions must be set before
using each type of device. Table 2~2 shows which characteristics are
contained in each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2, Group A indicates the type of parity used
with the device. Each group requires a separate call to DEVICE_CONTROL,
and you can set only one characteristic from each group. If you set more
than one from the same group for a particular device, the last one set will
apply.

2-24

Cperating Svstem Refsrence Manusl The File System

Table 2-1
DEVICE_CONTROL Functions Required
befare Using a Device

Device Type Device Name Required Groups
Serial R5232 for RS232A or RS232B R,CD,E,
input F,G,L,MN
Serial RS232 for RS232A or RS2328 A,B,CG,
output or printer HI,MN
Profile SLOTXCHANy (where J

x and y are numbers)

or PARAPORT
Parallel printer SLOTXCHANy (where I

x and y are humbers)

or PARAPORT
Console screen and MARINCONSOLE or I
keyboard ALTCONSOLE
Diskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the parity attribute for the RS2328 port to "no parity.”
Note that the parity attribute requires only that you set cparm.dccode and
cparm.dcdats[0]. Other parameters require that you also set cparm.dcdats[1]
and cparm.dcdatae[?] They are set in a similar manner.

YR
cparm: dctype;
errnum: integer;
path: pathnome;

BEGIN
path:= '-R5238 .;
cparm. docversion:=2;
cpam . dccode: = ;
cparm_dcdata[0]:= ©;
DEVICE_CONTROL(erTnum, path, cpamm);
END;

(* always set this value *)

2-25

Qperating Sesiem Reference Manusal

The File System

Table 2-2 shows how to set cparm.dccode, cparm.dcdatdl0] cparm.dcdata[1]
and cparm.dcdate[?] for the various availsble attributes. Note that any
values in cparm.dcdata psst cparm.dcdate[?] are ignored when yvou are setting

attributes documented here.
Table 2-2
DEVICE_CONTROL Output Functional Groups

FUNCTION (dccode _dcdatd0] .dcdatal1l .dcdatelZ]
Group A, Parity:
No parity, 8 bits
of data 1 4] - —
0dd parity, 7 bits
of data 1 1 - -
Even parity, 7 bits
of dsata 1 3 - —-—
8 bits of data plus
ninth bit odd parity 1 5 - -
No parity, input
stripped to 7 bits 1 6 - —
Group B, Output Handshake:
None 11 - - —
DTR handshake 2 - - -
XON/XOFF handshake 3 - - -
delay after CR, LF 4 ms delay - —
Group C!, Baud rate:

5 baud - —

Group D, Input waiting during Read | Data:

wait for Count bytes 6 -

return whatever rec'd 6 1 -

Group E2, Input handshake:

no handshake 7 - -
9 -1 -1

DTR handshake 7 —_ -

XON/XOFF handshake 8 — -

Group F3, Input typeahead buffer:

flush only -1 -2

flush and resize 9 bytes -2

flush, resize,

and set threshold 9 bytes low

2-26

Qperating Sysiem Relerence Manual The File System

Table 2-2 (continued)

FUNCTION dccode dedetd0] .dedatefl] . dedetdl?]
Group G, Disconnect Detection:

none 10 0 0 —_

BREAK detected

means disconnect 10 0 nonzero -_—

Group H, Timeout on output (handshake interval):

no timeout 12 0 - -
timeout enabled 12 seconds - —
Group I, Automatic linefeed insertion:

dissbled 17 0 - -
enabled 17 1 — -

Group X, Disk errors (set to 1 to enable, to 0 to disable):
ensble sparing 21 sparing rewrite reread

Group K3, Break command (never regquired, available only on serial
RS232 devices):

send break 13 millisecond 0 -
duration
send break 12 millisecond i -
while lowexing DTR duration
Group L, Timeout on Input:
No timeout 14 0 - -
Timeout enabled 14 seconds - -
Group M, BREAK during Close Object:
enabled (default) 25 nonzero — -
disabled 25 0 - -
Group N°, Set Modem Timeouts (Int'l MODEM A drivexr only):
Set timeouts 22 Yecovery cearrier connect
Group P, Wait until modem connects (Int'l MODEM A driver only)
Wait 24 - — -
{returns with
exrnum=645

if no connect)

2-27

Qpsrating System Refersnce Manual The File System

1.-Using Group C, you can set baud to any standard rate. However, 3600,
7200, and 19200 heud are awvailable only on the RS232B port.

2. In Group E, to specify no inpt handshake, first make the call with the
device control code 7, then call again with the device control code 9, as
shown.

3. Low and A under Group F set the low and high threshold in the typeahead
input buffer. When Hi or more bytes are in the input buffer, XOFF is sent
or DTR is dropped. When Low or fewer bytes remain in the typeshead
buffer, XON is sent or DTR is reasserted. The size of the typeahead buffer
{bytes) can be any value between O and 1024 bytes inclusive.

4. In Group J, enabling disk sparing lets the device driver to relocate blocks
of data from areas of the disk that are found to be bad. Enabling disk
rewrite allows the Operating System to rewrite data that it had trouble
reading, but finally managed to read. This condition is referred to as a soft
errar. Enabling disk reread tells the Operating System to read data after
they are written to make certain that they were written correctly.

5. When sending a break command, as shown in Group K, any device control
from Group A removes the break condition even if the allotted time has not
yvet elapsed. Also, sending a break will disrupt transmission of any other
character still being sent. If you want to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a
single null character (equal to 0) just prior to calhng DEVICE CONTROL to
send the break.

6. In Group N, recovery is the minimum number of milliseconds required by
the modem between calls. Carrier is the number of milliseconds without
carrier detect, before the driver disconnects from the line. Connect is the
maximum number of seconds the driver will wait when Group P
Device_Control is subsequently issued.

2-28

Qperating Sstem Relerence Manugl The File System

Table 2-3 gives a list of mnemonic constants that you can use in place of
explicit numbers when setting Dccode. These mnemonics are provided in the
SysCall unit for convenience.

Table 2-3
Dccode Mnemonics

Dccode ic Dccode Mnemonic

i dvParity 14 no mnemonic
2 dvOutDTR 15 dvExrStat

2 dvOutXON 16 dvGetEvent
4 dvOutDelay 17 dvAutolF

5 dvBaud 18 no mnemonic
6 dvinWait 19 no mnemonic
7 dvInDTR 20 dvDiskStat
8 avInKDN 21 dvDiskSpare
9 dvTypeshd 22 no mnemonic
10 dvDiscon 23 no mnemonic
11 dvOutNoHS 24 no mnemonic
12 no mnemonic 25 no mnemonic
13 no Mmnemonic

2.10.12.2 Obtaining Device-Control Information
To use DEVICE_CONTROL to find out about the current state of a particular
device, simply give the pathname for the particular device along with a
function code for the type of information you need. The record of type
Dctype that you supply is returned filled with information.

There are three types of information requests you can make. Note that each
tvpe applies only to some of the available devices. The request types and
the returned information are described in Table 2-4.

Table 2-5 shows the error code provided in response to a Dccode=15
information request. This code is given in cparm.dcdatef0]. The code, a long
integer, is shown in Table 2-5; the bite and bytes are numbered from the
right, counting from 0. The meaning assigned to the bit applies if the bit is
set (equals 1).

Here is a program fragment that uses DEVICE CONTROL to get information
about the lower diskette drive.

VAR
cparm: dctype;
exrrnum: INTEGER;
path: pathname;
BEGIN
path:='-—|.£l£R';
cparm_doversion:=2; (* always set this value *)

2-29

Operating System Reference Msanisl The File Sysiermn

cparm._dccode := 20;
DEVICE_CONTROL(exxnum, path, cparm);
WITH cparm DO
WRITELN (dcdata[0], dedata[1], dcdata[2], dedata[3],
dcdata[4], dedata[5], dedata[6])
END;

Table 2-4
Device Information

Dccode Devices Returned in Decdata

15 Profiles [0] contains disk error status on last
hardware error (see Table 2-5)
[1] contains error retry count
since last system boot

16 Console Screen [0] contains numbers 0O-10,
and Keyboard which indicate events:

no event
upper diskette inserted
upper diskette button
lower diskette inserted
lower diskette button
mouse button down
mouse plugged in
power button
mouse button up

10 = mouse unplugged
[1] contains the current state of certain
keys, indicated by set bits (if the bit is
1, the key is pressed) (bits are numbered
from the right)

0 = caps lock key
shift key
option key
command key
mouse button
auto repeat
[2] contains X and Y coordinates of mouse,
X in left 2 bytes,Y in xright 2 bytes
[3] contains timer walue in milliseconds

WO NO B WN O

[I I (I B S B BT

N
nowonHnouu

Cwerating System Relerence Manual The Fiie System

Table 2—4 (continued)

Dccode Devices Returned in Dcdata
18 RS232, Modem R Read and clear input error counters

{0] contains count of framing errors
[1] contains count of parity errors
[2] contains count of overrun exrors
[3] is count of buffer overflow errors

19 RS232, Modem R [0] returns last value passed in
Group A, Dcdata[0]
[1] returns last value passed in dccode
for Group B, or negative value of 'ms
delay' if 'delay after (R, LF' was selected
2] returns baud rate
3] upper 16 bits: returns last value
from dcdata[0], Group D
lower 16 bits: returns last value
from dccode, Group E
4] returns value from 'bytes' Group F
5] upper 16 bits: value from 'low’,
Group F
lower 16 bits: value from 'hi’,
Group F
6] returns 'seconds' from group H
7] upper 16 bits: value from
dcdata[1] Group G
lower 16 bits: value from
dedata[0] Group I
[8] returns value from dedatal[0],
Group L
[9] returns number of characters waiting
in driver's input buffer

2-31

Operating System Relerence Manual The File System

Table 2-4 (continued)

Dccode Devices Returned in Dcdata
20 Profile or [0] contains:
Diskette Drive 0 = no disk present

1 = disk present (but not
accessed yet)
The following indicate that a disk is
present and has been accessed at

least once.
2 = bad block track appears
unformatted

3 = disk formatted by some
program other than the
Operating System

4 = OS-formatted disk

[1]} contains:
O = no button press pending
1 = button press pending,
disk not yet ejected
[2] contains number of available spare
blocks, 0-16, meaningful only when
Dcdata[0] = 4 and for a diskette
[3] contains:

QO = both copies of the bad-block

directory 0K

1 = one copy is corxupt
(meaningful only when
Dcdata[0] = 4)

[4] contains:
Q = sparing disabled
1 = sparing enabled
[5] contains:
Q = rewrite disabled
1 = rewrite enabled
[6] contains:

0 = reread disabled

reread enabled

1

23 Modem A [0] returns ‘recovery', Group N
[1] returns 'carrier’', Group N
[2] returns 'connect', Group N
[3] returns:

0 = not connected

1 = connected

2-32

Opergling System Reference Manusl The File System

Table 2-5
Disk Hard-Error Codes

Byt
7
6

nno

3

ProfFile received <> 35 to its last response

Write or write/verify aborted because more than 532 bytes of
data were sent or because ProFile could not read its spare
table

5 = Host's data is no longer in RAM because ProFile updated its
spare table
4 = SEEK ERROR — unable in 3 tries to read 3 consecutive headers
on a track
3 = CRC error {only set during actusl read or verify of
write/verify, not while trying to read headers after seeking)
2 = TIMEQUT ERROR (could not find header in 9 revolutions)-- not
set while trying to read headers after seeking
1 = Not used
0 = Operation unsuccessful
Byte 2 .
7 = SEEK ERROR -~ unable in 1 try to read 3 consecutive headers on
a track
6 = Spared sector table overflow (more than 32 sectors spared)
5 = Not used
4 = Bad block tsble overflow (more than 100 bad hlocks in table)
3 = ProFile unable to read its status sector
2 = Sparing occurred
1 = Seek to wrong track occurred
0 = Not used
Byte 1
7 = ProFile has been reset
6 = Invalid block number
5 = Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
0 = Not used
Byte O

This byte contains the number of errors encountered when rereading a
block after any read error.

2-33

Qoerating System Reference Markial The Flle System

2.10.13 ALLOCATE File System Call

ALLOCATE (var Ecode:Integer;
RefNum:Integer;
Contiguous:Boolearn;
Count:Longint;

var Actual:Integer)

Ecode: Error indicator

RefNum: Reference number of object to be allocated space
Contiguous: True = allocate contiguously

Count: Number of blocks to be allocated

Actual: Number of blocks actually allocated

Use ALLOCATE to increase the space allocated to an object. If possible,
ALLOCATE adds the requested number of blocks to the space avallable to the
object referenced by RefNum. The actual number of blocks allocated is
retumed in Actual. If Contiguous is true, the new space Is allocated in a
single, unfragmented space on the disk. This space Is not necessarlly adjacent
to any existing flle blocks.

ALLOCATE applies only to objects on block-structured devices. An attempt to
allocate more space to a pipe is successful only if the pipe's read pointer is
less than or equal to its write pointer. If the write pointer has wrapped
around but the read pointer has not, an allocation would cause the reader to
relad invalid and uninitialized data, so the Flle System returns error 1186 in
this case.

Qperating System Reference Manval Tne Flle System

2.10.14 COMPACT Flie System Call

COMPACT (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be compacted

COMPACT changes the Physical End of File to deallocate any blocks after the
block that contains the Logical End of File for the file referenced by ReftNum.
(See Figure 2-1.) COMPACT applies only to objects on block-structured
devices. As In the case of ALLOCATE, compaction of a pipe is legal only if
the read pointer Is less than or equal to the write pointer. If the write pointer
has wrapped around, but the read pointer has not, compaction could destroy
data in the pipe. The File System returns error 1188 in this case.

2-35

Qperating System Reference Manal The Flle System

2.10.15 TRUNCATE Flle System Call

TRUNCATE (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be truncated

TRUNCATE sets the Logical End of File indicator to the current position of
the flle marker. Any data beyond the file marker are lost. TRUNCATE
applies only to block-structured devices. Truncation of a pipe can destroy
data that have been written but not yet read. As the dlagram shows,
TRUNCATE changes only LEOF. COMPACT, on the other hand, changes only

PEOF. .
I—— TRUNCATE r COMPACT -

new new

LEOF PEOF

File Marker old old

Figure 2-2
The Relationship of COMPACT and TRUNCATE
In this figure the boxes represent blocks of data. Note that LEOF can point to
any byte in the flle but PEOF always points to a block boundary. Therefore,

TRUNCATE can reset LEOF to any byte in the flle, but COMPACT can reset
PEOF only to a block boundary.

2-36

Qperating System Reference Marnigl The Flle System

210.16 FLUSH Flle System Call

FLUSH (var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of destination of 1/0

FLUSH forces all buffered Information destined for the object identified by
RefNum to be written out to that object.

A side effect of FLUSH Is that all FS buffers and data structures are flushed
as well as the control information for the referenced file). If RefiNum is -1,
only the global File System is flushed. This is a method by which an
application can ensure that the Flle System is consistent.

2-37

Qperating System Reference Maral The Flle System

2.10.17 SET_SAFETY Flie System Call
SET_SAFETY (var Ecode:Integer;
var Path:Pathname;

On_off:Boolean)

Ecode: Error indicator
Path: Name of object containing safety switch
On_Off: Set safety switch:

On = true

Off = false

Each object in the File System has a "safety switch” to help prevent accidental
deletion. If the safety switch Is on, the object cannot be deleted.
SET_SAFETY turns the switch on or off for the object identified by path.
Processes that are sharing an object should cooperate with each other when
setting or clearing the safety switch,

2-38

Qoerating System Refererce Marna! ne File System

21018 SET_WORKING_DIR and GET_WORKING_DIR Ffle System Calls

SET_WORKING DIR (var Ecode:Integer;
var Path:Pathname)

GET_WORKING_DIR (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: Working directory name

The Operating System uses the working directory name to resolve partially
specified pathnames Into complete pathnames. GET_WORKING_DIR returns the
current working directory name in Path. SET_WORKING DIR ~sets the working
directory name.

The following program fragment reports the current name of the working
directory and allows you to set it to something else:

VAR WorkingDir :PathName;
ErrorCode : INTEGER;
BEGIN
GET_WORKING_DIR(ErrorCode, WorkingDir);
IF (ErrorCode<>0) THEN
WRITELN(‘Cannot get the current working directory!‘)
ELSE WRITELN('The current working directory is: °, workingDir);
WRITE('New working directory name: °);
READLN(WorkingDir),;
SET_WORKING_DIR(ErrorCode, WorkingDir),
END;

2-39

Cperating System Reference Manual Fhe File Jystem

210.19 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY, and
LOOKUP_NEXT_ENTRY File System Calls

RESET_CATALOG (var ecode : integer;
var path : pathname)

RESET_SUBTREE (var ecode : integer;
var path : pathname)

GET_NEXT_ENTRY (var ecode : integer;
var prefix : e_name;
var entry : e_name)

LOOKUP_NEXT_ENTRY (var ecode : integer;
var prefix - e_name;
var InfoRec : Q_Info)

ecode: Exror indicator

path: Name of the directory to be scanned
prefix: Find names beginning with this substring
entry: Name of the next object (with matching

prefix} in the directory

These procedures are used to enumerate the objects contained in a

directory. RESET_CATALOG instructs the file system that the directory
named in path is to be scanned. GET_NEXT_ENTRY returns the name of the
next object in the directory. Only names beginning with the substring prefix
will be found. If prefix is the null string, then all names in the directory
will be found. If there are no more objects in the directory, an end-of-file
error (848) is returned. RESET_SUBTREE is equivalent to RESET_CATALOG,
but indicates that the subtree rooted st the directory named in path is to be
scanned. Subsequent calls to GET_NEXT_ENTRY will return names from the
subtree according to a pre-order traversal. LOOKUP_NEXT_ENTRY
combines the actions of GET_NEXT_ENTRY and QUICK_| LOOKUP into one
operation, and is consxderably more efficient than those two procedures
called serially. When traversing a subtree by calling LOOKUP_NEXT_ENTRY,
the /eve! field of the Q_Info record indicates the level of the i object within
the directory hierarchy. Objects in the root directory of a disk volume are
at level zero.

Qerating System Reference Marxial The Flle System

2.10.20 MOUNT and UNMOUNT Flle System Calls

MOUNT (var Ecode:Integer;
var VName:E_Name;
var Password:E_Name
var Devname:E_Name)

UNHOUNT (Var Ecode:Integer;
var Vname:E_name)

Ecode: Error ingicator

vname: Volume name

Password: Password for device (currently ignored)
Devname: Device name

MOUNT and UNMOUNT handle access to sequential devices or block-structured
devices. For block-structured devices, MOUNT loglcally attaches the volume's
catalog to the File System. The name of the volume mounted is returned in
the vname parameter.

UNMOUNT detaches the specified volume from the File System. No object on
that volume can be opened after UNMOUNT has been called. The volume
cannot be unmounted until all the objects on the volume have been closed by
all processes using them.

Devname is the name of the device on which a volume Is being mounted.
Devname should be given without a leading dash (-).

vname Is the name of the volume that was successfully mounted, and Is
returned.

2-41

3.1

33
34
35

3.7
3.8

APrOCESS-Handling Example
Process System Calls

Chapter 3
Processes

3.8.1 MAKE_PROCESSucovvsereesesesesnssssesssssesssssesssssssssesssnsssassssnns
3.8.2 TERMINATE_PROCESScoovtreseeescsessasssnssmssssssssnsssssssssassassases
3,83 INFO_PROCESS ..vucuvecseresisssessessssssssssssessssssssassssiessssssssssesseses
388 KILL_PROCESScoernerersinsessssssssnssssssssesssssessssssassssssssssasnes
3,85 SUSPEND_PROCESSvuevervesssesssssersssssssssssssensssssessesssssssesssnss

3.8.6 ACTIVATE_PROCESS.........
3.8.7 SETPRIORITY_PROCESS

388 YIELD CPU mmueeeeoseeerssresessesssrssessesseesessesrssesseresessersserees .

389 MY_ID

--

Processes

A process is an entity in the Lisa system that performs work. when you ask
the Operating System to run a program, the OS creates a specific instance of
the program and its associated data. That instance is a process.

The Lisa can have a number of processes at any one time; they appear to be
running simultaneously. Although processes can share code and data, each
process has its own stack.

Only one process at a time can use the CPU. The Scheauier determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an 1/0
request, for example). At that time, the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
when the original process later resumes execution, it picks up where it left
off.

The process scheduling state has three possibilities. A swwning process s
actually executing instructions. A reeqy process 1s ready to execute but is
being held back by the Scheduler. A blocked process is ignored by the
Scheduler. It cannot continue its execution until something causes it to
become ready. Processes commonly become blocked while awaiting
completion of 1/0, although there are a number of other likely causes.

3-1

Qperating System Reference Marnal Processes

3.1 Process Structure
A process can use up to 16 data segments and 106 code segments.

The layout of the process address space for user processes is shown in Figure

3-1.
Seg#
- -
0 | Unavailable
- -
1 User Code Segments
106
A o s
107 LDSN 1
(data segments)
122 LDSN 16
————
123 | Stack

Figure 3-1
Process Address Space Layout
Each process has an associated priority, an integer between 1 and 255. The
Scheduler usually executes the highest-priority ready process. The higher
priorities (226 to 255) are reserved for the Operating System.

3.2 Process Hierarchy
when the system Is first started, several system processes exist. At the base
of the process hierarchy, shown In Figure 3-2, is the root process, which
handles various internal Operating System functions. It has at least two sons:
the Memory Manager process and the shell process.

The Memary Manager process handles code and data segment swapping.

Qoerating System Reference Manual Processes

The shell process s a user process that is automatically started when the 0S
is Initialized. It is typlcally a command interpreter, but It can be any
program. iTne 0S simply 1ooks for the program called SYSTEM.SHELL and
executes it.

Root Process

Shell
Process
Memory Manager Other
Process
User
Process

Other User Processes

Figure 3-2
Process Tree

Any other system process (the network control process, for example) is a son
of the root process.

3.3 Process Creation
when a process is createq, it is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thought of as existing in a subtree. Many of the process
{nanagement calls affect the entire subtree of a process as well as the process
tself.

3.4 Process Control
Three system calls are provided for explicit control of a process. These calls
allow a process to kill, suspend (block), or activate any other user process in
the system, as long as the process identifier is known. Process-handling calls
are not allowed to control Operating System processes.

3.5 Process Scheduling
Process schedullng is based on the priority established for the process and on
requests for Operating System services.

The Scheduler generally executes the highest-priority ready process. Once a
process is executing, it loses the CPU only under certain circumstances. The
CPU Is lost when there Is some speciflc request for the process to walt (for
an event, for example), when there is an 1/0 request, or when there is a
reference to a code segment that Is not in memory. A process that makes

(perating System Reference Manual Processes

any Operating System call may lose the CPU. The process gets the CPU back
when the Operating System is finished, except under the following conditions:

¢ The running process reguests input or output. The Scheduler starts the
next highest-priority process running while the first process waits for the
1/0 to complete.

* The running process lowers Its priority below that of another ready process
or sets another process's priority higher than its own.

* The running process explicitly yields the CPU to another process.
* The running process activates a higher-priority process.

* The running process suspends itself.

* A higher-priority process becomes ready.

* The running process needs code to be swapped into memory.

* The yunning process executes an event-walt call.

* The running process calls DELAY_TIME,

Because the Operating System cannot selze the CPU from an executing
process except in the cases noted above, background processes should be
liberally sprinkled with YIELD _CPU calls.

when the Scheduler Is invoked, it saves the state of the current process and
selects the next process to run by examining the pool of ready processes. If
the new process requires that code or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager is already
working on a process, the Scheduler selects the highest priority process in the
ready queue that does not need anything swapped.

36 Process Termination
A process terminates under one of the following conditions:

* It calls TERMINATE_PROCESS.

* It reaches an 'END.’ statement.

* It is referred to in a KILL_PROCESS call.
* [ts father process terminates.

* It runs Into an abnormal condition.

when a process begins to terminate, a SYS_TERMINATE exception condition is
signaled o the terminating process and all of the processes it has created.

By means of the DECLARE_EXCEP_HDL call (described in Chapter 5), any
process can create an exception handler to catch the terminate exception and
clean up before terminating. The SYS_TERMINATE exception handler will be
executed only once. If an error occurs while the handler Is executing, the
process terminates immediately.

3-4

peratlng System Reference Maal Provesses

A process can call KILL_PROCESS on any user process whose Proc_Id 1s
known. TERMINATE_PROCESS, on the other hand, terminates the process that
called it (and its descendants) TERMINATE_PROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
specified in the MAKE_PROCESS call.

Termination involves the following steps:

1.

5.

6.

Signal the SYS_TERMINATE exception on the terminating process.

2. Execute the user's exception handler, if any.
3.
4. Close all open flles, data segmentspipes, and event channels left open by

Instruct all sons of the current process to terminate.

the user process.

Send the SYS_SON_TERM event 10 the father of the terminating process
if a local event channel exists.

walt for all the sons to finish termination.

3.7 A Process-Handling Example
The following programs illustrate the use of many of the process-management
calls described in this chapter. The program Father, below, creates a son
process and lets it run for a while. It then gives the user a chance to
activate, suspend, Kill, or get information about the son.

PROGRAM Father;
USES (=$U Source:SysCall.0bj*) SysCall;
VAR ErrorCode:INTEGER; (*error returns from system calls =)

proc_id:LONGINT; (* process global identifier =)
progname :Pathname; (* program file to execute *)
null:NameString; (= program entry point =)
Info_Rec:ProcInfoRec; (* information about process *)
1:INTEGER;

Answer :CHAR;

Gperating System Reference Marial Processes

BEGIN
ProgName:="SON.0BJ'; (* this program is defined below+)
Null:="";
MAKE_PROCESS(ErTorcode, Proc_Id, ProghName, Null, 0);
IF (ErrorCode<>0) THEN
WRITELN('Error °,ErrorCode,® during process management.‘);
FOR 1:=1 T0 15 DO (» 1dle for awhile %)
BEGIN
WRITELN('Father executes for a moment.");
YIELD_CPU(ErrorCode,FALSE); (* let son Tun *)
END;
WRITE('K(i11 S(uspend A(ctivate I(nfo');
READLN(Answer);
CASE Answer OF
'K*, "K": KILL_PROCESS(ErrorCode, Proc_Id);
'S*,'s': SUSPEND_PROCESS(ErrorCode, Proc_Id, TRUE (* suspend
family *));
'A’, 'a': ACTIVATE_PROCESS(ErrorCode, Proc_Id, TRUE (» activate

family *));
‘I','i': BEGIN

INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);

WRITELN('Son" s name is °, Info_Rec.ProgPathName);

END;
END;
IF (ErrorCode<>0) THEN

WRITELN("Error °,ErrorCode, * during process management.');
END.

The program Son is:

PROGRAM Son;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER:
null:NameString;
BEGIN
WHILE TRUE DO
BEGIN
WRITELN(*Son executes for a moment.');
EM)YIEL(J_CF‘U(!Error()oue, FALSE); (*1let father process run®)
END.

3-6

Qoerating System Reference Maal " Processes

3.8 Process System Calls
This section describes the Operating System calls that pertain to process
control. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in process-control calls:

Pathname = STRING[255];

Namestring = STRIM;[ZO],

P_s eventblock = “s_eventblock;

S eventblock = T _event_text;

T_event_text = array [0..size etext] of longint;
ProcInfoRec = record

progpathname : pathname;

global_id : longint;

father_id : longint;

priority : 1..255;

state : (pactive, psuspended, pwaiting):
data_in : boolean

end;

Qperating System Reference Manual Processes

3.8.1 MAKE_PROCESS Process System Call

MAKE_PROCESS (var Errtum:Integer;
var Proc_Id:LongInt;
var ProgFile:Pathname;
Var EntryName:NameString; (= NameString = STRING[20] *)
Evnt_Chn_RefNum:Integer)

ErrNum: Error indicator

Proc_Id: Process identifier (globally unigue)
ProgFile: Process file name

EntryName: Program entry point

Evnt_Chn_RefNum: Communication channel between calling
process and created process

A son process is created when another process, the father process, calls
MAKE_PROCESS. The son process executes the program identified by the
pathname in ProgFile. If ProgFile is a null character string, the program name
of the father process is used. A globally unigue identifier for the son process
is returned in Proc_Id

Evnt_Chn_RefNum is a local event channel supplied by the father process.
Event channels are discussed in Chapter 5. The Operating System uses the
event channel identified by Evnt_Chn_RefNum to send the father process
events regarding the son process (for example, SYS_SON_TERM). If
Evnt_Chn_RefNum Is zero, the father process is not informed when such
events are produced.

EntryName, if non—null, specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.

Any error encountered during process creation is reported in ErrNum.

Qoerating System Reference Manal Processes

3.8.2 TERMINATE_PROCESS Process System Call

TERMINATE_PROCESS(Var ErrNum:Integer;
Event_Ptr:P_s_eventblk)

ErrNum: Error indicator
Event _Ptr: Information sent to process's creator

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS_TERMINATE exception to be signaled for the calling process and for all
of the processes it has created. The process can declare its own
SYS_TERMINATE exception handler 1o handle whatever cleanup it needs to do
before it is actually terminated by the system. When the terminate exception
handler is entered, the exception information block contains a longint that
describes the cause of the process termination:

Excep_Datd0] - 0 Process called TERMINATE_PROCESS.
1 Process executed the 'END.’ statement.
2 Process called KILL_PROCESS on itself.

3 Some other process called KILL_PROCESS on the
terminating process.

4 Father process Is terminating.

5 Process made an invalld system call (that is, an
unknown call).

6 Process made a system call with an invalid ExrNum
parameter address.

7 Process aborted due to an error while trying o swap
in a code or data segment.

8 Process exceeded its maximum specified stack size.

9 Process aborted due to possible lockup of the system
by a data space exceeding physical memory size.

10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be signaled. The entire list
is shown at the beginning of Appendix A.

If the terminating process was created with a communication channel, a
SYS_SON_TERM event s sent to the terminating process's father. The
terminating process can specify the text of the SYS_SON_TERM with the
Event_Ptr parameter. Note that the first (0'th) longint of the event text is
reserved by the system. When the event s sent to the father, the OS places
the termination cause of the son process In the first longint. This is the same
termination cause that was supplied to the terminating process itself in the

Qperating System Reference Maal Processes

SYS_TERMINATE exception information block. Any user-supplied data in the
first longint of the event text is overwritten.

If a process specifies an event to be sent in the TERMINATE_PROCESS call
but the process was created without a local event channel, no event is sent to
the father.

If the process was created with a local event channel, an event is sent to the
father if the process calls TERMINATE_PROCESS with a nil Event_Ptr or if
the process terminates by a means other than calling TERMINATE_PROCESS.
The event contains the termination cause in the first longint and zeroes in the
remalning event text.

P_s_eventblk is a pointer to s_eventblk, defined as:

CONST size etext = 9; (* event text size - 40 bytes *)
TYPE t_event_text = ARRAY [0..size etext] OF LongInt;
s eventblk = t_event_text;

If a process calls TERMINATE_PROCESS twice, the Operating System forces it
to terminate even if it has disabled the terminate exception.

3-10

Qperating System Reference Manual Processes

3.8.3 INFO_PROCESS Process Systemn Call
INFO_PROCESS (var ErrtNum:Integer;
Proc_Id:LongInt;
var Proc_Info:ProcInfoRec);

ErrNum: Error indicator

Proc_Id: Global identifier of process

Proc_Info: Information about the process identified by
Proc_Id

A process can call INFO_PROCESS to get a variety of information about any
process known to the Operating System. Use the function MY_ID to get the
Proc_Id of the calling process.

ProcinfoRec is defined as:

TYPE ProcInfoRec = RECORD
ProgPathname :Pathname;
Global_id :Longint;
Priority 11..255;

State : (PActive, PSuspended, PWaiting);
Data_in :Boolean
END;
Data_in Indicates whether the data space of the process Is currently in
memory.
The procedure on the next page gets information about a process and displays
some of it.

3-11

Qperating System Reference Marnual Processes

PROCEDURE Display Info(Proc_Id:LONGINT);
VAR ErrorCode:INTEGER;
Info_Rec:ProcInfoRec;
BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
IF (ErrorCode=100) THEN
WRITELN('Attempt to display info about nonexistent

process. ')
ELSE
BEGIN ,
WITH Info_Rec DO
BEGIN
WRITELN(® program name: ‘, ProgPathiName);
WRITELN(® global id: ',Global_id);
WRITELN(® priority: ', priority);
WRITE(® state: ')y
CASE State OF
PActive: WRITELN('active');
PSuspended: WRITELN('suspended');
Pwaiting: WRITELN('waiting')
END
END
END
END;

3-12

Qoerating System Reference Maral Processes

384 KILL_PROCESS Process System Call
KILL_PROCESS (var ErrNum:Integer;
Proc_Id:LongInt)

ErrNum: Error indicator
Proc_ld: Process to be killed

KILL_PROCESS kilis the process referred to by Proc_Id and all of the
processes in its subtree. The actual termination of the process does not occur
until the process is in one of the following states:

* Executing in user mode.
* Stopped due to a SUSPEND_PROCESS call.
* Stopped cue to a DELAY_TIME call.

¢ Stopped due to a WAIT_EVENT_CHN or SEND_EVENT_CHN call, or
READ_DATA or WRITE_DATA to a pipe.

3-13

Qoerating System Reference Manual Processes

3.8.5 SUSPEND_PROCESS Process System Call

SUSPEND_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;
Susp_Family:Boolean)

ExrrNum: Error indicators
Proc_ld: Process to be suspended
Susp_Family: If true, suspend the entire process subtree

SUSPEND_PROCESS allows a process to suspend (block) any process in the
systemn. The actual suspension does not occur until the process referred to by
Proc_Id is in one of the following states:

* Executing in user mode
* Stopped due to a DELAY_TBME call
* Stopped due to @ WAIT_EVENT_CHN call

Neither expiration of the delay time nor recelpt of the awaited event causes
a suspended process to resume execution. SUSPEND_PROCESS is the only
direct way 10 block a process. Processes, however, can become blocked during
1/0, by the timer (see DELAY_TIME), or for many other reasons.

If Susp_Family is true, the Operating System suspends both the process
referred to by Proc_Id and all of its descendents. If Susp_Family is false,
only the process identified by Proc_Id is suspended.

3-14

Qperating System Reference Maruial Processes

3.8.6 ACTIVATE_PROCESS Process System Call

ACTIVATE_PROCESS(Var ErrNum:Integer;
Proc_Id:Longlnt;
Act_Family:Boolean)

ErrNum: Error indicator
Proc_ld: Process to be activated
Act_Family: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVATE_PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
awaken only a suspended process. If the process is blocked for some other
reason, ACTIVATE_PROCESS cannot unblock it. If Act_Family is true,
ACTIVATE_PROCESS also activates all the descendents of the process referred
to by Proc_lId.

3-15

Qerating System Reference Manial Processes

3.8.7 SETPRIORITY_PROCESS Process System Call

SETPRIORITY_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
New_Priority:Integer)

ErrNum: Error indicator
Proc_ld: Global id of process
New Priority: Process's new priority number

SETPRIORITY_PROCESS changes the scheduling priority of the process
referred to by Proc_Id to New_Priority. The priority value must be between 1
and 225. (Operating System processes execute with priorities between 226
and 255.) The higher the priority, the more likely the process is to be allowed
to execute.

3-16

Qperating System Reference Marnual Processes

3.88 YIELD_CPU Process System Call

YIELD CPu(Var ErrNum:Integer;
To_Any:Boolean)

ErrNum: Error indication
To_Any: Yield to any process, or only higher or equal
priority

Background processes should use YIELD CPU often to allow other processes to
execute when they need to. Successive ylelds by processes of the same
priority result in @ “round robin scheduling of the processes. If To_Any is
true, YIELD_CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YIELD CPU causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

Qoerating System Reference Manual Processes

389 MY_ID Process System Call
Hy_ID:Longint

MY_ID is a function that returns the unique global identifier (a longint) of the
calling process. A process can use MY_ID to perform process handling calls
on itself.

For example:
SetPriority Process(ErrNum My Id, 100)
sets the priority of the calling process to 100.

3-18

41

EGEELR

Chapter 4

Memory Management
Data Segments 4-1
The Logical Data Segment Number 8-1
Shared Data Segments 8-2
Private Data Segments a-2
Code Segments 8-2
Swapping eeel-2
Memory Management System Calls 8-3
84.7.1 MAKE_DATASEG .c..ccieiireniineiesaitissiestissnssssnsistnnsssssstsnssssassses a-4
8.7.2 KILL_DATASEG ...cccicieitimtteiticmsettacinnstaitesisssissinsasiesssaisessaasens 4-6
84.7.3 OPEN_DATASEG ...cccviereseenneciennsennseisssssssessisssssstsssarssssessessenses a4-7
8.7.4 CLOSE_DATASEG...ciciersiemrssinnstnnsrnnsisecitnsanaiiiieassissscssasesasaes 4-8
875 FLUSH DATASEG ...cccciiiiirinintaierisaeiiesastissesnaisssssssasssssases 4-9
4.7.6 SIZE DATASEG....cciieiereiiriiietnssairsetianstisistessimstesisssisassssasens 4-10
U4.7.7 INFO _DATASEG ..ccciiiernimennsiittsstonsesstsissiasassissniissssstsisssssans 4-11
47.8 INFO LDSN........ eetereseisattresettstesitanetasttantantastansasstannerannran 4-12
8.7.9 INFO_ADDRESS....cccittariietnuitcnteteitsessesstaniisesiissesisssssessarsnase 4-13
8.7.10 MEM_INFD..eeevrereererreenseresaessasssssasssssnsessesasssssnsenes cenaerareneraens 4-14
4.7.11 SETACCESS_DATASEGcccveeientnrssarssenssssssarssnssnians . wees 8-15

4.7.12 BIND_DATASEG and UNBIND_DATASEGccevvtianeniniiiseninannee 4-16

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU).

4.1 Data Segments
Each process has a data segment that the Operating System automatically
allocates to it for use as a stack. The stack segment’s internal structures are
managed by the hardware and the Operating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
{or local) data segments or shared data segments. Frivate adata segments
can be accessed only by the creating process. When the process terminates,
any private data segments still in existence are destroyed. Shared oata
segments can be accessed by any process that opens those segments.

The Operating System requires that data segments be in physical memory
before the data are referenced. The Scheduler automatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to ensure that the program declares all its needs by associating
itself with the needed data segments before they are needed.

This process of association is called sinaing. A program can bind a data
segment to itself in several ways. When a program creates a data segment by
using the MAIKE_DATASEG call, the segment is automatically opened and
bound to the program. If a program needs to open a segment that was
created by another program, the OPEN_DATASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the UNBIND_DATASEG call is
provided to unbind the data segment without closing it. The program can then
use BIND_DATASEG to bind another data segment to the program.

The Operating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation of structures
within a data segment are the responsibility of the program.

42 The Logical Data Segment Number
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is associated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN). See Figure 3-1 for an illustration of
the address space of a process. While a data segment is bound to the process,
it is said to be a member of the working set of the process.

perating System Reference Manual Memory Management

The process assoclates a data segment with a specific LDSN in the
MAKE_DATASEG or OPEN_DATASEG call.

The LDSN, which has a valid range of 1 to 16, is local to the calling process.
The process uses the LDSN to keep track of where a given data segment can
be found. More than one data segment can be associated with the same LDSN,
but only one such segment can be bound to a glven LDSN at any instant and
thus be a member of the working set of the process.

4.3 Shared Data Segments
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes in length. As with local data segments, the segment
creator assigns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment, the cooperating
processes must also use the same LDSN with the segment. This ensures that
all logical data addresses referencing locations within the data segment are
consistent for the processes sharing the segment. A shared data segment is
permanent until explicitly killed by a process.

4.4 Private Data
Data segments can also be private to a process. In this case, the maximum
size of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LOSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.

Suppose a process has a data segment already bound to LOSN 2. If the
program tries to bind a 256 Kbyte data segment to LOSN 1, the Operating
System returns an error because the 256 Kbyte segment needs two consecutive
free LDSNs. Instead, the program should bind the segment to LDSN 3 and the
system automatically also uses LDSN 4.

45 Code Segments
Division of a program into multiple code segments (swapping units) is dictate
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

46 Swapping

when a process executes, the following segments must be in physical memory:
* The current code segment

* All the data segments in the process working set (the stack and all bound
data segrnents)

The Operating System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedure in a@ segment not in memory, a segment swap-in request is initiated.

Qoerating System Reference Manual Memory Management

In the simplest case, this request only requires the system to allocate a block
of physical memory and to read In the segment from the disk. In a worse
case, the request may require that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. This process Is invisible to the program.

4.7 Memory Management System Calls
This section describes all the Operating System calls that pertain to memory
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in memory management
calls:

Pathname = STRING[255];

Tastype = (ds_shared, ds_private);

DsInfoRec = Record
mem_size:longint;
disc_size:longint;
numb_open: Integer:
LDSN:integer;
boundF :boolean;
presentf :boolean;
creatorf :boolean;
rwaccess:boolean;
segptr:longint;
volname :e_name;

end;
E_name = string (32];

4-3

Qerating System Reference Marnal Memory Management

4.7.1 MAKE_DATASEG Memory Management Systermn Call

MAKE_DATASEG (var ErrNum:Integer;
var Segname:Pathname;
tem Size, Disk_Size:lLongInt;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer
Dstype:Tdstype)

ErrNum: Error indicator

Segname : Pathname of data segment

Mem_Size: Bytes of memory to be allocated to data segment
Disk_Size: Bytes on disk to be allocated for swapping segment

RefNum: Identifier for data segment

SegPtr Address of data segment

Ldsn: Logical data segment number

Dstype: Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname,
Segname, and opens it for Immediate read-write access. Segname is a File
System pathname.

The parameter Mem_Size determines how many bytes of main memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment is private (Dstype is ds_private),
Mem_Size can be greater than 128 Kbytes, but you must ensure that enough
consecutive LDSNs are free to map the entire segment.

Disk_Size determines the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size Is less than Mem_Size, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident until it is killed or until its size in memory becomes less than or
equal to {ts Disk_Size (see SIZE_DATASEG). The application programmer
should be aware of the serious performance implications of forcing a segment
to be memory resident. Because the segment cannot be swapped out, a new

- process may not be able to get all of its working set into memory. To avoid
thrashing, each application should ensure that all of its data segments are
swappable before it relinquishes the attention of the processor.

The calling process associates a Logical Data Segment Number (LDSN) with
the data segment. If this LDSN is bound to another data segment at the time
of the call, the call returns an error.

ReftNum is returned by the system to be used in any further references to the
data segment. The Operating System also returmns SegPtr, an address pointer to
be used to reference the contents of the segment. SegPtr points to the base
of the data segment.

Any error conditions are returned in ErrNum.

Qperating System Reference Manual Memory Management

when a data segment s created, it Immediately becomes a member of the
working set of the calling process. You can use UNBIND_DATASEG to free
the LDSN.

Qoerating System Reference Manual Mermory Managernent

4.7.2 KILL_DATASEG Memary Management System Call

KILL_DATASEG (var ErrhNum:Integer;
var Segname:Pathname)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

Wwhen a process is flnished with a shared data segment, it can issue a
KILL_DATASEG cali for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all pracesses have closed it (see CLOSE_DATASEG). Ouring the interim period,
however, after a KILL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.

KILL_DATASEG does not affect the membership of the data segment in the
working set of the process. The RefNum and SegPtr values are valid until a
CLOSE_DATASEG call is issued.

One important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KILL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

Qperating System Reference Manual Memory Management

4.7.3 OPEN_DATASEG Memory Management System Call

OPEN_DATASEG (Var ErrNum:Integer;
var Segname:Pathname;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer)

ErrNum: Error indicator

Segname: Name of data segment to be opened
RefNum: Identifier for data segment

SegPtr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing shared data segment with OPEN_DATASEG.
The calling process must supply the name of the data segment (Segname) and
the Logical Data Segment Number to be associated with it. The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be nuil.

The Operating System returns both RefNum, an identifier for the cailing
process to use in future references to the data segment, and SegPtr, an
address pointer used to reference the contents of the segment.

when a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Readonly. You can use SETACCESS_DATASEG to change the

access rights to Readwrite. You can use UNBIND DATASEG to free the

LDSN.

You cannot use OPEN on a private data segment, since calling CLOSE on a
private data segment deletes it.

Qperating System Reference Manual Memory Management

4.7.4 CLOSE_DATASEG Memory Management System Call

CLOSE_DATASEG (Var ErrNum:Integer;
RefNum: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

CLOSE_DATASEG terminates any use of RefNum for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
CLOSE_DATASEG frees that LDSN. The data segment Is removed from the
working set of the calling process. RefNum is made invalid. Any references
to the data segment using the original SegPtr will have unpredictable resuits.

If RefNum refers to a private data segment, CLOSE_DATASEG also kills the
data segment, deallocating the memory and oisk space used for the data
segment. If RefNum refers to a shared data segment, the contents of the
data segment are written to disk as if FLUSH_DATASEG had been called. (If
KILL_DATASEG s called before CLOSE_DATASEG, the contents of the data
segment are thrown away when the last process closes the data segment.)

The following procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForlisaGraf (var ErrorCode:integer):

CONST HeapSize=16384; (* 16 KBytes for graphics heap *)
DiskSize=16384;

VAR HeapBuf :LONGINT; (* pointer to heap for LisaGraf =)
GrafHeap :PathName; (* data segment path name *)
Heap_Refnum:INTEGER; (* refnum for heap data seg *)

BEGIN
GrafHeap:="qgrafheap":
OPEN_DATASEG(ErrorCode, GrafHeap, Heap_Refnum, HeapBuf, 1);
IF (ErrorCoce<>0) THEN
BEGIN
WRITELN("Unable to open’,Grafheap, "Error 1s °. ErrorCode)
END
ELSE '
InitHeap(POINTER(HeapBuf), POINTER(HeapBuf +HeapSize),
0 aHeapError):

4-8

Qoerating System Reference Marual Memory Management

475 FLUSH DATASEG Memory Management System Call

FLUSH_DATASEG (Var Errtum:Integer;
RefNum: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

FLUSH_DATASEG writes the contents of the data segment identified by
RefNum to the disk. (Note that CLOSE_DATASEG automatically flushes the
data segment before closing it, unless KILL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

Qperating System Reference Marual Memory Management

4.7.6 SIZE_DATASEG Memory Management System Call

SIZE_DATASEG (Var ErrNum:Integer;
Refnum:Integer;
DeltaMemSize:LongInt;

var NewemSize:LongInt;
DeltaDiskSize:LongInt;
var NewDiskSize:LongInt)

ErThum: Error indicator

RefNum: Data segment identifier

DeltaMemSize: Amount in bytes of change in memory
allocation

NewMemSize: New actual size of segment in memory

DeltaDiskSize: Amount in bytes of change in disk allocation
NewDiskSize: New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by RefNum. Both DeltaMemSize and DeltaDiskSize can
be either positive, negative, or zero. The changes to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment, unless data are lost in shrinking the segment. Because the actual
allocation is done in terms of pages (512-byte blocks), the NewMemSize and
NewDiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.

If the NewDiskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The application programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before it
relinquishes the attention of the processor.

If the necessary adjacent LDSNs are avallable, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

Qperating System Reference Marual Memory Managerment

4.7.7 INFO_DATASEG Memory Management System Call

INFO_DATASEG (Var ErrNum:Integer;
RefNum: I
var DsInfo:DsInfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segment
DsInfo: Attributes of data segment

INFO_DATASEG returns Information about a data segment to the calling
process. The structure of the DsInfoRec record is:

RECORD
tem_Size:LongInt (* Bytes of memory allocated to data segment *);
Disc_Size:LongInt (* Bytes of disk space allocated to segment »);
NumbOpen:Integer (* Current number of processes with segment open *);

Ldsn:Integer (= LDSN for segment binding ")
BoundfF :Boolean (* True if segment is bound to LDSN of calling proc *);
PresentF:Boolean (* True if segment is present in memory ®);
Creatorf :Booleanm (* True if the calling process is the creator =)

(* of the segment ")
RwAccess:Boolean (* True if the calling process has ¥rite access *)
B0 (* to segment *)

4-11

Qperating System Reference Manual Memory Management

478 INFO_LDSN Memory Management System Call

INFO_LDSN (var Errtum:Integer;

Ldsn:Integer;
var RefNum:Integer)

ErrNum: Error indicator
Ldsn: Logical data segment number
RefNum: Data segment lidentifiler

INFO_LDSN returns the refnum of the data segment currently bound to Ldsn.
You can then use INFO_DATASEG to get information about that data segment.
If the LOSN specified is not currently bound to a data segment, the refnum
returned is -1.

4-12

Qperating System Reference Mamial Memory Management

279 INFO_ ADDRESS Memory Management System Call
INFO_ADDRESS (var ErrNum:Integer;
Address:Longint;
var RefNum:Integer)

ErrNum: Error indicator
Address: The address about which the program needs information

RefNum: Data segment identifier

This call retumns the refnum of the currently bound data segment that
contains the address given.

If no data segment that contalns the address given Is currently bound to the
calling process, an error indication is returned in ErrNum.

4-13

perating System Refererce Mansal Memory Management

4.7.10 MEM_INFO Memory Management System Call

MEM_INFO (Var Errtum:Integer;
var Swapspace;
Dataspace;
Cur_codesize;
Max_codesize:Longint)

ExrNum: Error indicator

Swapspace: Amount, in bytes, of swappable system memory
available to the calling process

Dataspace: Amount, in bytes, of system memory that the
calling process needs for its bound data areas,
including the process stack and the shared
intrinsic data segment

Cur_codesize: Size, in bytes, of the calling segment

Max_codesize: Size, in bytes, of the largest code segment
within the address space of the calling process

This call retrieves information about the memory resources used by the calling
process.

4-14

Qoerating System Reference Manual Memory Management

4.7.11 SETACCESS DATASEG Memory Management System Call

SETACCESS_DATASEG (Var ErrNum:Integer;
RefNum:Integer;
Readonly :Boolean)

ErrNum: Error indicator
RefNum: Data segment identifier
Readonly: Access mode

A process can control the kinds of access it Is allowed to exercise on a data
segment with the SETACCESS_DATASEG call. Refnum is the identifier for
the data segment. If Readonly is true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

Qoerating System Reference Marial Memory Management

4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls

BIND_DATASEG(Var ErrNum:Integer;
RefNum: Integer)

UNBIND_DATASEG(Var Errhum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BIND DATASEG binds the data segment referred to by ReflNum to its
associated Logical Data Segment Number(s). UNBIND_DATASEG unbinds the
data segment from its LDSNs. BIND_DATASEG causes the data segment to
become a member of the current working set. At the time of the
BIND_DATASEG call, the necessary LDSNs must not be bound to a different
data segment. UNBIND_DATASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
OPEN_DATASEG and MAKE_DATASEG define which LDSNs are assoclated
with a given data segment.

4-16

5.1
53
S4
55

5.7

5.9

Chapter 5
Exceptions and Events

Exceptions 51
System-Defined Exceptions 5-2
Exception Handlers 5-2
Events 55
Event Channels . .55
The System Clock 5-10
Exception Management System Callsccceccccecceneisceensancssnasacnnances S5-10
5.7.1 DECLARE_EXCEP_HDL ...ciicitieierecsseesseesssnesssssassssssensssassssasans 5-11
5.7.2 DISABLE_EXCEP ..iuviiunisensstensasessisscntssmstesssransmnsessssssssssansrsasss 5-12
5.7.3 ENABLE_EXCEP ...cecciiiiiniitnirieisennsiensiesansens 5-13
574 INFO_EXCEP ..iicirierieniininsnenstassassesssestnsssesss 5-14
5.7.5 SIGNAL_EXCEPccciireriituncteciiseicttnssitsssnssmnnsissasssesssssssrassssnss 5-15
5.7.6 FLUSH_EXCEP (.iiiieiiiniisnitinnissiittainsssmresiseisesinnssens creesrens 5-16
Event Management System Calls 5-17
5.8.1 MAKE_EVENT_CHN ..cicciiririiiniiiiistnnniensiseninsissessssessessesanses 5-18
5.8.2 KILL_EVENT_CHN ..ueiveareres seereesenssnesssessssasasssssssssassesessansesenes 5-19
5.8.3 OPEN_EVENT_CHNoceereereieeesrssessesesassersasssntssssassasssesasansarens S-20
5.8.4 CLOSE EVENT CHNL ittt essas s s e sessasassssssenss 5-21
5.85 INFO_EVENT_CHNco.e.n. teteserassesseserentteesanassaastrsnnantararensannns 5-22
5.8.6 WAIT EVENT L0 1 PR 5-23
5.8.7 FLUSH_EVENT_CHN ...ceectererreencerecseessessssessesasesasssssasssesassess 5-25
5.8.8 SEND_EVENT_CHN ..vueeueieresserssassessenssesassssaessaasessnssssassensessans 5-26
Clock System Calls

5.9.1 DELAY_TIME ..cciiiinireniinsestcnsnmmniiisssirssistsssieessinssassessassensarassans
5.9.2 GET_TIME...ccoiimtiiinnnrtnncnnnsttnnssancsnsisansseans

5.9.3 SET_LOCAL_TIME_DIFF
5.9.8 CONVERT_TIME ...o.ccieueceecieenesseneesaessnsnsnsssansnssssssenesnssassssans

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes,
shared data segments, or events. Abnormal conditions, including those your
program may define, employ exceptions (interrupts) Exceptions are signals to
which the process can respond in a variety of ways under your control.

S.1 Exceptions
Normal execution of a process can be interrupted by an exceptional condition
(such as division by zero or reference to an Invalid address). Some error
conditions are trapped by the hardware and some by the system software. The
process ftself can define and signal exceptions of your choice.

when an exception occurs, the system first checks the state of the exception.
The three exceptlon states are:

¢ Enabled
* Queued
* Ignored

If a system-defined exception Is enableq the system looks for an associated
user-defined handler. If none is found, the system invokes the default
exception handier, which usually aborts the process that generated the
exception. If a user-defined exception is enabled, the system invokes the
assoclated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.

If the state of the exception Is quewey the exception is placed on a queue.
when the exception is subseguently enabled, the gueue is examined and the
appropriate exception handler Is invoked. Processes can flush the exception
queue.

If the state of the exception is Jjgroreq the system detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS_TERMINATE exception, that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.

Invocation of the exception handler causes the Scheduler to run, so it is
possible for another process 1o run between the signaling of the exception and
the execution of the exception handler.

Qperating System Reference Manual Exceptions ana Events

5.2 System-Deflned Exceptions
Certain exceptions are predefined by the Operating System. These include:

* Division by zero (SYS_ZERO_DIV). The default handler aborts the process.

* Value out of bounds {that is, range check error) or illegal string index
(SYS_VALUE_00B). The default handler aborts the process.

* Arithmetic overflow (SYS_OVERFLOW). The default handler aborts the
process.

* Process termination (SYS_TERMINATE). This exception is signaled when a
process terminates, or when there is a bus error, address error, illegal
instruction, privilege violation, or 1111 emulator error. The default handler
does nothing. This exception is different from the other system-defined
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non—fatal) errors, the program Is allowed to
continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
Operating System code. The hardware exceptions for parity error, spurlous
interrupt, and power failure are also fatal.

5.3 Exception Handlers
A user-defined exception handler can be declared for a specific exception.
This exception handler is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Environment_Ptr
and Data_Ptr. The Operating System ensures that these pointers are valid
when the handler is entered. Environment_Ptr points to an area in the stack
containing the interrupted environment: register contents, condition flags, and
program state. The handler can access this environment and can modify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the process,
must return, and cannot have any EXIT or global GOTO statements. Because
the Operating System oisables the exception before calling the exception
handler, the handler should re-enable the exception before it returns.

If an exception handler for a given exception already exists when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.

An exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honcred,placed on a queue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, however. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

5-2

erating System Reference Manual Exveptions and Events

There is an exception-occurred flag, Ex_occurred_f, for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can be examined and reset using the INFO_EXCEP system call. Once the flag
is set, it remains set until FLUSH_EXCEP is called.
The following program fragment gives an example of exception handling.
PROCEDURE Handler (Environment_Ptrp_env_blk;

Data_Ptrp_ex_data);
VAR ErmNum:INTEGER;
BEGIN
{=Environment_Ptr points to a record containing the program +)
(*counter and all registers. Data_Ptr points to an array of 12 *)
(*longints that contain the event header and text if this handler =)
(s associated with an event-call channel (See below) *)

E&MLE_EXCEP(errm;excep_name);

El:D;
BEGIN (*Main program*)

Excep name:="End0fDoc’;
DECLARE_EXCEP H]_(emum,excep name atandler);

SIGNAL_EXCEP(erfImum.excep_name.excep_data);

-

At the time the exception handler is invoked for a SYS_TERMINATE
exception, the stack is as shown in Figure 5-1.

Qerating System Reference Manual

low address

high adaress

Link

Program Counter

Data_Ptr

Exceptions and Events

Environment_Ptr

Terminate Flag

Exception Kind
Function Code (fc)
Access Address (aa)
Instruction Register

Status Register

Program Counter

«—

Exception Data Block
(SYS_TERMINATE Exception)

Program Counter
Status Register
D0-D7 and AD-A7

Exception Environment Block

Link

Program Counter

Figure 5-1
Stack at Exception Handler Invocation

The Exception Data Block given here reflects the state of the stack upon a
SYS_TERMINATE exception. The Term_Ex_Data record (described in Appendix
A) glves the varlous forms the data block can take. The Excep Kind fleld (the
first, or Oth, longint) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

Qperating System Reference Marual Exceptions and Events

these values at the time the exception was signaled, not the values at the
time the exception actually occurs.

For SYS_ZERO_DIV, SYS_VALUE_00B, and SYS_OVERFLOW exceptions, the
Hard_Ex_Data record described in Appendix A gives the various forms that
the data block can take.

In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.

when a disabled exception is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

S.4 Events
An event is a plece of information sent by one process to another, generally
to help cooperating processes synchronize thelr activities. An event is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header Is written by the system, not the sender, and is readable by the
recelving process. The event text is written by the sender; its meaning is
defined by the sending and receiving processes.

There are several predefined system event types. The predefined type “user” is
assigned to all events not sent by the Operating System.

5.5 Event Channels
Event channels can be viewed as higher-level pipes. One important difference
Is that event channels require fixed-size data blocks, whereas pipes can
handle an arbitrary byte stream.

An event channel can be defined globally or locally. A giobal event channel
has a globally defined pathname catalogued in the File System and can be
used by any process. A local event channel, however, has no name and is
known only by the Operating System and the process that opened it. Local
event channels can be opened by user processes only as receivers. A local
channel can be opened by the father process to recelve system-generated
events pertaining to its son.

There are two types of global and local event channels: event-walt and
event-call. If the recelving process is not ready to receive the event, an
event-walt type of event channel queues an event sent to 1t . An event-call
type of event channel, however, forces its event on the process, in effect
treating the event as an exception. In that case, an exception name must be
given when the event-call event channel is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel Is suspended at the time the event is sent, the event is delivered
when the process becomes active.

Qperating System Reference Marial Exceptions and Events

when an event channel Is created, the Operating System preallocates enough
space to the channel for typical interprocess communication. If
SEND_EVENT_CHN Is called when the channel does not have enough space for
the event, the calling process is blocked until enough space is freed up.

If WAIT_EVENT_CHN is called when the channel is empty, the calling process
is blocked until an event arrives.

The following code fragments use event-wait channels to handle process
synchronization. Operating System calls used in these program fragments are
documented later in this chapter.

Process A:

t::mnale: ‘eventchanell'

exception:
receiver : TRuE;

OPEN_EVENT_CHN (errint, chn_name, refnumi, exception, receiver);
chn_name := 'event_chamnel_2';

receiver := FALSE;

OPEN_EVENT_CHN (errint chn_name, refnur2, exception, receiver);
waitlist.length := 1;

waitlist. refnm[ﬂ] := refnuml;

REPEAT
eventl_ptr-.[0] := |_upon_value;
interval.sec := 0; (* send event 1|mediately *)
Interval.msec := 0;

SEND_EVENT CHN (errint, refrumz, eventl ptr, interval,clktime);
WALIT_EVENT CHN (errint, waitlist, refrum_signaling, event2 ptr);

(* processing performed here *)

UNTIL AllDone;

5-6

Qoerating System Reference Manual Exceptlons and Events

Process B:

chn _name := event channel_2°;
exception:= ;
recelver := TR!.E;
OPEN_EVENT_CHN (errint, chn_name, refrua, exception, receiver);
chn_name := ‘event_channel 1°;
receiver := FALSE;
OPEN_EVENT_CHN (errint chn_name, refnuml, exception, receiver);
waitlist.length := 1;
waitlist. refnun[u] := refnuml;
REPEAT
event2_ptr~.{0] := agreed upon_value;
interval.sec := 0; (= send event immediately »)
interval.msec := 0;
WAIT_EVENT_CHN (errint, walitlist, refnum_signaling, eventli ptr);

-

(; processing performed here *)

SEM) EVENT_CHN (errint, refrumz, event2_ptr, interval,clktime);
UNTIL AllDone;

The order of execution of the two processes is the same regardiess of the
process prioritles. Process switch always occurs at the WAIT_EVENT_CHN
call.

In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YIELD_CPLJ, which gives
the CPU to Process B only if Process B is ready to run.

Qperating System Reference Maruisl Exvaptions and Events

Process A:

PROCEDURE Handler(Erw_ptr:p_esw_blk;
Data_ptr:p_ex_data);

BEGIN
event2 ptr-.[0] := agreed_upon_value;

(:' processing performed here *)

interval.sec := 0; (» send event lmmediately *)
interval .msec := Q;
SEND_EVENT_CHN (errint, refrum2, event2_ptr, interval, clktime);
to_any := true;
YIELD CPU (errint, to_any):;
END;

BEGIN (= Main program=)

DECLARE_EXCEP_HDL (errint, excep name 1, 3Handler);

chn_name := ‘event_channel_1;

emption.= excep_name_1;

receiver := TRUE;

OPEN_EVENT_| cm (errint, chn_name, refnuml, exception, receiver);
chn_name := ‘event_channel 2°;

receiver := FALSE;

exception:= **;

OPEN_EVENT_(o (errint, chn_name, refrum2, exception, receiver);
SEND_EVENT CHN (errint, refrum2, event2_ptr, interval, clktime);
to_any := true;

YIELD_CPU (errint, to_any);

5-8

Qperaling System Reference Marnial Exceplions and Events

Process B:

PROCEDURE Handler(Erw_ptr:p_env_blk;
Data_ptr:p_ex data);
BEGIN
event2_ptr-.{0] := agreed upon_value;

(; processing performed here *)

interval.sec := 0; (* send event immediately *)
interval.msec := 0;
SEND_EVENT_CHN (errint, refrnumil, event2_ptr, interval, clktime);
to any := true;
YIELD_CPU (errint, to_any);

END;

BEGIN (*tain program +)

DECLARE | EXCEP HOL (errint, excep_name]_1, aHandler)

chn_name := "event_chamnel_1°;

exception excep_name_1;

receiver “= FALSE:

exception:= '*;

OPEN_EVENT-CHN (errint, chn_name, refnumi, exception, receiver);
chn_name := ‘event_channel : 2

receiver := TRUE;

OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);

END.

Qperating System Reference Markial Exveptions and Events

5.6 The System Clock
A process can read the system clock time, convert it to local time, or delay
its own continuation until a given time. The year, month, day, hour, minute,
second, and millisecond are avallable from the clock. The system clock is set
up through the workshop shell. For more Informatlon, see the warkshop Users
Guiae for the Lisa.

S.7 Exception Management System Calls
This section describes all the Operating System calls that pertain to exception
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in exception management
calls:

T_ex_name = STRING[16]);

Longadr = “longint;

T_ex_data = Array [0..11] of longint;

T_ex_sts = Record
ex_occurred_f :boolean;
ex_state:t_ex_state;
num_excep: integer;
hdl_adr :1longadr;

end;
T_ex_state = (enabled, queued, ignored);

5-10

Qperating System Reference Manual Exveptions ana Events

57.1 DECLARE_EXCEP_HDL Exception Management System Call

DECLARE_EXCEP_HOL (Var ErrhNum:Integer;
Var Excep_Name:t_ex_name;
Entry_Point:LongAdr)

ErrNum: Error indicator
Excep Name: Name of exception
Entry Point: Address of exception handler

DECLARE_EXCEP_HDL sets the Operating System so that the occurrence of
the exception referred to by Excep_Name causes the execution of the
exception handler at Entry_Point.

Excep_Name Is a character string name with up to 16 characters that is
locally defined in the process and known onty to the process and the Operating
System. If Entry Point is nil and Excep_Name specifies a system exception,
the system default exception handler s used. Any previously declared
exception handler is dissoclated by this call. The exception itseif is
automatically enabled.

If any Excep Name exceptions are queued at the time of the
DECLARE_EXCEP_HDL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handier.

You can call DECLARE_EXCEP_HDL with an exception handler address ofnil
to dissociate your handler from the exception. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

Qperating System Reference Mernal Exceptions and Events

5.7.2 DISABLE_EXCEP Exception Management System Call

DISABLE_EXCEP (Var ErrNum:Integer;
var Excep_Name:t_ex_name;

Queue:Boolean)
ErrNum: Error indicator
Excep_Name: Name of exception to be disabled
Queue: Exception queuing flag

A process can explicitly disable the trapping of an exception by calling
DISABLE_EXCEP. Excep_Name is the name of the exception to be disabled.
If Queue s true and an exception occurs, the exception Is queued and is
handled when it is enabled again. If Queue is false, the exception Is ignored.
when an exception handler is entered, the state of the exception in question
is automatically set to queued.

If an exception handler is associated through OPEN_EVENT_CHN with an
event channel and DISABLE_EXCEP is called for that exception, then:

* If Queue Is false, and if an event is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds, but it is
equivalent to not calling SEND_EVENT_CHN at all.

* If Queue Is true, and If an event is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds and a call to
WAIT | "EVENT _CHN recelves the event, thus dequeuing the exception.

5-12

Qperating System Reference Marnual Exveptions and Events

S.7.3 ENABLE_EXCEP Exception Management System Call
ENABLE_EXCEP (Var ErrNum:Integer;
var Excep-name:t_ex_name)

Errium: Error indicator
Excep Name: Name of exception to be enabled

ENABLE_EXCEP causes an exception to be handled again. Since the
Operating System automatically disables an exception when its exception
handler is entered (see DISABLE_EXCEP), the exception handler should
explicitly re-enable the exception before it returns to the process.

5-13

Qoerating System Reference Mamual Exceptions and Events

5.7.4 INFO_EXCEP Exception Management System Call

INFO_EXCEP (var ErrNum:Integer;
Var Excep_Name:t_ex_name;
var Emep Status:t_ex_sts)

ExrNum: Error indicator
Excep_Name: Name of exception
Excep_Status: Status of exception

INFO_EXCEP returns information about the exception specified by
Excep_Name. The parameter Excep_Status is a record containing information
about the exception. This record contains:

t_ex_sts = RECORD (= exception status »)
Ex_occurred_f :Boolean; (*exception occurred flag *)
Ex_state:t_ex_state; (* exception status ")

Num_excep:Integer; (*no. of exceptions queued *)
Hd1_adr:Longadr; (*exception handler‘s address *)
END;

Once Ex_occurred_f has been set to true, only a call to FLUSH_EXCEP can
set it to false.

5-14

Qperating System Reference Marsal Exceptions and Events

575 SIGNAL_EXCEP Exception Management System Call

SIGNAL_EXCEP (Var Errium:Integer;
var Excep Name:t_ex_name;
var Excep_Data: t_ex_data)

ExrNum: Error indicator
Excep_name: Name of exception to be signaled
Excep_Data: Information for exception handler

A process can signal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler associated with Excep_Name is
entered. It Is passed Excep Data, a data area containing information about
;ne nature and cause of the exception. The structure of this information area
s:

array{0..size_exdata] of Longint

SIGNAL._EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

Qoerating System Reference Mail Exceplions and Events

5.76 FLUSH_EXCEP Exception Management System Call

FLUSH_EXCEP (Var ErrNum:Integer;
Var Excep_Name:t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception whose queue is flushed

FLUSH_EXCEP clears out the queue associated with the exception
Excep_Name and resets its "exception occurred” flag.

5-16

Gperating System Reference Manual

58 Event t System Calls

Exceptions and Events

This section describes all the Operating System calls that pertain to event
management. A summary of all the Operating System calls can be found In
Appendix A. The following special types are used in event management calls:

Pathname = STRING[255);

T_ex_name = STRING[16];

T chn_sts = Record
chn_type:chn_kind;
num_events: integer;
open_recv: integer;
open_send:integer;
ec_name:pathname;

end;

chn_kind = (wait_ec, call_ec);

T_waitlist = Record
length:integer;
refrum:array [0..10] of integer;

end;

P_r_eventblk = “r_eventblk;

R_eventblk = Record
event_header :t_eheader;
event text:t_i event text;

end;

T_eheader = Record
send_pid:longint;
event_type:longint;

end;

T_event_text = array [0..9] of longint;

P_s_eventblk = “s_eventblk;

S eventblk = T_event_text;

Timestmp_interval = Record

sec:longint;
msec:0..999;
end;

Time_rec = Record
year:integer;
day:1..366;
hour:-23..23;
minute:-59..59;
second:0..59;
msec:0..999;

end;

5-17

Qoerating System Reference Manual Exceptions and Events

5.8.1 MAKE_EVENT_CHN Event Management System Call
MAKE_EVENT CHN (Var ErrNum:Integer;
var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel with the name given in

Event_Chn_Name. The name must be a File System pathname; it cannot be
null.

5-18

Qerating System Rererence Manual Exceptions and Events

5.8.2 KILL_EVENT_CHN Event Managermnent System Call

KILL_EVENT CHN (var ErrNum:Integer;
var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL_EVENT_CHN. The actual deletion is
delayed until all processes using the event channel have closed it. In the
period between the KILL_EVENT_CHN call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

perating System Reference Marial Exceptions anad Events

5.8.3 OPEN_EVENT_CHN Event Management System Call

OPEN_EVENT_CHN (var ErrNum:Integer;
var Event_Chn_Name:Pathname;
Var Refrum:Integer;
Excep Name:t_ex_name;
Receliver:Boolean)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel
RefNum: Identifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

OPEN_EVENT_CHN opens an event channel and defines its attributes from the
process point of view. RefNum is returned by the Operating System to be
used In any further references to the channel.

Event_Chn_Name determines whether the event channel is locally or globally
defined. If it is a null string, the event channel is locally defined. If
Event_Chn_Name is not null, it is the File System pathname of the channel.

Excep_Name determines whether the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise,
the channel is an event-call channel and Excep_Name is the name of the
exception that is signaled when an event arrives in the channel. Excep_Name
must be declared before its use in the OPEN_EVENT_CHN call.

Recelver is a Boolean value indicating whether the process Is opening the
channel as a sender (Recelver Is false) or a receiver (Receiver is true). A
local channel (one with a null pathname) can be opened only to receive
events. Also, a call-type channel can only be opened as a receiver.

5-20

Qoerating System Reference Maual Exveptions and Events

5.8.4 CLOSE_EVENT_CHN Event Management System Call
CLOSE_EVENT CHN (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be closed

CLOSE_EVENT_CHN closes the event channel assoclated with RefNum. Any
events queued in the channel remain there. The channel cannot be accessed
until it Is opened again.

If the channel has previously been killed with KILL_EVENT_CHN, you cannot
open it after it has been closed.

If the channel has not been killed, it can be opened by OPEN _EVENT_CHN.

5-21

Qerating System Reference Marnual Exceptions and Events

5.8.5 INFO_EVENT_CHN Event Management System Call

INFO_EVENT_CHN (Var ErrNum:Integer;
RefNum:Integer;
var Chn_Info:t_chn_sts)

ErrNum: Error indicator
RefhNum: Identifier of event channel
chn_Info: Status of event channel

INFO_EVENT_CHN gives a process information about an event channel. The
Operating System returns a record, Chn_Info, with information pertaining to
the channel associated with RefiNum.

The definition of the type of the Chn_Info record is:

t_chn_sts =
RECORD (* event channel status *)
Chn_type:Chn kind; (* wait_ec or call ec *)

Num_events:Integer; (* number of queued events *)
Open_recv:Integer; (* number of processes reading channel *)
_send:integer; (* no. of processes sending to this

channel *)
Ec_name :pathname; (» event channel name *)
END;

5-22

Operating System Rerference Marnial Exceptions ana Evernts

5.8.6 WAIT_EVENT_CHN Event Management System Call

WAIT_EVENT CHN (Var ErrNum:Integer;
var Wait_List:t_waitlist;
var RefNum:Integer;
Event_Ptr:p _r_eventblk)

ErrNum: Error indicator
Wait_List: Record with array of event channel refnums
RefNum: Identifier of channel that had an event

Event Ptr: Pointer to event data

WAIT_EVENT_CHN puts the calling process In a waiting state pending the
arrival of an event in one of the specified channels. Wwait List is a pointer to
a list of event channel identifiers. When an event arrives in any of these
channels, the process is made ready to execute. RefNum identifies which
channel got the event, and Event_Ptr points to the event itself.

A process can walt for any Boolean combination of events. If it must wait
for any event from a set of channels (an OR condition), it should call
WAIT_EVENT_CHN with walt_List containing the list of event channel
idgentifiers. If, on the other hand, it must wait for all the events from a set
of channels (an AND conadition), then for each channel in the set,
WAIT_EVENT_CHN should be called with wait_List containing just that
channel identifier.

The structure of t_waitlist is:

RECORD

tength:Integer;

Refnum:Array[0..size waitlist] of Integer:
END;

Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:

P_r eventblk = “r_eventblk;
R_eventblk = Record
event_header:t_eheader;
event_text:t_event_text:
T_eheader = Record
send_pid:longint;
event_type:longint:

end;
T_event_text = array [0..9] of longint;
Send_pid is the process id of the sender.

5-23

Qperating System Rererence Marnal Exceptions ana Evernts

Currently, the possible event type values are:

1 = Event sent b}' user process
2 = Event sent by system

when you recelve the SYS_SON_TERM event, the first longint of the event
text contains the termination cause of the son process. The cause is same as
that given In the SYS_TERMINATE exception given to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_CHN on an event-call channel that has queued
events, the event Is treated just like an event in an event-walt channel. If
WAIT_EVENT_CHN s called on an event-call channel that does not have any
queued events, an error is returned.

5-24

Operating System Reference Maral Exveptions and Events

5.8.7 FLUSH_EVENT_CHN Event Management System Call
FLUSH EVENT CHN (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be flushed

FLUSH_EVENT_CHN clears out the specified event channel. All events

queued in the channel are removed. If FLUSH_EVENT_CHN is called by a
sender, it has no effect.

5-25

(Qperating System Reference Manual Exveptions and Events

5.8.8 SEND_EVENT_CHN Event Management System Call

SEND_EVENT CHN (var ErrNum:Integer;
Refhum:Integer;
Event_Ptr:p_s_eventblk;
Interval:Timestmp_interval;
Clktime:Time_rec)

ErrNum: Error indicator
RefNum: Channel for event
Event_Ptr: Pointer to event data
Interval: Timer for event
Clktime: Time data for event

SEND_EVENT_CHN sends an event to the channel specified by RefNum.
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.

If the event is of the event-wait type, the event is queued. Otherwise the
Operating System signals the corresponding exception for the process receiving
the event.

If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the Operating System places in the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, in the event text.

The Interval parameter indicates whether the event is a timed event.
NOTE

Timed events will not be supported in future releases of the Operating
System. The Interval and Clktime parameters will be ignored in future
releases. If you want your software to be upward-compatible, always
set both flelds of the Interval parameter to zero.

Timestmp_interval is a record containing a second and a millisecond field. 1If
both fields are 0, the event iIs sent immediately. If the second glven is less
than 0, the millisecond field is ignored and the Time_rec record is used. If
the time in the Time_rec has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to G, the event is sent that number of seconds and milliseconds from
the present.

A process can time out a request 1o another process by sending itself a timed
event and then walting for the arrival of either the timed event or an event
indicating the request has been served. If the timed event is recelved first,
the request has timed out. A process can also time its own progress by
perlodically sending itself a timed event through an event-call event channel.

5-26

Qperating System Reference Manial Exveptions and Events

59 Clock System Calls

This section describes all the Operating System calls that pertain to the clock.
A summary of all the Operating System calls can be found in Appendix A.

The following special types are used in clock calls:

Timestmp_interval = Record
sec:longint;
msec:0..999;

end;

Time_rec = Record

year:integer;

day:1..366;

hour:-23..23;

minute:-59..59;

second:0..59;

msec:0..999;
end;

Hour_range = -23..23

Hinute_range = -59..59;

5-27

Querating System Rererence Manual Exceptions anad Events

59.1 DELAY_TIME Clock System Call

DELAY_TIME (var ErrNum:Integer;
Interval:Timestmp_interval;
Clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Ciktime: Time information

DELAY_TIME stops execution of the calling process for the number of seconds
and milliseconds specified in the Interval record. If this time period is zero,
DELAY_TIME has no effect. If the period is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-28

Qperating System Reference Mamual Exveptions and Events

5.9.2 GET_TIME Clock System Call

GET_TIME (var ErrNum:Integer;
var Sys Time:Time rec)

ErrNum: Error indicator
Sys_Time: Time information

GET_TIME returns the current system clock time in the record Sys Time. The
msec field of Sys_Time always contains a zero on return

5-29

Qperating System Reference Manual Exceptions and Events

593 SET_LOCAL_TIME_DIFF Clock System Call

SET_LOCAL_TIME_DIFF (var Errhum:Integer;
Hour :Hour_range;
Minute:Minute_range)

ErrNum: Error indicator
Hour': Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET_LOCAL_TIME_DIFF informs the Operating System of the difference in

hours and minutes between the local time and the system clock. Hour and
Minute can be negative.

5-30

Qerating System Reference Maral Exceptions and Events

5.9.4 CONVERT_TIME Clock System Call
CONVERT_TIME (Var ErrNum:Integer;
var Sys_Time:Time_rec;
var Local_Time:Time rec;
To_Sys:Boolean)

ErrNum: Error indicator

Sys_Time: System clock time
Local_Time: Local time
To_Sys: Direction of time conversion

CONVERT_TIME converts between local time and system clock time,

To_Sys is a Boolean value indicating in which direction the conversion is to
go. If To_Sys is true, the systemn takes the time data in Local_Time and puts
the corresponding system time in Sys_Time. If To_Sys is false, the system
takes the time data in Sys_Time and puts the corresponding local time in
Local_Time. Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

5-31

Chapter 6

Configuration
6.1 Configuwation System Calls ... 6-1
6.1.1 READ_PMEM ittt 6-2
6.1.2 GETNXTCONFIG ..o i rec e 6-3
6.13 MACH _INFO it et e eeene, 6-3
6.14 CARDS EQUIPPED ...ttt e, 6-6
6.13 OSBOOTYOL ..ottt it et reae e enenaes 6-7

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in & special part of the system's
memory called parameter mernory. Every time parameter memory is
changed, a copy of the new data is made on the boot disk. If the contents
of pararneter memory are lost, this disk copy is automsatically restored to
parameter memory.

Several calls are provided that allow programs to request information about
the configuration of the system.

6.1 Configuration System Calls
This section describes all the Operating Systemn calls that pertain to
configuration. A summary of all the Operating System calls can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

Qperating System Reference Manual Configuration

6.1.1 READ PMEM Configuration System Call
READ PMEM (Var Exxium:Integer; Var Pirec:PMemRec)

ExrxrNum: Errxor code
PMrec: Contents of parameter memory

READ_PMEM returns the contents of parameter memory in PMrec. The
contents of PMrec are not to be interpreted by the caller. This routine
exists for the purpose of obtaining PMrec so that PMrec can be passed to
the other configuration procedures described in this chepter.

Operating System Reference Manual Configuration

6.12 GETNXTCONFIG Configuration System Call

GETNXTCONFIG (Var ExrxNum:Integer;
Var NextEntry:Longint;
Var PMrec:-PMemRec;
var Config:ConfigDev)

ExrNum- Exrror code

NextEntry: Enumeration index

PMrec: Contents of parametexr memoxry
Config: Configuration entry

GETNXTCONFIG is used to enurnerate device configuration information.
NextEntry = 0 is passed by the caller to start the enumeration. After the
first call to GETNXTCONFIG, the caller passes the previously returned value
of NextEmtry on each subsequent call to GETNXTCONFIG. The Operating
Systermn updates the value of NextEmtry with each call. The enumeration is
done using the caller's copy of parameter memory (obtained by calling
READ_PMEM) which is input in PMrec. Upon return from the procedure,
Corfig holds the next configuration record that was extracted from the copy
of parameter memary. ErrNum = 799 is returned when no more configuration
entries are available.

The Config record contains:

pos: cd_position;

nExtWords: byte; (*number of valid ExtWords following*)
ExtWords: arrasy[1..3] of Integer;

DriverID: longint;

DevName: e_neme;

where cd_position = record
slot, chan, dev: byte
end;

The pos record of three bytes indicates the position of the device being
described. DevName is a character string representation of this position.
The characteristics of the device can be obtained by calling LOOKUP and
passing ~-DevName as input. Table 6-1 shows the device names, as well as
the aliases, which mey be substituted for DevName in any Operating System
call.

Cperating System Reference Manual

Table 6-1
Device Names

Configuration

Slot Chan Dev DevNeme Alias

e A el N o el o =
ML BWN OO WIWBINRNN S

#1
#1#x

#2
H24x

#3
#3x

#1041
#1042
#11
#12
#13
#1441
#1442
#1541
#1542

NENRODON X X OX X OX X O
OOOOODOODOKL OO DO OO

Description

SLOT1
SLOT 1CHANX

#1#x#y SLOTICHANXDEYY

SLOT2
SLOTZ2CHANX

#2¥x#ty SLOT2CHANXDEVy

SLOT3
SLOT 3CHANX

#34x#y SLOTICHANXDEYY

RS232A

RS232B

PARAPORT

UPPER or PARAPORT
LOWER

UPPER

LOWER

ALTCONSOLE
MAINCONSOLE

Peripheral at slot 1

at slot 1 channel x

at slot 1 channel x device y
Peripheral at slot 2

at slot 2 channel x

at slot 2 channel x device y
Peripheral at slot 3

at slot 3 channel x

at slot 3 channel x device y
Serial Port A

Serial Port B

Parallel Port

Hard disk on Lisa 2/10

Sony Drive

Upper Floppy on Lisa 1

Lower Floppy on Lisa 1
Alternate Console

Main Console

ExtWords contains optional extension words.

ExtWords[1] contains the following:

RECORD
printer_flag:
default_flag:
printerID: 14

END;

DriverlD contains t

If the device is a printer,

boolean; (* = true(1) *)
boolean; F true if it's the default printer®*)

bits

* unique printer ID:

32 = Imagewriter / || DP
33 = Daisy Wheel Printer
35 = Ink Jet Printer *)

he unique driver ID:

32 = Serial Cable
33 = Parallel Cable
34 = 2 Port Card

35 = ProfFile
36 = Sony

37 = Priam Card
38 = Priam Disk
39 = Archive Tape

40 = Console
42 = Modem A

6-4

Cperating Systemn Relerence Manusl Configuration

6.13 MACH_INFO Configuration System Call

MACH_INFO (var Erxhum:Integer;
var The_info:Minfo)

ExrNum: Error code
The_info: Type of Lisa being used

MACH_INFO returns an array, The_info, showing the CPU board, 1/0 boerd
and memory board in use:

ninfo = RECORD
cpu_board, iec board, mem size: longint
END;

cpu_board always returns 0. mem_size returns the number of bytes in
memory. io_board returns:

O0=Lisal
1 = Lisa 2/10
Z = Lisa 2, Lisa 2/5, or Lisa 1 upgraded to use micro diskettes.

6-5

Operating Svstem Reference Manugl Configuration

6.14 CARDS_EQUIPPED Configuration System Call
CARDS_EQUIPPED (Var ExxNum:Integer;
var In_Slot:Slot_array)

ExrNum: Error code
In Slot: Identifies the types of cards configured

CARDS_EQUIPPED returns an array showing the types of cards which are in
the verious card slots.
The definition of Slot_srray is:
slot_sxray = array [1..3] of integer:
where the array values may contain:

O = no card present
2 = 2-port parallel card
5 = Priam card

Operating System Relerence Manusal Configuration

6195 OSBOOTVOL Cornfiguration System Call
0SBOOTVOL (Var Exrium:Integer; var VolNeme: e _name);
ExrrNum: Exror code
VolName: Identifies the device name for the boot volume

OSBOOTVOL returns the device name of the boot volume. This port might
not be the port configured for the boot velume, since it is possible for the
user to override the default boot volume. Characteristics about the device
can be obtained by calling LOOKUP and passing VolName.

6-7

Operating System Interface Unit
System-Reserved Exception Names

System-Reserved Event Types

Error Messages
FS_INFO Flelds

Appendixes

A-1
B-1

.C-1
D-1

E-1

Appendix A

Operating System Interface Unit

UNIT syscall;
INTRINSIC;

INTERFACE
CONST

max_ename = 32;
max_pathname = 255;

max_label_size = 128; -

len exname = 16;
size exdata = 11;

(= system call definitions unit =)

(» maximum length of a file system object name
(* maximum length of a file system pathname

(» maximum size of a file label, in bytes

(* length of exception name

(* 48 bytes, exception data block should have the
same size as r_eventblk, received avent block

size etext = 9; (» event text size - 40 bytes
size waitlist = 10; (* size of wait list - should be same as regptr_list

(» exception kind definitions for °'SYS_TERMINATE' exception

call_term = O;

ended = 1;

self killed = 2;
killed =3
fthr_term = 4;
bad_syscall = 5;
bad errnum = 6;
swap_error = 7;

stk_overflow = 8;
data overflow = 9;
parity err = 10;

def_div_zero =
def_value oob = 12;
def_ovfw = 13;
def nmi_key = 14;
def_range =
def_str_index =

(* process called terminate process

(* process executed ‘end’ statement

(* process called kill_process on self

(* process was killed by another process

(* process's father is terminating

(* process made invalid sys call - subcode bad
(* process passed bad address for errnum parm
(* process aborted due to code swap-in error
(* process exceeded max size (+T nnn) of stack
(» process tried to exceed max data space size
(» process got a parity error shile executing

11; (* default handler for div zero exception was called

(» “ for value oob exception
(*» " for overflow exception
(™ " for NHI key exception

15;(* * for 'SYS VALUE_00B' excep due to value range err
16;(» " for 'SYS VALUE 00B' excep due to string index err =)

A-1

Qperating System Reference Marnual Operating System Interface Lnit
bus_error = 21; (* bus error occurred ")
addr_error = 22; (» address error occurred »)
illg inst = 23; (* 11legal instruction trap occurred *)
priv_violation = 24; (»* privilege violation trap occurred *)
1ine_1010 = 26; (* line 1010 emulator occurred *)
line_1111 = 27; (* line 1111 emulator occurred *)
unexpected_ex = 29; (» an unexpected exception occurred =)

div zero = 31; (* exception kind definitions for hardware exception)
value oob = 32;
ovfw = 33;
nmi_key = 34;
value_] = 35; (= excep kind for value range and string index error =)
str_index = 36; (* Note that these two cause 'SYS_VALUE 00B® excep *)

(*DEVICE_CONTROL functions®)

dwParity = 1;
dvOutdDTR = 2;
OVOUtXoN = 3;
avoutDelay = 4;
dvBaud = 5;
dvinwait = 6;
VINDTR = 7;
avInXON = 8;
dvTypeahd = 9;
avDiscon = 10;
OVOUtNOHS = 11;

avErrStat = 15;
gvGetEvent = 16;
dvAutoLF = 17;

dvDiskStat = 20;

dvDiskSpare = 21;

TYPE

(*RS-232%)
(*RS-232*)
(*RS-232%)
(*RS-232+)
("RS-232%)
(*RS-232, CONSOLE*)
("RS-232*)
(*RS-232%)
("RS-232%)
(*RS-232%)
("RS-232*)
(*PROFILE*)
(*CONSOLE*)

(*RS-232, CONSOLE, PARALLEL PRINTER*) (*not yet)

(*DISKETTE, PROFILE*)
(*DISKETTE, PROFILE*)

pathname = string [max_pathname];
e _name = string [max_ename}];
namestring = string [20];
procinfoRec = record
progpathname : pathname;

global_id : longint;
father_id : longint;
priority 1 1..255;
state : (pactive, psuspended, pwaiting).
data_in : boolean

end;

Qperating System Reference Manual Qoerating Systern Interface Unit

Tdstype = (ds_shared, ds_private); (* types of data segments *)

dsinfoRec = record
mem_size : longint;
disc_size: longlnt
numb_open : integer;
1dsn : 1m:eger
boundF : boolean;
presentF : boolean;
creatorf : boolean;
reaccess : boolean;
segptr : longint;
volname: e_name;

end;
t_ex_name = string [len_exnamel; (* exception name *)
longadr = "“longint;
t_ex_state = (enabled, queued, ignored); (* exception state)
p_ ex data = “t_ex_data;
t_ex data = array [0..size exdata] of longint; (* exception data blk *)
t_ex_sts = record (* exception status *)
ex_occurred f : boolean; (* exception ocourred flag *)
ex_state : t ex state; (* exception state *)
num excep : integer; (* number of exceptions q'ed *)
hdl _adr : lmgadr; (* handler address *)
end;
p_env_blk = “env_blk;
env_blk = record (* environment block to pass to handler *)
pc : longint; (* program counter *)
sr : integer; (* status register *)
a0 : longint; (* data registers 0 ~ 7 *)
dl : longint;
d2 : longint;
d3 : longint;
d4 : longint:
d5 : longint;
g6 : longint;
d7 : longint;
ad : longint; (* address registers 0 - 7 *)
al : longint;
az : longint;
a3 : longint;
a4 : longint;
a5 : longint;
a6 : longint;
a7 : longint;
end;

A-3

Qoerating System Reference Manual

p_term ex _data =

Operating System interrace Unit

“term_ex_data;

term_ex_data = record (»* terminate exception data block *)
case excep kind : longint of
call_term
ended,
self_killeqg,
killed,
fthr_term,
bad_syscall,
bad_errnum,
swap_error,
stk_overflow,
data_overflow,
parity err : (); (* due to process termination *)
111g_inst,
priv_violation, (* due to illegal instruction, privilege
violation *)
line 1010,
line_1111, (* due to 1ine 1010, 1111 emulator *)
def_div_zero,
def_value_oob,
def_ovfw,
def_nmi_key (* terminate due to default handler for hardware
exception *)
: (sr : integer;
pc : longint); (* at the time of occurrence *)
def_range,
def_str_index (* terminate due to default handler for
*SYS_VALUE_00B"® excep for value range or string
index error *)
: (value_check : integer:

eng;

wper_bound . integer;
lower_bound : integer;

return_pc

caller_a6
bus_error,
addr _error

: (fun_field : packed record

filler :

: longint;
: longint);
(* due to bus error or address error *)
{* one integer *)
0..$7ff; (* 11 bits *)

r_w _flag : boolean;
in flag boolean;

funcocle

..7; (= 3 bits =)

A-4

(perating System Reference Manual Qoerating System Interface Unit

access_adr : longint;

inst_register : integer;

sr_error : integer;

pc_error : longint);
end;

p_hard_ex_data = “hard_ex_data;
hard_ex_data = record (* hardware exception data block *)
case excep_kind : longint of
div_zero, value_oob, ovfw
: (sr : integer;
pc : longint);
value_range, str_index
: (value_check : integer;
upper_bound : integer;
lower_bound : integer;
return_pc : longint;
caller a6 : longint);
end;

accesses = (dread, dwrite, append, private, global_refnum);
mset = set of accesses;
iomode = (absolute, relative, segquential);

UID = record (®unigue id=»)

a,b: longint

end;

timestmp_interval = record (* time interval *)
sec : longint; (* number of seconds ®)
msec : 0..999; (* number of milliseconds within a second *)

end;

info_type = (device_t, volume_t, object_t).

devtype = (diskdev, pascalbd, seqdev, bitbkt, non 10),

filetype = (undefined, MDDFfile, rootcat, freelist, badblocks, sysdata,
spool, exec, usercat, pipe, bootfile, swapdata, swapcode, ramap,
userfile, killedobject).

entrytype= (emptyentry, catentry, linkentry, fileentry, pipeentry, ecentry,
killedentry);

Qoerating System Reference Maral Operating System Interface Lnit

fs_info = record
name : e_name;
dir_path : pathname;
machine_id : longint;
fs_overhead : 1integer:;
rewlt_scavenge : Integer;
case otype : info_type of
device_t, volune t: (
iochannel : integer;
devt : devtype;
slot_no : integer;
fs_size : longint;
vol_size : longint;
blockstructured, mounted : boolean;
opencount : longint;
privatedev, remote, lockeddev : boolean;
mount_pending, unmount_pending : boolean;
volname, password : e _name;
fsversion, volnum : integer;
volid : UID;
backup_volid : UID;
blocksize, datasize, clustersize, filecount : integer;
label_size : integer:
freecount : longint;
DTVC, DTCC, DTvB, DTVS : longint:;
master_copy_id, copy thread longint;
overmount_stamp :
boot_code : 1nteger
boot_ environ : integer;
privileged, write protected : boolean;

master, copy, copy flag, scavenge_flag : boolean;
vol_left_mounted : boolean);

oblect t : (

size : longint;

psize : longint; (= physical file size in bytes *)
1psize : integer: (™ logical page size in bytes for this file =)

ftype : filetype;

etype : entrytype;

DTC, DTA, DTHM, DTB, DTS : longint;
refnum : integer:

mark : longint;

acmode : mset;

nreaders, nwriters, nusers : integer;
fuld : UID;

user_type : integer;

user_subtype : integer;

A-6

Qoerating System Reference Manual Qperating System Interface Unit

system_type : 1integer;

eof, safety on, kswitch : boolean;

private, locked, protected, master_file : boolean;

file scavenged, file_closed by 0S, file left_open:boolean)

'’

dactype = record

dcversion : integer;

dccode : integer:

dcdata : array {0..9] of longint; (* user/driver defined data *)
end;

t_waitlist = record (* wait list *)
length : integer;
refnum : array [0..size waitlist] of integer;

end;

t_eheader = record (* event header »)
send_pid : longint; (* sender's process id *)
event_type : longint; {* type of event *)

end;

t_event_text = array [0..size etext] of longint:

p_r_eventblk = “r_eventblk;

r_eventblk = record

event_header : t_eheader;
event_text : t_event_text;
end;

p_s_eventblk = “s_eventblk;
s_eventblk = t_event_text;

time_rec = record
year : integer;
dgay : 1..366; (* Julian date =)
hour : -23..23;
minute : -59..59;
second : 0..59;
msec : 0..999%:
end;

Querating System Reference Manal

chn_kind = (wait_ec, call_ec);
t_chn_sts = record
chn_type : chn_Kkind;
num_events : 1nteger;
open_recv : integer;
_ send : integer;
ec_name : pathname;
end;

hour_range = -23..23;
minute_range = -59..59;

{configuration stuff: }

Qoerating System interface Lnit

(* channel status *)
(* channel type
(= number of events queued

*)

*)

(» number of opens for receiving *)

(* number of opens for sending
(* event channel name

tports = (uppertwig, lowertwig, parallel,

slotll, sloti2, slotl3, slotl4,
slot21, slot22, slot23, slotzs,
slot31, slot32, slot33, slot34,

seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t_extra2, t_extra3);

card_types

slot_array

{ Lisa Office System parameter memory type }

paByteUnique = -128..127;

pieiRec = array[1..62] of pmByteUnique;

(* File System calls *)

procedure MAKE_FILE (var ecode:integer; var path:pathnome;
label_size:integer).;

procedure MAKE_PIPE (var ecode:integer: var path:pathname;
label _size:integer);

procedure MAKE_CATALOG (var ecode:integer; var path:pathname;
label_size:integer):

procedure MAKE_LINK (var ecode:integer: var path, ref:pathname;
label_size:integer);

=)
*)

(no_card, apple_card, n_port_card, net_card, laser_card);
array {1..3] of card_types;

(perating System Rererence Manial perating System Interrace Lnit

procedure KILL_OBJECT (var ecode:linteger; var path:pathname);

procedure UNKILL_FILE (var ecode:integer; refnum:integer; var
new_name:e_name);

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manip:mset);

procedure CLOSE_OBJECT (var ecode:integer; refnum:integer);

procedure READ_DATA (var ecode:integer; refnum:integer; data_addr:longint;
count:longint; var actual:longint; mode:iomode;
offset:1longint);

procedure WRITE_DATA (var ecode:integer; refnuminteger; data_adgor:longint:
count:longint; var actual:longint; mode:iomode;
offset:longint);

procedure FLUSH (var ecode:integer; refnum:integer):;

procedure LOOKUP (var ecode:integer; var path:pathname; var
attributes:fs_info);

procedure INFO (var ecode:integer; refrum:integer; var refinfo:fs_info);

procedure ALLOCATE (var ecode:integer; refnuminteger; contiguous:boolean;
count:longint; var actual:longint);

procedure TRUNCATE (var ecode:integer; refnuminteger);
procedure COMPACT (var ecode:integer; refnuminteger):

procedure RENAME_ENTRY (var ecode:integer; var path:pathname; var
newname:e_name),

procedure READ_LABEL (wvar ecode:integer; var path:pathname;
data_addr:longint; count:longint; var actual:longint).

procedure WRITE_LABEL (var ecode:integer; var path:pathname;
data_addr:longint; count:longint; var actual:longint);

procedure MOUNT (var ecode:integer; var vname : e _name; var password :
€_name ;var devname : e_name);

procedure UNMOUNT (var ecode:integer; var vname : e_name);

A-9

prerating System Reference Manual peraling System interrace Lt

procedure SET WORKING DIR (var ecode:integer; var path:pathname);
procedure GET_WORKING_DIR (var ecode:integer; var path:pathname);
procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean);

procedure DEVICE CONTROL (var ecode:integer; var path:pathname;
var cparm : dctype).

procedure RESET_CATALOG (var ecode:integer: var path:pathname);
procedure GET_NEXT_ENTRY (var ecode:integer; var prefix, entry:e name);
procedure SET _FILE_INFO (var ecode :integer; refnuminteger; fsi:fs_info);

(* Process Management system calls *)
function My ID:longint;

procedure Info Process (var errnuminteger; proc_id:longint; var
proc_info:procinfoRec);

procedure Yield CPU (var errnuminteger; to_any:boolean);

procedure SetPriority Process (var errnuminteger; proc_id:longint;
new_priority:integer):

procedure Suspend_Process (var errnuminteger; proc_id:longint;
susp_family:boolean);

procedure Activate Process (var errnuminteger; proc_id:longint;
act_family:boolean);

procedure Kill _Process (var errnuminteger; proc_id:longint):
procedure Terminate Process (var errnuminteger; event ptr:p_s_eventblk):
procedure Make Process (var errnuminteger: var proc_id:longint; var

progfile:pathname; var entryname:namestring;
evnt_chn_refnuminteger);

A-10

erating System Rererence Marial perating System interrace (it

(* Memory Management system calls *)

procedure make_dataseg(var errnum: integer; var segname: pathname; mem_size,
gisc_size: longint; var refnum: integer; var segptr:
longint; 1ldsn: integer: dstype: Tdstype):

procedure kill_dataseg (var errnuminteger; var segname:pathname);

procedure open_dataseg (var errnuminteger; var segname:pathname; var
refnuminteger; var segptr:longint; ldsm:integer);

procedure close dataseg (var errnuminteger; refnuminteger);

procedure size_dataseg (var errnuminteger; refnuminteger;
deltamemsize:longint, var newmemsize:longint;
deltadiscsize: longint; var nesdiscsize: longint);

procedure info_dataseg (var errnuminteger; refnuminteger; var
dsinfo:dsinfoRec);

procedure setaccess dataseg (var errnumcinteger; refnuminteger;
readonly:boolean);

procedure unbind_dataseg (var errnuminteger; refnuminteger);

procedure bind_dataseg(var errnuminteger: refnuminteger);

procedure info_ldsn (var errnuminteger:; 1ldsn: integer; var refnum: integer);
procedure flush dataseg(var errnum: integer; refnum: 1integer);

procedure mem_info(var errnum: integer; var swapspace, dataspace,
cur_codesize, max_codesize: longint);

procedure info_address(var errnum: integer; adoress: longint; var refnum:
integer);
(* Exception Management system calls *)

procedure declare_excep_hdl (var errnuminteger; var excep_name:t_ex_name;
entry_point:longadr);

procedure disable _excep (var errnuminteger; var excep_name:t_ex_name;
queue:boolean);

perating System Referance Manual perating System Interface (it

procedure enable_excep (var errnuminteger; var excep_name:t_ex_name);

procedure signal_excep (var errnuminteger; var excep_name:L_ex_name;
excep_data:t_ex_data); .

procedure info_excep (var errnuminteger; var excep_name:t_ex_name; var
excep_status:t_ex_sts);

procedure flush_excep (var errnuminteger; var excep_name:t_ex_name);

(* Event Channel management system calls *)

procedure make_event_chn (var errnumcinteger; var event_chn_name:pathname);

procedure kill_event_chn (var errnuminteger; var event_chn_name:pathname);

procedure open_event_chn (var errnumcinteger; var event_chn_name:pathname; var
refnuminteger; var excep_name:t_ex_name;
receiver:boolean);

procedure close_event_chn (var errnuminteger; refnuminteger);

procedure info_event_chn (var errnuminteger; refnuminteger; var
chn_info:t_chn_sts);

procedure wait_event_chn (var errnuminteger; var wait_list:t_waitlist; var
refnuminteger; event _ptr:p r eventblk);

procedure flush_event chn (var errnuminteger; refnuminteger);
procedure send_event_chn (var errnuminteger; refnuminteger;

event_ptr:p_s_eventblk: interval:timestmp_interval:
clktime:time_rec);

(> Timer functions system calls *)

procedure delay_time (var errnuminteger; interval:timestmp_interval;
clktime:time_rec):

procedure get_time (var errnuminteger; var gmt_time:time rec);

procegure set_local_time diff (var errnuminteger; hour:hour_range;
minute:minute_range);

A-12

perating System Rererence Manal perating System Interrace (nit

procedure convert_time (var errnuminteger; var gmt_time:time_rec: var
local_time:time_rec; to_gmt:boolean);

{configuration stuff}

function GSBOOTVOL(var error : integer) : tports;

procedure GET_CONFIG_NAME(var error:integer; devpostn:tports; var
devname:e_name)

procedure CARDS_EQUIPPED(var error:integer; var in_slot:slot_array);
THMPLEMENTATION

procedure MAKE_FILE; external;
procedure MAKE_PIPE; external.
procedure MAKE_CATALOG; external:
procedure MAKE LINK; external;
procedure KILL_OBJECT; external;
procedure OPEN; external;
procedure CLOSE_OBJECT; external;
procedure READ_DATA; external:
procedure WRITE_DATA; external;
procegure FLUSH; external:
procedure LOOKUP: external;
procedure INFO; external;
procegure ALLOCATE: external:
proceaure TRUNCATE; external;
procedure COMPACT. external;

A-12

Qperating System Reference Marnual

procedure RENAME_ENTRY; external;
procedure READ LABEL; external;
procedure WRITE LABEL; external;
procedure MOUNT; external;
procedure UNMOUNT; external;
procedure SET_WORKING DIR; external;
procedure GET_WORKING DIR; external;
procedure SET_SAFETY; external;
procedure DEVICE_CONTROL; external;
procedure RESET CATALOG; external;
procedure GET _NEXT ENTRY; external;
procedure GET_DEV_NAME; external;

function Hy ID; external;

procedure Info Process; external;
procedure Yield CPU; external;
procedure SetPriority Process; external;
procedure Suspend Process; external;
procedure Activate Process; external:
procedure Kill Process; external;
procedure Terminate_Process; external;
procedure Make_Process; external;
procegure Sched Class; external;

A-14

Qperating System Interface Lnit

Qperating System Reference Manual

procedure make_dataseg; external;
procedure kill_dataseg; external;
procedure open dataseg; external;
procedure close_dataseg; external;
procedure size dataseg; external;
procedure info_dataseqg; external;
procedure setaccess dataseg: external;
procedure unbind_dataseqg: external;
procedure bind_dataseg; external;
procedure info_ldsn; external;
procedure flush dataseg; external;
procedure mem_info; external;

procedure declare _excep hdl; external;
procedure disable excep; external:
procequre enable_excep; external;
procedure signal_excep; external;
proceaure info_excep; external;
procedure flush_excep; external;

procedure make_event_chn; external;
procedure kill_event chn; external;
procedure open_event_chn; external;
procedure close_event_chn; external;

A-15

Operating System Interface Unit

Qoerating System Reference Manual

procedure info_event_chn; external;
proceture wait_event_chn; external;
procedure flush_event_chn; external;
procedure send_event_chn; external;

procedure delay time; external;
procedure get_time; external;
procedure set_local_time diff; external:
procedure convert_time; external;
procedure set_file info; external;
function ENABLEDBG; external;
function 0SBOOTVOL; external;
procecure GET_CONFIG_NAME; external;
function DISK_LIKELY; external;
procedure CARDS_EQUIPPED; external;
procedure Read PHem; external;
procedure Write PHem; external;
end.

A-16

Qperating System Interface Unit

SYS_OVERFLOW

SYS_VALUE_00B

SYS_ZERO DIV

SYS_TERMINATE

Appendix B
System-Reserved
Exception Names

Overflow exception. Signaled when the TRAPV instruction is
executed and the overflow condition is on.

Value-out-of-bound exception. Signaled when the CHK
instruction is executed and the value is less than 0 or greater
than upper bound.

Division by zero exception. Signaled when the DIVS or DIVU
instruction is executed and the divisor Is zero.

Termination exception. Signaled when a process is to be
terminated.

Appendix C
System-Reserved
Event Types

SYS_SON_TERM "Son terminate” event type. If a father process has created a son
process with a local event channel, this event is sent to the
father process when the son process terminates.

-6081
-6004
-6003
-1885
-1882
-1840
-1293
-1176
-1175
-1174
-1173
-1146
-1063

-1060

-1059
~-696
-660
-626
-622
-621
-620
-413
-412
-321
-320
-150

-149

-125
-120
-115
100
101
110
130
131
132
133
134

Appendix D
Error Messages

End of execfile input

Attempt toreset text file withtyped-file type

Attempt toreset nontext file with text type

ProFile not present during driver initialization

ProFile not present during driver initializaetion

Packet ended in aresurnable state (Archive).

Object is not password protected.

Datainthe object have been altered by Scavenger

File or volume was scavenged

File was left open or volume was left rnounted, and system crashed
File was last closed by the OS

Only aportion of the space requested was allocated

Attempt to mount boot volume from another Lisa or not most recent boot
volurne

Attempt to mount aforeign boot disk following atemporary unmount
The bad block directory of the diskette is almost full or difficult toread
Printer out of paper during initialization

Cable disconnected during ProFile initislization

Scavenger indicated deta are questionable, but may be OK
Parameter memory and the disk copy were both invalid

Parameter memory was invalid but the disk copy was valid
Parameter memory was valid but the disk copy was invalid

Event channel was scavenged

Event channel was left open and systemn crashed

Datasegrmnent open when the system crashed. Data possibly invalid.
Could not determine size of dstasegrnent

Process wes created, but a library used by program has been scavenged and
sltered

Process weas created, but the specified program file has been scavenged and
altered

Specified process is already terminating

Specified process is already active

Specified process is already suspended

Specified process does not exist

Specified process is asystem process

Invalid priority specified (must be 1..225)

Could not open program file

File Systern error while trying toresd program file

Invalid progrem file (incorrect format)

Could not get astack segment for new process

Could not get asyslocal segment for new process

Operating S\ystem Refsrence Manusl Error Messages

135
136
138
141
142
143
144

145
146

147
148
190

191
192
193
194
195
196

198
199
201
202

203
302
303
304
306
307
308
309
310
311
312
313
314
315
317
401
402
403
404
405

Could not get sysglobal space for new process

Could not set up communication channel for new process

Error accessing program file while loading

Error accessing a library file while loading program

Cannot run protectedfile onthis machine

Program uses an intrinsic unit not found inthe Intrinsic Library

Program uses an intrinsic unit whose name/type does not agree with the
Intrinsic Library

Program uses asharedsegrent not found inthe Intrinsic Library

Program uses ashared segrent whose name does not agree withthe Intrinsic
Library _

No space insyslocal for program file descriptor during process crestion
Nospace inthe shared IU data segment for the program's shared 1U globals
No space in syslocal for program file description during List_LibFiles
operation

Could not open program file

Error tryingtoread prograrmfile

Cannot read protected programfile

Invalid programfile (incorrect format)

Prograrn uses ashared segment not found inthe Intrinsic Library

Program uses ashared segment whose namne does not agree with the Intrinsic
Librery

Disk 170 error trving toread the intrinsic unit directory

Specified library file number does not exist inthe Intrinsic Library

No such exception name declared

No space left in the systern data area for Declare_Excep_Hdl or
Signal_Excep

Null narme specified as exception name

Irvalid LDSN

No datasegment bound tothe LDSN

Datasegment already boundto the LDSN

Datasegment too large

Input dats segment path name is invalid

Datasegment already exists

Irsufficient disk space for datasegrment

Aninvalidsize has been specified

Insufficient systemresources

Unexpected File System error

Datasegrnent not found

Invalid address passedto Info_Address

Insufficient rnemory for operation

Disk error while trying to swap in data segment

Invalid event channel name passed to Make_Event_Chn

Nospace left insystem global det.e areafor Open_Event_Chn

Nospace left insystem local deta ereafor Open_Event_Chn
Non-block-structured device specified in pathname

Catalog isfull in Mske_Event_Chn or Open_Event_Chn

D-2

Qperating S\stem Relerence Manueal Error Messages

406
410
411
413
416
417
420
421
422
423
424

425
426
427
428
429
430
431

432
433
440
441
445
430
330
531
532
600
602
605
606
608
609
610
613

614
615
616
617
618
619
623
625

Nosuch event channel exists in Kill_Event_Chn

Attempt to open alocal event channel to send

Attempt to open event channel to receive when event channel has areceiver
Unexpected File System error in Open_Event_Chn

Cannot get enough disk space for event channel in Open_Evert_Chn
Unexpected File System error in Close_Event_Chn

Attemnpt to wait on a channel that the calling process did not open
Wait_Event_Chnreturns empty because sender process could not complete
Atternpt to call Wait_Event_Chn on an empty event-call channel

Cannot find corresponding event channel after being blocked

Amount of data returned while reading from event channel not of expected
size

Event channel empty after being unblocked, Wait_Event_Chn

Badrequest pointer error returned in Wait_Event_Chn

Wait_List has illegal length specified

Receiver unblocked because last sender closed

Unexpected File System error in Wait_Event_Chn

Attempt to sendto a channel which the calling process does not have open
Armount of data transferred while writing to event channel not of expected
size

Sender unblocked because receiver closed in Send_Event_Chn

Unexpected File System error in Send_Event_Chn

Unexpected File System error in Make_Event_Chn

Event channel already exists in Make_Event_Chn

Unexpected File System error in Kill_Event_Chn

Unexpected File System errorinF lush Event Chn

Size of stack expansionrequest exceeds limit specified for program
Cannot perform explicit stack expansion due to lack of memory
Insufficient disk space for explicit stack expansion

Attempt to perform 1/0 operation onnon 170 request

No more alarms available during driver initialization

Callto nonconfigured device driver

Cannot find sector on floppy diskette (disk unformatted)

Illegal length or disk address for transfer

Calltononconfigured device driver

No more room insysglobal for 1/0 request

Unpermitted direct access to spare track with sparing enabled on floppy
drive

No disk present in drive

Wrong call versionto floppy drive

Unpermitted floppy drive function

Checksum error on floppy diskette

Cannot format, or write protected, or error unclamping floppy diskette

No more room insysglobal for /O request

Illegal device control perameters tofloppy drive

Scavenger indicated dataare bad

Cperating System Reference NManusal Error Messages

630

631
632
634
635
636
638

639

640
641
642
646
647
648
649
652
6353
654
655
656
657
658
659
660
662
663
666
670
671
672
673
674
675
680
682
683
685
686
687
688
690
691
692
693

The time passed to Delsy_Time, Corvert_Time, or Send_Evert_Chn hss
invalid year

Illegal timeout request parameter

No memory available toinitialize clock

Illegal timed event id of -1

Process got unblocked prematurely due to process terminstion
Timer request did not complete successfully

Time pessed to Delay_Time or Send_Event_Chn more than 23 days from
current time

Illegal dete passed to Set_Time, or illegal date from system clock in
Get_Time

RS-232 driver called with wrong version nurmber

RS8-23Zread or write initisted with illegal parameter
Unimplemented or unsupported RS-232 driver function

No memory available to initialize RS-232

Unexpected RS-232timer interrupt

Unperrmitted RS-232 initialization, or disconnect detected
Illegal device control perameters to RS-232

N-port driver not initialized prior to ProFile

Noroom insysglobal to initialize ProFile

Herd error status returned from drive

Wwrong call versionto ProFile

Unpermitted ProFile function

Illegsl device control perameter to ProFile

Premature end of file whenreading from driver

Corrupt File System header chain found in driver

Cable disconnected

Parity error while sending cornmand or writing datato ProFile
Checksum error or CRC error or perity error in dstaread
Timeout

Bad commmand response from drive

Illegal length specified (must = 1 on input)

Unimplemented console driver function

No memory available toinitialize console

Console driver called with wrong version nurnber

Illegal device control

Wrong call versiontoserial driver

Unpermitted serisl driver function

Noroom insysglobal to initialize serial driver

Eject not allowed this device

Noroom insysglobal to initialize n-port cerd driver
Unpermitted n-port card driver function

Wrong call versionto n-port card driver

Wrong call versionto perallel printer

Illegsl parallel printer parameters

N-port card not initialized prior to parallel printer

Noroom insysglobal to initialize parsllel printer

D-4

Qperating Sysiem Relerence Manual Error Messages

694 Unimplemented parsllel printer function

695 Illegal device control perameters (parallel printer)

696 Printer out of paper

698 Printer offline

699 Noresponsefrornprinter

700 Mismatch between loader version number and Operating System version
number

701 OS exhausted its internal space during startup

702 Cannot make system process

703 Cannot kill pseudo—~outer process

704 Cannot creste driver

706 Cannot initialize floppy disk driver

707 Cannot initialize the File Systemvolume

708 Hearddisk mount table unreadable

709 Cannot mapscreen dsta

710 Too many slot-based devices

724 Theboot tracks do not know theright File System version

725 Either demaged File System or darnaged contents

726 Boot deviceresd failed

727 The OS will not fit into the available memory

728 SYSTEM.OS is missing

729 SYSTEM.CONFIG is corrupt

730 SYSTEM.OSis corrupt

731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt

732 SYSTEM.LLDIis corrupt

733 Loader range error

734 Wrongdriver is found. For instance, storing a diskette loader on aProFile

735 SYSTEM.LLDis rnissing

736 SYSTEM.UNPACK is missing

737 Unpeck of SYSTEM.OS with SYSTEM.UNPACK failed

750 Positionspecified is out of range.

731 Nodevice exists st the requested position.

752 Can't performrequested function while device is busy.

753 Specified position is not aterminal node.

754 Built-in devices cannot be configured.

755 Isolated positions cannot be configured.

756 The specified position is already configured.

757 Parallel Port doesn't exist onthis type of machine.

758 Noroom in merory for more devices.

790 Can't get buffer spaceto load configurable driver.

791 Configurable driver code file is not executsble.

792 Can't get memory space for a configurable driver.

793 [0 error reading configurable driver file.

794 Configurable driver code file not found.

795 Configurable driver has more than one segment.

801 IOResult <> 0 on /0 usingthe Monitor

802 Asynchronous 170 request not completed successfully

D-5

Qperating Svysiem Relerence Manusl

803
806
809
810
816
819
820
821
822
825
826
828
829
835
837
838
839
840
841
843
847
848
849
852
854
855
836
857
861
864
866
867
868
869
870
871
872
873
874
875
879
861
862
863
884
885
886

Bad combination of mode perameters

Page specified is out of range

Invalid arguments (page, address, offset, or count)
The reguested page could not be read in

Not enough sysglobal space for File System buffers
Bad device number

No space insysglobal for ssynchronous request list
Already initialized 1/0 for this device

Bad device number

Error in parameter values (Allocate)

No moreroomto allocete pages on device

Error in parameter values {Deallocate)

Partial deallocation only (ran into unallocatedregion)
Invalid s-file number

Unallocsted s-file or 1/0O error

Map overflow: s-filetoo large

Attempt to compact file past PEQOF

The allocation map of this file is truncated.
Unsallocated s~file or I/0 error

Requested exact fit, but one could not be provided
Requested transfer count is <=0

End of file encountered

Invalid page or offset value in parameter list

Bad unit number

Nofreeslots ins-list directory (too rnamy s-files)
No available disk space for file hints

Device not mounted

Empty, locked, or invalid s-file

Relative page is beyond PEOF (bad parameter value)
Nosysglobal space for volume bitmap

Wrong FS version or not avalid LisaFS volume
Bad unit number

Bad unit number

Unit already mounted (mount)/no unit mounted
No sysglobal space for DCB or MDDF

Parameter not avalids-filelD

Nosysglobal space for s-file control block
Specifiedfile is already openfor private access
Device not mourted

Invalid s-file 1D or s-file control block

Attemnpt to postion past LEQOF

Attemnpt toread empty file _

No space on volume for new data page of file
Atternpt toread past LEOF

Not first auto-sllocation, but file was empty
Could not updete filesize hints after awrite
Nosyslocal space for [/Orequest list

Error Messages

Operating System Reference Manual Error Messages

887 Catalog pointer does not indicate a catalog(bad parameter)
888 Entry not found in catalog

890 Entry by thet nsme already exists

891 Catalogisfull or is darnaged

892 lllegal name for an entry

894 Entry not found, or catalog is damaged

895 Irvalid entry name

896 Sefetyswitchis on--cannot kill entry

897 Invelid bootdev value

899 Attempttoallocate apipe

900 Invalid page count or FCB pointer argurnent

901 Could not satisfy allocationrequest

921 Pathname invalid or no such device

922 Invelid label size

926 Pathname invalid or no such device

927 Irnvalid label size

941 Pathname invalid or no such device

944 Object isnot afile

945 Fileis not inthekilledstate

946 Pathname invalid or no such device

947 Not enough space insyslocal for File Systemrefdb
948 Entry not found inspecified calalog

949 Privete access not sllowed if file already openshared
930 Pipe already in use, requested access not possible or dwrite not allowed
951 Fileis already opened in private mode

952 Badrefnum

954 Badrefnum

955 Read access not allowedtospecified object

956 Attempt to position FMARK past LEOF not allowed
957 Negstive request count is illegal

958 Nonsequential access is not allowed

959 Systemresources exhausted

960 Error writingto pipe while anunsatisfiedread was pending
961 Badrefnum

962 NoWRITE or APPEND access sllowed

963 Attempt to position FMARK too far past LEOF

964 Append access not allowed in absolute rmode

965 Append access not allowed inrelative mode

966 Internal inconsistency of FMARK and LEOF (werning)
967 Nonsequential access is not allowed

968 Badrefnum

971 Pathname irvalid or nosuch device

972 Entry not found inspecified catalog

974 Badrefnum

977 Badrefnum

978 Page count is nonpositive

979 Not ablock-structured device

D-7

Operating System Reference Manusl Error Messages

981
982
983
985
986
987
988
989
990
994
995
999
1002
1003
1021
1022
1023
1024
1031
1032
1033
1041
1042
1043
1051
1052
1033

1034
1061
1062
1071
1091
1092
1101
1121
1122
1124
1128
1130
1131
1132
1133
1134
1135
1136
1137

Bad refnum

No space has been allocated for specifiedfile

Not a block-structured device

Bad refnum

Nospace has been allocated for specifiedfile

Not a block~-structured device

Badrefnum ,

Caller is not areader of the pipe

Not a block-structured device

Invalid refnum

Not a block-structured device

Asynchronous read was unblocked before it was satisfied
Invalid Device_Control call for device (Priam).
Unable to get SysGlobal space for disk operation(Priam).
Pathname invalid or nosuch entry

No such entry found

Invalid newnarne, check for '-' instring

New name already exists in catalog

Pathname invalid or nosuch entry

Invalid transfer count

No such entry found

Pathname invalid or no such entry

Invalid transfer count

No such entry found

No device or volurne by thet name

Avolume is already mounted on device

Attempt to mourt temporarily unmounted boot volume just unmounted from
this Lisa

The bad block directory of the diskette is invalid

No device or volume by that name

No volume is mounted on device

Not avalid or mounted volume for working directory
Pathname invalid or nosuch entry

No such entry found

Invalid device name

Invalid device, not mounted, or catalog is damaged
No space for catalog scan buffer (Reset_Catslog).
No space for catalog scan buffer (Get_Next_Entry).
Invalid pathname, device, or volume not mounted
File is protected; cannot open due to protectionviolation
No device or volume by that name

No volurne is mounted onthat device

No more openfiles inthe file list of that device
Cannot find space in sysglobal for open file list
Cannot find the openfile entry to rnodify

Boot volume not mounted

Boot volume slready unmounted

D-8

Querating System Reference Manual Error Messages

1138
1141
1142
1143
1144

1145
1158
11539
1160
1161
1162
1163
1164
1165
1166
1167
1166
1169

1170
1171
1172
1176
1177
1178

1180
1181
1182
1183
1184

1186
1188
1190
1191
1193
1196
1197
1198
1199
1200
1201
1202
1203
1204

Caller cannot have higher priority than system processes when calling ubd
Boot volume was not unmounted when callingrbd

Some other volume still mounted on the boot device when callingrbd

No sysglobal space for MDDF to dorbd

Attempt to remount volume which is not the temporarily unmounted boot
volurne

Nosysglobal space for bit meptodorbd

Track~by-track copy buffer is toosmall

Shutdownrequested while boot volume was unmounted

Destination device too small for track-by-track copy

Invalid final shutdown mode

Power is slready off

Illegal command

Device is not adiskette device

Novolume is mounted on the device

Avalid volume is already mounted onthe device

Not a block~-structured device

Device name is invalid

Could not access device before initialization using default device
parameters

Could not mount volume after initialization

'~! is not allowed in avolurne narme

Nospace available to initialize a bitmap for the volume

Cannot read from a pipe more than half of its allocated physical size
Cannot cancel areadrequest for apipe

Process waiting for pipe data got unblocked because last pipe writer closed
it

Cannot write to a pipe more then half of its allocated physical size
Nosystem space left for request block for pipe

Writer process to a pipe got unblocked before the request was setisfied
Cannot cancel awriterequest for apipe

Process waiting for pipe space got unblocked because the reader closed the
pipe

Cannot allocate space to apipe while it has data wrapped around

Cannot compact & pipe while it hes deta wrapped around

Attempt to access a page that is not allocatedtothe pipe

Bad parameter

Premature end of file encountered

Something is still open on device--cannot unrmount

Yolume is not formatted or cannot be read

Negstive request count is illegsl

Function or procedure is not yet implemented

Illegal volume parameter

Blank file parameter

Error writing destinstionfile

Invalid UCSD directory

File not found

D-9

Operating Svstem Reference Menual Errar Messages

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1225

1226
1227
1228
1229
1230
1231
1232
1233
1237
1240
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1294
1295
1296
1297
1298
1807
1820
1822
1824
1840
1841
1842

Boot track program not executable

Boot track program too big

Error reading boot track program

Error writing boot track program

Boot track program file not found

Cannot write boot tracks onthat device

Could not create/close internal buffer

Boot track program hes too many code segments

Could not find configuration information entry

Could not get enough working space

Premature EOF in boot track program

Position out of range

No device at thet position

Scavenger has detected an internal inconsistency symptomatic of asoftweare
bug

Invalid device name

Device is not block structured

Illegal atternpt to scavenge the boot volurne

Cannot read consistently fromthe volume

Cannot write consistently to the volume

Cannot allocate space (Heap segment)

Cannot allocate space (Map segrent)’

Cannot allocete space (SFDB segment)

Error rebuilding the volume root directory

Nllegal sttempt to scavenge a non-OS-formeatted volume
Pathname is invalid because device or object is not present.
Pathname syntax is invalid.

Interior pathname component does not specify adirectory object.
Directory cannot. be deleted because it is not empty.

Operstion is not allowed on avolume with aflat catalog.
Operation is not allowed on adirectory object.

Cannot allocate Sysl.ocal space for the directory scanstack.
Directorytree is inconsistent.

Operation not allowed against a volume or device (Quick_Lookup)
The directory that contained the file has been deleted (Unkill_File)
Supplied password does not matchthe password onthe object.
The allocation map of thisfile is damaged and cannot be read
Bad string argument has been passed

Entry name for the object is invalid (onthe volume)

S-list entry for the object is invelid (on the volume)

No disk infloppy drive

Write-protect error on floppy drive

Uneble to clamp floppy drive

Floppy drive write error

Unable toinitialize disk drive (Priam).

Error writing to disk (Priam} / Error reading from tape Eﬁrchiva).
Error reading from disk (Priam) / Error writing to tape(Archive).

D-10

Operating System Relerence Manual Error Messages

1843 Error controllingtape (Archive).

1844 Packet ended in a non-resumable state (Archive).

1845 Packet cornmand had an error (Archive).

1882 Badresponse from ProFile

1885 ProFiletimeout error

1998 Invalid parameter address

1999 Badrefnum

6001 Attempt toaccess unopenedfile

6002 Attempt toreopen afile which is not closed using an open FIB(file info block)
6003 Operation incompatible with access mode with which file was opened
6004 Printer offline

6005 Filerecordtype incompatible with character device(rmust be byte sized)
6006 Bad integer(read)

6010 Operationincompatible withfiletype or access mode

6081 Premature endof execfile

6082 Invalid exec(temporary)file name

6083 Attempt toset prefix with null name

6090 Attempt to move console with exec or output file open

6101 Badreal (read)

6151 Attempt toreinitalize heap already inuse

6152 Bad argument to NEW (negative size)

6153 Insufficient memory for NEW request

6154 Attempt to RELEASE outside of hesp

Operating System Exror Codes
The error codes listed below ere generated only when & nonrecoversble error
occurs while in Operating System code.

10050 Regquest block is not chained to a PCB (Unblk_Req)

10051 Bld_Reqis called with interrupts off

10100 An error was returned from SetUp_Directory or a Data Segment routine
(Setup_lUInfo)

10102 Error » Otryingto creste shell (Root)

10103 Sem_Count » 1{Init_Sem)

10104 Could not open event channel for shell (Root)

10197 Automatic stack expansion fault occurred insystem code (Check_Stack)

10198 Need Mem set for current process while scheduling is disabled
(SimpleScheduler)

10199 Attempt to block for resson other than 1/0 while scheduling is disabled
(SimpleScheduler)

10201 Herdware exception occurred while insystem code

10202 Nospace left from Sigl_Excep call in Hard_Excep

10203 Nospece left from Sigl_Excep call in Nmi_Excep

10205 Error from Wait_Event_Chncalled in Excep_Prolog

10207 Nosystem dataspace in Excep_Setup

10208 Nospace left from Sigl_Excep call inrange error

10212 Error in Term_Def_Hdl from Enable_Excep

10213 Error inForce_Term_Excep, nospace inEng_Ex_Deata

D-11

Cperating System Reference Manual Error Messages

10401 Error from Close_Event_ChninEc_Cleanup

10582 Unable to get space inFreeze_Seg

10590 Fatal memory parity error

10593 Unable to move merory manager segment during stertup

10594 Unable toswap in asegment during startup

10595 Unable to get space inExtend MMilist

10596 Tryingto alter size of segment that is not data or stack (Alt_DS_Size)

10597 Tryingto allocate space to an allocated segment (Alloc_Mem)

10598 Attemptingto sllocste a nonfree mermory region(Teke_Free)

10599 Disk 170 error whileswapping in an OS code segment.

10600 Error sttempting to maketimer pipe

10601 Error from Kill_Object of an existingtimer pipe

10602 Error fromsecond Make_Pipeto make timer pipe

10603 Error from Opento opentimer pipe

10604 Nosyslocal space for head of timer list

10605 Error during sllocate space for timer pipe, or interrupt from nonconfigured
device

10609 Interrupt from nonconfigured device

10610 Error from info about timer pipe

10611 Spurious interrupt fromfloppy drive #2

10612 Spurious interrupt from floppy drive #1, or no syslocal space for timer list
element

10613 Error from Read_Data of timer pipe

10614 Actual returned from Read_Deta is not the same as requested from timer
pipe

10615 Error from open of the receiver's evert channel

10616 Error from Write_Event to thereceiver's event channel

10617 Errorfrom Close_Event_Chnonthe receiver's pipe

10619 Nosysglobal space for timer request block

10624 Attempt toshut down floppy disk controller while drive is still busy

10637 Not enough memory to initialize systemtimeout drives

10675 Spurious timeout on console driver

10699 Spurious timeout on parallel printer driver

10700 Mismatch between loasder version number and Operating System version
number

10701 OS exhausted its internal space during startup

10702 Cannot make system process

10703 Cennot kill pseudo-outer process

10704 Cannot creste driver

10706 Cannot initialize floppy disk driver

10707 Cannot initialize the File Systemvolume

10708 Hard disk mount table unreadable

10709 Cannot mapscreendsta

10710 Too many slot-based devices _

10724 The boot tracks do not know theright File Systemn version

10725 Either damaged File System or darnaged contents

10726 Boot device read failed

D-12

Cperating S\stem Reference Manual Error Messages

10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
11176

11177

11178
11180
118xx
11901

The OS will not fit into the available rnemory

SYSTEM.OS is missing

SYSTEM.CONFIG is corrupt

SYSTEM.OS is corrupt

SYSTEM.DEBUG or SYSTEM.DEBUG? is corrupt

SYSTEM.LLD is corrupt

Loader range error

Wrong driver is found. For instance, storing a diskette loader on a ProFile
SYSTEM.LLD is missing

SYSTEM.UNPACK is missing

Unpack of SYSTEM.OS with SYSTEM.UNPACK failed

Can't find arequired driver for the boot device.

Can't load arequired driver for the boot device.

Boot device won't initialize.

Can't boot from aserisl device.

Found a pending write request for a pipe while in Close_Object when it is
called by the last writer of the pipe

Found a pending read request for a pipe while in Close_Object when it is
called by the (only possible) reader of the pipe

Found a pending read request for a pipe while in Read_Datafromthe pipe
Found a pending writerequest for a pipe while in Write_Datatothe pipe
Error xx from diskette ROM(See OS errors 18xx)

Callto Getspace or Relspace with a bad parameter, or free pool is bad

D-13

Appendix E
FS__INFO Fields

* gefined for mounted or unmounted oevices
$ oerined rfor mounted aevices only
All other fields are aefined for mounted block-structured aevices only.

DEVICE_T, VOLUME_T:

backup_volid ID of the volume of which this volume is a copy.
blocksize Number of bytes in a block on this device.
* blockstructured Flag set if this device is block-structured.
boot_code Reserved.
boot_environ Reserved.
clustersize Reserved.
copy Reserved.
copy_flag Flag set if this volume is a copy.
copy_thread Count of copy operations involving this volume.
datasize Nummber of data bytes in a page on this volume.
* devt Device type.
» dir_path Pathname of the volume/device.
DTCC Date/time volume was created if it is a copy.
DTvB Date/time volume was last backed-up.
oTVC Date/time volume was created.
DTvS Date/time volume was last scavenged.
filecount Count of files on this volume.
freecount Count of free pages on this volume.
fs_overhead Number of pages on this volume required to store
File System data structures.
fs_slze Number of pages on this volume,
fsversion version number of the File System under which
this volume was initialized.
= jochannel Number of the expansion card channel through
which this device is accessed.
label_size Size in bytes of the user-defined labels associated
with objects on this volume.
$ lockeddev : Reserved.
machine_ID Machine on which this volume was initializead.
master Reserved.
master_copy_ID Reserved.
* mounted Flag set if a volume is mounted.
$ mount_pending Reserved.
* name Name of this volume/device.
$ opencount Count of objects open on this volume/device.
overmount_stamp Reserved.
password Password of this volume.

E-1

Qoerating System Reference Manual

$ privatedev
privileged

$ remote
result_scavenge
scavenge_flag

* slot_no

$ unmount_pending
volid
vol_left_rnounted

volname
volnum
vol_size

write_protected

OBJECT_T:

acmode
dir_path
DTA
DTB
DTC
DT™M
DTS

eof

etype
flle_closed_by_0S

file_left_open
file_scavenged

frark
fs_overnead

ftype
fuid

kswitch
locked
Ipsize

FS INFO Fielas

Reserved.

Reserved.

Reserved.

Reserved.

Flag set by the Scavenger if it has altered this
volume in some way.

Number of the expansion slot holding the card
through which this device is accessed.
Reserved.

Unique identifier for this volume,

Flag set if this volume was mounted during a
system crash.

volurme name.

volume number.

Total number of blocks in the File System volume
and boot area on this device.

Reserved,

Set of access modes associated with this refnum.
Pathname of the directory containing this object.
Date/time object was last accessed.

Date/time object was last backed-up.

Date/time object was created.

Date/time object was last modified.

Date/time object was last scavenged.

Flag set if end of file has been encountered on
this object (through the given refnum).

Directory entry type.

Flag set if this object was closed by the Operating
System.

Flag set if this object was open during a system
crash.

Flag set by the Scavenger if this object has been
altered in some way.

Absolute byte to which the file mark points.
Nurmnber of pages used by the File System to store
control information about this object.

Ooject type.

Unique identifier for this object.

Flag set when the object is killed.

Reserved.

Number of data bytes on a page.

E-2

perating System Rererence Maril

machine_ID
master_file
name
nreaders

nwriters

nusers
private
protected
psize
refnum

result_scavenge
safety_on

size
system_type
user_type
user_subtype

FS_INFO Flelas

Machine on which this object may be opened.
Flag set if this object is a master.

Entry name of this object.

Number of processes with this object open for
reading.

Number of processes with this object open for
writing.

Number of processes with this object open.
Flag set if this object is open for private access.
Flag set if this object is protected.

Physical size of this object in bytes.
Reference number for this object (argument to
INFO).

Reserved.

value of the safety switch for this object.
Number of data bytes In this object (LEOF).
Reserved.

User-defined type field for this object.
User-defined subtype field for this object.

Index

Please note that the topic references in this Index are &y section numnber.

__________ A__________
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13

Append access 2.10.8
attribute 1.3, 2.10.5

_____________ B"-______-_

baud rate 2.10.12.1

binding 4.1

BIND DATASEG 4.7.12

blocked process 1.4,
3 (introduction), 3.8.5

buffer 2.9, 2.10.12.1, 2.10.16,
5.5, 5.8

___________ C__________
CARDS_EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE_DATASEG 4.7.4
CLOSE_EVENT CHN 5.8.4
CLOSE_OBJECT 2.10.9
code segment 4.5
communication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system cells 6.1
controlling

a device 2.10.12

a process 3.4

Index-1

CONVERT_TIME 5.9.4
creating
a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

___________ D_-~-______
data segment
creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6
Dccode mnemonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE_EXCEP HOL 5.7.1
DELAY_TIME 5.9.1
deleting
a process 3.8.2, 3.8.4
an object 2.10.2
device 2.3-2.7, 2.10.12
accessing 1.3, 2.8

control information 2.10.12

mounting 1.3, 2.10.20

names 2.1, 2.3, 2.10.12.1

priority 2.3

storage 2.4
DEVICE_CONTROL 2.10.12
directory 2 (introduction)
DISABLE_EXCEP 5.7.2

disk hard error codes 2.10.12.2

Qoerating System Reference Marxiél

division by zero 5.2, B
Dread, Dwrite access 2.10.8

__________ E_______-__

ENABLE_EXCEP 5.7.3

end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see also end of file.
error

disk hard error codes 2.10.12.2

error messages D
soft error 2.10.12.1
See also exception.
event 1.6, 5.4, C
event channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls
5.7
exception names B

__________ Frommmm e

father process 1.4, 3.6, 3.7,
3.8.1, 3.8.2

file 2 (introduction)
access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2

File System calls 2.10

FLUSH 2.10.16

Index-2

naex

FLUSH DATASEG 4.7.5
FLUSH EVENT CHN 5.8.7
FLUSH EXCEP 5.7.6
FS_INFO fields E

__________ G____-__-__
GET_CONFIG NAME 6.1.2
GET_NEXT_ENTRY 2.10.19
GET TIME 5.9.2
GET_WORKING_DIR 2.10.18
global access to files 2.8
global event channel 5.5
Global_Refnum 2.8, 2.10.8

____________ H__~~--___-
handshake 2.10.12.1
hierarchy of processes 3.2

__________ I--,_____-n
INFO 2.10.6
INFO_ADDRESS 4.7.
INFO_DATASEG 4.7.
INFO_EVENT CHN 5.
INFO_EXCEP 5.7.4
INFO_LDSN 4.7.8
INFO_PROCESS 3.8.3

interface unit A

interprocess commnication 1.7, 2.9
170 2 (introduction)

S
7
8.5

___________ R et
KILL_DATASEG 4.7.2
KILL_EVENT CHN S5.8.2
KILL_OBJECT 2.10.2
KILL_PROCESS 3.8.4

Qperating System Reference Manual

__________ L__________

label, file 2.6, 2.10.11

LOSN 4.2, 4.4, 4.7.8

LEOF. See end of file.

local data segment 4.1

local event channel 5.5

logical data segment number 4.2,
4.4, 4.7.8

logical end of file.
file.

LOOKUP 2.10.5

See end of

__________ n_____-____

MAKE_DATASEG 4.7.1

MAKE_EVENT CHN 5.8.1

MAKE FILE 2.10.1

MAKE_PIPE 2.10.1

MAKE_PROCESS 3.8.1

memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
MEM_INFO 4.7.10

memonics for Dccode 2.10.12.1
MOUNT 2.10.20

mounting a device 1.3, 2.10.20
MY_ID 3.8.9

__________ N~_-_,_____
naming an object 2.1, 2.10.1,
2.10.4

__________ 0_--_______

object 1.3
creating 2.10.1
deleting 2.10.2
naming 2.1, 2.1
renaming 2.10.4

Index-3

Inoex

OPEN 2.10.8
OPEN_DATASEG 4.7.3
OPEN_EVENT CHN 5.8.3
0S interface A
0SBOOTVOL 6.1.3

___________ p-u_-______
page 2.4
parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file.
file.
pipe 1.7, 2.9. 2.10.1, 2.10.8
priority of devices 2.3
priority of processes 3.5, 3.8.7,
3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1.4, 3
blocked 1.4, 3 (introduction),
3.8.5
creating 3.3, 3.8.1
father 1.4, 3.6, 3.7, 3.8.1,

See end of

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8

queuing 3.5, 3.8.5-3.8.8

scheduling 3.5, 3.8.5-3.8.8

shell 1.4, 3.2

son 1.4, 3.7, C

starting 3.8.1,

stopping 3.8.2,

structure 3.1

termination 1.4, 3.6, 5.2, B, C
process system calls 3.8

3.8.6
3.8.4

Queratirng System Reference Marnual

__________ Q_____~____
queuing a process 3.5, 3.8.5-3.8.8

___________ R__________
range check error 5.2, B
READ_DATA 2.10.10

READ _LABEL 2.10.11

refnum 2.8; see also Global_Refrnum.

RENAME_ENTRY 2.10.4

renaming an object 2.10.4

RESET_CATALOG 2.10.19

running a program 1.4, 1.9, 3.8.1,
3.8.6

__________ Qe e e
safety switch 2.5, 2.10.17
Scheduler 3
scheduling processes 3.5,
3.8.5-3.8.8
SEND_EVENT CHN 5.8.8
SETACCESS_DATASEG 4.7.11
SETPRIORITY_PROCESS 3.8.7
SET_FILE_INFO 2.10.7
SET_LOCAL_TIME_DIFF 5.9.3
SET_SAFETY 2.10.17
SET_WORKING DIR 2.10.18
shared data segment 1.7, 4.1, 4.3
shared file 1.7, 2.8
shell process 1.4, 3.2
SIGNAL_EXCEP 5.7.5
SIZE_DATASEG 4.7.6
soft error 2.10.12.1
son process 1.4, 3.7
sparing 2.10.12
starting a process 3.8.1,
stopping a process 3.8.2,
storage device 2.4
SUSPEND PROCESS 3.8.5

, C

Inaex

swapping 4.6

Syscall unit A

system calls
tlock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
memory management 4.7
process 3.8

system clock 5.6, 5.9

"~ system-defined exceptions 5.2, B

Index-4

SYS OVERFLOW 5.2, B
SYS SON_TERM C

SYS_TERMINATE 5.2, B
SYS_VALUE_00B 5.2, B
SYS_ZERO DIV 5.2, B

__________ T_“________

terminated process 1.4, 3.6, 5.2,
B. C

TERMINATE_PROCESS 3.8.2

timed events 5.8.8

tree, process 3.2

TRUNCATE 2.10.15

__________ Urmmemrm e m e

UNBIND _DATASEG 4.7.12

UNKILL_FILE 2.10.3

UNMOUNT 2.10.20

user-defined exception handler 5.3

__________ V__________
value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.18

volume name 1.3

Qoerating System Reference Marval

__________ Y---——————
WAIT_EVENT CHN 5.8.6

working directory 2.2

working set 4.2

WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11

writing buffered data 2.10.16

__________ Yomm e
YIELD CPU 3.8.8

Index-5

Inoex

Qperating System Reference Manual Mail-Back Form

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form, or
write all over it, and send it to us. We promise to read it.

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning

[] other

Is it quick and easy to find the information you need in this manual?
[]always []often []sometimes []seldom [] never

Comments
what makes this manual easy to use?

what makes this manual hard to use?

what do you like most about the manual?

what do you like least about the manual?

Please comment on, for example, accuracy, level of detall, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the index,
organization, suitability to your particular needs, readability.

what languages do you use on your Lisa? (check each)
[]Pascal []BASIC []COBOL []other
How long have you been programming?

[10-1years []1-3 []14-7 []over 7 []nota programmer
what is your job title?
Have you completed:

{] hign school [] some college [] BA/BS []MAMS [] more
what magazines do you read?

Other comments (please attach more sheets if necessary)

rao

‘SIDPIQ computar
POS Publications. Department
20525 Marlani Avenue

Cupertino, California 95014

TAPE R STAPLE

The OEMSysCall Unit

Contents
1 InTOdUC I ON et e amameacasammeese—en———————- 1
2 OEMSysCall Routines oo ceecaicccccacecccecccamcncaemannmaan 2
3 S (3 2 -) U PP SEP 2
V2 23 1+ A] v) S PRI 3
A - V-4 To L | P 4
A - 4 1LY A) N 5
2.5 MBKESBOUIE .. oennet i ee et ireeeee e ee e eee e aeenaaanaeaeaaananan 6
T £ 1) 1 - o o - ?
2.7 OPBN B .o iiietii e eiateaaaaeeacaaneaiaeeoennaaaaataacaanaaa s 8
2.8 RENAME SEOUIE ..ot iieeieeeereeeeecareeennieaeaeacaeereesnnaanncaeennnnn 9
2.9 VerifyPassword ...ttt eiiiiiiieiceeetiaaaareceeaaaaaane 10
2.10 ChangePasSWOIe i iieeiiirtiiieeeaeieeeaneeraeenaseceessnaaennnnsnnnns 11
3 IMEITAOEt ceeemcaem———eenameaeese—mee——caam———————— 12

The OEMSysCall Unit

1 Introduction
The OEMSysCall unit provides interfaces to privileged procedures within the
Lisa Operating System. These privileged procedures offer facilities that fall
into two categories: disk volume management and file password protection.

Disk Volume Management
The OEMSysCall unit includes procedures to

» Initialize a disk volume.

» Eject a removable disk volume.

= Scavenge a disk volume.

* Determine if two disk volumes are identical.

File Fassword Froteclion

A file may be protected from unauthorized access by sssociating a password
with it. Password protection prevents a file from being opened, killed, or
renamed without presentation of the proper password. Other operations (e.g.,
Lookup, Read_Label, etc.) are unaffected by the presence of a password
protecting the specified file. The OEMSysCall unit includes procedures to

= Open a password-protected file.

» Delete a password-protected file.

» Rename a password-protected file.

s Change the password associated with a file.
= Yerify the password associated with a file.

Lisa Systems Softweare OEMSYysCall

2 OEMSysCall Routines

2.1 Init_Vol

Init_Vol (var ecode : integer;

ecode:

devName : e_name;
volName : e_name;
password : e_name)

Error indication (common errors are listed below)

devyName: Name of the device to initialize
volName: Name to assign to the new disk volume
password: Password to assign to the new disk volume

Initialize the volume on the specified device. The volume is assigned the
name and password volName and password. Yolume passwords are currently
not supported by the Lisa file system. The volume may not be mounted on
the device at the time of the call.

Common errors:

618
971
1167
1169

1171
1172

1380

Cannot format the volume (make sure a diskette is in
the drive).

Device name is invalid (check configuration)

Device is not a disk.

Could not default mount the volume in order to
perform initialization.

Yolume name contains the dash, "-", character.

No space in system heap for the volume allocation
map of the new volume.

Yolume is mounted on the device.

Lisa Systems Softweare QEMSYysCall

22 EjectVol
EjectVol (var ecode : integer;
devName : e_name)

ecode: Exror indication (common errors are listed below)
devName: Name of the device from which to eject media

Eject the removable disk media from the specified device. The device must
support ejectable media, and the volume may not be mounted on the device
at the time of the call.

Common errors:

614 No diskette present in the drive.

971 Device name is invalid (check configuration).
1164 Device does not support ejectable medisa.
1390 Yolume is mounted on the device.

1-3

Lisa Syslems Softwere OEMSsCail

23 ScavengeVol

ScavengeVol (var ecode : integer;
devName : e_name)

ecode: Error indication (common errors are listed below)
devName: Name of the device to scavenge

Scavenge the volume on the specified device. The volume may not be
mounted on the device at the time of the call.

Common errors:

614 No diskette present in the drive.

971 Device name is invalid (check configuration).
1225 Scavenger aborted.

1227 Device is not a disk.

1231 Scavenger heap overflow.

1237 Unable to repair the volume directory structure.
1240 Yolume is not in a Lisa file system format.

13290 Volume is mounted on the device.

Lisg Systems Software QEMSYsCall

24

VerifyVol

YerifyVol (var ecode : integer;
sourceDev : e_name;
destinDev - e_name;
buffddr : longint;
bufSize : longint)

ecode: Error indication (common errors are listed below)
sourceDev: Name of the device being verified

destinDev: Name of the device to verify against

bufAddr : Address of the buffer

bufSize: Size of the buffer in bytes

Compsere the volume on sourceDev with the volume on destinDev. The
volumes are compared track by track. The memory buffer used during the
comperison is supplied by the caller and is described by its starting address
buf Addr and length bufSize. The buffer must be at least large enough to
accommodate two disk blocks of 536 bytes each (i.e., 1072 bytes). Neither
the source volume nor the destination volume may be mounted at the time
of the call. The error indication ecode is zero if the volumes are identical,
and 1393 if they differ.

Common errors:
614 No diskette present in the drive.

971 Source or destination device name is invalid (check
configuration).

1167 Source or destination device is not a disk.

1390 Yolume is mounted on the source or destination
device.

1392 Supplied buffer is too small (bufSize ¢ 1072).
- 1393 Yolumes are not identical.

1-5

Lisa Systerns Software OEMSsCall

25 MeakeSecure

MekeSecure (var ecode : integer;
var path : pathname;
var password : e_name)

ecode: Error indication {common errors are listed below)
path: Name of the new file
password: Password to be associated with the new file

Create a new file protected by the specified password. This procedure
behaves the same as Make_File.

Cormmon errors:

854 Yolume s-file list is full.

855 Cannot allocate disk space for the file leader.
890 File already exists.

891 Volume catalog is full.

892 file name is illegal (a file name may not contain
the dash, "-", character).
921 Pathname is invalid.

1-6

Lisg Systems Softweare

26 KillSecure

KillSecure (var ecode : integer;
var path : pathname;
var password : e_name)

OEMSysCall

ecode: Error indication (common errors are listed below)

path: Name of the object to be deleted
password: Password associated with the object

Delete the file with the specified name and password. The deletion is not
allowed if password does not match the password assigned to the file. This

procedure behaves the same as Kill_Object.
Common errors:

-1293 Warning: the file was not password protected. The

kill operation completes normally.

894 File cannot be found.
8§95 File name is illegal.

896 File safety switch is set (the file is protected

against deletion).

1294 Supplied password does not match the password

protecting this file.

1298 File cannot be accessed because its s-list entry is

damaged.

Lisa Sysiems Sofiware QEMS\sCall

2.7 OpenSecure

OpenSecure (var ecode : integer;

var path - pathname;

var refnum : integer;
manip : mset;

var password : e_name)

ecode: Exror indication (common errors are listed below)
path: Name of object to be opened

refnum: Reference number for the object

manip: Set of access types

password: Password associated with the object

Open the file with the specified name and password. The open is not done if
password does not match the password assigned to the file. This procedure
behaves the same as Open.

Common errors:

-1173

-1174
-1175

~-1176

-1293
871
872
873
946
947

948
949

1130
1294

Warning: this file was last closed by the Operating
System.

Warning: this file was open during a system crash.
Warning: this file has been reconstructed by the
scavenger.

Warning: the contents of this file has been
reconstructed by the scavenger.

Warning: the file was not password protected. The
open operation completes normally.

File cannot be accessed because its s-list entry is
damaged.

No space in system heap for File Control Block.
File is open for priwvale access by another process.
Pathname is invalid.

No space in the system heap for File Refnum
Descriptor Block.

File cannot be found.

Request for private access is disallowed because the
file is open for access by another process.

Open request violates software theft protection
policy.

Supplied password does not match the password
protecting this file.

Lisa Systems Soflwere CEMSYysCall

28 RenameSecure
RenameSecure (var ecode : integer;

ecode:
path:

var path : pathname;
var newName : e_name;
var password : e_name)

Error indication (common errors are listed below)
Name of the object to be renamed

newName: New name for the object
password: Password associated with the object

Rename the file with the specified name and password. The rename is not
done if password does not match the password assigned to the file. This
procedure behaves the same as Rename_Entry.

Common errors:

-1293
1021
1022
1023

1024
1294

1296
1297

1298

Warning: the file was not password protected. The
rename operation completes normally.

Pathname is invalid.

File cannot be found.

New file name is illegal (& file name cannot contain
the dash, "-", character).

File having the new name already exists.

Supplied password does not match the password
protecting this file.

File name string variable has bad length byte.

File cannot be accessed because its leader is
damaged.

File cannot be accessed because its s-list entry is
damaged.

Liss Systems Software CEMSsCall

29 VerifyPaessword

verifyPassword (var ecode : integer;
var path : pathname;
var password : e_name)

ecode: Error indication (common errors are listed below)
path: Name of the file whose password is to be verified
password: Password to be verified

Compare the specified psssword with the password protecting the specified
file. The error indication ecode is zero if the pssswords are identical, and
1294 if they differ.

Common errors:

~1293 Warning: the file was not password protected. The
verify operation completes normally.

1091 Pathname is invalid.

1092 File cannot be found.

1297 File cannot be accessed because its lesder is
damaged.

1298 File cannot be accessed because its s-list entry is
damaged.

1294 Supplied password does not match the password
protecting this file.

1-10

Lisg Systerns Softweare QEMSYSCall

210 ChangePassword
ChangePasswoxrd (var ecode : integer;

ecode:

path:

var path : pathname;
var oldPassword : e_name;
var newPassword : €_name)

Error indication (common errors are listed
below)

Name of the file whose password is to be
changed

oldPassword: Current password associated with the file
newPassword: New password to be associated with the file

Change the password associated with the specified file. The change is not
done if oldPassward does not match the password assigned to the file. This
call may be used {o assign a password to a file for the first time.

Common errors:

-1293
1091
1092
1297
1298

1294

Warning: the file was not password protected. The
change operation completes normally.

Pathname is invalid.

File cannot be found.

File cannot be accessed because its leader is
damaged.

File cannot be accessed because its s-list entry is
damaged.

Supplied old password does not match the password
protecting this file.

1-11

Lisa S\stemns Soflwsre QEMSysCall

3 Interface
UNIT OEMsyscall;

INTERFACE
USES
(*$U Syscall.obj *) syscall,
(*$U Psyscall.obj *) psyscall;
procedure EJECTVOL(ver errnum:integer; devname:e_name);
procedure SCAVENGEYOL(ver errnum:integer; devname:e_neme);

procedure INIT_YOL{var errnum:integex; devname:e_name; volname:e_name;
password:e_name);

procedure VERIFYVOL(var errnum:integer; sourcedev:e_nsme; destdev:e_name;
buffaddr:longint; buffsize:longint);

procedure MAKESECURE(var errnum:integer; ver path:pathname; var
passwd:e_name);

procedure KILLSECURE(var errnum:integer;var path:pathname; var
passwd:e_name);

proceduxe IPENSECLRE(var exrnum:integer; var path:pathname; var refnum:integer;
manip:mset; var passwd:e_name);

procedure RENARMESECURE (var errnum:integer;var path:pathnsme; var
newname:e_name; var passwd:e_neme);

procedure YERIFYPASSWORD(var errnum:integer;var psth:pathneme; var
passwd:e_name};

procedure CHANGEPASSWORD(var errnum:integer;ver path:pathnsme; var
oldpasswd:e_name; ver newpasswd:e_name);

The Standard
Apple Numeric Environment

Contents

Inbroduet ion e miemeceaee 1-1
DAt TWPBS .o mmem———e—eee———eeeenma——— 1-2
2.1 Choosing &8 Data Type ..o e et 1-2
2.2 VYalues Represented iicieeeaeieaaeaaan. i-3
2.3 Range and Precision of SANE Typesoiiiiiiiiiiiiiiiii .. 1-3
VA T s 4111 |2 PP 1-5
Arithmetic Operabions ... cicccciacae 1-8
2 R =Ly T T L PP 1-8
3.2 Round to Integral Value 1-9
GOV O i ccccmaecc e caacemaa———n 1-10
4.1 Conversions Between Extended and Single or Double................. 1-10
4.2 Conversions to Comp and Other Integral Formats 1-10
4.3 Conversions Between Binary and Decimal 1-11
4.3.1 Conversions from Decimal Strings to SANE Types 1-11

432 Decformn Records and Conversions from SANE Types
to Decimal Stringso i 1-12
433 The Decimal Record Type ..oooieiiiiii i cicicieencreeeeans 1-13
434 Conversions from Decimal Records to SANE Types ._........ 1-13
435 Conversions from SANE Types to Decirnal Records 1-14
4.4 Conversions between Decimsl Formets 1-14
441 Conversion from Decimal Strings to Decimnal Records ._..... 1-14
44.2 Conversion from Decimal Records to Decimal Records _.... 1-15
Expression Evaluabion cceicceeeemea——aa- 1-16
5.1 Using Extended Temporariesoiiiiiiiiiiiiieieiciiiaaieanns i-16
5.2 Extended-Precision Expression Evalustion 1-16
5.3 Extended-Precision Expression Evslustion and the 1EEE Standsrd .. 1-17
OB S ONS cimccacccamanamancreececamaan———- 1-18
Infinities, NaNs, and Denormalized Numbers 1-19
2 T £ 1A T S 1-19
72 NBNS L e eeieeieieeeiaeeaaaeaaas 1-19
7.3 Denormalized NUMbBeISo oo i ieee e 1-20
7.3.1 Why Denormalized Numbers? i, 1-21

7.4 Inquiries: Class and Sign 1-21

8 Environmental Comtrol eeca————— 1-22
8.1 Rounding Directionot 1-22
8.2 Rounding Precision..o iiiiiiciieirireeeaaa e, 1-22
8.3 Exception Flags and Halts i iiiiiiiieeraiaans 1-23

831 EXCePbIONS ..o i 1-23
84 Managing Environmental Settings ...l 1-24

9 Auxiliory Procedulesooeeeccccccecccccmmeccaseccnnae———an—————— 1-27
9.1 Sign Manipulation i, 1-27
9.2 Next-After Functionso i irriiiveeeenas 1-27

9.2.1 Special Ceses for Next-After Functions 1-27
9.3 Binary Scale and Log Functionso 1-28
9.3.1 Special Cases for Logb it 1-28
10 Elementary Functions ... rcciiccccccamen 1-29
10.1 Logarithm Funetions iiiiiiiiireaas 1-29
10.1.1 Special Cases for Loganthm Functionsccoooieiian, 1-29
10.2 Exponential Functions i i 1-29
10.2.1 Special Cases for 2%, €%, exp(1)Xccooiiiiiiiiiiiiininn. 1-30
10.2.2 Special Cases for X} o ..o 1-30
10.2.3 Special Cases fOr X¥ ittt eeaenaans 1-30
10.3 Financial FunCtions i eiieiaeieeececeeeaaes 1-30
10.3.1 Compound ... ieiieceieeeecereraanaan 1-30
10.3.2 Special Csases for Compount(l,n)coviieniiiinennennnrnnn. 1-31
1033 ANNUILY L. o reiiiierireeeaceaaee e, 1-31
10.3.4 Special Cases for ARMUIMI,N) . .ooiinnn e eeee 1-32
10.4 Trigonometric Functions ... e 132
10.4.1 Special Cases for sin(x), cos(X}evieerriiiiiiieiiiieinaeeans 1-32
10.4.2 Special Cases for tan(x)coooiiiiiiiiiiiiii i eans 1-32
10.4.3 Special Cases for arctan(X)covrniiiiiiiiiiieeieeiieeeenenns 1-32
10.5 Random Number Generatorcoiiiiiiiiiiiiiiiiaiaaaaananns 1-33

Appendixes
A Biblography . it ceeieeirrae e A-1
L R L o PN B-1

The Standard
Apple Numeric Environment

1 Introduction
This manual describes the Standard Apple Numeric Environment {SANE).
Apple supports SANE on several current products and plans to support SANE
on future products. SANE gives you access to numeric facilities unavailable
on almost any computer of the early 1980s--from microcomputers to
extremely fast, extremely expensive supercomputers. The core festures of
SANE are not exclusive to Apple; rather they are taken from Draft 100 of
Standard 754 for Binary Floating-Point Arithmetic [10] as proposed to the
Institute of Electrical and Electronics Engineers (IEEE). Thus SANE is one of
the first widely available products with the arithmetic capabilities destined
to be found on the computers of the mid-1980s and beyond.

The IEEE Standard specifies standerdized data types, arithmetic, and
conversions, along with tools for handling limitations and exceptions, that are
sufficient for numeric applications. SANE supports all requirements of the
IEEE Standard. SANE goes beyond the specifications of the Standard by
including a data type designed for accounting applications and by including
several high-quality library functions for financial and scientific calculations.

IEEE arithmetic wes specifically designed to provide advanced features for
numerical analysts without imposing extra burden on casual users. (This is
an admirable but rarely attainable goal: text editors and word processors, for
example, typically suffer increased complexity with added features, meaning
more hurdles for the novice to clear before cornpleting even the simplest
tasks.) The independence of elementary and advanced features of the IEEE
arithmetic was carried over to SANE.

The Slandard Apple Numsric Environment SANE

2 Data Types
SANE provides three application deta types (single, double, and comp) and
the arithmetic type (extended). Single, double, and extended store
floating-point values and comp stores integral values.

The exiended type is called the arithmetic type because, to make expression
evaluetion simpler and more accurate, SANE performs all arithmetic
operations in extended precision and delivers arithmetic results to the
extended type. Single double, and cormyr can be thought of ss space-saving
storage types for the extended-precision erithmetic. (In this manual, we
shall use the term extended precision to denote both the extended precision
and the extended range of the extended type.)

All values representable in single, double, and comp (8s well as 16-bit and
32-bit integers) can be represented exactly in extended. Thus values can be

moved from any of these types to the extended type and back without any
loss of information.

2.1 Choosing a Data Type

Typically, picking a data type requires that you determine the trade-offs
between

= Fixed- or floating-point form,
= Precigion,

= Range,

= Mernory usage, and

= Speed.

The precision, range, and memory usage for each SANE data type are shown
in Table 2-1. Effects of the data types on performance (speed) vary among
the implementations of SANE. (See Section 4 for information on conversion
problems relating to precision.)

Most accounting applications require a counting type that counts things
{pennies, dollars, widgets) exactly. Accounting spplications can be
implemented by representing money values as integral numbers of cents or
mils, which can be stored exactly in the storage format of the comp (for
computational) type. The sum, difference, or product of any two comp values
is exact if the magnitude of the result does not exceed 28 - 1 (that is,
9,223,372,036,854,775,807). This number is larger than the U.S. national debt
expressed in Argentine pesos. In addition, comp values (such as the results
of accounting computations) can be mixed with extended values in
floating-point computations (such as compound interest).

Arithmetic with comp-type variables, like all SANE arithmetic, is done
internally using extended-precision arithmetic. There is no loss of precision,
as conversion from comp to extended is always exact. Space can be saved

1-2

The Standard Apple Numeric Emvironment SANE

by storing numbers in the comp type, which is 20 percent shorter than
extended. Nonaccounting applications will normally be better served by the
flosting-point data formats.

22 Values Represented
The floating-point storage formats (single, double, and extended) provide
binary encodings of & sign (+ or -}, an exponent, and a significand A
represented number has the value

ssignificand * 2exponent
where the significand has a single bit to the left of the binary point {that is,
Q % significand ¢ 2).

23 Range and Precision of SANE Types
This table describes the range and precision of the numeric data types
supported by SANE. Decimal ranges are expressed as chopped two-digit
decimal representations of the exact binery values.

The Slandserd Apple Nurnsric Environment SANE
Table 2-1
SANE Types
Type class Application firithmetic
Type identifier Single Double Comp Extended
Size (bytes:bits) 4:32 8:64 8:64 10:80
Binary exponent
range
Minimum ~126 -1022 — -16383
Significand
precision
Bits 24 53 63 64
Decimal digits 7-8 15-16 18-19 19-20
Decimal range
(approximate)
Min negative -3 4E+38 -1.7E+308 -0 _2€1i8 -1.1E+4932
Max neg norm -1.2E-38 -2.3%-308 -1.7E-4932
Max neg denorm* -1.5E-45 -5.0E-324 -1.9E-4951
Min pos denorm* 1.5E-45 5.0E-324 1.9E-4951
Min pos norm 1.26-38 2.3%-308 1.7E-4932
Max positive 3.4E+38 1.7E+308 % 9.2k18 1.1E+4932
Infinities* Yes Yes No Yes
NaNs* Yes Yes Yes Yes

* Denorms (dencrmalized murnbers), NaNs (Not-a-Number), and infinities are

defined in Section 7.

Usually numbers are stored in a normelized form, to affard maximum

precision for a given significand width.

Maximum precision is achieved if

the high order bit in the significand is 1 (that is, 1 ¢ significand ¢ 2).

The Standard Apple Numeric Ervirorment SANE

Example
In Single, the largest representable number has
significand = 2 - 22
= 1.11111111113331111111111,
exponent = 127
value = (2 - 2723) + A7
% 3.403 * 10%

the smallest representable positive normalized number has

significand = 1
= 1.000000000C0000000000000,
exponent = -126
value = 1% 27126
% 1.175 * 10-38
and the smallest representable positive denormalized number (see Section 7)
has
significand = 2-23
= 0 .0000000000000000000000 1,
exponent = -126
value = 223 * 2-126
% 1.401 * 1045
24 Formats

This section shows the formats of the four SANE numeric data types. These
are pictorial representations and mey not reflect the actual byte order in any
particular implementation.

Single
A 32-bit single format number is divided into three fields as shown below.

1 8 23 widths
Isl] e I f I

msb 1sb msb 1sb order

The Standard Apple Numeric Emvironment

The value v of the number is determined by these fields as follows:

if 0 < e ¢ 235,

ife= Qandf =0,
ife= OQOsandf =0,
ife=2%and f =0,
ife=255and f = O,

See Section 7 for information on the contents of the f field for NaNs.

then v = (-1)5 * 2(e-127) » (1 f).
then v = (-1)s * 2(-126) * (0 f};
then v = (~-1)% * Q;
then v = (-1)% * «;

then v is a NaN.

SANE

Double
A 64-bit double format number is divided into three fields as shown below.
1 i1 52 widths
Is| e | f |
msb 1sb msb 1sb oxder

The value v of the number is determined by these fields as follows:

if 0 < e ¢ 2047,

ife= Qand f 2 0
if e = Oand f =0,
if e = 2047 and f = O,
if e = 2047 and £ = O,

then v = (-1)8 % 2(e-1023) » (1 f).
then v = (-1)5 * 2¢-1022) * (0 _f);
then v = (-1)5 * (;

then v = (~1)5 * =;

then v is a NeN.

Comp
A 64-bit comp format number is divided into two fields es shown below.

1 63

widths

1sb order

The Slenderd Apple Numeric Environment SANE

The value v of the number is determined by these fields as follows:

if s = 1andd=0, then v is the unique comp NaN;

otherwise, v is the two's-complement value of the 64-bit representation.

Extended
An 80-bit extended format number is divided into four fields as shown below.

1 15 1 63 widths

Is| e By f l

msb 1sb msb 1sb order
The value v of the number is determined by these fields as follows:

if 0 <= e ¢ 32767, then v = (-1)5 * 20e-16383) * (i f);
if e = 32767 and f = 0, then v = (-1)% * », regardless of i;
if e = 32767 and f # 0, then v is a NaN, regerdless of i.

The Standard Rpple Numeric Environment SANE

3 Axithmetic Operations
SANE provides the basic arithmetic operstions for the SANE data types:

= Add.

= Subtract.

= Multiply.

= Divide.

= Square root.

= Remainder.

« Round to integral value.

All the basic arithmetic operations produce the best possible result: The
mathematically exact result coerced to the precision and range of the
extended type. The coercions honor the user-selectable rounding direction
and handle all exceptions according to the requirements of the IEEE Standard
(see Section B8). See Sections 9 and 10 for auxilisry operstions and
higher-level functions supported by SANE.

3.1 Remainder
Generally, remainder (and mod) functions are defined by the expression

Xremy=x-y*n

where n is sorne integral approximation to the quotient x/v. This expression
can be found even in the conventional integer-division algorithm:

n (integral quotient approximation)
(divisor)) x (dividend)
y*n

X -y *n (remainder)

SANE supports the remainder function specified in the IEEE Standerd:

When y # 0, the remainder r = x rem y is defined regardless of the rounding
direction by the mathematicel relationr = x ~ y * n, where n is the integral
value nearest the exact value x/y; whenever |n - x/y] = 1/2, n is even. The
remainder is slways exact. If r = O, its sign is that of x.

The Starnderd Apple Numeric Environmernt SANE

Example 1

Find Srem 3. Here x = Sandy = 3. Since 1 < 5/3 ¢ 2 and since 5/3 =
1.66666... is closer to 2 than to 1, n is taken to be 2, so

Srem3 = ¥ = 5-3%2 = -1

Example 2

Find 7.0 rem 0.4 . Since 17 < 7.0/04 < 18 and since 7.0/0.4 = 17.5 is equally
close to both 17 and 18, n is taken to be the even quctient, 18. Hence,

70rem0.4 = ¥ = 70-04*18 = -0.2

The IEEE remainder function differs from other commonly used remainder
and mod functions. It returns a remainder of the smallest possible
magnitude, and it always returns an exact remainder. All the other
remainder functions can be constructed from the IEEE remainder.

32 Round to Integral Value
Aan input argument is rounded according to the current rounding direction to
an integral value and delivered to the extended format. For example,
12345678.875 rounds to 12345678.0 or 12345679.0. (The rounding direction,
which can be set by the user, is explained fully in Section 8)

Note that, in each floating-point formet, all values of sufficiently great
magnitude are integral. For example, in single, numbers whose rmagnitudes
are at least 223 are integral.

The Slandard Apple Nurmneric Emvironment SANE

4 Conwversions
SANE provides conversions between the extended type and each of the other
SANE types (single, double, and comnp). A particular SANE implementation
will provide conversions between extended and those numeric types supported
in its perticular lerger environment. For example, a Pascal implementation
will have conversions between extended and the Pascal integer type.

|single|__ ————ee | system—specific|
|double| |extended|] integral |
leomp | - | types |

SANE implementstions also provide either conversions between decimal
strings and SANE types, or conversions between a decimal record type and
SANE types, ar both. Conversions between decimal records and decimal
strings mey be included too.

.'...__---._ ' |decimal string]
gsingle
|double l

comp
————— |decimal record|

extended

4.1 Cornversions between Extended and Single or Double
A conversion to extended is always exact. A conversion from extended to
single or double moves a value to a storage type with less range and
precision, and sets the overflow, underflow, and inexact exception flags as
appropriate. (See Section 8 for a discussion of exception flags.)

4.2 Conversions to Comp and Other Integral Formats
Conversions to integral formats are done by first rounding to an integral
value (honoring the current rounding direction) and then, if possible,
delivering this value to the destination format. If the source operand of a
conversion from extended to comp is a NaN, an infinity, or out-of-range for
the cormnp format, then the result is the comp NaN and for infinities and
values out-of-range, the invalid exception is signaled. If the source operand
of a conversion to a systemn-specific integer type is a NaN, infinity, or
out-of -range for that format, then invalid is signaled (unless the type has an
appropriate representation for the exceptional result). NaNs, infinities, and

1-10

The Standard rAppie Numsric Environment SANE

out-of-range values are stored in a two's-complement integer format as the
extxem)e negative value (for example, in the 16-bit integer format, ss
~-32768).

Note that IEEE rounding into integral formats differs from most common
rounding functions on halfway cases. With the default rounding direction (to
nearest), conversions to comp or to a system-specific integer type will round
05t00, 1.5to 2, 25 to 2, and 3.5 to 4, rounding to even on halfway cases.
(Rounding is discussed in detail in Section 8.)

43 Corwersions between Binary and Decimal

431

The IEEE Standard for binary floating-point arithmetic specifies the set of
numerical values representable within each floating-point format. It is
important to recognize that binary storage formats can exactly represent the
fractional part of decimal numbers in only a few cases; in all other cases,
the representation will be approximate. For example, 0.53q, Or 1/249, can be
represented exactly as 0.1,. On the other hand, 0.130, or 1/104, is &
repeating fraction in binary: 0.00011001100....,. Its closest representation in
single is 0.000110011001100110011001101,, which is closer to 0.100000001499

than to 0.1000000000044.

As binary storage formats generally provide only close approximations to
decimal values, it is important that conversions between the two types be as
accurate as possible. Given a rounding direction, for every decimal value
there is a best (correctly rounded) binary value for each binary format.
Conversely, for any rounding direction, each binary value has a corresponding
hest decimal representation for a given decimal format. Ideally,
binary~-decimal conversions should obtain this best value to reduce
accumulated errors. Conwversion routines in SANE implementations meet or
exceed the stringent error bounds specified by the IEEE Standard. This
means that although in extreme cases the conversions do not deliver the
correctly rounded result, the result delivered is very nearly as good as the
carrectly rounded result. (See the IEEE Standard [10) for a more detailed
description of errar bounds.)

Conversions from Decimal Strings to SANE Types

Routines may be provided to convert numeric decimal strings to the SANE
data types. These routines are provided for the convenience of those who do
not wish to write their own parsers and scenners. Examples of acceptable
input. are

123 123 .4E-12 -123. .456 3e9 -0

-INF Inf NAN(12) -NaN() nan
The 12 in NAN(12) is a NaN code (see Section 8).

The sccepted syntax is formally defined, using Backus-Naur form, in Table
3-1:

1-11

The Randard Rpple Numeric Emcironment SANE

Table 4-1.
Syntax for String Conversions

[{space | tab}] <left decimal)

[+]-] <unsigned decimal>

(finite number> | <infinity> | <NAND
¢<significand> [<exponent)]

{decimal number>
{left decimal>
{unsigned decimal>
{finite number>

"o e
W naR

PEET R TIN)

{(significand) = <(integer> | <mixed>

(integer> ;= «(digits) [.]

digits> = {0]1]12]13)41516]7|8] 9}
(mixed> .= [<(digits>] . <digits)

{exponent> ;= E [+]-] <digits>

Knfinity == INF

<NAN> = NAN[([<digits>])]

Note: Square brackets enclose optional items, curly brackets enclose
elements to be repeated at least once, and vertical bars seperate
alternative elements; letters that appear literally, like the £ marking the
exponent field, may be either upper or lower case.

432 Dectarm Records and Conversions from SANE types to Decimal Strings
Each conversion to a decimal string is controlled by a decform record, which
contains two fields: ,

style — 16-bit integer (0 or 1)
digits — 16~-hit integer

Style equals O for floating and 1 for fixed. Digits gives the number of
significant digits for the floating style and the number of digits to the right
of the decimal point for the fixed style (digits may be negative if the style
is fixed). Decimal strings resulting from these conversions are alwsays
acceptable input for conversions from decimal strings to SANE types.
Further formatting details are implementation dependent.

1-12

The Neandard Apple Numeric Environment SANE

433 The Decimal Record Type
The decimal record type provides an intermediate unpacked form for
programmers who wish to do their own parsing of numeric input or
formatting of numeric output. The decimal record format has three fields:

sgn — 16-bit integer (0 or 1)
exp — 16-bit integer
sig — string (maximum length is implementation-dependent)

The value represented is
(—1)sen * sig * 1029

when the length of sig is 18 or less. (Some implementations allow additional
information in characters past the eighteenth.) Sig contains the integral
decimal significand: the initial byte of sig (sig[0]) is the length byte, which
gives the length of the ASCII string that is left-justified in the remaining
bytes. Sgn is O for + and 1 far ~ For example, if sgn = 1, exp = -3, and
sig = '83' (sigf0] = 2, not shown), then the number represented is -0.085.

434 Conversions from Decimal Records to SANE Types
Conversions from the decimal record type handle any sig digit-string of
length 18 or less (with an implicit decimal point at the right end). The
following special cases apply:

» If sig[1] = '0' (zero), the decimal record is converted to zero. Far
example, a decimal record with sig = '0913' is conwerted to zero.

= If sig{1] = 'N', the decimal record is converted to a NaN. Except when
the destination is of type comp [which has & unigue NaNj}, the
succeeding characters of sig are interpreted as a hex representation of
the result significand: if fewer than 4 characters follow N then they are
right justified in the high-order 15 bits of the field f illustrated under
Formats in Section 2; if 4 or more characters follow N then they are
left justified in the result's significand; if no cheracters, or only 0's,
follow N, then the result NaN code is set to nanzero = 15 (hex).

= If sigf1] = 'I' and the destination is not of comp type, the decimal
record is converted to an infinity. If the destination is of comp type,
the decimal record is converted to a NaN and invalid is signaled.

= Other special cases produce undefined results.

1-13

The Slandsrd Rople Nurneric Environment SANE

435 Conversions from SANE Types to Decimal Records
Each conversion to a decimal record is controlled by a decform record (see
above). All implementations allow st least 18 digits to be returned in sig.
The implied decimal point is at the right end of sig, with exp set
accordingly.

Zeroes, infinities, and NaNs are converted to decimal records with sig parts
0 (zero), 1, and strings beginning with N, while exp is undefined. Far NaNs,
N may be followed by a hex representation of the input significand. The
third and forth hex digits following N give the NaN code. For example,
*NO021000000000000' has NaN code 21 (hex).

When the number of digits specified in a decform record exceeds an
implementation maximum (which is at least 18), the result is undefined.

A number may be too large to represent in a chosen fixed style. For
instance, if the implementation's maximum length for sig is 18, then 1015
{which requires 16 digits to the left of the point in fixed-style
representations) is too large for a fixed-style representation specifying more
than 2 digits to the right of the point. If a number is too large for a chosen
fixed style, then (depending on the SANE implementation) one of two results
is returned: an implementation may return the most significant digits of the
number in sig and set exp so that the decimal record containe a valid
floating-style representation of the number; alternatively, an implementation
may simply set the siring sig to '?'. In any implemnentation, the test

(—exp <> decform digits) or (sig[i} = '?')

determines whether a nonzero finite number is too large for the chosen fixed
style.

44 Cowersions between Decimal Formats

SANE implementations may provide conversions between decimal strings and
decimal records.

441 Conversion from Decimal Strings to Decimal Records
This conversion routine is intended as an aid to programmers doing their own
scanning. The routine is designed for use either with fixed strings or with
strings being received (interactively) character by character. An integer
argument on input gives the starting index into the string and on output is
one greater than the index of the last character in the numeric substring just
parsed. The longest possible numeric substring is parsed; if no numeric
substring is recognized, then the index remains unchanged. Also, a Boolean
argument is returned indicating that the input string, beginning at the input
index, iz a valid numeric string or a valid prefix of a numeric string. The
accepted input for this conversion is the same as for conversions from
decimal strings to SANE types (see above). Output is the same as for
conversions from SANE types to decimal records (alsc above).

1-14

The Slanderd Apple Nurmeric Environment SANE
Examples
Input String Index Output Value Yalid Prefix

in out

12 1 3 12 TRUE
122 1 3 12 TRUE
126~ 1 3 12 TRUE
126-3 1 6 12E-3 TRUE
126-x 1 3 12 FALSE
126-3x 1 6 126-3 FALSE
x12E-3 2 7 16-3 TRUE
IN 1 1 UNDEFINED TRUE
INF 1 4 INF TRUE

442 Corwersion from Decimal Records to Decimal
This conversion is controlled by the style field of a decform record (the
digits field is ignored). Input is the same as for conversions from decimal
records to SANE types, and output formatting is the same as for conversions
from SANE types to decimal strings. This conversion, actually a formatting
operation, is exact and signals no exception.

1-15

The Standard Apple Numeric Emvironrnent SANE

5 Expression Evaluation
SANE arithmetic is extended-based. Arithmetic operations produce results
with extended precision and extended range. For minirnal loss of accuracy in
more complicated computations, you should use extended temporary variasbles
to store intermediate results.

3.1 Ukeing Extended Temporaries
A programmer may use extended temporaries deliberately to reduce the
effects of round-off error, overflow, and underflow on the final result.

Example 1
To compute the single-precision sum

S = X[1]*Y[1] + X[2]*Y[2] + ... + X[N]*Y[N]

where X and Y are arrays of type single, declare an extended variable XS

and compute
X5 :=0;
FOR I 1 TON
X5 + X[I]"Y[I], extended-precision axithmetic }
S := XS5; deliver final result to single.}

Even when input and output values have only single precision, it may be very
difficult to prove that single-precision arithmetic is sufficient for a given
calculation. Using extended-precision arithmetic for intermediate values will
often improve the accuracy of single-precision results more than virtuoso
algorithms would. Likewise, using the extra range of the extended type for
intermedisate results may yield correct final results in the single type in
ceses when using the single type for intermediate results would cause an
overflow or a catastrophic underflow. Extended-precision arithmetic is also
useful for calculations involving double or comp variables: see Example 2.

3.2 Extended-Precigion Expression Evaluation
High-level languages that support SANE evaluate all non-integer numeric
expressions to extended precision, regerdless of the types of the operands.

1-16

The Slandard Apple Numeric Environment SANE

Example 2

If Cis of type comp and MAXCOMP is the largest comp value, then the
right-hand side of

C := (MAXCOMP + MAXCOMP) / 2

would be evaluated in extended to the exact result C = MAXCOMP, even
though the intermediate result MAXCOMP + MAXCOMP exceeds the largest
possible comp value.

5.3 Extended-Precision Expression Evaluation and the IEEE Standerd
The IEEE Standerd encourages extended-precision expression ewvaluation.
Extended evaluation will on rare occasions produce results slightly different
from those produced by other IEEE implementations that lack extended
evaluation. Thus in a single-only IEEE implementation,

Z:=x+y

with x, v, and z all single, is evaluated in one single-precision operation,
with at most one rounding error. Under extended evaluation, however, the
addition x + y is performed in extended, then the result is coerced to the
single precision of z, with at most two rounding errors. Both
implementations confarm {o the standard.

The effect of a single- or double-only IEEE implementation can be obtained
under SANE with rounding precision control, as described in Section 8.

1-17

The Standard Apple Numeric Environment SANE

6

SANE supports the usual numeric comparisons: less, less-or-equal, greater,
greater-or-equal, equal, and not-equal. For real numbers, these comparisons
behave according to the familiar ordering of real numbers.

SANE comperisons handle NaNs and infinities as well as real numbers. The
usual trichotomy for real numbers is extended so that, for any SANE values a
and b, exactly one of the following is true:

a<hb
a’>hb
a=>b
a and b are unordered

Determination is made by the rule:

If x or v is a NaN, then x and y are unordered; otherwise, x and y are less,
equal, or greater according to the ordering of the real numbers, with the
understanding that +0 = -0 = real 0, and - ¢ each real number < +=,

{Note that a NaN always compares unordered--even with itself.)

The meaning of high-level language relational operators is a natural
extension of their old meaning based on trichotomy. For example, the Pascal
or BASIC expression x ¢(= vy is true if x is less than v or if x equal vy, and is
false if x is greater than y or if x and v sre unordered. Note that the SANE
not-equal relation means less, greater, or unordered--even if not-equal is
written <>, as in Pascal and BASIC. High-level languages supporting SANE
supplement the usual comparison operstors with a function that takes two
numeric arguments and returns the appropriate relation (less, equal, greater,
or unordered). This function can be used to determine whether two numeric
representations satisfy any combination of less, equal, greater, and unordered.

A high-level language comparison that involves a relational operator
containing less or greater, but not unordered, signals invalid if the operands
are unordered (that is, if either operand is a NaN). For example, in Pascal or
BASIC if x or v is a quiet NaN then x ¢y, x <=y, x >= ¥y, and x > vy signal
invalid, but x = y and x <> y (recall that <> contains unordered) do not. If a
comparison operand is a signaling NaN, then invalid is always signaled, just
&8s in arithmetic operations.

1-18

The Slandsrd Rpple Nurneric Emvironment SANE

7 Infinities, NaNs, and Denormalized Numbers
In addition to the normalized numbers supported by most floating-point
packages, IEEE floating-point arithmetic also supports infinities, NaNs, and
denormalized numbers.

7.1 Infinities
An infinity is a special bit pattern that can arise in one of two ways:

« When a SANE operation should produce an exact mathemstical infinity
{such ss 1/0), the result is an infinity bit pattern.

= When a SANE operation attempts to produce a number with magnitude
too great for the number's intended floating-point storage format, the
result may (depending on the current rounding direction) be an infinity
bit pattern.

These bit patterns (ss well as NaNs, introduced next) are recognized in
subsequent operations and produce predictable results. The infinities, one
positive (+INF) and one negative (-INF) , generally behave as suggested by
the theory of limits. For example, 1 added to +INF yields +INF; -1 divided
by +0 vields ~INF; and 1 divided by -INF vyields -0.

Each of the storage types single, double, and extended provides unique
representations for +INF and ~-INF. The comp type has no representations for
infinities. (An infinity moved to the comp type becomes the comp NaN.)

72 NaNs
wWhen a SANE operation cannot produce a meaningful result, the operation
delivers a special bit pattern called a AlgN (Not-a-Number). For example, 0
divided by 0, +INF added to -INF, and sgrt(-1) vield NaNs. A NaN can occur
in any of the SANE storage types {single, double, extended, and comp); but,
generally, system-specific integer types have no representation for NaNs.
NaNs propagate through arithmetic operations. Thus, the result of 3.0 added
to a NaN is the same NaN (that is, has the same NaN code). If two
operands of an operation are NaNs, the result is one of the NaNs. NaNs are
of two kinds: quiet MaMss, the usual kind produced by floating-point
operations; and signaling AaNs. When a signaling NaN is encountered as an
operand of an arithmetic operation, the invalid-operation exception is
signaled and, if no halt occurs, a quiet NaN is the delivered result. Signaling
NaNs could be used for uninitialized variables. They are not created by any
SANE operations. The most significant bit of the field f illustrated under
Formets in Section 2 is clear for quiet NaNs and set for signaling NaNs.
The unique comp NaN generally behaves like a quiet NaN.

A NaN in a floating-point format has an associated NaN code that indicates
the NaN's arigin. (These are listed in Table 7-1). The NaN code is the 8th

through 15th most significant bits of the field f illustrated in Section 2. The
comp NaN is unique and has no NaN code.

1-19

The Slandard Apple Nurneric Emvironment SANE

Table 7-1.
SANE NaN Codes

Name Dec Hex Meaning
NANSQRT 1 $01 Invalid square root, such as sqrt(-1)
NANADD 2 $02 Invalid addition, such as (+INF) - (+INF)
NANDIY 4 $04 Invalid division, such as 0/0
NANMUL 8 $08 Invalid multiplication, such as O * INF
NANREM 9 $09 Invalid remainder or mod such as x rem O
NANASCBIN 17 $11 Attempt to convert invalid ASCII string
NANCOMP 20 $14 Result of converting comp NeN to floating
NANZEROD 21 $15 Attempt to create a NeN with a zero code
NANTRIG 33 $21 1Invalid argument to trig routine
NANINVIRIG 34 $22 Invalid argument to inverse trig routine
NANLOG 36 $24 Invalid srgument to log routine
NANPOWER 37 $25 Invalid asrgument to xi or xy routine
NANFINAN 38 $26 Invalid argument to financial function
NANINIT 255 $FF Uninitialized storage (signaling NaN)

7.3 Denarmalized Numbers

Whenever possible, flosting-point numbers are rnarmalizeq to keep the
leading significand bit 1: this maximizes the resolution of the storage type.
When a number is too small for a normalized representation, leading zeros
are placed in the significand to produce a denormelized representation. A
denormalized number is & nonzero number that is not normalized and whose
exponent is the minimum exponent for the storage type.

Exarnple

The sequence below shows how & single-precision value becomes
progressively denormalized as it is repeatedly divided by 2, with rounding to
nearest. This process is called gradual underfiow.

Ro = 1,100 1100 1100 1100 1100 1101 * 2-126 m O 149 * 2-122

Rt = Ry/2 = 0.110 0110 0110 0110 0110 0110 * 2-126 (underflow)

R, = Ry/2 = 0.011 0011 0011 0011 0011 0011 * 2-126

Az = M/2 =0.001 1001 1001 1001 1001 1010 * 2-126 (underflow)

The Standsrd Apple Numeric Environment SANE

fzz = Bn/2 = 0.000 0000 0000 0000 0000 0011 * 2-126
Az = Agz/2 = 0.000 0000 0000 0000 0000 0010 * 2-126 (underflow)
foq = Az/2 = 0.000 0000 0000 0000 0000 0001 * 2-126

fzs = An/2 = 0.0 {underflow)

A4...Azy are denormalized; Az is the smallest positive denormalized number
in single type.

731 Why Denormalized Numbers?
The use of denorrnalized numbers makes statements like the following true
for all real numbers:

x -y =0 if and only if x =y

This statement is not true for most older systems of computer arithmetic,
because they exclude denormalized numbers. For these systerns, the smallest
nonzero number is & normalized number with the minimum exponent; when
the result of an operation is smaller than this smallest narmalized number,
the systemn delivers zero as the result. For such flush-to~zero systems, if x
y but x - y is smaller than the smallest normalized number, then x - y =
Q. : IEEE systerns do not have this defect, as x - y, slthough denarmalized, is
not zero.

(A few old programs that rely on premature flushing to zero may require
modification to work properly under IEEE arithmetic. For example, some
programs may test x - v = 0 to determine whether x is very neer y.)

74 Inquiries: Class and Sign
Each valid representation in a SANE data type (single, double, comp, or
extended) belongs to exactly one of these classes:

= Signaling NaN.
= Quiet NaN.

= Infinite.

= Zero.

= Normalized.

= Denormalized.

SANE implementations provide the user with the facility to determine easily
the class and sign of any valid representation.

Environmental controls include the rounding direction, rounding precision,
exception flags, and halt settings.

1-21

The Stardsrd Apple Numeric Environment SANE

8 Emwironmental Control
8.1 Rounding Direction
The available rounding directions are:
= To-nearest.
= Upward.
« Downward.
» Toweard-zero.

The rounding direction affects all conversions and arithmetic operations
except compearison and remainder. Except for conversions between binary
and decimal (described in Section 4), all operations are computed as if with
infinite precision and range and then rounded to the destination format
according to the current rounding direction. The rounding direction may be
interrogsted and set by the user.

The default rounding direction is to-nearest. In this direction the
representable value nearest to the infinitely precise result is delivered; if the
two nearest representable values are equally near, the one with least
significant bit zero is delivered. Hence, halfway cases round to even when
the destination is the comp or a system-specific integer type, and when the
round-to-integer operation is used. If the magnitude of the infinitely precise
result exceeds the format's largest value (by at least one half unit in the
last place), then the corresponding signed infinity is delivered.

The other rounding directions ere upward, downward, and toward-zero. When
rounding upward, the result is the format's value (possibly INF) closest to and
no less than the infinitely precise result. When rounding downward, the
result is the formeat's value (possibly -INF) closest to and no grester than the
infinitely precise result. When rounding toward zero, the result is the
format's value closest to and no greater in magnitude than the infinitely
precise result. To truncate a number to an integral value, use towerd-zero
rounding either with conversion into an integer format or with the
round-to-integer operation.

8.2 Rounding Precision
Normally, SANE arithmetic computations produce results to extended
precision and range. To facilitate simulations of arithmetic systems that are
not extended-based, the IEEE Standard requires that the user be able to set
the rounding precision to single or double. If the SANE user sets rounding
precision to single (or double) then all arithmetic operations produce results
that are correctly rounded and that overflow or underflow as if the
destination were single (or double), even though results are typically delivered
to extended formats. Corwversions to double and extended formats are

1-22

The Standsrd Rpple Numeric Environrent SANE

affected if rounding precision is set to single, and conversions to extended
formats are affected if rounding precision is set to double; conversions to
decimal, comp, and system-specific integer types are not affected by the
rounding precision. Rounding precision can be interrogated as well as set.

Setting rounding precision to single or double does not significantly enhance
performance, and in some SANE implementations may hinder performance.

8.3 Exception Flags and Halts
SANE supports five exception flags with corresponding halt settings:

« Invalid-operation (or invalid, for short).
= Underflow.

= Overflow.

= Divide-by-zero.

= Inexact.

These exceptions are signaled when detected; and, if the corresponding halt
is enabled, the SANE engine will jump to a user-specified location. (A
high-level language need not pass on to its user the facility to set this
location, but may halt the user's program). The user's program can examine
or set individual exception flags and halts, and can save and get the entire
environment (rounding direction, rounding precision, exception flags, and hailt
settings). Further details of the halt (trap) mechanism are SANE
implementation specific.

8.3.1 Exceptions
The invalid-operation exception is signaled if an operand is invalid for the
operation to be performed. The result is a quiet NaN, provided the
destination format is single, double, extended, or comp. The invalid
conditions are these:

= {addition or subtraction) magnitude subtraction of infinities, for example,
(+INF) + (~INF).

= {multiplication) 0 * INF.

= (division) 0/0 or INF/INF.

= (remainder} x rem vy, where y is zero or x is infinite.
= (square root) if the operand is less than zero.

= {conversion) to the comp format or to a system-specific integer format
when excessive magnitude, infinity, or NaN precludes a faithful
representation in thet format (see Section 4 for details).

= {comparison) via predicetes involving < or », but not "unordered," when
at least one operand is a NaN.

= Any operation on a signaling NaN except sign manipulations (negate,
absolute-value, and copy-sign) and class and sign inquiries.

1-23

The Standerd Apple Numeric Environment SANE

The wnderfiow exception is signaled when a floating-point result is both tiny
and inexact (and therefore, perhaps significantly less accurate than it would
be if the exponent range were unbounded). A result is considered tiny if,
before rounding, its magnitude is smaller than its format's smallest positive
normalized number.

The divide-by-zero exception is signaled when a finite nonzero number is
divided by zero. It is also signsled, in the more general case, when an
operation on finite operands produces an exact infinite result: for example,
logb (0) returns -INF and signals divide-by-zero. (Overflow, rather than
divide-by-zero, flags the production of an inexact infinite result.)

The overfiow exception is signaled when a floating-point destination
format's largest finite number is exceeded in magnitude by what would have
been the rounded floating-point result were the exponent range unbounded.
{Invelid, rather than overflow, flags the production of an out-of-range value
for an integral destination format.)

The inexact exception is signaled if the rounded result of an operation is
not identical to the mathematical (exact) result. Thus, inexact is always
signaled in conjunction with overflow or underflow.

Yalid operations on infinities are always exact and therefore signal no
exceptions. Imvalid operations on infinities are described above.

84 Managing Erwironmental Settings
The environmental settings in SANE are global and can be explicitly changed
by the user. Thus all routines inherit these settings and are capable of
changing them. Often special precautions must be taken because a routine
requires certain environment settings, or because a routine's settings are not
intended to propagete outside the routine.

Example 1

The subroutine below uses to-nearest rounding while not affecting its caller's
rounding direction. (Examples in this section use Pascal syntax. SANE
implementations in other languages have operations with equivalent

functionality.)
var r: RoundDir; { local storage for rounding direction }
begin
T := GetRound; save caller's rounding direction }
SetRound (TONEAREST); set to-—nearest rounding }
SetRound (1) { restore caller’'s rounding direction }

4

1-24

The Slandard Rpple Numeric Environrnent SANE

Note that, if the subroutine is to be reentrant, then storage for the caller's
environment must be locsl.

SANE implementations may provide two efficient functions for managing the
environment as a whole: procedure-entry and procedure-exit.

The procedure-entry function returns the current environment (for saving in
local storage) and sets the default environment: rounding direction to-nesrest,
rounding precision extended, and exception flags and halts clear.

Example 2

The following subroutine runs under the default ernwvironment while not
affecting its caller's environment.

var e: Environment; { local storage for enwironment }
n
ProcEntxy (e); } save caller's envirnoment and
set default enwiromnment

SetErwiromment (e) { restore caller's enwvirorment }
end;

The procedure-exit function facilitates writing subroutines which appear to
their callers to be atomic operations (such ss addition, sqrt, and others).
Atomic operations pass extra information back to their callers by signaling
exceptions; however, they hide internal exceptions, which may be irrelevant
or misleading. Procedure-exit, which takes a saved erwironment as
arguments, does the following:

1. It temporarily saves the exception flags (raised by the subroutine).
2. It restores the environment received as argument.

3. It signals the temporarily saved exceptions. (If enabled, halts could
occur &t this step.)

Thus exceptions signaled between procedure-entry and procedure-exit are
hidden from the calling program unless the exceptions remain raised when
the procedure-exit function is called.

1-25

The Slandard Apple Numeric Environment SANE

Example ¥

The following function signals underflow if its result is denormal, and
overflow if its result is infinite, but hides spurious exceptions occurring from
internal computations.

function compres: double;
var e: Environment; { local storage for enviromment }
c: NunClass; { for class inquiry

begin {compres}

ProcEntry (e); I save caller's enviromment and }
set default enviromment - }

{ now halts disabled }

compres := result; { result to be returned }

¢ := ClassD (result); { class inquiry }
ClearXcps; { clear possibly spurious exceptions }

{ now raise specified exception flags: }

if c = INFINITE then SetException (OVERFLOW, TRUE)
else if ¢ = DENDRMALNLM then SetException (UNDERFLOW, TRLE);
ProcExit (e) { restare caller's enviromment,
{ including any halt enables, and
{ then signal exceptions from
{ subroutine

[SPTERTTTS

end {compres} ;

1-26

The Stsnderd Apple Numeric Emvironmerd SANE

9 Auxiliary Procedures
SANE includes a set of special routines--
negate,
absolute value,
copy-sign,
next-after,
scalb,
logh,

--which are recommended in an appendix to the IEEE Standard as aids to
programming.

9.1 Sign Manipulation
The sign manipulation operations change only the sign of their argument.
Negete reverses the sign of its argument. Absolute-value makes the sign of
its argument positive. Copy-sign takes two arguments and copies the sign of
one of its arguments onto the sign of its other argument.

These operations are trested as nonarithmetic in the sense that they raise no
exceptions: even signaling NaNs da not signal the invalid-operation exception.

9.2 Next-After Functions
The flosting-point values representable in single, double, and extended
formats constitute a finite set of real numbers. The next-after functions
{one for each of these formats) generate the next representable neighbor in
the proper farmat, given an initial value x and another value vy indicating a
direction from the initial value.

Each of the next-after functions takes two arguments, x and y:

nextsingle(x,y) (x and v are single)
nextdouble(x,y) {x and y ere double)
nextextended(x,y) (x and y are extended)

Ais elsewhere, the names of the functions may vary with the implementation.

921 Special Cases far Next-After Functions
If the initial value and the direction value are equal, then the result is the
initial value.

If the initial value is finite but the next representable number is infinite,
then overflow and inexact ere signaled.

If the next representable number lies strictly between -M and +M, where M
is the smallest positive normalized number for that format, and if the
srguments are not equal, then underflow and inexact are signaled.

1-27

The Standard Apple Numeric Environmerd SANE

93 Binary Scale and Log Functions
The scalb and logb functions ere provided for manipulating binery exponents.
Scalb efficiently scales a given number (x) by a given integer power (n) of 2,
returning x * 20,

Logb returns the binary exponent of its input argument as a signed integral
value. When the input srgument is denormalized, the exponent is determined

as if the input argument had first been normalized.

931 Special Cases for Logb
If x is infinite, logh(x) returns +INF.

If x = 0, logh{x) returns -INF and signals divide-by-zero.

1-28

The Starndsrd Rpple Numeric Environment SANE

10 The Elementary Functions
SANE provides a number of basic mathematical functions, including
logarithms, exponentials, two important financial functions, trigonometric
functions, and a random number generator. These functions are computed
using the basic SANE arithmetic heretofore described.

All of the elementary functions, except the random number generator, handle
NaNs, overflow, and underflow sappropriately.” All signal inexact
appropriately, except that the general exponential and the financial functions
may conservatively signal inexact when determining exactness would be too
costly.

10.1 Logerithm Functions
SANE provides three logarithm functions.

— base-2 logarithm : logz(x)

-~ base-e or natural
logarithm : 1n(x)

- base-e logarithm of
1 plus srgument : Ini(x)

Lni(x) accurately computes In(l + x). If the input argument x is small, such
as an interest rate, the computation of Inl(x) is more accurate than the
straightforward computation of In{1 + x) by adding x to 1 and taking the
natural logarithm of the result.

10.11 Special Cases for Logarithyn Functions
If x = +INF, then logs(x), In(x), and Ini(x) return +INF. No exception is
signaled.

If x = 0, then logy(x) and In(x) return ~INF and signal divide-by-zero.
Similarly, if x = -1, then Ini(x) returns -INF and signals divide-by-zero.

If x < 0, then loge(x) and In(x) return a NaN and signal invalid. Similarly, if
x < -1, then Ini(x) returns 8 NaN and signale invalid.

10.2 Exponential Functions
SANE provides five exponential functions.

- base~-2 exponential : 2%

- base-e or natural
exponential : eX

~ base-e exponential

1-29

The Standerd Apple Nurmeric Environment SANE

minus 1 : expi(x)
- integer exponential : xi (i of integer type)
-~ general exponential : - xY

Expl(x} accurately computes eX - 1. If the input argument x is small, such
as an interest rate, then the computation of expi(x) is more accurate than
the straightforward computation of eX - 1 by exponentiation and subtraction.

1021 Special Cases for 2% e%, expi{x)
If x = +INF, then 2%, eX, and expl(x) return +INF. No exception is signaled.

If x = -INF, then 2¥ and e* return 0; and expi(x) returns -1. No exception is
signaled.

10.22 Special Cases for xi .
If the integer exponent i equals 0 and x is not a NaN, then x! returns 1.
Note that with the integer exponential, x0 = 1 even if x is zero or infinite.

If x is +0 and i is negative, then xi returns +INF and signals divide-by-zero.

If x is -0 and i is negative, then xi returns +INF if i is even, ar -INF if i is
odd: both cases signal divide-by-zero.

10.23 Special Cases for x¥

If x is +0 and v is negative, then the general exponential xy returns +INF and
signhals divide-by-zero.

If x is -0 and y is integral and negative, then x¥ returns +INF if y is even,
or ~INF if y is odd; both cases signal divide-by-zero.

The general exponential x¥ returns a NaN and signals irvalid if
both x and vy equal O;
x ig infinite and y equals O;
x = 1 and y is infinite; or
x is -0 or less than O and y is nonintegral.

103 Financial Functions

SANE provides two functions, compound and annuity, that can be used to
solve various financial, or time-value-of-money, problems.

1031 Compound
The compound function computes

compound(x,n) = (1 +)0

1-30

The Slandard Apple Nurmeric Envirenmerd SANE

where r is the interest rate and n is the number (perhaps nonintegral) of
periods. When the rate r is small, compound gives a more accurate
computation than does the straightforward computation of (1 + r)? by addition
and exponentiation.

Compound is directly applicable to computation of present and future values:

PY = FY * (1 + I)(“n) = [—
compound(x, n)

FY = PV * (1 +)0 = PY * compound(x, n)

10.3.2 Special Cases for Compound(,n)

If r = 0 and n is infinite, or if r = -1, then compound(r,n) returns a NaN and
signals invalid.

If r = -1 and n < 0, then compound(r,n) returns +INF and signals
divide-by-zero.

1033 Anmity
The annuity function computes
1-(1+1x)-m
annuity(r,n) =
T

where r is the interest rate and n is the number of periods. Annuity is more
accurate than the straightforward computation of the expression above using
hasic arithmetic operations and exponentiation. The annuity function is
directly applicable to the computation of present and future values of
ardinary annuities:

1-(1+1x)em
PV = *

b g

= PMT * annuity(x, n)

FY = PMT % ——

1-(1+1)m

= PMT * (1 +1)n *

Y
= PMT ¥ compound(x,n) * annuity(r,n)

where PMT is the amount of one periodic payment.

1-31

The Slandsrd Apple Numeric Environment SANE

10.34 Special Cases for Annuity(r,n)
If r = 0, then annuity(r,n) computes the sum of 1 + 1 + .. + 1 over n periods,
and therefore returns the value n and signals no exceptions (the value n
corresponds to the limit as r approaches 0).

If ¥ < -1, then annuity(r,n) returns a NaN and signals invalid. _
If r = -1 and n > 0, then annuity(r,n) returns -INF and signals divide-by-zero.

104 Trigonometric Functions
SANE provides the basic trigonometric functions:

cosine : cos(x)
sine : sin(x)
tangent : tan(x)
arctangent : arctan(x)

The arguments for cosine, sine, and tangent and the results of arctangent are
expressed in radians. The cosine, sine, and tangent functions use an
argument reduction based on the remainder function (see Section 3) and the
nearest extended-precision approximation of pi/2. Thus the cosine, sine, and
tangent functions have periods slightly different from their mathematical
counterparts and diverge from their counterparts when their arguments
become large. Number results from arctangent lie between -pi/2 and pi/2.

The remaining trigonometric functions can be easily and efficiently computed
from these four (see Appendix C).

104.1 Special Cases for sin(x), cos(x):
If x is infinite, then cog(x) and sin(x) return a NaN and signal invalid.
1042 Special Cases far tan(x):
If x is the nearest extended approximation to =pi/2, then tan(x) returns =INF.
If x is infinite, then tan(x) returns a NaN and signals invalid.

1043 Special Case for arctan(x)-
It x = 2INF, then arctan(x) returns the nearest extended approximation to
+pi/2.

1-32

The Slandard Apple Nurnsric Emvironrnent SANE

105 Random Number Generstor
SANE provides a pseudarandorn number generator, random. Random has one
argument, passed by address. A sequence of (pseudo)random integral values r
in the range

1exy 282

can be generated by initializing an extended variable r to an integral value
(the seed) in the above range and making repeated calls random (r); each call
delivers in r the next random number in the sequence.

If seed values of r are nonintegral or outside the range
l1srs -2
then results are unspecified.
A pseudorandom rectangular distribution on the interval (0,1) can be obtained

by dividing the results from random by

21 -1 = scalb (31,1) - 1.

1-33

The Siandard Apple Numeric Environment Bibliography

iX A
Bibliography

1. Apple Computer, Inc. "Appendix A: The Transcend and Realmodes
Units" and "Appendix E: Floating-Point Arithmetic," Apple Il Fascal
Frogremmer's Manusl Yolume 2, pp. 2-9, 56-85.

These appendixes describe the implementation of single-precision
arithmetic in Apple 1II Pascal, which was based upon Draft 8.0 of the
proposed Standard.

2. Apple Computer, Inc. Apple T Fascal Numerics Manugl: # Guide to
L&ing the Rpple lIT Fascal SANE and Elerns Unils.

This manual describes the Apple III Pascal implementation of the
Standard Apple Nurneric Environment (SANE) through procedure calls to
the SANE and Elems units. This was Apple's first full implementation
of IEEE arithmetic.

3. Apple Computer, Inc. Apple Il Fascal Numerics Manugl: B Guide to
L&ing the Apple Il Fascal SANE and Elemns Unils.

This manual, generalized from the Apple III manual (number 2 above),
describes the Apple 11 and Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units.

4. Cody, W. J. "Analysis of Proposals for the Floating-Point Standard."
IEEE Computer, Yol. 14, No. 3, March 1981, pp. 63-68.

This paper compares the several contending proposals presented to the
Warking Group.

3. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard
for Floating-Point Arithmetic." JEEE Cormputer, Yol. 13, No. 1 January
1980.

This paper is a forerunner to the work on the draft Standard.

6. Coonen, Jerome T. "Underflow and the Denormalized Numbers." JEEE
Computer, Yol. 14, No. 3, March 1981, pp. 75-87.

7. Coonen, Jerome T. "Accurate, Yet Economical Binary-Decimal
Conversions." To appear in ACM Transactions on Mathemaeatical
Soft ware.

The Standard RApple Nurmeric Emsirontnent Bibliography

B.

10.

11

12

13.

Demmel, James. "The Effects of Underflow on Numerical
Computation." To appear in SIAM Jowrnal on Scientific and Statistical
Computing. '

These papers examine one of the major features of the proposed
Standard, gradual underflow, and show how problems of bounded
exponent range cen be handled through the use of denormalized values.

#ateman, Richard J. "High-Level Language Implications of the
Proposed IEEE Floating-Point Standard." ACM 7Zransactions on
Frogramming Languages and Systerns, Yol. 4, No. 2, April 1982, pp.
239-257.

This paper describes the significance to high-level languages,
especially FORTRAN, of various features of the IEEE proposed
Standard.

Floating-Point Working Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. "A Standard for Binary
Floating-Point Arithmetic." Proposed to IEEE, 345 East 47th Street,
New York, NY 10017.

The implementation of SANE is based upon Draft 10.0 of this Standard.

Floating-Point FWDrking Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. A Proposed Standard for Binary
Floating-Point Arithmetic." JEEE Computer, Yol. 14, No. 3, March 1981,
pp. 51-62.

This is Draft 8.0 of the proposed Standard, which wes offered for
public cormnment. The current Draft 10.0 is substantially simpler than
this draft; for instance, warning mode and projective mode have been
eliminated, and the definition of underflow has changed. However, the
intent of the Standard is basically the sarne, and this paper includes
some excellent introductory comments by David Stevenson, Chairman
of the Floating-Point Working Group.

Hough, D. “"Applications of the Proposed IEEE 754 Standard for
Floating-Point Arithmetic." JEEE Computer, Yol. 14, No. 3, March 1981,
pp. 70-74.

Thic paper is an excellent introduction to the floating-point
environment provided by the proposed Standard, showing how it
facilitates the implementation of robust numerical computations.

Kahan, W. "Interval Arithmetic Options in the Proposed IEEE
Floating-Point Arithmetic Standard,"/ntervel Mathematics 1830 (ed.
KE.L. Nickel). New York: Academic Press, New York, 1980, pp.
99-128.

This paper shows how the proposed Standard facilitates interval
arithrnetic.

The Slandard Apple Numeric Environrmernt ‘ Giossary

Appendix B
Glossary

application type: A data type used to store data for applications.

arithmetic type: A data type used to hold results of calculations inside the
computer. The SANE arithmetic type, extended, has greater range and
precision than the application types, in order to improve the mathematical
properties of the application types.

binary floating-poimt number: A string of bits representing a sign, an
exponent, and a significand. Its numerical value, if any, is the signed
product of the significand and two raised to the power of its exponent.

comp type: A 64-bit application data type for storing integral values of up
to 18- or 19-decimal-digit precision. It is used for accounting applications,
among others.

dencrmalized number, or denorm: A nonzero binary floating-point number
that is not normalized (that is, whose significand has a leading bit of zero)
and whose exponent is the minimum exponent for the number's storage type.

double type: A 64-bit applicetion data type for storing floating-point values
of up to 15~ or 16-decimal-digit precision. It is used for statistical and
financial applications, arnong others.

erwironmental settings: The rounding direction and rounding precision, plus
the exception flags and their respective halts.

exceptions: Special ceses, specified by the IEEE Standerd, in arithrnetic
operations. The exceptions are invalid, underflow, overflow, divide-by-zero,
and inexact.

exception flag: Each exception has a flag that can be set, cleared and
tested. It is set when its respective exception occurs and stays set until
explicitly cleared.

exponent: The part of a binary floating-point number that indicates the
power to which two is raised in determining the value of the number. The
wider the exponent field in a numeric type, the greater range it will handle.

extended type: An 80-bit arithmetic data type for storing floating-point
values of up to 19- or 20-decimal-digit precision. SANE uses it to hold the
results of arithmetic operations.

The Stardsrd Apple Nummeric Environment Glossary

halt: Each exception has a halt-enable that can be set or clesred. When an
exception is signaled and the corresponding halt is enabled, the SANE engine
will transfer control to the address in a halt vector. A high-level language
need not pass on to its user the facility to get the halt vector, but may halt
the user's program. Halts remain set until explicitly cleared.

infinity: A special bit pattern produced when a floating-point operation
attemnpts to preduce a number greater in rnagnitude than the largest
representable number in a given format. Infinities are signed.

integer types: Systern types for integral values. Integer types typically use
16- or 32-bit two's complement integers. Integer types are not SANE types
but are available to SANE users.

integral value: A value in a SANE type that is exactly equal to a
methematical integer: ..., -2, -1, 0, 1, 2, ...

NaN (Not a Number): A special bit pattern produced when a flosting-point
operation cannot produce a meaningful result (for example, 0/0 produces &
NaN). NaNs can also be used for uninitialized storage. NaNs propagate
through arithmetic operations.

normalized number: A binary floating-point number in which all significand
bits are significant: that is, the leading bit of the significand is 1.

quiet NaN: A NaN that propagates through arithmetic operations without
signaling an exception (and hence without halting & program).

rounding direction: When the result of an arithmetic operation cannot be
represented exactly in a SANE type, the computer must decide how to round
the result. Under SANE, the computer resolves rounding decisions in one of
four directions, chosen by the user: to-neerest (the default), upward,
downward, and toward-zero.

gign bit: The bit of a single, double, comp, or extended number that
indicetes the number's sign: 0 indicates a positive number; 1, a negative
number.

signaling NaN: A NaN that signals an invalid exception when the NaN is an
operand of an srithmetic operation. If no halt cccurs, a quiet NaN is
produced for the result. No SANE operation creates signaling NaNs.

significand: The pert of a binary floating-point number that indicates where
the number falls between two successive powers of two. The wider the
significand field in a numeric type, the more resolution it will have.

single type: A 32-bit application data type for storing floating-point values
of up to 7- or B~decimal~digit precision. It is used for engineering
applicatiors, among others.

The Slandard Apple Nurneric Environment Elemesntary Functions

ix C
Other Elementary Functions

High quality transcendental functions which are not part of the Standard
Apple Numeric Environment (SANE) can be constructed from the functions
which SANE provides. Some common functions are provided below in
pseudo-code. It should be relatively easy to adapt them for your use.

These functions are based on algorithms developed by Professor William
Kahan, University of California at Berkeley. They are robust and accurate.
The constart C is 2-33 = scalb (-33,1). It is chosen to be nearly the largest
value for which (1 - C2) rounds to 1. All variables are extended.

Exception Handling
Unlike the SANE elementary functions, these functions do not provide
complete handling of special-cases and exceptions. The most troublesome
exceptions can be correctly handled if you:

= Begin each function with a call to procedure-entry.
= Clear the spurious exceptions indicated.
» End each function with a call to procedure-exit (see Section B).

Functions
Secant
sec(x) <-——- 1 / cos(x)
CoSecant
esc(x) <~ 1/ sin{x)
CoTangent

cot(x) <-— 1 / tan(x)

The Standerd Apple Numeric Environmment Elernertany: Functions

ArcSine
y == |x] _
If y 2 0.3 then begin
v (—- Atan (x/sqrt ((i-x)*(1+x)))
spurious divide-by-zero may arise
end
else if y 2 C then v (—— Atan (x / (sqrt (1 - x"2))
else y (— X
arcsin(x) <-— vy

ArcCosine

arccos(x) <— 2 * Atan (sqgrt ((1-x)/(1+x}))
spurious divide-by-zero may arise

Sinh
y <— |x]
If vy 2 C then begin
y <— expl(y)
y <~ 0.5 * {y + y/(1+y))
end
copy the sign of x onto vy
sinh(x) (- y
Cosh

y < exp(|x])
cosh(x) ¢<—— 0.5*y + 0.25/ (0.5* y)

Tanh

y — Ix]|
If y 2 C then begin
Y (- expl(-Z‘y}
y (=~ —y/(2+y
end
copy the sign of x onto v
tanh(x) ¢— vy

The Slandarad Apple Numeric Environment Elemeniary: Functions

ArcSinh

y ¢— Ix|
If v 2 C then begin .
y <— 1nl (v +v / (1 + sart(1 + (14)"2)))
spurious underflow may arise
end
copy the sign of x onto vy
asinh(x) <——- vy

ArcCosh

zc;;;(‘x;xi--- Inl ((sort (y-1)) * (sqrt (y-1) + sqrt (y+1)))
ArcTanh

y — |x|

Ify 2C theny ¢<— 1nl (2%y/(1 - y)) / 2
copy the sign of x onto vy
atanh(x) ¢<— vy

The 68000
Assembly-L anguage SANE Engine

Contents
Introduction . iiiecccccccemacccceccceemmeean 1-1
BASICS .o eciceeeeeeseceeccoeecececseseccesancmcnnameanen—. 1-2
2.1 Operabion FormS ... oiiiiiiiiitiii i iaiieciaeecneaaeerieecaaenenaans veee 1-2
2.1.1 Arithmetic and Auxiliary Operations 1-2
212 CONVeISIONS .. oottt ieiieiciiiieeeieeietieeeeeeeaaaaanaan 1-3
00 U B O 151 8 1 £ 1-3
214 Other Operationso...iiiiiiiiiiiiiiiieieecieeeanaaaan 1-3
AV = (A= 1 1 O o o oL 1-3
23 Calling SeOUENCE ... it iie i ereieeerencaeerenneaeaaonecaananaaeas 1-4
231 The OpWOrd ...ttt ieeeeaeeeieeeceeaanaaaanann 1-4
232 Assemnbly-Language Macrosooooiieiiiiiiiiiiriiiieeiiiaaees 1-4
24 Arithmetic ADUSE ... i i iiiieiiiiieitei e raeecaaaaaaan 1-5
Data TyYPeS it ceceacceaameceeecaaeanen——n 1-6
Arithmetic Operations and Auxiliery Rouwtines _____ ... 1-7
4.1 Add, Subtract, Multiply, and Divide, i-7
4.2 Square =T | A 1-7
4.3 Round-to-Integer, Truncate-to-Integer............ccoiiiiemiiniaiaao. 1-7
44 ReMB NGO ... 1-8
45 Logb, Scalbi. ..o iiiiieeieeieiiieeeeeieneeeaan. 1-8
4.6 Negate, Absolute Yalue, Copy-Signooiiiiiiiii i, 1-8
47 NeXt- AT Y ..t iiieeieeeeiiieeeeeaeaaaaaan. 1-9
CONVETSIONS .. eecememce e emenm— e ————— 1-10
5.1 Conversions Between Binary Formatso 1-10
5.1.1 Conversions to Extended 1-10
5.1.2 Conversions from Extended 1-10
5.2 Binary-Decimal Comversionscoiiiieiiiiiiiiiiiiiiieciaaaacaaaanan 1-11
5.2.1 Binary to Decimal e 1-11
5.22 Decimal to BINaIyo i-11
Comparisons and InqQuUIries iiiciiieceicnececneeaoanan 1-13
20 B T3 114 ¢ n £ 1-13

LI 11T 7)) o 1 S 1-14

7.1 The Environment Word ... i ieieeaee e 1-15
7.2 Get-Environment and Set-Environment ...l 1-16
7.3 Test-Exception and Set-Exceptionooermiimiieriniiiiienenn, 1-16
74 Procedure-Entry and Procedure-Exit 1-16
8 Halts . eccccecmcececcsccemccecaccaeaceaacancaan 1-18
8.1 Conditions for a Halt ... ittt eeeeees 1-18
82 The Halt Mechanism ... ee 1-18
8.3 Using the Halt Mechanism ..., 1-19
9 Elementary Functions rreccccccceaaaaaa- 1-21
9.1 One-Argument FUNCtioNS i 1-21
9.2 Two-Argument Functionsocciiiiiiiiiiii i iieeeenanann 1-21
93 Three~-Argument Functions. i 1-22
Appendixes
A 68000 SANE ACCEES ...iiiieiiiiiiieiaieeiaeeieeenearaaaasnsaasancnnnnennes A-1
B 68000 SANE MBCTOS ...t iiiiieerieiceereeneaeennnnreeeeeeannas B-1

The 68000
Assembly-L anguage SANE Engine

1 Introduction
The purpose of the software package described in this manual is to provide
the features of the Standard Apple Numeric Environment (SANE) to
assembly-language programmers on Apple's 68000-based systems.
SANE--described in detail in 7he Standard Apple Numeric Emdronment in
this binder--fully supports the IEEE Standard (754) for Binary Floating-Point
Arithmetic; it augments the Standeard to provide greater utility for
applications in accounting, finance, science, and engineering. The IEEE
Standard and SANE offer a combination of quality, predictability, and
portability heretofore unknown for numerical software.

A functionally equivalent 6502 assembly-language SANE engine is available
for Apple's 6502-based systems. Thus numerical algorithms coded in
assembly language for an Apple 68000-based system can be readily recoded
for an Apple 6502-based system. Suggested macros for accessing the 6502
and 68000 engines have been chosen to further facilitate algarithm
partability.

This manual describes the use of the 68000 Assembly-Language SANE engine,
but does not describe SANE itself. For example, this manual explains how to
call the SANE remainder function from 68000 assembly language but does not
discuss what this function does. See 7he Standerd Apple Numeric
Emvironment T for information about the semantics of SANE.

See Appendix A for information about accessing the 68000 SANE engine from
the Apple 68000-based systems.

1-1

The 60 SANE Engine The 580 SANE Engine

2 Basics
The following code illustrates a typical invocation of the SANE engine,
FP68K.
FEA A_ADR ; Push address of A (single format)
PEA B_ADR : Push address of B (extended format)
FSUBS ; Floating-point SUBtract Single: B <— B - A

FSUBS is an assembly-language macro taken from the file listed in Appendix
B. The form of the operation in the example (B (-- B - A, where A is a
numeric type and B is extended) is similar to the forms for most FPEBK
operations. Also, this example is typical of SANE engine calls because
operands are passed to FP6BK by pushing the addresses of the operands onto
the stack prior to the call. Details of SANE engine access are given later in
this section.

The SANE elementary functions are provided in Elems68K. Access to
Elems68K is similar to access to FP86K; details are given in Section 9.

2.1 Operation Farms
The example above illustrates the form of an FP&6BK binary operation. Forms
for other FP6BKK operations are described in this section. Examples and
further details are given in subsequent sections.
211 Arithmetic and Auxiliary Operations
Most numeric operations are either unary (one operand), like squere root and
negation, or binery (two operands), like addition and multiplicetion.

The 68000 assembly-language SANE engine, FP&EK, provides unary operations
in 8 one-address form:

DST <~ <op> DST ... for exemple, B <— sqrt(B)

The operation <op> ic applied to (or operates on} the operand DST and the
result is returned to DST, overwriting the previous value. DST iz called the
destination operand.

FP68BK provides binary operations in a two-address form:
DST <—- DST <op> SRC ... for example, B <~—~B / A

The operation <op> iz applied to the operands DST and SRC and the result is
returned to DST, overwriting the previous value. SRC is called the source
operand.

In order to store the result of an operation (unery or binary), the location of
the operand DST must be known to FP6BK, so DST is passed by address to
FP68K. In general all operands, source and destination, are passed by
address to FP6BK.

1-2

The 85300 SANE Engine The 58000 SANE Engine

For most operations the storage format for a source operand (SRC) can be
one of the SANE numeric formats (single, double, extended, or comp). To
support the extended-based SANE arithmetic, a destination operand (DST)

must be in the extended format.

The forms for the copy-sign next-after functions are unusual and will be
discussed in Section 4.

212 Corwersions
FP68K provides conversions between the extended format and other SANE
farmats, between extended and 16- or 32-bit integers, and between extended
and decimal records. Conversions between binary formets (single, double,
extended, comp, and integer) and conversions from decimal to binary have
the form

DST <-— SRC
Conversions from binary to decimal have the form
DST <(— SRC according to SRC2

where SRC2 is a DecForm record specifying the decimal format for the
conversion of SRC to DST.

2.13 Comparisons

Comparisons have the form
<relation> <~- SRC, DST

where DST is extended and SRC is single, double, comp, or extended, and
where <relation> is less, equal, greater, or unordered according ss

DST <relation> SRC
Here the result <relation> is indicated by setting the 68000 CCR flags.

214 Other Operations
FP68K provides inquiries for determining the class and sign of an operand
and operations for accessing the floating-point environment word and the halt
address. Forms for these operstions vary and will be given as the operations
are introduced.

22 External Access
The SANE engine, FP6BK, is reentrant, position-independent code, which may
be shared in multi-process environments. It is accessed through one entry
point, l1abeled FP&BK. Each user process has a static state area consisting of
one word of mode bits and error flags, and a two-word halt vector. The
package allows for different access to the state word in single and
multi-process environments.

The package preserves all 68000 registers across invocations, except that
REMAINDER modifies DO. The package modifies the 68000 CCR flags.
Except for binary-decimal conversions, it uses little more stack area than is
required to save the sixteen 32-bit 68000 registers. Since the binary-decimal

1-3

The 63030 SANE Engine The 58000 SANE Engine

conversions themselves call the package {to perform multiplies and divides),
they use about twice the stack space of the regular operations.

The access constraints described in this section also apply to Elems68K.
23 Calling

A typical invocation of the engine consists of a sequence of PEA's to push
operand addresses followed by one of the Appendix B macros:

PERA {source address>
PER {destination address>
{FOPMACRO)>

PEA's for source operands always precede those for destination operands.
(FOPMACRO> represents a typical operation macro defined as

MOVE W <opword), —(SP) ; Push op code.

JERFP
The macro JSRFP in turn generates a call to FP68K; for Macintosh, it
expands to an A-line trap, while for Lisa it expands to an intrinsic unit
subroutine call

JR FP6K

231 The Opword
The opword is the logical OR of a operand format code and an opersation
code.

The operand format code specifies the format (extended, double, single,
integer, or comp) of one of the operands. The operand formst code typically
gives the farmat for the source operand (SRC). At most one operand formet
need be specified, since other operands' formats are implied.

The operation code specifies the operation to be performed by FP68BK.

Opwords are listed in Appendix C; operand format codes and operation codes
are listed in Appendix B.

Example

The farmeat code for single is 0200 (hex). The operation code for divide is
0006 (hex). Hence the opword 0206 (hex) indicates divide by a value of type
single.

232 fssembly-Language Macros
The macro file in Appendix B provides macros for

MOVE .W <opword>, —(SP)
JERFP

far most common <{opword> calls to FP6BK.

The 687 SANE Engine

Exarmnple 1

The 63000 SANE Engine

To add a single-format operand A to an extended-formsat operand B, simply

write:

PER AADR
PEA B_ADR
FADDS

Example 2

L1

Ne N

Push address of A
Push address of B
Floating-point ADD Single: B <+ B + A

Compute B <-~ sart(A), where A and B are extended. The value of A should

be preserved.

PEA A_ADR

PEA B_ADR

FX2X

PER B _ADR

FSORTX
Example 7

LY T

LR YER T

Push address of A
Push address of B
Floating-point eXtended to eXtended: B ¢— A
Push address of B
Floating SQuare RooT eXtended: B <— sqrt(B)

Compute C ¢<-- A - B, where A, B, and C are in the double farmat. Since
destinations are extended, a temporary extended variable T is required.

PEA A_ADR
PERA T_ADR
FD2X

PEA B_ADR
PEA T_ADR
FSUBD

PEA T_ADR
PEA C AR
FX2D

24 fArithmetic Abuse

N W

L TR YRR T TR YA TR T

Push address of A

Push address of 10-byte temporary variable
Fl-pt corwext Double to eXtended: T <— A
Push address of B

Push address of temporary

Fl-pt SUBtract Double: T <— T - B

Push address of temporary

Push address of C

Fl-pt convert eXtended to Double: C ¢(—

FP6BK is designed to be as robust as possible, but it is not bulletproof.
Passing the wrong number of operands to the engine will damage the stack.
Using UNDEFINED opword parameters or passing incaorrect addresses will
produce undefined results.

1-3

The 68000 SANE Engine The 58000 SANE Engine

3 Data Types
FPEBK fully supports the SANE data types
single — 32-bit floating-point
double -~ 64-bit floating-point
comp ~— 64-bit integer

extended - 80-bit floating-point
and the 68000-specific types

integer -- 16-bit two's complement integer
longint —— 32-bit two's complement integer

The 68000 engine uses the corvention that least-significant vtes are stored
in high memory. For example, let us take a variable of type single with bits
3 -— sign
e0 ... e7 —- exponent (msb...lsb)
fO ... £22 -— significand fraction (msb...1sb)

The logical structure of this four-byte variable is shown below:

|msb ls::; msbh | | 1sb o‘rder

2 O T T I -1 I T T T I O O O O O

I L A O T I 7 I T T O I A I O IO IO 3
glollIIHI'ﬂOllHlHlHIIlllllHllIHZI'
1000 1001 1002 1003

If this variable iz assigned the address 1000, then its bits are distributed to

the locations 1000 to 1003 as shown. The other SANE formats (see Section
2 in The Stendsrd Apple Numeric Emvironment) are represented in memory in
similar fashion.

1-6

The 63000 SANE Engine | The 8000 SANE Engine

4 Arithmetic Operations and Auxiliary Routines
The operations covered in this section follow the access schemes described
in Section 2.

unery operations: DST <-— <op> DST (one-address form)
PEA <DST address>
{FOPMACRO>

binary operations: DST <-- DST <op> SRC° (two-address form)

PER {SRC address>
PER {DST address>
<FOPMACRO>

The destination operand (DST) for these operations is passed by address and
is generally in the extended format. The source operand (SRC) is also passed
by address and may be single, double, comp, or extended. Some operations
are distinguished by requiring some specific type for SRC, by using a
nonextended destination, or by returning auxiliary information in the DO
register and in the processor CCR status bits. In this section, operations so
distinguished are noted. The examples employ the macros in Appendix B.

4.1 Add, Subtract, Multiply, and Divide
These are binary operations and follow the two-address form.

Example
B <— B / A, where A is double and B is extended:

PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FDIVD ; divide with source operand of type double
42 Square Root
This is a unary operation and follows the one-address form.
Exarnple

B <{-- sgrt(B) , where B is extended.

PEA B_ADR ; push address of B
FSORTX ; square Yoot (operand is always extended)

4.3 Round-to-Integer, Truncate-to-I
These are unary operations and follow the one-address form.

Round-to-integer rounds (according to the current rounding direction) to an
integral value in the extended format. Truncete-to-integer rounds toward
zero (regardless of the current rounding direction) to an integral value in the
extended format. The calling sequence is the usual one for unary operators,
illustrated above for square root.

The 58000 SANE Engine The 88000 SANE Engine

44 Remainder .
This is a binary operation and follows the two-address form.

Remainder returns auxiliary information: the low-order integer quotient
{between -127 and +127) in DO.W. The high half of DO.L is undefined. This
intrusion into the register file is extremely valuable in argument
reduction--the principal use of the remainder function. The state of DO
after an invalid remainder is undefined.

Example
B (— B rem A, where A is single and B is extended.

PER A_ADR ; push address of A
PEA B ADR ; push address of B
FREMS ; Temainder with source operand of type single

45 Logb, Scalb
Logb is a unary operation and follows the one-address form.

Scalb is a binary operation and follows the two-address form. Its source
operand is a 16-bit integer.

Example

B (-~ B * 2!, where B is extended.
FER I_ADR ; push address of I
PEA B ADR ; push address of B
FSCALBX ; scalb

4.6 Negste, Absolute Value, Copy-Sign
Negate and absolute value ere unary operstions and follow the one-address

form.
Copy-sign uses the calling sequence

PER {SRC address>
PEA (DST address>
FCPYSGNX

to copy the sign of DST onto the sign of SRC. Note that copy-sign differs
from most two-address operations in that it chenges the SRC value rather
than the DST value. The formats of the operands for FCPYSGNX can be
single, double, or extended. (Far efficiency, the 68000 assembly-language
programmer should copy signs directly rather than call FP6EK.)

The 880 SANE Engine The 68000 SANE Engine

Example

Copy the sign of B (single, double, or extended) into the sign of A (single,
double, or extended).

PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FCPYSGNX ; copy-sign

4.7 Next-After

The next-after operstions use the calling sequence

PER {SRC address>
PEA <DST address>
{next-after macro>

to effect SRC <-- next value, in the farmat indicated by the macro, after
SRC in the dirction of DST. Next-after operations differ from meost
two-address operations in that they change SRC values rather than DST
values. Both source and destination operands must be of the same
floating-point type (single, double, or extended).

Example

A <-- next-after(A) in the direction of B, where A and B are double (so
next-after means next-double-after).

FER A_ADR ; push address of A
PEA B_ADR ; push address of B
FNEXTD ; next-after in double format

The 880 SANE Engine The 58000 SANE Engine

9 Conversions

This section discusses conversions between binary formats and conversions
between binary and decimal formats.

5.1 Conversions Between Binary Formats
FP6BK provides conversions between the extended type and the SANE types
single, double, and comp, as well as the 16- and 32-bit integer types.
5.1.1 Conversions to Extended

FP68K provides conversions of a source, of type single, double, comp,
extended, or integer, to an extended destinstion.

single
double
extended {= comp

extended
integer

All operands, even integer ones, ere passed by address. The following
example illustrates the calling sequence.

Exarnple
Convert A to B, where A is of type comp and B is extended.

PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FC2X ; convert comp to extended

5.1.2 Cowersions from Extended

FP68K provides corwersions of an extended source to a destination of type
single, double, comp, extended, or integer.

single

double

comp {— extended
extended

integer

{Conversion to a narrower format may alter values.) Contrary to the usual
scheme the destination for these conversions need not be of type extended.

All operands are passed by address. The following example illustrates the
calling seguence.

1-10

The 68 SANE Engine The 63000 SANE Engine

Example
Cornvert A to B where A is extended and B is double.

FEA A ADR ; push address of A
PER B ADR ; push address of B
FX2D ; convert extended to double

5.2 Binary-Decimal Conversions
FP68BK provides conversions between the binary types (single, double, comp,
extended, and integer) and the decimal record type.

Decimal records and decform records (used to specify the form of decimal
representations) are described in Section 4 of The Standard Apple Numeric
Emvironment. For FPESK, the maximum length of the sig digits field of &
decimal record is 20. (The value 20 is specific to this implementation:
algorithms intended to port to other SANE implementations should use no
more than 18 digits in sig.)

5.2.1 Binary to Decimal
The calling sequence for a conversion from a binary format to a decimal
record passes the address of a decformn record, the address of a binary
source operand, and the addrese of a decimal-record destination. The
maximum number of significant digits that will be returned is 19.

Example

Convert a comp-format value A to a decimal record D according to the
decform record F.

PEAR F_ADR ; push address of F
PEA A_ADR ; push address of A
PER D ADR ; push address of D
FC20EC ; convert comp to decimal

Fixed-Format “"Overfiow”

If a nurnber is too large for a chosen fixed style, then FP6BK returns the
string '?' in the sig field of the decimal record.

522 Decimal to Binary
The calling seqguence for a conversion from decimal to binary passes the
address of a decimal-record source operand and the address of a binary
destination operand.

The maximum number of digite in sig is 19. If the length of sig is 20, then
sig represents its first 19 digits plus one or more additional nonzero digits
after the 19th. The exponent corresponds to the 19-digit integer represented
by the first 19 digits of sig.

1-11

The 5800 SANE Engine The 6800 SANE Engine

Example
Convert the decimal record D to a double-format value B.

PER D_ADR ; push address of D
FEA B ADR ; push address of B
FDEC2D ; convexrt decimal to double

Techniques for Extreme Accuracy

The following technigues aspply to FPEBK; other SANE implementations
require other techniques.

For maximum accuracy, insert or delete trailing zeros for the sig field of a
decimal record in order to minimize the magnitude of the exp field. For
example, for 1.0E60 set sig to '1000000000000000000000000000 (17 zeros) and
exp to 43, and for 300E-43 set sig to '3' and exp to -41.

If you are writing a parser and must handle a number with more than 19
significant digits, follow these rules:

* Place the implicit decimal point to the right of the 19 most significant
digits.

» I any of the discarded digits to the right of the implicit decimal point
are nonzero, then concatenate the digit '1' to sig.

1-12

The 68000 SANE Engine The 6800 SANE Engine

6 Comparisons and Inquiries

6.1

FP&8BK offers two comparison operations: FCPX (which signals invalid if its
operands compere unordered) and FCMP (which does not). Each compares a
source operand (which may be single, double, extended, or comp) with a
destination operand (which must be extended). The result of a comparison is
the relation (less, greater, equal, or unordered) for which

DST <(relation> SRC
is true. The result is delivered in the X, N, Z, ¥, and C status bits:

{relation> Status bits
XNZVC
greater 00000
less 11001
equal 00100
unordered 00010

These status bit encodings reflect that floating-point comparisons have four
possible results, unlike the more familiar integer comperisons with three
possible results. It's not necessary to learn these encodings, however; simply
use the FBxxx series of rnacros for branching after FCMP and FCPX.

FCMP and FCPX are both provided to facilitate implementation of relational
operators defined by higher level languages that do not contemplate
unordered comparisons. The IEEE standard specifies that the inwvalid
exception shall be signalled whenever necessary to alert users of such
languages that an unordered comparison may have adversely affected their
program's logic.

Example 1

Test B <= A, where A is single and B is extended; if TRUE branch to LOC;
sighal if unordered.

PEA A_ADR push address of A

PEA B AR : push address of B
FCPXS ; compare using source of type single,
; signal invalid if unordered
FBLE Loc ; branch if B <= A
Example 2

Test B not-equal A, where A is double and B is extended; if TRUE branch to
LOC. (Note that not-equal is equivalent to less, grester, or unordered, so
invalid should not be signaled on unordered.)

1-13

The 88500 SANE Engine The 68000 SANE Engine

FEA A_ADR push address of A

FEA B ADR ; push address of B
FCMPD ; compare using source of type double,
; do not signal irwalid if unordered
FBNE Loc ; branch if B not-equal A
6.2 Inquiries

The classify operation provides both class and sign inquiries. This operation
takes one source operand (single, double, or extended), which is psssed by
address, and places the result in a 16-bit integer destination.

The sign of the result is the sign of the source; the megnitude of the result
is

1 signaling NaN
2 quiet NaN
3 infinite
4 zero
5 normal
6 denoxmal
Exammple
Set C to sign and class of A.
- PEA A ADR : push address of A
FEA C ADR ; push address of result
FCLASSS ; classify single

1-14

The 6800 SANE Engine

7 Emwvironmental Control
7.1 The Emwironment Word

The 63000 SANE Engine

The floating-point environment is encoded in the 16-bit integer format as

shown helow in hexadecimal:

msh lsbl
| |
!—Irlrlxldlo!uli}—]RlRleDlUlUII{
Younding exception rounding halt
direction flags precision enables
rounding direction, bits 6000 rr
0000 —- to-nearest
2000 - upward
4000 —- downward
6000 —- toward-zero
exception flags, bits 1F00
0100 — invalid i
0200 -- undexrflow u
0400 —— overflow 1]
0800 -~ division-by-zero d
1000 —- inexact X
rounding precision, bits 0060 RR
0000 —-- extended
0020 — double
0040 —- single
0060 —~ UNDEFINED
halt enabled, bits OO1F
Q001 -- invalid I
0002 —— underflow u
0004 —- overflow 0
0008 —- division-by-zero D
0010 —— inexact X

Bits 8000 and 0080 are undefined.

Note that the default environment is represented by the integer value zero.

1-15

The s80%0¢ $SANE Engine The 88000 SENE Engine

Exsemple

With rounding toward-zero, inexact and underflow exception flags raised,
extended rounding precision, and halt on invalid, overflow, and
division-by-zero, the most significant byte of the environment is 72 and the
least significant byte is OD.

Access to the environment is via the operstions get-environment,
set-environment, test-exception, set-exception, procedure-entry, and
procedure-exit.

72 Get-Erwironment and Set-Environment _
Get-Emvironment takes one input operand: the address of a 16-bit integer
destination. The environment word is returned in the destination.

Set-Emvironment has one input operand: the address of a 16-bit integer,
which is to be interpreted as an environment word.

Exemple
Set rounding direction to toward-zero.

PEA fA_fDR
FGETENV
MIWVE W (R0),DO ; DO gets enviromment
R.w #36000, DO ; set rounding toward-zero
MOVE W DO, (RO) ; restore A
PEA A_ADR
FSETENY
73 Test-Exception and Set-Exception
Test-exception has one integer destination operand, which contains the hex
values
01 -~ invalid
02 — underflow
04 — overflow
08 ~— divide~by-zero
10 —- inexact
If the exception flag is set for the corresponding bit in the operand, then
test-exception sets the destination to $100, otherwise, to zero.

Set-exceplion takes one integer source operand, which encodes an exception
in the manner described above for test-exception. Set-exception stimulates
the exception indicated in the operand.

74 Procedure-Entry and Procedue-Exit
Frocedure-entry saves the current floating-point environment (16-bit integer)

at the address passed as the sole operand, and sets the operative
environment to the default state.

1-16

The 680 SANE Engine The 58000 SANE Engine

FProcedure-exit saves (temporarily) the exception flags, sets the environment
passed as the sole operand, and then stimulstes the saved exceptions.

Exarnple
Here is a procedure that appears to its callers as an stomic operation.
ATOMICPROC
PER E_ADR ; push address to stare erwiromment
FPROCENTRY ; procedure entry
-..body of routine. ..
PER E_ADR ; push address of erwirorment
FPROCEXIT ; procedure exit
RTS

1-17

The 68000 SANE Engine The 88000 SANE Engine

8 Halts
FP68K provides the facility to transfer program control when selected
floating-point exceptions occur. Since this facility will be used to
implement halts in high-level languages, we refer to it as a halting
mechanism. The assemnbly-language programmer can write a ‘halt handler'
routine to cause special actions for floating-point exceptions. The FP&8K
halting mechanism differs from the traps that are an optional part of the
IEEE Standard.

8.1 Conditions for a Halt
Any floating-point exception can, under the appropriate conditions, trigger a
halt. The halt for a particular exception is enabled when the user has set
the halt-enable bit carresponding to that exception.

8.2 The Halt Mechanism
If the halt for a given exception is enabled, FP68K does these things when
that exception occurs:

1. FP6BK returns the same result to the destination address that it would
return if the halt were not enabled. '

2. It sets up the following stack frame:
top-or-stack —-> [__] A word containing the opcode.
"1 & long word containing DST address.
"1 & long word containing SRC address.
1 A long word containing SRC2 address.
[‘A 1ong word pointing to MISC.

MISC is a record consisting of:

MISC: l:l A word containing halt exceptions.
:] A word containing pending CCR.

:] f long word containing pending DO.
The first word of MISC contains in its five low-order bits the AND of the
halt-enable bits with the exceptions that occurred in the operation just

completing. If halts were not enabled, then (upon return from FP68K) CCR
and DO would have the values given in MISC.

1-18

The 885 SANE Engine The 58000 SANE Engine

3. It passes control by JSR through the halt vector previously set by
FSETHY, pushing ancther long word containing a return address in
FP68IK. If execution is to continue, the halt procedure must clear
eighteen bytes from the stack to remove the opword and the DST,
SRC, SRC2, and MISC addresses.

Set-talt-vector has one input operand: the address of a 32-bit integer,
which is interpreted as the halt vector (that is, the address to jump to in
case a halt occurs).

Get-halt-vectar has one input operand: the address of a 32-bit integer,
which receives the halt vector.

83 Using the Halt Mechanism
This example illustrates the use of the halting mechanism. The user rust
set the halt vector to the starting address of a halt handler routine. This
particular halt handler returns contrel to FP68K which will continue az if no
halt had occurred, returning to the next instruction in the user's program.

LFA HROUTINE, AO A0 gets address of halt routine

MOVE.L RO, H_ADR ; H_ADR gets seme

PEA H_ADR :

FSETHY ; set halt vector to HROUTINE

PERA ; floating-point operand here

<FOPMACRDY ; a floating-point call here
HROUTINE ; called by FP68K

MOWVE.L (SP)+, AO ; RO saves return address in FP68K

ADD.L #18 SP ; increment stack past arguments

P {RO) ; return to FP6EK

The FP68K halt machanism is designed so that a halt procedure may be
written in Lisa Pascal. This is the form of a Pascal equivalent to
HROUTINE:

1-19

The 68000 SANE Engine The 68X SANE Engine

type miscrec = record
halterrors : integer
ccrpending : integer
DOpending : longint ;
end {record} ;

procedure haltroutine
{ var misc : miscrec ;
sxc2, src, dst : longint ;
opcode : integer) ;
begin {haltroutine}
end {haltroutine} ;

Like HROUTINE, haltroutine merely continues execution as if no halt had
occurred.

N N

1-20

The 88 SANE Engine The 88000 SANE Engine

9 Elementary Functions
The elementary functions that are specified by the Standard Apple Numeric
Environment are made available to the 68000 assembly-language programmer
in ELEMS68K. Also included are two functions that compute logy(1+x) and 2%
- 1 accurately. ELEMS6E8K calls the SANE engine (FP68K) for its basic
arithmetic. The access schemes for FP68K (described in Section 2) and
ELEMS68BK are similar. Opwords and sample macros are included at the end
of the file listed in Appendix B. (These macros will be used freely in the
examples below.)

9.1 One-Argument Functions
The SANE elementary functions logy(x), In(x), Ini{x) = In{1+x), 2X, eX, expl(x) =
eX - 1, cog(x), sin(x), tan(x), atan(x), and random(x), together with log2i(x) =
log(1+x) and exp2i(x) = 2X - 1, each have one extended argument, passed by
address. These functions use the one-address calling sequence

PER DST
{EOPMACRO>
to effect

DST {-- <op> DST

{EOPMACRO> is one of the rnacros in appendix B that generate code to push
an op word and invoke ELEMS68K. This follows the FP6BK access scheme
for unary operations, such as square root and negate.

Example
B <-- sin(B), where B is of extended type.

PERA B_ADR push address of B
FSINX ; B <— sin(B)

92 Two-Argument Functions
General exponentiation (x¥) has two extended arguments, both passed by
address. The result is returned in x.

[¥}

Integer exponentiation (xi} also has two arguments. The extended argument
x, pessed by address, receives the result. The 16-bit integer argument i is
also passed by address.

Both exponentiation functions use the calling sequence for binary operations

PEA SRC address push exponent address first
PEA DST address push base address second

NN

<EDPHMACRD>
to effect
DST <~ DSTRC

1-21

The 68X SANE Engine The 680 SANE Engine

Exarnple
B <-- BX, where the type of B is extended.

PERA K_ADR ; push address of K
PEA B ADR ; push address of B
FXPWRI ; integer exponentiation

9.3 Three-Argument Functions
Compound and annuity use the calling sequence

PERA SRC2 address push address of rate first
PEA SRC address push address of number of periods second

PEA DST address push address of destination third
<EOPMACRD>

to effect
DST <~ <op> (SRC2, SRC)

where <op> is compound or annuity, SRC2 is the rate, and SRC is the number
of periods. AIll arguments SRC2, SRC, and DST must be of the extended
type.

Example
C <-- (1 + RN, where C, R, and N are of type extended.

1 N1 W

PEA R_ADR ; push address of R
PER N ADR ; push address of N
PEA C ADR ; push address of C
FCOMPOUND ; compound

1-22

BB SANE Engine , B2 SANE Access

Appendix A
68000 SANE Access

In your assemblies include the file TLASM/SANEMACS.TEXT, which contains
the macros mentioned in this manual. The standard version is for Macintosh.
For programs that will run on Lisa, redefine the symbol FPBYTRAP as
follows:

FPBYTRAP .EQU O

On Macintozh, the object code for FPEBK and ELEMS68K is automatically
loaded as needed by the Package Manager. On Lisa, it suffices to link your
assembled code with the intrineic unit file IOSFPLIB.OBJ.

580 SANE Engine 53 SANE Macras

Appendix B
68000 SANE Macros

FILE:. SANEMACS.TEXT

These macros and equates give assembly language access to
the 68K floating-point arithmetic routines.

A R R N R Y]

. WARNING: set FPBYTRAP for your system.

FPBYTRAP EQU 1 ;0 for Lisa, 1 for Macintosh
.MACRO JSRFP
IF FPBYTRAP
_FPe8K ; defined in TODLMACS
.ELSE
.REF FP6BK
J5R FP&BK
.ENDC
.ENDM

MACRO JSRELEMS
JIF FPBYTRAP
_ELEMS68K ; defined in TOOLMACS
ELSE
REF ELEMS68K
JR ELEMS68K
ENDC
(ENDM

; Operation code masks.

FOARDD EQU $0000 ; edd

FOSUB EQU $0002 ; subtract

FOMUL EQU $0004 ; multiply

FODIY EQU $0006 ; divide

FOCMP EQU $0008 ; compare, no exception from unordered

FOCPX EQU $O00A compexre, signal invalid if unordered

B-1

BRI SANE Engine B8N0 SANE Macros

FOREM EQU $000C ; remsinder
FOZ2% EQU $O00E convert to extended

FOX22 EQU $0010 ; convert from extended
FOSQRT .EQU $0012 - ; square root

FORTI .EQU $0014 ; round to integral value
FOTTI -EQU $0016 ; truncate to integral value
FOSCALB EQU $0018 ; binary scale

FOLOGB EQU $001A ; binary log

FOCLASS EQU $001C ; classify

; UNDEFINED .EQU $O01E

FOSETENY EQU $0001 ; set environment

FOGETENY EQU $0003 ; get enviromment

FOSETHY .EQU $0005 ; set halt wvector

FOGETHY EQU $0007 ; get halt vector

FOD2B EQU $0009 ; convert decimal to binaxry
FOBZ2D EQU $O00B ; convert binary to decimal
FONEG EQU 30000 ; negate

FORBS EQU $000F ; absolute

FOCPYSGNX EQU $0011 ; copy sign

FONEXT EQU $0013 ; next-after

FOSETXCP EQU 90015 ; set exception
FOPROCENTRY EQU $0017 ; procedure entry
FOPROCEXIT EQU $0019 ; procedure exit

FOTESTXCP EQU $001B ; test exception

; UNDEFINED EQU $001D
; UNDEFINED EQU $001F

; Operand format masks.

FFEXT EQU $0000 ; extended —- 80-bit float
FFDBL EQU 90800 ; double — 64-bit float
FFSGL .EQU $1000 ; single -- 32-hit float
FFINT EQU $2000 ; integer -— 16-bit integer
FFLNG EQU 92800 ; long int — 32-bit integer
FFCOMP EQU $3000 ; comp -~ 64-bit integer

; Precision code masks: forces a floating point output
; value to be coerced to the range and precision specified.

FCEXT EQU $0000 ; extended
FCDBL EQU 34000 double
FCSGL EQU $8000 . single

88X SANE Engine

B3 SANE Macras

R N P S T

Operation macros: operand addresses should already be on
the stack, with the destination address on top.
suffix X, D, S, C, I, or L determines the format of the
source operand — extended, double, single, comp,
integer, or long integer, respectively; the destination
operand is always extended.

The

: Addition.

.MACRO
MOVE .W
JSRFP
{ENDM

MACRO
MOVE .W
JSRFP
ENDM

.MACRO
MOVE .W
JSRFP
ENDM

MACRO
MOVE .W
JSRFP
{ENDM

-MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
ENDM

FADDX
#FFEXT+FOADD, - (SP)

FADDD
#FFDBL+FOADD, -(SP)

FADDS
#FFSGL+FOADD, -(SP)

FADDC
#FFCOMP+FORDD, -(SP)

FADDI
#FFINT+FOADD, - (SP)

FADDL
#FFLNG+FOADD, -(SP)

; Subtraction.

K

MACRO

FSUBX

8000 SANE Engine

MOVE .W
JERFP
-ENDM

.MACRO
MOVE .W
JSRFP
.ENDM
.MACRO
MOVE . W
JSRFP
-ENDM

.MACRO
MOVE .W
J5RFP
-ENDM

-MARCRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JORFP
.ENDM

#FFEXT+FOSUB, -(SP)

FSUBD
#FFDBL+FOSUB, - (SP)

FSUBS
#FFSGL+FOSUB, -(SP)

FSUBC
#FFCOMP+FOSUB, - (SP)

FSUBI
#FFINT+FOSUB, -(SP)

FSUBL
#FFLNG+FOSUB, - (SP)

SR SANE Macros

; Multiplication.

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO

FMULX
H#FFEXT+FOMUL, —(SP)

MULD
#FFDBL+FOMUL, —(SP)

FMULS
#FFSGL+FOMUL, -(SP)

FMULC

B-4

SR SANE Engine

MOVE . W
JSRFP
JENDM

.MACRO
MOVE .4
JSRFP
-ENDM

.MACRO
MOVE .W
JSRFP
-ENDM

#FFCOMP+FOMUL, ~(SP)

FMULI
AFFINT+FOMUL, -(SP)

FMULL
#FFLNG+FOMUL, -(SP)

RN SANE Macros

;
; Division.

.MACRO
MOVE .W
JSRFP
-ENDM

MACRO
MOVE .W
JSRFP
JENDM

.MACRD
MOVE .W
JSRFP
.ENDM

-MACRO
MOVE W
JSRFP
-ENDM

.MACRO
MOVE .W
JSRFP
-ENDM

MACRO
MOVE.W
JSRFP

.ENDM

FDIVX
#FFEXT+FODIY, -(SP)

FDIVD
#FFDBL+FODIY, —(SP)

FDIVS
#FFSGL+FODIY, —(SP)

FDIVC
#FFCOMP+FODIY, -(SP)

FDIVI
#FFINT+FODIY, -(SP)

FDIVL
#FFLNG+FODIV, —(SP)

58000 SANE Engine , E8000 SANE Macros

; Square root.

MACRO FSQRTX
MOVE.W #FOSQRT, -(SP)
JSRFP

.ENDM

; Round to integer, according to the current rounding mode.

.MACRO FRINTX
MOYE.W #FORTI, -(SP)
JSRFP

.ENDM

; Truncate to integer, using round towsrd zero.

MACRO FTINTX
MOVE.W #FOTTI, -(SP)
JGRFP

LENDM

;
; Remainder.

MARCRO FREMX

MOVE.W #FFEXT+FOREM, ~(SP)
JSRFP

-ENDM

.MACRO FREMD

MOVE .W #FFDBL+FOREM, -(SP)
JSRFP

.ENDM

.MARCRO FREMS

MOVE.W #FFSGL+FOREM, ~(SP)
JSRFP

.ENDM

.MARCRO FREMC

MOVE.W #FFCOMP+FOREM, -(SP)
JSRFP

.ENDM

SR SANE Engine

.MACRO
MOVE W
JSRFP
-ENDM

.MACRO
JSRFP

FREMI
#FFINT+FOREM, -(SP)

FREML
#FFLNG+FOREM, -(SP)

SR SANE Macros

; Logh.

.MACRO
MOVE .W
JSRFP
-ENDM

FLOGBX
#FOLOGB, -(SP)

> Scalb.

.MACRO
MOVE .
JSRFP
.ENDM

FSCALBX
#FFINT+FOSCALB, -(SP)

; Copy-sign.

-MACRO
MOVE . W
JSRFP
.ENDM

FCPYSGNX
#FOCPYSGN, -(SP)

; Negate.

-MACRO
MOVE . W
JSRFP
-ENDM

FNEGX
#FONEG, - (SP)

B30 SANE Engine

H8X00 SRNE Macras

; Absolute value.

S Ne N AN

’
;

;

MACRO
MOVE . W
JSRFP
.ENDM

FABSX
#FORBS, -(SP)

Next-after. NOTE: both operands are of the same
format, as specified by the usual suffix.

.MACRO
MOVE W
JSRFP
ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JERFP
.ENDM

FNEXTS
#FFSGL+FONEXT, ~(SP)

FNEXTD
#FFDBL+FONEXT, -(SP)

FNEXTX
#FFEXT+FONEXT, -(SP)

Conversion to

extended.

.MACRO
MOVE W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
-ENDM

FX2X
AFFEXT+FO22X, -(SP)

FD2X
#FFDBL+FOZ2X, -(SP)

FS2X
#FFSGL+FOZ2X, -(SP)

83X SANE Engine

-MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE . W
JERFP
.ENDM

FI2X
#FFINT+FOZ2X, -(SP)

FL2X
#FFLNG+FO2Z2X, -(SP)

FC2X
#AFFCOMP+FOZ2X, -(SP)

BRI SANE Macras

:

; Conversion from extended.

.MACRO
MOVE .W
JSRFP
JENDM

-MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE . W
JSRFP
.ENDM

-MACRO
MOVE .W
JSRFP
ENDM

.MRCRO
MOVE . W
JSRFP
.ENDM

FX2D
AFFDBL+FOX22Z, -(SP)

FX2S
#FFSGL+FOX22, ~(SP)

FX21
#FFINT+FOX22, ~(SP)

FX2L
HFFLNG+FOX22Z, -(SP)

FX2C
#FFCOMP+FOX22, - (SP)

5 SKRNE Engine

580 SANE Macros

;
; Binary to decimal conversion.

;

;

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE W
JSRFP
"ENDM

.MACRO
MOVE.W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE W
JSRFP
.ENDM

.MACRO
MOVE W
JSRFP
.ENDM

FXZDEC
H#FFEXT+FOB2D, -(SP)

FD2DEC
#FFDBL+FOB2D, -(SP)

FS2DEC
#FFSGL+FOB2D, -(SP)

FC2DEC
#FFCOMP+FOBZD, -(SP)

FI20EC
#FFINT+FOB2D, -(SP)

FL2DEC
#FFLNG+FOB2D, -(SP)

;
; Decimal to binary conversion.

-MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
JENDM

FDEC2X
AFFEXT+FODZB, -(SP)

FDEC2D
#FFDBL+FOD28B, ~(SP)

B-10

BRI SANE Engire H80C SANE Macros

MACRO FDEC2S
MOVE.W #FFSGL+FODZB, -(SP)
JSRFP
.ENDM

.MACRO FDECZC

MOVE.W #FFCOMP+FOD2B, -(SP)
JSRFP

_ENDM

.MACRO FDEC2I

MOVE.W #FFINT+FOD2B, -(SP)
JGRFP

_ENDM

MACRO FDEC2L

MOVE.W #FFLNG+FOD2B, —(SP)
JSRFP

ENDM

;

; Compare, not signaling invalid on unordered.

.MARCRO FCMPX

MOVE.W #FFEXT+FOCMP, -(SP)
JSRFP

.ENDM

MACRO FCMPD

MOVE.W #FFDBL+FOCMP, —(SP)
JGRFP

LENDM

MACRO FCMPS
MOVE.W #FFSGL+FOCMP, -(SP)
JSRFP
ENDM

MACRO FCMPC

MOVE.W #FFCOMP+FOCMP, -(SP)
JSRFP

_ENDM

MACRO FCMPI

MOVE.W #FFINT+FOCMP, -(SP)
JSRFP

JENDM

B-11

B0 SANE Engine B2 SANE Macros

MARCRO FCMPL

MOVE W #FFLNG+FOCMP, ~(SP)
JSRFP

JENDM

;

; Compare, signaling invalid on unoxdered.

MACRO FCPXX

MOVE.W #FFEXT+FOCPX, -(SP)
JSRFP

.ENDM

MACRO FCPXD

MOVE.W #FFDBL+FOCPX, -(SP)
JSRFP

.ENDM

.MACRO FCPXS

MOVE.W #FFSGL+FOCPX, -(SP)
JSRFP

.ENDM

MACRO FCPXC

MOVE.W #FFCOMP+FOCPX, -(SP)
JSRFP

LENDM

MACRD FCPXI

MOVE.W #FFINT+FOCPX, -(SP)
JSRFP

.ENDM

MACRO FCPXL

MOVE .W #FFLNG+FOCPX, —(SP)
JSRFP

-ENDM

The following macros define a set of so-called floating
branches. They presume that the appropriate compare
operation, macro FCMPz or FCPXz, precedes.

AR YR Y TR)

MACRO FBEQ
BE %1
{ENDM

B-12

8300 SANE Engine

FBLT
%1

FBLE
%1

FBGT
%1

FBGE
%1

FBULT
%1

FBULE
%1

FBUGT
%1

FBUGE
%1

%1

FBO

%1

%1

B-13

800 SANE Macros

8800 SANE Engine

MACRO FBUE
BEQ %1
BVS %1
.ENDM

.MACRO FBLG
BNE %1
BYC %1
.ENDM

53X SANE Mecros

; Short branch versions.

.MACRO FBEQS
BEQ.S %1
.ENDM

MACRO FBLTS
BCS.S %1
.ENDM

.MARCRO FBLES
BLS.S %1
.ENDM

.MARCRO FBGTS
BGT.S %1
.ENDM

.MARCRO FBGES
BGE.S %1
.ENDM

.MACRO FBULTS
BLT.S %1
ENDM

.MACRO FBULES
BLE.S %1
.ENDM

.MACRO FBUGTS
BHI.S %1
.ENDM

B-14

HRX SANE Engine B0 SANE Macros

.MACRO FBUGES
BCC.S %1
.ENDM

.MARCRO FBUS
BYS.S %1
.ENDM

.MARCRO FBOS
BvC.S %1
.ENDM

.MRCRO FBNE
BNE.S %1
-ENDM

.MACRO FBUES
BEQ.S %1
BvS.S %1
.ENDM

.MACRD FBLGS
BNE .S %1
BYC.S %1
.ENDM

;
; Class and sign inquiries.

FCSNAN EQU

1 ; signaling NAN

FCONAN EQU 2 ; Quiet NAN
FCINF (EQU 3 ; infinity
FCZERO -EQU 4 ; Zero
FCNORM -EQU 5 ; normal number
FCDENORM .EQU 6 ; denormal numbexr

.MACRO FCLASSS

MOVE W #FFSGL+FOCLASS, -(SP)

JERFP

.ENDM

.MACRO FCLASSD

MOVE .W #FFDBL+FOCLASS, -(SP)

JSRFP

.ENDM

B-15

B30 SANE Engine B30 SANE Macros

.MACRO FCLASSX

MOVE.W #FFEXT+FOCLASS, -(SP)
JSRFP

.ENDM

; Bit indexes for bytes of floating point environment word.

FBINVALID .EQU 0 ; invalid operation
FBUFLOW EQU 1 ; underflow

FBOFLOW EQU 2 ; overflow

FBDIVZER EQU 3 ; division by zero
FBINEXACT EQU 4 ; inexact

FBRNDLO -EQU 5 ; low bit of rounding mode
FBRNDHI EQU 6 ; high bit of rounding mode
FBLSTRND EQU 7 ; last round result bit
FEDBL -EQU 5 ; double precision control
FBSGL EQU 6 ; single precision control

; Get and set environment.

s

.MACRO FGETENY
MOVE. W #FOGETENY, -(SP)
JSRFP

.ENDM

.MRCRO FSETENY
MOVE W AFOSETENV, -(SP)
JSRFP

.ENDM

; Test and set exception.

MACRO FTESTXCP
MOVE .W #FOTESTXCP, -(SP)
JSRFP

.ENDM

.MARCRO FSETXCP
MOVE.W #FOSETXCP, -(SP)
JSRFP

.ENDM

B-16

8300 SANE Engine G800 SANE Macros

; Procedure entry and exit.

MACRO FPROCENTRY

MOVE.W #FOPROCENTRY, -(SP)
JSRFP

ENDM

MACRD FPROCEXIT

MOVE.W #FOPROCEXIT, -(SP)
JSRFP

LENDM

; Get and set halt vector.

.MACRO FGETHY

MOVE W #FOGETHY, -(SP)
JSRFP

{ENDM

MACRO FSETHY

MOVE W #FOSETHY, -(SP)
JSRFP

ENDM

; Elementary function operation code masks.

FOLNX EQU $0000

; base-e log
FOLOG2X EQU $0002 ; base-2 log
FOLN1X EQU 90004 ; 1n (1 + x)
FOLOG21X EQU 30006 ; logZ (1 + x)
FOEXPX .EQU $0008 ; base-e exponential
FOEXP2X EQU $000R ; base-2 exponential
FOEXP 1X EQU $000C ; exp (x) - 1
FOEXP21X EQU $000E ; exp2 (x) - 1
FOXPUWRI EQU $8010 ; integer exponentiation
FOXPWRY EQU $8012 ; general exponentiation
FOCOMPOUNDX EQU $C014 ; compound
FORNNUITYX EQU $C016 ; annuity
FOSINX .EQU 90018 ; sine
FOCOSX EQU $0018 ; cosine

B-17

BRXN SANE Engine SR0C SANE Macros

FOTANX EQU $001C ; tangent
FOATANX EQU $001E ; arctangent
FORANDOMX .EQU $0020 ; random

;
; Elementary function macros.

MACRO FLNX

MOVE.W #FOLNX, -(SP)
JSRELEMS

_ENDM

; base-e log

MACRO FLOG2X ; base-2 log
MOVE W #FOLOG2X, -(SP)

JSRELEMS

.ENDM

MACRO FLNIX ; In (1 +x)
MOVE.W #FOLN1X, -(SP)

JORELEMS

.ENDM

MACRO FLOG21X ; log2 (1 + x)
MOVE.W #FOLOG21X, —(SP)

JSRELEMS

JENDM

MARCRO FEXPX ; base-e exponential
MOVE.W #FOEXPX, -(SP)

JSRELEMS

-ENDM

MACRO FEXP2X ; base-2 exponential
MOVE.W #FOEXP2X, - (SP)

JSRELEMS

.ENDM

MACRO FEXP1X ; exp (x) -1
MOVE W #FOEXP1X, -(SP)

JSRELEMS

.ENDM

MARCRO FEXP21X ; exp2 (x) -1
MOVE .W #FOEXP21X, - (SP]

JORELEMS

ENDM

B-18

5000 SANE Engine SR SANE Macros

MACRO FXPURI ; integer exponential
MOVE W #FOXPWRI, -(SP)

JSRELEMS

.ENDNM

MACRO FXPUWRY ; general exponential
MOVE.W #FOXPWRY, -(SP)

JSRELEMS

.ENDM

.MARCRO FCOMPOLNDX ; compound
MOVE .W #FOCOMPOUNDX, - (SP)
JSRELEMS

{ENDM

MACRO FANNUITYX annuity
MOVE W #FORNNUITYX, - (SP)
JSRELEMS

_ENDM

.MARCRO FSINX ; sine
MOVE .4 #FOSINX, -(SP)
JSRELEMS

-ENDM

.MACRO FCOSX ; cosine
MOVE.W #FOCOSX, ~(SP)

JERELEMS

JENDM

-MARCRO FTANX ; tangent
MOVE.W #FOTANX, ~(SP)

JSRELEMS

-ENDM

MACRD FATANX ; arctangent
MOVE.W #FOATANX, -(SP)

JSRELEMS
" .ENDM

.MACRO FRANDOMX random number generator
MOVE W #FORANDOMX, - (SP)

JSRELEMS

.ENDM

B-18

88X SANE Engine

SR SANE Macros

; NeN codes.

NANSQRT .EQU 1 Invalid square root such as sgrt(-1).
NANADD .EQU 2 Invalid addition such as +INF - +INF.
NANDIY .EQU 4 Invalid division such as 0/0.

NANMUL EQU 8 Invalid multiply such as O * INF,

NANREM .EQU 9 Invalid remainder or mod such as x REM O.

NANASCBIN .EQU 17

NANZERO .EQU 21
NANTRIG .EQU 33
NANINVTRIG .EQU 34
NANLOG .EQU 36
NANPOWER .EQU 37
NANFINAN EQU 38
NANINIT .EQU 235

N N e e Ne Ne N e N S e ee Ne S

Attempt to convert invalid ASCII string.
Result of converting comp NeN to floating.
Attempt to create a NaN with a zero code.
Invalid argument to trig routine.

Invalid argument to inverse trig routine.
Invalid argument to log routine.

Invalid argument to x"i or x“y routine.
Invalid srgument to financial function.
Uninitislized storage.

4

58X SANE Engine Quick Reference Guide

68000 SANE
Quick Reference Guide

This Guide contains diagrams of the SANE data farmats and the 68K SANE
operations and environment word.

C.1 Data Formats

Each of the diagrams below is followed by the rules for evaluating the number
V.

In each field of each diagram, the leftmost bit is the msb and the rightmost is
the Isb.

Format Diagram Symbols

value of number

sign bit

biased exponent

explicit one's-bit (extended type only)
fraction

S0 <

Single: 32 Bits

1 8 23 widths
Is| e I f l

if 0 < e ¢ 295, then v = (-1)s * 2(e-127) * (1.f);

ife= Oand f =k/0 thenv = (~-1)s * 2(-126) * (0.f);

ife= Oandf =0, thenv=(-1)s*0;

ife=255&ndf=0 then v = (~1})s * oo;

if‘e=255andf=k-/0 then v is a NeN.

B SANE Engine Quick Reference Guids

Double: 64 Bits

1 11 52 widths
sl e | f |
if 0 ¢ e < 2047, then v = (-1)s * 2(e-1023) * (1.f);
ife = 0 and f =/ 0, then v = (-1)s * 2(-1022) * (0.f);
if e = Oand f =0, thenv = (-1)s * O;
if e = 2047 and f = 0, then v = (-1}s * oo;
if e = 2047 and f =/ 0, then v is a NaN
Comp: 64 Bits
1 63 widths
Is d |

if s =1and d = 0, then v is the unique comp NaN;
otherwise, v is the two's—-complement value of the
64-bit representation.

Extended: 80 Bits

1 15 1 63 widths
Is] e lil f |
if 0 <= e < 32767, then v = (-1)s * 2(e-16383) * (i.f);
if e = 32767 and f = 0, then v = (-1)s * oo, regardless of i;
if e = 32767 and f =/ 0, then v is a NaN, regardless of i.

630 SANE Engine Quick Reference Guide

C.2 Opexrations

In the operations below, the operation's mnemonic is followed by the opword in
parentheses: the first byte is the operation code; the second is the operand
format code. For some operations, the first byte of the opword (xx) is ignored.

C2.1 Abbreviations and Symbols

The symbols and abbreviations in this section closely parallel those in the text,
although some are shortened. In some cases, the same symbol has verious
meanings, depending on context.

Qperanas

DST destination operand (passed by address)
SRC source operand (passed by address), pushed before DST
SRC2 second source operand (passed by address), pushed before SRC

Data Types

extended (80 bits)
double (64 bits)
single (32 bits)
integer (16 bits)
longint (32 bits)
comp (64 bits)
Dec decimal Record
Decform decform Record

Or-=uoX

63000 Frocessor Registers

data register O

extend bit of processor status register
negative bit of processor status register
zero bit of processor status register
overflow bit of processor status register
carry bit of processor status register

0<NZ)<8

Exceptions

invalid operation
undexflow
overflow
divide-by-zero
inexact

For each opersation, an exception marked with x indicates that the operation will
signal the exception for some input.

XOOCH

B¢ SANE Engine Guick Reference Guide

Emvironment and Halls

EnwWrd SANE environment word (16-bit integer)
HltVetr SANE halt vector (32-bit longint)

C.2.2 Arithmetic Operations and Auxiliary Routines (Entry Point FP68K)

Operation Operands and Data Types Exceptions
ADD DST <—~ DST + SRC IUoDX
moox (0000) X X X X - X-x

ADDD (0800 X X D X - X - X
FRDDS {1000) X X S X - X=X
FADDC (3000) X X c X - X - X
FADDI (2000) X X 1 X =X~ X
FADDL (2800) X X L X - X% - x
SUBTRACT DST <«—— DST - SRC IU0DX
FSUBX (0002) X X X X - X - X
FSUBD (0802) X X D X -x-x
FSUBS (1002) X X 3 X=X -x
FSUBC (3002) X X c X — %X - X
FSUBI (2002) X X I X - X - X
FSUBL (2802) X X L X - x-x
MULTIPLY DST <«—— DST * SRC IUoDX
FMULX {0004) X X X XXX - X
FMULD (0804) X X D X X X - X
FMULS (1004) X A S X X X = X
FMULC (3004) X X C X - X~ X
FMULI (2004) X X I X - X - X
FMULL (2804) X X L X - X - X
DIVIDE DST <-- DST / SRC IUuUODX
FDIVX (0006) X X X XXX XX
FDIYD {0806) X X D X X X XX
FDIVS (1006) X X S X X X X X
FDIYC (3006) X X C X X - XX
FDIVI (2006) X X I XX - %X
FDIVL (2806) X X L X X = XX

C-4

B8O SANE Engine

SQUARE. ROOT
FSORTX (0012)

ROUND TO INT
FRINTX (0014)

TRUNC TO INT
FTINTX (0016)

REMATNDER
FREMX (000C)
FREMD (080C)
FREMS (100C)
FREMC (300C)
FREMI (200C)
FREML (280C)

LOG BINARY
FLOGBX (001R)

SCALE BINARY
FSCALBX (0018)

NEGATE
FNEGX (000D)

ABSOLUTE VALLE
FABSX {000F)

COPY-SIGN

FCPYSGNX (0011} XDorS

NEXT-AFTER

FNEXTX (0013)
FNEXTD (0813)
FNEXTS (1013)

8 XXXXXX%

<

<

DST
X

DST
X

SRC

SRC
X
D
S

{=—

=

sqrt(DST)
X
rnd(DST)
X
chop(DST)
X

DST REM SRC

X
X
X
X
X
X

MO X

integer quotient DST/SRC,
between -127 and +127

logb(DST)
X

DST * 2°SRC
X 1

-DST
X

|DST|

X
SRC with DST's sign
XDorS XDorS

next after SRC towsrd DST

X X
D D
S S

Guick Reference Guide

IU0DX
X ===

]
<
1 O
[|
= X

| I T TR S I =
[T O N N O o |
[T Y B N O
| R T I B B 4

O P X XK X

>
|
i

>
1

- e wm wm -

B30 SANE Engine Guick Reference Guids

C.23 Corwersions (Entry Point FP68K)

Operation QOperands and Data Types Exceptions
CONVERT

Bin to Bin DST <~-- SRC IuoDX
FX2X (0010) X X X - - ==
FX2D (0810) D X XX X=X
FX25 (1010) S X X XX - X
FX2C (3010) C X X = = =X
FX21 (2010) 1 X X - - - X
FX2L (2810) L X X - - =X
FD2X (OBOE) X D
FS2X (100E) X S X = = = =
FC2X (300E) X c emem-—-
FIZX (200E) X r e e .- -
FL2X {280E) X L e e .-
Bin to Dec DST <~ SRC according to SRC2 IU0DX
FXZDEC (000B) Dec X Decform X == =X
FDZDEC (080B) Dec D Decform X ---X
FSZ2DEC (100B) Dec s Decform X - ==X
FCZDEC (300B) Dec C Decform --=-=-X
FIZDEC (200B) Dec I Decform --——
FLZDEC (280B} Dec L Decform -—-—-—-x
(Fixrst SRC2 is pushed, then SRC, then DST.)

Dec to Bin DST <-- SRC Iuo0DX
FDEC2X (0009) X Dec - XX - X
FDEC2D (0809) D Dec - X Xx-X
FDEC2S (1009) S Dec -X X=X
FDEC2C (3009; C Dec X---X
FDEC2I (2009 I Dec X - ==X
FDEC2L (2809) L Dec X - ==X

B SANE Engine Luick Relerence Guide

C.24 Compare and Classify (Entry Point FP68K)
Operation Operands and Data Types Exceptions
COMPARE

No invalid Status Bits (-~ <relation> JUODX
for unoxrdered where DST <xelationy SRC

FCMPX (0008)
FCMPD (0808)
FCHMPS (1008)
FCMPC (3008)
FCMPI (2008)
FCMPL (2808)

HKHKXX XX
=Moo X
bR I
LI Y I I B |
| T O I B |
| T B I |
[N T I T A |

(invalid only for signaling NeN inputs)

Signal irwalid Status Bits (-~ <relation> IUoDX
if unordered where DST <(relation) SRC
FCPXX (000A) X X X ===~
FCPXD (080R) X D X = ===
FCPXS ({ 100R) X S X = ===
FCPXC (300R) X C X = - ==
FCPXI (200R) X I X ===
FCPXL (280R) X L X = = = =
{relation> Status Bits

XN Z VYV C
DST » SRC 0 0 0 00
DST < SRC 1100 1
DST = SRC 0 0 100
DST & SRC unordered 0 0 0 1 0

CLASSIFY {class> <{-- class of SRC JuobDX
¢sign> (- sign of SRC
DST <— [-1)"<sign> * <(class

FCLASSX (001C) I X meea-
FCLASSD (081C) I +
FCLASSS (101C) I § aeea-

B0 SANE Engine Guick Reference Guide

SRC {clase? | SRC ¢sign>

signaling NaN
quiet NeN
infinite

ZEexro
normalized
denoxrmalized

positive o]
negative 1

OV B LN

C.2.5 Ervironmental Control (Entry Point FP68K)

Operation Operands and Data Types Exceptions
GET ENVIRONMENT DST <-- Envird IUODX
FGETENY (0003)) S
SET ENVIRONMENT Envilxd <~ SRC IUO0ODX
FSETENY (0001) I XX XXX

(exceptions set by set-enviromment cannot cause halts)

TEST EXCEPTION Zbhit <-- SRC Xcps clear IUuoDX
FTESTXCP (001B))
SET EXCEPTION Envilrd <—~ Enviird AND SRC IUODX
FSETXCP (0015) I X X XXX
PROCEDURE. ENTRY DST ¢~ Enwird, Enwird <~ 0 I UOQODX
FPROCENTRY (0017) I X X XXX
PROCEDURE. EXIT Envidrd <~ SRC AND current Xcps I U O D X
FPROCEXIT (0019) 1 XX XXX

C-8

B8XQ SANE Engine Quick Reference Guide

C.26 Halt Control (Entry Point FP68K)

SET HALT VECTOR Hltvctr <~ SRC IU0DX
FSETHY (xx05) L e me -
GET HALT VECTOR DST <— HltVetr IU0ODX
FGETHY (0007) L e e e -

C.2.7 Elementary Functions (Entry Point ELEMS68K)

Operation Operands T Exceptio

BASE-E LOGARTTHM DST <¢-—- 1n(DST) IU0DX
FLNX (0000) X X X =- = XX
BASE-2 LOGARITHM DST <(— 1log2(DST) IUDDX
FLOG2X (0002) X X X - =X X
BASE-E LOG1 (LN1) DST <~ 1n(1+DST) IUDDX
FLNIX (0004) X X XX - XX
BASE-2 LOG1 DST <-— 1log2(1+DST) I1U0DX
FLOG21X (0006) X X XX - XX
BASE-E EXPONENTIAL DST <— e"DST I1U0DX
FEXPX (0008) X X XXX - X
BASE-Z EXPONENTIAL DST «¢-- 2°DST IU0DX
FEXP2X (000A) A X X XXX - X
BASE-E BEXP1 DST (- e™sT - 1 IUO0DX
FEXP1X {000C) X X XXX - X
BASE-2 EXP1 DST (- 2°DST - 1 IUoDX
FEXP21X (OO0E) X X X XX - X

BR0Q SANE Engine Quick Reference Guide

INTEGER EXPONENTIATION DST <-- DST"SRC IUoDX
FXPURI (8010) X X I X X XXX
GENERAL EXPPONENTIATION DST (-~ DST"SRC IUoDX
FXPWRY (8012) X X X X X XXX
COMPOLRND INTEREST DST <(— compound(SRC2, SRC) IUODX
FCOMPOUND (C014) X X X XX XXX
(SRC2 is the rate; SRC is the number of periods.)
ANNUITY FACTOR DST <— annuity(SRC2, SRC) IU0DX
FANNUITY (C016) X X X XX XXX
{SRC2 is the rate; SRC is the number of pexriods.)
SINE DST <¢— sin(DST) I1U0DX
FSINX (0018) X X X X =~ X
COSINE DST <— cos(DST) IUODX
FCOSX (001R) X X X X - =X
TANGENT DST <—- tan(DST) IUO0ODX
FTANX (001C) X X X X - XX
ARCTANGENT DST <— atan{DST) IU0DX
FATANX (001E) X X X X =--X
RANDOM DST <— random(DST) IUuoDX
X X X X X=X

FRANDX (0020)

C-10

BRXX? SANE Engine Quick Reference Guide

C.3 Emwironment Word

The floating-point environment is encoded in the 16-bit integer format as shown
below in hexadecimal:

Imsb | 1sb
I-lrlrlxldIOIUliII-lRIRlXIDIDlUIIl
rounding exception rounding halt
direction flags precision enables
rounding direction, bits 6000 Ir
Q000 — to-nearest
2000 —- upward

4000 —— downwsard
6000 —~ toward-zero

exception flags, bits 1F0O

0100 — invalid i
0200 — undexflow u
0400 — overflow o
0800 —- division-by-zero d
1000 -~ inexact X
rounding precision, bits 0060 RR
0000 -~ extended
0020 — double
0040 -~ single
0060 — UNDEFINED
halt enabled, bits O0IF
0001 —- invalid 1
0002 —— undexrflow U
0004 — overflow 0
Q0008 — division-by-zerc D
0010 —- inexact X

Bits 8000 and 0080 are undefined.
Note that the default environment is represented by the integer value zero.

c-11

W

Functional Arees cccem—e—————————
2.1 Inmitialization ... oo iieieeeaaa,
2.2 String and Character Manipulation
2.3 File Name Manipulation.o
24 Prompling ..o irieeieeeeeecreeraaeaaaeaas
25 Error Text Retreival
2.6 Workshop SUpport ..o i
AT S 0014 Y- €3 1 4 -~ S

The StdUnit Unit

1 Introduction
StdUnit is the "Standard Unit," an intringic unit that provides a number of
standard functions. It contains functions dealing with:

= Character and string manipulartion.
= File name manipulation.

= Prompting.

= Error messages.

= Special Warkshop features.

= Conversions.

Workshop tools should use the unit wherever possible, especially for
prompting and Operating System error reporting, to make the Workshop
interface consistent.

Note: All names in StdUnit begin with the letters SU. This avoids name
conflicts when incorporating the unit into your code and identifies where
things come from.

2 Functional Areas

2.1 Initialization
StdUnit needs to be initialized before it can be used. Using the unit without
initializing it will often result in an address or bus error.

2.2 String and Character Manipulation
StdUnit provides a standard string type, SUStr; a type for sets of characters;
definitions for several standard characters (such as CR and BS); and
procedures for case conversion, trimming blanks, and appending strings and
characters.

23 File Name Manipulation
File name functions let you determine if a pathname is & volume or device
name only; add extensions (such as .TEXT) to the file names (the procedure
knows the conventions about when extensions should and should not be
added); splitting & pathname into its three basic components--the device,
volume, oar catalog component, the file name component, and the extension
component; putting the components back together into a file name; and
modifying a file name given optional defaults for missing volume, file or
extension components.

Note: Several of the procedures return overflow flags for identifying when a
file name component hes exceeded its character limit. You may choose to

Lisg Sysiem Softwere Slendard Lt

ignore the overflow condition, particularly if you think it likely to occur only
in perverse circumstances.

Note: The string pasrameters to these procedures are typed differently,
sometimes SUStr's, or YAR SUStr's, or SUStrP's {pointers to SUStr's). This is
to avoid problems with Pascal string typing when using the procedures with
strings that are not SUStr's {e.g., PathName's), and to take into account the
cases in which the parameters are likely to be string constants.

24 Pr
StdUnit provides a number of procedures to get characters, strings, file
names, integers, yes/no responses, etc.,, from the console, providing for
default values where appropriate.

Most of the prompting procedures return a PrompState indicating whether an
escape [CLEAR] was typed, whether the default was taken, or whether there
was a request for options with 2. The states returned are given for each
procedure. You can ignore the prompt states you are not interested in. For
example, if you don't want to treat ? as an option request, you can ignore
the SUOptions state and not treat the ? returned as a special character.

25 Ermror Text Retrieval
StdUnit provides a mechanism to retrieve single-line error messages from
specially formatted errar files. Error messages can be looked up by number
in one or more error files.

You can use the OS error file OSErrs ERR to return a real message when an
OS error occurs (see Example 2, below). Note that OS errars are also
returned via Pascal’'s IORESULT.

The ErrTool program lets you make your own compacted message files.
Using this error mechanism, you can add and rnodify messages without
recompiling your program. ErrTool is described in the Warkstop Lser's
Guide, Chapter 11, The Utilities.

A call to retrieve a message opens the error file, searches the directory for
the error number, finds location of the message, and returne the text.

A program can use StdUnit to access more than one error file
simultaneously. For example, yvour program can access different files far O8
error messages and your own messages.

26 Waorkshop Support
Special Workshop functions let you:
= Stop the execution of an EXEC file in progress.
= Find out the name of the boot and current prefix volumes (SysVols).
= Use a super-RESET that will try to open a file first on the prefix
volume, then on the boot volume, then on the current process volume.

1-2

Lisa Sysiem Software Standard L

27 Conversions
Conversion procedures let you convert from integers and longints to strings,
and from strings to integers and longints.

3 Examples
Exarnple 1

Assume we are going to prompt for an output file name (OutFNarme) and that
we already have the input file name (InFName). We will use SUSplitFN to
split the input file name into its various components. Then we will prompt
for the output file name (with SUGetFN) using the volume and file name
components of the input file name as defaults but with a .ERR extension.
We then do a CASE on the prompt state (PState) returned by SUGetFN. The
will terminate if the file specification is an escape [CLEAR); say that no
option are available if ? is typed as an option request; prornpt again if no
file is specified, since we want to require an output file; and fall through if
the default is accepted or some other file is specified. Note that we only
have to check for the prompt states we are interested in for special
handling.

9999
WRITE ('Neme of Exror Output File '};
SUSplitFN (@InFName, @VolN, 8FN, @Ext);
StGetFN (@0utfName, PState, VolN, FN, '.ERR');
CASE PState OF
SlEscape: EXIT (ExxFileP); {exit from program}
SUlptions: BEGIN
WRITELN ('No options are available. ');
GOTD 9999.
END;
SUNone: GOTO 9999;
END; ({CASE}

Lisa System Software SRandera Linit

Example 2

Suppose we have just made a Pascal 1/0 call and want to report an error
(along with the OS message text) if we receive a nonzero IORESULT. Note
that we copy IORESULT into our 10Status varieble so that the subsequent
WRITELN will not reset the value of IORESUILT before we get a chance to
use it. (EMsg should be a SUStr.)

IF IORESULT <> 0 THEN
BEGIN

I0Status := IORESULT;
WRITELN ('Error opening input file.');
SUExrText ('OsExxrs.ERR’, 10Status, @EMsg);
WRITELN (EMsg);

END;

Lisa System Software Stenderd Linit

4 Intexface

SU:Stdunit
Copyright 1983, 1984, Apple Computer, Inc.

This unit provides a number of standard type definitions and a collection
of procedures which pexrform a variety of common functions. The areas
covered are:

(1) String and Character manipulation

(2) File Name Manipulation

(3) Prompting

(4) Retrieval of messages from disk

(5) Development System Support

(6) Conversions

Fred Forsman 4-25-84

e ! et N S St g A mtgan? Nt e St Mg Sl

{$SETC For0S1lorHigher := TRUE}
{$R-} { make it fast, no range checking }

{$S SULib }
UNIT StdUnit;
INTRINSIC;
INTERFACE

USES ,
!$U 1ib0S/SysCall .obj } SysCall, { for definition of PathName, etc. }
$U 1ibPL/PasLibCall.obj } PasLibCall,
{$U 1libPL/PPasLibC.obj PPasLibC;

CONST
StMaxStrLeng = 255;
SUNullStx ="',
SUSpace ="'’
SUOxdCR = 13;
SMaxPNLeng = 66; { max length of path name }
SUMax¥NLeng = 33; { max length of volume name, includes leading '-' }
SUMaxFNLeng = 32; { maximum length of file name }
SWolSuffix = '-'; { suffix or end of device or volume name }

TYPE
SUSetOfChaxr = SET OF CHAR;
sustrP = “SUStr;

1-5

Liss S\stem Soflwere Standerd Lnit

SUStxP = “SUStr;

SUStr = STRING[255];

SUVolName = STRING [SUMaxVNLeng];

SUFile = FILE;

SUFileP = “SUFile;

PromptState = (SUDefault, { the default (if any) was chosen) }
SUEscape, { the "Clear” key was pressed }
SUNone, { nothing specified in response to prompt }
SU0ptions, { "?" was entered--ie, an option guery }
SUvalid, { valid reponse } .
?UInvalid { invalid reponse—eg, non-number to SUGetInt}

ExrTextRet = (SUOK, { successful }
SUBadEFOpen, { could not open error file }
SUBadEFRead, { error resding error file }
?UErrhNotFound { error number not found }

ConvNState = (SUvalidN, { valid number }
SUNoN, { no number —- nothing specified }
SUBadN, { invalid number }
SUNOverFlow { overflow — number too big }

VAR

SUOsBootY : SUVolName; { The volume the 0S was booted from }
SUMyProcy : SU¥olName; { The volume MyProcess was started from }
SUBell, SUBackSpace, SUCr, SUTab, SUEsc,

SUDle, SUNul : CHAR; { predefined ch vars } {ff 1/23/84)
SUNul1sS : SUStr; { predefined stxr ver }
SiKeyBoard : INTERACTIVE; { non-echoing console, used by SUGetCh }
: {ff 2/29/84}

{ == INIT AND DONE == ===}

PROCEDURE SUInit;
{ Should be called before using rest of unit. On the 0S5 this opens
"-KeyBoard". It also initislizes the standerd character variables. }

PROCEDURE SUDone;
{ Can be called when done using unit {although this is not strictly
necessary. On the 0S this closes "-KeyBoard". }

{=====zcsce=s s==s==s===z==== STRINGS AND CHARS ========== }

FUNCTION SUUpCh (Ch : CHAR) : CHAR;
{ SUJpCh}returns the ch that was passed, uppercased if it was lower
case.

Lisa System Software SKandard Linit

FUNCTION SULowCh (Ch : CHAR) : CHAR;
{ SULowCI; returns the ch that was passed, lowercased if it was upper
case.

PROCEDURE SUWUpStr (S: SUStrP);
{ SUUpStr uppercases the string that is passed. }

PROCEDURE SULowStr (S: SUStrP);
{ SULowStr lowercases the stxing that is passed. }

FUNCTION SUEqStr (Si: SUStxP; S2: SUStrP) : BDOLERN; {ff 2/29/84}
{ SUEgStr returns TRUE if the two strings are equal (ignoring case}. }
FUNCTION SUEq2Str (S1: SUStxP; S2: SUStr) : BOOLEAN; {rf 3/7/84}

{ SUEq2Str returns TRUE if the two strings are equal (ignoring case).
This variant of SUEgStr allows the second parameter to be s constant.}

PROCEDURE, SUTrimLeading (S: SUStrP); {ff 2/29/84}
{ SUTrimLeading removes the leading blanks and tabs in the passed
string. }
PROCEDURE SUTrimTrailing (S: SUStrP); {ff 2/29/84}
{ SUTrimTr?iling removes the trailing blanks and tabs in the passed
string.

PROCEDURE SUTrimBlanks (S: SUStrP);
{ SUTrimBlanks removes leading and trailing blanks and tabs in the
passed string. }

PROCEDURE SURddCh (S: SUStrP; Ch : CHAR; MaxStrleng : INTEGER;
¥YAR OvexFlow : BOOLEAN);
{ SUAdACh appends the passed ch to the end of the passed string.
OverFlow is set to TRUE if adding the ch will cause the string to be
longer than MaxStrleng. }

PROCEDURE SUConcat (S1: SUStrP; S2: SUStrP);
{ SUConcat appends the second passed str to the end of the first passed
string. It is assumed that the target string is of sufficient size to
accomodate the new value. }

PROCEDURE SUAddStr (S1: SUStrP; S2: SUStrP; MaxStrLeng : INTEGER;
VAR Overflow : BOOLEAN);
{ SUAddStr appends the second passed str to the end of the first passed
string. OverFlow is set to TRUE if adding the second string will
cause the resulting string to be longer than MaxStrieng. }

Lisa S\stem Soflware SKandard Unit

PROCEDURE SUSetStr (Dest: SUStrP; Src: SUStrP);
{ SUsetStr sets the target string (Dest) to the given value (Src) by

copying the value onto the target. It is assumed that the target
string is of sufficient size to accomodate the new value. }

PROCEDURE SUCopyStr (Dest: SUStrP; Src: SUStrP; Start, Count: INTEGER);
{ SUCopyStr sets the destination string (Dest) to the specified

substring of the source string (Src) by copying the appropriate psart
of the source to the destination. It is assumed that the destination
string is of sufficient size to accomodate the new value, and that the
Start and Count values are reasonable. }

{==

= FILE NAMES ==s==== === }

FUNCTION SUIsVolName (FN: SUStrP): BOOLEAN;
{ SUIsVolName returns a boolesn indicating whether the passed file name,

FN, is a volume or device neme (i.e., not a full file name) }

PROCEDURE SUVolPart (PathN: SUStrP; VolN: SUStrP); {ff 2/29/84}
{ SUVolPart extracts the volume name part of a pathneme (or catalog

specification). }

PROCEDURE SURddExtension (FN: SUStrP; DefExt:. SUStr;

MexStrieng: INTEGER; VAR OverFlow: BOOLEAN);

{ SURddExtension will add the default extension, DefExt, to the end of

the file name, S, if the extension is not already present. If the
file name ends with a dot, the dot will be removed and no extension
will be added. If the pathname is a device or volume name only no
extension will be added. OverfFlow is set true if adding the extension
will overflow the string (determined using MaxStrieng). }

PROCEDURE SUSplitFN (PathN: SUStrP; CatN: SUStrP; FN: SUStrP;

Ext: SUStrP);

{ SUSplitFN splits a PathName into its catalog, file nsme, and file

name extension components. }

PROCEDURE SUMakeFN (PathN: SUStrP; CatN: SUStxP; FN: SUStrP; Ext: SUStr;

VAR OverFlow: BOOLEAN);

{ SUMakeFN constructs a PathName from its catalog, file name, and

file name extension components. The OS CatN's are assumed to have a
leading "-". Overflow is set if any of the file name components are
too long. This procedure will not create a file name over StMaxPNLeng
chars long.} :

PROCEDURE SUChKFN (FN: SUStrP; VAR PState: PromptState; Defvol: SUStr;

DeffN: SUStr; DefExt: SUStr);

{ SUChKFN checks a file name specification, putting result type in

Lisa Sysiern Softwsre

Kandard Lt

PState. If no file name is given, then DefFN is used. If FN does not

have DefExt

in it, th

en the extension is appended. If no volume is

specifed then the Defvol is used. PState is set appropriately:
SUOptions
SUDefault
SUNone

PState
PState
PState

PState

PState =

SUInvalid

SUvalid

if '?' is hit to ask for options

if nothing specified when a default is present
if default overriden with '\' or if CR with no
default

if one or moxre of the file name components
overflowed

otherwise }

PROCEDURE SUGetCh (VAR Ch: CHAR);
{ SUGetCh reads a character from the console without echoing it and }
{ without interpreting <cr> ss <(sp>, as Read (Ch) does. }

PROCEDURE SUGetLine [S: SUStrP; VAR PState: PromptState):
{ SUGetLine reads a line from the console & character at a time,
pexforming its own line editing. PState is set appropriately:
SUEscape i
Suvalid o

PState
PState

f <clear> was hit.
therwise. }

PROCEDURE SUGetSty (S: SUStrP; VAR PState: PromptState; Def¥al: SUStr);
{ SUGetStr reads a string from the console; it is like SUGetLine with
the addition of defaults. PState is set appropriately:
PState = SUDefault if {cr> only was hit; S is set to Defval.
SUEscspe i
SUvalid o

PState
PState

nn

f <clear> was the first character hit.
therwise. }

PROCEDURE SUGetFN (FN: SUStrP, VAR PState: PromptState; Defvol: SUStr;
DeffN: SUStr; DefExt: SUStr);

{ SUGetFN reads a file nsme from the console, with result type in
SUGetFN will print out any defaults in bhrackets (such as
[FO0] [.TEXT]) before prompting for the file name. If no file name
is given, then DeffN is used. If FN does not have DefExt in it,
then the extension is sppended. If no volume is specifed then the
DefyYol is used. PSt

PState.

PState
PState
PState
PState

PState
PState

nuwun

SUEscape
SUQptions
SUDefault
SUNone

SUlnvalid
SUvalid

ate is set appropriately:
if <{clesr> hit
if '?' is hit to ask for options
if nothing specified when a default is present
if default overriden with '\' or if CR with no
default
if one ox more of the file name components
overflowed
otherwise }

Lisg System Software SRanderd Lnil

PROCEDURE SUGetInt (VAR I. INTEGER; VAR PState: PromptState;
Defval: INTEGER);
{ SUGetInt reads an INTEGER from the console, with PState set as in
SUGetStr, except that PState = SUInvalid when & non-numeric is input.}

PROCEDURE StMaitEscOrSp (VAR PState: PromptState);

{ SiMaitEscOrSp prints a message 'Type (space) to continue, <(clear> to
exit.' & waits for the user to hit & (sp> or <clear>, setting PState
appropriately:

PState = SUEscape if <clear> was hit
PState = SUvalid if <sp> was hit }

PROCEDURE SUMaitSp;

{ SWaitSp prints a message ('Type <space) to continue.') and waits for
the user to hit a <sp)>. }

PROCEDURE SUGetChInSet (VAR Ch: CHAR; Chars: SUSetOfChar);
{ SUGetChInSet reads characters from the console (without echoing) until
a character from the given set is typed. The accepted character is

echoed}and an end-of-line is written. The charactex matching ignores
case.

FUNCTION SUGetYesNo : BODLEAN;
{ SUGetYesNo prints the message "(Y or N)" and reads charscters from the
console (without echoing)} until a 'y', 'Y', 'n’, or 'N' is typed. If
a'y' is typed "Yes" will be printed followed by an end-of-line; if

n' is typed "No" will be printed. The appropriate boolean value is
returned. }

FUNCTION SUGetBool (Default: BOOLEAN): BOOLEAN;

{ SUGetBool prints the message "(Y or N) [<default>]"” and reads
cheracters from the console (without echoing) until a 'y', 'Y', 'n’,
'N', spsce or return is typed. If a 'y' is typed "Yes" will be
printed in the place of the default. If 'n' is typed "No" will be
printed. If a space or return is typed the default is used. The
appropriate hoolean value is returned. }

e s === ERROR TEXT RETRIEVAL ssuszessssssssss =}

PROCEDURE SUGetExxText (ErrFN: SUStr; ExxN: INTEGER; ExxMsg: SUStxP;
VAR ErrRet: ExrrTextRet);
{ SUGetExrrText retrieves error message text, given an error number and
and error file to look the error up in. The exrror file should have

been generated by the exrror file processor. SUGetErrText use
SUSysReset to open the error file. }

PROCEDURE SUErrText (ExrFN: SUStr; ErrN: INTEGER; ErrMsg: SUStrP);

1-10

Lisa Systermn Soflware RKeandard Linit

{ SUExrText retrieves error message text, just as does SUGetErxText;
however, if the text is not obtainable due to a non-SUOk ErrRet value
from SUErrText, SUErrText will return the string

"Exrror message text not availsble." }

{ DEY. SYS. SUPPORT }

PROCEDURE SUStopExec (YAR ErrNum: INTEGER);

{ Should be called to stop the current exec file if an error occurs in a
progrem running under an exec. Returns any error conditions
encountered in closing the exec file in the errnum var parameter.
Informs the shell that the exec file was terminated due to an exrror. }

PROCEDURE SUCloseExec (VAR ExrNum: INTEGER); ({ff 3/7/B4})

{ Should be called to stop the current exec file only if you want to do
so without informing the shell that the exec file was terminated due
to an exror. You should probably use SUStopExec unless you have &
good reason to use this alternate version. }

PROCEDURE SUInitSysYols;

{ Initializes "SUMyProcV" and "SUQsBootV"”, the name of the volume on
which my process was created and the name of the volume which the 0S
was booted off of. A message may be printed if there is trouble
getting this information from the 0S. This can be called more than
once; it will only make the 0S calls the first time.)}

PROCEDURE SUSysReset (F : SUFileP; FN : SUStr; VAR I0Status : INTEGER);

{ SUSysReset is for opening system files, and will try the prefix, boot,
and current process volumes (in that order) when trying to access a
file. SUSysReset assumes that the file name FN does not have & volume
name. SUSysReset may sometimes have to call SUInitSysVols. }

{== = === CONVERSIONS ========s=s=== - =}

PROCEDURE SUIntToStr (N : INTEGER; S : SUStrP);
{ SUIntToStr converts an integer into its string form; The string which
S points to should be of length >= 6 (5 digits + sign). }

PROCEDURE SULIntToStr (N : LONGINT; S : SUStrP);
{ SULIntToStr converts an longint into its string form; The string
which S points to should be of length »= 11 (10 digits + sign). }

PROCEDURE SUStrToInt (NS : SUStrP; VAR N : INTEGER;
VAR CState : ConvNState);
{ sustrToInt converts a string to an INTEGER. Leading and trailing
blanks and tabs are permitted. A leading sign ['-', '+'] is
permitted. The CState varisble (conversion state) will be set to

i-11

Lisa System Softwere Standard Lnit

indicate if the number was valid, if no number was present, if an
invalid number was specified, or if the number overflowed. }

PROCEDURE SUStxrToLInt (NS : SUStrP; VAR N : LONGINT;
VAR CState : ConvNState); :
{ SUStrToLInt converts & string to a LONGINT. It behaves just like
SUStrTolnt otherwise. }

1-12

The ProgComm Unit

Contents

i

2 Set-Next-Run and the Return Stringooiimiimimiiiii i,
.3 The Communications Bufferooiiiiiiiiiii i iiiieiereaeennnas
4 Reading from and Writing to the Comnmunications Buffer
5 Internal Warkshop Function oo ieierans

The ProgComm Unit

1 Introduction
ProgComm is an intringic unit in SULib that allows programs to communicate

with the shell and with other programs. Three bssic mechanisms are
provided:

s Sel-Next-Run Commasand. A program can tell the Workshop shell what
to run next. The specified program will be run after the current
program is done, taking precedence over even an exec file in progress.

» The Frogram Retiurn Siring. The return string can be set by your
program and accessed from the exec processor (via the RETSTR
function). This allows exec scripts to be written that make choices
besed on program results.

s The Communicsetion BufYer. The communication buffer is a 1K byte
buffer global to the Workshop for communication between programs. A
set of primitives supparting character- and line-oriented 1/0 to and
from the buffer is provided.

These mechanisms can be used in conjunction with each other. For example,
8 program can write a series of invocation arguments to the communication
buffer and then tell the shell which program to run next. This second
program can check the cormmunication buffer to find its erguments.
Programs can be writien so that, by convention, they first check the
communication buffer for their arguments, and then prompt for input from
the console only if the arguments are not found in the buffer.

2 ProgComm Routines
This section describes the ProgComm unit interface.

2.1 Initializetion
The PCInit procedure initializes the ProgComm unit so that a program may
use it.
Procedure PClnit;
PCInit should be called before using the ProgComm unit. The program's
return string (RETSTR in the exec language) is initialized to the null string.

22 Set-Next-Run and the Return String
The PCSetRunCmd and PCSetRetStr procedures let a program set what
program will run next and pass back a return string to the exec processor.
The SUStr type comes from the Standard Unit (StdUnit in SULib), which
provides a number of string-manipulation routines.

Lisa System Software Froglornim

Procedure PCSetRunCmd (RC - SUStr);

PCSetRunCmd lets a program tell the shell what program or exec file to run
after the current program terminates, allowing program chaining. RC, the
run command passed to PCSetRunCmd, should be & string with the same
program pathname or exec file invocation you would give to the Workshop
Run command. The run command set in this way will take precedence over
any keyboard type-ahead and over any pending exec file commands.

If you want to use PCSetRunCmd to run a Workshop tool normally invoked
from the Workshop menu line, set RC to the two-character string consisting
of an escape (CHR(27)) and the appropriate menu command letter. This is
necessary because typing £to irvoke the Editor is not always the same as
saying Run Editor.0BJ. The Run command looks for Editor.OBJ on the three
prefix volumes, while the E menu command looks on the Workshop boot
volume first and then on the prefix volumes. (Note that only some items in
the Workshop menu are actually seperate tools that can be Run.)

Starting to run an exec file while you sre already running another exec file
causes the first one to be terminated so the second can run. This means
that if exec file A runs program P, and P calls PCSetRunCmd to run exec
file B, then, when program P terminates, exec file A will also be terminated
so exec file B can run. Exec file A will not be resumed when exec file B
has completed.

Procedure PCSetRetStr (RS : SUStr);

PCSetRetStr lets a program set a return string that can be accessed through
the exec processor's RETSTR function. This lets exec files make choices
based on information passed back to the shell by cooperating programs. How
the return string is used and interpreted is up to you, and depends on what
sort of information you want to pass back to the exec processor.

23 The Communication Buffer
The following procedures and functlons operste on the comrnunication buttfer,
a 1K byte buffer global to the Workshop shell (that is, it stays around
between program invocations). The buffer can hold any type of information;
a standard set of functions is provided for Pascallike character- or
line-oriented access to the buffer.

Following are some constant, type, and veriable declarations from the
ProgComm interface which relate to the communication buffer.

CONST
{ communication buffer content types }
PCNone = -1; { nothing in buffer }
PCAny =0 { for PCReset to match any content type }
PCText =1; { text, as supported by PCGets & PCPuts }
PCBufiMax = 1023; { max buffer index, ie, bufr is 1K bytes }

Lisa Systemn Softweare FrogCornm

TYPE

PCBufsP = “PCBufr; { pointer to bufr }

PCBufr = PACKED ARRAY [0._PCBufrMax] OF CHAR;
VAR

PCBufxPtr - PCBufrP; { points to bufr after successful open }

The communication buffer is given a {}pe when it is opened for writing with
PCReWwrite. This type will be used to determine whether a potential reader
trying to open the buffer with PCReset will be successful. The intent is to
prevent reading of the buffer when the contents are not of the type expected
by the reader. Three predefined constants are provided for buffer-typing:
PCNone means that the buffer has no contents; PCText means that the buffer
contains standard text with CR line delimiters; and PCAny matches any type,
allowing a reader to override the typing mechanism. Other buffer content
types (such as mouse events) may be defined by users, choosing a number to
identify the new type that doesn't conflict with the predefined types. The
only restriction is that communicating programs must have compatible
conventions. To use the buffer for something other than text, use PCBufrPtr
to acce)ss the buffer (using whatever means of interpretation of the buffer is
desired). :

The buffer also has an access key, which functions in much the same way as
the content type (i.e.,, writers set it and readers must match it to gain access
to the buffer). The intent of the access key is to prevent programs from
reading the buffer when they are not the intended recipient. The access key
should be established by agreement between communiceting programs. If a
buffer writer does not care about preventing unintended access to the buffer,
the null string can be used for the access key. Note that the access key is
case sensitive.

Following are the routines for opening and closing the communication buffer.

Procedure PCReWrite (WriteType: INTEGER: Key: SUStr);

PCReWrite opens the communication buffer for writing. The content type
and access key are set. PCBufrPtr is set to point to start of the
communication buffer. A PCReWrite will override any previous use of the
buffer; that is, it will flush any previous buffer contents. WriteType should
be an integer identifying the type of data you plan to write to the buffer. If
you are planning to use the text-oriented primitives provided, WriteType
should be PCText; otherwise, WriteType should be some integer established
by agreement between the communiceting programs. Key should be a string
also established by agreement between the communicating programe. A
useful form of key is one thet identifies the intended recipient, so that
contents left in the buffer are not read inadvertently by programs for which
they were not intended.

1-3

Lise Syslem Soflware Froglommn

Function PCReset (ReadType: INTEGER; Key- SUStr): BOOLEAN:

PCReset opens the buffer for reading. The boolean result will indicate
whether the open was successful. The open will fail if ReadType does not
match the type set by the last buffer writer or if Key does not match the
key set by the last writer.

Function PCClose (KillBufr: BOOLEAN; Key: SUStr): BOOLEAN:

PCClose will close (or empty) the communication buffer. If KillBufr is true,
the buffer will be emptied. In general, the buffer can be read more than
once (by multiple readers) if desired. If a reader is finished with the buffer
and knows that no one else should read the buffer, PCClose should be called
with KillBufr set to true. The call to PCClose will fail if the access key
does not match. PCClose may be used to flush buffers that were written by
someone else, as long &8s you know the access key. PCClose may be called
without calling PCReset or PCReWwrite first.

24 Reading from and Writing to the Communication Buffer
The following functions provide a text-oriented buffer facility with Pascallike
cheracter- and line-oriented reads and writes.

Function PCPutCh (Ch: CHAR): BOOLEAN;

PCPutCh puts a character into the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is full or if the
buffer wes never opened successfully for writing. Note that PCPutCh{CR) is
equivalent to PCPutLine(").

Function PCGetCh (VAR Ch: CHAR): BOOLEAN;

PCGetCh gets a character from the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is ernpty or if
the buffer was never opened successfully for reading.

Function PCPutLine (L: SUStr):: BOOLEAN;

PCPutLine puts a line into the buffer. A CR is put in the buffer following
the string passed to PCPutLine. The boolean result indicates whether the
operation was successful. It fails if the buffer is full or if the buffer was
never opened successfully for writing.

Function PCGetLine (VAR L: SUStr): BOOLEAN;

PCGetlLine gets a line from the buffer, where a line is the text from the
current buffer pointer to the next CR or the end of file (whichever comes
first). The boolean result indicetes whether the operation wes successful. It
fails if the buffer is empty or if the buffer was never opened successfully
for reading.

1-4

Lisa System Software FrogCormm

25 Internal Workshop Function
You will notice the following function in the ProgComm interface; it is used
for special-purpose communication between the Workshop shell and various
Workshop tools.
Function PCShellCmd (Cmd- INTEGER; P- SUStrP): BOOLEAN;
For internal use by Workshop tools only. Don't use this function.

1-5

Lisg Svsiem Softweare Froglormimn

3 Interface
INTERFACE
USES

{$U StdUnit } StdUnit,
{$U ShellComm } ShellComm;

CONST
{ communication buffer content types for use with PCReset and PCReWrite }
PCNone = -1; { nothing in buffer }
PCAny = 0; { for PCReset to match any buffer content type }
PCText = 1; { text, as supported by PCGet's and PCPut's below }
PCBufrMax = 1023, { max Bufr index, ie, comm bufr is 1K bytes }

{ command constants for PCShellCmd }
PC_SetReallyStop = I; { detexmines if SUStopExec really stops exec

files } {ff 3/7/84}
PC_GetReallyStop
PC_SetUnSavedEdits

2;
6960; { tells if unsaved edits are left in the

editor } {ff 3/12/84}
PC_GetUnSavedEdits = 8731;
TYPE
PCBufrP = “PCBufr; { ptxr to communication buffer }
PCBufr = PACKED ARRAY [0..PCBufrMax] OF CHAR;
VAR
PCBufrPtr : PCBufrP; { will point to PCBufr after successful PCReset or

PCReWrite }

PROCEDURE PCInit;

{ PCInit should be called hefoxe using the ProgComm unit. One effect of
note is i}:hat the program's return string (RetStr) is initialized to the null
string.

PROCEDURE PCSetRunCmd (RC : SUStr);

{ PCSetRunCmd enables a program to tell the shell what program (or exec
file) to run after the current progrem terminates, which allows progrem
“chaining”. The run command set in this way will tske precedence over any
keyboard type-shead and over sny pending exec file commands. }

PROCEDURE PCSetRetStr (RS : SUStr);

{ PCSetRetStr allows a program to set a return string which may be
accessed via the Exec Processor’'s RETSTR funciton. This sllows exec files to
make choices based on information passed back to the shell by cooperating

Lisa System Software FrogCornm

programs. How the return string should be used and interpreted is up to you,
and will depend on what sort of information you want to pass back to the exec
processor. (But in order to be a good citizen it is probably best to follow
whatever system-wide conventions emerge and prevail.) }

{ The following procedures and function operate on the COMMUNICATION BUFFER,
which is a 1K byte buffer which is global to the Workshop shell. The buffer
can hold essentially any type of information, but a standard set of functions
is provided for Pascal-like character or line-oriented access to the buffer.

The communication buffer is given a TYPE when it is opened for writing
with PCReWrite. This type will be used to determine whether a potential
reader trying to open the buffer with PCReset will be successful. The intent
is to prevent reading of the buffer when the contents are not of the type
expected by the reader. Three predefined constants are provided for buffexr
typing (PCNone which means the buffer has no contents; PCText which means that
it has standexrd text with CR line delimiters; and PCAny which will match any
type, allowing a reader to override the typing mechanism). Other buffer
content types (such a mouse events) may be defined by users, choosing some
number to identify the new type which does not conflict with the predefined
types. We make no attempt here to provide a complete set of predefined types;
the issue is simply one of having compatible conventions (agreement) between
communicating progrems. To use the buffer for something other than text, the
veriable PCBufrPtr may be used to access the buffer (using whatever means of
interpretation is desired).

The buffer also has an ACCESS KEY, which functions in very much the
same way as the content type (ie, writers set it and readers must match it to
gain access to the buffer). The intent of the access key is to prevent
programs from reading the buffer when they are not the intended recipient. The
access key, again, is something that should be established by agreement
hetween the communicating programs. If a buffer writer does not care about
preventing unintended access to the buffer, the null string can be used for
the access key. Note that the access key is case sensitive. }

PROCEDURE PCReWrite (WriteType : INTEGER; Key : SUStr);

{ PCReWrite opens the buffer for writing. The contents type and access

key are set. PCBufrPtr is set to point to the communication buffer. }
FUNCTION PCReset (ReadType : INTEGER; Key : SUStr): BOOLEAN;

{ PCReset opens the buffer for reading. The boolean result will indicate
whether the open succeeded. The open will fail if contents type and access
key do not match the type and key set by the last buffer writer.}

FUNCTION PCClose (KillBufr : BOOLEAN; Key : SUStr): BOOLEAN; {ff 2/2/84}

{ PCClose will close the buffer. If KillBufr is txue the buffer will be
emptied. In general, the buffer can be resd more than once (by multiple
readers) if desired. If a reader is finished with the buffer and knows that
no one else should read the buffer, PCClose should be called with KillBufr set
to true. The call to PCClose will fail if the access key does not match. }

1-7

Lisa System Software | ProgComm

FUNCTION PCPutCh (Ch : CHAR) : BOOLEAN;

{ PCPutCh will put & character into the buffer. The boolean result will
indicate whether the operation was successful. It will fail if the buffer is
full or if the buffer was never opened successfully for writing. }

FUNCTION PCGetCh (VAR Ch : CHAR) : BOOLEAN;

{ PCGetCh will get a character from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. } :

FUNCTION PCPutLine (L : SUStr) : BOOLEAN;

{ PCPutLine will put a string into the buffer, followed by a CR. The
boolean result will indicate whether the operation was successful. It will
fail if ti}ue buffer is full or if the buffer was never opened successfully for
.writing.

FUNCTION PCGetLine (VAR L : SUStr) : BOOLEAN;

{ PCGetLine will get a line from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if thexe is
nothing mt}:re to read or if the buffer was never opened successfully for
reading.

FUNCTION PCShellCmd (Cmd : INTEGER; P : SUStrP): BOOLEAN; {ff 3/7/84}

QuickPort Programmer's Guide

Contents

Chapter 1

Introduction
11 What is QuUICKPOrt? ... 1-1
1.2 Types of QuickPort Applications.......cccooiiiiiiiniina.. 1-1
1.3 Additional Featresoooiiiiiiiiiiii i iccaae e i-1

Chapter 2

Using QuickPart v
2.1 QuickPort Program Requirements.._.._..................... 2-1
2.2 Choices for QuickPort Applications 2-1
2.3 The QuickPort Execution Environment 2-2
24 The QuickPort User Interface eeeeeeeeana- 2-3

Chapter 3

Advanced QuickPort Features
3.1 Introduction to the Features ciiiiiiiiiiiiiaaaa. 3-1
3.2 Text Input and the Input Panell 3-1
33 Text Output and the Text Panelt 3-1
34 Graphic Output, the Graphic Panel, and Mouse Input 3-2
35 Required to Change Your Programccccceeieennnnn.. 3-4
36 Procedures for All Applications.......coveeeeiiaiinnaa.... 3-4
3.7 Procedures for Using the Text Panel....................... 3-7
38 Procedures for Using the Grephic Panel.................. 3-10
39 Printer SUPPOIt .. i reeeieeeraeeneas 3-12
3.10 The Terminal Emulator i 3-13
311 Procedures for the QuickPort Hardwsare Interface....... 3-14

Chapter 4

Bringing Your Application to the Lisa
4.1 Adding the USES List Elementso, 4-1
4.2 Systern Configuration ool 4-2
43 Generating Your ToOl.....c.ooiiiiiiiiiiiiiieiiiciciiaeeaaaes 4-3
4.4 Installing Your Tool ... i iiiiiiicieiaaeeaeees 4-4
45 The Icon Editor ..o oo 4-3
4.6 Shipping Your Application il 4-5

Appendixes
A The Standard QuickPort Menust A-1

B Writing Your Own Terminal Emulator...................... B-1

Preface

About This Manual
This manual describes QuickPort, a set of private and intrinsic units that
facilitete porting Pascal programs to the Lisa desktop. This manual is
written for experienced Lisa Pascal programmers who are already familiar
with the Lisa Workshop and the Lisa Operating System and who understand
the concepts and conventions used by the Lisa User Interface. In addition,
those who intend to write terminal emulators are assumed to know Clascal.

For material not covered in this manual, refer to one of the listed documents
for additional information:

= Cwerating System Reference Manual for the Lisa.
= Warkshop Liser's Guide for the Lisa

» Lisa Internsals Manual

= Lisa Lker Interface Guidelines.

« An Introduction to Clascal.

Chapter 1

Introduction
11 What is QuickPort? . eeeeeccana- 1-1
12 Types of QuickPort Applications ._.._.._..._....oocoocoommeoonennes 1-1
13 Additional Feabures o e e e e cm——————————— 1-1

Introduction

1.1 what is QuickPort?
QuickPort is a set of private and intrinsic units that provide a fast and
relisble way to run Pascal programs in the Lisa Office System. By using
QuickPort, you can make a few changes in a typical Pascal program, and it
will run on the Lisa desktop. Applicetions that use QuickPort are integrated
s0 that you can cut and paste to and from other Lisa applications.
QuickPort also provides standsrd menus for all applications that use it.

12 Types of QuickPart Applications
Before you can use QuickPart to port your application to the Desktop, your
program must

= Run in the Lisa Workshop.
= Use only readlns and writelns for text input and output.

A Pascal program that runs in the Lisa Workshop and uses readlns and
writelns for text input and output is called a "vanilla" Pascal program.
Yanilla Pascal programs can be ported to the desktop with very few changes.

You can also use QuickDraw calls for graphics, use the mouse to get input,
and use a subset of the Lisa Hardware Interface. However, the addition of a
graphic panel and use of the hardware interface involves more coding to
acheive the port than a vanilla Pascal program.

13 Additional Features
QuickPort also provides a set of additonal procedures for configuring the
panels, text output, graphic output, and for applications that use the hardware
interface. Using these features, you can incresse the power of your
application. The additional QuickPort features are described in Chapter 3.

ERE

24

er 2

Using QuickPort
QuickPart Program Requirementso 2-1
Choices for QuickPart Applications 2-1
The QuickPart Execution Environment 2-2
231 Using Operating System Callscoiiiieeiiia.... 2-2
2311 Yield CPU .. i, 2-2
2312 Make ProCess . ..ciiiiieiiiiiiiieieieaaaaaaaaaa, 2-2
23.1.3 LDSNs (Logical Data Seament Numbers) 2-2
23.14 Terminate_Process, Kill_Process................ 2-3
23.15 Terminating the Program Abnormally 2-3

Using QuickPort

2.1 QuickPart Program Requirements
Yanilla Pascal programs need nothing but the addition of one or two list
elements to the USEs statement in its main program. A vanilla Pascal
program runs in the Lisa Workshop and uses only readlns and writelns for
input and output. You can use QuickDraw, but there are some minor changes
required. See Section 3.4.1.1, QuickDraw Requirements, in Chapter 3, for
more information. If you use the Lisa Hardware Interface, you must modify
your program and use the QuickPort Hardware Interface. The QuickPort
Hardware Interface is a subset of the Lisa Hardware Interface; it is described
in Section 3.11, Procedures for the QuickPort Hardware Interface, in Chapter
3.

If your program is & wvanilla Pascal program, you can either enhance it using
the QuickPort features described in Chapter Three, or port it directly to the
Lisa Desktop. If you wish to port your program to the Lisa Desktop without
using any of the additional QuickPort features, make sure your program
works in the QuickPort execution environment described in Section 2.3, and
then turn to Chapter Four: Bringing Your Application to the Lisa DeskTop.
22 Choices for QuickPart Applications

You can produce several different types of applications using QuickPort:

= Applications that produce text output only.

* Applications that use QuickDraw to produce graphic and/or text output.

= Graphic applications that use the QuickPort Hardware Interface to get
rmouse input in the graphic panel.

QuickPort provides three panels: the text panel, the input panel, and the
graphic panel. The text panel saves all text output, unless the Don't Save
Buffer cornmand is chosen from the Edit menu. Any application that
produces text output only gets a text panel automnatically. The input panel
displays text that has not been read by the program. You can choose to
have the input panel or not; the default is no input panel. Any application
that produces graphic output only gets a graphic panel. Such programs can
use in addition, a text panel, and/or an input panel. The default is one
panel.

The text and graphic panels can both be scrolled vertically and horizontally.
The panels can be enlarged and shrunk to provide different views of the
output. Both panels can be split vertically and horizontally, allowing the
user to see different parts of the output at the same time.

2-1

QuickFort Frogremmer's Guide Lising QuickFort

23 The QuickPort Execution Environment
One of the most important things to remember when using QuickPort is that
the Lisa Desktop is a multiprocessing intergrated environment and you can
affect the state of other applications running on the desktop if you don't
keep this in mind. Be particularly careful about using functions in the
QuickPort Hardware Interface, because these functions change the state of
hardware, thus affecting all applications (including the desktop).

QuickPort programs can be run in the background (inactive window) when
they are not waiting for input. When a program running in the background
needs input, it is suspended. Programs running in the background compete
with the active window for CPU time. Programs with long CPU-bound loops
should use either Yield CPU or OPYield CPU to yield the CPU to the
active window.

User actions such as pulling down the menus and clicking the mouse are
processed only when your program calls call screen I/0 {(WRITEs and READs,
etc). If you have & long CPU-bound loop, be sure to use either Yield_CPU
or QPYield_CPU, so that your program will be more responsive to the user.
If you have a tight loop, there is no way for the user to break out of the
loop, unless the debugger is loaded and you can hit the NMI key to halt the
process. Be sure to put Yield_CPU, QPYield CPU, or PAbortFlag in any
tight loops. Note that vou must call QPConfig to pass an ®-period to your
program if you need to call PAbortFlag. QPConfig is described in Section
3.6 of Chapter 3.

2.3.1 Using Operating System Calls
You can make any operating system calls, but remember that Lisa has a
multiprocessing environment. Whenever a document is opened, a process
may be created (tools that handle multiple documents create one process
that handles one or more documents). If two documents are opened from the
same tool, you have two processes running separste instances of the same
program. This could result in inconsistent data if Write_Datas and
Read_Datas, or Rewrites and RESETs are performed on the same file. If
this is undesirable, you should add additional code to your application to
check whether the file can be opened by more than one process.

2311 Yield CPU
Yield CPU gives the CPU to any other ready process, but does not handle
any user actions, such ss pulling down menus, and roving windows.
QuickPort provides an alternstive procedure, QPYield_CPU, that allows the
user to pull down menus and move the windows around.

2312 Make process
If you call make_process in a QuickPort application, the resulting processes
cannot do any screen input and output.

2313 LDSNs (Logical Data Segment Numbers)
You cannot use a logical data segment number less than 5, or larger than 11,
Note that LDSN 5 is, by defsult, used by the Pascal heap. If you use a

2-2

GUiICkFort Frogremimer's Guide Lising QuickFort

Pascal heap larger than 128K bytes, LDSN 6 and up will be used for the
heap. You can use PLInitHeap to change the Pascal heap to a different
LDSN, but make sure you don't collide with the system LDSNs.

« LDSNs 1-4 -~ QuickPort

« LDSN 5 -~ Default Pascal heap

» LDSN 11 -- OPEN '-printer', RESET, or REWRITE '-printer’
» LDSNs 12-16 -- LisalLibraries

2314 Texminate Process, Kill_Process
QuickPort programs should not call Terminate Process or Kill_Process.
These calls will terminate the program, leaving the user with no chance to
do anything with the output. If you need to terminate program execution,
use halt or drop through to the end statement of your program.
PROGRAM TERMINATED will appear on the screen, and the user will
he able to save and put away, copy, or print.

2315 Terminating the Program Abnarmally
TrantExceptionHandler is the standard QuickPort exception handler for
abnormal termination of a program. You can write your own terrninate
exception handler, but you must call TrmntExceptionHandler immediately
in your exception handler. If this call is not made, the systemn will hang
because QuickPort will not have a chance to clean up and transfer control to
the desktop manager.

24 The QuickPart User Interface
QuickPort provides a standerd user interface for its applications that is, with
the exception of a few menu commands, the same as the standard Lisa user
interface. Manipulating windows and using the mouse follow the standard
Lisa user interface, ss do opening and closing documents.

QuickPort provides some menu commands that are different from the
standard Lisa menu commands. These commands allow the user to control
program execution. A standard Lisa application continuously loops to get and
process events. A QuickPort program, however, may run from beginning to
end. When a QuickPort program reaches its end, it will not respond to input
from the keyboard, and its window will remain open to allow the user to
view the output. At this stage, the QuickPort application is idle, waiting for
one of the following menu commands:

» Set Aside -- Places the document (without saving} in its icon on the
desktop. If the document is reopened, the application will still be idle.

= Save & Put Away -- Saves the document. The process is then
terminated. If this document is opened again, the program will not run

QuickForl Frogremmer’s Guide Lsing QuickFort

immediately -- it is waiting for the Restart command. If the user
wants to browse through the document, it is not necessary to use the
Restart command. Instead, use Save & Put Away, or Set Aside.

= Restart -- Restarts program execution.

QuickPort applications are started, from the desktop, by tearing off a
document from the stationery pad and opening the document.

The QuickPort menus are discussed in Appendix A.

2-4

31
32
33
34

35
36

37

38

Chapter 3

Advanced QuickPort Features
Introduction to the Featres ... i 3-1
Text Input and the Input Panel .._.....c.ocoooeoiomimiomaennenaans 3-1
Text Output and the Text Panel ... e 3-1
Graphic Output, the Graphic Panel, and Mouse Input ... _____. 3-2
34.1 QuickDraw Requirements 3-3
Required to Change Your Program 3-4
Procedures far All Applications 34
361 Configuring the Panels -- QPConfig_.................. 3-4
Procedures far Using the Text Panel 3-7
3.7.1 Changing the Terminal Parameters -~ SetupTermPara .. 3-7
3.7.2 Getting Raw Input from the Console — Vread 3-8
3.2.3 Clearing the Screen -- ClearScreen........................ 3-8
374 Controlling the Cursor -- YGotoxy and MoveCursor..... 3-9

3741 VGOMOXY (oo 3-9
3742 MoveCUrSOl ..oooiiiiiiiieeiereecaaeaaaaas 3-9
375 Setting and Clearing Tabs -- SetTab and ClearTab...... 3-9
3751 SetTah ..o iteeeeaaaas 3-9
3752 ClearTab.coiiiii et e aeaans 3-9
3.7.6 Controlling Keyboard Input -- StopInput and StartInput 3-10
3761 StopInput ... 3-10
3762 StartInput ... e 3-10
3.7.7 Changing the Character Style -- ChangeCharStyle 3-10
Procedures far Using the Graphic Panel 3-10
381 Mouse Routinesooiiiiiiiiii it 3-10
3811 VYGetMOoUSEcciiiiiiiiii e 3-10
38.1.2 MouseButton 3-11
38.13 MouseEvent 3-11
3.8.14 WaitMouseEvent .. 3-12
3815 WaitEvent 3-12
3816 QPGrafPicSize 3-12

3.10.1 The Standard Terminal, 3-13
3.10.2 The YT100 Terminal Emulator.............................. 3-13
3.10.3 The Soroc Terminal Emulator SO 3-14
3.11 Procedures for the QuickPort Hardware Interface.. 3-14
3111 The MOUSEooiiiiiiet et 3-14
3.11.1.1 Mouse Update Frequency 3-15
31112 Mouse Scalingoovvieeeeieei e 3-15
3112 The SCIeBN coiiiiiiie i ceeeeeeieeaeaaaaaaann, 3-16
31121 Screen Size -~ ScreenSize 3-16
3.11.2.2 Screen Refresh Counter -- FrameCounter ... 3-16
3.11.23 Screen Contrast ~-- ScreenContrast,
) SetContrast,and RampContrast 3-16
3.11.24 Automatic Screen Dimming -- DimContrast and
SetDimContrasto 3-17
3.11.25 Automatic Screen Fading -- FadeDelay and
SetFadeDelaycooieviiiiiiiii e 3-17
3113 The SPeaKer ...ooiniiiit it 3-17
31131 Speaker Yolume -- Yolume and SetYolume .. 3-17
3.11.3.2 ' Using the Spesker -- :
Noise, Silence, and Beep 3-18
3114 The Keyboardoooiiiiiiiiiiii i eeeeeeiaeasanan 3-18
3.114.1 Keyboard Idertification -- Keyboard.......... 3-20
31142 Keyboard State -~ KeylsDown and KeyMap .. 3-21
3115 The Timers .. .cooiiiii i eeeanaas 3-21
3.115.1 The Microsecond Timer -~ MicroTimer 3-21
3.11.5.2 The Millisecond Timer -- Timer............... 3-21
3.11.6 Date and Time -- DateTime, SetDateTime, and
DateToTime ... 3-21
3117 Time Stamp -- TimeStamp, SetTimeStamp

and DateToTime . ..o 3-22

Advanced QuickPort Features

3.1 Introduction to the Features
QuickPort provides a set of features that you can use to enhance your
application. The additional procedures and functions are for

= Configuring the text and graphic panels.

= Controlling text output.

» Handling graphic output using the mouse for input.
= Providing printer support.

» Using the QuickPort hardware interface.

= Making use of the terminal emulators.

You can comnbine any of these procedures and functions within a QuickPort
application.

You can also write your own terminal emulator. To do this you must know
enough Clascal to understand subclasses, methods, and overriding methods.
Read An Mniroduction to Clascal before attempting to write your own
terminal emulator. See Appendix B, Writing Your Own Terminal Emulator for
more information.

The logical device, '-printer’, behaves in much the same way as it does in
the Workshop, but also interacts with the Desktop's print manager. A section
on printer support it included in this chapter.

32 Text Input and the Input Panel
QuickPort programs get input in two ways: from the keyboard, and from the
clipboard. The input panel displays the text that has not vet been consumed
by the program. Text in the input panel comes from two sources: “type
ahead" text (text which is entered from the keyboard too quickly to be
echoed immedisately by the program), and text from the clipboard that will be
"pasted” into the text window. The 'Read Input from Clipboard’ command
places the selected text in the input buffer. When the program does a read,
the text in the input buffer is read firstd. If the input buffer is empty, the
read waits for input from the keyboard or from a paste command.

33 Text Output and the Text Panel
The text output panel displays the writeln output from the program. The
text panel corresponds to the Pascal device output and the logical device

QuickForl Frogrammer's Guide Advanced QuickFort Festures

'-console'. The text panel emulates a terminal display. The default size of
the screen area is 24 lines by 80 columns. The width of the text panel can
be changed either by the program, or by the user from the Setup menu. The
Setup menu is described in Appendix A.

The text panel has a &uwfYer area that saves text as it is scrolled above the
screen area. The size of the buffer area is incressed autornatically as lines
are saved. The size of the buffer is limited to the amount of memory
available to increase the size of the buffer. When the buffer size reaches
its limit, the lines scrolled off the top of the buffer area will not be saved.
The limit is approximately 3500 80-character lines. The user can choose to
save or not save scrolled output using the Setup menu. The Edit menu is
described in Appendix A.

The screen area has a cursor that is affected by readlns and writelns
from the program. The cursor position is always:

= Inside the screen area.
« Relative to the top left position of the screen area.

The cursor position is the insertion point for input. No menu commands
change the logical cursor position; it is controlled solely by the program.

The cursar position is always visible when there is a read from the program.
In other words, if the panel has been scrolled so that the cursor position is
hidden, QuickPort scrolls back to the cursor position when encountering a
read. The cursor home position is the top left position of the screen area.

34 Graphic Output, the Graphic Panel, and Mouse Input
Graphics in QuickPort applications are created by QuickDraw. QuickPort
provides an option that allows you to choose two panels, one for text output
and one for graphic output, or one panel for both text and graphic output.
The graphic panel corresponds to the Workshop screen. The screen size is
720 pixels wide and 364 pixels high. The entire graphic panel is equal to
the screen area in the text panel. There is no buffer area in the graphic
panel because graphic output will not be scrolled out of the graphic panel.
All graphic objects created by the program are saved in the graphic panel
using & QuickDraw picture.

In the text panel, the mouse is used to select text. In the graphic panel,
mouse clicks are saved and passed to the program. Whenever the mouse
button is pressed inside the graphic panel, a mouse eveni, mouseDown, with
the mouse location is saved. When the mouse button is pressed while the
mouse is moved, another mouse event, with different locations, is saved.
When the rmouse button is released, a mouseUp event is saved. To see if
there are any mouse events in the gqueue, call MouseEvent. MouseEvent
returns one event at a time, until there are no more mouse events in the
queue. When MouseEvent is called, if the mouse button is down, control
will not be returned to the caller until the button is released. For this

3-2

GuickFort Frogremmer's Guide Advanced QuickFort Feslures

reason, YGetMouse should not be used after a call to MouseEvent, because
the mouse may be moved. Each mouse event stores a mouse location
indicating where the mouse button was pressed. VGetMouse lets you track
the mouse location when the mouse button is not down.

For mare information on MouseEvent, Refer to Section 3.8.1.3.

3.4.1 QuickDraw Requirements
Pascal programs that run in the Lisa Workshop and use QuickDraw, call
QDINIT and OpenPort (in the QD/Support unit). To use QuickDraw you must

= Remove the call to QDINIT and OpenPort. QuickPort initializes
QuickDraw and opens a grafPort for drawing to the graphic panel.

= Not open a picture in this grafPort since QuickPort uses a picture to
save the graphic output.

= Not customize low-level QuickDraw drawing routines in this grafPort.

If your program needs to use pictures, you can open a picture in another
grafPort. If your program needs to redefine any of the QuickDraw low-level
routines, you can do this in another grafPort. If your application uses
multiple grafPorts, vou must switch to the QuickPort grafPort whenever yvou
want to draw to the screen.

If your application calls DrawPicture, you must call another QuickDraw
drawing routine before calling DrawPicture. This is because QuickPort
opens the picture when the first QuickDraw drawing routine is encountered.
If DrawPicture is the first drawing routine encountered, QuickPort's picture
will be opened incorrectly because QuickPort can handle only one picture at
a time. Here is an example showing how to avoid such collisions:

GetPort (sysportptr); {saves system port}
OpenPort (BmyPort); {references alternate port}
myPicture := OpenPicture (thePort”.portRect);

. make vyour QuickDraw calls here .

ClosePicture;

SetPort (sysportptr); {switches to system grafPort}

EraseRect (thePort” _PortRect); {opens system picture
-— any drawing routing can
be used)

DrawPicture (myPicture, thePort” _PortRect);

3-3

GRickFort Frogrammer's Guide Advanced QuickFort Fealures

If you call OpenPicture while the QuickPort grafPort is the current port,
the following alert message appears on the screen and the program is
aborted:

Your QuickPort tool has called another OpenPicture inside
the QuickPort grafPort. This tool will be aborted.

The QuickDraw procedure ScrollRect is not supported by QuickPort.
ScrollRect is not supported because QuickPort uses .a picture to save the
graphic output, and the effect of ScrollRect is not saved in a picture.

This means that if the user scrolls the window, the picture is redrawn to the
window as if ScrollRect had not been called.

The size limit for the QuickPort picture is 32K bytes. When the picture
approaches this size, an alert is displayed. Subsequent graphic output is
displayed on the screen, but is not saved in the picture. As the size of the
picture increases, the redrawing that happens as the picture is scrolled or the
window moved slows. You can find out the current picture size by calling
QPGrafPicSize. Once the picture size reaches 32K bytes, the only way to
save the remaining graphic output is to EraseRect the entire screen
(thePort” .PortRect). The effect of this call is to delete the old picture
and create a new picture.

You can draw bit images in the QuickPart grafPort. The entire graphic panel,
including the bit images, can be printed. You can copy the bit images to a
Lisawrite document, but you cannot copy bit images from a QuickPort
application to a LisaDraw document.

35 Required Change to Your Program
Before you can call any of the additional QuickPort procedures, you must add
UQPortCall to your USES list:

{$U QuickDraw} QuickDraw,
{$U QP/UQPoOrtCall} UQPortCall,

{$U OP/UQuickPort} UQuickPort; {or UQPortGraph, or
UQPortvT100, or UQPortSoroc)

36 Procedures for all Applications

3.6.1 Corfiguring the Panels —— QPConfig
You can choose several different ways to orient the panels in QuickPort
applications. The procedure QPConfig lets you rearrange the panels and
their orientations. Figure 1 shows some of the different layouts.

GuickFort Frogrammer's Guide

Advanced QuickFort Fealures

basic .basic ggg.
input panel input panel
text panel D
text panel graphic panel
N\ e O
graphic pane
\ S —
[basic _paper| lbsugmgl
input panel input pane}
e o O O
< > i
graphic panel text pansl
text panel

-

Figure 1.
QuickPort Window Layouts

Call the QPConfig procedure from y

our main program before any screen

input and output is performed. You must set all the fields of a global

variable of type TOPConfigRec.

PROCEDURE QPConfig (config : TQOPConfigRec);
where
TOPConfigRec = RECORD
tosaveBuffer : BOOLEAN; {save lines in

buffer

passApplePeriod : BOOLEAN;

}

{pass apple to

main program}

showlnputPanel

panel}
CASE twoPanels

and gr

3-5

- BOOLEAN; {display input
: BOOLEAN OF {have both text

aphic panels}

QuickFort Frogrammer's Guide Atvanced QuickFort Features

TRUE : (vhs : VHSelect; {vertical or
horizontal split. VHSelect
is defined in QuickDraw}

grPanelSize : INTEGER); {initial width or
height in pixels, if < O,
text panel is below or right
of the graph panel}

END;

It QPConfig is not called, the default values are used. These defaults are
in effect only if QPConfig is never called. If you call QPConfig you must
set all fields, or else they will be undefined.. The default values are:

tosaveBuffer false
passApplePeriod false
showInputPanel false
twoPanels false

The graphic and text panels can be oriented in several different ways on the
screen. To use QPConfig to set up the panels, you must first declare a
varieble of type TOPConfigRec. For example,

VAR
MyConfig: TOPConfigRec;
QPConfig(MyConfig);

To have both a graphic and & text panel, twoPanels must be TRUE. You
must initialize the vhs field if you set twoPanels to TRUE. Once you have
two panels, you can choose to split the windows on the screen vertically or
horizontally. Refer to Figue 1 to see what the screen looks like with
vertical and horizontal splits between windows. Then you can set the
arPanelSize field to the size you want the graphic panel when the
document ig first opened (the text panel will take up the remaining space in
the window).

QUICkFort Frograrmmer's Guide Acvanced QuickFort Fealures

If QPConfig is not called, the default values are used. Programs that
handle only text output have a default of one text panel. Programs that
handle graphic output have a default of one graphic panel.

3.7 Procedures far Using the Text Panel
The procedures for QuickPort applications that produce text output allow you
to:

= Change the terminal parameters.
= Get raw input from the console.
= Clear the screen.

= Control the cursor.

= Set and clear tabs.

» Control keyboard input.

= Change the character style.

3.7.1 Changing the Terminal Parameters — SetupTermPara
SetupTermPara sets the terminal parameters for the screen area in the text
panel. You can call SetupTermPara from your terminal emulator or from
your main program, but the call must be made before any screen input or
output is performed. If SetupTermPara is not called before performing
screen input or output, the default parameters will not be changed. If you
call SetupTermPara you must set all parameters.

PROCEDURE SetupTermPara (termpara : TTermPara);

where
maxPosLines = 50; {max possible lines for any
terminal emulator}
maxPosColumns = 132;

Tcursorshape = (blockshape, underscoreshape,

invisibleshape);
TTermPara = RECORD

rowsize : 1. _maxPosLines;
columnsize : 1. _.maxPosColumns;
toWraparound = BOOLEAN;
keytoStopOutput : CHAR;
keytoStartOutput : CHAR;
tmcursorShape : Tcursorshape;

QuickFort Programmer's Guide . Advanced QuickFort Features

If SetupTexrmPara is not called, the default values are used:

Trowsize 24 lines
columnsize 80 columns
toWraparound TRUE
keytoStopOutput &-S
keytoStartOutput &-0
tmcursorShape Block

3.7.2 Getting Raw Input from the Console — Yread
You can use Vread instead of read to get keybosrd input and the control
keys. VYread does not echo characters as they ere read.
PROCEDURE Vread (VAR ch: CHARR: YAR keycap : OPByte;
VAR applekey, shiftkey,
optionkey: BOOLEAN);

The keycap is useful when you need to distinguish the numeric keypad from
the main keyboard. Refer to Section 3.11.4 for the keycaep definition. Note
that the option key is typically used to generate extended Lisa characters.
The extended Lisa characters are those cheracters in the range above ASCII
127. Try not to use the option key for other purposes to avoid confusing the
users.

3.73 Clearing the Screen — ClearScreen
ClearScreen provides six different ways to clear all or part of the screen.
The six ways are:

= Clear the whole screen.

» Clear from the cursor position to the end of the screen.

= Clear from the beginning of the screen to the cursor position.
» Clear the whole line. ‘

» Clear from the cursor position to the end of line.

» Clear from the beginning of the line to the cursor position.
PROCEDURE ClearScreen (clearkind : INTEGER);

{clearkind definition for ClearScreen procedure}

sclearScreen = 1; {clear the whole screen}
sclearEScreen = 2 {clear to the end of the
screen}

QuickForl Frogremmer's Guids Advenced QuickFort Festures

sclearBScreen = 3 {clear from the beginning
of the screen to the cursor
position}

sclearlLine = 4 {clear the whole line}

sclearfline = 5; {clear to end of line}

sclearBLine = 6; {clear from the beginning

of the line to the cursor
position}

3.7.4 Controlling the Cursor — VGotoxy and MoveCursor

3.74.1 VGotoxy
YGotoxy moves the cursor to a specified position in the window.

PROCEDURE YGotoxy (x, y : INTEGER);
VGotoxy is the same as the Pascal gotoxy, but faster.

3.7.4.2 MoveCursor
MoveCursoxr moves the cursor to a8 position in the window relstive to the
current cursor position. MoveCursor allows vertical scrolling only.

PROCEDURE MoveCursor (scroll - BOOLEAN; xdistance,
ydistance : INTEGER);

For the xdistance, ydistance parameters:
= A positive value moves the cursor to the right or down.
= A negative value moves the cursor to the left or up.

If the cursor is moved down, and scroll is TRUE, the output will be
scrolled up.

3.7.5 Setting and Clearing Tabe —— SetTab and ClearTab

3.7.5.1 SetTab
SetTab sets a tab at a specified column, or at the current cursor position.

PROCEDURE SetTab (column : INTEGER);
SetTab sets tab at current cursor position if column <O.

3.752 ClexTab
CleaxrTab clears a tab at a specified column, or at the current cursor
position.

PROCEDURE CleexTeb (clearfill : BOOLEAN: column : INTEGER);
ClearTab clears tab st current cursor position if column <0

3-9

GickFort Frograrnmer's Guide Ravanced QuickFort Features

3.7.6 Controlling Keyboard Input — StopInput and StartInput

3761 Stoplnput
StopInput prevents recognition of keyboard input until StartInput is
called.

PROCEDURE StoplInput;

3761 StartInput
StartInput allows recognition of keyboard input.

PROCEDURE StartInput;

3.7.7 Changing the Character Style — ChangeCharStyle
ChangeCharStyle changes the character attributes to any style combination
defined by QuickDraw.

PROCEDURE ChangeCharStyle (newstyle : Style);

38 Procedures for Using the Graphic Panel
The procedures for QuickPort applications that produce graphic output allow
you to use the mouse to get input. These procedures are:

= Get the current mouse location.

» Test to see if the mouse button is up or down.
« Get a mouse event.

» Get either mouse or keyboard input.

3.8.1 Mouse Routines
The mouse routines listed in this section should be used instead of the ones

in the Lisa Hardware Interface.

MouseEvent is a polling function. Programs may loop on MouseEvent to
wait for mouse input. This unnecessarily takes up CPU time. Also, if the
application is run in the background, MouseEvent will force it to run
periodically, just to find out there is no mouse input, and then control is
returned to the active window. This slows down the execution and user
response in the active window.

WaitMouseEvent is a blocking procedure. WaitMouseEvent will not return
to the caller until there's a mouse event, allowing user actions to be
processed immediately when there are no mouse events. When a program
that uses WaitMouseEvent is in the background, it is suspended and
consequently. does not take CPU time from the active window.

38.11 VYGetMouse
VGetMouse returns the current mouse location in the coordinates of the
current grafPort.

PROCEDURE VGetMouse (VAR pt : Point);

3-10

QuickForl Frogrammer's Guide Advanced QuickFort Festures

Point is a type defined in QuickDraw. Refer to The Lisa Pascal Reference
Manual, Appendix C, QuickDraw for the definition of Point.

38.1.2 MouseButton
MouseButton returns the current state of the mouse button.

FUNCTION MouseButton : BOOLEAN;

3813 MouseEvent
MouseEvent returns a mouse event if there is one in the queue, and returns
FALSE if there is not a mouse event in the queue. A mouse event is:

» A mouse buttondown (when the user presses the mouse button).
= Mouse motion while the button is pressed.
= A mouse buttonup (when the user releases the mouse button).

Moving the mouse without pressing the mouse button is not a mouse event.
when MouseEvent is called, if the mouse button is down, control will not be
returned to the caller until the button is released.

FUNCTION MouseEvent (VAR aMouseEvent : TMouseEvent)
- BOOLERN;

where

TMouseEvent = RECORD

mouselLoc : Point;

clicknum : INTEGER; {max 3 for triple clicks}

mouseDown, meShift, meApple, meOption :

BOOLEAN;

END;
For each mouse down event (mouseDown = TRUE), several different
mousel.oc events rmay be returned in subsequent calle. These mouseloc
events are always ended with a mouse up event (mouseDown = FALSE).

For a double click, MouseEvent returns events of down, up, down, up with
the clicknum for the second mouse down event equal to two. If the mouse
button is pressed twice, but the presses do not constitute a double click, the
same sequence of events is returned, but with the clicknum for the second
mouse down event equal to one.

For a triple click, MouseEvent returns events of down, up, down, up, down,
up, with the clicknum for the third mouse down event equal to three.

If the mouseDown field is FALSE, all other fields are meaningless.

MeShift is TRUE if the mouse button and the Shift key are depressed.
MefApple is TRUE if the mouse button and the ® key ere depressed.
MeOption is TRUE if the mouse button and the Option key are depressed.

3-11

QuickFort Frogrammer's Guide Advanced QuickFort Fealures

3815 WaitMouseEvent
WaitMouseEvent gets a mouse event. WaitMouseEvent blocks the caller
until there is a mouse event in the queue.

You should use this call instead of MouseEvent to avoid polling and wasting
CPU time. WaitMouseEvent also makes & program more responsive to user
events such as pulling down menus, clicking in other windows, etc., when the
program is waiting for mouse input.
PROCEDURE WaitMouseEvent (VAR aMouseEvent -
TMouseEvent);

where
TMouseEvent = RECORD
mouselLoc : Point;
clicknum : INTEGER; {max 3 for triple clicks}

nouseDown, meShift, mefpple, meOption :
BOOLEAN;

END;

After WaitMouseEvent returns, a call to MouseEvent will get the rest of
the mouse events.

3816 WaitEvent

WaitEvent is a combination of read and WaitMouseEvent, blocking the
caller until there is either keyboard or mouse input.

You should use this call instead of MouseEvent and keypress if vou want
hoth mouse and Keyboard input. WaitEvent does not reurn input. You must
call read, Yread, or MouseEvent depending on the value returned from the
call.

PROCEDURE WaitEvent (VAR fromKeyboard : BOOLEAN);

3817 OPGrafPicSize
OPGrafPicSize returns the size of the picture in the system grafPort.

FUNCTION QPGrafPicSize - INTEGER;

39 Printer Support
The printer is designated —printer by the Workshop. -printer is a logical
device. To open the printer, use reset or rewrite, passing —printer as
the file name. To send output to the printer, use writeln or write. Use
close when you're finished sending information to the printer. Close lets
the printshop manager know that the program is done with the printer and
causes the last page to print out. If you do not call close after printing is
finished, the printer is considered in use, and is unavailable to all other Lisa
applications.

3-12

GuickForl Frograrmmmer’s Guide Advanced QuickFPort Features

The printer is shared by all applications in the printshop. When you send
something from a QuickPort application to the printer from QuickPart, you do
not get immediate output. First the document is spooled to the printer
queue by the printshop manager in the Lisa Office Systemn. If there is
nothing in the queue, the information comes out a page at a time. If there
is something in the queue at the time of reset or rewrite, an error
message is returned.

You can change the font the printer uses by calling PrChangeFont. The
default font is 10-point, 10-pitch Century.

Paper size, printing orientetion and print resolution can be changed using the
Farmet for Printing cornmand in the File/Print menu. Selections made using
the Format for Printing command take effect only efter a reset or
rewrite.

The Print and Print As Is commands in the File Print menu print all the
output in the selected panel.

3.10 The Terminal Emulators
QuickPort provides three terminal environments: the standard terminal, the
¥T100 terminal emulator, and the SOROC terminal emulator. This section
summarizes the three emulators. If you want to write your own terminal
emulator, go to Appendix B, Writing Your Own Terminal Emulatar.

3.10.1 The Standard Terminal
The stenderd terminal is the terminal environment QuickPort uses unless you
specify otherwise. The standard terminal provides a set of screen and cursor
control functions. The standard terminal does not use escape sequences, but
does interpret a set of standard control keys at output: BELL, backspace,
horizontal tab, line feed, and carriage return (without line feed). Programs
that use reads and readlns will have the backspace key processed
automatically, i.e., the backspace key will not be passed to your program if
you use reads and readlns. If your program needs to get the backspece
key, use vread instead.

The staendard Lisa applications use the #-period combination to terminate
long operations. QuickPart provides an option that suspends the program when
the #-pericd key combination is detected. The default is to detect the
$-period combination. This option is passed in QPConfig, which is described
in Section 3.6. When a program is suspended, the user can select the
Resume command to resume program execution, or the Save & Put Away
command to terminate prograrn execution.

The Setup menu (in all QuickPort applications) lets you select 80 or 132
columns per line, turn wraparound on or off, and set the tab positions.

3102 The VT100 Terminal Emulator
The QuickPort YT100 terminal emulator interprets all ¥T100 and VT52 escape
sequences, with the exception of escape sequences related to host
communications. When you use the YT100 terminal emulator, the screen area

3-13

GruckFort Frogrammer's Guide ravanced QuickFort Features

in the text panel responds to YT100 and Y752 escape sequences from writes
and writelns.

The character styles supported by the QuickPort YT100 terminal emulator are
bold, underline, and highlight. Since highlighted text in Lisa applications
traditionally means a selection, highlighted text in the ¥T100 screen area
will be shadowed. Double~height and double-width characters are not
supported.

To use the YT100 terminal emulator, add
{$U OP/UQPoxtvVT100} UQPortvT100;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4.

3.103 The Soroc Terminal Emulator
Pascal programs that run in the Lisa Workshop, and on the Apple II or Apple
111, use Soroc escape sequences for output display. QuickPort provides a
Soroc-compatible terminal emulator to help port these applications to the
Lisa desktop. The QuickPort Soroc terminal emuletor interprets all Soroc
escape sequences, with the exception of those escape sequences relsted to
display protection.

To use the Soroc terminal emulator, add
{$U QP/UQPortSoroc} UQPortSoroc;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4,

3.11 Procedures for the QuickPort Hardware Interface
The QuickPort hardweare interface is a subset of the Lisa hardware interface.
These procedures are for the mouse, the screen, the speaker, the keyboard,
the timers, and date and time.

To use the QuickPort hardware interface, you must add
{$U QP/Hardware} Hardware;

to the list elements in your program's USES statement. Refer to Chapter 4
for more information.

3111 The Mouse
The mouse procedures let you

» Set the frequency at which the current mouse location is updated.
= Choose the relationship between physical and logical mouse movements.
» Count mouse movements.

3-14

QuickFort Frogramrner's Guide Ra\vanced QuickFort Feslures

31111 Mouse Update Frequency
The mouse locsation is updeted periodically, rather than continuously. The
frequency of these updates can be set by calling MouseUpdates. The time
between updates can range from O milliseconds (continuous updating) to 28
milliseconds, in intervals of 4 milliseconds. The initial setting is 16
milliseconds.

Procedure MouseUpdates (delay: MilliSeconds);

31112 Mouse Scaling
MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

Procedure MouseScaling (scale:Boolean);
Procedure MouseThresh (threshold: Pixels);

The relationship between physical mouse movements and logical mouse
movermnents is not necesserily a fixed linear mapping. Three alternatives are
available: unscaled, scaled for fine movement and scaled for coarse
movernent. Initially mouse movements are unscaled.

When mouse movement is wnscaled a horizontal mouse movernent of x units
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movernent of v units vields a change is the mouse Y-coordinate of y pixels.
These rules apply irregardless of the speed of the mouse movement.

When mouse movement is scaled horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. When scaling is in effect, a distinction is
made between fine (small) movements and coarse (large) movements. Fine
move- ments are slightly reduced, while coarse movernents are magnified.
For scaled fine movements, a harizontal mouse mavemnent of x units yields a
change in the X-coordinate of x pixels, but a vertical movement of y units
yields a change of (2/3)*y pixels. For scaled coarse movements, & horizontal
movernent a x units yields a change of (3/2)*x pixels, while a vertical
movernents of y units yields a change of y pixels.

The distinction between fine movements and cosrse movements is determined
by the sum of the x and y movements each time the mouse location is
updated. If this sum is at or below the Areshold the movement is
considered to be a fine movement. VYalues of the threshold range from ¢
{which yields all coarse movements) to 256 (which vields all fine movements).
Given the default mouse updating frequency, a threshold of about 8
(threshold's initial setting) gives a comfortable transition between fine and
coarse movements.

3-15

QuickFort Frograrmmer's Guide Advanced QuickFort Features

31113 Mouse Odometer
MouseOdometer returns the sum of the X and Y movemnents of the mouse
since boot time. The value returned is in (unscaled) pixels. There sre 180
pixels per inch of mouse movement.

Function MouseOdometer: ManyPixels;
3112 The Screen
The screen procedures are used to

s Set the size of the display screen.

= Count the number of screen refreshes.

« Set the screen contrast, set automatic screen dimming.
= et the fade delay.

3621 Screen Size —— ScreenSize
The display screen is a &% mapped display. In other words, each pixel on
the screen is controlled by a bit in main memory. The display has 720
pixels horizontally and 364 lines vertically, and therefore requires 32,760

bytes of main memory. The screen size may be determined by calling
ScreenSize.

Procedure ScreenSize (var x: Pixels; var y: Pixels);

31122 Screen Refresh Counter — FrameCounter

The screen display is refreshed about 60 times per second. A frame counter
ie incremented between screen updstes, at the vertical retrace interrupt. The
frame counter is an unsigned 32-hit integer which is reset to 0 each time
the rnachine is booted. FrameCounter returns this value. To minimize
flickering, an application can synchronize with the vertical retraces by
watching for changes in the value of this counter. The frame counter should
not be used as a timer; use the millisecond and mircosecond timers instead.

Function FrameCounter: Frames;
31123 Screen Contrast — ScreenContrast, SetContrast and
RampContrast
The screen's contrast level is under progrem control. Contrast values range
from O to 255 ($FF), with O as maxirnum contrast and 255 as minimum.
ScreenContrest returns the contrast setting; SetContrast sets the screen

contrast. The low order two bits of the contrast value are ignored. The
initial contrast value is 128 ($60).

Function Contrast: ScreenContrast;
Procedure SetContrast (contrast: ScreenContrast);

3-16

GuickFort Frograrrmer's Guide Aavanced QuickFort Features

A sudden change in the contrast level can be jarring to the user.
RampContrast gradually changes the contrast to the new setting over a
period of about a second. RampContrast returns immediately, then ramps
the contrast using interrupt driven processing.

Procedure RampContrast (contrast: ScreenContrast);

31124 Automatic Screen Dimming — DimContrast and

SetDimContrast
The screen contrast level is automatically dimmed if no user activity is
noted over a specified period (usually several minutes). The contrast level is
dimmed to preserve the screen phospher. DimContrast returns the contrast
value to which the screen is dimmed; SetDimContrast sets this value. The
initial dim contrast setting is 176 ($BO)

Function DimContrast: ScreenContrast;
Procedure SetDimContrast (contrast: ScreenContrast);

31125 pAutomatic Screen Fading — FadeDelay and SetFadeDelay
The delay between the last user activity and dimming of the screen is under
software control. FadeDelay returns the fade delay; SetFadeDelay sets it.
The actual delay will range from the specified delay to twice the specified
delay. The initial delay period is five minutes.

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds);

3113 The Spesker
The speaker routines in this section provide squsre wave output from the

Lisa speaker.

The speaker procedures let you
s Set the speaker volume.
= Use the speaker.

3.11.31 Speaker Yolume -—— Volume and SetYolume
The speaker volume can be set to values in the range O (soft) to 7 (loud).
Yolume reads the volume setting; SetVolume sets it. The initial volume
setting is 4.
Function Volume: SpeakerVolume;

Procedure SetVolume (volume: SpeakerYolume);

3-17

QuickFort Frogrammer’s Guids Advanced QuickFort Fealurss

3.113.2 Using the Speaker —— Noise, Silence and Beep

3114

Noise and Silence are called in pairs to start and stop square wave output.
Beep starts square wave output which will automatically stop after the
specified period of time. The effects of Neise, Silence and Beep are
overridden by subsequent calls.

Procedure Noise (wavel ength: MicroSeconds);
Procedure Silence;
Procedure Beep (wavel ength- MicroSeconds; duration:

Noise produces a square wave of approximately the specified wavelength.
Silence shuts off the square wave. The minimum wavelength is sbout &
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above the sudible range. The rmaximum wavelength is 8,191 micro-
seconds, which corresponds to about 122 cycles per second.

The Keyboard

Three physical keyboard layouts ere defined, the Old US Layout (with 73 keys
on the main keyboard and numeric keypad), the Final US Layout (76 keys) and
the European Layout (77 keys). Each key has been assigned a Aeycode which
uniguely identifies the key. Keycode values range from O to 127. Figure 2
defines the keycodes for the Final US Layout, using the legends from the US
Keyboard. The Old US Layout hes three fewer keys: |\, Alpha Enter, and
Right Option are not on the old keyboard. The European Layout has one
additional key, >¢, with a kevcode of $43.

Two keys on the Old US Layout generate keycodes different from the
corresponding keys on the Final US Layout. To aid in compatibility, software
changes the keycode for from $7C to $68, and the keycode for Right
Option from $68 to $4E.

3-18

QuickFort Frogrammer's Guide Advanced QuickFort Features

Figure 2
Keycodes for “Final US Layout”

010 D11 100 101 110 11

2 3 4 5 6 7

: aem | (E A

¥ 2 g

0001 | DISK 1 _) °

1 | INSERTED 0 2
+

0010 Bt < u :

0031 ! x%ggr%n [:T_, 3

1

o] 7 1-

01501 PM;AM!.%EI. 8 Q

o L g s
/

01711 lplulg (4] W

10800 m& 4 T8

10901 : 5 7

1[20 6 X
1011 .

B A D

1100 LEFT

C OPTION

1101 2 CAPS

D LOCK

11E1[| 3 SHIFT

1111
F

3-19

GuickFort Programmer’s Quide Aavanced QuickForl Fealures

The keybosard procedures allow you to
» Find out the keyboard identification number.
« Find out the state of keyboard.

3.114.1 Keyboard Identification —— Keyboard
The Lisa supports a host of different keyboards. Each keyboard has three
major attributes: manufacturer, phyeical Jaowd, and Jegends. The chart below
describes how these three attributes are combined to form a keyboard
idertification number. The keyboards self-identify when the machine is
turned on and when a new keyboard is attached. Keyboerd returns the
identification number of the keyhoard currently attached.

Function Keyboard: Keybdld;
Function Legends: Keybdid;
Keyboard identification numbers:

¥ (o) 3 4 3 2 1 0
Manufacturer | Layout | Legends
Manufacturer- Layout/Legends
00 -- APD (i.e., TKC) $0F -- Old US
01 -~ $26 ~- Swiss-German (proposed)
10 -- Keytronics $27 -- Swiss-French (proposed)
Layout: $29 -- Portuguese (proposed)
00 -- Old US (73 keys) $29 -- Spanish (proposed)

01 -- $2A -- Danish (proposed)
10 -- European (77 keys) $26 -- Swedish
11 -- Final US (76 keys) $2C -- Italian

$20D -- French

$2E -~ German

$2F - UK

$3C -- APL (proposed)
$3D -~ Canadian (proposed)
$3E -- US-Dvorak

$3F -- Final US

GuickFort Frogrammer's Guidle Adanced QuickFort Fealures

31142 Keyboard State — KeylsDown and KeyMap

Low level access to the keyboard is provided through a pollable keyhoard
state. This state information is based on the physical keycodes defined
above. KeylsDown returns the position of a single specified key. KeyMap
returns a 128-bit map, one bit for each key.

Function KeylsDown (key: KeyCap): Boolean:

Procedure KeyMap (var keys: KeyCapSet);

A zero indicates the key is up, a one indicates down. For the mouse plug, a
zero indicates unplugged, a one indicates plugged in. Certain keys are not
pollable; the corresponding bits will always be zero. These keys are the
diskette insertion switches, parallel port, and power switch. (The parallel
port and mouse plug keys are unreliable across reboots on older hardware.)

3115 The Timers

The timer procedures let you use either the microsecond timer or the
millisecond timer.

3.1151 The Microsecond Timer -- MicroTimer

The MicroTimer function simulates a continuously running 22-bit counter
which is incremented every microsecond. The timer is reset to 0 each time
the machine is hooted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

Function MicroTimer: Microseconds;

The microsecond timer is designed for performance meassurements. It has a
resolution of 2 microseconds. Calling MicroTimer from Pascal takes about
135 microseconds. Note that interrupt processing will have a major effect
oh microsecond timings.

3.11.5.2 The Millisecond Timer - Timer

3116

The Timer function simulates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to O each time the
machine is booted. The timer changes sign sbout once every 25 days, and
rolls over about every 7 weeks.

Function Timer: Milliseconds;

The millisecond timer is designed for timing user interactions such as mouse
clicks and repest keys. It can alsoc be used for perforrnance measurements,
assuming that millisecond resolution is sufficient.

Date and Time — DateTime, SetDateTime and DateToTime
The date and time procedures let you

= Set the current date and time.
= Find out the date and time.

3-21

GuickFor? Frogrammer's Guide Aavanced QuickFort Fesalures

The current date and time are available as a set of 16-bit integers that
represent the year, day, hour, minute and second, by calling DateTime and
SetDateTime. The dste and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calender continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure DateTime (var date: Datefaray);
Procedure SetDateTime (date: DateArray);
Procedure DateToTime (date: Datefaray; var time: Seconds);

3117 Time Stamp — TimeStamp, SetTimeStamp and TimeToDate
The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 1901, by calling TimeStamp and SetTimeStamp. The time stamp will
roll over once every 135 years. Bewsare--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is based on the hardware clock/calendar.
This clock continues to operate during soft power off. If the clock/calendar
hesn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeToDate
converts a time stamp to the date and time format defined above.

The time stamp procedures let you
= Set the time stamp.
= Convert between standard date and time and the time stamp.
Function TimeStamp: Seconds;
Procedure SetTimeStamp (time: Seconds)
Procedure TimeToDate (time: Seconds; var date: Detefurey);

3-22

QUIckFord Frogrammer’s Guide Advanced QuickFort Features

The current date and time are available as a set of 16-bit integers that
represent the year, day, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure DateTime (var date: DateArray):

Procedure SetDateTirmne (date: Datefrray);

Procedure DateToTime (date: Datefyray; var time: Seconds);
3117 Time Stamp - TimeStamp, SetTimeStamp and TimeToDate

The current date and time are also available as a 32-bit unsigned integer
which represents the nurnber of seconds since the midnight prior to 1
January 1901, by calling TimeStamp and SetTimeStamp. The time stamp will
roll over once every 135 years. Beware--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is based on the hardware clock/calendar.
This clock continues to operste during soft power off. If the clock/calendar
hasn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeToDate
converts a time stamp to the date and time format defined above.

The time stamp procedures let you
» Set the time stamp.
= Convert between standard date and time and the time stamp.
Function TimeStamp: Seconds;
Procedure SetTimeStamp (time: Seconds);
Procedure TimeToDate (time: Seconds; var date: Datefrray);

3-25

4.1
42

43
4.4
45
4.6

Chapter 4

Bringing Your Application
to the Lisa Desktop
Adding the USES List Elements oaes 4-1
Systern Configuration i 4-2
4.2.1 The Development Environmento, 4-2
4.2.2 The Run-Time Environment, 4-3
Generating Your Tool ... oo icemeeaaa- 4-3
Installing Your Toolo iececcceae——————— 4-4
The Icon Editar .. e emmean 4-5

Shipping Your Application _.__ . iaaao. 4-5

Bringing Your Application
to the Lisa Desktop

4.1 Adding the USES List Flements
Before bringing your application to the Lisa desktop you must add the
required USES list elements to your MAIN program and any of your units.
Depending on what kind of application you are porting, you use different
USES list elements.

1. For text output only
{$U OP/UQuickPort} UQuickPort;
2. For graphic (QuickDraw) and/or text output
{$U QuickDraw} QuickDraw,
{$U OP/UQPortGraph} UQPortGraph;
3. If you need to use Graf3D (order of list elements important)
{$U QuickDraw} QuickDraw,
{$U QP/Grafr3D.0BJ} Graf3D,
{$U QP/UQPortGraph} UQPortGraph;
4. For graphic (QuickDraw) and/or text output, and the herdware interface
{$U QuickDraw} QuickDraw,
{$U QP/UQPoxtGraph} UQPortGraph,
{$U QP/Hardware} Hardware;
5. To use the ¥T100 terminal emulator
{$U OP/UQPOrtYT100} UQPortvTi00;
6. To use the Soroc terminal emulator
{$U QP/UQPortSoroc} UQPortSoroc;

7. If you are calling the additional QuickPort procedures (order of list
elements important)

{$U QuickDraw} QuickDraw,
{$U QP/UQPortCall} UQPortCall,

{$U OP/UQuickPort} UQuickPort; {or UQPortGraph,
UQPortvT 100,
uQPortSoroc}

CRickFort Frogrammer's Guide Bringing Your Application io the Deskiop

UQPortCall, unlike the other units, is only an interface and contains no
code.

42 System Configuration
This section assumes thet you are using a two-ProFile system to develop
vour QuickPort applications. The ProFile with the office system is called
"office" in this discussion, and the ProFile with the Workshop is called
“workshop." In the Workshop, set the prefix to the workshop volume. If you
have a Lisa 2/10 you will not need to set the prefixes as described in this
section because all development will be done on one volume.

There are two different environments to consider:

= The development environment. That is, the environment you use when
developing a QuickPort spplication. The development environment is the
Warkshop.

s The run-time environment. This is the environment that the QuickPort
application runs in. The run-time environment is the Office System.

421 The Development Erwironment
When developing, you must

= Boot from the Workshop.

= From the Workshop System Manager, set the prefix to the Workshop
volume.

» Place all files listed in the USES staternent on the prefix volume.
You must have the following files on your prefix volume:

= QP/UQPartCall

= QP/UQPortGraph

= QP/UQPortSaroc

= QP/UQPartVT100

= QP/UQuickPart

» QP/Hardware

= QP/Graf 3D

= QPLib.Obj

= TKLib.Obj

= TK2Lib.Obj

= QP/Phrase
The QuickPort exec file, gp/make, must be on the workshop ProFile.

GUickFort Frogramner's Guide Bringing Your Rpplication o the Deskiop

422 The Run-Time Environment
When running a QuickPort application, you must

= Boot from the office system.

« Have all the libraries your application needs on the office system
volume.

s Have TKLib.Obj TK2Lib.Obj, and QPLib.Obj on the office system
wvolume.

43 Generating Your Tool
To generate your tool, you must run the QuickPort exec file, gp/make, or
custornize gp/make to compile, assemble, and link your tool. Qp/make
assumes all source files are in Pascal. You can customize Qp/make to
assemble your files. Qp/make forces recompilation of all your application's
units, compiles your application's main program, and then links your
application's units with the QuickPort intrinsic units. Then qp/make assigns
the tool name and creates the phrase file using the tool number in the file
name.

Qp/make renames the object code to a file name of the form:

{T##}obj

where ## is the tool number you specified when gp/make was invoked.
Qp/make copies the phrase file to a file name of the form:

(T#EPHRASE

If your application uses other support files, such as data files, rename the
files using the {T##} tool number as the first part of the file name, e.g.,

{T###)support

Then, whenever a user selects the tool's icon from the desktop, all the files
with the {T##} will be copied or deleted. Qp/make assumes that the source
files and libraries are on the prefix volume. Refer to Systern Configuration
above for more information.

Qp/make can be invoked in two ways, depending on how many units your
application has, and depending on whether you need to specify additional
object files that your application does not generate but needs to link to. If
your application has four or fewer units and does not need to specify
additional object files for linking, qp/make can be invoked as follows:

Run <gp/make {mainprogram, tool##, tool voll._lme, unita, unitb, unitc,

unitd)
where
mainprogram is the filename of your application's main program.
tool ## is the tool number you want used in yvour

application's tool name. We recommend you use

4-3

QuickForl Frograrmmer’s Guide Bringing Your Application lo the Deskiop

vour Lisa's serial number plus an offset. Using the
serial number plus an offset will prevent duplication
of tool numbers among different software
developers. For testing you can use any number
greater than 20.

tool volume is the office disk name. The tool will be copied to
the office system.

unita, unitb Up to four units for your application. If you use
unitc, unitd more than four units, use the alternate way to
invoke gp/make as described below.

If your application has more than four units, and/or needs additional units to
link against, qp/make can be invoked as follows:

Run <gpmake (mainprogram, toolf, tool volume, ¢, UnitList, OtherObjlList)

where
meinprogram, tool £, and tool volume are the same as above.
UnitList is a file that contains the names of all your units.

When you create your UnitList file, be sure to list
the units in the order they should be compiled.

OtherObjlist is a file that lists any object files that your
application links against but you don't generate.

Refer to some QuickPort examples programs (gp sample, note, text, and so
forth) on the relesse diskette.

44 Installing Your Tool
After you run gp/make successfully, you must install the application on the
Liza desktop. This installation process creates a tool icon and stationery pad
for your tool. To install a tool you run InstallTool from the Workshop. After
InstallTool is finished, when you leave the Workshop and start the Office
Systern, your tool and its stationery pad will be on the desktop.

To install & tool, run InstallTool from the Workshop with the tool number you
specified in qpmake.

Run what Program? InstallTool
The InstallTool program will prompt you as follows:

Please enter the name of the device your tool is on. [PARAPORT]
Thiz is the name of yowr Office System ProFile.

Please enter your tool id number
Enter the tool number you specified when you ran gp/make.
Remember, svery ool must have a unigue number.

Does vour tool create documents? (Y or N) [YES]
It you answer no, a tool like the Calculator is crested. In other

CickFord Frogeemrner'’s Guide Bringing Your RApplicsetion to the Deskiop

words, a tool that allows only one instance of itself at a time.

Can your tool handle more than one document ot a time? If you
don't know, press return. (Y or N) [NO]

Some tools, such as LisaWrite, create one process that controls
multiple documents. You must answer no for QuickPort tools.

The stationery opening rectangle is defaulted to 10, 40, 640, 290
These values are always the same.

Do you wish to specify a different one? (Y or Nj [NO]

If you answer yes, you are prompted for the values for the size
of the rectangle when a docurnent is opened. This rectangle will
be used whenever a document is opened.

Please enter the name of your tool

Every tool has a tool number and a tool name. When you enter a
tool name, the install program places the tool name in the
desktop names of the tool and its stationery.

“Tool name" has been sucessfully installed in the Office System
and it will appear in the disk window associated with the device.

After you've finished running the InstallTeol program, boot the Office System.
Your application's tool and stationery pad should be on the desktop. You
only need to run InstallTool once even if you regenerate your tool. If you do
regenerate it, however, the tool name in the object file will be lost, and
"Tool xx" will be listed in all the alerts. To get the tool name back in the
alerts, you must run InstallTool again.

45 The Icon Editor
The icons created by the InstallTool program are blank (without pictures). If
vou want to design an icon for vour application, contact Macintosh Technical
Support.

4.6 Shipping Your Application
Your application's phrase file, as well as the object file, must be shipped.
The phrase file contains the standard QuickPort menus and alerts, and it
must be shipped with your application.

4-5

Workshop Liser's Guide Standard QuickFort Menus

Appendix A
The Standard QuickPort Menus

A.1 File/Print Menu

Set Aside Everything Returns all Set Rside Everything
windows to their icons without saving Set Aside “basic Paper 05/24"
the contents.

Set Aside "your document® Returns the Save & Put Away
cment document to its icon without Save & Continue

saving the contents. Revert to Previous Version
Save & Pt Away Saves the contents

of the document, closes the window, Print Rs Is

terminates the program, and returns the Format for Printer ...
icon to its original location. Print ...

Save & Continue Saves the contents of Monitor the Printer ...
the docurment and leaves the window

open.

Revert to Previous Yersion Always
gray -- not supported by QuickPort.

Print As Is Prints one copy of the
document.

Famak for Printer Sets formats in the
document. based on the printer that will
be used.

Print Prints the document using the
settings from the Format for Printer
dialog box. You may choose to print
multiple copies.

Monitor the Printer Shows the status
of the document(s} being printed.

workshop Liser's Guide Standerd QuickFort Menus

A2 Edit Menu Eﬂ.‘
Copy Copies the current selection Lopy
onto the Clipboard. In the text panel Read Input From Clipboard
the selection is done as in LisaWrite.
In the graphic panel, the entire panel is Erase
copied. If there is a text panel, and a Save Buff
graphic panel, you rmust use Select All
Graph to make the selection. vDon't Save Buffer
Read Input From Clipbosrd Places I
what is in the Clipboard into the input Select All Text
buffer.

Erase Erases the current selection.

Save Buffer Saves the lines that
scroll off the top of the screen area.
A check next to Save Buffer indicates
that the lines will be saved.

Don't Save Buffer Does not save the
lines that scroll off the top of the
screen area. A check next to Don't
Save Buffer indicates that the lines
will not be saved.

Select All Text Selects all the text
in the text panel when there is a text
panel.

Flush Input Clears the input panel.
This command is shown only when the
input panel is shown.

Select All Graph Selects the entire
graphic panel when there is a graphic

panel.

A3 Terminal Specifics Terminal Specifics |
Set up Allows you to select 80 or Set up '
132 characters per line, and line Show Tab Ruler [
wraparound. Hide Tab Roler

The following dialog box appears for
you to fill in:

" Desk File/Print Edit _Terminal Specifics Execukion Page Lauout

Characters Per Line HWeo [Ji32
Wraparound M Yes [ONo

Tab [0 |

A-2

Workshop Lier’s Guide Sanderd QuickFort Menus

Show Tab Ruler Displays the tab
ruler.

Hide Teb Ruler Hides the tab ruler.

A4 Execution
Restart Restarts program execution.

Resume Starts program execution at
the point where it was suspended by an

Execution
Restart
Resane Ny

#-period.

AS Page Layout Page Layout
Preview Page Margins Shows the vPreview Page Margins
page margins. Note that the default Preview Page Breaks
page margins are such that the output Don't Preview Pages

in the text panel will not fit in the
width of an 8" by 11" page. Before
printing you should adjust the left and
right margins ao that each vertical

Headings and Margins...

page will fit in one 8" by 11" page. Set Horizontal Page Break
: Set Vertical Page Break

Preview Page Breaks Shows the page

breaks. Clear All Manual Breaks

Don't Preview Pages Does not show
the page boundaries.

Set Horizontal Page Break Sets a
horizontal page break at the position of
the last mouse click.

Set Vertical Page Break Sets a
vertical page bresk st the position of
the last mouse click.

Clear All Manual Breaks Clears all
the page breaks set in the document.

A-3

Appendix B
Writing Your Own Terminal Emulator

Bl Introduction ... oo e ccecmcacecan——an B-1
I B 7 R 1 | TN B-1
B.2.1 TStdTerm Fieldsoiiiiriii i ciei e eaeeeens B-1
B.2.2 TStdTerm Methods You Must Override B-2
B.2.2.1 CREATE it rietieecateaeaeacaneas B-2
B.222 YWrite ... B-2
B.2.2.3 Wread. iieciiiraeeaaaas B-2
B224 CiriKeyWrite B-2
B3 Procedures Terminal Emulators Can Call B-2
B.3.1 Screen Control Functionsciiiiiiiiiiiiiiiannnaae.. B-2
B.3.1.1 Manipulating Lines -~ YGetLine and YPutLine B-3
B.3.1.2 Redrawing -- RedrawScreen and

Redrawline B-3
B.3.13 Scrolling -- YScrollLines.._................. ... B-3

B.3.14 Changing the Number of Columns --
ChangeMaxColumnscoevieiieiiacinnennn. B-3
B.3.1.5 Changing Fonts -~ ChangeFont B-3
=20 I 404 O 6 L B-3

QuickFort Frogrammer'’s Guide Writing & Termingl Emuistor

writing Your Own
Terminal Emulator

B.1 Introduction
This appendix briefly discusses how to write your own terminal emulator,
using the standard terminal as a template. To write a terminal emulator,
you must understand Clascal. Specifically, yvou must understand how to
extend a Clascal program by cresting a subclass, overriding existing methods,
and creating new methods. This section assumes you are comfortable with
these basic Clascal concepts. If you don't understand Clascal, contact
Macintosh Technical Support foxr a copy of Ar lniroduction o
Clascal before reading this section.

To write a terminal emulator, you create a subclass of TStdTerm.
TStdTerm is the standard terminal provided by QuickkPort. The subclass
you creste defines the terminal emulator you want. This appendix discusses
TStdTerm, the methods you mus? override in your subclass, and the methods
used by TStdTerm. You can also add your own methods in your subclass.

B2 TStdTerm
TStdTerm is the standard terminal that is used by QuickPort applications
unless the YT100, Soroc, or any other terminal emulator is specified. The
TStdTerm fields and methods are discussed in this section.

B21 TStdTerm Fields
The fields you need to know about in TStdTerm are listed below. These
fields explain how the standard terminal behaves. You may want to change
some or all of this behavior in your terminal emulator.

maxLines The maximum number of lines in the window.

maxColumns The maximum number of columns in the window.

cursorshape The shape of the cursor. The standard terminal uses
a hox cursor.

saveBuffer To save lines as they scroll off the top of the screen
into the buffer.

wraparound BOOLEAN, whether wraparound is on or off.

stopOutputKey Used to stop output.
startOutputKey Used to start output.
You can only chage these fileds in your CREATE method.

GuickFort Frogrammer's Guide riting & Terminel Ernulslor

B22 TStdTerm Methods You Must Override
You must override three of these four methods in your subclass. You may
want to override CtrKeyWrite.

B22.1 CREARTE
CREATE creates an object of cless TStdTexrm. You must override the
CREATE method in your subclass.

FUNCTION {TStdTerm}CREATE (object: TObject; heap :
Theap) : TSTdTerm;

You must use object and heap ss arguments in your CREATE rmethod.

B.222 WWrite
VUWrite is called by QuickPort when the program calls a write. You must
override the YWrite method in your subclass to handle escape sequences that
apply to your terminal.

PROCEDURE {TStdTerm}VWrite (VAR str : Tstr255);

B.223 Vread
VYread is called by QuickPort when the program calls a read. You must
override the Yread method in your subclass to return any escape sequences
generated from your terminal.

PROCEDURE {TStdTerm}Vread (VAR ach: char; VAR
keycap : Byte; VAR applekey,
shiftkey, optionkey ; BDOLEAN);
B.224 CtrKevlrite
CtrkeyWirite handles the control keys for the terminal emulator. You

should override this method in your subclass if you want to handle different
control keys.

PROCEDURE {TStdTerm}CtrKeyWrite (ctrch: CHAR);

The control keys handled in the standard terminal are CR (no LF), LF, Bell,
Backspace, Horizontal Tab.

B3 Procedures Terminal Emulators Can Call
The procedures listed in this section can be called by any terminal
emulators. Note that these are not methods and do not need to be
overridden in your subclass.

B3.1 Screen Control Procedures
These procedures use escape sequences.

B-2

QuickFort Frogrammer's Guidk Writing & Terrminel Ernuislor

B.3.1.1 Manipulating Lines — VGetlLine and VPutlLine
VGetLine deletes the specified line. YPutLine inserts the line at the
specified line number.
PROCEDURE VGetLine (lineNo : INTEGER; VAR line :
Tstr255; delete : BOOLEAN);

PROCEDURE VPutLine (lineNo : INTEGER; VAR line :
Tstr255; insert : BOOLEAN);
B.3.12 Redrawing — RedrawScreen and Redrawline
RedrawScreen and Redrawline are used after YGetLine and VPutLine.

RedrawScreen repaints the entire screen after a change to the lines or a

screen size change. Redrawline repaints a line after its attributes have
been changed.

PROCEDURE RedrawScreen;
PROCEDURE VYPutLine {lineNo : INTEGER);

B.3.13 Scrolling — ¥Scrolllines
VScrolllines scrolls output on the screen without changing the data
structure.
PROCEDURE VScrolllines (topRegion, bottomRegion :
INTEGER; scrollhowmanylines -
INTEGER);

A positive value for scrollhowmanylines scrolls down.

B.3.14 Changing the number of columns — ChangeMaxColumns
ChangeMaxColumns changes the maximum nurber of columns per line to the
specified number. When ChangeMaxColumns is called, the corresponding
cheracter font is used. If the columns per line is 80 or less, QuickPort uses
a 12-pitch font, otherwise a 20-pitch font is used.

PROCEDURE ChangeMaxColumns (newColumns : INTEGER);

B3.15 Changing Fonts — ChangeFont
ChangeFont changes to the specified font. Because of cursor positioning,
QuickPort supports only fixed pitch fonts.

PROCEDURE ChangeFont (newFont : INTEGER);

B.24 ¥StxWrite
YStrWrite writes the string from the cursor position. This call is the one
thaet does the actual display of output. Terminal emulators should call this
after determining there is no escape sequence in the string. This call

actually displays the output. No control functions are allowed in the string.
This call handles wraparound.

PROCEDURE VStrWrite (VAR str : Tstr255);

B-3

