Lisa Language

Ihfmdows File Edit Search Type Style Print Markers

Clipboard

v —#2#%2-Hemisphere . TEXT

—# 2# 2—Stretch. TEXT

—#242-Stretch. TEXT

BEGIN { main program }
Initialization - Generic to all applications using QuickDraw
QDInit(@heapBuf, ®heapBuf[8192], @heapError);

OpenPort(@myPort);

DrawStuif;

DrawStuff;

PaintRect(thePort”.portRect); [mll ||| -+ 24 2-Hemisphere. TEXT |||
SetRect(srcRect,0,0,720,360); pnOczwns DrawFigure(viewAng, rollAng, pitehAng :
myPicture := OpenPicture(sch.ect); v: evingl(viewAng);

PaintRect(thePort” .portRect);
InitIcons; {moved to here from below stuffhex}
InitScales; {moved to here from below stuffhex}

REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii <y CHR(1));

Identity;
Roll(rollAng);

Pitch(pitchAng);
EraseRect(port1”.portRect);

FrameRect(port1®.portRect);
PlotGrid;

FER R

[25]

B0-1113

Pascal Reference Manual

Copyright

This manual and the software described in it are copyrighted with all rights
reserved. Under the copyright laws, this manual or the software may not be
copied, in whole or in part, without the written consent of Apple, except in
the normal use of the software or to make a backup copy. The same
proprietary and copyright notices must be effixed to any permitted copies as
were affixed to the original. This exception does not allow copies to be
made for others, whether or not sold, but all the material purchased (with all
backup copies) may be sold, given, or loaned to ancther person. Under the
law, copving includes translating into another language or format.

You may uce the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchesed to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Apple dealer for information on multiuse licenses.)

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of
software for the Lisa to incorporate Apple-developed libraries and object
codes into their products. Both in-house and external distribution require a
license. Before distributing any products that incorporate épple softwere,
please contact Softwere Licensing at the address below for both licensing end
technical information.

81983, 1984 Apple Computer, Inc.
20525 Mariani Ave.

Cupertino, CA 95014

{408) 996-1010

Apple, Lisa, ProFile, MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Cornputer, Inc.

Priam is a registered tradernark of Priam, Inc. Sony is a registered
trademark of Sony Corporation. Centronics is a registered trademnark of
Centronice Data Computer Corporation. Y752 and YT100 are trademarks of
Digital Equipment Corporation.

Simultansously published in the U.S.A. and Canada.
Reorder Apple Product #620-6139-E.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this software is
distributed, or in the manuals distributed with the software, Apple will
replace the media or manuals at no charge to you, provided you return the
item to be replaced with proof of purchase to Apple or an authorized Apple
desler during the 90-day period after you purchased the software. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THE
PRODUCT.

Ewven though Apple has tested the software and reviewed the docurnentation,
APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS SOFTWARE, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU,
THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE HELD LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS DOCUMENTATION, even if advised
of the possihility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products,
including the costs of recovering such programs or deta

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. Neo
Apple dealer, agert, or emploves is authorized to make any modificetion,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consegquential damages, so the above limitation or
exclusion may not apply to you. This wearranty gives you specific legal
rights, and you rnay also have other rights which very from state to state.

Contents

Chapter 1

Tokens and Constants
1.1 Character Set and Special Symbols csetasesnttseensrsanssestarasnas 1-1
§ U (s =1 {5 T PO 1-2
13 DATECLIVES ettt ts s sn s e e s st se s ss s s s e s ssas nnnes 1-2
1A NUMDETS . e eeertic oo tacecceeceatcenraasmsssesmessnassnsmrossansssasanasnnsnesnas 1-2
1S L@DBIS..iiiiiinieiciiiiniiininrttee sttt e et se st e te s e s s e s s nnneas cesetteenenans 1-4
16 QuotedStringConstantsccccceceeeecrannericaeenes . 1-4
1.7 Constant DECIArationscocu e eeiiiirriicctirtrenn e see s e e s s aconcanannene 1-5
1.8 Comments and Compiler ComMManaS.ccccociiiriccietenisieetamnneaonncmcescanns 1-5

Chapter 2

Blocks, Locality, and Scope
2.1 Definition Of @BIOCKcocovieieiiirreienieeteenmmencnnesenessssiasssessessassensesssssasans 2-1
2.2 Rules of Scope eessetesssmsasseseastscasans eeettesecassssssenatransaanaseananans 2-3

Chapter 3

Data Types
3.1 Simple-Types(and Ordinal—Types) 3-2
3.2 StIUCIUTEO-TYPES «cocieininnacianneeareoncernnnasennsncanns 3-7
3.3 POINEI-TYPES «.oeeeeennnnneacaeemeocnaanenraenaas tecereeeseneeetatesisettannnsaserannaan 3-13
34 ldentical and Compatible TYPes. .. . o civiamraeceeee e cereeecmmcecnn e eaaecaanas 3-13
35 The Type-Declaration-Part.........ccccccoaeeneneee. eeeereneaanan ...-3-16

Chapter 4

Variables
4.1 Variable-Declarations....... ..ot 4-1
42 Vvariable-References - ...8-1
4.3 Qualifiers - .- . w82

Chapter S5

BExpressions
S.1 Operators eeeseeessssstssesessssetessensnnereen ..5-4
5.2 Function-Calls. ceeestesesesatasesseassatesenentannsnasrassnsnsastanarassnssnerrnnranan 5-10

5.3 Set-ConstruCtors......cceeieeaencenvennnnces . 511

Pascal Reference Maral Contents

Chapter 6

Statements
6.1 Simple Statements - «.6-1
6.2 Structured-Statements. . . 6-4

Chapter 7
Procedures and Functions

7.1 Procedure-Declarations teseeerersecceetennsesssrnsstnrtetesaasastaseaenrearanse 7-1
7.2 Function-Declarationscccceeiiiimiiinniiinnnietemsceeneetreeeaseeennans 7-4
7.3 Parameters . P, 7-5
Chapter 8
Programs
8.1 Syntax - eeeeeeteteseesattasseresnarasssnssnsararerann 8-1
8.2 Program-Parameters........ccoeeeeecercnsnacees . - crarrsrateseieeans 8-1
8.3 Segmentation...... ceeeeststssereeisaansesssaesiearanns 8-1
Chapter 9
Units
8.1 RegUIar-UNItS......ccccovcicnriiirsreiceenneasseesencssssseennanees eesesrentensenans 9-1
b= W (11451003 o2 ¢ 1 3ROt 9-4
9.3 Units that Use Other Units certteemseteeresteasasarteasennretanaane 9-4
Chapter 10
Input/0utput _
10.1 Introductiontol/0
10.2 Record-Oriented1/0
103 Text-Oriented1/0... -
108 Untyped FIIB I/D......cnneneeeeneeee et ren e eneaeanseeaasane
Chapter 11
Standard Procedures and Functions .
11.1 Exit and Halt PTOCEAUIEScoeveeeemeneennnnieiianenns - ..11-1
11.2 Dynamic AllOCation PTOCEOUTESccoeverrreresserereeeesenterercsasnnnes . 11-1
11.3 Transfer Functions 11-4
114 ArthmetiC FUNCLIONSccovieeeeiiiiiiiiiiriiree ittt senrecesssssessanasesesranans 11-5
115 Ordinal FUNCUionseeeeeeieemmmmmneiiiiiienens . reseeseseseece 11-8
116 String Procedures and FUNCHIONS.....ccuceeeiieieieniiiiirmnneeniicenrneanneeenccennes 11-9
117 Byte-Oriented Procedures and Functions... .. 11-11

11.8 Packed Array of Char Procedures and FUnCtions........cccoocvceeereennnnnnnnns 11-12

Fasceal Refsrence Manual Contents

Chapter 12
The Cornpiler
12.1 Compiler CommMangs ittt et 12-1
12.2 Conditional Compilation i 12-2
12.3 Optimizationof If-Statements i 12-5
12.4 Optimization of While-Statements and Repeat-Staternents 12-6
12.5 Efficiency of Case-Staternents i 12-6
Appendixes
A Comperisonto Apple land ApplelllPascall A-1
B Known Anomeliesinthe Compiler B-1
C Syntaxofthe Languageo i i C-1
D Floating-Point Arithmetic D-1
B QUICKDT AW Lo E-1
F oHardwareInterfate ... e F-1
G LisaExtendedCharacter Set G-1
[B 2 ¢) g i T3 T USRS H-1
I PascalWorkshop Files I-1
J Listing Formats .o et J-1
Tables
3-1 Precedence of Operations 5-1
5-2 Binary Arithmetic Operations 5-4
5-3 Unary Arithrmetic Operstions(Signs) 5-4
5-4 Boolean Operationso 5~6
OG-0 Sel Operations .. ieeieieaeeeaaans 5-6
5-6 Relational Operations ieeiaaeeaa 5-7
5-7 Pointer Operabion i 5-8
10-1 Combinations of File Yariable Types with External File
Species and Calegories i 10-3
A-1 Predefined Identifiers inthe LisaPascal Compiler A-4
D-1 Results of Addition and SubtractiononInfinities D-3
D-2 Results of Multiplication and DivisiononInfinities D-3

Syntax Diagrams

BCUIBI-PATBMELEYceeeeeereerneenmermreasaseessaeseessssseearessesssasostessessessesssssscses 5-10
actual-parameter-listccovmmucemem it 5-10
BITAYLYPE c..veeereerreraeasseessassesssesasesessssesasssasasstrsnssssessssesasessressesseensassasssnene

s A o= N

1203517 3| O
constant-declaration
cONStant-declaration=partccceceereeeeiiiieeieeeuitmeeevermenrveessemeserassnssennees 2-2
CONLIOI=VAIIADILceeeeeeeeeeeecececeeccccecetr e e rsicattsssecsssssssssssssessssssesanens 6-8

ENUMETALEA-LYPEouceerrreereeerreeiireiseceeerietonnmerssessesseossesesssesnsssrsesnsenssnnsne 3-6
[237(0) (03 (oL OO UUR USRI 5-3
L2 (0115) SO O 5-1
field—-0eclarationcceumeiicririiiiiiisie e rirrreessceeerrteesesssesnnnaseens 3-10
FIElA-0ESIgNALONccueeeirrerirnnrirateiicccrenreesisnsncneesiersssssnessacrsrssssssasserasmnnans 4-4
Fleld=1ist .. oo ceesetessnseuetannaeteeeeearnnaee 3-9
FHIE-DUFFEY=SYMIBOLcoeeeceeceiceaecccnecnnaececnasecocaeorcasesncmcososnmssssssscossonmnsen 4-4
L1 (ol 8« RN

final-value...
fixed-part......
for-statement

LT A Togils 1o E=1 g 1 Ty R 7-4
function-headingccccevemmmamenennes ceeesrnnensriranens . .7-4

Pascal Reference Marwsl Contents

G HI
goto-statementocooveeevermeeeiieeeennnes . . .63
NEX-0IGIt-SEQUENCEc.e et ree e e e n e e e snesrnsasseeas 1-2
JOENUFIET ..eeeeeeiiceeeeieetciecerereteeeirrrrreservescesrecnnssnisssessssssssssnnsassssss 1-2
1o LA T3 T T U 3-6
if-statement heseiteessssssssesesssssssinssansessantosiertsassasssasssnsenens 6-5
implementation-partccccerrveunnnnne. ressstesssessarssssncisensnanas 9-2
10 =) S .
JLaTo > o 8 o, U
INItIAI-VAIUB.......evice e cceccereereseser e ns et e
interface-part
label eeeerecrenesemeeeeserneacoas e aeaettsbbasstessnbnstnssaaasrnannasnans 2-1,6-1
label-declaration=—pPartcciciiiiicrere et eaeees 2-1
MEMDEI~GIOUD ..c.coceeeeeirrmrreserertiecereermmeeeemssemsemesmmenmsmmsssssssnsssssssssserorsesensnns 5-11
OFOINAI=LYPR .ceieceeeerieriiecrertrsteieeereretntnrerreseanesitsseseinscsssiossssssnssnasssssanaasean 3-2
ONEIWISE~CIAUSE ...covvieeeeeneernreisieneeerenreeeeemnmmnmesereiissssosisiesssssersasessssensansenes 6-6
P
PArameter-declarationc.cceceeeeiieeiiieeiimecreetimeecinecieeesenecaeceenessnennnnees 7-6
POINLET-ODJECL-SYMBOL....ccuvermeeiaeiereernemirneeeeeeeeeeeneniiiinireneesesssnearsnesnasenes 4-4
POINEEY-LYPR ..coeeieriricieiriicicnmicrmeueeiereereeennserierrsnestseesiasesesasesessennsnnsnnen 3-13
procedure-and-function-declaration—part............c.ceceeeicermmeerevesonmmamaissenes 2-2
PrOCEUIE—DOTY ...cvveveeeieiiiiiicieiaieeiicieeesetiieereenteronsenseseiensssnsseernensnnnssensnns 7-1
Proceture-aeCIarationc.ceeeeeeeeemmemmemeeemeeeeeeemsesicrsriressssrsraseessresnsennes 7-1
ProcedurE—heaoingcccceveueeeermmmeeeeememenmmuemmeniineeriirrenireessressssrasssnsssnanes 7-1
PrOCEAUIE=SLALEMENTcooo e eeercereecciiiiiseciiisrsceieisreresennssrcssssenessseennsnssssenes 6-2
PIOGIBIM...ceeeeueireneeniireersieteeessienasereessassrarsssssnssessorssssmssstessasssssesssssossnnssases 8-1
(6 (001 €= 1 L 41 0 g 8-1
Program-parametersc.occeimemmeeeeerecescseneaneersiosnensssees . w81
QR

0021 L 4-2
QUOtEd-Character-ConStantcccciuiiriiiiciiiiinnitiiiennteninitesasasassassessanenes 1-4
QUOTEd-SIING—CONSLANT . cieiereiierireeretemtessetttresesassessessesssseesannasesnssss 1-4
Teal-type ..o eeeteeesstessseesstressessssestesesssensasennesnannsannnn 3-2
TECOTO-TYPEL «oereieneenrernrcrnrsaiareisteetatrierrersasentsrstsssnsssnsssnstassnssssssassasasassnsanen 3-9

lar-unit ceteteetesesssesssssssrstsss st st e e s e ne e ettt et e st e e e e e e ananeresneraese 9-1
1EPEAL-SLAtEMENT.....ccoeiiiiiiiiiiiieiitierteireereeetteereeetteaaassass e s n ns e eenes 6-7
repetitive-statement .- . 6-6

TESU-LYPR ..ooeeeeeeiciaeronnnncnncceererannaaes eeeetetsstattsatesasatstatarassteterstrnananen 7-4

Pascal Reference Marual Conlterits
S
scale-factor .. 1-3
SBL-CONSLIUCTOTociriiiiiiiriinrnearessssassenssssesssessssssessosssnsnsesasssssssassssasassnses 5-11
SBLLYPR «ooeeiiirnnnnesncisisnisionnsssssnsassssssssssssssasssssssssssnsnssssasssvsssasssssssssessoses 3-11
1 o 1-3
signed-number 1-3
simple-expression reseessetseisasessannrerastraserterarassannsersssersasansonte 5-3
simple-statement .6-1
SIMPIB-LYPL ...ieceeiicriaeniecar e reresieseeeeeseeecacnneeasesesnsnensnsasnssssssssssesmancanee 3-2
size-attribute 3-5
SEALEIMBNLcceniiiiiiiniititetitrcsrte et aeas st reeeseeterses e anesssssssssassesessasnsnansssssanes 6-1
statement-part ireseseretesaseeesnsaceennreransasenaas 2-2
SEING-CRATACTETiiiieririiiricisenettcisettntatansstsrussncnnsesssansannesssssonmnnassnsen 1-4
£33 s ot Y o USRS 3-5
SLIUCTUTEO-SLAtEMBNLcooconiiiimineniiniitnneneteretensnesaesssesensennosseas ...6-0
SLTUCTUTEO-LYPEcoeeeieiiniiiririesisseaneeissesassasssnssesssnsessasssssasssssssssasessnssssassnne 3-7
SUDTBNGB-LYPLoenieeicmnnnecemmanaeotensaamannemsaacnacnssacenesssancrssmasssssmannsasmnssene 3-7
T
tag-field-type ..3-10
=) 0 3 O 5-2
type .. eeerassssteesssietrantereratarar s a ettt eaanaratear et rate st et enteteansnan 3-1
LYPB-ABCIATALION. ... ciiiiriieettaraniiinieamcenrestusensnsssnsosassismsessmssnsssssssusensensssnee 3-1
type-declaration-part 2-2
U
UNIE-NBBOING -..ooeeeerieriieiererreeermecnereerocneceeeenamnanesssssaereansnnssssemamanssssranee 9-1
ursigned-constant 5~2
unsigned-integer R, 1-3
UNSIGNECHTIIMDETooiiieeiiiiininneiitateesestsseteisssssnssnssnsetrsssasssssannsssene 1-3
UMSIONEO-TEALcoiiiiiiiiriiiiiennnieineesessassensssessassesssssisassssesssssessnsasasassassnssnss 1-3
uses-clause . eeeeteteeetetantteannettraaneseen st anan s saraans 8-1
V., W
Variable-declarationccciciciiiereininenteennnreneen s es s es s seee 4-1
variable-geclaration-partccccciiiiremmmmniniriinr ittt ees 2-2
UL 10 E o] (oo 1o =g LN T U 4-1
variable-reference.................... . reestentieentntasieararananse 4-1
VAIIANE «.oiiiieieirisneititetrre s trsreseraesetesstassesessssssanasesssssseassrsserneessanssnases 3-10
variant-part ceeesterasssssestessssnsetttatasnrrastettssannsasetersrnsansiesanas 3-10
WHIIE-StALEMBNL ... ittt ettt ereeeseranessseaetstsssas e ensenes 6-7
with-staternent 6-10

Preface

This manual Is Intended for Pascal programmers. It describes an implemen-
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.

The language Is reasonably compatible with Apple II and Apple Il Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.

In adaoition to providing nearly all the features of standard Pascal, as described
in the Pascal User Maral and Report (Jensen and wirth), this Pascal provides
a varlety of extensions. These are summarized in Appendix A. They include
32-bit integers, an otherwise clause in case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

Operating Environment
Tne compller will operate In any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents
Pascal User Manual ana Repord Jensen and wirth, Springer-verlag 1975.

workshop User’s Guide for the Lisg Apple Computer, Inc. 1983,
Other Lisa documentation.

Definitions
For the purposes of this manual the following definitions are used:

* frror: Either a run-time error or a compiler error.

* Seqpe: The body of text for which the declaration of an identifier or
label Is valid.

e (ndefined: The value of a variable or function when the variable does not
necessarily have a meaningful value of its type assigned to it.

s Unspecified: A value or action or effect that, although possibly
well-defined, 1s not specified and may not be the same in all cases or for
all versions or configurations of the system. Any programming construct
that leads to an unspecified result or effect is not supported.

Notatlon and Syntax Diagrams
All numbers in this manual are in decimal notation, except where hexadecimal
notation is specifically indicated.

Throughout this manual, bold-face type is used to distinguish Pascal text from
English text. For example, sqr(n div 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

Pascal Rererence Manual Preface

bold-face; for example, "The declaration of a Pascal procedure begins with
the word procedure.”

ltalles are used when technical terms are introduced.

Pascal syntax Is specified by dlagrams. For example, the following dlagram
gives the syntax for an identifier:

Joentifier @

-

(e

underscore

;

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. Thus the diagram embodies the following
rules:

* An identifier must begin with a /etter since the first arrow goes directly to
a box containing the name “letter."

* An identifier might consist of nothing but a single letter, since there is a
path from this box to the arrow-head on the right, without going through
any more boxes.

* The initial letter may be followed by another letter, a a/g/{ or an
wngerscore since there are branches of the path that lead to these boxes.

* The initial letter may be followed by any number of letters, dligits, or
underscores, since there is a loop In the path.

A word contained in a rectangular box may be a name for an atomic element
like "letter” or “digit,” or it may be a name for some other syntactic
construction that is specified by another diagram. The name in a rectangular
box Is to be replaced by an actual Instance of the atom or construction that it
represents, e.g. “3" for “digit” or “counter” for “variable-reference”.

Pascal symbols such as reserved words, operators, and punctuation, are
bold-face and are enclosed in circles or ovals, as in the following diagram for
the construction of a compound-statement:

compound-statement

Coegin)— -+ statement }——+ (e
(e

Pascal Reference Marasl Preface

Text In a circle or oval represents itself, and Is to be written as shown (except
that capitalization of letters is not significant). In the diagram above, the
semicolon and the words begin and end are symbols. The word "statement”
refers to a construction that has its own syntax diagram.

A compound-statement consists of the reserved word begin, followed by any
number of statements separated by semicolons, followed by the reserved word
end. (As will be seen In Chapter 6, a statement may be null; thus begin end Is
a valid compound-statement.)

GELRE

16

Chapter 1
Tokens and Constants

Character Set and Special Symbols

Identifiers

Directives

Numbers

Labels

Quoted String Constants

1.6.1 Quoted Character Constants...........cciiuviniiiirnirnnninieiesissesenssnnnes
Constant Declarations

Comments and Compiier Commands

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they. correspond to the words in an English sentence. The tokens
of Pascal are classified into special symbols loentiflers numnbers labels and
quotea string constants

The text of a Pascal program consists of tokens and separators-a separator is
elther a t/ark or a comment Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except in quoted string
constants.

1.1 Character Set and Special Symbols
The character set used by Pascal on the Lisa Is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:
* The Jetters are those of the English alphabet, A through Z and a through 2.

* The afgits are the Arabic numerals D through 9; the rex-digits are the
Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

* The blanks are the space character (ASCII 32), the horizontal tab character
{ASCII 9), and the CR character (ASCII 13).

Special symbols and reserved words are tokens having one or more fixed
meanings. The following single characters are special symbols:

c- e/ =<1, () T 3 {)s
The following character pairs are special symbols:

< <= >= =, (* =)

The following are the reserved words:
and end label progran until
array file methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation® if of subclass*
div implementation or then
downto in otherwise to
do interface packed type
else intrinsic* procedure unit

1-1

Pascal Reference Manual Tokens & constants

The reserved words marked with asterisks are reserved for future use.
Cotresponding upper and lower case letters are equivalent In reserved words.
Only the first 8 characters of a reserved word are significant.

1.2 ldentiflers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and flelds in records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

laoentirier @
underscore

NOTE

The first 8 characters of an lgentifier must not match the first 8 char-
acters of a reserved word.,

Examples or loentirlers:
X Rome ocd SuM get_byte
13 Directives

Directives are words that have speclal meanings In particular contexts. They
are not reserved and can be used as ldentifiers in other contexts. For
example, the word forward is interpreted as a directive if it occurs
immeaiately after a procedure-heading or function-heading, but in any other
position it is Interpreted as an identifier.

1.4 Numbers
The usual decimal notation is used for numbers that are constants of the data
types integer, longint, and real (see Section 3.1.1). Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for

longint).
digit-sequence

hex-aigit-sequence hex—digit

1-2

Pascal Reference Manual Tokens & Constants

*{ digit-sequence ;L »
Lb@—»[hex-digit-sequence
oS

unsignea-integer

unsigneda-real

digit-sequence ’ digit-sequence \ —»
b{ scale—faotorl»/

scale-ractar

b@ ﬂ digit-sequence }———-b
Lo Sl

unsigned-number

’(unsigned-integer I——\
\0{ unsigned-real } >

Slaned-imoel. % unsigned-number |——
sign

The letter E or e preceding the scale in an unsigned-real means “times ten to
the power of".

Examples of numbers:
1 +100 -0.1 S5E-3 87.35¢e+8 $A0SD

Note that 5E-3 means 5x10'3, and 87.35e+8 means 87.35x108.

1-3

Pascal Rererence Mernual Tokens & Constants

1.5 Labels
A label is a digit-sequence in the range from 0 through 9999.

16 Quoted String Constants
A quoted-string-constant is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the guoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

quoted-string-constant

: (O
>O (—-i string-character |<-)

string-character

< bmyc.ﬂarexz;adt @ orCR j———b

Examples of quoted-string-constants:
‘Pascal’ ‘'THIS IS A STRING® ‘Don’ 't worry!’

OAU |’_u sene v

All string values have a /ength attribute (see Section 3.1.1.6). In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant
whose length is exactly 1.

quotea-character-constant '@”I string-character '__’O_.

A quoted-character-constant is compatible with any char-type or string-type;
that is, it can be used either as a character value or as a string value.

Pascal Reference Manual Tokerns & constants

1.7 Constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-geclaration identifter ° constant o

canstant

b{ constant-identifier

slgn

signed-number

quoted-string

quoted-char

NOTE

A constant-identifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compller Commands
The constructs:

{ any text not containing right-brace }
(» any text not containing star-right-paren %)

are called comments

A compiler command is a comment that contains a $ character immediately
after the { or (* that begins the comment. The $ character is followed by the
mnemonic of the compiler command (see Chapter 12)

Apart from the effects of compller commands, the substitution of a blank for a
comment does not alter the meaning of a program.

A comment cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {..} delimiters can be
nested within a comment formed with (*...%) delimiters, and vice versa.

Chapter 2
Blocks, Locality, and Scope

2.1 Definitionof aBlock 2-1

22 Rulesof Scope 2-3
2.2.1 Scopeof @DECIATatIoN......ccccuuireceiiiciiiiccttecri et enane 2-3
2.2.2 Redeclarationin anEnclosed BIOCK......ccceeeneeeeeeveieeecereeeereerecennns 2-3
2.2.3 Position of Declaration within Its Block

2.2.4 Redeclaration withinaBlocKeeeeeeeeieevnieniannnen.
2.25 ldentifiers of Standard Objects

Blocks, Locality, and Scope

2.1 Definition of a Block

A block consists of declarations and a statement-part. Every block is part of
a procedure-declaration, a function-declaration, a program, or a unit. All

identifiers and labels that are declared in a particular block are /oca/ to that
block.

22K _—y] \abel-declaration-part h

constant-declaration-part }—)

type-declaration-part }——)

variable-declaration-part }—j

i\ i\ _£\ _{\

procedure-and-function-declaration-part]——)

-
\bl statement-part } >

The Javel-aeclaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement-part.
label-aeclaration-part

(1abel) 1abel o)—r

&D[digit-sequence }——»

Pascal Rererence Msarusl Blocks, Locality, & Scape

The constant-declaration-part comains all constant-declarations local to the
block.

canstant-geclaration-part

constant—declaration }»—T—b

The Ype-aeciaration-part contains all type-declarations local to the block.

Lype-declaration-part

ype—declaration l—j—*

The variable-ceclaration-part contains all variable-declarations local to the
block.

varishle-declaration-part
——b@——(;-»{ varlable-declaration b——-&

The proceaure-and-function-aeclaration-part contains all procedure and
function declarations local to the block.

proceaure-sna-Aaction-oeclaration-part
procedure-declaration
function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activation of the block.

Stalement Part gl compound-statement ——

Pascal Reference Mamual Blocks, Locallty, & Scope

NOTE

At run time, all variables declared within a particular block have
unspecified values each time the statement-part of the block is entered.

2.2 Rules of Scope
This chapter discusses the scope of objects w/tin the program or unlt In which
they are oerfined See Chapter 9 for the scope of objects defined in the
interface-part of a unit and referenced in a host program or unit.

221 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scgpe of this declaration.

This scope is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block inner, then block inner and all blacks enclosed by inner are excluded
from the scope of the declaration in block outer. (See Appendix B for some
odd cases.)

2.2.3 position of Declaration within Its Block
The declaration of an ldentifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used until after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Redeclaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a particular block, except for record fleld ldentiflers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It Is meaningful only in combination with a reference to a
variable of that record-type. Therefore a fleld identifier can be declared
again within the same block, as long as it is not declared agaln at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

2-3

Pascal Rererence Marnual Blocks, Locallty, & Scope

2.25 Identifiers of Standard Objects
Pascal on the Lisa provides a set of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they
were declared in an outermost block enclosing the entire program; thus their
scope includes the entire program.

31

3.2

33
34

35

Chapter 3

Data Types
Simple-Types (and Ordinal-Types) 3-2
3.1.1 Standard Simple-Types and String-TYPeS.....cccuverimieeceaniieaennnenannans 3-3
3.1.1.1 TheINteger TYPE ..cccenniieeiriecci ittt cse e e, 3-3
3.1.1.2 The Longint TYPE ..coeiieeeeiiiitnnneinininnnenssss e eenaan e sanaes 3-3
3.1.1.3 The REEI TYPL «cveeireiiieteremm i ee sttt neee st ern e enn e naas 3-4
3.1.1.4 The BOOIEAN TYPE .coeeeeeereeeeeneieneeeieeeinenraeeseeeteeesaeenensencans 3-4
3.1.15 The Char TYPE cuuuierineiicniireereeeneeeereeeeeranneenae e nen s neas 3-4
3.1.16 SUNG-TYPES...coeiieeeeeeccirceeeeeerenenreese e e s se s e s e e e asanaanens 3-5
3.1.2 ENUMETAtEO-TYPES «.coveeeiiirrnneirianiremmerresesenenssesssassareenassenssnsens 3-6
3.1.3 SUDTANGE-TYPES ..oenernneriiieriinnnneisiiimnsasstatersssssssssssasennmsrnsssressnnes 3-7
Structured-Types 3-7
3.2.1 AITAY-TYPES ceeerereiriisessasasssssneneare s aensnsssssssssssssssssasansssnsssnssanas 3-8
LA (- vv) (o ot B o 2, 3-9
323 SO TP e ieeeceimnrenaeereseccnannnaranasen e car e aen st e rneaanaeaanrans 3-11
328 FIlE-TYPES...ciiiiniimiiirnciinnitiaiteeistaetasseessesessanasasssassssassansenns 3-12
Pointer-Types
Identical and Compatible Types
341 TYPEIOENLILY ..ottt s aera e
3.4.2 Compatibility of Typesccceeeeeeeee

3.4.3 Assignment-Compatibility
The Type-Declaration—-Part

Data Types

A Upe is used in declaring varlables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A Ype-geciaration assoclates an identifier with a type.

type-geciaration (=))

structured-type

pointer-type

The occurrence of an identifier on the left-hand side of a type-declaration

declares it as a type-identifier for the block in which the type-declaration

occurs. The scope of a type-identifier does not include its own declaration,
except for pointer-types (see Sections 2.2.3 and 3.3).

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simple-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-ldentifier
real-type-identifier
string-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolean,
etc.

Pascal Reference Marnual Data Types

3.1 Simple-Types (and Ordinal-Types)
All the simple-types define ordered sets of values.

simple-type ordinal-type

string-type

Lf-’ét%’_.l‘ real-type-identifier }———-——"

ardinal-type

b{ subrange-type

enumerated-type

ordinai-type-identifier

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

rainal-types are a subset of the simple-types, with the following speclal
characteristics:

* within a given ordinal-type, the possible values are an ordered set and each
possible value Is associated with an orainglity, which is an integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a wreoecessor based on
this ordering, and each possible value except the last has a sweeessor based
on this ordering.

* The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinality of the value.

* The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and retumns the predecessor of the value. (For the first
value in the ordinal-type, the result is unspecified.)

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and retums the successor of the value. (For the first value
in the ordinal-type, the result is unspecified.)

3-2

Pascal Referernce Manual Data Types

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are:

integer
longint
char
boolean

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
wser-gefined simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4) The predefined integer constant maxint
is defined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's-complement integers.

3.1.1.2 The Longint Type
The vaiues are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4.) The range is the set of values from
~231-1) to 231-1, ie., -2147483648 to 2147483647.

These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic rules:

* All "integer" constants in the range of type integer are considered to be of
type integer. All "integer" constants in the range of type longint, but not
in the range of type integer, are considered to be of type longint.

* When both operands of an operator (or the single operand of a unary
operator) are of type integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary).

* wWhen one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result is
of type longint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

Pascal Reference Manual! Data Typeés

* The expression on the right of an assignment statement is evaluated
Incependently of the size of the varfable on the left. If necessary, the
result of the expression is truncated or extended to match the size of the
variable on the left.

The ordd function (see Section 11.3.3) can be used to convert an integer value
‘to a longint value.

IMPLEMENTATION NOTE

There is a performance penalty for the use of longint values. The
penalty is essentially a factor of 2 for operations other than division
and multiplication; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.1.3 The Real Type
For detalls of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

* Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823u466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 in Pascal notation.

The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
in textual output.

* Infinite values, +» and -, These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these values.

* NaNs (the word "NaN" stands for "Not a Number"). These are values of
type real that convey diagnostic information. For example, the result of
multiplying « by O is a NaN.

3.1.1.4 The Boolean Type '
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is “less than" true. The
function-call ord{false) returns B, and ord(true) returns 1 (see Section 11.5.1).

3.1.15 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes In the
range 0.255. The ordering of the char values is defined by the ordering of
these numeric codes. The function-call ord(c), where ¢ is a char value, returns
the numeric code of c (see Section 11.5.1).

Pascal Reference Marnual Data Types

3116 String-Types
A string value is a sequence of characters that has a dynamic Jeng» attri-

bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size is the maximum limit on
the length of any value of this type. The current value of the length attribute
is returned by the standard function length (see Section 11.6); the size attribute
of a string type Is determined when the string type is defined.

suing-type
® ®

string-type-identifier }

size-guioute [\ jnsigneg-integer |———

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 255.

The ordering relationship between any two string values is determined by
lexical comparison based on the ordering relationship between character values
in corresponding positions in the two strings. (when the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares “higher”; thus the string ‘attribute’ is
ordered higher than ‘at’)

Do not confuse the size with the length.

3-5

rascal Rererence Mangl! Data Types

NOTES

The size attribute of a string constant is equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters in a string can be accessed as if they were
components of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sections
7.3.2,5.1.6.1, and 11.7).

Do not make any assumptions about the internal storage format of strings, as
this format may not be the same in all implementations.

Operators applicable to strings are specified in Section 5.1.5. Standard
procedures and functions for manipulating strings are described in Section 11.6.

3.1.2 Enumerated-Types
An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence in which the identifiers are listed.

enmerateq e identifier-list 0

Jdentifier-list (

’

The occurrence of an identifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type is declared. The type of this constant is the enumerated-type
being declared.

Examples of enumerategq-types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, widowed, single)

Glven these declarations, yellow Is a constant of type color, diamond is a
constant of type sult, and so forth.

when the ord function (see Section 11.5.1) is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value

3-6

Pascal Reference Marnual Data Types

with respect to the other values of the enumerated-type. For example, given

the declarations above, ord(red) retums 0, ord(yellow) retumns 1, and ordlue)
returns 3.

313 Subrange-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

subrange-type (D

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type
longint. If both are of the same ordinal-type, this type is called the sost-type
If one is of type integer and the other of type longint, the host-type is longint.
Note that no range-checking is done if the host-type is longint.

Examples of subrange-types:

1..100
-10..+10
Ted. .green

A varlable of subrange-type possesses all the properties of variables of the
host type, with the restriction that its run-time value must be in the specifled
closed interval.

IMPLEMENTATION NOTE

Range-checking is enabled and disabled by the compller commands $R+
and $R- (see Chapter 12). The default is $R+ (range-checking enabled).

3.2 Stuctured-Types
A structured-type is characterized by its structuring method and by the type(s)
of its components. If the component type is itself structured, the resulting
structured-type exnhibits more than one level of structuring. There is no
specified limit on the number of levels to which data-types can be structured.

sthetred-type >‘ array-type }
file-type

record-type

>

structured-type-identifier IF

Pascal Reference Manual Data Types

The use of the word packed in the declaration of a structured-type indicates
to the compiler that data storage should be economized, even if this causes an
access to a component of a variable of this type to be less efficient.

The word packed only affects the representation of one level of the
structured-type in which it occurs. If a component is itself structured, the
component’s representation iIs packed only if the word packed also occurs in
the declaration of its type. :

For restrictions on the use of components of packed varlables, see Sections
7.3.2,51.6.1, and 11.7.

The implementation of packing Is complex, and detalls of the allocation of
storage to components of a packed variable are wrspec/fled

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

32.1 Armrray-Types
An array-type consists of a fixed number of components that are all of one
type, called the component-type The number of elements is determined by
one or more Jnadex-types one for each dimension of the array. There Is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every possible value of the corresponding ingex-type, so the
number of elements Is the product of the cardinalities of all the index-types.

array-type

(amay)+(D) (D->GD)-+{owe]

M0EX-LH08 oI o1 dfinal-type

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contain more than 32767 bytes.

3-8

Pascal Reference Manual Data Types

Examples of array-types:

array[1..100] of real
array[boolean] of color

If the component-type of an array-type is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array
is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array{boolean] of array[1..10] of array[size] of real
is equivalent to:

array[boolean, 1. .10, size] of real
Likewise,

packed array[1..10] of packed array[1..8] of boolean
is equivalent to:

packed array(1..10,1..8] of boolean

“Equivalent” means that the compiler does the same thing with the two
constructions.

A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1).

3.22 Record-Types
A record-type consists of a fixed number of components called #7e/os possibly

of different types. For each component, the record-type declaration specifies
the type of the field and an identifier that denotes it.

record-type R C:)mm

rlela-list
fixed-part

variant-part

Hxed-part (b{ field-declaration }—7———’

3-9

Pascal Reference Manual Data Types

Held-geclaration identifier-list ()

The fixed-part of a record-type specifies a list of "fixed" fields, glving an
identifier and a type for each field. Each of these fields contains data that is
always accessed in the same way (see Section 4.3.2).

Example of a record-tyoe:

record
year: integer;
month: 1..12;
day: 1..31
end

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Each
list of fields Is called a wvar/ant The variants "overlay" each other in memory,
and all fields of all variants are accessible at all times.

variant-part

—b@ #1 tag-field-type @
© e

variant

— e OO "D
O

lag-fleld-type »! ordinal-type-identifier |—»

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

3-10

Pascal Reference Manual Data Types

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4).

The varlant-part allows for an optional identifier, called the tag-rfelqd
lgentiffer; 1f a tag-field identifier is present, it is automatically declared as
the identifier of an additional fixed field of the record, called the fag-eld

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other criterion.

Examples of recorg-types with variants:

record
name, firstName: string[80];
age: 0..99;

case married: boolean of
true: (spousesName: string[80]);

false: ()
end
record
X, y: real;
area: real;
case s: shape of .
triangle: (side:)real; inclination, anglel, angle2:
angle);
rectangle: (sidel, side2 : real; skew, angle3: angle);
circle: (diameter: real);
end

NOTE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2). Variant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2).

323 Set-Types

A set-type defines a range of values that is the powerset of some ordinal-type,
called the tase-type In other words, each possible value of a set-type Is some
subset of the possible values of the base-type.

3-11

Pascal Reference Manal Data Types

IMPLEMENTATION NOTE

In the present implementation the base-type must not be longint. The
base-type must not have more than 4088 possible values. If the base-
type Is a subrange of integer, it must be within the limits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a possible value of every set-type.

32.4 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type The component-type may be any
type.
The component data is not in program-addressable memory but is accessed via

a peripheral device. The number of components (i.e. the length of the file) is
not fixed by the file-type declaration.

Helwe o ey >
(of)1 type

The type file (without the “of type" construct) represents a so-called "untyped
file") type for use with the blockread and blockwrite functions (see Section
10.4).

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character device such as the Lisa keyboard. Files of type
text are supported by the specialized 1/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char
{unlike standard Pascal). The type flle of char is a file whose records are of

3-12

Pascal Rerference Mamnual Data Types

type char, containing char values that are not interpreted or converted in any
way during 1/0 operations.

In a stored file of type text or flle of —-128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the sase-type

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the @ operator (see Sectlon 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

base-type
1—»{ pointer-type-identifier

.0_@6?_—&@9__" type-identifier |—#

polnter-type

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be Jjgentical and identity is
required in some contexts but not in others.

3-13

Pascal Reference Mara! Data Types

Even if not identical, two types may still be compatible and this is sufficient
in contexts where identity is not required--except for assignment, where
assignment-compalibility is required.

341 Type ldentity
Igentical types are required o2y in the following contexts:

* Variable parameters (see Section 7.3.2).
¢ Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

* One-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1 and 2, are Joentical if either of the following is true:
* The same e Joentiffer s used to declare both t1 and t2, as in
foo = "integer;

t1 = foo;
t2 = foo;
* t1 is declared to be equivalent to t2 as in
tl = t2;
Note that the declarations
t1 = t2;
t3 =t

do not make t3 and t2 identical, even though they make t1 identical to t2 and
t3 identical to t1!

Also note that the declarations

t4 = integer;
t5 = integer;

oo make t4 and t5 identical, since both are defined by the same type
igentifier. In general, the declarations

t6 = t7;
t8 = t7;

ao make t6 and t8 identical if t7 is a type-identifier.
However, the declarations
19 "integer:
t10 integer;
do ot make t9 and ti0 identical since integer is not a type identifier but a
user-defined type consisting of the special symbol ~ and a type identifier.

3-14

Pascal Reference Marual Data Types

Finally, note that two varlables declared in the same declaration, as in
varl, var2: ~integer;

are of identical type. However, if the declarations are separate then the
definitions above apply.

The declarations

vari: 1nteger
var2: " integer;
var3: integer;
var4: integer:

make var3 and vard ldentical in type, but not varl and var2.

3.4.2 Compatibility of Types
Compatibllity is required in the majority of contexts where two or more
entities are used together, e.g. in expressions. Specific instances where type
compatibility is required are noted elsewhere in this manual.

Two types are compatitle if any of the following are true:
* They are identical.
* One is a subrange of the other.
* Both are subranges of the same type.
* Both are string-types (the lengths and sizes may differ).
* Both are set-types, and their base-types are compatible.

3.4.3 Assighment-Compatibility
Assignment-compatibility is required whenever a value is assigned to

something, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp is assignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

* viyp and exptyp are identical and neitner is a flle-type, or a structured-
type with a file component. 3

* vtyp is real and exptyp is integer or longint (expval is coerced to type
real).

* vtyp and exptyp are compatible ordinal types, and expval is within the
range of possible values of vtyp. ‘

* viyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

* viyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

3-15

Pascal Rerference Manual LData Types

¢ vtyp is a string type or a char type and expval is a quoted-character-
constant,

= vtyp is a packed array{1...7] of char and expval is a string constant
containing exactly » characters.

If the index-type of the packed array of char is not 1.7, but the array
does have exactly /7 elements, no error will occur. However, the results
are unspecified.

whenever assignment-compatibility is required and none of the above is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration—Part
Any program, procedure, or function that declares types contalns a type-
geclaration-part, as shown in Chapter 2.

Example of a type-adeclaration-part:

type count = integer;
range = integer;
color = (red, yellow, green, blue);
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[l..80] of char;
str = string[80];
polar = record r: real; theta: angle end;
person = personDetails;
personDetails = record
name, firstName: str;
age: integer;
married: boolean;

father, child, sibling: person;
case s: sex of
male: (enlisted, bearded: boolean);
female: (pregnant: boolean)
people = file of personDetails;
intfile = file of integer;

In the above example count, range, and integer denote identical types. The
type year is compatible with, but not identical to, the types range, count, and

integer.

3-16

Chapter 4

Variables
A1 Variable-Declarations
42 Variable-References
43 Qualifiers
4.3.1 Arrays,Strings, and IRHeXES ..o
4.3.2 Records and Field-Designatorscccoiriiiciiiiniiinninicciinennenanee
833 FIlE—BUfEIS .ottt e

Variables

4.1 variable-Declarations
A variable-declaration consists of a list of identifiers denoting new variabiles,
followed by thelr type.

variable-geclaration »f identifier-list |-#{:) &)

The occurrence of an identifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remalning lexical extent of that block, except as specified in Section 2.2.2.

Exarmples of variable-aeclarations:

X, ¥.,Z: real;

i, j: integer;

k: 0..9;

p.q r: boolean;

operator: (plus, minus, times);

a: array[0..63] of real;

c: color;

f: file of char;

huel, hue2: set of color;

pl,p2: person;

m,mi, m2: array{1..10,1..10] of real;

coord: polar;

pooltape: array[l1..4] of tape;

4.2 Variable-References

A variable-reference denotes the value of a variable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-reference

——»| varlable-identifier | >

variable-identifier

Pascal Reference Manual Variables

Syntax for the various kinds of qualifiers is given below.

43 Qualifiers
As shown above, a variable-reference is a variable-identifier followed by zero
or more qual/ffers Each qualifier modifies the meaning of the variable-
reference.

qualifier @

field-designator

file-buffer-symbol

pointer—-object-syrbol

An array identifier with no qualifier is a reference to the entire array:
xResults

If the array identifier is followed by an indeXx, this denotes a specific
component of the array:

xResults[current+1]

If the array component is a record, the index may be followed by a field-
designator; in this case the variable-reference denotes a specific field within a
specific array component.

XResults[current+1].1ink

If the fleld is a pointer, the field-designator may be followed by the pointer-
object-symbol, to denote the object pointed to by the polnter:

XResults[current+1].1ink "

If the object of the pointer is an array, another index can be added to denote
a component of this array (and so forth)

xResults{current+1].11ink " {1]

431 Arrays, Strings, and Indexes
A specific component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character position.

On

’

4-2

Pascal Reference Manual ‘ variables

Examples of Indexed arrays:

m[i, 3]
afi+]]

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m{1](]

is equivalent to

m{i,]

For array variables, each index expression must be assigrment-compatible with
the corresponding index-type specified in the declaration of the array-type.

A string value can be indexed by only one index expression, whose value must
be in the range 1..77, where »2 is the current length of the string value. The
effect is to access one character of the string value.

WARNING

when a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval is declared as follows:

strval: string[10];

The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--i.e.,
the number of char values currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[1]:='F'

may or may not work, depending on what the unspecified iength happens
to be. If this assignment works, it stores the char value F' in character
position 1, but the length of strval remains unspecified. In other words,
the value of strval[1} is now F’, but the value of strval is unspecified.
Therefore, the effect of a statement such as writeln(strval) is
unspecified.

Therefore, this kind of string maniputation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they modify.

Pascal Rererence Manal Varfatles

432 Records and Field-Designators
A specific field of a record variable is denoted by a varlable-reference that

refers to the record variable, followed by a field-designator that specifies the
field.

flela-aesignator ‘ identifier

Examples of flela-aesigriators:

p2 .pregnant
coord. theta
433 Flle-Buffers
Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the cwrent flle position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the

current component is via a special variable assocwted with the file, called a
file-bufrer

The file-buffer is implicitly declared when the file variable is declared. If F
is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable-

reference that refers to the file variable, followed by a qualifier called the
file~-buffer-symbol.

fle-tufrer-symbol @ >

Thus the file-buffer of file F is referenced by F .

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the file-
buffer and the current file component.

434 Pointers and Their Objects _
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the abject of the pointer..

The object pointed to by a pointer variable is denoted by a variable-reference
that refers o the pointer variable, followed by a qualifier called the pointer-
object-symbol.

pointer-object-symbol ’G

Pascal Rererence Marnial Variables

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the @ operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4),

The constant nil (see Section 3.3) does not point to a varlable. If you access
memory via a nil polnter reference, the results are unspecified; there may not
be any error indication.

Examples of references o objects of pointers:

~

p1
p1”.sibling”

4-5

Chapter 5

Expressions

S.1 Operators S-4
S.1.1 Binary Operators: Order of Evaluation of OPerands.....cccecceeeeceeeenennes S-4

5.1.2 Arithmetic Operators.. e eeaeas 5-4

5.1.3 BOOIEBNOPEIALOTS ...t oeiiianntreeaneeeaerettetannestetanassnsssansstesnnseasesses 5-6

5.1.8 SELOPEIALOYScoveerininiiiieinnneniereennnersintcennatnsssenssneennnssssanansnaes 5-6
5.1.4.1 Result TypeinSet Operations.....c..ccccviiiiiriiiimmnneiscreennncanes 5-7

5.1.5 Relational Operatorscccoceeriieciiitimncecicnnnn e ereseenaenaes 5-7
5.1.5.1 Comparing NUIMDETS «....eoiiiiiiimniiinniieeettiantatiaiessessassnsasese 5-7

5.1.5.2 Comparing BOOIEANS......cccciceiertiitmennniessrseemnntansssnrnsansnne 5-8

5.1.5.3 Comparing Stringscooeem i 5-8

5.1.5.8 Comparing SeLs ...cocomeeimiii e 5-8

5.1.5.5 Testing Set Membership......ccccviiiinininininnincicciiieceneee 5-8

5.1.5.6 ComparingPacked ArTays of Charccccouieeeeneneneccennennnens S-8

5.1.6 ®-0PETALOT ...cuvurnerrncieririerserreenterasassnssnnnsssssssnssssieernsanssssssnsssesses 5-8
S5.1.6.1 @-Operatorwithavariable.............ccccooinmmiiiiiiiiennens 5-9

5.1.6.2 @-Operator witha Value Parameter........coeueeeennnienncencnnnens 5-9

5.1.6.3 @-Operator witha Variable Parameter........occcevvieeinnnnnnes 5-9

5.1.6.4 @-Operator withaProcedure or Functioncccooeeeneiais 5-9

52 Function-Calls 5-10

5.3 Set-Constructors.. 5-11

Expressions

Expressions consist of operators and operands, l.e. variables, constants, set-
constructors, and function calls. Table 5-1 shows the operator precedence:

Table 5-1
Precedence of Operators
Qperators Precederce | Categories
@, not highest unary operators
», /, div, “ M
2 e TN, second multipl rators
mod, and plying" ope
+, -, 00 third “adding” operatars & signs
=, %>, lowest relational operators
<=, >=, in

The following rules specify the way in which operands are bound to operators:

* When an operand Is written between two operators of different precedence,
it is bound to the operator with the higher precedence.

* when an operand is written between two operators of the same precedence,
it is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a factorallows the unary operators @ and not to be applied to
a value:

fractor

~ - > b{ variable-reference l'—-ﬁ

—{ unsigned-constant |
;-bl function-call }
] set-constructor |
(O)
L.

J 4)

Pascal Reference Manual v Expressions

A function-call activates a function, and denotes the value returned by the
function (see Section 5.2). A set-constructor denotes a value of a set-type (see
Section S.3). An wisigned-constant has the following syntax:

b{ unsigned-number
quoted-string-constant
‘ constant-identifier
nil >

unsignea-constant

Examples of factors:

X {variable-reference}

ax {pointer to a variable}

15 {unsigned-constant}

(x+y+2) {sub-expression}

sin(x/2) {function-call}

['A*..°F",'a’..'f"] {set-constructor}

not p {negation of a boolean}
The syntax for a fenm allows the "multiplying” operators to be applied to
factors:

enm
A ®‘ y
\. O‘ N

~

Examples of temms:

X*y

1/(1-1)

padgq

(x <= y) and (y < 2)

Pascal Reference Manual

Expressions

The syntax for a simple-expression allows the "adding” operators and signs to

be applied to terms:

simole-expression

Examples of simple-expressions:

X+y

-X

huel + huez
1% + 1

The syntax for an expression allows the relational operators to be applled to

simple-expressions:

EXPIEssIon

—»| simple-expression |~

Examples of expressions:
X = 1.5
p<=q
p=qandr
1<J3)=()<k)
c in huel

5~

N

simple-expression]—j

LI

Pascal Reference Marual

5.1 Operators

5.1.1 Binary Operators: Order of Evaluation of Operands
The order of evaluation of the operands of a binary operator is unspecified.

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations

are shown in Tables 5-2 and 5-3 respectively.

Expressions

Table 5-2
Binary Arithmetic Operations
Qperatar | Cperation perand Types Type of Resuit
+ addition
- subtraction integer, real, or integer, real, or
longint longint
bt multiplication
/ division integer, real, or real
longint
div division with integer or longint | integer or longint
integer result
mod modulo integer or longint integer
Note: The symbols +, -, and * are also used as set operators (see
Section 5.1.4).
Table 5-3
Unary Arithmetic Operations (Signs)
Qperator| Qperation Qperangd Types e or Result
+ identity .
integer, real, or same as operand
- sign-negation longint

Any operand whose type is subr, where subr is a subrange of some ordinal-type

ordtyp, is treated as if it were of type ordtyp. Consequently an expression
that consists of a single operand of type subr is itself of type ordtyp.

5-4

Pascal Reference Manual Expressions

If both the operands of the addition, subtraction, or multiplication operators

are of type Integer or longint, the result is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real.

NOTE

See Appendix D for more information on all arithmetic operations with
operands or results of type real

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of | div j is the mathematical quotient of 1/j, rounded toward zero
to an integer or longint value. An error occurs if j=0.

The value of 1 mod j is equal to the value of
1-(idiv j)=j

The sign of the result of mod is always the same as the sign of 1. An error
occurs if J=0.

The predefined constant maxint is of type integer. Its vaiue is 32767. This
value satisfies the following conditions:

* All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

* Any binary integer operation on two whole numbers in this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result is not in this interval, then the actual result is
the low-order 16 bits of the mathematical result.

* Any relational operation on two whole numbers in this same interval will be

correctly performed according to the mathematical rules for whole-number
arithmetic.

5-5

Pascal Reference Mariial Expressions

5.1.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table

S-4.
Table 5-4
Boolean Operations
Qperatar| Qperation perana Types Type or Resuit
or disjunction
and conjunction boolean boolean
not negation

whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression will
always have the value true, regardless of the result of boolTst(x) The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table 5-5.

Table 5-5
Set Operations
uerator| Qoeration Querang Types Tyoe of Result
+ union
compatible
- difference set-types (see 5.1.4.1)
* intersection

Pascal Rerference Marual Expressions

5.1.4.1 Result Type In Set Operations
The following rules govern the type of the result of a set operation where one
(or both) of the operands is a set of subr, where ordtyp represents any
ordinal-type and subr represents a subrange of ordtyp:

* If ordtyp is not the type integer, then the type of the result is set of
ordtyp.

« If ordtyp is the type integer, then the type of the result is set of 0.4087 in
the current implementation (0..32767 in a future implementation). This rule
results from the limitations on set-types (see Section 3.2.3).

5.1.5 Relational Operators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

Qperator | (peration perand Types Twoe of Result
- equal compatible set-,
simple-, or
< not equal pointer-types
(& see below)
< less
> greater compatible
simple-types
<= less/equal (& see below) boolean
> greater/equal
<= subset of compatible
>= superset of set-types
Jert gperanda:
in member of any ordinal-type T
rignt gperana:
set of T

5.15.1 Comparing Numbers
when the operands of <, >, >=, or <= are numeric, they need not be of
compatible type /F one operand is real and the other is integer or longint.

NOTE

See Appendix D for more information on relational operations with
operands of type real.

Pascal Reference Manusal Expressions

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p=q denotes their equivalence and p<=gq
denotes the implication of q by p (because false<true). Similarly, p<>q denotes
logical “exclusive-or."

5.15.3 Comparing Strings
when the reiational operators =, <>, <, >, <=, and > are used to compare
strings (see Section 3.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCII character set. Note that any two string values can be
compared since all string values are compatible.

5.15.4 Comparing Sets
If u and v are set operands, then u<=v denotes the inclusion of u in v, and
u>=v denotes the inclusion of v in w

5.1.5.5 Testing Set Membe
The in operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwise it yields the value false.

5.1.5.6 Comparing Packed Arrays of Char
In addition to the operand types shown in the table, the = and <> operators can
also be used to compare a packed array{1.N] of char with a string constant
containing exactly N characters, or to compare two one-dimensional packed
arrays of char of Jjoentical type.

5.1.6 @-Operator
A pointer to a variable can be computed with the @-operator. The operand
and result types are shown in Table 5-7.

Table 5-7
Pointer Operation
Gerator | Gperation Qperand Tywe of Result
inter variable, parameter,
€ ?grmaum procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value is equivalent to the type of nil, and consequently can be assigned to
any pointer variable.

Pascal Reference Marnual Expressions

5.1.6.1 @&-Operator with a Variable v
For an ordinary variable (not a parameter), the use of @ {s straightforward. For
example, if we have the declarations

type twochar = packed array[0..1] of char;
var int: integer;
twocharptr: twochar;

then the statement

twocharptr := aint

causes twocharptr to point to int. Now twocharptr~ is a reinterpretation of
the bit value of int as though it were a packed array{0..1] of char.

The operand of @ cannot be a component of a packed variable.

5.1.6.2 @-Operator with a Value Parameter
when @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := afoo

then fooptr~ is a reference to the value of foo. Note that if the actual-
parameter is a variable-reference, fooptr is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 @-Operator with a Varlable Parameter
when @ is applied to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer is taken from the stack). Suppose that fum
is a formal variable parameter of a procedure, fie is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := afum
then fumptr is a pointer to fie. fumptr” is a reference to fie itself.
5.1.6.4 @-Operator with a Procedure or Function
It is possible to apply @ to a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.

Currently the only use for a procedure pointer is to pass it to an assembly-
language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, @ returns the current
address of the procedure's entry point. If the procedure is in some other
segment, however, @ returns the address of the jump table entry for the
procedure.

5-9

Pascal Reference Marnél Expressions

In logical memory mapping (see Workshigp User'’s Guide for the Liss), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valid despite swapping because the jump table is not
moved.

52 Function-Calls
A function-call specifies the activation of the function denoted by the
function-igentifier. If the corresponding function-declaration contains a list of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal~-parameter. The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.

The order of evaluation and binding of the actual-parameters is unspecified.

Aanction-call

———>| function-identifier J‘ >
\D{ actual-parameter-list }-]

setual-parsmeter-list »@-Tb{ actual-parameter l“j—’@—’

expression

variable-reference

aeltual-parameter

procedure-identifier

function-identifier

A function-identifier is any identifier that has been declared to denote a
function.

5-10

Pascal Rererence Manual Expressions

Examples of function-calls:

sum(a, 63)
gcd(147,Kk)
sin(x+y)
eof(f)
ord(f)
5.3 Set-Constructors
A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets] Each expression denotes a value of the set.

set-constructor
(D>

O

member-qroup

expression >

(D[oression

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group X..y denotes as set members the range of all values of the base-
type in the closed interval x to y.

If x is greater than y, then x.y denotes no members and [x..y] denotes the
empty set.

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resulting
set. If an integer value designated as a set member is outside the limits given
in Section 3.2.3 (0..4087 In the current implementation), the results are
unspecified.

£Examples of set-consthuctors:

[red, ¢, green]
[1, 5, 10..k mod 12, 23]
[lAl..lzll lal..lzl' cr'r(m)]

5-11

Chapter 6
Statements

6.1 Simple Statements . 6-1

6.1.1 AsSIgNMErt-Statements ..., 6-1
6.1.2 ProcedUre-Statementscve i eeceeceeececeeeere e ee e e e e nans 6-2
6.1.3 GOtO—StatBMBNES ... e ettt crieeecrereesre e neen s erecaaansanns 6-3

6.2 Structured-Statements

6.2.1 Compound-Statements i er e e e e e r e e
6.2.2 Conditional-Statementso

6.2.2.1 If-StatBMENLSieenieieiiiieameeeeeeeeaennsrnamtasearnasncnnanrasnnans
6.2.2.2 Case-StatementS...coceieieereceeee e ereeeeeern e en e e aans
6.2.3 Repetitive-Statements. ... i e
6.2.3.1 Repeat-Statements
6.2.3.2 while-Statementscc..ceiiiiceniannans
6.2.3.3 For-Statements. ..ottt et e r s e e
6.2.84 With-StalemMENLS ...cn e eeiicee i eecenecreaceaeenereesectassanssassessansanans

Statements

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a goto-statement.

statement

»
o h: simple-statement

structured-statement

ﬂfj—-’[digit~sequencej————->

A digit-sequence used as a label must be in the range 0.9999, and must first
be declared as described in Section 2.1.

6.1 Simple Statements
A simple-statement is a statement that does not contain any other statement.

simple-statemernt

’{ assignment-statement

procedure-statement

goto-statement | >

6.1.1 Assignment-Statements
The syntax for an assignment-statement is as follows:

asslgnment-statement
variable-reference
function-identifier °

The assignment-statement can be used in two ways:

* To replace the current value of a variable by a new value specified as an
expression

* To specify an expression whose value is to be returned by a function.

Pascal Reference Manual Statements

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:
X 1= y+Z;

p := (1<=1) and (i<100);

1 := sqr(k) - (i=j).

1 := [blue, succ(c)]:
6.1.2 Procedure-Statements

A procedure-statement serves to execute the procedure denoted by the
procedure-identifier.

procedae-statement

——-b{ procedure-identifier % >
\b{ actual-parameter-list }—/

{A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Sectlon 7.3), the procedure~
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is established
by the positions of the parameters In the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formal-
parameter FP:

* If FP is a value parameter, AP must be an expression. The type of the
value of AP must be assignment-compatible with the type of FP.

* If FP is a variable parameter, AP must be a varlable-reference. The type
of AP must be identical to the type of FP.

* If FP Is a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Reference Manual Statements

* If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the

corresponding formal-parameter of FP, and the result-type of AP must be
identical to the result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of proceure-statements:

printheading;

transpose(a, n,m);

bisect(fct, -1.0,+1.0,X);
6.1.3 Goto-Statements

A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

L0-StlEment_y("aot5)—{ abel |

NOTE

The constants that Introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The following restrictions apply to goto-statements:

* The effect of a jump into a structured statement from outside of the
structured statement is unspecified.

* The effect of a jump between the then part and the else part of an if-
statement is unspecified.

* The effect of a jump between two different cases within a case-statement
is unspecified.

6-3

Pascal Reference Manual Statements

6.2 Structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structured-statement

’{ compound-statement

conditional-statement

repetitive-statement

with-statement } »

6.2.1 Compound-Statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compouna-statement

(oegin) (o)
Example of compound-statement:
begin

z
X :
y :
end
An important use of the compound-statement Is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows

one statement. The symbols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

6.2.2 Conditional-Statements
A conditional-statement selects for execution a single one (or none} of its
component statements.

corftional-statement if-statement

case-statement

y

x;
zl

6-4

Pascal Reference Marual Statements

6.2.2.1 If-Statements
The syntax for if-statements is as follows:

Ir-statement , . l—
(OCt.hen)—b[statement | >

The expression must yield a result of type boolean. If the expression yields
the value true, the statement following the then is executed.

If the expression yields false and the else part is present, the statement
following the else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if el then
if e2 then si1
else s2

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then si1
else s2

end
Examples of If-statements:

if x < 1.5 then z := x+y else z := 1.5;
if p1 <> nil then p1 := p1 _father;

6.222 Case-Statements
The case-statement contains an expression (the se/ectol and a list of
statements. Each statement must be prefixed with one or more constants
(called case-canstants, or with the reserved word otherwise. All the case-
constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

case-Salement oo ol axprossion

case
\{ otherwise-clause M

Pascal Rererence Ma&al Statements

case constant ()
otherwise-clause otherwise statement I———>

The case-statement specifies execution of the statement prefixed by a case-
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise Is executed; if no otherwise part is present, nothing is executed.

Examples of case-statemernts:

case operator of
plus: X = Xx+y;
minus: X := x-y;
times: x := xmy
end

case 1 of
1: X
2: X
3,4,5: X
otherwise X
end

i

[

(x):

.
83
2
X

it yd

(=]
28
—~
—~
X
-~

IMPLEMENTATION NOTE

In the current implementation, the case-statement will not work
correctly iIf any case-constant is of type longint or the value of the
selector is of type longint.

6.2.3 Repetitive-Statements
Repetitive-statements specify that certain statements are to be executed
repeatedly.

repetitive-statement

erepeat—statement

while-statement

for-statement |- >

Pascal Rerference Merual Statements

6.2.3.1 Repeat-Statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

repeat-statement

——b(repeat)-(b{ statement j—;—b(mtil)——b{ expression [—&

The expression must yleld a result of type boolean. The statements between
the symbols repeat and until are repeatedly executed until the expression
ylelds the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated grter execution of the sequence.

Examples of repeat-statements:
repeat

1 mod j3;
J
K
j=o0

N

§b)—"x
|

i

process(f ");
get(f)
until eof(f)
6.232 Wwhile-Statements
A while-statement contalns an expression which controls the repeated

execution of one statement (possibly a compound-statement) contalned within
the while-statement.

while-statement

(i) e |3 | et }>

The expression must yield a result of type boolean. It is evaluated serore the
contained statement is executed. The contained statement is repeatedly
executed as long as the expression yields the value true. If the expression
yields false at the beginning, the statement is not executed.

Pascal Rerference Manual Statements

The while-statement:
while b do body
is equivalent to:

if b then repeat
body
until not b
Examples of while-statements:
while a[i] < x do i := i+1
while 1>0 do begin
if odd(1) then z := z»x;
1:=1div 2
X = sqr{x)
end

while not eof(f) do begin
process(f ");
get(f)
end
6.2.3.3 For-Statements
The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned
to a variable called the control-variable

ror-statement

control-variable e
p——

CNol-vIae gl yarianle-identifier |—

initial-value
final-value ‘

Pascal Reference Manal Statemerits

The control-variable must be a variable-identifier (without any quatifier). It
must be local to the innermost block containing the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
or;:linal—type, and the Initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement iIs constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. when each value is assigned to the control-variable, it is
compared to the final-value; if it is less than or equal to the final value, the
contalned statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-varlable is the predecessor (see Section 3.1) of
the previous value. When each value is assigned to the control-variable, it is
compared to the final-value; if It Is greater than or equal to the final value,
the contained statement is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := el to e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ <= temp2 then begin
v := templ;
body:;
while v < temp2 do begin
v := succ(v);
body
end
end
end

6-9

Pascal Reference Mamual Statements

and the for-statement:

for v := el downto e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ >= temp2 then begin
v = templ;
body;
vhile v <> temp2 do begin
v := pred(v);
body
end
end
end

where templ and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.

Examples of for-statements:
for i := 2 to 63 do if a[i] > max then max := a[i]
for i :=1tondo for j :=1tondo
begin
for k := 1 to ndo x := x + mi[i,k}wm[k, j);
il :

for ¢ := red to blue do q{c)

6.2.4 With-Statements
The syntax for a with-statement is

with-statement
—b(with record-variable-reference @

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement following
the word do. Fields of the record-variable can be referenced by thelr field-
identifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Marual Statements

Example or with-statement:

with date do if month = 12 then begin
month := 1;
year := year + 1
end
else month := month + 1
This is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1
end

else date.month := date.month + 1

within a with-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following

gdeclarations:
type recTyp = record
foo: integer;
bar: real
end;

var baz: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record varlable baz and to a
variable of type integer. Now consider the statement .

with baz do begin
foo := 36; {which foo is this?}

end

The foo in this with-statement is a reference to the field baz.foo, not the
variable foo.

The statement:
withvi,v2, ... vwndo s
is equivalent to the following "nested” with-statements:
with vi do
with v2 do

with vn do s

6-11

Pascal Reference Mana! Statements

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean v2.vn, not vivn. The list of record-variable-references in the with-
statement is checked from right to left.

If the selection of a variable in the record-variable-list involves the indexing
of an array or the de-referencing of a pointer, these actions are executed
before the component statement is executed.

WARNING

If a variable in the record-variabie-list Is a pointer-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the pointer is altered, the results are unspecified.

Exarmple of unsafe with-statement using pointer-refererce:
with ppp” do begin

new(ppp); {Don't do this ...}

pf)f):=x>o<; {... or this}

oee

end

6-12

Chapter 7

Procedures and Functions

7.1 Procedure-Declarations

72 Function-Declarations

7.3 Parameters

..

Procedures and Functions

7.1 Procedure-Declarations
A procedure-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

Proceaure-oeciaration

—-—b{ procedure-heading }-5@0{ procedure-body l‘b@—-b

procegure-tady

The procedure-heading specifies the identifier for the procedure, and the
formal parameters (if any).

procestde-neating

——-—b(pmcedure)—-b[identifier } \’{

formal-parameter-list }/

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure’s identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
block, the procedure is executed recursively.

7-1

Pascal Reference Marual Proceaures & Functions

Exanple of & proceaure-ceclaratior

procedure readInteger (var f: text; var x: integer);
var value,digitvalue: integer;
begin
while (f~ = * ') and not eof(f) do get(f);
value := 0;
while (f" in [‘0'..°9']) and not eof(f) do begin
digitvalue := ord(f") - ord(°C');
value := 10=value + digitvalue;
get(f)
X := value
end;

A procedure-declaration that has forward instead of a block Is called a
forwarg ogeclaration Somewhere after the forward declaration (and in the
same block), the procedure is actually defined by a aefining declaration--a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-list, and includes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of forwara declaration:

procegure walter(m,n: integer); {forward declaration}
forward;

procedure clara(x, y: real);
begin

valter(4, 5): {OK because walter is forward declared}

end;

procedure walter; {defining declaration}
begin

clara(8.3, 2.4);

end;

A procedure-declaration that has external instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a PROC in the case
of assembly language). The external code must be linked with the compiled

7-2

Pascal Reference Marxial Procegures & Functions

Pascal host program before execution; see the Wworkshgp Users Guide for the
Lisa for details.

Example of an extemal proceaure-oeclaration:

procedure makescreen(index: integer);
external;

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

It is the programmer's responsibility to ensure that the external
procedure is compatible with the extemnal declaration in the Pascal
program; the current linker does no checking.

NOTE

This Pascal (unlike Apple 11 and Apple III Pascal) does not allow a
variable parameter of an extemal procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = “bigpaoc;

procedure whatever (bytearray: bigpaocptr);
external;
The actual-parameter can be any pointer value obtained via the @-
operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing
whatever(adots)

This description of external procedures also applies to external functions.

Pascal Rererence Manusl Proceaures & Functions

7.2 Function—-Declarations
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

runction-aeclaration

——bl function-heading 0 o

runction-boay

A4

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result.

function-reading (mﬁm}b{ identifier]—)

(PACHE=an

\-{ formal-parameter-list

result-type

D{ oroinal-type-icgentifier

real-type-identifier

pointer-type-identifier ‘, >

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression is evaluated by executing the function, and replacing the function-
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contaln
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.
If no such assignment-statement exists, or if it exists but Is not executed, the
value returned by the function is unspecified.

7-4

Pascal Reference Manusl Proceaures & Functions

If the function's identifier is used in a function-call within the function's
block, the function is executed recursively.

Examples of Anction-ageclarations:

function max(a: vector; n: integer): real;
var x: real; i: integer;

begin
x := af1];
for 1 := 2 to ndo if x < a[i] then x := a[i]
max := X

end;

function power(x: real; y: integer): real; { y >= 0}
var w,z: real; i: integer;
begin
Wi=Xx Z:=1 1:=
while i > 0 do begi
{z#(werl) = x »=)' }
if odd(i) then z := z*w;
1 =1dlv 2;
:= sqr(w)

{z x*y }
power := Z
end;
A function can be declared forward in the same manner as a procedure (see
Section 7.1 above). This permits mutual recursion.

A function-declaration that has external instead of a block defines the Pascal
interface to a separately complied or assembled extemal routine (@ FUNC in
the case of assembly language). See the explanation in Section 7.1 above.

7.3 Parameters
A formal-parameter-list may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
Is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.

If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

Pascal Reference Maragl Proceaures & Functions
this case there is no associated block and the identifiers of parameters in the

formal-parameter-list are not significant (see Sections 7.3.3 and 7.3.4 below).

farmal-parameter-list

b@ »| parameter-geclaration
procedure-heading

function-heading

&)

02Neler-gecliaration identifier-list o type-identifier }—'

There are four kinds of parameters: value parameters variable parameters
proceaural parameters and fmctional parameters They are distinguished as
follows:

* A parameter-group preceded by var is a list of variable parameters.
= A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

NOTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-list. To use a type such as array{0..255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type charray = array[0..255] of char;

The ldentifier charray can then be used in a formal-parameter-list to
denote the type.

Pascal Rererence Manual Proceaures & Functions

NOTE

The word flle (for an “untyped" file) is not allowed as a type-identifier
in a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type file
-—for example,

type phyle = file;

The identifier phyle can then be used in a formal-parameter-list to
denote the type file.

7.3.1 Value Parameters
For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of file-type or of any structured-type that contains
a flle-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value~-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable-
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Joentical to that of the formal variable-parameter.

NOTE

If the reference to an actual varlable-parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.3.3 Procedural Parameters
when the formal-parameter is a procedure-heading, the corresponding actual-
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

7-7

Pascal Rerferernce Maral Proceaures & Functions

Example of proceaduradl parameters:

program passProc;
var i: integer;
procedure a(procedure x) {x is a formal procedural parameter.}
begin
write('About to call x °);
x {call the procedure passed as parameter}
end;
procedure b;
begin
write('In procedure b')

function c(procegure x): integer;
in

x; {call the procedure passed as parameter}
c:=
end;

in
a(b); {call a, passing b as parameter}
i:= c(b) {call c, passing b as parameter}

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list -is omitted.

Example of proceaural paramelers with their own Fformal-parameter-lists:
program test;
procedure xAsPar(y: integer);
in

writeln('y=", y)

23

procecijure callProc(procedure xpAgain(z: integer));
Degxt\gain(l)
end;

begin {body of program}

callProc(xAsPar)
end.

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity

7-8

Pascal Reference Manual Proceaures & Functions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstReceiver, passing pp as an
actual parameter.

3. firstReceiver calls secondReceiver, again passing pp as an actual
parameter.

4. secondReceiver calls pp (first execution of pp).

S. secondRecelver calls thirdReceiver, again passing pp as an actual
parameter.

6. thirdReceiver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp Is called first from secondReceiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named Xxx.

Each time pp is called, which xxx does it access? The answer is that in eaon
case, pp accesses the xxx that is local to the Arst execution of firstPasser--

that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

734 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
additional rule that corresponding formal and actual functions must have
loentical result-types.

7.35 Parameter List Compatibility
Parameter list compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

Pascal Reference Manual Proceagures & Functions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

* They are both value parameters of Joenlical type.
* They are both variable parameters of Joentical type.
* They are both procedural parameters with compatible parameter lists.

* They are both functional parameters with compatible parameter lists and
lgentical result-types.

7-10

Chapter 8
Programs

8.1 Syntax 8-1
82 Progran-Parameters 8-1
8.3 Segmentation 8-1

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional wses-clause

Yoree/e-u/)

—>* program-heading ; block
©

LHOQram-Nesing

—b@rogran)—b{ identifier } \ >
»@-&l program-parameters }-0@—/

LIOYIMPAINELESS 130 nvielor-1ist
Lises CIaUSe g (" ses)] identifier-list |—

The occurrence of an identifier immediately after the word program declares it
as the program’s ldentifter.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

82 Program-Parameters
Currently, any program-parameters are purely decorative and are totally
ignored by the compiler.

8.3 Segmentation
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment”). Any other block can
be placed in a different segment by using the $S compller command (see
Chapter 12 and Appendix A). If no $S command is used in the program, all
code is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unit, but it cannot be mixed with
code from an intrinsic-unit (see Chapter 9).

91

92
93

Chapter 9

Units
Regular-Units 9-1
9.1.1 writingRegular-Units............cooiirieicereeee e, 9-1
9.1.2 USingRegUIAr-UNILSccoiiirriiiiiiniiirninciee e seertnann s eseeananes 9-3
Intrinsic-Units 9-4
Units that Use Other Units 9-4

Units

A unlt is a separately complled, non-executable object file that can be linked
with other object flles to produce complete programs. There are two kinds of
units, called reguiar-units and Intrinsic-units In the current implementation of
the workshop, you can use intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be compiled, and its object
file must be accessible to the compiler, before the host program (or unit) can
be compiled.

9.1 Regular-Units
Regular-units can be used as a means of modularizing large programs, or of
making code available for incorporation in various programs, without making
the source avallable.

when a program or unit (called the sost) uses a regular-unit, the linker inserts
a copy of the complled code from the regular-unit into the host's object file.

By default, the code copied from the regular-unit Is placed in the blank
segment (see Chapter 8). The code of the entire unit, or of blocks within the
unit, can be placed in one or more different segments by using the $S compiler
command (see Chapter 12).

9.1.1 Wwriting Regular-Units
The syntax for a regular-unit is:

requiar—nit unit-heading ;)
(0{ interrace-part_|»{ implementation-part }(end (.)—»

wltpeading (it){ identifier ——

9-1

Pascal Reference Mar/al Linits

Dterfate o o (Triariace) .
g D

! constant-declaration-part }—>
g

»{ type-declaration-part l—)

-
\-bl varlable-declaration-part l—>

.
\-{ procedure-ana-function-declaration-part ———-

Jmp/ementatmn—part’cml tation }) N
-~
Kbl constant-declaration-part |-—)

-
#{ type-declaration-part]—)

P

| variable-declaration-part I-—)

-
\D{ procedure-and-function-declaration-part }——Lb

The Interface-part declares constants, types, varlabies, procedures, and
functions that are "public,” i.e. available to the host.

The host can access these entitles just as if they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated
to nothing but the procedure or function name, parameter specifications, and
function result-type.

NOTE

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3).

Pascal Reference Manual Linits

The implementation-part, which follows the last declaration in the interface-
part, begins by declaring any constants, types, variables, procedures, or
functions that are “private,” i.e. not available to the host.

The public procedures and functions are re-declared in the implementation-
part. The parameters and function result types are omitted from these
declarations, since they were declared in the interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “initialization" section in Pascal units on the Lisa (unlike
Apple 11 and Apple 11l Pascal). If a unit requires initialization of its
data, it should define a public procedure that performs the initialization,
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit is:

unit Simple;
INTERFACE {public objects declared}
const Firstvalue=1;
procedure AddOne(var Incr:integer);
function Addi(Incr:integer):integer;
IMPLEMENTATION
procedure Addone; {note lack of parameters...}
begin
Incr:=Incr+1
end;
function Addl; {...and lack of function result type}
begin
Agdl:=Incr+1
end
end.

9.1.2 Using Regular-Units
The syntax for a uses-clause is given in Section 8.1. Note that in a host
program, the uses-clause (if any) must immediately follow the program-
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol Interface. Only one uses-clause may appear in any host program or
unit; it declares all units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

Pascal Reference Menal Lnits

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more details.

Assume that the example unit Simple (see above) is compiled to an object file
named APPL:SIMPLE.OBJ. The foliowing is a short program that uses Simple.
It also uses another unit named Other, which is in file APPL:0THER.0BJ.

program CallSimple;
uses {$U APPL:SIMPLE.0B)} {file to search for units}

Simple, {use unit Simple}
{$U APPL :0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i:integer;
begin
i:=Firstvalue; {Firstvalue is from Simple}
write(*i+1 is *,Add1(1)); {Aod1 is defined in Simple}

write(xyz(1i)) {xyz is defined in Other}

9.2 Intrinsic-Units
The only intrinsic-units you can use are the ones provided with the workshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code in the system. The code is kept on disk, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units).

By default, the system looks up all Intrinsic-units in the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U filename compiler command is not needed with intrinsic-units.

9.3 Units that Use Other Units
As explained above, the uses-clause in the host must name all units that are
used by the host. Here "used" means that the host directly references
something in the interface of the unit. Consider the following diagram:

unitA
interface

uses unitC; -
- unitC
Host Program Implementation |~

unitA, units; interface

unitB - .
implementation

interface

implementation

9-4

Pascal Referernce Marnual nits

The host program directly references the interfaces of unitA and unitB; the
uses-clause names both of these units. The implementation-part of unitA also
references the interface of unitC, but it is not necessary to name unitC in the
host-program's uses-clause.

In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram Is exactly like the previous one
except that this time the /terrace of unitA references the interface of unitC,
and unitC must be named in the host-program’s uses-clause. Note that unitC
must be named Zefore unitA

unitA
interface
uses unitC; -
\ unitC
implementation
Host Program P interface

uses unitC, unitA,

units; \u unlip implementation

interface

implementation

In a case like this, the documentation for unitA should state that unitC must
be named in the uses-clause before unitA

9-5

Chapter 10

Input/Output
10.1 Introduction to 1/0 10-1
10.1.1 DBVICE TYPES ..iceeiiiaiiiiiinreceeenatttansnsteanessanssssasannssansnsssnsnsns 10-2
10.1.2 External File Species.......ccccoviiiiiiiiiiiiiinircnic e 10-2
10.1.3 The RESELPTOCEOUTEcoooiiirimririitiniiiisistasssicsssssssssssssensasasas 10-3
10.1.4 TheRewrite PrOCEOUIEcccoiiiiiiiii i cceecccenacene e annenaans 10-5
10.1.5 The ClOSE PTOCEAUTE.ccciamtrmrniremnirirnssnentasssnsssasasesnansnses 10-6
10.1.6 Theloresult FUNCLION........occviiiiiiiiiiiiii e, 10-7
10.1.7 TheEof FUNCLION ..ottt 10-7
10.2 Record-Oriented 1/0 .10-8
10.2.1 TheGELPTOCEAUIEcccooacriirriiiiaenciierreeanncr e srsesenssssrsesannes 10-8
10.2.2 ThePULPIOCEBAUIE........... ittt i re s ena e sn s ssaaes 10-8
10.2.3 The SEEK PTOCEOUIEccvivmmrennnrrietiiineerstseesereeseesaennnnanseses 10-9
10.3 Text-Oriented1/0 T, 10-9
10.3.1 TheRE8OPIOCEOUIEccomuiiieiiiiiiiitecreceemseee e st ssnnasaneas 10-11
10.3.1.1 ReadwithaChar Variablecc..cooivcieiiiniinncnnnane. 10-12
10.3.1.2 Read withanInteger or Longint Variable 10-12
10.3.1.3 Read withaReal Variable........ccc.ccoccaiiiermniiinnnnicane. 10-12
10.3.1.4 ReadwithaStringVariable...............oooinninniie. 10-13
10.3.1.5 Read withaPacked Array of Char Variable................. 10-13
10.3.2 The ReadINPrOCEOUTE.....c.ccicirriitteunrriaacteinen e areaemnnsennnans 10-14
1033 The WIitg PTOCBOUTE. c....coueireiirienmaaraeeetnanreseecemtra e enerennnas 10-14
10.3.3.1 OULPUL-SPEECS ...ttt et e et ree e ea e e aaee 10-15
10.3.3.2 WritewithaChar Value.........ccoooiciiiincinnniiianncnee. 10-15
10.3.3.3 write with an Integer or Longint Valuecooeeeeee. 10-15
10.3.3.4 Write withaReal ValuBcccviuiieiniiiiiiinnninninnnnn.
10.3.3.5 write with a String Value
10.3.3.6 wrlte with a Packed Array of Char Valuec.cc.ceeenneane 10-17
10.3.3.7 WritewithaBoolean ValUuecccciriiaicoecrasecnnnanes 10-17
10.3.4 The WIteln PTOCEOUTE ... iio i ieiiiia e rceacc s e en e eeseaanaen 10-17
10.3.5 The EoINFUNCLIONcccciciiiiriiriiitc ettt e ene e evenenes 10-17
10.3.6 ThePagePTOCEOUTE..........cccivirerrniirennistananeesra e sanasssansenans 10-18
10.3.7 Keyboard Testingand Screen Cursor Control ... 10-18
10.3.7.1 TheKeypress Function ... 10-18

10.3.7.2 The Gotoxy PToCedUIe.............ccooiiiiimiiiiiiriinnenenneenaee 10-18

Pascal Reference Marwial

10.4 UntypedFile 1/0

10.4.1 TheBlockread Function .

10.4.2 The Blockwrite Function

..

..

Input/Output

This chapter describes the standard ("built-in") 1/0 procedures and functions of
Pascal on the Lisa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block” surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modified BNF notatlon, instead of syntax
diagrams, to indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parameter List: new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

* p, t1, and t77 stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t”7 means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0
This section covers the 1/0 concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and “untyped” files (see Section
10.4).

To use a Pascal flle variable (any variable whose type is a file-type), it must
be associated with an external file. The external file may be a named
collection of information stored on a peripheral device, or (for certain file-
types) it may be the peripheral device itself.

The association of a file variable with an extemal file is made by goening the
file. An existing file is opened via the reset procedure, and a new file is
created and opened via the rewrite procedure.

10-1

Pascal Reference Margl Inpututput

NOTE

Pascal on the Lisa does not provide automatic 1/0 checking. To check
the result of any particular 1/0 operation, use the ioresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

* A Ale-structureg device is one that stores files of data, such as a diskette.

* A chraracter device is one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 Extemal File Species
There are three “species” of external files that can be used in Pascal 1/0
operations:

* A aatafife is any flle that is stored on a file-structured device and was
not originally created in association with a file variable of type text.

* A texifile is a file that is stored on a file-structured device and was
originally created in association with a file variable of type text. Textfiles
are stored in a specialized format (see Section 10.3).

* A character qevice can be treated as a file.

Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external file species. The "ordinary cases” in the table
reflect the basic intent of the various file-types. Other combinations, such as
block-oriented access to a textfile via a variable of type file, are legal but
may require cautious programming.

10-2

Pascal Rererence Marnal

Inputuipunt

Table 10-1
Combinations of File Variable Types with Extemal File Species
and Categories
var f: file of <
sorre'rype; var f: text; var f: file;
Orginary case. (Textfile format] Ordinary case.
After reset, assumed!) After | Block access.
datafile f" = 1st record Jreset, f~ is
file. unspecified.
(Textflle format | Qrdinary case. (Textflle format
not assumed!) Textfile format | not assumed!)
. After reset», assumed. After | Block access.
textfile | ¢- - 15t record reset, f~ is
of flle (as unspecifled.
declared).
After reset, Ordinary case. Block access,
f = 1st char. After reset, if allowed by
character | from device f" is unspeci- | device.
device | (system walts for | fied (no wait
it} 1/0 error if for input char).
file record type
not byte-sized.
* In these cases, e laresult runction will retumn & “‘waming”
(e, & negstive number) immediately after the reset gperstion.

10.1.3 The Reset Procedure
Opens an existing file.

Parameter List: reset(f, title)

1. f is a variable-reference that refers to a variable of file-type. The file
must not be open.

2. title is an expression with a string value. The string should be a valid
pathname for a file on a file-structured device, or a pathname for a
character device.

10-3

Pascal Rererence Manua! Inout/Qutput

NOTE

Both parameters are required (untike Apple II and Apple III Pascal,
where the second parameter is optional).

Reset(f, title) finds an existing external file with the pathname title, and
associates f with this external file. (If there Is no existing external file with
the pathname title, an 1/0 error occurs; see Section 10.1.6.)

If title is the pathname of a character device, then
* Eof(f) becomes false.

* If f is of type text, the value of f~ is unspecified. The next read or readin
on f will wait until a character is available for input, and begin reading
with that character.

e If f is of type flle and the device Is one that allows block access, there is
no file buffer variable £~ and the “current file position” is set to the first
block (block 0) of the file. If the device does not allow block access, an
170 error occurs (see Section 10.1.6).

» If f is not of type text or file, its component-type must be a "byte-size”
type such as the type -128.127. Note that char is not a byte-size type! If
the component-type of f is not byte-size, an 1/0 error occurs (see Section
10.1.6).

If no 1/0 error occurs, the system waits until a character is available from
the device and then assigns the character's 8-bit code to f.

If title is the pathname for an existing file on a file-structured device, then

* Eof(f) becomes false if the external file is not empty. If the external file
is empty, eof(f) becomes true.

= If f is not of type text or file, reset sets the "current file position" to the
first record in the external file, and assigns the value of this record to the
file buffer variable f~. If the external flle is a textfile, the foresult
function will return a negative number as a warning (see Section 10.1.6).

o If f is of type text, the value of £~ is unspecified. If the file is a textfile,
the next read or readln on f will begin at the first character of f. If the
file is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the loresult function wiil return a negative number as a warning
(see Section 10.1.6).

« If f is of type file, there is no file buffer variable f~ and the “current file
position” is set to the first block (block 0) of the file.

10-4

Pascal Reference Manual Input/uiput

10.1.4 The Rewrite Procedure
Creates and opens a new file.

Parameter List: rewrite(f, title)
1. f is a variable-reference that refers to a variable of file-type.

2. title is an expression with a string value. The string should be a valid
pathname for a flle on a flle-structured device, or a pathname for a
character device.

If f is already open, an 1/0 error occurs (see Section 10.1.6).
If title is the pathname of a character device, then
* Eof(f) becomes false.
* Rewrite(f, title) simply associates f with the device and opens f.
* The status of the device is not affected.
* The value of f* becomes unspecified.
If title is the pathname for a new file on a flle-structured device, then
* Eof{f) becomes true.

* Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file. This is the only way to create a new
external file.

* The species of the new external file iIs set according to the type of f—-
“textfile” for type text, or “datafile” for any other type.

* The value of f~ becomes unspecified.

* If f Is not of type flle, the “current file position” is set to just before the
first record or character position of the new external file.

= If f is of type file, the "current file position" is set to block O (the first
block in the file)

* If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new extemal file is discarded at that time. Closing f
with lock or crunch is the only way to make the new external file
permanent.

¢ If title is the pathname of an existing external file, the existing file will be
discarded only when f is subsequently closed with the lock or crunch option
{(see Section 10.1.5).

Unspecified effects are caused if the current file position of a file f is altered
while the file-buffer f s an actual variable parameter, or an element of the
record-variable-reference list of a with-statement, or both.

10-5

Pascal Rererence Marual Input/utput

10.15 The Close Procedure
Closes a file.

Parameter List: close(f [, option])
1. f is a variable-reference that refers to a variable of file-type.

2. option (may be omitted) is an identifier from the list given below. If
omitted, the effect is the same as using the identifier normal.

Close(f, option) closes f, if f is open. The association between f and its
external flle is broken and the file system marks the external file “closed”. 1If
f is not open, the close procedure has no effect.

The option parameter controls the disposition of the external file, if it is not a
character device. If it is a character device, f is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for option are as follows:

* normal —— If f was opened using rewrite, it is deleted from the directory.
If f was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter is omitted.

* lock — If the external file was opened with rewrite, it is made permanent
in the directory.

If f was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch is "on™). If the old file has the
safety switch “on,” it remains in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

» purge -- The extemal file is deleted from the directory (unless the safety
switch iIs "on"). In the special case of a file that already exists and is
opened with rewrlte, the original file remains in the directory, unchanged.

* crunch —- This Is llke lock except that it locks the end-of-file to the point
of last access; i.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the file system to mark the
external file “closed” and will make the value of f~ unspecified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

NOTE

If you open an existing file with reset and modify the file with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

Pascal Reference Manal Input/autout

1016 The Ioresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 1/0 operation, you must use the ioresult function.

Result type: integer

Parameter LIst: no parameters

Ioresult returns an integer value which reflects the status of the last com-
pleted 1/0 operation. The codes are given in the workshop User’s Gulde for the

L/sa Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are “warnings” (see Table 10-1).

Note that the codes returned by loresult are not the same as the codes used in
Apple 11 and Apple 11 Pascal.

NOTES

The read, readin, write, and writeln procedures described in Section 10.3
may actually perform multiple 1/0 operations on each call. After one of
these procedures has executed, ioresult will return a code for the status
of the Jast of the multiple operations.

Also, beware of the following common error in diagnostic code:

read(foo);
writeln('ioresult=", ioresult)

The intention is to write out the status of the read operation, but
instead the status written out will be that of the write operation on the
string ‘loresult-".

10.1.7 The Eof Function
Detects the end of a flle.

Resuit Type: boolean
Parameter LIst: eof [(f)]
1. f is a variable-reference that refers to a variable of file~-type.

If the parameter-list is omitted, the function is applied to the standard file
input (see Section 10.3).

After a get or put operation, eof(f) retumns true if the current file position is
beyond the last external file record, or the external file contains no records;
otherwise, eof(f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
flle record (or the file is empty).

* After a put, eof{f) returns true if the record written by the put is now the
last file record.

10-7

Pascal Referernce Mearnial Input/Qutput

If f is a character device, eof(f) will always return false.
See Section 10.3 for the behavior of eof(f) after a read or readin operation.
NOTE

Whenever eof(f) is true, the value of the file buffer variable f~ Is un-
specified.

10.2 Record-Oriented 1/0
This section covers the get, put, and seek procedures, which perform record-
oriented 1/0; that is, they consider a file to be a sequence of variables of the
type ﬂspeciflecl in the file-type. These procedures are not allowed with files of
type file.

The effects of get and put are unspecified with files of type text, and seek has
no effect with flles of type text. The text type is supported by specialized
procedures described in Section 10.3.

10.2.1 The Get Procedure
Reads the next record in a file.

Parameter List: get(f)

1. f is a variable-reference that refers to a variable of file-type. The file
must be open.

If eof{f) is false, gey(f) advances the current file position to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof(f) becomes true, and the value of " becomes unspecified.

If eof(f) Is true when get(f) is called, then eof{f) remains true, and the value of
f" becomes unspecified.

If the external file is a character device, eof{f) is always false and there is no
“current file position." In this case, get(f) waits until a value Is ready for input
and then assigns the value to f~.

10.2.2 The Put Procedure
writes the current record in a file.

Parameter List: put(f)

1. f is a variable-reference that refers to a variable of file-type. The file
must be open.

If eof{f) is false, put(f) advances the current file position to the next file
record and then writes the value of f~ to f at the new file position. If the
new file position is beyond the end of the file, eof{f) becomes true, and the
value of f” becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof(f)
remains true.

10-8

Pascal Reference Manual InoutQutput

If the external file is a character device, eof(f) is always false, there is no
“current file position,” and the value of f {s sent to the device.

NOTE

If put is called immediately after a file is opened with reset, the put
will write the secon record of the file (since the reset sets the
current position to the first record and put advances the position before
writing). To get around this and write the first record, use the seek
procedure (see Section 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record in a file.

Parameter List: seek(f, n)

1. fis a variable-reference that refers to a variable of flle-type The file
must be open.

2. nis an expression with an integer value that specifies a record number in
the file. Note that records in files are numbered from 0.

If the file is a character device or is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the file,
forcing it to access file record n instead of the “next” record. Seek(f, n) does
not affect the flle-buffer f".

A get or put 7ust be executed between seek calls. The result of two con-
secutive seeks with no Intervening get or put is unspecified. Immediately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

NOTE

The record number specified in a seek call is not checked for validity.
If the number is not the number of a record in the file and the program
tries 1o get the specified record, the value of the flle-buffer becomes
unspecified and eof becomes true.

10.3 Text-Orlented 1/O
This section describes input and output using file vanables of the standard type
text. Note that in Pascal on the Lisa, the type text is distinct from file of
char (see Section 3.2.4).

when a text file is opened, the extemal file is interpreted in a special way. It
is considered to represent a sequence of characters, usually formatted into
lines by CR characters (ASCII 13).

The Lisa keyboard and the Workshop screen appear to a Pascal program to be
built-in files of type text named input and output respectively. These files

10-9

Pascal Reference Marual Inputautpwnt

need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program is taking input from input, typed characters are echoed on the
workshop screen. In addition to the input file, the Lisa keyboard is also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external flle pathname.

Otrer interactive devices can also be represented in Pascal programs as files of
type text

when a text file is created on a file-structured device, the extemnal file is a
textfile. It contalns information other than the actual sequence of characters
represented, as follows:

* The stored file is a sequence of 1024-byte pages

» Each page contains some number of complete lines of text and is padded
with null characters (ASCII 0) after the last line.

* Two 512-byte feader blocks are also present at the beginning of the file.

* A sequence of spaces in the text may be compressed Into a two-byte code,
namely a LLE onaracter (ASCII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other file-type)

Certain things that can be done with a record-structured file are impossible
with a file variable of type text:

= The seek procedure does nothing with a flle variable of type text
* The effects of get and put are unspecified with a file variable of type text.

* The contents of the file buffer variable are unspecified with a file variable
of type text.

= A file variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented 1/0 provides the following:
* Automatlc conversion of each input CR character into a space.

* The eoln function to detect when the end of an input line has been
reached.

* The read procedure, which can read char values, string values, packed array
of char values, and numeric values (from textual representations).

10-10

Pascal Reference Maral Inout/auput

* The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readin and writeln procedures.

* The page procedure, which outputs a form-feed character to the external
file.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE~codes.

= Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procedure »
Reads one or more values from a text file into one or more program variables.

Parameter LIst: read([f,] vi [, v2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-list.

1. f (may be omitted) is a varlable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure reads
from the standard text file input, which represents the Lisa keyboard.

2. vl ..vn are input variables Each is a variable parameter, used as a
destination for data read from the file. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

* char, integer, or longint (or a subrange of one of these)
* real
* a string-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Read(f,vl...v77) is equivalent to:

begin
read(f, v1);

i'ééa(f,vn)

10-11

Pascal Reference Marnual Input/utout

NOTE

Read can also be used to read from a file fil that is not a text flle. In
this case read(filx) is equivalent to:

begin .
X := fil1 ;
get(fil)

end

103.1.1 Read with a Char Variable
If f1is of type text and v is of type char, the following things are true
immediately after read(f,v}

* Eof{(f) will return true if the read attempted to read beyond the last
character in the external file.

* Eoln(f) will return true, and the value of v will be a space, if the character
read was the CR character. Eoln(f) will also return true if eof{f) is true.

10.3.1.2 Read with an Integer or Longint Variable
If f is of type text and v is of type Integer, subrange of integer, or longint,
then read(f,v) implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
nexadecimal notation is not allowed). If the value read is assignment-
compatible with the type of v, it Is assigned to v; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the
characters already read, does not form part of a signed whole number.

An error occurs if a signed whole number is not found after skipping any
preceding blanks and CRsS.

If £1s of type text, the following things are true immediately after rea(f,v}

* Eof(f) will return true if the last character in the numerlc string was the
last character in the external file.

= Eoln(f) will return true if the last character in the numeric string was the
last character on the line (not counting the CR character). Eoln(f) will also
return true if eof{f) is true.

103.1.3 Read with a Real Variable
If f1is of type text and v is of type real, then read(f,v) Implles the reading
from f of a sequence of characters that represents a real value. The real
value is assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the

10-12

Pascal Reference Manual Inoututput

characters already read, does not form a valid representation. A "valid
representation” Is elther of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Section 1.4 (except that hexadecimal notation is
not allowed). An integer or longint value is converted to type real.

* An infinite value or Nan represented as described in Appendix D.

An error occurs if a valld representation is not found after skipping any
preceding blanks and CRs.

Immediately after read(f,v) where v is a real variable, the status of eof{f) and
eoln(f) are the same as for an integer variable (see Section 10.3.1.2 above).

10.3.1.4 Read with a String Variable
If £ is of type text and v is of string-type, then read(f,v) implies the reading
from f of a sequence of characters up to owt not including the next CR or
the end of the flle. The resulting character-string is assigned to v. An error
occurs if the number of characters read exceeds the size attribute of v.

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR s left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readin to read string values (see Section 10.3.2). Readin
skips to the beginning of the next line after reading.

The following things are true immediately after read(f,v)}
* Eof(f) will return true if the line read was the last line in the flle.
* Eoln(f) will always return true.

10.3.15 Read with a Packed Array of Char Varlable
If £ is of type text and v is a packed array of char, then read(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in v until all positions have been filled, or until
a CR or the end of the file is encountered. If a CR or the end-of-file is

encountered, it is not read into v; the remalning positions in v are filled with
spaces.

10-13

Pascsl Rerference Marual Input/autput

10.3.2 The Readin Procedure
The readin procedure is an extension of read. Essentially it does the same
thing as read, and then skips to the next line in the input file.

Parameter List: The syntax of the parameter list of readin is the same as that
of read, except as follows:

* A readin call with no input variables is allowed. Example:
readln(sourcefile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list Is
omitted, the procedure reads from the standard file input, which represents the
Lisa keyboard.

Readin(f), with no input-variables, causes a skip to the beginning of the next
line (If there is one, else to the end-of-file).

Readln can oy be used on a text file. Except for this restriction,
readin(f v1...v7) is equivalent to:
begin
read(f,vi,vn7)
readln(f)
end

The following things are true immediately after readin(f,v), regardiess of the
type of v

* Eof{f) will retum true if the line read was the last line in the external file.
* Eoln(f) will always return false.

1033 The Write Procedure
writes one or more values to a text file.

Parameter List: write([f,1 p1 [, p2, ... pn))

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f(may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure writes to
the standard file output, which represents the workshop screen.

2. p1 .. pnare oulput-specs Each output-spec includes an owlout
expression whose value is to be written to the file. As explained below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Reference Manual Input/Qutput

write(f p1,...pn) Is equivalent to:
begin
write(f,p1);

u'n.'ite(f, pn)
end

Immediately after write(f), both eof{f) and eoln{f) will retumn true.
NOTE

write can also be used to write onto a file fll that is not a text file.
In this case write(filx) is equivalent to:

~

fl :=x
put(fil)
end

10.3.3.1 Output-Specs
Each output-spec has the form

OutExpr [: Minwidth [: DecPlaces]]

where OutExpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwidth specifies the /mnimum fleld width, with a default value that
depends on the type of the value of OutExpr (see below). Minwidth should be
greater than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when OutEXpr
has a nwnerfc value that requires more than Minwidth characters; in this
case, enough characters are written to represent the value of OUtEXr.

DecPlaces specifies the number of decimal places in a flxed-point repre-
sentation of a real value. It can be specified only if OUtExpr has a real vaiue,
and if Minwidth is also specified. If DecPlaces is not specified, a floating-
point representation is written.

10.3.3.2 write with a Char Value
If OUtExpr has a char value, the character Is written on the file f. The default
value for Minwidth is one.

1033.3 write with an Integer or Longint Value
If OUtEXpr has an integer or longint value, its decimal representation Is written
on the flle f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value is
negative, and any leading spaces that may be required to satisfy Minwlidth. If
'ime representation requires more than Minwidth characters, Minwidth is
gnored.

10-15

Pascal Reference Manual Inout-aunout

10334 write with a Real Value
If OWEXpr has a real value, the default value for Minwidth is 12,

If OutExpr has an Infinite value, it is output as a string of at least two "+"
characters or at least two “-" characters. If OutExpr is a NaN, it is output as
the character string “NaN", possibly followed by a string of characters enclosed
by single-quotes. See Section 10.3.3.5 for details on string output.

If OutExpr has a zero value, it is represented as “0" or "-0".

If OUtExpr has a finite value, its decimal representation Is written on the file
f. This representation is the nearest possible decimal representation, depending
on Minwidth and DecPlaces. If the unrounded value Is exactly halfway
between two possible representations, the representation whose least significant
digit is even is written out.

If DecPlaces is not specified, a /Zoating-point representation is written as
follows:

* If Minwidth is less than 6, then its value is set to 6 (intemally). This is the
minimum usable width for writing a floating-point representation.

« If the sign of the value of OUtExpr is negative, a minus sign is written;
otherwise, a space is written.

* If Minwidth > 8, the significant digits are written with one digit to the left
of the decimal point and (Minwidth - 7) digits to the right of the decimal

point.

= If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

* The exponent is written as the letter "E", an explicit "+" or "-" sign, and
two digits.

If DecPlaces is specified, a Alxer-point representation is written as follows:
* Enough leading spaces are written to satisfy Minwidth.

* If the value is negative, the minus sign “-" Is written; if it Is not negative,
a space is written.

* If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

* If DecPlaces < 0, only the integer part of the value is written and no
decimal point is written.

10.3.35 Write with a String Value
If the value of OUEXPr is of string type with length L, the default value for
Minwidth is L. If Minwidth>=L, the value is written on the file f preceded by
(Minwidth-L) spaces. If Minwidth<L, the first Minwidth characters of the
string are written.

10-16

Pascal Reference Menual InputQutput

10336 write with a Packed Array of Char Value
If E Is of type packed array of char, the effect is the same as writing a string
whose length is the number of elements in the array.

10.3.3.7 write with a Boolean Value
If the value of QULEXpPr is of type boolean, the string " TRUE" (with a leading
space) or the string "FALSE" Is written on the file f. The default value of
Minwidth is 5. If Minwldthe5, leading spaces are added; if Minwlidth<S, the
first Minwidth characters of the string are written. This is equivalent to:

write(f, * TRUE':Minwidth)
or
write(f, 'FALSE' :Minwidth)

10.3.4 The Writeln Procedure
The writeln procedure is an extension of write. Essentially it does the same

tnini; as write, and then writes a CR character to the output file (ending the
line

Parameter List: The syntax of the parameter list of writeln is the same as
that of write, except as follows:

¢ A writeln call with no output-specs is allowed. Example:
writeln(outputfile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure writes to the standard flle output, which represents the
workshop screen.

writeln(f) writes a CR character to the file f.

writeln can onybe used on a text flie. Except for this restriction,
writeln(f p1...pn7) is equivalent to:

begin
write(f,pl,p7)
writeln(f)

end

Immediately after writeln(f), both eof(f) and eoln(f) will retum true.

10,35 The Eoln Function
Result Type: boolean

Parameter List: eoln[(f))

1. f is a variable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter-1ist can be omitted entirely. In this case, the function is
applied to the standard file input (the Lisa keyboard).

10-17

Pascal Reference Marusl Inout/Qutput

Eoln(f) returns true "if the end of a line has been reached in f." The meaning
of this depends on whether the external file is a character device, on which 1/0
procedure was executed last, and on what type of variable was used to receive
an Input value. For details, see Sections 10.3.1 through 10.3.4.

The end of the file is considered to be the end of a line; therefore eoln(f) will
return true whenever eof(f) is true.

1036 The Page Procedure
Parameter List: page(f)

1. f is a varlable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file f. This will cause a skip to the top of a new page when
f is printed.

Note that page(output) sends a form-feed to the workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the Workshop Users Guite for the Lisa .

10.3.7 Keyboard Testing and Screen Cursor Control
103.7.1 The Keypress Function
Tests the Lisa keyboard to see if it has a character awaiting input.

Parameter L/st: no parameters.
Result Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This is done by testing the
typeahead queue; if the queue is empty, keypress is false, otherwlise it is true.

10.3.7.2 The Gotoxy Procegure
Moves the workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(X, y)

1. x is an expression with an integer value. If x < 0, the value O will be
used; if x > 79, the value 79 will be used.

2. y is an expression with an integer value. If y < 0, the value 0 will be
used; if y > 31, the value 31 will be used.

Gotoxy(x, y) moves the cursor to the point (xy) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10.4 Untyped File 1/0
Untyped file 1/0 operates on an "untyped file," i.e., a variable of type file (no
component type). An untyped file is treated as a sequence of 512-byte b/ocks,
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be interpreted at all during 1/0
operations.

10-18

Pascal Reference Marual Inout/Qutput

The blocks in an untyped flle are considered to be numbered sequentially
starting with 0. The system keeps track of the cwment block numper: this is
block 0 immediately after the file is opened. Each time a block is read, the
current block number is incremented. By default, each 1/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped file 1/0, an untyped file is opened with reset or rewrite, and
the blockread and blockwrite functions are used for input and output.

10.4.1 The Blockread Function
Reads one or more 512-byte blocks of data from an untyped flle to a program
variable, and returns the number of blocks read.

Result Type: imeger
Parameter LIst: blockread(f, databuf, count [, blocknum])

1

2.

f is a variable-reference that refers to a variable of type file. The file
must be open.

databuf is a variable-reference that refers to the variable into which the
blocks of data will be read. The size and type of this variable are not
checked; if it is not large enough to hold the data, other program data
may be overwritten and the resuits are unpredictable.

count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks
as it can, up to this limit.

blocknum (may be omitted) is an expression with an integer vaiue. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockread(f, databuf, count, blocknum) reads blocks from f into databuf, starting
at block blocknum. Count is the maximum number of blocks read; if the
end-of-file is encountered before count blocks are read, the transfer ends at
that point. The value returned is the number of blocks actually read.

If the last block in the file was read, the current block number is unspecified
and eof(f) is true. Otherwise, eof(f) Is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Reference Manual InputOutout

104.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written.

Resuit Type: integer
Parameter List: blockerite(f, databuf, count [, blocknum])

L

2.

f Is a variable-reference that refers to a variable of type flle. The flle
must be open.

databuf is a variable-reference that refers to the variable from which the
blocks of data will be written. The size and type of this variable are not
checked.

count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

blocknum (may be omitted) is an expression with an integer vaiue. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockwrite(f, databuf, count, blocknum) writes blocks into f from databuf,
startlng at block blocknum. Count is the maximum number of blocks written;
if disk space runs out before count blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written,

If disk space ran out, the current block number is unspecified. Otherwise, the
current block number is advanced to the block after the last block that was
written.

NOTE

Unlike Apple 11 and Apple 111 Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps in it.

10-20

Chapter 11
Standard Procedures and
Functions

11.1 Exit and Halt Procedures.... . .11-1
11,11 TheEXAt PIOCEOUTE........ .. eeeeeeeeeceeeceeeeeeenseeraecaesnansaanns 11-1
11.1.2 ThEHBILPTOCEBOUTEo eeeiieieeeececeneicneeneaneenaneennanennrasnnnes 11-1

11.2 Dynamic Allocation Procedures .. 11-1
11.2.1 ThENBWPTOCEOUTEceeeneiieitaaueenceaeeereareceesesassacensessnsnssnsennns 11-2
11.2.2 TheHeapResult FUNCLIONccoiiiiiiiiiniiiiiicinreit st e s eeenceae 11-3
11.2.3 TheMArK PIOCEOUIEcccivieieeienetacceceaneseaensanesnresasasasnsnsnannsans 11-3
11.2.4 The Release PTOCEOUIEccccccicieeraraceseceeteressacosasssnsesasesasassens 11-3
11.2.5 The Memavall FUNCLION.....ccoeeie i ieieiicrecrcnceeaneeaesanassesassanans 11-3

11.3 Transfer Functionsc.ceaeee.-... 11-4
11.3.1 The TEUNCFUNCRION ... erereemreen v e e e e e neenenes 11-4
11.3.2 The ROUNDFUNCRION ... eeeeeeerreceesnenen s sanansnannes 11-4
11.3.3 The Oral4 FUNCHION ..ooeen e ceeeece i eteeecreereerecnenreeneananasesnesnnnes 11-4
1134 The PoInter FUNCLION ... et e e ceecneeerecnee s s aennesanaen 11-S

114 Arithmetic Functions 11-5
11.4.1 The O FUNCLIONccccvveeiciieiieeeeereereeneeenesanenntesnnsenssessansnnnes 11-5
11.8.2 The ADSFUNCEION «..oe e ce et eeeaeee e e r e e aneenaes 11-5
1143 The SOT FUNCHION ... it ceree e e e eeaane e e eeaaansannannnas 11-6
1144 The SINFUNCLION ...t ceittieecetcreeecesesansssssnsensessnnns 11-6
1145 The CosSFUNCLION ceeeeececre e eeee e e s em e eanaan 11-6
1146 The EXPRUNCLION (.ot cerenrtre st ce e annases 11-6
1147 ThelNFUNCHION ...ttt ceecesnrerrarresnnesnansasanen 11-7
11.4.8 The SariFunction ..o iiiiciiiciiieireesiteerensseseesstssenssensanesse 11-7
11.89 The AICtaN FUNCLION.. i cceteceerecrtaresseeeeesanesennsensnssenes 11-7
11.4.10 The PWIOften FUNCLION «..c.oeeeee et cee e ceeensesnsesanasas 11-7

11.5 Ordinal Functions 11-8
1151 The Ord FUNC I ON e ce it eectetecrecsesesesaareesssasnesessenansen 11-8
1152 The Chr FUNCHION ..o ceereeeeearsrenea e eaennnans 11-8
1153 The SUCC FUNCHION ... eeaceereetece e aeenteanceacsesnennsennen 11-8
1154 ThePred FUnCion et eere e e e e e e ranene 11-9

Pascal Reference Manual Stanadsrd Proceaures & Functions

116 StringProcedures and Functions... 11-9
116.1 TheLengthFunCtion........cccoiiiiiniiiiiiiiniinniiicctnn e erenees i1-9
11.6.2 ThePosFUNCHION ...ttt ee s et e e ee 11-9
11.6.3 The Concat FUNCLION ..o e 11-10
1164 TheCopy FUNCHion ... e 11-10
1165 TheDelete PTOCEOUIEccciiiiimmmeccatiiiieninisseseeananssseseassanes 11-10
1166 TheINSert PrOCEOUTEc..cicviiimniiiecciiiinnineneiinrranssaeteanenens 11-10

117 Byte-Oriented Procedures and Functions 11-11
11.7.1 The Moveleft PTOCEAUTE...... ..o icriestnestncenn e s caaes 11-11
11.7.2 The Moveright PTOCEBOUTEot reecaneerennenaeannen 11-12
11.7.3 The Sizeof FunCtion ..o 11-12

118 Packed Array of Char Procedures and Functions . 11-12
11.8.1 TheScaneqFunClionc.cociiiiiiiiniiiiiiiniennncncnn e eeeas 11-12
1182 TheScanne FunCtiono 11-13

11.8.3 TheFillchar PTOCEOUTEcceieeeiiecivnerencneececaaraaseseasencnnnan 11-13

Standard Procedures and
Functions

This chapter describes all the standard ("built-in") procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax diagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
1111 The Exit Procedure
Exits immediately from a specified procedure or function, or from the main
program.

Parameter List: exit(id)

1. id is the identifier of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exdt(id) causes an immediate exit from id. Essentially, it causes a jump to the
end of id. ,

NOTE

The halt procedure (seé below) can be used to exit the main program
from a unit without knowing the main program's identifier.

11.1.2 The Hailt Procedure
Exits immediately from the main program.

Parameter List: no parameters
Halt causes an immediate exit from the main program.

11.2 Dynamic Allocation Procedures
These procedures are used to manage the /g7 a memory area that Is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal Reference Marnial Standarg Proceaures & Functions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to return the status of the last preceding dynamic allocation operation..

11.2.1 The New Procedure
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List: new(p [, t1, ... tn])

1. p is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter. '

2. t1, .. tnare constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p . Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nil and a subsequent call to the heapresult function will return a
non-zero result.

If the base-type of p is a record-type with variants, new(p) allocates enough
space to allow for the largest variant. The form

new(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values ti,
.. tn (instead of enough space for the largest variants). The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

WARNING

when a record variable is dynamically allocated with explicit tag values
as shown above, you should not make assignments to any fields of
variants that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Reference Marxsal Stangara Proceaures & Functions

1122 The Heapresult Function
Returns the status of the most recent dynamic allocation operation.

Result Type: integer
Parsmeter List: no parameters

Heapresult returns an integer code that reflects the status of the most recent
call on new, mark, release, or memavall. The codes are given in the works/oo
User’s Guicke: note that the code for a successful operation is 0.

1123 The Mark Procedure
Sets a pointer to a heap area.

Parameter List: mark(p)

1. p is a varlable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

Mark(p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will allocate space beginning at the bottom of this area, and
then p will be a pointer to this space. The pointer p is also placed on a
stack-like list for subsequent use with the release procedure (see below).

11.24 The Release Procedure
Deallocates all variables in a marked heap area.

Parameter List: release(p)

1. p is a variable-reference that refers to a pointer variable. It must be a
pointer that was previously set with the mark procedure. The pointer p
must be on the list created by the mark procedure; otherwise an error
OCCUrs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas pointed to by these pointers are deallocated. In other words,
release{p) deallocates all areas allocated since the the pointer p was passed to
the mark procedure.

11.25 The Memavall Function
Returns the maximum possible amount of available memory.

Result Type: longint
Parameter LIst: no parameters

Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be avallable to the program, allowing for possible
automatic expansion of the program's data segment. Note that the result of
memavall can change over time even If the program does not allocate any
heap space, because of activities by the operating system or other processes in
the system.

11-3

Pascal Reference Marual Standarag Proceaures & Functions

113 Transfer Functions
The procedures pack and unpack, described by Jensen and Wirth, are not
supported.

1131 The Trunc Function
Converts a real value to a longint value.

Result Type: longint
Parameter List: trunc(x)
1. x is an expression with a value of type real.

Trunc(X) retumns a longint result that is the value of x rounded to the largest
whole number that is between 0 and x (inclusive).

11.3.2 The Round Function
Converts a real value 1o a longint value.
Result Type: longint
Parameter List: round(Xx)

1. x is an expression with a value of type real.

Round(X) returns a longint result that is the value of x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result
is the whole number with the greatest absolute magnitude.

1133 The Ord4 Function
Converts an ordinal-type or pointer-type value to type longint.
Result Type: longint
Parameter List: orda(x)

1. x is an expression with a value of ordinal-type or pointer-type.

Ordi(x) returns the value of x, converted to type longint. If x is of type
longint, the result is the same as x

If x is of pointer-type, the result is the corresponding physical address, of type
longint.

If x is of type Integer, the result is the same numerical value represented by X,
but of type longint. This is useful in arithmetic expressions. For example,
consider the expression

abeexyz

where both abc and xyz are of type integer. By the rules given in Section
3.1.1.2, the result of this muitiplication is of type Integer (16 bits). If the
mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. To avoid this, the expression can be written as

orda(abc)*xyz

11-4

Pascal Reference Mseynial Standard Procegures & Functions

This expression causes 32-bit arithmetic to be used, and the result Is a 32-bit
longint value.

If x is of an ordinal-type other than integer or longint, the numerical value of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer Function
Converts an integer or longint value to pointer-type.

Result Type: pointer
Parameter List: pointer(x)
1. x Is an expression with a value of type integer or longint.

Pointer(x) returns a pointer value that corresponds to the physical address x.
This pointer is of the same type as nil and is assignment-compatible with any
pointer-type.

114 Arithmetic Functions
In general, any real result returned by an arithmetic function is an approx-
imation. There are two exceptions to this: the result of the abs function is
exact, and the result of the pwroften function is exact when the parameter n
is in the range 0 < n < 10.

1141 The Odd Function
Tests whether a whole-number value is odd.

Result Type: boolean
Parameter List: odd(x)

1. x Is an expression with a value of type integer or longint.
0dd(x) returns true if x is odd; otherwise it ylelds false.

11.4.2 The Abs Function
Returns the absolute value of a numeric value.

Result Type: same as parameter
Parameter List: abs(x)

1. x is an expression with a value of type real, integer, or longint
Abs(X) retumns the absolute vaiue of X

11-5

Pascal Reference Manual Standiarg Procediures & Functions

1143 The Sgr Function
Returns the square of a numeric value.

Result Type: depends on parameter (see below)
Parameter LIst: sqr{x)
1. x is an expression with a value of type real, integer, or longint.

Sqi(x) returns the square of x. If x is of type real, the result is real; if x is of
type longint, the result is longint; and if x is of type integer, the resuit may be
either integer or longint.

If x is of type real and floating-point overflow occurs, the result is +ew,

11.4.4 The Sin Function
Retums the sine of a numeric value.

Resuit Type: real

Parameter List: sin(x)

1. x is an expression with a value of type real, integer, or longint. This
value is assumed to represent an angle in radians.

Sin(x) returns the sine of x. If x is infinite, a diagnostic NaN is produced and
the invalid operation signal is set (see Appendix D).

1145 The Cos Function
Returmns the cosine of a numeric value.

Result Type: real

FParameter List: cos(x)

1. x is an expression with a value of type real, integer, or longint. This
value is assumed to represent an angle in radians.

Cos(x) returns the cosine of x. If x is infinite, a dlagnostic NaN is produced
and the invalid operation signal is set (see Appendix D).

11.4.6 The Exp Function
Returns the exponential of a numeric value.

Result Type: real

Parameter List: exp(x)

1. x is an expression with a value of type real, integer, or longint. All
possible values are valid.

Exp(X) retumns the value of e where ¢ is the base of the natural logarithms.
If floating-point overflow occurs, the result is +ee.

11-6

Pascal Rerference Marnual Stanaard Proceaures & Functions

11.47 The Ln Function
Returns the natural logarithm of a numeric value.

Result Type: real
Parameter List: In(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non-negative, In(x) retums the natural logarithm (loge) of X

If x is negative, a diagnostic NaN is produced and the Invalid Operation signal
is set (see Appendix D)

1148 The Sqrt Function
Returmns the square root of a numeric value.

Result Type: real
Parameter List: sqrt(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non-negative, sqri(x) returns the positive square root of x

If x is negative, a diagnostic NaN is produced and the Invalid Operation signal
is set (see Appendix D).

1149 The Arctan Function
Returns the arctangent of a numeric value.

Result Type: real
Parameter List: arctan(x)

1. x is an expression with a value of type real, integer, or longint. All
numeric values are valid, including e,

Arctan(x) returns the principal value, in radians, of the arctangent of x

11.4.10 The Pwroften Function
Returns a specified power of 10.

Resuit Type: real
Parameter List: pwroften(n)
1. nis an expression with a value of type integer.

If -45 < n < 38, then pwroften(n) returns 107. The result is mathematically
exact for 0 < n < 10. If n < -46, the result is 0; if n 2 39, the result is +oo,

11-7

Pascal Reference Marmwgl Stanaarg Proceaures & Functions

115 Ordinal Functions
115.1 The Ord Function
Returns the ordinal number of an ordinal-type or pointer-type value.

Result Type: integer or longint
Parameter List: ord(x)

1. x is an expression with a value of ordinal-type or pointer-type.
If x is of type integer or longint, the result is the same as x.

If x is of pointer-type, the result is the corresponding physical address, of type
longint.

If x is of another ordinal-type, the result is the ordinal number determined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type char, the result is the corresponding ASCII code. For
a parameter of type boolean,

ord(false) returns 0
ord(true) retums 1

1152 The Chr Function
Returns the char value corresponding tc a whole-number value.

Result Type: char (but see below)
Parameter List: chr(x)
1. x is an expression with an integer or longint value.

Chr(x) returns the char value whose ordinal number (1.e., its ASCII code) is x, if
x is in the range 0.255. If x is not in the range 0..255, the value returmed is
not within the range of the type char, and any attempt to assign it to a
variable of type char will cause an error.

For any char value ch, the following is true:
chr(ord(ch)) = ch

11.5.3 The Succ Function
Returns the successor of a value of ordinal-type.

Resuit Type: same as parameter (but see below)
Parameter List: succ(x)
1. x Is an expression with a value of ordinal-type.

Suce(X) returns the successor of X, if such a value exists according to the
inherent ordering of values in the type of x

11-8

Pascal Rererence Manal Standard Proceaures & Functions

If x is the last value in the type of X, it has no successor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

1154 The Pred Function
Returns the predecessor of a value of ordinal-type.

Result Type: same as parameter (out see below)
Parameter List: pred(x)
1. x Is an expression with a value of ordinal-type.

Pred(x) returns the predecessor of X, if such a value exists according to the
inherent ordering of values in the type of x

If x Is the first value in the type of X, it has no predecessor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

116 String Procedures and Functions
The string procedures and functions do not accept packed array of char
parameters, and they do not accept indexed string parameters.

1161 The Length Function
Returns the current length of a value of string-type.

Result Tywe: integer
Parameter List: length(str)

1. st is an expression with a value of string-type.
Length(str) returns the current length of str.

'11.6.2 The Pos Function
Searches a string for the first occurrence of a specified substring.

Resuit Type: integer

Parameter List: pos(substr, str)
1. substr is an expression with a value of string-type.
2. str is an expression with a value of string-type.

Pos(substr, str) searches for substr within str, and returns an integer value that
is the index of the first character of substr within str.

If substr is not found, pos(substr, str) returns zero.

11-9

Pascal Rererence Merrial! Standarg Procedures & Functions

11.6.3 The Concat Function
Takes a sequence of strings and concatenates them.

Resuit Type: string-type
Parameter List: concat(stri [, str2, ... strn])

* Each parameter is an expression with a value of string-type. Any practical
number of parameters may be passed.

Concat(strl, ..., str”2) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number
of characters in the result cannot exceed 255. '

11.64 The Copy Function
Retuims a substring of speclfied length, taken from a specified position within
a string.

Result Type: string-type

Parameter List: copy(source, index, count)
1. source is an expression with a value of string-type.
2. Index is an expression with an integer value.
3. count is an expression with an integer value.

Copy(source, index, count) returns a string containing count characters from
source, beginning at source{index}

1165 The Delete Procedure
Deletes a substring of specified length from a specified position within the
value of a string variable.

Parameter L/st: delete(dest, index, count)

1. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

2. index is an expression with an integer value.
3. count is an expression with an integer value.

Delete(dest, index, count) removes count characters from the value of dest,
beginning at dest{index]

1166 The Insert Procedure
Inserts a substring into the value of a string variable, at a specified position.

Parameter List: insert(source, dest, index)
1. source is an expression with a value of string-type.

2. dest is a varlable-reference that refers to a varlable of string-type. This
{s a varlable parameter.

3. index is an expression with an integer value.

11-10

Pascal Reference Marial Stanaara Procedures & Functions

Insert(source, dest, index) inserts source into dest. The first character of
source becomes destfindex}

11.7 Byte-Oriented Procedures and Functions
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

NOTE

The sizeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes in a varlable.

These procedures do no type-checking on their source or dest actual-
parameters. However, since these are variable parameters they cawvwot be
Inoexeq if they are packed or if they are of string-type. If an unpacked
“byte array” is desired, then a variable of the type

array [lo..hi] of -128..127

should be used for source or dest. The elements in an array of this type are
stored in contiguous bytes, and, since it is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IMPLEMENTATION NOTE

Currently, an array with elements of the type 0..255 or the type char
has its elements stored In words, not bytes.

1171 The Moveleft Procedure .
Coples a specified number of contiguous bytes from a sowce rage 0 a
adestination range (starting at the lowest address).

Parameter List: moveleft(source, dest, count)

1. source is a variable-reference that refers to a variable of any type
except a flle-type or a structured-type that contains a file-type. This is
a variable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. dest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a file-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. count is an expression with an integer value. The source range and the
destination range are each count bytes long.

Moveleft(source, dest, count) coples count bytes from the source range to the
destination range.

11-11

Pascal Reference Manal Stanaarg Procegures & Functlons

Moveleft starts from the "left” end of the source range (lowest address). It
proceeds to the “"right” (higher addresses), copying bytes into the destination
range, starting at the lowest address of the destination range.

The count parameter Is not range-checked.

11.7.2 The Moveright Procedure
Moveright is exactly like moveleft (see above), except that it starts from the
“right” end of the source range (highest address). It proceeds to the “left"
{lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveright is that the source and
destination ranges may overlap. If they overlap, the order in which bytes are

moved is critical: each byte must be moved before it gets overwritten by
another byte.

11.7.3 The Sizeof Function
Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.
Result Type: integer
Parameter List: sizeof(id)
1. id is either a variable-identifier or a type-identifier. It must not refer to

a file-type or a structured-type that contains a file-type, or to a
variable of such a type.

Sizeof(id) returns the number of bytes occupied by id, if id is a variable-
identifier; if id is a type-identifier, it returns the number of bytes occupied by
any variable of type id.

11.8 Packed Array of Char Procedures and Functions
NOTE

These routines operate only on packed arrays of char. The packed
arrays of char cannot be subscripted; the operations always begin at the
first character in a packed array of char.

11.8.1 The Scaneq Function
Searches a packed array of char for the first occurrence of a specified
character.

Result Type: integer
Parameter List: scaneq(limit, ch, paoc)

1. limit is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

2. ch is an expression with a value of type char.

11-12

Pascal Refererxe Maal Standarg Proceadures & Functions

3. paoc is an expression with a value of type packed array of char. This is
a variable parameter.

Scaneq(limit, ch, paoc) scans paoc, looking for the first occurrence of ch. The
scan begins with the first character in paoc. If the character is not found
within limit characters from the beginning of paoc, the value returned is egual
to limit. Otherwise, the value returmned Is the number of characters scanned
before ch was found.

11.82 The Scanne Function
This function is exactly like scaneq, except that it searches for a character
that does ~no¢ match the ch parameter.

11.83 The Fllichar Procedure
Fills a specified number of characters in a packed array of char with a
specified character.

Parameter List: fillchar(paoc, count, ch)

1. paoc is an expression with a value of type packed array of char. This is
a variable parameter.

2. count is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

3. ch is an expression with a value of type char.

Fillchar(paoc, count, ch) writes the value of ch into count contiguous bytes of
memory, starting at the first byte of paoc.

Since the count parameter is not range-checked, it is possible to write into
memory outside of paoc, with unspecified results.

11-13

Chapter 12
The Compiler

12.1 COMPIIEY COMMBNGS ..couieerieneameeereceemtomresasraniersesssnsssassseanssssossansssnses 12-1
12.2 Conditional Compilation..........cceceiiiimmccimincniitenniirnaen e es s eneenanes 12-3
12.2.1 Compile-Time variables and the $DECL Command.......c..cceuerennees 12-3
12.2.2 The $SETC COMMEANGD ..uveimereienrenrearenrncensensenrsnssmiesssssssassaseasans 12-4
12.2.3 Compile-TIME EXPIESSIONS c...vveeiieecrrerrieerrrernneerrreerensemvernaenes 12-4
12.2.4 The $IFC,$ELSEC, and $ENDC COMMEANGS .vvveuiesermineccsrnseeracenenns 12-4
12.3 Optimization Of If-SLateMentscccccccercrercerimccreeesssencearmesssnsssesnannenns 12-5
12.4 Optimization of While-Statements and Repeat-Statementsceeceeeeeees 12-7

12.5 Efficlency of Case-Statementscoceeereemmecrtireemmnniiirmeeniremsnmnissseneeanss 12-7

The Compiler

The Pascal compiler translates Pascal source text to an intermediate code, and
the code generator translates the intermediate code to MC68000 object code.
Instructions for operating the compliler and code generator are glven in the
workshop Lsers Guide for the Lfsa

12.1 Compiler Commands

A compiler command is a text construction, embedded in source text, that
controls compiler operation. Every compiler command is written within
comment delimiters, {.} or (*...#). Every compiler command begins with the $
character, which must be the first character inside the comment delimiters.

In this manual, compller commands are shown in upper case to help distinguish
them from Pascal program text; however, upper and lower case are inter-
changeable in compiler commands just as they are In Pascal program text.

The following complier commands are available:
INPUT FILE CONTRA.

$I filename

$U filename

Start taking source code from file filename. when the end
of this file is reached, revert to the previous source file.
If the fllename begins with + or -, there must be a space
between $1 and the filename (the space is not necessary
otherwise).

Search the file filename for any units subsequently
spt;:cified in the uses-clause. Does not apply to intrinsic-
units.

CONTRA. OF CADE GENERATION

$C+ or $C-

$OV+ or $OV-

$R+ or $R-

Turn code generation on (+) or off (-). This is done on a
procedure-by-procedure basis. These commands should be
written between procedures; results are unspecified if they
are written inside procedures. The default is $C+.

Turn integer overflow checking on (+) or off (-). Overflow
checking is done after all integer add, subtract, 16-bit
multiply, divide, negate, abs, and 16-bit square operations,
and after 32 to 16 bit conversions. The default is $OvV-.

Turn range checking on (+) or off (). At present, range
checking is done in assignment statements and array
indexes and for string value parameters. No range
checking is done for type longint. The default is $R+.

12-1

Pascal Reference Manual The Compller

$S segname Start putting code modules Into segment segname. The
default segment name is a string of blanks to designate the
“blank segment,” In which the main program and all built-1n
support code are always linked. All other code can be
placed into any segment.

$X+ or $X- Turn automatic run-time stack expansion on (+) or off ().
The default is $X+.

NOTE

Comptler directives that affect code generation take effect when the
end of the Pascal statement in which they are embedded is reached. If
the same directive is specified more than once in a statement, the last
setting is used. A tricky case of this is:

begin
J := foo;
{$R-}
1 :=1=2
{$R+}
end

Since the second assignment does not end with a semicolon, and
actually ends when the end is encountered, range checking will not be
turned off for that statement.

LEBLIGGING
$0+ or $D- Tum the generation of procedure names in object code on
(+) or off (). These commands should be written between

procedures; results are unspecified if they are written
inside procedures. The default is $D+.

CONDITIONAL CaMEILATIOV

$DECL 1ist (see Section 12.2 below).

$ELSEC (see Section 12.2 below).
$ENDC (see Section 12.2 below).
$IFC (see Section 12.2 below)
$SETC (see Section 12.2 below).

12-2

Pascal Reference Manual The Compiler

LISTING CONTRA

$E filename Start making a listing of compliler errors as they are
encountered. Analogous to $L filename (see below). The
default is no error listing.

$L filename Start listing the compilation on file filename. If a listing
Is being made already, that file is closed and saved prior to
opening the new file. The default is no listing. If the
filename begins with + or -, there must be a space between
$L and the filename (the space is not necessary otherwise).

$L+or 8- The first + or - following the $L turns the source listing on
(+) or off (-) without changing the list flle. You must
specify the listing file before using $L+. The defaull is
$L+, but no listing Is produced if no listing flle has been
specified.

12.2 Conditional Compilation
Conaitional compilation is controlled by the $IFC, $ELSEC, and $ENDC
commands, which are used to bracket sections of source text. whether a
particular bracketed section of a program is compiled depends on the boolean
value of a compilie-time expression which can contaln caomplle-time variables

1221 Compile-Time Variables and the $DECL Command
Compile-time variables are completely independent of program variables; even
if a compile-time variable and a program variable have the same ldentifier,
they can never be confused by the compiler.

A complle-time varlable is declared when it appears in the identifier-list of a
$DECL command.

Example of compile-time variable aeclaration:
{$DECL LIBVERSION, PROGVERSION}

This declares LIBVERSION and PROGVERSION as compile-time variables.
Notice that no types are specified.

Note the following points about complle-time variables:

¢ Compile-time variables have no types, although thelr values do. The only
possible types are integer and boolean

* All complle-time variables should be declared before the end of the
variable-declaration-part of the maln program. In other words a $OECL
command that declares a new compile-time variable must precede the
main program's procedure and function declarations (if any). The new
compile-time variable is then known throughout the remainder of the
compilation.

* At any point in the program, a compile-time variable can have a new
value assigned to it by a $SETC command.

12-3

Pascal Rererence Manual The Compiler

12.2.2 The $SETC Command
The $SETC command has the form

{$SETC ID := EXPR}
or
{$SETC ID = EXPR}

where ID is the identifier of a complie-time variable and EXPR is a compile-
time expression. EXPR is evaluated immediately. The value of EXPR Is
assigned to ID.

Example or assignment to complle-tme varlable:
{$SETC LIBVERSION := 5}
This assigns the value 5 to the complle-time variable LIBVERSION.

12.23 Compile-Time Expressions
Compile-time expressions appear in the $SETC command and In the $IFC
command. A compile-time expression is evaluated by the compller as soon as
it Is encountered in the text.

The only operands allowed in a compile-time expression are:
* Compile-time varlables

* Constants of the types integer and boolean. (These are also the only
possibie types for results of compile-time expressions.)

All Pascal operators are allowed except as follows:
* The in operator is not allowed.
* The @ operator Is not allowed.
* The / operator is automatically replaced by div.

1224 The $IFC, $ELSEC, and $ENDC Commands
The $ELSEC and $ENDC commands take no arguments. The $IFC command has
the form

{$IFC EXPR}
where EXPR Is a complle-time expression with a boolean value.

These three commands form constructions similar to the Pascal if-statement,
except that the $ENDC command is always needed at the end of the $IFC
construction. $ELSEC is optional,

12-4

Pascal Reference Manual The Compller

Example of conoftionally complled code:

{$IFC PROGVERSION >= LIBVERSION}
k := kvali(data+indat);
{$ELSEC})
k := kvalz(data+cpindat ");

{$ENDC
writeln(k)

If the value of PROGVERSION Is greater than or equal to the value of
LIBVERSION, then the statement k:-kvall{dgata+indat) is compiled, and the
statement k:=kvalZ2(data+cpindat) is skipped.

But if the value of PROGVERSION is less than the value of LIBVERSION, then
the first statement is skipped and the second statement is compiled.

In elther case, the writeln(k) statement is compiled because the conditional
construction ends with the $ENDC command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching $ENDC.

when the compiler is skipping, all commands in the skipped text are ignored
except the following:

$ELSEC
$ENDC
$IFC {so that $ENDC's can be matched properly)

All program text Is ignored during skipping. If a listing is produced, each
source line that is skipped is marked with the letter S as its "lex level."

123 Optimization of If-Statements
when the compiler finds an if-statement controlled by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
given the declarations

const always = true;
never = false;

then the statement
1f npever then statement
will not be compiled at all. In the statement

if never then statementi
else statement2

“statement1” is not compiled; only "statement2" is compiled.

12-5

Pascal Rerference Marnual The Cormpiler

Similarly, In the statement

if always then statementi
else statement2

only “"statement1” Is complled.

The interaction between this optimization and conditional compilation can be
seen from the following program:

program Foo;
{$SETC FLAG := FALSE}
const pi = 3.1415926;

slze = 512;
{$IFC FLAG}
: debug = false; {a boolean constant, if FLAG=true}
{sENDC}

var i, J,k, L mn: integer;
{SIFC NOT FLAG}

ovebug: boolean; {a boolean variable, if FLAG=false}
{senoC}

{$IFC NOT FLAG}
procequre whatmode;
begin
{interactive procedure to set global boolean variable, debug}

end;
{seNDC)

begin {main}
{$IFC NOT FLAG}

whatmode;
{$ENDC}

1f debug then begin
statementl

end
else begin
statement2
end

end.

The way this is compiled depends on the compile-time variable FLAG. If
FLAG is false, then debug is a boolean va/7able and the whatmode procedure
is compiled and called at the beginning of the main program. The if debug

12-6

Pascal Reference Manual The Compiler

statement is controlied by a boolean variable and all of it is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debug is a constant with
the value false, and whatmode is neither compiled nor called. The if debug
staterinent is controlled by a constant, so only its else part, “statement2”, is
compiled.

124 Optimization of while-Statements and Repeat-Statements
A while-statement or repeat-statement controllied by a boolean constant does
not generate any conditional branches.

125 Efficiency of Case-Statements
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

“w =T aogmMMmMOoNmD

Appendixes

Comparison to Apple Il and Apple Ml Pascal_....... A1
Known Anomalies in the Compiler B-1
Syntax of the Language ... i C-1
Floating-Point Arithmetic _ . s D-1
QUICK T B s £-1
Hardware Interface F-1
Lisa Extended Character Set G-1
EITor MESSBOBS ... e e H-1
Pascal Woarkshop Files e -1

Appendix A

Comparison to Apple I
and Apple III Pascal
Al ExXensions i aeeaes A-1
A2 Delelions .. . A1
A3 Other DIffeIeNCeS | i A-3

A4 Predefined Identifiers .. -4

Comparison to Apple Il
and Apple III Pascal

Thie appendix contains lists of the major differences between the Pascal
language on the Lisa and the Pascal implernented on the Apple II and Apple
111, Please note that these lists are not exhaustive.

A1l Extensions
The following features have been added on the Lisa

= ® Operator—returns the pointer to its operand (see Section 5.1.6).

= Heapresult, pointer, and ord4 functions (see Sections 11.2.2, 11.3.3, and
11.3.4).

« Keypress function built into the language, with same effect as the
keypress function in the applestuff unit of Apple II and Apple Il Pascal
{zee Section 10.3.7.1).

= Hexadecimal constants {zee Section 1.4).

= Otherwise-clause in case-statement (same as Apple 11l Pascal: see
Section 6.2.2.2).

= Global goto-staternent (see Section 6.1.2).

= A file of char type that is distinct from the text type (see Sections
3.2.4 and 10.3).

= Numerous compiler commands (see Section 12.1).
= Procedural and functional pararneters {see Sections 7.3.3 and 7.3.4).
= Stronger type-checking (see Sections 3.4 and 7.3.5).

A.2 Deletions
The following festures are not included on the Lisa:

= Turtlegraphics, applestuff, and other standard units of Apple II and
Apple 11 Pazcal.

= Interactive type (not needed, as the 1/0 procedures will do the right
thing with a file of type text if it is opened on a character device).

= Keyboard file--same effect can be obtained by opening a file of type
text on the device -KEYBOARD [(see Section 10.3).

= Unit (device-oriented) 1/0 procedures.

Fascal Relerence Manusl Comparison 1o Apple I & I Pascal

» Recognition of the ETX character (control-C) to mean "end of file" in
input from a character device.

= "Long integer" data type, with length attribute in declaration. Replaced
by the longint type (see Section 3.1.1.2).

= 'Initializetion" code in a unit (see Section 9).

= The ability to create new intrinsic-units and install them in the system
{see Section 9).

= Reset procedure without an external file title, for use on a file that is
already open (see Section 10.1.1). To obtain the same effect, close the
file and reopen it.

= Treesearch.
= Bytestream, wordstream {data types in Apple Il Pascal).

= Exit(program)}—The exit(identifier) form works, and the identifier can be
the prograrn-identifier. Halt can also be used for orderly exit from a
program (see Section 11.1).

= Extended comperisons (see Section 5.1.5).
= Scan function. Replaced by scaneq and scanne (see Section 11.8).
= Bit-wise boolean operations.

= Segment keyword for procedures and functions. Use the $S command
instead (see Section 12.1).

= The following compiler commands (see Section 12.1):

= $I+ and $I- (no avtomatic 170 checking; program must use ioresult
function).

= $G ($G+ is the sssurnption on the Lisa).
= $N and 3R (for resident code segments).
- 3$Q.

= $5+ and $S++ for swapping.

= $U+ and $U- (for User Program).

- $V.

In general, do not assume that a compiler command used in Apple II or
Apple 111 Pascal is valid on the Lisa. Furtherrnore, do not assume that an
Apple 1T or Apple III Pascal compiler command is “harmless” on the Lisa, as
it may be implemented with a different meaning.

A-2

Frecal Reference Manval Cormparison 16 RApple T & Il Fascel

A3 Other Differences
The following features of Pascal on the Lisa are different from the
corresponding features of Apple II and Apple III Pascal:

= Size of all strings must be explicitly declared (see Section 3.1.1.6).
= Mod and div--Pascal on the Lisa truncates toward O (see Section 5.1.2).

= Anple 11 and Apple III Pascal ignore underscores; Pascal on the Lisa
does not. They are legal characters in identifiers (see Section 1.2).

= A goto-statement cannot refer to a case-constant in Pascal on the Lisa
(see Section 6.1.3).

= A program must begin with the word program in Pascal on the Lisa (see
Chapter 8).

= Trunc is different (see Section 11.3.1).

= Write(b) where b is a boolean will write either * TRUE' or 'FALSE' in
Pazcal on the Lisa (see Section 10.3.3).

= Whether a file is a textfile does not depend on whether its name ends
with " TEXT" when it is created. Instead, any external file opened with
a file variable of type text is trested as a textfile, while a file opened
with & file veriable of type file of char is not; it is treated as &
"datafile,” i.e. a straight file of records which are of type char (see
Sections 3.2.4 and 10.2).

= Get, put, and the contents of the file buffer variable are not supported
on files of type text. Use only the text-oriented 1/0 procedures with
textfiles.

= Eoln and eof functions on files of type text work as they do on
interactive files in Apple II and Apple Il Pascal.

= Pagcal on the Liza does not let you pass an element of a packed
variable as a variable parameter (see Sections 7.3.2, 11.7, and 11.8).

= Limits on sets are different (see Section 3.2.3).

= The control variable of a for-stetement must ke a local variable (see
Section 6.2.3.3).

= In a write or writeln call, the default field lengths for integer and real
values are 8 and 12 respectively (see Section 10.3.3).

A4 Predefined Identifiers
The predefined identifiers listed in Table A-1 are built into the Pascal
Compiler for each machine, as indicated. If you declare or define these
names in your program, no Compiler error will result, but you will lose the
capacity of the corresponding built-in, or predefined, entity. The list does
not include identifiers in special library units, such as those in the
QuickDraw graphics unif.

A-3

Fascal Relerence Manual

ldentifier

ABS
BLOCKREAD
BLOCKWRITE
BOOLEAN
BYTESTREAM
CHAR

CHR

CLOSE
CONCAT
COPRY
DELETE

EOF

EOLN

EXIT

EXF

FALSE
FILLCHAR
GET

GOTOXY
HALT
HEAPRESULT
IDSEARCH
INCLASS
INPUT
INSERT
INTEGER
INTERACTIYE

Compearison 1o Apple I & IIT Fascal

Table A-1

Predefined Identifiers
in the Lisa Pascal Compiler

Type Lisa Apple //! Apple 1]
Generic function Yes Yes Yes
Integer function Yes Yes Yes
Integer function Yes Yes Yes
Type Yes Yes Yes
Type No Yes No
Type Yes Yes Yes
Character function Yes Yes Yes
Procedure Yes Yes Yes
String function Yes Yes Yes
String function Yes Yes Yes
Procedure Yes Yes Yes
Boolean function Yes Yes Yes
Boolean function Yes Yes Yes
Procedure Different Yes Yes
Real function Yes Yes Yes
Constant Yes Yes Yes
Procedure Different Yes Yes
Procedure Yes Yes Yes
Procedure © Yes Yes Yes
Procedure Yes Yes Yes
Integer function Yes No No
Procedure No Yes ‘Yes
Eoolean function Yes No No
File Yes Yes Yes
Procedurs Yes Yes Yes
Type Yes Yes Yes
Type Yes Yes Yes

Fascal Reference Manual

Identifier
IORESULT
KEYBOARD
KEYPRESS
LENGTH
LN

LOG
LONGINT
MARK
MAXINT
MEMAYAIL
MOVYELEFT
MOVYERIGHT
NEW

oDD

ORD

ORD4
QUTPUT
PAGE
POINTER
POS

PRED

PUT
PWROFTEN
READ
READLN
REAL
RELEASE
RESET
REWRITE
ROUND

Tvpe

Integer function
File

Eoolean function
Integer function
Real function
Real function
Type

Procedure
Constant
Integer function
Procedure
Procedure
Procedure
Boolean function
Integer function
Integer function
File

Procedure
Pointer function
Integer function
Integer function
Procedure

Real function
Procedure
Procedure

Type

Procedure
Procedure
Procedure
Integer function

A-5

Compsrison 1o Apple 11 & I Fascal

Lisa

Yes
Device
In library
Yes

Yes

No

Yes
Different
Yes
Different
Different
Different
Different
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Different
Different
Yes

Yes

Apple /17

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
No

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Apple 1 [
Yes
Yes
Yes
Yes
Yes
Yes
Na
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Fascal Relerence Manuel

Identifier
SCAN
SCANEQ
SCANNE
SEEK
SIZEOF

SQR

SQRT

STR

STRING
sUCC

TEXT
THISCLASS
TREESEARCH
TRUE
TRUNC
UNITBUSY
UNITCLEAR
UNITREAD
UNITSTATUS
UNITWAIT
UNITWRITE
WORDSTREAM
WRITE
WRITELN

Tvpe

Integer function
Integer function
Integer function
Procedure
Integer function
Generic function
Real function
String function
Type function
Integer function
Type function
Pointer function
Integer function
Constant
Integer function
Boolean function
Procedure
Procedure
Procedure
Procedure
Procedure

Type

Procedure
Procedure

A-b

Cormpearison to Apple 1T & Il Fascal

Lisa
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Lenath reqg
Yes
Different
Yes
No
Yes
Yes
No
No
No
No
No
No
No
Yes
Yes

Apple /7
Yes
No
No

. Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Apple 1 [
Yes
No
Na
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the compiler.

B.1 Scope of Declared Constants
Consider the following program:

program cscopel;
const ten=10;
procedure p;
const ten=ten; {THIS SHOULD BE AN ERROR}
begin
writeln(ten)

begin
p
end.

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers). However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the writeln statement writes "10%

A more serious anomaly of the same Kind is illustrated by the following

program:
program cscope2;
const red=1; violet=2;
procedure ¢
type arrayT =array{red..violet] of integer;
color=(violet, blue, green, yellow, orange, red);
var arrayvar:arrayType; C: mlur
begin
arrayvar(1]:=1;
c:=red;
vriteln(ord(c))
end;
begin
q
end.

Pascal Reference Marusl Compiler Arniormslies

B.2

within the procedure q, the global constants red and violet are used to define
an array index type; the effect of amay{red.violet] is equivalent to array{1.2}
In the declaration of the type color, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
constants of type color with ordinalities 5 and D respectively. The writeln
statement writes “5".

The use of red in the declaration of the type color should cause a compiler
error but does not.

Consider the statement

arrayVar{1]:=1;
If this statement is replaced by

arrayVar{red]:=1;
a compiler error will result, as red is now an illegal index value for arrayVar
--even though arrayVar is of type arrayType and arrayType is defined by
arrayfred.violet]
To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumerated scalar types.

Scope of Base-Types for Pointers

Consider the following program:

program pscopel;
type s=0..7;

procedure makecurrent;
type sptr= s;
s=record
ch:char;
bool :boolean
end; .
var current:s;
ptrs:sptr;
in

new(ptrs);

ptrs’ :=current
end; ‘
begin

makecurrent
end.

Here we have a global type s, which is a subrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that
this should refer to the local type s, defined on the next line of the program;
unfortunately, however, the compiler does not yet know about the local type s

Pascal Reference Marwial Cormpiler Anomalies

and uses the global type s. Thus ptrs becomes a pointer to a variable of type
0.7 instead of a pointer to a record. Consequently the statement

ptrs” := current
causes a compiler error since ptrs” and current are of incompatible types.

To avoid this kind of situation, re-declare the type s locally before declaring
the pointer-type sptr based on s. Alternately, avoid re-declaration of
identifiers that are used as base-types for pointer-types.

C1
C2
C3
ca
C5
Cé
Cc.7
Ccs8
C9

Appendix C

Syntax of the Language
Tokens and Constants c-1
Blocks..... C-4
Data Types Cc-5
Variables c-9
Expressions C-10
Statements ... C-12
Procedures and Functions C-15
Programs C-16
Units C-17

Syntax of the Language

This appendix collects the syntax diagrams found in the main sections of this
manual. See the Preface for an introduction to syntax diagrams.

C.1 Tokens and Constants (see Chapter 1)

Letter @ o @ @ througn ®—“—"

ng——b@tmxg; OF——

mmj:@ .
®) trougn @J

loentifier @

pascal Reference Manal Symeax

*I digit-sequence } >
1—»@-—»’ hex-digit-sequence }———f

wnsignea-integer

wunsigneg-real

digit-sequence o digit-sequence | \ I >
g scale—factor}-/

scale-ractor

.@ >[digit-sequence }_—"
Lo ot
wisigrea-namoer #| unsigned-integer }_X

signea-number DI unsigned-number }——’

qQuoted-string-costant

>® (—{ string-character k—j .O—’

Cc-2

Pascal Reference Marxal Sntax

R e

QANCT-CNAACtEr-CIStant >®_;| string-character J—’Q—’

string-character

constant-geclaration identifier ° constant O

constant

b{ constant-identifier
N}

signed-number

guoted-string

quoted-char

Pascal Rererence Marnal

C.2 Blocks (see Chapter 2)

%—5{ label-declaration-part I—j
-
\D{ constant-declaration-part lj

-
! type-declaration-part |—>

('

\PI variable-declaration-part l—)

Cb[procedure-and-function-declaration-part |—)
-

\OI statement-part }

label-aeclaration-part

Tael label o —>
(D

L‘E_f_’{ gigit-sequence }——»

constant-aeciaration-part

constant-declaration }—TD

Uype-aeclaration-part

type-declaration }-—j——-»

Smtax

Pascal Reference Marnl

variable-oeclaration-part

—-b@—c:bl variable-geclaration }—j——b

proceare-ana-runction-geclaration-part
procedure-declaration
function-declaration

statement part »{ compouna-statement, |——&

C.3 Data Types (see Chapter 3)

Lpe-oeClaration I qenvifier (=)

simple-type
structured-type

pointer-type

ordinal-type

string-type

Simple-type

Mb] real-type-identifier |——=

c-5

Pascal Reference Maial
ordinal-tyoe »| subrange-type
enumerated-type
ordinal-type-identifier
stiing-type

(string)—([)] size-attrioute |—(])

string-type-identifier }

Stze-gttritute ’{ unsigned-integer l"‘““‘—"

erumerated-type identifier-list ()

Joentifter-tist (
(D

,

e e

Pascal Reference Marnal Smitax

slntred-type){ array-type }
.‘

record-type

structured-type-identifier }

array-tye
© Do)

10ex-Upe [1 dinal-type

200" (" record)

flela-list

fixed-part »
(:) vartant-part L@—f
1Leeg-part (P[field-declaration l—j—b

Held-ceclraion y[igentifier-list (%)

Pascal Reference Mamnia! Syniax

varlant-part
~>(e) @
® Sargwd

Log-Eld-UPe o[ordinal-type-identifier |—

varfant

—lEE OO0~ O
O~

flle-L file >
(Cof)+ type

’——E—U~G-7—+’”‘e’“ O
pointer-type-identifier

L85-10¢ _yf " type-igentifier —

Pascal Rererence Mana! SyﬂtaX
C.4 Varlables (see Chapter 4)

varigble-aeclaration *I

identifier-list O Q

varisble-reference

——»| varlable-identifier |

variable-identifier

qualifier

index

field-designator

file-buffer-symbol
pointer-object-symbol

.fmtex,@(

flela-aesignator

(O—{centiir |

Hle-tuffer-symbol .@

pointer-object-syrmbol .@

Pascal Reference Manual Syntax

C.5 Expressions (see Chapter S)

unsignea-constant

>{ unsigned-nurmber

quoted-string-constant

constant-identifier

ractor

- > b{ variable-reference }—\

N—a{ unsignea-constant, |
—{ set-constructor |

O >
L.

e
. O‘ A
(D

S S S A

|

~
M

SInple-expression

C-18

Pascal Reference Manual Syntax

expression
—0[simple-expression } W

>
simple-expression }—f

200

fnetlon-cajl

——b{lunction—identifier { \’L

>
actual-parameter-list }—/

BCLUA-DIIBTRLET IS +(0) (#{ actual-parameter l'j—’ﬁ}—’
Oy

actual-parameter

expression

varlable-reference

procedure-identifier

function-identifier

set-constrictor @ — ’Q}_’

(e

c-11

Pascal Reference Marual Syntax

EV0ES QI b‘ expresslon} >
O

C.6 Statements (see Chapter 6)

statement

>
t'[simple-statement

structured-statement

EL&I—H digit-sequence I—b

simple-staternent

bl assignment-statement

procedure-statement

goto-statement | >

assignment-statement

variable-reference
function-identifier a ,

procedure-statement

———-bl procedure-identifier } >
\D[actual-parameter-list I—/

Qolo-statement .(mw) .l label }__’

C-12

Pascal Rererence Mamial Yrax
structured-statement

ﬂ compound-statement

conditional-statement

repetitive-statement

with-statement |-

compounda-staterment

statement @
e

if-statement
\—vl case-statement

()(then)—bi statement |

coditional-statement

oase-statement ’(0399)_’! expression

case '. ’
\{otnerwise—claust;lj \@/

case

()] staterent |

otherwise-clause

otherwise }-#| statement |——»

c-13

Pascal Rererence Manadl Syntax

repetitive-statement ’l Yepeat-statement

while-statement

for-statement |- >

reveat-statement
—b(repeat)(bLstatement until)—»| expression |—»

while-statement

——-b(while)——-b{ expression

ror-statement

cortol varatie |+{(2)

SN @)+ [t

control-variaole :{ variable-identifier }-—-»

Initial-value
fnal-vaiue

with-statement

—>(with record-variable-reference @
(D

C-14

Pascal Reference Manual Symtax

C.7 Procedures and Functions (see Chapter 7)

procesure-oeclaration

—bi procedure-heading }-b@-prrocedure—body }-b@—b

proceadure-ooty

proceoe-headlng

—b(prowdur@—»{ identif’ierjl
formal-parameter-list

function-aeclaration

o[oo eadig

runction-boay

Arclion-hesdng =(ﬁ:cﬁmeufier f—)

\-{ formal- parameter—ust

result-type »| ordinal-type-identifier

real-type-identifier

pointer-type-identifier

C-15

Pascal Reference Maal yntax

formal-parameter-list

parameter-declaration
procedure-heading
function—heading

DArINCLEI~CCISI IO type-identifier
éﬂ?—v-».—»{“ Oy g

C.8 Programs (see Chapter 8)

program
—w{ program-heading |—>O

prorEm-heading

—»{program)-»| identifier | >
\.®..| program-parameters }*@-/

Lropam-parameters I aenvister-list

e CIASE (" ses)—| identifier-list |—

C-~16

Pascal Reference Manual Syntax

C.9 Units (see Chapter 9)

et o[ricresing}>() ~
(b[interface-part || implementation-part Hm)+@—>

wlt-heading unit identifier

Interrace-part > C:Dimerface <

(
| constant—declarauon—partj—)
R

it

type-declaration-part]—)

e

variable-declaration-part b

-
\b[procedure-and-function-declaration-part J——\—b

implementation

-part,

£27%(implementation }) \
ﬁ’[constant—declaration—partj—)
(

| type-declaration-part }-—)

P
A\ variable-declaration-part }—)

-
%! procedure-and-function-declaration-part |——=

c-17

Appendix D
Floating-Point Arithmetic

Dol Pref @08 ..o et e e e e D-1
D.2 Pascal Real Arithmetic ... D-1
D.21 Introduction i D-1
D22 Rounding ... e 0O-2
D23 Infinity Arithmetic D-2
D.24 NaN Arithrnetic D-3
D3 FPLIb e D-4
D321 Introduction ... D-4
D.3. 2 Data Ty e, D-7
D33 Arithmetic Operations i, D-7
D331 Add, Subtract, Multiply, and Divide D-7

D322 Remainder.......coooiiiiiiii e 0-8

D333 Square ROOb i D-8

D.34 Conversions ..o i e D-9
D.34.1 Conversiorns to and from Extended D-9

0.34.2 Conversions Between Binary and Decimal D-9

D25 Expression Evaluation D-11
0351 Global Constants D-14

D.2.6 Comparison Functions D-14
D.2.7 Infinities, NaNs, and Denormalized Numbers D-13
0371 Inquiries: NumClass and the Class Function .D-15

D28 Environmental Control... D-16
D361 Rounding Direction D-16

03682 Exception Flags and Halts D-17

D363 Managing Environmental Settings _............. D-17

D.2.9 Auxiliary Procedures D-18
D391 Round to Integral Value D-1&

D.2.8.2 Sign Manipulation D-19

D393 Next-After D-19

D394 EBinary Scaleand Log ..., D-19

0.3.10 Elementary Functions D-19
03101 Logarithms ... o D-20
D.3.10.2 Exponentiale D-21
D.3.10.2 Financial Functions D-22
D.3.10.4 Trigoenometric Functions D-24
0.3.10.5 Randorn Number Generator et D-24

D.3.11 Additional FPLib Procedures D-25
D.3.12 FPLib Interfaceo i, D-28

D5

D4 MathLib e
D41 Howto Use MathLib
D4.2 Environment Procedures iiiiiiiiiiiia
D43 Elementary Functions
D44 LRility Procedureso o e
D45) 8 A 1o S
D46 Free Format Conversion to ASCIT
0.4.7 Correctly Rounded Conversion

Between Binary and Decirnall
D.4.8 Financial Analysis
D.49 Zero of a Maonlinear Function
D410 Linear Algebra. e
D.4.10.1 VYectors and Linear Transformations...........
D.4.10.2 Transformations Between Spaces of
Different Dimension
D.4.103 Arrays and Matrices ...
[.4.10.4 IlI-Conditioned Problems............
04,105 Determinants ...
D.4.10.6 Iterative Improvernent
D.4.10.7 Statistical Computations with &TA
[0.4.10.8 Linear Algebra Procedures
D4.109 QR Factorization
0.4.10.10 MathLib QR Proceduresco...
D4.1011 QR Example ..o
D411 Mathlib NaNe ... e
D.4.12 Mathlib Interface i
Macintosh Floating-Point Programming
D51 Assembly Language,
052 Pascal Real Arithmetic ...
D53 FPLib and Mathlib oo ..
D54 Restrictions ... e,

D-61

1
o O O O

UUUC']UCJCI
RN

? 5
o | ~J
[X~] -

D-79
D-79
D-79
D-g0

Floating-Point Arithmetic

D.1 Preface
This appendix describes Pascal real arithmetic and two Lisa intrinsic units,
FPLib and MathlLib. FPLib is & Pascal interface for SANE (the Standard
Apple Numerice Environment). MathLib contains various mathematical
routines, including routines for sorting, formatting, financial analysis, zero
finding, and linear algebra.

This appendix refers to two documents:
= The Standard Apple Numeric Environrnent
s The 58X Assermnbly-Language SANE Engine

These documents are Parte I and 11l of the Apple Numerics Manugl and are
included in the third volume of this set, the Systern Software Manuals. (Part
11 of the Apple Numerics Manual The 8302 Assembly-Langusye SHNE Engins
is not included in this set.)

Lirking: When using Pascal real variables or constants or the units FPLib or
MathLik, you must include IOSFPLib, in addition to IOQSPasLib, in your list of
files to be linked.

Macintosh

Pascal programs can be compiled on the Lisa to run on the Macintosh.
Floating- point usage is slightly different, and some restrictions apply, as
described in Section D.5.

D2 Pascal Real Arithmetic

D.2.1 Introduction
Liza Pascal real arithmetic conforms to as many of the requirements of a
single-precigion implementation of IEEE arithmetic as can be expressed in
the standard Pascal language syntax. IEEE arithmetic is described in A&
Froposed Standsrd for Binsry Floating-Foimt Arithmetic, Draft 100 of IEEE
Task P754, December 2, 1982.

SANE [the Standard Apple Numeric Environment), which contains a
completely conforming extended-precision implementation of IEEE arithmetic,
is in the intrinsic unit FPLib. FPLib, which also contains elementary
functions, and MathLib, which contains the higher mathematical procedures
used in LisaCalc and Lisa BASIC, are in the file IOSFPLib. FPLib and
MathLib are described in Sections D.3 and D4 of thiz appendix.

If, however, you only wish to use the features of Pascal real arithmetic as
defined in the Pascal language standard, you do not need to use either of
these units in your source code. Pascal real arithmetic will then operate
according to the default modes for IEEE single-precision arithrnetic. IEEE

b-1

Fascal Reference Manusal Fioating-Foirt Arithmetic

arithmetic works like conventional floating-point arithmetic, except
sometimes it works better. In particular, results are defined far all
floating-point operations; invalid operations never terminate execution and
always supply appropriate results. When examining printed results produced
by a write of a real variable:

= A number that looks normal is a faithful representation, within the
format specification, of the binary number held internally.

= 0" or "-0" represent exactly zero with positive or negative sign
respectively. Positive and negative zercs behave identically rnost of the
time, but 1/0 yields positive infinity and 1/-0) vields negative infinity.

= "INF" or "-INF" are the representations of positive and negative infinity.
They can be produced by floating-point overflow as well as by division
by zero.

= "NaN" or "~-NaN" represent Not-a-Number, used to represent an
undefined or erroneous value. Often the representation includes a
parenthesized NaN code; for instance, write(sqrt(-1)) produces
"NaN(1)." NaN codes are described in Thas Standard Apple Nurneric
Environment.

Maormal numbers that are printed with nine or more significant digits can he
read back in to produce the same binary value. The strings printed for
infinite and NaN values are accepted by read, and produce the same hinary
real value that produced the string. The strings for infinity and NaN are not
accepted by the Compiler az real constants in Pascal source code, however.

D.2.2 Rounding
When the result is not representable exactly ss a real value, then it is
rounded to the nearest representable real value. If the result iz exactly half
way between two representable real values, then it iz rounded to the even
representable value which has a zero in its least significant hit.

D.23 Infinity Arithmetic
Infinity arithmetic obeys common mathematical conventions as indicated in
the tables on the following page.

Fascal Relersnce Manusl

Floating-Foirt rrithmetic

Table D-1
Results of Addition and Subtraction on Infinities
Right

Left Qperand

Cperand -INF finite +INF
-INF -INF ~INF NaMN
finite + -INF finitef +INF
+INF NaN +INF +INF
~INF NaN ~INF ~INF
finite - +INF finitef ~-INF
+INF +INF +INF NaN

T Result is infinite if the operation overflows.

Table D-2
Results of Multiplication and Division on Infinities
Right
Left Querand
Qoerandg 20 finite +INF
20 :O :0 NaN
finite ¥ 20 finitef +INF
+INF NaN +INF INF
=0 NaN +Q =0
finite / +INF finitet 20
+INF +INF +INF NaN
t Result is infinite if the operstion averflows.
MNote: Sign of result is deterrnined by signs of
operands in the usual rmanner.

D.24 NaN Arithmetic
NaMs sre produced ss the result of an invalid operation such ss sqrt(-1),
INF-INF, 0/0, O*INF, 1n(-1), or sin{INF). If one or more NaN is an
operand to any opersation that produces a floating-point result, that result
will be a NaN.

Fascal Reference Manusl Floating-Foint Arithroetic

Comparisons involving NaNs are never less than, equal to, or greater than;
they are always unequal. So if x iz a NaN, x<>y will be true, while x<y,
x&y, x=y, x2y, and x>y will always be false regardless of yv. "If xOx" is a
good test of whether x iz a NaN.

Round and trunc operations upon NaNs produce undefined values since
integers do not have NaN values. Round and trunc of numbers too large to
represent as integers also produce undefined values.

D3 FPLib

D.3.1 Introduction
This section describes the Lisa intrinsic unit FPLib, which is a Pascal
interface for SANE (the Standard Apple Numeric Environment). SANE in turn
implements P754, the proposed lEEE Standard for binary floating-point
arithmetic.

SANE data types, operations, and exceptions are described in detail in 7%
Standard Apple Numeric Environment. This section describes only the FPLib
interface for Pascal programs. The FP&EK interface for assembly-language
programs is described in 7he 580 Assemnbly-Langusgs SANE Engine.

If you are familiar with Pascal, you should be able to use most of FPLib just
on the basiz of the comments in the interface in Section D.3.12.

When writing Pascal source code, include a uses statement such as:
USES FPLib;

after the program statement in a main procgram or after the interface
staternent in a unit.

The two examples that follow, & program and a unit, illustrate the use of
FPLib. We encourage you to type in these examples, to compile them, and,
in the case of the program, to execute the code file while following this
discussion.

Example 2

This program reads an input string representing a floating-point value and
echoes it to the screen. It demonstrates the use of SANE data types, and
how values can be accepted on input and displayed on output.

program Echdimben’;

Uses
FPLib;
Var ;
InStr, OutStr : DecStr; { Input and output strings. }
X : Single; { Single value of InStr. }

f : DecFoam; { Specifies output foamat. }

.7 e o, ?
FESCE! HETENENRCE IVIBINIa!:

begin { EchoNumber }

f.style := FLOATDECIMAL;
f.digits := 9;

write ('Entexr number: '};
readln (InStr);

Flogting-Foirt

{ Floating output format.
{ 9 significant digits.

{ Read first input string.

Aar ' 4o
Arithmetic

while InStr <> '' do begin
Str2s (InStr, x); { Convert input te Single value x. }
S25tr (f, x, OutStr); { Corwext x to string by f. }
writeln (DutStr);
write ('Enter number: ‘);

readln (InStr) { Read next input string. }
end

end { EchoNumber }

In the program EchoNumber, note that.:

= The input and output strings (InStr and OutStr) are of type DecStr, a
Pascal string type defined by FPLik.

= A variable x of type Single has been declared to hold the value of the
input. string.

= The variable f is of type DecForm, which specifies the format of the
output string. In this caese, f iz assigned so that the output will be in
FLOATDECIMAL format (as opposed ta FIXEDDECIMAL), and will show
9 significant digits.

= The FPLib routine Str2S converts the ASCII characters from the input
string InStr to the Single value x.

= The FPLib procedure S25tr converts the Single value x to the output
string OQutStr. The format of this string is determined by the walue of f.

Throughout FPLib, the names of procedures reflect the data types involved.
For exarnple, Str25 converts to Single. There are also procedures Str2D,
Str2C, and Str2X for converting to the other SANE data types Double, Comp,
and Extended, respectively.

Now compile and execute the program, trying out warious input values. You
will note that the input string '0.5' is echoed (as you would expect) as
'3.00000000E-1", whereas the input value '0.1' is echoed as '1.00000001E-1',
because of roundoff, as discussed in 7he Standerd Appls Numeric
Environrnent.

Fascal Reference Manusl Flogting-Foirt rRrithrmetic

Example 2

The second example shows the use of FPLib from another unit. This example
also shows how expression evalustion iz accomplizshed using Extended
intermediate variahles.

The unit provides & procedure to evaluate the dot product of two vectors.
The input vectors v and w (of type Vector) are represented as arrays of
Single values. The desired result is the Single value z. In order to compute
the value of z with maximurn accuracy, all of the intermediste calculations
are performed in extended precision. This feature is at the heart of the
design of SANE.

unit DotProd;

INTERFACE
uses
FPLib;
const
N = 20; { Size of Vector. }
type
Vector = array [1..N] of Single;
procedure DotProduct (v, w: Vector; var z: Single);

IMPLEMENTATION

procedure DotProduct { (v,w: Vector; var z: Single) };
{ Returns the dot product of v and w in z,
accumulated in Extended and returned in Single. }

var s t : Extended;
i:1..N

begin { DotProduct }

IZ (0, s); {s<0 }
for 1 := 1 to N do begin
SZX (vli], t); { t < vl[i] }
Muls (wli], t); {t < v[i] * w[i] }
{ Accumulate in Extended. }
AddX (t, s) {s¢—s+t }
end;
X25 (s, z) { Produce Single result. }

end { DotProduct } ;
end { DotProd } .

Fascal Reference Menusal Flogting-Foirt Rrithmetic

In the procedure DotProduct, note that:

= The sum s is initialized to zero using 12X (12X provides convenient and
efficient assignment of integral constants to Extended).

= A Single value from v is converted to extended precision in the
temporary variable t. This conversion is performed by S2X and is exact.

= T is directly multiplied by the corresponding value from w, leaving the
extended-precision result in t.

= The zum is accurmulated in extended precision by adding t directly to
the Extended value s.

= When the loop completes, the sum in s is converted, using XZ$, to the
desired Single result z.

= In FPLib, all of the basic arithmetic operations on two values are
two-address operations; that is, the operation is performed on the two
inputs and the result is stored in the second argument (as in MulS and
AddX in the example).

= All arithmetic operations are performed in extended precision and the
result is returned in Extended.

= The names of the procedures again reflect the type aof the input
argument: MulS multiplies an Extended by a Single, AddX adds an
Extended to an Extended, and X2S converts an Extended to & Single.

D.3.2 Dsata Types
FPLib fully supports the SANE data types Single, Double, Comp, and
Extended.

Pascal's 16—~ and 22-bit integer arithmetic remains distinct from SANE
arithretic. Howewver, any program using the FPLib unit can use Pascal
integer arithmetic.

D33 Arithmetic Operations
This section discusses the arithmetic operations add, subtract, multiply,
divide, remainder, and square root.

D.33.1 Add, Subtract, Multiply, and Divide
The arithmetic operations add, subtract, multiply, and divide are provided by
sixteen procedures:
AddS, AddD, AddC, AddX;
SubS, SubD, SubC, SubX;
MulS, MulD, MulC, MulX;
Divs, DivD, DivC, Divx.

Each procedure has two operands. The first is always a wvalue parameter of
tvpe Single, Double, Comp, or Extended, as indicated by the last letter of the

D-7

Fascal Reference Manual Floating-Foird FRrithmelic

procedure name. The second is slways a variable parameter of Extended
type that receives the result. For example, subtraction is pravided by the
procedures SubS (subtract Single), SubD (subtract Double), SubC (subtract
Comp), and SubX (subtract Extended). If x and v are declared by

var x : Single;

y : Extended;
then the statement
Subs (x, v); {y—y-x} ‘
causes x to be subtracted from y and the extended-precision result to be
stored in y.

Example
To compute g = a / b, where 8, b, and ¢ are of type Double, declare:

var a, b, q : Double;
t : Extended:; { extended tempoxary }

and write:

D2X (a, t); {t<—a }
pivD (b, t); {t«<—asb}
XD (t, q); {q ¢t }

D.33.2 Remainder
The remainder operation is provided by

procedure RemX (x : Extended; var vy : Extended; var quo : integer);

The remainder, v REM x, is delivered to y.

The remainder operation determines n, the nearest integer to x/y; if x/y is
halfway between two integers, the even integer is chosen. Thus, yrem x = y
- n¥x.

The third argument, quo, delivers the integer whose magnitude is given by
the seven least significant bits of the magnitude of n, and whose sign is the
sign of n. (Quo is useful for reducing the arguments of trigonometric
functions, but can be ignored if not needed)

D333 Sguare Root
The square root operation is provided by

procedure SqrtX (var x : Extended);
for any x >= 0. The argument x is both source and destination.

D-8

Fascal Reference Manugl Floating-Foirt rReithmetic

Example
To find v = square root of u, where u and v are of type Single, declare
var u, v : Single;
t : Extended; { extended temporary }
and write

SZX (u, t); {t <—u }
SqrtX (t); { t <— sart (u) }
X25 (t, v); fvet }

D34 Conversions

D341 Conversions to and from Extended
Conversions between the Extended type and the other numeric types
recoghized by FPLib are provided by the procedures

12X - integer to Extended
L2X - longint to Extended
52X - Single to Extended
D2X - Double to Extended
C2X - Comp to Extended
X2X - Extended to Extended
X21 - Extended to integer
A2L - Extended to longint
X28 - Extended to Single
X2 - Extended to Double
X2C - Extended to Comp

For example, if x and y are declared by
var x : Comp;

y - Extended;

then to convert a Comp-format value in x to an Extended-format in vy, write
CX (x, v); {y<x}

D342 Conversions Between Binary and Decimal

Converting Decimal Strings into SANE Types
The procedures Str2S, Strz2D, Str2C, and Str2X convert rnumeric strings into
Single, Double, Comp, and Extended formats, respectively.

Fascal Reference Msnugal Fioating-Foimt Arithmelic

Example 1
To assign -0.0000253 to an Extended variable x, write
var x: Extended;

StrzX ('-2.5%-5', x); { or StrzX ('-0.0000253', x); }
The Slandsrd ARpple Numeric Environment describes numeric string syntax.

Corverting SANE Types into Decimal Strings

The procedures S2Str, D2Str, C25tr, and X25tr will convert a Single, Daouble,

Comp, and Extended, respectively, into a nurneric string {of type DecStr). As
any numeric value can have many decirnal representations, vou must specify
the decimal result format. To do so, pass a record of type DecForm, shown

below:
DecFoorm = record
style : (FLOATDECIMAL, FIXEDDECIMAL):
digits : integer
end;
Example 2

To print the value of a Double variable y using a fixed-paint decimal forrnat
with ten digits to the right of the decimal point, write:

var vy: Double;
$: DecStr:
f-: DecFatm;

f.style := FIXEDDECIMAL;
f.digits := 10;

DSEtr (f, v, s);

writeln ('y = ', s);
Nurnhers that round to zero in the specified DecForm are converted to the
string ' 0.0' or '-0.0'. NaN's are converted to the string ' NaN', ‘-NaN',
' NaN(n), or '-NaN(n)', where n is a NaN error code in decimal. Infinities
are converted to the string ' INF' ar '-INF'.

All other numbers behave in an intuitive manner as long as the DecForm
specifies no mare than SIGDIGLEN-1 significant digits. Otherwise, the
formatted number is padded with zeros where necessary. If the resulting
string has more than DECSTRLEN characters, the number is represented in
flogting-point notation. (SIGDIGLEN and DECSTRLEN are specified in the
interface to FPLib.)

All string results have either a leading negative sign or a leading blank (thus,
colunns of numbers will line up regerdless of sign).

D-10

Fascal Reterence Manusl Fioating-Foint Arithmetic

Decimal Record Conwversions
The Decimal record type is specified in the interface as below:

Sighig = string [SIGDIGLEN];

Decimal = record
sgn : 0..1; { Sign (0 for pos, 1 for neg). }
exp : integer; { Exponent.
sig : Sigbig { String of significant digits. }
end;

The procedures S2Dec, D2Dec, C2Dec, and X2Dec each corwvert a Single,
Double, Comp, or Extended value, respectively, into a record of type
Decimal. A DecForm operand (shown in the preceding section) zpecifies the
format of Decimal. The maxirnum number of ASCII digits delivered to sig is
SIGDIGLEN-1, and the implied decimal point is at the right end of sig, with
exp set accordingly. Further formatting details are given in 7Ae 5&%%2
Assembly-Language SANE Engine.

The procedures DecZS, DeczZD, Dec2C, and Dec2X convert a Decimal record
into Single, Double, Comnp, and Extended, respectively. The sig part of
Decimal accepts up to SIGDIGLEN-1 significant digits, with an implicit
decirnal point at the right end of the significant digits. If SIGDIGLEN digits
are passed, then the implicit decimal point ie between the digits at
SIGDIGLEN-1 and SIGDIGLEN; the last digit, if nonzero, represents one or
more nonzero digits in the SIGDIGLEN or subsequent positions. Further
details of the representations of Decimal input values for these routines are
given in The 58000 Assembly-Languege SANE Engins.

D35 Expression Evaluation
SANE floating-point arithmetic (and the FPLib unit) is designed to operate on
Extended wvalues. For example, DivD (x, y) operates on the Extended-format
value in v by dividing the Double-format number x into y and leaving the
result in y. To evaluate more complicated expressions, Extended temporaries
can be used.

The following examples illustrate extended-based expression evaluation. The
first examnple uses an Extended accumulator to store the results of all
operations.

Example 1
Compute the value of

r= [a+b-c)l*d+e
f

where all veriables are of Double type.

var 8, b, ¢, d e f, r : Double;
t : Extended; { extended temporary }

D-11

Fascal Relerence Manual Fioaling-Foird Arithmelic

begin

DZX (a, t); {t<a }
AddD (b, t); {t<—a+hb }
Subb (c, t); {t<—a+b-c¢ }
MulD (d, t); {t<—(a+b-c)*d }
AddD (e, t); {t<—(a+tb-c)*d+e }
DivD (f, t); {t(—((a+b-c)*d+e})/f}
XD (t, 1); {r«t }

Note that although the arithrmetic style is extended-based, not every operand
need be converted to Extended. In the example, only one explicit conversion
to Extended was required.
Fxample 2
Cormpute the value of the root r of lerger magnitude of a quadratu: equation
from the formula:
b + sign{b) * sgrti b2 — 4 * a * ¢)
Y= -

2* a8
where a, b, c, and r are of Single tvpe.
var 8, b, ¢, ¥ : Single;

t1, t2, t3 : Extended; { extended temporaries }
begin

S2X (b, ti); {tl<— b
3 =t1; {t3 < b }
MulS (b, t1); tl (— b"2
12X (4, t2); tz2 (— 4
MulS (a, t2); {t2<— 4*a 1
Muls (c, tz); t2(—4*a*c }
SubX (t2, t1); tl<—b*2-4*a*g
Saqrtx (t1); tl — =qrt (b*2 -4 *a*c)
CpvSgnX (tL, t3); t1 (— same with sign of b
AddS (b, t1); t1 <— b + sign(b) * sqrt (b*2 — 4%a*c) }
NegX (t1) ; tl <— —(b + sign(b) * sqrt... }
sZX (a, t2); tZ <— a
AddS (a, t2); {tz2¢<—2*a
Divx (tz, t1); t1 (— —(b + sign(b) *

sqrt (b2 ~4*a*c)} /7 (2*a) }
X25 (t1, 1); {r(t1. }

Fascal Relsrence Meanusl

Floating-Foint Arithmetic

The smaller root may then be computed by evaluating the formula c/Aa*t1) in
extended. Exceptional cases include b2 < 4 * a * c and a = 0.

Example ¥
Evaluate the polynomial

y=Co+teCL*x+cpg*xZ+ .

and its derivative

Dv=cy +2*cp*x+3%cg*x?+ .

+Cn*xn

+n* gy ¥ x(01)

where the coefficients cq through c, are stored in an arrey of Single and x,

y, and Dy are of type Single.
const NMAX = 100;

var n, i : 0. _NMAX;
X, y, Dy - Single;

¢ : array [0..NMAX] of Single;

t1,
t2, t3 : Extended;
12 (0, t1);

t2 .= t1,

for i := n downto 1 do begin

{ti¢—c[i] +x *t1 :}

For computation of v. }
For computation of Dy.}
t }
t }

MulS (x, ti); {t1¢— x * t1 }
Adds (c [i], t1); { t1 ¢(— ¢ [i] + t1 }
{t2¢—t1+x*1t2:}
Muls (x, t2); {t2 ¢(— x * t2 }
S (c[il, t3);
Muls (i, t3);
Addx (t3, t2)
end;
{t1 ¢—c 0] +x*¢t1:}
MulS (x, t1); {t1 ¢— x* t1 }
Adds (c [0], t1); {t1 ¢—c [0] + t1 }
X25 (t1, v); {v <— t1 }
X275 (t2, Dv); { Dy <— t2 }

D-13

Fascal Reference Manusl Floating-Foird prithmetic

The method, called Horner's Rule, used to evaluate the polynomials is based
on the polynomial representation

y=(... ((ecn*x+cng) *x+Cpg) ¥x+ ...) *x+cg.
It is faster and more accurate than the straightforward computation
suggested by the standard representation, shown at the beginning of the

example, and is conveniently implemented using SANE's extended-based
arithmetic.

D.35.1 Global Constants
To speed up execution, frequently used constants can he defined globally
{outside the routines). For example, if pi is declared and defined by:

var pi : Extended;

begin

" Strzx ('3.14159265358979323846°, pi);
then executing

X := pi;
is significantly faster than

Strzx ('3.14159265358979323846°', x);

Defining constants globally is particularly helpful when the definition is via
one of the string conversion routines, such as Str2X. For conversion of
integers, 12X and L2X are significantly faster than Str2X.

D.3.6 Comparison Functions
Amy two floating-point values in the Extended format can be compared using:

function CmpX (x : Extended: r : RelOp; v : Extended) : boolean;
or

function RelX (x, v : Extended) : RelOp;
The RelOp values are

GT greater than

LT less than

GL greater than or less than

EQ equal

GE greater than or equal

LE less than or equsl

GEL greater than, equal, or less than

UNDRD unordered

D-14

Fascal Relerence Manusl Floating-Foimt Arithmetic

Single, Double, or Comp values can be compared by first converting them to
Extended.

For every pair of operand walues, exactly one of the relations LT, GT, EQ,
and UNORD is true. The value of RelX is the appropriate one of these four
relations. CmpX (x, r, v) is true if and only if the relation x r vy is true.

Example

If p is greater than g then print 'p > q is TRUE'; otherwise, print 'p > q is
FALSE'.

var p, q: Extended;

if CmpX (p, GT, q) then
writeln ('p > g is TRIE')
else
writeln ('p > q is FALSE');

Note that equivalent results are produced by

if CmpX (p, LE, q) or CmpX (p, UNORD, q) then
writeln ('p > q is FALSE’)

else
writeln ('p > q is TRIE');

or by
case RelX (p, q) of

GT: writeln {('p > q is TRUE');
LT, EQ: writeln ('p > q is FALSE');
UNDRD: begin
SetXcp (INVALID, TRUE);
writeln ('p > q is FALSE')
end { UNDRD }

end; { case RelX }

D.3.7 Infinities, NaNs, and Denormalized Numbers
In addition to the normalized nurnbers supported by most floating-point
packages, FPLib fully supports the special values--infinities, NaNs, and
denormalized numbers~-specified by the IEEE Standard, as described in 7he
Standard Apple Numeric Ermvironment.

D.3.7.1 Inquiries: NumClass and the Class Functions
The functions ClassS, ClassD, ClassC, and ClaszX can be used to classify the
value of a variable. These functions are of type NumClass and return one of
the values:

D-1%

Fascal Relference Manuel Fioating~-Foint Arithmetic

SNAN - gignaling NsN
ONAN - quiet NaN
INFINITE - infinity

ZERO - ZEYo

NORMAL ~ normalized number

DENORMAL denormalized numbex

The class functions alsc return the sign of a wvalue in the parameter
var sgn: infeger.

D38 Environmental Control
Ervironmental controls supported in FPLib include the rounding direction, as
well as exception flags and their corresponding halts. Rounding precision is
supported in the MathLib unit.

D381 Rounding Direction
The rounding directions are of the type

RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO)

The rounding direction is set by the SetRnd and SetEnv procedures and can
be interrogated by the GetRnd function. '

Exarnple
The common rounding function specified by
{" trunc {x + 0.5}, if x »=0 *ekinsert bracke tikk
Rnd (x) =

""\. trunc {x -~ 0.5), if x < O

can be implemented by:
function Rnd (x : Extended) : integer;

{ Sets INVALID and returns -32768 if
xisaNaN or x (=-32768.5 or x >»= 32767.5.

Sets INEXACT if
-32768.5 < x ¢ 32767.5 and x is nonintegral.

Sets no other exceptions. }
var t : Extended;

i : integer;
T : RoundDir;

D-16

Fascal Reference Manugl Floating-Foimt mrithmetic

begin { Rnd }
StrzX ('0.5', t);
CpySanX (t, x); {t (—+0.5if x > 0 or x is +0 }
{t¢—-05if x <O or x is 0 }
:= GetRnd; { Sav roundmg direction. }
SetRnd (TOWARDZERO); { Set round-toward-zero. }
AddX (x, t); {t—x+t }
X2I (t, i); { i ¢— truncate (t) }
IZX (i, t); { No exceptmnsl }
SetXcp (INEXACT, not (CmpX (t, EQ, x) or TestXcp (INVALID)));
{ Corxrect INEXACT setting. }
SetRnd (;r), { Restore rounding direction. }
Rnd : { On INVALID, i (— -32768. }
end {Rnd};

D382 Exception Flags and Halts
The exception flags are values of the type

Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERD, INEXACT)

These five exceptions are signaled when detected, and if the corresponding
halt is set, the SANE engine will JSR to the 'halt vector'. The halt vector is
initially O, so that halts terminate execution with a bus error. However, the
user can call the procedure SetHltAddress to set the halt vector to the
address of a user-defined halt-handling procedure. See Section D.3.11 for
details.

Initially all exception flags and halts are cleared. You can examine, set, or
clear individual exception flags and halts using TestXcp and TestHit
functions and SetXcp and SetHlt procedures. The SetEnv and GetEnv
procedures can be used to set or get the entire environment (rounding
direction, rounding precision, exception flags, and halts).

D3.83 Managing Environmental Settings
Iesues and techniques for managing environmental settings are covered in 7Ae
Stardard Apple Nurmeric Environment. (The Pascal syntax used in the
examples there does not fully match the syntax in FPLib)

The procedure-entry and procedure-exit routines are provided in FPLib by:

procedure ProcEntry (var e: Environ);
procedure ProcExit (e: Environ);

Example

The following procedure signals underflow if its result is denormal, and
overflow if its result iz infinite, but hides spurious exceptions occurring from

D-17

Faeeal Relerence Manusal Flogting-Foirt rrithmetic

internal computations. This is Example 2 in Section 8 of The Standard Apple
Mumeric Environrnent, irnplernented with FPLib calls.

procedure compres (var x: Double);

uses FPLib;
var e: Environ; { local storage for emviromnment }
c: NunClass; { far class inquiry }
sgn: integer; { for class inquiry — not used }
procedure clearxcps; { moxe efficient version in MathLib }
const FIRSTXCP = INVALID;
LASTXCP = INEXACT;
var xcp: Exception; { for clearing exceptions }

begin {clearxcps}
for xcp:= FIRSTACP to LASTXCP do
SetXcp (xcp, FALSE)
end {clearxcps});

begin {compres}

ProcEntry (e); { save caller’'s enviromment and }
{ set default enwvironment — }
{ now halts disabled }

{ compute result x }
¢ := ClassD (x, sgn); { class inquiry }
clearxcps; { clear possibly spurious exceptions }
{ now raise specified exception flags:
if ¢ = INFINITE then SetXcp (OVERFLOW, TRUE)
else if ¢ = DENORMAL then SetXcp (UNDERFLOW, TRUE);
ProcExit (e) { restoxre caller's environment,
{ including any halt enables, and
{ then signal exceptions from
{ subroutine

St S Syt Nagaa?

end {compres} ;

D39 Auxiliary Procedures
The FPLib unit includes & set of special routines: RintX, NegX, AbsX,
CpySgnX, NextS, NextD, NextX, ScalbX, and LogbX.

D.39.1 Round to Integral Value
An Extended wvariable can be rounded to an integral value by

procedure RintX (var x : Extended);
The result is returned in the input x.

D-18

Fascal Relersnce Msenual Flogting-Foint Arithmetic

D392 Sign Manipulation
Procedures NegX, AbsX, and CpySgnX each operate on an Extended variable,
altering only the sign of the Extended argument.

The negation operstion is provided by
procedure NegX (var x : Extended);

The absolute value operation iz provided by
procedure AbsX {var x : Extended);

An operation to copy the sign of one Extended variable to the sign of
ahother is provided by

procedure CpySgnX (var x : Extended; v : Extended);
which copies the sign of y into the sign of x.

D393 Next-After
The procedures NextS, NextD, and NextX each generate the next
representable neighbor in its respective format, given an initial value and a
direction. The first argument (x} to each of these routines is “burnped" to
the next representable value in the direction of the second argument (v).

The procedure NextS bum;:is the Single value x to the next representable
Single value in the direction of y:

procedure NextS (var x : Single; vy : Single);

The procedure NextD bumps the Double value x to the next representable
Double value in the direction of y:

procedure NextD (var x : Double; v : Double);

The procedure NextX bumps the Extended value x to the next representable
Extended value in the direction of y:

procedure NextX (var x : Extended; v : Extended);

D394 Binary Scale and Log
An Extended variable can be efficiently scaled by & power of two by

procedure ScalbX (n : integer; var v : Extended);

The procedure ScalbX computes y * 20, and returns it in y.

The binary exponent of an Extended variable can be determined by
procedure LogbX (var x - Extended);

The procedure LoghX returns in x the binary exponent of x as a sighed
integral value.

D.3.10 Elementary Functions
FPLik provides a number of mathematical functions, including logarithms and
exponentials, two important financial functions, trigonometric functions, and a

D-19

Fascal Reference Manual » Flogting-Foird Arithrnstic

random number generator. The logarithms and exponentials are provided in
base-2 and base-e versions.

D.3.10.1 Logarithms

The proceduwres Log2X, LnX, and Ln1X each operate on an Extended variable,
returning the result in the input argurnent.

The base-2 logarithm log; x is computed by
procedure Log2X (var x : Extended);

for any nonnegative x.

The natural (base-e) logarithm loge x is computed by
procedure LnX (var x : Extended);

for any nonnegative x.

The natural (base-e) logarithm loge (1 + x) is computed by
procedure LniX (var x : Extended);

for any x »= -1.

D.3.10.2 Exponentials
Procedures Exp2X, ExpX, and ExplX each operate on an Extended variable,
returning the result in the input argument. Procedure Xpwrl operates on an
Extended veariable using an integer value, returning the result in the Extended
input argument. Procedure XpwrY operates on two Extended variahles,
returning the result in the second input argurnent.

The procedure Exp2X calculates 2% and returns this value to x:
procedure Exp2X (var x : Extended);

The procedure ExpX computes e* and returns this vslue to x:
procedure ExpX {var x : Extended);

The procedure ExplX computes e¥ - 1 and retwrns this value to x:
procedure ExpiX (var x : Extended):

The procedure Xpwrl computes xi and returns this value to x:
procedure Xpwrl (i : integer; var x : Extended);

The procedure XpwrY computes x¥ and returns this value to x:
procedure XpwrY (v : Extended; var x : Extended);

Fascal Reference Manual

D.3.103 Financial Functions
FPLib provides two procedures, Compound and Annuity, that can be used to
solve various financial problems. Each of these procedures takes two input
arguments of type Extended, and produces an Extended result. The two input
arguments, r and n, represent. in each case an interest rate and a number of
pericds, respectively.

Compound Interest
Compound interest can be computed using

procedure Compound (T, n - Extended; vear x : Extended);
This procedure computes the value

X =

(1+1)n

Floating-Foird Ariihmetic

where r is the interest rate and n is the number of periods.
Example

If $1000 ig invested for & years et 9% compounded quarterly, then what is the
future value of the principal? Compute:

r, n, four, vears, rate PY, FY : Extended;

var

f - DecFoxm;
s : DecStr;

with f do begin style = FIXEDDECIMAL; digits := 2 end;

12X (4, four);
12X (6, vears);
StrZX ('0.09', rate);
12X (1000, PY);

Y := rate;
DivX (four, r);
n := years;
MulX (four, n);
ound (1, n,
MulX (PV, FY);

Fv);

X2Str (F, FY, s);

{ four <— 4

{ vears <— 6

{ rate (— 9%

{ P¥Y <— 1000.00

{r (— rate 7/ 4

{ n{(— 4 * years

{FVW (— (1+1)n
{ FY <— PV * (1 +

{ f is FIXED with Z fraction digits.

writeln ('FV = §', s);

The future walue FVY is § 1705.77.

et V) g gt

r}*n

}
}
}
}

Fascal Reference Manual Floating-Foird prithmetic

Example

How much must a person invest today at 9% compounded quarterly to have
$15000 in hie account in 6 years? Assuming f, rate, vears, r, and n have
values as in the example above, compute:

var 1, n, nn, four, years, rate, PY, FY : Extended;
f : DecForm;
s : DecStr;

with f do begin
style -= FIXEDDECIMAL;

digits := 2

end;

12X (15000, FY); { FY <— 15000.00 }
nn :=n;

NegX (nn); { nn <— -n }
Compound (x, nn, P¥); { P¥ <— (1 + 1)"-n }
MulX (Fv, PV); {PW < F¥Y* (1+1)"n }
X25tx (f, PV, { £ is FIXED with 2 fraction digits.}

);
writeln ('PY = §', s);

The present value PY i $ §793.70.
The present value and future value of an annuity can be computed using
procedure Annuity (r, n : Extended; var x : Extended);
This procedure computes the value
t= 1~ {1+ x}-n,
b
where r iz the interest rate and n is the number of periods.

Example

Suppose thet a loan at 12% cornpounded monthly is to be paid off at a rate
of $225 per month in 36 months. What is the present value of the loan?

Compute:
var I, n, twelve, rate, PV, PMT : Extended;
f - DecForm;
s : DecStr;

Fascal Reterence Meanusl

with f do begin
style
digits := 2
end;

12X {12, twelve);

Strz ('0.12', rate);

StrzX ('36', n);
12X (225, PMT);

r := rate;
DivX (twelve, r);

Annuity (r, n, PY);

MulX (PMT, PV);
X2Str (f, PV, s);

writeln ('PY = §', s);

:= FIXEDDECIMAL;

twelve (— 12
rate {(— 12%
n {— 36

PMT <— 225.00

e, s gretrem, gt

{r (— rate / 12
{PY (— (1-(1+

Floating-Foimt Rrithmetic

s S Saa? gt

}
r}*-n) /1 }

{PW<(—PT*(1-(L+1)"n) / 1}

{ f is FIXED with 2 fraction digits.}

The present value PV is $ €774.19.
Exarmple

If $50 is deposited each month to & savings account that pays 12%
compounded monthly, what is the future value of the account after 10 years?
Compute

var

r, n, twelve, rate, vears, FY, PMI, t : Extended;

f - DecFoxm;
s : DecStr;

with f do begin

style -= FIXEDDECIMAL;

digits := 2
end;

IZX (12, twelve);

Strzx ('0.12', rate);

12X (10, years);
I2X (50, PMT);

Y := rate;
DivX (twelve, 1);
n := Vears;
MulX {(twelve, n};

{ twelve (— 12
{ rate (— 12%
{ vears <— 10
{ PMT <— 50.00

{r (— rate / 12

{n{(— years * 12

D-23

S Nt S gt

Fascal Relerence Manueal Floating-Foirt privhmetic

Compound (r, n, t); { t <— (1+1)°n }
finnuity (x, n, F¥); {F¥ <— (1 - (1 +1}*n) /1 }
MulX (t, FV); (W ((1+1)*n-1) /1]
MulX (PMT, F¥); {FY ¢—PT*((1+1)°n-1) /1 }
XZStr (f, FV, s); { t is FIXED with 2 fraction digits.}

writeln ('FV = $', s);
The final value FY is $ 11501.93.

D.3.104 Trigonometric Functions
The trigonornetric functions are provided by the procedures CosX, SinX,
TanX, and ATanX (arctangent or inverse tangent), which operate on an
Extended variable and return the result in the input argument.

The cosine is computed by

procedure CosX (var x : Extended);
The sine is computed by

procedure SinX (var x : Extended);
The tangent is computed by

procedure TanX (var x : Extended);
The arctangent iz computed by

procedure ATanX (var x - Extended);

D.3.10.5 Random Number Generator
Pseudorandom numbers are provided by

procedure RandomX (var x : Extended);

RandomnX uses the iteration forrmula
x = (75 % x) mod {271 - 1)

A sequence of psuedorandom integral values r in the range
14r¢e2%-2

can be generated by initializing an Extended variable r to an integral value
{the seed) in the range and making repeated calls RandomX (r); each call
delivers in r the next pseudorandom number in the seguence.

If seed values of r are nonintegral or outside the range
1srse2m -7
then resulte are unspecified.

D-24

Fascal Reference Manual Floating-Foirt Arithmetic

Exarmmple
A procedure yielding a pseudorandom rectangular distribution on (0, 1):
Exterior to the procedure declare and initialize

const SEED = 1018375230 { arbitrary seed }

var P, one, r: Extended;

begin
12X (1, one); { one ¢<— 1 }
P := one; {P<«1 }
ScalbX (31, P); {P<«— 231 }
SutX (one, P); {P«—231-1 }
L2X (SEED, 1); { r <— SEED }

The desired procedure can be written
procedure Rand {var x : Extended);

begin
RendomX (1); { r <— random int value }
X :=1T; {x<—r1 }
DivX (P, x) { normalize to (0, 1) }
end;

D.3.11 Additional FPLib Procedures

Function SANE_Enwviron : longint ; { Internal use only. }
Procedure InitfPLib ; { Initializes FPLib. }
Function GetHltAddress : longint ; { Returns halt address.}
Procedure SetHltAddress (HltAddress : longint) ; { Sets halt address. }

SANE_Environ is for internal use of other FPLib procedures.
InitFPLib resets the environment and the halt address to default values.

This initializetion occurs automatically at the beginning of the outer block of
a Pascal main program. InitFPLib may be called later to reestablish default
conditions if desired.

The halt address is the address to which control passes when a flosting-point
halt occurs, as described in detail in 7he 58X Assembly-Language SANE
Engine. GetHltAddress and SetHltAddress may be used to obtain the hailt
address. SetHltAddress may be used to change the halt address to the entry
point of a halt- handling procedure.

The following demonstrates a sample halt procedure:

D-25

Fascal Reference Manusl Floating-Foirt rRrithmelic

type miscrec = record
haltexrors : integer;
ccrpending : integerx;
dopending : longint;
end;

cd

procedure haltroutine
{ var misc : miscrec;
src2, src, dst : longint;
opcode : integer) ;

(* Prints out the op word and address parametexrs of the floating-
point operation that halted, then displays the name of each
exception that occurred in that operation and whose halt was
enabled. After perusing this information, the user presses
RETURN to continue execution as if no halt had occurred. *)

var erw : Environ ;
x : Exception ;

begin (* haltroutine *)
ProcEntry(emw) ;
writeln(' Floating point halt taken on op code
writeln(' Destination address ', dst) ;
writeln(’ Source address °, sxrc)
writeln(' 2nd Source address ', src2?) ;
write(’ Exceptions signaled with enabled halts :) :
SetEnv(misc.halterrors) ;
for x := INVALID to INEXACT do if TestHlt(x) then case x of

INVALID - write(' Inwalid ') ;

. Opcode) 7

e

UNDERFLOW : write(' Undexflow ') ;
OVERFLOW : write(' Overflow ') ;
DIVBYZERD : write(' DivByZero '} ;
INEXACT - write(' Inexact ') ;
end (* case x *) ;

writeln ;

writeln{' Press RETURN to continue. ') ;

Teadln ;

ProcExit(enw) ;
end (* haltroutine *);

....................... (* Elsewhere in the program ... *)
(* This code is executed prior to the floating-point operations for

which the halts are to be enabled. Oldhltaddress is
declared to be a longint. *)

Fascal Reference Menual Floating-Foirt Arithmetlic

oldhltaddress := GetHltRddress ; (* Save old halt address. *)

SetHltAddress(ord4(@haltroutine)) ; (* Set new halt address to go to
haltroutine. *)

(* Enable halts on 'severe' exceptions. *)

SetH1t(INVALID, TRE) ;
SetHlt(OVERFLOW, TRE) ;
SetHlt(DIVBYZERD, TRIE) ;

{* If any of these three exceptions subsequently occur, control
will pass through haltroutine. *)

Fascal Keference Manual Flosting-Foimt Arithmetic

D3.12 FPLib Interface

UNIT FPLib ; INTRINSIC ;

INTERFACE

{ Lisa Floating Point Library. }

{$C Copyright 1983, 1984, Apple Computer Inc. }
CONST

{ SANE: Standard Apple Numeric Envirorment }

{ Comments like ![A// denote differences from the Apple // and /// SANE unit
interface. }

SIGDIGLEN = 20; { Maximum length of SigDig. !A//: 28 }

DECSTRLEN =255; { Maximum length of DecStr. IA//: B0 }
TYPE
{
** Numeric types.
}
Single = 1xeal; { !A//: axray [0..1] of integer }
Double = srray [0..3] of integer;
Comp = array [0..3] of integer;
Extended = erray [0..4] of integex;
** Decimal string type and intermediate decimal type,
** representing the value:
** (-1)"sgn * 10%exp * sig \
Sighig = string [SIGDIGLEN];
DecStr = string [DECSTRLEN];
Decimal = record

sgn : 0..1; { Sign (0 for pos, 1 for neg). }

exp : integer; { Exponent. }

sig : SigDig { String of significant digits. }
end;

Fascal Reterence Manual Flosting-Foint Arithrmetic

** Modes, flags, and selections.

** NOTE: the values of the style element of the DecForm record
** have different names from the Apple // and /// version to
** avoid name conflicts.

}
Environ = integer ;
RoundDir = (TONERREST, UPWARD, DOWNWARD, TOWARDZERQ);
Rel0p = (GT, LT, GL, EQ, GE, LE, GEL, UNORD);
{> < O = 3= (= (=1}
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO, INEXACT);
NumClass = [SNAN, ONAN, INFINITE, ZERD, NORMAL, DENORMAL);
DecForm = record ‘
style : (FLOATDECIMAL, FIXEDDECIMAL);
{ 'a//: FLORT, FIXED }
digits : integer
end;
** Two address, extended-based arithmetic operations. |
procedure AddS (x : Single; wvar vy : Extended);
procedure AddD (x : Double; wvar v : Extended};
procedure AddC (x : Comp; var ¥ : Extended);
procedure AddX {x : Extended; var v : Extended);
{y:=v+x}
procedure SubS (x : Single; var v : Extended);
procedure SubD (x : Double; war y : Extended);
procedure SubC {x : Comp; var v : Extended);
procedure SubX [x : Extended; var v : Extended);
{y:=y-x}
procedure MulS (x : Single; var v : Extended);
procedure MulD (x : Double; var v : Extended);
procedure MulC (x : Comp; var v : Extended);
procedure MulX (x : Extended; var vy : Extended);
{y =y *x}
procedure DivS (x : Single; wvar y : Extended);
procedure DivD {x : Double; var v : Extended);
procedure DivC (x : Comp; var v : Extended);

D-29

Fascal Reference Manusl Floating-Foird rrithmetic

procedure DivX (x : Extended; var y : Extended);
{y:=y/x}

function CmpX (x : Extended; r : RelOp; v : Extended) : boolean;
{ CnpX := xr v }

function RelX (x, v : Extended) : RelOp;
{ x RelX v, where RelX in [GT, LT, EQ, UNORD] }

** Conversions between Extended and the other numeric types,
** including the types integer and longint.

1

procedure I2X (x : integer; war v : Extended);
procedure S2X (x : Single; wvar y : Extended);
procedure D2X (x : Double; war y : Extended);
procedure C2X (x : Comp; var vy : Extended);
procedure X2X (x : Extended; var v : Extended);

{yv:=x (s.‘rlthmetm ass;lgnment) }
procedure X2I (x : Extended; var vy : integer);
procedure X25 (x : Extended; var vy : Single);
procedure X2D (x : Extended; var v : Double);
procedure X2C (x : Extended; var y : Comp);

{ v := x {arithmetic assignment) }
{ ,
** 1These conversions are not in the Apple // & /// SANE unit.

!

procedure L2X (x : longint; wvar y : Extended):
procedure X2L (x : Extended; var y : longint);

{ vy :=x (arithmetic assignment) }
** Conversions between the numeric types and the intermediate
** decimal type. |

procedure S2Dec (f : DecForm;
procedure D2Dec {(f DecForm

: Single; wvar y : Decimal);

: Double; wer y : Decimal);

procedure C2Dec (f : DecFoxm; : Comp; var y : Decimal);

procedure X2Dec (f : Deanrm : Extended; var y : Decimal);
{y :=x (accordlng to the format f) }

KoK XX

procedure Dec2S (x : Decimal; var y : Single);

D-30

Fascal Reference Manusl Flogting-Foint Arithmelic

procedure Dec2D (x : Decimal; var y : Double);
procedure Dec2C {x : Decimal; var y : Comp);
procedure Dec2X (x : Decimal; ver v : Extended);

{y:=x}

** Conversions between strings and the intermediate decimal type.

procedure Str2Dec (s : DecStr; var index : integer;
var d : Decimal ; ver validPrefix : boolean);

{d:=s, starting at s{index]; on output index points to
first character past asccepted token; YalidPrefix is
true if the token, concatenated with the characters
following it, is & valid prefix of & numeric token. }

procedure Dec2Str (f: DecForm; d: Decimal; var s: DecStr);
{ s := d (according to the format f) }

** Conversions between the numeric types and strings.

!
procedure S25tr (f : DecForm; x : Single; wvar vy : DecStr);
procedure D2Str (f : DecForm; x : Double; wvar y : DecStr);
procedure C25tr (f : DecForm; x : Comp; var v : DecStr);
procedure X2Str (f : DecForm; x : Extended; var v : DecStr);

{ v := x {according to the format f) }
procedure Str2S (x : DecStr; ver vy : Single);
procedure Str2D (x : DecStr; war y : Double);
procedure Str2C (x : DecStr; var v : Comp);
procedure Str2X (x : DecStr; vear y : Extended);
fv:=x}
** Numerical 'library’ procedures and functions. |

procedure RemX (x : Extended; var y : Extended;
var gquo : integer);

{ (new v) := (0ld ¥) - x * n, where n is the integer closest
to v/%x; n is even in case of tie.
quo = low order seven bits of integer gquotient v / x,

so that -127 <= quo (= 127.

D-31

Fascal Relerence Manual

procedure SgrtX (v
{ x := sgrt (x)
procedure RintX (v
{ x := rounded t
procedure NegX (v
{x :=-x1}
procedure AbsX (v
f x := |x] }
procedure CpySgnX (v
{ x := x with th
procedure NextS (v
procedure NextD (v
procedure NextX (v
{ x := next repr

function ClassS (x
function ClassD (x
function ClassC (x :
function ClassX (x :

{ sgn sign of

procedure ScalbX (n :

{y:=y*2'n}

procedure LogbhX (var x

{ returns unbias

Floating-Foimt Rrithmetic

?r x : Extended);
ar x : Extended);
o integral value of x }
ar x : Extended);
ar x : Extended);
ar x : Extended; v : Extended);
e sign of v }
& x : Single; v : Single);
ar x : Double; v : Double);
ar x : Extended; v : Extended);
esentable value from x toward y }
: Single; var sgn : integer) : NumClass;
: Double; wvar sgn : integer) : NumClass;
Comp; var sgn : integer) : NumClass;
Extended: var sgn : integer) : NumClass;

x (0 for pos, 1 for neg) }
integer; var v : Extended);

: Extended);
ed exponent of x }

** Manipulations of

the static numeric state.

}
procedure SetRnd (r : RoundDir);
procedure SetEnv (e : Environ);
function GetRnd : RoundDir;
procedure GetEnv (var e : Environ);
function TestXcp (x : Exception) : boolean
procedure SetXcp (x : Exception; OnOff - boolean)
function TestHlt (x : Exception) : boolean

procedure SetHlt (x

: Exception; onaff - boolean);

D-3z

Fascal Refersnce Manual Floating-Foirt Rrithretic

** | Lisa and Mac only.

}

{ Procedures to Get and Set Extended Rounding Precision sre in Mathlib

procedure ProcEntry (var e : Environ); { Procedure entry protocol.}
procedure ProcExit{e : Environ); { Procedure exit protecel. }

{ }
{ ELEMS: Elementary Functions. }

procedure Log2X {var x : Extended);
{ x := 1092 (x) }

procedure LnX {var x : Extended);
{ x :=1n {x) }

procedure LniX (var x : Extended);
{x :=1n {1+ x)}

procedure Exp2X (var x : Extended);
{ x := 2%°x }

procedure ExpX (var x : Extended);
{ x :=e™x}

procedure ExpiX {(var x : Extended);
{x :=e®x~-11}

proc?dure Xpwrl}(i : integer; var x : Extended);
x := x"i

ﬂroc?dure Xper}(y : Extended; var x : Extended);
X = x'y

procedure Compound (r, n : Extended; var x : Extended);
{ x :=(1+1)'n}

procedure Annuity (r, n : Extended; var x : Extended);
{x:={1-({1+1)"n)/1}

procedure AtanX {var x : Extended);
{ x := atan{x) }

Fascal Reference Manusl Flogtling-Foint Arithmetic

procedure SinX (var x : Extended);
{ x := sin{x) }

procedure CosX (var x : Extended);
{ x := cos{x) }

procedure TanX (var x : Extended);
{ x := tan(x) }

procedure RandomX (var x : Extended);
{ x := (75 * x) mod (2°31 - 1) }

{
{ Procedures for Lisa and Mac only. }
function GetHltAddress : longint ; { Returns halt address. }
procedure SetHltAddress { HltAddress : lengint) ; { Sets halt address. }
procedure InitFPLib ; { Initializes FPLib. }
function SANE_Environ : longint ; { Internal use only. }
{

D-34

Fascal

D4

D41

DA4.2

Relerence Manusl : Filoating-Foint Arithrmetic

Mathlib
The intrinsic unit MathLib, contained in the file I0SFPLib, contains
procedures in the following areas:

= Environment Procedures.

= Elementary Functions.

= Utility Procedures.

= Sorting.

= Free-Formeat Conversion to ASCIIL

= Carrectly Rounded Conversion between Binary and Decirnal.
= Financial Analysis.

= Zeros of Functions.

= Linear Algebra.

How to Use MathLib
MathLib is a Lisa intrinsic unit. Thus it may be conveniently used by Pascal
programmers. MathLib procedures may also be used by assembly-language
programmers who observe the Pascal conventions for data structures and
procedure calls.

When writing Pascal source code, include a USES statement such as:
USES FPLib, MathLib ;

after the program stetement in a main program or after the interface
statement in a unit. If you are also using other units, include FPLib and
MathLib in the list of units in your one USES statement. They may be listed
before or after other units you are using, but FPLib must appear in the list
hefore MathLib.

Environment Procedures
Type RoundPrecision = (ExtPrecision, DblPrecision, RealPrecision) ;

Procedure SetPrecision (p : RoundPrecision) ;

{ Set rounding precision. }
Function GetPrecision : ReoundPrecision ;

{ Get rounding precision. }
Procedure ClearXcps ; { Turn off all exception flags. }
Procedure ClearHlis ; { Disable all halts. }

The environmental control procedures in MathLib supplement those in FPLib.
They wark on the global floating-point enwironment.

ClearXcps turns off all the exception flags at once. It is faster than the
equivalent code:

for e := INVALID to INEXACT do SetXcp(e, FALSE) ;
In the same way, ClearHlts disables all the halts at once.

D-35

Fascal Reference Manusl

Floating-Foit Rrithmetic

The MathLib type RoundPrecision defines the possible settings of the
rounding precision mode. The procedures SetPrecision and GetPrecision are
used with RoundPrecision in the same way that SetRnd and GetRnd are used

with RoundDir.

Rounding precicion is usually used to simulate single-only or double-only
arithmetic on a system which uses extended-precision expression evaluation.

Thus to simulate
Z:=x*y;

as it would occur in a double-only systerm, the following suffices:

savepre := GetPrecision ;

SetPrecision(DblPrecision } ;

DZX(x, xx) ;
AddD(vy, xx) ;
XD xx, z) ;

SetPrecision(savepre) ;

In this example the rounding precision affects only the AddD operation. The
extended result xx is rounded as if the final destination were double
precision, with inexact, underflow, and overflow signalled accordingly. The
X2ZD operation will then raise no further exception.

D43 Elementary Functions

Const RandModulus = 2147483647 ;
{ Prime modulus for random number generation = 2°31-1. }

Function NextRandom (lastrandom -

{ Savepre of type RoundPrecision. }

longint) : longint ;

{ Returns next 'random' longint with 1 <= nextrandom <=
RandModulus-1. }

Procedure ASinX

(var
Procedure ACosX (var
Procedure SinhX (var

% ar

Procedure CoshX { v
Procedure TanhX (var

o M X

Procedure fbs2X { x :
Procedure ATan2X(x, y :

Extended) ;
Extended) ;
Extended) ;
Extended) ;
Extended) ;

Extended ; var z : Extended)
Extended ; var z

X
X

X :

X
X

i
2
2

i
g..
-
Lo

{ z := abs{y+ix) }

we

- Extended } ; { z := arg(y+ix) }

FPLib provides the procedure RandomX which operates on an extended
argument. A valid argument for RandomX is an integral value between 1
and 231-2, and RandomX replaces a valid argument with the next such valid
argument. MathLib provides a more efficient function NextRandom, which
operates on and returns longints. The following is equivalent to

D-36

Fascal Relerence Manugal Floating-Foint Rrithmetic

RandomX{ x) for valid erguments x:

XA(x, 1x) ;
LX := NextRandom (1x) ;
L2{ 1x, x) ;

NextRandom uses integer rather than floating-point arithmetic and thus is
faster. The result of supplying an invalid srgument to NextRandom is
undefined.

The constant RandModulus can be used as in either of the following
examples to produce an arrasy of numbers distributed uniformly strictly
hetween O and 1:

L2X(RandModulus, XRandModulus)
IZX(1234, 1) ;
for i := 1 to n do begin
W(b g) ;
t :=1x;
DivX(XRandModulus, t) ;
E[i] =t ;
end ;

OR

L2X(RandModulus, XRandModulus)
Ir := 1234 ;
for i := 1 to n do begin

Ir := NextRandom(1r) ;

L2X(1r, t) ;

DivX({ xRandModulus, t) ;

a[i] =t ;
end ;
The elementary functions ASInX, ACosX, SinhX, CoshX, and TanhX provide
inverse sine and cosine, and hyperbolic sine, cosine, and tangent. Arguments
in the interval [-1, +1] are valid for inverse sine and cosine; for these
arguments, ASInX returns a value in [-pi/2, +pi/2] while ACosX returns a
value in [+0, +pi); the NaN for irverse trigonometric functions is returned for
other arguments. The hyperbolic sine, cosine, and tangent aere defined for all
argurnents, but SinhX and CoshX signal overflow for large srguments.

Abs2X and ATan2X are provided to facilitate coordinate conversion. Abs2x
computes the squere root of the sum of squares of its srguments; ATan2x
computes the angle between a point (x, y) and the positive x-axis. ATan2x
returns & number in [-pi, +pi], even if x or y is zero or infinite.

To convert from rectangular coordinates (x, y) to polar coordinates (r, t) :

Abs2X(y, x, T) ;
ATan2X(v, x, t) ;

~t

wt

D-37

Fascal Relerence Manual Floating-Foirt Rrithrngtic

To convert back to rectangular coordinates:

x:=t;y.:=t;
CosX (x);SimX (v);
MudX (xr, x); MulX(r, v);

D44 Wility Procedures

Type FP_Type = (TFP_byte, TFP_integer, TFP_longint, TFP _Comp, TFP_real,
TFP_Double, TFP_Extended) ;
{ Number type names for FP_size.}

Procedure FP_Size (x: Extended ; var sgn: integer ; var class: NumClass ;
var size: FP_Type) ;
{ Returns sign bit, class, and size of smallest type that
would hold x exactly. }

Function SignOfX (x : Extended) : boolean ; { True if x has neg sign. }

Function FP New (n : longint) : longint ;
{ Attempts to allocate n bytes on heap, returning address.
Returns ord4(nil) if space not available. }

The utility procedures simplify common programming tasks. SignOf X returns
TRUE if x has negative sign, and FALSE if x has positive sign. Remember
that zero, infinity, and NaN have sign bits too. The following are equivalent
but the first is more efficient if only the sign is of interest:

if SignOfX (x) then ...
OR

c :=ClassX (x, sgn) ;
if sgn = 1 then ...

FP_Size tells the smallest storage type that can contain the value of x, and
as a side benefit returns the class of x and its sign in the same format that
ClassX uses. If x contains an integral value that can be contained in a
Comp variable, then FP_Size will return TFP_byte, TFP_integer, TFP_longint,
or TFP_comp if the smallest integral container that will contain x is a byte
-128..4127, an integer, a longint, or a comp, respectively. Otherwise FP_Size
will return TFP_real, TFP_double, aor TFP_extended if the smallest
floating-point container that will contain x is real, double, or extended,
respectively. Thus the size of positive zero is TFP_byte, of negative zero is
TFP_real, of infinity is TFP_real, of denormal is TFP_extended, and of NaN is
always one of the floating-point sizes.

D-38

Fascal Relference Manusl Floating-Foirt Arithmelic

FP_New ic a shortcut way to allocate a number of bytes on the Pascal heap
without specifying the data structure to be placed there. It is used
internally in MathLib to implement temporary arrays needed by the sorting
and linear slgebra procedures, but it is also useful for allocating space for
other dynamic storage structures. The number of bytes to be allocated is
specified by a longint argurnent and thus can be as large as desired, although
the Lisa Pascal heap will rarely have more than sbout 600000 bytes
available. If the requested space is available, then FP_New returns the
address of the first byte of the allocsted storage; if not available then
FP_New returns ordd(nil). For instance, to allocate an srray of 10000 double
precision, do the following:

const DOUBLESIZE = 8 ; { 8 = SizeOf{Double) }
dpa := FP_New{ ord4(10000) * DOUBLESIZE) ;
if dpa = ord4{nil) then { error } else { ok }
Assuming the array is to be indexed from ¢ to 9999, to access element k:
type pd = * Double ;
pd := pointer(dpa + ord4{k) * DOUBLESIZE) ;
ak pd" ;
Just e in using the buili-in Pascal procedure new, appropriste use of mark
and releaze allows reuse of heap space: use markip) just before calling

FP_New, and then release(p) when that and any other heap space subseguently
allocated with new or FP_New is no longer in use.

D45 Sorting

Procedure Math Sort ({ General procedure to stably sort an arbitrary list_}
first, last : integer ; { Records first..last will be sorted.
Function Sorted { i, j : integer) : boolean ;

{ User-supplied procedure called by Math Sort to compare order of
records i and j. Math_sort guarantees first (=i ¢ j <= last.
Sorted returns true if records i and j are already correctly
sorted with respect to each other. }

Procedure Swap {(i, j - integer) ;

{ User-supplied procedure called by Math Sort to swap records i
and j. Math_sort guarantees first <= i ¢ j <= last. }

Var exxror : boolean) ; { True if soxt routine failed due to
insufficient heap space available_ }

Fascal Reference Meanual Fioating-Foint Arithmetic

Math_Sort is a generalized merge sorting procedure. It has no knowledge of
the structure of the records being sorted; it obtains the information it needs
through the user-supplied procedures Sorted and Swap. Math_Sort only calls
Sorted and Swap with i and j satisfying first ¢ 1 ¢ j ¢ last.

Math_Sart contains two phases: sortihg and swapping. To sort n records, the
number of calls of Sorted is proportional to n*log(n). The number of calls of
Swap is & most n-1.

The algorithm is stable: It prior to the sort, two records i followed by j are
correctly ordered with respect to each other, then after the sort, the record
that was originally at i will still be followed by the record that was
originally at j. This is true even if Sorted(i, j) and Sarted(j, i) are true, as
might happen if Sorted were implemented by a comparizon like

" kev[i] <= key[j] '.

Internally, Math_Sort creates and disposes of a temporary array on the Pascal
heap of size 4 * (last - first + 1) bytes. If there is insufficient heap space
available then error will be set TRUE and no sorting will be done.

The following sorting example is based on an array of 1000 records
containing & primary key, which is a double precision number, and a
secondary key, which is binary. For this example, recorde with NaN keys are
to go to the end of the list.

type sTrec = record
key : Double ;
subkey : 0..1 ;

end ;
var a : array [1..1000] of srec ;
function srecsorted (i, j : integer) ; (* User Sorted function. *)
var ki, ki : Extended

begin (* srecsorted *)
D2X(a[i].key, ki) ;
D2X(alj].key, kj) ;
case RelX{ ki, kj) of
LT : srecsorted := TRUE ;
GT : srecsorted := FALSE ;
ED : srecsorted := a[i].subkey (= a[i].subkey ;
UNORD : stecsorted := ClassX(ki, sgn)} <= ClassX{ kj, sgn) ;
end (* case *) ;
end (* srecsorted *) ;

procedure srecswap (i, j : integer) ; (* User Swap function. *)

D-40

Fascal Relerence Manusl Floating-Foirdt Arithmelic

var t : srec ;

begin (* srecswap *)

t := ﬂ[l] ;
afi}] := a[j] ;
alj] = ¢

... (* In the user's main program... *)

Hath_Sort(1, 1000, srecsorted, srecswap, error) ;
if exror then { not enough heap space } else { sorted 0K }

D46 Free Format Conversion to ASCII

Type Free Format = record { Specifications for free-form output. }
MaxSig : integer ; { Maximum number of significant digits. }
Sig FFoum, { True if "fixed” style applies MaxSig to

significant digits; false if to digits ,
after the point. }
Trail_Point, { True if trailing point should be printed
for inexact values in "integral® style. |}
Int_EForm, { True if "exponential® style acceptable for
integral values. }
Plus EForm : boolean ; { True if "exponential” style should exhibit
+ sign for positive exponents. }

end;

Procedure FP_Free_ASCII ({ Procedure to provide free form ASCII output. }
x : Extended ; { Number to be converted from binary to ASCII. }
Width : integer ; { Maximum numbexr of characters in output stxing.}
form : Free Foxrmat; { Detailed format specifications.
var s : Decstr J ; { Output destination string. If, after call,
length{s) > Width, then x was inconsistent with
the constraints Width or MaxSig.

D-41

Fascal Reference Meanusl Floating-Foint Arithmetic

FP_Free_ASCII provides a solution to the following problem: Given a number
to be displayed in ASCII in a fixed field width, choose an ASCII format that
displays as much information about the number as possible with as few
ASCI characters as possible, not exceeding the fixed field width unless
absolutely necessary.

Thus the number one should be displayed as '1l' and not '1.0' or '1e0'.
Positive zero should appear as '0' and not '0.000e~0'. Pi, to be displayed in
columns of width 1, 5, 10, and 15, should appear as '3, '3.142', '3.14159265',
'3.1415926535898'. -0.00001 should appear as '-1E-3' unless Width »=7, in
which case '-.00001"' should appear.

The following special cases are formstted strictly according to Width:

For positive zero, s := '0'; for negative zero, s := '-0' unless Width <= 1, in
which case & := '0".

For positive infinity, £ = 'Inf'; for negative infinity, s = '=Inf".

For NaNs, & will have the value that X2Str would return, unless that would
exceed Width; then s := 'NaN' or '-NaN' depending on the sign bit, unless
Width <= 3; then & := 'NaN' regardless of sign.

The essential method for formatting norrmal numbers is to first attempt a
representation with integral formet, then with a Zixed decimal point format,
and then with an exponeniral format with a minimal number of decimal
digits in the exponent. (FORTRAN programmers are familiar with these as I,
F, and E formats, respectively.) At each stage, a representation is rejected
if it would require more than Width ASCIl characters to represent the
number according to the specifications in the Free_Format record.

The number of significant digits never exceeds 19 and may be further limited
by MaxSig.

Integral format is attempted only if x contains a value that would fit
exactly in & Comp. The integral formet of ten billion is 10000000000, but
3.14, not being an integral value, is not displayed in integral format. When
the Free_Format field Int_EForm is true, then numbers like ten billion are
shortened to 1E10 by converting three or more trailing zeros to an E and
exponent.

A string in fired decimal point format might look like '123.456' or

' 00000000000234565°. MaxSig specifies the maxirmum number of digits that
will be displayed. Sig_FForm determines how MaxSig is applied. If
Sig_FForm is TRUE then there will be no more than MaxSig significant
digits. Significant digits are counted from the first nonzero digit to the last
nonzero digit. Thus 123456000000., 123.456, and .0000000000123456 all have
six significant digits. If Sig_FForm is FALSE then there will be no more
than MaxSig digits after the point. Thus 10000000000000.123456, .123456, and
000001 all have six digits after the point.

D-42

Fascal Reference Meanueal Flogting-Foird Arithmetic

After rounding to the specified number of decimal digits, which may be
reduced to fit in Width, trailing zeros after the point are ignored. Thus if
the number, rounded to six digits after the point, was 122456000, the last
three zeros would be deleted. Sometimes all the digits after the point rnight
be removed, as in the case of 123.000000, which would be truncated to '123..
Whether a trailing point is retained is determined by the Free_Format field
Trail_Point: if TRUE, then s := '123."; if FALSE, s := '123'. Note that the
original value of x in this example could not have been 123 exactly; x would
then have been displayed as ‘123" in Integral format. Instead it might have
been 123.0000000000001 before rounding to six digits after the point.

Finally exponential format is tried. MaxSig specifies the maximum number
of significant digits to be displayed. If x is ten billion, then the avponsntial
display will depend on the specification as follows:

Trail_Point: Plus_EForm: String:
False False 1E10
True False 1.E10
False True 1E+10
True True 1.E+10

When a single- or double-precision number is converted to extended and then
converted to ASCII in free format with no more than 18 significant digits,
then the ASCII string will satisfy the requirernents of the IEEE Standard. But
8 free form string that, for instance, displays 12 digits in evponential
format, may differ by one in the last digit from the string that would be
obtained by calling S2Str or D25tr with form = FLOATDECIMAL and digits =
12. Both strings satisfy the IEEE Standard; a difference may only arise in
the extreme exponent ceses for which the Standard allows more than one
possible result for conversion from binary to decirnal.

Denormal x is always represented in exponential form with four exponent
digits.

In LisaCalc, the default formatting conventions are MaxSig = 14, Trail_point
= FALSE, Int_EForm = FALSE, Plus_EForm = FALSE. Sig_FForm is set
FALSE for numbers less than one in magnitude, and TRUE otherwise.

Examples:
MaxSig = 19
Sig_FForm = TRUE
Trail Point = TRUE
Int_EForm = TRUE
Plus_EFoxrm = FALSE

D-43

Fascal Relerence Manusl Floating-Foid Frithmetic

Input = 1234567890.0123456789

Width String
>= 20 1234567890 .012345678'
19 '1234567890.01234568'
18 '1234567890.0123457'
17 ' 12345676890 .012346'
i6 '1234567890.01235'
15 11234567890 .0123'
14 '1234567890.012'
13 1234567890 .01"
12 '1234567890. "'
11 '1234567890. '
10 '1.234568E9'
9 '1.23457E9"
8 '1.2346E9'
7 '1.235E9'
& '1.23E9'
5 '1.269'
(= 4 '1.E9'

Input = 00001234

>»= 25 *.00001233999999999999999"
23..24 ‘1.233999999999999999E~5"
8..22 '1.234E-5'
7 '1.23E-5"
6 '1.26-5'

<= 5 ‘1.E-5'

Input = -6.023e~-23

»= 25 ‘~6.022999999999999999E-23"
10..24 '~6.023E-23"
9 '-6.02E-23'
8 '-6.E-23'

<= 7 '-6.E-23"

D-44

Fascal Relerence Msenual Flogting-Foirt Arithmetic

D4.7 Correctly Rounded Conversion Between Binary and Decimal
Const LSigDiglen = 30 ; { Length of significand string. }
Type LongSighig = string[LSigDiglen] ;

LongDecimal = record

sgn : 0..1;

exp : integer ;

sig : LongSigDhig ;
end ;

Procedure X2lDec (f : DecForm ; x : Extended ; var v : LongDecimal);
{ Converts x to v, correctly rounded according to f. }

Procedure LDec2X (prec: RoundPrecision; x: LongDecimal; var y: Extended);
{ Converts x to vy, correctly rounded according to prec. }

The procedures X2LDec and LDecZX carrespond to X2Dec and Dec2X, and
waork similarly, only more accurately and much more slowly. The IEEE
Standard does not require correctly rounded conversion for single- and
double-precision numbers for extremely large and small exponents, and does
not specify conversion at all for extended-precision numbers. The results
returned by DeczS, $2Dec, Dec2D, and D2Dec may differ by one unit in the
least significant bit or digit from the correctly rounded results, while the
results returned by DeczX and X2ZDec may differ kv rmare than one unit from
the correctly rounded results.

The correctly rounded conversion routines accept or produce up to 30 decimal
digits. X2LDec produces correctly rounded LongDecimal records according to
its DecForm parameter. To obtain correctly rounded results from Single,
Double, or Extended arguments, use cnhe of the sequences:

SX(s, x);

X2lDec(f, x, v) ;

OR

DZX(d, x) ;
X2ADec(f, x, v) ;

OR
X2Dec(f, x, v) ;

LDec2X rounds correctly according to its RoundPrecision parameter. To
obtain correctly rounded single, doukle, or extended results, use one of the
seguences:

Fascal Reference Msnual Floating-Foirt Arithmetic

iDec2X(REALPRECISION, x, v) ;
X23(y, s);

OR

LDec2X(DBLPRECISION, x, v) ;
D(y d);

OR
LDecZX(EXTPRECISION, x, v) ;

No correctly rounded conversions to DecStr strings are provided, but the
routines StrzDec and Dec2Str may be tricked to apply to LongDecimal
arguments. To convert a DecStr x with no more than 19 significant digits to
a correctly rounded Extended y, do:

var t : Decimal ;
pd:“Long)ecinal;
index := 1 ;

strDec(x, index, t, ValidPrefix) ;
pd := pointer (ocrd4(@t)) ;
LDec2X(EXTPRECISION, pd”, v) ;

and to convert an Extended x to a string v correctly, do:

var t : LongDecimal
pd : * Decimal ;

X2ADec(f, x, t) ;
pd := pointer (ord4(8t)) ;
Dec2?Str (f, pd*, v) ;

X2LDec sets the inexact flag appropristely. LDec2X sets the inexact,
underflow, and overflow flags appropriately.

The time required to convert correctly rounded is proportional to the square
of the exponent. The most extreme double precision numbers take a few
seconds, but extendeds with very large or small exponents require up to
twenty minutes. Thus these routines are too slow to use habitually for
converting the full range of extended-precision numbers; use these routines
for applications such as obtaining the best possible approximations to
tabulated values of matheratical constants such as pi or e.

D.4.8 Financial Analysis

Procedure Fin_Npv ({ Compute net value of series of payments. }
first, { First payment period. }
last, { Last payment period. }

D-46

Fascal Reference Manusl Fioating-Foird Rrithmetic

net : integer ; { Period at which net value is to be
cuaputt}ad; need not be between first and
last.

Tate Extended ; { Periodic interest rate. }

[TRNT}

var Npv : Extended ; { Net payment value. }
Procedure payment (i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt, the payment at
period i. }
{ Fin_Npv guarantees first <= i ¢= last. }

r

Procedure Fin Return ({ Analyze series of payments for external oxr
internal rate of return. Discounting by
external rates may be specified for positive or
negative payments or both or neither. Standard
internal rate of return is obtained by
specifying, for example, negperiod, posperiod :=
first-1. A conservative external rate of return
is obtained by considering negative payments as
out from the investor, positive payments as in
to the inwestor, and specifying:

negperiod -= first ;

pospexriod := last ;

negrate := guaranteed safe rate of return ;

posrate := expected average portfolio
reinvestment rate of return. }

first, { Initial payment period. }
last : integer ; { Final payment period. }
negperiod, posperiod : integex ;

{ Periods to which negative or positive payments
are to be discounted; if ¢ first or > last then
corresponding payments are not discounted. }

negrate, posrate : Extended ;

{ Discount rates for negative and positive payments
respectively; ignored if coxxresponding period
does not satisfy first <= ..._period (= last. }

var ncs : integer ; { Extror code = number of changes of sign
among adjusted payments; on normal return
ncs = 1.ncs = -2 if an inf or NaN
payment was supplied. }

var ret : Extended ; { Rate of return: if ncs = 1 then ret will
contain the single real root > ~-1; if ncs
> 1 is odd, then ret will contain some
real root > -1; if ncs > 1 is even ret
may contain a real root > —1; othexrwise
ret will contain NeN. }

D-47

Fascal Relsrence Manusl Floating-Foirt Arithroetic

Procedure payment (i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt,
the payment at period i. }
{ Fin_Npv guarantees first <= i <= last. }

Fin_Npv is used to calculate the time value of a series of payments.
Typically, a series of payments, to occur at times 1 through n, is to bhe
discounted to a net present value at time 0O using a fixed discount rate r.
The contribution of the first payment pl will thus be pi/1i+r); the next will
be p2/(1+1)"2; the last pnA1+1)"n. For this typical problem, first=1, last=n,
net=0, and rate-:r

For a fixed series of payments, Yi, the net value at time i, and Vj, the net
value at time j, are related bw:

= ¥j * compound(rate, i-j).
So if the net value is zero at one time, it will be zero at any other time.

Note that discount rates <= -1 are meaningless from a financial point of
view.

Often a transaction involving payments between two parties at different
times is regarded as fair if the net discounted value of the payment series is
zero at the agreed upon discount rate. Alternately, given a series of
payments regarded as fair, we might interpret the effective interest rate as
ohe making the net value of the payments zero. Note that roundoff error
may prevent the net value from ever being exactly zero. Furthermore, the
net value can not be zero if any payment is infinite or a NaN, or if all the
nonzero payments have the same sign.

Fin_Return is designed to solve the problem mentioned above: given a series
of payrnents, what discount rate would result in a net value of zero? This is
the conventional form of the Internal Rate of Return (IRR) problemn. In this
form, it should be obvious that there will not always be a rate corresponding
to every series of payments: if any payment is infinite or NaN, or if all the
payments have the same sign, then no discount rate can ever make the net
value zero. It turns out in other ceses that there may be no such rate or
there may be several rates with equally valid right to be called "internal rate
of return." Modified methods for solving such problems will be discussed
later.

To obtain a conventional internal rate of return, in the Fin_Return calling
sequence set negperiod and posperiod to, for instance, first-1 or last+1. Then
after the call, the output pararneter ncs returns a code to aid in
interpretation of the result ret.

Fin_Return will not attempt to compute an internal rate of return if any
payment is infinite or NaN or if all payments are zero or all nonzero

D-48

Fascal Relsrence Manusl Fioating-Foirdt prithmetic

payments have the same sign. Fin_Return will return a NaN with code
NaNIRR in these cases. Ncs = -2 if any payment was infinite or NaN;
ncs = O in the other cases mentioned.

If ncs »>= 1 then its value is the number of changes of sigh in the payment
series. A change of sign occurs whenever a nonzero payment has different
sigh from the previous nonzero payment. Thus, in the sequence:

 10,8,7,0,13,0,-0,1,0,-1,0,0,-7,0

there is exactly one change of sign, between +1 and -1. The zero payments
are ignored in computing changes of sign.

The number of changes of sign is important: if it is an odd number then the
internal rate of return problem has one or more solutions; if it is an even
number >= 2 then the internal rete of return problem may have one or more
solution. Generally, the number of real solutions > -1 is the number of
changes of sign or is less than that number by an even integer. So a series
with three changes of sign has three or one internal rates of return while a
series with four changes of sign has four, two, or none.

Fin_Return always computes an internal rate of return if nce is odd. If ncs
= 1 then assuredly ret contains the only internal rate of return. If ncs >= 3
then ret contains an internal rate of return but there may be others and
there is no assurance that the value in ret is appropriaste in the user's
context.

If nce »= 2 is even, Fin_Return will search for an internal rate of return but
will soon give up if it can't find any. In the latter case ret will be NaNIRR.
There is no way to distinguish the cases in which no internal rate of return
exists from those in which Fin_Return is unable to find cne. If ret is not &
NaN then it is a valid rate of return but there is at least one other that may
be equally valid.

When there are two or more changes of sign the interpretation of the
internal rate of return is evidently not a simple matter. One may plot the
net present value of a series as a function of discount rate. Points where
the graph crosses the x-axis are internal rates of return. Perhaps one of
these points will be obwiously suitable.

Another epproach to rate of return is to simplify the series of payments until
there is only one change of sign. For instance, if there are only two
payments of different sign, Pi at time i and PJ at time j, then the internal
rate of return r is defined by the equation:

(14} = -PjPi
which should be solved by the farmula:
T := expl(1nl{ —(Pi#Pj)PL /(i));

Yearious methods based on this approach are called adjusted, modified,
financial management, or external rate of return. A subseries such as all the

D-49

Fascal Relference Manual Floating-Foimt rRrithmetic

positive payments is replaced by its discounted value at some time, using an
externally defined discount rate. If that positive subseries is replaced by a
single positive payment, either before or after all the negative payments,
then there will be exactly one change of sign and exactly one internal rate
of return. Either the positive subseries or the negative subseries or both
may be discounted; the same external discount rate may be applied to both,
or different ones may be spplied to the negstive and positive subseries.

As an example, consider the following series of payments:
-3,-2, 2, -1, 1 IRR = -325

It has three sign changes, so there are either one or three internal rates of
return. We might discount all the negative payments to the beginning, using
a discount rate of 0.5, to get a different series:

-43/9, 0, 2,0, 1 IRR = -.156

or we might discount all the positive payments to the end, using a discount
rate of 0.75, to get:

-3, -2, 0, -1, 57/8 IRR = +055
or we might do both to get:
-4379, 0, 0, 0, 57/8. IRR = +.100

Each of these three series has a unique internal rate of return, but these
rates differ according to the choices made to simplify the problem.

Fin_Return allows for all these possibilities. To discount the subseries of
negative payments to a single time between first and last, simply specify
negperiod to be that time and specify a discount rate in negrate. Similarly,
posperiod and posrate may be used to discount the subseries of positive
payments.

The following code fragments correspond to the previous examples:

var
p : array[1l..n] of real;

procedure payment(i: integer; var pmt: Extended);
in
SZ(p[i], pmt);

r

begin
S2X(0.5, negrate); S2X(0.75, posrate);
Fin Return(1, n, 0, n+1, negrate, posrate, ncs, retirr, payment);

if ncs »= 1 then if not{ClassX(retirr,sgn) in [ONAN,SNAN]) then
{ retirr is a conventional internal rate of return. } ...

D-50

Fascal Reference Manusal Floating-Foint Arithmetic

Fin_Return{1i, n, 1, n+1, negrate, posrate, ncs, retneg, payment);
if ncs >= 1 then { retneg is a return rate based on discounting
negative payments to the beginning. } ...

Fin Return(1, n, O, n, negrate, posrate, ncs, retpos, payment);
if ncs >= 1 then { retpos is a return rate based on discounting
positive payments to theend. } ...

Fin Return(1, n, 1, n negrate, posrate, ncs, retx, payment);
if ncs)= 1 then { retx is a return rate based on discounting all

payments to the beginning or end. } ...
end;

LisaCalc adopts the convention that negative payments are discounted to the
first time period, and positive payments are discounted to the last time
period. If only one discount rete is specified, it is used for both negrate and
posrate.

A common type of complex investment involves several payments in followed
by several payments out. Even though with only one sign change there is a
unigue internal rate of return, it may not be meaningful since it does not
reflect external conditions. A frequent basis for analysis is to require that
at the beginning, sufficient funds must be on hand to be able to guarantee
all payrnents in. So all the payments in are discounted to the first pericd
using a “"safe" guaranteed rate of return such as the return on a conventional
savings account. Payments out, on the other hand, are to be reinvested at
another rate which is probably higher than the safe rate. This rate is
sometimes called the "portfolio” or "reirvestment” rate and represents the
average return of the investment portfolio. These externally defined safe and
reinvestment rates modify the rate of return of the investment.

When analyzing complex investments, remember that the computed results
are no better than the assumptions from which they were developed. In
particular, measures of rate of return do not reflect the risk that some of
the payments might not occur as expected.

D49 Zero of a Nonlinear Function

Procedure Math_Solve ({ Computes zero of function. }
estl, est2 : Extended ; { A prioxri estimates of zero. }
var res : Extended ; { f(res) may = O or NaN or its sign may

differ from one of its neighbors oxr it
may merely be the x with minimal
abs(f(x)) emong those x sampled by
Math_Solve. The user must decide the
significance of the result res. }

D-51

Fascal Reference Manual Floating~-Foird fArithmelic

procedure f { x - Extended ; var fx : Extended)
| { User-supplied procedure to evaluate fx = f{x). }

Math_Solve is used to find a zero z of a nonlinear function f(x), thet is, a
place where f(z) = 0. Z is also called a root of the equation f(x) = 0.

The user must specify the function f which should be at least piecewise
continuous; the better the function, the better Math_Solve can perform. The
user may also specify one or two starting guesses. The user may supply
NaNs as guesses; then Math_Solve will generate its own guesses which
usually will not be as efficient as those the user might have supplied. Zero
finding is tricky enough with good guesses, so the user should supply the best
information he can.

Internally, Math_Solve has two main phases: the search for a sign change
interval and the refinement of such an interval. A sign change interval is an
interval for which the values of f at the endpoints have different signs. If
the function is continuous it will have a zero in the interval; it 1/f(x) is
continuous then f will have & pole in the interval. Thus finding a sign
change interval is critical. That interval is sought using a secant method
whenever thet is productive, and a parabolic method otherwise. After the
sign change interval is found, the secant method is used unless bisection is
faster. If no sign change interval is found, Math_Solve eventually gives up,
leaving in res the point at which the sampled function's magnitude was
minimal.

Only the user can determine the ultimate significance of res. That's because
nonlinear functions display a variety of complicated behaviors that can't be
handled equally efficiently by one subroutine. Many functions such as f(x) =
1+ x * x have no real zeros while others may hide their zeros where
Math_Salve can not find themn.

To interpret res, compute f(res). Seldom do we find the happy circumstance
that f(res) is O without generating any exceptions. If inexact, underflow, or
other exceptions were signalled then the user must decide whether to ignore
them or to subject res to the further tests described below. If fires) is &
NaN then Math_Solve has wandered outside the domain of validity of f. The
user might want to extend the domain of f and {ry again. Sometimes such
extension is trivial, as in the case of a removable discontinuity.

Suppose f(x) were defined as sin{x)/x; then at x = 0 its value is a NaN, and if
Math_Solve were to look there it would stop with res = 0. Remove this
discontinuity by defining f(x} by

if x = 0 then f(x) = 1 else f{x) = sin{x)/x;

A tougher case is a function like f{x) = eqrt(x) - 2 ; if Math_Solve happens to
look at x ¢ O it will stop on a NaN. In this case, extend this definition of
f(x) leftward:

Fascal Refersnce Manusl Flosting-Foirt Arithmetic

if x <= 0 then f(x} = -2 else f{x) = sqrt(x) - 2;

Many such domain problems can be avoided if the starting guesses are
sufficiently close to the desired zero.

Suppose now that f(res) is a nonzero number or infinite. One possibility is
that res is actuslly a zerc of f but that the computed value f{res) is nonzero
because of roundoff. Another possibility is that the true zero of f does not
lie at a rnachine representable number but lies between res and one of its
adjacent machine representable numbers. A third possibility is that res lies
at ar near & pole rather than a zerc of f. Let's consider these cases in turn.

Often it is possible to compute an analytical error bound ef(x) for a function
f{x) that indicates a bound on the roundoff error in the function at x. Then a
ressonable approach is to evaluate f{res) and ef(res) and accept res a&s an
approximate zero of f if the error bound dominates the function value, that

is, abs(f(res)) <= abs(ef{res)).

Books on rounding error analysis provide examples for constructing analytical
formules for error bounds. Another possibility is to use interval arithmetic
to obtain computational error bounds. The directed rounding modes of IEEE
arithrnetic are helpful in implementing interval arithmetic.

A simpler alternative that suffices in many ceses is simply to evaluate f(res)
in each of the four IEEE rounding directions. If f is typical, then f(res) will
be different in each rounding direction. If all four values are nonzero with
the same sign, it iz usually safe to assume that the true value of f(res) is
not 0. If one of the four values i O or if the signhe vary, then the true value
of f{res) may well be 0 and res may be taken to be an approximate zero of f.
Furtherrore, it often suffices to compute f(res) only in upward and downward
directions.

Turning now to the case that the true zero of f is not a machine
representable number, we may evaluate f at both of res's neighbors. If the
sign of f st & neighbor differs from the sign of f(res), then f must have
either & zero or a pole between res and its neighbor. On an interval in
which f changes sign, it's not possible to distinguish zeros frorn poles. Other
knowledge of the function, such as a bound on a derivative, may be helpful if
this issue is in doubt.

If £ is known to have a pole in the region of interest, it may be useful to
remove the pole analytically before calling Math_Solve. For example, instead
of solving f(x) = 3 - 1/x, sclve f{x) = 3x - 1 to avoid the pole at zero. But
heware of introducing spurious zeros this way.

If none of the sbove produces an indication of a zerc at or neer res, then it
may be that res is merely that point at which abs(f{x}) was minimized among
those x sampled by Math_Solve. Since many functions do not have real
zeros, Math_Solve will eventually give up searching if for each point it tries,
f has the same sign and there is no significant decrease in the magnitude of
f. If Math_Solve ever finds two points for which f has different signs, then

D-33

Fascal Relerence Manusl Flosting-Foirnt Arithmelic

it will persist in searching for a solution until it finds a point x where f(x) is
O or NaN; failing that, the sign change interval will be reduced in size until
the endpoints are adjacent machine representable numbers. But if the
function value seemns to vanish between two such numbers, then it makes
sense to accept one of them as a reassonable approximation of the zero.

It must be emphasized that at best Math_Sclve will find a zero of the
function defined by the procedure f, which rmay not be the same function the
user had in mind when he wrote that procedure. Because one function may
have many mathematically equivalent expressions, it is the user's
responsibility to find an expression that will not produce gratuitously wrong
results in the presence of roundoff. Two examples of helpful principles:
Avoid or minimize rounding error when possible (e.g., x/10 instead of 0.1*x],
and cancel early rather than late (e.q. (x+y}*(x-y) rather than x**2 - y**2),

The following example is intended to find a zero of a polynomial function
Mx)=co*xM+ o * x4+ 4phg *x 4oy
Note that the function is evaluated in extended precision using Horner's

method of nested multiplications and additions, and the Math_Solve result r
is evaluated asccording to the guidelines discussed above:

const n = { degree of polynomial >= 0 } ;

var ¢ : sxxay [0..n] of yeal ;

procedure peval { x : Extended ; var px : Extended) ;
var i : integer ;

begin { peval }

SZX(cf0], px) ;

for i := 1 tondobegin { px :=px * x + ¢i }
MulX(x, px) ;
Adds(cli], px) ;

end {px:=px*x+ci})

end { peval } ;

Math_Solve(gl, g2, r, peval) ;

ClearXcps ;

fr := peval(r) ;

if ClassXx(fr, sgn) in [Qnan, Snan] then
{extend function domain and try again}

else if (ClassX(fr, sgn) = ZERD) and { no exceptions } then
{ accept r as zero }

D-54

Fascal Reference Manual Flosting-Fuoird Arithmetic

else begin
SetRnd{ DOWNWARD) ;
fd := peval(r) :
SetRnd(UPWARD) ;
fu := peval(r) ;
SetRnd(TWEHQEST) ;
if SignDfX(fd) © S1grﬂfx(fu } then
{ accept T as zexo }
else begin
left := NextX(xr, neginf); {neginf contains negative infinity}
right = NextX({ r, posinf); {posinf contains positive infinity}
fleft := peval(left)
fright := peval(right) :
if (SignDFX(fleft) <> SignDfFX(fr))
ar (SignDFX(fright) <> SignOfX(fr)) then
{ accept T as a zexo }
else { no zero was found }
end ;
end ;

D410 Linear Algelra
The linesr algebra routines in MathlLib solve common algebraic and
statistical problems using methods that are independent of the storage
formats of vectors and matrices. Prior to discussing specific routines we
shall review relevant aspects of linear algebra.

DA4.10.1 Yectors and Linear Transformations
Linear algebra is concerned with elements in vector spaces and the cless of
linear transformationz upon themn. If that sounds too abstract, think about
this specific example: The vector space is the set of points in a graphics
window, forming a picture. One point, the origin, is special; often it iz one
of the corners. Typical linear transformations include the identity
transformation, which does nothing, scaling transformations, which act like a
zoom lens to magnify or reduce the picture, and rotations, which rotate the
picture by a fixed angle relative to the origin. It is possible to combine
linear transformations to create new ones.

The simplest way to understand the effect of a linear transformation in two
dimensions is to consider what it does to the unit circle, which is a circle of
radius one sround the origin. The identity transformetion leaves the circle
unchanged; scaling transformations make the circle bigger or smaller;
rotations leave the unit circle seemingly unchanged, although circles centered
elsewhere are rotated as a whole. The unit sphere is the three-dimensional
counterpart to the unit circle.

Most linear transfarmstions can be inverted. For instance, a scaling
transformation that magnifies by two can be inverted by the inverse

D-55%

Fascal Reference Memusl Flogting-Foirt frithmelic

transformation: & scaling transformation thet reduces by two. A 45-degree
clockwise rotation can be inverted by a rotation of 45 degrees
counter-clockwise.

Transformations that have inverses sre called nonsingular; transformations
without inverses are called singular. To understand singularity, consider the
cases of ordinary multiplication and division of numbers. The transformation
"multiply by x", as in z == x * y, is nongingular unless % = 0. The inverse
transformation “divide by x", as iny = z / x, does not exist when x = O.
We could define a "pseudo-inverse" transformetion:

if x=0theny :=0elsey := 2/x ;

which exists for any x, but we would not expect to recover the original value
of v unless by luck it were 0.

Two-dimensicnal linear transformations can only map the unit circle in
certain ways. Nonsingular transformations map the unit circle inte a circle
or an ellipse. Singular transformations map the unit circle into a line
segment or point. There are no other possibilities. A singular linear
transformation that maps the unit circle to a line segment is not one-to-one;
it maps more than one point in the unit circle to the same point on the line
segment. Such & transforrmation hes no inverse becauze a point on the line
segment rmay hawve come from more than one point on the unit circle, and
there's no way to tell from which it came. However, pseudo-inverses have
been defined which make sornewhat arhitrary choices; all linear
transformations have pseudo-inverses.

D4.10.2 Transformations Between Spaces of Different Dimension
Transformations may be defined which map elements of one vector space
into elements of another. For instance, a painting of a three-dimensional
scene is based on artistic perspective convention for mapping three
dirnensions into twao.

Linear transformations that map vectors from two dimensions to three can at
hest map the unit circle into a two-dimensional object in the
three-dirnensional space. Tranzformations from three dimensions to two map
the unit sphere into at most a two-dimensional object, of course. Generally
speaking, a transformation that maps the unit circle or sphere into an obhject
of the maximurn possible dimenzionality iz said to be of full rank.

Otherwise it is said to be rank-deficient. When the two spaces are of the
same dimension, then "full rank” iz the same as "nonsingular” and
“rank-deficient" ic the same az "singular.”

D4.103 Arrays and Matrices
Prograrnming languages deal with arrays of numbers rather than elements of
a vectar space and transformations upon thern. Arrays of numbers can have
any meaning that the programrner wishes to assign, but conventicnally
vectore are represented by an array with one dimension. Thus an element of
a two-dimensional vector space might be declared as

Fascal Relerence Meanusal Floating-Foimt rrithmetic

u : axxay [1..2] of real ;

where 1] is the first coordinate, along the x axis, and 2] is the second
coordinate, along the v axis, of a point in a two-dimensional space. The size
of a vector is measured by its Euclidean length, which is the square root of
the sum of the sgquares of its elements:

lengthu := sqrt(sqr(u[i]) + sar(uf2z]})) ;
Linear transformations mapping n-dimensional spaces to m-dimensional
spaces are conveniently declared as

a:aray [1..m, 1..n] of real ;

The following discussion uses the term "matrix" to refer to an array
representing & single linear transformation. The individual components of a
matrix A depend on the linear transformation that A represents.

In general, the components of an srray representing a two-dimensional linear
transformation can be determined by examining the effect of the
transformation on the unit vectors E1 and E2 corresponding to the
coordinates (1,0) and (0,1). The first column of A contains the coordinates of
the result of applying the transformation to E1 and the second column
contains the coordinates corresponding to E2.

In two dimensions, to represent the identity transformation:

for i :=1to2dofor j :=1to 2 do
if i=j then a[i, j] := 1 else afi, j] := 0 ;
while to represent a three times rnagnification:
for i :=1to2dofoxr j :=1¢to 2do
if i=j then a[i, j] := 3 else a[i, j] := 0 ;
and to represent a rotation through angle t:
af1,1] := cos(t) ; a[1,2] := +sin(t) ;
af2, 1] := -sin(t) ; a[2,2] := cos(t) ;
One singular transformation is the zero transformation which maps everything
to the origin:
for i :=1to2do for j :=1 to 2 do
afi, j] :=0;
Another singular transfarmation maps any vector vertically onto the x-axis:
for i := 1to2do for j :=1to 2 do
a[i, j] :=0;
8(1, 1] =1 7
It maps the unit circle into a line segment on the x-axis.

Sometimes it is convenient to think of a two-dimensional array [1.m, 1..n},
not as a transformation from an n-dimensional vector space to an

Fascal Reference Manual ' Floating-Foird pArithmetic

m-~dimensional vector space, but as a collection of n distinct vectors of
dimension m. For instance, a triangle is defined by specifying its three
vertices, so an array of three columns may be used to represent a triangle.

With the conventions for vectors and transformations outlined above, there
are operations for applying transformations to one or more vectors,
composing transformations, finding the vector that would be transformed to a
given one, and computing inverse and pseudo-inverse transformations.

Composing Transformations

To represent a transformation C which first performs A, then performs B,
multiply the matrix B times the matrix A; in mathematical notation, C := B
* A, In Pascal you could write

var
a b c : arxay [1..n, 1..n] of real ;

for i :=1tondo for j := 1 to n do begin

t :=0;
far k := 1tondot := t + b[i, k]*alk, j] ;
c[i, j] =t ;

’

although the matrix multiplication routine in MathLib is better. If you ever
wondered why the textbook definition of matrix multiplication is so
complicated, it is to insure that transformations can be combined by
multiplying their matrices in this way. Matrix multiplication only works
when the second dimension of B is the same as the first dimension of A,
because it only makes sense to compose two such transformations when the
result space of A is the same as the operand space of B.

To apply a transformation represented by an array A to a vector X, sirnply
multiply them together to get the transformed vector B:

B:=A*X
iNote that X might represent one or more vectors depending on the number of
columns of X.
Linear Equations
The assignment B:=A*X computes B, given A and X. The inverse problem, to
compute X, given A and B, is usually called "solving a systemn of linear
equstions.” The dimensions of B, A, and X must conform so that A and X

could be multiplied to get B. If A is square and nonsingular, there will
always be a unigque X satisfying B=A*X.

MathLib procedures find X directly from B and A. Another way to find X is
to find P, the irverse transformation of A, and apply it to B:

X:=P*B

D-58

Fascal Refsrence Manusl Flogting-Foirt rrithmetic

But computing P explicitly is always slower and less accurate than computing
X directly from B and A.

Linear Least Squares

The equation B=A*X sometimes has solutions X even when A is singular or
not square. Sometimes there is more than one such X, at other times there
is none. All these cases can be generalized as the "linear least squares"
problemn: Given B and A, find an X that minimizes the length of the residual
R:=B-A*X. Such an X always exists; X will be unique if and only if Y=0 is
the unique solution of the equation O=A*Y.

Clearly X solves the linear equation problem B=A*X if and only if R:=B-A*X
is zera. Therefore, MathLib provides just one set of procedures to solve the
linear lesst squares problem: these procedures can also be used to solve
linear equations. A solution X is always computed directly from B and A; if
there is more than one solution X, MathLib returns an X whose length is
small, but not necessarily minimal among all X minimizing the length of R.

Only square nonsingular matrices A have inverses, but every matrix A has a
pseudo-inverse P, which may be applied to B to compute X:

X :=P*B

But computing P explicitly is always slower and less accurate than computing
X directly from B and A.

An even more inaccurate method for obtaining X is to solve the linear
equation system:

(AT*B) = (AT*A) * X
using AT, the transpose of A.

Avoid methods that require P or AT™*A rather than A; they are inaccurate, or
slow, or both.

Existence

MathlLib always computes an x to solve a linear least squares problem. How
can you tell whether that x is also a solution of the system of linear
equations B=A*X?

That depends on the shape of A. If A has at least as many columns as rows,
and A is of full rank, then x would satisfy, in the absence of rounding
errors, B=A*X. Fullness of rank is indicated by a condition number greater
than zero, discussed in Section D.4.10.4.

If A has more rows than columns or is rank deficient, then it will be
necessary to actually compute the residual R:=B-A*X to see if it is zero or
negligible compared to B.

Uniqueness

MathLib always computes some X, even when the linear equation system
B=A*X has zero, one, or many solutions. The multiplicity of solutions may

D-59

Fascal Reference Manusl Floating~-Foirt Arithmetic

he seen even for b=a*x where b, a, and x are real numbers. This equation
has a unigue solution x=b/a if a+Q. But if a=0, then b determines the number
of solutions. When a=0 and b=C, any value of x is a solution; when a=0 and
h=0, no value of x is a solution.

But the related problem "minimize | b - ax |* always has at least one
solution x. When a=0, then MathLib chooses the solution x=0, regardless of
b. This is because among &ll the solutions x, namely all the real numbers,
x=0 has the smallest magnitude.

When MathLib has computed a solution x that minimizes R=B-A*X, how can
vou tell that is is unique? That depends on the shape of A. If A has more
columns than rows, then X is never unique. If the number of A's rows is
greater than or equal to the number of A's columns, then X will be unigue if
and only if A is of full rank. Fullness of rank is indicsted by a condition
nurmber greater than zero.

D4.104 I-Conditioned Problems
All the operations we have discussed are subject to roundoff errors during
each floating-point operation. This has important implications because
roundoff errors blur the distinction between matrices of full and deficient
rank. A matrix may be of full rank, but if it is close enough to a
rank-deficient matrix, the result X may not be satisfactory: it may be far
from the correct solution X, and the residual R := B - A * X might not be
minimal. The condition number COND supplies an estimate of the effect of
roundoff: COND will be zero for singular and rank-deficient matrices A and
greater than zero for nonsingular and full rank A. The largest possible value
of COND is 1, which is sttained by the identity and rotation matrices, among
others. Generally, you can not count on more than 18+LOGIO(COND)
significant digits being correct in the largest cormponent of X, with fewer
reliable digits in smaller components. But occasionally X will by chance be
more accurate than COND suggests.

COND is actuslly an estimste of the relstive change in A to make A into
the riearest rank-deficient matrix. Mafrices with small COND often cause
trouble because they are close to rank-deficient. The carresponding
transformations map the unit circle into very skinny ellipses, which from a
distance look much like the line segments generated by rank-deficient
transformetions. Two points on opposite sides of such a skinny ellipse may
he very close together, perhaps within a rounding error, but the corresponding
points on the unit circle that they were mapped from may be much further
apart. So small errors like rounding errors can cause big errors when
computing solutions X to linear equations or lesst squares problems.

D.4.105 Determinants
MathLib provides routines to obtain the determinant of a square matrix. The
determinant is not defined if the matrix is not squere.

The determinant of a square matrix hes valid uses in statistical
computations, but the determinant is most often used inappropriately as a x

D-60

Fascal Reference Manusal Floating-Foint Rrithmetic

criterion for singularity. The determinant of a singular square matrix is zero
and the determinant of a nonsinguler square matrix is not zero, but a
nonzero deterrminant tells nothing about the condition of the problem.
Consider a two-by-two matrix A with u and v on the diagonal, Ju] < |v], and
zeros off the diagonal. The determinant is u*v, and the condition number is
lutv]. The distance to the nearest singular ratrix is juj; this distance
relative to A is ju/v], the condition number. Both the determinant and
condition number are zero if A iz singular, an infrequent occurrence; only the
condition number is helpful in the far more common case when A may be
nearly, but not quite, singular. Since the determinant can only be used to
distinguish singular from nonsingular, and rounding errors blur this distinction,
the use of the determinant is not recommended. Use COND instead.

D4106 Ierative Improvement
lterative improvement is a technique for refining a first approximation to a
solution of a linear equations or linear least squares problem. Given an
approximate solution X0, iterative improvement computes a residual R := B -
A * X0 and then solves the equation R = A * DX using a factorization of A.
Then the improved solution is X1 := X0 + DX. Usually one iteration
improves the residual and moves X1 closer to the correct answer.
Subsequent iterations are sometimes helpful but they may worsen R, Xn, or
bath.

The LinSys operators in LizaCalc and Lisa BASIC always perform one
iteration of iterative improvement.

DA.107 Stetistical Computations with ATA
Many important statistical problems of regression are formulated in terms of
the matrix ATA, which is the matrix product of AT, the trancpose of A, with
A itself. For instance the solution of the linear least squares problem
“"choose X to minimize the length of B-A*X" is the same as the solution of
the linear equation

ATA* X =AT* B
in exact arithmetic. But since the solution must be computed in the

presence of rounding errors and A may be rank-deficient or nearly so, least
squares problems are better solved without forming ATA.

MathLib does provide two procedures for solving problems formulated in
terms of ATA. Neither computes ATA or its factorizetion; instead the
solutions are more accurately determined from the factorization of A itself.
Standard errors can be determined from the diagonal elements of the inverse
of ATA; these can be obtained by solving

ATA * X = ldentity

Determinants of ATA are of interest when ATA is a correlation matrix.

D-61

Fascal Relerence Manugl Floating-Foirt Arithmetic

D4.108 Linear Algebra Procedures

Procedure Mat_Mult ({ Matrix multiplicationB = A * X. }
n, { Rows of A = xows of B. }
P, { Columns of A = rows of X. }
m - integer ; { Columns of X = columns of B. }
overlap : boolean ; { True if B overlaps A or X; temporary
B is (}::reated on heap and copied at
end.
var exror : boolean ; { True if failure due to lack of heap
space. Not possible if overlap
false. }
procedure afetch (i,j : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 <=1 ¢=n, 1 ¢=j ¢=p. }
procedure xfetch (i, j : integer ; var xij : Extended) ;
{ User routine to provide xij := X[i, j]. }
{ Xfetch may assume 1 <=i <=p, 1 <= j <=m_ }
procedure bstore (i, j : integer ; bij : Extended)
{ User routine to store Bfi, j] := bij. }
{ Bstore may assume 1 <=1 ¢<=n, 1 <= j <=m.}

)
Procedure QR Factor ({ Compute the QR factorization of
matrix A.}
n, { Number of rows of A. }
p - integer ; { Number of columns of A. }
pivot : boolean ; { True if pivoting is to be performed,

false if not. }

var QR : P QR Record ; { Pointer to factorization of A, which
will be created in the heap in an
internal format. QR will be ord(NIL)
if insufficient heap space is
available. }

procedure afetch (i,j : integer ; var aij : Extended) ;

{ User routine to provide aij := Afi, j].
{ Afetch may assume 1 =i ¢=n, 1 ¢= j ¢<=p. }
Procedure QR Condition { { Estimate condition number of
nafri:}c whose factorization is in
OR : P_OR Record ; { R is a decomposed matrix

produced by QR Factor. }
var cond : Extended { Estimate of condition number. }

r

D-62

Fascal Reference Manusal Flogling-Foirt Arithroetic

Procedure QR _Determinant ({ Compute determinant of
matrix whose factorization is in
R}
0R : P_OR Record ; { OR" is a decomposed matrix

produced by QR Factor. }
var det : Extended { Determinant. }

)

Procedure QR_Solve ({ Compute X = pseudo-irverse(QR*) * B
to solve linear equations or linear
least squares problems. }

m : integer ; { Number of columns of X and B. }
QR : P_OR Record ; { OR" is a decomposed matxrix

produced by OR_Factor. }
var exxor : boolesn ; { True if procedure failed
due to lack of heep space. }
procedure bfetch (i, j : integer ; var bij : Extended)
{ User routine to provide bij := Bli, j]. }
{ Bfetchmay assume 1 <=i ¢<=n, 1 ¢=j <=m. }
procedure xstore (i, j : integer ; xij : Extended) ;
{ User routine to stoxe X{i, j] := xij. }
{ Xstore may assume 1 <=1 ¢=p, 1 <= j (=m._ }

,

Procedure QR Residual ({ Compute residual R :=B - AX far a

linear equations ox linear
least-squares problem }
n, { Number of rows of A. }
p : integer { Number of columns of A. }
m : integer { Number of columns of X and B._ }
procedure afetch (i,) : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 <=1i ¢=n, 1 <= j <= p. }
procedure bfetch (i, j : integer ; var bij : Extended)
{ User routine to provide bij := B[i, j]. }
{ Bfetchmay assume L ¢<=i ¢<=n, 1 (=] ¢=m. }
procedure xfetch { i,j : integer ; var xij : Extended) ;
{ User routine to provide xij := X[i, j]. }
{ XPetch may assume 1 <=i <=p, 1 ¢= 3 <=m._ }
procedure rstore (i, j : integer ; rij : Extended)
{ User routine to store R[i, j] := rij. }
{ Rstore may assume 1 ¢=i ¢=n, 1 ¢=j ¢=m. }

Nt N

Fascal Reference Manusl Floating-Foint Arithmetic

Procedure QR_Improve ({ Pexform one iteration to improve
the solution X of a linear equations
or linear least squares problem

A*X=B.]
m : integer ; { Number of columns of X and B. }
GR : P_OR Recoxd ; { OR* is a decomposed matrix

produced by OR Factar. }
var exror : boolean ; { True if QR_Improve failed

duetolackofheapspace.}
procedure afetch (i,j : integer ; var aij : Extended) ;
User routine to prwa,de aij := A[i, i]. }
Afetch may assume 1 ¢<=1i ¢=n, 1 <= j <= p. }
procedure bfetch { i, j : integer ; var bij : Extended)
User routine to ptrovide bij = B{i, j]. }
Bfetch may assume 1 <=1 ¢=n, 1 ¢<=j (=m. }
procedure xfetch (i, : integer ; var xij : Extended) ;

User routine to provide xij -= X[i, j]. }

Xfetchmay assume 1 <=1 <=p, 1 <= J <=m. }
procedure xstore { i, j : integer ; xij : Extended)
User routine to store X[i, j] := xij. }
Xstore may assume 1 <= i ¢=p, 1 <= j ¢<=m. }

)

Procedure QR_TranSolve ({ Compute a solution for (ATA) X = B,
where T denotes transpose, given
factorization of A in QR". }

m : integer ; { Number of columns of X and B. }
R : P_OR Record ; { Q" is a decomposed matrix

produced by OR_Factor. }
var exror : boolean ; { True if procedure failed
due to lack of heap space. }
procedure bfetch { i, j : integer ; var bij : Extended)
{ User routine to provide bij -= B{i, j]. }
{Bfetchmayassmel (<=i<=p, 1 (=j(=n. }
procedure xstore (i, j : integer ; xij : Extended)
{ User routine to store X[i, J] == xij. }
{ Xstoxre may assume 1 <=1 <=p, 1 <= j ¢=m. }

)

Procedure QR_TranDeterminant ({ Compute detexrminant of ATA
given factarization of A in QR". }
OR : P_OR Record ; { OR" is a decomposed matrix
produced by OR Factor. }
var det : Extended { Determinant. }

;

D-64

Fascal Reference Manusl Floating-Foird #rithmetic

Mat_Mult performs matrix multiplication in order to determine the effect of
a linear transformation upon cne or more vectors or upon another linear
transformation. The user specifies the dimensions of amrays A, X, and B, and
defines procedures that provide access to the elements of these arrays.
Mat_Mult is not concerned with the internal drgsnization of the arrays, which
mey be more general or of a different structure than the array type defined
in the Pascal language. Mat_Mult calls the user-defined -fetch and -store
procedures (afetch, xfetch, etc.) to fetch or store the (i,j) element of the
user's arrays.

The result B mey overlap the inputs A or X. If so, Mat_Mult must compute
a temporary copy of B prior to storing ary of it lest an input be overwritten
prematurely. The boolean overlap is specified by the user accordingly. If
the user has specified that the data overlap, then Mat_Mult creates its
temporary copy of B on the Pascal heap. If the heap is nearly full then
there may not be sufficient roorn to hold B. Then Mat_Mult will terminate
and set the boolean error true prior to performing any computation. If the
user sets overlap true prior to the call then he must check error after the
call. Any heap space used by Mat_Mult is released prior to returning.

The following example illustrates a typical use of Mat_Mult and
demonstrates overlapping X snd B as well as how to create and access a
matrix A which is larger than 32768 kytes, the limit for a Pazcal data

structure.
const n = 1000 ;
p =100 ;
m=2 ;

var a : longint ;
aifactor : longint ; { aifactor * i (= 400000 requires 32 bit
integers }
ajfactor : integer ; { ajfactor * j <= 400 requires 16
bit integers }

b:arxay [1..n, 1..m] of real ;
exror - boolean

procedure fetcha(i, j : integer ; var aij : Extended) ;
var pr : " real ;
begin
pr := pointer(a + aifactor * i + ajfactor * j) ;
eng?x(pr”, aij) ;

D-65

Fascal Reference Manual Floating-Foimt rRrithmetic

N

procedure fetchx(i, j : integer ; var xij : Extended)
begin)
Sz(bli, j], xij)

r

LT

procedure storeb(i, j : integer ; bij : Extended)

L Y]

LY

begin
X25(bij, bli,j])
end ;

{ Create space for a on heap. }
a := FP New(oxdd4(n) * ordd(p) * SizeOf(real)) ;

if a = ordé{nil) then
{ no room for a! }
else begin
aifactor := SizeOf(real) * oxdd(p) ;
ajfactor := SizeDf(real) ;
a := a — aifactor — ajfactor ;

{ a will point to af0,0] to improve the efficiency of afetch. }
{ Now fill a with its elements, and b with the elements of x. }
Mat Mult{ n, p, m, true, exrror, fetcha, fetchx, storeb) ;

if error then { not enough room on heap } else { K }
end;

DA4.109 QR Factorization
The MathLib routines to solve systems of linear equations A * X = B and
linear least squares problems depend on first obtaining the QR factorization
of the matrix A. Every n-by-p matrix A can be factored into a product of
two matrices Q and R.

The n-by-n orthogonal matrix @ represents an n-dimensional rotation of the
coordinate axes and so preserves lengths of vectors. The inverse of Q is just
its transpose Q.

The n-by-p triangular matrix R has zeros below the diagonal: if i > j then
Rli,j] = 0. This form makes R * X = QT * B easier to solve for X than

A * X = B. In MathLib, QR_Factor performs the factorization A = Q * R,
and QR_Solve computes X.

It turns out that smaller residuals B-A*X can often be obtained if a process
called column pivoting is performed during the QR factorizetion. This

D-66

Fascal Relerence Msrual Floating~-Foirt Frithmetic

armounts to performing the factorization first on the column of largest norm,
then on the column of largest norm among those remaining, and so on. The
effect iz to produce three factors Q * R * P = A, where P is a p-by-p
permutation matrix: an identity matrix with some of the rows interchanged.
Column piveting is optional in QR_Factor since some ratrices can be
analyzed in advance to show that they do not require it. But if column
pivoting has not been shown to be unnecessary then it should be performed.
Pivoting usually improves accuracy but it may slow down the factorization by
a factor of five to ten per cent for square matrices. lLisaCalc and Lisa
BASIC always perform column pivoting.

@R_Factor stores the factorization QRP in a condensed internal form on the
Pascal heap. QR_Factor returns a pointer to the factorization for use by the
other QR routines. None of these other routines releases the heap space
allocated by QR_Factor, s0 it is up to the user to mark the heap before
calling QR_Factor and to release the heap to the same mark when that
factorization is no longer required. The other QR routines that allocate
space on the Pascal heap release that space before returning. All the QR
routines that require heap space contain an error flag in their calling
sequences and terminate without storing any result if sufficient heap space is
not available.

D.4.10.10 MathlLib QR Procedures
QR_Factor is the factorization routine. Its inputs describe A; its output is a
pointer to the factorization QRP. That pointer and factorization are only
useful to the other QR routines in MathLib. About 18 + 10np bytes are
allocated on the heap if pivoting is not requested; pivoting requires an
additional 20p bytes. Execution time is proportional to n3 for an n-by-n
matrix.

@RR_Determinant computes the determinant of A very quickly given A's QR
factorization. A NaN is returned if the matrix A is not squere.

QRR_Condition provides an estimate of the condition number of A with
respect to solving linear equations or least squsres problems. Conventionally
this condition number is defined to be the ratic of the largest singular value
of A to the smallest, and thus ranges from 1 upward to infinity.
QRR_Condition inverts this ratio and so returns a number ranging from 1 down
to 0. Furthermore, since computation of singular values is fairly time
consuming, QR_Condition only makes an estimate of the largest and smallest
singular values, which sometirnes may vary substantially from the correct
values. Execution time is about twenty percent of the time required for the
factorization. QR_Condition requires 10p bytes of heap space.

@R_Solve finds the X in A * X = B given A's factorization. It requires
10 * max(np) bytes of heap space. The j'th column of X may overwrite the
Jjth column of B.

D-67

Fascal Refersnce Manusl Flogting-Foird rrithmelic

QR_Residual provides a convenient computation of the residual
R:=B - A* X not to be confused with the R in the QR factorization!

QR_Improve uses QR_Residual and QR_Solve to perform one iteration of
improvement of the solution X.

@R_TranSolve computes a solution X of ATA * X = B from the QR
factorization of A.

QR_TranDeterminant computes the determinant of A'A from the QR
factorization of A; even if A has no determinant, ATA is always square and
always has a determinant.

D.4.10.11 QR Example
The following example codes a procedure LinSys that works somewhst like
the LinSys in LisaCalc and Lisa BASIC, but its arguments are limited to
Pascal real arrays.

LinSys solves m linear least squares problems:
‘For k=1 to m, find xj , to minimize the length of

Tik = (B1,1%X1,k + 81,2%2,k + ... + 8 pXp k) — by

Ink = (8n,1X1,k + Bn2%2,k + ... + 8 pXpk) — by ".

If rjx = 0 then xj x also solves the m systems of linear equations

81,41,k + 84,2X2,k + ... * 84.pXpk = by g
8n,1X1,k + 8n2Xz,k + ... + 8npXpk = bk
type atype = array [1..n 1. _p] of real ;
btype = array [1..n,1..m] of real ;
xtype = array [1..p,1..m] of real ;
var amatrix : atype ;
bmatrix : btype ;
xmatrix : xtype ;

det, cond : real ;
{ Last determinent and condition number computed by linsys. }

function linsys (a: atype; b: btype; var x: xtype) : boolean ;

{ Linsys will find x to minimize b-a*x, if possible; will return a
function value of FALSE if successful, TRUE otherwise; will

D-68

Fascal Reference Manusl Floating-Foirt FArithmetic

update (}iet and cond with the determinant and condition estimate
for a.

var marker : * integer
qr : P_OR Record ;
exxror : boolean ;

1

procedure fetcha(i, j : integer ; var aij : extended) ;
in
SZX(ali, j], aij)

£

LX)

procedure fetchb(i, j : integer ; var bij : extended) ;
in
SZ(bli, j], bij) ;

procedure storex(i, j : integer ; xij : extended) ;
in
X23(xij, bli, j])

-,

A1

procedure fetchx(i, j : integer ; var xij : extended) ;
begin

SZX(bli,], xij) ;
end ;

’

begin { linsys }
mark{marker) ; { Mark heap storage for subsequent release. }

OR Factor(n, p, {pivot} true, gqr, fetcha) ;
if qr = oxrd4(nil) then error := true
else begin { factorization (K }
OR Determinant (qr, det) ;
OR_Condition (qr, cond) ; { Cond erxor represented by NaN_}
OR Solve(m, qr, erxor, fetchb, storex) ;
if not error then begin { solve OK }
OR_Improve (m, qr, exxror, fetcha, fetchh, fetchx, stoxrex);
{ Only one improvement iteration. }
end { solve K} ;

end { factorization K } ;
linsys := exror ;

release(marker) ; { Release heap storage. }
end { linsys } ;

D-69

Fascel Reference Marnusl Floating-Foirt Arithretic

D4.11 MathLib NaNs

Besides the NaNs that can be generated by the procedures in FPLib, there

are some NaN codes that are used by the procedures in MathLib to signify
unusual results:

Name Dec Hex Meanin

NaNIRR 39 $27 Internal rate of return is not real, does
not exist, or was not found.

NaNDet 49 $31 nongguare matrix has no determinant.

NeNCond 50 $32

Condition estimate could not be computed
because of inadequate heap space.

D-70

Fascal Reference Manusl Floating-Foint Rrithmetic

D4.12 MathlLib Interface
UNIT MathLib ; INTRINSIC ;
INTERFACE
{ Lisa Math Library. }
{$C Copyright 1983, 1984, Apple Computer Inc. }
USES FPLib ;
CONST
{ Lisa Math Library constants. }

RandModulus = 2147483647 ;
{ Prime modulus for random number generation = 2°31-1. }

LSigDiglen = 30 ; { Length of significand string. }
TYPE
{ Lisa Math Library types. }
RoundPrecision = (ExtPrecision, DblPrecision, RealPrecision) ;
Type FP_Type = (TFP_byte, TFP_integer, TFP_longint, TFP_Comp, TFP_real,

TFP_Double, TFP_Extended) ;
{ Number type names for FP_size.}

Free_Format = record { Specifications for free-form output. }
MaxSig : integer ; { Maximum number of significant digits. }
Sig_fForm, { True if "fixed" style applies MaxSig to

significant digits; false if to digits after
the point. }
Trail_Point, { True if trailing point should be printed for
inexact values in "integral" style. }
Int_EForm, { True if "exponential” style acceptable for

integral values. }

Plus EForm : boolean ; { True if "exponential” style should exhibit
+ sign for positive exponents. }

end ;

P_QR_Record = longint ; { Pointer to matrix factored as QRP. }

D-71

Fascal Reference Manusl Floating-Foint Arithmetic

LongSigDig = string[LSigDiglLen] ;

LongDecimal = record
sgn : 0..1;
exp : integer ;
sig : LongSigDig ;

end ;
{ }
{ Elementary functions to support BASIC and Fortran. }
procedure ASinX (var x : Extended) : { x := asin{x) }
procedure ACosX { var x : Extended) ; { x := acos(x) }
procedure SinhX [var x : Extended } ; { x := sinh{x) }
procedure CoshX { war x : Extended) : { x := cosh{x) }
procedure TanhX [var x : Extended) ; { x := tanh(x) }

{ }
{ Procedures to support polar coordinates. }

abs{y+ix) }
arg(y+ix) }

{ }

{ Rendom number procedure. }

procedure Abs2X [x, v : Extended ; var z : Extended) ; { z
procedure ATan2X(x, v : Extended ; var z : Extended) ; { z :

function NextRandom (lastrandom : longint) . longint
{ Returns next "random" longint with 1 <= nextrandom <= RandModulus-1.}

{ }

{ Floating point status and mode procedures. }

procedure ClearXcps ; é Turns off all exception flags. }
procedure ClearHlts ; Turns off all halt flags. }
procedure SetPrecision (p : RoundPrecision) ;

{ Set extended rounding precision. }
function GetPrecision : RoundPrecision ;

{ Get extended rounding precision. }

D-72

Fascal Reference Manual Floaling-Foimt Arithmetic

{ Sort procedure. }

procedure Math_Sort ({ General procedure to stably sort an arbitrary list.}
first, last : integer ; { Records first..last will be sorted.
function Sorted { i, j : integer) : boolean ;

{ User-supplied procedure called by Math Sort to compare order of
records i and j. Math_sort guarantees first <= 1i ¢ j <= last.
Sorted returns true if records i and j are already correctly
sorted with respect to each other. }

procedure Swap (i, j : integer) ;

{ User-supplied procedure called by Math Sort to swap records i
and j. Math_sort gusrantees first <= i < j (= last. }

var error : boolean) ; { True if sort routine failed due to
insufficient heap space available. }

{ Miscellaneous utility procedures. }
function SignOfX { x : Extended) : boolean ; { True if x has neg sign. }

function FP_New [n : longint) : longint ;
{ Attempts to allocate n bytes on heap, returning sddress.
Returns ord4{nil) if space not available. }

procedure FP_Size (x: Extended ; ver sgn: integer ; var class: NumClass ; var
size: FP_Type) ;
{ Returns sign bit, class, and size of smallest type that
would hold x exactly. }

procedure FP_Free ASCII ({ Procedure to provide free-form ASCII output. }
x : Extended ; { Numbex to be converted from binary to ASCII. }
width : integer ; { Maximum number of characters in output string. }
form : Free Format; { Detailed format specifications. }
var ¢ : Decstr) ; { Output destination string. If, after call,
length(s) » width, then x was inconsistent with
the constraints Width or MaxSig. }

{ Financial analysis procedures. }

procedure Fin_Npv ({ Compute net value of series of payments. }
first, { First payment period. }
last, { Last payment period. }
net : integer ; { Period at which net value is to be computed;

need not be between first and last. }

D-73

Fascal Reference Manusl Flogling-Foint Arithmelic

rate : Extended ; { Periodic interest rate. }
var Npv : Extended ; { Net payment wvalue. }
Procedure payment { i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt, the payment at
period i. }
{ Fin_Npv guarantees first <= i <= last. }

)

procedure Fin_Return ({ Analyze series of payments for external or internal

rate of return. Discounting by external rates may be
specified for positive or negative payments or both or
neither. Standasrd internsl rate of return is obtained
by specifying, for example, negperiod, posperiod :=
first-1. A conservative external rate of return is
obtained by considering negative payments as out from
the investor, positive payments as in to the investor,
and specifying:

negperiod := first ;

posperiod := last ;

negrate := guaranteed safe rate of return ;

posrate := expected average portfolio reinvestment

rate of return. }

first, { Initial payment period. }
last : integer ; { Final payment period. }
negpexiod, pospenod : integer ;
{ Periods to which negative or positive peyments
are to be discounted; if < first or > last then
corresponding peryments are not discounted. }
negrate, posrate : Extended ;
{ Discount rates for negative and positive payments
respectively; ignored if corresponding period
does not satisfy first <= ...period <= last. }
var ncs : integer ; { Exror code = number of changes of sign emong
adjusted payments; on normal return ncs =
1.ncs = -2 if an inf or NaN payment was
supplied. }
vear ret : Extended ; { Rate of return: if ncs = 1 then ret will
contain the single real root > -1; if ncs >
1 then ret will contain some resl root > -1 if
ncs is odd; if ncs > 1 is even ret may contain
8 rea% root > ~-1; otherwise ret will contain
NaN.
Procedure payment { i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt,
the payment at period i. }

D-74

Fascal Reference Manual

Fioaling-Foird Arithmetic

{ Fin_Npv gusrantees first <= i <= last. }

;

{ }
{ Numerical algebra. }
procedure Mat_Mult ({ Matrix multiplication B := A * X. }
n, { Rows of A = rows of B. }
p, { Columns of A = rows of X. }
nm : integer ; { Columns of X = columns of B. }
overlap : boolean ; { True if B overlaps R or X; temporsry B is
created on heasp and copied at end. }
var error : boolean ; { True if failure due to lack of heap space.
Not possible if overlap false. }
procedure afetch (i, j : integer ; ver aij : Extended) ;
{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 <=i <=n, 1<=j <=p. }
procedure xfetch (i,j : integer ; wvar xij : Extended) ;
{ User routine to provide xij := X{[i, j]. }
{ Xfetch may assume 1 <=1 <=p, 1 <= j<=m. }
procedure bstore { i,j : integer ; bij : Extended)
User routine to store B[i, j] := bij. }
| Bstore may assume 1 <=1 <=n, 1 <= j ¢<=m. }
procedure QR_Factor ({ Compute the QR factorization of matrix A. }
n, Number of rows of A. }

p : integer ;
pivot : boolean ;

var QR : P_OR_Record ;

procedure afetch [i, j

)
procedure QR_Condition (
OR : P_QR_Record ;

var cond : Extended

)

Number of columns of A. }

True if pivoting is to be performed, false if
not .

{ Pointer to factorization of A, which will be
created in the heap in an internal format.
OR will be ord(NIL) if insufficient heap
space is available. }

: integer ; var aij : Extended)

{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 <=1 ¢=n, 1 <=] <=p. }

{ Estimate condition number of
matrix whose factorization is in QR". }
{ OR" is a decomposed matrix produced by
OR_Factor. }
{ Estimate of condition number. }

Fascal Reference Manuel Floaling-Foirt Rrithmetic

procedure QR_Determinant ({ Compute determinant of matrix whose
factorization is in QR". }
OR : P_OR _Recoxd ; { OR" is a decomposed matrix produced by
OR_Factor. }
gar det : Extended { Determinant. }
procedure QR_Solve ({ Compute X = pseudo-inverse(QR") * B to Solve
linear equations or linesr least squeres
problems. }
m : integer ; { Number of columns of X and B. }
OR : P_OR Record ; { OR" is & decomposed matrix produced by
OR_Factor. }
var exror : boolean ; { True if procedure failed due to lack of heap}
space.
procedure bfetch (i, : integer ; var bij : Extended)
{ User routine to provide bij := B[i, j]. }
{ Bfetch may assume 1 <= i <=n, 1<¢= j<=m. }
procedure xstore (i, : integer ; xij : Extended) ;
{ User routine to store X{i, j] := xij. }
. { Xstore may assume 1 <= i <¢=p, 1 <= j ¢=m. }
)
procedure QR_Residual ({ Compute residual R := B - AX for a linear
equations or linesr least squares problem. }
n, { Number of rows of A. }
p : integer ; { Number of columns of f. }
m : integer ; { Number of columns of X and B. }
procedure afetch (i, : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j] }
{ Afetch may assume 1 <=1 <=n, 1 <= j <= p. }
procedure bfetch (i,j : integer ;: ver bij : Extended)
User routine to provide bij := B[i, j]. }
Bfetch may assume 1 <= i <=n, 1 <= J <=m. }
procedure xfetch (i,j : integer ; ver xij : Extended);
User routine to provide xij := X[i, j] }
Xfetch may assume 1 <=1 <=p, 1 <= j <=m. }
procedure rstore (i, : integer ; rij : Extended
User routine to store RI[i, j] := rij. }
) Rstore may assume 1 <=1 <=n, 1 <= j<=m. }
)
procedure QR_Improve ({ Pexform one iteration to improve the
solution X of a linear equations or linear
least squares problem A * X = B.
m : integer ; { Number of columns of X and B. ' }

D-76

Fascal Reference Manusgl Floating-Foimt rrithmetic

OR : P_OR_Record ; { QR" is a decomposed matrix produced by
QR_Factor. }
var erxor : boolean ; { True if procedure failed due to lack of heap
space. 1
procedure afetch { i,) : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 ¢=1i<¢=n, 1 <=] <=p. }
procedure bfetch { i,j : integer ; var bij : Extended)
{ Usex routine to provide bij := B[i, j]. }
{ Bfetch may assume 1 <=i <=n, 1 <=3 <=m. }
procedure xfetch { i,j : integer ; wvar xij : Extended) ;
© { User routine to provide xij := X[i, j]. }
{ Xfetch may assume 1 <= i <=p, 1<=j <=m. }
procedure xstore [i,j : integer ; xij : Extended)
{ Usexr routine to store X[i, j] := xij. }
) { Xstore may assume 1 <=1 <¢=p, 1<=j ¢=m. }
procedure QR_TranSolve ({ Compute & solution for (ATR) X = B, where T
denotes transpose, given factorization of R
in QR".
m : integer ; { Number of columns of X and B.
OR : P_OR Record ; { OR" is a decomposed matrix produced by
QR_Factor. }
var error : boolean ; { True if procedure failed due to lack of heap}
space.
procedure bfetch { i,j : integer ; var bij : Extended)
{ User routine to provide bij := B[i, j]. }
{ Bfetch may assume 1 <= i <=p, 1 <=] <=m. }
procedure xstore { i,) : integer ; xij : Extended)
{ User routine to store X[i, j] := xij. }
| { Xstore may assume 1 <=1 <=p, 1 <=3 <=m. }
procedure QR TranDeterminant ({ Compute determinant of ATA given
factorization of A in QR*. }
OR : P_OR_Record ; { QR" is a decomposed matrix produced by
(OR_Factor. }
var det : Extended { Determinant. }
)
{

{ Procedures for correctly rounded conversion between binary and
decimal. }

D-77

Fascal Reference Manueal Floating-Foint FRrithmetic

procedure X2LDec { f : DecForm ; x : Extended ; var v . LongDecimal) ;
{ Converts x to y, correctly rounded according to f. }

procedure LDec2X (prec: RoundPrecision; x: LongDecimal; var v: Extended) ;
{ Converts x to vy, correctly rounded according to prec. }

{ Numerical snalysis. }

procedure Math_Solve ({ Computes zero of function. }
estl, est2 : Extended ; { A priori estimates of zero. }
var res : Extended ; { f(res) may = O or NeN or its sign may differ

from one of its neighbors or it may merely
be the x with minimal abs(f(x)) smong those x
sampled by Math_Solve. The user must decide
the significance of the result res. }
procedure f { x : Extended ; var fx : Extended)
) { User-supplied procedure to evaluate fx = f(x). }

{ }

D-78

Fascal Relerence Manusal Floating-Foint Arithrostic

D.5 Macintosh Floating-Point Programming
Sections D.2, D.3, and D.4 describe floating-point programming for the Lisa.
Floating-point programming for the Macintosh is similar; the changes are
described below.

Assembly-language programs that use FP&68K rnay be assembled on the Lisa
and run on the Macintosh or on MacWorks. Pascal programs that use real
arithmetic or the intrinsic units FPLib or MathLib meay be compiled with the
Lisa Pascal Compiler and run on Macintosh or Macworks.

WARNING

Early Macintosh developers received the files:

INTRFC/SANE.TEXT OBJ/SANE.OBJ OBJ/SANEAsm.0BJ
INTRFC/Elems. TEXT OBJX/Elems.0BJ OBJ/ElemsAsm.OBJ

which are no longer recommended, and older versions of the files:

OBJ/MacPasLib.OBJ TLASM/ToolMacs.TEXT TLASM/SANEMacs. TEXT

which have been replaced by newer versions distributed with the
Macintosh software supplement. Do not mix any of these older files
with the newer ones described below.

D51 Assembly L
Include the files TLASM/SANEMacs, TLASM/ToolEqu, and TLASM/ToolMacs
with your assembly-language source files. It is not necessary to link with
any other Lisa files to get assembly-language flosting-point erithmetic. In
the file TLASM/SANEMacs, the first equate, FPByTrap, must be 1 to run on
Macintosh or MacWarks, or 0 to run on the Lisa Operating System.

D.5.2 Pascal Real Arithmetic
It is not necessary to USE any Pascal files to compile Pascal real arithmetic.
Link with the files:

0BJ/RealPasUnit 0OBJ/FPUnit OBJ/FPSub OBJ/MacPasLib

D53 FPLib and MathLib
Reguler versions of the units FPLib and MathLib, called FPUnit and
MathUnit, are available in the files OBJ/FPUnit and OBJ/MathUnit. Change
yvour USES stetement accordingly:

USES {$U OBV/FPUNnit} FPUnit,
{$U 0BIMathUnit} MathUnit ;

Do not include {$U INTRFC/SANE} SANE or (U INTRFC/Elems} Elems in
your USES statement.

D-7%

Fascal Reference Menusl Floating-Foirdt Frithmetic

Link with the files:

OBJ/MathUnit OBJ/FPUnit OBJ/RealPasUnit
OBJ/FPSub OBJ/MacPasL ib

Only the procedures you actually need will be linked into your object file.
Do not link with: '

OBJI/SANE OBJ/SANEAsmM OBJ/Elems OBJ/Elemsﬁsm

D.54 Restrictions
Ascembly-language programmers should clear the floating-point environment
with FSetEnv prior to any floating-point operations. Pascal programmers

should call
Procedure InitFPLib ;

which is declared in the FPUnit interface, prior to any floating-point
operations.

MathlLib depends on certain IOSPasLib procedures that are not implemented
in OB)/MacPesLib. Consequently, certain MathUnit procedures do not work
reliably. Affected procedures include financial rate of return, meatrix, and
sorting.

o
3

E1l

ES

Eb6
E7

E8

E9

Appendix E

QuickDraw
About This Appendix E-1
About QuickDrawE-2
E2.1 How TOUSE QUICKDIGW....ccemriieiieeiieeece sttt E-3
E.2.2 QuIckDraw Data TYPESceuiiiiiiniiimncecetesnanaercrateeananassssaneannas E-4
The Mathematical Foundation of QuickDraw E-4
E.3.1 TheCoordiNate Planecccoiiiieiiiiinicciiicnirecesinennncesennenesoanans E-4
L . o g N E-5
E33 RECLANGIES ...cuiiniimiimiincienriittecresraiceescesrascasssressnnssnssassanssanss E-6
B3l REGIONS ..oinniiciiiiiii ittt ct e et et eeat s rea s e e st e e e oe s nsnneseenan E-7
Graphic Entities E-9
Ed1l TheBitIMAge ...cccccceriiiiiiiiiiiiniteerernatasaerss e snss s sessssassessesensenes E-9
EL2 ThEBIUMAD oot teces et s e oot s s mre s E-11
{0 o 1213 1 E-13
[T 0T) 610 ¢ O E-13
The Drawing Environment: GrafPort ...E-15
ES.1 PenCharaCteristics......ouumueeieeiiiiceeee e E-18
£.5.2 TextCharaCteristiCscccouiviiimiiiiiriniiiicie st ee s E-20
Coordinates in GrafPorts E-22
General Discussion of Drawing : E-28
E7.1 TransferModes........iiiiiniiiiiiiceenniiiece e e ceesenn e nnenaes E-26
(SRR D) =17 (4o 5 151 0s) L) G E-28
Pictures and Polygorts E-28
E.B.1 PICIUYES .coeiiieciiiiieccere ettt ies et et e e e s e e e e e b seeeeeeee E-29
[a1 N E-30
QuickDraw Routines E-31
E.8.1 GrafPOTt ROULINES......cciviimiiiiiiiiiriiniinnntr e sccen e e ns e E-32
E.9.2 Cursor-HandliNgROULINES.......ccceeiiiiiiiiiiiiiiiciiinnnrrnesnseneneee e E-36
E.83 PenandLine-DrawingROULINEScccocvvviiiiieiiiiiiinncccinieinneeeeee E-37
E9ld Text-DrawingROULINGEScvieiiiiiiiiciiiiiiciniinienteacecrecreseaeeaes E-40
EBS5 DrawinNginColOr....cciiiiiieiemniiceeittictencatreetaeneeeresesecnnnnssnerennas E-43

Pascal Reference Manual QuickDraw

E.9.6 CalculationswithRectanglescocoorrirrriiieaeerenrrrrranrececanaanns E-43
E.9.7 Graphic Operations onReCtangles...........ccooovrrecrricciniiiecinnninnene E-46
E.9.8 Graphic Operations GNOVALSc..eeeueeuumermnnncsscnersannearerssesaannns E-47
E.9.9 Graphic Operations on Rounded-Corner Rectanglescccoeeenee E-a7
E.9.10 Graphic Operations on Arcs and Wedges
E.9.11 Calculations withRegions......................
E.9.12 Graphic Operations ONREGIONSc.cceeuuiirireicmmmeiirririrenneseriaraees
E.9.13 Bit Transfer Operationsco.cceceverrrreeerecenenenseeenecacnneresencans
E.9.14 PICTUTES «.oooiinnnecie it ccae e e ee e smcnanaeaeeeeee e e e
£.9.15 Calculations withPolygons........cccccuueuumennrnrrinrcssccrnrcensosaensenes
E.9.16 Graphic Operations onPOIYGONScccu i ieiermeemecnreenareeaceneeeeraannas
E.9.17 Calculations WithPOINtScooiiiiriiiiiiiiriiiiiciniiecceie e,
E.9.18 Miscellaneous UHHLIES ...cccoorrriiiiecineceeannnae e ssaanens
E.10 Customizing QuickDraw Operations ..E-67
E.11 Using QuickDraw from Assembly Language E-71
E.111 Constants ..ottt crean et rae e cane s anes e ananans E-71
E.11.2 DBE TYPES «eeveeeriunnnnaeeriemiceeteremeenaaeaanmnnannneseaenenaannsassesonannns E-71
£.11.3 Global Variablescccuviiirieiiiivenimmmrnisenasnsnsene E-73
E.11.4 Procedures and FunCtionscceeeereeeeiiiicneeeee e, E-73
E.12 Graf3D: Three-Dimensional Graphics .-.E-75
E.12.1 How Graf3D isRelated to QUICKDIaW ...cceueneiieiiiiiieineeceeceeeeees E-75
E.12.2 FEatUres of GIaf3Dccccciiiorcrriimciiemaaerenncseeenm e oeanneseennnns E-75
E. 123 Graf30 Data TYPes. o ccieceeiiaccceitieetenrrennesenecmnseecnsasesesennons E-76
E.12.4 Graf3D Procedures and FUnctionsoooeeciiniiicicinnenenee. E-77
E.13 QuickDraw Interface .E-80
E.13.1 Graf3l INterfaCe ..ccc.iiiieiiim it et ceeeecm e s e e e e e s e s e e eane E-89
E.14 QuickDraw Sample Programs . .E-91
E.14.1 QDSAMPIE ..ovviveriiiiinnitirtic ettt reees e e e s e cse e s en e enes E-91
s L T E-101
E.15 QDSupport v . .. E-106

E.16 Glossary E-108

QuickDraw

E.1 About This Appendix
This appendix describes QuickDraw, a set of graphics procedgures, functions,
and data types that allows a Pascal or assembly-language programmer of Lisa
to perform highly complex graphic operations very easlly and very quickly. It
covers the graphic concepts behind QuickDraw, as well as the technical
details of the data types, procedures, and functions you will use in your
programs.

we assume that you are familiar with the Lisa wWorkshop Manager, Lisa Pascal,
and the Lisa Operating System’s memory rmanagement. This graphics package
is for programmers, not end users. Although QuickDraw may be used from
either Pascal or assembly language, all examples are glven in their Pascal
form, to be clear, concise, and more intuitive; Section E.11 describes the
detalls of the assembly-language Interface to QuickDraw.

The appendix begins with an introduction to QuickDraw and what you can do
with it (Section E.2). It then steps back a little and looks at the mathemat-
ical concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles (Section E.3). Once you understand these concepts, read
on to Section E.4, which describes the graphic entitles based on them--how
the mathematical world of planes and rectangles is translated into the

physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports (Section £.6),
a summary of the basic drawing process (Section E.7), and a discussion of two
more parts of QuickDraw, pictures and polygons {Section E.8).

Next, in Section E.9, there's a detailled description of all QuickDraw proce-
dgures and functions, thelr parameters, calling protocol, effects, side effects,
and so on—-all the technical information you'll need each time you write a
program for the Lisa.

Following these descriptions are sections that will not be of interest to all
readers. Speclal information is given in Section E.10 for programmers who
want to customize QuickDraw operations by overriding the standard drawing
procedures, in Section £.11 for those who will be using QuickDraw from
assembly language, and in Section E.12 for those interested in creating
three-dimensional graphics using the Graf3D unit.

Finally, there are listings of the QuickDraw interface (Section E.13), two
sample programs (Section E.14), and the QDSupport unit (E.15); and a glossary
that explains terms that may be unfamiliar to you (Section E.16).

Pascal Reference Manual QuickDraw

E.2 About QuickDraw
QuickDraw allows you to organize the Lisa screen into a number of indlvidual
areas. Within each area you can draw many things, as illustrated In Figure
E-1. ’

Text Rectangles Ovals
mld e
e 000
Underline
Builine N @
RoundRects Polygons Regions

@fwdlonl>-
o e

Figure E-1
Samples of QuickDraw’s Abilities
You can draw:

* Text characters in a number of proportionally-spaced fonts, with varlations
that include boldfacing, italicizing, undertining, and outlining.

* Straignt lines of any length and wiath.

* A varlety of shapes, either solid or hollow, Including: rectangles, with or
without rounded corners; full circles and ovals or wedge-shaped sections;
and polygons.

* Any other arbitrary shape or collection of shapes, again either solid or
hollow.

* A plicture consisting of any combination of the above items, with just a
single procedure call.

In addition, QuickDraw has some other abilities that you won't find in many
other graphics packages. These abllities take care of most of the “house-

E-2

Pascal Reference Maral QuickDraw

keeping"--the trivial but time-consuming and bothersome overhead that's
necessary to keep things in order.

* The ability to define many distinct porés on the screen, each with its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and so on. You can easily
switch from one such port to another.

* Full and complete c/jgoing to arbitrary areas, so that drawing will occur
only where you want. It's like a super-duper coloring book that won't let
you color outside the lines. You don‘'t have to worry about accidentally
drawing over something else on the screen, or drawing off the screen and
destroying memory.

* Off-screen drawing. Anything you can draw on the screen, you can draw
into an off-screen buffer, so you can prepare an image for an output
device without disturbing the screen, or you can prepare a picture and
move it onto the screen very quickly.

And QuickDraw lves up to its name! It's very fast. The speed and
responsiveness of the Lisa user interface are due primarily to the speed of the
QuickDraw package. You can ¢do good-gquality animation, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have t0 bypass the general-purpose
QuickDraw routines by writing a lot of special routines to improve speed.

E.2.1 How To Use QuickDraw
QuickDraw can be used from either Pascal or MC68000 machine language. It
has no user Interface of its own.

If you're using Pascal, you must write a Pascal program that includes the
proper QuickDraw calls, compile it against the files QD/QuickDraw.0BJ and
QD/QDSupport.0BJ, link it with the files listed in QD/QDSUff.TEXT, and
execute the linked object file.

If you're using machine language, your program should include the proper
QuickDraw calls, and INCLUDE the file QD/GRAFTYPES.TEXT. Assemble the
program, link it with the files listed in QD/QOStuff.TEXT, and execute

linked object file. /

A programming model, QDSample, is inciuded with the wWorkshop software In
the file QD/QDSample.TEXT (listed in Section E.14.1); it shows the structure of
a properly organized QuickDraw program. what's best for beginners is to read
through the text, and, using the superstructure of the program as a "shell”,
modify it to sull your own purposes. Once you get the hang of writing
programs Inside the presupplied shell, you can work on changing the shell
itself.

Note that all files related to QuickDraw are prefixed by “"QD/".

QuickDraw includes only the graphics and utility procedures and functions
you'll need to create graphics on the screen. Procedures for dealing with the

E-3

Pascal Reference Marvl QuickOraw

mouse, cursors, keyboard, and screen settings, as well as those allowing you to
generate sounds and read and set clocks and dates, are described in Appendix
F, Haroware Interface.

E22 QuickDraw Data Types
QuickDraw defines three general data types, QDByte, QDPU, and QDHandle:

type QDByte = -128..127
QoPtr =
QDHandle = “QODPtr

Other data types are described throughout this appendix in the sections in
which they're relevant. For a summary of all QuickDraw data types, see
Section E.13.2.

E.3 The Mathematical Foundation of QuickDraw
To create graphics that are both precise and pretty requires not super-charged
features but a firm mathematical foundation for the features you have, If the
mathematics that underlie a graphics package are imprecise or fuzzy, the
graphics will be, too. QuickDraw defines some clear mathematical constructs
that are widely used In its procedures, functions, and data types: the coora/-
nate plang the point the rectangle and the region

E.3.1 The Coordinate Plane
All information about location, placement, or movement that you give to
QuickDraw Is In terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid, as illustrated in Figure E-2.

-32768
f

-32768 ¢ - 32767

+
32767

Figure E-2
The Coordinate Plane

Pascal Reference Manual QuUickOraw

There are two distinctive features of the QuickDraw coordinate plane:
* All grid coordinates are integers.
* All grid lines are Infinitely thin.

These concepts are important! First, they mean that the QuickDraw plane is
finite, not infinite (although it's very large). Horlzontal coordinates range
from -32768 o +32767, and vertical coordinates have the same range.

Second, they mean that all elements represented on the coordinate plane are
mathematically pure. Mathematical calculations using integer arithmetic will
produce intuitlvely correct results. If you keep in mind that grid lines are
infinitely thin, you'll never have "endpoint paranoia”--the confusion that
results from not knowing whether that last dot is included in the line.

E3.2 Points
On the coordinate plane are 4,294,967,296 unigue points. Each point is at the
intersection of a horizontal gria line and a vertical grid line. As the grid lines
are infinitely thin, a point is infinitely small. Of course there are more points
on this grid than there are dots on the Lisa screen: when using QuickDraw you
associate small parts of the grid with areas on the screen, so that you aren't
bound into an arbitrary, limited coordinate system.

The coordinate origin (0,0) is in the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertical coordinates increase as
you move from top to bottom. This is the way both a TV screen and a page
of English text are scanned: from the top left to the bottom right.

You can store the coordinates of a point in a Pascal variable whose type is
defined by QuickDraw. The type Point is a record of two integers, and has
the following structure:

type VHSelect = (V,H);
Point = record case integer of

0: (v: Iinteger;
h: integer);

[y
)

(vh: array [VHSelect] of integer)

end;

The variant part allows you to access the vertical and horizontal components
of a point either individually or as an array. For example, if the varlable
goodPt were declared 1o be of type Poimt, the following would all refer to the
coordinate parts of the point:

QoodPt .V goodPt .h
goodPt .vh[V] goodPt .Vh[H]

E-5

Pascal Reference Manual QuickDraw

E.33 Rectangles
Any two points can define the top left and bottom right corners of a
rectangie. As these points are infinitely small, the borders of the rectangle
are Infinitely thin (see Figure E-3).

Left
{
Top 3
%+ Bottom
|
Right
Figure E-3
A Rectangle

Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawing commands. QuickDraw also allows you to perform many
mathematical calculations on rectangles--changing their sizes, shifting them
around, and so on.

NOTE

Remember that rectangles, like points, are mathematical concepts that
have no direct representation on the screen. The assoclation between
these conceptual elements and thelr physical representations is made by
a bitmap, described below.

E-6

Pascal Reference Manal QuickDraw

The data type for rectangles is Rect, and consists of four integers or two
points:

type Rect = record case integer of

0: (top: integer;
left: integer;
bottom: integer;
right: integer);

1: (topLeft: Point;
botRight: Point)

end;

Agaln, the record varlant aliows you to access a varlable of type Rect either
as four boundary coordinates or as two diagonally opposing corner points.
Combined with the record vartant for points, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

bRect. topLeft bRect .botRight {type Point}

bRect .top bRect.left {type integer}
bRect.topiLeft.v bRect.toplLeft.h {type integer}
bRect.toplLeft.vh[V] bRect.topLeft.vhfH] {type integer}
bRect.bottom bRect.right {type integer}
bRect.botRight.v bRect .botRight.h {type integer}

bRect.botRight.vh[V] DRect.botRight.wh[H] {type integer}
WARNING

If the bottom coordinate of a rectangle is equal to or less than the top,
or the right coordinate Is equal to or less than the left, the rectangle
is an empty rectangle (i.e., one that contains no bits).

E.3.4 Regions
Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set
of spatially coherent points into a structure called a region, and perform
complex yet rapid manipulations and calculations on such structures. This
remarkable feature not only will make your standard programs simpler and
faster, but will let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Lisa user interface.

Pascal Reference Marngl QulckDraw

You define a region by drawing lines, shapes such as rectangles and ovals, or
even other regions. The outline of a reglon should be one or more closed
loops. A region can be concave Or convex, can consist of one area or many
disjoint areas, and can even have "holes” in the middle. In Figure E-4, the
region on the left has a hole in the middle, and the region on the right
consists of two disjoint areas.

IT
yama. .

jasasnual
I
sasnasEssEn;
sseasenanaNEy
Iy

T
cuv
Tt
I
[evanennans
jennnnunsns
T
o
o
T T
snaansnEnn

Figure E-4
Reglons
Because a region can be any arbitrary area or set of areas on the coordinate
plane, it takes a variable amount of information to store the outline of a
region. The data structure for a region, therefore, is a variable-length entity
with two fixed flelds at the beginning, followed by a variable-length data

fiela:
type Region = record
rgnsize: 1integer:
rgnBBox: Rect;
{optional region definition data}
end;

The rgnSize fleld contains the size, In bytes, of the region variable. The
rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the
entire region, and there is no optional region data. For rectangular regions (or
empty regions), the rgnSize field contains 10 (two bytes for rgnSize, plus

eight for rgnBBox).

The region definition data for nonrectangular regions is stored in a compact
way which allows for highly efficient access by QuickDraw procedures.

Pascal Rererence Marnal QulckOraw

As reglons are of varlable size, they are stored dynamically on the heap, and
the Operating System’s memory management moves them around as their sizes
change. Being dynamic, a reglon can be accessed only through a pointer; but
when a region is moved, all pointers referring to it must be updated. For this
reason, all reglons are accessed through /saad/es which point to one master
pointer which in tumn points to the reglon.

type RgnPtr “Region;

RgnHandle = “RgnPtr;
when the memory management relocates a region’s data in memory, it updates
only the RgnPtr master pointer to that region. The references through the
master pointer can find the region’s new home, but any references pointing
directly to the region's previous position in memory would now point at dead
bits. To access individual fields of a region, use the region handle and double

indirection:
myRgn“".rgnsize {size of region whose handle is myRgn}
myRgn“* . rgnBBoX }xectmgle enclosing the same region}
myRgn*“ . rgnBBoX. top minimum vertical coordinate of all points
in the reglon}
myRgn* . TgnNBBOX {semantically incorrect; will not compile if
myRgn s a rgnHandle}

Reglons are created by a QuickDraw function which allocates space for the
region, creates a master pointer, and returns a region handle. when you're
done with a region, you dispose of it with another QuickDraw routine which
frees up the space used by the region. Only these calls allocate or deallocate
regions; do 7ot use the Pascal procedure new to create a new region!

You specify the outline of a reglon with procedures that draw lines and
shapes, as described in Section E.9, QuickDraw Routines. An example is glven
in the discussion of CloseRgn in Sectlon E.9.11, Calculations with Reglons.

Many calculations can be performed on regions. A region can be e

or "shrunk” and, given any two regions, QuickDraw can find their union,
intersection, difference, and exclusive-OR; it can also determine whether a
given point or rectangle intersects a given region, and so on. There is of
course a set of graphic operations on reglons to draw them on the screen.

E.a Graphic Entities
Coordinate planes, points, rectangles, and reglons are all good mathematical
models, but they aren't really graphic elements--they don't have a direct
physical appearance. Some graphic entities that do have a direct graphic
interpretation are the &/t image Oltrngn pattem and cursor This section
describes the data structure of these graphic entities and how they relate to
the mathematical constructs described above.

E.4.1 The Bit Image
A bit image Is a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay them end to

E-S

Pascal Reference Mawal QuickODraw

end so that bit 15 of the lowest-numbered word is on the left and bit O of
the highest-numbered word is on the far right. Then take this array of bits
and divide it, on word boundaries, Into a number of equal-size rows. Stack
these rows vertically so that the first row is on the top and the last row is on
the bottom. The result Is a matrix like the one shown In Figure E-S5--rows
and columns of bits, with each row containing the same number of bytes. The
- number of bytes In each row of the bit image Is called the sow w/t? of that

image.

First -
Byte i i]
i :
H 3
1SEszsas: Row width
i& i g i t is 8 bytes
- »
= Byte
Figure E-5
A Bit Image

A bit image can be stored in any static or dynamic variable, and can be of
any length that Is a multiple of the row width.

The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are displayed as a matrix of 262,080 p/xe/s on the screen, each
bit corresponding to one pixel. If a bit's value is O, its pixel is white; if the
bit's value Is 1, the pixel is black.

The screen is 364 pixels tall and 720 pixels wide, and the row width of its bit
image is 90 bytes. Each pixel on the screen is one and a half times taller
than it is wide, meaning a rectangle 30 pixels wide by 20 tall looks square,
and a 30 by 20 oval looks circular. There are 90 pixels per inch horizontally,
and 60 per inch vertically.

E-10

Pascal Reference Marnual QuickDraw

NOTE

Since each pixel on the screen represents one bit in a bit image,
wherever this appendix says "bit", you can substitute "pixel” if the bit
image is the Lisa screen. Likewise, this appendix often refers to pixels
on the screen where the discussion applies equally to bits in an
off-screen bit image.

E.42 The Bitmaep
when you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitmap. A bitmap
has three parts: a pointer to a bit image, the row width (in bytes) of that
fmage, and a boundary rectangle which gives the bitmap both its dimensions
and a coordinate system. Notice that a bitmap does not actually include the
bits themselves: it points to them.

There can be several bitmaps pointing to the same bit image, each imposing a
different coordinate system on it. This Important feature is explained more
fully in Section E.6, Coordinates in GrafPorts.

As shown in Fligure E-6, the data structure of a bitmap is as follows:

type BitMap = record
baseAddr: QODPtLr;
rowBytes: 1nteger;

bounds: Rect
end;
Base o i
Address B EE?
baseAddr‘/ i i
rowBytes H
bounds S
o
H H---
—— Row width ————
Figure E-6
A Bitmap

E-11

Pascal Reference Manual QUickDraw

The baseAddr field Is a pointer to the beginning of the bit image In memory,
and the rowBytes field is the number of bytes in each row of the image. Both
of these should always be even: a bitmap should always begin on a word
boundary and contaln an integral number of words in each row.

The bounds field is a boundary rectangle that both encloses the active area of
the bit image and Imposes a coordinate system on it. The relationship
between the boundary rectangle and the bit image in a bitmap is simple yet
very Important. First, a few general rules:

* Bits in a bit image fall between points on the coordinate plane.

* A rectangle divides a bit image into two sets of bits: those bits inside the
rectangle and those outside the rectangle.

* A rectangle that is H points wide and V points tall encloses exactly
(H-1) * (v-1) bits.
The top left comer of the boundary rectangle is aligned around the first bit in

the bit image. The width of the rectangle determines how many bits of one
row are logically owned by the bitmap: the relationship

8 * map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many rows
of the image are logically owned by the bitmap. To ensure that the number

of bits in the logical bitmap is not larger than the number of bits in the bit

image, the bit image must be at least as big as

(map .bounds . bot tom-map .bounds . top) *map . rowBytes

Normally, the boundary rectangle completely encloses the bit image: the width
of the boundary rectangle is equal to the number of bits in one row of the
image, and the height of the rectangle is egual to the number of rows in the
image. If the rectangle Is smaller than the dimenstons of the image, the least
significant bits In each row, as well as the last rows in the image, are not
affected by any operations on the bitmap.

The bitmap also imposes a coordinate system on the Image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themselves. For
example, iIf a bitmap is assigned the boundary rectangle with corners (10.-8)
and (34,8), the bottom right bit in the image will be between horizontal
coo;dlnates 33 and 34, and between vertical coordinates 7 and 8 (see Figure
E-7

E-12

Pascal Rererence Mamal GQUickDraw

{10,-8) (34,-8)
|
(10,8) (34,8)
Figure E-7

Coordinates and Bitmaps

E43 Pattems
A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which is
used to define a repeating design (such as stripes) or tone (such as gray).
Patterns can be used to draw lines and shapes or to fill areas on the screen.

when a pattern is drawn, it is aligned such that adjacent areas of the same
pattern in the same graphics port will blend with each other into a contin-
uous, coordinated pattern. QuickDraw provides the predefined patterns white,
black, gray, 1tGray, and dkGray. Any other é64-bit variable or constant can be
used as a pattern, too. The data type definition for a pattern is as follows:

type Pattern = packed array [0..7] of 0..255;
The row width of a pattern is 1 byte.

EA4.4 Cursors
A cursor is a small Image that appears on the screen and is controlled by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)

A cursor s defined as a 256-bit Image, a 16-by-16-bit rectangle. The row
width of a cursor is 2 bytes. Figure E-8 lllustrates four cursors.

E-13

Pascal Reference Marxial QuickDraw

Figure E-8
Cursors

A cursor has three fields: a 16-word data fleld that contains the image itself,
a 16-word mask field that contains information about the screen appearance
of each bit of the cursor, and a /otspot point that aligns the cursor with the
position of the mouse.

type Cursor = record
data: array [0..15] of integer;
mask: array [0..15] of integer;
hotspot: Point
end;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit rectangle. The appear-
ance of each bit of the rectangle is determined by the corresponding bits in
the data and mask and, if the mask bit is 0, by the pixel “under” the cursor
(the one already on the screen in the same position as this bit of the cursor):

Data Mask Resulting pixel on screen
white

Black
Same as pixel under cursor
Inverse of pixel under cursor

Notlce that if all mask bits are 0, the cursor Is completely transparent, In
that the image under the cursor can still be viewed: pixels under the white
part of the cursor appear unchanged, while unger the black part of the cursor,
black pixels show through as white.

The hotspot aligns a point In the image (not a bit, a point!) with the mouse
position. Imagine the rectangle with corners (0,0) and (16,16) framing the
image, as in each of the examples in Figure E-8; the hotspot Is defined in this
coordinate system. A hotspot of (0,0) is at the top left of the image. For the
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot.
A hotspot of (8,8) is in the exact center of the image; the center of the plus

)--C:H-‘GI
O

E-14

Pascal Reference Mamual QuickOraw

sign or oval in Figure E-8 would coincide with the mouse position if (8,8) were
the hotspot for that cursor. Similarly, the hotspot for the pointing hand would
be (16,9).

whenever you move the mouse, the low-ievel interrupt-driven mouse routines
move the cursor's hotspot to be aligned with the new mouse position.

QuickDraw supplies a predefined arrow cursor, an arrow pointing north-
northwest.

Refer to Appendix F, Hardware Interface, for more information on the mouse
and cursor control.

E.5 The Drawing Environment: GrafPort

A graffort Is a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the information
about one instance of graphic output that 1s kept separate from all other
instances. You can have many grafPorts open at once, and each one will have
its own coordinate system, drawing pattern, background pattem, pen size and
location, character font and style, and bitmap in which drawing takes place.
You can instantly switch from one port to another. GrafPorts are the
structures on which a program builds windows, which are fundamental to the
Lisa's “"overlapping windows” user interface.

A grafPort is a dynamic data structure, defined as follows:

type GrafPtr = “GrafPort;
GrafPort = record
device: integer;

portBits: BitMap;
portRect: Rect;

visRgn: RgnHandle;
c1l1pRgn: RgnHandle;

bkPat : Pattern;
fillPat: Pattern;
pnLoc: Point;

pnSize: Point;

pniode : integer;
pnPat: Pattern;
pnvis: integer:
txFont: integer;
txFace: Style;

txiode: integer;
txSize: integer:

spExtra: longint;
fgColor: longint;
bkColor: longint;
colrBit: integer;
patstretch: integer;
picsSave: QDHandle;

E-15

Pascal Rerference Manual GuickOraw

rgnSave: QDHandle;

polySave: QDHandle;

grafProcs: QDProcsPtr

end;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure new and use the resulting pointer in calls
to QuickDraw. You could, of course, declare a static variable of type
GrafPort, and obtain a pointer to that static structure (with the ® operator),
but as most grafPorts will be used dynamically, thelr data structures should be
dynamic also.

NOTE

You can access all fields and subfields of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for altering all fields of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the number of the logical output device that
the grafPort will be using. QuickDraw uses this information, since there are
physical differences in the same logical font for different output devices. The
default device number is 0, for the Lisa screen.

The portBits field is the bitmap that points to the bit image to be used by the
grafPort. All drawing that is done In this grafPort will take place in this bit
image. The default bitmap uses the entire Lisa screen as its bit image, with
rowBytes of 90 and a boundary rectangle of (0,0,720,364). The bitmap may be
changed to indicate a aifferent structure in memory: all graphics procedures
work In exactly the same way regardless of whether thelr effects are visible
on the screen. A program can, for example, prepare an image to be printed
on a printer without ever displaying the image on the screen, or develop a
picture In an off-screen bitmap before transferring it to the screen. By
altering the coordinates of the portBits.oounds rectangle, you can change the
coordinate system of the grafPort; with a QuickDraw procedure call, you can
set an arbitrary coordinate system for each grafPort, even if the different
grafPorts all use the same bit image (e.g., the full screen).

The portRect field Is a rectangle that defines a subset of the bitmap for use
by the grafPort. Its coordinates are in the system defined by the
portBits.bounds rectangle. All drawing done by the application occurs Inside
this rectangle. The portRect usually defines the "writable” interior area of a
window, document, or other object on the screen. The default portRect is the
entire screen.

The visRgn field Indicates the reglon that is actually visible on the screen. It
Is reserved for use by future software, and should be treated as read-only.

E-16

Pascal Reference Manual QuickOraw

The default visRgn Is set to the portRect.

The clipRgn is an arbitrary region that the application can use to limit
drawing to any region within the portRect. If, for example, you want to draw
a half circle on the screen, you can set the clipRgn to half the square that
would enclose the whole circle, and go ahead and draw the whole circle. Only
the half within the clipRgn will actually be drawn in the grafPort. The
default clipRgn is set arbitrarily large, and you have full control over its
setting. Notlce that uniike the visRgn, the clipRgn affects the image even If
it is not displayed on the screen.

Figure E-9 illustrates a typical bitmap (as defined by portBits), portRect,
viskRgn, and clipRgn.

Grafbont POTtBitSY

Figure E-9
GrafPort Regions

The bkPat and fillPat fields of a grafPort contaln patterns used by certaln
QuickDraw routines. BkPat Is the “background” pattern that is used when an
area Is erased or when bits are scrolled out of it. when asked to fill an area
with a specified pattern, QuickDraw stores the given pattern in the fillPat
field and then calls a low-level drawing routine which gets the pattem from
that fleld. The various graphic operations are aliscussed in detall later in the
descriptions of Individual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the graphics
pen, described in Section E£.5.1, and the last five determine characteristics of
any text that may be drawn, described in Section E.5.2.

The fgColor, bkColor, and colrBit fields contaln values related to drawing in
color, a capability that will be available in the future when Apple supports

E-17

Pascal Rererence Marnil QuickOraw

color output devices for the Lisa. FgColor is the grafPort’s foreground color
and bkColor is its background color. ColrBit tells the color imaging software
which plane of the color picture to draw into. For more information, see
Sectlon E.7.2, Drawing in Color.

The patStretch field is used during output to a printer to expand pattermns if
necessary. The application should not change its value.

The picSave, rgnSave, and polySave flelds reflect the state of picture, region,
and polygon definition, respectively. To define a region, for example, you
“open" it, call routines that draw it, and then "close" it. If no region is open,
rgnSave contains nil; otherwise, it contains a handle to information related to
the region definition. The application should not be concerned about exactly
what information the handle leads to; you may, however, save the current
value of rgnSave, set the fleld to nil to disable the region definition, and later
restore it to the saved value to resume the region definition. The picSave
and polySave fields work similarly for pictures and polygons.

Finally, the grafProcs field may point to a speclal data structure that the
application stores Into if It wants to customize QuickDraw drawing procedures
or use QuickDraw in other advanced, highly specialized ways. (For more
information, see Section E.10, Customlzing QuickDraw Operations.) If
gxafPrt;cs is nll, QuickDraw responds in the standard ways described in this
appendix.

ES.1 Pen Characteristics
The pnlLoc, pnSize, pnMode, pnPat, and pnVis flelds of a grafPort deal with the
graphics pen. Each grafPort has one and only one graphics pen, which is used
for drawing lines, shapes, and text. As illustrated in Figure E-10, the pen has
four characteristics: a Jocation a size a drawing moog and a drawing pattem

E-18

Pascal Rererence Marxl QulckDraw

A Height
""t Pattern
Width

Location

Figure E-10
A Graphics Pen

The pen location (pnioc) Is a point in the coordinate system of the grafPort,
and Is where QuickDraw will begin drawing the next 1line, shape, or character.
It can be anywhere on the coordinate plane: there are no restrictions on the
movement or placement of the pen. Remember that the pen location is a
polnt on the coordinate plane, not a pixel in a bit image!

The pen Is rectangular In shape, and has a user-definable width and height
(pnSize). The default size Is a 1-by-1-bit rectangie; the width and height can
range from (0,0) to (32767,32767). If elther the pen width or the pen height is
less than 1, the pen will not draw on the screen.

* The pen appears as a rectangle with its top left corner at the pen
location; it hangs below and to the right of the pen location.

The pnMode and pnPat flelds of a graffPort determine how the bits under the
pen are affected when lines or shapes are drawn. The pnPat Is a pattern that
fs used as the "Ink" In the pen. This pattern, like all other patterns drawn in
the grafPort, is always aligned with the port's coordinate system: the top left
corner of the pattern is alignea with the top left comer of the portRect, so
that adjacent areas of the same pattern will blend into a continuous,
coordinated pattern. Five patterns are predefined (white, black, and three
shades of gray); you can also create your own pattern and use it as the pnPat.
(A uthity procedure, called StuffHex, allows you to flill patterns easily.)

Pascal Rerference Mamual QulckOraw

The pnMode fleld determines how the pen pattem is to affect what's already
on the bitmap when lines or shapes are drawn. Wwhen the pen draws,
QuickDraw first determines what bits of the bitmap will be affected and finds
their corresponding bits in the pattern. It then does a bit-by-bit evaluation
based on the pen mode, which specifies one of eight boolean operations to
perform. The resulting bit is placed into its proper place in the bitmap. The
pen modes are described in Section E.7.1, Transfer Modes.

The pnVis fleld determines the pen's visibllity, that is, whether it draws on the
screen. For more information, see the descriptions of HidePen and ShowPen
in Section E.9.3, Pen and Line-Drawing Routlnes.

E.5.2 Text Characteristics
The txFont, txFace, tdMode, txSize, and spExtra fields of a grafPort determine
how text will be drawn--the font, style, and size of characters and how they
will be placed on the bitmap.

QuickDraw can draw characters as quickly and easily as it draws lines and
shapes, and in many prepared fonts, Figure E-11 shows two QuickDraw
characters and some terms you should become familiar with,

3 ascent line
ascent
3| ! O base line
character
descent width
descent line
Figure E-11

QuickDraw Characters

QuickDraw can display characters in any size, as well as boldfaced, italicized,
outlined, or shadowed, all without changing fonts. It can also underline the
characters, or draw them closer together or farther apart.

The txFont fleld is a font number that ldentifles the character font to be used
in the grafPort. The font number O represents the system font, and is the
default established by OpenPort. The unit QDSupport (listed in Sectlon E.15)
includes definitions of other available font numbers.

A character font Is defined as a collection of bit images: these images make
up the individual characters of the font. The characters can be of unequal
widths, and they're not restricted to their “cells™: the lower curl of a
lowercase j, for example, can stretch back under the previous character
{typographers call this xeming). A font can consist of up to 256 distinct
characters, yet not all characters need be defined in a single font. Each font

E-20

Pascal Reference Maral QuickOraw

contains a missing symbol 1o be drawn in case Of a request to draw a
character that is missing from the font.

The txFace field controls the appearance of the font with values from the set
defined by the Style data type:

type StyleItem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = set of StyleItem;

You can apply these efther alone or in combination (see Figure E-12). Most
combinations usually 100k good only for large fonts.

Normal Characters

Bold Characters

A Characlers
Underlined Characters xyz

Outlined Cherasters
Bhadewsd Oharasiare
Candensed Characters
Extended Characters
Bott sl Oharaclers

... and in other fonis, 100!

Figure E-12
Character Styles

If you specify bold, each character Is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic adds an {tallc slant to the characters. Character bits above the base
line are skewed right; bits below the base line are skewed left.

Underline draws a line below the base line of the characters. If part of a
character descends below the base line (as "y" in Flgure E-12), the underline is
not drawn through the pixel on either side of the descending part.

You may specify either outline or shadow. Outline makes a hollow, outlined
character rather than a solid one. Wwith shadow, not only is the character
holiow and outlined, but the outline is thickened below and to the right of the
character to achleve the effect of a shadow. If you specify bold along with
outline or shadow, the hollow part of the character is widened.

E-21

Pascal Reference Manal QUickOraw

Condense and extend affect the horizontal distance between all characters,
including spaces. Condense decreases the distance between characters and
extend Increases it, by an amount which QuickDraw determines is appropriate.

The txMode fleld controls the way characters are placed on a bit image. It
functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit
lmage. These modes are described in Section E.7.1, Transfer Modes. Only
three of them--srcOr, srcXor, and srcBic--should be used for drawing text.

The txSlze field specifies the type size for the font, in points (where "point”
here is a typographical term meaning approximately 1/72 inch). Any size may
be specified. If QuickDraw does not have the font in a specifled size, it will
scale a size it does have as necessary to produce the size desired. A value of
0 in this field directs QuickDraw to choose the size from among those it has
for the font; it will choose whichever size is closest to the system font size.

Finally, the spExtra field Is useful when a line of characters is to be drawn
justified such that it is aligned with both a left and a right margin (sometimes
called "full justification"). SpExtra Is the number of pixels by which each
space character should be widened to flll out the line.

£.6 Coordinates in GrafPorts
Each grafPort has its own /Joca/ coordinate system. All flelds in the grafPort
are expressed In these coordinates, and all calculations and actions performed
In QuickDraw use the local coordinate system of the currently selected port.

Two things are Important to remember:

* Each grafPort maps a portion of the coordinate plane into a similarly-
sized portion of a bit image.

* The portBits.bounds rectangle defines the local coordinates for a grafPort.

The top left cormer of portBits.bounds is always aligned around the first bit in
the bit image; the coorginates of that corner “anchor” a point on the grid to
that bit in the bit image. This forms a common reference point for multiple
grafPorts using the same bit image (such as the screen). Glven a
po;'tBiits.bcu\us rectangie for each port, you know that their top left corners
coincide.

The Interrelationship between the portBits.bounds and portRect rectangles is
very important. As the portBlts.bounds rectangle establishes a coordinate
system for the port, the portRect rectangle indicates the section of the
coordinate plane (and thus the bit image) that will be used for drawing. The
portRect usually falls inside the portBits.bounds rectangle, but it's not required
to do so.

when a new grafPort Is created, its bitmap Is set to point to the entire Lisa
screen, and both the portBits.bounds and the portRect rectangles are set to

E-22

Pascal Reference Maral QulokDraw

720-by-364-bit rectangles, with the point (0,0) at the top left corner of the
screen.

You can redefine the local coordinates of the top left cormer of the grafPort's
portRect, using the SetOrigin procedure. This changes the local coordinate
system of the grafPort, recalculating the coordinates of all polnts in the
grafPort to be relative to the new corner coordinates. For example, consider
these procedure calis

SetPort(gamePort);
SetOrigin({40, 80);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that port's
portRect to (40,80) (see Figure E-13).

275~ i 235 —
302

visfign (95,120)(300,275) visRon (40,80)(245,235)
clipfign (95,120)(300,275) clipFign (95,120)(300,275)

Before SetOrigin After SetOrigin{40,80)

Figure E-13
Changing Local Coordinates

This recalculates the coordinate components of the following elements:
gamePort” . portBits.bounds gamePort”.portRect
gamePort” _visRgn

These elements are always kept "in sync”, so that all calculations, compari-
sons, or operations that seem right, work right.

Natice that when the local coordinates of a grafPort are offset, the visRgn of
that port is offset aiso, but the clipRgn is not. A good way to think of it is
that if a document is being shown inside a grafPort, the document “sticks" to
the coordinate system, and the port's structure "sticks" to the screen.
Suppose, for example, that the visRgn and clipRgn in Figure E-13 before

E-23

Pascal Reference Mamual QuilckDraw

SetOrigin are the same as the portRect, and a document Is being shown. After
the SetOrigin call, the top left corner of the ClipRgn Is still (95,120), but this
location has moved down and to the right, and the location of the pen within
the document has similarly moved. The locations of portBits.bounds, portRect,
and VIsSRgn did not change; thelr coordinates were offset. As always, the top
left comer of portBits.bounds remains aligned around the first bit in the bit
image (the first pixel on the screen)

If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two regions in two
aifferent grafPorts), you must adjust to a common coordinate system before
you perform the operation. A QuickDraw procedure, LocalToGlobal, lets you
convert a point’s local coordinates to a g/ava/ system where the top left
corner of the bit image is (0,0); by converting the various local coordinates to
global coordinates, you can compare and mix them with confidence. For more
information, see the description of this procedure in Section E.9.17,
Calculations with Points.

E.7 General Discussion of Drawing
Drawing occurs:

» Always Inside a grafPort, in the bit Image and coordinate system defined
by the grafPort's bitmap.

* Always within the intersection of the grafPort’s portBits.bounds and
portRect, and clipped to its visRgn and clipRgn.

* Always at the grafPort’s pen location.

* Usually with the grafPort's pen size, pattem, and mode.

with QuickDraw procedures, you can draw lines, shapes, and text. Shapes
include rectangles, ovals, rounded-cormer rectangles, wedge-shaped sections of
ovals, regions, and polygons.

Lines are defined by two polnts: the current pen location and a destination
location. When drawing a line, QuickDraw moves the top left corner of the
pen along the mathematical trajectory from the current location to the
destination. The pen hangs below and to the right of the trajectory (see
Figure E-14).

E-24

Pascal Reference Manual QulckOraw

Figure E-14
Drawing Lines

NOTE

No mathematical element (such as the pen location) Is ever affected by
clipping; clipping only determines what appears where in the bit image.
If you draw a line to a location outside your grafPort, the pen location
will move there, but only the portion of the line that is inside the port
will actually be drawn. This is true for all drawing procedures.

Rectangles, ovals, and rounded-corner rectangles are defined by two corner
points. The shapes always appear inside the mathematical rectangle defined
by the two polnts. A region Is deflned In a more complex manner, but also
appears only within the rectangle enclosing it. Remember, these enclosing
rectangles have infinitely thin borders and are not visible on the screen.

As lllustrated In Figure E-15, shapes may be drawn elther sa/o (filled in with
a pattern) or 72ames (outlined and hollow).

E-25

Pascal Reference Manual : QulckOraw

L2BRBEE.
SIEEEEEE

pen height

pen
width
Figure E-15

Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the
enclosing rectangle--with one exception--and the vertical and horlzontal
thickness of the outline is determined by the pen size. The exception is
polygons, as oiscussed in Section E.8.2, Polygons.

The pen pattemn is used to fill in the bits that are affected by the drawing
operation. The pen mode defines how those bits are to be affected by
directing QuickOraw to apply one of eight boolean operations to the bits in
the shape and the corresponding pixels on the screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use the
prnLoc. Each character s placed to the right of the current pen location, with
the left end of its base line at the pen’s location. The pen is moved to the
right to the location where it will draw the next character. No wrap or
carriage return is performed automatically.

The method QuickDraw uses in placing text is controlled by a mode similar to
the pen mode. This is explained in Section E.7.1, Transfer Modes. Clipping of
text iIs performed in exactly the same manner as all other clipping in
QuickDraw.

E.7.1 Transfer Modes

when lines or shapes are drawn, the pnMode fleld of the grafPort determines
how the drawing Is to appear in the port's bit image; similarly, the tdMode
field determines how text is to appear. There is also a QuickDraw procedure
that transfers a bit image from one bitmap to another, and this procedure has
a mode parameter that determines the appearance of the result. In all these
cases, the mode, called a ransrer moae speclfies one of elght boolean
operations: for each bit in the item to be drawn, QuickDraw finds the

E-26

Pascal Reference Mamual QuickOraw

corresponding bit In the destination bit image, performs the boolean operation
on the pair of bits, and stores the resulting bit into the bit image.

There are two types of transfer mode:
 Pattem transfer moges for drawing lines or shapes with a pattem.

* Sowrce transfer modes for drawing text or transferring any bit image
between two bitmaps.

For each type of mode, there are four basic operations--Copy, Or, Xor, and
Bic. The Copy operation simply replaces the pixels in the destination with
the pixels in the pattern or source, "painting” over the destination without
regard for what is already there. The Or, Xor, and Blc operations leave the
destination pixels under the white part of the pattern or source unchanged,
and differ in how they affect the pixels under the black part: Or replaces
those pixels with black pixels, thus "overlaying” the destination with the black
part of the pattern or source; Xor inverts the pixels under the black part; and
Bic erases them to white,

Each of the basic operations has a variant in which every pixel in the pattem
or source is inverted before the operation is performed, giving eignht
operations in all. Each mode is defined by name as a constant in QuickDraw

(see Figure E-16).

pattern or source destination

“Paint* "Overlay" "Invert" "Erase"

atCop patOr patXor patBic
stcCopy sreOr srcXor sreBic

B e

notPstCopy notPatOr notPstXor notPatBic
notSrcCopy notSrcOr notSrcXor notSreBic

Figure E-16
Transfer Modes

E-27

Pascal Reference Maral QuickOraw
Pattem Source Action on each pixel in destination:
transfer transfer If black pixel in If white pixel in
mode mode © pattem or source pattem or source
patCopy srcCopy Force black Force white
pator s1cor Force black Leave alone
patxor srexor Invert Leave alone
patBic sIcBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatOry notSrclr L.eave alone Force black
notPatXor notSrcXor Leave alone Invert
notPatBic notSrcBic Leave alone Force white

E.7.2 Drawing in Color
Currently you can only look at QuickDraw output on a black-and-white screen
or printer. Eventually, however, Apple will support color output devices. If
you want to set up your application now to produce color output In the future,
you can do so by using QuickDraw procedures to set the foreground color and
the background color. Elght standard colors may be specified with the
following predefined constants: blackColor, whiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. Initlally, the foreground
color Is blackColor and the background color Is whiteColor. If you specify a
color other than whiteColor, it will appear as black on a black-and-white
output device.

To apply the table above (in Section E.7.1) to drawing in color, make the
following transiation: where the table shows “Force black", read “Force
foreground color”, and where it shows "Force white”, read “Force background
color". when you eventually receive the color output device, you'll find out
the effect of inverting a color on it.

NOTE

QuickDraw can support output devices that have up to 32 bits of color
information per pixel. A color plcture may be thought of, then, as
having up to 32 planes. At any one time, QuickDraw draws into only
one of these planes. A QuickDraw routine called by the color-imaging
software specifies which piane.

E.8 Pictures and Polygons
QuickDraw lets you save a sequence of drawing commands and "play them
back” later with a single procedure call. There are two such mechanisms: one
for drawing any picture to scale in a destination rectangle that you specify,
and another for drawing polygons in all the ways you can draw other shapes in
QuickDraw.

E-28

Pascal Refererce Manual QuickDraw

E.8.1 Pictures
A plcture in QuickDraw is a transcript of calls to routines which draw
something--anything--on a bitmap. Plctures make it easy for one program to
draw something defined In another program, with great flexibility and without
knowing the detalls about what's belng drawn.

For each picture you define, you specify a rectangle that surrounds the
picture; this rectangle Is called the plcture frame When you later call the
procedure that draws the saved picture, you supply a destination rectangle,
and QuickDraw scales the picture so that its frame is completely aligned with
the destination rectangle. Thus, the plcture may be expanded or shrunk to fit
its destination rectangle. For example, if the picture is a circle inside a
square plcture frame, and the destination rectangle is not square, the picture
is drawn as an oval.

Since a picture may include any sequence of drawing commands, its data
structure s a variable-length entity. It consists of two fixed fields followed
by a variable-length data fiela:

type Picture = record
picSize: integer;
picFrame: Rect;
{picture definition data)}
end;

The picSize field contains the size, in bytes, of the picture variable. The

picFrame fleld is the picture frame which surrounds the picture and gives a
frame of reference for scaling when the picture is drawn. The rest of the

structure contains a compact representation of the drawing commands that

define the picture.

All pictures are accessed through handles, which point to one master pointer
which in tumn points to the plcture.

type PlcPtr = “Plcture;
PicHandle = “PicPtr;

To define a picture, you call a QuickDraw function that returns a picture
handle and then call the routines that draw the picture. There is a procedure
to call when you've finished defining the picture, and another for when you're
done with the picture altogether.

QuickDraw also allows you 0 Intersperse pfcuue comments with the
definition of a picture. These comments, which do not affect the picture’s
appearance, may be used to provide additional information about the picture
when it's played back. This is especlally valuable when pictures are
transmitted from one application to another. There are two standard types of

E-29

Pascal Rererence Mamal QuUickDraw

comment which, like parentheses, serve to group drawing commands together
(such as all the commands that draw a particular part of a picture)

const piciParen = 0;
plcRParen = 1;

The application defining the picture can use these standard comments as well
as comments of its own design.

To Include a comment in the definition of a picture, the application calls a
QuickDraw procedure that specifies the comment with three parameters: the
comment kind, which identifles the type of comment; a handle to additional
data if desired; and the size of the additional data, if any. When playing back
a plcture, QuickDraw passes any comments in the picture's definition to a
low-level procedure accessed indirectly through the grafProcs field of the
grafPort (see Section E.10, Customizing QuickDraw Operations, for more
information). To process comments, the application must include a procedure
to do the processing and store a pointer to it in the data structure pointed to

by the grafProcs field.

non

NOTE

The standard low-level procedure for processing picture comments
simply ignores all comments.

E.8.2 Polygons
Polygons are similar to pictures in that you define them by a sequence of
calls to QuickDraw routines. They are also similar to other shapes that
QuickDraw knows about, since there is a set of procedures for performing
graphic operations and calculations on them.

A polygon 18 simply any sequence of connected lines (see Figure E~-17). You
define a polygon by moving to the starting point of the polygon and drawing
lines from there to the next point, from that point to the next, and so on.

Figure E-17
Polygons

E-30

Pascal Rerference Marrial QulckOraw

The data structure for a polygon Is a variable-length entity. It consists of
two fixed fields followed by a variable-length array:

type Polygon = record
polysize: integer;
polyBBox: Rect;
polyPoints: array [0..0] of Point
end;

The polySize field contains the size, In bytes, of the polygon variable. The
polyBBox field is a rectangle which just encloses the entire polygon. The
polyPoints array expands as necessary to contain the points of the polygon--
the starting point followed by each successive point to which a line is drawn.

Like pictures and regions, polygons are accessed through handles.

type PolyPtr = “Polygon;
PolyHandle = “PolyPtr;

To define a polygon, you call a QuickDraw function that returns a polygon
handle and then form the polygon by calling procedures that draw lines. You
call a procedure when you've finished defining the polygon, and another when
you're done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there Is a set of
graphic operations on polygons to draw them on the screen. QuickDraw draws
a polygon by moving to the starting point and then drawing lines to the
remaining points In successton, just as when the routines were called to define
the polygon. In this sense it “plays back” those routine calls. As a result,
polygons are not treated exactly the same as other QuickDraw shapes. For
example, the procedure that frames a polygon draws outside the actual
boundary of the polygon, because QuickDraw line-drawing routines draw below
and to the right of the pen location. The procedures that fill a polygon with
a pattern, however, stay within the boundary of the polygon; they also add an
additional line between the ending point and the starting point if those points
are not the same, to complete the shape.

There is also a difference In the way QuickDraw scales a polygon and a
similarly-shaped reglon if it's being drawn as part of a picture: when
stretched, a slanted line Is drawn more smoothly if it's part of a polygon
rather than a reglon. You may find it helpful to keep in mind the conceptual
difference between polygons and regions: a polygon is treated more as a
continuous shape, a region more as a set of bits.

E.9 QuickDraw Routines
This section describes all the procedures and functions in QuickDraw, their
parameters, and thelr operation. They are presented In thelr Pascal form; for
information on using them from assembly language, see Section E.11, Using
QuickDraw from Assembly Language. Note that the actual procedure and
function declarations are given here, rather than the BNF notation or syntax
diagrams used elsewhere in this manual.

E-31

Pascal Reference Manual QuickDraw

E.9.1 GrafPort Routines
Procedure InitGraf (globalPtr: QOPtr);

InitGraf initializes QuickDraw. It is called by the QDSupport unit's QDInit
routine; you need not call it again. It initializes the QuickDraw global
variables listed below.

varlable Type Initial setting

thePort GrafPtr nil

white Pattern all-white pattern

black pPattern all-black pattern

gray Pattern S50% gray pattern
1tGray Pattern 25% gray pattem
aKGray Pattern 75% gray pattemn

arrow cursor pointing arrow cursor
screenBits BitMap Lisa screen, (0,0,720,364)
randSeed longint 1

The globalPtr parameter tells QuickDraw where to store its global variables,
beginning with thePort. From Pascal programs, this parameter should always
be set to @thePort; assembly-language programmers may choose any location,
as long as it can accommodate the number of bytes specified by GRAFSIZE in
GRAFTYPES.TEXT (see Section E.11, Using QuickDraw from Assembly
Language).

NOTE

To Injtialize the cursor, call InitCursor (described in Section E.9.2,
Cursor-Handling Routines).

Procedure OpenPort (gp: GrafPtr);

OpenPort allocates space for the given grafPort’s visRgn and clipRgn,
initializes the fields of the grafPort as indicated below, and makes the
grafPort the current port (see SetPort, below). You must call OpenPort before
using any grafPort; first create a grafPtr with new, then use that grafPtr in
the OpenPort call.

E-32

Pascal Reference Mamual QuickOraw

Fleld Type Initial setting

device integer 0 (Lisa screen)

portBits BitMap screenBits (see INitGraf)
portRect Rect screenBits.bounds (0,0,720,364)

visRgn RognHandle handle to the rectangular region (0,0,720,364)
c1ipRgn RonHandle handle to the rectangular region
(-30000, -30000, 30000, 30000)

bkPat Pattern white

fillPat Pattern black

pnLoc Point (0,0)

pnSize Point (1.1)

pniiode integer patCopy

pnPat Pattern black

pnvis integer 0 (visible)
txFont integer 0 (system font)
txFace Style normal

txtiode integer srcOr

txSize integer 0 (QuickDraw decides)
SspExtra longint 1]

fgcolor longint blackColor
bkColor longint whiteColor
colrsit integer 0
patStretch 1nteger 0

picSave QDHand1e nil
rgnsSave QDHand1e nil
polySave QDHandle nil
grafProcs QDProcsPtr nil

Procedure InitPort (gp: GrafPtr);

Glven a pointer to a grafPort that has been opened with OpenPort, InitPort
reinitializes the flelds of the grafPort and makes it the current port (if it's

not already).
NOTE
InitPort does everything OpenPort does except allocate space for the
VisRgn and clipRgn.

Procedure ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort’s visRgn and
clipRgn. When you are completely through with a grafPort, call this
procedure.

E-33

Pascal Reference Markial QuickDraw

WARNINGS

If you do not call ClosePort before disposing of the grafPort, the
memory used by the visRgn and clipRgn will be unrecoverable.

After calling ClosePort, be sure not to use any coples of the visRgn or
clipRgn handles that you may have made.

Procegure SetPort (gp: GrafPtr);

SetPort sets the grafPort Inclcated by gp to be the current port. The global
pointer thePort always points to the current port. All QuickDraw drawing
routines affect the bitmap thePort " .portBits and use the local coordinate
system of thePort™. Note that OpenPort and InitPort do a SetPort to the
glven port.

WARNING
Never do a SetPort to a port that has not been aopened with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

Procedure GetPort (var gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a program that
draws into more than one grafPort, it's extremely useful to have each
procedure save the current grafPort (with GetPort), set its own grafPort, do
drawing or calculations, and then restore the previous grafPort (with SetPort).
The pointer to the current grafPort is also avalilable through the global
pointer thePort, but you may prefer to use GetPort for better readabplility of
your program text. For example, a procedure could do a GetPort(savePort)
before setting its own grafPort and a SetPort(savePort) afterwards to restore
the previous port.

Procegure GrafDevice (device: integer);

GrafDevice sets thePort " .device to the given number, which identifies the
logical output device for this grafPort. QuickDraw uses this information. The
initial device number is 0, which represents the Lisa screen.

Procedure SetPortBits (bm: BitHap):

SetPortBits sets thePort ~.portBits to any previously defined bitmap. This
allows you to perform all normal drawing and calculations on a buffer other
than the Lisa screen-—for example, a 640-by-8 output buffer for a dot matrix
printer, or a small off-screen image for later “stamping” onto the screen.

E-34

Pascal Rererence Marual QuickDraw

Remember to prepare all flelds of the bitmap before you call SetPortBits.

Procedure PortSize (width, height: integer);

Portsize changes the size of the current grafPort’s portRect. 77/s aoes not
arfect the screen: 1t merely changes the size of the "active area" of the
grafPort.

The top left corner of the portRect remains at its same location; the width
and height of the portRect are set to the given width and height. In other
words, PortSize moves the bottom right comer of the portRect to a position
relative to the top left corner.

PortSize does not change the clipRgn or the visRgn, nor does 1t affect the
local coordinate system of the grafPort: it changes only the portRect’s width
and helght. Remember that all drawing occurs only In the Intersection of the
portBits.bounds and the portRect, clipped to the visRgn and the clipRgn.

Procedure MovePortTo (leftGlobal, topGlobal: integer);

MovePortTo changes the position of the current grafPort’s portRect. 77/ aves
not arfect the scregn: 1L merely changes the location at which subsequent
drawing inside the port will appear.

The leftGlobal and topGlobal parameters set the distance between the top left
cormer of the portBits.bounds and the top left cormer of the new portRect.
For example,

HovePortTo(360, 182);

will move the top left corner of the portRect to the center of the screen (if
portBits is the Lisa screen) regardless of the local coordinate system.

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, nor
does it affect the local coordinate system of the grafPort.

Procedure SetOrigin (h,v: integer);

SetOrigin changes the local coordinate system of the current grafPort. 77/
apes not arrect the screerny It does, however, affect where subsequent drawing
and calculation will appear in the grafPort. SetOrigin updates the coordinates
of the portBits.bounds, the portRect, and the visRgn. All subsequent drawing
and calculation routines will use the new coordinate system.

The h and v parameters set the coordinates of the top left corner of the
portRect. All other coordinates are calculated from this point. All relative
distances among any elements in the port will remain the same; only their
absolute local coordinates will change.

E-35

Pascal Reference Manal QuickDraw

NOTE

SetOrigin does not update the coordinates of the clipRgn or the pen;
these items stick to the coordinate system (unlike the port's structure,
which sticks to the screen).

SetOrigin Is useful for adjusting the coordinate system after a scrolling
operation. (See ScrollRect in Sectlon £.9.13, Bit Transfer Operations.)

Procedqure SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a reglon
equlvalent to the given region. Note that this does not change the reglon
handle, but affects the clipping region itself. Since SetClip makes a copy of
the given region, any subsequent changes you make to that region will not
affect the clipping region of the port.

You can set the clipping region to any arbitrary region, to ald you in drawing
Inslde the grafPort. The initlal clipRgn is an arbitrarily large rectangle.

Procedure GetClip (rgn: RgnHandle):

GetClip changes the given region to a region equlvalent to the clipping reglon
of the current grafPort. This Is the reverse of what SetClip does. Like
SetClip, it does not change the region handle.

Procedure ClipRect (r: Rect);

ClipRect changes the clipping reglon of the current grafPort to a rectangle
egulvalent to given rectangle. Note that this does not change the region
handle, but affects the reglon itself.

Procegure BackPat (pat: Pattern);

BackPat sets the background pattern of the current grafPort to the glven
pattern. The background pattemn is used in ScrollRect and in all QuickDraw
routines that perform an “erase" operation.

E£9.2 Cursor-Handling Routines
Additional information on cursor handling can be found iIn Appendix F,
Hardware Interface.

Procedure InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an arrow
pointing north-northwest, and sets the cwrsor /eve/ to 0, making the cursor
visible. The cursor level, which is initialized to 0 when the system is booted,
keeps track of the number of times the cursor has been hidden to compensate
for nested calls to HideCursor and ShowCursor (below).

E-36

Pascal Reference Manual QulckDraw

Before you call InitCursor, the cursor is undefined (or, if set by a previous
process, it's whatever that process set it to).

Procedure SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr. If the
cursor is hidden, it remalns hidden and will attain the new appearance when
it's uncovered; if the cursor is already visible, it changes to the new
appearance immediately.

The cursor image s initlalized by InitCursor to a north-northwest arrow,
visible on the screen. There is no way to retrieve the current cursor image.

Procedure HideCursor;

HideCursor rernoves the cursor from the screen, restoring the bits under it,
and decrements the cursor level (which InitCursor initializea to O). Every call
to HideCursor should be balanced by a subsequent call to ShowCursor.

Procedure ShowCursor;

ShowCursor increments the cursor level, which may have been decremented by
HideCursor, and displays the cursor on the screen if the level becomes 0. A
call to ShowCursor should balance each previous call to HideCursor. The
level is not incremented beyond 0, so extra calls to ShowCursor don't hurt.

If the cursor has been changed (with SetCursor) while hidden, ShowCursor
presents the new Cursor.

The cursor Is Initlalized by InltCursor to a north-northwest arrow, not hidden.

Procedure ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse is moved. Unlike
HideCursor, it has no effect on the cursor level and must not be balanced by
a call to ShowCursor.

E9.3 Pen and Line-Drawing Routines
The pen and line-drawing routines all depend on the coordinate system of the
current grafPort. Remember that each grafPort has its own pen; if you draw
in one grafPort, change to another, and return to the first, the pen will have
remalned in the same location.

Procedure HidePen;

HidePen decrements the current grafPort's pnvis fleld, which is initialized to
0 by OpenPort; whenever pnVis is negative, the pen does not draw on the
screen. PnVis keeps track of the number of times the pen has been hidden to
compensate for nested calls to HidePen and ShowPen (pelow). HidePen is

E-37

Pascal Reference Marnal QuickDraw

called by OpenRgn, OpenPicture, and OpenPoly so that you can define regions,
pictures, and polygons without drawing on the screen.

Procedure ShowPen;

ShowPen increments the current grafPort's pnvis fleld, which may have been
decremented by HidePen; if pnVis becomes 0, QuickDraw resumes drawing on
the screen. Extra calls to ShowPen will increment pnvis beyond 0, so every
call to ShowPen should be balanced by a subsequent call to HidePen.
ShowPen Is called by CloseRgn, ClosePicture, and ClosePoly.

Procedure GetPen (var pt: Point);

GetPen returns the current pen location, in the local coordinates of the
current grafPort.

Procedure GetPenState (var pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode In a storage
variable, to be restored later with SetPenState (below). This Is useful when
calling short subroutines that operate in the current port but must change the
graphics pen: each such procedure can save the pen's state when it's called, do
whatever it needs to do, and restore the previous pen state immediately
before returning.

The PenState data type is not useful for anything except saving the pen's
state.

Procegure SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattern, and mode In the current
grafPort to the values stored in pnState. This is usually called at the end of
a procedure that has altered the pen parameters and wants to restore them to
their state at the beginning of the procedure. (See GetPenState, above.)

Procedure PenSize (width, height: integer):

PenSize sets the dimensions of the graphics pen in the current grafPort. All
subsequent calls to Line, LineTo, and the procedures that draw framed shapes
in the current grafPort will use the new pen dimensions.

The pen dimensions can be accessed in the variable thePort ".pnSize, which 1s
of type Point. If either of the pen dimensions is set to a negative value, the
pen assumes the dimensions (0,0) and no drawing is performed. For a
discussion of how the pen draws, see Section E.7, General Discussion of
Drawing.

E-38

Pascal Reference Manual ' QuickDraw

Procedure PenMode (mode: integer):

PenMode sets the transfer mode through which the pnPat Is transferred onto
the bitmap when lines or shapes are drawn. The mode may be any one of the
pattern transfer modes:

patCopy pat¥or notPatCopy notPatXor
pator patsic notPator notPatBic

If the mode is one of the source transfer modes (or negative), no drawing is
performed. The current pen mode can be obtained in the variable

thePort ".pnMode. The initial pen mode is patCopy, in which the pen pattern
is copled directly to the bitmap.

Procedure PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current grafPort. The
standard patterns white, black, gray, 1tGray, and dkGray are predefined; the
initial pen pattern is black. The current pen pattern can be obtained in the
variable thePort " pnPat, and this value can be assigned (but not compared!) to
any other variable of type Pattem.

Procedure PenNormal;
PenNormal resets the Initlal state of the pen in the current grafPort, as

follows:
Field Setting
pnSize (1)
pnitode patCopy
pnPat black

The pen locatlon is not changed.

Procedure HoveTo (h,v: integer);

MoveTo moves the pen to location (hv) in the local coordinates of the current
grafPort. No drawing Is performed.

Procedure Hove (dh,dv: integer);

Move moves the pen a distance of dh horizontally and dv vertically from its
current location; it calls MoveTofh+dh,v+av), where (hv) Is the current location.
The positive directions are to the right and down. No drawing Is performed.

E-39

Pascal Reference Manual QuickDraw

Procedure LineTo (h,v: integer):

LineTo draws a line from the current pen location to the location specified (in
local coordinates) by h and v. The new pen location is (hyv) after the line is
drawn. See Sectlon E.7, General Discussion of Drawing.

If a reglon or polygon is open and belng formed, its outline is infinitely thin
and is no; affected by the pnSize, pnMode, or pnPat. (See OpenRgn and
OpenPoly.

Procedure Line (dh, av: integer);

Line draws a line to the location that is a distance of dh horizontally and av
vertically from the current pen location; it calls LineTo(h+dh,v+av), where (V)
is the current location. The positive directions are to the right and down.

The pen location becomes the coordinates of the end of the line after the line
is drawn. See Section E.7, General Discussion of Drawing.

If a region or polygon Is open and being formed, its outline is infinitely thin
and is not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and
OpenPoly.)

E.9.4 Text-Drawing Routines
Each grafPort has its own text characteristics, and all these procedures deal
with those of the current port. '

Procedure TextFont (font: integer);

TextFont sets the current grafPort's font (thePort ".txFont) to the given font
number. The initial font number is 0, which represents the system font. For
other font numbers, refer 10 the QDSupport unit, listed in Section E.15.

Procedure TextFace (face: Style);

TextFace sets the current grafPort's character style (thePort " .txFace). The
Style data type allows you to specify a set of one or more of the following
predefined constants: bold, italic, underline, outline, shadow, condense, and
extend. For example:

TextFace([bold]); {mm}

TextFace([bold, 1talic]); bold and italic)
TextFace(tnePort".tfacw{bold) zmatever it was plus bold}
TextFace(thePort”.txface-{bold]); whatever it was but not bold}
TextFace([]); {normal}

E-40

Pascal Reference Marnal QuickDraw

Proceaure TextMode (mocde: integer);

TextMode sets the current grafPort's transfer mode for drawing text
(thePort ".txMode). The mode should be srcOr, srcXor, or sreBic. The initial
transfer mode for drawing text is srcOr.

Procedure TextSize (size: integer);

TextSize sets the current grafPort's type size (thePort ".txSize) to the given
number of points. Any size may be specified, but the result will look best if
QuickDraw has the font in that size (otherwise It will scale a size it does
have). The next best result will occur if the glven size is an even multiple of
a size avallable for the font. If 0 Is specified, QuickDraw will choose one of
the avallable sizes--whichever is closest to the system font size. The Initial
txSize setting Is O.

Procedure SpaceExtra (extra: integer);

SpaceExtra sets the current grafPort’s speExtra fleld, which specifies the
number of pixels by which to widen each space in a line of text. This is
useful when text is being fully Justified (that is, aligned with both a left and a
right margin). Consider, for example, a line that contains three spaces; if
there would normally be six pixels between the end of the line and the rignt
margin, you would call SpaceExtra(2) to print the line with full justification.
The initial spExtra setting is 0.

NOTE

SpaceExtra will also take a negative argument, but be careful not to
narrow spaces so much that the text is unreadable.

Procedure DrawChar (ch: char);

DrawChar places the given character to the right of the pen location, with
the left end of its base line at the pen's location, and advances the pen
accordingly. If the character is not In the font, the font’s missing symbol is
drawn.

Procedure DrawString (s: Strzss);

Drawstring performs consecutive calls to DrawChar for each character in the
supplied string; the string is placed beginning at the current pen location and
extending right. No formatting (carriage returns, line feeds, etc.) is performed
by ng:kDraw. The pen location ends up to the right of the last character in
the string.

E-41

Pascal Rererence Manial QuickDraw

Procedure DrawText (textBuf: QOPtr; firstByte,byteCount: integer).

DrawText draws text from an arbitrary structure in memory specified by

textBuf, starting firstByte bytes into the structure and continuing for

byteCount bytes. The string of text is placed beginning at the current pen

location and extending right. No formatting (carriage returns, line feeds, etc.)
. Is performed by QuickDraw. The pen location ends up to the rignt of the last
‘character In the string.

Function Charwidth (ch: char) : integer;

Charwidth retumns the value that will be added to the pen horizontal
coordinate if the specified character Is drawn. Charwidth inciudes the effects
of the stylistic variations set with TextFace; if you change these after
determining the character width but before actually drawing the character,
the predetermined width may not be correct. If the character is a space,
Charwidth also Includes the effect of SpaceExtra.

Function Stringwlidth (s: Strzs5) : integer;

Stringwidth returns the width of the glven text string, which it caiculates by
adding the widths of all the characters In the string (see Charwidth, above)
This value will be added to the pen horizontal coordinate if the specified
string Is drawn.

Function Textwidth (textBuf: QOPtr; firstByte, byteCount: integer) :
integer;

Textwidth retumns the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting firstByte bytes into the structure and
continuing for byteCount bytes. It calculates the width by adding the widths
of all the characters in the text. (See Charwidth, above.)

Procedure GetFontInfo (var info: FontInfo);

GetFontInfo returns the following information about the current grafPort's
character font, taking into consideration the style and size in which the
characters will be drawn: the ascent, descent, maximum character width (the
greatest distance the pen will move when a character Is drawn), and leading
{the vertical distance between the descent line and the ascent line below it),
all in pixels. The FontInfo data structure is defined as:

type FontInfo = record
ascent: integer;
descent: integer;
wiaax: integer;
leading: integer
end;

E-42

Pascal Reference Manual QuickDraw

E.95 Drawing in Color
These routines will enable applications to do color drawing in the future when
Apple supports color output devices for the Lisa. All nonwhite colors will
appear as black on black-and-white output devices.

Procedure ForeColor (color: longint);

ForeColor sets the foreground color for all drawing in the current grafPort
(thePort " .fgColor) to the glven color. The following standard colors are
predefined: blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, and yellowColor. The initial foreground color is blackColor.

Procedure BackColor (color: longint);

BackColor sets the background color for all drawing In the current grafPort
{(thePort " .bkColor) to the given color. Eight standard colors are predefined
(see ForeColor, above). The iInitial background color is whiteColor.

Procedure ColorBit (whichBit: integer);

ColorBit is called by printing software for a color printer, or other color-
imaging software, to set the current grafPort's colrBit field to whichBit; this
tells QuickDraw which plane of the color picture to draw into. QuickDraw
will draw into the plane corresponding to bit number whichBit. Since
QuiIckDraw can support output devices that have up to 32 bits of color
information per pixel, the possible range of values for whichBit is 0 through
31. The initial value of the colrBit field is 0.

€.9.6 Calculations with Rectangles
Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort is active.

NOTE

Remember that if the parameters to one of the calculation routines
were defined in different grafPorts, you must first adjust them to be in
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see on the
screen. To adjust to a common coordinate system, see LocalToGlobal
and GlobalTolocal in Section E.9.17, Calculations with Points.

Procedure SetRect (var r: Rect; left,top,right,bottom: integer);

SetRect assigns the four boundary coordinates to the rectangle. The result is
a rectangle with coordinates (left top, right bottom).

This procedure is supplied as a utility to help you shorten your program text.
If you want a more readable text at the expense of length, you can assign

E-43

Pascal Reference Manual QuickDraw

integers (or points) dlrectly Into the rectangle's fields. There is no significant
code size or execution speed advantage to elther method; one's just easier to
write, and the other's easler to read.

Procedure OffsetRect (var r: Rect; dh,dv: integer);

OffsetRect moves the rectangle by adding dh to each horlzontal coordinate
and dv to each vertical coordinate. If dh and dv are positive, the movement
Is to the right and down; If either is negative, the corresponding movement is
in the opposite direction. The rectangle retains its shape and size; it's merely
moved on the coordinate plane. This does not affect the screen unless you
subsequently call a routine to draw within the rectangle.

Procedure InsetRect (var r: Rect; dh,dv: integer);

InsetRect shrinks or expands the rectangle. The left and rignt sides are
moved In by the amount specified by dh; the top and bottom are moved
toward the center by the amount specified by dv. If dh or dv is negative, the
appropriate palr of sides is moved outward instead of inward. The effect is to
alter the size by 2*dh horizontally and 2*dv vertically, with the rectangle
remaining centered in the same place on the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle Is set to
the empty rectangle (0,0,0,0).

Function SectRect (srcRectA, srcRectB: Rect; var dstRect: Rect) :
boolean;

SectRect calculates the rectangle that is the intersection of the two input
rectangles, and returns true if they indeed intersect or false if they do not.
Rectangles that "touch" at a line or a point are not considered intersecting,
because their intersection rectangle (really, in this case, an intersection line
or point) does not enclose any bits on the bitmap.

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,0).
SectRect works correctly even if one of the source rectangles is also the
destination.

Procedure UnionRect (srcRectA, srcRectB: Rect; var dstRect: Rect);

UnionRect calculates the smallest rectangle which encloses both input
rect?nglies. It works correctly even if one of the source rectangles is also the
destination.

FPascal Reference Manual QuUickDraw

Function PtInRect (pt: Polnt; r: Rect) : boolean;

PtinRect determines whether the pixel below and to the rignt of the given
coordinate point is enclosed in the specified rectangle, and returns true if so
or false if not.

Procedure PtZRect (ptA,ptB: Point; var dstRect: Rect).
Pt2Rect retumns the smailest rectangle which encloses the two input points.

Procedure PtToAngle (r: Rect; pt: Point; var angle: integer);

PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a line from the center of the rectangle
pointing straight up (12 o'clock high). The angle is in degrees from 0O to 359,
measured clockwise from 12 o'clock, with 90° at 3 o'clock, 180° at 6 o'clock,
and 270° at 9 o'clock. Other angles are measured relative to the rectangle: If
the line to the given point goes through the top right corner of the rectangle,
the angle returned Is 45 degrees, even if the rectangle is not square; if it goes
through the bottom right corner, the angle is 135 degrees, and so on (see

Figure E-18).
angle =45
- M

V angle =45
— ot
"\}’.

—

w”’j
r r
Figure E-18
PtToANgle

The angle returned might be used as input to one of the procedures that
manipulate arcs and wedges, as described In Section £.9.10, Graphic Operations
on Arcs and Wedges.

Function EqualRect (rectA, rectB: Rect) : boolean;

EqualRect compares the two rectangles and returns true if they are equal or
false if not. The two rectangles must have identical boundary coordinates to
be considered equal.

E-45

Pascal Reference Manual QuUickDraw

Function EmptyRect (r: Rect) : boolean;

EmptyRect returns true if the glven rectangle is an empty rectangle or false
if not. A rectangle is considered empty if the bottom coordinate is equal to
or less than the top or the right coordinate is equal to or less than the left.

£.9.7 Graphic Operations on Rectangles
These procedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer Operations.

Procedure FrameRect (r: Rect);

FrameRect draws an outline just Inside the specified rectangle, using the
current grafPort’s pen pattern, mode, and size. The outline is as wide as the
pen width and as tall as the pen height. It is drawn with the pnPat, according
to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

If a region is open and being formed, the outside outline of the new rectangle
is mathematically added to the region's boundary.

Procedure PaintRect (r: Rect);

PaintRect palnts the specified rectangle with the current grafPort's pen
pattern and mode. The rectangle on the bitmap is filled with the pnPat,
according to the pattern transfer mode specified by pniMode. The pen location
is not changed by this procedure.

Procedure EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort’s back-
ground. pattern bkPat (in patCopy mode). The grafPort’s pnPat and pnMode are
ignoreq; the pen location is not changed.

Procedure InvertRect (r: Rect);

InvertRect Inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location is
not changed.

Pascal Rerference Manual QuickDraw

E.9.8 Graphlc Operations on Ovals
Ovals are drawn Inside rectangles that you specify. If the rectangle you
specify Is square, QuickDraw draws a clrcle.

Procedure FrameOval (r: Rect);

FrameOval draws an outline Just inside the oval that fits inside the specified
rectangle, using the current grafPort’s pen pattern, mode, and size. The
outline Is as wide as the pen width and as tall as the pen heignht. It is drawn
with the pnPat, according to the pattern transfer mode specified by pniMode.
The pen location Is not changed by this procedure.

If a reglon is open and being formed, the outside outline of the new oval is
mathematically added to the region’s boundary.

Procedure PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the current
grafPort's pen pattern and mode. The oval on the bitmap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The pen
location s not changed by this procedure.

Procedure EraseQval (r: Rect);

EraseOval paints an oval just inside the specified rectangle with the current
grafPort's background pattern bkPat (in patCopy mode). The grafPort's pnPat
and pnMode are ignored; the pen location is not changed.

Procegure InvertOval (r: Rect):

InvertOval inverts the pixels enclosed by an oval just inside the specified
rectangle: every white pixel becomes black and every black pixel becomes
white. The grafPort's pnPat, pniMode, and bkPat are all ignored; the pen
location Is not changed.

Procedure FillOval (r: Rect; pat: Pattern);

FillOval fills an oval just inside the specified rectangle with the given pattemn
(in patCopy mode). The grafPort’s pnPat, pnMode, and bkPat are all lgnored;
the pen location is not changed.

E.9.9 Graphic Operations on Roundet—Comer Rectangles
Procedure FrameRoundRect (r: Rect; ovalwidth,ovalHeight: integer);

FrameRoundRect draws an outline just inside the specified rounded-corner

rectangle, using the current grafPort's pen pattern, mode, and size. Ovalwidth
and ovalHeight specify the diameters of curvature for the corners (see Figure
E-19)." The outline is as wide as the pen width and as tall as the pen height.

E-47

Pascal Reference Manual QuickDraw

It Is drawn with the pnPat, according to the pattern transfer mode specified
by pnMode. The pen location is not changed by this procedure.

ovalWidth ovalHeight

—
(O (O

Figure E-19
Rounded-Comer Rectangle

If a region is open and being formed, the outside outline of the new rounded-
corner rectangle is mathematically added to the region’s boundary.

Proceaure PalntRoundRect (r: Rect; ovalwidth, ovalHelgnt: integer);

PaintRoundRect paints the specified rounded-corner rectangle with the
current grafPort’s pen pattern and mode. Ovalwidth and ovalHeight specify
the diameters of curvature for the corners. The rounded-corner rectangle on
the bitmap Is filled with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this procedure.

Procedure EraseRoundRect (r: Rect; ovaiwidth,ovalHeight: integer):

EraseRoundRect paints the specified rounded-corner rectangle with the
current grafPort’s background pattern bkPat (in patCopy mode). Ovalwidth and
ovalHeight specify the diameters of curvature for the corners. The grafPort’s
pnPat and pnMode are ignored; the pen location is not changed.

Procedure InvertRoundRect (r: Rect; oval¥idth, ovalHeight: integer);

InvertRoundRect inverts the pixels enclosed by the specified rounded-corner
rectangle: every white pixel becomes black and every black pixel becomes
white. Ovalwidth and ovalHelght specify the dlameters of curvature for the
corers. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

Pascal Reference Manual QuickDraw

Procedure FillRoundRect (r: Rect; ovalWidth, ovalHeight: integer; pat:
Pattern);

FillRoundRect fills the specified rounded-corner rectangle with the given
pattern (in patCopy mode). Ovalwidth and ovalHelght specify the diameters of
curvature for the comers. The grafPort’s pnPat, pniMode, and bkPat are all
ignored; the pen location is not changed.

E.9.10 Graphic Operations on Arcs and wedges
These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngie in Section E.9.6, Calculations with
Rectangles.

Procedure FrameArc (r: Rect; startAngle, arcAngle: integer);

FrameArc draws an arc of the oval that fits inside the specified rectangle,
using the current grafPort’s pen pattern, mode, and size. StartAngle indicates
where the arc begins and is treated mod 360. ArcAngle defines the extent of
the arc. The angles are given In positive or negative degrees; a positive angle
goes clockwise, while a negative angle goes counterclockwise. Zero degrees is
at 12 o'clock high, 90° {or -270°) is at 3 o'clock, 180° {or -180°) Is at 6
o'clock, and 270° (or -90°) Is at 9 o'clock. Other angles are measured relative
to the enciosing rectangle: a line from the center of the rectangle through its
top right corner is at 45 degrees, even if the rectangle is not square; a line
through the bottom right corner is at 135 degrees, and so on (see Figure E-20).

startAngle=0
arcAngle =45

startAngle=0 starﬁAngle =0

arcAngI:": = -45§ arc;Angle =45

FrameArc

startAngle =0

r arcAngle = 45

FrameArc F

r

PaintArc

Figure E-20
Operations on Arcs and wedges

E-49

Pascal Reference Manual QuickDraw

The arc Is as wide as the pen width and as tall as the pen height. It is drawn
with the pnPat, according to the pattemn transfer mode specified by pnMode.
The pen locatlon Is not changed by this procedure.

WARNING

FrameArc differs from other QuickDraw procedures that frame shapes
in that the arc is not mathematically added to the boundary of a
region that is open and being formed.

Procedure PaintArc (r: Rect; startAngle,arcAngle: integer);

PaintArc paints a wedge of the oval just inside the specified rectangle with
the current grafPort's pen pattern and mode. StartAngle and arcAngle define
the arc of the wedge as in FrameArc. The wedge on the bitmap is filled with
the pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

Procedure EraseArc (r: Rect; startAngle,arcAngle: integer);

EraseArc paints a wedge of the oval Just inside the specified rectangle with
the current grafPort's background pattern bkPat (in patCopy mode).

e and arcAngle define the arc of the wedge as in FrameArc. The
grafPort's pnPat and pnMode are ignored; the pen location Is not changed.

Procedure InvertArc (r: Rect; startAngle,arcAngle: integer);

InvertArc inverts the pixels enclosed by a wedge of the oval just inside the
specified rectangle: every white pixel becomes black and every black pixel
becomes white. StartAngle and arcAngle define the arc of the wedge as in
FrameArc. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

Procedure FillArc (r: Rect; startAngle,arcAngle: integer; pat:
Pattern);

FillArc fills a wedge of the oval just inside the specified rectangle with the

given pattern (in patCopy mode). StartAngle and arcAngle define the arc of
the wedge as in FrameArc. The grafPort's pnPat, pnMode, and bkPat are all

ignored; the pen location is not changed.

0

E-S0

Pascal Reference Manual QuickDraw

E.9.11 Calculations with Reglons
NOTE

Remember that if the parameters to one of the calculation routines
were defined in different grafPorts, you must first adjust them to be in
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see on the
screen. To adjust to a common coordinate system, see LocalToGlobal
and GlobalTol.ocal in Section E.9.17, Calculations with Points.

Function NewRon : RgnHandle;

NewRgn allocates space for a new, dynamic, variable-size region, initializes it
to the empty region (0,0,0,0), and returns a handle to the new region. Only
this function creates new regions; all other procedures just alter the size and
shape of regions you create. OpenPort calls NewRgn to allocate space for the
port's visRgn and clipRgn.

WARNINGS

Except when using visRgn or clipRgn, you mwst call NewRgn before
specifying a region's handle in any drawing or calculation procedure.

Never refer to a region without using its handle.

Procedure DisposeRgn (rgn: RgnHandle);

DisposeRgn deallocates space for the region whose handle is supplied, and
returns the memory used by the region to the free memory pool. Use this
only after you are completely through with a temporary region.

WARNING

Never use a region once you have deallocated it, or you will risk being
hung by dangling pointers!

Procedure CopyRgn (srcRgn,dstRgn: RgnHandle);

CopyRgn copies the mathematical structure of srcRgn into dstRgn; that is, it
makes a duplicate copy of sicRgn. Once this is done, sTcRgn may be altered
{or even disposed of) without affecting dstRan. CagoyRgn aves not create the
aestination regfon: you must use NewRgn to create the dstRgn before you
call CopyRgn.

E-51

Pascal Rererence Manual QuickDraw

Procedure SetEmptyRgn (rgn: RgnHandle):
SetEmptyRgn destroys the previous structure of the glven region, then sets the
new structure to the empty region (0,0,0,0).

Procedure SetRectRgn (rgn: RgnHandle; left, top, right,bottom: integer);

SetRectRgn destroys the previous structure of the given reglon, then sets the
new structure to the rectangle specified by left, top, right, and bottom.

If the specified rectangle is empty (i.e., left>=right or top>=-bottom), the region
Is set to the empty region (0,0,0,0).

Procedure RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the given region, then sets the new
structure to the rectangle specified by 1. This is operationally synonymous
with SetRectRgn, except the input rectangle is defined by a rectangle rather
than by four boundary coordinates.

Procedure OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving lines
and framed shapes for later processing as a reglon definition. while a region
is open, all calls to Line, LineTo, and the procedures that draw framed shapes
{(except arcs) affect the outline of the region. Only the line endpoints and
shape boundaries affect the region definition; the pen mode, pattern, and size
do not affect 1t. In fact, OpenRgn calls HidePen, so no drawing occurs on the
screen while the region is open (unless you called ShowPen just after OpenRgn,
or you called ShowPen previousty without balancing it by a call to HidePen).
Since the pen hangs below and to the right of the pen location, drawing lines
wit? even the smallest pen will change bits that lie outside the region you
define.

The outline of a region is mathematically defined and infinitely thin, and
separates the bitmap into two groups of bits: those within the region and
those outside it. A region should consist of one or more closed loops. Each
framed shape itself constitutes a loop. Any lines drawn with Line or LineTo
should connect with each other or with a framed shape. Even though the
on-screen presentation of a region Is clipped, the definition of a regien is not;
you can define a region anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

when a region is open, the current grafPort’s rgnSave field contains a handle
to information related to the region definition. If you want to temporarily
disable the collection of lines and shapes, you can save the current value of

E-52

Pascal Reference Mama! QuickDraw

this field, set the field to nil, and later restore the saved value to resume the
region definition.

WARNING

Do not call OpenRgn while another region is already open. All open
regions but the most recent will behave strangely.

Procedure CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes them into
a region definition, and saves the resulting region into the region indicated by
dstRon. You should perform one and only one CloseRgn for every OpenRgn.
CloseRgn calls ShowPen, balancing the HidePen call made by OpenRgn.

Here's an example of how to create and open a region, define a barbell shape,
close the region, and draw it:

barbell := NewRgn; {make a new region}
; : {begin collecting stuff}
SetRect (tempRect, 20, 20, 30, 50); {form the left weight}

FrameOval(tempRect);

SetRect(tempRect, 30, 30, 80, 40); {form the bar}

FrameRect (tempRect);

SetRect(tempRect, 80, 20, 90,50); {form the right weight}

FrameOval(tempRect);
CloseRgn(barbell). {we're done; save in barbell}
FillRgn(barbell, black); {draw it on the screen}
DisposeRgn(barbell): {we don't need you anymore.}

Procedure OffsetRgn (rgn: RgnHandle; oh,dv: integer);

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless you
subsequently call a routine to draw the region. If dh and dv are positive, the
movement is to the right and down; if either is negative, the corresponding
movement Is In the opposite direction. The region retains its size and shape.

NOTE

OffsetRgn is an especlally efficient operation, because most of the data
defining a region is stored relative to rgnBBox and so isn't actuailly
changed by OffsetRgn.

E-53

Pascal Reference Marsal GQUickOraw

Procedure InsetRgn (rgn: RgnHandle; dh, dv: integer);

InsetRgn shrinks or expands the reglon. All points on the region boundary are
moved inwards a distance of dv vertically and dh horizontally; if oh or av is
negative, the points are moved outwards in that direction. InsetRgn leaves
the region “centered” at the same position, but moves the outline in (for
positive values of dh and gv) or out (for negative values of dh and dv)..
InsetRgn of a rectangular region works just like InsetRect.

Procedure SectRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle);

SectRgn calculates the intersection of two regions and places the intersection
in a third reglon. 77 does not create the oestination reglon: you must use
NewRgn to create dstRgn before you call SectRgn. The dstRgn can be one of
the source reglons, if desired.

If the reglons do not intersect, or one of the regions is empty, the destination
is set to the empty region (0,0,0,0).

Procedure UnionRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle);
UnlonRgn calculates the union of two reglons and places the union in a third
reglon. 77/s qoes not create the destination reglon: you must use NewRgn to

create dstRgn before you call UnionRgn. The dstRgn can be one of the
source regions, if desired.

If both regions are empty, the destination is set to the empty region (0,0,0,0).

Procedure DiffRgn (SrcRgnA, srcRonB, dstRgn: RgnHandle);

DiffRgn subtracts stcRgnB from sToRgnA and places the difference in a third
reglon. 77/s aves not create the aestination region: you must use NewRgn to
create dstRgn before you call DiffRgn. The dstRgn can be one of the source
regions, if desired.

If the first source region is empty, the destination is set to the empty region
(0,0,0,0).

Procedure XorRgn (SrcRgnA, SToRgnB, dstRgn: RgnHandle),

XorRgn calculates the difference between the union and the intersection of
two reglons and places the result in a third region. 77/ abes not create the
aestination region: you must use NewRgn to create dstRgn before you call
XorRgn. The dstRgn can be one of the source regions, if desired.

If the regions are coincident, the destination is set to the empty region
(0000,

E-54

Pascal Reference Manual QuickDraw

Function PtInRgn (pt: Polnt; rgn: RgnHandle) : boolean;

PtInRgn checks whether the plxel below and to the right of the given
?oordlnate point is within the specified region, and returns true if so or false
f not.

Function RectInRgn (r: Rect; rgn: RgnHandle) : boolean;

RectlnRgn checks whether the glven rectangle intersects the specified region,
and returns true if the intersection encloses at least one bit or false if not.

Function EqualRgn (rgnA, rgnB: rgnHandle) : boolean;

EqualRgn compares the two regions and returns true if they are equal or false
if not. The two reglons must have identical sizes, shapes, and locations to be
considered equal. Any two empty reglons are always equal.

Function EmptyRgn (rgn: RgnHandle) : boolean;

EmptyRgn returns true if the region is an empty region or false if not. Some
of the clrcumstances In which an empty reglon can be created are: a NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous OpenRgn or with no
drawing after an OpenRgn; OffsetRgn of an empty region; InsetRgn with an
empty region or too large an Inset; SectRgn of nonintersecting regions;
untonRgn of two empty regions; and DiffRgn or XorRgn of two identical or
nonintersecting regions.

E£.9.12 Graphic Operations on Regions
These routines all depend on the coordinate system of the current grafPort. If
a region iIs drawn In a different grafPort than the one in which it was defined,
it may not appear in the proper position inside the port.

Procedure FrameRgn (rgn: RgnHandle);

FrameRgn draws a hollow outline Just Inside the specified region, using the
current grafPort’s pen pattern, mode, and size. The outline Is as wide as the
pen width and as tall as the pen height; under no circumstances will the
frame go outside the region boundary. The pen location Is not changed by
this procedure.

If a reglon is open and being formed, the outside outiine of the reglon being
framed is mathematically added to that region’s boundary.

Procedure PaintRgn (rgn: RgnHandle);

PaintRgn paints the specified region with the current grafPort’s pen pattern
and pen mode. The region on the bitmap is filled with the pnPat, according

E-55

Pascal Reference Manual QUIckDraw

to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

Procedure EraseRgn (rgn: RgnHandle);
EraseRgn paints the specified region with the current grafPort's background

pattern bkPat (in patCopy mode). The grafPort's pnPat and pnMode are
fgnored; the pen location is not changed.

Procedure InvertRgn (rgn: RgnHandle);

InvertRgn inverts the pixels enclosed by the specified region: every white
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pniMode, and bkPat are all ignored; the pen location is not changed.

Procedure Fi11Rgn (rgn: RgnHandle; pat: Pattern);

FillRgn fills the specified region with the given pattern (in patCopy mode).
The grafPort’s pnPat, ppMode, and bkPat are all ignored; the pen location Is
not changed. :

E.9.13 Bit Transfer Operations
Procedure ScrollRect (r: Rect; dh,av: integer; updateRgn: RgnHandle);

ScroliRect shifts (“scrolls”) those bits Inside the intersection of the specified
rectangle, visRgn, clipRgn, portRect, and portBits.bounds. The bits are shifted
a distance of dh horizontally and dv vertically. The positive directions are to
the right and down. No other bits are affected. Bits that are shifted out of
the scroll area are lost; they are neither placed outside the area nor saved.
The grafPort's background pattern bkPat fills the space created by the scroll.
In adfition, updateRgn is changed to the area fllled with bkPat (see Figure
E-21

E-56

Pascal Rerference Manual QuickDraw

BeforeScrollRect After ScroliRect{dstRect,-10,5...)

bkPat

QuickDraw_Q/

K

.

ickDraw

(__
dstRect updateRgn 10
Figure E-21
Scrolling

Figure E-21 shows that the pen locatlon after a ScrollRect Is in a aifferent
position relative to what was scrolled in the rectangle. The entire scrolled
item has been moved to different coordinates. To restore it to its coordinates
before the ScrollRect, you can use the SetOrigin procedure. For example,
suppose the dstRect here Is the portRect of the grafPort and its top left
corner is at (95,120). SetOrigin(105,115) will offset the coordinate system to
compensate for the scroll. Since the clipRgn and pen locatlon are not offset,
they move down and to the left.

Procedure CopyBits (srcBits, dstBits: BitMap; srcRect, dstRect: Rect:
mode: integer; maskRgn: RgnHandle);
CopyBlts transfers a bit image between any two bitmaps and clips the result
to the area specified by the maskRgn parameter. The transfer may be
performed in any of the elght source transfer modes. The result is always
clipped to the maskRgn and the boundary rectangle of the destination bitmap;
if the destination bitmap s the current grafPort’s portBits, it 1s also clipped
to the intersection of the grafPort’s clipRgn and visRgn. If you do not want
to clip to a maskRgn, just pass nil for the maskRgn parameter.

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
sreBits.bounds coordinates.

The bits enclosed by the source rectangle are transferred into the destination
rectangle according to the rules of the chosen mode.

E-S57

Pascal Reference Manual QuickDraw

The source transfer modes are as follows:

srcCopy srcXor notSrcCopy notSrcXor
sTcOr srcBic notSrcOr notSrcBic

The source rectangle Is completely aligned with the destination rectangle; if
the rectangles are of different sizes, the bit image is expanded or shrunk as
necessary to fit the destination rectangle. For example, If the bit image is a
circle in a square source rectangle, and the destination rectangle is not
square, the bit image appears as an oval In the destination (see Figure E-22).

i "uuxlll maskﬁgn

i
Source
FHH Transfer ¥ e
Source Bitmap Mode i .i.t

maskFign
=nil

Transter

Source Bltmap Mode HiliHERER i
Destinstion Bitmap
Flgure E-22
Operation of CopyBits

E.9.14 Pilctures
Function OpenPicture (picFrame: Rect) : PicHanole;

OpenPicture returns a handle to a new picture which has the given rectangle
as Its picture frame, and tells QuickDraw to start saving as the picture
definition all calls to drawing routines and all picture comments (if any).

OpenPlcture calls HidePen, so no drawing occurs on the screen while the
picture is open (unless you call ShowPen Just after OpenPicture, or you called
ShowPen previously without balancing it by a call to HidePen)

when a picture is open, the current graffort’s picSave field contains a handle
to information related to the picture definition. If you want to temporarily

Pascal Reference Manual QuUickOraw

disable the collection of routine calls and picture comments, you can save the
current value of this fleld, set the field to nil, and later restore the saved
value to resume the picture definition,

WARNING

Do not call OpenPicture while another picture is already open.

Procedure ClosePicture;

ClosePicture tells QuickDraw to stop saving routine calls and picture
comments as the definition of the currently open picture. You should perform
one and only one ClosePicture for every OpenPlcture. ClosePicture calis
ShowPen, balancing the HidePen call made by OpenPicture.

Procegure PicComment (kind,dataSize: integer; datatandle: QDHandle);

PicComment inserts the specified comment Into the definition of the currently
open picture. Kind identifies the type of comment. DataHandle is a handle
to additional data if desired, and dataSlize Is the slze of that data in bytes. If
there is no additional data for the comment, dataHandle should be nil and
dataSize should be 0. The application that processes the comment must
include a procedure to do the processing and store a pointer to the procedure
in the data structure pointed to by the grafProcs field of the grafPort (see
Section E.10, Customizing QuickDraw Operations).

Procedure DrawPicture (myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the given picture to scale in dstRect, expanding or
shrinking it as necessary to align the borders of the picture frame with
OstRect. DrawPicture passes any picture comments to the procedure accessed
indirectly through the grafProcs field of the grafPort (see PicComment above).

Procedure KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle Is supplied, and
returns the memory used by the picture to the free memory pool. Use this
only when you are completely through with a picture.

E.9.15 cCalculations with Polygons

Function OpenPoly : PolyHandle;

OpenPoly returns a handle to a new polygon and tells QuickDraw to start
saving the polygon definition as specified by calls to line-drawing routines.
while a polygon is open, all calls to Line and LineTo affect the outline of the
polygon. Only the line endpoints affect the polygon definition; the pen mode,
pattern, and size do not affect it. In fact, OpenPoly calls HidePen, 5o no

E-59

Pascal Reference Marnual QuickOraw

drawing occurs on the screen while the polygon is open (unless you call
ShowPen just after OpenPoly, or you called ShowPen previously without
balancing it by a call to HidePen).

A polygon should consist of a sequence of connected lines. Even though the
on-screen presentation of a polygon is clipped, the definition of a polygon is
not; you can define a polygon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

when a polygon is open, the current grafPort's polySave fleld contalns a
handle to information related to the polygon definition. If you want to
temporarily disable the polygon definition, you can save the current value of
this field, set the field to nil, and later restore the saved value to resume the
polygon definition.

WARNING

Do not call OpenPoly while another polygon is already open.

Procedure ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the currently open
polygon and computes the polyBBox rectangle. You should perform one and
only one ClosePoly for every OpenPoly. ClosePoly calls ShowPen, balancing
the HidePen call made by OpenPoly.

Here's an example of how to open a polygon, define it as a triangle, close it,
and draw it

triPoly := OpenPoly; {save handle and begin collecting stuff}

HoveTo(300, 100); { move to first point ana }
LineTo(400, 200); { form }
LineTo(200, 200); { the }
LineTo(300, 100); { triangle }
ClosePoly; { stop collecting stuff }
Fi11Poly(triPoly, gray); { draw it on the screen }
Ki11Poly(triPoly); { we're all done }

Procecure KillPoly (poly: PolyHandle);

KillPoly deallocates space for the polygon whose handle is supplied, and
returns the memory used by the polygon to the free memory pool. Use this
only after you are completely through with a polygon.

Procedure OffsetPoly (poly: PolyHandle; dh,dv: integer);

OffsetPoly moves the specified polygon on the coordinate plane, a distance of
dh horizontally and dv vertically. This does not affect the screen unless you

E-60

Pascal Reference Manual QuUickOraw

subsequently call a routine to draw the polygon. If dh and dv are positive,
the movement fs to the right and down; if either is negative, the correspond-

i?g movement Is in the opposite direction. The polygon retains its shape and
size.

NOTE

OffsetPoly Is an especially efficient operation, because the data
defining a polygon is stored relative to polyStart and so isn't actually
changed by OffsetPoly.

E.9.16 Graphic Operations on Polygons
Procedure FramePoly (poly: PolyHandle);

FramePoly plays back the line-drawing routine calls that define the given
polygon, using the current grafPort's pen pattern, mode, and size. The pen
will hang below and to the right of each point on the boundary of the
polygon; thus, the polygon drawn will extend beyond the rignt and bottom
edges of poly .polyBBox by the pen width and pen height, respectively. All
other graphic operations occur strictly within the boundary of the polygon, as
for other shapes. You can see this difference in Figure E-23, where each of
the polygons Is shown with its polyBBox

FramePoly FaintPoly

Figure E-23
Drawing Polygons
If a polygon is open and being formed, FramePoly affects the outline of the
polygon just as if the line-drawing routines themselves had been called. If a

region is open and being formed, the outside outline of the polygon being
framed is mathematically added to the reglon's boundary.

E-61

Pascal Reference Marnual QuickDraw

Proceaure PaintPoly (poly: PolyHandle);

PaintPoly paints the specified polygon with the current grafPort’s pen pattern
and pen mode. The polygon on the bitmap is fllled with the pnPat, according
to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

Procedure ErasePoly (poly: PolyHandle);

ErasePoly paints the specified polygon with the current grafPort's background
pattern bkPat (in patCopy mode). The pnPat and pnMode are ignored; the pen
location is not changed.

Procedure InvertPoly (poly: PolyHandle),

InvertPoly inverts the pixels enclosed by the specified polygon: every white
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillPoly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bikPat are all ignored; the pen location is
not changed.

E.9.17 Calculations with Points
Procedure AddPt (srcPt: Point; var dstPt: Point);

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and returns
the result in dstPt.

Procedure SubPt (srcPt: Point; var dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, and
returns the result in dstPt.

Procedure SetPt (var pt: Point; h,v: integer);
SetPt assigns two integer coordinates to a variable of type Point.

Function EqualPt (ptA,ptB: Point) : boolean;

EqualPt compares the two points and returns true if they are equal or false if
not.

E-62

Pascal Reference Manual QuUickDraw

Procedure LocalToGIobal (var pt: Point);

LocalToGlobal converts the glven point from the current grafPort's local
coordinate system into a global coordinate system with the origin (0,0) at the
top left corner of the port's bit image (such as the screen). This global point
can then be compared to other global points, or be changed into the local
coordinates of another grafPort.

Since a rectangle is defined by two points, you can convert a rectangle into
global coordinates by performing two LocalToGlobal calls. You can also
convert a rectangle, region, or polygon into global coordinates by calling
OffsetRect, OffsetRgn, or OffsetPoly. For examples, see GlobalToLocal below.

Procedure GlobalToLocal (var pt: Point);

GlobalTolLocal takes a point expressed in global coordinates (with the top left
corner of the bitmap as coordinate (0,0)) and converts it into the local
coordinates of the current grafPort. The global point can be obtained with
the LocalToGlobal call (see above). For example, suppose a game draws a
“pall” within a rectangle named ballRect, defined In the grafPort named
gamePort (as illustrated below in Figure E-24). 1If you want to draw that ball
in the grafPort named selectPort, you can calculate the ball's selectPort
coordinates like this:

SetPort(gamePort); { start in origin port
selectBall := ballRect; { make a copy to be moved
LocalToGlobal(selectBall.topLeft); { put both corners into
LocalToGlobal(selectBall.botRight); { glooal coordinates

g St Nyt gt

SetPort(selectPort); {.switch to destination port}
GlobalToLocal(selectBall.topLeft); { put both corners into

GlobalToLocal(selectBall.botRight); { these local coordinates }
Fill0val(selectBall, ballColor); { now you have the ball! }

E-63

Pascal Reference Manual QuickDraw

20 50 40 i5 45 85
40 _t (N -30-! i f
70- 0-

0 30 70
0 -_l] 1
120- 50-
- 30 - /l‘
gsmePort / - . #,g': \ selectPort
LocalToGlobel |17 GlobalToLocal
80_
Figure E-24

Converting between Coordinate Systems

You can see from Figure E~24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top left
corner of the local grafPort’s boundary rectangle. You could also do this with
OffsetRect. In fact, the way to convert reglons and polygons from one
coordinate system to another is with OffsetRgn or OffsetPoly rather than
LocalToGlobal and GlobalTolLocal. For example, if myRgn were a reglon
enclosed by a rectangle having the same coordinates as ballRect in gamePort,
you could convert the region to global coordinates with

OffsetRgn(myRgn, -20, -40);
and then convert it to the coordinates of the selectPort grafPort with
offsetRgn{myRgn, 15, -30);
£.9.18 Miscellaneous Utllitles
Function Random : integer;

Random returns an integer, uniformly distributed pseudo-random, in the range
from -32768 through 32767. The value returned depends on the global
variable randSeed, which InitGraf initializes to 1; you can start the sequence
over agaln from where it began by resetting rangSeed to 1.

E-64

Pascal Reference Manual QuickDraw

Functlon GetPixel (h, v: integer) : boolean;

GetPixel looks at the pixel associated with the glven coordinate point and
returns true if it is black or false if it is white. The selected pixel is
immeaiately below and to the right of the point whose coordinates are given
in h and v, in the local coordinates of the current grafPort. There is no
guarantee that the specified plxel actually belongs to the port, however; it
may have been drawn by a port overlapping the current one. To see if the
point indeed belongs to the current port, call PtInRgn(ptthePort ~.visRgn)

Procedure StuffHex (thingPtr: QDPtr; s: Strass);

StuffHex pokes bits (expressed as a string of hexadecimal digits) into any data
structure. This is a good way to create cursors, patterns, or bit images to be
"stamped” onto the screen with CopyBits. For example,

StuffHex(astripes, *0102040810204080")
places a striped pattern into the pattern variable stripes.
WARNING

There is no range checking on the size of the destinatlon variable. It's
easy to overrun the variable and destroy something if you don‘t know
what you're doing. ’

Procedure ScalePt (var pt: Point; srcRect,dstRect: Rect):

A wldth and height are passed in pt; the horizontal component of pt is the
width, and the vertical component of pt is the height. ScalePt scales these
measurements as follows and returns the result in pt: it multiplies the glven
width by the ratio of dstRect's width to srcRect’s width, and multiplies the
given helght by the ratio of dstRect's height to srcRect's height. In Figure
E-25, where dstRect's width is twice srcRect's width and its height is three
times srcRect's height, the pen wldth Is scaled from 3 to 6 and the pen height
is scaled from 2 to 6.

E-65

Pascal Rererence Manual QUickDraw

g 3 1{31:8

ScalePt scales pen size (3,2) to (6,6)
MapFt maps point (3,2) to (18,7)

Figure E-25
ScalePt and MapPt

Procedure MapPt (var pt: Point; srcRect, dstRect: Rect);

Glven a point within srcRect, MapPt maps it to a similarly located point
within dstRect (that Is, to where it would fall if it were part of a drawing
being expanded or shrunk to fit dstRect). The result is returned in pt. A
corner point of srcRect would be mapped to the corresponding cormer point of
dstRect, and the center of srcRect to the center of dstRect. In Figure E-25
above, the point (3,2) in srcRect is mapped to (18,7) in dstRect. FromRect and
dstRect may overlap, and pt need not actually be within srcRect.

E-66

Pascal Rererence Marnual QuickDraw

WARNING

Remember, If you are going to draw inside the rectangle in dstRect,
you will probably also want to scale the pen size accordingly with
ScalePt.

Procedure MapRect (var r: Rect; srcRect,dstRect: Rect);

Given a rectangle within srcRect, MapRect maps it to a similarly located
rectangle within dstRect by calling MapPt to map the top left and bottom
rignt corners of the rectangle. The result is returned in 1.

Procedure MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect):

Glven a region within srcRect, MapRgn maps it to a similarly located region
within dstRect by calling MapPtL 1o map all the points in the region.

Procedure HapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Glven a polygon within srcRect, MapPoly maps it to a similarly located
polygon within dstRect by calling MapPt to map all the points that define the

polygon.

E.10 Customizing QuickDraw Operations
For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic graphic operations on the shape: frame, paint, erase,
invert, and fill. Those procedures in turn call a low-level drawing routine for
the shape. For example, the FrameOval, PaintOval, EraseOval, InvertOval, and
FillOval procedures all call a low-level routine that draws the oval. For each
type of object QuickDraw can draw, Including text and lines, there is a
pointer to such a routine. By changing these pointers, you can install your
own routines, and either completely override the standard ones or call them
after your routines have modified parameters as necessary.

Other low-level routines that you can install in this way are:
* The procedure that does bit transfer and Is called by CopyBits.

* The function that measures the width of text and is called by Charwidth,
Stringwidth, and Textwidth.

* The procedure that processes plcture comments and is called by
DrawPicture. The standard such procedure ignores picture comments.

* The procedure that saves drawing commands as the definition of a picture,
and the one that retrieves them. This enables the application to draw on
remote devices, print to the disk, get picture input from the disk, and
support large pictures.

E-67

Pascal Reference Manual QuUickDraw

The grafProcs fleld of a grafPort determines which low-level routines are
called; {f it contains nil, the standard routines are called, so that all
operations In that grafPort are done in the standard ways described in this
appendix. You can set the grafProcs field to point to a record of pointers to
routines. The data type of grafProcs is QDProcsPtr:

type QDProcsPtr = “QDProcs:

QDProcs = record
textProc: QoPtr; {text drawing}
lineProc: Qortr; {line drawing)
rectProc: goPtr; {rectangle drawing}
TRectProC: QOPtr; {roundRect drawing}
ovalProc: QoPtr; {oval drawing}
arcProc: QOPtr; {arc/wedge drawing}
polyProc: QoPtr; {polygon drawing}
rgnProc: QOPtr; {region drawing}
bitsProc: QoPtr; {bit transfer}
commentProc: QDPtr; {picture comment

processing}
txMeasProc: - QDPtr; {text width measurement}
getPicProc: QoPtr; {picture retrieval}
putPicProc: QDPtr {picture saving}
end;

Procedure SetStdProcs (var procs: QDProcs);

SetStaProcs s provided to assist you in setting up a QDProcs record. It sets
all the fields of the given QDProcs to point to the standard low-level
routines. You can then change the cnes you wish to point to your own
routines. For example, if your procedure that processes picture comments is
named MyComments, you will store @MyComments in the commentProc fleld
of the QDProcs record.

The routines you Install must of course have the same calling sequences as
the standard routines, which are described below. The standard drawing
routines tell which graphic operation to perform from a parameter of type
Grafverb.

type GrafVerb = (frame, paint, erase, invert, fill);

when the grafVerb is fill, the pattern to use when filling Is passed In the
fillPat field of the grafPort.

Procedure StdText (byteCount: integer; textBuf: QOPtr; numer, denom:
Point);

StdText Is the standard low-level routine for drawing text. It draws text from
the arbitrary structure in memory specified by textBuf, starting from the first
byte and continulng for byteCount bytes. Numer and denom specify the

E-68

Fascal Rererence Manusl GickCraw

scaling, If any: numer.v over denom.v gives the vertical scaling, and numer.h
over denom.h gives the norizontal scaling.

" Procedure StdLine (newPt: Point);

StdLine is the standard low-level routine for drawing a line. It draws a line
from the current pen location to the location specified (In local coordinates)
by newPt.

Procedure StdRect (verb: GrafVerb; r: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It draws
the given rectangle according to the specified grafverb.

Procedure StoRRect (verb: GrafVerb; r: Rect; ovalwidth, ovalHelght:
integer);

StoRRect {s the standard low-level routine for drawing a rounded-corner

rectangle. It draws the glven rounded-corner rectangle according to the

specified grafverb. Ovalwidth and ovalHeight specify the dlameters of

curvature for the corners.

Procedure StdOval (verb: Grafverb; r: Rect);

Std0Oval s the standard low-level routine for drawing an oval. It draws an
oval Inside the given rectangle according to the specified grafverb.

Procedure StdArc (verb: GrafVerb; r: Rect; startAngle, arcAngle:
integer);

StdArc Is the standard low-level routine for drawing an arc or a wedge. It
draws an arc or wedge of the oval that fits inside the glven rectangle. The
grafverb specifies the graphic operation; if it's the frame operation, an arc s
drawn; otherwise, a wedge is drawn.

Procedure StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a poiygon. It draws the
given polygon according to the specified grafverb.

Procedure StoRgn (verb: GrafVerb; rgn: RgrHandle);

StdRgn is the standard low-level routine for drawing a region. It draws the
given region according to the specified grafverb.

E-69

Pascal Reference Marnia! QUickDraw

Procedure StaBits (var srcBits: BitMap; var srcRect, dstRect: Rect:
mode: integer; maskRgn: RgnHandle);

StaBits is the standard low-level routine for doing bit transfer. It transfers a

bit Image between the glven bitmap and thePort .portBits, just as if CopyBits

were called with the same parameters and with a destination bitmap equal to
thePort ~ portBits.

Procegure Stacomment (kind, dataSize: integer; dataHandle: QDHandle);

StdComment is the standard low-level routine for processing a picture
comment. Kind ldentifies the type of comment. DataHandle is a handle to
additional data, and dataSize is the size of that data In bytes. If there Is no
additional data for the command, dataHandle will be nil and dataSize will be
0. StdComment simply ignores the comment.

Function StdTxtteas (byteCount: integer; textBuf: QDPLr; var numer,
denom: Point; var info: FontInfo) : integer;

StdTxMeas is the standard low-level routine for measuring text width. It
returns the width of the text stored in the arbitrary structure in memory
specified by textBuf, starting with the first byte and continuing for byteCount
bytes. Numer and denom specify the scaling as In the StoText procedure; note
that StdTxMeas may change them.

Procequre StdGetPic (dataPtr: QDPtr; byteCount: integer);

StdGetPic is the standard low-level routine for retrieving inforrmation from
the definition of a picture. It retrieves the next byteCount bytes from the
definition of the currently open picture and stores them in the data structure
pointed to by dataPtr.

Procedure StdPutPic (dataPtr: QOPtr; byteCount: integer);

StdPutPic s the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open
picture the drawing commands stored in the data structure pointed to by
dataPtr, starting with the first byte and continuing for the next byteCount
bytes.

E-70

Pascal Reference Mamual QuickOraw

E.11 Using QuickDraw from Assembly L.
All QuickDraw routines can be called from assembly-language programs as
well as from Pascal. when you write an assembly-language program to use
these routines, though, you must emulate Pascal's parameter passing and
variable transfer protocols.

This section discusses how to use the QuickDraw constants, global variables,
data types, procedures, and functions from assembly language.

The primary ald to assembly language programmers is a file named
QD/GRAFTYPES.TEXT. If you use .INCLUDE to include this file when you
assemble your program, all the QuickDraw constants, offsets to locations of
global varlables, and offsets Into the flelds of structured types will be
avallable In symbolic form.

E.11.1 Constants
QuickDraw constants are stored in the QD/GRAFTYPES.TEXT file, and you
can use the constant values symbolically. For example, if you've loaded the
effective address of the thePort".txMode field into address register A2, you
can set that field to the srcXor mode with this statement:

MOVE.¥ #SRCXOR, (A2)

To refer to the number of bytes occupled by the QuickDraw global variables,
you can use the constant GRAFSIZE. Wwhen you call the InitGraf procedure,
you must pass a pointer to an area at least that large.

E.11.2 Data Types
Pascal's strong typing ability lets you write Pascal programs without really
considering the size of a variable. But in assembly language, you must keep
track of the size of every variable. The sizes of the standard Pascal data
types are as follows:

Type Size

integer word (2 bytes)
longint Long (4 bytes)
boolean word (2 bytes)
char word (2 bytes)
real Long (4 bytes)

Integers and longints are in two's complement form; booleans have thelr
boolean value In bit 8 of the word (the low-order bit of the byte at the same
location); chars are stored in the high-order byte of the word; and reals are In
the KCS standard format.

E-71

Pascal Rerference Marnual QuickOraw

The QuickDraw simple data types listed below are constructed out of these
fundamental types.

Type size

QDPU Long (4 bytes)
QDHandle Long (4 bytes)
word Long (4 bytes)
Str2s5 Page (256 bytes)
Pattem 8 bytes

Bits16 32 bytes

Other data types are constructed as records of variables of the above types.
The size of such a type is the sum of the sizes of all the fields in the record;
the flelds appear in the variable with the first fleld In the lowest address.

For example, consider the data type BitMap, which is defined as follows:

type BitHap = record
baseAddr: QOPtr;
rowBytes: integer;
bounds: Rect
end;

This data type would be arranged In memory as seven words: a long for the
baseAddr, a word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you in referring to the fields
inside a variable that has a structure like this, the QD/GRAFTYPES.TEXT file
defines constants that you can use as offsets into the fields of a structured
variable. For example, to move a bitmap's rowBytes value into D3, you would
execute the following Instruction:

HOVE.W HYBITMAP+ROWBYTES, D3

Dispiacements are given in the QD/GRAFTYPES.TEXT file for all flelds of all
data types defined by QuickDraw.

To do double indlrection, you perform an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top coordinate
of a region's enclosing rectangle:

MOVE.L MYHANDLE, A1 ; Load handle into A1
MOVE.L (A1).A1 2 Use handle to get pointer
MOVE.¥ RGNBBOX+TOP(A1),D3 ; Load value using pointer

E-72

Pascal Reference Manual QuickOraw

WARNING

For regions (and all other variable-length structures with hangdles), you
must not move the pointer into a register once and just continue to use
that pointer; you must do the double indirectlon each time. Every
QuickDraw call you make can possibly trigger a heap compaction that
renders all pointers to movable heap items (like regions) invalid. The
handles will remain valid, but pointers you've obtalned through handles
can be rendered Invalid at any subroutine call or trap in your program.

E.11.3 Global Variables
Register AS always points to the section of memory where global varlables
are stored. The QD/GRAFTYPES.TEXT file defines a constant GRAFGL.0B
that points to the beginning of the QuickDraw varlables In this space, and
other constants that point to the individual variables. To access one of the
varlables, put GRAFGLOB In an address register, sum the constants, and index
off of that register. For example, if you want to know the horizontal
coordinate of the pen locatlon for the current grafPort, which the global
variable thePort points to, you can give the following instructions:

HOVE.L GRAFGLOB(AS),A0 ; Point to QuickDraw globals
HOVE.L THEPORT(AO), Al ; Get current grafPort
HOVE.W PNLOC+H(A1), DO : Get thePort”.pnLoc.h

E.11.4 Procedures and Functions
To call a QuickDraw procedure or function, you must push all parameters to it
on the stack, then JSR to the function or procedure. When you link your
program with QuickDraw, these JSRs are adjusted to refer to QuickDraw's
jump table, so that @ JSR into the table redirects you to the actual location
of the procedure or function.

The only difficult part about calling QuickDraw procedures and functions is
stacking the parameters. You must follow some strict rules:

» Save all registers you wish to preserve erore you begin pushing
parameters. Any QuickDraw procedure or function can destroy the
contents of the registers A, Al, DO, D1, and D2, but the others are never
altered.

* Push the parameters In the order that they appear in the Pascal procedural
interface.

* For booleans, push a byte; for integers and characters, push a word; for
pointers, handles, long integers, and reals, push a iong.

* For any structured variable longer than 4 bytes, push a pointer to the
variable.

E-73

Pascal Reference Marnual QuickDraw

* For all var parameters, regardless of size, push a pointer to the varlable.

¢ When calling a function, /Zrst push a null entry equal to the size of the
function result, &n push all other parameters. The result will be left on
the stack after the function returns to you.

This makes for a lengthy interface, but it also guarantees that you can mock
up a Pascal version of your program, and later translate it into assembly code
that works the same. For example, the Pascal statement

blackness := GetPixel (50, mousePos.v);
would be written In assembly language like this:

CLR.¥ -(sP) Save space for boolean result
HOVE.W #50,-(SP) Push constant 50 (decimal)
MOVE.W MOUSEPOS+V, -(SP) Push the value of mousePos.v
JSR GETPIXEL Call routine

MOVE.W (SP)+, BLACKNESS ; Fetch result from stack

This is a simple example, pushing and pulling word-long constants. Normally,
you'll be pushing more pointers, using the PEA (Push Effective Address)

Se Mo N

o N

instruction:
FillRoundRect(myRect, 1, thePort”.pnSize.v, white);
PEA MYRECT ; Push pointer to myRect
MOVE.W #1,-(SP) ; Push constant 1

MOVE.L GRAFGLOB(AS), AD > Point to QuickDraw globals
MOVE.L THEPORT(AD), Al ; Get current grafPort

MOVE.W PNSIZE+V(A1), -(SP) ; Push value of thePort”.pnSize.v
PEA WHITE(AD) 2 Push pointer to global variable white
JSR FILLROUNDRECT > Call the subroutine

To call the TextFace procedure, push a word in which each of seven bits
represents a stylistic variation: set bit U for bold, bit 1 for italic, bit 2 for
underline, bit 3 for outline, bit 4 for shadow, bit 5 for condense, and bit 6 for
extend.

E-74

Pascal Rererernce Manal QuickDraw

E.12 Graf3D: Three-Dimensional Graphics
Graf3D helps you map three-dimensional images onto the two-dimensional
space used by QuickDraw. If this Is your first exposure 1o three-dimensional
graphics, you will find Graf3D's standard procedures and functions a great help
In producing visually exciting graphs, charts, and drawings. If you are familiar
with Applegraphics for the Apple 11, you will feel right at home with Graf3D’s
use of real variables and world coordinates.

with three-dimensional graphics you can present objects In true perspective,
which will evoke for users their everyday environment. Graf3D helps you
represent complex business information pictorially; for example, a manager can
see important relationships among sales, profits, and advertising dollars in a
three-dimensional graph.

You may be interested in a more theoretical discussion of three-dimensional
graphics, including an explanation of some of the basic concepts of Graf3D,
such as the viewing pyramid. A good, illustrated discussion appears in the
section on three-dimensional computer graphics in Arincples or interactive
Computer Graphics by Willilam M. Newman and Robert F. Sproull (New York:
McGraw-Hill, 1973),

E.12.1 How Graf3D is Related to QuickDraw
Graf3D is a Pascal unit that makes the QuickDraw calls necessary to produce
three-dimensional graphics. It provides you with an easy-to-use real number
interface to QuickDraw's integer coordinates. You could, of course, write
your own QuickDraw calls to perform the same functions Graf3D provides for
you, but that would be a little like golng to the trouble of writing your own
compiler.

E.12.2 Features of Graf3D
s A camelra-eye view. This allows you to set the point of view from which
the observer sees the object independently from the coordinates of the
object itself. The camera is sel up with the ViewPort, LookAt, and
viewAngle procedures. You can set the focal length of the camera as if
you had a cholce of telephoto, wide angle, or normatl lenses.

o Three-dimensional clipoing to a the pyramle.. The apex of the pyramid is
at the point of the camera eye, and the base of the pyramid Is equivalent
to the ViewPort. Wwhen you use the Clip3D function, only objects forward
of the camera eye and within the pyramid are displayed on the screen.

* Two-almensional paint and line canabllity using real coorginates. Graf3D
provides commands corresponding to the QuickDraw commands but using
real cooroinates instead of integers. with real coordinates you have a
larger dynamic range for graphics calculations; with integer coordinates
you get faster drawing time. For reals, the range is

14 x 1079 to 34 x 1078

E-75

Pascal Rererence Manual QuickDraw

o Two-aimensional or three-aimensional rotat/on. You can rotate an object
along any or all axes simultaneously, using the Pitch, Yaw, and Roll
procedures.

s Transiation ana scaling or objects in one or more axes Simuitaneously.
Translation means movement anywhere in three-dimensional space. Scaling
means shrinking or expanading.

E.12.3 Graf3D Data Types
Graf3D declares and uses the following data types:

Point3D: A PoInt3D contains three real number coordinates: x, y, and 2.

Graf3D uses X, y, and 2 for real number coordinates to distinguish
between the h and v integer screen coordinates in QuickDraw.

Polnt2D: A PolntZD is just like a Point3D but contalns only x and y

coordinates.

XfMatrlx: The XfMatrix is a 4x4 matrix of real values, used to hold a

transformation equation. Each transforming routine alters this
matrix so that it contalns the concatenated effects of all
transformations applied.

POIL3DPtI: A Port3DPtr is a pointer to a Port3D.

Port3D:

A Port3D contains all the state variables needed to map real
number coordinates into integer screen coordinates. They are as
follows:

GPort: a pointer to the grafPort associated with this Port3D.

viewRect: the viewing rectangle within the grafPort; the base of the
viewing pyramid.

xLeft, yTop, xRight, yBottom: world coordinates corresponding to
the viewRect.

pen: three-dimensional pen 1ocation.
penPrime: the pen location transformed by the xForm matrix.
eye: three-dimensional viewpoint location established by ViewAngle.

hSize, vSize: half-width and half-height of the viewRect in screen
coordinates.

hCenter, vCenter: center of the viewRect in screen coordinates.

xCotan, yCotan: viewing cotangents set up by ViewAngle, used by
Clip3D.

ident: a boolean that allows the transformation to be skipped when
when xForm is an identity matrix,

xForm: a 4x4 matrix that holds the net result of all transformations.

E-76

Pascal Reference Mamual QUICKDraw

E.12.4 Graf3D Procedures and Functions
The following procedures and functions are provided in Graf3D.

Procedure Open3DPort(port: Port3DPtr);

Open3DPort initializes all the fields of a Port3D to thelr defaults, and makes
that Port3D the current one. Gport is set to the currently open grafPort.
The defaults established are:

thePort3D:=port;
port”.GPort:=thePort;

ViewPort(thePort”.portRect);

WITH thePort”.portRect DO LookAt(left, top, rignt, bottom);
ViewAngle(0);)

Identity;

HoveTo3D(0, 0, 0);

Procedure SetPort3D(port: Port3DPtr);

SetPort3D makes port the current Port3D and calls SetPort for that Port3D's
associated grafPort. SetPort3D allows an application to use more than one
Port3D and switch between them.

Procedure GetPort3D(var port: Port3DPtr):

GetPort3D returns a pointer to the current Port3D. This procedure is useful
when you are using several Port3Ds and want to save and restore the current
one.

Procedure MoveTo2D(x, y: real); Procedure MoveTo3D(x y,z: real);
Procedure HoveZD(dx, dy: real); Proceoure Hove3D(dx, dy, dz: real);

These procedures move the pen in two or three dimensions without drawing
lines. The real number coordinates are transformed by the xForm matrix and
projected onto flat screen coorginates; then Graf3D calls QuickDraw's MoveTo
procedure with the result.

Procedure LineTo2D(x, y: real); Procedure LineTo3D(x, y,z: real);
Procedure Line2D(dx dy: real); Procedure Line3D(dx dy,dz: real).

These procedures draw two- and three-dimensional lines from the current pen
location. LineTo2D and Line2D stay on the same z-plane. The real number
coordinates are first transformed by the xForm matrix, then clipped to the
viewing pyramid, then projected onto the flat screen coordinates and drawn by
calling QuickDraw's LineTo procedure.

E-77

Pascal Reference Manual QuUIckOraw

Function Cl1p3D(srcl, src2: Point3D; var dstl,dst2: Point): boolean;

Clip3D clips a three-dimensional line segment to the viewing pyramid and
returns the clipped line projected onto screen coordinates. Clp3D returns
true if any part of the line is visible. If no part of the line is within the
viewing pyramid, Clip3D returns false.

Procedure SetPt3D(var pt3D: Point3D; X y,z: real);
SetPt3D assigns three real numbers to a Point3D.

Procegure SetPtzD(var pt2D: Point2D; X y: real):
SetPt2D assigns two real numbers to a Point2D.

E.12.41 Setting Up the Camera (ViewPort, LookAt, and ViewAngle)
Procedures ViewPort, LookAt and ViewAngle position the image in the
grafPart, alm the camera, and choose the lens focal length in order to map
three-dimensional coordinates onto the flat screen space. These procedures
may be called in any order.

Procedure ViewPort(r: Rect);

ViewPort specifies where to put the image in the grafPort. The viewPort
rectangle is In integer QuickDraw coordinates, and tells where to map the
LookAt coordinates.

Procedure LookAt(left, top, right, bottom: real);

LookAt specifies the real number x and y coordinates corresponding to the
viewRect.

Procedure ViewAngle(angle: real);

ViewAngle controls the amount of perspective by specifying the horizontal
angle (in degrees) subtended by the viewing pyramid. Typical viewing angles
are 0° (no perspective), 10° (telephoto lens), 25° (normal perspective of the
human eye), and 80° (wide angle lens).

E.13.42 The Transformation Matrix
The transformation matrix allows you to impose a coordinate transformation
between the coordinates you plot and the viewing coordinates. Each of the
transformation procedures concatenates a cumulative transformation onto the
xForm matrix. Subsequent lines drawn are first transformed by the xFomm
matrix, then projected onto the screen as specified by viewPort, LookAt, and
ViewAngle.

Procedure Identity;
Identity resets the transformation matrix to an identity matrix.

E-78

Pascal Rererence Maal! QuUickODraw

Procedure Scale(xFactor, yFactor, zFactor: real);

Scale modifies the transformation matrix so as to shrink or expand by xFactor,
yFactor, and zFactor. For example, Scale(2.0,2.0,2.0) will make everything
come out twice as big when you draw.

Procedure Translate(dx, dy,dz: real);

Translate modifies the transformation matrix so as to displace by dxdy.dz.

Procedure Pitch(xAangle: real);

Pitch modifies the transformation matrix so as to rotate xAngle degrees
around the x axis. A positive angle rotates clockwise when looking at the
origin from positive x.

Procedure Yaw(yAngle: real);

Yaw modifies the transformation matrix so as to rotate yAngle degrees around
the y axis. A positive angle rotates clockwise when looking at the origin
from positive y.

Procedure Roll(zAngle: real);

Roll modifies the transformation matrix so as to rotate zAngle degrees around
the z axis. A positive angle rotates clockwise when looking at the origin
from positive z.

Procedure Skew(zAngle: real);

Skew modifies the transformation matrix so as to skew zAngle degrees
around the z axis. Skew only changes the X coordinate; the result is much
like the slant QuickDraw glves to itallc characters. (Skew(15.0) makes a
reasonable italic.) A positive angle rotates clockwise when looking at the
orlgin from positive 2.

Procegure TransForm(src: Point3D; var dst: Point3D);

Transform applies the xForm matrix 10 src and returns the result as dst. If
the transformation matrix is ldentity, dst will be the same as src.

E-79

Pascal Refererce Manual QuickOraw

E.13 QuickDraw Interface
UNIT QuickDrauw;

{ cCopyright 1983 Apple Computer Inc. }
INTERFACE

CONST srcCopy
srcor
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
patCopy
patOr
patxor
patBic
notPatCopy
notPatOr
notPatXor
notPatBic

&

{ the 16 transfer modes }

Se Ve Na Ne N N

Ne
sRAPEL)

HHHHHH\O‘@\JO\WFWNH

&

{ QuickDraw color separation constants }

normalBit =0; { normal screen mapping }
inverseBit = 1; { inverse screen mapping
redBit = 4 { RGB additive mapping }
greenBit = 3;

blueBit =2

cyanBit = 8; { cMYBk subtractive mapping }
magentaBit = 7;

yellowBit = 6;

blackBit - = 5;

blackColor = 33; { colors expressed in these mappings }
whiteColor = 30;

redColor = 205;

greenColor = 341;

blueColor = 409;

cyanColor = 273;

magentaColor = 137;

yellowColor = 69;

picLParen = 0; { standard picture comments }
picRParen =1

E-80

Pascal Referernce Marnial! QuUickOraw

TYPE QDByte = -128..127;
QDPLY = “QDByte; { blind pointer }
QDHandle = “QDPtr: { blind handle }
Str2ss = String[255];
Pattern = PACKED ARRAY[0..7] OF 0..255;
Bitsi6 = ARRAY[0..15] OF INTEGER;
VHSelect = (v,h);
Grafverb = (frame,paint,erase, invert, fill);
StyleItem = (bold, italic, underline, outline, shadow, condense,
extend);
Style = SET OF StyleItem
FontInfo = RECORD

ascent: INTEGER;
descent: INTEGER;
widMax: INTEGER;
leading: INTEGER;
END;

Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER);
END;

Rect = RECORD CASE INTEGER OF

0: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER);

1: (topLeft: Point;

botRight: Point);
END;

E-81

Pascal Reference Mamal QuickDraw

BitMap = RECORD
baseAddr: QOPtr;
rowBytes: INTEGER;
bounds: Rect;
END;

Cursor = RECORD
data: Bitsie;
mask : Bitsie;
hotSpot: Point;
END;

PenState = RECORD
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern;

END;
PolyHandle = “PolyPtr;
PolyPtr = “Polygon;
Polygon = RECORD
polySize: INTEGER;
polyBBox: Rect;
polyPoints: ARRAY[0..0] OF Point;
END;
RgnHandle = “RgnPtr;
RognPtr = “Region;
Region = RECORD
rgnSize: INTEGER; { rgnSize = 10 for rectangular }
TgnBBoX: Rect;
{ plus more data if not rectanguliar }
END;
PicHandle = "PicPtr;
PicPtr = “Picture;
Picture = RECORD

picSize: INTEGER;
picFrame: Rect;
{ plus byte codes for picture content }

’

E-82

Pascal Reference Marxial! QuickDraw

QDProcsPtr = “QDProcs;

QDProcs = RECORD
textProc: QDPtr;
1lineProc: QOPLY;
rectProc: QDPtr;
TRectProc: QDPtr;
ovalProc: QDPtr;
arcProc: QoPtr;
polyProc: QOPtr;
rgnProc: QDPLY;
bitsProc: QDPtY;
commentProc: QDPLr;
txMeasProc: QDPtr;
getPicProc: @QDPtr;
putPicProc: QDPtr;

END;
GrafPtr = “GrafPort;
GrafPort = RECORD
device: INTEGER;

portBits: BitMap;
portRect: Rect;

visRgn: RgnHandle;
clipRagn: RgnHandle;
bkPat : Pattern;
fillPat: pattern;
pnLoc: Point;
pnSize: Point;
pniode: INTEGER;
pnPat: Pattern;
pnvis: INTEGER;
txFont: INTEGER;
txFace: Style;
txtHode: INTEGER:
txSize: INTEGER;

spExtra: LongInt;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QDHandle;
rgnSave: QDHandle;

E-83

Pascal Referernce Manial QuUickOraw

polySave: QDHandle;
grafProcs: QDProcsPtr;
END;

VAR thePort: GrafPtr;

wvhite: Pattern;
black: Pattern;
gray: Pattern;
1tGray: Pattern;
dkGray: Pattern;
arrow: cursor;

screenBits: BitMap;
randSeed: LongInt;

{ GrafPort Routines }

PROCEDURE InitGraf (globalPtr: QDPLX);
PROCEDURE OpenPort (port: GrafPtr);
PROCEDURE InitPort (port: GrafPtr);
PROCEDURE ClosePort (port: GrafPtr):;
PROCEDURE SetPort (port: GrafPtr);
PROCEDURE GetPort (VAR port: GrafPtr);
PROCEDURE GrafDevice (device: INTEGER);
PROCEDURE SetPortBits(bm: BitMap).

PROCEDURE PortSize (width,height: INTEGER);
PROCEDURE MovePortTo (leftGlobal, topGlobal: INTEGER):
PROCEDURE SetOrigin (h,v: INTEGER);
PROCEDURE SetClip (rgn: RgnHandle);
PROCEDURE GetClip (rgn: RgnHandle);
PROCEDURE ClipRect (r: Rect);

PROCEDURE BackPat (pat: Pattern);

{ Cursor Routines }

PROCEDURE InitCursor;

PROCEDURE SetCursor(crsr: Cursor);
PROCEDURE HideCursor;

PROCEDURE ShowCursor;

PROCEDURE ObscureCursor;

E-84

Pascal Reference Manual

{ Line Routines }

PROCEDURE HidePen;
PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point).

PROCEDURE GetPenState(VAR pnState: PenState);
PROCEDURE SetPenState(pnState: PenState):
PROCEDURE PenSize (width, height: INTEGER);

PROCEDURE PenMode (mode: INTEGER).
PROCEDURE PenPat (pat: Pattern);

PROCEDURE PenNormal;

PROCEDURE MoveTo (h,v: INTEGER);

PROCEDURE Move

(dn,dv: INTEGER):

PROCEDURE LineTo (h,v: INTEGER);

PROCEDURE Line

{ Text Routines }

PROCEDURE TextFont
PROCEDURE TextFace
PROCEDURE TextMode
PROCEDURE TextSize
PROCEDURE SpaceExtra
PROCEDURE DrawChar
PROCEDURE DrawString
PROCEDURE DrawText
FUNCTION Charwidth
FUNCTION StringWidth
FUNCTION Textwidth

PROCEDURE GetFontInfo (VAR info: FontInfo);

{ Point Calculations }

PROCEDURE AddPt
PROCEDURE SubPt
PROCEDURE SetPt
FUNCTION EqualPt
PROCEDURE ScalePt
PROCEDURE

MapPt
PROCEDURE LocalToGlobal (VAR pt
PROCEDURE GlobalToLocal (VAR pt

(font:
(face:
{mode :
(size:
(extra: LongInt);

(oh, dv: INTEGER);

INTEGER);
Style).

INTEGER);
INTEGER);

(ch: char):
(s: Str2ss);

(textBuf: QDPtr; firstByte, byteCount
(ch: CHAR): INTEGER;

(5: Str255): INTEGER;

(textBuf: QDPtr; firstByte, byteCount

INTEGER;

(src: Point; VAR dst: Point);
(src: Point; VAR dst: Point);
(VAR pt: Point; h,v: INTEGER);
(pt1,pt2: Point): BOOLEAN;

(VAR pt: Point;

(VAR

pt: Point;
: Point);
1 Point);

E-85

QuickDraw

: INTEGER);

: INTEGER):

fromRect, toRect: Rect);
fromRect, toRect: Rect);

Pascal Reference Marual

{ Rectangle Calculations }

QuickDraw

PROCEDURE SetRect (vAR r: Rect; left,top, rignt, bottom: INTEGER).

FUNCTION EqualRect (rectl,rect2: Rect): BOOLEAN;

FUNCTION EmptyRect (r: Rect): BOOLEAN;

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);

PROCEDURE MapRect (VAR 1:

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

Rect; fromRect, toRect: Rect);

FUNCTION SectRect (srcil,src2: Rect; VAR dstRect: Rect): BOOLEAN;
PROCEDURE UnionRect (srci, sxc2: Rect; VAR dstRect: Rect);

FUNCTION PtInRect (pt: Polint; r: Rect): BOOLEAN;

PROCEDURE Pt2Rect (pt1,pt2: Point; VAR dstRect: Rect);

{ Graphical Operations on Rectangles }

Rect);
Rect);
Rect).
Rect);
Rect; pat: Pattern):

PROCEDURE FrameRect (r:
PROCEDURE PaintRect (r:
PROCEDURE EraseRect (r:
PROCEDURE InvertRect (r:
PROCEDURE FillRect (r:

{ RoundRect Routines }

PROCEDURE FrameRoundRect (r:
PROCEDURE PaintRoundRect (r:
PROCEDURE EraseRoundRect (r:
PROCEDURE InvertRoundRect (T:

(r:

PROCEDURE FillRoundRect

{ Oval Routines }

PROCEDURE FrameOval (r:
PROCEDURE PaintOval (r:
PROCEDURE EraseOval (r:
PROCEDURE InvertOval (r:
PROCEDURE F1110val (r:

{ Arc Routines }

PROCEDURE FrameArc (r:
PROCEDURE PaintArc (r:
PROCEDURE EraseArc (r:
PROCEDURE InvertArc (r:

Rect; ovWd, ovHt: INTEGER);
Rect; ovWd, ovHt: INTEGER);
Rect; ovéd, ovHt: INTEGER);
Rect; ovWd, ovHt: INTEGER);
Rect; oved, ovHt: INTEGER; pat: Pattern);

Rect).
Rect);
Rect):
Rect);
Rect; pat: Pattern);

Rect;
Rect;
Rect;
Rect;

startAngle, arcAngle:
startAngle, arcAngle:
startangle, arcAngle:
startAngle, arcAngle:

INTEGER);
INTEGER);
INTEGER);
INTEGER);

Pascal Reference Manual

QuickDraw

PROCEDURE FillArc (r: Rect; startAngle, arcAngle: INTEGER; pat:
Pattern);
PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

{ Polygon Routines }

FUNCTION OpenPoly: PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE KillPoly (poly:
PROCEDURE OffsetPoly (poly:
PROCEDURE MapPoly (poly:
PROCEDURE FramePoly (poly:
PROCEDURE PaintPoly (poly:
PROCEDURE ErasePoly (poly:
PROCEDURE InvertPoly (poly:
PROCEDURE FillPoly ~ (poly:

{ Reglon Calculations }
FUNCTION NewRgn:

PolyHandle);

PolyHandle; dh, dv: INTEGER);
PolyHandle; fromRect, toRect: Rect);
PolyHandle);

PolyHandle);

PolyHandle);

PolyHandle),;

PolyHandle; pat: Pattern);

le;

RonHand
PROCEDURE DisposeRgn(rgn: RgnHandle);
PROCEDURE CopyRgn (sroRgn, dstRgn: RgnHandle);
PROCEDURE SetEmptyRgn{rgn: RgnHandle);

PROCEDURE SetRectRgn(rgn: RgnHandle; left, top, right,bottom: INTEGER);

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OpenRan;

PROCEDURE CloseRgn (dstRgn:

RgnHandle);

PROCEDURE OffsetRgn (ron: RgnHandle; dh, dv: INTEGER);
PROCEDURE MapRgn (rgn: RgnHandle; fromRect, toRect: Rect);
PROCEDURE InsetRgn (rgn: RgnHandle; ch,dv: INTEGER);
PROCEDURE SectRgn (SICRgnA, STCRgnB, dstRgn: RgnHandle);
PROCEDURE UnionRgn (SrcRgnA, srcRgnB, dstRgn: RgnHandle);
PROCEDURE DiffRgn (SrcRgnA, srcRgnB, dstRgn: RgnHandle);
PROCEDURE XorRgn (SrcRgnA, SICRgnB, ds : RgnHandle);
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOGLEAN;

FUNCTION EmptyRgn (rgn:

RgnHandle): BOOLEAN;

FUNCTION PtInRgn (pt:'Point; rgn: RgnHandle): BOOLEAN;
FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): BOOLEAN;

{ Graphical Operations on Regions }
PROCEDURE FrameRgn (rgn: RgnHandle);

PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgn: RgnHandle);

E-87

Pascal Reference Marual QuickDraw

PROCEDURE InvertRgn (rgn: RgnHandle);
PROCEDURE F1illRgn (rgn: RgnHandle; pat: Pattern);

{ Graphical Operations on BitMaps }

PROCEDURE ScrollRect(dstRect: Rect; dh,dv: INTEGER: updateRgn:
rgnHandle);
PROCEDURE CopyBits (srcBits,dstBits: BitMap;
srcRect, dstRect: Rect;
mode: INTEGER;
maskRgn: RgnHandle);

{ Picture Routines }

FUNCTION OpenPlcture(picFrame: Rect): PicHandle;

PROCEDURE ClosePicture;

PROCEDURE DrawPicture(myPicture: PicHandle; dstRect: Rect);
PROCEDURE PicComment(king, dataSize: INTEGER; dataHandle: QDHandle).
PROCEDURE KillPicture(myPicture: PicHandle);

{ The Bottleneck Interface: }

PROCEDURE SetStdProcs(VAR procs: QDProcs);

PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; numer, denom:
: Point);

PROCEDURE StdLine {newPt: Point);

PROCEDURE StoRect (verb: GrafVerb; r: Rect);
PROCEDURE StdRRect (verb: GrafVerb; r: Rect:; ovWd, ovHt: INTEGER):
PROCEDURE StaOval (verb: Grafverb; r: Rect);
PROCEDURE StdArc (verb: GrafVerb; r: Rect; startAngle, arcAngle:

INTEGER);
PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);
PROCEDURE StaBits (VAR srcBits: BitMap; VAR srcRect, dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);
PROCEDURE StaComment (kind, dataSize: INTEGER; dataHandle: QDHandle);
FUNCTION StdTxMeas (count: INTEGER; textAddr: QDPtr;
VAR numer, denom: Point;
VAR info: FontInfo): INTEGER:
PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);
PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER);

Pascal Reference Maral QuickDraw

{ Misc Utility Routines }

FUNCTION GetPlxel (h,v: INTEGER): BOOLEAN;
FUNCTION Random: INTEGER;

PROCEDURE StuffHex (thingptr: QDPtr; s$:Str25s5);
PROCEDURE ForeColor (color: LongInt);

PROCEDURE BackColor (color: LongInt);
PROCEDURE ColorBit (whichBit: INTEGER);

E.13.1 Graf3D Interface
{$S Graf }
UNIT Graf30D;
{ three-dimensional graphics routines layered on top of QuickDraw }
INTERFACE
USES {$U QD/QuickDraw.0BJ } QuickDraw;
CONST radConst=57,29578;
TYPE Point3D=RECORD

X: REAL.
y: REAL;
2: REAL.
END;
Point2D=RECORD
X: REAL;
y: REAL;
END;
XfMatrix = ARRAY[O0..3,0..3] OF REAL;
Port3DPtr = “Port3D;
Port3D = RECORD
GPort: GrafPtr;
viewRect: Rect;
xLeft, yTop, xRight, yBottom: REAL;
pen, penPrime, eye: Point3D;
nSize, vSize: REAL;
hCenter, vCenter: REAL;
xCotan, yCotan: REAL;
ident: BOOLEAN;
xForm: XfMatrix;
END;

E-89

Pascal Rerference Manual

VAR thePort3D: Port3bPtr;

QuickDraw

PROCEDURE Open3DPort (port: Port3DPtr);

PROCEDURE SetPort3D
PROCEDURE GetPort3D

PROCEDURE HoveToZD(Xx, y: REAL);
PROCEDURE LineTo2D(x, y: REAL).
PROCEDURE Move2D(dx, dy: REAL);
PROCEDURE Line2D(0x.dy: REAL):

(port: Port3pPtr);
(VAR port: Port3DPtr);

PROCEDURE MoveTo3D(x, y,2: REAL);
PROCEDURE LineTo3D(x.y.2: REAL):
PROCEDURE HMove3D(dx, dy, dz: REAL);
PROCEDURE Line3D(dx,dy, dz: REAL);

PROCEDURE ViewPort
PROCEDURE LOOKAL
PROCEDURE ViewAngle
PROCEDURE Identity;
PROCEDURE Scale
PROCEDURE Translate
PROCEDURE Pitch
PROCEDURE Yaw
PROCEDURE Roll
PROCEDURE Skew
PROCEDURE TransForm
FUNCTION Clip3D

PROCEDURE SetPt3D
PROCEDURE SetPt2D

(r: Rect);
(1eft, top, right, bottom: REAL);
(angle: REAL);

(xFactor, yFactor, zFactor: REAL);
(ax, dy, d2: REAL);

{xAngle: REAL);

(yAngle: REAL);

(zAngle: REAL);

(zAngle: REAL);

(src: Point3D; VAR dst: Point3D);

(srcl, src2: Point3D; VAR dsti, dst2:

BOOLEAN;

(VAR pt3D: Point3D; X, y,2z: REAL);
(VAR pt2D: Point2D; X, y: REAL);

E-90

POINT):

Pascal Rererence Manual

E.14 QuickDraw Sample

QuUIckDraw

Programs
This section provides listings of two sample programs that are included with
the workshop software.

E.14.1 QDSample

The program QDSample (in the file QD/QDSample.TEXT) demonstrates
different things that QuickDraw can do. Its output is shown in Figure E-26.

Look what you can draw with QuickDrow

Text

Bold
Halic
Underline
OUE(ine]
Shadow/

Rectangles

RoundRects

Bit Images

98 5

Regions

rbitrary Clippi gio
rbitrap™ Cli }A\o
i .Ii? 0
: ‘wo

Figure E-26
QDSample

The file QD/M/QDSample. TEXT is an exec flle that can be used to rebuild
this sample program. Disregard any waming messages from the linker about

name conflicts.

E-%1

Pascal Reference Manual

QuickDraw

PROGRAM QDSample;
{ Sample program illlustrating the use of QuickDraw.

USES {$U QD/QuickDraw.08J } QuickDraw,
{$U QD/Q0SuppoTt.0BJ } QDSupport;

TYPE IconData = ARRAY[0..95] OF INTEGER;

VAR heapBuf: ARRAY[0..10000] OF INTEGER;
myPort: GrafPort;
icons: ARRAY[0..5] OF IconData;

FUNCTION HeapFull(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;

{ this function will be called if the heapZone runs out of space }
BEGIN

WRITELN('The heap is full.
Halt;
END;

The program must now terminate! ');

PROCEDURE InitIcons;

{ Manually stuff some icons. Normally we would read them from a file }

BEGIN

{Lisa }

StuffHex(@icons{0, 0], *000000000000000000000000000000000000001FFFFFFFFC®);
StuffHex(@icons[0, 12], * 0060000000060180000000080600000000130FFFFFFFFFA3")
StuffHex(®icons 0,24.,'18000000004311FFFFF00023120000080F2312000008F923'g
StuffHex(@icons{0, 36], * 120000080F 23120000080023120000080023120000080F 23"
StuffHex(@icons[0, 48], * 12000008F 923120000080F2312000008002311FFFFF00023' g
StuffHex(@icons[0, 60), ' 08000000004307FFFFFFFFA30100000000260FFFFFFFFE2C’
StuffHex(@icons{0, 72], * 18000000013832ARAAABAIF 0655555515380C2AAAA82A580"),
StuffHex(@icons{0, 84], '800000000980FFFFFFFFF300800000001600FFFFFFFFFCO0®),
{ Printer }

StuffHex(@icons[1, 0:,'00'3;
StuffHex(@icons{1, 12], ' 00000000000000007FFFFF00000080000280000111514440");
StuffHex(aiconsgl,ZAj,'0002000008400004454510400004000017000004A5151000');
StuffHex(@icons(1, 361, ' 0004000010000004A54510000004000017FEQOF 4A5151003");
StuffHex(@icons{1, 48], ' 0184000013870327FFFFF 10F 06400000021B0CFFFFFFFC37°),
StuffHex(@icons[1, 60], * 1800000000683000000000D7 7FFFFFFFFFABCO0000000356"),
StuffHex(@icons{1, 72], '8000000001AC87F 000000158841000CCC1B087F000CCC160°);
StuffHex(@icons[1, 84], '8000000001C0CO00000003807FFFFFFFFF0007800001E000°);

E-92

{ Trash Can }
StuffHex(aicons
StuffHex(@2icons

StuffHex(@icons|

StuffHex(@icons
StuffHex(@icons

StuffHex(@2icons|
StuffHex(@icons|
StuffHex(@2icons(

{ tray }
StuffHex(aicons
StuffHex(2icons

StuffHex(@icons(

StuffHex(2icons
StuffHex(aicons

StuffHex(aicons|

StuffHex(@icons

StuffHex(aicons|

{ File Cabinet

StuffHex(aicons|
StuffHex(aicons[
StuffHex(aicons|

StuffHex(aicons

StuffHex(3icons(

StuffHex(@icons

StuffHex(@icons|

StuffHex(@2icons

{ drawer }

StuffHex{(@icons|
StuffHex(@icons{
StuffHex(aicons|

StuffHex(@icons
StuffHex(aicons
StuffHex(aicons

StuffHex(aicons(

StuffHex(@icons

END;

FPascal Reference Maral

~

c

NNNNNNNN
BRSERRR o

.

MPENO

SN A WA W N
oouagum»—s

&N O

}

RABENO

L

EEEEFFEF
PNIERNG

PNO

N

.~
RENO

3

A ARBV ARG ARV BV
0 NN AN B
J-\Ncg

AN AT T

QuickOraw

, ' 000001FCO00000000E 0600000000300300000000C0918000");
. ' 00013849800000026C4980000004C0330000000861260000");
, '0010064FE0000031199830000020E6301800002418E00800");
, '0033E3801C0000180E002C00000FF801CC0O000047FFEOCO0");
, ' 000500004C000005253A4C000005250A4C00000525F A4C00");
. '000524024C00000524924C00600524924C0090E524924C7C ").
, ' 932524924082A44524924D01C88524924CF 10C4524924C09");
. '0784249258E70003049233100000E000E40800001FFFC3F0")

, ' 00");
, 1 0000000000000000000000000000000000000007FFFFFFFO"),
. ' 000E00000018001A00000038003600000078006A00000008 ");
. ' 00D7FFFFFFB801AC000003580358000006B807FCO00FFDS8 "),
, ' 040600180AB80403F FF 00D58040000000AB8040000000D58 ");
, ' 040000000AB807FFFFFFFD5806AC00000AB80S5800000058 ')
, ' 06B000000AB807F COOCFFD70040600180AE00403FFFO0DCO");
, ' 040000000880040000000F 00040000000EC007FFFFFFFCO0")

, ' G007FFFFFC00000800000C00001000001C00002000003400");
. ' 004000006C0000FFFFFFD40000800000ACO000BFFFFED4A00"),
. ' 00A00D0ZACO000A07F 02D40000A04102AC0000A07F 02D400")
, ' 00A00002AC0000A08082D40000A0F FB2ACO000A00002D400°)
. ' 00AODO02ACO000BF FFFED40000800000ACO00CBFFFFEDAOO"),
, ' 00A00002ACCO000AC7F 02D40000A04102AC0000A07F02D400")
, ' 00ADOOGZ2ACO000A08082D40000A0F FB2AC0000A000020800"),

J. ' 00A00002B00000BF FFFEEDO000800000CO0000FFFFFF8000°).

, ' 000000000000000000000000000000000000060000000000");

], ' 00 ");

, '060000600");

). *001FFFFFFO"),

, ' 0000380000300000680000700000080000D0003FFFFFF1B0"),
. *0020000013500020000016B000201FE01050002010201AB0")
, ' 00201FE 01560002000001AC0002000001580002020101800"),
, ' 00203FF 01600002000001C00002000001800003FFFFFFO00"),

E-93

Pascal Reference Marnial QuickDraw

PROCEDURE DrawIcon{whichIcon,h,v: INTEGER);
VAR srcBits: BitMap;
srcRect, dstRect: Rect;

BEGIN

srcBits.baseAddr : =@icons[whichIcon]);

srcBits.rowBytes:=6;

SetRect(srcBits.bounds, 0, 0, 48, 32);

srcRect : =sreBits.bounds;

dstRect : =srcRect;

OffsetRect(dstRect, h, v);

CopyBits(srcBits, thePort”.portBits, srcRect, dstRect, srcOr, Nil);
END;

PROCEDURE DrawStuff;

VAR 1: INTEGER;
tempRect: Rect;
myPoly: PolyHandle;
myRgn: RgnHandle;
myPattern: Pattern;

BEGIN
StuffHex(amyPattern, '8040200002040800°);

tempRect := thePort”.portRect;
ClipRect(tempRect);
EraseRoundRect (tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20);

{ draw two horizontal lines across the top }
HoveTo(0, 18);

LineTo(719, 18).;

HoveTo(0, 20);

LineTo(719,20);

{ draw divider lines }
toveTo(0, 134);
LineTo(719, 134);
MoveTo(0, 248);
LineTo(719, 248);
HoveTo(240, 21);
LineTo(240, 363);
MoveTo(480, 21);
LineTo(480, 363);

E-94

Pascal Reference Manual QuickDrew

{ draw title }

TextFont(0);

MoveTo(210, 14);

DrawString(‘'Look what you can draw with QuickDraw®);

{-—- draw text samples --------- }
MoveTo(80, 34); DrawString(‘Text');

TextFace([bold]),
MoveTo(70,55); DrawString('Bold');

TextFace([italic]);
MoveTo(70, 70); DrawString(‘Italic');

TextFace([underline]);
MoveTo(70, 85); DrawString('Underline’);

TextFace([outline]);
MoveTo(70, 100); OrawString(‘Outlire');

TextFace([shadow]);
MoveTo(70, 115); DrawString(‘Shadow’);

TextFace([]); { restore to normal }

{ - draw line samples --------- }
MoveTo(330,34); DrawString('Lines’);
MoveTo(280,25); Line(160, 40);

PenSize(3, 2);
MoveTo(280, 35); Line(160, 40);

PenSize(é, 4);
MoveTo(280, 46); Line(160, 40);

PenSize(12,8);
PenPat(gray);
MoveTo(280,61); Line(160, 40);

Pascal Reference Marnusl QuickOraw

PenSize(15, 10);
PenPat(myPattern);
MoveTo(280, 80); Line(160,40);
PenNormal;

{ == draw rectangle samples --------- }
MoveTo(560,34); OrawString('Rectangles’);

SetRect(tempRect, 510, 40, 570, 70);
frameRect (tempRect).

0ffsetRect(tempRect, 25, 15);
PenSize(3, 2);
EraseRect(tempRect);
FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);
PaintRect(tempRect);

OffsetRect(tempRect, 25, 15);
PenNormal,;
FillRect(tempRect, gray):;
FrameRect (tempRect);

0ffsetRect(tempRect, 25, 15);
FillRect(tempRect, myPattern);
FrameRect(tempRect);

{ -~—---—-- draw roundRect samples --------- }

MoveTo(70, 148); OrawString('RoundRects’');

SetRect(tempRect, 30, 150, 90, 180);
FrameRoundReot (tempReot, 30, 20);

OffsetRect(tempRect, 25, 15);
PenSize(3, 2);

EraseRoundRect (tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20);

OffsetRect(tempRect, 25, 15);
paintRoundlect(temnRect, 30, 20);

Pascal Reference Marnusl QuickDraw

OffsetRect(tempRect, 25, 15);
PenNormal,;

FillRoundRect(tempRect, 30, 20, gray);
FrameRoundRect (tempRect, 30, 20);

OffsetRect(tempRect, 25, 15);
FillRoundRect(tempRect, 30, 20, myPattern);
FrameRoundRect (tempRect, 30, 20);

{ - draw bit image samples --------- }
MoveTo(320, 148); DrawString('Bit Images');

DrawIcon(0, 266, 156);
Drawlcon(1, 336, 156);
DrawlIcon(2, 406, 156);
Drawlcon(3, 266, 196);
DrawIcon(4, 336,196);
DrawIcon(S, 406, 196);

{ - draw Wedge samples --------- }
HoveTo(570, 148); DrawString('W¥Wedges’);

SetRect(tempRect, 520, 153, 655, 243);
FillArc(tempRect, 135, 65, dkGray);
FillArc(tempRect, 200, 130, myPattern);
FillArc(tempRect, 330, 75, gray);
FrameArc(tempRect, 135, 270);
OffsetRect(tempRect, 20, 0),
PaintArc(tempRect, 45, 90);

{ - draw polygon samples --------- }

MoveTo(80, 262); DrawString('Polygons’);
myPoly: =0penPoly;

MoveTo(30, 290);

LineTo(30, 280);

LineTo(50, 265);

LineTo(90, 265).

LineTo(80, 280);

LineTo(95, 290);

LineTo(30, 290);
ClosePoly; { end of definition }

E-97

Pascal Reference Marnusl! GuickDraw

FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15);
PenSize(3,2);
ErasePoly(myPoly);
FramePoly(myPoly);

offsetPoly(myPoly, 25, 15);
PaintPoly(myPoly);

OffsetPoly(myPoly, 25, 15);
PenNormal;
FillPoly(myPoly, gray);
FranePoly(myPoly?;

OffsetPoly(myPoly, 25, 15);

FillPoly(myPoly, myPattern);
FramePoly(myPoly);

KillPoly(myPoly).

{ —----—-- demonstrate region clipping --------- }
toveTo(320,262); OrawString('Regions');

myRgn: =NewRgn;
OpenRgn;
ShowPen;

SetRect(tempRect, 260, 270, 460, 350);
FrameRoundRect (tempRect, 24, 16);

HoveTo(275,335); { define triangular hole }
LineTo(325, 285);
LineTo(37s5, 335);
LineTo(275, 335);

SetRect (tempRect, 365, 277, 445,325); { oval hole }
FrameQval(tempRect);

HidePen;
CloseRgn(myRgn); { end of definition }

SetClip{myRgn);

£-98

Pascal Reference Marnual GQickDraw

FOR i:=0 TO 6 D0 { draw stuff inside the clip region }
BEGIN
MoveTo(260, 280+12%1);
DrawString('Arbitrary Clipping Regions');
END;

ClipRect(thePort".portRect);
DisposeRgn(myRgn);

{ - draw oval samples --------- }
toveTo(580,262); DrawString('Ovals’);

SetRect(tempRect, 510, 264,570, 294);
FrameOval(tempRect);

OffsetRect(tempRect, 25, 15);
PenSize(3,2);
EraseOval(tempRect),
FrameOval(tempRect);

OffsetRect(tempRect, 25, 15),
PaintOval(tempRect);

OffsetRect(tempRect, 25, 15);
PenNormal;
FillOval(tempRect, gray);
FrameQval(tempRect),

OffsetRect(tempRect, 25, 15);
FillOval(tempRect, myPattern);
FrameQval(tempRect).

END; { DrawStuff }

£-99

Pascal Reference Marual QuickDraw

BEGIN { main program }
{ Initialization -~ Generic to all applications using QuickDraw }

QDInit(@heapBuf, ®heapBuf{10000], aHeapFull); { Must do this once at

beginning }
OpenPort(amyPort);
PaintRect(thePort”.portRect); { Paint grey background }

Initicons;
DrawStuff;
Tone(2000, 500); { Beep tone of (1/2000)*10"6 == 500 cycles/sec for
500 milliseconds }
ReadLn; { #ait until RETURN entered before terminating program }
END.

E-100

Pascal Reference Manusal! QuickDraw

E.142 Boxes
The program Boxes (in the file QD/Boxes. TEXT) uses the Graf3D routines to
draw random three-dimensional boxes on a grid, as shown in Figure E-27.

Figure E-27
Boxes

The file QD/M/Boxes.TEXT is an exec file that can be used to rebuild this

sample program. Disregard any warning messages from the linker about name
conflicts.

E-101

Pascal Referernce Msnual QuickDraw

PROGRAM Boxes;

{ Sample program illustrating use of the Graf3D unit by drawing random
3D boxes on a grid. }

USES
{$U QD/QuickDraw.0BJ } QuickDraw,
{$U QD/Graf3D.0BJ } Graf3D,
{$U QD/QDSupport.0BJ } QDSupport,

CONST boxCount = 15;
TYPE Box3D=RECORD

pti: Point3D;
pt2: Point3D;
dist: REAL;
END;
VAR
heapBuf : ARRAY[0..8192) OF INTEGER; {16k bytes}
GPortl: GrafPort;
GPort2: Port3d;

myPort: GrafPtr;

myPort3D: Port3DPtr; :

boxArray: ARRAY[O..boxCount] OF Box3D;
nBoxes: INTEGER;

i: INTEGER;

FUNCTION HeapError(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;

{ this procedure gets called when the heap zone is full }

BEGIN
YRITELN('The heap is full. The program must now terminate! ');
HALT;

END;

FUNCTION Distance(pti,pt2: POINT3D): REAL;
VAR dx, dy,dz: REAL.
BEGIN

dx:=pt2.X - pti.X;

dy:=pt2.Y - ptl.Y;

0z:=pt2.Z - pt1.Z;

Distance:=SQRT(dx=dx + dy*dy + dz*dz);
END;

E-102

Pascal Reference Manus! GuickDraw

PROCEDURE HakeBox;

VAR myBox: Box3D;
i, j.hov: INTEGER;
pl,p2: Point3D;
myRect : Rect;
testRect: Rect;
BEGIN

pl.x:=Random mod 70-15;

pl.y:=Random mod 70 -10;

pl1.z:=0.0;

p2.x:=pl.x + 10 + ABS(Random) MOD 30;
p2.y:=pl.y + 10 + ABS(Random) MOD 45;
p2.z:=pl.z + 10 + ABS(Random) MOD 35;

{ reject box if it intersects one already in list }
SetRect(myRect, ROUND(p1.x), ROUND(p1.y), ROUND(p2.x), ROUND(p2.y));
FOR i:=0 TO nBoxes-1 DO
BEGIN
VITH boxArray(i]} DO
SetRect(testRect, ROUND(pt1.x), ROUND(ptl.y),
ROUND(pt2.x), ROUND(pt2.y));
IF SectRect(myRect, testRect testRect) THEN EXIT(MakeBox);

;

myBox.ptl:=pl;
myBox.pt2:=p2;

{ calc midpoint of box and its distance from the eye }
pl.x:=(pl.x + p2.x)/2.0;

pl.y:=(pl.y + p2.y)/2.0;

pl.z:=(p1.2 + p2.2)/2.0;

Transform(p1, p2);

myBox.dist:=Distance(p2, myPort3D".eye); { distance to eye }

1:=0;
boxArray[nBoxes] dist:=myBox.dist; { sentinel }
WHILE myBox.dist > boxArray[i].dist DO i:=i+1; {insert in order of dist}
FOR j:=nBoxes DOWNTO i+1 DO boxArray(j]: -boxArray[j 1};
boxArray(i]:=myBox;
nBoxes: =nBoxes+1;

END;

E-103

Pascal Reference Manual

PROCEDURE DrawBox(pti, pt2: Point3D);
{ draws a 3D box with shaded faces. }
{ only shades correctly in one direction }

VAR tempRgn: RgnHandle;
BEGIN

END;

tempRgn: =NewRgn;
NOveTOSD(ptl X pti.y, pti.z);

LineTo3D(ptl.x, ptl.y, pt2.2);

LineTo3D(pt2.x, ptl.y, pt2.2);

LineTo3D(pt2.x, pt1.y,ptl.2);
LineTo3D(pti.x, pti.y,pt1.2);

CloseRgn(tempRgn);
Fillen(tenpRgn, white);

OpenRagn;
MoveTo3D(ptl.x, pti.y,pt2.z);

LineTo3D(ptli.x, pt2.y,pt2.2);

LineTo3D(pt2.x, pt2.y,pt2.2);
LineTo3D(pt2.x,ptl.y,pt2.2);
LineTo3D(pti.x, ptl.y,pt2.2);
CloseRgn(tempRgn).
F 111Rgn(tenpRgn, gray);

OpenR

{ front face, y=y1 }

{ top face, z=22 }

g, .
HoveTo3D(pt2.x, pti.y, pt1.z); { right face, x=x2 }

LineTo3D(pt2.x, pti.y,pt2.2);
LineTo3D(pt2.x, pt2.y,pt2.2);
LineTo3D(pt2.x, pt2.y, ptl.z);

LineTo3D(pt2.x, ptl.y,ptli.z);

CloseRgn(tempRon);
FillRgn(tempRgn, black);

PenPat(white);
MoveTo3D(pt2.x, pt2.y, pt2.2);
LineTo3D(pt2.x, pt2.y, pt1.2);
LineTo3D(pt2.x, pti.y, pti.z);
PenNormal,

D?sposeRgn(temRQn);

{ outlire right }

E-104

QuickOraw

Pascal Reference Manual QuickDraw

BEGIN { main program }
{ Initialization - Generic to all applications using QuickDraw }
QDInit(sheapBuf, aheapBuf[8192], @heapError); { Must do this once at

beginning)

myPort := aGPortl;

OpenPort(myPort)
myPort3D := aGPort2;

UpenBDPort(myPortSD),

ViewPort(myPort”".portRect); { put the image in this rect }
LookAt(-100, 75, 100, -75); { aim the camera into 3D space }
ViewAngle(30); { choose lens focal length }
Identity; Rol1(20); Pitch(70); { roll and pitch the plane }

PenPat(white);
BackPat(black);
EraseRect(myPort" portRect);

FOR i:=-10 TO 10 DO
BEGIN
MoveTo3D(i*10, -100, 0),
LineTo3D(i*10, +100, 0);
END;

FOR i:=-10 TO 10 DO
BEGIN
MoveTo3D(-100, i*10, 0);
LineTo3D(+100, i*10, 0);
END;

nBoxes:=0;

REPEAT MakeBox; UNTIL nBoxes=boxCount;

FOR i:=nBoxes-1 DOWNTO O DO
DrawBox(boxArray{i].pt1, boxArray{i].pt2);

Tone(2000, S00); {Beep tone of (1/2000)*10"6 == 500 cycles/sec for
500 milliseconds }
ReadLn; { Wait until RETURN entered before terminating program }

END.

E-105

Pascal Reference Manual QulckDraw

E.15 QDSupport

The QDSupport unit (in the file QD/QDSupport. TEXT) provides the
initialization that you need to use QuickDraw In the QDInit procedure, as well
as procedures for simplified access to mouse tracking, the mouse button, and
sound generation, and useful definitions of font numbers. For more detailed
information on mouse-handling routines and sound, refer to Appendix F,
Hardware Interface.

UNIT QDSupport;
INTERFACE

USES
{$U QD/UnitStd.0B3 } UnitSta,
{$U QD/UnitHz.0BJ } UnitHz,
{$U QD/Hardware.0BJ } Hardware,
{$U QD/Fontmgr.0BJ i Fontmgr,

{$U QD/QuickDraw.0BJ QuickOraw;
CONST

Font Numbers ---------- }
FTilei2 = 4; {proportional}
FTilei8 = 5; {proporticnal}
FTile24 = 6, {proportional}
FP15Tile = 7; {Monospaced - 8 lines/inch & 15 chars/inch}
FP12Tile = 8, {Honospaced - 6 lines/inch & 12 charss/inch}
FP10T1le = 9; {Monospaced - 6 lines/inch & 10 chars/inch}
FCent12 = 10; {proportional}
FCent18 = 11; {proportional}
Flent24 = 12; {proporticnal}
FPi2Cent = 13; {Monospaced - 6 lines/inch & 12 chars/inch}
FP10Cent = 14; {Honospaced - 6 lines/inch & 10 chars/inch}
FP20Tile = 19; {Honospaced}

E-106

Pascal Reference Marnual QuickDraw

PROCEDURE QDInit(startPtr, limitPtr: QDPtr; ErrorProc: QDPtr);

{ QDInit: Initializes QuickDraw unit by setting up its heap
zone, global vars, cursor, and the Font Manager it
calls on. }

PROCEDURE GetMouse(VAR pt: Point);
{ GetHouse: Returns the current mouse location in the local
coordinates of the current graffPort. }

FUNCTION HMouseButton: BOOLEAN;
{ MouseButton: Returns TRUE if the mouse button is currently held
down, otherwise FALSE. }

PROCEDURE Tone(wavelength, duration: LongInt);

{ Tone: Produces a square wave tone of the specified
wavelength (microseconds) for the specified duration
(milliseconds). }

E-107

Pascal Reference Maral QuickDrew

E.16 Glossary
bit image: A collection of bits in memory that have a rectilinear represen-
tation. The Lisa screen is a visible bit image.

bitmap: A pointer to a bit image, the row width of that image, and its
boundary rectangle.

rectangle: A rectangle defined as part of a bitmap, which encloses
the active area of the bit image and imposes a coordinate system on it. Its
top left comer is always aligned around the first bit in the bit image.

camera eye: A concept in three-dimensional graphics: the point of view and
the viewing angle in which an object appears, independent of the object’s
coordinates.

character style: A set of stylistic variations, such as bold, italic, and
underline. The empty set indicates normal text (no stylistic variations).

clipping: Limiting drawing to within the bounds of a particular area.
clipping region: Same as clipRgn.
clipRgn: The region to which an application limits drawing in a grafPort.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid coordinates
are integers ranging from -32768 to +32767, and all grid lines are infinitely
thin.

cursor: A 16-by-16-bit image that appears on the screen and is controlled by
the mouse.

cursor level: A value, initialized to 0 when the system is booted, that keeps
track of the number of times the cursor has been hidden.

empty: Containing no bits, as a shape defined by only one point.
font: The complete set of characters of one typeface, such as Century.
frame: To draw a shape by drawing an outline of it.

global coordinate system: The coordinate system based on the top left corner
of the bit image being at (0.0).

Graf3D: A three-dimensional graphics unit that calls QuickDraw routines.

grafPort: A complete drawing environment, including such elements as a
bitmap, a subset of it in which to draw, a character font, patterns for drawing
and erasing, and other pen characteristics.

grafPtr: A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data
structure (such as a region).

hotspot: The point in a cursor that is aligned with the mouse position.
kem: To stretch part of a character back under the previous character.

E-108

Pascal Refererce Marval QuickDraw

local coordinate system: The coordinate system local to a grafPort, imposed
by the boundary rectangle defined in its bitmap.

missing symbol: A character to be drawn in case of a request to draw a
character that is missing from a particular font.

patterret An 8-by-8-bit i , used to define a repeating design (such as
stripes) or tone (such as gray

pattemn transfer mode: One of eight transfer modes for drawing lines or
shapes with a pattern.

picture: A saved sequence of QuickDraw drawing commands (and, optionally,
picture comments) that you can play back later with a single procedure call;
also, the image resulting from these commands.

picture comments: Data stored in the definition of a picture which does not
affect the picture’s appearance but may be used to provide additional
information about the picture when it's played back.

picture frame: A rectangle, defined as part of a picture, which surrounds the
picture and gives a frame of reference for scaling when the picture is drawn.

pixel: The visual representation of a bit on the screen (white if the bit is 0,
black if it's 1)

point: The intersection of a horizontal grid line and a vertical grid line on
the coordinate plane, defined by a horizontal and a vertical coordinate.

polygon: A sequence of connected lines, defined by QuickDraw line-drawing
commands

port: GrafPort or Port3D.

Port3D: A data structure in Graf3D that maps three-dimensional coordinates
into a two-dimensional QuickDraw grafPort.

Port3DPtr: A pointer to a Port3D.
portBits: The bitmap of a grafPort.
portBitsbounds: The boundary rectangle of a grafPort’s bitmap.

portRect: A rectangle, defined as part of a grafPort which encloses a subset
of the bitmap for use by the grafPort.

region: An arbitrary area or set of areas on the coordinate plane. The
outline of a region should be one or more closed loops.

row width: The number of bytes in each row of a bit image.
scale: To shrink or expand by a specified factor.
solid Filled in with any pattemn.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitmaps.

E-109

Pascal Reference Marnwal QuickDraw

style: See character style.
thePort: A global variable that points to the current grafPort.
thePort3D: A global variable that points to the current Port3D,

transfer mode: A specification of which boolean operation QuickDraw should
perform when drawing or when transferring a bit image from one bitmap to
another.

translate: To move in three-dimensional space by a specified amount.
transformation matrix Same as xForm matrix.

viewing pyramid: The portion of three-dimensional space that a camera eye
can see. The pyramid's apex is the point of the camera eye; its base is the
viewRect in a Port3D.

visRgn: The region of a grafPort which is actually visible on the screen.

xForm matrix: A U4xii matrix that holds an equation to transform points
plotted in three-dimensional coordinates into two-dimensional screen
coordinates.

E-110

Appendix F
Hardware Interface

F.2.1 Cursor/Mouse Tracking......cccccreerersiecsrassiesesnmeessicsssssssssssssnennans F-3
F.22 TheBUSY CUTSOTcccoeriermemencermecnnncereemonanscssssesaereommnnnssssssane F-3
F3 TheDisplay Screen F-a
F.3.1 SCreenContrast.......ccoeeeiimimeireenimetnsieneetnsraiesasssesanssenassanse F-a
F.3.2 Automatic Screen Fadingccoicocoimiieciiininincccniinnccennnsenns F-4
F.4 The Speaker F-5
FS5 TheKeyboard F-5
FS5.1 Keyboard Identificationcceoioo i rncricecniaeee F-7
F.5.2 Keyboard State.......cvmiiiiiiiiiiiicicciittttaantssreniesnestsasecsaneesens F-8
F.5.3 KeybBOBIOEVENLS.......ciiiiiineeriiiimieiiieasennnsnneacnsasensensanasnns F-8
F.5.4 DeadKey DIacTitiCalscceeieieeniieneiimeriiiintncctiecccnsenecenenaes F-10
- 2= o - | U F-11
F6 TheMicrosecond Timer e F-11
F.7 TheMillisecond Timer F-12
F.8 Dateand Time F-12
F.9 Time Stamp F-12

F.10 Interface of the Hardware Unit F-13

Hardware Interface

The hardware interface software provides an interface for accessing and
controlling several parts of the Lisa hardware. The hardware/software
capabilities addressed include the mouse, the cursor, the display, the contrast
control, the speaker, both undecoded and decoded keyboard access, the micro-
second and millisecond timers and the hardware clock/calendar.

This appendix contains Pascal procedure and function declarations interleaved
with text describing them. Pascal type declarations and a summary of the
function and procedure declarations can be found in Section F.10, Interface of
the Hardware Unit.

Programs using this unit should be compiled against the file QD/Hardware.08J
and linked to the file QD/HWIntL.0BJ.

F.1 The Mouse
F.1.1 Mouse Location

Procedure Mousel_ocation (var x Pixels; var y: Pixels);

The mowse is a pointing device used to indicate screen locations.
Mousel_ocation returns the location of the mouse. The X-coordinate can range
from 0 to 719, and the Y-coordinate from 0 to 363. The initial mouse
location is 0,0.

F.1.2 Mouse Update Frequency
Procedure Mouselpdates (delay: MilliSeconds);

Software knowledge of the mouse location is updated periodically, rather than
continuously. The freguency of these updates can be set by calling

The time between updates can range from 0 milliseconds
(continuous updating) to 28 milliseconds, in intervals of 4 milliseconds. The
initial setting is 16 milliseconds.

F.1.3 Mouse Scaling
Procedure MouseScaling (scaleBoolean);
Procedure MouseThresh (threshold: Pixels);

The relationship between physical mouse movements and logical mouse move-
ments is not necessarily a fixed linear mapping. Three altemnatives are
available: 1) unscaled, 2) scaled for fine movement and 3) scaled for coarse
movement. Initially mouse movements are unscaled.

When mouse movement is wascs/eq a horizontal mouse movermnent of x units

yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse Y-coordinate of y pixels.

These rules apply independent of the speed of the mouse movement.

Pascal Reference Marwual Haraware Interface

when mouse movement Is scaleq horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect

1atio of pixels on the screen. When scaling is in effect, a distinction is made
between Ane (small) movements and coarse (large) movements. Fine move-
ments are slightly reduced, while coarse movements are magnified. For scaled
fine movements, a horizontal mouse movement of x units yields a change in
the X-coordinate of x pixels, but a vertical movement of y units yields a
change of (2/3)*y pixels. For scaled coarse movements, a horizontal movement
a x units yields a change of (3/2)*x pixels, while a vertical movements of y
units yields a chenge of y pixels.

The distinction between fine movements and coarse movements is determined
by the sum of the x and y movements each time the mouse location is
updated. If this sum is at or below the #res/o/q the movement is considered
to be a fine movement. Values of the threshold range from 0 (which yields all
coarse movements) to 256 (which yields all fine movements). Given the
default mouse updating frequency, a threshold of about 8 (threshold's initial
setting) gives a comfortable transition between fine and coarse movements.

MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

F.1.4 Mouse Odometer
Function MouseOdometer: ManyPixels;

In order to properly specify, design and test mice, it's important to estimate
how far a mouse moves during its lifetime. MouseOdometer retums the sum
of the X and Y movements of the mouse since boot time. The value returned
is in (unscaled) pixels. There are 180 pixels per inch of mouse movement.

F.2 The Cursor
Procedure Cursorlmage (hotX: Pixels; hotY: Pixels; height: Cursort+eight; data:
CursorPtr; mask: CursorPtr);
The cuwsor is a small image that is displayed on the screen. Its shape is
specified by two bitmaps, called a#le and /mask These bitmaps are 16 bits

wide and from 0 to 32 bits high. The rule used to combine the bits already
on the screen with the data and mask is

screen <- (screen and (not mask)) xor data.
The effect is that white areas of the screen are replaced with the cursor
data. Black areas of the screen are replaced with (not mask) xor data If the

data and mask bitmaps are identical, the effect is to or the data onto the
screen.

The cursor has both a Jocstion and a /otspot The location is a position on
the screen, with X-coordinates of 0 to 719 and Y-coordinates of 0 to 363.

. The hotspot is a position within the cursor bitmaps, with X- and Y-coordi~
nates ranging from 0 to 16. The cursor is displayed on the screen with its

F-2

Pascal Reference Mamual Haraware Interfsce

hotspot at its location. If the cursor’s location is near an edge of the screen,
the cursor image may be partially or completely off the screen.

Most cursor operations can be performed by calling the SetCursor, HideCursor,
ShowCursor, and ObscureCursor procedures defined by QuickDraw (see Section
E.9.2, Cursor-Handling Routines) Additional capabilities are provided by the

Hardware Interface routines described below.

The Cursorimage procedure is used to specify the data bitmap, mask bitmap,
height and hotspot of the cursor. Initially the cursor data and mask bitmaps
contain all zeros, which yields a blank (invisible) cursor. The initial hotspot is
0.0.

F.2.1 CursorM™Mouse Tracking
Procedure CursorTracking (track: Boolean);
Procedure Cursortocation (x Pixels; y: Pixels);

CursorTracking enables and disables cursor &acking of the mouse. when
tracking is enabled, the cursor location is changed to the mouse location each
time the mouse moves. Setting the cursor location by calling Cursorl ocation
will have no effect; the cursor sticks with the mouse.

when tracking is disabled, the mouse location and cursor location are indepen-
dent. Calling Cursoriocation will move the cursor; moving the mouse will not.

when tracking is first enabled (i.e., on each transition from disabled to
enabled) the mouse location is modified to equal the cursor location. There-
fore, enabling tracking does not move the cursor; it does modify the mouse
location. Initially tracking is enabled.

F.22 The Busy Cursor

Procedure Busylmage (hotX: Pixels; hotY: Pixels; height: CursorHeight; data:
CursorPtr; mask: CmsorPtr);

Procedure BusyDelay (delay: Milliseconds);

Applications may desire to display a &y cursor (e.g., an hourglass) when an
operation in progress requires more than a few seconds to complete. The
Busylmage procedure is used to specify the data bitmap, mask bitmap, height
and hotspot of the busy cursor.

A call to BusyDelay specifies that the normal cursor should currently be
displayed, and that display of the busy cursor should be delayed for the
specified number of milliseconds. Subsequent calls to BusyDelay override
previous calls, postponing display of the busy cursor. If no calls to BusyDelay
occur for the specified number of milliseconds, the busy cursor will be
displayed until the next call to BusyDelay.

Initially the busy cursor data and mask bitmaps contain all zeros, which yields
a blank (invisible) cursor. The initial hotspot is 0,0. The initial busy delay is

F-3

Pascal Refrereyxve Marwal Hardware Interrace

infinite, that is, the busy cursor will not be displayed until BusyDelay is
called.

F.3 The Display Screen
Procedure ScreenSize (var x Pixels; var y: Pixelsk

The display screen is a /it mggped displsy,; that is, each pixel on the screen
is controlled by a bit in main memory. The display has 720 pixels horizontally
and 364 lines vertically, and therefore requires 32,760 bytes of main memory.
The screen size may be determined by calling ScreenSize.

Function FrameCounter: Frames;

The screen is redisplayed about 60 times per second. A frame counter is
incremented between screen updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit integer which is reset to 0 each time the
machine is booted. FrameCounter returns this value. An application can
synchronize with the vertical retraces by watching for changes in the value of
this counter. The frame counter should 7of be used as a timer; use the
millisecond and mircosecond timers instead.

F.3.1 Screen Contrast
Function Contrast: ScreenContrast;
Procedure SetContrast (contrast: ScreenContrast);

The display's contrast level is under program comtrol. Contrast values range
from 0 to 255 ($FF), with 0 as maximum contrast and 255 as minimum.
Contrast returns the contrast setting; SetContrast sets the screen contrast.
The low order two bits of the contrast value are ignored. The initial contrast
value is 128 ($80).

Procedure RampContrast (contrast: ScreenContrast);
A sudden change in the contrast level can be jarring to the user.
RampCcntrast gradually changes the contrast to the new setting over a period
of about a second. RampContrast returns immediately, then ramps the
contrast using interrupt driven processing.

F.32 Automatic Screen Fading
Function DimContrast: ScreenContrast;
Procedure SetDimContrast (contrast: ScreenContrast);

The screen contrast level is automatically dimmed if no user activity is noted
over a specified period (usually several minutes). This is done in order to
preserve the screen phospher. DimContrast returns the contrast value to which
the screen is dimmed; SetDimContrast sets this value. The initial dim
contrast setting is 176 ($80)

Pascal Reference Marusal Haroware interrsce

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds);

The delay between the last user activity and dimming of the screen is under
software control. FadeDelay retums the fade delay; SetFadeDelay sets it.
The actual delay will range from the specified delay to twice the specified
delay. The initial delay period is five minutes.

when the screen is dim, user interaction will cause the screen contrast to
retum to its normal bright level (determined by the Contrast and SetContrast
routines defined above). Moving the mouse or pressing a8 key on the keyboard
(e.g., SHIFT) is enough to trigger the screen brightening. Calling
Cursorlocation or SetFadeDelay also indicates user activity.

F.A The Speaker
Function Volume: SpeakerVolume;
Procedure SetVolume (volume: SpeakerVolume);
Procedure Noise (wavelength: MicroSeconds);
Procedure Sllence;
Procedure Beep (wavelength: MicroSeconds; duration: MilliSeconds);

The routines in this section provide square wave output from the Lisa speaker.
The speaker volume can be set to values in the range 0 (soft) to 7 (loud).
Volume reads the volume setting; SetVolume sets it. The initial volume
setting is 4.

Noise produces a square wave of approximately the specified wavelength.
Silence shuts off the square wave. The minimum wavelength is about 8
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above the audible range. The maximum wavelength is 8,191 micro-
seconds, which corresponds to about 122 cycles per second.

Noise and Silence are called in pairs to start and stop square wave output. In
contrast, Beep starts square wave output which will autormatically stop after
the specified period of time. The effects of Noise, Silence and Beep are
overridden by subsequent calls.

F.5 The Keyboard
The routines in this section provide an interface to the keyboard, the keypad,
the mouse button and plug, the diskette buttons and insertion switches, and
the power switch. Two interfaces are provided, a pollable keyboard state and
a queue of keyboard events.

Three physical keyboard layouts are defined, the “0ld US Layout” (with 73
keys on the main keyboard and numeric keypad), the “Final US Layout” (76
keys) and the “European Layout” (77 keys). Each key has been assigned a
keycook, which uniquely identifies the key. Keycode values range from 0 to

F-5

Pascal Reference Marnial Haroware Interface

127. Table F-1 defines the keycodes for the “Final US Layout”, using the
legends from the US Keyboard. The "Old US Layout™ has three less keys; |\,
Alpha Enter, and Right Option are not on the old keyboard. The "European
Layout™ has one additional key, ><, with a keycode of $43.

Two Keys on the "0ld US Layout™ generate keycodes different from the
corresponding keys on the "Final US Layout™. To aid in compatibility,
software changes the keycode for from $7C to $68, and the keycode for
Right Option from $68 to $4E.

Table F-1
Keycodes for "Final US Layout™
WI®Y 000 | go1 | oo | O | 100 | 101 | 110 | 111
) 1 2 3 4 5 6 7

Q000 : : =

c CLEAR ((3 E A
0001 | oIsk 1) p 3

1 | INSERTED 0 6 2
0010 | orsk 1 M & ¢

2 | BUTTON] U 7 3
0011 J orsk 2 ud » $

3 JINSERTED > 8 4
0100 | orsk 2 % ;

y | BuTToN 7 5 1

PARALLEL

01501 RALL 8 R Q

110 | nouse
0 60 BUTTON 9 T 5
0111 | nouse /

7 PLUG [A] M v
1000 § Pouer ~

8 | suton 4 : "
1001

5 g F z
1010 6 G X
1011 2

B m H D
1100 LEFT

C v OPTION
1101 chps

D 2 c LOCK
11Elﬂ 3 B SHIFT
1111 NUMERIC X

F ENTER N .

Pascal Reference Marxial Haroware Interrece

F.5.1 Keyboard Identification
Function Keyboard: Keybdid;

Function Legends: Keybdid;
Procedure Settegends (ic: Keybdid);

Lisa software supports a host of different keyboards. Each keyboard has three
major attributes: manufacturer, physical /gyl and Jegends. The chant
below describes how these three attributes are combined to form a Keyboard
identi- fication number. The keyboards self identify when the machine is
tumed on and when a new keyboard is attached. Keyboard retumns the
identification number of the keyboard currently attached. Legends and
Setlegends provide a means of pretending to have different legends, without
physically replacing the keyboard.

Keyboard identification numbers:

7 6 5 4 3 2 1 0
[Manufacturer | Layout] Legends |
Manufacturer:
00 - APD (le., TKC)
01 —
10 -- Keytronics
Layout:
00 -- Old US (73 keys)
01 --

10 -- European (77 keys)
11 -- Flnal US (76 keys)

LayoutA_egends:

$0F - Qg uUs

$26 -- Swiss-Gerrnan (allocated for proposed software)
$27 -- Swiss-French (allocated for proposed software)
$29 -- Portuguese éallocated for proposed software;
$29 -- Spanish-Latln American (allocated for proposed software
$2A -- Danish (allocated for proposed software)
$28 -- Swedish (hardware not yet available)
$2C - Itallan (hardware not yet available)

$20 -- French
$2E -- German
$2F — UK

F-7

Pascal Reference Manual Haraware Interface

$3C - APL (allocated for proposed software)
$3D -- French-Canadian (allocated for proposed software)
$3E -~ US-Dvorak (allocated for proposed software)

$3F -- Final US
F.5.2 Keyboard State
Function KeyIsDown (key: KeyCap) Boolean;
Procedure KeyMap (var keys: KeyCapSet);

Low level access to the keyboard is provided through a pollable keyboard
state. This state information iIs based on the physical keycodes defined above.
KeylsDown returns the position of a single specified key. KeyMap returns a
128-bit map, one bit for each key. A zero indlcates the key 1Is up, a one
indlcates down. For the mouse plug, a zero indicates unplugged, a one inoi-
cates plugged in. Certain keys are not pollable; the corresponding bits will
always be zero. These keys are the diskette insertion switches and buttons,
parallel port, and power switch. (The parallel port and mouse piug keys are
unreliable across reboots on older hardware.)

F.5.3 Keyboard Events
The hardware interface provides a queue of keyboard events. The events in
the input queue are generally key down transitions. Each event contains the
followlng information:

keycode -- physical key

ascii -- ASCII interpretation of this key

state -- caps-lock, shift, option, &, mouse button and repeat
mouseX -- X-coordinate of the mouse when the Key was pressed
mouseY -- Y-coordinate of the mouse when the key was pressed
time -- value of the millisecond timer when the key was pressed

Keycode -- Keycodes are defined in Table F-1, above.

Ascil -- The ASCII interpretation of keys depends on the state of the caps-
lock, shift and option keys. Six interpretauons are associated with each
different keyboard layout:

normal

caps-lock -

shift or both shift and caps-lock

option

option with caps-lock

option with shift or both shift and caps-lock

F-8

Pascal Reference Msarusl Haraware Interface

In most cases the ASCII value retumed is obvious. The table below lists the
cases that aren't so obvious.

$00 m Disk 1 Inserted

$00 Disk 1 Button

$00 m Disk 2 Inserted

$00 Disk 1 Button

$00 g:&d: Power Button

$00 Mouse Button (down)
$00 Mouse Plug (inz

$01 (SOH) Mouse Button (up)
$01 (SOH) Mouse Plug (out)
$03 (ETX) Enter

$08) BackSpace
$09 T; Tab

$0D EgR Retumn
$1B (ESC) Clear

$1C (FS) Left
$1D Gs; Right

$1E (RS) Up
$1F g Down
$20 (SP Space

State -- A 16-bit word is used to returmn the state of several keys with each
event. Each bit represents one or more keys; a zero indicates that all of the
keys are up, a one indicates that at least one of the keys is down. An
agditional bit indicates, if it is a one, that the event was generated by
repeating the previous event. The following bits of state are currently
assigned:

bit O: caps-lock

bit 1: left or right shift

bit 2: left or right option

bit 3: & key

bit 4: mouse button

bit S: this event is a repeat

Certain keys never generate events. These keys are caps-lock, both shift
keys, option keys, and the & key. The mouse button generates events on both
the down and up transitions. Down transitions have an ascil value of 0, up
transitions 1. The mouse plug also generates two different events. When the
mouse is plugged in an event with an ascii value of 0 Is returned, when it is
unplugged a value of 1 is returned.

F-9

Pascal Refererce Mol Haroware Interfoce

Function KeybdPeek (repeats: Boolean; index: KeybdQIndex; var event:
KeyEvent} Boolean;

KeybdPeek is used to examine events in the keyboard queue, without removing
them from the queue. The first input parameter indicates whether repeats are
desired. The second parameter is the gueue index. The first output para-
meter indicates whether the specified queue entry contains an event. To
examine an entire queue, first call KeybdPeek with a queue index of 1. If an
event is returned, call it again with a queue index of 2, etc.

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event: KeyEvent}
Boolean;

KeybdEvent is used both to determine if a keyboard event is available, and to
return the event if one is available. The event is removed from the gueue.
KeybdEvent returns a boolean result which is true if an event is returned.
The first parameter to KeybdEvent is used to indicate if the caller will
accept repeated events on this call. The second parameter indicates if the
functions should wait for an event if one is not immediately available.

F5.4 Dead Key Diacriticals
Many languages employ diacritical marks on certain letters.. Several of the
required diacritical mark-letter combinations appear on European keyboards,
but others do not. The combinations shown in the table below may be typed as
a two-key sequence, by first typing the dead key diacritical (which has no
immediate effect), and then typing the letter. Dead key diacriticals appear on
keyboard legends as the diacritical mark over a dotted square or hollow box.

circumflex. ~ -4 @& i 6 G
grave accent --3a é i 0 0
tilde T -4 N B
acute accent = -- & 6E i 6 a
umlaut T --8A B 1 60 w0

A dead key diacritical followed by a letter which appears in the table above
yields the corresponding character. The event that is generated contains the
keycode, state, mouse location and time that correspond to the letter, but the
ASCII value of the letter-diacritical combination. A dead key diacritical
followed by a space yields just the diacritical mark. The event contains the
keycode, state, mouse location and time corresponding to the space, but the
ASCII value of the diacritical mark. Finally, a dead key diacritical followed
by any other character (i.e., not a space or defined letter) yields the diacrit-
ical mark followed by the other character.

discritical, defined letter --> foreign character
diacritical, space --> diacritical
diacritical, other character --> diacritical, other character

F-10

Pascal Referernce Mariual Haraware Interface

.55

F.6

Most keys, if held down for an extended period of time, may generate
multiple events (repeats). The keys that are /! repeatable are caps-lock,
both shifts, both options, the # key, the diskette insertion switches and
diskette buttons, parallel port, the mouse button and plug, and the power
button. Several conditions must be satisfied before a repeat is generated.
These conditions are as follows:

1. KeybdPeek or KeybdEvent is called with repeatsDesired true.
The keyboard event gueue is empty.

The key returned in the last event is still down.

No down transitions have occurred since the last event.

The key is repeatable.

Enough time has elapsed.

Repeats generate events with the following attributes:

keycode -- original keycode
ascii -- original ASCII interpretation

SVEWN

state -- original position of the caps-lock, shift, etc.
mouseX -- revised X-coordinate of the mouse

mouseY -- revised Y-coordinate of the mouse

time -- revised value of the millisecond timer

Procedure RepeatRate (var initial: MilliSeconds; var subsequent: MilliSeconds);
Procedure SetRepeatRate (initial: MilliSeconds; subsequent: MilliSeconds);

The repeat rates can be read and set by calls to RepeatRate and
SetRepeatRate. The rates include an initial delay, which occurs prior to the
first repetition, and a subsequent delay, prior to additional repetitions. They
are both in units of milliseconds. The default repeat rates are 400
milliseconds initially and 100 milliseconds subsequently.

The Microsecond Timer
Function MicroTimer: Microseconds;

The MicroTimer function simulates a continuously running 32-bit counter
which is incremented every microsecond. The timer is reset to 0 each time
the machine is booted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

The microsecond timer is designed for performance measurements. It has a
resolution of 2 microseconds. Calling MicroTimer from Pascal takes about 135
microseconds. Note that interrupt processing will have a major effect on
microsecond timings.

F-11

Pascal Reference Meraal Haroware Interface

F.7

F8

F9

The Millisecond Timer
Function Timer: Milliseconds;

The Timer function simulates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to 0 each time the
machine is booted. The timer changes sign about once every 25 days, and
rolls over about every 7 weeks.

The millisecond timer is designed for timing user interactions such as mouse
clicks and repeat keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

Date and Time

Procedure DateTime (var date: DateArray)

Procedure SetDateTime (date: DateArray);

Procedure DateToTime (date: DateArray; var time: Seconds);

The current date and time are available as a set of 16-bit integers which
represent the year, day, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last loss
of battery power, the date and time will be midnight prior to January 1, 1980.
Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Time Stamp

Function TimeStamp: Seconds;

Procedure SetTimeStamp (time: Seconds);

Procedure TimeToDate (time: Seconds; var date: DateArray);

The current date and time are aiso available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1 January
1901, by calling TimeStamp and SetTimeStamp. The time stamp will roll over
once every 135 years. Beware--for dates beyond the mid 1960's, the sign bit
is set. The time stamp is based on the hardware clock/calendar. This clock
continues to operate during soft power off, and for brief periods on battery
backup if the machine is unplugged. If the clock/calendar hasn't been set
since the last loss of battery power, the date and time will be midnight prior
to Janwuary 1, 1980. Setting the time stamp also sets the date and time
described above. Since the date and time is restricted to 1980-1995, the time
stamp is also restricted to this range. TimeToDate converts a time stamp to
the date and time format defined above.

F-12

Pascal Reference Mearual Haraware Interface

F.10 Interface of the Hardware Unit

Unit Hardware;

Interface
type
Pixels = Integer;
HanyPixels = LongInt;
CursorHeight = Integer;
CursorPtr = “Integer;
DateArray = Record
year: Integer;
day: Integer;
hour: Integer;
minute: Integer;
second: Integer;
end;
Frames = LongInt;
Seconds = LongInt;
MilliSeconds = LongInt;
HMicroSeconds = LongInt;
SpeakerVolume = Integer;
ScreenContrast = Integer;
KeybdQIndex = 1..1000;
Keybdid = Integer;
KeyCap = 0..127;
KeyCapSet = Set of KeyCap;
KeyEvent = Packed Record
key: KeyCap;
ascii: Char;
state: Integer;
mouseX: Pixels;
mouseY: Pixels:
time: MilliSeconds;
end;
{ Mouse }

Procedure Mouselocation (var x: Pixels; var y: Pixels);
Procedure MouseUpdates (delay: MilliSeconds);
Procedure MouseScaling (scale: Boolean);

Procedure MouseThresh (threshold: Pixels);

Function HouseOdometer: ManyPixels;

F-13

Pascal Reference Manual Haraware interface

{ Cursor }

Procedure CursorLocation (x: Pixels; y: Pixels);

Procedure CursorTracking (track: Boolean);

Procedure CursorImage (hotX: Pixels; hotY: Pixels; height:
CursorHeight; data: CursorPtr; mask: CursorPtr);

Procedure BusyImage (hotX: Pixels; hotY: Pixels; height:
CursorHeight; data: CursorPtr; mask: CursorPtr);
Procedure BusyDelay (delay: MilliSeconds);

{ Screen }

Function FrameCounter: Frames;
Procedure ScreenSize (var x: Pixels; var y: Pixels);

Function Contrast: ScreenContrast;

Procedure SetContrast (contrast: ScreenContrast);
Procedure RampContrast (contrast: ScreenContrast);
Function DimContrast: ScreenContrast;

Procedure SetDimContrast (contrast: ScreenContrast);

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds);

{ Speaker }

Function Volume: SpeakervVolume;

Procedure SetVolume (volume: SpeakerVolume);

Procedure Noise (wavelength: MicroSeconds);

Procedure Silence;

Procedure Beep (wavelLength: MicroSeconds; duration: MilliSeconds);

F-1a

Pascal Referernce Mamusl Haraware Interface

{ Keyboard }

Function Keyboard: KeybdId;

Function Legends: KeybdId;

Procedure SetLegends (id: KeybdId);

Function KeyIsDown (key: KeyCap): Boolean;

Procedure KeyMap (var keys: KeyCapSet);

Function KeybdPeek (repeats: Boolean; index: KeybdQIndex; var
event: KeyEvent): Boolean;

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event:
KeyEvent): Boolean;

Procedure RepeatRate (var initial: MilliSeconds; var subsequent:
HilliSeconds);

Procedure SetRepeatRate (initial: MilliSeconds; subsequent:
MilliSeconds);

{ Timers }

Function MHicroTimer: MicroSeconds;

Function Timer: MilliSeconds;
{ Date and Time }

Procedure DateTime (var date: DateArray);

Procedure SetDateTime (date: DateArray);

Procedure DateToTime (date: DateArray; var time: Seconds);
{ Time Stamp }

Function TimeStamp: Seconds;

Procedure SetTimeStamp (time: Seconds);
Procedure TimeToDate (time: Seconds; var date: DateArray);

F-15

Appendix G
Lisa Extended Character Set

AR EEERENE KK . G :
D= TNl v 2] i)<< OY 8
lH VA M* Ao |NEE—OC 8 @
e ||| |=lQ|@®|O|F R W3R
@0 [—=|=|=|:=c|O|O|O|:00|T|D|T|:D
L <L [O Z2 1O || 40| 40|« |:63 |0 [T | OO | -@
QO =|0|+=|3|>| 3| X| > N|—|—|~)1 |z

slalojv|o|~|Oc|—-|—|x[—|E|c|O
QO |D]|> 3| X|>|N|w—|—|m] I
@|<(a|OQ|WL|JIIT|—=|"X|J2|Z|0
Ol~|N|m|<t ||~ v A e
| == | $|A|T|B|- |~~~ |+]|]| ‘|~
2|8|8|8|8||5|E|E|=|8(8|c|g|e|s
g(E|5|E|E|E|8|E|elsls|s|e|s|8]|=
a ~—~ N O «§ N 9 ~ O oo g o O 0 9w ow

The first 32 characters and DEL are nonprinting control codes.

The shaded area is reserved for future use.

G-1

H1
H2
H3
H4
H3
H.6
H7
H8
HS

Appendix H

Error Messages
Error Reporting e H-1
Lexical BEXrors . eeeeecmeaamec s H-1
Syntactic BXrors ..o eiieee—e——emaeen H-2
Semantic ETTorS ... e H-2
Conditional Compilation e H-5
Compiler Specific Limitations __ H-5
JFLO I8 G {1 - H-5
Clascal EXITors ... e H-5
Code Generation EITors ... i iiieeiaeaas H-6

Error Messages

H.1 Error Reparting
Errar reports show the entire line containing an error. Error lines displayed
on the screen and written to the error listing file ($£ Compiler command)
usually show the line preceding the error for context, too, although there are
some circumstances in which that line is not shown.

12 Read(Argument)
i3 IF (IOResut<=0) AND (Rrg>=0} THEN
?

*** Fyror 36 *** ';' expected.
?

?

k Eyror 102 *** Identifier not dec]éred.
#k* File example/exrors TEXT **%*

Errors for any one line are accumulated (up to a maximum of 10) and
reported after the line is fully scanned. Both the error number and its
associated text are shown along with a "?" pointer to the error's approximate
location. The pointer usually points to the last character of the token that
was being processed when the error occurred. The pointer for an error
message is shown on the line before the message. There may be rmultiple
pointers associsted with a single message, or multiple messages associated
with & single pointer. The sowrce line is shown only once. The line number
preceding it is the line position within the file whose name is shown as the
last line in the error report. That line number may be used in conjunction
with the Editor's "Goto line #" feature to guickly find the errars in the
specified file.

H2 Lexical Exrors
10 Too many digits
i1 Digit expected after '
12 Integer overflow
13 Digit expected in exponent
14 End of line encountered in string constant
15 Illegal character in input
16 Premature end of file in source program
17 Extra characters encountered after end of progrem
18 End of file encountered in a comment

in real

Fascal Refersnce Manual Error Messages

H3 Svntactic Errors
20 Illegal symbol
21 Exror in simple type
22 Error in declaration part
23 Error in parameter list
24 Exror in constant
25 Error in type
26 Error in field list
27 Error in factor
28 Error in variable
29 Identifier expected
30 Integer expected
31 '(' expected
32 ') expected

33 '[' expected
34 '} expected
35 ':' expected
3 ';' expected
37 '=' expected
38 ',' expected
33 '*' expected
40 ':=' expected

41 ‘'program' expected

42 'of' expected

43 'begin' expected

44 ‘'end' expected

45 ‘'then’' expected

46 'until' expected

47 ‘'do' expected

48 'to' or 'downto' expected
49 'file' expected

50 'if' expected

51 '.' expected

52 'implementation' expected
53 'interface' expected

54 'intrinsic' expected

55 ‘'shared' expected

56 A '." or (' is expected following a type-id

H4 Semantic Errors
100 Identifier declared twice
101 Identifier not of the appropriste clsss
102 Identifier not declared
103 Sign not allowed
104 Number expected
105 Lower bound exceeds upper bound
106 Incompatible subrange tvpes

Fascal Relersnce Manugl Error Messages

107 Type of constant must be integer

108 Type must not be real

109 Tagfield must be scalar or subrange

110 Type incompatible with with tagfield type

111 Index type must not be real

112 Index type must be scalar or subrange

113 Index type must not be integer or longint

114 Unsatisfied forward reference for type identifier:

115 Illegal use of forward reference type identifier

116 Parameter list is inconsistent with original specification

117 Function result type is inconsistent with original
specification

118 Function result type must be scalar, subrange, or pointer

119 Ffile value parsmeter not allowed

120 Missing result type in function declaration

121 F-format for real only

122 Error in type of standard function psrameter

123 Erxror in type of standard procedure psrameter

124 Number of parameters does not agree with declarstion

125 1Illegal parameter substitution

126 Result type of parasmeteric function does not agree with
declaration

127 Expression is not of set type

128 Only tests on equality allowed

129 Strict inclusion not allowed

130 File comparison not allowed

131 Illegal type of operand{s)

132 Type of operand must be boolean

133 Set element type must be scalar or subrange

134 Set element types not compatible

135 Type of variable is not arrasy or string

136 Index type is not compatible with declaration

137 Type of variable is not record

138 Type of variable must be file or pointer

139 1Illegsal type of loop control varisable

140 Illegal type of expression

141 Assignment of files not allowed

142 Label type incompatible with selecting expression

143 Subrange bounds must be scalar

144 Type conflict of operands

145 Assigmment to standaxrd function is not allowed

146 Assignment to formal function is not allowed

147 No such field in this record

148 Type error in resd

149 Actual parsmeter must be s varisble

150 Multidefined case label

151 Missing corresponding variant declaration

Fascel Reference Manual Error Messages

152
153
154

135
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

180

Real or string tagfields not allowed

Previous declaration was not forward

Substitution of standsrd procedure or function is not
allowed

Multidefined label

Multideclared label

Undefined label:

Undeclared label

V¥alue parsmeter expected

Multidefined record variant

File not allowed here

Unknown compiler directive (not 'external’, 'forward',
'inline’, or 'c')

Yariable cannot be packed field

Set of real is not allowed

Fields of packed records cannot be var parameters
Case selector expression must be scalar or subrange
String sizes must be equal

String too long

Yalue out of range

Address of standerd procedure cannot be taken
Assignment to function result must be done inside function
Loop control veriable must be local

Label value must be in 0..9999

Must exit to an enclosing procedure

Procedure or function has already been declared once
Unsatisfied forward declsration for Procedure
Unsatisfied forward declaration for Function

Type conversion to a different size type is not allowed
Illegal type of operands in constant expression
Division by O

NIL is not allowed in & constant expression

@ is not allowed in & constant expression

Only certain pre-defined functions are allowed here
Dereferencing is not allowed hexre

INLINE code constants must be single word integers
INLINE not allowed because procedure/function is already
declared

No such unit in this file

Fascal Reference Manusl Error Messages

H.5 Conditional Compilation
260 New compile-time veriable must be declared at global level
261 Undefined compile-time variable
262 Erxror in compile-time expression
263 Conditional compilation options nested too deeply
264 Unmatched ELSEC
265 Ummatched ENDC
266 Error in SETC
267 Unterminated conditional compilation option
H.6 Compiler Specific Limitations
300 Too many nested recoxrd scopes
301 Set limits out of range
302 String limits out of range
303 Too many nested procedures/functions
304 Too many nested include/uses files
305 Includes not allowed in interface section
306 Pack and unpack are not implemented
307 Too many units
308 Set constant out of range
309 Structure too large (> 32K)
310 Parsmeter list too large (»= 32K)
312 Size of local data is too large { > 32K)
312 Size of global data is too large (> 32K)
350 Procedure too large
351 File name in option too long
352 Too many errors on this line

H.7 1/0 Errors
400 Not enough room for code file
401 Exror in rereading code file
402 Error in reopening text file
403 Unable to open uses file
404 Error in reading uses file
405 Error in opening include file - compilation terminated
406 Error in rereading previously read text block
407 Not enough room for I-code file
408 Error in writing code file
409 Exror in reading I-code file
410 Unable to open listing file
420 1/0 error on debug file

H.8 Clascal Errors
800 OF missing
801 Superclass identifier missing
802 Method NEW is not declared
803 Subclass declaration not allowed here
804 Method is not a procedure

H-3

Fascal Relerence Manual Error Messages

805 Unimplemented method:

806 Unimplemented class:

807 Superclass identifier is not a class

808 Identifier is not a class

809 'NEW' not allowed here

810 'NEW' was expected here

811 Illegal 'NEW’ method

812 Illegal use of class identifier

813 Unsafe use of a handle in an assignment statement
814 Unsafe use of a handle in a WITH statement

815 Unsafe use of a handle as a wvar parameter

817 Compiler error!!!

818 Override of non-existent procedure or function
819 ThisClass function is only legal in methods

H9 Code Generation Errors

1000-1999 Internal code generation errors

2000 End of I-code file not found

2001 Expression too complicated, code generator ran out of
registers

2002 Code generator tried to free & register that was already
free

2003-2005 Exyor in generating address

2006—-2010 Exror in expressions

2011 Too many globals

2012 Too many locals

H.10 Verification Exrors

4000 Bad verification block format

4001 Source code version conflict

4002 Compiler version conflict

4003 Linker version conflict

4100 VYersion in file less than minimum version supported by
program

4101 Version in file greater than maximum version supported hy
progrsm

H-6

Appendix |
Pascal Workshop Files

This appendix lists the files provided on the Pascal 3.0 micro disketies, first
alphsbetically, then by diskette.

Pascal
File Neme Diskette Notes Description
flert S E QuickPort support file
spin/syslib._ohj 1 A Intrinsic unit-misc.
firchiver .Obj 7 Utility progrem
Assembler .Obj 5 C Workshop progrsem—68000 Assemblex
ByteDiff .Obj 7 Utility program
ChangeSeg.0Obj 7 Utility progrem
ChexCount .0bj 7 Utility progrsm
Code.Dbj 5 C Workshop progrem-Pascal Code

Generstor

CodeSize .Obj 7 Utility program
Comp.Text 7 Utility progrem
Compare.Help.Text 7 Support file-Compere
Compare .Obj 7 Utility progrsam
Concat .0bj 7 Utility program
Copy.0Dbj 7 Utility progrem
Diff .0bj 7 Utility progrem
DunpObj.0bj 7 Utility progrem
DumpPatch.Cbj 7 Utility progxam
Edif Menus . Text 5 C Support file-Editor menus file
Editor.Obj 5 C Workshop program-Editor
ExrxTool .Obj 7 Utility progrsm
FileDiv.0Obj 7 Utility program
FileJoin.Obj 7 Utility progrem
Find.Obj 7 Utility progrem
FindID.0Ob) 7 Utility program

Note A: These files are used for the installation procedure but are not installed.

Note B: These files are the rminimum necessary to run a uger program in the
Workshop ervironment. A user program may require other files as well.

Note C: These files are necessary for running the minirnum Pascal Waorkshop
(Editor, Assembler, Pascal Compiler and Code Generator, Linker, and
Debugger).

Note D: These files are needed only for developing Macintosh software.

Note E: These files are needed only for developing Lisa QuickPort software.

Note F: These files are needed only by the Lisa Office System.

Note G: These files are needed only for developing Lisa QuickDraw software.

1-1

Fascal Reference Manuwal

File Neme
FindWord.Obj
font _heur

font .heur

font .1ib
font.1lib

gxref .Ob)
InstellTool .Obj
installwsphrase
Intrinsic.Lib
Intrinsic.Lib
I0SFPLIB.OBJ
iospaslib.ob)
iospaslib.obj
IManager .Obj
LIBTK/PABC . TEXT
LineCount .Obj
Linker .0b}
LWCeount .0bj
MACMac .Boot
MACMacCom .0b j
MAC/RMaker .0bj
N68K .ERR

N68K .OPCODES
ObjI0OLib.0Obj
DEMsyscall .Ob)
03Exrys.Exr
peper .text
Pascal .0bj
PasErrs .Exy
PaslLibCall.0Obj
PasMat .Help.Text
PasMat .0bj
PortConfig.Obj
PRLib.Obj

Pascal

Fascal Workshop Files

Diskette Notes Description

7

DB NN CVAAAN Y BRI WO SN WD W PR R N e 0NN RN

Utility progrem

Support file

Support file

Support file-tiny font library
Support file-font library
Utility prograsm

Utility program

Support file

Library directory-intrinsic units
Library directory-intrinsic units
Intrinsic unit-floating point
Intrinsic unit-Pascal support
Intrineic unit-Pascal support
Utility program

QuickPort support file

Utility program

Workshop program-Linker
Utility program

Support file-Msc boot code
Utility program

Utility progrsam

Support file-Assembler

Support file-Assembler
Intrinsic unit-object files

Regular unit-privileged system calls

Support file-error message text
Support file-Editor stationery
Workshop progrem—Pascel Compiler
Suppoxrt file-error message text
Intrinsic unit-Pascsal support
Support file-Pasmel

Utility program

Utility program

Intrinsic unit-Printing

Note A: These files are used for the installation procedure but are not installed.

Note B: These files are the rminimum necessary to run a user program in the
Workshop ervironment. A user program may require other files as well.

Note C: Theze filez are necessary for running the minimum Pascal Workshop
(Editor, Assembler, Pascal Compiler and Code Generator, Linker, and

Debugger).

Note D: These files are needed only for developing Macintosh software.
Note E: These files are needed only for developing Lisa QuickPort softwere.
Note F: These files are needed only by the Lisa Office Systern.

Note G: These files are needed only for developing Lisa QuickDraw software.

1-2

Fascal Relerence Manusal Fascal Workshop Files

Pascal
File Name Diskette Notes Description
ProcNemes .Help . Text Support file-ProcNemes
ProcNames .0Obj Utility program
D/boxes .Ob) QuickDrew example progrem
D /boxes.text QuickDrsw example source
D/graf3d.Obj Regular unit-3D graphics
D/graftypes . text QuickDyew assembly interfaces
D Hexrdwsre.0bj Regulsr unit-herdwere interfaces
D/m/boxes . text QuickDraw exsmple exec file
OD/m/sample . text QuickDrew example exec file
QD/ssnple .Obj QuickDraw example program
D/sample.text QuickDraw example source
QD/support .0Ob) Regulsr unit-QuickDraw support
QP/BOXES .LLIST .TEXT QuickPort sample program
qp/boxes.text QuickPort semple program
OP/Graf3D.0hbj Regulasr unit-3D graphics
DPMardware.Obj Regulsr unit-hardware interface
qp/mainbaud . text QuickPort sample progrem
0P Make . Text QuickPort exec file
ap/MBALD .CONFIG.TEXT QuickPort semple program
qp/MBAUD VT 100 . TEXT QuickPort sample progrem
qp/mouseinput . text QuickPort ssmple program
qp/mouseinput 2 . TEXT QuickPort semple progrem
0P /PHRASE Support file-QuickPort
qp/phuser .text QuickPort sample program
ap/ODSAMPLE .CONFIG . TEXT QuickPort semple program
qp/gdsample.pic . TEXT QuickPort sample progrsm
qp/qdsample text QuickPort semple program
gp/ubsudrate _text QuickPort sample program
QPAQPortCall .0bj Regular unit-QuickPort interfaces
OPAJPor tGraph .Obj Regular unit-QuickPort interfaces
OP/UQPortSoroc .Obj Regulsr unit-QuickPort interfaces
gp/ugpor tuser . TEXT QuickPort ssmple program
ORPAUQRortVT 100 .0b Regulsr unit-QuickPort interfaces
gp/ugpsupport . TEXT QuickPort support file

OOV O OO OOWOOUOOOOOOOOOOUOOOOOOO000SNN

Note A: These files are used for the installation procedure but are not installed.

Note B: These files are the minimum necessary to run a user program in the
Workshop ervironment. A user program may require other files as well.

Note C: Theze files are necessary for running the minimum Pascal Workshop
(Editor, Assembler, Pascal Compiler and Code Generator, Linker, and
Debugger).

Note D: These files are needed only for developing Macintosh software.

Note E: These files are needed only for developing Lisa QuickPort softwsare.

Note F: These files are needed only by the Lisa Office System.

Note G: These files are needed only for developing Lisa QuickDraw software.

1-3

Fascal Reference Meanual

File Name
OP/AUQuickPort .0bj
qp/usertab . TEXT
qp/uuserterm. text
OPlib.0Obj
gpsemple.note.text
Search.0bj
SegMap.0bj

shell .Workshop
ShowInterface Help.Text
ShowInterface.0Obj
SUlib.0Ohj

SXref .Assembly . Text
Sxref .Basic.Text
SXxef .0b)

SXref Pascal . Text
Sysilib.Obj
Sys2Lib .0Obj
SysCall.0bj

system. ht_Priam Disk
system.bt_Profile
svstem. bt_Sony
system. cdd

system.cd_2 Port Card
system.cd_Rrchive Tape
system.cd_Console
system.cd_Modem R
system.cd_Parallel Cable
system.cd_Prism Card
system.cd_Prism Disk
system.cd_Profile

system.cd_Serisl Cshle

Pascal

Fascal tWorkshop Files

Diskette Notes Description

9

Ll S I g e e R N R O e B AN BNV LN N R ta N JY = RV a

Lol Sl S I N S e

N~

mmmmm

&

gﬂﬂﬂﬂ%ﬂﬁ g(‘?[’)ﬂ [ﬂ"%

m

Regulsr unit-QuickPort interfaces
QuickPort sample progrem

QuickPort ssmple program

Intrinsic unit-QuickPort

QuickPort semple program notes
Utility progrem

Utility progrem

Workshop shell

Support file-ShowlInterface
Utility progrem

Intrinsic unit-standexrd units
Support file

Support file

Utility program

Support file

Intrinsic unit-misc.

Intrinsic unit-misc.

Intrinsic unit-0S interfaces
System support-Prism boot tracks
System support-ProFile boot tracks
System support-Sony boot tracks
System support-configursble driver
directory

System support-2-port csrd driver
System support-fArchive tspe driver
System support-console driver
System support-Europe-modem A driver
System support-psrsllel csble driver
System support-Prism csrd driver
System support-Prism disk driver
System support-Profile or internsl
herd disk driver

System support-USA-serisl csable

driver

Note A: These files are used for the installation procedure but are not installed.
Note B: These files are the minimum necessary to run a user program in the

Workshop enwironment.

A user program rnay reguire other files as well.

Note C: These files are necessary for running the minirnum Pascal Warkshop
(Editor, Assembler, Pascal Compiler and Code Generator, Linker, and

Debugger).

Note D: These files are needed only for developing Macintosh software.

Note E: These files are needed only for developing Lisa QuickPort softwere.
Note F: These files are needed only by the Lisa Office Systemn.

Note G: These files are needed only for developing Lisa QuickDraw software.

Fascal Retersgnce Mamuigl

File Name
system.cd_Sony
system. debug
system.debug?
system.11d
system.11d
system.os
system.os -
SYSTEM.PRD

System .PR_Daisy Wheel Printer
system .PR_Imagewriter / || DMP
System .PR_Ink Jet Printer

system.shell
system_shell
SYSTEM .UNPARCK
TK2LIB.0Obj
TKLIB.Obj
Tools.Help.Text
Transfer .Menus.Text
Transfer .Obj
Translit .Obj

Xref .0b}

WordCount .0Obj
Workshop.Step.Help.Text
WORKSHOPERRS .ERR
xref . help.text
xref.0hj
{T11}BUTTONS
{Ti1}obj
{T11}PHRASE

Pascal

Fascal Workshop Fiies

Diskette Notes Description

1d Lol =t N A B

A S N U AR NSNS O O SO0 Q0 N e e A ol

B

M

D RN w)

System support-micro diskette driver
System program-debugger

System program-debugger

System program-low-level drivers
System program-low-level drivers
System program-0S

System program-0S

System support-print code
configuration

System support-daisy wheel printer
System support-Imagewriter/DMP
System support-ink jet printer
Instsllation shell

Environments window

System support-unpsck teable
Intrinsic unit-ToolKit

Intrinsic unit-ToolKit

Suppoxrt file-various utilities
Support file-Transfer menus file
Workshop program—Transfer progrsm
Utility program

Utility program

Utility program

Support file-Workshop shell
Support file-error message text
Support file-xRef

Utility program

Support file-Freferences

Workshop program-Preferences
Support file-Preferences

Note A: These files are used for the installation procedure but are not installed.

Note B: These files are the minimum necessary to run a user program in the
Workshop environment. A user program may require other files as well.

Note C: These files are necessary for running the minirnum Pascal Workshop
(Editor, Assemnbler, Pascal Compiler and Code Generator, Linker, and

Debugger).

Note D: These files are needed only for developing Macintosh software.

Note E: These files are needed only for developing Lisa QuickPort software.
Note F: These files are needed only by the Lisa Office System.

Note G: These files are needed only for developing Lisa QuickDraw software.

1-5

Fascal RKelerence Manual

Pascal Diskette 1

Filensme Size Psize
apin/syslib.ohj 89600 175
font .heur 1536 3
fant .1ib 5746 12
installwsphrase 17422 35
Intrinsic.Lib 1536 3
iospaslib.obj 24576 48
system.bt_Priam Disk 11264 22
system.bt_Profile 11776 23
system.cdd 1536 3
system.cd_2 Port Card 1024 2
system.cd_Archive Tape 4096 8
system.cd_Console 5120 10
system.cd_Priam Card 2048 4
system.cd_Priem Disk 3584 7
system.cd_Frofile 5632 11
system.cd_Sony 3584 7
system.1l1d 10240 20
system.os 142848 279
system.shell 16896 33
SYSTEM.UNPRCK 1024 2

707 totel blocks for files listed

31 blocks of 0S overhesd for cstalog snd files listed

34 blocks free out of 772

Pascal Diskette 2

Filename Size Psize
font .heur 1536 3
font .1ib 264070 516
Intrinsic.lib 5120 10
iospaslib.obj 47616 93
system.bt_Sony 11776 23
system.cd_Modem A 8192 16
system.cd_Parallel Cable 2560 b
system.cd_Serisl Cahle 7168 14
system.11d 10240 20
system.shell 7680 15

715 total blocks for files listed

21 blocks of 0S overhesd for catslog and files listed

36 blocks free out of 772

I-6

Fascal Workshop Files

Fascal Reference Msanual

Pascal Diskette 3

Filensme Size Psize
IManager .0bj 14336 28
system.debug 32768 64
system.debug2 16384 32
system.os 161792 316
SYSTEM.PRD 402 1
System .PR_Daisy Wheel P.. 15872 31
system.PR_Imagewriter /. 17408 34
{T11}BUTTONS 43520 85
{Ti1}obj 31232 61
{T11}PHRASE 11215 22

674 total blocks for files listed

32 blocks of 0OS overhead for catalog and files listed

78 blocks free out of 772

Pascal Diskette 4

Filename Size Psize
ObjI0oLib.0b) 59392 116
PortConfig.0Obj 6144 12
SUlib.0Obj 27648 54
Svsilib.Dbj 275968 539

System.PR_Ink Jet Print.. 14336
749 totsl blocks for files listed

27 blocks of 0S overhead for catalog snd files listed

8 blocks free out of 772

28

1-7

Fascal Workshop Filss

Fascal Reference Manusal

Pascal Diskette 5

Filensme Size Psize
Assembler .Obj 42496 83
Code.0Obj 51712 101
Edit .Menus.Text 3072 6
Editor .Obj 40960 80
N68K .ERR 3072 6
N68K .OPCODES 4096 8
OSErrs .Erx 22528 44
paper .text 2048 4
Pascsal .0bj 116736 228
PasErrs.Exxr 7680 15
shell .Workshop 76800 150
Workshop.Step.Help.Text 2048 4
WORKSHOPERRS .ERR 2048 4

733 total blocks for files listed

35 blocks of 0OS overhead for catslog and files listed

16 blocks free out of 772

Pascal Diskette 6

Filensme Size Psize
I0SFPLIB .Ohj 66048 129
Linker .0Ohj 37888 74
OEMsyscall . Obj 4608 9
PaslibCsll.0bj 2560 5
PRLib.Db) 43520 85
Sys2Lib.0Ob) 134656 263
SysCall .Ob) 22016 43
Transfer .Menus.Text 2048 4
Transfer.0bj 14336 28

640 total blocks for files listed

30 blocks of 0S overhesd for cetslog snd files listed

114 blocks free out of 772

<o

Fascal Workshop Files

Fascal Reference Manusl

Pascal Diskette 7
Filensme

frchiver .0bj
ByteDiff .Ob}
ChangeSeg.0Obj
CharCount .Obj
CodeSize.Obj

Comp .Text
Compexre.Help.Text
Compare.0bj
Concat .0bj
Copy.0bj

Diff .0Obj
DumpObj.0Ohj
DumpPatch.Obj
ExxTool .Obj
FileDiv.0Obj
FileJoin.Obj
Find.Obj
FindID.0Obj
FindWord.Obj
gxref .0Obj
LineCount .0bj
LWCcount .0bj
PasMat .Help.Text
PasMat .0bj
ProcNames .Help.Text
ProcNemes .Ob)
Sesrch.0Obj

SegMap .0bj
ShowlInterface.Help.Text
ShowlInterface.Oh}
SXref.Assembly.Text
SXref .Basic.Text
SXref.Obj

SXref .Pascal .Text
Tools.Help.Text
Translit .Obj}
Uxref .Obj
WordCount .0bj
xref.help.text
xref .Obj

Size Psize
12288 24
2560 5
2560 5
5120 10
8704 17
2048 4
7168 14
12800 25
5120 10
6144 12
9216 18
22016 43
8192 16
3072 6
4608 9
3584 7
8192 16
2560 5
1536 3
14848 29
5120 10
5120 10
11264 22
37376 73
5120 10
19968 39
8192 16
2560 5
4096 8
29696 58
3072 6
3072 6
15360 30
2048 4
8192 16
7168 14
14336 28
5120 10
5120 10
25600 50

703 total blocks for files listed

70 blocks of 0S overhead for catalog
11 blocks free out of 772

and files listed

1-9

Fascal Workshop Files

Fascal Reference Msenusl

Pascal Diskette 8
Filename

InstallTool .Obj
TK2LIB.0bj
TKLIB.Obj

Size Psize
14336 28
153136 303
174592 341

672 total blocks for files listed

25 blocks of 0OS overhead for catalog and files listed
87 blocks free out of 772

Pascal Diskette 9
Filename

ALERT
LIBTK/PABC . TEXT
MARCMac .Boot
MACMacCom.0bj
MAC/RMaker .Ob}
-(QD/hoxes .0b)
Qh/boxes._text
QD/graf3d.Obj
OD/graftypes.text
QD/Hardware.Obj
0D/m/boxes. text
OD/m/sample.text
OD/sample .Obj
QD/sample.text
QD/support .Obj
QP/BOKES . LLIST.TEXT
gp/boxes.text
QP/Graf3D .0bj
OP/Hardware.Obj
uyp/mainbsud. text
OPMake . Text
upMBAUD .CONFIG. TEXT
gp/MBARUD VT 100 . TEXT
gp/mouseinput _text
agp/mouseinput2 TEXT
QP /PHRASE

gp/phuser .text
up/VDSAMPLE .CONFIG . TEXT
gp/gdsample . pic TEXT
gp/gdssmple . text
gp/ubsaudrste . text

Size

Psize

Fascal Workshop Files

Fascal Reference Manusl

OP/AU0PortCall .Obj)
OP/AUQPoY tGraph.Obj
OP/UQPoxrtSoroc.Obj
gp/ugportuser .TEXT
OPANPortVT100.0bj
gp/ugpsupport . TEXT
OPAQuickPort .0bj
gp/userteb. TEXT
ap/uuserterm.text
OPlib.0bj

gpsemple _note.text

6656
1536
1536
2048
1536
3072
1536
2048
3072

60416
3072

666 total blocks for files listed

72 blocks of OS overhead for catalog and files listed

46 blocks free out of 772

[ory
Q0 O Bl Oh Wl DA

[
o=

Fascal Workshop Files

Appendix J
Listing Formats

Six different listing formats can be generated by the Compiler and Code Generator,
allowing you to show different amounts of generated assembly code and other
information intermixed with your Pascal source. All the listings show the total line
number count and the line number within each include file, plus lexical information.
An example of each of the listing formats is shown at the end of this appendix.
The Compiler commands and Compiler and Code Generator options that control the
listing are described in the Release 3.0 Notes to Chapter 12,

The six different listing formats are:

1. A basic listing as produced by the Compiler. The other five listing formats
are modifications of this basic format. UUnless vou specify $L- as an option
to the Code Generator, vou won't see this listing, because its presence is a
signal to the Code Generator that it should modify the listing to one of the
other five formats (its name is passed in the I-code).

In the basic listing, each line of the source is preceded by five fields of

information:

Field 1: The total line count. '

Field 2: The current include and uses nesting depth. If the input is not
from either a uses or include; this field will be blank.

Field 3: The line number of each line with respect to the include file
containing that line. All error references are reported in terms of
this line number. You rnay use it in conjunction with the Editor's
"Goto line #" feature to easily locate the lines that contain the
reported errors.

Field 4: This field consiste of two indicators (left and right} that reflect the

static block nesting level. The left indicator iz incremented (mod
10) and displeyed whenever a begin, repeat, or case is encountered.
On termination of these structures with an end or until, the right
indicator is displayed and then decremented. It is thus easy to
match begin, repeat, and case statements with their matching
terminations.

Fascal Reference Manugl Listing Formals

Field 5: A letter in the thie field reflects the static level of procedures and
functions. The character is updated for each procedure or function
nest level ("A" for level 1, “B" for level 2, and so on), and
displayed on the line containing the heading, and on the begin and
end associated with the procedure or function body. Using this
field you can essily find the procedure or function body for its
corresponding heading when there are nested procedures declared
between the heading and its body.

Note that if the source being shown in the listing is being skipped due to &
$IFC Compiler command, the lexical information (fields 4 and 5) is ot
shown. You can then tell from the listing what is being skipped.

2. A minimum listing containing all the basic listing information plus the
LisaBug procedure-relative addresss corresponding to the statements.
Generally, the addresses reflect the start of the associated statements. This
is the form of listing produced by the Code Generator when $ASM- is in
effect (either by option or Cornpiler commands).

3. A tuli listing containing the basic listing plus the generated assembly code
interleaved with the Pascal source. In genersl, the code generated for a
staterment follows that statement, but there are some conditions which cause
the code to precede its associated statement. The full listing is produced
when $ASM+ is in effect (either by option or Compiler commands).

4. A full listing by procedure containing the basic listing plus the generated
assembly code on a procedure basis, that is, all the source for & procedure is
shown before its generated code. This listing is produced when $ASM+ is in
effect and you specify the $ASM PROC option.

5. An Assernbler input sowrce containing the original Pascal source as
comments interleaved with the corresponding assembly code. This listing is
produced when $ASMe+ is in effect and you specify the $ASM ONLY option.
There is no guasrantee that the source produced is completely valid
Aszermnbler input (although whet is generated will be syntactically correct).
The Code Generator generates appropriate .DEF and .REF statements and
labels for branches and data. Procedure references whose names conflict
with Assembler opcodes and directives are renamed by padding the original
name with percent cheracters (e.g., "MOYE" would become "MOVE%XX%"). A
conflicting name is defined & one that occurs in the Assembler's opcode file
N68K_OPCODES. (ThlS file is now also used by the Code Generator when the
$ASM ONLY option is used.)

J-2

Fascal Reference Manusal Listing Formats

6. An Assernbler input sowrce by procedure containing the original Pascal
source for an entire procedure as comments followed by the corresponding
assembly code. This listing is produced when $ASMe is in effect and you
specify both the Code Generator options $ASM ONLY and $ASM PROC.

Note that the only way to see the generasted code is to use $ASM+, either as an
option to the Compiler or Code Generator or as Compiler directives. $ASM PROC
causes the display of the code on a procedure basis, and $ASM ONLY causes the
listing to be produced in Assernbler input format.

Fascal Reference Manusl Listing Formals

LISTING FORMAT #1 - Basic listing format as produced by the Compiler

Lisa Pascal Compiler ¥3.22 (1d-Jun-84) 13:31:43 15-Jun-84
é 1 — PROGRAM Exsmple;
Z -~
3 3 - VAR
g 4 - Argument: Longint:
§ -
6 6 -~ {$1 Factorial}
g 1 1~-A FUNCTION Factorial(Arg: LongInt): LongInt;
i 2z2--
91 30-A BEGIN {Factorial)
01 84— IF Arg<=1 THEN
i1 1 5 - Factorial :=1
iz 1 § - ELSE . .
13 1 ? - Factorial := Arg#Factorial(Arg-i);
4 1 8 -0A END; (Factorial}
is ? -
16 8 0- BEGIN (Exsmple}
1?7 2 1- REPEAT
18 10 -- Writeln;
19 i1 - Write('Enter srgument: ');
20 12 - Resd(Argument);
21 13 - IF (I0Result<=0) AND (Argument>=0) THEN
22 14 - writeln('Factorial(', Argument: 1, ') =",
23 15 -~ Factorial (Argument): 1);
24 16 ~1 UNTIL Argument<o;
25 1?7 -0 END. {Example)

Elspsed time: 1.483 secords.
Compilation complete - no errors found. 25 lines.

Fascal Reference Manual

Listing Formats

LISTING FORMAT #2 - Minimum listing format showing LisaBug addresses

Lisa Pascal Compiler v3.22 (14-Jun-84)
Liss Pascal MC63000 Code Generator V3.i4 (id-Jun-34)

WUNGUR WM

24

v el

4 -
2 -

()
1
i

0-
i~

¥y
OV NXVONEWNE OIS
]
i

11 -
12 -
13 --
14 -
15 --
16 -1
17 -0

PROGRAM Example;

AR
Argument: LongInt;

{$1 Factorial)
FUNCTION Factorisl(arg: LongInt): Longlnt:

BEGIN (Factorial}
IF Arg<=1 THEN
Fastorial := 1
Elﬁ . .
Factorial := ArgéFactorial(Arg-i):
END; {Factorial}

BEGIN {Exemple)
REPEAT

¥riteln;
Write('Enter argument: ');
Read(Argument);
1IF (10Result¢=0) AND (Argument:=0) THEN
Writetn('Fectorial (', Argument: 1, ‘)
Factorial (Argument): 1);
UNTIL ATgument<o;
END. {(Example)

Elspsed compilation time: 1.453 seconds.

Compilation complete - no errors found. 25 lines.

Elspsed code generator time: 1.228 seconds.

Total code size = 284

13:34:43 15-Jun-84
13:36:41 15-Jun-54

.

Fascal Reference Marnual Listing Formeis

LISTING FORMAT #3 - Full listing format with generated code interleaved

L@S& Pascal Compiler ¥3.22 (14-Jun-84) 13:31:43 15-Jun-84
Lisa Pascal MC63000 Code Generator v3.1d4 (14-Jun-84) 13:37:08 15-Jun-84
i 1 - PROGRAM Example;
2 2 -
3 3 - VAR
4 4 -- Argument: Longlnt;
5 S -
& B - {$1 Factorial}
7 1 1--A FUNCTION Factorisl{Arg: LongInt): LongInt;
8 1 2 =
9 1 30-4 BEGIN (Factorial}
000000 8A6F FOOO FACTORIA TST.W $FOO0(A?)
000004 4ES6 0000 LINK A6, 330000
10 1 4 - IF Arg<=1 THEN
000008 OCAE 0000 0001 CHMPI L #300000001, $0003(A6)
00000E 0008
000010 6EDS B3T.& LODOL ; 0000001A
11 1 5 -~ Factorial := 1
000012 7001 HOVEQ #$01,00
000014 2D40 000C MOVE_L 0O, $000C(AG)
000018 601A BRA.S LOODZ ; 00000034
iz 1 § - ELSE
13 1 ? - Factorial := ArgéFactorial(Arg-1i);
000014 42A7 LO0O1 CLR.L ~(A?)
00001C 202E 0005 MOVE.L $0008(A6), 00
000020 5380 SUBQ.L #%1,D0
000022 2F00 MOVE. L DO,-(A7)
000024 4EBA Q000 IR FACTORIA
000025 2F2E 0008 MOVE L $0008(AS) . -(A7)
00002C 4EB& 0000 JSR XI_MULg
000030 205F 000C MOVE.L (A?)+,$000C(AG)
000034 YESE LO00Z UNLK AS
000036 2E9F MOVE.L (A?)+, (A7)
000038 4E7S RTS
000034 C641 4354 arF52 WORD $C641,$4354, $4F52 ; “ ACTOR™
000040 a9dl JWORD $4941 ; t1A”
000042 G000 CstSize .WORD Last-CstSize-Z
000044 Last
M 1 804 END; (Fsctorial}
15 7 -
16 8 0- BEGIN (Example}
i7 Q 1- REPEAT
000000 4EBA 0000 EXAMPLE JSR % _BEGIN
000004 4ESE 0000 LINK AB, #$0000
000008 2CSF MOVE.L (A7), A6
00000A dESS FFFC LINK RS, $$FFFC
00000E 9FED 0010 SUBA.L $0010(AS) A7
000012 4EBA 0000 JER %_INIT
13 10 —- Writetn;
000016 2F20 000C LD00z MOVE.L $000C(AS),-(A7)
000014 9EBA 0000 JsR Nd_LN
19 i1 - write('Enter argument: ');
Q0001E 2F2D 000C MOVE.L $O000C(AS),-(A?)
000022 487A 00A2Z PEA Cst0003 ;
000026 4267 CLR.W ~(A?)
000028 4EBA 0000 JER _STR
0 12 - Resd(Argument);

J-6

Fascal Reference Mamual Listing Forrmesls

00002C 2FZD 0008 MOVE L $0008(AS),-(A?)

000030 4EBA 0000 JER m_I

000034 ZBSF FFFC MOVE_L (A7)« SFFFC(AS)
21 i3 -- 1F (!0Resum=0) AND (Argment:-O) THEN

000038 4EBA (0000 %_IORES

00003C d4ASF TS-T ¥ (A7)

QO003E SFCO SLE Do

000040 4AAD FFFC YST.L $FFFC(RS)

00004q 5CC1 SGE 129

000046 CO01 AND.B 01,00

0000348 6744 BEQ.¢ LOOOL :
22 14 -~ writetn(® Factonal(' Argument: 1, ') =
23 18 -- Factorial (Argument): 1);

00004A 2F2D 000C MOVE.L $000C(AS),-(A?7)

00004E 4874 D06A PEA Cs 10002 :

000052 4267 CLR.W -(A7)

000054 4EBA 0000 JER _STR

000058 2F2D 000C MOVE.L S$O000C(AS),-(A?)

0000SC 2F20 FFFC MOVE L SFFFC{AS),~(A?)

000050 3F3C Q001 MOVE W 3:3&)01 ~(A7)

000064 4EBA 0000 JSR

000068 2F20 000C HOVE . L sooocws) -(ﬁ?)

00006C 4874 OD4G PEA Cst0001

000070 4267 CLR.Y -(R?)

000072 4EBA 0000 JER %_STR

000076 2F2D 000OC MOVE.L $O000C(AS),~(A7)

00007/ 42A7 CLR.L -(A?)

00007C 2F20 FFFC MOVE.L $FFFC(AS),~(A7)

000030 4EBA 0000 JER FACTORIA

000084 3F3C 0001 MOVE.W #30001,-(A7)

000063 4EBA 0000 JSR e 1

00008C 2F2D 000C MOVE_L $000C(AS),-(A7)

000090 4EBA 0000 JSR _LN

000094 d4ARD FFFC L0001 TET.L $FFFC(AS)

000098 6CO0 FF7C BGE L0002 ;. 0000N0016
24 16 -1 UNTIL Argument<o;

00009C 4EBA 0000 JER X_TERN

0000A0 4ESD UNLK AS

000042 4EBA 0000 JSR % _END

0000A6 4E7S RIS

000043 4ESE UNIK A6

0000aR 4E7S RTS

0000AC CS58 4140 S04C JWORD $C558,%414D,8$504C ; " . XAMPL"

0000B2 4520 .WORD $4520 ; "E”

0000B4 0022 CstSize .WORD Last-CstSize-2

000086 Cst0001

000086 03 BYTE 3

000087 2920 3D ARSI ') =

0000BA Cst0002

0000BA 0A BYTE 10

0000BB 4661 6324 6F72 JASCIT ‘Factor’

0000C1 6961 6C28 ASCIT tisl(”’

0000CS 00 BYTE $00

0000C6 Cst0003

0000Cs 10 BYTE 16

0000C? 456E 7465 7220 ASCIT ‘Enter '

0000CD 6172 6775 6D6S ASCIT targume’

000003 6E74 3A20 ASCIT 'mt:

000007 00 BYTE $00

000008 Last

J-7

Fascal Reference Manusl Listing Formasls

5 1?7 -0 END. (Example}
Elgpsed compilation time: 1.483 seconds.
Compilation complete - no errors found. 25 lines.
Elspsed code generator time: 3.106 seconds.

Total code size = 284

J-8

Fascal Reference Manual

Listing Formals

LISTING FORMAT #4 - Full listing format with the $ASM PROC in effect

Lisa Pascal Compiler V3.22 (14-Jun-84)

Lisa Pascal MC63000 Code Generator ¥3.1d4 (14-Jun-84)
PROGRAM Example;

4 -
2 -
3 -
4 -
5 -
6 -
1--8
2 -
30-4
4 -
5 -
6 —-
7 -
8-0a

shERBvovoupwnm

[™Y

VAR

Argument: Longint;

{$1 Factorial)
FUNCTION Factorial(arg: Longlnt): LongInt;

BEGIN (Factorial}
IF Arge=1 THEN

13:31:43 15-Jun-84
13:38:34 15-Jun-54

Factorial := 1
ELSE
Factorial := ArgéFactorisl(Arg-1):
END; {Factorial)
000000 4AGF FOOOD FACTORIA TST.W $FO00(A?)
000004 dESS 0000 LINK A6, $$0000
000003 OCAE 0000 0001 CMPI_L 8300000001, $0003(A6)
DOCO0E 0003
000010 BEOS BGT.& L0001 ; 00000OLA
000012 7001 MOVEQ #301,D0
000014 2040 000C MOVE.L DO,$000C(RE)
Q00018 601A BRA.S& LDOO2 ; 00000034
00001A 42A7 L0001 CLR.L -(A®)
00001C 20ZE 0008 MOVE.L $0008(A6), D0
900020 5330 SUBQ.L #31,00
000022 2F00 MOVE L DO,~(A7)
000029 4EBA 0000 JsR FACTORIA
000023 2F2E 0008 MOVE.L $0008(A6),~(A7)
00002ZC 4EBA 0000 JSR XI_Mutd
000030 205F 000C MOVE.L (A?)+,$000CCAG)
000034 4ESE Lono2 UNLK L]
000036 ZE9F MOVE. L (A?)+, (A7)
000033 4E7S RTS
000034 CAdd 4354 4F52 WORD $C641, $4354, $a4F52 ; ° ACTOR"
000040 4941 - $a941 ; "IAT
000042 0000 CstSize .WORD Last-CstSize-2
00D0AY Last
BEGIN {(Example}
REPEAT
yritetn;

Write('Enter argument:
Read (At
IF (I0Result<=0) AND (Argument>=0) THEN

wWriteln('Factorisl(', Argument: i, ')

INTIL Argument<o;

1

‘)

Factorisl (Argument): 1)

END. {Example}

000000 4EB& 0000
000004 4ESG 0000
Q00005 ZCSF

20000 4ESS FFFC
00CODE 9FED 0010
000012 4EBA 0000
000016 2F20 0000

EXAMPLE

Loon2

JER
LINK
MOVE.L
LINK
SUBA . L
JER
MOVE . L

J-8

%_EEGIN

46, 130000
(A?)+, HE

A5, §§FFFC
$0010¢A5) , A7
%_INIT
$OD0C(AS) , ~(A7)

.

Fascel Refsrence Menusl

00001A 4EBA 0000
00001E 2F20 Q00C
000022 4574 00A2
000026 4267

000028 4EBA 0000
00002C 2F20 0008
000030 4EBA 0000
000034 2BSF FFFC
000033 4EBA 0000
00003C 4ASF

00003E S5FCO

000040 U4ARD FFFC
000044 3CC1

000046 COO1

000048 674A

00004A ZF20 000C
00004E 4574 006A
000052 4267

000054 4EBA 0000
000053 2F20 000C
0000SC 2F20 FFFC
000060 3F3C 0001
000064 4EBA 0000
000068 2F2D 000C
00006C 4574 0048
000070 4267

000072 AEBA 0000
000076 2F20 000C
0000747 4247

00007C 2F2D FFFC
000050 4EBA 0000
000084 3F3C 0001

000094 4AAD FFFC
000023 6C00 FF7C
00003C 4EBA 0000
0000AC 4ESD
0000AZ 4EBA 0000
0000AG 4E75
0000A8 4ESE
0000AR 4E7S

0000AC C558 414D 504C
0000B2 4520

0000B4 0022

000086

Q00086 03

00007 2920 3D

0000BA

0000BA 0A

00C0BE 4661 6374 6F72
0000C1 6951 6C26
0000CS 00

0000CH

0000C6 10

0000C7 456E 7465 7220
0000CD 6172 6775 6065
0000D3 6E74 3420
000007 00

Cst3ize
£st0001

Cs 10002

510003

RIS
RTS

-WORD
-WORD

BYTE
JASCII

BYTE
ARCIT
-ASCII
-BYTE

BYTE
WASCI
ARSI
-RSCIT
-BYTE

J-10

Listing Formals

¥i_LN
$000C(AS), ~(A7)
(510003 ;

-(A7)
M¢_STR
30038(&5). (A7)

(ﬁ?)*&FFFC(AS)
%_IORES
(A7)+

Do
$FFFC(AS)
151

01,00
LOODL
$000C(AS) , ~(A7)
540002
(A7)
MW_STR
$000C(AS), - (A7)
SFFFCAS), ~(A7)
#30001, - (A7)

1

)
$O00C(AS), ~(A?)
Cs 10001,

~(A?)

¥i_STR
$000C(AS),~(A7)
(A7)
SFFFC(ﬁS) -{A?)
FACTORIA

150001, - (A7)

soooc(as; RIGTS)
SFFFC(AS)

L0002

%_TERM

85

%_END

Ab

;00000094
; 000000BA

; 00000016

$C556, $444D, $504C ; " . XAMPL"
$4520 : "E”

Last-Cst&ize-2

3
) =

i0
'Eactor'
fial(’

Fascel Reference Manueal Listing Formsis

000008 Last
Elapsed compilation time: 1.483 seconds.
Compilation complete - no errors found. 25 lines.
Elapsed code generator time: 2.5d6 seconds.
Total code size = 284

Faecgl Reference Manusl Listing Formeals

LISTING FORMAT #5 - Assembler input interleaved with Pascal source as
comments

PROGRAM Example;

VAR
Argument: LongInt;

P (31 Fectorial}
: FUNCTION Fectorisl(Arg: LongInt): LongInt;

BEGIN {Factorial}
.FUNC FACTORIA

JREF XI_ULA
_REF FACTORIA

TST.W -U096(A7)
LINK AG, 10
3 IF Arge=1 THEN
CHPI.L #1,8(A5)
BGT.Z LOOOL
: Factorial := 1
MOVEQ 81,00
MOVE.L DO0,12(A6)
BRA.E LOOOZ
ELSE
Factorial := Arg¥Factorisl(Arg-i):
Loool CLR.L -(A?}
MOVE.L &(A6),D0
SURQ.L #1,D0
MOVE.L DO,-(A?)
JER FACTORIA
MOVE.L B8(AB),-(A7)
IR %I_MULa
MOVE.L (#7)+,12(A6)
o002 UMLK A6
MOVE.L (AZ)+, (R?)
RTE

JWORD $C641, 34358, $AFS2, §aad
CstSize .WORD Lest-CstSize-2

ar e

.

Last

R END; {Factorial}

; BEGIN {(Example)

H REPERT
MAIN EXAMPLE
.REF X END
.REF %_TERM
JREF %W_I
.REF % _IORES
CREF WR_I
.REF W SR
REF NN
-REF FACTORIA
REF % INIT
.REF % BEGIN

J-12

Fascal Reference Manual

ISR % BEGIN
LINK A6, 480
MOVE.L (A7)+,A6
LINK AS,8-4
SUBA.L 16(AS),A7
JER %_INIT

; writetn;

Lo0o2 MOVE.L 12(&5).-(6\?)
JSR LN

Write('Enter argument: ')

MOVE.L 12(AS5),~(A7)

PEA Cst0003

CLR.W ~(A?)

IER %4 _STR

; Read(Argument;
MOVE.L 8(AS),-(A?)
SR R _I
MOVE.L (A7)« -8(AS)

~

“~

JSR % _IORES
TETM (A7)
SLE Do
TST.L -U(R5)
SGE 1,1
AND.B Di,DO
BEQ.& LOOOL
; uritetn(’Fectorial(’, Argument: 1,
: Factorial (Argument): 1);
MOVE.L 12(A5),~(A7)
PEA Cs10002
CLR.W -(A7)
JSR %W_STR
MOVE.L 12(AS5),-(A7)
MOVE.L -4(AS),-(A?)
MOVE.W 81,-(R7)
JSR % _1
HOVE.L 12(A5),-(A7)
PEA Cst0001

CIRM (A7)
R WS
MOVE L 12(A5),~(A7)
CIR.L (A7)

MOVE.L -4(RS),-(A?)
JER FACTORIA
MOVE W 81 -(A?)

ISR
MOVE L 12(AS) -(A7)
IR %N
e TST.L -47AS)
BGE LO002
: UNTIL ATQUMENnt<o;
JER % TERM
UNIK A5
JR XEND
RTS
UNLK A6
RIS

.~

NORD $CS5S, $414D, $504C, $4520
Cstize .WORD Lsst-CstSize-2

IF (10Result<=0) AND (Argument>=0) THEN

Listing Formets

Fascal Reference Manual Listing Formaetls

C5t0001
BYTE 3
AIT) =
Cst0002
BYIE 10
AII ‘Factorisl(’
.BYTE 300
Cst0003
BYTE 16
ASCIT ‘Enter argument: °
BYTE 300
Last
: END. (Example}
END

J-14

Fascal Reference Manuel Listing Formeals

LISTING FORMAT #6 - Assembler input with the $ASM PROC in effect
PROGRAM Exemple;

VAR
Argument: LongInt;

{81 Factorial}
FUNCTION Factorial(Arg: LongInt): LongInt;

BEGIN {(Factorisl}
IF Arg<=1 THEN
Factorial := 1
ELSE)
Factorial := ArgéFactorial (Arg-1);
END; (Factorial}

FUNC FACTORIA

REF XI_MA
.REF FACTORIA

TST.W -4096(A7)

LINK A, 80

CHPI.L 81,8(A8)
L0001

MOVEQ 81,00
MOVE.L DO,12(A5)
L0002

0001 CLR.L -~(A?)
MOVE.L 8(A6),00
SUBQ.L #1.D0
MOVE.L DO,-(A7)
JSR FACTORIA
HOVE.L 8(A6),-(A7)
ISR XI_MULA
MOVE.L (A7)+,12(A6)

002 UNLK A6
MOVE.L (A7)+, (A7)

DR A N R N R Y

~e

’

WWORD $C641,$4354, $4F52, $4941

CstSize .WORD Last-CstSize-2
Last

BEGIN {Exasmple)
REPEAT
Writeln;
Write('Enter argument: ');
Read(Argument);
IF (I0Result<=0) AND (Argument>=0) THEN
¥writen('Factorial (', Argument: 1, ') =,
Factorial(Argument): 1);
UNTIL Argument<0;
END. (Example}

WMAIN EXAMPLE

P N Y R TR TR}

~

.REF %_END
_REF % TERM
REF %_1

J-15

Fascal Reference Meanusal

as

LO001

% _IORES
%1
2_STR
LN
FACTORTA

%_INIT
% BEGIN

% BEGIN
A6, 110
(A7)+, A6
AS, 8-4

1Z(A5),~(A?)
i

N
127A5),~(A7)
C5t0003
-(A?)

%i_STR
8(A5),-(A?)
w_1

(A7)+,-8(A5)
% _1ORES
(A7)+

0o

~4(A3)

o1

01,00

LOOOL
12(AS).-(R?)
Cst0002 -
-(A?)

%_STR
12765),~(A7)
-4(ASy, - (A7)
4,-(A7)

% I
12765, ~(A?)
Cst0001
-(A7)

w_STR
12(45), -(A7)

%l I
12{85), ~(A7)
Wi_LN

~H4{A5)

LOOOZ

$C558, §4140, $504C, $4520

Last-CstSize-2

Listing Formeals

Fascel Reference Meanual Ligting Foa'm&as*‘

Cst0001
BYTE 3
LRSCIT ') =
Cst0002
BYTE 10
_ASCII ‘Fectorial(’
BYTE $00
C510003
BYTE 16
JASCII ‘'Enter argument: '
.BYTE $00
Last
.END

J-17

Pascal Rererence Manual Index

Index

Please note that the topic references in this index
are by section number.

A

Abs Function 11.4.2

Abs2X D. 4.3, D.4.12

Absolute value D. 9.2

AbsX D.3.9.2, D.3.12

Accuracy in Real Arithmetic D
ACosX D. 4.3, D.4.12
Actual-Parameter 5.2, 7.1, 7.3

syntax 5.2
Actual-Parameter-List 5.2

syntax 5.2
Actual-Parameters in Procedure Call 6.1.2
Add, D.3.3.1

AddPtd Procedure E. 9. 17

AddC, D.3.3.1, D.3.12

AddD D.3.3.1, D.3.12

AddS D.3.3.1, D.3.12

AddX D.3.3.1, D.3.12

Anomalies in Lisa Pascal B

Annuity D.3.10.3, D.3.12

Apple II Pascal A

Apple III Pascal A

Apple II and Apple III Pascal: Other Differences
A.3

Apple Numerics Manual D. 1
Applestuff Unit A
Arc, Graphic Operations E. 8. 10
Arctan Function 11.4.9
Arctangent D.3.10.4
Arithmetic Functions 11.4
Arithmetic Operations D.3.3
Arithmetic Operators 5.1.2, D
Array 3.2.1, 4.3.1
component 3.2.1, 4.3.1
reference 4.3.1
Arrays and Matrices D. 4.10.3
Array-type 3.2.1
syntax 3.2.1
Ascent Line E. 5.2
ASCII 3.1.1.5
ASinX D. 4.3, D. 4.3, D.4.12

Index-1

Pascal Reference Manusl Index

Assembler Input Source J-2
Assembler Input by Source J-3
Assemably Language D.5.1
Assembly Language, Quickdraw E. 11
6602 Assembly-Language SANE Engine D.1
68000 Assembly-Language SANE Engine D.1
Assignment-Compatibility 3.4.3
Assignment-Statement 6.1.1

syntax 6.1.1
ATanX D.3.10.4, D.3.12
ATan2X D. 4.3, D.4.12
Auxiliary Procedures D. 3.9

g
BackColor Procedure E. 9.5
BackPat Procedure E. 9.1
Base-2 logarithm D.3.10.1
Base Line E. 5.2
Base-Type 3.2.3, 3.3, 5.3
of pointer-type 3.3
syntax 3.3
scope anomaly B
of set-type 3.2.3, 5.3
Basic Listing Formats J-1
Beep Procedure F. 4
Binary Log D.3.9.4
Binary Scale D.3.9. 4
Bit Image E. 4.1
Bit Transfer Operations E. 9.13
BitMap Data Type E. 4.2
Bitmaps E. 4.2
Bitwise Boolean Operations A
Blank Character 1.1
Blank Segment 8.3, 9.1
Block 2
syntax 2.1
Block-Structured I1/0 3.2. 4,
10.1.1-2, 10.4
Blockread Function 3.2.4,10.4.1
Blockwrite function 3.2.4,10.4.2
Boolean 3.1.1.4, 5.1.3, 5.1.5.2,
10.3.3.7, 12.3-12.4
comparisons 5.1.5.2
constants as control values 12.3.-4

Index-2

Pascal Reference Manual Index

operands, evaluation of 5.1.3
operators 5.1.3
data type 3.1.1.4
values in text-oriented output
10.3.3.7

Boundary Rectangle E. 4.2

Boxes Program E. 14.2

Buffer Variable 10.1.3, 10.1.7

Built-In Procedures and Functions 10,
11

Busy Cursor F.2.2

BusyDelay Procedures F. 2.2

BusyImage Procedures F.2.2

Byte Array 11.7

Byte—-Oriented Procedures and Functions
11.7

Byte-Size Files 3.2.4

Bytestream Type A

A
C2Dec D. 3.4
C2S8tr D.3. 4
C2X D.3.4.1,
Camera Eye E.
Case 6.2.2. 2
syntax 6.2.2. 2
Case-Constant in Case Statement
6.2.2.2
Case-Sensitivity 1.1, 1.2, 1.4
Case-Statement 8.2.2.2, Notes 6-1
efficiency 12.5
syntax 6.2.2.2
Char 1.8.1, 3.1.1.5, 10.3.1.1,
10.3.3.2, 11.5
constant 1.6.1
type 3.1.15
values in text-oriented 1/0
10.3.1.1, 10.3.3.2
Character 1.1, 3.2.4, 4.3.1
device 3.2.4, 10.1.1-2
files 3.2.4
font E. 5. 2
in string 4.3.1

Index-3

Pascal Reference Manual Index

set 1.1
Character Style E. 5.2
CharWidth Function E. Q.4
Chr Function 11.5.2
Class Functions D.
ClassC D.3.7.1, D.
ClassD D.3.7.1, D.
ClassS D.3.7.1, D.
ClassX D.3.7.1, D.
ClearHlts D. 4. 2, D
ClearXcps D. 4.2, D.
Clip30 Function E. 12.
ClipRect Procedure
ClipRgn E. 5
Clock/Calendar F. 8, F.9
Close Procedure 10.1.5
ClosePicture Procedure E. 9. 14
ClosePoly Procedure E. 9. 15
ClosePort Procedure E. 9.1
CloseRgn Procedure E. 9.11
Closing a File 10.1.5
CmpX D.3.8, D.3.12
Code Generation 12.1
Code Generator Invocation Options Notes 12-4
Code Generator Invocation Options (Table)
Notes 12-7
Color Drawing E. 7.2
routines E. 9.5
ColorBit Procedure E. 9.5
Column Pivoting D.4.10.9
Comment 1.8
Comp D.3.2, D.3.12
Comparison to Apple II and Apple III Pascal
Comparison Functions D. 3.8
Comparisons 5.1.56
Comparisons Involving NaNs D. 2.4
Compatibility of Parameter Lists
7.8.5
Compatible Types 3. 4
Compile-Time Expressions and Variables
12.2.1-3
Compiler 1.8, 12, A
commands 1.8, 12.1-2, A, Notes 12-1
Compiler Commands (Table)} Notes 12-7
Compiler Invocation Options Notes 12-2

!.'QN»&A

Index—4

Pascal Reference Manual Index

Compiler Invocation Options (Table) Notes 12-7
Component of Array 3.2.1, 4.3.1
Component of File 3.2.4, 4.3.3
Component-Type of Array 3.2.1
Component-Type of File 3.2.4
Composing Transformations D. 4.10.3
Compound D. 3.10.3, D.3.12
Compound Interest D.3.10.3
Compound-Statement 6.2.1
syntax 6.2.1
Concat Function 11.6.3
COND D. 4.10. 4
Conditional Compilation 12.2
Conditional-Statement 6.2.2
syntax 6.2.2
Conditioned Problems D. 4.10.4
Condition number D. 4.10.4, D.4.10.10
Constant 1. 4-7
syntax 1.7
Constant-Declaration 1.7, 2.1, B
scope anomaly B
syntax 1.7
Constant-Declaration-Part 2.1
syntax 2.1
Constant Expressions Notes 1-1
Constants, Assembly Language E.11.1
Contrast Control F.3.1
Contrast Function F. 3.1
Control-Variable 6.2.3.3
syntax 8.2.3.3
Conversion, Type Notes 3-1
Conversions D. 3. 4
Conversions To and From Extended D.3.4.1
Conversions Between Binary and Decimal D.3.4.2
Converting Decimal Strings into SANE Types
D.3.4.2
Converting SANE Types into Decimal Strings
D.3.4.2
Coordinate Conversion D. 4.3
Coordinate Plane E. 3.1
Coordinates, GrafPort E.3.1, E.6
Copy Function 11.6.4
CopyBits Procedure E. 9.13
CopyRgn Procedure E. 9. 11
Correctly Rounded Conversion D.4.7

Index-5

Pascal Reference Menual Index

Correlation Matrix D. 4.10.7
Cos Function 11.4.5
CoshX D.4.3, D. 4.3, D.4.12
CosX D.3.10.4, D.3.12
Cosine D.3.10. 4
CpySgnX D.3.9.2, D.3.12
CR Character 1.1, 1.6, 10.3

in text-oriented 1/0 10.3
Crunch 10.1.5
Current Block Number 10. 4
Current File Position 4.3.3
Cursor Control 10.3.7, F.2
Cursor Data Type E. 4.4
Cursor-Handling Routines E. 9.2
CursorHeight Data Type F. 10
Cursorlmage Procedure F.2
CursorLocation Procedure F.2.1
CursorPtr Data Type F. 10
Cursor, QuickDraw E. 4.4
CursorTracking Procedure F.2.1
Customizing QuickDraw Operations

E. 10

3

D.
D.
, D.
2

.4.2

.4.2

D2X D.3.4.1

Data Bitmap F.

Data Types D. 3.

Data Types 3
assembly language E.11.2
Graf30 E. 12.3, E.13.5
QuickDraw E. 2.2, E.13.2

DataFile 10.1.2

Date F. 8, F. 9

DateArray Data Type F. 10

DateTime Procedure F.8

DateToTime Procedure F. 8

DblPrecision D. 4.12

Dead Key Diacriticals F.b5. 4

Debugging 12.1

Dec2C D.3. 4.2, D.3.12

Dec2D D. 3. 4.2, D.3.12

Dec23 D.3.4.2, D.3.12

2

Index-6

Pascal Reference Menual

Dec2X D. 3.

4.2, D.

DecForm D. 3. 4.
4,

r

2

Decimal D. 3.)
Decimal Record Conver
Decimal Record Type D.

s Tow
mcoo:w

DecStr D.3.4.2, D.3.12

DECSTRLEN D. 3. 12

Defining Declaration 7.1
Delete Procedure 11.8.5

Deletions A. 2

DENORMAL D.3.7.1, D.3.12
Denormalized number D.3.7.1
Denormalized Numbers D. 3.7

Descent Line E. 5.2
Determinant D. 4. 10. 10
Determinants D.4.10.5
Device 10.1.1-2

character 10.1.1, 10.1.2
file-structured 101.1, 10.1.2
types 10.1.1, 10.1.2
Diacritical Marks F. 5.4
DiffRgn Procedure E.9.11

Digit 1.1

Digits D.3.4.2, D.3.12

Digit-Sequence 1.4
syntax 1.4

DimContrast Function F. 3.2
Dimensions of Lisa Screen E. 4.1

Directive 1.3

Diskette Insertion Switches F. 5

Display Screen F. 3

DisposeRgn Procedure E. 9.11
DIVBYZERO D.3.8.2, D.3.12

Div Operator A
DivC D.3.3.1, D.3.12
DivD D.3.3.1, D.3.12
DivS D.3.3.1, D.3.12
DivX D.3.3.1, D.3.12
Divide D. 3. 3.
Division by Zero (
3.1.1.3, D
DLE Character 10.3
Double D.3.2, D.3.12

DblPrecision D. 4. 2

1
e

DOWNWARD D.3.8.1, D.3.12

Index-7

.12
.12
sions D. 3. 4.2
3.

Real Arithmetic)

Index

Psscal Reference Manual Zndex

DrawChar Procedure E. 9.4
Drawing E. 7

color E. 7.2
DrawPicture Procedure E. 9. 14
DrawString Procedure E. 9. 4
DrawText Procedure E. Q. 4
Dynamic Allocation Procedures 11.2
Dynamic storage D. 4.4

'3
Efficiency, Case-Statements 12.5
E format D. 4.6
ELEMS D. 3.12
Elementary Functions D.3.10, D. 4.3
Empty Set 5.3
EmptyRect Function E. 9.6
EmptyRgn Function E.9.11
Enumerated-Type 3.1.2
syntax 3.1.2
Environ D.3.8.2, D.3.12
Environmental Control D.3.8
Eof Function 10.1.7
and various procedures 10.1.3-4,
10.1.7, 10.2.1-2, 10.2. 4,
10.3.1-2, 10.4.1
Eoln Function 10.3.5
and read and readln procedures
10.3.1, 10.3.2
EQ D.3.6, D.3.12
Equal D. 3.6
EqualPt Function E.9.17
EqualRect Function E. 9.6
EqualRgn Function E. 9.11
EraseArc Procedure E. 9. 10
EraseOval Procedure E. 9.8
ErasePoly Procedure E. 9. 16
EraseRect Procedure E. 9.17
EraseRgn Procedure E. 8. 12
EraseRoundRect Procedure E. 9.9
Error Messages H
Error Reporting H.1
ETX Character A
Euclidean Length D. 4.10.3

EX -1D.3.10.2

Index-8

Pascal Reference Manual Index

Exception D. 3.8.2, D.3.12
Exception Flags D.3.8.
Existence D.4.10.3
Exit Procedure 11.1.1, A
Exp D.3.4.2, D.3.12, D.4.7, D.4.12
Exp Function 11.4.6
Exponential format D. 4.6
Exponentials D. 3.10.2
ExplX D.3.10.2, D.3.12
Exp2X D.3.10.2, D.3.12
ExpX D.3.10.2, D.3.12
Expression Evaluation D.3.5
Expressions 5
syntax 5
Extended D. 3.2, D.3.12
Extended Comparisons A
Extended Temporaries D.3.5
Extended-Based Expression Evaluation D.3.5
Extensions A. 1
External File 10.1
External Function 7.2
External Procedure 7.1-2
External Rate of Return D. 4.9
ExtPrecision D. 4.12

F
Factor 5

syntax 5
FadeDelay Function F.3.2
F format D.4.86
Field of Record 3.2.2, 4.3.2, 6.2. 4
Field-Declaration 3.2.2

syntax 3.2.2
Field-Designator 4.3.2

syntax 4.3.2
Field-List 3.2.2

syntax 3.2.2
File 3.2.4, 4.3.3, 10

buffer 4.3.3
Buffer and Eof Function 10.1.7
Buffer and Reset Procedure 10.1.3
Component 3.2.4, 4.3.3
Identifier As Parameter Type 7.3
Of Char 3.2.4
Position and Reset Procedure

1
2

Index-9

Pascsal Reference Manual Index

10.1.3
Record 10.2
Reference 4.3.3
Species 10.1.2
Standard File-Type Identifier
3.2.4, 10.1, 10.4
Types and Reset Procedure 10.1.3
Variable 3.2. 4, 4.3.3, 10
File-Buffer-Symbol 4.3.3
syntax 4.3.3
File-Structured Device 3.2. 4,
10.1.1-2, 10.4
File-Type 3.2.4
syntax 3.2.4
FillArc Procedure E. 9. 10
FillChar Procedure 11.8.3
FillOval Procedure E. 9.8
FillPoly Procedure E. 9.16
FillRect Procedure E. 9.7
FillRgn Procedure E. S.12
FillRoundRect Procedure E. 9.9
Final-Value 6.2.3.3
syntax 6.2.3.3
Financial Analysis D. 4.8
Financial Functions D. 3. 10
Finite Real Values 3.1.1.3
Fin-Npv D. 4.8, D.4.12

Fin-Return D. 4.8, D.4.12

FIXEDDECIMAL D.3.4.2, D.3.12
Fixed Decimal Point Format D. 4.6
Fixed-Part 3.2.2
syntax 3.2.2
Fixed-Point Output of Real Value
10.3.3. 4
FLOATDECIMAL D.3.4.2, D.3.12
Floating-Point Arithmetic D
Floating-Point Output of Real Value
10.3.3.4, A
Font Numbers E. 15
Fonts E. 5.2
For-Statement 6.2.3.3
syntax 6.2.3.3
ForeColor Procedure E. 9.5
Foreign Characters F. 5.4
Formal-Parameter-List 7.3

Index-10

Pascal Reference Manual Index

syntax 7.3
Formal-Parameters and Procedure Call
6.1.2
Forwvard Declaration 7.1-2, Notes 7-1
FPE8K D. 4.5
FP_-Free-ASCII D. 4.6, D.4.12.

FPLib D. 1, D.3, D.3.12, D. 5.3
FP-New D. 4.4, D.4.12
FP_Size D. 4.4, D.4.12
FP-Type D. 4.4 D. 4. 12
FPUnit D.5.3
FrameArc Procedure E. 9.10
FrameCounter Function F. 3
FrameOval Procedure E. 9.8
FramePoly Procedure E. S. 16
FrameRect Procedure E. 9.7
FrameRgn Procedure E. 8.12
FrameRoundRect Procedure E. 9.9
Frames Data Type F. 10
Free Fomat D. 4.6, D.4.12
Free Format Conversion D. 4.6
Full Listing J-2
Full Listing By Procedure J-2
Full Rank D.4.10.2
Function 7.2-3
Function-Body 7.2
syntax 7.2
Function-Call 5, 5.2, 7.2, 7.3
syntax: 5.2
Function-Declaration 7.2
syntax 7.2
Function-Heading 7.2
syntax 7.2
Functional Parameter 7.3.4
Functions, Assembly Language E. 11 4
Future Value D.3.10.3

&

GE D.3.6, D.3.12

GEL D.3.86, D.3.12

Get Procedure 10.2.1, 10.2.3
GetClip Procedure E. G.1
GetEnv D.3.8.2, D.3.12

Index-11

Pascal Reference Manusl ZIndex

GetFontInfo Procedure E. 9.4
GetHltAddress D.3.11, D.3.12
GetPen Procedure E. 9.3
GetPenState Procedure E. 8.3
GetPixel Function E.S.18
GetPort Procedure E. 9.1
GetPort30 Procedure E.12.4
GetPrecision D. 4.2, D.4.12
GetRnd D.3.8.1, D.3.12
GL D.3.8, D.3.12
Global Coordinated E. 6, E.9.17
Global Constants D.3.5.1
Globaé Varéables, Assembly Language
L11.
GlobalToLocal Procedure E.9.17
Goto-Statement 6.2, A
syntax 6.1.3
Gotoxy Procedures 10.3.7.2
Graf30 E. 12
data types E.12.3, E.13.5
sample program E. 14.2
GrafDevice Procedure E. 9.1
GrafPort Coordinates E. 3.1, E. 6
GrafPort Data Type E. b
GrafPort Routines E. 9.1
GrafPorts E. b
GrafPtr Data Type E.5
GrafVerb Data Type E. 10
Graphic Pen E.5.1
Greater than D. 3.6
Greater than or equal D.3.86
Greater than or less than D. 3.6
Greater than, equal, or less than D.3.86
GT D.3.6, D.3.12

H

Halt Address D.3.11

Halt Procedure 11.1.2, A

Halts D.3.8.2

Halt Vector D.3.8.2

Handles E. 3.4
picture E. 8.1
polygon E. 8.2
region E. 3. 4

Index-12

Pascal Reference Manual Index

Hardware Interface F
Hardware Interface, Linking To Notes F-1
Heap 11.2, D. 4.4
Heapresult Function 11.2.2
Hex-Digit 1.1
Hex-Digit-Sequence 1. 4
syntax 1.4
Hexadecimal Constants 1.4
HideCursor Procedure E. 9.2
HidePen Procedure E. 8.3
Horner's Method D. 4.9
Horner's Rule D. 3.5
Host Program or Unit 9
Host-Type of Subrange 3.1.3
Hotspot E. 4.4, F. 2
Hourglass Cursor F.2.2
Hyperbolic Cosine D.4.3
Hyperbolic Sine D. 4.3
Hyperbolic Tangent D. 4.3

I
12X D.3. 4.1, D.3.12
Identical Types 3.4
Identifier 1.2
of program 8.1
syntax 1.2
Identifier-List 3.1.2
syntax 3.1.2
Identity Procedure E.12.4.2
IEEE Arithmetic D. 2.1
IEEE Standard D.3.1
IEEE Standard D. 3.1
If-Statement 6.2. 2.1
optimization 12.3
syntax 6.2.2
Implementation-Part 9.1.1
syntax 9.1.1
In Operator 5.1.5.5
Index 4.3.1
in variable-reference 4.3.1
syntax 4.3.1
Index-Type 3.2.1
syntax 3.2.1
INEXACT D.3.8.2, D.3.12

Index-13

Pascal Reference MNanual Index

INF D.2.1
IFINITE D.3. 7.1, D.3.12
Infinities 3.1.1.3, D.3. 7
Infinities D.3.7
Infinity D.2.1 D.3.7.1
InitCursor Procedure E. 9.2
InitFPLib D.3.11, D.3.12
InitGraf Procedure E. 9.1
Initial-Value 6.2.3. 3
syntax 6.2.3.3
Initialization-Part A
InitPort Procedure E. 9.1
Inline Declaration Notes 7-1
Input (Standard File) 10.1.7, 10.3
Input File Control (In Compilation)
12.1
Input Variables in Read Procedure
10.3.1
Input/Qutput 10, Notes 10-1
Inquiries D.3.7.1
Insert Procedure 11.6.6
InsetRect Procedure E. 9.6
InsetRgn Procedure E.9.11
Int-EForm D. 4.6, D.4.12

Integer 1.4, 3.1.1.1-2, 10.3.1.2,
10.3.3.3, 11.3-5, D
arithmetic 3.1.1.1, 3.1.1.2
congtant 1.4
conversion overflow D
data type 3.1.1.1, 3.1.1.2
data type conversions 3.1,
3.1.1.5, 3.1.2, 11.5.1
values in text-oriented I/0
10.3.1.2, 10.3.3.3
Interactive File-Type A
Integral format D.4.86
Interface D. 3. 12
INTERFACE D. 4.12
Interface-Part 9.1.1
gyntax 8.1.1
IRR D. 4.8
Internal Rate of Return D.4.8
Intrinsic Libraries Notes 9-3
Intrinsic~-Unit Syntax Notes 9-2
INTRINSIC.LIB 9.2, 12.1

Index-14

Pascal Reference Manual Index

INVALID D.3.8.2, D.3.12

Invalid Operations in Real Arithmetic
Inverse D.4.10.1

Inverse cosine D. 4.3

Inverses D.4.10.3

Inverse sine D. 4.3

InvertArc Procedure E. 9.10
InvertOval Procedure E. 9.8
InvertPoly Procedure E. 9.16
InvertRect Procedure E. 9.7
InvertRgn Procedure E. 8.12
InvertRoundRect Procedure E. 9.9
Ioresult Function 10.1.2, 10.1.6
IOSFPLib D. 1, D. 4

I0SPasLib D. 1

Iteritive Improvement D. 4.10.6

K
Key State F.5.3
KeyboEvent Function F.5.3
Keybold Data Type F. 10
KeyboPeek Function F.5.3
KeyboQIndex Data Type F.10
Keyboard 3.2.4, 10.1.1, 10.3,
10.3.7.1, F.b
attributes F.5.1
echoing on input 10.3
events F.5, F. 5.3
identification F. 5.1
layouts F. 5.1
legends F. 5.1
physical 3.2.4, 10.1.1, 10.3,
10.3.7.1
queue F. 5.3
repeats F. 5.5
state F. 5.1
testing 10.3.7.1
Keyboard Function F. 5.1
KeyCap Data Type F.10
KeyCapSet Data Type F. 10
Keycodes F. b
KeyEvent Data Type F. 10
KeyIsDown Function F. 5.2
KeyMap Procedure F.5.2

Index-15

Pascal Reference Manusl Index

Keypress Function 10.3.7.1
Keystate F. 5.3

KillPicture Procedure E. 9. 14
KillPoly Procedure E. 9. 15

L
L2X D.3.4.1, D.3.12
Label 1.5, 2.1, 6

on statement 8

syntax 2.1, 6
Label-Declaration-Part 2.1

syntax 2.1
LDec2X D. 4.7, D.4.12
LE D.3.6, D.3.12
Legends Function F. 5.1
Length Attribute 3.1.1.6
Length Function 11.6.1
Less than D.3.6
Less than or equal D.3.6
Letter 1.1
Libraries, Intrinsic Notes 9-3
Linear Algebra D. 4.10
Linear Algebra Procedures D. 4.10.8
Linear Equations D.4.10.3
Linear Least Squares D. 4.10.3
Lineat Least Squares Problems D. 4.10.9
Line-Drawing Routines E. 9.3
Line Procedure E. 9.3
Line2D Procedure E. 12. 4
Line3D Procedure E.12.4
LineTo Procedure E. 9.3
LineTo2D Procedure E. 12.
LineTo3D Procedure E. 12.
Linker 7.1
Linking D.1
Lisa Extended Caracter Set G
Listing Control 12.1
Listing Formats J
Ln Function 11.4.7
Local Coordinates E. 6, E.9.17
LocalToGlobal Procedure E. 9. 17
Lock 10.1. 5
Logarithms D.3.10.1
LogbX D.3.9.4, D.3.12

Loge (1 + x) D.3.10.1

4
4

Index-16

Pascal Reference Manual Index

Log2X D.3.10.1,
LnX D.3.10.1, D.
Ln1X D.3.10.1, D
LongDecimal D.. 4
Long Integer Dat
Longint 1.4, 3.1.1.2, 10.3.1.2,
10.3.3.3, 11.3-5, D
arithmetic 3.1.1.2
constant 1.4, 1.6, 1.7
11.3.4
data type 3.1.1.2
data type conversions 11.3. 3,
values in text-oriented 1/0
10.3.3.3
LongSigDig D. 4.7, D.4.12
LookAt Procedure E.12.4.1
LSigDiglen D. 4,7, D.4.12
Lt D.3.6, D.3.12

D.3.12
3.12
3.12

.7, D.4.12
1.

3

.7, D
a type A

H

Macintosh D. 1

Macintosh Code Generation Notes 12-6
Macintosh Floating-Point Programming D. 4.5
Macwkorks D. 5

Managing Environmental Settings D.3.8.3
ManyPixels Data Type F. 10

MapPoly Procedures E.9.18

MapPt Procedure E.9.18

MapRect Procedure E. 9.18

MapRgn Procedure E. 9.18

Mark D. 4.4

Mark Procedure 11.2.3, A

Mask Bitmap F.2

MathLib D.1, D.4, D.4.12, D.5.3
Math-Solve D. 4.9, D. 4.12

Math Sort D. 4.5

Math-Sort D. 4.5, D.4.12

MathUnit D.5.3

Mat-Mult D. 4.10.8, D.4.12

Matrix D. 4,10.3

Matrix Multipication D.4.10.3, D.4.10.8
Maxint 3.1.1.1

MaxSig D. 4.5, D.4.12

Memavail Function 11.2.5

Index-17

Pascal Reference Manual

Member-Group 5.3
syntax 5.3

Memory Allocation Procedures 11.2

Merge sorting D. 4.5
Microsecond Timer F.6

MicroSeconds Data Type F. 10
MicroTimer Function F.6

Millisecond Timer F. 7

MilliSeconds Data Type F. 10

Minimum Listing J-2
Missing Symbol E. 5.2
Mod Operator A
Mouse F.1
button F. 5
plug F. 6

Mouselocation Procedures F.1.1
MouseOdometer Procedure F. 1.4
MouseScaling Procedure F. 1.3
MouseThresh Procedure F.1.3
MouseUpdates Procedure F. 1.2

Move Procedure E. 8.3

Move2D Procedure E. 12 .4

Move3D Procedure E. 12. 4

Moveleft Procedure 11.7.1
MovePortTo Procedure E.
Moveright Procedure 11.
MoveTo Procedure E. 9.3
MoveTo2D Procedure E. 12. 4

MoveTo3D Procedure
MulC D.3.3.1, D.3.12

MulC D.3.8.1, D.8.12
MulS D.3.3.1, D.3.12
MulX D.3.3.1, D.3.12
Multiply D.3.3.1

N

NaN D. 2.1

NaN Arithmetic D. 2.4
NaN Code D. 2.1
NaNCond D. 4. 11
NaNDet D. 4. 11
NaNIRR D. 4.8, D.4.11
NaNs 3.1.1.3, D.3.7

Natural (base-e) logarithm D.3.10.1

Index-18

Index

Pascal Reference Manual Index

Negation D. 3. 9. 2

Negative Zeros D.2.1

NegX D.3.9.2, D.3.12

New Prodedure 3.3, 11.2.1, A
NewRgn Function E.9.11

Next-After D.3.9.3
NextD D.3.9.3, D.3.12
NextS D.3.9.3, D.3.12
NextX D.3.9.3, D.3.12
NextRandom D. 4.3, D.4.12

-

Nil 3.3, 4.3.4, 11.2.1

Noise Procedure F. 4
Nonsingular-transfomations D. 4.10.1
Normal 10.1.5

NORMAL D.3.7.1, D.3.12

Normalized Number D.3.7.1
Not-a-Number D. 2.1

Number 1.4

NumClass D.3.7.1, D.3.12

Numerical Comparisons 5.1.5.1

a
Object File 9
Object of Pointer 4.3.4
ObscureCursor Procedure E. 9.2
0dd Function 11.4.1
OffsetPoly Procedure E. 9.15
OffsetRect Procedure E. 9.6
OffsetRgn Procedure E. 9. 11
Open3DPort Procedure E.12. 4
Opening a File 10.1, 10.1.2-4
OpenPicture Function E. 9. 14
OpenPoly Function E. 8.15
OpenPort Procedure E.S.1
OpenRgn Procedure E. 9.11
Operands b

compile-time 12.2.3

in expressions 5
Operators 5

compile-time 12.2.3

in expressions 5
Options, Code Generator Notes 12-4
Options, Code Generator (Table) Notes 12-7
Options, Compiler Notes 12-2

Index-19

Pascal Reference Menuel Index

Options, Compiler (Table) Notes 12-7
Optimization Of If, Repeat, and While
statements 12.3, 12.4
Ord Function 3.1, 3.1.1.5, 3.1.2,
11.5.1
Ord4 Function 3.1.1.2, 11.3.3
Order of Evaluation of Operands
51.1
Ordinal Functions 11.5
Ordinal-Type 3.1
and ord function 11.5.1
and ord4 function 11.3.3
and pred function 11.5.4
and succ function 11.5.3
syntax 3.1
Ordinal-Type-Identifier 3
Ordinality 3.1
Otherwise-Clause 6.2.2. 2
syntax 6.2.2.2
Output (Standard File) 10.3
Output Expression in Write Procedure
10.3.3
Output File in Write Procedure
10.8.3
Output-Specs in Write Procedure
10.3.8
Ovals, Graphic Operations E. 9.8
OVERFLOW D.3.8.2, D.3.12
Overflow (Real Arithmetic)
3.1.1.3 D

P
P754 D. 3.1
Packed Array of Char 5.1.5.
10.3.1.5, 10.3.3.
comparisons 5.1.5.6
fillchar procedure 11.
scanning functions 11. .
text-oriented 1/0 10.3.1.5,
10.3.3.8
Packed Data Types 3.1.1.86, 3.2
Page Procedure 10.3.6
PaintArc Procedure E.9.10
PaintOval Procedure E. 9.8
PaintPoly Procedure E. 9.18

6

6, 11.8
8.8

8.1

11.8.2

Index-20

Pascal Reference Manusl Index

PaintRect Procedure E. 9.7

PaintRgn Procedure E. 9. 12

PaintRoundRect Procedure E. 9.9

Parameter 7.1, 7.3

Parameter-Declaration Syntax Notes 7-2

Parameter List Compatibility 7.3.5

Parameter-Declaration 7.3
syntax 7.3

Parameters in Procedure Call 6.1.2

Pascal Compiler 12

Pascal Diskette Description I-6

Pascal Real Arithmetic D.5.2

Pascal Workshop Files I

Pattern Data Type E. 4.3

Pattern Transfer Mode E. 7.1

Patterns E. 4.3

Pen E. 5.1

Pen Routines E. 9.3

PenMode Procedure E.9.3

PenNormal Procedure E. 9.3

PenPat Procedure E. 9.3

PenSize Procedure E. 8.3

Performance Penalty for Longint
values 3.1.1.2

PicComment Procedure E. 9. 14

PicHandle Data Type E. 8.1

PicPtr Data Type E. 8.1

Picture Comments E. 8.1

Picture Data Type E. 8.1

Picture Frame E. 8.1

Picture Routines E.9.14

Pictures E. 8.1

Pitch Procedure E.12. 4.2

Pixtel E. 4.1

Pixtels Data Type F.10

Plus-EForm D. 4.6, D.4.12

Point Data Type E.3.2
Pointer 4.3.4, 11.2
Pointer Function 3.3, 11.3.4
Pointer-0Object-Symbol 4. 3. 4
syntax 4.3.4
Pointer-Reference 4.3. 4
Pointer-Type 3.3
conversions 11.3.3, 11.3.4
syntax 3.3

Index-21

Pascal Reference Manual Index

Pointer-Type-Identifier 3
Points E. 3.2
Points, Calculations E.9.17
Polar Coordinates D.4.3
Polygon Data Type E. 8.2
Polygons E. 8.2
calculations E. 9.15
graphic operations E.9. 16
PolyHandle Data Type E. 8.2
Polynomial D.3.5
PolyPtr Data Type E. 8.2
PorBits E. 5
PortRect E. 5
PortSize Procedure E. 9.1
Pos Function 11.6.2
Pover Switch F. 6
P-QR-Record D. 4. 12

Precedence of Operators 5
Pred Function 3.1, 11.5.4
Predecessor 3.1
Predefined Identifiers A. 4
Present Value D.3.10.3
Procedural Parameter 7.3.3
Procedure 7.1, 7.3
Procedure-and-Function-Declaration-
Part 2.1
syntax 2.1
Procedure-Body Syntax Notes 7-1
Procedure-Declaration 7.1
syntax 7.1
Procedure-Entry D.3.8. 3
Procedure-Exit D.3.8. 3
Procedure-Heading 7.1
syntax 7.1
Procedure-Statement 6.1.2, 7.1
gyntax 6.1.2
Procedures, Assembly Language E.11.4
ProcEntry D.3.8.3, D.3.12
ProcExit D.3.8.3, D.3.12
Program 8
identifier 8.1
segments 8.3
syntax 8.1
Program-Heading 8.1
gyntax 8.1

Index-22

Pascal Reference Menual Index

Program-Parameters 8.1, 8.2
syntax 8.1
Pseudo-inverse P D.4.10.3
Pseudo-inverses D.4.10.1
Pt2Rect Procedure E. 9.6
PtInRect Function E. 8.6
PtInRgn Function E. 9. 11
PtToAngle Procedure E. 9.6
Purge 10.1.5
Put Procedure 10.2.2-3
Pwroften Function 11.4.10
Pyramid E. 12

¢

QDProcs Data Type E. 10

QDProcsPtr Data Type E. 10

QDSample Program E. 2.1, E. 14.1

QDSupport Unit E. 15

QNAN D.3.7.1, D.3.12

QR-Condition D.4.10, D.4.10.10, D.4.12
QR-Determinant D.4.10.8, D.4.10.10, D.4.12
QR-Factor D.4.10.8, D.4.10.10, D.4.12

QR Factorization D.4.10.9
QR-Improve D.4.10.8, D.4.10.10, D. 4.12
QR-Residual D.4.10.8, D.4.10.10, D.4.12
QR-Solve D.4.10.8, D.4.12
QR-Solve finds D.4.10.10
QR-TransDeterminant D. 4. 10.
QR-Transolve D.4.10.8, D.4.
Quadratic Equation D. 3.6
Qualifier 4.3

syntax 4.3
QuickDrav E
QuickDrav Data Types E. 2.2, E. 13.2
QuickDraw Glossary E. 16
QuickDraw, Linking To Notes E-1
QuickDrav Routines E. 9

arcg E.9.10

bit transfer E.S. 13

color drawing E.S.5

cursor handling E. 9.2

customizing E. 10

grafPorts E. 9.1

8, D.4.10.10, D.4.12
10.1

0.10, D.4.12

Index~-23

Pascal Reference Manual , Index

line drawing E. 9.3
miscellaneous utilities E. 9.18
ovals E. 9.8
pen E. 9.3
pictures E. 9. 14
points E. 9. 17
polygons E. 9.15, E. 9.186
rectangles E. 9.6, E. 9.7
regions E.9.11, E.9.12
rounded-corner rectangles E. 9.9
text drawving E. 9.4
vedges E. 9. 10
Quickgraw Sample Programs E. 2.1,
.14
QuickDraw Summary E. 13
QuickDraw, Text Notes E-1
QuickDraw, Using From Assembly
language E. 11
Quiet NaN D.3.7.1
Quo D.3.3.2, D.3.12
Quoted-Character—Constant 1.6.1
syntax 1.6.1
Quoted-String-Constant 1.6
syntax 1.6

R
RampContrast Procedure F.3.1
RandModulus D. 4.3, D.4.12
Random Function E. 9.18
Random Number Generator D.3.10.5
RandomX D.3.10.5, D.3.12
Range-Checking 3.1.3, 12.1
Rank-Deficient D. 4.10.2
Read Procedure 10.3.1
Readln Procedure 10.3.2
Real 1.4, 3.1.1.3, 10.3.1.3,
10.3.3.4, 11.3-4, D
arithmetic D
constant 1.4
data type 3.1.1.3
data type and round function 11.3.2
values 3.1.1.3
values and write procedure D
values in text-oriented I/0
10.3.1.3, 10.3.3.4, D

Index-24

Pascal Reference Manusl Index

RealPrecision D. 4.2, D.4.12
Real-Type 3.1
syntax 3.1
Real-Type-Identifier 3
Record 3.2.2, 4.3.2
field 3.2.2, 4.3.2
number and seek procedure 10.2. 4
or file 10.2
reference 4.3.2
reference in with statement 6.2. 4
Record-Oriented 1/0 10.2
Record-Type 3.2.2
nev procedure 11.2.1
syntax 3.2.2
Rectangle Calculation Routines E. 9.6
Rectangle Data Type E. 3.3
Rectangles E. 9. 9
Rectangles E. 3.3
graphic operations E. 9.7
RectInRgn Function E.9.11
RectRgn Procedure E. 9. 11
Recursion 7.1-2
Redeclaration of Identifier 2.2. 2,
2.2.4
Region Data Type E. 3.4
calculations E. 9. 11
graphic operations E. 8. 12
Regression D.4.10.7
Regular-Unit Syntax Notes 9-2
Relational Operators 5.1.5
Relaxed Order of Declarations Notes 2-1
Release D. 4.4
Release Procedure 11.2.4, A
RelX D. 3.6, D.3.12
RelOp D. 3.6, D.3.12
Remainder D.3.3.2
RemX D.3.3.2, D.3.12
Repeat-Statement 6.2.3.1
optimization 12. 4
syntax 6.2.3.1
Repeating Keys F.5.5
RepeatRate Procedure F. 5.5
Repetitive-Statement 6.2.3
syntax 6.2.3
Reserved Words 1.1

Index-25

Pascal Reference Manual Index

Reset Procedure 10.1, 10.1.5, A
Residual D.4.10.6, D.4.10.10
Result-Type 7.2

syntax 7.2
Rewrite Procedure 10.1.4
RgnHandle Data Type E. 3.4
RgnPtr Data Type E. 3.4
RintX D.3.9.1, D.3.12
Roll Procedure E.12.4.2
Rotation E. 12
Round D. 2. 4
Round Function 11.3.2, D
Rounding D. 2.2
RoundDir D.3.12
Rounding Direction D.3.8.1
Rounding Error D.4.9
Rounding Function D.3.8.1
Rounding in Real Arithmetic D
Rounding precision D.3. 8
Rounding Direction D. 3. 8. 1.
RoundDir D.3.8.1
Roundoff Errors D. 4.10.4
RoundPrecision D. 4.2, D. 4.12
Round to Integral Value D.3.9.1
Row Width E 4.1

-
NN

D.3.4.2, D.3.
S2Str D.3.4.2, D.3.
D.3.4.1, D.3.
SANE_Environ D.3.11, D.3.12
ScalbX D.3.9.4, D.3.12
Scale Procedure E.12.4.2
Scale-Factor 1.4
syntax 1.4
ScalePt Procedure
Scan Function A
Scaneq Function 11.8.1
SCanne Function 11.8. 2
Scope 2.2
of standard objects 2.2.5
Screen 10.3, 10.3.7.2, F. 3
contrast F. 3.1
cursor control 10.3.7.2, F. 2

Index-26

Pascal Reference Manual Index

fading F. 3.2
physical 10.3
ScreenContrast Data Type F. 10
ScreenSize Procedure F. 3
ScrollRect Procedure E.9.13
Seconds Data Type F. 10
SectRect Function E. 9.6
SectRgn Procedure E. 9. 11
Seed D.3.10.5
Seek Procedure 10.2.3
Segment Keyword A
Segmentation 8.3, Notes 9-1
Segments 8.3, 9.1, 9.2.1
Selector in Case Statement 6.2.2.2
Series of payments D.4.8
Set 3.2.3, 5.1.4, 6.1.6.4, 5.3
comparisons 5.1.5.4
membership testing 5.1.5.5
operators 5.1.4
values 5.3
Set-Constructor 5, 5.3
syntax 5.3
Set-Type 3.2.83
syntax 3.2.3
SetClip Procedure E. 9.1
SetContrast Procedure F. 3.1
SetCursor Procedure E. 9.2
SetDateTime Procedure F. 8
SetDimContrast Procedure F.3.2
SetEmptyRgn Procedure E. 9.11
SetEnv D.3.8.1, D.3.8.2 D.3.12
SetFadeDelay Procedure F. 3.2
SetHlt D.3.8.2, D.3.12
SetHlt Address D.3.8.2, D.3.11, D.3.12
Setlegends Procedure F. 5.1
SetOrigin Procedure E. 9.1
SetPenState Procedure E. 9.3
SetPort Procedure E. 9.1
SetPort3D Procedure E. 12.4
SetPortBits Procedure E. 9.1
SetPrecision D. 4.2, D.4.12
SetPt Procedure E. 9. 17
SetPt2D Procedure E. 12.
SetPt3D Procedure E. 12.
SetRect Procedure E. 9.6

4
4

Index-27

Pascal Reference MNanual Index

SetRectRgn Procedure E. 9.11

SetRnd D.3.8.1, D.3.12
SetRepeatRate Procedure F.5.5
SetStdProcs Procedure E. 10
SetTimeStamp Procedure F.9
SetVolume Procedure F. 4

SetXcp D.3.8.2, D.3.12

Sgn D.3.4.2, D.3.12, D. 4.7, D. 4.12
Shared Intrinsic-Unit Notes 9-1
ShowCursor Procedure E. 9. 2

ShowPen Procedure E. 9.3

Sig D.3.4.2, D.3.12, D.4.7, D.4.12
Sighig D.3.12

SIGDIGLEN D.3.12

Sig-FFarm D. 4.6

Sig-FForm D. 4. 12

Sign 1.4

syntax 1.4
Sign D.3. 7.1
SignDfX D. 4.4
SignOfX D. 4.12
Sign Manipulation D.3.9.2
Signallng NaN D.3.7.1
Signed Zero 3.1.1.3
Signed-Number 1.4

syntax 1.4
Silence Procedure F. 4
Simple—-Expression &

syntax b
Simple-Statement 6.1

syntax 6.1
Simple-Type 3.1

syntax 3.1
Simple-Type-Identifier 3
Sin Function 11.4.4
Sine D.3.10.4
Single D.3.12
Single, Double, Comp Extended D.3.2
Singular D.4.10.1
SinhX D. 4.3, D.4.12
SinX D.3.10.4, D. 3. 12
Size-Attribute 3.1.1.86

syntax 3.1.1.6
Sizeof Function 11.7.3
Skev Procedure E.12.4.2

Index-28

Pascal Reference Manual Index

SNAN D.3.7.1, D.3.12
Solving a system of linear equations D.4.10.3
Sorted D. 4.5
Source Transfer Mode E. 7.1
SpaceExtra Procedure E. 9. 4
Speaker F. 4
SpeakerVolume Data Type F.10
Special Symbols 1.1
Sqr Function 11.4.3
Sqrt Function 11.4.
SqrtX D.3.3.3, D.3.
Square Root D.3.3. 3
Stable D. 4.5
Stack Space and Memavail Function
11.2.5
Standard Apple Numeric Environment D-1
Standard errors D.4.10.7
Standard Procedures and Functions
for I1/0 10
10, 11
Standard Simple-Types 3.1
Statement 6
syntax 6.1
Statement-Part 2.1
syntax 2.1
Statistical Computatins D.4.10.7
StdArc Procedure E. 10
StdBits Procedure E. 10
StdComment Procedure E. 10
StdGetPic Procedure E. 10
StdLine Procedure E. 10
StdOval Procedure E. 10
StdPoly Procedure E. 10
StdPutPic Procedure E. 10
StdRect Procedure E. 10
StdRgn Procedure E. 10
StdText Procedure E. 10
StdTxMeas Function E. 10
Str2C D.3.4.2, D.3.12

8, D
12

Str2D D.3. 4.2, D.3.12

Str2S5 D.3.4.2, D.3.12

Str2X D.3.4.2, D.3.12

Str2Dec D. 3.1

String 1.6, 3.1.1.6, 4.3.1, 5.1.5.3,
10.3.1.4, 10.3.8.5, 11.6, A

Index-29

Pascal Reference Manual

character 4.3.1
comparisons 5.1.5.3
concatenation 11.6.3
constant 1.6, 3.1.1.6

constant comparisons 5.1.5.3

length function 11.6.1

procedures and functions 11.86

reference 4.3.1

substring copying 11.6.4
substring deletion 11.6.5
substring insertion 11.6.6
substring search 11.6.2
values in text-oriented I/0
10.3.1.4, 10.3.3.5

String-Character 1.6
gyntax 1.6
String-Type 3.1.1.86

syntax 3.1.1.6

String-Type-Identifier 3
StringWidth Function E. 9. 4
Structured-Statement 6.2

syntax 6.2
Structured-Type 3.2
syntax 3.2

Structured-Type-Identifier 3
StuffHex Procedure E. 9. 18
Systems of linear equations D.4.10.9

Style D.3.4.2, D.3.12

SubPt Procedure E. 9. 17

Subrange-Type 3.1.3

syntax 3.
Subtract D. 3. 3.
SubC D.3.3.1
SwbD D.3.3. 1
SubSx D.3.3.1
SubX D.3.3.1

¥

»

-

.3
.3
3.
.3
L3

= v iwlwh ol
[Sv e AV o)

1
1
1
1

»

Succ Function 3.1, 11.5.3

Successor 3.1
Swap D. 4.5

Syntax Diagrams, Complete Collection
C

Syntax Diagrams, Explanation Preface
System Intrinsic Library 9.2.2, 12.1

Index-30

Index

Pascal Reference Manusl Index

7
Tag Constants In New And Dispose
procedures 11.2.1-2
Tag-Field 3.2.2
Tag-Field-Type 3.2.2
syntax 3.2.2
Tangent D.3.10.4
TanhX D. 4.3, D. 4.12
TanX D.3.10.4, D.3.12
Term 5
syntax b
TestHlt D.3.8.2, D.3.13
TestXcp D.3.8.2, D.3.12
Testing Set Membership 5.1.5.5
Text E.5. 2
Text Type 3.2.4, 10.1.2, 10.3
Text-Drawing Routines E. 9.4
Text-Oriented 1/0 10.3
TextFace Procedure E. 9.4
Textfile 10.1.2, 10.3, Ar
TextFont Procedure E. 9.4
TextMode Procedure E. 9. 4
TextSize Procedure E. 9.4
TextWidth Function E. 9.4
Three-Dimensional Graphics. See
TFP-byte D. 4.4, D.4.12
TFP-Comp D. 4.4, D. 4.12
TFP-Double D. 4.4, D.4.12
TFP-Extended D. 4. 4, D. 4.
TFP-integer D. 4.4, D. 4.1
TFP-longint D. 4.4, D. 4.1
TFP-real D. 4.4, D. 4.1
Graf3D
Time F. 8, F. 9
Time Stamp F. 9
Timer Function (Millisecond Timer)
F. 7
Timers F. 6, F. 7
TimeStamp Function F. 9
TimeToDate Procedure F. 9
TONEAREST D.3.8.1, D.3.12
TOWARDZERO D.3.7.1, D.3.12

. 12
4.12
4.12
2

Index-31

Pascal Reference Manual ’ Index

Trail-Point D. 4.6, D.4.12

Transfer Functions 11.3
Transfer modes E. 7.1
TransForm Procedure E.12. 4,2
Transformation D. 4. 10.1
Transformation Matrix E. 12
Translate Procedure E. 12.4.2
Transpose D. 4.10.3
Treesearch Procedure A
Trigonometric Functions D. 3.10. 4
Trunc D. 2. 4
Trunc Function 11.3.1, A, D
Turtlegraphics Unit A
Type 3
compatibility and identity 3.4
syntax 3
Type-Conversion Notes 3-1
Type-Declaration 3
syntax 3
Type-Declaration-Part 2.1, 3.5
syntax 2.1

/4
UCSD Pascal A
Unary Arithmetic Operators 5.1.2
UNDERFLOW D,3.8.2, D.3.12
Underscore Character
UnionRect Procedure E. 3.6
UnionRgn Procedure E. 8. 11
Uniqueness D. 4.10.3
Unit 9
intrinsic 9.2
regular 9.1
Unit-Heading Syntax Notes 9-2
Unit, Intrinsic Notes 9-1
Univtype Notes 7-2
UNORD D. 3.6, D.3.12
Unordered D. 3. 6
Unsigned-Constant 5
syntax 5
Unsigned-Integer 1.4
syntax 1.4
Unsigned-Number 1.4
gyntax 1.4

Index-32

Pascal Reference Manual Index

Unsigned-Real 1.4
syntax 1.4

Untyped File 3.2.4, 10.1.1-2, 10.4
170 10. 4

UPWARD D.3.8.1, D.3.12

Uses D.3.1, D. 4.1

Uses-Clause 8.1, 9.1.1-2, 9.2, 9.8
syntax 8.1

Utility Procedures D. 4.4

I'4
Value Parameter 7.3.1
ValidPrefix D.3.12
Variable 4
Variable Parameter 7.3.2, A
Variable-Declaration 4.1
syntax 4.1
Variable-Declaration-Part 2.1
syntax 2.1
Variable-Identifier 4.1
syntax 4.1
Variable-Reference 4.2
syntax 4.1
Variant 3.2.2
records, new procedure 11.2.1
syntax 3.2.2
Variant-Part 3.2.2
syntax 3.2.2
Vectors and Linear Transformations D.4.10.1
Vector space D.4.10.1
Vertical Retrace F. 3
VHSelect Data Type E. 3.2
VievAngle Procedure E.12.4.1
Viewing Pyramid E. 12
ViewPort Procedure E.12.4.1
VisRgn E. 6
Volume Function F. 4

4
Wedges, Graphic Operations E. 9. 10
While-Statement 6.2.3.2
optimization 12. 4
syntax 6.2.3.2

Index-33

Pascal Reference Manual Index

With-Statement 6.2.4

syntax 6.2. 4
Wordstream Type A
Write Procedure 10.3.3, A

with real values D
Write-Protection of File 10.1.5
Writeln Procedure 10.3.4, A

X

X2C D.3.4.1, D.3.12
X2D D.3.4.1, D.3.12
X2I D.3.4.1, D.3.12
X2L D.3.4.1, D.3.12
X2LDec D. 4.7, D.4.12
X285 D.3.4.1, D.3.12
X2X D.3.4.1, D.3.12
X2Dec D.3.4.2, D.3.12
X25tr D. 3. 4.2, D.3.12
XForm Matrix E. 12
Xpwrl D.3.10.2, D.3.12
XpwrY D.3.10.2, D.3.12
XorRgn Procedure E. 9. 11

4
Yawv Procedure E.12.4.2
Z

ZER0O D.3.7.1, 1
Zero D. 2.1, D. 1
Zero of a Nonlinear Function D. 4.9
Zero of polynonial function D. 4.9
Zero Signed 3.1.1.3

D. 3.
3.7.

CHARACTERS

$C Compiler Commands 12.1

$0 Compiler Commands 12.1
$DECL Compiler Command 12.2.1
$E Compiler Command 12.1
$ELSEC Compiler Command 12.2.4
$ENDC Compiler Command 12. 2.4
$I Compiler Command 12.1

Index-34

Pascal Reference Menusl Index

SIFC Compiler Command 12. 2.4

8L Compiler Commands 12.1

$R Compiler Commands 3.1.3, 12.1

$3 Cngiier Command 8.3, 9.1, 9.2,

$SETC Compiler Command 12.2.1

su Cngiier Commands 9.1.2, 9.2.2,

$8X Compiler Commands 12.1

0, Signed 3.1.1.3

16-Bit Integer Arithmetic 3.1.1.1-2,
11.3.3

32-Bit Integer Arithmetic 3.1.1.2,
11.3.3

3D Graphics. See Graf3D.

@ Operator 3.3, b.1.6

Index-35

