
Lisa. Language

BEGIN {main program}
{----- Initialization - Generic to all applications using QuickDraw -----}
QDInit(@lheapBuf, @lheapBuf[8192]. @lheapError);

OpenPort(@lmy Port) ;
PaintRect(thePort' . portRect);
lniticons; {moved to here from below stuffhex}
InitScales; {moved to here from below stuffhex}

DrawStuff;
REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii <> CHR(l));

PaintRect(thePort' .portRect);
SetRect(srcRect,O,O,720,360);
myPicture := OpenPicture(srcRect);
Drawstuff;

PROCf[)IJ:If Or awFi gure(vi ewAng. rOllAng. pi tChAng :
BEGIH

vi ewAng1t(vi ewAng);
I denti ty;
Roll (rollAng) ;
pi tCh(pi tChAng);
Er aseRect(port1· . portRect);
Fr il'leRect(port1· .portRect);
PI otGri d;

Pascal Reference Manual

Copyright

This manual and the software described in it are copyrighted with all rights
reserved. Under t.he copyright laws, this manual or the software may not. be
copied, in whole or in part .. without the written consent of Apple, except in
the normal use of the software or to make a backup copy. The same
proprietary and copyright notices must be affixed to any pel'mitted copies as
were affixed to the original. This exception does not allow copies to be
made for othe.rs .. whether or not sold, but all the material purchased (with all
backup copies) may be sold, given, or loaned to another person. Under the
law .. copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased t.o allow the software to be used on more than one computer
owned by the purchaser,. including a shared-disk system. (Contact your
authorized Apple dealer for information on multiuse licenses.)

licensing Requirements for Software Developers

Apple has a low-cost licensing program .. which permits developers of
software for the Lisa t.o incorporat.e Apple-developed libraries and object
codes into their products. 80th in-house and external distribution require a
license. Before distributing any product.s t.hat. incorporate Apple soft\A,'are,
please contact Software Licensing at the address below for both licensing and
technical informat.ion.

@1983 .. 1984 Apple Computer., Inc.
20525 tv18J"iani Ave.
Cupertino, CA 95014
(408) 996-1010

Apple .. Lisf\, ProFile, MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Computer .. Inc.

Priam is a registered t.rademark of Priam, Inc. Sony is a registered
trademark of Sony Corporation. Centronics is a registered trademark of
Centronics Dat.a Computer Corporation. VT52 and VT100 me trademarks of
Digital Equipment Corporation.

Simult.aneously published in the U.S.A. and Canada.

Reorder Apple Product 8620-6139-6.

Limited Warranty on Media and ManuaJs

If you disc:ove.r physical defects in the media on which this softlw'lare is
distributed~ or in the manuals distributed with the software~ Apple will
replace the media or manuals at no charge to you~. provided you return the
item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALl IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING
IMPUED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (~) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THE
PRODUCT ..

Even though Apple has tested the software and reviewed the documentation~
APPLE MAKES NO WARRANTY OR REPRESENTATION, EITI-ER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS SOFTWARE, ITS QUALITY"
PERFORMAf\JCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE .. AS A RESULT, THIS SOFTWARE IS SOlD liAS IS,· AN) YOU,
TI-£ PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUAlITY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE HELD UABlE FOR DIRECT, INDIRECT,
SPECIAl, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESUlTING FROM
ANY DEFECT IN Tt-E SOFTWARE OR ITS DOCUMENTATION, even if advised
of t.he possibilit.y of suer, clamages, In p81ticular, Apple shall have no
liability for any programs or data stored in or used with Apple products,
including tt1e costs of recovering sllch programs or dat.a.

THE WARRANTY AND REf\lEDIES SET FORTH ABOVE ARE EXClUSIVE A~
IN LIEU OF AlL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer~ agent., or employee is authorized to make any modification ...
extension., or addit.ion to this warranty,

Some st.at.es do not allow t.he exclusion or limitat.ion of implied warranties or
liability for incident.al or consequential damages, so t.he above limit.at.ion or
exclusion m8.\l not appl'y' t.o you. Tr,is t",.arrant.y gives you specific legal
rights., and you may' also have ot.her right.s hich V81'y from state t.o st.ate.

Contents

Chapter 1
Tokens and Constants

1.1 Character Set and Special Symbols .. 1-1
1.2 lderlti fiers ... 1-2
1.3 Directives•... 1-2
1.4 Numbers .. 1-2
1.5 Labels•............•.••.........•...................................... 1-4
1.6 Quoted String Constants .. 1-4
1.7 Corlstant [)eclarations ..•............ 1-5
1.8 Con1rnents and Compiler Corlmanc:js ••.••••••••••••••••••••••••••.••••••••••••••••••••••• 1-5

Chapter 2
Blocks, Locality, cn:J SCOpe

2.1 Definition of a Block ... 2-1
2.2 Rules of Scope ..•...•................................•..........•.•........................•.... 2-3

Chapter 3
Data Types

3.1 Simple-Types (and Ordinal-Types) .. 3-2
3.2 Structured-Types .•............•.•..•...........•......................................•.•.... 3-7
3.3 Pointer-Types•... 3-13
3.4 Identical and Corf1Jatible Types•... 3-13
3.5 The Type-Declaration-Part .. 3-16

Chapter 4
variSJles

4.1 Variable-Declarations ... 4-1
4.2 Variable-RefererlCeS•.......................•....•........•.....•....•.•......... 4-1
4.3 (Jusllflers .. 4-2

~ter5
Bcpresslms

5.1 qJerators ...•..•.•..••.•......•.•.•.•.•.•.•....•.•......•.•........••..•....••••...•..•..•.••...... 5-4
5.2 Function-Calls•...•.•...................•...•.•..•••.•....•.............•...•.. 5-10
5.3 Set-Constructors•..........•.......••.........•..........•.....•.•...•..•.. 5-11

PsscaJ Refemnce M8nuBJ

Otapter 6
statements

Contents

6.1 SiFTlple Staternertts •..••.•..•.•.•.•..•.••.•.••.•••.•.•.•.••.••..••.•...•.•.....•.•••..•..••.••. 6-1
6.2 Structured-Statements ..••••.•.•..•.••.•......•...•.•••..•..•••••...•...•..•••...•.•..•.••.• 6-4

Olapter 7
Pn:JceWres awJ Ftl'Ctims

7.1 Procedure-Declarations•...•...•............•.•......•..•...•.....••.........•.....• 7-1
7.2 Ft6lCtion-Oeclarations•...•........•..............•..•.....•.•...............•••... 7-4
7.3 Parameters•...•.•....•........................... 7-5

Chapter 8
Progralts

8.1 Syntax•.•..........•....•............•..................... 8-1
8.2 Program-Parameters•...•.............•......................•..•.....•.• 8-1
8.3 Segrnentatim•..........•.........•............................•................... 8-1

01apter 9
UUts

9.1 RegtJlar-l.Jrlits .•........•••....•...•••.....•.••......••.•.•...........•••.•.....•............... 9-1
9.2 Intrlnslc-LJnlts ...••...•........•....................... 9-4
9.3 l.Jrlits that Use Other lklits .. 9-4

Olapter 10
~

10.1 Introduction to 110 ..••.•..•••.•.•.•.•.•.•.•••.•.•.••.•.••••.•••..•..••••.•.•...•..•••••.••••. 10-1
10.2 Record-Oriented I/O ...•.............................. 10-8
10.3 Text-Oriented lID •••••••••••••••••.••••••••••••••••..•••••••••••••.• .••••••••••••••••••.••••• 10-9
10.4 LJntyped File lID •••••••• •.••..•••.•••••..•••••••.••• 10-18

01apter 11
Sta1dard ProcedIres and FLIlCtionI

11.1 Exit arlCI Halt Procedures .. 11-1
11.2 Dynamic Allocation Procedures .. 11-1
11.3 Transfer Functions•....•.......•....•..•...•..••........•.•.............•....•........ 11-4
11.4 Artttvnetic Functions•...•.. 11-5
11.5 Ordinal Functions•............•.•.............•.......•..........•..............•.••• 11-8
11.6 String Procedures and Ft.nCtions .. 11-9
11.7 Byte-Oriented Procedures and FlI'lCtions••......•.......•....• 11-11
11.8 Packed Array of Char Procedures and FLI1Ctions 11-12

PasC"Bi Reference ft.1e.nulll

Chapter 12
The Compiler

Contents·

12.1 Compiler Commands .. 12-1
12.2 Conditional Compilation .. 12-2
12.3 Optimization of If-Statements ... 12-5
12.4 Optimization of While-Statements and Repeat-Statements 12-6
12.5 Efficiency of Case-Statements ... 12-6

Appendixes
A Comparison to Apple II and Apple III Pascal A-1
B K.nown Anomalies in the Compiler ... 8-1
C Syntax of the Language ... C-1
o Floating-Point Arithmetic ... 0-1
E QuickOraw .. E-1
F Hard'Nare Interface ... F-1
G Lisa Extended Character Set ... G-1
H Error Messages .. H-1
I Pascal Workshop Files ... 1-1
J Listing Formats ... J-1

Tables

5-1 Precedence of Operations .. 5-1
5-2 Binary Arithmetic Operations .. 5-4
5-3 Unary Arithmetic Operetions(Signs) 5-4
5-4 Boolean Operations ... 5-6
~,-5 Set Operations .. 5-6
5-6 Relational Operations .. 5-7
5-7 Pointer Operation ... 5-8
10-1 Combinations of File Variable Types with External File

Species and Categories .. 10-3
A-I Predefined Identifiers in the Lisa Pescal Compiler A-4
0-1 Results of Addition and Subtraction on Infinities 0-3
0-2 Results of Multiplication and Division on Infinities D-3

Syntax Diagrams

A,B
actlJal-pararr.eter•..................•.. 5-10
actual-parameter -list .. 5-10
array-type .. 3-8
asslgrmet'lt -statefTleOt .. 6-1
base-type ... 3-13
blOCk •.•• 2-1

C
case ... 6-6
case-statenlent ... 6-5
cornpound-staten1ent .. 6-4
condItional-statement .. 6-4
constant ... 1-5
constant-declaration .. 1-5
constant-declaration-part .. 2-2
control-variable 00000. 0 0 0 0 ••••••• 0 •• 0 •• o. 0 o. 0 •••••• 0 •••• 00.000.00 •• 0.' 6-8

O,E,F
digi t - seqtJence . 0 ••••• 0 ••••••• 0 •••••••••••••• 0 ••••••••••••••• 0 •• 0 •••••••••••••••••••••••••••••••••••••• 1-2
enumerated-type ... 3-6
expression 0 •• 0 •••••••• 5-3
factor ... 5-1
field-declaration ... 3-10
field-designator ... 4-4
field-list ...•............................• 3-9
file-buffer-synlbol ... 4-4
file- type ... 3-12
fInal-value•... 6-8
fixed-part•...•..............••...•.•...........•......•... 3-9
for-statement•... 6-8
foITTl8l-pararneter-list ...•................•............•............•.•......•.•.......•............ 7-6
function-body•...............•.......•.............••.....................••........•............ 7-4
function-call ... 5-10
function-declaration .. 7-4
function-heading••.........•.......•.•.•.•........................•...........•........•..• 7-4

Ccntents

G, H, I
goto-staternent .. 6-3
hex-digit-sequence ...•...........•.......... 1-2
Identl fler .. 1-2
iderltl fier -list•.•.........•.........................•.••...........•.•.......... 3-6
i f-staternerlt•... 6-5
ilTlplerTlefltatloo-part•...................................•.••.•...................... 9-2
Index ..•............................... 4-2
index-type .. 3-8
ini tial-value .. 6-8
interface-part ... 9-2

L, M, 0
label 2-1,6-1
label-declaratioo-part•..•.................. 2-1
rnernber-group ... 5-11
ordinal-type .. 3-2
otherwIse-clause•..• 6-6

p
par8lTleter-declaratlon ..•........................ 7-6
pointer -object -Synlbol .•.•.•••.••••.•..•....••..........••••••......••....••.•...••••.••••.••....... 4-4
pointer-type ... 3-13
procedure-and-flKlCtion-declaratlon-part ... 2-2
procedlJre-body ... 7-1
procedure-declaration .. 7-1
procedure-heading ... 7-1
procedure-statement .. 6-2
progranl .. 8-1
program-headIng•..............•... 8-1
prograrn-paranleters .. 8-1

Q,R
qualifier ... 4-2
quoted-character-constant ... 1-4-
quoted-string-constant ... 1-4
real-type .. 3-2
record-type .. 3-9
regular-un! t .. 9-1
repeat-statement ... 6-7
repetitive-statel1leflt•..•.................. 6-6
result-type ... 7-4

P8SC8l Refemnce MIiInuaJ Contents

S
scale-factor•...••.....•... 1-3
set -COt1Stl1JCtor•..............•.•.•..............•...•...................................•... 5-11
set-type .. 3-11
sign .. 1-3
signed-RJI1lber ...•..............• 1-3
sifTl)le-e>qlressloo ... 5-3
sifTl)le-staternerlt ... 6-1
sifTl)le-type .. 3-2
size-attribute•.........•.. 3-S
staterTlel1t ... 6-1
statement-part ;. ... 2-2
string-character .. 1-4
stril'lg-t.Yfle •••••••••••••••••••••••••••••.•••••••.••••••••••••••••••••••••••••••••••.•••••.•••••••.•..••• 3-S
structured-statement ..•....•..... 6-4
structured-type•...........•.•..•........•....•..•.. 3-7
stJbrange-type ... 3-7

T
tag-field-type•.....•.. 3-10
term•.. S-2
type ..•.. 3-1
t ype-declaratloo .. 3-1
type-declaratiOfl-part•.•..•..... 2-2

U
l.Ill t -heading .. 9-1
UI1Signed-constant ... ~ ••• S-2
LIlSigned-Integer .. 1-3
l.I'lSigned-runber •••.••••••••••••••••••••••••••••••••.•••• 1-3
lIlSlgt1ed-real ..•.••.... .;•..•.........•.........•..•...............•.......•.•.•..........•.• 1-3
uses-clause ...•..... 8-1

V,W
varlatlle-deClaratioo ..•............................. 4-1
vartable-declaratiot'l-part ... 2-2
variable-Identifier•..•......... 4-1
variable-reference•.. 4-1
variant ... 3-10
variant-part •.•........•... 3-10
whlle-staterTlel1t .. 6-7
with-staternerlt ...•...•.............•..• 6-10

Preface

This manual is intended for Pascal programmers. It describes an implemen­
tation Of Pascal for the Usa computer. The compUer and cOde generator
translate Pascal source text to MC68000 Object code.

The language is reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences between ttlese forms of Pascal.

In addition to prOViding nearly all the features of standard Pascal, as described
in the Pascal User Mamal and Report (Jensen and Wirth), this Pascal provides
a variety of extensions. These are summarized in Appendix A They inclUde
32-bit integers, an otherWIse clause in case statements, procedural and
functional parameters with type-Checked parameter lists, and the • operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

qleratlrg Envlrorment
The compHer w1ll operate In any standard Usa hardware configuration; thIs
manual assumes the Workshop software environment.

Related Doct.ments
Pascal USer Manual and Report, Jensen and Wirth, springer-Verlag 1975.

Workshop User's Guide for the Lisa, Apple Computer, Inc. 1983.

other Usa documentation.

DeflnlUons
For the purposes of this manual the following definitions are used:

• Error: Either a run-time error or a compiler error.

• Scope: The bOdy of text for whiCh the declaratIon of an identifier or
label is valid.

• Undefined: The value of a variable or function when the variable does not
necessarUy have a meaningfUl value of its type assigned to it

• unspecifIed: A value or action or effect that, althOUgh possibly
well-defined .. Is not specified and may not be the same In all cases or for
all versions or configurations of the system. My programming construct
that leads to an unspecified result or effect Is not supported.

I'kltatlon cn:J Syntax Diagram
All numbers in this manual are in decimal notation, except Where hexadecimal
notation is specifically indicated.

ThroughoUt this manual, bold-face type is used to distinguish Pascal text from
EngliSh text. For example .. sqI(n dlv 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

Pascal Reference Manual Preface

bold-face; for example, "The declaration of a Pascal procedUre £leglns wIth
the word procemne."
ltallcs are used when technical terms are introdUced.
Pascal syntax Is specified £ly diagrams. For example, the following diagram
gives the syntax for an identifier:

jelenufier

Start at the left and follow the arrows through the diagram. Numerous paths
are possl£lle. Every path that £leglns at the left and endS at the arrow-head on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the dIagram represent the elements that can
be used to construct an identifier. ThUs the diagram embodies the following
rules:

• M identifier must begIn with a letter, since the first arrow goes directly to
a OOX containing the name "letter."

• M identifIer mIght consIst Of nothing out a sIngle letter, sInce there Is a
path from this OOx to the arrow-head on the right, without going through
any more £loxes.

• The iniUal letter may oe followed by another letter, a digit" or an
tll7derscor~ since there are £lranches of the path that lead to these boxes.

• The InItIal letter may £le followed £ly any num£ler of letters, dIgIts, or
underscores, since there is a loop in the path.

A word contained in a rectangular £lox may oe a name for an atomic element
l1Ke "letter" or "digit," or It may £le a name for some other syntactic
construction that is specified by another diagram. The name In a rectangular
bOx Is to be replaced £ly an actual instance Of the atom or construction that It
represents, e.g. "-S' for "digit" or "COUlter" for "variaole-reference".
Pascal S)IfJ1bOIS, suCh as reserved words, operators, and punctuation, are
bold-face and are enclosed in cIrcles or ovals, as in the followIng diagram for
the construction of a cOmpound-statement:

compOlJrJd-statement

~ (-_, _st_at_em_._-en=t: __ J -@
'--------cO .

Pascal Reference /VIan()8} Preface

Text in a circle or oval represents itself, and is to be written as shown (except
that capitalization of letters is not significant~ In the diagram abOve, the
semicolon and the words begin and em are symbOls. The word "statement"
refers to a construction that has its own syntax diagram.
A compound-statement conslsts Of the reserved word Degln, fOllowed by any
number of statements separated by semicolons, followed by the reserved word
ern (As wIll be seen In Chapter 6, a statement may oe null; thus begln em Is
a valld compound-statement)

Chapter 1
Tokens and Constants

1.1 Olaracter Set 8ld Sflecial Symbols .. 1-1

1.2 lder1tiflers ...•.............•.•.•.•...••.•.•.•.•.•......••.....•........•••.•..••...•.••......•••• 1-2

1.3 Directives ..•...•..••.•......•....•...•.•...•.......•.•.•...•.•.•........•...•.....•..•.•..•.•... 1-2

1.4 i'kInben •.........................•...•....•........ 1-2

1.5 Lbls ... 1-4-

1.6 ~ string 0lr1sta1t.s ••••••••••••••••••••••••••••••••.••••••.•••••••.•••••••••••••••••.•• 1-4

1.6.1 Quoted Character Constants ... 1-4

1.7 Corlsta'lt IJeclaratiOllS•......•.....•..........................•......•..•.•...........•. 1-5

1.8 Cornnlerlts 8ld ~iier c::orrna ads ... 1-5

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an Engllsh sentence. The toKens
of Pascal are classified into special symbols, ldenufiers; numbers; labels, and
qllOted string constantx

The text of a Pascal program consists of tokens and separators.: a separator is
el ther a blank or a comment. Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.
No separators can be embedded within tokens, except in quoted string
constants.

1.1 Character set a1d SpecIal Syrmols
The Character set used by Pascal on the Usa is 8-bi t extended ASCII, with
Characters represented by numeric codes In the range from 0 to 255.

Letters, digits, hex-diglts, and blanks are subsets Of the character set:
• The letters are those of the Engllsh alphabet, A through Z and a through z.
• The digits are the Arabic numerals 0 through 9; the heX-digits are the

Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

• The blanks are the space character (ASCII 32), the horizontal tab character
(ASCII 9), and the CR character (ASCII 13~

Special symbols and reserved words are tokens having one or more fixed
meanings. The following single characters are speclal symbols:

+ - * / = < > [] • , () : ; .. ii {} $

The following character paIrs are special symbols:
<> <= >= := •• (* *)

The following are the reserved words:

and end label
array file methods*
~n for nlOd
case ftrlCtion nIl
const goto not
creation- if of
dlv implementation or
downto in otherwise
dO interface packed
else intrinsic- procewre

1-1

progrcm
record
repeat
set
string
stilclass*
then
to
type
l.I1it

lIltil
uses
var
wnIle
with

Pascal Reference Hanual Tokens & Constants

The reserved words marked wIth asterIsks are reserved for future use.
corresponding upper and lower case letters are equivalent in reserved words.
Chly the first 8 characters of a reserved word are sIgnifIcant

1.2 IdentifIen
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

idelllit1e[

The first 8 Characters Of an laentlf1er must not matCh the fIrst 8 char­
acters of a reservea word.

Examples Of' ktenIJt1e.rs:

X RarE god stJ1

1.3 Directives
Dlrect1ves are woras tnat have specIal meanIngs in partiCUlar contexts. They
are not reserved ana can be used as identifiers in other contexts. For
example, the wora f0rwart11s Interpretea as a airectlve if it occurs
immediately after a procedUre-heading or function-heading, but in any other
posItion it Is Interpretea as an iaentifier.

1.4 N.mtlers
The usual decimal notation is used for numbers that are constants of the data
types Integer, 10fYJlnt, and real (see Section 3.1.1~ Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for Integer, 5-8 digits for
ImJint~

dfqft-~tenee ;fdiQitl
(-~)

hex-diqil-sequence (:1 hex-digit I) •

1-2

Pascal Reference Manual Tokens & Constants

sill?

unsigned-real

digit-sequence digit-sequence ~-------..,.~

---------~~ scale-factor

scale-facto]" ~ .1 digit-sequence I
~~

unsi rned-number
--------..:-..--~--.t unsigned-integer

unsigned-real I---........ --~.

sjqned-number ., unsigned-number I •
~

The letter E or e preceding the scale in an unsigned-real means "Urnes ten to
the power Of".

Examples of numbers:

1 +100 -0.1 5E-3 87.35e+8 $1\050

Note that SE-3 means 5X10-3, and 87.35e+8 means 87.35x108.

1-3

Pascal Reference Mantlal Tokens & Constants

1.5 Labels
A label is a digit-sequence in the range from 0 through 9999.

1.6 Quoted StrirYJ constants
A quoted-strIng-constant Is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

qtOted-strlng-ClXJStant

~~------~~.cr.
(-1 string-character j04J

stJing-CIJaracter \ ~1.5t?y dI8r eJ«:ePl 0 arCR I f
l~ _________ -..~~ ______ _

Examples of quoted-suing-constants:
I Pascal I I THIS IS A STRING I

"A" ". I ,

I Don I I t IIIOrry! I

All string values have a lengtfl attribute (see Section 3.1.1.6~ In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-strIng-constant
whose length is exactly 1.

QIIOted-cIJaracter-constant .cr.1 string-character ~0--+

A quoted-character-constant is compatible with any char-type or strIng-type;
that is, it can be used either as a character value or as a string value.

1-4

Pascal Reference Mantlal Tokens & Constants

1.7 constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-declaration .lidenUf1er ~ constant ~

qp.~n.lS'...;;.;ta;;;.;..'f7~t_~_~ ___ ---::~ constant-identifier

A constant-identifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longlnt, or real.

1.8 conments cn:.t compiler COOl nar m
The constructs:

{ any text not containing right -brace }
(* any text not containing star-right-paren *)

are called comment.t

A compiler command is a comment that contains a $ character immediately
after ttle { or (* that begins the comment. The $ character is followed by the
mnemonic of the compHer command (see Chapter 12~
Apart from the effects of compHer commands, the sUOstitutlon of a Olank for a
comment does not alter the meanIng of a program.
A comment cannot be nested wIthin another comment formed with the same
kind of delimi terse However, a comment formed with { ... } del1mi ters can Oe
nested within a comment formed with (* ... *) delimiters, and vice versa.

1-5

Chapter 2
Blocks, Locality, and Scope

2.1 [)eflnitioo of a Blocl< •••...••.•••••••••••••••••••••••• 2-1

2.2 Rules of ScofJe ...•......•.•.••.•••.......•••.........•.•.••.................••..•........•..•... 2-3

2.2.1 Scope of a Declaration ... 2-3
2.2.2 Redeclaration in an Enclosed Block .. 2-3
2.2.3 Position of Declaration within Its Block .. 2-3
2.2.4 Redeclaration within a Block .. 2-3
2.2.5 Identifiers of Standard (l)jects .. 2-4

Blocks, Locality, and Scope

2.1 Deflnltion of a BlOCk
A block consists of declarations and a statement-part. Every block is part of
a procedure-declaration, a function-declaration, a program, or a unit. All
identifiers and labels that are declared in a particular block are local to that
block.

:::;:b~=~=Y<.;.-· _-e.I label-declaration-part

constant-declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

statement-part J-------------.

The label-declaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement -part.

l8lJel-CleClamIJon-p8Jt

.~ ~t-~--.c.Ot---------.

label .1 digit-sequence I •

2-1

Pascal Reference Manual BlockS; Locality, & Scope

The constant-declaration-part contains all constant -declarations local to the
block.

conslant-declaratim-parl
~ (.. ~Ir-c-on-s-t-an-t--d-ec-lar-aU-·o-n....,I)

The type-declaration-part contains all type-declarations local to the block.

l)'pe-declaratim-part

~ (.1 type-declaration I)
·41

The variable-declaration-part contains all variable-declarations local to the
block.

variable-declaralim-part

~ C., variable-declaration I)
• •

The procedure-and-flInction-declaration-part contains all procedure and
function declarations local to the block.

pnx:et:kJ.re-l¥1li-fll7Ctim-declaretim-part

procedure-declaration

function-declaration

The statement-part specIfIes the algorIthmic actions to be executed upon an
acU vaUon of the block.

statement-part .1 compound-statement I •

2-2

Pascal Relerenr...--e Mantlal Blocks, Locali~ & SCOpe

NOTE

At run time, all variables declared within a particular bloCK have
unspecified values each time the statement-part of the block is entered.

2.2 Rules of SCOpe
ThIs chapter discusses the scope of Objects wit/Jln t/Je program or lInit In wlllcll
tlJeyare definect See Chapter 9 for the scope of objects defined in the
interface-part Of a unit and referenced In a host program or unit.

2.2.1 SCOpe of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scope of this declaration.

This scope Is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

22..2 Redeclaration in an Enclosed BlOCk
Suppose that outer is a block, and imer Is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block imer, then block imer and all blocks enclosed by imer are excluded
from the scope of the declaration in block outer. (see Appendix B for some
odd cases.)

22..3 Position of Declaration within Its Block
The declaratlon of an ident1fier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used untll after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pOinter-type occurs. (See Appendix B for some odd cases.)

2.2.4 Redeelaration within a BlOCk
M identifier or label cannot be declared more than once in the outer level of
a particular blOCk, except for record field identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared withIn a
record-type. It is meaningful only in combination with a reference to a
variable. of that record-type. Therefore a field identifier can be declared
again within the same block, as long as it is not declared agaIn at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

2-3

Pascal Relemnce MantIal Blocks, Locality., & ~

2.2.5 Identifiers Of standard (l)jects
Pascal on the Usa provides a set of standard (predeClared) constants, types,
procedures, and functions. The identifIers of these Objects behave as if they
were declared in an outermost block enclosIng the entire program; thus their
scope includes the entire program.

2-4

Chapter 3
Data Types

3.1 SinlJlle-Types (Elld £k'dirlal-TYIJE'S) .. 3-2

3.1.1 Standard Simple-Types and String-Types 3-3
3.1.1.1 The Integer Type ... 3-3
3.1.1.2 The Longint Type•... 3-3
3.1.1.3 The Real Type .. 3-4
3.1.1.4 The Boolean Type .. 3-4
3.1.1.5 The Char Type .. 3-4
3.1.1.6 String-Types ... 3-5

3.1.2 Enumerated-Types ... 3-6
3.1.3 Subrange-Types ... 3-7

3.2 StrtIctlJred-Types ••.•...•••.••..•••....•••••••••......•.•••...••..••.••....•......•........... 3-7

3.2.1 Array-Types .. 3-8
3.2.2 Record-Types .. 3-9
3.2.3 Set-Types .. 3-11
3.2.4 File-Types ... 3-12

3.3 Pointer-Types ...•.•........•......•.........•.••...•.....•...•..••..............•............ 3-13

3.4 lderrt.ical EIld ~le Types•.........•..................•.•.•.........• 3-13

3.4.1 Type Identity ... 3-14
3.4.2 Compatibility of Types .. 3-15
3.4.3 Assignment-Compatibility ... 3-15

3.5 The Type-l)eclaratiat-Part •.....•.•.....•..........•......••....•...........•....•••...• 3-16

Data Types

A type Is used in declaring variables; It determines the set of values whIch
those variables can assume, and the operations that can be performed upon
them. A type-declaration associates an identifier wIth a type.

trpe-declamtlcn .. , identifier

~l~ ___ simple-type 1--_

painter-type t------..

The occurrence of an identifier on the left-hand side of a type-declaration
deClares It as a type..-ldentlfler for tne blocK In WhIch the type-declaratlon
occurs. The scope of a type-identifier does not include its own declaration,
except for poInter-types (see Sections 2.2.3 and 3.3~

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
syntactically, all of them mean simply an identifier:

simple-t ype-ldenti fier
structured-type-identifier
pointer - type-identi fier
ordinal-type-ldentlfler
real-type-ldenti fier
string-type-ldentlfier

In other words, a simple-type-identlfier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolecvl,
etc.

3-1

Pascal Reference Manual

3.1 SifT1l1e-Types (em Ordlnal-Types)
All the simple-types define ordered sets of values.

real-type "I- real-type-identlfier I ..

sUbrange-type

enumerated-type r------..... I

The standard real-type-identlfier is real.

String-types are discussed in Section 3.1.1.6 below.

Data TYpes

an:tlnaJ-types are a subset of the Simple-types, w1th the following special
characteristics:

• Within a given ordinal-type, the pOSSible values are an ordered set and each
possible value Is associated with an omlnallty; which is an integer value.
The first value of the ordinal-type has ordinal1ty 0, the next has ordinal1ty
1, etc. Each pOSSible value except the first has a predecessor based on
this ordering, and each possible value except the last has a successor based
on this ordering.

• The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinal1ty of the value.

• The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the ordinal-type, the result is unspecified.)

• The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
in the ordinal-type, the result Is unspecified.)

3-2

Pascal Refe11Jnce M8f7{Jal Data TYPes

All simple-types except real and the strIng-types are ordinal-types. The
standard ordinal-t ype-ldenU fiers are:

Integer
longlnt
Char
boolea-e

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 stcmard SirTll1e-Types and string-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longlnt, real, Char, and boolea1 are standard. The string-types are
lJser-defjned simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as speCified in Section 1.4.) The predefined integer constant maxint
is defined to be 32767. Maxlnt defines the range of the type Integer as the
set of values:

-maxint-1, -maxlnt, ... -1, 0, 1, ... maxint-1, maxlnt

These are 16-bit, 2"s-complement integers.

3.1.1.2 The Longlnt Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4.) The range is the set of values from
-(231_1) to 231_1, i.e., -2147483648 to 2147483647.

These are 32-blt integers.

Arithmetic on Integer and longlnt operands is done in bOth 16-blt and 32-bit
precision. An expression with mixed operand sizes is evaluated In a manner
similar to the FlRTRAN sIngle/double precIsIon floating-point arithmetic rules:

• All "integer" constants In the range of type Integer are considered to be of
type integer. All "integer" constants in the range of type longlnt, but not
in the range of type Integer, are considered to be of type longint.

• When both operands of an operator (or the single operand of a unary
operator) are Of type integer, 16-blt operations are always performed and
the result is of type integer (truncated to 16 bits if necessary~

• When one or both operands are of type longlnt, all operandS are first
converted to type longint, 32-bit operations are performed, and the result is
of type longlnt. However, If this value is assIgned to a variable of type
Integer, it is truncated (see next rule~

3-3

Pascal Reference Manual Data TYpes

• The expression on the right of an assignment statement is evaluated
Independently of tIJe size of tIJe variable on tIJe left If necessary, the
resul t of the expression is truncated or extended to match the size of the
variable on the left

The ord4 function (see Section 11.3.3) can be used to convert an integer value
to a longlnt value.

IfVPLE~NTAT1(N ~

There is a performance penalty for the use of longlnt values. The
penalty is essentially a factor of 2 for operations other than division
and multiplication; for division and multiplication, the penalty Is much
worse than a factor of 2.

3.1.1.3 TIle Real Type
For details of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

• Finite values (a subset of the mathematical real numbers~ As constants,
these values can be denoted as specified in Section 1.4.
The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.
The smallest absolute numeric non-zero real value is approximately
1.401298464E -45 in Pascal notation.
The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
1n textual output.

• Infinite values, +00 and -00. These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix 0 gives the rules for arithmetic
operations using these values.

• NaNs (the word "NaN" stands for "Not a Number"~ These are values of
type real that convey diagnostic information. For example, the result of
multiplyIng 00 by 0 is a NaN.

3.1.1.4 TIle Boolecl1 Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is "less than" true. The
function-call on(false) returns 0, and on(true) returns 1 (see Section 11.5.1~

3.1.15 TIle Char Type
The values are extended 8-bit ASCII, represented by numeric codes In the
range 0 .. 255. The ordering of the Char values is defined by the orderIng of
these numeric codes. The function-call on(c), where c is a char value, returns
the numeric code of c (see Section 11.5.1~

3-4

Pasqal Reference Mantlal Data TYpes

3.1.1.6 string-Types
A string value is a sequence of characters that has a dynamic length attri­
bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size Is the maximum llmit on
the length of any value of this type. The current value of the length attribute
is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type is defined.

st.l1ng-(ype
..,-----..,.

size-attribute

S.=i~::..:'e:::..---=8..:..;ttfj=1.=tJ..:;;:.'{/.;:..;;te'-----l.~[unsigned-integer 1..-----1 ••

where the size attribute is an unSigned-integer.

IfVPLEM:NTA TICN f'IlTE
In the current implementation, the size-attribute must be in the range
from 1 to 255.

The· ordering relationship between any two string values is determined by
lexical comparIson based on the ordering relationShip between character values
in corresponding positions in the two strIngs. (When the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares "higher"; thus the string 'attribute' is
ordered higher than 'at'.)

Do not confuse the size with the length.

3-5

Pascal Reference Manual Data TYPes

The size attribute of a string constant Is equal to the length of the
string constant value" namely the number of characters actually in the
strIng.
Although string-types are simple-types by definition" they have some
characteristics of structured-types. As explained in Section 4.3.1"
individual characters In a string can be accessed as if they were
components of an array. Also" all string-types are implicitly paCked
types and all restrictions on packed types apply to strings (see Sections
7.3.2" 5.1.6.1" and 11.7).

Do not make any assumptions about the internal storage format of strings" as
this format may not be the same in all implementations.
~erators applicable to strings are specified in Section 5.1.5. Standard
procedUres and functions for manipulating strings are described in Section 11.6.

3.12 Erunerated-Types
M enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The orderIng of these values is determined by the
sequence in which the identifiers are listed.

enllmerated-type .. ~ identifier-list ~

identjfier-jjst '--~'7"e.I ~ ..

The occurrence of an identifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant Is the enumerated-type
being declared.
Examples of enumerated-types:

color = (red,ye110w,green,b1ue)
suit = (club, di~" heart, spade)
mari ta1Status = (married" divorCed, widOwed, sirwJ1e)

Given these declarations, yellow is a constant of type color, dicmood is a
constant of type suit" and so forth.
When the ord function (see Section 11.5.1) Is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value

3-6

Pascal Reference Manual Data 7}'pes

wIth respect to the other values of the enumerated-type. For example, gIven
the declarations above, on(red) returns 0, on(yellow) returns 1, and on:(blue)
returns 3.

3.1.3 StJlrcrge-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

sl1branqe-type .. , constant ~ constant ~

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type tnteger and the other of type
longint If both are of the same ordinal-type, this type is called the host-type
If one is of type Integer and the other of type lorYJint, the host-type is longtnt
Note that no range-CheCKing is done if the host-type is longlnt

Examples of SIIiJI817ge-types:

1. .100
-10 10
red .. green

A variable of sUbrange-type possesses all the properties of variables of the
host type, wlth the restrIction that 1ts run-t1me value must Oe In tne speclflea
closed interval.

If'1'LEI"'ENT A TI(J\J NOlE

Range-CheckIng Is enaDlea ana alsaOlea oy the compller commanos $R+
and SR- (see Chapter 12~ The default is SR+ (range-checking enabled~

3.2 St.nEtureQ-Types
A structured-type is characterizeO by its structuring methoO and by the type(s)
of its components. If the component type 1s itself structureo, the reSUlting
structured-type eXhibits more than one level of structuring. There is no
specif1eO l1mlt on tne number Of levelS to WhIch oata-types can be structurea.

structured-type-identifier

3-7

Pascal Refemnce Manual Data 7)tpes

TIle use Of the word pcD<OO In the declaration of a structured-type indicates
to the compHer that data storage Should be economized, even if this causes an
access to a component of a variable of this type to be less efficient.
The word packed only affects the representation of one level of the
structured-type In which It occurs. If a component Is itself structured, the
component's representation Is paCKed only If the word packed also occurs In
the deClaration of its type. .
For restrictlons on the use of components of pacKed varIables, see sectlons
7.3.2, 5.1.6.1, and 11.7.

The implementation of paCking Is complex, and details of the allocation of
storage to components of a pacKed variable are tlf}speclflea

JIVFl..E~NTATI(N mrE

In the current implementation, the word packed has no effect on types
other than array and record.

32.1 Array-Types
M array-type consists of a fixed number of components that are all of one
type, called the component-type. TIle number of elements Is determined by
one or more IndeX-types, one for each dimension of the array. There is no
specified l1mit on the number of dimensions. In each dimension, the array can
be indexed by every poSSible value of the corresponding index-type, so the
number of elements is the prOduct of the cardinalities of all the Index-types.

enay-type

index-type ..f ordinal-type ~

The type fOllowing the word Of Is the component-type of the array.
IfVPI..~ATI(J\.I mrE

In the current Implementation, the index-type should not be longlnt or a
subrange of looglnt, and arrays should not contain more than 32767 bytes.

3-8

Pascal Reference /'1a?tIaJ

Exanples of array-types:

array[l. .100] of real
array(boOleCll] Of color

Data 7jtpes

If the component-type of an array-type Is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array
Is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array(boOlea1] Of array[1. .10] Of array[size] of real

is equivalent to:
array(boOlea1, 1. .10, size] Of real

Likewise,
packed array[1. .10] Of packed array[1. .8] of bOOleCll

is equivalent to:
packed array[1. .10, 1. .8] Of bOOlecll

"EquiValent" means that the compiler does the same thing with the two
constructions.
A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1~

3.2.2 Record-Types
A record-type consists of a fixed number of components called fields, possibly
of different types. For each component, the record-type declaration specifIes
the type of the field and an identifier that denotes it .

.record-tyPe .(ream!) 1. ~ .~
~ field-l1st ~

field-list

,.1 fixed-part I
L _______ ~ __ ;_ Variant-part ~ '-.oJ

....:..;fJ.:.:.;r.xed:.=.=...-.c.-parl.=.;;---..C.....-.t.,II..-fi_el_d_-de_C_la_ra_ti_· o_n~1 -)~--.,.

-·------4G)~4~------

Pascal Reference Manual Data TYpes

..:;.;1I4:.::e:::.::l}d;....~=:::.~8/lJ.==tJ..:::'lJI1~---t.1H1 identifier-list ~

The fixed-part of a record-type specifies a list of "fixed" fields, gIvIng an
identifier and a type for each field. Each of these fields contains data that Is
always acCessed in the same way (see Section 4.3.2).

Example of a recOrd-type:

record
year: integer;
nmth: 1. .12;
day: 1. .31

end

A variant-part allocates memory space wIth more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Each
list of fields Is called a variant The variants "overlay" each other In memory,
and all fields of all variants are accessible at all times.

variant-part -r§€)'C1 ;oJ.1 tag-field-type~
identifier : ;

V81i8nl

(+Lcons,~~t ~ - .CD-~ '--) ~ -...-- \..j field-list ~

taq-field-type .1 ordinal-type-identifier ~

Jr1>LEM:NT A TIeN NOTE

In the current implementation, the type loogint should not be used as a
tag-type as it will not work correctly.

3-10

Pascal Reference Manual Data TYPes

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4~

The variant-part allows for an optional identifier, called the tag-fiell!
Identifier. If a tag-field identifier is present, It is automaticallY declared as
the identifier of an additional fixed field of the record, called the tag-flela

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-fIeld, then the
program must select a varIant on some other criterion.

Examples of reCOn:l-types wltll varIants:

record
name, firstName: string[80];
age: 0 .. 99;
case married: booleCl'l of

end

true: (spousesNaE: string[80]);
false: ()

record
x,y: real;
area: real;
case s: Shape of

end

triCYYJle: (side: real; inclination, CYYJlel, CI'lgle2:
(pJle);

rectangle: (sidel, siOO2 : real; ske~, angle3: angle);
circle: (diameter: real);

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2~ Variant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2~

3.2.3 set-Types
A set-type defines a range of values that Is the powerset of some ordinal-type,
called the base-type In other words, each possible value of a set-type is some
subset of the possible values of the base-type.

set-type .~ ordinal-type t---+

3-11

Pascal Reference Manual Data TYPes

IM'LEI'-'ENT A TI(J\J NOTE

In the present Implementation the base-type must not be longlnl The
base-type must not have more than 4088 possIble values. If the base­
type Is a subrange of Integer, it must be within the limits 0 .. 4087.

Q3erators appl1cable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a possible value of every set-type.

3.2.4 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type The component-type may be any
type.

The component data Is not in program-addressable memory but is accessed via
a peripheral device. The number of components (Le. the length of the file) is
not fixed by the file-type declaration.

file-type
~~.

of type

The type file (without the "Of type" construct) represents a so-called "untyped
file" type for use with the blOCkread and blockwrtte functions (see Section
10.4).

Although the symbOl file can be used as if it were a type-identifier" it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a fUe of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a cl7aracter device such as the Lisa keyboard. Files of type
text are supported by the specialized liD procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type fUe· of char
(unlike standard Pascal). The type flIe of char is a file whose records are of

3-12

Pascal Reference Manual Data TYpes

type char, containing char values that are not interpreted or converted in any
way dUring I/O operations.

In a stored file of type text or fUe of -128 .. 127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type fUe of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the lJase-type

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the • operator (see Section 5.1.6), and by the standard procedure poInter
(see Section 11.3.4~

base-type ~ type-identifier ~

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer - type.

The special symbol nil represents a standard pOinter-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical md COt"Jl)atible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa two types mayor may not be jt1enticaJ, and identity is
required in some contexts but not in others.

3-13

Pascal Reference Mantlal Data 7)pes

Even if not identical, two types may still be compauble, and this is sufficient
in contexts where identity is not required--except for assignment, where
assjgnment-compaUbjljty is required.

3.4.1 Type Identity
Identical types are required only in the following contexts:

• Variable parameters (see Section 7.3.2~

• Result types of functional parameters (see Section 7.3.4~

• Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5~

• Ole-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5~

Two types, t1 and t2, are klenUcal if either of the following is true:

• The same type klentlf1er Is used to declare both t1 and t2, as in

foo = "integer;
t1 = foo;
t2 = foo;

• tl is declared to be equivalent to t2 as in

t1 = t2;

Note that the declarations

t1 = t2;
t3 = tl;

do not make t3 and t2 identical, even though they make tl identical to t2 and
t3 identical to tl!

Also note that the declarations

t4 = integer;
t5 = integer;

do make t4 and t5 identical, since both are defined by the same type
identifier. In general, the declarations

t6 = t7;
t8 = t7;

do make t6 and t8 identical if t7 is a type-identifier.

However, the declarations

t9 = "integer;
t1D = "integer;

do not make t9 and tlO identical since "integer is not a type identifier but a
user-defined type consIsting of the special symbol .. and a type identifier.

3-14

Pascal Reference Manual Data TYpes

Finally, note that two variables declared in the same declaration, as in
varl, var2: Ainteger;

are of identical type. However" if the declarations are separate then the
definitions above apply.
The declarations

varl: A integer;
var2 : "integer;
var3: integer;
var4 : integer;

maKe var3 and var4 identical in type" but not var1 and var2.
3.4.2 COfllpatlblllty of Types

Compatibility is required in the majority of contexts where two or more
entities are used together" e.g. in expressions. specific instances where type
compatibility is required are noted elsewhere in this manual.
Two types are t.:'ompatible if any of the following are true:

• They are identical.
• O'le is a sub range of the other.
• Both are subranges of the same type.
• Both are string-types (the lengths and sizes may differ).
• Both are set-types, and their base-types are compatible.

3.4.3 Assignment -COfllpatlbUity
AsSignment-compatibility is required whenever a value is assigned to
something, either explicitly (as in an assignment-statement) or impliCitly (as in
passing value parameters).
The value of an expression expval of type exptyp is assignment-compatible
with a variable" parameter, or function-ldentifier of type vtyp if any of the
following is true.

• vtyp and exptyp are identical and neither is a file-type" or a structured­
type with a file component.

• vtyp is real and exptyp is integer or longint (expval is coerced to type
real~

• vtyp and exptyp are compatible ordinal-types, and expval Is within the
range of pOSSible values of vtyp. .

• vtyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

• vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute Ofvtyp.

3-15

Pascal Ref'eIe/1Ce Manual Data Types

• vtyp is a string type or a char type and expval is a quoted-character­
constant.

• vtyp is a packed arra}l{1_n] of char and expvaI is a strIng constant
containing exactly n characters.
If the index-type of the packed array of char Is not l .. n, but the array
does have exactly n elements, no error will occur. However, the results
are unspecified.

Whenever assignment-compatibility Is required and none of the above is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part
Any program, procedure, or function that declares types contains a type­
declaration-part, as shown in Chapter 2.
Example of a type-declaraUon-part·

type COlIlt = integer;
range = integer;
color = (red, yellow, green, blue);
sex = (male, female);
year = 1900 .. 1999;
shape = (triangle, rectangle, circle);
card = array [1. .80] of Char;
str = string[80];
polar = record r: real; theta: CIlgle end;
person = .. personDetails;
personDetails = record

fQIIe, firstName: str;
age: integer;
married: boolean;
father, Child, sibling: person;
case s: sex of

end;

male: (enlisted, bearded: booleCl1);
female: (pregnant: boolean)

people = file of personDetails;
intfile = file of integer;

In the above example COlIlt, Ja1Q8, and Integer denote identical types. The
type year is compatible with, but not identical to, the types Ia'lge, COU1t, and
integer.

3-16

Chapter 4
Variables

4.1 variable-[)eclamtiorlS•... 4-1

4.2 Vmiable-Refelel teeS ... 4-1

4.3 G)Jalifiers•.•.•.•...•.•.•••.•......•...••••.•....•.....•.•.•......••....•....... 4-2

4.3.1 Arrays,Stri~,and Indexes .. 4-2
4.3.2 Records and Field-Designators ... 4-4
4.3.3 File-Buffers .. 4-4
4.3.4 Pointers and Their Clljects .. 4-4

Variables

4.1 Variable-Declarations
A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

Varl8lJle-deClaratJm ... , identifier-list ~

The occurrence of an identifier within the identifier-list of a variable­
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specified in Section 2.2.2.

Examples or varjable-declarations:

X, y, z: real;
i, j: integer;
k: 0 .. 9;
p, q, r: boolea1;
operator: (plUS, minus, tires);
a: array[o .. 63] of real;
c: color;
f: file of char;
hUe1,hUe2: set of color;
p1, p2: person;
m, m1, m2: array [1. .10, 1. .10] of real;
coord: polar;
pooltape: array[1..4] of tape;

4.2 Variable-References
A variable-reference denotes the value of a variable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

varjable-reference

~~_v_a_rl_ab_l_e-_ld_e_n_ti_fi_er~~-~~---------~~-----.~
! quaIl fier t--'"

variable-identifier .1 identifier r--+

4-1

Pascal Reference Manual Variables

Syntax for the various Kinds of quallfiers is given below.
4.3 Quallfiers

As shown above, a variable-reference is a variable-identifier followed by zero
or more qualifie~ Each qualifier modifies the meaning of the variable­
reference.

~jf'jef

An array identifier with no qualifier is a reference to the entire array:
xResults

If the array identifier is followed by an index, this denotes a specific
component of the array:

xResults[current+1]
If the array component is a record, the index may be followed by a fleld­
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+1].11nk
If the field is a pointer, the field-designator may be followed by the pOinter­
Object-symbOl, to denote the object poInted to by the pointer:

xResults[current+1].11nk~

If the object of the pointer is an array, another index can be added to denote
a component of this array (and so forth~

xResults[current+l].11nK A [1]
4.3.1 Arrays, strings, CIld Indexes

A speCifiC component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.
A specific character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character post tlon.

lndex .CD,.....~.-.tl expressIon I) .CD-
(O~---

4-2

Pascal Reference Manual

Examples of'indexed arrays:

m[l, j]
a[l+j]

Variables

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.
In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m[i][j]

is equivalent to
m[l, j]

For array variables, each index expression must be assfgnment-compaUble with
the corresponding index-type specified in the declaration of the array-type.
A string value can be indexed by only one index expression, whose value must
be in the range 1.. n, where n is the current length of the string value. The
effect is to access one character of the string value.

WARNING

When a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval is declared as follows:

strval: str1ng[lO];
The memory space allocated for strva! includes space for 10 char values
and a number that will represent the current length of the string--Le.,
the number of char values currently in the string. Initially, all of this
space contains unspeci fled values. The assignment

strval[l]:="F'
mayor may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value 'F' in character
position 1, but the length of strval remains unspeCified. In other words,
the value of strval[l] is now "F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writelr(strval) is
unspecified.
Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they mOdify.

4-3

Pascal Reference ManiJal Variables

4.3.2 Records CJ1d Field-Desiglators
A specific field of a record variable is denoted by a variable-reference that
refers to the record variable., followed by a field-designator that specifies the
field.

field-desiqnator ... ~ identifier ~

Examples of fjeld-designators:

p2" .pregmt
coord. theta

4.3.3 File-Buffers
Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the fUe is called the current fjle position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component is via a special variable associated with the file, called a
fHe-buffer.

The file-buffer is implicitly declared when the fHe variable is declared. If F
is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated VJith a file variable is denoted by a variable­
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-blIffer-symPo1.() •

Thus the file-buffer of file F is referenced by F".

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the flle­
buffer and the current file component.

4.3.4 Pointers CJ1d Their (bjects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the object of the pointer._

The object pointed to by a poInter variable is denoted by a variable-reference
that refers to the pointer variable, followed by a qualifier called the pointer­
Object-symbOl.

pointer-object-SymbOl ~

4-4

Pascal Reference ManlIal Variables

Pointer values are created by the standard procedure new (see Section
11.2.1), by the (I operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4~

The constant nil (see Section 3.3) does not point to a variable. If you access
memory via a nil pointer reference, the results are unspecified; there may not
be any error indication.
Examples of references to oJJjects of pointeIS:

pl: A

pl .Sibling

4-5

Chapter 5
Expressions

5.1 ~raton ...•..............•...... 5-4

5.1.1 Binary q-Jerators: Order of Evaluation of ~rands 5-4
5.1.2 Ari thrnetic ~rators ... 5-4
5.1.3 Boolean ~rators ... 5-6
5.1.4 Set ~rators•... 5-6

5.1.4.1 Result Type in Set ~rations ... 5-7
5.1.5 Relational ~rators ... 5-7

5.1.5.1 Comparing I\t.rnbers ... 5-7
5.1.5.2 Comparing Booleans ... 5-8
5.1.5.3 Comparing Strirgs ... 5-8
5.1.5.4 Comparing Sets ... 5-8
5.1.5.5 Testing Set MerrtJership .. 5-8
5.1.5.6 Comparing Packed Arrays of Char•.•.... 5-8

5.1.6 IP-q-Jerator .. 5-8
5.1.6.1 ... ~rator with a Variable .. 5-9
5.1.6.2 ~erator with a Value Parameter 5-9
5.1.6.3 qJerator with a Variable Parameter 5-9
5.1.6.4 q-Jerator with a Procedure or Function 5-9

5.2 FLIlCtim-C8lls ..•.•.•.••••..•••..•••••••••••••.••••••••••••••••••••••.•.•••••••••••••••••.•.• 5-10

5.3 Set-corastructors .. 5-11

Expressions

Expressions consist of operators and operands, I.e. variables, constants, set­
constructors, and function calls. Table 5-1 shows the operator precedence:

t:pemtors
., not

*, /, div,
mod, em
+, -, or

-, <>, <, >,
<=, >=, in

Tmle 5-1
PrecaB ICe of qJeraton

Pll!Cedence categories

hIghest unary operators

second "multiplying" operators

third ttadding" operators 8t signs

lowest relaUonal operators

The followlng rules specify the way in which operands are bound to operators:

• When an operand Is written between two operators of different precedence,
it Is bound to the operator with the higher precedence.

• When an operand is written between two operators of the same precedence,
it is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a factorallows the unary operators" and not to be applied to
a value:

factor
~~'::'--__ .--_---_--a.I variable-reference 1----_

5-1

Pascal Reference Manual Expressions

A fUnction-call activates a function, and denotes the value returned oy tne
function (see Section 5.2~ A set-constJUctordenotes a value of a set-type (see
Section 5.3). An l/Ilsigned-constant has the following syntax:

unsi ned-constant -=:-:.==-=.::.:..:..::..:=-:..=------. unsigned-number 1-----...

Examples of factors:

x
iiX
15
(x+y+z)
sin(xl2)
['A' .. 'F', 'a' .. 'f']
notp

{variable-reference}
{pointer to a variable}
{unsigned-constant}
{sub-expresslon }
{flJ'lCtion-call}
{set -constructor}
{negation of a booleal}

The syntax for a tenn allows the "multiplying" operators to be applied to
factors:

lem

Examples of tenns:

x*y
1/(1-1)
p em q
(x <= y) em (y < z)

5-2

Pascal Reference Manual ExpressIons

The syntax for a simple-expression allows the "adding" operators and signs to
be appUeCl to terms:

Examples of simple-expressions:
x+y
-x
tlJel + tlJe2
1*j + 1

The syntax for an express/on allows the relational operators to be applied to
simple-expressions:

express/on

simple-expressIon ~,.---------------....,,---.

Examples of expressIons:

x = 1.5
P <= q
P = q am r
(1 < j) = (j < k)
c in huel

I---~~ sImple-expression

5-3

Pascal Refe.mnce Manual Expressions

5.1 qJerators
5.1.1 Binary Cllerators: order of Evaluatioo of qJelll'lds

The order of evaluation of the operands of a binary operator is unspecified.
5.1.2 Ar1ttmetlc (llerators

The types of operands and results for arithmetic binary and unary operations
are shown in Tables 5-2 and 5-3 respectively.

Table 5-2
Binary AI1ttmetic qlerations

t:perator lperaljm lperaM 7jpes 7jtpe of Result

+ addItion
................................. ...

Integer, real, or Integer, real, or - subtraction
.................................. .. longint longint

* mul tiplication

I dIvIsIon Integer, real, or
l~nt

real

div division with integer or longint integer or longint
integer result

mod modulo integer or longint integer

Note: The symbols +, -, and * are also used as set operators (see
Section 5.1.4~

Table 5-3
U1ary Arlttmet1c ~raUons (SlglS)

tperato.r t:peratJon t:pe.rand Types Type of Result

+ identity
.................................. .. integer, real, or same as operand

- sign-negation lorglnt

My operand whose type is Sltlr, where Sltlr is a subrange of some ordinal-type
Ordtyp, is treated as if it were of type Ordtyp. Consequently an expression
that consists of a single operand of type Slbr is itself of type ordtyp.

5-4

Pascal Reference Manual Expressions

If both the operands of the addition, subtraction, or multiplication operators
are of type Integer or longint, the result Is of type Integer or longlnt as
described in Section 3.1.1.2; otherwise, the result is of type real.

I'IJTE

See Appendix 0 for more information on all arithmetic operations with
operands or results of type real.

The result of the identity or sIgn-negation operator Is of the same type as the
operand.

The value of I dlv j is the mathematical quotient of I/j, rounded toward zero
to an Integer or longlnt value. M error occurs if j-O.

The value of I fOOd J is equal to the value of

1 - (1 d1v j)*j

The sign of the result of mod is always the same as the sign of 1. M error
occurs if .1=0.
The predefined constant maxlnt is of type Integer. Its value is 32767. This
value satisfies the following conditions:

• All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type Integer.

• MY unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
ad thmetic.

• Ally binary integer operation on two whole numbers in this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result is not in this interval, then the actual result Is
the low-order 16 bits of the mathematical resul t.

• My relational operation on two whole numbers in this same interval will be
correct! y performed according to the mathematical rules for whole-number
arithmetic.

5-5

Pascal Reference Mamal Expressions

5.1.3 Boolecll ~rators
The types of operands and results for Boolean operations are stlOwn in Table
5-4.

t:peratoI cperatJon
or disjunction

and conjunction

TmJle 5-4
Boolecll qJeratlons

bOOlecIl
..

rot negation

Type of Result

bOOlea'l

Whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boOlTst(x)

where boOlTst is a function that returns a boOlean value. This expression will
always have the value true, regardless of the result of boOlTst(x~ The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be important if boOlTst has side-effects.

5.1.4 Set qlerators
The types of operands and results for set operations are shown in Table 5-5.

qJerator t:peratlon

+ union

dIfference

* intersection

Table 5-5
Set cperatiom

t:perand TYpes

compatible
set-types

5-6

TYpe of Result

(see 5.1.4.1)

Pascal Reference Manual Expressions

5.1.11-1 Result Type In set ~ratlons
The following rules govern the type of the result of a set operation where one
(or bOth) of the operands is a set Of Slbr, where ordtyp represents any
ordinal-type and Slbr represents a sub range of ordtyp:

• If ordtyp is not the type Integer, then the type of the result Is set of
orotyp.

• If ordtyp is the type Integer, then the type of the result Is set of 0..4087 in
the current implementation (0 .. 32767 in a future Implementation~ This rule
results from the limitations on set-types (see Section 3.2.3~

5.1.5 Relational ~rators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relatimai ~lBtions

Q:Jerator {jJeratfon

equal

<> not equal

< less

{jJerand TYpes
compatible set -,
simple-, or
poInter-types
(& see below)

> greater compatible
Simple-types ~: ····Tes·s/equiiC·················· (& see below)

............... ;: ·····greater/equaC·······

............... ~~ ~Y.P.~~J .. .Qf..
>- superset of

in member of

5.1.5.1 COt'T1lartng NlImers

compatible
set-types
left operand:

..... ~~Y.. . .9.r~~.~~:.!~ ... T
rigllt operand:
set Of T

TYpe of Result

boolean

When the operands of <, >, >-, or <- are numeric, they need not be of
compatible type If one operand is real and the other is integer or longlnl

I\KJTE

See ~pendix 0 for more information on relational operations with
operands of type real.

5-7

P8SC8l ReFerence H8I7lIol Exp.ressjons

5.15.2 COmparIng Boolecrn
If p and q are bOOlean operands" then p-q denotes their equivalence and p<-q
denotes the implication of q by P (because false<true). Simllarly" p<>q denotes
logical "exclusive-or."

5.15.3 COmparIng strings
When the relational operators ... , <> , < " > , <- , and> are used to compare
strings (see Section 3.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCII character set. Note that any two string values can be
compared since all string values are compatible.

5.15.4 COmparIng sets
If u and v are set operands, then u<-v denotes the inclusion of u in v, and
U>=V denotes the inclusion of v in u.

5.155 Testing set Mermership
The in operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwise it yields the value false.

5.1.5.6 COrnpar1ng Packed Arrays of 01ar
In addition to the operand types shown in the table, the .. and <> operators can
also be used to compare a packed array[LN] of char with a string constant
containing exactly N characters, or to compare two one-dimensional pacKed
arrays of char of jdenlical type.

5.1.6 ~rabor
A pointer to a variable can be computed with the "'operator. The operand
and result types are shown in Table 5-7.

cpe.rator t:pe.ration

pointer • formation

Tcmle 5-7
Pointer ~ratioo

t:pe.rand

variable, parameter,
procedure, or
funct10n

Type of Result

same as nll

" Is a unary operator taKing a single variable, parameter, procedure" or
function as its operand and computing the value of its pointer. The type of
the value is equivalent to the type of nll, and consequently can be assigned to
any pointer variable.

5-8

Pascal Refemnce Manual Expressions

5.1.6.1 ~rator With a Varlmle
For an ordinary variable (not a parameter), the use of • is straightforward. For
example, if we have the declarations

type twchar = packed array[o .. 1] of char;
var int: integer;

tWOCharptr: "tWOChar;

then the statement

tWOCharptr := aint

causes twocharptr to point to int. Now twocharptr" is a reinterpretation Of
the bit value of lnt as though it were a packed arra}{11.1] of char.

The operand of • cannot be a component of a packed variable.

5.1.62 qJerator With a Value ParCllleter
When. is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter In a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr : = itfoo

then fooptr" is a reference to the value of foo. Note that if the actual­
parameter is a variable-reference, fooptr" is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 ~rator With a varImle ParCIlleter
When .. is applied to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer is taken from the stack~ Suppose that fl.rn
is a formal variable parameter of a procedure, fle is a variable passed to the
procedure as the actual-parameter for fum, and ftJ11)tr is a pointer variable.

If the procedure executes the statement

fLllptr : = iifun

then fllT1ltr is a pointer to flee flIT1ltr" is a reference to fIe itself.

5.1.6.4 ~rator With a ProceWre or FtIlCtion
It is pOSSible to apply. to a procedure or a function, yielding a pointer to the
entry-point Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pointer is to pass it to an assembly­
language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, (I returns the current
address of the procedure's entry point If the procedure is in some other
segment, however, • returns the address of the jump table entry for the
procedure.

5-9

Pascal ReFerence Mantlal Expressions

In logical memory mapping (see WoJ1<slJop User's Guide for tl7e Lisa), the
procedure pointer is always valid.
In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure Is not in the local segment, the jump-table entry
address w1ll remain valid despite swapping because the jump table is not
moved.

5.2 Ft.rlCtion-caIIs
A function-call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal-parameter. The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.
The order of evaluation and binding of the actual-parameters is unspecified.

fllllctil117-Call

function-identi fier

actual-parameter-list

&--:t.lJal-pa.rC1flJet.eI-lb't CD I I ~ -- ((... actual-parameter) --0---

actual-parameter

------~~~~r------

expression

procedure-identi fier

function-identi fier

A function-identifier is any identifier that has been declared to denote a
function.

5-10

Pascal Reference Mant/al

Examples of TlIIJCt/on-caJls:

sun(a,63)
gcd(147,k}
sin(x+y)
eof(f}
Ord(f")

5.3 set-constructors

Expressions

A set-constructor denotes a value of a set-type, and Is formed by writing
expressions within [bracketsl Each expression denotes a value of the seL

set-constructor -CD _~

~ merrrer-gr~ F?
'----(Oa.--------

.1 expressIon I ~ ~
.. expression

The notation [] denotes the empty set, which belongs to every set-type. My
member-group x..y denotes as set members the range of all values of the base­
type in the closed interval x to y.
If x Is greater than y, then x..y denotes no members and [x..y] denotes the
empty seL
All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resultlng
set. If an integer value designated as a set member is outside the limits given
In Sectlon 3.2.3 (0 .. 4087 in the current implementation), the results are
unspecified.
Examples of set-constructors:

[red, c, green]
[1, 5, 10 .. k ODd 12, 23]
('A' .. 'Z', 'a' .. 'Z', Chr(xcode)]

5-11

Chapter 6
Statements

6..1 Sinllie Stat.ernerlts•..•.............................•......•.....•...... 6-1

6.1.1 Assignment-Statements .. 6-1
6.1.2 Procedure-StaterTleflts .. 6-2
6.1.3 Goto-Statements .. 6-3

6.2 StructJ.rre(f-Staternerrt.s ••.••••••••••••••••••••••• 6-4

6.2.1 Compound-Statements .. 6-4
6.2.2 Conditional-Statements .. 6-4

6.2.2.1 If-Statements ... 6-5
6.2.2.2 Case-Statements ... 6-5

6.2.3 Repetitive-Statements .. 6-6
6.2.3.1 Repeat-Statements ... 6-7
6.2.3.2 While-Statements ... 6-7
6.2.3.3 For-Statements ... 6-8

6.2.4 With-Statements .. 6-10

Statements

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a goto-statement.

simple-statement 1-------,.-

label .1 digit-sequence I •

A digit-sequence used as a label must be In the range 0 .. 9999, and must first
be declared as described in Section 2.1.

6.1 SifTlJle Statements
A simple-statement is a statement that does not contain any other statement.

simple-statement

goto-statement ..--------i ..

6.1.1 Asslgvnent-Statements
The syntax for an assignment-statement Is as follows:

asslgnnJt?lJI-Slalefllt?fJ1

----..... variable-reference

function-identi fier expression

The assignment-statement can be used in two ways:
• To replace the current value of a varlable by a new value speclfied as an

expressIon
• To specify an expression whose value Is to be returned by a function.

6-1

Pascal Refemnce Mantlal Statements

The expression must De assignment-compatible with the type of the variable or
the result-type of the function.

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:
x := y+z;
p := (1<=1) and (1<100);
1 := sqr(k) - (l*j);
rue! := [blue, succ(c)];

6.1.2 ProceWre-statements
A procedure-statement serves to execute the procedure denoted by the
procedure-identi fier.

pJ2Jt"18l1l.IJ-e-statenleflt

procedure-identifier
actual-parameter-list

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)
If the procedure has formal-parameters (see Section 7.3), the procedure­
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number Of actual-parameters must be
equal to the number of formal parameters. The correspondence Is establ1shed
by the positions of the parameters In the lists of actual and formal parameters
respecU vel y.
The rules for an actual-parameter N' depend on the corresponding formal­
parameter FP:

• If FP is a value parameter, N' must be an expression. The type of the
value Of N' must be ass1gnment-compatIble w1th the type of FP.

• If FP is a variable parameter, N' must be a variable-reference. The type
of N' must be identical to the type of FP.

• If FP Is a procedural parameter, N' must be a procedure-identifIer. The
type of each formal-parameter of N' must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Reference Manua} Statements

• If FP is a functional parameter, IV> must be a function-identifier. The type
of each formal-parameter of IV> must be identical to the type of the
corresponding formal-parameter of FP, and the result-type of IV> must be
identical to the result-type of FP.

~

The order of evaluation and binding of the actual parameters is
unspeci fled.

Examples of procedll.re-statements:

prlntheadlng;
trCllspose(a, n, m);
blsect(fct, -1.0, +1.0, X);

6.1.3 Goto-statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement

qot.l.1-s1.alolnent .. ~ label r-.

The constants that introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The fallowing restrictions apply to go to-statements:
• The effect of a jump into a structured statement from outside of the

structured statement is unspecified.
• The effect of a jump between the then part and the else part of an If­

statement Is unspecified.
• The effect of a jump between two different cases within a case-statement

is unspecified.

6-3

Pascal Reference M8ntJal Statements

62 structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement~

...;:.S..:::tro..:::~;;;..;t=U.;..;;'TfJ(j~-S.;..;;t..:::'8.;.;;t8;.;..;.me..;,=..;.'n.;;..t ____ ---.. compound-statement

wIth-statement t-------"--_..

6.2.1 Gor'f1lOtJ1d-Statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compound-statement

---+(iifi9iO) (.1 statement) .~
....... , --(0-------

Example of compOlJnd-statement·

begin
z := X;
X := y;
y := Z

end

An important use of the compound-statement Is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement. The symbOlS begIn and end act as "statement brackets."
Examples of this will be seen in Section 6.2.3.2.

6.2.2 CondItional-Statements
A conditional-statement selects for execution a single one (or none) of its
component statements .

...::Cl.:;:7Ilt...:==..;1lt..='i0lJa==-'i-,..=:.s=la::..:;ten=1t?f)=. =f.---..,.---~ If-statement

6-4

Pascal Refemnce Mantlal Statements

~2.2.1 If-~tefrM!1ts
The syntax for if-statements is as follows:

jf-statement

The expression must yield a result of type boolean. If the expression yields
the value true, the statement following the then is executed.

If the expression yieldS false and the else part is present, the statement
followIng the else Is executed; 1 f the else part Is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if e1 then
if e2 then sl

else 52
is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then 51

else 52
end

Examples of jf-statements:

if x < 1.5 then z := x.y else z := 1.5;
if p1 <> nil then p1 := p1 A .father;

~.2.2 case--~tements
The case-statement contaIns an expressIon (the selectolj and a list of
statements. EaCh statement must be preflxed with one or more constants
(called case-const8nt~, or wIth the reserved word otherwise. All the case­
constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

case-staten1elU

otherwise-clause

6-5

Pascal Refemnce Manual Statements

~tll--)---.()-+t statement t---....

~o..;.;.t/Je;=.;.;;.,;~='.J,;..;;..rse;;;;... -....;:cJ.='at..=tSe~_ ~ otherwise H statement 11---..;

The case-statement specifies execution Of the statement prefixed by a case­
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise is executed; if no otherwise part Is present, nothing Is executed.

Examples of' case-statements:

case operator of
plus: x:= x+y;
mirus: x: = x-y;
tiDEs: x: = X*Y

end

case i Of
1: x := sin(x);
2: x := cos(x);
3,4,5: x:= exp(x);
otherwise x := In(x)

end

IIVPLSVENT A lICN I'IJTE

In the current implementation, the case-statement wlll not WOrk
correctly if any case-constant is of type la1Qint or the value of the
selector Is of type longlnt.

6.2.3 Repetitive-Statements
Repetitive-statements specify that certain statements are to be executed
repeatedly .

.re. I(?tjljve-statement repeat-statement

while-statement

for-statement

6-6

Pescel Refenmce fvIsnusl Statements

6.23.1 Repeat-statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement

J-epeat-stat.ernetU

~ repeat >r sta~ expression f--.

111e expression must y1eld a result Of type DOOlecn The statements between
the symbols repeat and lIltll are repeatedly executed until the expression
yieldS the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression Is
evaluated after execution of the sequence.
Exanples of repeat-statements:

repeat
I< := 1 IIDd j;
1 := j;
j := I<

lIlt1l j = 0

repeat
process (f");
get(f)

lIltil eof(f)

6.2.32 While-statements
A while-statement contains an expression which controls the repeated
execution of one statement (possibly a compound-statement) contained within
the whIle-statement.

while-statement
~ expression ~ statement f--.

The expression must yield a result of type boolem. It is evaluated before the
contained statement Is executed. The contained statement Is repeatedly
executed as long as the expression yields the value true. If the expressIon
yields false at the beginning, the statement is not executed.

6-7

Pascal Reference Hanl/a/

The While-statement:

WlIIe b do body
is equivalent to:

1 f b then repeat
body

lIltiI rot b

Examples of w/7jle-statements:

Wlile a[l] <> x do 1 := 1+1

Wlile 1>0 do begin
if odd(l) then z := ~
1 := 1 dlv 2;
x := sqr(x)

end

Wlile rot eof(f) do begIn
process(f");
get(f)

end

6.2.3.3 For-Statements

Statements

The for-statement causes one contained statement (possibly a compound­
statement) to be repeatedly executed while a progression of values is aSSigned
to a variable called the control-v81iable

fo[-statenlt?lJl

control-variable initial-value

l-----,...-.c final-value

Ct.1f](JZ11-v8Jlable .1 variable-identifier ~

initial-value I L-...... • expression ! .. ___

..:...fh:.:..'fJ.=I8/=---~va.='Ii=ue==---4.~1 expression ~

6-8

Pascal RefeJ'87Ce Manual Statements

The control-variable must be a variable-Identifier (without any qual1fier~ It
must be local to the innermost block containing the for -statement, and must
not be a variable parameter of that block. The control-variable must be of
ordinal-type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. When each value is assigned to the control-variable, it Is
compared to the final-value; If It Is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed with the reserved word dOWnto, each
successive value Of the control-variable Is the predecessor (see section 3.1) Of
the previous value. When each value is assigned to the control-variable, it is
comparee] to the final-Value; 1f It Is greater than or equal to the final value,
the contained statement is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect is unspeCified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by a go to. Apart from these restrictions, the for-statement:

for v := el to e2 do body

Is equivalent to:

begin
teqll := el;
tenp2 := e2;
if teqll <= tenp2 then begin

v := tenpl;
body;
.. ile v <> tenp2 do begin

v := StEC(v);
body

end
ern

end

6-9

Pascal Reference M8l7tlal

and the for-statement:

for v : = e1 doWlto e2 do body

is equivalent to:

begin
tetlf)1 : = e1;
tenp2 := e2;
if ~1 >= ~ then begin

v := tenp1;
body;
While v <> tenp2 do begin

v : = pred(v);
body

end
end

end

Statements

where t.er"f131 and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.
Examples of fOf-StatementS:

for i := 2 to 63 do if ali] > max then max := ali]
for i := 1 to n do for j := 1 to n do

begin
x := 0;
for k := 1 to n do x := X + m1[i,k]*m2[k,j];
m[i, j] := X

end

for c := red to blue do q(c)
6.2.4 With-Statements

The syntax for a with-statement is

with-statement

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement following
the word do. Fields of the record-variable can be referenced by their field­
identifiers, without explicit reference to the record-variable.

6-10

Pascal Refen:nce Manual

Example of wltIJ-statemenl:

wi th date do if ronth = 12 then begin
ronth := 1;
year := year + I

end
else ronth := ronth + I

This Is equlvalent to:

if date.ronth = 12 then begin
date .lDlth : = 1;
date. year : = date. year + 1

end
else date .lDlth : = date .lID1th + 1

Statements

Within a with-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real

end;

var 002: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record variable baZ and to a
variable of type integer. Now consider the statement

with baZ do begin

foo := 36; {which foo is thiS?}

end

The foo in this with-statement Is a reference to the field baZ.foo, not the
variable foo.

The statement:

with vI, v2, .•• vn do s

is equivalent to the following "nested" with-statements:

w1th v1 do
with v2 do

with vn do s

6-11

Pascal Reference Manual Statements

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean V2.vn, not vl.vn. The list of record-variable-references in the with­
statement is checked from rlght to left

If the selection of a variable In the record-variable-list involves the indexIng
of an array or the de-referencIng of a pointer, these actions are executed
before the component statement is executed.

WARNING

If a variable in the record-variable-list Is a pOinter-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the poInter is altered, the results are unspecIfied.

Example of lIIJS8fe wit/7-statement using pointer-reference·
.-i th ppp" do begin

ne.-(ppp); {Don· t do this ... }

ppp:=XXX; { ..• or this}

end

6-12

Chapter 7
Procedures and Functions

7.1 ~l8I8tiOl'lS •••.•••••••••••••••••••• 7-1

7.2. Fl.I1Cti(J(1-[)eclaratlOl'lS •••••.•••••••••••••••••••••••••••••••.•••••.•••••.•••••••.•••.•••••••• 7-4

7.3 Partl'neters •••••••••••••••••••••.•••.•••••••••••••••••••• 7-5

7.3.1 Value Parameters .. 7-7
7.3.2 Variable Parameters .. 7-7
7.3.3 Procedural Pararrteters .. 7-7
7.3.4 Functional Parameters .. 7-9
7.3.5 Parameter List Compatibility ... 7-9

Procedures and Functions

7.1 procewre-oeclarations
A procedUre-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

procedI.lTe-t1eclaratjon

---.f procedure-heading f+O.f procedure-body ~

The procedure-heading specIfies the identifier for the procedure, and the
formal parameters (if any).

Pl"Ol-:t?l.1lD"t?-hea.t/ng

---.(procedure H identifier I \. ;r~
'-+1 formal-parameter-list t-'

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are speCified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
block, the procedure is executed recursively.

7-1

Pascal Reference /'18fJl/8J Procedures & FU7Ct/onS

Excnple of a procedl.l.re-declaration:

proceckJre readInteger (var f: text; var X: integer);
var value, digi tValue : integer;
begin

lIhile (f" = 1 I) em not eof(f) do get(f);
value := 0;
lIhile (f" in [101 •• 191]) CIld not eof(f) do begin

digitValue := Ord(fA) - ord(IOI);
value := lO*value + digitValue;
get(f)

end;
x := value

end;

A procedure-declaration that has forward instead of a block is called a
Forward declaration Somewhere after the forward declaration (and in the
same blOCk), the procedure is actually defined .by a deflnjng deClarati~-a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-llst, and includes a block. The forward declaration and the
defining declaration must be local to the same blOCk, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of Forwani deClamt/on:

proceckJre walter(m,n: integer); {forward declaration}
forward;

proceckJre clara(x, y: real);
begin

wal ter(4... 5); {(J(becaUse walter is forward declared}

end;

proceclJre walter; {defining declaration}
begin

clara(8.3, 2.4);

end;

A procedure-declaration that has external instead of a block defines the Pascal
interface to a separately assembled or complled routine (a PROC In the case
of assembly language~ The external code must be Unked with the complled

7-2

Pascal Refemnce tv1anI.I81 ProcedJ.res & FlIfJCUons

Pascal host program before execution; see the WOi1<shOp USer's Guide for UJe
Lisa for details.

Example of an extemal procedUre-deClaration:

pl'OCeWre makescreen(iroex: integer);
external;

This means that makescreen is an external procedure that will be linked to the
hOst program before execution.

UVPLEIVENT ATUN I'IJTE

It is the programmer's responslbil1ty to ensure that the external
procedure is compatible with the external declaration in the Pascal
program; the current linker does no cheCking.

This Pascal (unliKe Apple II and Apple III Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
painter-type, as in the following example:

type bl~ = ~ed array[O .. 32767] of char;
bi{PlOCPtr = .. bl~;

proceoore Wlatever (bytearray: bl~tr);
external;

The actual-parameter can be any pointer value obtained via the .­
operator (see Section 5.1.6~ For example, if dOts Is a ~ed army of
booleal, it can be passed to Whatever by writing

.ootever(iidots)

This description of external procedures also applies to external functions.

7-3

Pascal Reference fv1ant181 P.roceduIes & Fl.I1Ctlons

7.2 FlIlCtion-Declaratiom
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

function-declaration

~ function-heading ~ function-body ~

function-ood

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result

function-headin

resul t - type

formal :-parameter-list

result-type onllnal--type-laentlfler

real-type-identifier

pointer-type-identifier

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression Is evaluated by executing the function, and replacing the function­
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assIgns a value to
the function-identifier. The result of the function is the last value assigned.
If no such assignment-statement exists, or If It exists but Is not executed, the
value returned by the function is unspeCified.

7-4

Pascal Reference Manual Procedllres & Functions

If the function's identifier is used in a function-call within the function's
block, the function is executed recursively.
Exanples of flrJction-deClarations:

fl6lCtlon max (a : vector; n: integer): real;
var x: real; i: integer;
begin

x := 8[1];
for i := 2 to n do 1f x < a[l] then x := a[i]
max := X

end;

fl.l1Ctlon poWer(x: real; y: integer): real; {y >= O}
var w, Z: real; 1 : integer;
begln

w : = X; Z : = 1; 1 : = y;
whlle i > 0 do begin

{z*(w**i) = x ** y }
if odd(i) then Z := z*w;
i := i div 2;
w := sqr(w)

end;
{z = x**y }
power := Z

end;

A function can be declared forward In the same manner as a procedure (see
Section 7.1 above~ This permits mutual recursion.
A function-declaration that has external instead of a block defines the Pascal
interface to a separately complled or assembled external routine (a .FLNC In
the case of assembly language~ See the explanation In Section 7.1 above.

7.3 Parameters
A formal-parameter-llst may be part of a procedUre-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.
If it Is part of a procedure-declaration or function-declaration, It declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.
If it is part Of the declaration Of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

7-5

Pascal Reference Manual ProcedtJres & FUlCt/ons

this case there is no associated block and the identifiers of parameters in the
formal-parameter-l1st are not significant (see Sections 7.3.3 and 7.3.4 below~

lonnaJ-par8meler-list
~---------------------~

type-identifier

There are four kinds of parameters: value paramete~ variable paramete~
procedural paramete~ and fUnctional parameten They are distinguished as
follows:

• A parameter-group preceded by var is a list of variable parameters.

• A parameter-group without a preceding var is a list of value parameters.

• A procedure-heading or function-headIng denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

~

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-list. To use a type such as arra){O_255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type Charray = c;u'ray[O .. 255] of Char;

The ident1fler charray can then be used in a formal-parameter-list to
denote the type.

7-6

Pascal Reference M8I1lIal ProcedI.Ires & FlA1Ctions

The word file (for an "untyped" file) Is not allowed as a type-Identifier
in a parameter-declaration .. since it Is a reserved word. To use a
parameter of this type .. declare some other identifier for the type file
--for example ..

type phyle = file;

The identifier phyle can then be used in a formal-parameter-l1st to
denote the type f11e.

7.3.1 Value Parameters
For a value-parameter .. the corresponding actual-parameter In a procedUre­
statement or function-call (see Sections 5.2 and 6.1.2) must be an expressIon ..
and its value must not be of fBe-type or of any structured-type that contains
a fHe-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be aSSignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter .. the corresponding actual-parameter in a procedure­
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable­
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

Within the procedure or function .. any reference to the formal variable­
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Identical to that of the formal variable-parameter.

f\DTE

I f the reference to an actual variable-parameter involves indexing an
array or finding the Object of a pointer .. these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (includIng string-types)
cannot be used as actual variable parameters.

7.3.3 ProcedUral PaIaneters
When the formal-parameter is a procedUre-heading, the corresponding actual­
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

7-7

Pascal Reference Manusl

Example of procedural parameters:

pragran passProc;
var i: integer;

Procedl.lres & Ftll7CtJons

procedure . a(procedure x) {x is a formal procewral parClleter.}
begin .

write(I AboUt to call x');
x {call the procedure passed as parareter}

end;

procerure b;
begin

write("In procedUre b")
end;

function c(procedure x): integer;
begin

X; {call the procewre passed as paranEter}
c:=2

end;

begin
a(b); {call a, passing b as paralleter}
i:= c(b) {call c, passing b as parameter}

end.

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5~ However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-llst ·1s omitted.
Example of procedl.l.ral parameters with their own fo.rmal-parameter-lists:

program test;
procecilre xAsPar(y: integer);

begin
writeln("y=", y)

end;

procecilre callProc(procewre xAgain(z: integer»;
begin

xAgain(l)
end;

begin {body of program}
cal IProc (xAsPar)

end.

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity

7-8

Pascal Ref'erence Manual Procedures & Fl/I?Ctions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.
To see what this means, consider a procedure pp which is known to another
procedure, fint.Passer. Suppose that the following sequence takes place:

1. fintPasser is executing.
2. fint.Passer calls a procedure named fintReceiver, passing pp as an

actual parameter.
3. fintReceiver calls secorl(Receiver, again passing pp as an actual

parameter.
4. ~eceiver calls pp (first execution of pp~
5. secot1(Receiver calls thiIlReceiver, again passing pp as an actual

parameter.
6. thircReceiver calls fintpasser (indirect recursion), and passes pp to

fintPasser as an actual parameter.
7. flnt?asser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp is called first from secot1(Receiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.
Each time pp is called, which xxx does it access? The answer is that in eacIJ
case, pp accesses the xxx that Is local to the first execution of fintpasser-­
that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

7.3.4 FlIlCtional Parcmeten
When the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.
Functional parameters are exactly like procedural parameters, with the
addi tional rule that corresponding formal and actual functions must have
identical result-types.

7.3.5 Parameter List Coo1>atibillty
Parameter list compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

7-9

Pascal Reference Manual Procedl.Jres & Functions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and If the parameters In corresponding positions match. Two
parameters match if one of the following is true:

• They are both value parameters of identical type.

• They are both variable parameters of identical type.

• They are both procedUral parameters with compatible parameter lists.

• They are both functional parameters wIth compatible parameter lists and
idenlical result-types.

7-10

Chapter 8
Programs

8.1 S)'Iltax .. 8-1

8.2 Progran-PBlillleterS ... 8-1

8.3 ~tation ..•.................... 8-1

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional lIS8s-clause

J.JJl.1g.ranJ

--I program-heading f-+O \, lAf .. ~
'-iuses-clause~

pragRltn-he&1fn!l

-{Progrcm)-.fr--ld-e-nU-f-ler--'1 \" I. /":'.. r •
-0+i program-parameters ~

Pll.7Qlam-paJan7eteJ~" I L---... - - - • identifier-list ~

..:;.l/,;.;;,.rse.;:...;;'S_-~CJ.~'8..;;..'l/.-,rse_~.~ identifier-list ~

The occurrence of an identifier immediately after the word progrcm declares it
as the program's identifier.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

82 Progrcm-Parameters
Current! y, any program-parameters are purely decorative and are totally
ignored by the comp1ler.

8.3 8egnentatlon
The code of a program's main body is always placed In a run-time segment
whose name Is a string of blanks (the "blank segment"~ My other block can
be placed in a different segment by using the $S compHer command (see
Chapter 12 and Appendix A~ If no $S command is used in the program, all
code is placed in the blank segment. Code from a program can be placed In
the same segment with code from a regular-unit, bUt it cannot be mixed with
code from an intrinsic-unit (see Chapter 9~

8-1

Chapter 9
Units

9.1 R~ar-lilits ..••••......•...•.•.•.•.•...••..•.•.•.•.•.••............•.•..........•.•.•........ 9-1

9.1.1 Writirtg Regular-lJnits• 0 ••• 9-1
9.1.2 Usirtg Regular-Llnits ...•....................... 9-3

9.2 Intrinsic-lkd.ts •••.•••.•..•...•.•.•.•.•...•••.•.•.••••.••••••••..•.••••.•••••.••.••••.•••••.•••• 9-4

9.3 Ulits tIlBt lJse OOler Ulits ..•.•...............•.....................•..............•........ 9-4

Units

A unit is a separately compUed, non-executable object fUe that can be linKed
with other object files to produce complete programs. There are two Kinds of
units, called regular-units and intrinsic-units: In the current implementation of
the Workshop, you can use intrinsic-units that are provided, but you camot
write new ones.
Each unit used by a program (or another unit) must be compiled, and its Object
fUe must be accessible to the compHer, before the host program (or unit) can
be compiled.

9.1 Regular-Ultts
Regular-units can be used as a means of modularizing large programs, or of
maKing code available for incorporation in various programs, without maKing
the source available.
When a program or unit (called the !Jost) uses a regular-unit, the linker inserts
a copy of the compUed code from the regular-unIt Into the host'S Object fUe.
By default, the code copied from the regular-unit Is placed in the blanK
segment (see Chapter 8). The code of the entire unit, or of blocKs within the
unit, can be placed in one or more different segments by using the $S compUer
command (see Chapter 12).

9.1.1 WrlUrYJ REgJlar-Ullts
The syntax for a regular-unit is:

r~ ular-unit
~==--::::":::"=------l-.t unit-heading

interface-part implementation-part

~tI.:...:.:l/';..:..t....:...-he.=-~=· ='1 ... ?llL.-_".~ Identifier

9-1

PascaJ Reference Manual

interface- . t

uses-clause

constant -declaratlon-part

type-declaration-part

varIable-declaration-part

procedure-and-functlon-declaratlon-part

ifTlllementation

constant-declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

The Interface-part declares constants, types, variables, procedures, and
functions that are "pUbUc," i.e. available to the host.

U71ts

The host can access these entitles just as if they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated
to nothIng but the procedure or function name, parameter specIfIcations, and
function result-type.

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3~

9-2

Pascal ReFerence I'1antI8l U?lts

The implementation-part, which follows the last declaration in the interface­
part, begins by declaring any constants, types, variables, procedures, or
functions that are "private," I.e. not available to the host

The pUblic procedures and functions are re-declared in the implementation­
part. The parameters and function result types are omitted from these
declarations, since they were declared In the Interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, althOUgh the foNard directive Is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

I\KJTES

There is no "initialization" section in Pascal units on the Lisa (unlike
Apple II and Apple III Pascal~ If a unit requires initialization of its
data, it should define a public procedure that performs the inl tlallzation,
and the hOst should call thIs procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit is:

LIli t Sinple;
INlERFACE {ptJ>lic objects declared}

canst FirstValue=1;
proceOJre AddQ1e(var Incr: integer);
function Add1(Incr:integer):1nteger;

ItR..Et£NTATI~
procedJre Ad€Dle; {note lack of paraEters .•• }

begin
Incr:=Incr+1

end;
function Add1;

begin
Add1:=Incr+1

end
em.

9.1.2 USIng Regular-ullts

{ ••• CQj lack of function result type}

The syntax for a uses-clause is given In Section 8.1. Note that In a host
program, the uses-clause (if any) must immediately follow the program­
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol Interface. O1ly one uses-clause may appear in any host program or
unit; it declares all units used by the host program or unit.

see Section 9.3 for the case where a host uses a unit that uses another unit.

9-3

Pascal Reference M8IJtI8l U1lts

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies thIs file. See Chapter 12 for more details.
Assume that the example unit Sll1ll1e (see above) is compiled to an object file
named APPL:SIMPLE.OOJ. The followIng is a short program that uses SlfT1)le.
It also uses another unit named other, which is In file APPL:OTHER.OOJ.

program callSimple;
uses {$U APPL:SltR.E.OOJ}

Sinple,
{file to search for units}
{use unit Simple}

{$U APPL :On£R .OOJ}
Other;

{file to search for units}
{use unit Other}

var i: integer;
begin

i:=firstValue; {Firstvalue is from Simple}
write('i+l is ',Addl(i»; {Addl is defined in Simple}
write(xyz(i» {xyz is defined in Other}

end.

9.2 IntrlnslC-UUts
The only intrinsic-units you can use are the ones provided with the WOrkShop
software.
Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code In the system. The code is kept on disK, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a useS-Clause, the same as for regular-units~
By default, the system looKs up all intrinsic-units In the system intrinsics
library f11e, INTRINSIC.L1B. All intrinsic-units are referenced in this library,
so the $U filersne compiler command is not needed with intrinsic-units.

9.3 UlIts that Use other Ullts
As explained above, the uses-clause in the host must name all units that are
used by the host. Here "used" means that the host directly references
something In the interface of the unit Consider the following diagram:

unitA
interface

~
uses lIlitc;

unite

V Host Program implementation [---. interface
uses unitA, unltB;

~ unitB
implementation

interface

implementation

9-4

Pascal Refemnce Mantia} U1/ts

The host program directly references the interfaces of lIl1tA and LIlltB; the
uses-clause names both of these units. The Implementation-part of LIlltA also
references the interface of LIlltC, but it is not necessary to name LIlltC in the
host-program's uses-clause.
In some cases, the uses-clause must also name a unit that Is not directly
referenced by the host. The following diagram Is exactly like the previous one
except that this time the interFace of LIlltA references the Interface of lIlltC,
and tritC must be named in the host-program's uses-clause. Note that t.Illtc
must be named before lIlltA

unitA
interface

.,. uses trite;

~ unite

V Host Program implementation
interface

uses t.rlttc, t.rl1tA.

~ t.ritB; unitB Implementation
interface

implementation

In a case like this, the dOCumentation for lIlltA should state that lIlltC must
be named in the uses-clause before tritA

9-5

Chapter 10
Input/Output

10.1 Introductioo to IJ() ..••••.•.•.••••..•••••••.•......•••••...•....•...••.••.•.••••.•••••.••••••. 1~ 1

10.1.1 Device Types ... 10-2
10.1.2 External File Species ... 10-2
10.1.3 The Reset ProcedlJre ... 10-3
10.1.4 The Rewrite Procedure .. 10-5
10.1.5 The Close Procedure •......••............•••....•...••.....•..•.•...•............. 10-6
10.1.6 The Ioresult Function ... 10-7
10.1.7 TheEofFunction .. 10-7

10.2 RectJI'd-OrierJte(i IJ() •• 1(}-S

10.2.1 The Get Procedure .. 10-8
10.2.2 The Put Procedure ... 10-8
10.2.3 The Seek Procedure ... 10-9

10.3 Text-()rIented 110 •• 1(}-9

10.3.1 The Read Procedure .. 10-11
10.3.1.1 Read with a Char Variable 10-12
10.3.1.2 Read wi th an Integer or Longint Variable.................... 10-12
10.3.1.3 Read wi th a Real Variable................. 10-12
10.3.1.4 Read with a String Variable 10-13
10.3.1.5 Read with a Packed Array of Char Variable 10-13

10.3.2 The Readln Procedure .. 10-14
10.3.3 The Writ~ Procedure•.•...• .•.......•........ ..•... 10-14

10.3.3.1 OJtput-Specs ... 10-15
10.3.3.2 Write with a Char Value ... 10-15
10.3.3.3 Write with an Integer or Longint Value 10-15
10.3.3.4 Write with a Real Value ... 10-16
10.3.35 Write with a String Value. 10-16
10.3.3.6 Wrtte wittl a PacI<et1 Array of Char value 10-17
10.3.3.7 Write with a Boolean Value 10-17

10.3.4 The Write In Procedure•................................•.....•.......•..... 10-17
10.3.5 The Eoln FlJ1Ction ... 10-17
10.3.6 The Page Procedure ..•...•........•.............•................••.......•...•• 10-18
10.3.7 Keyboard Testing and Screen Cursor Control 10-18

10.3.7.1 The Keypress Function .. 10-18
10.3.7.2 The Gotoxy Procedure...................... 10-18

Pascal Reference Manilal Input/aJtpilt

10.4 Ultypect File 110 •••••••••••••.•••.••••••••••••••••••••••••••.••••••••••••••••••••••••••••••• 10-18

10.4.1 The Blockread FLI1Ction ...•..... 10-19
10.4.2 The Blockwrite Function•.............•................•. eo 10-20

Input/Output

This chapter describes the standard C'bullt-in', 1/0 procedures and functions of
Pascal on the Usa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block" surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

ThIs Chapter ancl Chapter 11 use a modifled BNF notation, Instead of syntax
diagrams, to indicate the syntax of actual-parameter-l1sts for standard
procedures and functions.

Example:

Parameter List· new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-l1st of the standard
procedure new, as follows:

• p, t1, and tn stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

• The notation t1, ... tn means that any number of actual-parameters can
appear here, separated by commas.

• Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, wIth separating commas, or there may be
no t parameters.

10.1 IntroaJction to I/O
This section covers the I/O concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and "untyped" files (see Section
10.4~

To use a Pascal fHe variable (any variable whose type is a file-type), it must
be associated with an external file. The external file may be a named
collection of information stored on a peripheral device, or (for certain flle­
types) it may be the peripheral device itself.

The association of a file variable with an external file is made by opening the
f11e. An exIstlng file is opened via the reset procedure, and a new fHe Is
created and opened via the rewrite procedure.

10-1

Pascal on the Usa does not provide automatic 110 Checking. To check
the result of any particular 110 operation, use the ioresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 110, there are two types of peripheral devices:

• A file-structured device is one that stores files of data, such as a diskette.
• A character device is one whose input and output are streams of individual

bytes, such as the Usa screen and keyboard or a printer.
10.1.2 External File Species

There are three "species" of external files that can be used in Pascal 110
operations:

• A dataffle Is any fUe that is stored on a fUe-structured device and was
not originally created in association with a file variable of type text

• A textflJe is a fUe that is stored on a fUe-structured device and \<las
originally created in association with a file variable of type text TextfUes
are stored in a specialized format (see Section 10.3~

• A character device can be treated as a fUe.
Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external file species. The "ordinary cases" in the table
reflect the baSic intent of the various file-types. Other combinations, such as
block-oriented access to a textfile via a variable of type file, are legal but
may require cautious programming.

10-2

Pascal Reference MlintI8J ItplIt/lUtput

Table 10-1
camlnatloos of File varlcmle Types wlUl External File SpecIes

cni C8tf¥lrles

var f: file Of
var f: text; var f: file; someType;

ordinary' case. (Textflle format ordinary' case.

datafile After reset, aSSumed!) After Block access.
fA - 1st record reset*, f A Is
file. l.I1Sp8Ci fied.

(TextfUe format ordInary' case. (TextfUe format
not assumed!) TextfUe format not assumed!)

textfile
After reset*, assumed. After BlOCk access.
f· = 1st record reset, f· is
Of fUe (as unspecl flea.
declared~

After reset, ordinary' case. BloCk access,
f'" = 1st char. After reset, if allowed by

character from device fA Is unspeci- deVice.
device (system walts for fied (no wait

1t!~ 110 error If for Input Char).
fUe record type
not byte-sized.

* In these cases, the iOJ'llSUJt Itnctlm will mtum a "wamJngN
(i.e., 8 negative f7lII71lJer) immediately after the reset operation.

10.1.3 Tte Reset ProcecUe
q:>ens an existing f11e.
Parameter List: reset(f, title)

1. f is a variable-reference that refers to a variable of file-type. The fUe
must not be open.

2. tltle is an expression with a string value. The string should be a valid
pathname for a file on a fUe-structured device, or a pathname for a
character devIce.

10-3

Pascal ReFenmce Manual Input/altput

Both parameters are required (unlike Apple II and Apple III Pascal,
where the second parameter Is optional~

Reset(f, title) finds an existing external fUe with the pathname title, and
associates f wIth this external f11e. (If there Is no existing external fUe with
the pathname title, an 110 error occurs; see Section 10.1.6.)

If title Is the pathname of a character device, then

• Eof(f) becomes false.
• If f is of type text, the value of fA is unspecified. The next read or readln

on f will walt until a character Is available for input, and begin reading
with that character.

• If f Is of type file and the device is one that allows block access, there is
no fUe buffer variable f A and the "current file position" is set to the first
block (blOCk 0) of the fUe. If the device does not allow block access, an
110 error occurs (see Section 10.1.6~

• If f is not of type text or file, its component-type must be a "byte-size"
type such as the type -128..127. Note that char is not a byte-size type! If
the component-type of f is not byte-size, an liD error occurs (see Section
10.1.6~

If no 110 error occurs, the system waits until a character is available from
the device and then assigns the character's 8-bi t code to f".

If title is the pathname for an existing file on a file-structured device, then

• Eof(f) becomes false if the external file is not empty. If the external file
Is empty, eof(f) becomes true.

• If f is not of type text or file, reset sets the "current file position" to the
first record in the external file, and assigns the value of this record to the
file buffer variable f". If the external fUe is a textfile, the loresult
function will return a negative number as a warning (see Section 10.1.6~

• If f is of type text, the value of f" is unspeCified. If the fUe is a textfile,
the next read or reac:1ln on f will begin at the first character of f. If the
fUe is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the ioresult function will return a negative number as a warning
(see Section 10.1.6~

• If f Is of type file, there Is no file buffer variable f A and the "current file
position" is set to the first block (blOCk 0) of the flle.

10-4

Pascal Reference Manual lnput/altput

lo..L4 The Rewrite ProceOJre
Creates and opens a new fUe.

ParanJeter List: rewrl te(f, tl tIe)
1. f is a variable-reference that refers to a variable of fUe-type.

2. title Is an expression with a string value. The string should be a valid
pathname for a fUe on a fUe-structured dev1ce" or a pathname for a
character deVice.

If f Is already open" an I/O error occurs (see Section 10.1.6~

If title Is the pathname of a character device" then

• EOf(t) becomes false.

• Rewrlte(f, title) simply associates f with the device and opens f.

• The status of the device is not affected.

• The value of f'" becomes unspecified.

If title Is the pathname for a new file on a fUe-structured device, then

• EOf(f) becomes true.

• Rewrlte(f, title) creates a new external fUe with the pathname title" and
associates f with the external fne. This is the only way to create a new
external file.

• The species of the new external fUe is set according to the type of f-­
"textfile" for type text" or "datafile" for any other type.

• The value of f" becomes unspecified.

• If f is not of type rue, the "current file position" is set to just before the
first record or character position of the new external fUe.

• If f is of type file" the "current file pOSition" is set to block 0 (the first
block in the file~

• If f is subsequently closed with any option other than lOCk or cIlIlCh (see
Section 10.1.5)" the new external fUe is discarded at that time. ClOSing f
with lOCk or cJU1Ch is the only way to make the new external flle
permanent.

• If title is the pathname of an existing external file, the existing file wIll be
discarded only when f is subsequently closed with the lOCk or cIU'lCh option
(see Section 10.1.5~

unspecified effects are caused if the current file posit1on of a fUe f Is altered
while the file-buffer f" is an actual variable parameter, or an element of the
record-variable-reference list of a with-statement" or both.

10-5

Pascal Reference Mantlal

10.1.5 The Close PI'OCeWre
Closes a file.

Parameter List- close(f [, option])

1. f is a vanable-reference that refers to a variable of fUe-type.

/nput/aJtput

2. option (may be omitted) is an identifier from the llst given below. If
omitted, the effect is the same as using the identifier normal.

C1ose(f, option) closes f, if f is open. The association between f and its
external fUe is broken and the fUe system marks the external fUe "closed". If
f is not open, the close procedUre has no effect

The option parameter controls the disposition of the external file, if it is not a
character device. If it is a character device, f is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for option are as follows:

• mrmal -- If f was opened using rewrite, it is deleted from the directory.
If f was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter Is omitted.

• lock -- If the external fHe was opened with rewrite, it is made permanent
in the dIrectory.

If f was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch is "on"~ If the old fUe has the
safety switch "on," It remains In the directory and the new file Is deleted.

If f was opened wIth reset, a normal close is done.

• purge -- The external file is deleted from the directory (unless the safety
swi tch is "on"). In the specIal case of a fUe that already exists and is
opened with rewrite, the origInal file remains in the directory, unchanged.

• cItllCh -- This Is Uke lock except that it locks the end-of-file to the point
Of last access; Le., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the fUe system to mark the
external file "closed" and will make the value of fA unspecifIed.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file wIth the normal option.

I'lJTE

If you open an existing file with reset and modify the fUe with any
write operation, the contents are immediately Changed no matter what
close option you specify.

10-6

P8SC8l Reference /'t1an.IaI /rptlt/lUtput

10.1.6 TIle Ioresult FlIlCtion
Pascal on the Usa does not provide automatic 110 checking. To check the
result of any particular 110 operation, you must use the loresult function.
Result type: Integer
Parameter List· no parameters
loresult returns an Integer value which reflects the status of the last com­
pleted 110 operation. The COdes are given in the WoJ1<SI7Op user's Guide for the
Lisa. Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are "warnings" (see Table 10-1~
Note that the cOdes returned by loresult are not the same as the cOdes used in
Apple II and Apple III Pascal.

I'IlTES

The read, readln, write, and wrlteln procedures described in Section 10.3
may actually perform multiple 110 operations on each call. After one of
these procedures has executed, ioresult will return a code for the status
of the last of the multiple operations.
Also, beware of the following common error in diagnostic code:

read(foo);
writeln('ioresult=', ioresult)

The intention is to write out the status of the read operation, but
instead the status written out w111 be that of the write operation on the
string 'ioresult·'.

10.1.7 TIle Eat FlIlCtion
Detects the end of a fUe.
Result l)pe: boolESl

Parameter List- eaf [(f)]

1. f is a variable-reference that refers to a variable of fUe-type.
If the parameter-list is omitted, the function is applied to the standard file
1f1xJt (see Section 10.3~
After a get or put operation, eof(t) returns true if the current file position is
beyond the last external fUe record, or the external fUe contains no records;
otherwise, eof(f) returns false. specifically, this means the following:

• After a get, eof(t) returns true if the get attempted to read beyond the last
fUe record (or the fUe is empty~

• After a p.lt, eof(f) returns true if the record written by the put is now the
last fUe record.

10-7

Pascal RefeJ'ence Manual Input/altpllt

If f is a character device, eof(f) will always return false.
see Section 10.3 for the behavior of eof(f) after a read or readln operation.

I"DTE

Whenever eof(f) is true, the value of the fUe buffer variable f" Is un­
specIfied.

10.2 Record-ortented I/O
This section covers the get, put, and seek procedUres, which perform record­
oriented 110; that is, they consider a fUe to be a sequence of variables of the
type specified In the fUe-type. These procedures are not allowed with files of
type file.
The effects of get and put are unspecified wIth fUes of type text, and seek has
no effect wIth flIes of type text. The text type Is supported by specIalized
prOCedures described in Section 10.3.

102.1 The Get Procecl.Ire
Reads the next record In a fUe.
Parameter List· get (f)

1. f is a variable-reference that refers to a variable of file-type. The fUe
must be open.

If eof(f) is false, get(f) advances the current fUe posltlon to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof(f) becomes true, and the value of fA becomes unspecifIed.
If eof{f) is true when get(f) is called, then eof{f) remains true, and the value of
f" becomes unspeCified.
If the external fUe is a character device, eof(f) is always false and there is no
"current fUe position:' In this case, get(f) walts until a value Is ready for input
and then assigns the value to f".

10.2.2 The Put Procecl.lre
Writes the current record in a fUe.
Parameter List· put (f)

1. f is a variable-reference that refers to a variable of fUe-type. The fUe
must be open.

If eof(f) is false, put(f) advances the current fUe position to the next file
record and then writes the value of f" to f at the new fUe position. If the
new fUe pqsition is beyond the end of the f11e, eof(f) becomes true, and the
value of f" becomes unspecifIed.
If eof(f) is true, put(f) appends the value of f" to the end of f and eof(f)
remains true.

10-8

Pascal Reference Manual /npt/t/llJtptJt

If the external file is a character device, eof{f) is always false, there is no
"current file position," and the value of fA is sent to the device.

I'IJTE

If put is called immediately after a fUe is opened with reset the put
will write the second record of the file (since the reset sets the
current position to the first record and put advances the position before"
wrlting~ To get around this and write the first record, use the seek
procedure (see Section 10.2.3~

10.2.3 The Seek ProceWre
Allows access to an arbitrary record in a file.
Parameter List: seek(f, n)

1. f is a variable-reference that refers to a variable of file-type. The fUe
must be open.

2. n is an expression with an Integer value that specifies a record number in
the fUe. Note that records in fUes are numbered from O.

If the file is a character device or Is of type text, seek does nothIng.
Otherwise, seei«f, n) affects the action of the next get or pAt from the fUe,
forcing it to access flIe record n instead of the "next" record. seek(f, n) does
not affect the fUe-buffer f".

A get or put must be executed between seek calls. The result of two con­
secutive seeks with no Intervening get or put Is unspecIfied. Immediately after
a seel«f, n), eof{f) will return false; a following get or put will cause eof to
return the appropriate value.

The record number specified in a seek call is not checKed for validity.
If the number is not the number of a record in the fUe and the program
tries to get the specified record, the value of the flIe-bUffer becomes
unspecl fied and eof becomes true.

103 Text-oriented I/O
This section describes input and output using file variables of the standard type
text. Note that in Pascal on the Usa, the type text is distinct from fUe of
char (see Section 3.2.4~
When a text flIe is opened, the external file is interpreted in a special way. It
is considered to represent a sequence of characters, usually formatted into
lines by CR characters (ASCII 13~
The Usa Keyboard and the WorKshOp screen appear to a Pascal program to be
bUilt-in files of type text named lr1)Ut and output respectively. These files

10-9

Pascal Reference Mant/al /nput/altptlt

need not be declared and need not be opened wIth reset or rewrite, since they
are always open.
When a program is taking input from it'lJUt, typed characters are echoed on the
WorkShop screen. In addition to the input file, the Lisa keyboard is also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a fUe variable of type text with
-KEYBOARD as the external fHe pathname.
other interactive devices can also be represented in Pascal programs as fUes of
type text.

When a text file is created on a fUe-structured device, the external fUe is a
textflle. It contains information other than the actual sequence of characters
represented, as follows:

• The stored fBe is a sequence of 1024-byte pages
• Each page contains some number Of complete lines of text and is padded

wIth null characters (ASCII 0) after the last line.
• Two 512-byte header blOCks are also present at the beginning of the file.
• A sequence of spaces in the text may be compressed into a two-byte code,

namely a OLE CIlaracter(ASCII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other flle-type~
Certain things that can be done with a record-structured fUe are impossible
with a file variable of type text:

• The seek procedure does nothing with a file variable of type text.

• The effects of get and put are unspecified with a file variable of type text.

• The contents of the file buffer variable are unspecified with a file variable
of type text.

• A fUe variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented liD provides the following:
• Automatic conversion of each input CR character into a space.
• The eoJn function to detect when the end of an input line hos been

reached.
• The read procedure, which can read char values, string values, packed array

of Char values, and numeric values (from textual representat1ons~

10-10

Pascal Reference Mantlal InplIt/altptlt

• The write procedure, whIch can write char values, string values, pcd<ed
array of char values, numeric values, and boolean values (as textual
representations~

• Line-oriented reading and wrt ting via the readln and wrlteln procedures.
• The page procedure, which outputs a form-feed character to the external

file.
• Automatic conversion of Input DLE -codes to the sequences of spaces that

they represent. Note that output sequences of spaces are not converted to
OLE-codes.

• Automatic skipping of header blocks and null characters during input.

• Automatic generation Of textflle header blocks, and automatic padding of
textflle pages with null characters on output.

10.3.1 The Read ProceclJre
Reads one or more values from a text file Into one or more program variables.
Parameter List- read([f,] v1 [, V2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-liSt.

1. f (may be omitted) is a variable-reference that refers to a variable of
type text The flIe must be open. If f is omitted, the procedure reads
from the standard text fUe If1JUt, whIch represents the Usa keyboard.

2. vI ... v n are Input variables Each is a variable parameter, used as a
destination for data read from the f11e. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

• char, Integer, or longlnt (or a sUbrange of one of these)

• real
• a string-type or a packed anay of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

RecI(f,v1,._,v n) Is equivalent to:

begin
read(f, VI);

read(f, vn)
end

10-11

Pascal Reference Manual /npt/t/altpf/t

Read can also be used to read from a fUe fll that is not a text file. In
thIs case rea(fll,x) Is equivalent to:

begin
x := fil";
get(fll)

end

103.1.1 Rea2 With a Char Varlcole
If f is of type text and v is of type char, the following things are true
immediately after rea(f,V~

• Eof{f) will return true if the read attempted to read beyond the last
character in the external fUe.

• EOlr(f) wm return t.n.e, and the value of v wUl be a space, if the Character
read was the CR character. EoIr(f) will also return true if eof(f) Is true.

10.3.1.2 Rem With an Integer or LalQInt variable
If f Is of type text and v Is of type Integer, subrange of Integer, or longlnt,
then ~f,v) Implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation Is not a11owed~ If the value read Is asslgnment­
compatible wIth the type Of v, It Is assIgned to v; otherwise an error occurs.
In reading the sequence of Characters, preceding blanks and CRs are Skipped.
Reading ceases as soon as a character Is reached that, together wIth the
characters already read, does not form part of a sIgned whole number.
An error occurs If a sIgned whOle number is not found after skipping any
preceding blanks and CRs.
If f is of type text, the following things are true immediately after rea«f,v~

• Eof{f) will return true If the last character In the numeric string was the
last character in the external f11e.

• EoIr(f) w111 return true if the last character in the numeric string was the
last character on the Une (not counting the CR character~ EOlr(f) will also
return true if eof(f) is true.

10.3.1.3 Read With a Real varicole
If f Is of type text and v Is of type real, then rea«f,V) Implles the reading
from f of a sequence of characters that represents a real value. The real
value is assIgned to the variable v.
In reading the sequence of characters, precedIng blanks and CRs are skipped.
ReadIng ceases as soon as a character Is reached that, together with the

10-12

Pasca/ Reference M8I7tI81 /rputAl/tptlt

Characters already read, dOeS not form a valid representation. A "valid
representation" Is either of the following:

• A finite real, Integer, or longlnt value represented according to the
sIgned-number syntax of Section 1.4 (except that hexadecimal notation is
not aliOWad~ M Integer or longlnt value is converted to type real

• M infinite value or Nan represented as described in Appendix D.
M error occurs if a valid representation is not found after skipping any
preceding blanks and CRs.

Immediately after reat(f,V) where v is a real variable, the status of eof{t) and
eolr(f) are the same as for an Integer variable (see Section 10.3.1.2 above~

10.3.1.4 Read with a string variable
If f Is of type text and v is of string-type, then rea(f,v) impUes the reading
from f of a sequence of characters up to rot not inc/wing the next CR or
the end of the fUe. The resulting Character-string is assigned to v. M error
occurs if the number of characters read exceeds the size attribUte of v.

I\IlTE

Read with a string variable dOes not Skip to the next line after reading,
and the CR Is left waIting In the input buffer. For thIs reason, you
cannot use successive read calls to read a sequence of strIngs, as they
will never get past the first CR -- after the first read, each subsequent
read wIll see the CR and wIll read a zero-length string.

Instead, use readln to read strIng values (see Section 10.3.2~ Readln
Skips to the begiming of the next line after reading.

The following things are true immediately after rea(f,v)

• Eof{f) will return true if the Une read was the last line in the file.

• Eolr(t) will always return true.

10.3.1.5 Read with a Packed Array of Char variable
If f Is of type text and v is a packed array of CI1ar, then ~f,V) impl1es tne
reading from f of a sequence of characters. Characters are read into
successive character posItions In v untll all positions have been filled, or until
a CR or the end of the file Is encountered. If a CR or the end-of-fUe Is
encountered, It Is not read into v; the remaInIng positions In v are f1l1ad wIth
spaces.

10-13

Pascal Reference Hal1il81

10.3.2 The Readln ProceciIre
The readln procedUre is an extension of read. Essentially it does the same
thing as read, and then Skips to the next line in the Input f11e.
Parameter List· The syntax of the parameter Ust of readln is the same as that
of read, except as follows:

• A readln call with no input variables is allowed. Example:

readln(souroefl1e)
• The parameter-list can be omitted altogether.

If the first parameter does not specify a f11e, or if the parameter-Ust is
omitted, the procedure reads from the standard fUe lflJut, which represents the
Usa keybOard.
Reanr(t), with no input-variableS, causes a Skip to the begiming of the next
line (If there is one, else to the end-Of-flle~

Recdn can mly be used on a text f11e. Except for this restriction,
readlr(f,v1_,vn) Is equivalent to:

begin
read(f,vl, ... ,vn);
readln(f)

end

The fOllowing things are true immediately after readlr(f,v), regardless of the
type of v:

• Eof(f) will return true If the line read was the last line In the external file.
• Eolr(t) w111 always return false.

103.3 1he Write ProceciIre
Wri tes one or more values to a text f11e.
Parameter List· wrlte([f,] pI [, p2, ... pn])

The syntax of the parameter Ust of write allows an Indefinite number of
actual-parameters.

1. f (may be omitted) is a variable-reference that refers to a variable of
type text The fUe must be open. If f is omitted, the procedure writes to
the standard file output, which represents the WOrkShOp screen.

2. pI ... pnare output-specs Each output-spec includes an Ot/tptJ(
expression, whOse value Is to be written to the file. As explained below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
Integer, longlnt, real, bOOle8l, Char, a string-type, or a pad<ed array Of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Refe.rence ManIla}

Wrlte(f~l_~n) is equivalent to:
begin

wr1te(f, p1);

wr1te(f,pn)
end

Immediately after wrlte(t), both eof(f) and eolr(t) will retum true.

f'IJTE

Input/aJtput

WrIte can also be used to write onto a file fll that is not a text file.
In this case wrtte(fll.,x) is equivalent to:

beQ1r!
fll := X;
JXJt(fll)

end

103.3.1 OJtput-Specs
Each output-spec has the form

rutExpr [: MlnWldth [: DecPlcD!s]]

where OJtExpr is an output expression. MlnWldth and DecPla::es are
expressions with Integer or longlnt values.
MlnWldth specifies the mlnlfT1U77 field width, with a default value that
depends on the type of the value of rutExpr (see belOW). MlnWidth should be
greater than zero; otherwise, the results are unspecified. Exactly MlnWldth
characters are written (using leading spaces if necessary), except when OJtExpr
has a numeric value that requires more than MlnWldth characters; in this
case, enough characters are written to represent the value of rutExpr.
DecPlaces specifies the number of decimal places in a fixed-point repre­
sentation of a real value. It can be specified only if rutExpr has a real value,
and if MlnWldth is also specified. If DecPlaces is not specified, a floating­
point representation is written.

10.3.3.2 WrIte with a Char value
If rutExpr has a char value, the character is written on the file f. The default
value for MlnWldth is one.

10.3.3.3 WrIte with an Integer or LorYJInt V81ue
If rutExpr has an Integer or lcrglnt value, its deCImal representat10n Is written
on the file f. The default value for M1nWldth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value Is
negative, and any leading spaces that may be required to satisfy MlnWldth. If
the representation requires more than M1nWldth characters, MlnWldth Is
ignored.

10-15

Pascal ReFerence Ml1nlI81

103.3.4 write with a Real Yalue
If B.lt.Expr has a real value, the default value for MlnWldth is 12.

If rutExpr has an infinite value, 1t is output as a string of at least two "+"
characters or at least two "_" characters. If rutExpr is a NaN, It is output as
the character string "NaN", possibly followed by a string of characters enclosed
by single-quotes. see section 10.3.3.5 for details on string output.

If BJtExpr has a zero value, it is represented as "0" or "-O".

If B.lt.Expr has a finite value, its decimal representation Is written on the fUe
f. This representation is the nearest possible decimal representation, depending
on MlnWldth and DecPlooes. If the unrounded value Is exactly halfway
between two possIble representations, the representation WhOse least significant
digit Is even is written out.

If DecPlaces Is not specified, a floatlng-polnt representation is written as
follows:

• If MlnWldth Is less than 6, then its value is set to 6 (1ntemally~ This Is the
minimum usable wIdth for wri tlng a floating-point representation.

• If the sign of the value of rutExpr is negative, a minus sign is written;
otherwise, a space is written.

• If MlnWldth ~ 8, the significant digits are written with one digIt to the left
of the decimal point and (MlnWldth - 7) digits to the right of the decimal
point.

• If MlnWidth < 8, the most significant digit is written and the decimal point
is omitted.

• The exponent Is written as the letter "E", an explicit "+" or "_" sign, and
two digits.

If DecPlaces Is speCifIed, a fixed-polnt representation is written as follows:

• Enough leading spaces are written to satisfy MlnWidth.

• If the value is negative, the minus sign "_" is written; if it is not negative,
a space Is written.

• If DecPlaces > 0, the significant digits are written with the Integer part of
the value to the left of the decimal poInt. The next DecPlaces dIgits are
written to the right of the decimal point.

• If DecPlaces ~ 0, only the integer part of the value is written and no
decimal pOint is written.

10.3.35 WIlte with a StrIng value
If the value of rutExpr is of string type with length L, the default value for
MlnWldth is L If MlnWidth>-L, the value is written on the file f preceded by
(MinWidth-L) spaces. If MinWidth<L, the fIrst MlnWidth characters of the
string are written.

10-16

Pascal Reference M8171J8i /nput/altptlt

103.3.6 WItte with a PcO<ed Array of Char value
If E is Of type ~ed array of Char, the effect is the same as writing a string
whose length Is the number of elements In the array.

10.3.3.7 write with a Boolean Value
If the value of rutExpr is of type bOOlean, the string" TRUE" (with a leading
space) or the string "FALSE" is written on the fUe f. The default value of
MlnWldth is 5. If MlnWldth>5, leading spaces are added; if MlnWldth<5, the
first MlnWldth characters of the strIng are written. This Is equivalent to:

.rite(f,' TRl£' :MlnWldth)
or

.rite(f, 'FALSE':MlnWldth)

10.3.4 TIle wrtteln ProcedUre
The wrlteln procedure is an extension of write. Essentially it does the same
thing as write, and then writes a CR character to the output file (ending the
Une).

Parameter List: The syntax of the parameter list of wrlteln Is the same as
that of write, except as follows:

• A wrtteln call with no output-specs is allowed. Example:

.riteln(outpu1file)

• The parameter-list can be omitted altogether.
If the first parameter does not specify a fUe, or if the parameter-list is
omitted, the procedure writes to the standard fHe output, Which represents the
Workshop screen.

writelr(f) writes a CR character to the file f.

Writeln can only be used on a text file. Except for this restriction,
wrltelr(f.p1_.pn) is equivalent to:

begin
.rlte(f, p1, •• _, pn);
wrlteln(f)

end

Immediately after wrttelr(f), both eof{t) and eolr(t) wIll return true.

10.3.5 The Eoln FtXlCtion
Result Type: boolean

Parameter List- eoln[(f)]

1. f is a variable-reference that refers to a variable of type text The fUe
must be open.

The actual-parameter-l1st can be omitted entirely_ In this case, the function is
applied to the standard file 1Jllut. (the Usa keyboard~

10-17

Pascal Ref'erence H8nU8l Jrput/a./tput

EOlr(t) returns true "if the end of a line has been reached in f." The meaning
of this depends on whether the external fHe is a character device, on which I/O
procedUre was executed last, and on what type of variable was used to receive
an input value. For details, see Sections 10.3.1 through 10.3.4.
The end of the fHe Is considered to be the end of a llne; therefore eo1r(f) wIll
return true whenever eof{t) Is true.

10.3.6 The Page ProcefiIre
Parametel" List· page (f)

1. f is a variable-reference that refers to a variable of type text The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file f. This will cause a Skip to the top of a new page when
f Is printed.
Note that page(output) sends a form-feed to the WorkShOp screen, but In
general this will not clear the screen. For methods of clearing the screen, see
the WOr/(sflop Usel"'s Guide for tI7e Lisa.

103.7 Keyboard Testing <TId SCreen cursor control
103.7.1 TIle Keypress FlI'lCtIon

Tests the Lisa keyboard to see if it has a character awaiting input
Parameter List· . no paraneters.
Result TYpe: boolecn

Keypress returns true if a character has been typed on the Usa keyboard but
has not yet been read, or false otherwise. This is done by testing the
typeahead queue; if the queue Is empty, keypress is false, otherwise it Is true.

10..3.7.2 The Gotoxy ProcefiIre
Moves the Workshop screen cursor to a specified location on the screen.
Parameter List· gotoxy(x" y)

1. x is an expression with an Integer value. If x < 0, the value 0 w111 be
used; If x > 791 the value 79 will be used.

2. y is an expression with an integer value. If y < 0, the value 0 wlll be
used; if y > 31, the value 31 will be used.

GotoX)(x... y) moves the cursor to the poInt (x"y) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10..4 Ultyped Flle 110
untyped file 110 operates on an "untyped file," i.e., a variable of type fHe (no
component type~ AA untyped file is treated as a sequence of 512-byte blOCkS.:
the bytes are not type-checKed but considered as raw data This can be useful
for applications where the data need not be interpreted at all during I/O
operations.

10-18

Pascal Reference Hantlal Input/aJtplIt

The blocks in an untyped fHe are considered to be numbered sequentially
starting with O. The system keeps track of the CUfrent block ~J;·this is
block 0 immediately after the file is opened. Each time a block is read, the
current block number Is incremented. By default, each I/O operation begins at
the current block number; however, an arbitrary block number can be specified.

Nt untyped flIe has no file-bUffer, and it cannot be used with get, put, or any
of the text-oriented I/O procedUres. It can only be used wlth reset, rewrite,
close, eof, and the blockread and blOCkwrtte functions described below.

To use untyped fUe I/O, an untyped file is opened wlth reset or rewrite, and
the blockrecm and blockwrlte functions are used for input and output

10.4.1 The Blockrecm Ft6lCtion
Reads one or more 512-byte blOCks of data from an untyped flIe to a program
variable, and returns the number Of blocks read.

ReSlllt l)pe: Integer

Parameter List· blOCkread(f, clatcDJf, COUlt [, blOCkrUn])

1. f is a variable-reference that refers to a variable of type fUe. The file
must be open.

2. databuf is a variable-reference that refers to the variable into Which the
blocks of data w111 be read. The size and type of this variable are not
checked; If it is not large enough to hold the data, other program data
may be overwritten and the results are unpredictable.

3. COUlt is an expression with an Integer value. It speCifies the maximum
number of blocks to be transferred. Blockrecm w111 read as many blocks
as it can, up to this limit.

4. blockrun (may be omitted) is an expression with an Integer value. It
specifies the starting block number for the transfer. If It Is omitted, the
transfer begins with the current block. ThUs the transfers are sequential
if the blockrunber parameter is never used; if a blockrunber parameter
is used, it provides random access to blocks.

BlockJea«f" databuf" COUlt., blockrUn) reads blocks from f into databuf, starting
at block blockn.m. COUlt is the maximum number of blocks read; if the
end-of-fUe Is encountered before COJ'lt blocks are read, the transfer ends at
that point The value returned is the number of blocks actually reacJ.

If the last block in the fUe was read, the current block number is unspecified
and eof(f) Is true. otherwise, eof(f) is false and the current blOCk number is
advanced to the block after the last block that was read.

10-19

Pascal Reference Manual /nptlt/altptlt

10.4.2 The BIOCkwrlte Ft.IlCtion
Writes one or more 512-byte blocks of data from a program variable to an
untyped f11e, and returns the number of blocks written.

ReSUlt l)'pe: integer

Parameter List· blockwri te(f, databUf, CW'lt [, blockrun])

1. f Is a variable-reference that refers to a variable of type file. The fUe
must be open.

2. databuf is a variable-reference that refers to the variable from which the
blocks of data will be written. The size and type of this variable are not
checked.

3. CW'lt is an expression with an Integer value. It specifies the maximum
number of blOCks to be transferred. Blockwrlte wUl write as many blocks
as it can, up to this limit.

4. blockrun (may be omitted) is an express10n with an Integer value. It
specifIes the starting block number for the transfer. If It Is omitted, the
transfer begins with the current block. Thus the transfers are sequential
If the blOCkrunber parameter is never used; if a blOCkrunber parameter
Is used, it provides random access to blocks.

Blockwrlte(f, databuf, CW'lt, blockrun) writes blocks into f from databuf,
starting at block blockrUn. COt.I1t is the maximum number of blocks wrItten;
if disk space runs out before CW'lt blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written.

If disk space ran out, the current block number Is unspecified. Otherwise, the
current block number Is advanced to the block after the last block that was
written.

Unlike Apple II and Apple III Pascal, this Pascal does not allow
blOCkwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps In It.

10-20

Chapter 11
Standard Procedures and

Functions

11.1 Exit and I-mlt PItx::e€lJres .•...•.•.•.•....•.•.•.•.•.•....••..•.....•.•..•..••••..••.••..••.• 11-1

11.1.1 The Exi t Procedure .. 11-1
11.1.2 The Halt Procedure ... 11-1

11.2 OyrBTlic Allocation PItx::e€lJres .. 11-1

11.2.1 The New Procedure ... 11-2
11.2.2 The HeapResult Function ... 11-3
11.2.3 The Mark Procedure .. 11-3
11.2.4 The Release Procedure .. 11-3
11.2.5 The Memavail Function .. 11-3

11.3 TrarlSfer F~tlalS•.•.......•.............•................... 11-4

11.3.1 The TruncFunction ... 11-4
11.3.2 The Round Function .. 11-4
11.3.3 The Ord4 Function ... 11-4
11.3.4 The Pointer Function ... 11-5

11.4 Arit.twT1eti.c F~ons•..• 11-5

11.4.1 The Odd Function .. 11-5
11.4.2 The.AdJs Function .. 11-5
11.4.3 The Sqr Function ... 11-6
11.4.4 The Sin Function ... 11-6
11.4.5 The Cos Function .. 11-6
11.4.6 The Exp Function .. 11-6
11.4.7 TheLnFunction .. 11-7
11.4.8 The Sqrt Function ... 11-7
11.4.9 The Arctan Function .. 11-7
11.4.10 The Pwroften Function .. 11-7

11.5 0rdlrlaJ. FWlCtiOl'lS ••••••••.••••.••.••• 11-8

11.5.1 The Ord Function ... 11-8
11.5.2 The Chr Function .. 11-8
11.5.3 The SUcc Function ... 11-8
11.5.4 The Pred Function... 11-9

Pascal Reference Manll8l Standard Procedures & Functions

11.6 St.rirlg PrtJc:::e(lJres arld FtIlCtiorlS __ ._. _________ . ____ ___ ._ ... _ 11-9

11.6.1 The Length Function .. 11-9
11.6.2 The Pos Function .. 11-9
11.6.3 The Concat Function ... 11-10
11.6.4 The Copy Function .. 11-10
11.6.5 The Delete Procedure .. 11-10
11.6.6 The Insert Procedure ... 11-10

11.7 Byte-Oriented PrtJc:::e(lJres and FUlCtions ••.•...•••.•••.•.•••.••..•.•••••••.•••••••• 11-11

11.7.1 The Moveleft Procedure ... 11-11
11.7.2 The MoverightProcedure ... 11-12
11.7.3 TheSizeofFunction .. 11-12

11.8 Packed Array of am PrtJc:::e(lJres arld FtIlCtions _ _._ _ 11-12

11.8.1 The Scaneq Function ... 11-12
11.8.2 The Scanne Function ... 11-13
11.8.3 The FillcharProcedure .. 11-13

Standard Procedures and
Functions

This chapter describes all the standard C'bulll-in'} procedUres and functions in
Pascal on the Lisa, except for the I/O procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notat1on, instead of syntax diagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit CI1d Halt ProceclJres
11.1.1 TIle Exit ProcedIre

Exits immediately from a specified procedure or function, or from the main
program.

Parameter List: ex1t(1d)

1. Id Is the identifier of a procedure or function, or of the main program. If
id Is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(ld} causes an immediate exit from Id. Essentially, it causes a jump to the
end of Id.

The halt procedure (see below) can be used to exit the main program
from a lIllt without knowing the main program's identifier.

11.12 The Halt ProcedIre
Exits immediately from the main program.

Pamrneter List- no parameters

Halt causes an immediate exit from the main program.

11.2 Dynamlc Allocatioo ProceWres
These procedures are used to manage the heap, a memory area that Is
unallocated when the program starts runnlng. The procedure new is used for

11-1

Pescal Reference Mantlal Standard Procedures & FlI!7CtJons

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to return the status of the last preceding dynamic allocation operation ..

11.2.1 The New Procec:lJre
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List- new(p [, tL ... tn])

1. p is a variable-reference that refers to a variable of any painter-type.
This is a variable parameter.

2. t1, ... tnare constants, used only when allocating a variable of
record-type with variants (see below~

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p". Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nU and a subsequent call to the heapresult function wlll return a
non-zero result

If the base-type of p is a record-type with variants, ne\tJ(p) allocates enough
space to allow for the largest variant. The form

new(p, t1, ... tn)

allocates a variable with space for the variants specified by the tag values U,
... tn (instead of enough space for the largest variants~ The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

WARNII\K3

When a record variable is dynamically allocated with explicit tag values
as shown above, you should not make assIgnments to any fields of
variants that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Refemnce Jv/anu8l Standard P.rocedJ17JS & FlI1Ctlons

11.2.2 The Heapresult FtJ'lCtlon
Returns the status of the most recent dynamic allocation operation.
RestJlt Type: integer
Parameter List· no parameters
Heapresult returns an Integer code that reflects the status of the most recent
call on new, rnaIk, release, or memavall. The codes are given in the worksl1Op
User's G/ita· note that the code for a successful operation is O.

11.2.3 TIle Mark ProceclJre
sets a pOinter to a heap area.
Parameter List- marI<{p)

1. P is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

Mar1«p) causes the pointer p to point to the lowest free area in the heap. TIle
next call to new w111 allocate space beginning at the bOttom of this area, and
then p will be a pOinter to this space. The pointer p Is also placed on a
stack-like list for subsequent use with the release procedure (see below~

11.2.4 The Release ProceclJre
Deallocates all variables in a marked heap area
Parameter List- release{p)

1. p is a variable-reference that refers to a pointer variable. It must be a
pointer that was prevIous} y set with the mark procedUre. The pointer p
must be on the list created by the mark procedure; otherwise an error
occurs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas pOinted to by these pointers are deallocated. In other words,
release(p) deallocates all areas allocated since the the painter p was passed to
the rnaIk procedure.

11.25 The Memavail Ft.IlCtion
Returns the maximum possible amount of available memory.
Remit 7jpe: longlnt

Parameter List- no parameters
Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be available to the program, allowlng for possible
automatic expansion of the program's data segment Note that the result of
memavaU can change over time even If the program dOes not allocate any
heap space, because of activities by the operating system or other processes in
the system.

11-3

Pascal RefeJ'E!l1Ce HI1I7U8l Stenderd Procedllres & Functions

11.3 Trcnfer Ft.rlCtlons
The procedures pack and Lfll8Ck, described by Jensen and Wirth, are not
supported.

11.3.1 The Trmc Ft.rlCtlon
converts a real value to a longlnt value.

Result Type: longlnt

Panmeter LIst- tIUlC{X)

1. x is an expression with a value of type real.

TIU'lC(x) returns a longlnt result that is the value of x rounded to the largest
whOle number that is between 0 and x (inclusive~

113.2 1he RCUld Ft.rlCtlon
Converts a real value to a longlnt value.

ReSlllt Type: longlnt

Pammeter LIst- rCUld{X)

1. x Is an expression with a value of type real.

ROUlC(x) returns a longlnt result that is the value of x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result
is the whOle number with the greatest absolute magnitude.

1133 The ord4 Ft.rlCtlon
Converts an ordinal-type or painter-type value to type longlnl

ReSllll Type: longlnt

Parameter LIst- ord4{x)

1. x is an expression with a value of ordinal-type or pointer-type.

DrdI(x) returns the value of x., converted to type longlnl If x Is of type
longlnt, the result is the same as x.
If x is of pointer-type, the result is the corresponding physical address, of type
longlnl

If x Is of type Integer, the result is the same numerical value represented by x.,
but of type longinl This is useful In arithmetic expressIons. For example,
consider the expression

abc*xyZ

where both abc and xyz are of type Integer. By the rules given in section
3.1.1.2, the result of this multIpllcatIon is of type Integer (16 blts~ If the
mathematical product of abc and xyz cannot be represented In 16 bits, the
result Is the low-order 16 bits. To avoId this, the expression can be written as

ord4(abc)-xyz

11-4

Pascal Reference M8I7tI81 St8l7d8rd Procedures & Functions

This expression causes 32-bit arithmetic to be used, and the result Is a 32-blt
longint value.

If x Is of an ordinal-type other than Integer or longint, the numerical value of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer Fl.IlCtim
converts an Integer or longlnt value to pointer-type.

Result rype: pointer

Parameter List: pointer(x)

1. x Is an expression \tIi th a value of type Integer or lot;glnt.

Polntel{x) returns a pointer value that corresponds to the ph~Q~l address x.
This pointer is of the same type as nil and is assignment-compatible \tIith any
poInter-type.

11.4 Ar1thnetlc Fl.IlCt.lons
In general, any real result returned by an arithmetic function is an approx­
imation. There are two exceptions to this: the result of the abs function Is
exact, and the result of the pwroften function Is exact when the parameter n
is in the range 0 :s n :s 10.

11.4.1 The ()jd FU'lCtion
Tests whether a whole-number value is odd.

Result rype: booleCll

ParE.ll71eter List: odd(x)

1. x Is an expression \tIith a value of type integer or longlnt.

llX(x) returns true if x is Odd; otherwise it yieldS false.

11.4.2 The Pbs FlflCtion
Returns the absolute value of a numeric value.

Result 7)'pe: same as parameter

ParameteI List· cms(x)

1. x Is an expresslon with a value of type real, integer, or longlnl

Abs(x) returns the absolute value of x.

11-5

Pascal ReFerence I'18nU8l

11.4.3 The Sqr FtJlCtloo
Returns the square of a numeric value.

ReSUlt Type: depends on parameter (see below)

Parameter List· sqr(x)

Standard Procethms & FU1Ctions

1. x is an expression with a value of type real, Integer, or longlnt.

SqI(x) returns the square of x. If X Is of type real, the result Is real; If X Is of
type looglnt, the result is Imglnt; and if x is of type integer, the result may be
el ther integer or longint.

If x is of type real and floating-point overflow occurs, the result is +00.

11.4.4 The Sin FtJlCtloo
Returns the sine of a numeric value.

ReSlllt Type: real

Parameter List· s1n(x)
1. x Is an expression with a value of type real, Integer, or longlnt. This

value is assumed to represent an angle in radians.

Sir(x) returns the sine of x. I f x is infinite, a diagnostic NaN is produced and
the invalid operation signal is set (see Appendix D~

11.4.5 The Cos FtJlCtlon
Returns the cosine of a numeric value.

Result Type: real

Parameter List- cos(x)

1. x is an expression with a value of type real, integer, or longinl This
value is assumed to represent an angle in radians.

CO(x) returns the cosine of x. If x is infinite, a diagnostic NaN is produced
and the invalid operation signal Is set (see Appendix D~

11.4.6 The Exp Fl.I1Ctlon
Returns the exponential of a numeric value.
ReSUlt !)pe: real

Parameter LIs't- exp(x)

1. x Is an expression with a value of type real, Integer, or longint. All
possible values are valid.

ExJ(x) returns the value of e x, where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +00.

11-6

Pascel Reference Manuel Standard ProcedlJres & Fl/flCtJons

11.4.7 The Ln FlI'lCtion
Returns the natural logarIthm of a numeric value.
ReSl.llt ljtpe: real

Paratneter List: In(x)

1. x is an expressIon with a value of type real, Integer .. or lorYJinl All
non-negative values are valid; negative values are invaUd.

If x is non-negative .. lr(x) returns the natural logarithm (loge) of x.
If x is negative, a diagnostic NaN Is produced and the Invalid qleratlon signal
is set (see Appendix D~

11.4.8 The Sqrt FlI'lCtion .
Returns the square root of a numeric value.
ReSl.llt l)pe: real

Parameter List- sqrt(x)
1. x is an expression with a value of type real, integer, or longlnl All

non-negative values are Valid; negative values are Invalid.
If x is non-negative, sqrt(x) returns the positive square root of x.
If x Is negative, a diagnostic NaN is prOduced and the Invalid qleratlon signal
is set (see Appendix O~

11.4.9 The Arctal Ft.IlCtion
Returns the arctangent of a numeric value.
Rest/it rype: real

Parameter List- arctan(x)

1. x is an expression with a value of type real, integer, or longlnl All
numeric values are valid, including :tOO.

ArCta'(x) returns the principal value, in radIans, of the arctangent of x.
11.4.10 The Pwmften Ft.IlCtion

Returns a speci fled power of 10.
Result ljtpe: real

Parameter List- pwroften(n)
1. n is an expression with a value of type integer.

If -45 ~ n ~ 38, then pwrofter(n) returns liln. The result is mathematically
exact for 0 ~ n ~ 10. If n ~ -46, the result is 0; if n ~ 39, the result is +00.

11-7

Pascal RefeJ'el7Ce M817t18l St8l?dard ProcecItU'es & FtII1Ctlons

115 DrdlnaJ. Fl.I1Ctlons
11'.5.1 The Old FU'lCtion

Returns the ordInal number of an ordInal-type or poInter-type value.
Rest/It Type: Integer or longlnt
PaI8meter List· ord(x}

1. x Is an expressIon wIth a value of ordInal-type or poInter-type.
If x is of type integer or looglnt, the result is the same as x.
If x is of pointer-type, the result is the corresponding physical address, of type
loogint

If x Is of another ordinal-type, the result Is the ordinal number determined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.
For a parameter of type Char, the result Is the corresponding ASCII cOde. For
a parameter of type booleCll,

ord(false) returns 0
Ord(true} returns 1

11.5.2 The Olr Fl.I1Ctlon
Returns the Char value corresponding to a whole-number value.
Result Type: char (but see beloW)
Parameter List: Chr(x}

1. x is an expression with an Integer or longlnt value.
Chr(x) returns the Char value whOse ordinal number (I.e., its ASCII COde) is X, if
x Is In the range 0_255. If x Is not in the range 0..255, the value returned is
not within the range of the type Char, and any attempt to assIgn It to a
variable of type Char will cause an error.
F or any char value ch, the following is true:

Chr(Ord(ch}} = ch

11.5.3 The SUCC Ft.IlCtion
Returns the successor of a value of ordinal-type.
ReSl./lt Type: same as parameter (but see beloW)
Parameter List· succ(x)

1. x Is an expressIon wIth a value of ordInal-type.
SUC«x) returns the successor of X, If such a value exiSts accordIng to the
inherent ordering of values in the type of x.

11-8

Pascal Reference Manual Standard Pl'OCet:t.I.les & FlI1Cticns

If x is the last value in the type of X, it has no successor. In this case the
value returned is not within the range of the type of X, and any attempt to
assign it to a variable of this type will cause unspecified results.

115.4 TIle Pred FtrlCtion
Returns the predecessor of a value of ordinal-type.

ReSlllt TYpe: same as parameter· (but see belOW)
Parameter List· pred(x)

1. x is an expression with a value of ordinal-type.

Pfe((x) returns the predecessor of X, if such a value exists according to the
inherent ordering of values In the type of x.
If x is the first value in the type of X, it has no predecessor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

11.6 String ProceWres and FlI1Ctions
The string procedures and functions do not accept packed array Of cnar
parameters, and they do not accept indexed string parameters.

11.6.1 The Length Ft.rlCtion
Returns the current length of a value of string-type.

ReSl.llt 7)pe: Integer

Parameter LlsL· lerYJtt(str)

1. str is an expression with a value of string-type.

Lengtt(str) returns the current length of str.

11.62 The Pas FlI1Ction
Searches a string for the fIrst occurrence of a speclfied SUbstring.

Result TYPe: integer

Pammeter List- pos(Slbstr, str)
1. Slt)str is an expression with a value of string-type.

2. str is an expression with a value of strIng-type.

Pos(stJJstr, str) searches for stJJstr withIn str, and returns an integer value that
is the index of the first character of Slbstr within str.

If Sltlstr Is not found, pos(swstr, str) returns zero.

11-9

P8SC8J ReFerence I48ntI8.I Standard Procedures & FU7CUlKlS

11.6.3 The COncat Ft.rntion
Takes a sequence of strings and concatenates them.

Result 7jpe: string-type
Panmeter List: concat(str1 [, str2, ... str n])

• Each parameter is an expression with a value of string-type. My practical
number of parameters may be passed.

COrlcat(str1, _, str n) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number
of characters in the result cannot exceed 255.

11.6.4 The COpy FtflCtion
Returns a substring of specified length, taKen from a specified position within
a string.
Result Type: string-type
Parameter List: copy(source, index, COlIlt)

1. srurce is an expression with a value of string-type.
2. Index is an expression with an Integer value.
3. COUlt is an expression with an Integer value.

Cqly(srurce, index, COUlt) returns a string containing COtI1t characters from
source, beginning at source[lndexl

11.65 The Delete ProceOJre
Deletes a SUbstring of specified length from a specified position within the
value of a string variable.
Parameter List- delete (dest, index, COlI'lt)

1. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

2. Index is an expression with an Integer value.
3. ca.Jlt is an expression with an Integer value.

Delete(dest, Index, COU'lt) removes COlIlt characters from the value of dest,
beginning at dest{lroexl

11.6.6 The Insert Procedlre
Inserts a substring into the value of a string variable, at a specified position.
Parameter List- insert (source, dest, index)

1. srurce Is an expression with a value of string-type.
2. dest is a variable-reference that refers to a variable of string-type. This

Is a variable parameter.
3. Index Is an expression with an Integer value.

11-10

Pascal Reference Mantlal Standard Procedures & Functions

Insert(source, dest, Index) inserts source into deSt The first character of
source becomes dest(lndex}

11.7 Byte-Orlented PI'oceOOres cnj Fl.IlCtioos
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

I'I1TE

The slzeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes in a variable.

These procedures do no type-checkIng on their source or deSt actual­
parameters. However, since these are variable parameters they cannot be
indexed if they are packed or if they are of string-type. If an unpacked
"byte array" Is desired, then a variable of the type

array [lo .. hi] Of -128 .. 127

should be used for source or deSt The elements in an array of thIs type are
stored in contiguous bytes, and, since it is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IrvPLErvENT A n(t..l I'IJTE

Currently, an array with elements of the type 0..255 or the type char
has Its elements stored in words, not bytes.

11.7.1 The Moveleft Procetilre
Copies a spec I fled number of contiguous bytes from a SOl/rce range to a
destination range (starting at the lowest address~

Parameter List- lIDVeleft(source, dest, COCIlt)

1. source is a variable-reference that refers to a variable of any type
except a file-type or a structured-type that contains a file-type. This is
a variable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. dest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a file-type. This Is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. COUlt is an expression with an integer value. The source range and the
destination range are each COtIlt bytes long.

Moveleft(source, dest, COUlt) copies cot.rlt bytes from the source range to the
destination range.

11-11

Pascal Reference Manual standard Procedllres & FunctIons

I'1oVeleft starts from the "left" end of the source range (lowest address~ It
proceeds to the "right" (higher addresses), copying bytes into the destination
range, starting at the lowest address of the destination range.

The COlflt parameter Is not range-cheeked.

11.7.2 The Moveriglt ProcedUre
Moveriglt is exactly like moveleft (see above), except that It starts from the
"rIght" end of the source range (highest address~ It proceeds to the "left"
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveri~t is that the source and
destination ranges may overlap. If they overlap, the order in Which bytes are
moved is critical: each byte must be moved before it gets overwritten by
another 'byte.

11.7.3 The Sizeof FLIlCtion
Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.

Result TYpe: Integer

Parameter List- sizeof(id)

1. id is either a variable-identifier or a type-Identifier. It must not refer to
a file-type or a structured-type that contains a file-type, or to a
variable of such a type.

Sizeof(ld) returns the number of bytes occupied by Id, if id Is a variable­
IdentifIer; if ld is a type-identifier, it returns the number of bytes occupied by
any variable of type iet

11.8 Packed Array Of am ProceWres and FtxlCtions

~

These routines operate only on packed arrays Of Char. The packed
arrays Of Char cannot be subscrIpted; the operations always begin at the
first character In a packed array Of char.

11.8.1 1he Sccmq FlIlCtion
Searches a packed array Of char for the first occurrence of a specified
character.

Result Type: integer

Parameter List: sccreq(I1mi t, ch, paoc)

1. Ilmlt is an expression wIth a value of type integer or longint It is
truncated to 16 bits, and Is not range-checked.

2. ch Is an expression with a value of type char_

11-12

Pascal Reference l'1anUaJ Stand8n1 ProcedUres & FU1CtJons

3. paoc is an expression with a value of type packed array of Char. This is
a variable parameter.

Sca1eql1mlt, ch, pace) scans pace, looking for the first occurrence of ch. The
scan begins with the first character in pace. If the c~racter Is not found
within llmlt characters from the beginning of pace, the value returned is equal
to llmll Otherwise, the value returned Is the number of characters scanned
before ch was found.

11.8.2 The Sccrne FlI'lCtlon
This function is exactly like sccr.eq, except that it searches for a character
that does not match the ch parameter.

11.8.3 The FlllChar ProceWre
Fills a specified number of characters in a packed array of char with a
specIfied character.
Parameter Ljst· fillchar(J8)C, COlI'lt, ch)

1. paoc Is an expression with a value of type pcd<ed array of Char. This Is
a variable parameter.

2. oo.nt is an expression with a value of type Integer or longlnl It is
truncated to 16 bits, and is not range-Checked.

3. ch Is an expression with a value of type char.

Fl11ChaI{paoc, COlIlt, ch) writes the value of ch into COt.Ilt contiguous bytes of
memory, starting at the first byte of paoc.
Since the COlJ1t parameter Is not range-checked, it is pOSSible to write into
memory outside of paoc, with unspecifIed results.

11-13

Chapter 12
The Compiler

12.1 Con1>iler Cofmlarlds .•...••.••..•••...•.•••...•.•..•..........•...•••.•.•••....•••...•...•• 12-1

12.2 conct.ltional ~latlon ..•.....•....•.....•.•..•.....•.........•......••...•...•.•....... 12-3

12.2.1 Complle-TIme VarIables and the $OECL Command 12-3
12.2.2 The $SETC Command .. 12-4
12.2.3 Complle-TIme ExpressIons ... 12-4
12.2.4 The $lFC" $ELSEC" and $ENDC Commands 12-4

12.3 (l>timlzation of If-StaterTlents .. 12-5

12.4 (l>timization of Whlle-Statements cn1 Repeat-Statements 12-7

12.5 E fflclency of case-staternerlts ... 12-7

The Compiler

The Pascal compller translates Pascal source text to an intermediate code, and
the code generator translates the intermediate code to MC68000 object code.
Instructions for operating the compller and code generator are gIven In the
workshop user's Guide for UJe lisa

12.1 ~l1er COmaos
A compUer command is a text construction, embedded in source text, that
controls complIer operatlon. Every compHer command is written within
comment delimiters, { ... } or (* ... *~ Every compller command begins with the $
Character, which must be the first character Inside the comment dellmlters.
In this manual, compiler commands are shOwn in upper case to help distlnguish
them from Pascal program text; however, upper and lower case are inter­
Changeable in compiler commands just as they are in Pascal program text.
The following compUer commands are avaUable:
INPUT FILE ceNTRa.

SI fl1encJE Start taKing source code from fUe fUerane. When the end
of this fUe is reached, revert to the previous source flle.
I f the fllename begIns wIth + or -, there must be a space
between $1 and the fllename (the space Is not necessary
OtherwlSe~

SU fl1erae Search the fUe filename for any units subsequently
spec1fied in the uses-clause. Does not apply to intrinsic­
units.

emTRa. CF eWE GENERA TIOV

$C+ or $C- Tum code generatlon on (+) or off (-). This is done on a
procedure-by-procedUre basis. These commands shOuld be
written between procedures; results are unspecifIed If they
are wrItten Inside procedures. Tne default Is $C+.

$OV+ or tcN- Tum integer overflow CheCKing on (+) or off (-~ OVerflow
cnecKIng Is done after all Integer add, subtract, 16-bl t
mult1ply, divide, negate, abS, and 16-bit square operat1ons,
and after 32 to 16 blt conversIons. The default Is SUV-.

SR+ or SR- Tum range cnecKlng on (+) or off (-~ At present, range
checKing is done In assignment statements and array
indexes and for string value parameters. No range
checKing Is done for type loog1nt The default Is SR+.

12-1

Pascal Reference Manual Tfle Compiler

SS segane Start puttIng cOde modUles Into segment segane. The
defaul t segment name is a string of blanks to designate the
"blank segment," In wnIcn the main program and all buIlt-In
support code are always linked. All other cOde can be
placed Into any segment

$X+ or $X- Tum automatic run-time stack expansion on (+) or off (-~
The default Is $X +.

~

compUer directives that affect COde generation take effect when the
end of the Pascal statement in which they are embedded is reached. If
the same directive is specified more than once in a statement, the last
setting is used. A tricky case of this is:

begin
j := foo;
{SR-}
1 := 1*2
{SR+}

end

Since the second assignment does not end with a semicolon, and
actually ends when the end is encountered, range checking will not be
turned off for that statement.

$0+ or $0- Tum the generation of procedure names In Object code on
(+) or off (-~ These commands should be wrItten between
procedures; results are unspecIfIed If they are wrItten
inside procedures. The default Is $[)+.

ctJ\C/ITICNAL et:JVPILATICN

SOCCl lIst
$ELSEC

$E1tlC

SIFe
SSETC

(see Section 12.2 below~

(see Section 12.2 below~
(see section 12.2 tJelOW~

(see section 12.2 below~

(see Section 12.2 below~

12-2

Pascal Reference tvlant.Jal Tfle compiler

LISTING COVTRa

Sf filenane Start making a l1stlng of compller errors as they are
encountered. Analogous to $L fUerane (see beIOW~ The
default Is no error llstlng.

$L filenane Start llstlng the oompilatlon on fUe fllename. If a llstlng
Is being made already, that fUe Is closed and saved prior to
opening the new file. The default Is no listlng. If the
fllename begins with + or -, there must be a space between
$L and the fllename (the spaoe Is not necessary otherwlse~

Sl.. ... or SL - The first + or - following the SL turns the source listing on
(+) or off (-) without Changing the list fHe. You must
specify the listing file before using SL +. The default Is
$L +, but no l1stlng Is produced If no llstlng fUe has been
specified.

122 cm:nUonaI COI'lllllatloo
Conditional compllatlon Is controlled by the $lFC, $ELSEC, and $E1'oI:X)
commandS, which are used to bracKet sections of source text. Whether a
particular bracKeted section of a program is compUed depends on the boolean
value of a compjJe-time express/on, whIch can contain compile-time var/alJles.

12.2.1 COI'llllle-Time variables ald the SOECL Conmand
CompUe-tlme variables are completely independent of program variables; even
if a compUe-time variable and a program variable have the same identifier,
they can never be confused by the compUer.
A complle-tlme variable Is declared when it appears 1n the 1dentif1er-llst of a
$(ECL command.
Example of compile-time variable declaration:

{nil.. LIBVERSI~I PROOVERSI~}

This declares LIBVERSICN and PROOVERSICN as compile-time variables.
Notice that no types are specified.
Note the fOllowing points abOUt complle-time varIables:

• compUe-time variables have no types, although their values do. The only
possible types are integer and boolecn

• All complle-tlme varIables should be declared before the end of the
variable-declaration-part of the main program. In other words a $[)ECL
command that declares a new compl1e-tlme variable must precede the
main program's procedure and function declarations (if any~ The new
complle-tlme variable Is then Known throughout the remainder of the
compilation.

• At any point in the program, a compile-time variable can have a new
value asslgned to it by a $SETC command.

12-3

Pascal Reference Manual TIJe compIler

12.2.2 llle SSETC com,a KJ
The $SETC command has the form

{$SETC 10 := EXPR}

01'

{$SETC 10 = EXPR}

where ID is the identifier of a compile-time variable and EXPR is a compile­
time expression. EXPR Is evaluated Immediately. The value of EXPR Is
assigned to ID.

Example of assIgnment to compIle-time varl8lJle:

{SSETe l1BVERS1lW := 5}

This assigns the value 5 to the comp1le-time variable LIBVERSI(N.

12.23 compUe-Time Expressions
complIe-tlme expressions appear In the SSETC command and In the SIFC
command. A compHe-time expression Is evaluated by the compHer as soon as
1 t Is encountered In the text
The only operandS alloWed In a complle-time expreSSion are:

• Complle-time variables
• Constants of the types Integer and bOOlecn (These are also the only

pOSSible types for results of complle-time expressions.)
All Pascal operators are allowed except as follows:

• The In operator Is not allOWed.
• The .. operator Is not allowed.
• The I operator is automatically replaced by dlv.

12.2.4 The $IFC, $ELSEC, em seve COITmaI m
The SELSEC and SENJC commands take no arguments. The SIFC command has
the form

{$1fC E)(PR}

where EXPR Is a complle-tlme expressIon wIth a Dooleal value.
These three commands form constructions similar to the Pascal if-statement,
except tnat the $E1\fJC command Is always needed at the end of the $IFC
construction. ELSEC Is optional~

12-4

Pascal Reference Manual

E.xatnple of conditionally compiled COde:

{$IFC PRlXiVERSI~ >= LIBVERSI~}
k := kvall(data+indat);

{SELSEC}
k := kva12(data+cpl00at");

{$EN)C}
.rlteln(k)

The compfJer

If the value of PROOVERSI(N Is greater than or equal to the value of
LIBVERSI(N, then the statement k:-kvall(data+lndat) Is compUed, and the
statement k:-kval2(data+epindat") Is SKIpped.
But if the value of PROOVERSI(N Is less than the value of LIBVERSI(N, then
the first statement is skipped and the second statement is complled.
In either case, the wrttelr(k) statement Is complIed because the conditional
construction ends with the $ENJC command.
$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matchIng SENJe.
When the compiler is skipping, all commands in the SKipped text are ignored
except the fOllowing:

SELSEC
SENlC
$IFC (so that $ENJC's can be matched properly)

All program text is ignored during skipping. If a listing is prodUced, each
source line that Is SKipped is marKed wIth the letter S as its "lex level."

12.3 qltlmlzaUon of If-Statements
When the compHer finds an if-statement controlled by a boolecJ1 constant, it
may be unnecessary to compUe the then part or the else part. For example,
given the declarations

canst al.ays = true;
never = false;

then the statement
if never then statement

will not be compiled at all. In the statement
if never then statementl

else statement2
"statementl" Is not compiled; only "statement2" is complIed.

12-5

Pascal Reference Manual Tile CompHer

Slmllarly" In the statement
if always then statement!

else statement2

only "statementl" Is complled.
The interaction between this optimization and conditional compilation can be
seen from the following program:

progran Foo;
{$SETC FLAG : = FALSE}

const pi = 3.1415926;
size = 512;

{$IFC FLAG}
debug = false; {a booleal constant" if FlAG=true}

{SENlC}

var i, j, k, 1, In, n: integer;
{$IFC NJT FLAG}

debug: boOlea1; {a booleal variable, if FLAG=false}
{SENlC}

{$IFC NJT FLAG}
procewre WlatnlX1e;

begin
{interactive proceclJre to set global boolean variable, debug}

end;
{$B«)C}

begin {main}
{$IFC NJT FLAG}

IhatnDde;
{$EN)C}

if debug then begin
staterrentl

end

end.

else begin
statenent2

end

The way this is compiled depends on the compile-time variable FLAG. If
FLAG is false" then debug is a boolean vadable and the Whatmode procedure
is compiled and called at the beginning of the main program. The If t1etJUg

12-6

Pascal Reference Manual The Compjler

statement is controlled by a ooolem variable and all of It is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debUg is a constant with
the value false, and Whatmode is neither compiled nor called. The if debUg
statement is controlled by a constant, so only its else part, "statement2", is
compiled.

12.4 q>timlzatlon of WIllIe-statements and Repeat-Statements
A while-statement or repeat-statement contJ"olled by a boolea1 constant does
not generate any conditional branches.

12.5 Efficiency of Gase-Statements
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

Appendixes

A Comparison to Apple II and Apple III Pascal ____________ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A-1

B Known Anomalies in the Compiler _______ . ________________ . ______ . _ _ _ _ _ _ _ _ _ B-1

C ~8X of the LfIII'lgU8ge . _______ . ___________ . ___ . ___ . ________ . ________________ C-1

D Floating-Point Arithmetic ___ 0-1

E Qui.ckIJraw ___________________ . _______________________________ . _________________ E-1
F Hardware Interface _____________ . _______________________________ . _ _ _ _ _ _ _ _ _ _ _ _ _ F-1

G Lisa Extended Character Set ______________________________ . _________________ G-1

H Error Messages ______ . ___ ~ ___________________________________ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ H-1

I Peseal Workshop Files ______________________________________ . ___________ . ______ 1-1

J Listing Formats ___ . _________________ J-1

Appendix A
Comparison to Apple II

and Apple III Pascal

A_l Extensions __ A-l

A_2 Deletions ____________________________________ . ________________________________ A-l

A_3 Other Differences _ A-3

AA Predefined Identifiers _ A-4

Comparison to Apple II
and Apple III Pascal

This appendix cont.ains lists of the major differences between the Pascal
language on t.he Lisa amf t.he Pascal implemented on the Apple II and Apple
III. Please not.e that tt"lese lists are not exl1austive.

A_1 Extensions
The following features have been added on the Lisa:

• i) Operator-returns the pointer to its operand (see Section 5_1.6)_

• Heapresult, pointer, and ord4 functions (see Sections 11-22" 11.33, and
11.3-4)_

• Keypress function built into tt-Ie language, with same effect as the
keypress function in the applestuff unit of Apple II and Apple III Pascal
(see Section 10.3-1.1).

• Hexadecimal constants (see Section 1-4)_

• otherwise-clause in c:ase-s:t.atement (same as Apple III Pascal.; see
Section 6222)_

• Global goto-statement (see Section 6.1.3)_

• A file 01 char t.ype that is distinct from the text type (see Sections
3_2-4 and 103)_

• l'-Jumerous compiler commands (see Section 12_1).

• Procedural and functional parameters (see Sections 733 and 73-4)_

• Stronger type-checking (see Sections 3-4 and 73.5)_

A_2 Deletions
The following features are not included on the Lisa:

• TtDtlegraphics, applest.uff, and other standard units of Apple II and
Apple III PascaL

• Interactive type (not needed, as the 1/0 procedures will do the right
thing ""/ith a file of type text if it is opened on a character device)_

• Keyboard file--same effect can be obtained by opening a file of type
text on the device -KEYBOARD (see Section 10.3).

• IJnit (device-oriented) I/O procedures.

A-1

Coraperisol7 to Apple II & III PBs·cal

• Recognition of the ETX chaJacter (control-C) to mean "end of file" in
input from a character device.

• "Long int.eger" (fata tvpe, with length attribute in declaration. Replaced
by the longint t.ype (see Section 3.1.1.2).

• "Initializat.ion" code in a unit (see Sect.ion 9).

• Tt"re ability to creat.e new intrinsic-units and install tt"rem in the system
(see Section 9).

• Reset procedure without an ext.ernal file t.itle, for use on a file t.hat is
already open (see Section 10.1.1). To obtain the same effect, close the
file and reopen it.

• Treesearch.

• Bytestream" wtl"dstream (data types in Apple III Pascal).

• Exit(program)-The exit(identifier) form works .. and the identifier can be
the program-identifier. Halt can also be used for orderly exit from a
prograrn (see Section 11.1).

• Extended comparisons (see Sect.ion 5.1.5).

• Scan funct.ion. Replaced by scaneq and scanne (see Sect.ion 11.8).

• Bit-wise boolean operations.

• Segment. keyword for procedures and functions. Use the $S command
instead (see Sect.ion 12.1).

• The following compiler commands (see Section 12.1):

• $1+ and $1- (no automat.ic 110 cl1ec~jng; program must use ioresult
function).

• $G ($G+ is the assumption on the Lisa).

• $N and $R (for resident code segments) .

• SQ.

• $S+ and $S++ for swapping.

• SU+ and $U- (for User Program).

• $V.

In general" do not assume that a compiler command used in Apple II or
Apple III Pascal is valid on the Lisa. Furthermore .. do not assume that an
Apple II or Apple III Pascal compiler command is "harmless" on the Lisa .. as
it may be implemented with a different meaning.

A-2

Pss'C"81 ./;teterence 1~1BnuBJ Comperison to I1ppJe II & III PascBl

A.3 other Differences
The folloth'ing features of Pascal on the Lisa are different from the
conesponding features of Apple II and Apple III Pascal:

• Size of all strings must be explicitly declared (see Section 3.1.1.6).

• MJd and div--Pascal on the Lisa truncates toward 0 (see Section 5.1.2).

• Apple II and Apple III Pascal ignore underscores; Pascal on the Lisa
does not. They are legal characters in identifiers (see Section 1.2).

• A goto-statement cannot. refer t.o a case-const.ant in Pascal on the Lisa
(see Section 6.1.3).

• A program must begin with the word program in Pascal on the Lisa (see
Chapter 8).

• Trunc is different (see Section 11.3.1).

• Ykite(b) where b is a boolean will write either ' TRUE' or 'F ALSE' in
Pascal on the Lisa (see Section 10.3.3).

• Whether a file is a textfile does not depend on whether its name ends
with ".TEXT" when it is created. Instead, any external file opened with
a file variable of type text is treated as a textfile, while a file opened
with a file veriable of t.~/pe rile of char is not; it is treated as a
"datafile/, i.e. a straight file of records which are of type char (see
Sections 3.2.4 and 10.2).

• Get~ put.. and the content.s of the file buffer variable are not supported
on files of t'ype text. Use only the text-oriented I/O procedures with
textfiles.

• Eoln and ed functions on files of type text work as they do on
interactive files in Apple II and Apple III Pascal.

• Pascal on the Lisa does not let you pass an element of a packed
variable as a variable perameter (see Sections 7.3.2 .. 11.7 .. and 11.8).

• Limits on sets are different (see Section 3.2.3).

• The control variable of a for-statement. must tIe a local variable (see
Section 6.2.3.3).

• In a write or writeln call, the default field lengths for integer and real
values are 8 and 12 respectively (see Section 10.3.3).

AA Predefined Identifiers
The predefined identifiers listed in Table A-l are built into the Pascal
Compiler for each machine .. as indicated. If you declare or define these
names in your program, no Compiler error will result, but. you will lose the
capacity of the corresponding built-in .. or predefined .. entity. The list does
not include identifiers in special library units, such as those in t.he
QuickDraw graphics unit.

A-3

Pas-cal Reference f>."anu81 Comp8J'ison to AppJe 11 & III Pascal

Table A-l

Predefined Identifiers
in the Usa Pascal Compiler

Identifier ~ Lisa ADDle III AggIe] [

ASS Generic function Yes Yes Yes

BLOCKREAD Integer function Yes Yes Yes

BLOCK ItJRITE Integer function Yes Yes Yes

BOOLEAN Type Yes Yes Yes

BYTESTREAM Type No Yes No

CHAR Type Yes Yes Yes

CHR Character function Yes Yes Yes

CLOSE Procedure Yes Yes Yes

CONCAT String function Yes Yes Yes

COPY String function Yes Yes Yes

DELETE Procedure Yes Yes Yes

EOF Boolean function Yes Yes Yes

EOLN Boolean function Yes Yes "les

EXIT Procedure Different Yes Yes

EXP Real function Yes Yes Yes

FALSE Constant Yes Yes Yes

FILLCHAR Procedure Diffel"ent Yes "(es

GET Procedure Yes Yes Yes

GOTOX.Y Procedure Y·es Yes Yes

HALT Procedure Yes Yes Yes

HEAPRESUL T Integer function Yes No No

IDSEARCH Procedure 1'.Jo Yes Yes

INCLASS Boolean function Yes No No

IN PI...J T File Yes Yes Yes

INSERT Procedure Yes Yes Yes

INTEGER Type 'T'es Yes Yes

INTERACTIVE Type Yes Yes Yes

A-4

Pascsl Reference f>.1anual Comp8Iison to Apple II & III Pascal

ldEriitier ~ Lisa ADDle III ADDle] [

IORESULT Integer function Yes Yes Yes

KEYBOARD File Device Yes Yes

KEYPRESS Boolean funct.ion In library Yes Yes

LENGTH Integer function Yes Yes Yes

LN Real function Yes Yes Yes

LOG Real function No Yes Yes

LONGINT Type Yes No No

f'.r1ARK Procedure Different Yes Yes

MAXINT Constant Yes Yes Yes

MEMAVAIL Integer function Different Yes Yes

MOVELEFT Procedure Different Yes Yes

MOVERIGHT Procedure Different Yes Yes

NEW Procedure Different Yes Yes

ODD Boolean funct.ion Yes Yes Yes

ORO Integer function Yes Yes Yes

ORD4 Integer function Yes No No
OUTPUT File Yes Yes Yes

PAGE Procedure Yes Yes Yes

POINTER Pointer function Yes No No

PQS Integer function Yes Yes Yes

PRED Integer function Yes Yes Yes

PUT Procedure Ves Yes Yes

PWROFTEN Real function Yes Yes Yes

READ Procedure Yes Yes Yes

READLN Procedure Yes Yes Yes

REAL Type Yes Yes: Yes

RELEASE Procedure Different Yes Yes

RESET Procedure Different Yes Yes

REWRITE Procedure Yes Yes Yes

ROUND Integer function Yes Yes Yes

A-5

PasCa] Reference f>.'I8nIlBl Comperison to f/ppJe II & III Pasc81

Identifier ~ Lisa ADDle III AggIe] [

SCAN Integer function No Yes Yes

SCANEQ Integer function Yes No No

SCANNE Integer function Yes No No

SEEK Procedure Yes Yes Yes

SIZEOF Integer function Yes Yes Yes

SQR Generic funct.ion Yes Yes Yes

SQRT Real function Yes Yes Yes

STR String function No Yes Yes

STRING Type function Length req Yes Yes

SUCC Integer function Yes Yes Yes

TEXT Type function Different Yes Yes

THISCLASS Pointer function Yes No No

TREESE ARCH Integer function No Yes Yes

TRUE Constant. Yes Yes Yes

TRUNC Integer function Yes Yes Yes

UNITBUSY Boolean function t,.Jo Yes Yes

UNITCLEAR Procedure No Yes Yes

UNITREAD Procedure No Yes Yes

UNITSTAnJS Procedure No Yes No

UNIT~""AIT Procedure No Yes Yes

UNITWRITE Procedure No Yes Yes

'IT'ORDSTRE AM Type No Yes: No

y-/IRITE Procedure Yes Yes Yes

'IT'RITELN Procedure Yes Yes Yes

A-6

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the compiler.

8.1 Scope of Declared Consta1ts
Consider the following program:

prognw C~l;
cmst ten=10;
proceWre p;

coost ten=ten; {naS SIO.U) BE AN ERRm}
begin

writeln(ten)
em;

begin
P

end.

The constant declaration in procedure p should cause a compiler error, because
It is illegal to use an identifier Within its own declaration (except for pointer
identifiers~ However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
teI\ and the writeln statement writes "10".

A more serious anomaly of the same kind is illustrated by the following
program:

program csc0pe2;
coost red=l; violet=2;

proceWre q;
type arrayT~=array[red •• violet] of integer;

color=(violet, blue, green, yellow, onn:l8, red);
var arrayVar:arrayType; c:color;
begin

arrayVar[1]: =1;
c:=red;
writeln(ord(c»

end;

begin
q

em.

B-1

PasceJ Reference MBnueJ Conpiler Anomalies

Within the procedure q, the glObal constants red and violet are used to define
m array index type; the effect of arra){red..vlolet] Is equivalent to arra){L2}
In the declaration of the type color .. the constmts red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
constmts of type color with ordinalitles 5 and 0 respectively. The writeln
statement writes ""5".

The use of red in the declaration of the type color should cause a compiler
error but does not.
Consider the statement

arrayVar[1] : =1;
If this statement is replaced by

arrayVar[red]:=1;
a compiler error will result, as red is now an illegal index value for arrayVar
--even though arrayYar is of type arrayType and arrayType is defined by
8IJ8){red...violetJ
To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumerated scalar types.

B.2 ~ of Base-Types for Pointers
Consider the following program:

progr8III pscopel;

type s=O .. 7;
proceciIre ~ecurrent;

type sptr= S;
s=record

ch:char;
bool: boolean

end;
var current: s;

ptrs:sptr;
begin

ne.(~trs);
ptrs A : =current

end;

begin
Ekecurrent

end.

Here we have a global type s, which is a subrange of integer; we also have a
local type I, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that
this should refer to the local type 8, defined on the next line of the program;
unfortunately, however, the compiler does not yet know about the local type s

8-2

Pascal Reference M8I7f.J81 Conpiler Anomalies

and uses the global type s. ThUs pm beCOmeS a poInter to a variable of type
0..7 instead of a pointer to a record. Consequently the statement

ptrs" : = current

causes a compIler error since pm" and rurrent are of incompatible types.

To avoid this kiro of situation, re-declare the type s locally before declaring
the pointer-type sptr based on So Alternately, avoId re-declaration of
identifiers that are used as base-types for pointer-types.

B-3

Appendix C
Syntax of the Language

C.l ToI<erlS 8ld CorlStarlts ••• C-l

C.2 Blocks ••......•......•.........••.•...•......•.••••••...•...•.•....................••••••..•.•.•.. C-II.

C3 [)ata Types •••••••••••••••••.•••••••••••.••• C-5

C.4 Vsriallies ...•..••••...•..•.•..••.•...•...•.•••.......•••••.......•••••...•...•••..•••...•••.•.••• C-9

c.s EXJlressiOl1S ••• C-IO

C.6 staternerrt.s ••• C-12

C.7 ProceOJres and Ft.IlCtions•...................................•......... C-1S

C.8 ~ .. C-16

C.9 Ulits ... C-17

Syntax of the Language

This appendix collects the syntax diagrams found in the main sections of this
manual. see the Preface for an introctlction to syntax diagrcms.

e.l TOkens cro coostants (see ~ter 1)

digH I I ~---... ® thmt¢ ® J..---...

IJex-diQit ~ •

~ @ thr0ug/7 ® ~
idenafier

d/Qit-setpenee :~ ()

hex-d.iqit-sgpence (:1 hex-digit I) •

C-l

Pascal Reference ,..,1arUal

ll1Slgned-reaJ

digit-sequence digit-sequence J..........-------...,..~

"----------~ scale-factor

- - - digit-sequence .. scaJe-lacto.r QPE I I
e ~

{/ns~ l(j-nllmlJer
--""------~-... unsigned-integer

unsigned-real t---...lIo.-_-.......

siqned-numlJer _I unsIgned-number I -
\@J

tpJted-slJing-cmstBf1t

~~--------------~-(}+
(--1 string-charaCter i4J

C-2

Synta.J('

~s!:!tI..~in:.:t.'fl--..:::Q:..::'/7a.='lC1i..=.:'C:..:te..:.:r_~l __ "~1 ooy chBr except 0 arCR I J
~'-----.()--t{)

QllOt.ecl-clJaract.e)"-Cl.1nstant .. c::>-+I string-character ~c::>-+

constant-declaI8lion .. I Identifier t---+0--.f constant ~

.!:.c,~'On.~:s~ta.~'f7!.!:.t_oc---_""-___ ---r-ill1 constant -identi fier

C-3

Pascal Reference I'1a7IJal

C.2 BlOCks (see ~ter 2)

1J1ock
~~~-.. label-declaration-part 

constant-declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-function-declaraUon-part 

statement-part r-------------. 

lalJel-deClaration-part 

.~ ~I----~.Q""'-------. 

label _I dIgit-sequence I -

cmstant-declarallm-part 

~ ( ... "-1 c-o-n-stan-t--dec-la-r-aU-·on----, ) 

type-declaradon-part 

~ (.1 type-declaration I ) 
• 

C-4 

syntax 



Synta'J( 

variable-declaration-part 

( 4"1 variable-declaration I ) 

p.rocedt.lre-and-flInction-declaration-part 

--___ ~-.t procedure-declaration 

function-deClaration 

slBtement-{J8!t .1 compound-statement I • 

C.3 Data Types (see Chapter 3) 

tf1}e-deCJ8J'stim .1 identifier 

pointer-type J---~ ____ 

real-type ., real-type-identlfler I • 

C-5 



Pascal Reference /V1a!XJal Syntax 

ontinaJ-t suorange-type 

enumerated-type 

ordinal-type-identifier 

~S.~'/ze:E......!-8~t:..!::!tr..~1a:::!::'lI:..::.:te=--_.~1 unsigned-integer I 

enumerated-type .<I>--+I identifier-list ~ 

identifier-jist 

sulJranqe-type .1 constant ~ constant ~ 

C-6 



Pascal Reference ""1I!n.IaJ 

slnlctuJ-ed-t 

structured-type-identifier 

a.r.ray-type 

jndex-trpe .. I ordinal-type r---. 

.recant-trpe 

fjeld-list 

.( remrd) 1. ~ .@-+ 
~ field-list t--' 

T ·"---1 fixe-d-pa---'rt f ~,.. ~ I:.r 
l ~ variant-part ~ ~ 

fixed-part 
( .1 field-declaration 1-1 -):------... 

-.----~G)~.~---. 

..;.1'J.=~;;;..:~d;...~=;;;..:~m;;;;:..lJ=.;ti4;;;;.:m~_e>t .. 1 identifier-list ~ 

C-7 

syntax 



Pascal Reference Manual syntax 

varJant-part 

-§~ K)J~ltag-field-lype~ 
identifier : ; 

tag-field-type .1 ordinal-type-identlfier ~ 

variant 

~'---cons-~t h-().(()'\,. . If .<D-+ 
- ~) '-/ ~ ~ fleld-llst r" , 

set-type .~ ordinal-type ~ 

file-type ~ • 

.&:.pa=tf,.:..:..'nil=e.=-'r-...:.typeu::::.:. ___ ~ .. C)--.f base-type I 
~ polnter-type-ldentlfier ~ 

IJa..re-trpe ~ type-IdentifIer ~ 

C-8 



Pascal Reference Hanual syntax 

C.4 Yarlcmles (see Chapter 4) 

VarJable-deCI8I8tJon., identifier-list ~ type ~ 

vari8ble-reference 

---.J varlable-ldentl fIer q ~lfIer j:fJ 
.. 

vari8ble-idenlifier .. , identifier ~ 

index "CDJ---"(~"I expression 1-1 --) ..... cv--. 
---~O~------' 

f1eld-desiqnator "'o---11dentlfler ~ 

pOinter-Object-Symbol .. O ... 

C-9 



Pascal Reference Manual 

C.5 E>epressims (see Chapter 5) 

Llnsi rned-constant 

_fc..:;;.;.'8C;;;...;t..:;;.;.o.;;;...;'T __ ~_...:--___ .,.-e./ variable-reference 1----...... 

l.em 

C-I0 

Syntax 



Pascal Reference Manual 

expression 

simple-expression ~~-------------......-"" 
J--'""7""""-.t simple-expression 

flnel1m-Call 

---..j function-identifier 

actual-parameter-list 

aqtuaJ-{li![JjlfTlfJler-llst "CD--c:' acWal-par ... am~ete_r _,_) "CD--
-----to 

actual- 'ammeter expression 

procedure-identifier 

function-identi fier 

set-constructor .(1) .(1)-+ 

,=?~_m_em--fber-.. gr_oup_s=r~ 
o 

C-ll 

syntax 



Pascal Reference Manual 

.. I expression 1 \::0::1 ~ 
_ expression 

C.6 statements (see ~ter 6) 

simple-statement 1-----,.-' 

18bel ., digit-sequence 11--___.. 

s1 'ie-statement assigrment-statement 

goto-statement ~-----.;---. 

assJpnent-statenJefJt 

---.----- variable-reference 

function-irenti fier i----..-l ....... expressIon 

pJVCI::?t.Vre-statenJefJt 

---+I procedure-identifier ~;--ac-tu-a-l--p-a-rame--te-r---u-st-~ .. 

(]O/.o-.ftEtement .@---+Ilabel r-+ 

C-12 

Syntax 



Pascal Refell!f1{)e fvfantJaJ syntax 

~s~tru~'Ct~u~rred~-s:::!t~'8!:!:ta:!.!.me..=:..:.'n.:..t _~~ compound-statement 

carol tlonal-statement 

wi th-statement 

compOtlflCl-statement 

---.c begin ) (~I statement I ) ~~ 
"--. ---to"'--

jF-statement 

case-statement 

otherwise-clause 

..::::ca.=~=------::(_~"I constant ~I -) ---. .. ()-+I statement/ J--- ... 

------!o---
~o:!!the_=_~::.:'.l:.:;;~::.... -..;;;cJ.='Bt.;;.;;.;ISe __ ~ .. Q-t{ Otherwise:>-+l statement 

C-13 



Pascal Reference fvla'1l.laJ 

rSJ IStitivB-statement 

J-ept?at-Sf.8f.etnent 

wtllle-statement 

for-statement 

-----+( repeat ~ statement ~ expression ~ 
..... ----t:O ........ -----

wnjle-statement 

~ expression ~ statement ~ 

rO[-sf.al.ement 

control-variable initial-value 

}------:~ final-value 

contJl.1/-variab/e .. I variable-identi fier r---. 
jnjtja}-valllB ·1 expression r---. 
nnal-valve ~I expression r-. 
wHh-statement 

C-14 

Syntax 



Pasca/ ReFerence I'1arKIal 

C.l ProceWres CIld Ft.rnUoos (see ~ter 7) 

PR7CI:?I.1.Jre-llt:?t.":iaJ"9tkn 

---+I procedure-heading ~ procedure-body ~ 

p~ 8::8 ..... -... ·---... 
PR1t.":et.1i:O"t:?-IJeBltfllg 

--C proceIiJre H identifier I " or • 
'-*l formal-parameter-llst t-'" 

function-declaretjon 

---+I function-heading ~ function-body ~ 

funclion-bodr 

result-type 

formal-parameter-list 

result-t e ordlnal-type-ldentlf1er 

real-type-identifier t----'I 

pointer-type-identifier I-----A.. __ ~. 

C-15 

syntax 



Pascal Refemnce I'-1inJaJ syntaX' 

/,omJ8l-pa.rameter-)ist 
--------------~ 

~__....__6I parameter-OOClaratlon 

..c:=~.:;,,;;:;;::.....::;;==:::..::.:=;..;-.. ldentifler-Ilst type-IdentifIer 

C.8 Progrcms (see Chapter 8) 

prog.rarn 

--I program-heOOing HJ -q K)7 .~ 
uses-clause ; 

pJvgram-lJeadlng 

-(progrcm )-.tr--l-ae-nU-f-le--'r I L ~ r II-

~ program-parameters ~ 

Plu}[arn-parameters .Ilaentifler-Ilst ~ 

uses-clause .~ identifier-list ~ 

C-16 



Pascal Reference Manual syntax 

C.9 Ullts (see ~ter 9) 

...:.m=u=rJa=~_-un.=if.;;...t --.t unit-heading 

interface-part implementation-part 

interface-

uses-clause 

constant-deClaration-part 

t ype-cJeclaraUon-part 

variable-declaration-part 

procedUre-and-funcUon-declaration-part 

lfTlllementatloo 

constant-declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-funcUon-deClaratlon-part 

C-17 





Appendix 0 
Floating-Point Arithmetic 

0.1 flceface _______ . _______________ . ___ . _______________ . _______ . ___ . ___ . _______ 0-1 

0_2 PmcaI Real Arithmetic . ___ . _. __ . __ . _ .... ____ ... __ ... _ .. _. _ . _ . _ ........ 0-1 
0.2.1 Introduction .................................................... 0-1 
0.2.2 Rounding ....................................................... 0-2 
0.2.3 Infinit.y Arithmetic ............................................ 0-2 
0.2.4 NaN Arithmetic ............................................... 0-3 

0.3 FPlib .. _ .... __ . _ .... _ ... __ ... _ ... _. ___ . _ ........... _ ... ___ . _. _ . ___ . _ ... _ .. 0-4 

0.3.1 Introduction .................................................... 0-4 
0.3.2 Data Types ..................................................... 0-7 
0.3.3 Arit.hmetic Operat.ions ........................................ 0-7 

0.3.3.1 Add, Subtract~ Mult.ipl~/~ and Divide ............ 0-7 
0.3.3.2 Remainder .......................................... 0-8 
0.3.3.3 Square Root ........................................ 0-8 

0.3.4 Conversions .................................................... 0-9 
0.3.4.1 Conversions t.o and from Extended ............. 0-9 
0.3.4.2 Conversions Bet.ween Binary and Decimal ..... 0-9 

0.3.5 Expression Evaluat.ion ....................................... 0-11 
0.3.5.1 Global Constants ................................. 0-14 

0.3.6 Comparison Functions ....................................... 0-14 
0.3.7 Infinities~ NaNs" and Oenormalized f'-Jumbers ............ 0-15 

0.3.7.1 Inquiries: NumClass 8.t1(~ t.he Class Funct.ion .0-15 
0.3.8 Environmental Control ....................................... 0-16 

0.3.8.1 Rounding Direct.ion .............................. 0-16 
0.3.8.2 Exception Flags and Halts ...................... 0-17 
0.3.8.3 tv1anaging Environmental Settings .............. 0-17 

0.3.9 Auxiliary Procedures ......................................... 0-18 
0.3.9.1 Round to Integral Value ......................... 0-18 
0.3.9.2 Sign fv1anipulation ................................ 0-19 
0.3.9.3 Next-After ........................................ 0-19 
0.3.9.4 Binary Scale and Log ............................ 0-19 

0.3.10 Elementary Functions ......................................... 0-19 
0.3.10.1 Logarithms ........................................ 0-20 
0.3.10.2 Exponentials ...................................... 0-21 
0.3.10.3 Financial Functions .............................. 0-22 
0.3.10.4 Trigonomet.ric Functions .......................... 0-24 
D.3.10.5 Random Number Generator ....................... 0-24 

0.3.11 Additional FPLib Procedures ................................. 0-25 
0.3.12 FPLib Interface ................................................ 0-28 



0.4 MathLib ....... ______ . ________________ . ___ . __________ .. __ . ________________ D-35 

004.1 
004.2 
004.3 
00404 
004.5 

004.6 
004.7 

0.4.8 
004.9 
0.4.10 

004.11 
0.4.12 

How t.o Use MathLib ........................................ n_ ~c:, 
Environment Procedures ..................................... 0-35 
Elementar~1 Funct.ions ........................................ 0-36 
Utilit'~1 Procedures ............................................ 0-38 
Sorting .... " ................................................... 0-39 

Free Format Conversion to ASCII ......................... 0-41 
Correctly Rounded Conversion 
Between Bin8I'l and Decimal ............................... 0-45 
Financial Analysis ........................................... 0-46 
Zero of 8. Nonlinear Flmct.ion .............................. 0-51 
Linear Algebra ................................................ 0-55 
DA.10.1 Vectors and Linear Transformations ........... 0-55 
0.4.10.2 Transformations Between Spaces of 

Different Dimension ............................. 0-56 
D.4.10.3 Arrays and t'.I\atrices ............................. 0-56 
DA.l0A Ill-Conditioned Problems ........................ 0-60 
0.4.10.5 Determinants ..................................... 0-60 
DA.10.6 It.erative Improvement ........................... 0-61 
0.4.10.7 Statistical Computations \/\Iith AT A ............ R-§l 
DA.l0.S Linear Algebra Procedures ...................... U-bL 

004.10.9 QR Factorization ................................. 0-66 
DA.10.10 tv1at.hLib QR Procedures ......................... 0-67 
004.10.11 QR Example ...................................... 0-68 

. 0-70 tv1at.hLlb ~Jat\ls ............................................... . 
tv1athLib Interface ............................................ 0-71 

0_5 Macintosh Floating-Point Programming. __ . ____________________ .. _ .. D-79 
D.5.1 Assembl~1 Language .......................................... 0-79 
D.5.2 Pascal Real Arithmetic ..................................... 0-79 
0.5.3 FPLib and tv1at.t-JLib ........................................... 0-79 
0.504 Restrictions ................................................... 0-80 



Floating-Point Arittmetic 

D.1 Preface 
This appendix describes Pascal real arithmetic and two Lisa intrinsic units, 
FPLib and MathLib. FPLib is a Pascal interface for SANE (the Standard 
Apple Numerics Environment). MathUb cont.ains various mathemat.ical 
routines .. including routines for sorting, formatting .. financial analysis, zero 
finding .. and linear algebra 

This appendix refers: to two documents: 

• The Standerd Apple Numeric Em·'ironment 

• The 68t't?0 Assembly-Language SANE Engine 

Tt'"lese documents 81"e Parts I and III of the Apple Numeric...~ Manusl, and are 
included in the third volume of this set .. the System Software Manuals. (Part 
II of tl1e Apple Numerics ft.18nllsl.. The 6502 Assembly-Language SANE Engin~ 
is not included in this set.) 

Linkin(l: When using Pascal real variables or constants or the unit.s FPLib or 
MathLib, you must. fnclude IOSFPLib, in addition to IOSPasLib.. in your list of 
files to be linked. 

f\1acintosh 
Pascal programs can be compiled on the Lisa to nm on the Macintosh. 
Floating- point. usage is slightly different., and some rest.rictions apply, as 
described in Section D.5. 

D.2 Pascal Real Arithmetic 

0.2.1 Introduction 
Lisa Pascal real arithmetic conforms to as many of t.he requirements of a 
single-precision implementation of IEEE arithmet.ic as can be expressed in 
the standard Pascal language syntax. IEEE arithmetic is described in .4 
proposed StandBrd for Binerj/ Floating-Point Arithmetic.. Draft 10.0 of IEEE 
Task P754.. December 2.. 1982. 

SANE (the Standard Apple Numeric Environment).. which contains a 
completely conforming extended-precision implementation of IEEE arithmetic .. 
is in the intrinsic unit FPLib. FPLib .. which also contains elementary 
functions .. and MathLib .. which contains the higher mathematical procedures 
used in LisaCalc and Lisa BASIC .. are in the file IOSFPLib. FPLib and 
MathLib 81"e described in Sections D.3 and 0.4 of t.his appendix. 

If , however .. you only wish to use the features of Pascal real arithmetic as 
defined in the Pascal language standard, you do not. need t.o use either of 
these units in your source code. Pascal real arithmetic will then operate 
according to t.he default. modes for IEEE Single-precision arithmetic. IEEE 

D-1 



Pascal Reference fo.1aniJal Floating-Point Arithmetic 

arithmetic works like conventional floating-point arithmetic .. except 
sometimes it works better. In particular" results are defined for all 
floating-point operations.; invalid operations never terminate execution and 
always supply appropriate results. When examining printed results produced 
by a write of a real variable: 

• A number that looks normal is a faithful representation.. within the 
format specification" of the binary number held internally. 

• ''011 or 11_0" represent exactly zero with positive or negative sign 
respectively. Positive and negative zeros behave identically most. of the 
time .. but 1/0 yields positive infinity and 1/(-0) yields negative infinity. 

• "INF" or "-INF" are the representations of positive and negative infinity. 
They can be produced by floating-point overflow as well as by division 
by zero. 

• "NaNIl or II-NaN" represent Not-a-Number., used to represent an 
undefined or erroneous value. Often the representation includes a 
perenthesized NaN code; for instance, write(sqrt(-l)) produces 
'~(l)." NaN codes are described in The stsndBTd ~pple Numenc 
Em,·jronment. 

Normal numbers that are printed wit.h nine or more significant digits can be 
read back in to produce the same bina,.)1 value. The strings printed for 
infinite and NaN values are accepted by read, and produce the same binary 
real value that produced the string. The strings for infinit.y and NaN are not 
accepted ~j the Compiler as real const.ant.s in Pascal source code, ho""ever. 

0.2.2 Rounding 
When the result. is not representable exact.ly as a real value, then it is 
rounded to the nearest representable real value. If the result is exactly half 
way between two represent.able real values., then it is rounded t.o the even 
representable value which has a zero in its least Significant bit. 

0_2.3 Infinity Arithmetic 
Infinity arithmetic obe'ys common matt1emati-cal conventions as indicated in 
the tables on the following page. 

0-2 



Pascal Reference f>.1anua} Floating-Point ~ithmetic 

Table 0-1 
Results of Addition and Subtraction on Infinities 

Left 
Operand -INF 

-INF -INF 
finite + -INF 
+INF NaN 
-It-,IF NaN 
finite - -+INF 
+INF +INF 

hight 
Operand 

finite 

-INF 
finitef 

+INF 

-INF 
finitef 

+INF 

+INF 

Naf'.J 
+INF 
+INF 

-INF 
-INF 
NaN 

f Result is infinite if the operation overflows. 

Table 0-2 
Results of Multiplication and Division on Infinities 

Lefl ... 
Operand :to 

:!:O :!:O 
finite * :to 
:tI~JF NaN 
:to NaN 

finit.e / :!:INF 
:!:INF :!:INF 

Right 
(,'1peJ· and 

finite 

:to 
finitef 

tINF 

to 
finiteT 

:!:INF 

:!:lNF 

NaN 
:dNF 
:!:JNF 

:to 
:to 

~.JaN 

f Result is infinite if the operation overflm,,'S. 

Nate: Sign of result is determined by signs of 
operands in the usual manner. 

0_2_4 NaN Pl'ithmetic 
NaNs ere produced as the result of an invalid operation such as sqrtf-ll, 
INF-INF" 010" O*INf" In(-I)" or sin(DF). If one or more NaN is an 
operand to any operation that produces a floating-point result, that result 
will be a NaN. 

0-3 



Pascal Reference l'4811ual Floating-Point Arithmetic 

Comparisons involving NaNs are never less than, equal to, or greater than; 
they are al ways unequal. So if x is a NaN, x < >y will be true, while x <y, 
xiy, x=y, xlV, and x>y will always be false regardless of y. "If X(>x" is a 
good test of whether x is a NaN. 

Round and trtnc operations upon NaNs produce undefined values since 
integers do not have NaN values. Round and trunc of numbers too large to 
represent as integers also produce undefined values. 

0.3 FPLib 

0.3.1 Introduction 
This section describes the Lisa int.rinsic unit FPLib, which is a Pascal 
interface for SANE (the Standard Apple Numeric Environment). SANE in turn 
implements P754, the proposed IEEE Standard for binary floating-point. 
arithmetic. 

SANE data types .. operations, and except.ions are described in detail in The 
stsndBrd Apple Numeric Environment. This section describes only the FPLib 
interface for Pascal programs. The FP68K interface for assembly-language 
programs is described in The 68i't't1 Assembly-Language SANE Engine. 

If you are familiar with Pascal .. you should be able t.o use most of FPLib just 
on the basis of the comments in the interface in Section 0.3.12. 

When writing Pascal source code, include a uses statement such as: 

USES FPLib; 

after the program statement in a main program or after t.he int.erface 
st.atement in a unit. 

The two examples that follow, a program and a unit, illustrate the use of 
FPLib. We encourage you to t.ype in t.hese examples, t.o compile them, and, 
in the case of the program, to execute t.he code file while following this 
discussion. 

Example 1 

This program reads an input string representing a floating-point value and 
ectloes it to the screen. It demonstrates t.t".e use of SANE data types, and 
how values can be accepted on input and displayed on out.put. 

progrfD Echt:t4tnber; 

Uses 
FPlib; 

Var: 
InStrl OutStr OecStr; 
x Single; 
f : Decffll1D; 

0-4 

Input and output strings. } 
Single value of InStr. } 
Specifies output f~t. } 



begin { EchoNulber } 

f . style := FLOAlIECIHAL; 
f .digits := 9; 

write ('Enter nlOber: I); 

Floating-Point Alitl,l'netic 

floating output format. } 
9 significant digits. } 

readln (InStr); { Read first input string. } 
while InStr <> " do begin 

Str2S (InStr, x); { Convert input to Single value x. } 
S2Str (f, x, outStr); { Convert x to string by f. } 
writeln (OutStr); 
write CEnter m.nbeI": '); 
readln (InStr) { Read next input string. } 

end 

end {EchoNlIIber} 

In the program EchoNumber .. note that: 

• The input and output st.rings (InStr and OutStr) are of type OecStr .. a 
Pascal string type defined by FPLib. 

• A variable x of type Single has been declared to hold the value of the 
input string. 

• The variable f is of type DecForm .. which specifies the format. of t.he 
output string. In this case .. f is assigned so that the output will be in 
FLOATDECIMAL format (as opposed to FIXEDOECIMAL).. and will show 
9 significant. digits. 

• The FPLib routine Str2S converts the ASCII characters from the input 
string InStr to the Single value x. 

• The FPLib procedure S2Str converts the Single value x to the output 
st.ring OutStr. The format. of this string is determined by the value of f. 

Throughout FPLib, the names of procedures reflect the data types involved. 
For example .. Str2S converts to Single. There are also procedures Str20 .. 
Str2C, and Str2X for converting to the other SA~.JE data types Double .. Comp .. 
and Extended, respectively. 

Now compile and execute the program" trying out various input values. You 
will note that the input string '0.5' is echoed (as you would expect) as 
'5.00000000E-1', whereas the input value '0.1' is echoed as 'LOO(XXXX)1E-l', 
because of roundoff" as discussed in The standBJ·d Apple Numeric 
Em·'ironment. 

D-5 



Pas"C81 f;.~ference f>48nuBI Flo8ting-Point flrithmetic 

Example 2 

The second example shows the use of FPLib from another unit. This example 
also sho",,.s t"IOW expression evaluation is accomplished using Extended 
intermediate v8Jiables. 

The unit. provides a procedure t.o evaluate the dot product of two vectors. 
The input vectors v and ... 0.,' (of type Vector) axe represented as arrays of' 
Single values. The desired result is the Single value z. In order t.o compute 
the value of z with maximum accuracy .. all of the intermediate calculations 
are performed in extended precision. This feature is at. the heart. of t.he 
design of SANE. 

uni t DotProd; 

INTERffD:: 
uses 

FPLib; 
const 

N = 20; { Size of Vector. } 
type 

Vector = array [1. .H] of Single; 
procedure DotProduct (v,tI: Vector; var z: Single); 

If'PlB'ENTAT1(tf 

procedure DotProduct { (v, tI: Vector; var z: Single) }; 
{ Returns the dot product of v and tI in z, 

accumulated in Extended and returned in Single. } 

var s, t : Extended; 
i : 1. .H; 

begin { DotProduct } 

12X (0, s); { s <- 0 } 
for i := 1 to N do begin 

S2X (v(i], t); { t <- v[i] } 
I1ulS (tI(i], t); { t (- v[i] • tI(i] } 
{ Accumulate in Extended. } 
AddX (t, s) { s (- s + t 

end· 
X7S (s, z) { Produce Single resul t. } 

end {DotProduct}; 

end {DotProd} . 

0-6 



Pasc8l Refel·ence A18nuBl Floating-Point Arithmetic 

In the procedure DotProduct .. note that: 

• The sum s is initialized to zero using 12X (I2X provides convenient and 
efficient assignment of integral constants to Extended). 

• A Single value from v is converted to extended precision in the 
temporary variable t. This conversion is performed by S2X anel is exact. 

• T is directly multiplied by the corresponding value from w .. leaving the 
extended-precision result in t.. 

• The sum is accumulated in extended precision by adding t. directl'y to 
the Extended value s. 

• lNhen the loop completes .. the sum in s is converted, using X2S, to the 
desired Single result z. 

• In FPLib .. all of the basic arithmetic operations on two values are 
tv·,'o-address operations; that. is, the operation is performed on the t.wo 
inputs and the result is stored in the second 8l·gument (as in MulS and 
AddX in the example). 

• All arithmetic operations are performed in extended precision and the 
result is returned in Extended. 

• The names of the procedures again reflect the type of the input 
argument: MulS mult.iplies an Extended by a Single.. AddX adds an 
Extended to an Extended, and X2S convert.s an Ext.ended to a Single. 

0.3.2 Data Types 
FPLib fully supports t.he SANE data types Single .. Double" Comp, and 
Extended. 

Pascars 16- and 32-bit integer arithmet.ic remains distinct from SANE 
arithmetic. HO\,vever,. any program using the FPLib unit. can use Pascal 
int.eger arithmetic. 

0.3.3 Arithmetic Operations 
This section discusses the arithmetic operations add .. subtract .. multiply" 
divide" remainder, and square root.. 

0.3.3.1 Addl Subtra.ctl MultiplYI and Divide 
The arithmetic operations add .. subtract., multiply" and divide are provided by 
sixteen procedures: 

AddS.. AddO .. AddC, AddX; 
SubS" SUbD .. SubC" SubX.; 
MulS, MulD.. MulC, MulX; 
DivS .. DivD., DivC .• DivX. 

Each procedlu·e has two operands. The first is alws:y's a value parameter of 
type Single" Double., Camp" or Extended .. as indicat.ed by the last letter of the 

0-7 



Pascal Reference "-"anual Floating-Point Iffithmetic 

procedure name. The second is al'Nfays a variable parameter of Extended 
type that receives the result. For example" subtraction is provided by the 
procedures SubS (subtract Single), SubD (subtract Double).. SubC (subtract 
Comp), and SubX (subtract Extended). If x and y are declared by 

var X : Single; 
y : Extended; 

then the statement 

SubS (x, V); { y (- y - x } 

causes x to be subtracted from y and the extended-precision result to be 
st.ored in y. 

Example 

To compute q = a I b , where a.. b, and q are of type Double, declare: 

var a". b, q : Double; 
t : Extended; { extended temporary } 

and write: 

D2X (a". t); 
DivD (b, t); 
X2D (t, q); 

0.3.3.2 Remainder 

{ t {- 8 } 
{ t (- 8 / b } 
{ q (- t } 

The remainder operation is provided by 

procedure RemX (x : Extended; var y : Extended; var quo integer); 

The remainder .. y REM x.' is delivered t.o y. 

The remainder operation determines n, the nearest integer to x Iy; if x Iy is 
halfway bet.ween t.wo integers, the even integer is chosen. Thus .• y rem x = y 
- n*x. 

The third argument, quo, delivers the integer !'",hose magnitude is given by 
the seven least significant bits of the magnitude of n, and whose sign is the 
sign of n. (Quo is useful for reducing the arguments of trigonometric 
functions .. but. can be ignored if not needed.) 

0.3.3.3 Squar-e Root 
The square root operation is provided by 

procedure SqrtX (var x : Extended); 

for any x }= o. The argument x is both source and dest.ination. 

0-8 



Floating-Point Arithmetic 

Example 

To find v = square root of u , where u and v are of type Single, declare 

var u, V : Singlei 
t : Extended; 

and write 

{ extended temporary } 

S2X (u, t)i 
SqrtX (t); 
X2.S (t, V)i 

{ t (- U } 
{ t (- sqrt (u) } 
{ V (- t } 

0.3.4 Conversions 

0.3.4.1 COmlelSions to and from Extended 
Conversions bet.ween t.he Extended type and the other numeric types 
recognized by FPLib are provided by the procedures 

12X - integer to Extended 
L2X - longint to Extended 
S2X - Single to Extended 
D2X - Double to Extended 
C2X - Comp to Extended 
X2X - Extended to Extended 

X21 - Extended to integer 
X2l - Extended to longint 
X2S - Extended to Single 
X2D - Extended to Double 
X2C - Extended to Camp 

For example., if x and y are declsJed by 

var x : Ct::np; 
y : Extended; 

then to convert a Camp-format value in x to an Extended-format in ":I, write 

OX (x, y); { y (- x } 

0.3.4.2 Conversions Between Binary and Decimal 

COmlerting Decimal strings into SANE Types 
The procedures Str2S., Str2D., St.r2C .. and. Str2X convert numeric: st.rings int.o 
Single.' Double,. Comp .. and Extended formats,. respectively. 

0-9 



Pascal liteference Manual Floating-Point flrithmetic 

Example 1 

To assign -0.0000253 to an Extended variable x.. write 

var x: Extended; 

Str2X (1-2_53E-51, x); {or Str2X (1-0_0000253', x); } 

The stand81'd Apple Numeric Em/ironment describes numeric string synt.ax. 

Converting SANE Types irto Decimal Strings 
The procedures: S2Str., D2Str .. C2Str .. and X2St.r will convert a Single .. Double .. 
Camp .. and Extended .. respectively .. into a numeric string (of type DecStr). As 
any numeric value can have many decimal represent.ations .. you must specify 
the decimal result format. To do so .. pass a record of type DecForm, shown 
below: 

Decfarm 

Example 2 

= record 
style 
digits 

end; 

(fLOAltECIHAL, fI~IMAl); 
integer 

To print the value of a Double variable )I using a fixed-point decimal format 
\N'ith ten digits to the right of the decimal point... write: 

var y: Oouble; 
s: OecStr; 
f: Oecfana; 

'_style := fIXEDDECIMAl; 
, _digits := 10; 

D2Str (f, Y, s); 
writeln ('Y = " s); 

Numbers that round to zero in the specified DecForm are convelted to the 
st.ring I 0.0' or '-0.0'. NaN's are converted to the strfng I Na.N', I-NaN' ... 
, NaN(n)' .. or '-Nat-J(n)', where n is a NaN error code in decimal. Infinit.ies 
al-e converted to the string' INF' or '-INF'. 

All other numbers behave in an int.uitive manner as long as the DecForm 
specifies no more than SIGDIGLEt\J-1 significant digits. Otherwise .. the 
formatt.ed number is padded Ih'ith zeros where necessary_ If the resulting 
st.ring has more than DECSTRLEN characters, the number is represented in 
floating-point notation_ (SIGDIGLEN and DECSTRLEN are specified in t.he 
interface to FPLib.) 

All string results have either a leading negative sign (lr a leading blank (thus,. 
columns of numbers I,I/ill line LIP regardless of sign). 

0-10 



Pas'cel h,'etel'ence lV/anual Flo-ating-Point h~ .... Jth.metic 

Decimal Rect:rd Conversions 
The Decimal record type is specified in the interface as below: 

Sigoig = string [SIGDIGUSN]; 

Decimal = record 
sgn 
exp 
sig 

end; 

o .. 1; { Sign (0 for pos, 1 for neg). } 
integer; { Exponent. } 
Sigoig {String of significant digits. } 

The procedures S2Dec,. D2Dec,. C2Dec,. and X2Dec each convert a Single,. 
Double,. Comp,. or Extended value .. respectively,. into a record of type 
Decimal, A DecForm operand (shown in the preceding section) specifies the 
format of DecimaL The maximum number of ASCII digit.s delivered t.o sig is 
SIGDIGLEN-l .. and the implied decimal point is at the right end of sig,. I,'lith 
exp set accordingly, Further formatting details are given in The 6&':r~) 
AssembJy-Llmguage Sh'WE Engine, 

The procedures Dec2S.. Dec2D .• Oec2C,. and Dec2X convert a Decimal record 
into Single,. Double,. Comp,. and Ext.ended,. res:pect.ively, The sig part of 
Decimal accepts up to SIGDIGLEN-l significant digit.s .. with an implicit 
decimal point at the right end of the significant digits. If SIGDIGLEN digits 
are passed, then t.he implicit decimal point is between the digits at 
SIGDIGLEN-l and SIGDIGLEN; the last digit, if nonzero, represents one or 
more nonzero digits in the SIGOIGLEN or subsequent positions. Further 
details of t.he representations of Decimal input values for these routines are 
given in The 68Ot..'"t') Assembly-Language S~NE Engine. 

0.3.5 Expression Evaluation 
SANE floating-paint arithmetic (and the FPLib unit) is designed to operate on 
Extended values. For example,. DivD (x, y) operates on the Extended-format 
value in y by dividing the Double-format number x int.o y and leaving the 
result in y. To evaluate more complicated expressions,. Extended temporaries 
can be used. 

The follm·'ling examples illust.rate extended-based expression evaluat.ion. The 
first example uses an Extended accumulator t.o store the results of all 
operations. 

Example 1 

Compute the value of 

r = (a + b - c) * d + e 
f 

where all variables are of Double type. 

var 8:, b, c1 d, el f, r : Double; 
t : Extended; { ex tended tempormy } 

D-11 



Pesc.f[} Reterence 1'·4anua} 

begin 

D2X (a, t); 
Add> (b, t); 
SutJO (c, t ); 
HulD (d, t); 
Add) (e, t ); 
DivD (f, t); 
X2D (t, r); 

Floating-Point Arith.metic 

{ t (- 8 ) 
{ t (- 8 + b ) 
{ t (- 8 + b ~ c } 
{ t (- (8 + b - c) * d } 
{ t (- (8 + b - c) * d + e } 
{ t (- «8 + b - c) * d + e) / f } 
{ r (- t } 

Note that although the arithmetic style is extended-based, not every operand 
need be converted to Ext.ended. In t.he example .. only one explicit. conversion 
to Extended was required. 

Example 2 

Compute the value of the root r of larger magnit.ude of a quadratic equation 
from the formula: 

b + sign(b) * sqrt( b2 - 4 * a * c ) 
r = -

2 * a 
\vhere a.. b, c.. and r are of Single type. 

var a, b, c, r : Single; 
t1, t2, t3 : Extended,; { extended temporaries } 

begin 
. 

S2X (b, til; 
t3 := tl; 
HulS (b, tl); 
12X (4, t2); 
HulS (8, t2); 
HulS (c, t2); 
Sub)( (t2, tl); 
SqrtX (tl); 
CpySgnX (tl, t3); 
AddS (b, tl); 
NegX (tl) ; 
S2X (a, t2); 
AddS (a, t2); 
DivX (t2, til; 

X2S (tl, r); 

{ tl (- b ) 
{ t3 (- b ) 
{ tl (- bA 2 ) 
{ t2 (- 4 } 
{ t2 (- 4 * 8 ) 

{ t2 (- 4 * 8 * C } 
{ tl (- bA 2 - 4 * 8 * C ) 
{ tl (- sqrt (bA 2 - 4 * 8 * c) } 
{ tl (- stile with sign of b ) 
{ tl (- b + sign(b) * sqrt (bA 2 - 4*s*c) } 
{ tl (- -(b + sign(b) * sqrt... ) 
{ t2 (,..- 8 } 

{ t2 (- 2 * 8 ) 
{ tl (- -(b + sign(b) * 

sqrt (bA 2 - 4 * 8 * c» / (2 * 8) } 
{ r (- tl } 

D-12 



P'asc-o·j Reference "-1anua} Floating-Point Arithmetic 

The smaller root may then be computed by evaluating the formula c/(a*tl) in 
extended. Exceptional cases include b2 < 4 * a * c and a = O. 

Example }: 

Evaluate the polynomial 

y = Co + c1 * X + C2 * x2 + ... + Co * xn 

and its derivative 

Dy = C1 + 2 * C2 * X + 3 * C3 * x2 + ... + n * en * x(n-1) 

where the coefficient.s Co through Cn 81"e stored in an array of Single and x .• 
y~ and Dy are of type Single. 

const N1AX = 100; 

var n, i : o .. NtAX; 
x, Y, Dy : Single; 
C : array [0 .. NtAX] of Single; 
ti, { For computation of y. } 
t2, t3 : Extended; { Far c(IIputation of Dy.} 

I2X (0, til; { tl (- 0 } 
t2 := tl; { t2 (- 0 } 

for i := n downto 1 do begin 

{ tl (- C [i] + x • tl : } 
I1ulS (x, til; tl (- x • tl } 
AddS (e [i], tl); tl (- e [i] + tl ) 

{ t2 (- tl + x • t2 } 
HuIS (x, t2); t2 (- x • t2 
S1X (e(i], t3); 
HulS (i, t3); 
AddX (tl, t2) 

end; 

{ tl (- e [0] + x • tl } 
HulS (x, til; { tl (- x • tl } 
AddS (e [0], tl); { tl (- e [0] + tl ) 

X2S (tl, v); { y (- tl } 

X2S (t2, Dy); { Dy (- t2 

D-13 



Pascal Reference f>.1anlJ8J Floating-Point Arithmetic 

The method, called Horner's Rule .. used to evaluate the polynomials is based 
on the polync1mial representation 

y = ( ... (( Cn * X + Cn-l) * X + Cn-2) * X + ... ) * x + co. 

It is faster and more accurate than the straightforward computation 
suggested by the standard representation,. shown at the beginning of the 
example .. and is conveniently implemented using SANE's extended-based 
arithmetic. 

0.3.5.1 Global Constants 
To speed up execution .. frequently used constants can be defined globally 
(outSide the routines). For example .. if pi is declared and defined by: 

var pi : Extended; 

begin 

Str2X ("3.14159265358979323846", pi); 

then executing 

x := pi; 

is significantly faster than 

Str2X (13.141592653589793238461, x); 
Defining constants globally is particularly helpful when the definition is via 
one of the string conversion rout.ines,. such as Str2X. For conversion of 
integers .. I2X and L2X are significantly faster than Str2X. 

0.3.6 Comparison Functions 
Any two floating-point values in the Extended format. can be compared using: 

function QapX (x : Extended; r : RelOp; y : Extended) : boolean; 

or 

function RelX (x, y : Extended) : RelOp; 

The RelOp values are 

GT greater than 
LT less than 
GL greater than or less than 
EO equal 
GE greater than or equal 
LE less than or equal 
GEL greater tha~ equal.. or less than 
UNORD unordered 

0-14 



Pesce} Reference ,1>,.1enue.J Floating-Point Arithmetic 

Single .. Double, or Comp values can be compared by first converting them to 
Extended. 

For every pair of operand values, exactly one of the relations L T, GT .. EQ, 
and UNORD is true. The value of RelX is the appropriate one of these four 
relations. CmpX (x, r, y) is true if and only if the relation x r y is true. 

ExsmpJe 

If p is greater than q then print 'p ) q is TRUE'; otherwise, print 'p > q is 
FALSE', 

var p, q: Extended; 

if a.px (p, GT, q) then 
w.riteln ('p > q is TRUE') 

else 
w.riteln ('p > q is fAtSE'); 

Not.e that equivalent results are produced by 

if OIpX (p, LE, q) or OopX (p, lNR>, q) then 
w.riteln ('p > q is fA~') 

else 
w.ri teln (' p > q is TRUE'); 

or by 

case RelX (p, q) of 

GT: writeln ('p > q is TRUE'); 
LT, ED: writeln (' p > q is fAlSE'); 
lNR>: begin 

SetXcp (INVALID, TRUE); 
w.riteln ('p > q is FALSE') 

end { l.HA) } 

end; { case RelX } 

0.3.7 Infinities, NaNs, and Denorrnalized Numbers 
In addition to the normalized numbers supported by most floating-point 
packages, FPLib fully supports the special values--infinities .. NaNs, and 
denormalized numbers--specified by the IEEE Standard, ffi described in The 
st8nd8Id n"ppJe NlImeric Em"ironment, 

0.3.7.1 Inquiries: NumClass and the Class Functions 
The functions ClassS ... ClassD, ClassC, and ClassX can be used to classify the 
value of a v81'iable, These funct.ions BJ'e of type NumClass: and ret.urn one of 
the values: 

0-15 



Floating-Point Arithmetic 

SNAN 
!)'iAN 
INFINITE 
ZERO 
NORMAL 
DENORNAL 

- signaling NaN 
- quiet NaN 
- infinity 
- zero 
- normalized number 
- denormalized number 

The cl~s functions also return the sign of a value in the parameter 
var sgn: integer. 

0.3.8 Environmental Control 
Environmental controls supported in FPUb include the rounding direction .. as 
well as exception flags and their corresponding halts. Rounding precision is 
support.ed in the MathUb unit. 

0.3.8.1 Rounding Direction 
The rounding directions are of the type 

RoumVir = (lO'EfRST, lJIWfR), 1XIftIIfR), llJIHR)2ERO) 

The rounding direction is set by the SetRnd and SetEnv procedures and can 
be interrogated by the GetRnd function. 

EX8mple 

The common rounding function specified by 

( trunc (x + 0.5).. if x )= 0 
Rnd (x) = ') 

~ trunc (x - 0.5) .. if x < 0 

can be implemented by: 

function Roo (x : Extended) : integer; 

{ Sets ItNAlID and returns -32768 if 
x is a NaN or x <= -32768.5 or x)= 32767.5. 

Sets IIt:XR:T if 
-32768.5 < x < 32767.5 and x is nonintegral. 

Sets no other exceptions. 

var t Extended; 
i integer; 
r Round>ir; 

0-16 

***insert bracket*** 

} 



Pas-cal hteterence ;"-18.nu8.l 

begin { Rnd } 

StrZ)( ('0.5·, t); 
CpySgnX (t, x); 

r := GetRnd; 
SetRnd (1lJ!HR)2EAl); 
AddX (x, t); 
X2I (t, i); 
IlX (i, t); 
SetXcp (It£XOCT, not 

SetRnd (r); 
Rnd := i 

end {Rnd}; 

Flosting-Point An"t.I?metic 

{ t {-- +0.5 if x } 0 or x is +0 } 
{ t (-- -0.5 if x ( 0 or x is -0 } 
{ Save rounding direction. } 
{ Set round-toward-zero. } 
{ t (-- x + t } 
{ i (-- truncate (t) ) 
{ No exceptions! } 

(CmpX (t, EO, x) or TestXcp (INVALID))); 
{ Correct It£XACT setting. } 
{ Restore rounding direction. } 
{ On INVALID, i (-- -32768. } 

0.3.8.2 Exception Flags and Halts 
The ex ception flags are values of the t.ype 

Exception = (INVAlID, . t.tD:RfU'JII, DVERfU'JII, DIVBYZERD, It£XfI:T) 

These five exceptions are signaled when detect.ed" and if the corresponding 
halt. is set. .. t.he SANE engine will JSR· t.o the 'halt vect.or'. The halt vect.or is 
initially 0" so that halts terminate execution with a bus error. However .. the 
user can call the procedure SetHlt Addre.ss to set t.he halt vector to the 
address of a user-defined halt-handling procedure. See Section 0.3.11 for 
details. 

Initially all exception flags and halts are cleared. You can examine .. set" or 
clear individual exception flags and halts using TestXcp and TestHlt 
functions and SetXcp and Set. H It. procedures. The Set.Env and GetEnv 
procedures can be used to set or get the entire environment (rounding 
direction .. rounding precision .. exception flags .. and halts). 

0.3.8.3 Managing Environmental Settings 
Issues and techniques for managing environmental settings are covered in The 
Stsnd8Td Apple Numeric Em··jronment. (The Pascal syntax used in the 
examples there does not fully match the syntax in FPLib.) 

The procedure-entry and procedure-exit routines are provided in FPLib by: 

procedure ProcEnt:ry (var e: Environ); 
procedure ProcExit (e: Environ); 

Example 

The following procedure signals underflow if it.s result is denormal" and 
overflow if its result is infinite" but hides spurious exceptions occurring from 

0-17 



P"8SC6i h~rel'ertCe tv/BnUBl Floating-Point ~l'ithmet ic 

internal computations. This is Example 3 in Section 8 of The standBrd Apple 
Numeric Enl,o'ironrnent,. implementeel wit.h FPLib calls. 

procedure compres (var x: Doubl e); 
uses FPlib; 

VBI' e: Environ; 
c: NlIIClass; 
sgn: integer; 

procedure clearxcps; 
const fIRSTXOP 

lASl}([P 
var xcp: Ex cepti on; 
begin {clearxcps} 

{ local storage fQr enviroment } 
{ for class inqui:ry } 
{ for class inqui:ry - not used } 

{ more efficient version in Mathlib } 
= INVAlID; 
= It£XOCT· 

{ roi clearing exceptions 

for xcp: = fIRSTXOP to lASlX{P do 
SetXcp (xcp, fALSE) 

end {clearxcps}; 

begi n {CtDPJ,"es} 
ProcEntxy (e); 

compute result x } 

{ save caller I s environaent and } 
{ set default environment - } 
{ ntM halts disabled } 

c := ClassO (x, sgn); { class inquiry } 
clearxcps; { clear possibly spurious exceptions } 

{ now raise specified exception flags: } 
if c = INfINllE then SetXcp (OVERfUJII, TRlE) 
else if c = DENR1Al then SetXcp (lH)ERfUJII, lA£); 
ProcExi t ( e) { restore caller I s envirOl'llent, } 

{ including any halt enables, and} 
{ then signal exceptions from } 
{ subroutine } 

end {ctBpres} ; 

0.3.9 Auxiliary Procedures 
The FPLib unit includes a set. of special rout.ines: Rint..>\, NegX,. AbsX .. 
CpyrSgnX .. NextS,I NextD,. Next-X .. ScalbX, and LogbX. 

0.3.9.1 Round to Integral Value 
An Extended variable can be rounded to an integral value by 

procedure RintX (var x : Extended); 

The result is returned in t.he input x. 

D-18 



Pasc-al Refel"ence ,~18nu81 Flo8ting-Point Rll'itl1metic 

0.3_9.2 Sign Manipulation 
Procedures NegX/ AbsX/ and CpySgnX each operat.e on an Extended variable/ 
altering only the sign of the Extended argument. 

The negation operation is provided by 

procedure Neg)( (VBI' X : Extended); 

The absolute value operation is pravided by 

procedure AbsX (VBI' X : Extended); 

An operation to copy the sign of one Extended variable to the sign of 
another is provided by 

procedure CpySgnX (VBI' X : Extended; y : Extended); 

which copies the sign of y into the sign of x. 

0.3_9.3 Next-After 
The procedures ~JextS/ NextD., and NextX each generate the next 
represent.able neighbor in its respective format., given an initial value and a 
direction. The first argument (x) to each of these routines is "bumpedll to 
the next. represent.able value in t.he direct.ion of the second argument (y). 

The procedure NextS bumPs the Single value x to the next representable 
Single vallie in the direction of y: 

procedure NextS (VBI' X : Si ngle; y: Single); 

The procedure NextD bumps the DCluble value x to t.he next representable 
Double value in the direction of y: 

procedure NextD (VBI' X : Double; y: Double); 

The procedure NextX bumps the Extended value x t.o the next representable 
Extended value in the direction of y: 

procedure NextX (var x : Extended; y : Extended); 

0.3_9.4 Binary Scale and Log 
An Extended variable can be efficiently scaled by a power of two by 

procedure ScalbX (n : integer; VBI' y : Extended); 

The procedure ScalbX comput.es y * 20 .. and returns it in v. 
The binary exponent of an Extended variable can be determined by 

procedure LogbX (ver x : Extended); 

The procedure LogbX returns in x the binary exponent of x as a signed 
integral value. 

0.3_10 Elementary F...-.ctions 
FPLib provides a number of mathematical functiOns, including logarithms and 
exponentials/ two important financial functions .. trigonometric functions/ and a 

D-19 



Pas-cal Ref"erence f>.1BnlJBI FloBting-Point f1ritllmetic 

random number generator. The logarithms and exponentials are provided in 
base-2 and base-e versions. 

0.3.10.1 Logarithms 
The procedlu·es Log2X-, LnX, and LnlX each operate on an Ext.ended variable .• 
returning the result. in the input argument. 

The base-2 logarithm lo~ x: is computed by 

procedure Log2X (var x : Extended); 

for any nonnegative x. 

The natural (base-e) logarithm lOIJe x is computed by 

procedure LnX (var x : Extended); 

for any nonnegative x. 

The natural (base-e) logarithm lOIJe (1 + x) is comput.ed by 

procedure LnlX (var x : Extended); 

for any x >= -1. 

0.3.10.2 Exponentials 
Procedures Exp2X, ExpX-, and ExplX each operate on an Extended variable, 
returning the result in the input argument. Procedure XpwrI operates on an 
Extended variable using an integer value, returning the result in the Extended 
input. argument. Procedure Xplh'rY operates on tl/'r'o Extended variables, 
returning the result. in the second input argument. 

The procedure Exp2X calculates 2x and returns this value to x: 

procedure Exp2X (VaT" X : Extended); 

The procedLn·e ExpX computes eX and returns this value to x: 

procedure ExpX (var x : Ex tended); 

The procedure ExplX computes eX - 1 and returns this value to x: 

procedure ExplX (VaT" X : Extended); 

The procedLn·e XpwrI computes xi and returns this value to x: 

procedure XpwrI (i : integer; VaT" X : Extended); 

The procedure XpwrY computes x'i and returns this value to x: 

procedure Xpw.rY (y : Extended; VaT" X : Extended); 

D-20 



Pas-cai h't:ference 1"'ll!lnu81 Floating-Point Arithmetic 

0.3.103 Financial F...-dions 
FPLib provides two procedLaes, Compound and Annuity., t.hat can be used to 
solve various financial problems. Each of these procedures takes two input 
arguments of type Extended.. and produces an Extended result.. The two input 
arguments .. r 8J1d n .. represent in each case an interest rate 8.nd a. number of 
periods .. respectively. 

Compound Interest 
Compound interest. can be computed using 

procedure Cc:npound (r, n : Extended; var x : Extended); 

This procedure computes the value 

x = (1 + r)n .. 

where r is the interest rate and n is the number of periods. 

Example 

If $1000 is invested for 6 veers at 9% compounded quarterly .. then what is tt1e 
future value of the principal? Compute: 

V8l" r, n, four, years, rate, flY, FV : Extended; 
f : DecF 0111; 
s : DecStr; 

with f do begin style := FIXEI:XEIHAL; digits := 2 end; 

I2X (4, four); { four {- 4 
12X (6, years); { years (- 6 
Str2X rO.09 I

, rate); { rate {- 9% 
12X (1000, flY); { PV {- 1000.00 

r := rate; 
DivX (four, r); 
n := years; 
t1ulX (four, n); 

Ccmpound (r, n, fV); 
t1ulX (PV, FV); 

{ r (-- rate / 4 

n {- 4 • years 

{ fV {- (1 + r)An 
{ FV {- PV • (1 + r)An 

} 
} 
} 
} 

} 

} 

} 
} 

X2Str (f, FV, s); { f is fIXED with 2 fraction digits.} 
writeln (IFV = $1, s); 

The future value FV is $ 1705.77. 

0-21 



Pascal Reference Iv/snus} Floating-Point f1rithmetic 

ExampJe 

How much must a person invest today at 9% compounded quarterly to have 
$15,000 in his account in 6 years? Assuming f .. rate, years, r .. and n have 
values as in the example above, compute: 

var r, n, 00, four, years, rate, PV, fV : Extended; 
f : Decf o:III; 
s : DecStr; 

with f do begin 
style := flXEII)fI;II1AL; 
digits := 2 

end; 

12X (lSOOO, fV); 
nn .= n-
NegX (~); 

fV {- 15000.00 

nn {- -n 

Caapound (r, 00, PV); { PV {- (1 + r)A-n 
HulX (FV, PV); { PI {- FV • (1 + r)A-n 

} 

} 
} 

X2Str (f, PI, s); { f is fIXED with 2 traction digits.} 
writeln CPV = $1, s); 

The present value PV is $ 8793.70. 

The present. va.lue and future value of an annuity can be computed using 

procedure Annuity (r, n : Extended; var x : Extended); 

This procedure computes the value 

x = 1 - (1 + r )-n , 
r 

where r is the interest. rate and n is the number of periods. 

E:rample 

Suppose that a loan at 12% compounded monthly is to be paid off at a rate 
of $225 per month in 36 months. What. is t.he present value of t.he loan? 
Compute: 

var r, n, twelve, rate, PV, PI1T : Extended; 
f : Decfarm; 
s : OecStr; 

D-22 



Pascal .Rfffel"ence fv18.l"iual Floating-Point Arithmetic 

with f do begin 
style : = f1XEDlE:1HAL; 
digits := 2 

end; 

11X (12" twelve); { twelve (- 12 
Str1X ("0.12·" rate); { rate (- 12% 
Str1X (" 36 1

" n); { n (- 36 
11X (225" PHT); { R1T (- 225.00 

r := rate; 
DivX (twelve" r); { r {- rate / 12 

} 
} 
} 
} 

Amui ty (r" n" PV); 
HulX (PHT" PV); 

{ PV {- (1 - (1 + r)A-n) / r } 
{ PV (- PHT • (1 - (1 + r)A-n) / r } 

X2Str (f" PV, s); { f is FIXED with 2 fraction digits.} 
writeln ("PV = $." s); 

The present value PV is $ -6774.19. 

Exarnple 

If $50 is clepositecl each month to a savings account that pays 12% 
compounded monthly~ what is the future value of the account after 10 years? 
Compute 

var r" n" twelve" rate" years, fV, PHT, t : Extended; 
f : DeeF 0Y1I; 
S : OecStr; 

with f do begin 
style := f1XEDDECIMAL; 
digits := 2 

end· ." 

11X (12, twelve); { twelve {- 12 
Str2X ("0.12·, rate); (rate (- 12% 
11X (10, years); { years (- 10 
12X (50, PHT); { R1T (- 50.00 

r := rate; 
OivX (twelve, r); 
n := years; 
ttulX (twelve, n); 

{ r {- rate / 12 

{ n {- years III 12 

0-23 

} 
} 
} 
} 

} 



Pas:t;"8I.Reference l·48.nil8.1 Floating-Point Arithmetic 

Cmpound (r, n, t); 
Annui ty (r, n, fV); 
f1ulX (t, fV); 

{ t (- (1 + r rn } 
{ fV (-- (1 - (1 + r)A-n) / r } 
{ fV (-- ((1 + r)An - 1) / r } 

HulX (PttT, fV); { fV (-- PttT • (( 1 + r)An - 1) / r } 

X2Str (f, fV, s); { f is fIXED with 2 f.raction digits.} 
writeln ('fV = $', s); 

The final value FV is $ 11501.93. 

0.3.10A Trigonometric Functions 
The trigonometric functions are provided by the procedures CosX.. SinX,I 
TanX, and ATanX (arctangent or inverse tangent), which operate on an 
Extended variable and return the result in the input argument. 

The cosine is comput.ed by 

procedure CosX (var x : Extended); 

The sine is computed by 

procedure SinX (var x : Extended); 

The tangent is computed by 

procedure TanX (var x : Extended); 

The arctangent is computed by 

procedure ATanX (var x : Extended); 

0.3.10.5 'Random Number Generator 
Pseudorandom numbers are prO'vided by 

procedure RandcnX (var x : Extended); 

RandomX uses the iteration formula 

x = (75 * x) mod (231 - 1 ) 

A sequence of psuedorandom integral values r in the range 

1 i r i 231 - 2 

can be generated by initializing an Extended variable r to an integral value 
(the seed) in the range and making repeated calls RandomX (r)i each call 
delivers in r the next pseudorandom number in the sequence. 

If seed values of r are nonintegral or outside the range 

1 i r i 231 - 2 

then results are unspecified. 

0-24 



Pascal Reference Manual Floating-Point Arithmetic 

Example 

A procedure yielding a pseudorandom rectangular distribution on (0, 1): 

Exterior to the procedure declare and initialize 
canst SEED = 1018375230 {arbitrary seed } 

var P, one, r: Extended; 

begin 
I2X (1, one); 
P := one; 
Sca1bX (31, P); 
SUbX (one, P); 

l2X (SEED, r); 

{ one (- 1 
{ P (- 1 
{ P (- 2"31 
{ P (- 2"31 - 1 

{ r (- SEED 

The desired procedure can be written 

procedm"e Rand (var x : Extended); 
begin 

RancbIX (r); 
x := r; 
D1vX (P, x) 

end; 

0.3.11 Additional FPLib Procedures 

{ r (- randol int value ) 
{ x (- r ) 
{ OOI1Ialize to (0, 1) } 

} 
} 
} 
} 

} 

ftM'aCtion SItE_Environ : longint ; { Internal use only. } 
Procedure InitFPlib ; { Ini.tializes FPLib. } 
function GetHltAddress : longint ; { Returns halt address.} 
Procedure SetHltAddress ( HltAddress : longint ) ; { Sets halt address. } 

SANE_Environ is for internal use of other FPLib procedures. 

InitFPLib resets the environment and the halt address to default values. 

This initialization occurs automatically at the beginning of the outer block of 
a Pascal main program. InitFPlib may be called later to reestablish default 
conditions if desired. 

The halt address is the address to which control passes when a floating-point 
halt occurs .. as described in detail in The 68000 A$sembl},'-Lsngusge SANE 
Engine. GetHltAddress and SetHltAddress may be used to obtain the halt 
address. SetHltAddress may be used to change the halt address to the entry 
point of a halt- handling procedure. 

The following demonstrates a sample halt procedure: 

D-25 



Pascal Reference ".1anua} 

type IIi scree = reeord 
hal terrors : integer; 
ccrpending : integer; 
dopending : longint; 

end; 

procedure hal troutine 
( var IIi sc : iii scree; 

src2, src, dst : longint; 
opcode : integer ) ; 

Floating-Point Aritl"imetic 

(. Prints out the op word and address parfOeters of the floating­
point operation that halted, then displays the nfOe of each 
exception that occurred in that operation and whose halt was 
enabled_ After perusing this infOI1lation, the user presses 
f£TlRf to continue ex eeut i on as if no hal t had occurred _ • ) 

var em : Environ ; 
x : Exception ; 

begin (. haltroutine *) 
ProcEntry( env) ; 
writeln(' floating point halt taken on op code ',opcode) ; 
writeln(' Destination address ',dst ) ; 
~teln(' Source address ',src ) ; 
wri teln( , 2nd Source address I, src2 ) ; 
WEi te(' Exceptions Signaled wi th enabled hal ts : ) ; 
SetEnv(lIi sc. hal terrors) ; 
for x := INVALID to It£X1I:T do if TestHlt(x) then case x of 

INVALID : writer Invalid ') ; 
lKlERfl1Jll : writer Underflt:M .) ; 
OVERfUJsI : write(' OverfllM .) ; 
DIVBY.2EHl : wri te(' Di vByZero ') ; 
ItEXfCT : write(' Inexact .) ; 

end (* case x *) ; 
writeln ; 
writeln(' Press REll.Af to continue_ .) ; 
readln; 
ProcExit(env) ; 

end (* haltroutine *); 

_______________________ (. Elsewhere in the program ___ *) 

(* This code is executed prior to the floating-point operations for 
whi ch the hal ts are to be enabl ed. 01 dhl taddress is 
declared to be 8 longint _ *) 

0-26 



Pascal fiteference /\1anual Floating-Point Arithmetic 

oldhltaddress := GetHltAddress; (. Sale old halt address .• ) 
SetHltAddress( ard4(lhaltroutine) ) i (. Set new halt address to go to 

haltroutine .• ) 

(. Enable halts on "severe" exceptions .• ) 

SetHlt( INVAlID, 1Rl.E ) ; 
SetHI t ( OYERfUltl, 1Rl.E ) ; 
SetHI t ( DIVBY2fAl, 1Rl.E ) ; 

(. I f any of these three excepti ons subsequently occur, control 
will pass through haltroutine .• ) 

D-27 



Pas-cal Reference f>.1BnlJal Floating-Point Arithmetic 

0.3.12 FPLib Irtertace 

UNIT FPLib; INTRINSIC; 

INTERFACE 

{ Lisa Floating Point Library. } 

{$C Copyright 1983, 1984, Apple Computer Inc. 

CONST 

{ SANE: Standard Apple Numeric Environment 

{ Comments like !~// denote differences from the Apple // and /// SANE unit 
interface _ } 

TYPE 

SIGOIGLEN = 20; 

DECSTRLEN =255; 

Maximum length of SigDig. !A//: 28 } 

Maximum length of DecStr _ ! A/ /: 80 } 

{-----------------------------------------------------------------
** Numeric types. 
-----------------------------------------------------------------} 

Single = real; { !A//: array [0 .. 1] of integer} 
Double = array [0 .. 3] of integer,; 
Comp = array [0 .. 3] of integer; 
Extended = array [0 .. 4) of integer; 

{-----------------------------------------------------------------** Decimal string type and intermediate decimal type, 
** representing the value: 
** (-l)Asgn * 10

Aexp * sig 
-----------------------------------------------------------------} 

SigDig = string [SIGDIGLEN); 

DecStr 
Decimal 

= string 
= record 

sgn 
exp 
sig 

end; 

[DECSTRLEN]; 

0 .. 1; { Sign (0 for pos" 1 for neg). } 
integer; { Exponent. } 
SigDig {String of significant digits. } 

0-28 



P8SCBJ fi'eference f>.111nullJ Floating-Point Arithmetic 

{-----------------------------------------------------------------** Modes.. flags.. and selections. 
** NOTE: the values of the style element of the DecForm record 
** have different names from the Apple // and /// version to 
** avoid name conflicts. 
-----------------------------------------------------------------} 

Environ = integer ; 
RoundDir = (T()"£AREST, UPlAARD, DOWNWARD.. TOIAARDZERO); 
RelOp = (GT .. LT .. GL .. EO, GE .. LE .. GEL .. UNORO); 

{> { (> = )= <= <=)} 
Exception = (INVALID, UN)EHFLOW.. OVERFLOA... DIVSY2ERO.. INEXACT); 
Nl.IlIClass = (SNAN, ON AN.. INFINITE .. ZERO .. NORMAL .. DENORMAL); 
DecForm = record 

style 

digits 
end; 

(FLOATDECIMAL.. FlXEDDECIMAL); 
{ ! A/ /: FLOAT.. FIXED } 
integer 

{-----------------------------------------------------------------
** Two address .. extended-based axithmetic operations. 
-----------------------------------------------------------------} 
procedure AddS (x : Single; vax y Extended); 
procedure AddD (x : Double; vax y Extended); 
procedure AddC (x : Comp; vax 'oj Extended); 
procedure AddX (x : Extended; var y Extended); 

{ y := 'oj + X } 

procedure SubS (x : Single; var y Extended); 
procedure Sub[) (x : Double.; var y Extended); 
procedure SubC (x : Comp; var 'oj Extended); 
procedure SubX (x : Extended; var y Extended); 

{ y := 'oj - X } 

procedure MulS (x : Single; vax 'oj Extended); 
procedure MulD (x : Double; vax y Extended); 
procedure MulC (x : Comp; var y Extended); 
procedure MulX (x : Extended; var y Ext ended).; 

{ y := 'oj * X } 

procedure DivS (x Single; vax 'oj Extended); 
procedure Di vO (x Double; vax y Extended); 
procedure DivC (x Comp; vax y Extended); 

0-29 



Pascal href'erence "'''anual Floating-Point Arithmetic 

procedure DivX (x : Extended; var y : Extended); 
{ y := y / x } 

function CmpX (x : Extended; r : RelOp; y : Extended) boolean; 
{ CmpX := X r y } 

function RelX (x, y : Extended) : RelOp; 
{ x RelX y, where RelX in [GT, LT, EO, UNORD] } 

{-----------------------------------------------------------------** Conversions between Extended and the other numeric types, 
** including the types integer and longint. 
-----------------------------------------------------------------} 
procedure 12X (x integer; var y 
procedure S2X (x Single; var y 
procedure D2X (x Double; var y 
procedure C2X (x ComP.; var y 
procedure X2X (x : Extended; var y : 

Extended); 
Extended); 
Extended); 
Extended); 
Extended); 

{ y := X (arithmetic assignment) } 

procedure X21 (x : Extende~ var y : integer); 
procedure X2S (x : Extended; var y : Single); 
procedure X2D (x : Extended; var y : Double); 
procedure X2C (x : Extended; var y : Comp); 

{ y := X (arithmetic assignment) } 

{-----------------------------------------------------------------** !These conversions are not in the Apple // & /// SANE unit. 
-----------------------------------------------------------------} 
procedure L2X (x : longint.; var y : Extended).; 
procedure X2L (x : Extended; var y : longint); 

{ y := X (arithmetic assignment) } 

{-----------------------------------------------------------------** Conversions between the numeric types and the intermediate 
** decimal type. 
-----------------------------------------------------------------} 
procedure S2Dec (f : DecForm; x : Single; 
procedure D2Dec (f : OecF orm; x : Doubl e; 
procedure C2Dec (f : DecF orm; x : Comp; 
procedure X2Dec (f : DecForm; x : Extended; 

{ y := X (according to the format f) } 

var y : Decimal); 
var y : Decimal); 
var y : Decimal); 
var y : Decimal); 

procedure Dec2S (x : Decimal; var y : Single); 

D-30 



Pascal Reference Manual FloBting-Point Arithmetic 

procedure Dec2D (x 
procedure Dec2C (x 
procedure Dec2X (x 

{ y := X } 

Decimal; var y 
Decimal; var y 
Decimal.; var y 

Double); 
Comp); 
Extended).; 

{-----------------------------------------------------------------** Conversions between strings and the intermediate decimal type. 
-----------------------------------------------------------------} 
procedure Str2Dec (s : DecStr; var index : integer; 

var d : Decimal .; var ValidPrefix : boolean ).; 

d := s~ starting at s[index); on output index points to 
first character past accepted token; ValidPrefix is 
true if the token~ concatenated with the characters 
following it, is a valid prefix of a numeric token. 

procedure Oec2Str (f: DecForm; d: Decimal; var s: DecStr); 
{ s := d (according to the format f) } 

{-----------------------------------------------------------------** Conversions between the numeric types and strings. 
-----------------------------------------------------------------} 
procedure S2Str (f : OecForm.; x : Single; 
procedure 02Str (f : OecForm; x : Double; 
procedure C2Str (f : DecForm; x : Comp; 
procedure X2Str (f : OecForm; x : Extended; 

{ y := X (according to the format f) } 

vat" Y 
vat" y 
var y 
vat" y 

procedure Str2S (x OecStr; var y : Single); 
procedure Str2D (x OecStr; var y : Double); 
procedure Str2C (x OecStr.; var y : Comp); 
procedure Str2X (x DecStr; var y : Extended); 

{ y := X } 

OecStr); 
DecStr); 
DecStr); 
OecStr); 

{-----------------------------------------------------------------** Numerical 'library t procedures and functions. 
-----------------------------------------------------------------} 
procedure RemX (x: Extended; var y : Extended; 

var quo : integer); 
(new y) := (old y) - x * n~ where n is the integer closest 

to y/x; n is even in case of tie. 
quo := low order seven bits of integer quotient y / x~ 

so that -127 <= quo <= 127. 

D-31 



Psscsl RefeJl'ence ,~1snlJ81 Flosting-Poil7t f.1ritlhrnetic 

procedure SqrtX (ver x : Extended); 
{ x := sqrt (x) } 

procedure RintX (vax x : Extended); 
{ x := rounded to integral value of x 

procedure NegX (vax x Extended); 
{ x : = -x } 

procedure AbsX (vax x : Extended); 
{ x := Ixl } 

procedure CpySgnX (vax x : Extended; y Extended); 
{ x := X with the sign of y } 

procedure NexiS (ver x Single; y Single); 

procedure NextD (VBI' x Double.; y Double).; 
procedure NextX (vax x : Extended; y : Extended); 

{ x := next representable value from x towBI'd y 

function ClassS (x : Single; VBI' sgn integer) 
function ClassD (x : Double; vax sgn : integer) 
function ClassC (x : Comp; VBI' sgn : integer) 
function ClassX (x : Extended; vax sgn : integer) 

{ sgn := sign of x (0 for po~ 1 for neg) } 

procedure ScalbX (n : integer; ver y Extended); 
{ y := y * 2A n } 

procedure LogbX (ver x : Extended); 
{ returns unbiased exponent of x 

NumClass; 
NumClass; 
NumClass; 
NumClass; 

{-----------------------------------------------------------------** Manipulations of the static numeric state. 
-----------------------------------------------------------------} 
procedure SetRnd (r : RoundDir); 
procedure SetEnv (e: Environ); 

function GetRnd : RoundDir; 
procedure GetEnv (ver e : Environ); 

function TestXcp (x 
procedure SetXcp (x 
function TestHlt (x 
procedure SetHlt (x 

Exception) : boolean; 
Exception; anaff : boolean); 
Exception) : boolean; 
Exception; anaff : boolean); 

0-32 



Pascal .Reference Manual Fleming-Point Arithmetic 

{-----------------------------------------------------------------** ! Lisa and Mac only. 
-----------------------------------------------------------------I 
{ Procedures to Get and Set Extended Rounding Precision ere in Mathlib 

procedure ProcEntry (ver e : Environ); { Procedure entry protocol.} 
procedure ProcExit(e : Environ); { Procedure exit protocol. } 

{------------------------------------------------------------------------} 
ELEMS: Elementary functions. } 

procedure Log2X (var x : Extended); 
{ x := 10g2 (x) } 

procedure LnX (var x : Extended); 
{ x : = In (x) } 

procedure Ln1X (ver x : Extended); 
{ x := In (1 + x) } 

procedure Exp2X (~er x : Extended); 
{ x : = 2"x } 

procedure ExpX (ver x : Extended); 
{ x := e"x } 

procedure Exp1X (var x : Extended); 
{ x : = e"x - 1 } 

procedure XpwrI (i integer; var x : Extended); 
{ x : = x"i } 

procedure X~~rY (y Extended; var x : Extended); 
{ x := x"y } 

procedure Compound (r~ n : Extended; ver x : Extended); 
{ x := (1 + r)"n ) 

procedure Annuity (r~ n : Extended; ver x : Extended); 
{ x := (1 - (1 + r)"-n) / r } 

procedure AtanX (ver x : Extended); 
{ x := atan(x) } 

D-33 



Pascal Reference ~1Bnu81 

procedure SinX (ver x : Extended); 
{ x := sin(x) } 

procedure CoS>< (vat' X : Extended); 
{ x := cos(x) } 

procedure TanX (ver x : Extended); 
{ x := tan(x) } 

procedure RandornX (ver x : Extended); 
{ x := (7A 5 * x) mod (2A 31 - 1) } 

Floating-Point Arithmetic 

{------------------------------------------------------------------------} 
{ Procedures for lisa and Mac only. } 

function GetHl tAddress : longint ; { Returns hal t address. 
procedure SetHltAddress ( HltAddress : longint ) ; { Sets halt address. 
procedure InitFPlib ; { Initializes FPlib. 
function SANE_Environ: longint ; { Internal use only. 

{------------------------------------------------------------------------} 

D-34 



PascaJ Reference f>.1anuaJ Floating-Point Arithmetic 

004 MathLib 
The intrinsic unit MathUb~ contained in the file IOSFPLib~ contains 
procedLD·es in the following areas: 

• Envu·onment Procedures. 
• Elementary Funct.ions. 
• Utility Procedures. 
• Sorting. 
• Free-Format Conversion to ASCII. 
• Correctly Rounded Conversion bet.ween Binary and Decimal. 
• Financial Analysis. 
• Zeros of Functions. 
• Linear Algebra. 

0.4.1 How to Use MathLib 
MathLib is a Lisa intrinsic unit. Thus it mery be conveniently used by Pascal 
programmers. MathUb procedures may also be used by assembly-language 
programmers who observe the Pascal conventions for data structures and 
procedure calls. 

""'hen writing Pascal source code~ include a USES statement such as: 

USES FPLib, MathLib; 

after the program statement in a main program or after the interface 
st.atement in a unit.. If you are also using other units .. include FPLib and 
MathUb in the list of units in your one USES statement. They may be listed 
before or after other units you are usin~ but FPUb must appear in the list 
before MathUb. 

004.2 Environment Procedt.a"es 

Type RourKPrecision = ( ExtPrecision, DbIPrecision, RealPreci si on) ; 

Procedure SetPrecision ( p : RouruPrecision ) ; 
{ Set rounding preci sion. } 

function GetPrecision RoundPrecision ; 

Procedure ClearXcps ; 
Proce~e Clear:Hl ts ; 

{ Get rounding preci sion. } 
{ Turn off all exception flags. } 
{ Disable all halts. } 

The environmental control procedures in MathUb supplement those in FPUb. 
They work on the global floating-point environment. 

ClearXcps turns off all the exception flags at once. It is faster than the 
equivalent code: 

for e := INVALID to INEXACT do SetXcp( e, fALSE ) ; 

In the same way, ClearHlts disables all the halts at once. 

D-35 



Pascal h~te.te17Ce ,~1a,../ual Flosting-Poi,..;t Al"'ithrnetic 

The fv1athUb type RoundPrecision defines the possible set.tings of the 
rounding precision mode. The procedures SetPrecision and GetPrecision are 
used with RoundPrecision in the same way that SetRnd and GetRnd are used 
with RoundOir. 

Rounding precision is usually used to simulate single-only or double-only 
arit.hmetic on a system which uses extended-precision expression evaluat.ion. 
Thus to simulate 

z := X • Y ; 
as it would occur in a double-only system .. the following suffices: 

savepre : = GetPreci si on; { S8vepre of type RouncPreci sion. } 
setPrecision( DblPrecision ) ; 
D2X( x, xx ) ; 
AcH>( y, xx ) ; 
X2D( xx, z ) ; 
SetPrecision( savepre ) ; 

In this example the rounding precision affects only the Ad dO operation. The 
extended result. xx is rounded as if the final destination were double 
preciSion .. with inexact .. underflow .. and overflow signalled accordingly. The 
X20 operation will then raise no further exception. 

0-4.3 Elementary FLWlCtions 

Canst RancI10dulus = 2147483647 i 
{ Prille modulus far randol nl.Dber generation = r31-1. } 

function NextRandoi ( lastrandOlB : longint ) : longint ; 
{ Returns next IrandlD l longint with 1 <= nextrandoa (= 

Rand1odulus-1. } 

Procedure ASinX ( VBI' X : Extended ) ; ( X := asin(x) } 
Procedure f£osX ( V8I' X : Extended ) ; { X := &Cos(x) } 

Procedure SinhX ( VBI' X : Extended ) ; { X := sinh(x) } 
Procedure CoshX ( VBI' X : Extended ) ; ( X := cosh(x) } 
Procedure TanhX ( V8I' X : Extended ) i { X := tanh(x) } 

Procedure Abs2X ( x, y : Extended; var Z: Extended ) ; { z : = 8bs( y+ix) } 
Procedure ATan2X( x, y : Extended; V8I' z : Extended ) ; ( Z := BI'g(y+ix) } 

FPLib provides the procedure RandomX which operates on an extended 
argument. A valid argument for RandomX is an integral value between 1 
and 231-2 .. and RandomX replaces a valid argument. with the next such valid 
argument. MathUb provides a more efficient function NextRandom.. which 
operates on and returns longints. The following is equivalent to 

0-36 



Pascal f;.teterence "'tanua} 

RandomX( x ) for valid arguments x: 

X2l( x, Ix ) i 
LX : = NextRandml ( Ix ) ; 
L2X( lx, x ) ; 

Floating-Point Arithmetic 

NextRandom uses integer rather than floating-point arithmetic and thus is 
faster. The result of supplying an invalid argument to NextRandom is 
undefined. 

The constant RandModulus can be used as in either of the following 
examples to produce an array of numbers distributed uniformly strictly 
between 0 and 1: 

OR 

L2X( Rardtodulus, XRancl10dulus ) i 
12X( 1234, r ) ; 
for i := 1 to n do begin 

Randc:DX( r ) ; 
t := r i 
DivX( XRancl1odulus, t ) ; 
ali] := t i 

end ; 

L2X( RamItodulus, XRandtodulus ) ; 
lr := 1234 i 
for i := 1 to n do begin 

lr := NextRandt:n( lr ) ; 
L2X( lr, t ) ; 
DivX( xRard1odulus, t ) ; 
ali] := t i 

end ; 

The elementary functions ASinX .. ACosX .. SinhX .. CoshX .. and TanhX provide 
inverse sine and cosine, and hyperbolic sine, cosine, and tangent. Arguments 
in the interval [-1, + 1] are valid for inverse sine and cosine; for these 
arguments, ASinX returns a value in [-pi/2, +pi/2] while ACosX returns a 
value in [+0, +pi); the NaN for inverse trigonomet.ric funct.ions is returned for 
other arguments. The hyperbolic sine, cosine, and tangent ere defined for all 
arguments, but SinhX and CoshX signal overflow for large arguments. 

Abs2X and ATan2X are provided to facilitate coordinate conversion. Abs2x 
computes the square root of the sum of squares of its arguments; ATan2x 
computes the angle between a point (x, y) and the positive x-axis. ATan2x 
returns a number in [-pi, +pi], even if x or y is zero or infinite. 

To convert from rectangular coordinates (x, y) to polar coordinates (r, t.) : 

Abs2X( y, x, r ) ; 
ATan2X( y, x, t ) ; 

0-37 



Pascal Reference ft,18nUlll 

To convert back to rectangular coordinates: 

x := t ; Y := t ; 
CosX ( x ) ; SirlX ( Y ) ; 
tUIX ( r, x ) ; I1ulX( r, y ) ; 

D.4.4 Utility Procedures 

Flollting-Poinl Arithmetic 

Type FP _Type = ( TFP _byte, TFP _integer, TFP _I ongi nt, TFP _C(JIP, TFP _real, 
TFP _Double, TFP _Extended ) ; 

{ Ntaber type nBles for FP _size. } 

Procedure FP _Size ( x: Extended; vtJ[' sgn: integer; var class: NtIIClass ; 
vtJ[' size: FP _Type) ; 

{ Returns sign bit, class, and size of SII8llest type that 
~d hold x exactly. } 

function Sigri)fX ( x : Extended) : boolean; {True if x has neg sign. } 

ft.nCtion FP _New ( n : longint ) : longint ; 
{ Attempts to allocate n bytes on heap, returning address. 

Returns ord4(nil) if space not available. } 

The utilit.y procedures simplify common programming tasks. SignOfX returns 
TRUE if x has negative sign, and FALSE if x has positive sign. Remember 
that zero, infinity, and NaN have Sign bits too. The following are equivalent. 
but the first is more efficient if only t.he sign is of interest: 

OR 

if SignOfX ( x ) then ._. 

C := Class.)( ( x, sgn ) ; 
if sgn = 1 then _._ 

FP _Size tells the smallest storage type that can contain the value of x, and 
as a side benefit retln'ns the class of x and its sign in the same format that 
ClassX uses. If x contains an integral value that can be contained in a 
Comp variable, then FP _Size will return TFP _byte, TFP _integer,. TFP _longint,. 
or TFP _comp if the smallest integral container that will contain x is a byte 
-128 .. +127 .. an integer, a longint,. or a camp,. respectively. otherwise FP _Size 
will return TFP _real,. TFP _double, or TFP _extended if t.he smallest 
floating-paint container that will contain x is real, double, or extended, 
respectively. Thus the size of positive zero is TFP _byte, of negative zero is 
TFP _real .. of infinity is TFP _real, of denormal is TFP _extended, and of NaN is 
always one of the floating-point sizes. 

0-38 



P8Sc.~l Refcl'ence /\48niJ81 Flo8ting-Point Arithmetic 

FP _~,Jew is a SI10ltcut wa:y to allocate a number of bytes on the Pascal heap 
without specifying the data struct.ure to be placed there. It is used 
internally in MathUb to implement temporary arrays needed by the sorting 
and linear algebra procedures, but it is also useful for allocating space for 
other dynamic storage structures. The number of bytes to be allocated is 
specified by a longint argument and thus can be as large as desired, although 
the Lisa Pascal heap will rarely have more than about 600000 bytes 
available. If t.he requ~1:.ed spac:e is available .. t.hen FP _New ret.urns the 
address of the first byte of the allocated storage; if not available then 
FP _New ret.urns ord4(nil). For instance, to allocat.e an array of 10000 double 
precision" do the following: 

ronst IXlBLfSI2E = 8; { 8 = SizeOf(Double) } 

dpa := FP _New ( ard4( 10000) • OOD..ESI2E ) ; 
if dpa = ard4(nil) then { error } else { ok } 

Assuming the array is to be indexed from 0 to 9999, to access element k: 

type pd = A Double ; 

prJ := pointer( dpa + ard4(k) • IXl.BL.ESI2E ) ; 
ak := pdA 

; 

Just as in using the built-in Pascal procedure new, appropriate use of mark 
and release allows reuse of heap space: use mark(p) just before calling 
FP _"Jew" and then release(p) I,,,'hen that and any other heap space subsequently 
allocated wit.h new or FP _New is no longer in use. 

OA.5 Seating 

Procedure f1ath_Sort ( { General procedure to stably sort an arbitrary list.} 
first, last : integer; {Records first .. last will be sorted. } 
function Sorted ( i, j : integer ) : boolean; 

{ User-supplied procedure called by Math_Sort to canpare order of 
records i and j. Hath_sort guarantees first <= i < j (= last. 
sorted returns true if records i and j are already correctly 
sorted with respect to each other. } 

Procedure swap ( i, j : integer ) ; 
{ User-supplied procedure called by Math_Sort to swap records i 

and j. Math_sort guarantees first (= i < j (= 1 est. } 
Var error : boolean ); {True if sort routine failed due to 

insufficient heap space avail able _ } 

0-39 



Pascal Reference Mantlal Floating-Point ftrithmetic 

Math_Sort is a generalized merge sorting procedure. It has no knowledge of 
the structure of the records being sorted; it obtains the information it needs 
through the user-supplied procedures Sorted and Swap. Math_Sort only calls 
Sorted and Swap with i and j satisfying first i i < j i last. 

Mat.h_Sort contains t.wo phases: sort.ing and swapping. To sort n records, the 
number of calls of Sorted is proportional to n*log(n). The number of calls of 
Swap is at most n-l. 

The algorithm is stable: If prior to the sort, two records i followed by j are 
correctly ordered with respect. to each other, t.hen after the sort., the record 
that was originally at i will still be followed by the record that was 
originally at j. This is true even if Sorted( i.. j ) and Sorted( j.. i) are true, as 
might happen if Sorted were implemented by a comparison like 
I key(i] <= key[j] I. 

Int.ernally, Math_Sort creates and disposes of a temporary array on the Pascal 
heap of size 4 * (last - first + 1) bytes. If there is insufficient heap space 
available then error will be set TRUE and no sorting will be done. 

The following sorting example is based on an array of 1()(x) records 
containing a primary key .. which is a double precision number, and a 
secondary key, which is binary. For this example, records with NaN keys are 
to go to the end of the list. 

type srec = record 
key : Doubl e ; 
subkev : 0 .. 1 ; 

end ; 

VBr a : 8ITav [1 .. 1000] or srec ; 

function srecsorted ( i, j : integer) ; (* User Sorted function. *) 

var ki, kj : Extended; 

begin (* srecsorted *) 
D2X{a[i] . key., ki ) ; 
D2X( a[j] .kev, kj ) ; 
case ReIX( ki, kj ) or 

L T : srecsarted : = 1RE ; 
GT : srecsorted := fALSE ; 
ED : srecsorted := a[i].subkey (= a[j].subkey ; 
lHR) : srecsorted := ClassX( ki, sgn ) (= ClassX( kj, sgn ) ; 

end (* case *) ; 
end (* srecsorted *) ; 

procedure srecswap ( i, j : integer) ; (* User SWap function. *) 

0-40 



Pasc"81 h'etererlCe 1'4BfuJ81 Floating-Point Arithmetic 

var t : s:rec ; 

begi n (* s:recswap *) 
t := ali] ; 
ali] := a[j] ; 
a[j] := t ; 

end (* s:recswap .) ; 

... (* In the user's main prograa ... *) 

Math_Sort ( 1" 1000, s:recsarted" s:recswap, error ) ; 
if error then { not enough heap space} else { sorted (I( ) 

004.6 Free Flrmat Conversion to ASCII 

Type free_flll1ll8t = record 
t1axSi g : integer ; 
Si!LfFarm" 

Trai lj>oi nt, 

Int_EFarm, 

{ Specifications for free-farm output. } 
{ Maximum number of significant digits. } 
{ True if ufixedu style applies MaxSig to 

significant digits; false if to digits 
after the point. 

{ True if trailing point should be printed 
far inexact values in Uintegral- style. } 

{ True if uexponential- style acceptable for 
integral values. } 

Plus_Efana boolean; { True if uexponentialu style should exhibit 

end ; 

Procedure FP _Free_ASCII 
x : Extended ; 
Width : integer ; 
farm : Free_fantat; 
var s : Oecstr ) ; 

+ sign for positive exponents. } 

{ Procedure to provide free fam ASCII output. } 
{ NlIIIber to be converted fr(JII binary to ASCII. } 
{ HaximllD number of characters in output string.} 
{ Detailed format specifications. } 
{ Output destination string. If" after call, 

length(s) > Width, then x was inconsistent with 
the constraints Width or t1axSig. } 

0-41 



Pascal Reference MantJlll Floating-Point Arithmetic 

FP _Free_ASCII provides a solution to the following problem: Given a number 
to be displayed in ASCII in a fixed field width, choose an ASCII format that 
displays as much information about the number as possible with as few 
ASCII characters as possible,. not exceeding the fixed field width unless 
absolutely necessary. 

Thus the number one should be displayed as '1' and not '1.0' or 'leO'. 
Positive zero should appear as '0' end not 'OJXX)e-o'. Pi,. to be displayed in 
columns of width 1 .. 5, 10 .. and 15 .. should appear ~ '3', '3.142' .. '3.14159265', 
'3.1415926535898'. -0.00001 should appear as '-1E-5' unless Width >=7, in 
which case '-.00001' should appear. 

The following special cases are formatted strictly according to Width: 

For positive zero, s := '0'; for negative zero, s := '-0' unless Widt.h <= 1, in 
which case s := '0'. 

For positive infinity, s := 'Inf'; for negative infinity, s := '-lnf'. 

For NaNs, s will have the value that. X2St.r would return, unless that would 
exceed Width; then s := 'NaN' or '-NaN' depending on the sign bit, unless 
Width <= 3; then s := 'NaN' regardless of sign. 

The essential method for formatting normal numbers is to first attempt a 
representation wit.h integral format, then with a fixed decimal point. format, 
and then with an exponential format with a minimal number of decimal 
digits in the exponent. (FORTRAN programmers are familiar with these as I, 
F, and E formats, respectively.) At each stage, a representation is rejected 
if it would require more than Width ASCII characters to represent the 
number according to the specifications in the Free_Format record. 

The number of significant digits never ex ceeds 19 and may be further limited 
by MaxSig. 

Integral format is attempted only if .x contains a value that would fit 
exactly in a Compo The integral format. of t.en billion is 10000000000 .. but 
3.14, not being an integral value, is not displayed in integral format. When 
the Free_Format field Int_EForm is true .. t.hen numbers like ten billion are 
shortened to lE10 by converting three or more trailing zeros to an E and 
exponent. 

A string in fixed decimal point format might look like '123.456' or 
'.00000000000234565'. MaxSig specifies the maximum number of digits that 
will be displayed. Si!LFForm determines how MaxSig is applied. If 
Sig_FForm is TRUE then there will be no more than MaxSig significant 
digits. Significant digits are counted from the first nonze.fO digit to the last 
nonzero digit. Thus 123456(XX)()OC) ... 123.456, and .0000000000123456 all have 
six significant digits. If Sig_FForm is FALSE then there will be no more 
than MaxSig digits 8I'ter the point. Thus 1()(x)()()()()(x.123456, .123456, and 
.OOOC~)1 all have six digits after the point. 

0-42 



Pascsl R6fei"'ence ll,'l&7lJsl Floating-Point Arithmetic 

After rounding to the specified number of decimal digits, which may be 
reduced to fit in Width, trailing zeros after the point are ignored. Thus if 
the number, rounded to six digits after the point, was 123.456000, the last 
three zeros would be deleted. Sometimes all the digits after the point might 
be removed" as in the case of 123.000000, which would be truncated to '123.'. 
Whether a trailing point is retained is determined by the Free_Format field 
Trail_Point: if TRUE, then s := '123.'; if FALSE, s := '123'. Note that the 
original value of x in this ex ample could not have been 123 ex actly; x would 
then have been displayed as '123' in integral format. Instead it might have 
been 123.0000000000001 before rounding to six digits aft.er the point. 

Finally exponential format is tried. MaxSig specifies the maximum number 
of significant digits to be displayed. If x is ten billion, t.hen the exponential 
display will depend on the specification as follows: 

TrBilJPoint: Plus_EForm: String: 

false false lE10 
True false 1.El0 
false True 1E+10 
True True 1.E+l0 

When a slngle- or double-precision number is converted to extended and then 
converted t.o ASCII in free format with no more than 18 significant digits" 
then the ASCII string will satisfy the requirements of the IEEE Standard. But 
a free form string that, for instance, displays 12 digits in exponentiBl 
format, may differ by one in the last digit from the string that would be 
obtained by calling S2Str or 02Str with form = FLOATDECIt"lAL and digits = 
12. Both strings satisfy the IEEE Standard; a difference may only arise in 
the extreme exponent cases for which the Standard allows more than one 
possible result for conversion from binary to decimal. 

Oenormal x is always represented in exponential form with four exponent 
digits. 

In UsaCalc, the default formatting conventions are MaxSig = 14 .. Trail-point 
= FALSE, Int_EForm = FALSE, Plus_EForm = FALSE. Si9-FForm is set 
FALSE for numbers less than one in magnitude .. and TRUE otherwise. 

ExsmpJes: 

NaxSig 
Sig_FForm 
Trail Point 
Int_EForm 
Plus_Eform 

= 19 
= TRUE 
= TRLE 
=TRLE 
= FALSE 

0-43 



Pasc81 hte'ference MtmiJ81 Floating-Point Arithmetic 

Input = 1234567890.0123456789 

Width 

)= 20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 

<= 4 

Input = .00001234 

)= 25 
23 .. 24 
8 .. 22 
7 
6 

<= 5 

Input = -6.023e-23 

)= 25 
10 .. 24 
9 
8 

<= 7 

String 

'1234567890.012345678' 
'1234567890.01234568' 
'1234567890.0123457' 
'1234567890.012346' 
'1234567890.01235' 
'1234567890.0123' 
'1234567890.012' 
, 1234567890 .01' 
'1234567890. ' 
, 1234567890. ' 
'1. 234568E9, 
'1.23457E9' 
'1.2346E9' 
'1.235E9' 
'1.23E9' 
'1.2E9' 
'1.E9' 

, .00001233999999999999999' 
'1.233999999999999999E-5' 
, 1. 234E-5' 
'1.23E-5' 
'1.2E-5' 
'1.E-5' 

'-6.022999999999999999E-23, 
'-6 .023E-23' 
'-6.02E-23' 
'-6.E-23' 
'-6.E-23' 

D-44 



Pascal Ref'erence ft.1/lnual Floating-Poil'lt Arithmetic 

D-4.7 Correctly Rounded Conversioo Between Binary and Decimal 

Canst LSi{t)igLen = JO i { Length of significand string. } 

Type L~i~g = string[LSi~igLen] ; 

L~ecill8l. = record 
sgn : 0 .. 1 ; 
exp integer; 
sig : LongSi{t)ig; 

end ; 

Procedure X2LDec ( f : Decfam; x : Extended; var y : LorQ)ecill8l. ); 
{ Converts x to y, correctly rounded according to f. } 

Procedure LDec2X ( prec: RountPrecision; x: Lon{t)eciltal.; var y: Extended ); 
{ Converts x to y, correctly rounded according to prec. } 

The procedures X2LDec and LDec2X correspond to X2Dec and Dec2X.. and 
work similarly .. only more accurat.ely and much more slowly_ The IEEE 
Standard does not require correctly rounded conversion for single- and 
double-precision numbers for extremely large and small exponents .. and does 
not specify conversion at all for extended-precision numbers. The results 
returned by Dec2S, S2Dec, Dec2D .• and D2Dec may differ by one unit in the 
le~t significant bit or digit from the correctly rounded results,. while the 
results returned by Dec2X and X2Dec may differ by more than one unit from 
the correctly rounded results. 

The correctly rounded conversion routines accept or produce up to 30 decimal 
digits. X2LDec produces correctly rounded LongDecimal records according to 
its Dec Form parameter. To obtain correctly rounded results from Single, 
Double.. or Extended arguments.. use one of the sequences: 

OR 

OR 

S2X( s, x ) ; 
X2LDec( f, x, Y ) ; 

D2X( d, x ) ; 
X2LDec( f, x, y ) ; 

X2LDec( f, x, y ) ; 

LDec2X rounds correctly according to its RoundPrecision parameter. To 
obtain correctly rounded Single, double .. or extended result.s .. use one of t.he 
sequences: 

0-45 



Pascal Reference Manual 

OR 

OR 

1Dec1X( REAl...PREl:ISI(It, x, y ) ; 
X2S( y, s ) ; 

LDec1X( IB.PREJ:ISI(It, x, y ) ; 
X2D( y, d ) ; 

L.Dec1X( EX'TPRECISICIi, x, y ) ; 

Floating-Point flrithmetic 

No correctly rounded conversions to DecStr strings are provided.. but the 
routines Str2Dec and Dec2Str may be tricked to apply to LongDecimal 
arguments. To convert a DecStr x with no more than 19 significant digits to 
a correctly rounded Extended y .. do: 

var t : Decillal ; 
pd : A L~illal ; 

index := 1 i 
Str2Dec( x, index, t, ValidPrefix ) ; 
pd : = pointer ( anN( It) ) ; 
lDec1X( EX'TPRECIS1(I'f, pdA

, y ) ; 

and to convert an Extended x t.o a string y correctly, do: 

var t : Lor¥>eciJIal ; 
pd : A Decillal ; 

X2lDec( f, x, t ) ; 
pet : = pointer ( ard4( It) ) ; 
Dec2Str ( f, pdA

, Y ) ; 

X2LDec sets the inexact. flag appropriately. LDec2X sets the inexact" 
underflow, and overflow flags appropriately. 

The time required to convert correctly rounded is proportional to the square 
of the ex ponent. The most extreme double precision numbers take a few 
seconds, but extendeds with very large or small ex ponents require up to 
twenty minutes. Thus these routines are too slow to use habitually for 
converting the full range of extended-precision numbers; use these routines 
for applications such as obtaining the best possible approximations to 
tabulated values of mathematical constants such as pi or e. 

0..4.8 Financial Analysis 

Procedure Fin_Npv 
first, 
last, 

( { Coapute net value of series of payaents. } 
{ first ~t period. } 
{ Last p&yIIent period. } 

0-46 



Pascal Reference fo.1anu8J Floating-Point Arithmetic 

net : integer ; { Period at which net value is to be 
aaputed; need not be between first and 
last. } 

Tate : Extended i {Periodic interest rate. } 
var Npv : Extended; {Net payIIent value. } 
Procedure payaent ( i : integer; var pat : Extended ) 

) ; 

{ User-supplied procedure to provide pat, the payaent at 
period i. } 

{ fin_NPv guarantees first <= i <= last. } 

Procedure fin_Return ( { Analyze series of payIIents fIJI' external or 
internal rate of return. Discounting by 
external rates .ay be specified for positive or 
negative payIIents or both or neither. Standard 
internal rate of return is obtained by 
specifying, for exaaple, negperiod, posperiod := 

first-I. A conservative external rate of return 
is obtained by considering negative ~ents as 
out f.r(D the investor, posi ti ve payIIIents as in 
to the investor, and specifying: 

negperiod := first i 
posperi od : = last ; 
negrate := guaranteed safe rate of return; 
poU'ste : = expected average portfolio 

reinvestment rate of return. } 

first, { Initial payllent period. } 
last : integer; { final payment period. } 
negperiod, posperiod : integer ; 

{ Periods to which negative or positive ~ents 
are to be discounted; if < first or ) last then 
corresponding payIIents are not discounted. } 

negrate, pos:rate : Extended ; 
{ ~scount rates for negative and positive p~ents 

respectively; ignored if corresponding period 
does not satisfY first <= ••• period (= last. ) 

vm: nes : integer ; { Error code = ntJIber of changes of sign 
BDOng adjusted p&.yll8nts; on nOIllal return 
nes = Lncs = -2 if an inf or NaN 
payaent was supplied. } 

var ret : Extended; ( Rate of return: if neg = 1 then ret will 
contain the single real root ) -1; if ncs 
) 1 is odd, then ret will contain sene 
real root> -1; if neg > 1 is even ret 
II8Y' contain a real root > -1; othenti se 
ret will contai n NatL } 

0-47 



Pascal h~ference Manual Floating-Point firithmetic 

Procedure payment ( i : integer; var pat : Extended) 
{ User-supplied procedure to provide PIt, 

the payment at period i _ } 
{ fin_Npv guarantees first {= i (= last _ } 

) i 

Fin_Npv is used to calculate t.he time value of a series of payments. 
Typically~ a series of payments~ to occur at times 1 through n~ is to be 
discounted to a net present. value at time 0 using a fixed discount rate r. 
The contribution of the first payment pi will thus be pil(l+r); the next will 
be p21(1+r)"2; the last pn/(l+r)"n. For this t.ypical problem~ first=l, last=n, 
net=O, and rate=r. 

For a fixed series of payments., Vi., U1e net value at t.ime i., and Vj, the net 
value at time j, are related by: 

Vi = Vj * compound( rate, i-j). 
So if the net value is zero at one time, it will be zero at any other time. 

Note that discount rates (= -1 ere meaningless from a financial point. of 
view. 

Often a transaction involving payments between two perties at different 
times is regarded as fair if the net discounted value of the payment series is 
zero at the agreed upon discount rate. Alternately, given a series of 
payments regarded as fair, we might interpret t.he effective interest rate as 
one making the net value of the payment.s zero. Note that roundoff error 
may prevent the net value from ever being exactly zero. Furthermore, the 
net value can not be zero if any payment is infinite or a NaN, or if all the 
nonzero payments have the same sign. 

Fin_Return is designed to solve the problem mentioned above: given a series 
of payments.. what. discount rate would result in a net value of zero? This is 
the conventional form of the Internal Rate of Return (IRR) problem. In this 
form .. it should be obvious that there will not always be a rate corresponding 
to every series of payments: if any payment is infinite or NaN, or if all the 
payments have the same sign.. then no discount rate can ever make t.he net 
value zero. It turns out in other cases that there may be no such rate or 
there may be several rates with equally valid right to be called "internal rate 
of return." Modified methods for solving such problems will be discussed 
later. 

T (I obtain a conventional internal rat.e of return.. in the Fin_Return calling 
sequence set negperiod and posperiod to .. for instance .. first-lor lest+ 1. Then 
after the call.. the output parameter ncs ret.urns a code to aid in 
interpretation of the result ret. 

Fin_Return will not. attempt to compute an inte.rnal rate of return if any 
payment is infinite or NaN or if all payments are zero or all nonzero 

D-48 



Pascal Refej"'ence ,~1anI.J81 Floating-Point Arithmetic 

payments have the same sign. Fin_Return will return a NaN with code 
NaNIRR in these cases. Ncs = -2 if any payment was infinite or NaN; 
ncs = 0 in the other cases mentioned. 

If ncs )= 1 then its value is the number of changes of sign in the payment 
series. A change of sign occurs whenever a nonzero payment has different 
sign from the previous nonzero payment. Thus, in the sequence: 

I 10" 8" 7,0" 13" 0" -0" 1" 0" -1" 0, 0, -7" 0 

there is exactly one change of Sign" between + 1 and -1. The zero payments 
are ignored in computing changes of sign. 

The number of changes of sign is important: if it is an odd number then the 
internal rate of return problem has one or more solutions; if it is an even 
number }= 2 then the internal rate of return problem may have one or more 
solution. Generally, the number of real solutions> -1 is the number of 
changes of sign or is less than that number by an even integer. So a series 
with three changes of sign has three or one internal rates of return while a 
series with four changes of sign has fOla" two, or none. 

Fin_Return always computes an internal rate of return if ncs is odd. If ncs 
= 1 then assuredly ret contains the only internal rate of return. If ncs )= 3 
then ret contains an internal rate of return but there may be others and 
there is no $Surance that the value in ret is appropriate in the userls 
context. 

If ncs )= 2 is even, Fin_Return will search for an internal rate of return but 
will soon give up if it canlt find any. In the latter case ret will be NaNIRR. 
There is no way to distinguish the cases in which no internal rate of return 
exists from those in which Fin Return is unable to find one. If ret is not a 
NaN then it is a valid rate of return but there is at least one other that may 
be equally valid. 

When there are two or more changes of sign the interpretation of the 
internal rate of return is evidently not a simple matter. One may plot the 
net present value of a series as a function of discount rate. Points where 
the graph crosses the x -ax is are internal rates of return. Perhaps one of 
these pOints will be obviously suitable. 

Another approach to rate of return is to simplify the series of payments until 
there is only one change of sign. For instance" if there are only two 
payments of different sign" Pi at time i and Pj at time j" then the internal 
rate of return r is defined by the equation: 

(l+r) j-i = -P jIPi 

which should be solved by the formula: 

r := expl( Inl( -(Pi~j)jpi )/(j-i) ); 
Various methods based on this approach are called adjusted" modified .. 
financial management, or external rate of return. A subseries such as all the 

0-49 



Pas-eM Reference f-.18mJaJ Floating-Point Arithmetic 

positive peryments is replaced by its discounted value at some time.. using an 
externally defined discount rate. If that positive subseries is replaced by a 
single positive peryment .. either before or after all the negative payments .. 
then there will be exactly one change of sign and exact.ly one internal rate 
of return. Either the positive subseries or the negative subseries or both 
may be discounted; the same external discount rate may be applied to bot.h .. 
or different ones mery be applied to the negative and positive subseries. 

As an example .. consider the following series of payments: 

-3 .. -2 .. 2., -1., 1 IRR = -.325 

It has three sign changes .. so there are either one or three internal rates of 
return. We might discount all the negative payments to the beginning.. using 
a discount rate of 0.5, t.o get a different series: 

-43/9, 0 .. 2 .. 0 .. 1 IRR = -.156 

or we might discount all the positive payments to the end, using a discount 
rate of 0.75, to get: 

-3, -2, 0, -1 .. 57/8 

or we might do both to get: 

-43/9, 0 .. 0 .. 0 .. 5718. 

lRR = +.055 

lRR = +.100 

Each of these three series has a unique internal rate of return .. but these 
rates differ according to the choices made to simplify the problem. 

Fin_Return allows for all these possibilities. To discount the subseries of 
negative payments to a single time between first and last .. simply specify 
negperiod to be that time and specify a discount rate in negrate. Similarly .. 
posperiod and posrate may be used to discount the subseries of positive 
payments. 

The following code fragments correspond t.o the previous examples: 

var 
p : array[l .. n] of r~; 

procedure paylleRt(i: integer; V8r pat: Extended); 
begin 

S2X(p(i], JOt); 
end; 

begin 
S2X(0.5! negrate); S2X(O.75, posrate); 

Fin_Rettan(l, n, 0, n+l, negrate, pos:rate, ReS, retirr, payment); 
if ncs )= 1 then if not (ClassX(retirY, sgn) in [ tMIi,SNFIi ] ) then 

{ retirr is a conventional internal rate of rettan. } ... 

D-50 



Pas-cal Reference A1anuaJ Floating-Point flTithmetic 

fin_Retum(1, n, 1, n+1, negrate, posrate, ncs, retneg, payIIent); 
if ncs )= 1 then {retneg is a return rate based on discounting 

negative paylleRts to the begiming. } ... 

fin_Retum( 1, n, 0, n, negrete, posrete, ncs, retpos, payIIent); 
if ncs )= 1 then {retpos is a return rate based on discounting 

positive paylleRts to the end. } ... 

fin_Retum( 1, n, 1, n, negrete, posrete, fICS, retx, P&yII8nt); 
if ncs )= 1 then {retx is a return rate based on discounting all 

paylleRts to the beginning or end. } ... 
end· ., 

LisaCalc adopts the convention that negative payments are discounted to the 
first time period, and positive payments are discounted to the l~t time 
period. If only one discount rate is specified, it is used for both negrate and 
posrate. 

A common type of complex investment involves several payments in followed 
by several payments out. Even thoV9h with only one sign change there is a 
unique internal rate of return~ it may not be meaningful since it does not 
reflect external conditions. A frequent basis for analysis is to require that 
at the beginning~ sufficient funds must be on hand to be able to guarantee 
all payments in. So all the payments in are discounted to the first period 
using a "safelf guaranteed rate of return such as the return on a conventional 
savings account. Payments out~ on the other hand, are to be reinvested at. 
another rate which is probably higher than the safe rate. This rate is 
sometimes called the "portfolio" or "reinvestment.1f rate and represents the 
average return of the investment portfolio. These externally defined safe and 
reinvestment rates modify the rate of return of the invest.ment. 

""Ihen analyzing complex investments, remember that the computed results 
are no better than the ~umptions from which they were developed. In 
particular, measures of rate of return do not reflect the risk that some of 
the payments might not. occur as expected. 

D.4.9 Zero of a Nonl1flfB" Function 

Procedure Hath_Solve ( 
estl, est2 : Extended; 
var res : Extended ; 

{ Coaputes zero of functi on. } 
{ A priori estimates of zero. } 
{ f(res) II8Y = 0 or NaN or its sign may 

di ffer rna one of its neighbors or it 
nav merely be the x with .inim~ 
abs( f( x» EtDOOg those x sanpled by 
Math Solve. The user must deci de the 
significance of the result res. } 

0-51 



Pascal Reference Manual Floating-Point Arithmetic 

procedure f ( x : Extended i var fx : Extended ) 

) i 
{ User-supplied procedure to evaluate fx = f(x). } 

Math_Solve is used to find a zero z of a nonlinear function f(x), that is, a 
place where f(z) = o. Z is also called a root of the equation f(x) = O. 

The user must specify the function f which should be at least piecewise 
continuous; the better t.he function, the better Math_Solve can perform. The 
user may also specify one or two starting guesses. The user may supply 
NaNs as guesses; then Math_Solve will generate its own guesses which 
usually 'n'ill not be as efficient as those the user might have supplied. Zero 
finding is tricky enough with good guesses, so t.he user should supply the best 
information he can. 

Internally, rVlath_Solve has two main phases: the search for a sign change 
interval and the refinement of such an interval. PI sign change interval is an 
interval for which the values of f at the endpoints have different signs. If 
the function is continuous it will have a zero in the int.erval; if I/f(x) is 
continuous then f will have a pole in the interVal. Thus finding a sign 
change interval is critical. That interval is sought using a secant method 
whenever that is productive, and a parabolic method otherwise. After the 
sign change interval is found, the secant method is used unless bisection is 
faster. If no sign change interval is found, Math_Solve eventually gives up, 
leaving in res the pOint. at which the sampled function's magnitude was 
minimal. 

Only the user can determine the ultimate significance of res. That's because 
nonlinear functions display a variety of complicated behaviors that can't be 
handled equally efficiently by one subroutine. Many functions such as f(x) = 
1 + x * x have no real zeros while others may hide their zeros where 
Math_Solve can not find them. 

To interpret res, compute f(res). Seldom do we find the happy circumstance 
that f(res) is 0 without generating any exceptions. If inexact, underflow, or 
other exceptions were signalled then the user must decide whethe.r to ignore 
them or to subject res to the further tests described below. If f(res) is a 
NaN then Matt",-Solve has wandered outside the domain of validity of f. The 
user might want t.o extend the domain of f and try again. Somet.imes such 
extension is trivial, as in the case of a removable discontinuity. 

Suppose f(x) were defined as sin(x)/x; then at x = 0 its value is a NaN, and if 
fVlath_Solve were to look there it would stop with res = o. Remove this 
discontinuity by defining f(x) by 

it x = 0 then f(x) := 1 else f(x) := sir(X)/Xi 

A tougher case is a function like f(x) = sqrt(x) - 2 ; if Math_Solve happens to 
look at x < 0 it will stop on a NaN. In this case, extend this definition of 
f(x) leftward: 

D-52 



Pascal Reference fr.1e.nue.1 Floating-Point flrithmetic 

if x (= 0 then f(x) := -2 eJse f(x) := ~x) - 2; 

Many such domain problems can be avoided if the starting guesses are 
sufficiently close to the desired zero. 

Suppose now that f(res) is a nonzero number or infinite. One possibility is 
that res is actually a zero of f but that the computed value 1(res) is nonzero 
because of roundoff. Another possibility is that the true zero of f does not 
lie at a machine representable number but lies between res and one of its 
adjacent machine representable numbers. A third possibility is that res lies 
at or near a pole rather than a zero of f. Let's consider these cases in turn. 

Often it is possible to compute an analytical error bound ef(x) for a function 
f(x) that indicates a bound on the roundoff error in the function at x. Then a 
reasonable approach is to evaluate f(res) and ef(res) and accept res as an 
approximate zero of f if the error bound dominates the function value, that 
is, abs(f(res)) <= abs(ef(res)). 

Books on rounding eITor analysis provide examples for constructing analytical 
formulas for error bounds. Another possibility is to use interval arithmetic 
to obtain computational error bounds. The directed rounding modes of IEEE 
arithmetic are helpful in implementing interval arithmetic. 

A simpler alternative that suffices in many cases is simply to evaluate 1'(res) 
in each of the four IEEE rounding directions. If f is typical.l then f(res) will 
be different in each rounding direct.ion. If all four values are nonzero with 
the serne sign.l it is usually safe to assume that the true value of f(res) is 
not O. If one of t.he four values is 0 or if t.he signs vary, then the true value 
of f(res) may well be 0 and res may be taken to be an approximate zero of f. 
Furthermore, it often suffices to compute f(res) only in upward and downward 
directions. 

Turning now to the case that the true zero of f is not a machine 
representable number.l we may evaluate f at both of res's neighbors. If the 
sign of f at a neighbor differs from the sign of f(rest then f must have 
either a zero or a pole between res and its neighbor. On an interval in 
which f changes sign" it's not possible to distinguish zeros from poles. other 
knowledge of the function.l such as a bound on a derivative, may be helpful if 
this issue is in doubt. 

If f is known to have a pole In the region of interest .. it may be useful to 
remove the pole analytically before calling Math_Solve. For example.l instead 
of solving f(x) = 3 - lIx.l solve f(x) = 3x - 1 to avoid the pole at zero. But 
beware of introducing spurious zeros this way. 

If none of the above produces an indication of a zero at or near res.l then it 
may be that res is merely that point at which abs(f(x)) was minimized among 
those x sampled by Math_Solve. Since many functions do not have real 
zeros .. Math_Solve win eventually give up searching if for each point it tries.l 
f has the same sign and there is no significant decrease in the magnitude of 
f. If Math_Solve ever finds two points for which f has different signs.l then 

D-53 



Pascal Reference fo.18.nu8.} Flo8.ting-Point Arithmetic 

it will persist in searching for a solution until it finds a point x where f(x) is 
o or NaN; failing that, the sign change interval will be reduced in size until 
the endpoints are adjacent machine representable numbers. But if the 
function value seems to vanish between two such numbers" then it makes 
sense to accept one of them as a reasonable approximation of the zero. 

It must be emphasized that at. best Math_Solve will find a zero of the 
function defined by the procedure f, which may not be the same function the 
user had in mind when he wrote that. procedure. Because one function may 
have many mathematically equivalent expressions, it is the user's 
responsibility to find an ex~'ression t.hat will not. produce gratuitously wrong 
results in the presence of roundoff. Two examples of helpful principles: 
Avoid or minimize rounding error when possible (e.g., x/l0 instead of O.l*x).. 
and cancel early rather than late (e.9., (x+y)*(x-y) rather than x**2 - y**2). 

The following example is intended to find a zero of a polynomial function 

~x) = Co * xn + Cl * xn-1 + .•• + Cn-l * X + en 
Note that the function is evaluated in extended precision using Horner's 
method of nested multiplications and additions, and the Math_Solve result r 
is evaluated according t.o the guidelines discussed above: 

const n = { degree or polync:aial )= 0 } ; 

var C : array [ O •. n ] or real ; 

procedure peval ( x : Extended ; var px Extended); 

var i : integer ; 

begi n { peval } 
S2X( c[O], px ) ; 
rar i := 1 to n do begin { px := px • X + ci } 

tlulX( x, px ) ; 
AddS( eli], px ) ; 

end {px:= px • X + ci }; 
end {peval}; 

I1ath_Solve( gl, g2, r, peval ) ; 
ClearXcps ; 
fr := peval.(r) ; 
ir ClasS"X(D:, sgn) in [Qnan, Snan] then 

{extend runction cblain and tzy again} 
else i r (ClasS"X( D:, sgn) = 2ERl) and { no exceptions } then 

{ accept r as zero } 

0-54 



Pascal Reference Aianual 

else begin 
SetRnd( 1)(IIMIfR) ) ; 
fd := peval(r) ; 
SetRnd( lAIfR> ) ; 
fu := peval(r) i 
SetRnd( n:tEfRST ) ; 
if Sigr()fX( fd ) <> SigrilfX( fu ) then 

{ accept r as zero } 
else begin 

Floating-Point Arithrnetic 

left := NextX( r, neginf ); {neginf contains negative infinity} 
right := NextX( r, posinf )i{posinf contains positive infinity} 
fleft := peval(left) ; 
fright := peval(right) i 
if (SigRlfX( fleft ) <> Sigr()fX( f.r ) ) 

or (SigrOfX( fright) <> SigrOfX( fr ) ) then 
{ accept r as a zero} 

else { no zero was found } 
end ; 

end ; 

0.4.10 linear Algebra 
The linear algebra routines in MathLib solve common algebraic and 
st.atistical problems lIsing methoels that are independent of the storage 
formats of vectors and matrices. Prior to discussing specific routines we 
shall review relevant a<spects of linear algebra. 

0.4.10.1 Vectcrs and Lines" Transformations 
Linear algebra is concerned with elements in vector spaces and the class of 
linear t.ransformat.ions upon t.hem. If that sOllnds too abstract/ think about. 
this specific example: The vect.or space is the set of points in a graphics 
\I,'indo\',', forming a picture. One point/ t.he origin/ is special; often it is one 
of the corners. Typical linear transformations include the identit.y 
transformation, which does nothing, scaling transforrnat.ions/ which act. like a 
zoom lens t.o magnify or reduce the picture, and rotations, which rotate the 
picture by a fixed angle relative to the origin. It is possible to combine 
linear transformations to create new ones. 

The simplest. W8¥ to understand t.he effect of a linear transformation in two 
dimensions is to consider what it does to the unit circle, which is a circle of 
radius one around t.he origin. The identity transformation leaves the circle 
unchanged; scaling transformations make the circle bigger or smaller; 
rotations leave the unit circle seemingly unchanged, although circles centered 
elsel,'Ihere are rotated as a whole. The unit sphere is the three-dimensional 
counterpart to the unit circle. 

Most linear transformations can be inverted. For instance, a scaling 
transformation that magnifies by two can be inverteel by the inverse 

D-55 



"C'lClsting-PClint Arithtnetic 

transformation: a scaling transformation that reduces by two. A 45-degree 
clockwise rotation can be inverted by a rotation of 45 degrees 
counter-clock wise. 

Transformations that have inverses are called nonsingular; transformations 
without inverses are called singular. To understand singularity .. consider the 
cases of ordinary multiplication and division of numbers. The transformation 
"multiply by x", as in z := X * V,. is nonsingular unless x = o. The inverse 
transformation "divide by x"., as in y := Z I x .. does not exist. when x = o. 
v.r1e could define a "pseudo-inverse" transformation: 

if x = 0 then y := 0 else y := z/x ; 
which exists for any x .. but we would not expect to recover the original value 
of y unless by luck it were O. 

Two-dimensional linear transformations can only map the unit circle in 
certain ways. Nonsingular transformations map the unit circle into a circle 
or an ellipse. Singular transformations map the unit circle into a line 
segment or point.. There are no ot.her possibilities. A singular linear 
transformation that maps the unit circle to a line segment is not one-to-one; 
it. maps more t.han one point in the unit circle to the same point on the line 
segment. Such a transformation has no inverse becau£e a point on the line 
segment ma'Y have come from more than one point on t.he unit circle, and 
there's no wa:y to tell from which it came. HO\,'r'ever .. pseudo-in\,1erses have 
been defined which make somewhat. arbit.rary choices.; all linear 
transformations have pseudo-inverses. 

0.4.10.2 Transformations Between Spaces of Different Dimension 
Transformations may be defined which map elements of one vector space 
int.o elements of another. For instance, a painting of a three-dimensional 
scene is based on artistic pen::pect.ive convention for mapping t.hree 
dimensions into two. 

Linear t.ransformations that map vectors from two dimensions t.o three can at 
best map the unit circle into a two-dimensional object in the 
three-dimensional space. Transformations from three dimensions to t.wo map 
ti,e unit sphere into at most a t~,ro-dimensional object., of course. Generally 
speaking~ a transformation that maps t.he unit circle or sphere into an object. 
of the maximum possible dimensionality is said to be of full rank. 
Ot.herwise it is said to be rank-deficient. When t.he two spaces are of t.he 
same dimension ... then "full rank" is the same as "nonsingular" and 
''ran~<-deficient" is the same as "singular." 

0.4.10.3 Arrays and Matrices 
Programming languages deal with arrays of numbers rather than elements of 
a vect.or space and transformations upon them. Arra~/s of numbers can ha:'le 
any meaning that the programmer wishes to assign... but conventionally 
vectors are represented by an array 't't'ith one dimension. Thus an element of 
a t.wo-dimensional vector space might be dec:lared as 



Pascsl Reference "'1S/lilsl Floating-Point Arithmetic 

U : arr~ [1 .. 2] of real ; 
where u[1] is the first coordinate, along the x axis, and L(2] is the second 
coordinate, along the y axis, of a point in a two-dimensional space. The size 
of a vector is measured by its Euclidean length.. which is the square root of 
the sum of the squares of its elements: 

lengthu := sqrt( sqr(u[l]) + sqr(u[2]) ) ; 
Linear transformations mapping n-dimensional spaces to m-dimensional 
spaces are conveniently declared as 

a : arr~ [1. .11, 1.. n ] of real ; 
The following discussion uses the term "matrix" to refer to an array 
representing a single linear transformation. The individual components of a 
matrix A depend on the linear transformation that A represents. 

In general, the components of an array representing a two-dimensional linear 
transformation can be determined by examining the effect of the 
transformation on the unit. vectors Eland E2 corresponding to the 
coordinates (1 .. 0) and (0,1). The first column of A contains the coordinates of 
the result of applying the transformation to E1 and the second column 
contains the coordinates corresponding to E2. 

In two dimensions, to represent the identity transformation: 

far i := 1 to 2 do far j := 1 to 2 do 
if i=j then a[i,j] := 1 else a[i,j] := 0 ; 

while to represent a three times magnification: 

far i := 1 to 2 do far j := 1 to 2 do 
if i=j then ali, j] := 3 else ali, j] := 0 ; 

and to represent a rotation through angle t: 

a[1,1] := cos(t); a[l,2] := +sin(t) ; 
a[2,1] := -sin(t) ; a[2,21 := cos(t); 

One singular transformation is the zero transformation which maps everything 
to the origin: 

far i := 1 to 2 do for j := 1 to 2 do 
ali, j] := 0 ; 

Another singular transformation maps any vector vertically onto the x-axis: 
for i := 1 to 2 do for j := 1 to 2 do 

ali, j] := 0 ; 
a[1,1] := 1 ; 

It maps the unit circle into a line segment on the x-axis. 

Sometimes it is convenient to think of' a t.wo-dimensional array [1..m, 1..n1 
not cs a transformation from an n-dimensional vector space to an 



F~c81 Reference MtmI.JsJ Floating-Point lIrithmtttic 

m-dimensional vector space, but as a collection of n distinct vectors of 
dimension m. For instance, a triangle is defined by specifying its three 
vertices .. so an array of three columns may be used to represent a triangle. 

With the conventions for vectors and transformations outlined above .. there 
are operations for applying transformations to one or more vectors, 
composing transformations .. finding the vector that would be transformed to a 
given one, and computing inverse and pseudo-inverse transformations. 

Composing TransformaUc:ws 
To represent a transformation C which first performs A, then performs B .. 
multiply the matrix B times the matrix A; in mathematical notation.. C := B 
,. A. In Pascal you could write 

V8I' 
a, b, c : array [1. .n, 1. .n] of real. i 

far i : = 1 to n do far j : = 1 to n do begin 
t := 0 i 
for k := 1 to n do t := t + b[i, k]·s[k, j] i 
c[i,j] := t ; 

end i 

although the matrix multiplication rout.ine in MathLib is better. If you ever 
wondered why the textbook definition of matrix multiplication is so 
complicated, it is to insure that transformations can be combined by 
multiplying their matrices in this way. Matrix multiplication only works 
when the second dimension of B is the same as the first dimension of A, 
because it only makes sense to compose two such transformations when the 
result space of A is the same as the operand space of B. 

To apply a transformation represented by an array A to a vector X, simply 
multiply them together to get the transformed vector B: 

B := A • X 
Note that X might represent one or more vectors depending on the number of 
columns of X. 

linear Equaions 
The assignment B:= A* X computes S, given A and X. The inverse problem, to 
compute X.. given A and B, is usually called "solving a system of linear 
equations." The dimensions of B, A, and X must conform so that A and X 
could be multiplied to get B. If A is square and nonsingular, there will 
always be a unique X satisfying B=A*X. 

tViathLib procedures find X directly from B and A. Another way to find X is 
to find p .. the inverse transformation of A, and apply it to B: 

X := P * B 

0-58 



Pascal Ftteference f>.1anua} Floating-Point Arithmetic 

But computing P explicitly is always slower and less accurate than computing 
X directly from B and A. 

linear Least Squares 
The equation B=A*X sometimes has solutions X even when A is singular or 
not square. Sometimes there is more than one such X, at other times there 
is none. All these cases can be generalized as the "linear least squares" 
problem: Given B and A, find an X that minimizes the length of the residual 
R:=B-A* X. Such an X always exists; X will be unique if and only if y=o is 
the unique solution of the equation O=A*Y. 

Clearly X solves the linear equation problem B=A* X if and only if R:=B-A* X 
is zero. Therefore, MathLib provides just one set of procedures to solve the 
linear least squares problem; these procedures can also be used to solve 
linear equations. A solution X is always computed directly from B and A; if 
there is more than one solution X, MathLib returns an X whose length is 
small .. but not necessarily minimal among all .x minimizing the length of R. 

Only sQuare nonsingular matriCes A have inverses, but every matrix A has a 
pseudo-inverse P, which may be applied to B to compute X: 

X := P * B 

But computing P explicitly is always slower and less accurate than computing 
X directly from B and A. 

An even more inaccurate method for obtaining X is to solve the linear 
equation system: 

(AhB) = (AhA) * X 

using AT, the transpose of A. 

Avoid methods that require P or Ah A rather than A; they are inaccurate, or 
slow" or both. 

Existence 
MathLib always computes an x to solve a linear least squares problem. How 
can you tell whether that x is also a solution of the system of linear 
equations B= A* X? 

That depends on the shape of A. If A has at least as many columns as rows .. 
8Tld A is of full rank, then x would satisfy" in the absence of rounding 
errors, B=A* X. Fullness of rank is indicated by a condition number greater 
than zero, discussed in Section 0.4.10.4. 

If A has more rows than columns or is rank deficient, then it will be 
necessary to actually compute the residual R:=8-A* X to see if it is zero or 
negligible compared to B. 

Uniqueness 
fVlathLib always computes some X, even when the linear equation system 
B=A*X h~ zero .. one, or many solutions. The multiplicity of solutions may 

D-59 



Pas'Cal R-eference tvlanlJai Floating-Point flTithmetic 

be seen even for b=a* x where b .. a, and x are real numbers. This equation 
has a unique solution x=b/a if a~O. But if a=O .. then b determines t.he number 
of solutions. When a=O and b=O, any value of x is a solution; when a=O and 
b;tO .. no value of x is a solution. 

But the related problem "minimize I b - ax I" always has at least one 
solution x. When a=O, then MathLib chooses the solution x=O, regardless of 
b. This is because among all the solutions x, namely all the real numbers, 
x=O has the smallest magnitude. 

When MathUb has computed a solution x that minimizes R=B-A* X, how can 
'y'ou tell that is is unique? That depends on the shape of A. If A has more 
columns than rows, then X is never unique. If the number of A's rows is 
greater than or equal to the number of A's columns .• then X will be unique if 
and only if A is of full rank. Fullness of rank is indicated by a condition 
number greater than zero. 

D.AtlOA Ill-Conditioned Problems 
All the operations we have discussed are subject. to roundoff errors during 
each floating-point operation. This has important implications because 
roundoff errors blur t.he distinction between matriCes of full and deficient 
rank. A matrix may be of full rank, but if it is close enough to a 
rank-deficient matrix, the result X may not be satisfactory: it may be far 
from the correct solution X, and the residual R := B - A * X might not be 
minimal. The condition number COND supplies an estimate of the effect of 
roundoff: COND will be zero for singular and rank-deficient matrices A and 
greater than zero for nonsingular and full rank A. The largest possible value 
of COND is 1, which is attained by the identity and rotation matrices, among 
others. Generally, you can not count on more than 18+LOGIO(COND) 
significant digits being correct in the largest component of X .. with fewer 
reliable digits in smaller components. But occasionally X will by chance be 
more accurate than COND suggests. 

COND is actually an estimate of t.he relative change in A to make A into 
the nearest rank-deficient matrix. Matrices with small COND often cause 
trouble because they are close to rank-deficient. The corresponding 
transformations map the unit circle into very skinny ellipses, which from a 
distance look much like the line segments generated by rank-deficient 
transformations. Two points on opposite sides of such a skinny ellipse may 
be very close together, perhaps within a rounding error, but the corresponding 
points on the unit circle that they were mapped from may be much further 
apart. So small errors like rounding errors can cause big errors when 
computing solutions X to linear equations or least squares problems. 

0.4.10.5 Detenninants 
Mat-hUb provides routines to obtain the determinant of a square matrix. The 
determinant is not defined if the matrix is not square. 

The determinant of a square matrix has valid uses in statistical 
computations, but the determinant is most often used inappropriately as a x 

D-60 



Pascal Reference 1~18niJlll Floating-Point Arithmetic 

criterion for singularity. The determinant of a singular square matrix is zero 
and the determinant of a nonsingular square matrix is not zero .. but a 
nonzero determinant tells nothing about the condition of the problem. 
Consider a two-by-two matrix PI with u and v on the diagonal, lui i Ivl, and 
zeros off the diagonal. The determinant is u*v .. and the condition number is 
IU/vl. The distance to the nearest singular matrix is luli this distance 
relative to A is IU/vl, the condition number. 80th the determinant and 
condition number are zero if A is singular, an infrequent occurrence; only the 
condition number is helpful in the far more common case when A may be 
nearly, but not quite, singular. Since the determinant can only be used to 
distinguish singular from nonsingular,. and rounding errors blur this distinction .. 
the use of the determinant is not recommended. Use COND instead. 

OA.10.6 Iterative Improvement 
Iterative improvement is a technique for refining a first approximation to a 
solution of a linear equations or linear least squares problem. Given an 
approximate solution XO .. iterative improvement computes a residual R := 8 -
A ... XO and then solves the equation R = A * OX using a factorization of A. 
Then the improved solution is Xl := XO + OX. Usually one iteration 
improves the residual and moves Xl closer to the correct answer. 
Subsequent iterations are sometimes helpful but they may worsen R, Xn, or 
both. 

The LinSys operators in LisaCalc and Lisa BASIC alw8'YS perform one 
iteration of iterative improvement. 

OA.10.7 statistical Comptt.atiors with AT A 
Many important statistical problems of regression are formulated in terms of 
the matrix AT A, which is the matrix product. of AT, the transpose of A .. with 
A itself _ For instance the solution of the linear least squares problem 
"choose X to minimize the length of B-A* X" is the same as the solution of 
the linear equation 

ATA * X = AT * B 

in exact arithmetic. But since the solution must be computed in the 
presence of rounding errors and A may be rank-deficient or nearly so .. least 
squares problems are better solved without forming AT A. 

MathLib does provide two procedures for solving problems formulated in 
terms of AT A. Neither computes AT A or its factorization; instead the 
solutions are more accurately determined from the factorization of A itself. 
Standard errors can be determined from the diagonal elements of the inverse 
of AT A; these can be obtained by solving 

AT A * X = Identity 

Determinants of AT A are of interest when AT A is a correlation matrix. 

0-61 



Pascal Rere.rence ,~1aoual 

0.4.10.8 Linear Algebra Procedt.res 

Procedure Hat _Hul t ( 
n, 
p, 
.. : integer ; 
overlap : boolean ; 

FJoatiog-Poil'lt Arithmetic 

{ Hatrix multiplication B := A • X. } 
{ Rmfs of A = rows of B. } 
{ Coluans of A = rows of X. } 
{ Coluans of X = coluans of B. } 
{ True if B overlaps A or Xi teaparary 

B is created on heap and copied at 
end. } 

var error : boolean i {True if failure due to lack of heap 
space. Not possible if overlap 
false. } 

procedure afetch ( i, j : integer i V8[' aij : Extended ) ; 
{ User routine to provide aij := Ali, j]. } 
{ Afetch II8V ass ... 1 <= i <= n, 1 <= j <= p. } 

procedure xfetch ( i, j : integer ; V8[' xij : Extended ) ; 
{ User routine to provide xij := X[i,j]. } 
{ Xfetch may asSlDe 1 <= i (= p, 1 (= j (= lB. } 

procedure bstore ( i, j : integer; bij : Extended ) 
{ User routine to store B[i,j] := bij. } 
{ Bstore may asslDe 1 <= i <= n, 1 <= j <= ilL } 

) ; 

Procedure DR_factor ( 

n, 
p : integer ; 
pivot : boolean; 

{ Compute the DR factorization of 
I18trix A.} 

{ Htnber of rIMs of A. } 
{ NU.ber of columns of A. } 
{ True if pivoting is to be perfamed, 

false if not. } 
var m : P _CoR_Record; (Pointer to factorization of A, which 

will be created in the heap in an 
internal fOl1l8t. CoR will be ord(tfIL) 
if insufficient heap space is 
available. } 

procedure afetch ( i, j : integer i V8l" aij : Extended ) i 

{ User routine to provide aij := Ali, j]. } 
{ Metch IIay assLDe 1 <= i <= n, 1 <= j <= p. } 

) i 

Procedure DR_Condition ( 

var cond : Extended 
) ; 

{ EstiBate condition number of 
matrix whose factorization is in 
tRA

• } 

{ eRA is a decomposed matrix 
produced by CoR_factor. } 

{ Estill8te of condition nlDher. } 

D-62 



Pascal Reference />-"anual Floating-Point Arithmetic 

Procedure tR_Detenainant ( { Ca.pute detenainant of 
... trix whose factorization is in or. } 

tR : P _tR_Record i 

var det : Extended 
) i 

{ tRA is a decoIIposed I18trix 
produced by tR_factar. } 

{ Detenainant. } 

Procedure tR_Solve ( ( Coapute X = pseudo-inverse(tRA
) * 8 

to solve linear equations ar linear 
least squares problems. } 

II : integer i { Nulber of coltnnS of X and 8. } 
tR : p _tR_Record ; { or is a decoIIposed lIatrix 

produced by tR_factor. } 
var error : boolean; {True if procedure failed 

due to lack of heap space. } 
procedure bfetch ( i, j : integer ; var bij : Extended ) 

{ User routine to provide bij := 8U, j]. } 
{ Bfetch II8Y asStne 1 (= i (= n, 1 (= j (= II. ) 

procedure xstore ( i, j : integer ; xij : Extended ) ; 
{ User routine to store X{i,j] := xij. } 
{ Xstore naay asSUle 1 <= i <= p, 1 <= j <= II. } 

) ; 

Procedure tR_Residual ( { Compute residual R := 8 - AX far a 
linear equations ar linear 
least-squares probl8R } 

n, { NtIIber of r(MS of A. } 
P : integer ; { NuIber of COIUDnS of A. } 
II : integer i { Nuabel' of coluans of X and B. } 
procedure afetch ( i, j : integer ; V8[' aij : Extended ) ; 

{ User routine to provide aij := A[i,j]. } 
{ Metch II8V asSllle 1 (= i (= n, 1 (= j (= p. ) 

procedure bfetch ( i, j : integer; var bij : Extended ) 
{ User routine to provide bij := ali, j]. } 
{ Bfetch may SSSUle 1 <= i <= n, 1 <= j <= II. } 

procedure xfetch ( i, j : integer ; var xij : Extended ) ; 
{ User routine to provide xij := Xli, jl. } 
{ Xfetch IIay SSSlJle 1 (= i (= p, 1 (= j (= II. } 

procedure rstore ( i, j : integer ; rij : Extended ) 
{ User routine to store R[i,j1 := rij. } 
{ Rstore may ass .. e 1 <= i <= n, 1 <= j <= II. } 

) ; 

0-63 



Pascal Refererlce ft.1anU8l Floating-Point flrithmetic 

Procedure ~_ImprOU'e ( { Perf 0111 one iteration to illPl"OU'e 
the solution X of a linear equations 
or linear least squares problell 
A • X = B. } 

II : integer i { NUIber of collllnS of X and B. } 
~ : P _~_Record ; { ~A is a decc:aposed lIatrix 

produced by ~_factar. } 
var error : boolean; { . True if tR_IIlprOU'e failed 

due to lack of heap space. } 
procedure afetch ( i, j : integer ; var aij : Extended ) ; 

{ User routine to prOU'ide aij := A(i, j]. } 
{ Afetch may assume 1 (= i (= n, 1 (= j <= p. } 

procedure bfetch ( i, j : integer i var bij : Extended ) 
{ User routine to provide bij := Bli, j]. } 
{ Bfetch may assume 1 (= i (= n, 1 <= j <= II. } 

procedure xfetch ( i, j : integer i var xij : Extended ) ; 
{ User routine to provide xij := X[i,j]. } 
{ Xfetch lIay assume 1 (= i (= p, 1 (= j (= II. ) 

procedure xstore ( i, j : integer ; xij : Extended ) 
{ User routine to store X[i,j] := xij. } 
{ Xstore II8Y 8SSl.8e 1 <= i <= p, 1 <= j <= II. } 

) ; 

Procedure ~_TranSolve ( { CCJIIPUte a solution for (ATA) X = B, 
where T denotes transpose, given 
factorization of A in tJr. } 

.. : integer i { Nuober of colLans of X and B. } 
~ : P JJtJ~ecord i { ~A is a decc:aposed I18trix 

produced by CR_factor. } 
var error : boolean; {True if procedure failed 

due to lack of heap space. } 
procedure bfetch ( i, j : integer ; V8I" bij : Extended ) 

{ User routine to provide bij := B(i, j]. } 
{ Bfetch may BSstIIe 1 <= i (= p, 1 (= j (= II. } 

procedure xstore ( i, j : integer i xij : Extended ) 
{ User routine to store X[i,j] := xij. } 
{ Xstore lIay 8SstRe 1 <= i <= p, 1 <= j <= II. } 

) ; 

Procedure ~_TrarOetenainant ( {Ccapute deteIllinant of ATA 
given factorization of A in ~A. } 

~ : P _CR_Record ; { or' is a deaIIposed matrix 
produced by CR_factor. } 

var det : Extended { Det~inant. } 
) ; 

D-64 



Pascal f;.teference Manual Floating-Point Arithmetic 

Mat_Mult performs matrix multiplication in order to determine the effect of 
a linear transformation upon one or more vectors or upon another linear 
transformation. The user specifies the dimensions of arrays A .. X, and B, and 
defines procedures t.hat provide access to the elements of these arrays. 
Mat_Mult is not concerned with the internal organization of the arrays, which 
may be more gene.ral or of a different. struct.ure than the array type defined 
in the Pascal language. Mat_Mult calls the user-defined -fetch and -store 
procedures (afetch, xfetch .. etc.) to fetch or st.ore the (i .. j) element of the 
user's arrays. 

The result B may overlap the inputs A or X. If . so .. Mat_Mult must compute 
a temporary copy of B prior to st.oring aNY of it lest. an input be over1r'l'ritten 
prematurely. The boolean overlap is specified by the user accordingly. If 
the user has specified that the data overlap .. then Mat_Mult creates its 
temporary copy of B on the Pascal heap. If the heap is nearly full then 
there may not be sufficient room t.o hold B. Then Mat_Mult will terminate 
and set the boolean error true prior to performing any computation. If the 
user sets overlap true prior to the call then he must. checJ< error after the 
call. Any heap space used by Mat_Mult is released prior to returning. 

The following example illustrates a typical use of Mat_Mult and 
demonstrates overlapping X and B as well as how to create and access a 
matrix A which is larger than 32768 byt.es .. t.he limit for a Pascal data 
structure. 

const n = 1000 ; 
p = 100 ; 
.. = 2 ; 

var a : longint ; 
aifactor longint; { aifactor • i (= 400000 requires 32 bit 

integers } 
ajfactor : integer; { ajfactor • j (= 400 requires 16 

bit integers } 

b : array [ 1. _nl 1. _IR ] of real ; 
error : bool ean ; 

procedure fetcha( i l j : integer ; V8[' aij : Extended ) ; 
var pr : A real ; 
begin 

PI' := pointer( a + aifactor • i + ajfactar • j ) ; 
SZX( prAI aij ) ; 

end ; 



Pascal hteterence fo.1Bi7il8.} Floating-Point iU'ithmetic 

procedure fetchx( i, j integer; V8I' xij : Extended) ; 
begin 

S2X( b[i, j], xij ) ; 
end ; 

procedure stareb( i, j : integer ; 
begin 

X2S( bij, b(i, j] ) i 
end ; 

{ Create space far a on heap. } 

bij : Extended ) ; 

a : = fP _New( arIM( n ) • arIM( p ) • SizeOf( real ) ) ; 

if a = ard4(nil) then 
{ no rOOD far 81 } 

else begin 
aifactar := SizeOf(real) • arIM( p ) i 
ajfactar := SizeOf(real) ; 
a := a - aifactar - ajfactar ; 

{ 8 will point to 8[0,0] to improve the efficiency of afetch. } 

{ Now fill a with its elements, and b with the elements of x. } 

f1at_"ult( n, p, II, true, error, fetcha, fetchx, storeb ) ; 

if error then { not enough rOOll on heap } else { (I{ } 
end ; 

0.4.10.9 QR Factorization 
The Mat.hUb routines t.o solve systems of linear equations A * X = Band 
linear least squares problems depend on first obtaining the QR factorization 
of the matrix A. Every n-by-p matrix A can be factored into a proc'uct of 
two matrices Q and R. 

The n-by-n orthogonal matrix Q represents an n-dimensional rotation of the 
coordinate axes and so preserves lengths of vectors. The inverse of Q is just 
its transpose QT. 

The n-b'y-p t.riangular matrix R has zeros below the diagonal: if i > j ttlen 
R[i,j) = O. This form makes R * X = QT * B easier to solve for X t.han 
A * X = B. In MathUb, QR_F actor performs the factorization A = Q * R, 
and QR_Solve computes X. 

It turns out that smaller residuals B-A'" X can often be obtained if a process 
called column pivoting is performed during the QR factorization. This 

0-66 



Pascal Reference "'~/8nIl81 Floating-Point Arithmetic 

amounts to performing the factorization first on the column of largest norm, 
then on the column of largest norm among those remaining, and so on. The 
effect is to produce three factors Q * R * P = A, where P is a p-by-p 
permutation matrix: an identity matrix with some of the rows int.erchanged. 
Column pivoting is optional in QR_Factor since some matrices can be 
analyzed in advance to show that. they do not require it. But if column 
pivoting has not been shown to be unnecessary then it should be performed. 
Pivoting usually improves accuracy but it may slow down the factorization by 
a factor of five to ten per cent for square matrices. LisaCalc and Lisa 
BASIC always perform column pivoting. 

QR_F actor stores the factorization QRP in a condensed internal form on the 
Pascal heap. QR_F actor returns a pointer to the factorization for use by the 
other QR routines. None of these other routines releases the heap space 
allocated by QR_Factor, so it is up to the user to mark the heap before 
calling QR_Factor and t.o release t.he heap to the same mark when that 
factorization is no longer required. The other QR routines that allocate 
space on t.he Pascal heap release that space before returning. All t.he QR 
l-outines that require heap space contain an error flag in their calling 
sequences and terminate without storing any result if sufficient heap space is 
not available. 

OA_10_10 MathLib QR Procedures 
QR_Factor is the factorization routine. Its inputs describe A; its output is a 
pointer to the factorization QRP. That pointer and factorization are only 
useful to the other QR routines in MathLib. About 18 + 10np bytes are 
allocated on the heap if pivoting is not requestedi pivoting requires an 
additional 20p bytes. Execution time is proportional to n3 for an n-by-n 
matrix. 

QR_Oeterminant. computes the determinant of A very quickly given A's QR 
factorization. A NaN is returned if the mat.rix A is not square. 

QR_ Condition provides an estimate of the condition number of A with 
respect to solving linear equations or least squares problems. Conventionally 
this condition number is defined to be the ratio of the largest singular value 
of A to the smallest, and thus ranges from 1 upward to infinity. 
QR_ Condition inverts this ratio and so returns a number ranging from 1 down 
to O. Furthermore, since computation of singular values is fairly time 
consuming, QR_Condition only makes an estimate of the largest and smallest 
singular values .. which sometimes may vary substantially from the correct 
values. Execution time is about twenty percent of the time required for the 
factorization. QR_Condition requires lOp bytes of heap space. 

QR_Solve finds the X in A * X = B given A's factorization. It requires 
10 * max(n"p) bytes of heap space. The j'th column of X may overwrite the 
j'th column of B. 

0-67 



P8S'cai Reference ft.1snu81 Floating-Point Arithmetic 

QR_Residual provides a convenient computation of the residual 
R := B - A * X, not to be confused with the R in the QR factorization! 

QR_Improve uses QR_Residual and QR_Solve to perform one iteration of 
improvement of the solution X. 

QR_ TranSolve computes a solution X of AT A * X = B from the QR 
factorization of A. 

QR_ TranDeterminant computes the determinant of AT A from the QR 
factorization of A; even if A has no determinant, AT A is always square and 
always has a determinant. 

0.4.10.11 QR Example 
The following example codes a procedure LinSys that works somewhat like 
the LinSys in LisaCalc and Lisa BASIC, but its arguments are limited to 
Pascal real arrays. 

LinSys solves m linear least squares problems: 

"For k=l t.o m, find Xi,k to minimize the length of 

rn,k = (6n,1X1,k + Bn,2X2,k + ... + 8n,pXp,k) - bn,1( " 

If r j,k = 0 then Xi,1( also solves the m systems of linear equations 

type atype = array [1. _ n, 1. _ p] of real ; 
btype = array [1.. n, L .11] of real ; 
xtype = array [1. .p, L .1Il] of real ; 

V8I' amatrix atype; 
tnatrix : btype ; 
xlIBtrix : xtype ; 

det, cond : real ; 
{ Last det~inant and condition number computed by linsys. } 

function linsys ( a: atype; b: btype; var x: xtype ) : bool ean ; 

{ Linsys will find x to IDinillize b-~x, if possible; will return 8 
fooction value of fALSE if successful, TIlE otherwise; will 

D-68 



Pascal Reference Manual Floating-Point Arithmetic 

update det and cond with the detenainant and condition estill8te 
for a. } 

vsr I18I'ker : A integer: ; 
qr : P _tR_Record ; 
error : boolean ; 

procedure fetcha( i, j integer; vsr aij : extended ) ; 
begin 

S2X( ali, j], aij ) ; 
end ; 

procedure fetchb( i, j : integer; var bij extended); 
begin 

S2X( b(i, j], bij ) ; 
end ; 

procedure storex( i, j : integer ; 
begin 

X2S( xij, b[i, j] ) ; 
end ; 

xij extended); 

procedure fetchx( i, j : integer; V8I' xij extended); 
begin 

S2X( b[i, j], xij ) ; 
end ; 

begin { linsys } 
I18I'k(lI8I'ker) ; { Hark heap storage for subsequent release. } 

tR_Factor( n, p, {pivot} true, qr, fetcha) ; 
if qr = ord4(nil) then error := true 
else begin { factorization (J{ } 
~_DeteI1linant ( qr, det ) ; 
tR_Condition ( qr, cond ) ; { Cond error represented by NaN.} 
tR_Solve( II, qr, error, fetchb, storex ) ; 
if not error then begin { solve (J( } 

tR_Improve ( II, qr, error, fetcha, fetchb, fetchx, storex); 
{ Only one illprovement iteration. } 

end {solve (J{ ) ; 

end {factorization (I( ) ; 

linsys : = error ; 
release(lI8I'ker) ; { Release heap storage. } 

end {linsys}; 

D-69 



Pasc81 Reference fr.1snUBl Floating-Point flrithmetic 

0.4.11 Mathlib NaNs 
Besides the NaNs that can be generated by the procedures in FPLib, there 
are some NaN codes that are used by the procedures in MathLib to signify 
unusual results: 

Hane 
NaNIRR 

NeKlet 
Nat-Cond 

Dec 
39 

49 
50 

Hex 

$27 

$31 
$32 

Meaning 
Internal rate of retl~n is not real, does 
not exist, or was not found. 
nonsquare matrix has no determinant. 
Condition estimate could not be computed 
because of inadequate heap space. 

D-70 



Pas-c-8l h'eference fr.1snU8l 

004.12 tv1atH..ib Interface 

UNIT MathLib; INTRINSIC; 

INTERFACE 

{ Lisa Math Library. 

Floating-Point Arithmetic 

{$C Copyright 1983~ 1984~ Apple Computer Inc. } 

USES FPLib ; 

cct5T 

Lisa Math Library constants. 

RandModulus = 2147483647 ; 
{ Prime modulus for random number generation = 2A 31-1. 

LSigOigLen = 30 ; 

TYPE 

{ Length of significand string. } 

Lisa Math Library types. 

RoundPrecision = ( ExtPrecision~ DblPrecision~ RealPrecision) ; 

Type FP_Type = ( TFP_byte, TfP_integer, TfP_Iongint, TFP_Comp, TFP_real, 
TfP _Double, TFP _Extended ) ; 
{ Number type names for FP_size.} 

Free_format = record 
MaxSi g : i nt eger ; 
Sig_fForm, 

Trailyoint, 

Int_EForm, 

Plus_Eform boolean; 

end; 

P_QR_Record = longint ; 

{ Specifications for free-form output. } 
{ Maximum number of significant digits. } 
{ True if "fixed" style applies MaxSig to 

significant digits; false if to digits after 
the point. } 
True if trailing point should be printed for 
inexact values in "integral ll style. } 
True if "exponential" style acceptable for 
integral values. } 

{ True if "exponential" style should exhibit 
+ sign for positive exponents. } 

{ Pointer to matrix factored as ORP. 

D-71 



LongSigDig = string[LSigDigLen] 

LongDecimal = record 
sgn 0 .. 1.; 
exp integer; 
sig : LongSigDig ; 

end; 

Flosting-Poit'lt Arithmetic 

{------------------------------------------------------------------------} 
{ Elementary functions to support BASIC and Fortran. 

procedure ASinX var x : Extended 
procedure ACosX var x : Extended 

X := asin(x) 
x := acos(x) 

procedure SinhX var x Extended) {x:= sinh(x) 
procedure CoshX var x Extended) {x:= cosh(x) 
procedure TanhX var x Extended) {x:= tanh(x) 

{------------------------------------------------------------------------} 
{ Procedures to support polar coordinates. } 

procedure Abs2X ( x~ y : Extended; var z : Extended ) ; { Z := abs(y+ix) } 
procedure ATan2X( x~ y : Extended; var z : Extended); { z := arg(y+ix) } 

{------------------------------------------------------------------------} 
{ Random number procedure. } 

function NextRandom ( lastrandorn : longint ) : longint ; 
{ Returns next "random" longint wi th 1 <= nextrandom <= RandModulus-l.} 

{------------------------------------------------------------------------} 
{ Floating point status and mode procedures. } 

procedure Cl earXcps ; 
procedure ClearHlts ; 
procedure SetPrecision 

function GetPrecision 

{ Turns off all exception flags. 
{ Turns off all halt flags. 

p : RoundPrecision ) ; 
{ Set extended rounding preciSion. 

RoundPrecision ; 
{ Get extended rounding precision. 

{------------------------------------------------------------------------} 

D-72 



Pas·cal fiteterence f-.1anual Floating-Point Arithmetic 

{ Sort procedure. } 

procedure Math_Sort ( { General procedure to stably sort an arbitrary list.} 
first, last : integer; {Records first .. last will be sorted. } 
function Sorted ( i, j : integer ) : boolean ; 

{ User-supplied procedure called by Math_Sort to compare order of 
records i and j. Math_sort guarantees first <= i < j <= last. 
Sorted returns true if records i and j are already correctly 
sorted with respect to each other. } 

procedure Swap ( i, j : integer ) ; 
{ User-supplied procedure called by Math_Sort to swap records i 

and j. Math_sort guarantees first <= i < j (= last. } 
var error : boolean ); {True if sort routine failed due to 

insufficient heap space available. } 

{------------------------------------------------------------------------} 
{ Miscellaneous utility procedures. } 

function SignOfX ( x : Extended) : boolean; { True if x has neg sign. 

function fP_New ( n : longint ) : longint ; 
{ Attempts to allocate n bytes on heap, returning address. 

Returns ord4(nil) if space not available. } 

procedure fP _Size ( x: Extended.; var sgn: integer; var class: Nt.rnClass ; var 
size: fP_Type ) i 

{ Returns sign bit, class, and size of smallest type that 
would hold x exactly. } 

procedure fP_free_ASCII ( 
x : Extended; 
width : integer ; 
form : Free_format; 
var s : Decstr ) ; 

{ Procedure to provide free-form ASCII output. 
{ Number to be converted from binary to ASCII. 
{ Maximum number of characters in output string. 
{ Detailed format specifications. } 
{ Output destination string. If, after call, 

length(s) ) width, then x was inconsistent with 
the constraints Width or MaxSig. } 

{------------------------------------------------------------------------} 
{ financial analysis procedures. } 

procedure fin_Npv 
first, 
last, 
net : integer; 

{ Compute net value of series of payments. 
{ first payment period. } 
{ Last payment period. } 
{ Period at which net value is to be computed; 

need not be between first and last. } 

D-73 



PascBl Reference Manual Floating-Point f1rithmetic 

rate : Extended; {Periodic interest rate. } 
vex Npv : Extended; {Net payment value. } 
Procedure payment ( i : integer ; var pmt : Extended ) 

) ; 

{ User-supplied procedure to provide prot, the payment at 
period i. } 
{ fin_Npv guarantees first {= i <= last. } 

procedure Fin_Return ({ Analyze series of payments for external or internal 
rate of return. Discounting by external rates may be 
specified far positive ar negative payments or both or 
neither. Standard internal rate of return is obtained 
by specifyin~ far example, negperiod, posperiod := 
first-l. A conservative external rate of return is 
obtained by considering negative payments as out from 
the investor, positive payments as in to the investor, 
and specifying: 

negperiod := first; 
posperiod := last; 
negrate := guaranteed safe rate of return; 
posrate := expected average portfolio reinvestment 

rate of return. ) 

first, { Initial payment period. } 
last : integer; { Final payment period. } 
negperiod, posperiod : integer; 

{ Periods to which negative or positive payments 
are to be discounted; if < first or ) last then 
corresponding payments are not discounted. } 

negrate,. posrate : Extended ; 
{ Discount rates for negative and positive payments 

respectively; ignored if corresponding period 
does not satisfy first <= ... period <= last. } 

vex ncs integer; { Error code = nll1lber of changes of sign emong 
adjusted payments; on normal return ncs = 
1.ncs = -2 if an inf or NaN payment was 
supplied. } 

var ret Extended; { Rate of return: if ncs = 1 then ret will 
contain the single real root } -1; if ncs } 

1 then ret will contain some real root > -1 if 
ncs is odd; if ncs > 1 is even ret may contain 
a real root ) -1; otherwise ret will contain 
NaN. } 

Procedure payment ( i : integer; var prot : Extended 
{ User-supplied procedure to provide prot, 

the payment at period i. } 

0-74 



Pascal Reference Manual Floating-Point Arithmetic 

{ Fin_Npv guarantees first <= i <= last. } 
) i 

{------------------------------------------------------------------------} 
{ Nwerical algebra. 

procedure Mat_Mult ( 
n, 
p, 
m : integer; 
over lap: bool ean ; 

vat' error : boo I ean ; 

procedure afetch i,j 

procedure xfetch ( i,j 

procedure bstore i,j 

) ; 

procedure OR_Factor 
n, 
p : integer; 
pivot : boolean; 

procedure afetch i~j 

) ; 

procedure OR_Condition 

~ : P _OR_Record; 

vat' cond : Extended 
) ; 

{ Matrix multiplication B := A * X. 
{ Rows of A = rows of B. } 
{ Columns of A = rows of X. } 
{ Columns of X = columns of B. } 
{ True if B overlaps A or X; temporary B is 

created on heap and copied at end. } 
{ True if failure due to lack of heap space. 

Not possible if overlap false. } 
: integer; var aij : Extended ) ; 
{ User routine to provide aij := A[i,j). 
{ Afetch may asslffte 1 <= i (= n.. 1 <= j <= p. 

: integer ; var xij : Extended ) ; 
{ User routine to provide xij := X[i .. j). 
{ Xfetch may assume 1 <= i <= p, 1 <= j <= m. 

: integer; bij : Extended ) 
{ User routine to store B[i .. j) := bij. 
{ Bstore may assume 1 <= i <= n, 1 <= j (= m. 

{ Compute the OR factorization of matrix A. } 
{ Number of rows of A. } 
{ Number of columns of A. } 
{ True if pivoting is to be performed, false if 

not. } 
{ Pointer to factorization of A, which will be 

created in the heap in an internal format. 
OR will be ord(NIL) if insufficient heap 
space is available. } 

integer; vax aij : Extended ) ; 
{ User routine to provide aij := A[i,j). 
{ Afetch may assume 1 <= i <= n .. 1 <= j <= p. 

{ Estimate condition number of 
matrix whose factorization is in ORA. } 

{ ORA is a decomposed matrix produced by 
OR_Factor. } 

{ Estimate of condition number. } 

0-75 



Pascal RefeJ""er,ce fr.1a,."ua} Floating-Point fitithmetic 

procedure OR_Determinant ( { Compute determinant of matrix whose 
factorization is in QRA. } 

OR : P_OR_Record ; { QRA is a decomposed matrix produced by 
~_factor. } 

var det : Extended { Determinant. } 
) ; 

procedure OR_Solve ( { Compute X= pseudo-inverse(QRA) * B to Solve 
linear equations or linear least squares 
problems. } 

rn : integer; { Number of columns of X and B. } 
~ : P _OR_Record ; { QRA is a decomposed matri x produced by 

OR_Factor. } 
var error : boolean; {True if procedure failed due to lack of heap 

space. } 
procedure bfetch ( i,j : integer; var bij : Extended) 

{ User routine to provide bij := B[i,j]. } 
{ Bfetch may assume 1 <= i <= n, 1 <= j <= m. } 

procedure xstore i, j : integer; xij : Extended ) ; 

) ; 

procedure OR_Residual 

n" 
p : integer; 
m : integer; 
procedure afetch i,j 

procedure bfetch ( i,j 

procedure xfetch ( i,j 

procedure rstore i,j 

) ; 

procedure OR_Improve 

m : integer; 

{ User routine to store X{i,j) := xij. 
{ Xstore may assume 1 <= i <= p, 1 <= j <= m. 

{ Compute residual R := B - AX for a linear 
equations or linear least squares problem. } 

{ Number of rows of A. } 
{ Number of columns of A. } 
{ Number of col umns of X and B. } 

: integer; vat' aij : Extended ) ; 
{ User routine to provide aij := A[i"j). } 
{ Afetch may assume 1 <= i <= n, 1 <= j <= p. } 

: integer ; vax bij : Extended ) 
{ User routine to provide bij := B[i"j]. } 
{ Bfetch may assume 1 <= i <= n, 1 <= j <= m. } 

: integer ; vat' xij : Extended ) ; 
{ User routine to provide xij := X[i, j]. 
{ Xfetch may ass~ne 1 <= i <= p, 1 <= j <= m. 

: integer ; rij : Extended ) 
{ User routine to store R[i"j] := rij. 
{ Rstore may assume 1 <= i <= n" 1 <= j <= m. 

{ Perform one iteration to improve the 
solution X of a linear equations or linear 
least squares problem A * X = B. 

{ Number of columns of X and B. 

D-76 



Pas-c'S} Reference "'tanYa} Floating-Point Arithmetic 

OR : P_QR_Record; QRA is a decomposed matrix produced by 
OR_factor. } 

var error : boolean; True if procedure failed due to lack of heap 
space. } 

procedure afetch i,j: integer; var aij : Extended) ; 
{ User routine to provide aij := A[i,j). } 
{ Afetch may assume 1 <= i (= n, 1 <= j <= p. } 

procedure bfetch i,j: integer; var bij : Extended) 
{ User routine to provide bij := B[i,j]. 
{ Bfetch may assume 1 <= i (= n, 1 <= j <= m. 

procedure xfetch i,j: integer; var xij : Extended) ; 
{ User routine to provide xij := Xli,j). 
{ Xfetch may assume 1 <= i (= p, 1 <= j <= m. 

procedure xstore i, j : integer i xij : Extended ) 
{ User routine to store X [i., j] : = xi j. 
{ Xstore may assume 1 <= i {= P., 1 {= j {= m. 

) ; 

procedure QR_TranSolve Compute a solution for (ATA) X = B, where T 
denotes transpose., given factorization of A 
in OR .... 

m : integer; Number of columns of X and B. 
OR : P _OR_Record; OR'" is a decomposed matrix produced by 

OR factor. 1 
var error : boolean; {True if procedure failed due to lack of heap' 

space. } 
procedure bfetch i,j: integer; var bij : Extended) 

{ User routine to provide bij := B[i,j). 
{ Bfetch may assume 1 <= i <= p, 1 (= j (= m. 

procedure xstore i, j : integer; xij : Extended ) 

) ; 

procedure OR_TranDeterminant 

OR : P _OR_Record ; 

var det : Extended 
) ; 

{ User routine to store Xli, j] := xij. 
{ Xstore may assume 1 <= i {= p, 1 <= j (= m. 

Compute determinant of ATA given 
factorization of A in OR .... } 
OR'" is a decomposed matrix produced ~~ 
IJR_Factor. } 
Determinant. } 

{------------------------------------------------------------------------} 
{ Procedures for correctly rounded conversion between binary and 

decimal. } 

0-77 



Pascal Reference f>.111mJ81 Floating-Point Arithmetic 

procedure X2LDec ( f : DecForm; x : Extended; var y : longDecimal ) ; 
{ Converts x to y~ correctly rounded according to f. } 

procedure lDec2X ( prec: RoundPrecision; X: longDecimal; var y: Extended) ; 
{ Converts x to y~ correctly rounded according to prec. } 

{------------------------------------------------------------------------} 
{ Numerical analysis. 

procedure Math_Solve ( 
est 1~ est2 Extended; 
var res : Extended; 

Computes zero of function. } 
{ A priori estimates of zero. } 
{ f(res) ma:y = 0 or NaN or its sign ma:y differ 

from one of its neighbors or it may merely 
be the x with minimal abs(f(x)) among those x 
sampled by Math_Solve. The user must decide 
the significance of the result res. } 

procedure f ( x Extended ; var fx : Extended ) 

) i 

{ User-supplied procedure to evaluate fx = f(x). } 

{------------------------------------------------------------------------} 

0-78 



Pas'C:8/ Reference "'''anua} Floating-Point Arithmetic 

0.5 Macintosh Aoating-Point. Programming 
Sections 0.2 .. 0.3 .. and 0.4 describe floating-point programming for the Lisa. 
Floating-point programming for the Macintosh is similari the changes are 
described below. 

Assembly-language programs that use FP68K may be assembled on the Lisa 
and run on the Macintosh or on MacWorks. Pescal programs that use real 
arit.hmetic or t.he intrinsic units FPLib or MathUb may be compiled with the 
Lisa Pascal Compiler and run on Macintosh or Macworks. 

WARNING 

Early Macintosh developers received the files: 

INTRFC/SANE.TEXT OBJ/SANE.08J 08J/S ANE Asm.08J 
INTRFC/Elems.TEXT OBJ/Elems.OBJ OBJ/ElemsAsm.OBJ 

which are no longer recommended, and older versions of the files: 

OBJ/MacPesUb.08J TL ASM/T oolMacs. TEXT TL ASM/SANEMacs. TEX T 

which have been replaced by newer versions distributed with t.he 
Macintosh software supplement. Do not mix any of these older files 
with t.he newer ones described below. 

0.5.1 Assembly Language 
Include the files TLASM/SANEMacs .. TLASM/ToolEqu .. and TLASM/ToolMacs 
with your assembly-language source files. It is not necessary to link with 
any ot.her Lisa files to get assembly-language float.ing-point arit.hmetic. In 
the file TLASM/SANEMacs .. the first equate, FPByTrap .. must be 1 to run on 
Macintosh or Mac Works .• or 0 to run on the Lisa Operating System. 

0.5.2 Pascal Real Arithmetic 
It is not necessary to USE arty Pascal files to compile Pascal real arithmetic. 
Link with the files: 

OBJ/RealPesUnit OBJ/FPUnit OBJ/FPSub OBJ/MacPasLib 

0.5.3 FPLib and MathLib 
Regular versions of the units FPLib and MathLib .. called FPUnit. and 
MathUnit .. are available in the files OBJ/FPUnit and OBJ/MathUnit. Change 
your USES statement accordingly: 

lEES {SU tBJ/fPUni t } FPUni t, 
{$U c:BlItIatttJnit} Hatttmt ; 

Do not include {$U INTRFC/SANE} SANE or {$U INTRFC/Elems} Elems in 
your USES statement. 

0-79 



Pas-cal Reference f..18nu81 Floating-Point flrithmetic 

Link with the files: 

OBJ/MathUnit OBJ/FPUnit OBJ/RealPasUnit 
OBJ/FPSub OBJ/MacPasUb 

Only the procedures you act.ually need will be linked into your object file. 
Do not link with: 

OBJ/SANE OBJ/SANEAsm OBJ/Elems OBJ/ElemsAsm 

0.5.4 Restrictions 
Assembly-language programmers should clear the floating-point environment 
with FSetEnv prior to any float.ing-point. operations. Pascal programmers 
should call 

Procedure InitFPLib ; 

which is declared in the FPUnit interface, prior to any floating-point 
operations. 

MathUb depends on certain lOSPasLib procedures that are not implemented 
in OBJ/MacPesLib. Consequently .. certain MathUnit procedures do not work 
reliably. Affected procedures include financial rate of return, matrix, and 
sort.ing. 

0-80 



Appendix E 
QuickDraw 

E.l ~ This ~x . ........... .•.................. ....... ............•..... ............... E-l 

E.2 Jl\botJt G),rickDraw ••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• E - 2 

E.2.1 How To Use QuickDraw ........................................................... E - 3 
E.2.2 QuickDraw Data Types ........................................................... E-4 

E.3 1he Mathematical FOUldatioo of QuickDraw ......•..........................•...... E-4 

E.3.1 The Coordinate Plane ............................................................. E-4 
E.3.2 Points.................................................................................. E-5 
E.3.3 Rectangles........................................................................... E-6 
E.3.4 Regions ................................................................................ E-7 

E.4 Graptlic Entities .•.................•......•.........•..............•.....•.......•.•.......... E-9 

E.4.1 The Bit Image ~ ....................................................................... E-9 
E.4.2 The Bitmap .......................................................................... E-ll 
E.4.3 Patterns .............................................................................. E-13 
E.4.4 Cursors ............................................................................... E -13 

E5 TIle Drawing Envirorment: GrafPort ...............•.........•.•...................... E -15 

E.5.1 Pen Characteristics ............................................................... E -18 
E.S.2 Text Characteristics ............................................................. E-20 

E.6 c:oordinates in GrafPorts •••.••••••••••••.••••••••••••••••.•••••.•••.••••..••••.•••.•••.•• E-22 

E.7 C3erleral OisctJSSton of Drawing .........•••.•.•.••.....•..•.•. ~ •..•...................... E-24 

E.7.1 Transfer Modes ..................................................................... E-26 
E.7.2 Drawing in Color ................................................................... E -28 

E.6 Pictures CI1CJ Pol.Y9JOS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• E-26 

E.8.1 Pictures .............................................................................. E -29 
E.8.2 Polygons .............................................................................. E - 30 

E.9 (;)JickDrawRotJtines .....................•..........................•.•........•........... E-31 

E.9.1 GrafPort Routines ................................................................. E - 32 
E.9.2 Cursor-Handling Routines ...................................................... E - 36 
E.9.3 Pen and Line-Drawing Routines .............................................. E - 37 
E. 9.4 Text-Drawing Routines ......................................................... E -40 
E.9.5 Drawing in Color ................................................................... E -43 



Pascal Reference Hanll8l QuickDraw 

E.9.6 Calculations with Rectangles ................................................. E-ll.3 
E.9] Graphic ~erations on Rectangles ............................................ E-46 
E.9.8 Graphic ~erations on OVals .................................................... E-ll.7 
E.9.9 Graphic ~erations on Rounded-Corner Rectangles .................... E-47 
E.9.I0 Graphic ~rations on Arcs and Wedges .................................... E-ll.9 
E.9.11 Calculations with Regions ...................................................... E -51 
E.9.12 Graphic ~rations on Regions ................................................ E-55 
E.9.13 Bit Transfer ~rations .......................................................... E-56 
E.9.Ill. Pictures .............................................................................. E-S8 
E.9.IS Calculations with Polygons ..................................................... E-59 
E.9.16 Graphic ~erations on Polygons ............................................... E-61 
E.9.17 Calculations with Points ........................................................ E -62 
E.9~18 Miscellaneous Utilities .......................................................... E-6ll. 

E.lO OJstornizirlQ Q.dckOraw ~rations ...... _ ............................................ E-67 

E.l1 Using QuickOraw fmn Assermly Language .•.•...............•.........•.•.•....•.. E-71 

E.ll.1 Constants ............................................................................ E -71 
E.II.2 Data Types .......................................................................... E-7I 
E.11.3 Global Variables ................................................................... E -73 
E.I1.4 Procedures and Functions ....................................................... E-73 

E.l2 Graf3O: Three-Dimensional ~ics ••••.•••••...•••.••••••••••.•••••••.•.•••.....•. E-75 

E.12.1 How Graf30 is Related to QuickOraw ....................................... E -75 
E.12.2 Features of Graf3D ............................................................... E -75 
E.12.3 Graf3D Data Types ................................................................ E -76 
E.12.ll. Graf30 Procedures and Functions ............................................ E-77 

E_13 (;IlJickDraw Interface ..••••..• _ •.•... _ .•.•.•••.•.•..•.•.•.•.......•.......••..•.•••.•.•••.•. E-80 

E.13.1 Graf3D Interface .................................................................. E-89 

E.l4 Q.dckOraw Sample ~ ............................................................ E-91 

E.1ll..1 QOSarnple ........................................................................... E-9I 
E.1ll..2 Boxes ................................................................................ E-I01 

E.lS ~ •••....•...•...•.••..•.••...........................•..•...............•.•......... E-l06 

E.16 Glossary •...•............................•.•......................................•.....•.•... E-I08 



QuickDraw 

E.l I'bOUt ThIs AppendIx 
This appendiX describes QuicKDraw, a set Of graphics proceaures, functions, 
and data types that allows a Pascal or assembly-language programmer of Lisa 
to perform highly complex graphic operations very easily and very quicKly. It 
covers the graphiC concepts behind QuicKDraw, as well as the technical 
detaUs of the data types, procedUres, and functions you will use in your 
programs. 
We assume that you are famUiar with the Lisa WorkShop Manager, Usa Pascal, 
and the Lisa qleraUng system's memory management This graphics package 
is for programmers, not end users. Although QuicKDraw may be used from 
either Pascal or aSSembly language, all examples are given In their Pascal 
form, to be clear, concise, and more intuitive; Section E.11 describes the 
details of the aSSembly-language Interface to QulckDraw. 
The appendix begins with an intrOdUCtion to QulcKDraw and what you can do 
with It (Section E.2~ It then steps back a little and looKs at the mathemat­
ical concepts that form the foundation for QulckDraw: coordinate planes, 
points, and rectangles (section E.3~ O1ce you understand these concepts, read 
on to section E.4, which Clescrioes the graphiC entities cased on them--how 
the mathematical world of planes and rectangles is translated lnto the 
physical phenomena of Ught and shadOw. 
Then comes some discussion of how to use several graphics ports (section E.6), 
a summary of the basIc drawing process (section E. n, and a dIscussion of two 
more parts of QuickOraw, pictures and polygons (Section E.8~ 
Next, in Section E.9, there's a detailed descriptIon of all QuickDraw proce­
aures and functions, their parameters, call1ng protocol, effects, side effects, 
and so on--a11 the technical information you'll need each time you write a 
program for the Lisa 
Following these descrIptions are sections that will not be of interest to all 
readers. Special informatlon Is gIven In Section E.10 for programmers who 
want to customize QuiokDraw operations by overriding the standard drawing 
procedUres, in Section E.ll for those WhO will be using QulcKDraw from 
assembly language, and In Section E.12 for those interested in creating 
three-dimensIonal graphIcs usIng the Graf3D unIt 
Finally, there are llstlngs of the QuickDraw interface (Section E.13), two 
sample programs (Section E.14), and the ~ unit (E.15); and a glossary 
that explains terms that may be unfamiliar to you (section E.16~ 

E-l 



Pascal Reference H8I1tI8i QuickDraw 

E.2 Aboot QulCkDraw 
QuickDraw allows you to organize the Lisa screen into a number of individual 
areas. Within eaCh area you can draw many things .. as 1l1ustrated In Figure 
E-1. 

Text 

Bold 
Il8lic 
Underline 

OJBQDHm ... 
RoundRects 

00 
.:B 

You can draw: 

Lines Rectangles Ovals 

DO 00 

Wedges 

• " / / " , , 
" " / , , 

Polygons 

FIgure E-l 
8arfllles Of QJ1Ckoraw's Ab1l1tles 

Regions 

• Text characters in a number of proportionally-spaced fonts .. with variations 
that include bOldfacIng, Itallcizl~ underlining, and outlining. 

• Straight lines Of any length and width. 
• A var1ety of Shapes .. either solid or hollow .. inclUding: rectangles .. with or 

withOut rounded corners; full circles and ovals or wedge-Shaped sections; 
and polygons. 

• My otner aroltrary Shape or COllection Of Shapes .. again eltner soUd or 
hollow. 

• A picture consisting of any combination of the above items .. with just a 
single procedure call. 

In addition .. QuickDraw has some other abilities that you won't find in many 
other graphIcs packages. These ao1l1tles take care of most of the "house-

E-2 



Pascal Refe/el1Ce Manual QlJICkDraw 

keepIng"--the trIvial but time-consumIng and bothersome overhead tnat's 
necessary to keep thIngs in order. 

• The abllity to define many distinct fXJIts on the screen, each with its own 
complete drawing environment--its own coordInate system, drawIng 
location, character set, location on the screen, and so on. You can easily 
switch from one such port to another. 

• Full and complete Clf/:plng to arbitrary areas, so that drawing wIll occur 
only where you want It's llke a super-dUper COlorIng boOk that won't let 
you color outside the llnes. You dOn't have to worry about accIdentally 
drawing over something else on the screen, or drawing off the screen and 
destroyIng memory. 

• Off-screen drawIng. ,Anything you can draw on the screen, you can draw 
into an off-screen buffer, so you can prepare an image for an output 
device withoUt disturbIng the screen, or you can prepare a picture and 
move it onto the screen very quickly. 

Mel QulckDraw lives up to its name! It's very fast. The speed and 
responsiveness of the Usa user Interface are due prlmarlly to the speed of the 
QulckDraw package. You can dO good-quality animation, fast interactive 
graphics, and complex yet speedy text displays using the full features of 
QulckDraw. This means you don't have to bypass the general-purpose 
QulckDraw routines by wrlUng a lot of specIal routines to Improve speed. 

E.2.1 How To Use QuiCkDraW 
QuickDraw can be used from either Pascal or MC68000 machine language. It 
has no user interface of its own. 
If you're using Pascal, you must write a Pascal program that inclUdes the 
proper QulckDraw calls, complle It against the fHes OO/QUICkDraW.m.J and 
OO/QlJStw)rt.m.J, link it with the fUes listed in QOlQDStuff.TEXT, and 
execute the linked Object fHe. 
I f you're using machine language, your program shOUld include the proper 
QulckDraw calls, and .INCLLOE the file QDIGRAFTYPEs. TEXT. Assemble the 
program, Unk it wIth the fUes listed in QDlQOStuff.TEXT, and execute the 
llnked object fUe. 
A programming mOdel.. ~le" Is Included with the WOrkStmp software In 
the file QD/~le.TEXT (l1Sted In Section E.14.1); it shOws the structure of 
a properly organized QulckDraw program. What's best for beg1nners Is to read 
through the text, and, us1ng the superstructure of the program as a "shell", 
modIfy 1t to suit your own purposes. O1ce you get the hang Of wrIting 
programs inside the presupplied shell, you can work on changing the shell 
Itself. 
Note that all flIes related to QuickDraw are prefiXed by "(;1:)1'. 

QuickDraw inclUdes only the graphiCS and utility procedUres and functions 
you'll need to create graphIcs on the screen. Procedures for dealing wIth the 

E-3 



Pascal Reference Manual C)iJICkDraw 

mouse, cursors, keyooard, and screen settings, as well as thOse allowing you to 
generate sounds and read and set clOCks ancJ dates, are described In ,A.ppendlx 
F, HardWare Interface. 

E2.2 QJickDraW Data Types 
QuickDraw defines three general data types, QOByte, QOPtr, and QD-tcnne: 

type f;pyte = -128 •. 127 
Pltr = AQIIJyte 
f;.OfCJ'l(lle = "lIPtr 

other data types are described througnout this appendix In the sections in 
which they're relevant. For a summary of all QuickDraw data types, see 
Section E.13.2. 

E.3 llle Mathematical Foumtion of QuickDraW 
To create grapnlcs that are OOth precIse and pretty requires not super-Charged 
features but a firm mathematical foundation for the features you have. If the 
mathematics that unClerIle a graphIcs package are Imprecise or fuZZY, the 
graphics will be, too. QuickDraw defines some clear mathematical constructs 
that are widely USed In Its procedUres, functions, and data types: the coordi­
nate pJ8!1fg the point" the rectangle, and the region 

E.3.1 The COOIttlnate PICl1e 
All information abOUt location, placement, or movement that you give to 
QulckDraw Is In terms of coordinates on a plane. The coordinate plane is a 
tWo-dimensional grid, as lllustrated in Figure E -2. 

-32768 
t 

- 32768 ~ 1-1-4-++++ ............ ....-+++0++04 -t 32767 

"-
32767 

Flgtue E-2 
llle COordinate PICl18 

E-4 



Pascal Reference Manual QulckDmw 

There are two dIstinctive features of the QUickDraw coordInate plane: 
• All grid coordinates are Integers. 
• All grid Hnes are Infinitely thin. 

These concepts are Important! First, they mean that the QuiCl<Draw plane is 
finIte, not InfinIte (altnough It's very large). Horizontal coordinates range 
from -32768 to +32767, and verUcal coordinates haVe the same rCflge. . 
8eCOnCJ, they meCfl tnat all elements represented on the coordinate plane are 
mathematically pure. Mathematical calculations using integer arithmetic w111 
prOdUCe intuItIvely correct results. If you keep In mInd that grId lInes are 
Infinitely thin, yOU'll never have "endpOint paranoia"--the confusion that 
results from not knowIng wtlether that last dot Is InclUdeCJ In the Une. 

E.3.2 Points 
01 the coordinate plane are 4;294,967;296 unique points. Each point is at the 
intersection of a horizontal grid llne and a vertical grid 11ne. As the grid lines 
are infinItely thin, a point is infinitely small. Of course there are more points 
on this grid than there are dots on the LIsa screen: when using QulcKDraw you 
associate small parts of the grid with areas on the screen, so that you aren't 
bound into an arbitrary, limited coordinate system. 
The coordinate origin (0,0) is In the middle of the grid. Horizontal coordInates 
increase as you move from left to rlgnt, and vertical coordinates increase as 
you move from top to bOttom. This is the way both a TV screen and a page 
of Engllsh text are scanned: from the top left to the bOttom right 
You can store the coordinates of a poInt in a Pascal variable Whose type Is 
defined by QulckDraw. The type Point is a record of two integers, and has 
the followIng structure: 

type VHSelect = (V, H); 
Point = record case integer Of 

0: (v: integer; 
h: integer); 

1: (Vh: array [VHSelect] of integer) 

end; 

The variant part allows you to access the vertical and hOrIzontal components 
of a point either incUvlClUally or as an array. For example, if the variable 
goocPt were declared to be of type Point, the following would all refer to the 
coordinate parts of the point: 

goocPt. v goocPt. h 
goocPt.Vh(V] goocPt.Vh(H] 

E-S 



Pascal Reference Manual Qu!ckDraw 

E.3.3 Rectangles 
My two points can define the top left and bottom right corners of a 
rectangle. As these points are infinitely small" the borders of the rectangle 
are infinitely thin (see Figure E - 3~ 

Left 

Right 

Figure E-3 
A Rectcrlgle 

Rectangles are used to define active areas on the screen, to assign coordinate 
systems to graphic entities, and to specify the locations and sizes for various 
drawing commands. QulckOraw also allows you to perform many 
mathematical calculations on rectangles--Changlng theIr sizes, Shifting them 
around, and so on. 

Remember that rectangles, like points, are mathematical concepts that 
have no direct representation on the screen. The association between 
these conceptual elements and their physical representations is made by 
a bitmap, aescribed below. 

E-6 



Pascal Reference I'1aI7tJaI QlIfckDraw 

TIle aata type for rectangles Is Reel and consIsts Of four Integers or two 
points: 

type Rect = record case integer of 

0: (~: integer; 
left: integer; 
bottan: integer; 
ri~t: integer); 

1 : (tQJi.eft: Point; 
botRi~: Point) 

em; 
Again, the recora varIant allows you to access a varIable of type Rect either 
as four boundary coordinates or as two diagonally opposing comer points. 
COmbined wIth the record variant for poInts, all of the followIng references to 
the rectangle named ORect are legal: 
~ {type Rect} 

bRect.~eft bRect .botRi~t {type Point} 

bRect.~ bRect.left {type integer} 
bReCt.topLeft.v bReCt. topl.eft. h {type integer} 
bReCt.topLeft.Vh[V) bReCt.topLeft.Vh[H] {type integer} 

bReCt. bottan bRect.ri~ {type integer} 
bRect.bOtRight.v bReCt . bOtRight . h {type integer} 
bReCt.bOtRight.Vh[V) bReCt.bOtRignt.Vh[H] {type integer} 

WARN1f',K2 

If the bottom coordinate of a rectangle is equal to or less than the top, 
or the rlght coordInate Is equal to or less than the left, the rectangle 
is an empty rectangle (l.e., one that contains no biU). 

E.3.4 Regions 
unllke most graphiCS packages that can manipulate only sImple geometrIc 
structures (usually rect1linear, at that), QuickDraw can gather an arbitrary set 
of spatially coherent pOints Into a structure called a region, and perform 
complex. yet rapid manipulations and calculations on such structures. This 
remarkable feature not only will make your standard programs simpler and 
faster, bUt will let you perform operations that would otherwIse be nearly 
impoSSible; it Is fundamental to the Usa user Interface. 

E-7 



Pascal Reference Manual QuICkDraw 

You define a region by drawing Hnes, shapes such as rectangles and ovals, or 
even other regions. The outline of a region should be one or more closed 
loops. A region can be concave or convex, can consist of one area or many 
disjoint areas, and can even have "hOles" in the middle. In Figure E -4, the 
region on the Jeft has a hOle In the mIddle, and the region on the right 
consists of two disjoint areas . 

.. Jfft1 

Figure E-4 
Regions 

Because a region can be any arbitrary area or set of areas on the coordinate 
plane, it takes a variable amount of Information to store the outline of a 
region. The data structure for a region, therefore, is a variable-length entity 
wI ttl two fixed flelds at the begImlng, followed by a variable-length data 
field: 

type Regim = record 
JVlS1ze: integer; 
I gllBIlJx: Rect; 
{optional region definitlm data} 

end; 

The r{JlSize field contaIns the sIze, In bytes, of the regIon varIable. The 
qJ830x field is a rectangle which completely encloses the region. 
The simplest region Is a rectangle. In this case, the rgeBox field defines the 
entire region, and there is no optional region data For rectangular regions (or 
empty regions), the qJlSlze field contains 10 (two bytes for IglSlze, plus 
ei~t for qJ83ox). 
The region definition data for nonrectangular regions is stored in a compact 
way which allows for hi~ly efficient access by Quicl<Draw procedures. 

E-8 



Pascal RefeJef1Ce Manual QulckDraw 

As regions are of variable Size, they are storeo aynamlcally on me neap, ana 
the ~rat1ng system's memory management moves them arOl.lO(2 as their sizes 
change. Being aynamlc, a region can be accessea only through a poInter; but 
When a reg10n is moved, all pointers referring to It must be updated. For this 
reason, all regions are accessed througn htntles, Which point to one master 
pointer Whicn In tum points to the region. 

type ~r = "Reglm; 
~le = "~r; 

Wren the memory management relocates a region's data In memory, It updates 
only the R~ master pointer to that region. TIle references througtl the 
master pointer can find the region's new hOme, bUt any references pointing 
directly to the region's previous position In memory would now point at dead 
bits. To access IndividUal fields of a region, use the region handle and double 
Indirection: 

~AA .l1JlSlze 
~AA.rg1BJx 

~AA .rg1BJx.~ 

~A.rg1BJX 

{size Of region WhOSe hCnBe Is myR~ 
{recta1gle enclosing the sane reglm} 
{mlnlnun vertical coordlnate Of all points 
In the reglm} 
{semantically Incorrect; will not CQ01)lle If 
myRgl Is a rg1-icrldle} 

Regions are created by a QulckDraw function whlcn allocates space for the 
region, creates a master pointer, and returns a region handle. When you're 
dOne with a regIon, you dispose of It with another QulckDraw routine WhIch 
frees up the space used by the region. O'lly these calls allocate or deallocate 
regions; do not use the Pascal procedUre new to create a new region! 
You specify the outl1ne of a region with procedUres that draw Unes and 
shapes, as described in Section E.9, QulckDraw Routines. M example Is given 
In the discussion of CloseRgn in section E.9.ll, Calculations with Regions. 
Many calculations can be performed on regions. A region can be "expanded" 
or "shrunk" and, given any two regions, QulCkDraw can find their union, 
intersection, difference, and exclusive-CR; it can also determine whether a 
given point or rectangle intersects a given region, and so 00. There Is of 
course a set of graphiC operations on regions to draw them on the screen. 

E.4 GI"apllc Ent1tl~ 
Coordinate planes, points, rectangles, and regions are all goOd mathematical 
models, bUt they aren't really graphic elements--they don't have a direct 
physiCal appearance. some grapnlc entitles that do have a direct graphiC 
Interpretation are the bit Image, bitmap, pattern, and cursor. This section 
describes the data structure of these graphic entitles and hOw they relate to 
the mathematical constructs described above. 

E.4.1 llle Bit Image 
A bit image is a collection of bits in memory Which have a rect1l1near 
representation. Take a collection of words In memory and lay them ena to 

E-9 



Pascal Refenmce Manual QuiekDraw 

end so that bIt 15 of the lowest-nurooered word Is on the left and bIt 0 of 
the hlghest-numt>ered word Is on the far rIght. Then take this array of bits 
and dIvIde It, on word oounaarIes, Into a numt>er of equal-sIze rows. Stack 
these rows vert1cally so that the first row is on the top and the last row Is on 
the oottom. The result Is a matrix lIke the one ShOwn In Figure E-S--rows 
and columns of bits .. wIth each row containing the same number of bytes. The 
number of bytes In each row of the bIt Image Is called the row W.1i:1th Of that 
Image. 

Byte 

FI~ E-S 
A Bit Image 

Row width 
is 8 bytes 

Last 
Byte 

A bit image can be stored in any static or dynamic variat>le, and can be of 
any length that Is a multiple of the row width. 

The Usa screen itself Is one large visible bit image. There are 32,760 bytes of 
memory that are diSPlayed as a matrix Of 262,080 pixelS on the screen, each 
bit corresponding to one pixel. If a bit's value is 0, its pixel is White; if the 
bIt's value Is 1, tne pixel Is black. 

The screen is 364 pIxelS tall and 720 pixelS wide, and tne row width of its bit 
image is 90 bytes. Each pixel on the screen is one and a half times taller 
than it is wide, meaning a rectangle 30 pixels wide by 20 tall lOOks square, 
and a 30 by 20 oval lOOks circular. There are 90 pixels per Inch horizontally, 
and 60 per inch vertically. 

E-l0 



Pascal Reference MantIal QlIickDraw 

Since each pixel on the screen represents one Olt In a Olt Image, 
Wherever this appendix says "Oit", you can SUbstitute "pixel" if the Oit 
image Is the Usa screen. Ukewlse, this appendix often refers to pixels 
on the screen Where the discussion applies equally to bits In an 
off-screen Olt Image. 

E.4.2 The Bitmap 
When you COfYlOlne the physical entity of a Oit image with the conceptual 
entities of the coordinate plane and rectangle, you get a Oitmap. A Oitmap 
haS three parts: a pointer to a 01t image, the row width (1n oytes) of that 
image, and a bOundary rectangle WhiCh gives the bitmap bOth its dimensions 
and a coordinate system. Notice that a Oltmap does not actually inclUCle the 
bIts themselves: it points to them. 
There can be several bitmaps pointing to the same bit Image, each Imposing a 
different coordInate system on It. This Important feature Is explained more 
fully In Section E.6, COOrdinates in GrafPorts. 
As shown In Figure E -6, the data structure of a OItmap Is as follows: 

type Bitt1ap = record 
baseAddr: (;.U>tr; 
rotIBytes: integer; 
tn.nJs: Rect 

end; 

~-- Row y.lidth --~ 

Fl~ E-6 
A Bitmap 

E-ll 



Pascal Reference Manual QuiCkDraw 

The baseAddr field Is a pointer to the beglmlng of the bit Image In memory, 
and the rowBytes field is the number of bytes in each row of the Image. 80th 
of these should always be even: a bItmap shOuld always begIn on a word 
bOUndary and contain an integral number of words in each row. 

The l:XUlds field Is a bOUndary rectangle that both encloses the active area of 
the bit Image ana Imposes a coordInate system on It. The relat10nshlp 
between the bOUndary rectangle and the bit Image in a bitmap Is simple yet 
very Important. First, a few general rules: 

• 81 ts in a bit image fall between points on the coordinate plane. 

t A rectangle divides a bit image into two sets of bits: those bits inside the 
rectangle and those outside the rectangle. 

• A rectangle that Is H points wide and V points tall encloses exactly 
(H-1) * (V-1) bits. 

The top left comer of the boundary rectangle is aUgned around the first bit in 
the bit image. The width of the rectangle determInes how many bIts of one 
row are logically owned by the bitmap; the relationShip 

8 * map.rowBytes >= map.bOlIlds.r1~t-map.bOlIlds.left 

must always be true. The height of the rectangle determines how many rows 
of the image are logically owned by the bitmap. To ensure that the number 
of bits In the logical bitmap Is not larger than the number of bits in the bit 
image, the bit image must be at least as big as 

(map .tnrtds .bottoft-map .bOlIlds • top)-map. rowBytes 

Ntlrmally, the boundary rectangle completely encloses the bit image: the width 
of the bOundary rectangle is equal to the number of bits in one row of the 
image, and the height of the rectangle is equal to the number of rows in the 
image. If the rectangle is smaller than the dimensions of the Image, the least 
significant bits In each row, as well as the last rows in the image, are not 
affected by any operations on the bitmap. 

The bitmap also imposes a coordinate system on the image. Because bits fall 
between coordinate points, the coordinate system assigns Integer values to the 
lines that border and separate bits, not to the bit positions themselves. For 
example .. If a bItmap Is assIgned the boundary rectangle wIth corners (10,-8) 
and (34,8), the bOttom right bit In the Image will be oetween hOrizontal 
coordinates 33 and 34, and between vertical coordinates 7 and 8 (see FIgure 
E-7~ 

E-12 



Pascal Reference HanUaI 

(10, -8) 

(10,8) 

E.4.3 Patterns 

Fl~e E-7 
COOrdinates a'lCJ Bl~ 

(34,-8) 

• 
(34,8) 

QuiCkDraw 

A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which is 
used to define a repeating deSign (SUCh as stripes) or tone (SUCh as gray~ 
Patterns can be used to draw Unes and shapes or to fIll areas on the screen. 

When a pattern is drawn, it is aligned such that adjacent areas of the same 
pattern In the same graphiCS port will blend with each other into a contin­
uous, coordinated pattern. QuickDraw provides the predefined patterns WhIte, 
bleD<, gray, ItGray, and cl<Gray. My other 64-bit variable or constant can be 
Used as a pattern, too. The data type definItion for a pattern Is as follows: 

type Pattern = packed array [0 •• 7] of O •• 255; 

The row width of a pattern is 1 byte. 

E.II.11 CtJnors 
A cursor Is a small Image that appears on the screen ana Is controlled by the 
mouse. (It appears only on the screen, and never in an off-screen bit image.) 
A cunor is defined ~ a 256-bit image, a 16-by-16-bit rectangle. The row 
width of a cursor Is 2 bytes. Figure E -8 illustrates four cursors. 

E-13 



Pascal Reference /VIantJa.I 

a 
a-IIJI BlHHBHlH 

8 
I 

IIt+t+++++I 8-•• 

FI~ E-8 
cursors 

8 
I 

-

QulCkDraw 

16 
I 

A cursor has three fields: a 16-word data field that contains the image itself, 
a 16-word maSk field that contains information aboUt the screen appearance 
of eaCh bit of the cursor, and a IJotspot point that aligns the cursor with the 
position of the mouse. 

type DJrsor = record 
oota: array [0 .• 15] Of integer; 
RBSk: array [0 .• 15] of integer; 
ootspot: POlnt 

end; 

The data for the cursor must begin on a word boUndary. 

The cursor appears on the screen as a 16-by-16-blt rectangle. The appear­
ance of each bit of the rectangle is determined by the corresponding bits in 
the data and maSk and, if the mask bit is 0, by the pixel "under" the cursor 
(the one already on the screen in the same position as this bit of the cursor} 

Data MaSk Resulting pixel on screen 
-0- --1- White 

1 1 Black 
o 0 Same as pixel under cursor 
1 0 Inverse of pixel under cursor 

Notice that If all mask bits are 0, the cursor is completely transparent, in 
that the image under the cursor can still be viewed: pixels under the white 
part Of the cursor appear unchangea, whlle unaer the black part Of the cursor, 
black pixels show through as White. 

The hOtspot aligns a point in the image (not a bit, a point!) with the mouse 
position. Imagine the rectangle with corners (0,0) and (16,16) framing the 
image, as in each of the examples In Figure E -8; the hOtspot Is defined in this 
coordinate system. A hotspot of (0,0) is at the top left of the image. For the 
arrow in Figure E-8 to point to the mouse poSition, (0,0) would be its hotspot. 
A hotspot of (B.8) is in the exact center of the image; the center of the plus 

E-14 



Pascal Reference Hanual QufekDraw 

sign or oval In Figure E-8 would coincide with the mouse position if (8,,8) were 
the hotspot for that cursor. Simllarly, the hOtspot for the pointing hand would 
be (16,9~ 
Whenever you move the mouse, the low-level Interrupt-driven mouse routines 
move the cursor's hOtspot to be aUgned with the new mouse position. 
QuICkDraw supplles a predeflned arrow cursor, an arrow pointing north­
northwest 
Refer to ~lx F, HardWare Interface, for more Information on the mouse 
and cursor control. 

E.5 The DrawI.rYJ Envlrorment: GrafPort 
A grafPort Is a complete drawing environment that defines hOw and where 
graphiC operations will have their effeot. It contains all the information 
about one Instance of graphiC output that Is kept separate from all other 
instances. You can have many grafPorts open at once, and each one will have 
I ts own coordinate system, drawing pattern, baCkground pattern, pen size and 
location, oharacter font and style ... and bItmap In whioh drawing takes plaoe. 
You can Instantly switCh from one port to another. GrafPorts are the 
structures on WhiCh a program OUlldS windOWS, whiCh are fundamental to the 
Usa's "overlapping windows" user interface. 
A grafPort Is a dynamic data structure, oefined as follows: 

type GrafPtr "'GrafPort; 
GrafPort = record 

deVice: 
portB1ts: 
portRect: 
visRg1: 
Cli~: 
bkPat: 
f11lPat: 
JR-oc: 
pnSize: 
prtble: 
pnPat: 
pnV1s: 
tXfont: 
txFace: 
txt1ode: 
tXSize: 
spExtra: 
fgColor: 
bkCOlor: 
colrB1t: 
patStretch : 
picsave: 

E-15 

integer; 
Bi~; 
Rect; 
~le; 
~le; 
Pattern; 
Pattern; 
Po1nt; 
Point; 
1nteger; 
Pattern; 
1nteger; 
1nteger; 
Style; 
integer; 
integer; 
longint; 
long1nt; 
longlnt; 
integer; 
integer; 
QlWldle; 



Pascal Reference Manual 

l1JlS8Ve: WS'ldle; 
polySave: WS'ldle; 
grafProos: t.QlrOOsPtr 

end; 

QuICkDraw 

All QulckDraw operations refer to grafPorts via grafPtrs. You create a 
grafPort with the Pascal procedUre new and use the resultlng pointer in calls 
to QuickDraw. You could, of course, declare a static variable of type 
GJafPort, and Obtain a pointer to that static structure (with the • operator), 
bUt as most grafPorts will be used dynamically, their data structures ShOUld be 
dynamic also. 

You can access all fieldS and sUbfields of a grafPort normally, bUt you 
shOuld not store new values directly Into them. QulcKDraw nas 
procedUres for altering all fields of a grafPort, and using these 
procedures ensures that Changing a grafPort prOduces no unusual side 
effects. 

TIle deVIce fIeld of a grafPort Is the numt>er of tne logical output aevlce tnat 
the grafPort will be using. QuickDraw uses this information, since there are 
pnysical differences In the same logical font for different output aevlces. The 
default device number Is 0, for the Usa soreen. 
The portBtts field Is the bItmap that points to the bIt Image to be used by the 
grafPort. All drawing that Is dOne In this grafPort will take place in thIs bit 
image. The default bItmap uses the entire Usa screen as its bit image, with 
rowBytes of 90 and a tlOUndary rectangle of (O,o,720,364~ The bitmap may be 
changed to Indicate a different structure in memory: all graphiCS procedUres 
work In exactly the same way regardless of whether theIr effects are visible 
on the screen. A program can, for example, prepare an Image to be printed 
on a printer wltnout ever displaying the image on the screen, or develop a 
picture in an off-screen bitmap before transferrIng it to the screen. By 
altering the coordinates of the portBits.l:Xlt.rm rectangle, you can change the 
coordInate system of the grafPort; with a QulckDraw procedUre call, you can 
set an arbitrary coordinate system for each grafPOrt, even If the different 
grafPorts all use the same bit Image (e.g., the fUn screen~ 
me portRect field Is a rectangle tnat defines a subset of the bitmap for use 
by the grafPort. Its coordinates are In the system defined by the 
portBlts.l:Xlt.rm rectangle. All drawing dOne by the application occurs Inside 
this rectangle. The portReot usually defines the "wrItable" interior area of a 
windOw, dOCument, or other object on the screen. The default portReot Is the 
enUre screen. 
The vlsRgl field Indicates the region that Is actually visible on the screen. It 
is reserved for use by future software, and snould be treated as read-only. 

E-16 



Pascal Reference Manual QulckDraw 

The default vlsRglls set to the portRecl 
The cllpRgl is an arbitrary region that the app11cation can use to 11ml t 
drawing to any region within the portRecl If, for example, you want to draw 
a half circle on the screen, you can set the cll~gl to half the square that 
would enclose the WhOle circle, and go ahead and draw the Whole circle. O1ly 
the half within the cl1pRgl wll1 actually be drawn in the grafPort. The 
default cUpRgn Is set arbitrarily large, and you have full control over Its 
setting. Notice that unl1ke the vlsRgl, the cll~gl affects the Image even if 
it Is not displayed on the screen. 

Figure E-9 mustrates a typIcal bitmap (as defined by portBlts), portRect, 
vlsR~ and Cl~ 

Flpe E-9 
GratPort Regloos 

The bkPat and flllPat fields of a grafPort contain patterns used by certain 
QuiCk Draw routines. BkPat Is the "background" pattern that Is used When an 
area Is erased or when bits are scrolled out of It. When asked to fill an area 
wIth a specIfied pattern, QUlckDraw stores the gIven pattern In the flllPat 
field and then calls a low-level drawing routine Which gets the pattern from 
that field. The various graphiC operations are dlscussea In detail later In the 
aescrlptIons Of IndlvlauaI QulC1<Draw routines. 

Of the next ten fieldS, the first five determine characteristics of the graphics 
pen, described in Section E.5.1, and the last five determine characteristics of 
any text that may be drawn, described In Section E.5.2. 

The fgColor, bkCOlor, ana colI81t fields contain values related to drawing in 
color, a capability that will be avallable In the future when Apple supports 

E-17 



Pascal Reference /'1antIa1 QuickDraw 

color output devices for the Usa. FgColor Is the grafPort"s foreground color 
and bkCOlor is its background color. COIIBlt tells the color imaging software 
which plane of the color picture to draw Into. For more Information, see 
section E.7.2 ... Drawing in COlor. 
The patstretch field is used ourlng output to a printer to expand patterns if 
necessary. The application shOUld not Change its value. 
The plOS8Ve ... 19l5ave, and poly8aVe fields refleot the state of picture, region ... 
and polygon defInition, respectively. To define a region, for example, you 
"open" it, oall routines that draw it ... and then "close" it. If no region is open, 
IglSave contains nil; otherwise, It contains a handle to information related to 
the region definition. The application shOuld not be concerned abOUt exactly 
what information the handle leads to; you may, hOwever, save the current 
value of rgnsave, set the field to nil to disable the region definition, and later 
restore It to the saved value to resume the regIon definItion. The plcsave 
and poly8aVe fields work. sImllarly for piotures and polygons. 
Finally ... the grafProcs fIeld may point to a special data structure that the 
appllcatlon stores into if it wants to customize QulckDraw drawing prOCedures 
or use QulckDraw in other advanced ... highly speclallzed ways. (For more 
Information ... see Section E.l0, CUstomizing QulckDraw QJerat1ons.) If 
grafProcs Is nil, QulckDraw responds in the standard ways described In this 
appendix. 

E5.1 Pen Characteristics 
The JR-OC, pnSlze, ~, Jlf'at and JIlVls fIelds of a grafPort deal wIth the 
graphics pen. Each grafPort has one and only one graphiCS pen, Which Is used 
for drawIng llnes, ShapeS, and text. As lliustrated In Figure E-10, the pen has 
four characteristics: a locetim a slz~ a drawing rntJl'Ie and a l1r8wing pattem 

E-18 



Pascal Reference /I18rX.IaJ Q,liCkDraw 

Fi(JJre E-l0 
A~CSPen 

The pen location (prt..oc) Is a poInt In the coordinate system of the grafPort, 
and Is Where QulCkDraw wIll begIn drawIng the next Une, Shape, or character. 
It can be anYWhere on the coordInate plane: there are no restrictions on the 
movement or placement of the pen. Remember that the pen location Is a 
poInt on the coordinate plane, not a pixel in a bit Image! 

The pen Is rectangular in shape, and has a user-definable width and height 
(pnSlze~ The default sIze Is a 1-by-1-bit rectangle; the w1dth and he1ght can 
range from (0,0) to (32767 ;32767~ If either the pen width or the pen height is 
less than 1, the pen wlll not draw on the screen. 

• The pen appears as a rectangle with its top left comer at the pen 
location; it hangs below and to the rlgnt of the pen location. 

The pr1'1OOe ana prPat fieldS of a grafPort determine now the bits under tne 
pen are affected when lines or ShapeS are drawn. The prPat is a pattern that 
Is used as the "InK" In the pen. ThIs pattern, llKe all other patterns drawn in 
the grafPort, Is always allgned with the port's coordinate system: the top left 
corner of the pattern Is allgned with the top left comer of the portRect, so 
that adjacent areas of the same pattern will blend into a continuous, 
coordinated pattern. FIve patterns are predefined (White, blacK, and three 
shades of gray); you can also create your own pattern and use It as the pn:>at 
(A utll1ty procedUre, called StuffHe~ allows you to flll patterns easUy.) 

E-19 



Pascal Reference Manual QuICkDraw 

The JY"t1Ode f1eld determInes how the pen pattern Is to affect wtlat"s alreaay 
on the bitmap when Hnes or shapes are drawn. When the pen draws" 
QulckDraw fIrst determines wnat bits of the bitmap w111 be affectea and finds 
their corresponding bits in the pattern. It then does a bit-by-bit evaluation 
based on the pen mocJe" which specIfies one Of eight bOOlean operations to 
perform. The resulting bit is placed Into Its proper place In the bItmap. The 
pen modes are descrIbed In Section E.?1, TranSfer Moaes. 
The pnV1s fIeld determines the pen's vlslbll1ty, that is, whether it draws on the 
screen. For more information, see the descrIptions of HidePen and snowPen 
In section E.9.3, Pen and Une-Drawlng Routines. 

E.5.2 Text Characteristics 
The txFoot, b<Face" ~" txSJze, and SJfxtta fields of a grafPort determIne 
how text wIll be drawn--the font, style" and size of characters and now they 
wIll be placed on the bItmap. 
QulckDraw can draw characters as quickly and easily as It draws lines and 
shapes" and in many prepared fonts. Figure E-ll shows two QulCkDraw 
characters and some terms you should become familiar wIth. 

-r----r"-_..._--- 6scent line 

ascent 

-+-~~::.:-++=~- base line 

descent 

~-----"--- descent line 

Fl~re E-ll 
QulCI<Draw CharaCters 

QulckDraw can display characters In any size" as well as boldfaced, italicized, 
outlined .. or shadowed, all withOut Changing fonts. It can also underline the 
characters, or draw them closer together or farther apart 
rne txFoot field Is a font numoer tnat 1dentIf1es tne cnaracter font to De used 
In the grafPort. The font number 0 represents the system font, and Is the 
default estaoUStled by ~ort. The unit Q[)St.WOrt (l1sted In section E.1S) 
inclUdes definitions of other available font numbers. 
A character font is defined as a collection Of bit images: these images make 
up the individUal characters of the font. The characters can be of unequal 
widths, and they're not restricted to their "cells": the lower curl of a 
lowercase j, for example, can stretch back under the previous character 
(typographers call this kemlng ~ A font can consist of up to 256 distinct 
Characters .. yet not all characters need be defined In a single font. EaCh font 

E-20 



Pascal Reference Manual QulckDraw 

contaIns a mlsslng S}'ITWl to be orawn In case Of a request to Oraw a 
character that Is mIssIng from the fonl 
The txFace fielO controls the appearance of the font wIth values from the set 
defIned by the style data type: 

type styieltell = (b01(2, italic, t.merline, outline" Shado." 
anEnse, extend); 

Style = set of stYlelteAt 
You can apply these eIther alone or In combination (see Figure E-12). I'1Ost 
combinatIons usually look gooO only for large fonts. 

Normal Characters 
Bold Characters 
/!t7/k~ l7l1t71"t7t.Yel:L

; 

Underlined Characters XYl 
OBillmRl CItDRwit(;lif1 
11ID1d. ___ In 
Condensed Charac1ers 
Extended Characters 
Bold laic ChanJcJeIs 
rnpruJ @vlJDipJtJ llJbJfiiJifItmJ 

... and in other fonts, too! 

Fl~e E-12 
Character styles 

If you specIfy bOld, each character Is repeatedly drawn one bIt to the right an 
approprIate number of Umes for extra thIckness. 
Italic adds an 1 tal1c slant to the characters. Character bits above the base 
Une are skewed right; bits below the base Une are skewed lefl 
UlcJerllne draws a Une below the base Une of the characters. If part of a 
character OescenOs below the base Une (as "y" In Figure E-12), the underline Is 
not drawn through the pixel on either side Of the deSCending part. 
You may specify either outline or shadoW. Q.rtJlne makes a hollow, outlined 
Character rather than a solid one. With ShadoW, not only Is the character 
hOllow and outlined, but the outllne is thickened below and to the right of the 
character to aChieve the effect of a Shadow. If you specify bOld along with 
outline or shadoW, the hOllow part of the character is widened. 

E-21 



Pascal Reference Hamal Ql/iCkDraw 

Coudense and extend affect the hOrIzontal distance between all characters, 
inclUding spaces. condense decreases the distance between characters and 
exterl(l Increases It, by an amount whIch QulcKDraw determines Is appropriate. 
The t.xt-1OOe field controls the way characters are placed on a bit image. It 
functions much like a ~ when a character Is drawn, QuickDraw 
determInes whIch bIts of the bIt Image wIll be affected, does a blt-by-bit 
comparison based on the mode, and stores the resulting bits into the bit 
Image. These modes are described in SecUon E.7.1, Transfer ModeS. 011y 
three of them--srCOI, srcXor, and srd3Ic--Should be used for drawIng text. 

The txSlze field speCifies the type size for the font, In points (where "point" 
here is a typographical term meanIng approximately ln2 inch~ MY size may 
be specifIed. If QulckOraw does not have the font In a specifled sIze, It w111 
scale a size it does have as necessary to produce the size desired. A value of 
o in this field directs QulcKOraw to choose the size from among those It has 
for the font; it wUl choose whichever size is closest to the system font size. 
Finally, the spExtra field Is useful when a line of characters Is to be drawn 
justified suCh that it Is aligned with both a left and a right margin (sometimes 
called "full just1ficat1on"~ SpExtra Is the number of pIxels by which each 
space Character should be widened to fill out the 11ne. 

E.6 COOnftnates In GrafPorts 
Each grafPort has its own local coordinate system. All fieldS In the grafPort 
are expressed in these coordinates, and all calculations and actions performed 
In QulcKOraw use the local coordinate system of the currently selected port. 
Two thIngs are Important to remember: 

• Each grafPort maps a portion of the coordinate plane into a similarl y­
sIzed porUon of a bl t Image. 

• The portBit.s..bClln2s rectangle defines the local coordinates for a grafPort. 
The top left corner of portBlts.bOlrlds is always allgned around the first bit in 
the bIt Image; the coordInates Of that corner "anChOr" a point on the grId to 
that bit in the bit image. This forms a common reference point for multiple 
grafPorts using the same bit Image (SUCh as the screen~ Given a 
portBlts.bolIlds rectangle for eaoh port, you know that their top left comers 
coincide. 
The interrelationship between the portBlts.bolrlds and portRect rectangles Is 
very important. As the portBlts..bou1ds rectangle establishes a coordinate 
system for the port, the portRect rectangle indicates the section of the 
coordinate plane (and thUs the bit image) that w111 be used for drawing. The 
portRect usually falls inside the portBlts.boln:Js reotangle, bUt it's not required 
to do so. 
When a new gratport Is created, Its 01 tmap Is set to poInt to the entIre Usa 
screen, and bOth the portBlts..bou1ds and the portRect rectangles are set to 

E-22 



Pascal Reference /'1antJaJ QIIiekDraw 

720-by-364-blt rectangles, with the point (0,0) at the top left corner Of the 
screen. 

You can redef1ne the local coordinates of the top left corner of the grafPort"s 
portRect, using the Setorlg1n procedUre. This Changes the local coordinate 
system of the grafPort, recalculating the coordinates of all points in the 
grafPort to be relative to the new comer coordinates. For example, consider 
these procedUre calls: 

8e"tPOrt( gcIEPOrt); 
setOfigin(40,80); 

The call to Setport sets the current grafPort to gcmePort; the call to 
Setortgln ChangeS the local coordinates of the top left corner of that port "s 
portRect to (40..80) (see Figure E-13~ 

o 95 300 :.12 -55 40 245 457 
0-' I I I I I I I 

................................................... -40- ................................................. .. 
:.:.: .:.:.:.:.:.:.:.:.:.:.: .:.:.:.:.:.:. :.:.:. :.:.: ~~;:f:~ :f:~:f:f: ~: ;:f:f:f:~:;: ~:f :~:~: ~:;: f :~: ~ :f: ~ 

m - j.::::I::I::.:i: ... ':::.I::l::: .• ::m~mmm~!l!I!J!li~ilil!~lll~lll 80 - 1:111:l:l:H:l:~:H:l:1:1:1:HlI1WI:I:1 

~; = 1:III!!!!!!!!!!!t!!jjli~;~~lii!j'!!:!!!!!i:!J!'!llll:1, 
visRgn (9:,) 120)(300}275) visRgn (40J80)(24~'J235) 

eli pRgn (95) 120)(300} 275) c t i pFign {95} 1 20)(300} 275) 

Before SetOrigin After 5etOrigin( 40}80) 

FI<JJTe E -13 
Cta'lglng Local COOr<linates 

This recalculates the coordinate components of the following elements: 

gaEPort A • portel ts .lXXnlS gcJEPort'" • portRect 
gaEPortA . v1~ 

These elements are always kept "in sync", so that all calculations, comparI­
sons, or operatlons mat seem rigtlt, work rigtlt. 

Notice that when the local coordinates of a grafPort are offset, the v1sR~ of 
that port Is offset also, but the cl1pR~ is not. A good way to think of it is 
that If a document Is being shown inside a grafPort, the document "sUcks" to 
the coordinate system, and the port's structure "sticks" to the screen. 
Suppose, for example, that the vlsR~ and cllpR~ in Figure E-13 before 

E-23 



Pascal Reference Manual QuICkDraw 

SetOrlgln are the same as the portRect, ana a document Is Delng shown. After 
the setorlg1n call, the top left corner of the c1lpR~ Is still (95,120), but thIs 
location has moved dOwn and to the right, and the locatlon of the pen wltnln 
the dooument has similarly moved. The locations of portBtts.bot.n:Js, portRect, 
ana VlsRlJl did not change; theIr coordinates wereoffsel AS always, the top 
left comer of portBlts.bot.n:Js remains aligned around the first bit in the bit 
Image (the flrst pIxel on the screen~ 

If you are moving, comparing, or otherwise dealing with mathematical Items In 
different grafPorts (for example, finding the Intersection of two regions in two 
different grafPorts), you must adjust to a common coordinate system before 
you perform the operation. A QulckDraw procedUre, LocalToGlobal, lets you 
convert a point'S local coordinates to a glOlJal system where the top left 
corner of the bit image is (0,0); by converting the various local coordinates to 
glObal coordinates, you can compare and mix them with confidence. For more 
information, see the description of this procedUre in Section E.9.I7, 
Calculations with Points. 

E.7 General Discussion of DrawlrYJ 
Drawing occurs: 

• Always Inside a grafPort, In the bit Image and coordinate system defined 
by the grafPort's bitmap. 

• Always wIthin the Intersection of the grafPort's portBlts.bOt.Ilds ana 
portRect, and cUpped to its vlsRgl and cllpRgl. 

• Always at the grafPort's pen location. 
• Usually with the grafPort's pen size, pattern" and mOde. 

WI th QulckDraw prOCedUres, you can draw lines, shapes, and text. Shapes 
include rectangles, ovals, roUnded-corner rectangles, wedge-shaped sections of 
ovals, regions" and polygons. 
Lines are defined by two points: the current pen location and a destination 
location. When drawIng a llne, QuICk.Draw moves the top left corner of the 
pen along the mathematical trajectory from the current location to the 
destination. The pen hangs below and to the right of the trajectory (see 
Figure E-14~ 

E-24 



Pascal Reference Manual 

I -II 
. . . . .. 
~ •• 4 •••••••••••••••••• ':.:.:. :.:. :.:.:.:.:. :.:. :.:.:. :.:.: ':.:.:. 
~ .................. , .. . 
~ •...•...•.•.•.....•.•.•.•.....•...•.•. ~ .•. 

Fl~e E-14 
DraWIng Lines 

NJTE 

QuickDraw 

No mathematical element (SUCh as the pen location) Is ever affected by 
cUppIng; cUpping only determines what appears where In the bit Image. 
If you draw a 11ne to a location outside your grafPort" the pen location 
wlll move there" bUt only the portIon Of the Hne that Is InsIde the port 
w1l1 actually be drawn. This is true for all drawing procedUres. 

Rectangles" ovals" ana roundea-corner rectangles are defined by two corner 
points. The shapes always appear inside the mathematical rectangle defined 
by the two points. A region is defIned In a more complex manner" but also 
appears only within the rectangle enclosing it. Remember" these enclosing 
rectangles have InfinItely thIn borders and are not vIsIble on the screen. 
As illustrated In FIgure E-15" shapes may be drawn either solid (filled In wIth 
a pattern) or flamed (outlined and hollow~ 

E-25 



Pascal Reference Manual QlJICkDraw 

pen height 

I~~h I 
Figure E-15 

SOUd ~ em Fumed ~ 

In the case of framed shapes, the outI1ne appears completely within the 
enclosIng rectangle--wlth one exceptlon--and the vertlcal ana horizontal 
thicKness of the outline Is <letermlned by the pen size. The exception is 
pOlygons, as Olscusseo In sectlon E.8.2, pOlygons. 
The pen pattern Is used to f111 In the btts that are affected by the drawing 
operatlon. The pen mode defines how thOse bits are to be affected by 
directing QuickDraw to apply one of eight boolean operations to the bits in 
the shape and the corresponding pixels on the screen. 
Text drawing ooes not use the pnSlze, pnPat, or prM.xJe, but It Ooes use the 
prt.oc. Each character is placed to the right of the current pen location, with 
the left eno Of Its base line at the pen's location. The pen Is moveo to the 
right to the location Where It will draw the next character. No wrap or 
carriage return Is performed automatically. 
The method QuickDraw uses in plaCing text is controlled by a mode similar to 
the pen mode. This is explained in Section E.7.1, Transfer Modes. Clipping of 
text Is performed in exactly the same manner as all other c11pping In 
QulCkDraw. 

E.7.1 TrCllSfer I"1XJeS 
When llnes or Shapes are drawn, the prM.xJe field Of the grafPort determines 
hOw the drawing Is to appear in the port's bit Image; slmllarly, the t.xIVD:.te 
field determines how text Is to appear. There is also a QulcKDraw procedUre 
that transfers a bIt Image from one bItmap to another, and this procedUre has 
a mode parameter that determines the appearance of the result. In all these 
cases, the mode, called a transfer mode, specifIes one of eIght boolean 
operations: for each bIt in the item to be drawn, QuickDraw finds the 

E-26 



Pascal Reference Manual QulckDraw 

correspondIng bit In the destination bIt Image .. performs the bOolean operatlon 
on the paIr of bIts, and stores the resultlng bit Into the bit image. 
There are two types Of transfer mode: 

• Pattem lJCJIJsFer 1TJOt1es, for drawIng lInes or shapes wIth a pattern. 
• SOUJ-ce transfer n"JOdeS; for drawIng text or transferrIng any bIt image 

between two bitmaps. 
For each type of mode .. there are four basIc operatlons--COpy .. Dr .. Xor .. and 
Blc. The COpy operation sImply replaces the pIxels In the destination wIth 
the pIxels In the pattern or source .. "painting" over the destination without 
regard for what Is already there. The or, Xor, and Blc operations leave the 
destinatIon pIxels under the white part Of the pattern or source unchanged, 
and differ in how they affect the pIxels under the black part: or replaces 
those pixelS with blaCk pixelS, thus "overlaying" the destination with the blaCk 
part of the pattern or source; XOI Inverts the pixels under the black part; and 
Blc erases them to White. 
EaCh of the basic operations has a variant In whiCh every pixel In the pattern 
or source Is Inverted before the operation Is performed, giving eight 
operations In all. Each mode is defined by name as a constant In QulckDraw 
(see Figure E-16~ 

pattern or source destination 

"Paint" "Overley" "Invert" II E rase" 

11111111 
patCopy pat Or patXor patBic 
srcCopy srcOr srcXor srcBic 

11111111 
notPatCopy notPatOr notPatXor notPatBic 
notSrcCopy notSrcOr notSrcXor notSrcBic 

Fl(JJTe E-16 
Trcnfer Modes 

E-27 



Pascal Reference M8I7()8} 

Pattern 
transfer 
mode 

patcopy 
pator 
patxor 
patBlc 
nolPatcopy 
notPaUk 
notPatxor 
notPatBlc 

E.7.2 DraWing In COlor 

SOUrce 
transfer 
mode 

srcCopy 
srCOI 
sroXor 
srcBlc 
notSrcCopy 
notSrCOl 
notSrcXor 
notsroBlc 

QtJ!ckDraw 

Action on each pixel In destination: 
If blacK pIxel In If White p1xel In 
pattern or source pattern or source 
Force blacK 
Force blacK 
Invert 
Force white 
Force whIte 
Leave alone 
Leave alone 
Leave alone 

Force WhIte 
Leave alone 
Leave alone 
Leave alone 
Force blacK 
Force blacK 
Invert 
Force white 

Currently you can only looK at QUicKDraw output on a blacK-and-WhIte screen 
or printer. Eventually, hOwever, Apple will support color output devIces. If 
you want to set up your appl1catlon now to prOduce cOlor output in the future, 
you can do so by using QulC1<Draw procedures to set the foreground color and 
me oacKground COlor. Eight standard COlors may oe specl fled wI th the 
following predefined constants: blaokCOlol, WhlteColor, redCOlor, greenGolor, 
bltJeColOJ, Cya'lCOIOJ, magentacolor, and yellOWCOlor. InItially, the foreground 
color Is blOOkCOlOJ and the baCKground color Is WhlteColor. If you speoify a 
COlor other than WhlteCoIOJ, It wllI appear as black on a black-and-whIte 
output deVice. 
To apply the table above (1n Section E.7.1) to drawing In color, make the 
following translation: where the table shows "Force blaCk", read "Force 
foreground COlor", and Where It shOws "Force white", read "Force background 
color". When you eventually receive tne color output devIce, yOU'll find out 
the effect of inverting a color on It. 

NJTE 

QulckDraw can support output devIces that have up to 32 bits of color 
Information per pixel. A color picture may De thought of, then, as 
having up to 32 planes. At anyone time, QuickDraw draws Into only 
one Of these planes. A QulCkDraw routine called by the color-Imaging 
software specifIes Which plane. 

E.8 Pictures Md Polygons 
QulcKDraw lets you save a sequence of drawIng commands and "play them 
back" later wIth a sIngle procedure call. There are two such mechanisms: one 
for drawing any pIcture to scale In a destInation rectangle that you speCIfy, 
and another for drawing polygons In all the ways you can draw other shapes In 
QulckDraw. 

E-28 



Pascal Reference Manual QuickDraw 

E.8.1 Pictures 
A pIcture in QuickDraw is a transoript of oalls to routines whioh draw 
somethlng--anythlng--on a bitmap. Pictures make It easy for one program to 
draw something defined in another program" with great flexibility and withoUt 
knowing the detalls about what's being drawn. 
For each picture you define, you specify a rectangle that surrounds the 
picture; this rectangle Is called the pIcture Trame When you later call the 
proceaure that draws the saved picture, you supply a destination rectangle, 
ana QulckDraw scales the picture so that Its frame Is completely allgned with 
the destination rectangle. Thus, the picture may be expanded or shrunk to fit 
Its destination rectangle. For example, if the picture Is a cIrcle Inside a 
square picture frame, ana the destination rectangle Is not square, the picture 
Is drawn as an oVal. 
Since a picture may InclUde any sequence of drawing commancJs, Its cJata 
structure Is a variable-length entity. It consists of two flxecJ flelcJs followecJ 
by a variable-length cJata flelcJ: 

type Picture = record 
piCSize: integer; 
picFrane: Root; 
{picture definition data} 

em; 
The plCSlze f1eld oonta1ns the s1ze, In bytes, of the picture variable. The 
plcFlCJTle field Is the picture frame which surrounds the picture and gIves a 
frame of reference for scaling when the picture is drawn. The rest of the 
structure contains a compact representation of the drawing commands that 
def1ne the picture. 
All pictures are accessed through handles, which point to one master pointer 
whiCh In tum points to the picture. 

type PicPtr = Aplcture; 
PlcHandle = ~PlcPtr; 

To define a picture, you call a QulCkDraw function that returns a picture 
handle and then call the routines that draw the ploture. There Is a procedUre 
to call when you've finished defining the picture, and another for when you're 
done with the picture altogether. 
QuickDraw alSO allows you to Intersperse pictllre COfnments with the 
definition of a picture. These comments, which dO not affect the picture's 
appearance, may be usecJ to provide add1 tlonal Information about the pIcture 
When it's played back. This Is especially valuable when pictures are 
transmittecJ from one appl1catlon to another. Tnere are two stancJard types of 

E-29 



Pascal Reference I'1anI.IaI QufekDraw 

comment WhICh" llke parentheses" serve to group drawIng commands together 
(SUCh as all the commands that draw a particular part of a picture~ 

const plcLParen = 0; 
plcRParen = 1; 

The appl1catlon defining the picture can use these standard comments as well 
as comments of its own desIgn. 
To include a comment in the definition Of a picture" the appllcation calls a 
QuickDraw procedure that specifies the comment with three parameters: the 
comment kind" Which identifies the type of comment; a handle to additional 
data if desired; and the size of the additional data" if any. When playing back 
a picture" QulckDraw passes any comments in the picture's definition to a 
low-level procedure accessed indirectly through the grafProcs field of the 
grafPort (see Section E.I0" Customizing QulckDraw q>erations" for more 
information~ To process comments" the application must include a procedure 
to do the processing and store a pointer to it in the data structure pOinted to 
by the grafProcs field. 

"'HE 

The standard low-level proCedUre for processIng pIcture comments 
simply ignores all comments. 

E.8.2 Polygons 
Polygons are similar to pictures in that you define them by a sequence of 
calls to QulckDraw routines. They are also slmllar to other shapes that 
QuickDraw knows about.. since there is a set of procedures for performIng 
graphIc operations and calculations on them. 
A pOlygon is simply any sequence of connected lines (see Figure E-17~ You 
define a polygon by moving to the starting point of the polygon and drawing 
llnes from there to the next point, from that point to the next" and so on. 

Fl~ E-17 
Polygons 

E-30 



Pescal Reference M8I1tI8l QulckDraw 

The aata structure for a polygon Is a varlable-Iength entity. It consIsts Of 
two fixed fields followed by a variable-length array: 

type Polygon = recoru 
polySize: integer; 
polyBBox: Rect; 
polyPoints: array [0 .. 0] of Point 

em; 
The polyslZe fleld contaIns the size, In bytes, of the polygon variable. The 
polyBBox field is a reotangle WhiCh just encloses the enUre polygon. The 
polyPolnts array expands as necessary to contain the points of the pOlygon-­
the starting point followed by eaoh sucoessive point to Whioh a Hne is drawn. 
Like pictures ana regions, polygons are accessed through handles. 

type PolyPtr = "PoI~; 
PolyHcrldle = "PolyPtr; 

To define a polygon, you call a QuiCk Draw function that returns a polygon 
handle and then form the polygon by oalling procedUres that draw 11nes. You 
call a prOCedUre When you've finiShed defining the polygon, and another when 
you're done with the pOlygon altogether. 
Just as for other shapes that QulokDraw knows about, there Is a set of 
graphic operations on polygons to draw tnem on the screen. QuickDraw draws 
a polygon by moving to the starting point and then drawing lines to the 
remaining poInts In successIon, Just as when the routines were called to defIne 
the polygon. In this sense it "plays back" those routine calls. As a result, 
polygons are not treated exactly the same as other QulckDraw Shapes. For 
example, the procedUre that frames a polygon draws outside the actual 
boundary of the polygon, because QulckDraw l1ne-drawlng routines draw below 
and to the right of the pen location. The prOCedUres that fill a polygon with 
a pattern, however, stay withIn the bOUndary Of the polygon; they also add an 
additional l1ne between the ending point and the starting point If thOse points 
are not the same, to complete the Shape. 
There Is also a difference In the way QulckDraw scales a polygon and a 
slmllarly-shaped region If It's being drawn as part of a picture: when 
stretched, a slanted 11ne Is drawn more smoothly If It's part of a polygon 
rather than a region. You may find it helpful to keep in mind the conceptual 
difference between polygons and regions: a polygon Is treated more as a 
continuous shape, a region more as a set of bits. 

E.9 QuICkDraw RouUnes 
this section describes all the prOCedures and functions in QulckDraw, their 
parameters, and their operation. They are presented In tneir Pascal form; for 
information on using them from assembly language, see Section E.11, Using 
QuICkDraw from AsSembly Language. NOte that the actual prOCedUre and 
function declarations are given here~ rather than the BNF notation or syntax 
dIagrams uSed elsewhere In this manual. 

E-31 



Pascal Reference l'1anUal QlJ!CkDraw 

E.9.1 GrafPOrt Rrut1nes 

procewre InitGraf (glcbalptr: (JPtr); 

InitGraf initializes QuiCkDraw. It is called by the ~rt unit's QDInit 
routine; you need not call It agaIn. It Inlt1al1zes the QuickDraw global 
varlat>les listed below. 

Variable 
tnePort 
.tlite 
black 
gray 
ItGray 
(J(Gray 
arrow 
soreenBits 
rcnlSeed 

~ 
GrafPtr 
Pattern 
Pattern 
Pattern 
Pattern 
Pattern 
DJrsor 
Bltt1ap 
lorglnt 

Initial setting 
nil 
all-white pattern 
all-black pattern 
50% gray pattern 
25% gray pattern 
75% gray pattern 
poInting arrow cursor 
Lisa screen, (0,0,720,364) 
1 

The gIOO81PU parameter tells QulckDraw where to store Its glObal varIableS, 
begimlng with thePort. From Pascal programs, this parameter shOuld always 
be set to WlePOrt; aSsembly-language programmers may choose any location, 
as long as it can accommodate the number of bytes specified by GRAFSIZE In 
GRAFTYPES. TEXT (see secUon E.ll, usIng QulckDraw from Assembly 
Language~ 

To Inltlal1ze the cursor., call InltCursor (aescrlbeO In Section E.9.2, 
curSOr-Handling Rout1nes~ 

ProcedIre ~rt (~: GrafPtr); 

~nPort allocates space for the given grafPort"s vlsRgl and cllpRgl, 
Inl UaUzes the fields of the grafPort as indicated below, and makes the 
grafPort me current port (see setport, below~ You must call qlenport before 
using any grafPort; f1rst create a grafPtI w1th new, then use that grafPtr 1n 
tne Q:>enPort call. 

E-32 



Pascal Reference Manual 

FIeld 
deVice 
portBlts 
portRect 
viSfVl 
cllpRgl 

bkPat 
flllPat 
pn..oc 
p\slze 
prftlde 
Jl'Pat 
pnVis 
tXfont 
txFace 
txttode 
tXSize 
SJf:xtra 
f~lor 
bkCOlor 
calreit 
patstretm 
picsave 
rglSaVe 
polySave 
grafProcs 

liQg 
integer 
Bl~ 
Root 
~le 
~le 

Pattern 
Pattern 
Point 
Polnt 
integer 
Pattern 
integer 
lnteger 
style 
integer 
integer 
longlnt 
longint 
longlnt 
integer 
1nteger 
~le 
fDtErldle 
~le 
fD'I'OCsPtr 

Inl tIal setUng 
o (LIsa soreen) 
screerBlts (see InltGraf) 
screet131ts.bOmds (0,0,,720,364) 

QuICkDraw 

handle to the rectangular regIon (0,o,720,364) 
handle to the reotangular regIon 
(-30000, -30000, 30000, 30000) 
White 
black 
(o,o) 
(1,1) 
patCopy 
black 
o (visible) 
o (system font) 
normal 
srcor 
o (QuiCk Draw decides) 
o 
blackCOlor 
WhlteColor 
o 
o 
nll 
nil 
nU 
nil 

ProceWre Ini tPort ({IJ: GrafPtr); 
Given a pointer to a grafPort that has been opened wIth ~enPort, Inltf>Ort 
relnlt1allzes the fields of the grafPort and makes it the current port (if It's 
not already~ 

Inl tPort does everything [l)enPort does except allocate spaoe for the 
v1sR~ and cllJRlJl. 

ProceWre ClosePort ({IJ: GrafPtr); 
ClosePort deallooates the space ocoupled by the given grafPort's vlsRgl and 
cllpR~ When you are oompletely through with a grafPort, call thIs 
procedure. 

E-33 



Pascal Reference HantIal 

If you dO not call ClosePort before disposing of the grafPort, the 
memory used by the vlsR~ and cllpR~ will be unrecoverable. 

QtI!CkDraw 

After call1ng ClosePort, be sure not to use any copies of the V1sR~ or 
cllpR~ handles that you may have made. 

ProceWre setPort (gJ: GrafPtr); 

Setport sets the grafPort Indicated by ~ to oe the current port. The glObal 
pointer thePort always points to the current port. All QulcKDraw drawing 
routlnes affect the bltmap thePOrt" .portBlts and use the local coordinate 
system of UlePort". Note that Q:>enPort and 1nl tport do a Setport to the 
given port. 

Never dO a SetPort to a port that has not been opened with Q:>enPort. 

Each port possesses its own pen and text characteristics whIch remain 
unChanged When the port is not selected as the current porL 

ProcedIre GetflOrt (var ~: GrafPtr); 

Getport returns a pointer to the current grafPort. If you have a program that 
draws Into more than one grafPort, It's extremely useful to have each 
procedUre save the current grafPort (with Getport), set Its own grafPort, do 
drawIng or calculations, and then restore the previous grafPort (with setPort~ 
The pointer to the current grafPort is also available through the global 
poInter thePOrt, bUt you may prefer to use GetPort for better reaclat>lllty of 
your program text For example, a procedure could do a Get.Port(savePort) 
t>efore setting its own grafPort and a setPort(savePort) afterwards to restore 
the previous porL 

ProceWre GrafOeVice (cJeVice: integer); 

GrafOevlce sets thePOrt" .deVice to the given number, WhiCh identifies the 
logical output device for this grafPort. QuicKDraw uses this information. The 
Initial device number is 0, which represents the Usa screen. 

ProceWre 5etPortBits (bin: Bitt1ap); 

SetPortBits sets U1ePOrt" .portBlts to any previously defined bitmap. This 
allows you to perform all normal drawing and calculations on a bUffer other 
than the Lisa screen--for example, a 640-by-8 output buffer for a dOt matrix 
printer, or a small off-screen Image for later "stampIng" onto the screen. 

E-34 



Pascal Reference Mantlal QlJlckDraw 

Remember to prepare all fieldS of the bitmap before you call 5etPortBlts. 

ProceOJre PortSize (.ldth, hel~t: integer); 

PortSlze changes the size of the current grafPort's portRecl TIlls dOeS not 
affect tI1e screen: it merely Changes the size of the "active area" of the 
grafPort. 
The top left comer of the portRect remains at its same location; the width 
and height of the portRect are set to the given width and height. In other 
words, PortSlze moves the bOttom right comer of the portRect to a position 
relative to the top left comer. 
PortSlze dOes not Change the c~ or the VlsRgl, nor does It affect the 
local coordinate system of the grafPort: It changes only the portRect"s width 
and nelghl Remember that all drawing occurs only In tne Intersection of the 
portBlts..lXU'lds and the portRect, cUpped to the vlsRgl and the cllpRgl. 

ProceclJre ttwePortTo (leftGlooal, topGlooal: integer); 

MovePortTo Changes the posItion of the current grafPort's portRecl This does 
not affect tI1e screen; It merely Changes the location at WhiCh subsequent 
drawIng InsIde the port '11111 appear. 
The leftGlttJal and ~ttJal parameters set the distance between the top left 
comer of the portBlts..bOtrlds and the top left comer of the new portRecl 
For example ... 

tIOVePOrtTo(360,l82); 
will move the top left comer of the portRect to the center of the screen (If 
portBlts Is the Usa screen) regardless of the local coord1nate system. 
UKe portSlze, MovePortTo does not change the cllpRgl or the VlsRgl, nor 
does It affect the local coordinate system of the grafPort. 

ProceclJre setorlgin (h, V: integer); 

SetOrlgln Changes the local coordInate system of the current grafPort. This 
doeS not affect tIJe scmen:lt does, however, affect where SUbsequent drawIng 
and calculation wlIl appear In the grafPort. 8etOrlgln updates the coordinates 
of the portBlts..bOtrlds, the portRect, and the VlsRgl. All SUbsequent drawIng 
and calculation routines w111 use the new coordinate system. 
The h and v parameters set the coordinates of the top left comer of the 
portRecl All other coordinates are calculated from this point. All relative 
distances among any elements In the port will remaln the same; only their 
absolute local coordinates will Change. 

E-35 



Pascal Reference fv1antI8l t:;VICkDraw 

Setorlgln dOes not update the coordinates of the CllpR~ or the pen; 
these Items sticK to the coordinate system (unliKe the port's structure, 
WhiCh sticKs to the screen~ 

SetOrlgln Is useful for adjuSting the coordinate system after a scroll1ng 
operation. (See ScrollRect In section E.9.13, Bit Transfer q:>eratlons.) 

ProceWre setcllp (1Vl: R\J1Sldle); 

SetCllp changes the oUpping region of the current grafPort to a region 
equiValent to the given region. NOte that thiS does not Change the region 
handle, but affects the cUppIng region Itself. Since setCUp makes a copy of 
the given region, any sUbsequent Changes you make to that region wm not 
affect the oUpping region of the port. 
You can set the cUpping region to any arbitrary region, to aId you In drawIng 
Inside the grafPort. The initial cUpRgn is an arbltrarlly large rectangle. 

ProceWre Getcllp (1Vl: R\J1Sldle); 

Getcl1p changes the given region to a region equivalent to the cUpping region 
of the current grafPort. This Is the reverse of what SetCllp does. Like 
setCUp, it dOes not change the region handle. 

ProceWre CllpRect (r: Rect); 

CllpRect Changes the cUpping region of the current grafPort to a rectangle 
equivalent to given reotangle. Note that this dOes not ohange the region 
hancJle, bUt affects the region Itself. 

ProceWre BackPat (pat: Pattern); 

BacKPat sets the bacKground pattern of the current grafPort to the glven 
pattern. The background pattern is used in ScrollRect and in all QuickDraw 
routines that perform an "erase" operation. 

E.9.2 CUIsor-Hcl1dllng RWtJ.nes 
AddItional Information on cursor hanenlng can t>e found In AppendIx F, 
Hardware Interface. 
ProcedIre Inltcursor; 

Inltcursor sets the current cursor to the predefined arrow cursor, an arrow 
pointing north-northwest, and sets the cursor level to 0, making the cursor 
visible. The cursor level, which Is Inlt1al1zed to 0 when the system Is booted, 
keeps tracK of the number of times the cursor has been hidden to compensate 
for nested calls to HldeCursor ana ShowCursor (below~ 

E-36 



Pascal Reference Manual t;ttlCl<Draw 

Before you call InltCursor .. the cursor is undefined (or .. if set by a previous 
process" It's whatever that process set it to~ 

ProceWre setDJrsor (crsr: cursor); 
SetCursor sets the current cursor to the 16-by-16-bit image in crsr. If the 
cursor Is hidden" It remains hlCJden and wlll attain the new appearance when 
it's uncovered; if tne cursor is alreaay visible" it changes to the new 
appearance ImmeCJiately. 
The cursor image is initiaUzed by InitCursor to a north-northwest arrow" 
visible on the screen. There is no way to retrieve the current cursor image. 

ProceWre Hiderursor; 
HideCursor removes the cursor from the screen" restoring the bits under it" 
and decrements the cursor level (Which InltCursor initialized to o~ Every call 
to HideCUrsor should be balanceCJ by a sUbsequent call to ShowCursor. 

ProceWre sm.cw-sor; 
ShOwCursor increments the cursor level, Which may have been decremented by 
HideCursor" and displays the cursor on the screen if the level becomes O. A 
call to ShOwCursor should balance each previous call to HideCuTSor. The 
level Is not incremented beyond 0, so extra calls to ShowCursor dOn't nurt. 
If the cursor has been changed (with setcursor) while hidden, ShowCursor 
presents the new cursor. 
The cursor Is inltiaUzed by InltCursor to a north-northwest arrow, not hlClClen. 

ProceWre ooscurerursor; 
(l)scureCursor hides the cursor until the next time the mouse is moved. Unlike 
HideCuTSor" it has no effect on the cursor level and must not be balanced by 
a call to snoWCursor. 

E.9.3 Pen CIld U~ng Routines 
The pen and Une-drawing routines all depend on the coordinate system Of the 
current grafPort. Remember that each grafPort has its own pen; if you draw 
in one grafPort .. Change to another.. and return to the fIrst, the pen wIll have 
remained in the same location. 

ProceWre HidePen; 
HldePen decrements the current grafPort's plVls field" which is initiaUzed to 
o by q>enport; whenever JnVls Is negative, the pen dOes not draw on the 
screen. PnVls keeps track of the number of times the pen has been hidden to 
compensate for nested calls to HICiePen and SnowPen (below~ HldePen is 

E-37 



Pascal Reference Mantlal QljlckDraw 

called by Q')enRgn, Q:>enPlcture, and Q:>enPoly so that you can aeflne regions, 
pictures, ana polygons without drawing on the screen. 

ProceWre sno.J>en; 

ShowPen increments the current grafPort's JIlVls field, which may have been 
decremented by HldePen; if JIlVls becomes 0, QuicKDraw resumes drawing on 
the screen. Extra calls to ShowPen will increment JIlVls beyond 0, so every 
call to ShOwPen should be balanced by a SUbsequent call to HldePen. 
ShowPen is called by CloseRgn, Closepicture, and ClosePoly. 

ProceWre GetPen (var pt: Point); 

Getpen returns the current pen location, in the local coordinates of the 
current grafPort 

ProceWre GetPenState (var JIlState: PenState); 

GetpenState saves the pen location, s1ze, pattern, and moae 1n a storage 
variable, to be restored later with setpenstate (beIOW~ This Is useful When 
call1ng snort SUbroutines that operate 1n the current port but must Change the 
graphiCS pen: each such procedUre can save the pen's state When It's called, do 
whatever it needs to dO, and restore the prevIous pen state immed1ately 
before returning. 

The PenState data type Is not useful for anything except saving the pen's 
state. 

ProceWre 5etPenState (JIlState: PenState); 
SetPenState sets the pen location, size, pattern, and mode in the current 
grafPort to the values stored In p1State. This is usually called at the end of 
a procedure that has altered the pen parameters ana wants to restore them to 
their state at the beglming of the procedure. (see GetPenState, above.) 

ProceWre PenSize (width, hel~t: integer); 

PenSlze sets the dimensions of the graphiCS pen in the current grafPort. All 
SUbsequent calls to Line, LineTo, ana the procedures that draw framed Shapes 
in the current grafPort will use the new pen dimensions. 
The pen dImensIons can be accessed In the variable thePOrt" .pnSIze, whIch Is 
of type Point If either of the pen dimensions Is set to a negative value, the 
pen assumes the dimensIons (0,0) and no drawIng is performed. For a 
discussion of how the pen draws, see Section E.7, General Discussion of 
DrawIng. 

E-38 



Pascal Reference Manual QulckDJ1!JW 

ProceclJre PeR10de (ome: integer); 

PenMode sets the transfer mode thrOUgh WhiCh the prPat is transferred onto 
the bitmap When llnes or shapes are drawn. The mode may be anyone of the 
pattern transfer mOCles: 

patcopy patXor notPatcopy notPatXor 
patOr pat81c no'tPatOr notPat81c 

If the mode is one of the source transfer mOdes (or negative), no orawing is 
performed. The current pen mode can be obtained In the variable 
thePort .. ~ The Initial pen mode Is pa~y, in whiCh the pen pattern 
Is copied directly to the bitmap. 

ProoeWre PerAit (pat: Pattern); 

PenPat sets the pattern that Is used by the pen In the current grafPort. The 
standard patterns WhIte, bleD<, gray, ItGray, and (l(Gray are predefined; the 
initial pen pattern Is black. The current pen pattern can be Obtained In the 
variable thePort" .pnPat, and this value can be assigned (bUt not compared!) to 
any other variable of type Pattern 

ProceclJre Perftll'llBI; 

PenNormal resets the Initial state Of the pen in the current grafPort, as 
follows: 

Field 
p-lSize 
JrtbE 
Jl"Pat 

setting 
(1,1) 
patcopy 
bleD< 

The pen location Is not changed. 

Procedlre ttlVeTo (h, V: integer); 

MoveTo moves the pen to location (h,v) In the local coordinates of the current 
grafPOrt. No drawing is performed. 

ProoeWre HoVe (ell, dV: integer); 

Move moves the pen a distance of ttl horizontally and dV vertically from Its 
current location; It calls MoVeTc(h+tl1,v+dV), Where (h,v) Is the current location. 
The positive directions are to the right and clown. No drawing Is performed. 

E-39 



Pascal Reference ManUal QIIickDraw 

ProceWre llneTo (n, v: Integer); 

L1neTo draws a Une from the current pen location to the location speclflea (In 
local coordinates) by h and v. The new pen location is (h,v) after the line Is 
drawn. See Section E. 7, General Discussion of Drawing. 
If a reg10n or polygon 1s open and being formed, 1ts outl1ne 1s Inf1n1tely thin 
ana Is not affectea by the pnSlze, ~, or prFal (See (llenRgn and 
q>enPOly.) 

ProceWre line (ell, dV: integer); 

Line draws a Une to the location that is a distance of ell hOrizontally and dV 
vertically from the current pen location; It calls LlneT«h-t1!l,V+dV), wtlere (h,v) 
Is the current location. The pos1tive directions are to the right and dOwn. 
The pen location becomes the coorClinates Of the end of the Une after the Une 
is drawn. See section E. 7, General Discussion of· Drawing. 
If a region or pOlygon Is open and being formed, Its outl1ne Is Infinitely thin 
ana Is not affected by the pnSlze, ~, or pnPat. (see qlenRgn and 
~enPoly.) 

E.9.4 Text-Drawlng ROUUnes 
EaCh grafPort has Its own text Characteristics, and all these proCedures deal 
with thOse of the current port. 

ProceWre Textfoot (foot: integer); 

TextFont sets the current grafPort's font (thePOrt" .bCFont) to the given font 
number. The initial font number Is 0, which represents the system font. For 
other font numbers, refer to the ~rt unIt, llsted In Section E.lS. 

ProceWre Textf~ (f~: style); 

TextFace sets the current grafPort's character style (thePOrt" .t)(f'ace~ The 
Style data type allows you to specify a set Of one or more of the following 
predefined constants: bold, Italic, lRlerllne, ouUIne, ShadoW, OOKEuse, ana 
extern For example: 

Textf~([bOldJ); 
TextFace( [bold, italic)); 
Textf~(thePortA.tXf~~[bOld]); 
TextFace(thePortA . t><Face-[bold]); 
Textfcu( [ J); 

E-40 

{bold} 
{bold and italic} 
{1hateVer it laS plus bold} 
{.tlatever it was bUt not bold} 
{nonnal} 



Pascal Reference Manual QuickDraw 

Procewre Textt10de (1IIXJe: integer); 

TextMode sets the current grafPort's transfer mode for drawing text 
(thePort" .txf'o1Ode~ The mode shoUld be SICOr, sroXor, or sroBlc. The initial 
transfer mode for drawing text Is sl'COr. 

ProceOJre Textsize (size: integer); 

TextSize sets the current grafPort's type size (thePort" .bCSlze) to the given 
number of points. My size may be specifieo, bUt the result will loOk best if 
Qulcl<Draw nas the font in that size (otherwise it will scale a size It dOes 
have~ The next best result will occur If tne given size Is an even multiple of 
a size avallable for the font. If 0 Is specified, QulcKDraw wUl cnoose one of 
the avaUable sizes--wnlcnever Is closest to the system font size. The Initial 
bCSlze setting is 0. 

ProceclJre ~xtra (extra: integer); 
spaceExtra sets the current grafPort's spExtra field, whIch specifies the 
number of pixels by which to widen each space In a Une of text. This is 
useful when text Is beIng fully justifIed (tnat Is, aUgned wIth bOth a left and a 
right margin~ Consider, for example, a Une that contains three spaces; if 
there would normally be six pIxels between the end of the Une and the rIght 
margIn, you would call SpaceExtrc(2) to print the line with full justifIcation. 
The InItial spExtra setting Is o. 

SpaceExtra will also take a negative argument, but be careful not to 
narrow spaces so muCh that the text Is unreadable. 

ProcedIre Dra.alar (ch: cnar); 

DrawChar places the given character to the right of the pen location, with 
the left end of its base Une at the pen's location, and advances the pen 
accordingly. If the character Is not in the font, the font's missing symbol Is 
drawn. 

ProceOJre Drawstring (s: str255); 

DraWString performs consecutive calls to DrawChar for each character In the 
supplied string; the string Is placed beglming at tne current pen location and 
extending right. No formatting (carriage returns, Une feeds, etc.) Is performed 
by QuickDraw. The pen location ends up to the right of the last character In 
the. string. 

E-41 



Pascal Reference Manual QlI1Cl<Draw 

PrOceclJre DrawText (textflJf: (U'tr; flrstByte"byteGo.rlt: integer); 

OrawText draws text from an arbitrary structure In memory spec1fIed by 
textBuf, starting flrstByte bytes Into the structure and continuing for 
byteCou'lt bytes. The strIng of text Is placed begiming at the current pen 
location and extending right. No formatting (carriage returns" Une feeds, etc.) 

. Is perfOrmed by QuicKOraw. The pen location ends up to the right of the last 
. character In the string. 

flllOtion Dlarlidth (Ch: Char) : integer; 

CharWIdth returns the value that wUl be added to the pen horizontal 
coordinate if the specified Character Is drawn. CharWldth InclUdes the effects 
of the styllstic varIations set with TextFace; If you change these after 
determining the character width but before actually drawing the Character, 
the predetermined width may not be correct. If the character is a space, 
CharWIdth also InclUdes the effect of SpaceExtra. 

FlIlCtion stringlidttl (s: str255) : integer; 

StrlngWidth returns the width of the given text string, whiCh it calculates by 
adding the wIdths of all the characters in the string (see CharWidth, above~ 
This value will be added to the pen horizontal coordinate If the specified 
string Is drawn. 

fUlOtion Textlidth (textflJf: c;.llPtr; firstByte,byteCot.llt: integer) : 
integer; 

TextWldth returns the width of the text stored in the arbitrary structure in 
memory speCified .by textBuf, starting flrstByte bytes Into the structure and 
continuing for byteCol.rlt bytes. It calculates the width by adding the wIdths 
of all . the characters In the text. (see Char Width, above.) 

ProcedIre GetFontInfo (var info: fontInfO); 

GetFontlnfo returns the following information about the current grafPort's 
character font, taking into consideration the style and sIze in which the 
characters wlll be Clrawn: the ascent, Clescent, maximum character wlClth (the 
greatest dIstance the pen will move when a character is drawn)" and leadIng 
(the vertical distance between the Clescent Une and the ascent Une below It), 
all in pixels. The FonUnfo data structure is defined as: 

type FontInfo = record 
ascent: integer; 
descent: integer; 
wl(J1aX: integer; 
leadirYJ: integer 

end; 

E-42 



Pascal Reference Manual QufckDraw 

E.95 DrawlrlJ In COlor 
These routines will enable appllcations to do color drawing in the future when 
Apple supports cOlor output Cfevlces for the Usa. All nonwhite colors wUI 
appear as black on black-anCf-white output devices. 

ProceWre Forecolor (color: longInt); 
F oreColor sets the foreground color for all drawing in the current grafPort 
(thePort ... fgColor) to the given color. The fOllowing standard colors are 
predefined: blackCOloT ... WhiteColor ... redCOlor ... greenColor ... bltJeColor ... cyalColor ... 
magentaColor ... and yellOWCOlor. The initial foreground color is blackCOlor. 

ProceWre BackCOlor (color: longInt); 

BacKColor sets the baCkground color for all Cfrawlng In the current grafPort 
(thePort" .bkCOlor) to the gIven color. Eight standard colors are predefined 
(see Forecolor, above~ The InItial baCKground color Is wtllteCoIOT. 

ProceWre COlorBlt ( ..... IChBIt: Integer); 
ColorBlt Is called by prInting software for a color prInter, or other color­
imaging software ... to set the current grafPort's colrBit field to WhichBlt; this 
tells QulcKDraw Which plane Of the color picture to draw into. QulcKDraw 
will draw into the plane corresponding to bit number WhlChBlt. Since 
QulcKDraw can support output devIces that have up to 32 bits of color 
information per plxel .. the possible range of values for WhichBlt Is 0 through 
31. The InIt1al value of the colIBlt field Is O. 

E.9.6 calculations with Recta1gles 
Calculation routines are independent of the current coordinate system; a 
calculation will operate the same regardless of which grafPort is active. 

I'IlTE 

Remember that if the parameters to one of the calculation routines 
were defined in different grafPorts ... you must fIrst adjust them to be In 
the same coordinate system. If you do not adjust them ... the result 
returned by the routine may be different from what you see on the 
screen. To adjust to a common coordinate system, see LocalToGIObal 
and GlobalToLocal In Section E.9.17 ... CalCUlations with Points. 

ProceWre setRect (var r: Rect; left ... top,rI~t ... bottom: integer); 

SetRect assigns the four boundary coordinates to the rectangle. The result is 
a rectangle with coordinates (left ... top,rl~t"bottan). 

This procedure is supplied as a utility to help you shorten your program text. 
If you want a more readable text at the expense of length, you can assIgn 

E-43 



Pascal ReFerence I'1anlIaJ QulekDraw 

integers (or points) dIrectly into the rectangle's fields. There is no sIgnIficant 
code size or execution speed advantage to either method; one's just easier to 
wrl te ... and the other's easIer to read. 

Procewre OffsetRect (var r: Rect; cJl,dV: integer); 

OffsetRect moves the rectangle by addIng (Jl to each horIzontal coordInate 
and dV to each vertical coordinate. If (Il and dV are positive ... the movement 
Is to the rIght and down; If eIther Is negative ... the correspondIng movement Is 
in the opposite direction. The rectangle retains its Shape and size; it's merely 
moved on the coordinate plane. ThIs does not affect the screen unless you 
subsequently call a routine to draw within the rectangle. 

Procedlre InsetRect (var r: Rect; (Il, dV: integer); 

InsetRect shrinks or expands the rectangle. The left and right sides are 
moved In by the amount specIfied by (Jl; the top and bottom are moved 
toward the center by the amount specified by dV. If (Il or dV is negative ... the 
appropriate pair of sides Is moved outward Instead Of Inward. The effect Is to 
alter the s1ze by 2*(Jl horizontally and 2*dV vertically ... with the rectangle 
remaInIng centered in the same place on the coordInate plane. 
If the resulting wIdth or height becomes less than 1 ... the rectangle Is set to 
the empty rectangle (O)J)J)J~ 

FUlCtion 8ectRect (srcRectA, srcRectB: Rect; var dstRect: Rect) : 
bOOlean; 

SectRect calculates the rectangle that Is the intersection of the two input 
rectangles, and returns true If they indeed intersect or false if they do not. 
Rectangles that "tOUCh" at a line or a point are not considered intersecting, 
because their intersection rectangle (really, In this case, an intersection line 
or point) does not enclose any bits on the bitmap. 
If the rectangles do not intersect, the destination rectangle is set to (O,O,O,O~ 
SectRect works correctly even If one of the source rectangles Is also the 
destination. 

Procedae ltlionRect (SrcRectA, srcRectB: Rect; var dstRect: Rect); 

UnionRect calculates the smallest rectangle which encloses both input 
rectangles. It works correctly even if one of the source rectangles Is also the 
destination. 

E-44 



Pascal Reference Manual QufckDraw 

Ft.rlCt100 ptIrfleCt (pt: Po1nt; r: Rect) : boolea'l; 

PtInRect determines 'Whether the pixel belo'W and to the right of the given 
coordinate point is enclosed in the specified rectangle, and returns true if so 
or false if not. 

Procewre pt2Rect (ptA,ptB: Point; var dstRect: Rect); 

Pt2Rect returns the smallest rectangle 'Which encloses the t'Wo input points. 

Procewre ptToAngle (r: Rect; pt: Po1nt; var ClYJle: 1nteger); 

PtToAngle calculates an integer angle between a line from the center of the 
rectangle to the given point and a line from the center of the rectangle 
pointing straight up (12 o'clocK high~ The angle is in degrees from 0 to 359, 
measured clocK'Wise from 12 o'clocK, 'With 900 at 3 o'clock, 1800 at 6 o'clock, 
and 2700 at 9 o·clocK. Other angles are measured relative to the rectangle: If 
the line to the given point goes through the top right corner of the rectangle, 
the angle returned is 45 degrees, even if the rectangle is not square; if it goes 
through the bottom right corner, the angle is 135 degrees, and so on (see 
Figure E -18~ 

angle=45 
----. pt 

'y 
...---+---

/ 
V' 

Figure E-18 
ptToAngle 

The angle returned mIght be used as Input to one of the procedures that 
man1pulate arcs ana weages, as descrlbea In SecUon E.9.10, GraphIc Q)eraUons 
on Arcs and Wedges. 

FlI'lCtion E(JJalRect (rectA, rectB: Rect) : booleal; 

EqualRect compares the two rectangles and returns true if they are equal or 
false if not. The t'Wo rectangles must have Identical boundary coordinates to 
be considered equal. 

E-45 



Pascal Reference Manual QuickDraw 

Ft.I1Ction E~tyRect (r: Rect) : bOolea'l; 

EmptyRect returns true if the given rectangle is an empty rectangle or false 
if not. A rectangle is considered empty if the bottom coordinate is equal to 
or less than the top or the rIght coordinate is equal to or less than the left. 

E.9.7 Graphic qJeratlons on Rectcrgles 
These procedures perform graphIc operations on rectangles. See also 
ScrollRect in Section E.9.13, Bit Transfer q:lerations. 

ProceOJre FlCIERect (r: Rect); 

FrameRect draws an outline just inside the specified rectangle ... using the 
current grafPort's pen pattern ... mode ... and sIze. The outline Is as wide as the 
pen width and as tall as the pen height. It is drawn with the pnPat ... according 
to the pattern transfer mOde specified by pnMade. The pen location is not 
changed by this procedUre. 

If a regIon is open and being formed, the outside outline of the new rectangle 
is mathematically added to the region's boundary. 

Procedll'e PalntRect (r: Rect); 

PaintRect paints the specified rectangle with the current grafPort's pen 
pattern and mode. The rectangle on the bitmap is filled with the plPat, 
according to the pattern transfer mode speCified by· pnrvkXJe. The pen location 
is not changed by this procedUre. 

Procewre EraseRect (r: Rect); 

EraseRect paints the specified rectangle with the current grafPort's back­
ground pattern bkPat (in patcopy mOde). The grafPort's pnPat and prt-1Ode are 
ignored; the pen location is not changed. 

ProceOJre InvertRect (r: Rect); 

InvertRect inverts the pixels enclosed by the speCified rectangle: every white 
pixel becomes black and every black pixel becomes white. The grafPort's 
pnPat, pnMode ... and bkPat are all ignored; the pen location is not changed. 

ProceOJre FillRect (r: Rect; pat: Pattern); 

F11lRect fills the specified rectangle with the given pattern (in patCqJy mode). 
The grafPort's pnPat, prt-1Ode, and bkPat are all ignored; the pen location is 
not changed. 

E-46 



Pascal Reference Manual QtllckDraw 

E.9.8 GraphIc qJeraUons 00 OVals 
OVals are drawn Inside rectangles that you specify. If the rectangle you 
specify Is square, QulckDraw draws a circle. 

Procedure FrCllleOVal (r: Rect); 

FrameOVal draws an outllne just InsIde the oval that flts InsIde the specIfIed 
rectangle, using the current grafPort's pen pattern, mode, and size. The 
outllne Is as wIde as the pen width and as tall as the pen heIgl'll It Is drawn 
with the prj>at, according to the pattern transfer mode specified by pnIVklde. 
The pen location Is not Changed by this procedure. 
If a regIon Is open ancJ beIng formecJ, the outsicJe outllne of the new oval Is 
mathematically added to the region's boundary. 

Procedure Paint0V81 (r: Rect); 

PalntOVal paints an oval just inside the specified rectangle with tl'le current 
grafPort's pen pattern and mode. The oval on the bitmap is fiHed with the 
~t, according to the pattern transfer mode speCified by pnIVklde. The pen 
location is not changecJ by this procecJure. 

ProceclJre Eraseoval (r: Rect); 

EraseOVal paints an oval just inside the speclfiecJ rectangle wIth the current 
grafPort's background pattern bkPat (1n pat~y mOde~ The grafPort's p9at 
and pnMode are IgnorecJ; the pen location Is not changecJ. 

Procerure Invertoval (r: Rect); 

Invertoval inverts the pixelS enclosed by an oval just inside the specifiecJ 
rectangle: every wi'll te pixel becomes blacK and every blacK pIxel becomes 
whIte. The grafPort's pnPat, pnIVklde, ancJ bkPat are all ignored; the pen 
location Is not Cl'langed. 

Procedure FillOV8l (r: Rect; pat: Pattern); 

fillOVal fills an oval just inside the specifIed rectangle with the given pattern 
(In patCopy mode~ The grafPort's pnPat, pnIVklde, and bkPat are all Ignored; 
the pen location is not changed. 

E.9.9 ~c qleraUons on RW'lt1eO-COmer Recta'lgles 

Procewre Fr~t (r: Rect; oval'idth,ovalHel~t: integer); 

FrameRoundRect draws an outline just inside the specified rounded-corner 
rectangle, using the current grafPort's pen pattern, mode, and size. DvalWidth 
and ~1~t specify the diameters of curvature for the corners (see Figure 
E-19~·· The outl1ne is as wide as the pen width and as tall as the pen height. 

E-47 



Pascal Reference Manual QuickDraw 

It Is drawn wIth the prf'at, accordIng to the pattern transfer mode specifled 
by prMode. The pen location Is not changed by this procedUre. 

ovalwidth 

Fl~Jre E-19 
ROlXlded-COrner Rectalgle 

If a regIon is open and beIng formed, the outside outline of the new rounded­
corner rectangle is mathematically added to the region's boundary. 

Procerure Pa1nt~t (r: ROOt; oval'1(ltfl,ovalHe1~t: 1nteger); 

PaintRoundRect paints the specified rounded-comer rectangle wIth the 
current grafPort's pen pattern and mode. (M}lWidtfl and ovalt-lel~t specify 
the diameters of curvature for the corners. The rounded-corner rectangle on 
the bitmap is filled with the pnPat, according to the pattern transfer mode 
specified by prMode. The pen location Is not changed by this procedure. 

PrOCedUre Era~t (r: Rect; oval'1dtfl,ovalHe1~t: integer); 

EraseRoundRect paints the specified rounded-corner rectangle wIth the 
current grafPort's background pattern bkPat (In patCopy mOde~ ovaIWldtfl and 
ovaU-tel~t specify the diameters of curvature for the corners. The grafPort's 
prPat and prMode are ignored; the pen location is not changed. 

ProceOOre Inver~t (r: Rect; oval'idtn,ovalHel~t: integer); 

InvertRoundRect Inverts the pIxels enclosed by the specified rounded-corner 
rectangle: every white pixel becomes black and every black pIxel becomes 
whIte. OtalWidtfl and OValt-lel~t specIfy the diameters of curvature for the 
corners. The grafPort's pnPat, prMode, and bkPat are all ignored; the pen 
location Is not changed. 

E-48 



Pascal Reference Manual QuiCkDraw 

Procerure Fill~t (r: Root; oval'idth,ovalHei~t: integer; pat: 
Pattern); 

Fll1RoundRect fIlls the specified rounded-corner rectangle with the gIven 
pattern (1n patcopy mode~ OIalWidth and ovalHel~t specify the diameters of 
curvature for the comers. The grafPort's prPat, prt-'kXJe, and bkPat are all 
ignored; the pen location is not changed. 

E.9.10 Graphic (l)eratlons on Arcs ald WedgeS 
These procedures perform graphIc operations on arcs ana weage-shaped 
sections of ovals. See also PtToAngle in Section E.9.6, Calculations wIth 
Rectangles. 

ProceWre FICIIEArc (r: Rect; startArJJle, arcAngle: integer); 

FrameArc draws an arc of the oval that fits InsIde the specIfied rectangle, 
using the current grafPort's pen pattern, mode, and size. StartArgle indicates 
Where the arc begIns ana Is treated mod 360. ArCAngle aeflnes the extent of 
the arc. The angles are gIven In posItIve or negative degrees; a positive angle 
goes ClOCkwIse, while a negative angle goes counterclockwise. Zero aegrees is 
at 12 o'clock high, 90° (or -270°) Is at 3 o'clOCk, 180° (or -180°) is at 6 
O'clOCk, ana 2700 (or -900

) is at 9 o·clock. Other angles are measurea relat1ve 
to the enclosIng rectangle: a Une from the center of the rectangle through its 
top right corner Is at 45 aegrees, even If the rectangle Is not square; a Une 
through the bottom rIght comer is at 135 degrees, and so on (see Figure E-20~ 

FrameArc 

stertAngle = 0 

1 arcAngle = 45 
: .... 

FrameArc 

startAngle = 0 

\arcAngle = 45 

.. ""T""" 
PaintArc 

Figure E-20 
qleratlons on Arcs ald WedgeS 

E-49 



Pascal Reference Manual QulckDraw 

The arc Is as wIde as the pen wIdth and as tall as the pen heIght It Is drawn 
wIth the prPat, accordIng to the pattern transfer mode specIfIed by ~. 
The pen location Is not Changed Oy thIs prOCedUre. 

WARNIr-.K3 

FrameArc dIffers from other QulckDraw procedures that frame shapes 
in that the arc is not mathematically added to the boundary of a 
regIon that is open and being formed. 

ProceWre PaintArc (r: Root; startAngle, arcAngle: integer); 

PaintArc paints a wedge of the oval just inside the speCified rectangle with 
the current grafPort's pen pattern ana moae. st.artPllgle and arcAngle defIne 
the arc of the wedge as in FrameArc. The wedge on the bitmap is filled with 
the prPat, accordIng to the pattern transfer mode specIfied by pnI'1Ode. The 
pen location is not changed by this procedUre. 

ProceOJre EraseArc (r: Rect; startAngle, arcAngle: integer); 

EraseArc paints a wedge of the oval just inside the speCified rectangle with 
the current grafPort's baCkground pattern bkPat (1n patcopy mOde~ 
st.artPllgle and aJ'CJVlgle define the arc of the wedge as in FrameArc. The 
grafPort's pnPat and ~ are Ignored; the pen locat1on Is not changea. 

ProceWre InvertArc (r: Root; startAngle, arcAngle: integer); 

InvertArc Inverts the pIxelS enclosed by a wedge of the oval just InsIde the 
speci fied rectangle: every white pIxel becomes black and every black pixel 
becomes whIte. st.artPllgle and arcAngle deflne the arc of the wedge as In 
FrameArc. The grafPort's prPat, ~, and bkPat are all Ignored; the pen 
location Is not Changed. 

ProceWre fillArc (r: Rect; startAngle, arcAngle: integer; pat: 
Pattern); 

FillArc fills a wedge of the oval just inside the specified rectangle with the 
gIven pattern (In patCopy mOde~ st.artPllgle and aJ'CJVlgle deflne the arc of 
the wedge as in FrameArc. The grafPort's pnPat, ~, and bkPat are all 
Ignored; the pen location Is not Changed. 

E-50 



Pascal Reference Mantlal QtllckDraw 

E.9.11 caIculaUoos with Regloos 

Rememt>er that if the parameters to one of the calculation routines 
were defined In different grafPorts, you must first adjust them to be In 
the same coordinate system. If you dO not adjust them, the result 
returned by the routine may be different from what you see on the 
screen. To adjust to a common coordinate system, see LocalToGlobal 
and GlobalToLocal In Section E.9.17, Calculations wlttl Points. 

FtrlCtl00 Ne~ : ~le; 

NewRgn allocates space for a new, dynamic, variable-size region, initiallzes it 
to the empty region (0,0,0,0), and returns a handle to the new region. O1ly 
this function creates new regions; all other procedures just alter the size and 
shape of regions you create. QJenPort calls NewRgn to allocate space for the 
port's vlsRgl and cllpR~ 

WAANINGS 

Except when using vlsRgl or clipRgl, you must call NewRgn before 
specIfyIng a regIon's handle In any drawIng or calculation procedure. 
Never refer to a region without using Its handle. 

Procedure DisposeR!Jl (rg-t: ~le); 

DisposeRgn deallocates space for the region whose handle is suppUed, and 
returns the memory used by the region to the free memory pool. Use thIs 
onl y after you are completely through with a temporary region. 

WARNING 

Never use a region once you have deallocated it, or you will risk being 
hung by cJangl1ng pointers! 

Procewre COpyRgl (srcRgl, dstRgl: ~le); 

CopyRgn copies the mathematical structure of srcRg1 into dstRg1; that is, it 
makes a duplicate copy of srcR~ O1ce this is done, srcRgl may be altered 
(or even cJisposed of) without affecting dstRg1. COpyRgn does not create the 
destJnation [eglon: you must use NewRgn to create the mtRgl before you 
call CopyRgn. 

E-Sl 



Pascal Reference Manual QulckDraw 

Procedure setEnptyRgl (l1Jl: ~le); 

SetEmptyRgn destroys the prevIous structure of the gIven regIon, then sets the 
new structure to the empty regIon {o,o,o,o~ 

Procedure setRectRg'l (l'f1l: ~le; left, top,ri~t,bottom: integer); 

SetRectRgn destroys the previous structure of the given region, then sets the 
new structure to the rectangle specIfIed by left, top, r1~t, and bOttom. 
If the specified rectangle Is empty (I.e., left>-r1~t or top>-bOttom), the regIon 
Is set to the empty regIon (0,0,0,0). 

ProcedUre RectRgl (rgl: ~le; r: Rect); 

RectRgn destroys the previous structure of the given regIon, then sets the new 
structure to the rectangle specified by r. This is operationally synonymous 
wIth setRectRgn, except the input rectangle Is defined by a rectangle rather 
than by four boundary coordinates. 

Procedure ~; 

(llenRgn tells QuickOraw to allocate temporary space and start saving lines 
and framed Shapes for later processing as a region deflnIt1on. Whlle a region 
Is open, all calls to Line, LineTo, and the proceaures that araw framed Shapes 
(except arcs) affect the outl1ne of the regIon. OIly the line endpoints and 
shape boundaries affect the region definition; the pen mode, pattern, and size 
dO not affect It. In fact, ~enRgn calls HldePen, so no drawing occurs on the 
screen while the region is open (unless you called ShowPen just after ~enRgn, 
or you called ShowPen prevIously without balancing it by a call to HidePen~ 
Since the pen hangs below and to the right of the pen location, drawing lines 
with even the smallest pen w1ll Change bIts that 11e outside the regIon you 
define. 
The outline of a region is mathematically defined and infinitely thin, and 
separates the bitmap into two groups Of bits: those within the regIon and 
those outside it. A region should consist of one or more closed loops. Each 
framed Shape itself constitutes a loop. My lines drawn with Line or LineTo 
should connect with each other or with a framed shape. Even though the 
on-screen presentation of a region is clipped, the definition of a region is not; 
you can define a regIon anywhere on the coordinate plane with complete 
disregard for the location of various grafPort entities on that plane. 
When a region Is open, the current grafPort's rgnSave field contains a handle 
to Information related to the regIon defInIt1on. If you want to temporarily 
disable the collection of lines and shapes, you can save the current value of 

£-52 



Pascal Reference Manual . QldckDraw 

thIs f1eld, set the fIeld to nIL and later restore the saved value to resume the 
region definition. 

WAANII'G 

Do not call (l)enRgn while another region Is already open. All open 
regions but the most recent wUl behave strangely. 

Procecilre CloseRgl (dst~: ~le); 
CloseRgn stops the collection of lines and framed shapes, organizes them into 
a regIon defInItion, and saves the result1ng regIon Into the regIon IndIcated by 
dStRgl. You should perform one and only one closeRgn for every (l)enRgn. 
CloseRgn calls ShowPen, balancIng the HidePen call made by GpenRgn. 
Here's an example of how to create and open a regIon, define a barbell Shape, 
close the region, and draw It: 

barbell := NeMql; {fOOke a new reglm} 
~; {begin collecting stUff} 

setRect(tetl{)Rect,20,20,30,50); {form the left wel~t} 
Frameoval{tempRect); 
setRect(tempRect,30,30,80,40); {form the Dar} 
FrameReot(tempReot); 
setRect(tempRect, 80, 20, 90, 50); {form the rl~t wel!1lt} 
Frameoval{tempRect); 

ClOseRgl(barbell); 
FillRgn(barbell,black); 
01sposeRgl(barbell) ; 

{we're dale; save in barbell} 
{draw it on the screen} 
{we don't nero yru a'lynDre. .. } 

Proceoore OffsetRgl (rgl: ~le; 1Il,dV: integer); 

OffsetRgn moves the regIon on the coordInate plane, a dIstance of til 
horizontally and ctv vertically. This does not affect the screen unless you 
sUbsequently call a routine to draw the regIon. If (Jl and dV are posItive, the 
movement is to the right and down; if either Is negative, the corresponding 
movement Is In the opposite cllrectlon. The regIon retaIns Its sIze and Shape. 

NJTE 

OffsetRgn 1s an especially efficient operation, because most of the data 
defining a region is stored relative to Igffiox and so isn't actually 
Changed by OffsetRgn. 

E-53 



Pascal Reference I'-1antIal QuiekDraw 

Procerure InsetRgl (l1Jl: Rgilandle; CIl, dV: integer); 

InsetRgn shrinKs or expands the region. All points on the region boundary are 
moved inwards a distance of dV vertically and CIl horizontally; If CIl or dV Is 
negative, the points are moved outwards in that dIrection. InsetRgn leaves 
the region "centered" at the same position, but moves the outl1ne in (for 
positive values of <Il and dV) or out (for negative values of ell and dV~. 
InsetRgn of a rectangular region works just Ilke InsetRecL 

ProcedUre 8ectRgl (srcRglA, srcRglB, dstRgl: Rgilandle); 

SectRgn calculates the intersection of two regions and places the intersection 
in a third regIon. TlJis doe~" !Jot CllJate tile destination l-egJon: you must use 
NewRgn to create dstRgl before you call SectRgn. The dstRgn can be one of 
the source regIons, if desired. 
If the regions dO not intersect, or one of the regions Is empty, the destination 
is set to the empty region (O,O,O,O~ 

ProceWre lt1i~ (srcRglA, srcRglB, dS~: Rgilandle); 

unlonRgn calculates the unIon Of two regIons and places the unIon In a thIrd 
region. TlJ./s does not create /IJe desl/nal/on region: you must use NewRgn to 
create dstR(Jl before you call unlonRgn. The dstR(Jl can be one of the 
source regions, If desired. 
If both regions are empty, the destination is set to the empty region (O,O,o,o~ 

Procewre 01 ffRgl (srcRglA, srcRg1B, ds~: Rgilandle); 

OiffRgn subtracts sroR~ from srcRgnA and places the difference in a third 
reglon. Tllis dOes not create tile destination region: you must use NewRgn to 
create dstRgn before you call OiffRgn. The dstRgl can be one of the source 
regions, if desired. 
If the first source region Is empty, the destination Is set to the empty region 
(O,O~O,O~ 

ProceWre XorRgn (srcRglA, srcRg1B, dstfql: ~1dle); 

XOrRgn calculates the difference between the union and the Intersection of 
two regions and places the result In a third region. Tllis does not create /IJe 
desl/natJon region: you must use NewRgn to create dstR(Jl before you call 
XorRgn. The dstRgl can be one of the source regIons, If desired. 
If the regIons are coIncident, the destination Is set to the empty regIon 
(O,o~~~ 

£-54 



Pascal Reference Manual QulckDraw 

Ft.IlCt100 ptlrflgl (pt: Po1nt; IVI: Rgt-fanCJle) : lJOOlecrl; 

PtInRgn checks whether the pixel Oelow and to the right of the given 
coordinate point is within the specified region" and returns true if so or false 
if not 

FlIlCt100 RectI~ (r: Rect; IVI: Rgt-fanCJle) : tlOOlea1; 

RectInRgn checks whether the given rectangle intersects the speCified region" 
and returns true if the intersection encloses at least one Oit or false if not. 

Fln}tioo Equal~ (rglA, 1Vl8: ~le) : boolE9l; 

EqualRgn compares the two regions and returns true if they are equal or false 
if not. The two regions must have identical sizes" shapes" and locations to Oe 
considered equal. MY two empty regions are always equal. 

Fln}tion EQ)tJR!J1 (IV': Rgt-fanCJle) : bOOleal; 

EmptyRgn returns true if the region is an empty region or false if not. Some 
of the circumstances in which an empty region can Oe created are: a NewRgn 
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty 
rectangle as an argument; CloseRgn without a previous qlenRgn or with no 
drawing after an cpenRgn; OffsetRgn of an empty region; InsetRgn with an 
empty region or too large an inset; SectRgn of nonintersecting regions; 
LlnionRgn of two empty regions; and DiffRgn or xorRgn of two identical or 
nonlntersectIng regions. 

E. 9.12 Graphic qJerattons on Regions 
These routines all depend on the coordInate system of the current grafPort. If 
a region is drawn in a different grafPort than the one In which it was defined" 
it may not appear In the proper posItion InsIde the port. 

ProceWre f~ (l1Jl: Rgt-fanCJle); 

FrameRgn draws a hollow outlIne just InsIde the specIfIed regIon, usIng the 
current grafPort's pen pattern" mode" and size. The outline is as wide as the 
pen wIdth and as tall as the pen height; under no cIrcumstances wm the 
frame go outside the region boundary. The pen location Is not changed by 
th1s procedure. 
If a regIon is open and being formed, the outside outline of the region being 
framed Is mathematically added to that region's boundary. 

PrOCEDJre Paln~ (IV': Rgt-fanCJle); 

PaintRgn paints the specified region with the current grafPort's pen pattern 
and pen mOde. The region on the bitmap is filled with the pnPat" according 

E-55 



PasL."'8l Reference Manual QulckDraw 

to the pattern transfer mode specified by pnMOOe. The pen location Is not 
changed by this procedUre. 

ProcedUre EraseRg1 (r~: Rg"tIcrllle); 

EraseRgn paInts the specified reglon with the current grafPort's background 
pattern bkPat (1n patCopy mOde~ The grafPort's pnPat and pnMOOe are 
Ignored; the pen location ls not changed. 

ProcedUre InvertRgl (~: Rg"tIcrllle); 

InvertRgn Inverts the pixels enclosed by the specified region: every white 
pIxel becomes black and every black pixel becomes white. The grafPort's 
pnPat" pnMOOe" and bkPat are all Ignored; the pen location is not changed. 

Proce<lJre Fl1~ (r~: Rg"tIcrllle; pat: pattern); 

F1l1Rgn fills the specIfied region with the given pattern (In patcopy mOde). 
The grafPort's fl"Pat... pnMOOe" and bkPat are all Ignored; the pen location Is 
not changed. 

E.9.13 Bit TrCl'lSfer qJeratims 

ProcedUre SCrollRect (r: Rect; (fl,dV: integer; updateRgn: Rg"tIcrllle); 

ScrollRect shifts C'scrolls") thOse bits inside the intersection of the specified 
rectangle" vlsRgl" cl1~gl" portRect" and portBJts.llot.I1dS. The bits are shifted 
a distance of <Il horizontally and ClV vertically. The positive directions are to 
the right and down. No other bits are affected. Bits that are shifted out of 
the scroll area are lost; they are nei ther placed outside the area nor saved. 
The grafPort's background pattern bkPat fills the space created by the scroll. 
In addition" ~teRgn is Changed to the area filled with bkPat (see Figure 
E-21~ 

E-S6 



Pascal Reference Manual QI.IlckDraw 

8ef oreScrollRect After ScroIlRec:t( dstRect,-1 0,5 ... ) 

st 

. ~/~pnLoc: 
QUlckDraw.1IC'"" 

dstRec:t updateAgn 

Fl~re E-21 
SCrolling 

FIgure E-21 snows mat me pen location after a scrollRect Is In a different 
position relative to wnat was scrolled in tne rectangle. Tne entire scrolled 
Item nas been moved to different coordinates. To restore it to Its coordinates 
before the ScrollRect, you can use tne Setorigin procedure. For example, 
suppose tne OStRect tlere Is me portRect Of me grafPort and its top left 
corner is at (95,120~ setOrtglr(lOS,115) wlll offset tne coordinate system to 
compensate for tne scroll. Since tne cllpRgl and pen location are not offset, 
they move down and to the left. 

ProcedUre COpyBits (srcBits, dstBits: Bi~; srcRect, dstRect: Rent; 
nooe: integer; maSl<Rgn: RglHcnjle); 

copyBlts tranSfers a bIt Image oetween any two bitmaps and cUps tne result 
to the area speCified by tne maskRgn parameter. The transfer may be 
performed in any of tne eignt source transfer mOdes. Tne· result is always 
cllpped to tne maskRgn and me boundary rectangle of tne destination bitmap; 
If the destination bItmap Is me current grafPort's portBlts, It Is also cUpped 
to the intersection Of the grafPort's ollpRgn and vlsRgn. If you do not want 
to cUp to a maskRgl, just pass nil for tne maskRgl parameter. 
The dstRect and rnaskRfIl coordinates are in terms of the dstBit.sJ:lot.nJS 
coordinate system, and the sreRect coordinates are in terms Of the 
srcBtts..bolllds coordinates. 
The bits enclosed by the source rectangle are transferred into the destination 
rectangle according to me rules Of the chosen mode. 

E-57 



Pascal Reference Manual QuickDmw 

The source transfer modes are as follows: 
Srccopy srcXor notSrcCopy notsrcXor 
srcor srcBlc notSrcOr notsrcBlc 

The source rectangle Is completely al1gned wIth the destinatIon rectangle; If 
the rectangles are of different sizes, the bit image is expanded or shrunk as 
necessary to fIt the destInatIon rectangle. For example, If the bIt Image Is a 
circle In a square source rectangle, and the destination rectangle is . not 
square, the bIt Image appears as an oval In the destinatIon (see FIgure E-22~ 

E.9.14 Pictures 

Source Bitmap 

Source Bitmap 

Source 
Transfer 

Mode 

Source 
Transfer 

Mode 

Destination Bitmap 

De8tination Bitmap 

Fl~re E-22 
~ratlon of COpyBlts 

Ftn:tl00 ~lcture (plCFrane: ROOt) : P1CHcJ101e; 

meskRgn 

maskP.gn 
=nil 

Q:lenPIcture returns a handle to a new picture whIch has the gIven rectangle 
as its pIcture frame, and tells QulckDraw to start saving as the picture 
definItion all calls to drawing routines and all picture comments (if any~ 
Q:lenPicture calls HidePen, so no drawing occurs on the screen whUe the 
picture is open (unless you call ShowPen just after Q:lenPicture, or you called 
ShowPen prevIously without balancing it by a call to HldePen~ 
When a picture Is open, the current grafPort's plcsave field contains a handle 
to information related to the picture definition. If you want to temporarily 

E-58 



Pascal Reference Manual QuickDraw 

dIsable the collectlon Of routine calls and pIcture comments, you can save the 
current value of this field, set the field to nil, and later restore the saved 
value to resume the picture definitlon. 

WAANlN3 

Do not call ~Plcture while another picture is already open. 

ProcEnIre CIosePicture; 

ClosePicture tells QuickDraw to stop saving routine calls and picture 
comments as the deflnIt10n of the currently open pIcture. You should perform 
one and only one ClosePicture for every ~enPicture. ClosePicture calls 
Show Pen, balanc1ng the Hl00Pen call made by ~enPlcture. 

ProcEnIre PicccmEnt (kind,dataSize: integer; dataicJ1dle: ~le); 

PicComment Inserts tne specIfIed comment Into the definItion of the currently 
open pIcture. Kind identifies the type Of comment. Data-icnne Is a handle 
to addItional data If desIred, and dataSlze Is the sIze Of that data In bytes. If 
there is no addit10nal data for the comment, data-icnne should be nil and 
dataSlze shOuld be O. The appllcatlon that processes the comment must 
include a procedure to do the processing and store a pOinter to the procedure 
In the data structure pointed to by the grafProcs field of the grafPort (see 
SecUon E.I0, Customizing QuickDraw ~eraUons~ 

ProcedUre Dra.Plcture (myPicture: PlcHcr1dle; dstRect: Root); 

DrawPIcture draws the given picture to scale In dStRect, expanding or 
ShrinkIng It as necessary to allgn the borders of the pIcture frame wIth 
dStRect. DrawPicture passes any picture comments to the procedure accessed 
Indirectly through the grafProcs field of the grafPort (see PicComment above~ 

ProcedUre KillPlcture (myPicture: PlctBldle); 

KlllPIcture deallocates space for the pIcture whose handle Is suppl1ed .. and 
returns the memory used by the picture to the free memory pool. Use this 
Only when you are completely through with a picture. 

E.9.1S calculations with Polygons 

Fl.I1Ction ~ly : PolyHcn21e; 

~enPoly returns a handle to a new polygon and tells QuickDraw to start 
savIng the polygon definition as specifIed by calls to line-drawing routines. 
While a polygon is open, all calls to Line and LineTo affect the outline of the 
pOlygon. O'lly the line endpoints affect the polygon definition; the pen mode, 
pattern, and size do not affect it. In fact, ~enPoly calls HldePen, so no 

E-59 



Pascal Reference Manual QujckDraw 

drawing occurs on the screen whUe the pOlygon Is open (unless you call 
ShowPen just after q:>enPoly, .. or you called ShowPen previously without 
balancing It by a call to HIClepen~ 

A polygon should consist of a sequence of connected lines. Even though the 
on-screen presentation of a polygon Is CUpped, the definition of a polygon is 
not; you can define a polygon anYWhere on the coordinate plane with complete 
d1sregard for the location of various grafPort entities on that plane. 
When a polygon Is open, the current grafPort's poly8aVe fIeld contaIns a 
handle to information related to the polygon definition. If you want to 
temporarlly dIsable the pOlygon defInItion, you can save the current value of 
this field, set the field to n11, and later restore the saved value to resume the 
pOlygon defInItIon. 

WAANIN3 

00 not call CpenPoly while another polygon Is already open. 

ProcedUre CIOsePoly; 

ClosePoly tells QulcKDraw to stop saving the definition of the currently open 
pOlygon and computes the polyBBox rectangle. You should perform one and 
only one ClosePoly for every CpenPoly. ClosePoly calls ShowPen .. balancing 
the Hldepen call made by CllenPoly. 
Here's an example of hOw to open a polygon, define it as a triangle, close it, 
and draw it: 

triPoly := OpenPoly; {save handle and begin COllecting stUff} 
MoveTo(300,100); { move to first point and } 
lineTo( 400,200); { form } 
lineTo(200,200); { the } 
llneTo(300, 100); {triCIVJle } 

ClosePoly; { stop collecting stUff } 
FillPoly(triPoly,gray); { draw it on the screen } 
KillPoly(triPoly); { we"re all done } 

ProcedUre KillPoly (poly: PolyHandle); 

KillPoly deallocates space for the polygon whose handle Is supplied, and 
returns the memory used by the pOlygon to the free memory pool. Use thIs 
only after you are completely through with a pOlygon. 

ProcedUre OffseWoly (poly: PolyHa1dle; (Il, dV: integer); 

OffsetPoly moves the specified polygon on the coordinate plane~ a distance of 
ell horIzontally and dv vertically. Th1s does not affect the screen unless you 

E-60 



Pascal Reference Manual QulCkDraw 

sUbsequently call a routlne to draw the polygon. If cJl and dV are posit1ve, 
the movement Is to the rIght and down; If eIther Is negative, the correspond­
Ing movement Is In the opposite direction. The pOlygon retaIns its shape and 
sIze. 

OffsetPoly is an especially efficient operation, because the data 
defining a polygon Is stored relative to polyStart and so isn't actually 
changed by OffsetPoly. 

E.9.16 Graphic qleratlons on Polygons 
Proceoore FramePoly (poly: PolyHandle); 

Framepoly plays back the line-drawing routine calls that define the gIven 
polygon, using the current grafPort"s pen pattern, mode, and size. The pen 
will hang below and to the right of each poInt on the boundary of the 
pOlygon; thus, the pOlygon drawn wlll extend beyond the right and bottom 
edges of poly" .. .polyBBox by the pen wIdth and pen height, respectively. All 
other graphiC operations occur strictly withIn the boundary of the polygon, as 
for other shapes. You can see this difference in Figure E-23, where each of 
the pOlygons is Shown with its polyBBoX. 

FramePoly PaintPoly 

Figure E-23 
Drawing Polygons 

If a pOlygon is open and being formed, FramePoly affects the outline of the 
polygon just as if the line-drawing routines themselves had been called. If a 
region is open and being formed, the outside outline of the polygon being 
framed is mathematically added to the region's boundary. 

E-61 



Pascal Reference Manual QuickDraw 

PrOceWre PalntfJoly (poly: PolyHcnlle); 

paintpoly paints the specified polygon with the current grafPort's pen pattern 
and pen mOde. The polygon on the bitmap is filled with the p-Pat, according 
to the pattern transfer mode specified by pnI'1ode. The pen location Is not 
changed by this procedUre. 

Procewre ErasePoly (poly: PolyHcnlle); 

ErasePoly paints the specified polygon with the current grafPort's background 
pattern bkPat (in patCopy mOde~ The pnPat and pnI'1ode are ignored; the pen 
location is not changed. 

ProcedUre InvertPoly (poly: PolyHcnlle); 

Invertpoly inverts the pIxels enclosed by the specifIed polygon: every white 
pixel becomes blaCk and every black pixel becomes White. The grafPort's 
~t, pnI'1ode, and bkPat are all Ignored; the pen location Is not changed. 

ProcedUre flllPoly (poly: PolyHcnjle; pat: Pattern); 

F11lPoly fills the spe.clfled polygon with the given pattern (In pa~y mOde~ 
The grafPort's pnPat, pnI'1ode, and bkPat are all ignored; the pen location is 
not changed. 

E.9.17 caIculaUons WIth PoInts 

ProcedUre AdePt (srcPt: Point; var dstPt: Point); 
AddPt adds the coordinates Of srePt to the coordinates of dst.Pt, and returns 
the resul t in dstpt 

PrOceWre SliPt (srcPt: Point; var dstPt: Point); 
SubPt subtracts the coord1nates of srePt from the coord1nates of dStJ't, and 
returns the resul t In dstpl 

ProcedUre 5etPt (var pt: Point; h,v: integer); 
SetPt assIgns two integer coordinates toa variable of type Point 

function Equalpt (ptA,ptB: Point) : boolean; 
EqualPt compares the two poInts and returns true if they are equal or false if 
not 

E-62 



Pascal Reference Manual Qu!ckDraw 

Proceda'e LocalTailobal (var pt: Point); 

LocalToGlobal converts the given point from the current grafPort's local 
coordinate system into a global coordinate system with the origin (0,0) at the 
top left comer of the port's bit image (SUCh as the screen). This glObal point 
can then be compared to other glObal points, or be Changed into the local 
coordinates of another grafPort. 
Since a rectangleh defined by two points, you can convert a rectangle into 
glooal coordinates oy performIng two LocalToGloOal calls. You can also 
convert a rectangle, region, or pOlygon Into gl00al coordinates by calling 
OffsetRect, OffsetRgn, or Offsetpoly. For examples, see GloOalToLocal Oelow. 

Proceda'e Glooal ToLocal (var pt: Point); 

GlobalToLocal takes a point expressed in glObal coordinates (with the top left 
corner of the bitmap as coordinate (0,0» and converts it into the local 
coordInates of the current grafPort. The gloOal point can be obtaIned with 
the LocalToGlobal call (see above). For example, suppose a game draws a 
"ball" within a rectangle named tlallRect, defined In the grafPort named 
ganePort (as illustrated below in Figure E-24). If you want to draw that ball 
in the grafPort named selectPort, you can calculate the Dan's selectPort 
coordinates l1ke this: 

8etPort( gamePort); 
selectBall : = ballRect; 
LocaIToGlooal(selectBall.topleft); 
LocaIToGIObaI(selectBall.bOtRight); 

{ start 1n origin port } 
{ make a copy to be roved } 
{ put bOth comers into } 
{ global coordinates } 

setPort(selectPort); {. switch to destination port} 
Glooal ToLocal( selectBall. t~eft); { put both comers into } 
GlobaIToLocal(selectBall.botRight); { these local coordinates } 
Filloval(selectBall,ballCOlor); { now you haVe the ball! } 

E-63 



Pascal Reference Hant,/al Qu!ckDraw 

20 SO 90 15 45 85 
40-' , 

, -30 - i-:' ,....,-:'-:-:--:-:-~:-"1 

70-'··+··!··H~"··!···!··+··' 

gamePort selectPort 

LocalToGlobal GlobalT oLocal 

Figure E-24 
coovertlrYJ between COOrdlnate Systems 

You can see from Figure E-24 that LocalToGlobal and GlobalToLocal simply 
offset the coordInates of the rectangle by the coordinates of the top left 
corner of the local grafPort's boundary rectangle. You could also do this with 
OffsetRect. In fact, tne way to convert regIons and pOlygons from one 
coordinate system to another Is with OffsetRgn or OffsetPoly rather than 
LocalToGlObal and GlobalToLocal. For example, if myRgl were a regIon 
enclosed by a rectangle having the same coordinates as ballRect in gamePort, 
you could convert the region to gloDal coordinates wIth 

OffsetRg(myRgl, -20, -40); 

and then convert it to the coordinates of the selectPort grafPort wIth 
OffsetRg(myRgn, 15, -30); 

E.9.18 MiscellClleOUS utilities 

F~tlon Ramo : integer; 
Random returns an integer, uniformly distributed pseudo-random, in the range 
from -32768 througn 32767. The value returned dependS on the gloDal 
variable rcrtdSeed, which InltGraf initializes to 1; you can start tne sequence 
over agaIn from wiiere 1t oegan oy resetting rcnlSeed to 1. 

E-64 



Pascal Reference Manual QulckDraw 

FlI'lCt1on GetP1xel (h, V: 1nteger) : ooolea1; 

GetPixel looks at the pIxel associated with the given coordinate poInt and 
returns true if it is black or false if it Is white. The selected pixel is 
immedIately below and to the right of the point Whose coordinates are given 
in h and v, in the local coordinates of the current grafPort. There is no 
guarantee that the speCified pixel actually belongs to the port, however; it 
may have been drawn by a port overlapping the current one. To see if the 
point indeed belongs to the current port, call PtInRg(pt,thePort" .vlsRgl~ 

Procewre Stuff Hex (thingPtr: Wltr; s: Str255); 
Stuff Hex pOkes bits (expressed as a string of hexadecimal digits) into any data 
structure. This is a good way to create cursors, patterns, or bit images to be 
"stamped" onto the screen with copyBlts. For example, 

stuffHex(~strlpes, '0102040810204080') 
places a striped pattern into the pattern variable stripes. 

WAANIN3 

There 1s no range CheCking on the size of the destInation varIable. It's 
easy to overrun the variable and destroy something if you don't know 
what you're dOIng. 

Procooure scalePt (var pt: Po1nt; srcRect,(2stRect: Root); 
A width and heIght are passed in pt; the horizontal component of pt is the 
width, and the vertical component of pt is the height ScalePt scales these 
measurements as follows and returns the result In pt: It multlpl1es the given 
width by the ratio of dstRect's wIdth to srcRect's width, and mUltipI1es the 
given height by the ratio of dstRect's heIght to srcRect's he1ght In FIgure 
E-25, where dstRect's wIdth is twice SrcRect's width and its heIght Is three 
times srcRect's heIght, the pen wIdth Is scaled from 3 to 6 and the pen heIght 
is scaled from 2 to 6. 

E-65 



Pascal Reference Manual 

o 1618 
O-~I~~~~~~~I~I~~~n 

ScalePt scales pen size (3J2) to (6,6) 
MapF't maps point (3,2) to (18,7) 

Figure E-25 
scaIePtcm~ 

ProceWre MapPt (var pt: Point; srcRect,dstRect: Rect); 

QlIICkDraw 

Given a point within srcRect, MapPt maps it to a similarly located point 
within dstRect (that is, to where it would fall if it were part Of a drawing 
being expanded or shrunk to fl t dStRect~ The result is returned in pt A 
corner point Of srcRect would be mapped to the corresponding comer point of 
dstRect, and the center of srcRect to the center of dStRect In Figure E-25 
above, the point (32) in srcRect is mapped to (18,7) in dStRect FnrnRect and 
dstRect may overlap, and pt need not actually be within srcRect 

E-66 



Pascal Reference Manual QufckDraw 

WARNIN3 

Remember, If you are gOIng to draw InsIde the rectangle In mtRect, 
you will probably also want to scale the pen size accordingly with 
ScalePt. 

Procewre ~t (var r: Root; srcRect, dstRect: Rect); 

Gl ven a rectangle wi thin srcRect, MapRect maps it to a simHan y located 
rectangle withIn dstRect by callIng MapPt to map the top left and bottom 
right corners of the rectangle. The result is returned In r. 

Procewre MapRgl (r~: Rg'lHCI'ldle; srcRect,dstRect: Rect); 
Gi ven a regIon wi thIn sroRect, MapRgn maps It to a sImHarl y located region 
wIthin dStRect by call1ng Mappt to map all the poInts In the regIon. 

ProcedUre MapPOly (poly: PolyHandle; srcRect,dstRect: Rect); 
GIven a pOlygon within srcRect, MapPoly maps It to a slmllaTly located 
polygon within dStRect by calling Mappt to map all the points that define the 
pOlygon. 

E.10 CUStomizing QuickDraw q"leratlom 
For each shape that QuicKDraw Knows how to draw, there are procedures that 
perform these basic graphic operations on the Shape: frame, paint, erase, 
invert, and fill. Those procedures in turn call a low-level drawing routine for 
the shape. For example, the FrameOVal, PaintOVal, EraseOVal, InvertOVal, and 
Fill OVal procedures all call a low-level routine that draws the oval. For each 
type of Object QuicKDraw can draw, including text and lines, there is a 
pointer to such a routine. By changing these pointers, you can install your 
own routines, and either completely override the standard ones or call them 
after your routines have modified parameters as necessary. 
Other low-level routlnes that you can Install In thIs way are: 

• The procedure that does bIt transfer and Is called by copyBlts. 
• The function that measures the wIdth Of text and Is called by Char Width, 

Strlngwldth, and TextWldth. 
• The procedure that processes picture comments and Is called by 

DrawPicture. The standard such procedure ignores picture comments. 
• The procedure that saves drawIng commands as the deflnltion of a pIcture, 

and the one that retrieves them. This enables the application to draw on 
remote devIces, prInt to the dISK, get picture Input from the disK, and 
support large pIctures. 

E-67 



Pascal Reference Mantlal QtlickDraw 

The grafProcs flela of a grafPort determInes whIch low-level routines are 
called; if It contains nil. the standard routines are called.. so tnat all 
operations In tnat grafPort are done In the standard ways describea In thIs 
appendix. You can set the gratProos field to poInt to a record of pointers to 
routines. The data type of grafProos Is Q[ProcsPtr: 

type tlProcsPtr = "tlProes; 
QOProcs = record 

textProc: 
lineProc: 
rectproc: 
rRec'tProe : 
ovalProc: 
arcProc: 
polyProc: 
rgr1>roc: 
bitsProc: 
cOIIIOOfltProc : 

txtleasProc : 
getPicProc : 
putPicProc : 

end; 

~r; 
~r; 
QOPtr; 
QOPtr; 
aPtr; 
QOPtr; 
~r; 
~r; 
~r; 
QOPtr; 

~r; 
aPtr; 
t.l)Ptr 

Procewre setSt®ocs (var procs: QOProcs); 

{text drawing} 
{line drawing} 
{rectangle drawing} 
{rot.I1dRect drawing} 
{oval drawing} 
{arc/wedge drawing} 
{polygon drawing} 
{region drawing} 
{bit transfer} 
{picture comment 
processing} 
{text width llEasurenent} 
{picture retrieval} 
{picture saving} 

SetStdProcs Is provided to assist you in setting up a QDProos record. It sets 
all the fields of tne given QDProcs to point to the standard low-level 
routines. You can then Change the ones you wiSh to point to your own 
routines. For example .. if your procedure that processes picture comments Is 
named MyCooments .. you will store iJIVIyCooments in the commentproc field 
of the QOProcs record. 
The routines you Install must Of course have the same callIng sequences as 
the standard routines .. which are described below. The standard drawing 
routines tell whIch graphIc operation to perform from a parameter Of type 
GrafVeIb. 

type GrafVerb = (frame, paint, erase, invert, fill); 

When the gratVem Is fill, the pattern to use when f1l11ng Is passea In the 
flllPat field of the grafPort. 

ProcedUre StdText (byteeount: integer; textBuf: QOPtr; ruoor, denom: 
Point); 

StdText Is the standard low-level routine for drawIng text. It draws text from 
the arbitrary structJ.Jre in memory specified by textBuf .. starting from the first 
byte and continuIng for byt.eColllt bytes. f\l.mer and denml specify the 

E-68 



Pllsca} Refel"t3lJCe I'lamla} 

scal1ng, If any: runer.v over uenom.v gIves the vertical scallng, and runer.h 
over denom.h gives the horizontal scal1ng. 

ProceWre SU1.ine (ne.r>t: Point); 

StdLine is the standard low-level routine for drawing a line. It draws a line 
from the current pen location to the location specIfIed (In local coordinates) 
by newPl 

Procewre ~t (verb: GrafVerb; r: Root); 

StdRect is the standard low-level routine for drawing a rectangle. It draws 
the gIven rectangle accorC1Ing to the speCIfied graMIb. 

ProceWre st~t (verb: GrafVerb; r: Root; ovalwillth, ovalHei~t: 
integer); 

StdRRect is the standard low-level routine for drawing a rounded-corner 
rectangle. It C1raws the gIven rounC1eC1-corner rectangle accorC1Ing to the 
speCified grafVerb. £NalWidth anC1 OvalHel~t specify the C1iameters of 
curvature for the corners. 

ProceWre stdOval (verb: GrafVerb; r: Root); 

StC1CNal Is the stanC1arC1 low-level routine for C1rawlng an oval. It C1raws an 
oval inside the gIven rectangle accorC1ing to the specIfied gratVeIb. 

ProcedUre StdArc (verb: GrafVerb; r: Rect; startAngle, arcAngle: 
integer); 

SWArc Is the stanC1aro low-level routlne for C1rawing an arc or a weC1ge. It 
draws an arc or weC1ge of the oval that fits inside the given rectangle. The 
grafVeltl specIfies the graphiC operation; if it's the frame operation .. an arc is 
d!awn; otherwise, a weC1ge Is drawn. 

ProceWre stcPoly (verb: GrafVerb; poly: PolyHancne); 

StdPoly Is the standard low-level routine for drawing a polygon. It draws the 
given polygon accorolng to the specifieC1 grafVerb. 

ProcedUre ~ (verb: GrafVertJ; l1J1: ~le); 

StdRgn Is the standard low-level routine for drawIng a regIon. It draws the 
given region according to the speCified grafVeIb. 

E-69 



Pascal Reference fvIantIaJ QlIICkDraw 

Procec.lJre st(fJ1 ts (var srcB1 ts: B1~; var srcRect, cJstRect: Root; 
rode: 1nteger; maSkRgl: Rg'tBlcJle); 

StaBits is the standard low-level routine for doIn,9 bit transfer. It transfers a 
bIt Image between the given bItmap and thePOrt .portBits, just as if copyBits 
were called with the same parameters ana with a destination bItmap equal to 
thePort .. .portBits. 

Procerure SUDJmelt (k1nd,cJataS1ze: integer; cJataBldle: U)HanOle); 

StdComment is the standard low-level routine for processing a picture 
comment. Kim identifies the type of comment. Data-tcn11e is a handle to 
additional data, and dataSlze is the size Of that data in bytes. If there is no 
additional data for the command, cJata-tandle will be nil and cJataSlze will be 
O. StdComment simply ignores the comment. 

FlIlCtion stcJTxt1eas (byteCot.rlt: integer; text8Jf: W'tr; var ruoor, 
denOm: Point; var info: FontInfo) : integer; 

StaTxMeas is the standard low-level routine for measuring text width. It 
returns the width Of the text stored in the arbitrary structure in memory 
specified by textBuf, starting with the first byte and continuing for byteQult 
bytes. I\lmer and denom specify the scallng as In the StdText procedure; note 
that StdTxMeas may Change them. 

ProoeOJre SUl3etp1c (dataPtr: t.l)Ptr; byteCot.nt: integer); 
StdGetPic is the standard low-level routine for retrieving information from 
the definition of a picture. It retrieves the next byteCOll1t bytes from tne 
definition of the currently open picture and stores them in the data structure 
pointed to by dataPtr. 

Proceoore st(JlUtp1c (cJatcPtr: r;.o>tr; byteColl1t: integer); 

StdPutPic is the standard low-level routine for saving information as the 
definition of a picture. It saves as the definition of the currently open 
picture the drawing commands stored in the data structure pointed to by 
datc9tr, starting with the first byte and continuing for the next byteCo.nt 
bytes. 

E-70 



Pascal Reference Manual QulckDraw 

E.ll USing QulckDraW from Assembly Language 
All QuickDraw routines can be called from assembly-language programs as 
well as from Pascal. When you write an assembly-language program to use 
these routines ... though ... you must emulate Pascal's parameter passing and 
variable transfer protOCOlS. 
This section discusses how to use the QuickDraw constants ... global variables ... 
data types ... procedures ... and functions from assembly language. 
The prImary aId to assembly language programmers Is a flIe named 
QOIGRAFTYPES. TEXT. If you use .INCLLOE to include this flIe when you 
assemble your program, all the QuicKDraw constants, offsets to locations Of 
glObal variables, and offsets into the fields of structured types will be 
avallable In symbOl1c form. 

E.ll.l ~tants 
QulckDraw constants are stored In the QD/GRAFTYPE5. TEXT fUe, and you 
can use the constant values symbolically. For example, if you've loaded the 
effective address of the thePOrt".tXf'1Ode field tnto address register 1\2. ... you 
can set that field to the sICxor mOde with this statement: 

HOVE." ISRCXllt (A2) 

To refer to the number of bytes occupied by the QuickDraw global variables ... 
you can use the constant GRAFSIZE. When you call the Ini tGraf procedure, 
you must pass a pointer to an area at least that large. 

E.ll.2 oata Types 
Pascal's strong typing ability lets you write Pascal programs without really 
consIderIng the size Of a variable. But In assembly language, you must keep 
track of the size of every variable. The sizes of the standard Pascal data 
types are as follows: 

~ 
integer 
longint 
booleCl1 
char 
real 

Size 
Word (2 bytes) 
Long (4 bytes) 
Word (2 bytes) 
Word (2 bytes) 
Long (4 bytes) 

Integers and longlnts are In two'S complement form; booleans nave theIr 
boolean value in bit 8 of the word (the low-order bit of the byte at the same 
location); cnaTS are stored In the nign-order byte of the word; and reals are In 
the KeS standard format 

E-71 



Pascal Reference Hanual QulCkDraw 

The QuicKDraw simple data types llsted below are constructed out of these 
fundamental types. 

~ 
'lFtr 
Q[l-ICJldle 
Word 
Str255 
Pattern 
Blts16 

Size 
Long (4 byteS) 
Long (4 byteS) 
Long (4 byteS) 
page (256 bytes) 
8 bytes 
32 bytes 

Other data types are constructed as records of varIables of the above types. 
The size of such a type Is the sum of the sizes of all the fields in the record; 
the flelds appear In the variable wIth the fIrst fIeld In the lowest address. 
For example ... consider the data type BItMap ... which is defined as follows: 

type 6i t~ = record 
baseAcJdr: WPtr; 
ro.aytes : integer; 
t:xulcls: Root 

end; 

ThIs data type would be arranged In memory as seven words: a long for the 
baseAddr ... a word for the rO'WBytes ... and four words for the top ... left ... right ... and 
bottom parts of the bOlnls rectangle. To assIst you In referrIng to the fields 
inside a variable that has a structure like this" the QOIGRAFTYPES.TEXT file 
defines constants that you can use as offsets Into the fIelds of a structured 
variable. For example ... to move a bitmap's rowBytes value into 03" you would 
execute the followIng Instruction: 

MOVE.' MVBITMAP+ROW8VTES,03 
Displacements are given in the QOIGRAFTYPE8. TEXT fUe for all fields of all 
data types defIned by QulcKDraw. 
To do double indirection" you perform an LEA indirectly to obtain the 
effective address from the handle. For example ... to get at the top coordinate 
of a regIon's enclosing rectangle: 

MOVE.L MVHANDlE,Al 
MOVE.L (AI), Al 
MOVE.' RGNBBOX+TOP(Al) ... 03 

E-72 

; Load handle into Al 
; Use nat'lClle to get pointer 
; Load value using pointer 



Pascal Reference Manual QuickDraw 

WARNING 

For regions (and all other variable-length structures with handles)" you 
must not move the pointer into a register once and just continue to use 
that pointer; you must dO the double indirection each time. Every 
QuickDraw call you make can possibly trigger a heap compaction that 
renders all pointers to movable heap items (lIke regIons) invalld. The 
handles wIll remain valid, but pointers you've obtained through handles 
can be rendered InvalId at any subroutlne call or trap In your program. 

E.ll.3 Global variables 
Register AS always points to the sectlon of memory where glObal varIables 
are stored. The QO/GRAFTYPES. TEXT fUe defines a constant GRAFGUE 
that poInts to the beginnIng of the QuickDraw variables in thIs space, and 
other constants that point to the individual variables. To access one of the 
variables, put GRAFGUE In an address register, sum the constants, and Index 
off of that register. For example, if you want to know the horizontal 
coordinate Of the pen location for the current grafPort, Which the glObal 
variable thePort points to, you can give the following instructions: 

MOVE.L GRAFGLOB(A5),AO ; Point to QuickOraw globals 
MOVE.L THEPORT(AO),Al ; Get current grafPort 
MOVE.' PNLOC+H(Al),DO ; Get thePortA.pnLoc.h 

E.ll.4 ProcedUres CI1d Ft.I1Ct1crn 
To call a QuickDraw procedure or function, you must pUSh all parameters to it 
on the stack, then JSR to the function or procedure. When you link your 
program with QuickDraw, these JSRs are adjusted to refer to QuickOraw's 
jump table, so that a JSR lnto the table redirects you to the actual location 
of the procedure or function. 
The only difficult part about calling QulckOraw procedures and functions is 
staCking the parameters. You must follow some strIct rules: 

• Save all registers you wish to preserve before you begin pUShing 
parameters. Any QuickOraw procedure or function can destroy the 
contents of the registers AD, A1, ~O, 01, and 02, but the others are never 
alterec1. 

• Push the parameters in the order that they appear In the Pascal procedural 
interface. 

• For booleans, push a byte; for integers and characters, push a word; for 
pointers, handles, long integers, and reals, puSh a lOng. 

• For any structured variable longer than I.\. bytes, push a pointer to the 
variable. 

E-73 



Pascal Reference Manual QulCkDraw 

• For all var parameters, regardless of sIze, pUSh a poInter to the varIable. 
• When callIng a function, fJISt puSh a null entry equal to the size of the 

function result, then PUSh all other parameters. The result will be left on 
the stack after the function returns to you. 

This makes for a lengthy interface, but it also guarantees that you can mock 
up a Pascal versIon Of your program, and later translate It Into assembly code 
that works the same. For example, the Pascal statement 

blackness := GetPixel(50,nwsePos.v); 

would be wr1tten 1n assembly language llke thIs: 
CLR.' -(SP) ; save space for boolean result 
MOVE.' ISO, -(SP) ; Push OO1stCllt 50 (decinal) 
tIlVE.I toJSEpos+v,-(SP) ; Push the value of nwsePos.v 
JSR GETPlXEL ; call routine 
tIlVE.I (SP)+, BLACI<t£SS ; Fetch result from stack 

This Is a simple example, pUShing and pulling word-long constants. Normally, 
youtH be pUShIng more p01nters, usIng the PEA (PUSh Effective Address) 
instruction: 

FilIRoundRect(~t,l,thePortA.pnSize.v,White); 

PEA 
tIlVE.' 
tIlVE.L 
I1lVE.L 
tIlVE.I 
PEA 
JSR 

MVRECT ; PUsh po1nter to myRect 
11, - (SP) ; Push consta'lt 1 
GRAfGJE(A5), AO ; Po1nt to c;.u1CkDraw glcnns 
llEPmT( AO), Al ; Get current grafPort 
PNSIZE+V(Al),-(SP); Push value of thePOrtA.pnSize.v 
WHITE (AO) ; PUsh pointer to global variable White 
FILLRflNH:CT ; Gall the stJlroutine 

To call the TextFace procedure, puSh a word in which eaCh of seven bits 
represents a stylist1c variat1on: set bit 0 for bold, bit 1 for ltaUc, bit 2 for 
t.nderllne, bit 3 for outline, bit 4 for ShadoW, bIt 5 for condenSe, and bit 6 for 
exteOO. 

E-74 



Pascal Reference Manual QuickDraw 

E.12 Graf3D: Tnree-DlmenslonaI Gr~cs 
Graf30 helps you map three-dimensional images onto the two-dimensional 
space used by QulcKDraw. If thIs Is your first exposure to three-dimensional 
graphics, you w111 find Graf30's standard procedures and functions a great help 
in producIng visually excltlng graphs, Charts, and drawIngs. If you are familiar 
wi th Applegraphics for the Apple II, you w111 feel right at home with Graf30's 
use Of real varIables and WOrld coordInates. 
WIth three-dImensional graphIcs you can present Objects in true perspective, 
which will evoKe for users their everyday environmenL Graf3D helps you 
represent complex business information pictorially; for example, a manager can 
see important relationships among sales, profits, and advertising dollars in a 
three-dimensional graph. 
You may be interested in a more theoretical discussion of three-dimensional 
graphics, Including an explanation Of some of the basic concepts of Graf3D, 
such as the viewing pyramid. A good, illustrated discussion appears in the 
sectlon on three-dImensIonal computer graphics In PrInciples Of InteractIve 
computer Grapnics by Willlam M. Newman and Robert F. Sproull (New York: 
MCGraw-HlIl, 1973~ 

E.12.1 HoW Graf3D Is Related to QulcI<Draw 
Graf30 Is a Pascal unit that makes the QuickOraw calls necessary to prOduce 
three-dimensional graphiCS. It provides you wIth an easy-to-use real number 
interface to QuickDraw's integer coordinates. You could, Of course, write 
your own QulckDraw calls to perform the same functions Graf3D provides for 
you, but that would be a llttle like going to the trouble of writing your own 
compiler. 

E.12.2 Features of Graf3D 
• A 1.:'8fl7elC1-eye vIew. ThIs allows you to set the point of vIew from whIch 

the observer sees the object independently from the coordinates of the 
object 1 tsel f. The camera Is set up wI th the VIewport, LOOKAt, and 
View Angle procedures. You can set the focal length of the camera as If 
you had a ChoIce Of telephOto, wide angle, or normal lenses. 

• Tnl-e8-{lln1ensional ClippilJg f.O a flUB t?Yl-an1Ja The apex of the pyramid is 
at the point Of the camera eye, and the base of the pyramid is equivalent 
to the ViewPort. When you use the Cllp3D function, Only Objects forward 
of the camera eye and wi thin the pyramid are displayed on the screen. 

• Two-dImensIonal poInt and lIne capabIlIty lIslng real coordInates. Graf3D 
provides commands corresponding to the QuickOraw commands but using 
real coordInates Instead of Integers. Wlth real coordInates you have a 
larger dynamic range for graphiCS calculations; with integer coordinates 
you get faster drawing time. For reals, the range 1s 

1.4 x 10-45 to 3.4 x 1038 

E-75 



Pascal Reference Manual QuickDraw 

• Two-llln]8l)J1onal OJ" thl-ee-lllntellSionall"lJtatJon. You can rotate an object 
along any or all axes sImultaneously, using the Pitch, Yaw, and Roll 
procedures. 

• T.ranslation and scaling Of ooJects in one or more axes simultaneously. 
Translation means movement anywhere in three-dimensional space. Scaling 
means shrinking or expanding. 

E.12.3 Graf3D Data Types 
Graf3D declares and uses the following data types: 
PoInt3D: A Polnt3D contains three real number coordInates: x, y, and z. 

Graf3D uses x, y, and Z for real number coordinates to distinguish 
between the h and v integer screen coordInates in QulcKDraw. 

Point2D: A Point2D is just liKe a Point3D but contains only x and y 
coordinates. 

XfMatrlx: The XfMatrlx Is a 4x4 matrix Of real values" used to hold a 
transformation equation. Each transforming routine alters this 
matrIx so that it contaIns the concatenated effects of all 
transformations applied. 

Port3DPtr: A Port3OPtr is a pointer to a Port3O. 

Port3D: A Port3D contaIns all the state variables needed to map real 
number coordinates into integer screen coordinates. They are as 
follows: 
GPort: a pointer to the grafPort associated with this Port3D. 
viewRect: the viewing rectangle within the grafPort; the base of the 

viewing pyramid. 
xLeft., yTop, xRlght., yBottom: world coordinates corresponding to 

the viewRecl 

pen: three-dImensional pen location. 
penPrime: the pen location transformed by the xFonn matrix. 
eye: three-dimensional viewpoint location established by ViewAngle. 
hSize, VSize: half-width and half-height of the viewRect in screen 

coordinates. 
hCenter, vGenter: center of the vieWRect in screen coordinates. 
XCOtal" yCotan: viewing cotangents set up by ViewAngle, used by 

Clip3D. 
ident: a boolean that allows the transformation to be Skipped when 

when xForm is an identity matrix. 
xFonn: a 4x4 matrix that holds the net result of all transformations. 

E-76 



Pascal Reference Manual Qu/ckDJCJW 

E.12.4 Graf3D Procewres a1d FlflCtions 
The followIng procedures and functions are provided In Graf3D. 
ProcedUre ~3OPOrt(port: Port3lPtr); 
cpen3DPort Initializes all the fields of a Port3D to their defaults, and makes 
that Port3D the current one. Gport Is set to the currently open grafPort. 
The defaults established are: 

thePort30: =port; 
portA.GPort:=thePort; 
ViewPort(thePortA.portRect); 
11TH thePortA.portRect 00 LOOKAt(left,top,rlght,bottom); 
Vie~le(O); -
Identity; 
tIoveTo30(O,O,O); 

ProcedUre setport30(port: Port3OPtr); 

SetPort3D maKes port the current Port3D and calls Setport for that Port3D's 
associated grafPort. SetPort3D allows an application to use more than one 
Port3D and swItch between them. 

ProcedUre GetPort3D( var port: Port3OPtr); 
GetPort3D returns a pointer to the current Port3D. This procedure is useful 
when you are using several Port3Ds and want to save and restore the current 
one. 

ProcedUre MoveTo2O(~y: real); Procewre MoveT030(X,y,Z: real); 
ProceOure t1Ove2O(OX" oy: real); ProceOJre t1Ove30(~ oy, t1z: real); 
These procedures move the pen In two or three dImensIons without drawIng 
lines. The real number coordinates are transformed by the xForm matrix and 
projected onto flat screen coordInates; then Graf3D calls QuicKDraw's MoveTo 
procedure with the result. 

ProcedUre LlneTo2O(~y: real); Prooet1Ure LineTo30(~y,z: real); 
Proce£JUre Llne20(dX, dy: real); Proce£JUre Llne30{ID<. dy, dZ: real); 

These procedures draw two- and three-dimensional l1nes from the current pen 
location. UneTo2D and Line2D stay on the same z-plane. The real number 
coordinates are first transformed by the xForm matrix, then clipped to the 
viewing pyramid, then projected onto the flat screen coordinates and drawn by 
calling QuickOraw's LineTo procedure. 

E-77 



Pascal Reference Manual QulckDraw 

FlIlCtion Clip3D(srcl., sm2: Point3D; var dstl., dst2: Point): tlOOlean; 

Cl1p3D clips a three-dimensional line segment to the viewing pyramid and 
returns the clipped line projected onto screen coordinates. Clip3D returns 
true if any part of the line Is visible. If no part of the line is within the 
viewing pyramid, Clip3D returns false. 

ProcedUre se1Pt30(var pt30: Point30; X, y, Z: real); 

Setpt3D assIgns three real numbers to a Polnt3D. 

ProcedUre setPt20(var pt20: Point20; x,y: real); 

SetPt2D assigns two real numbers to a Polnt2D. 

E.12.4.1 setting 4> the camera (ViewPort, LookAt, <nj VleW~le) 
Procedures ViewPort, LookAt and ViewAngle position the image in the 
grafPort, aim the camera ... and choose the lens focal length in order to map 
three-dimensional coordinates onto the flat screen space. These procedures 
may be called In any order. 

ProcedUre ViewPort(r: Rect); 
ViewPort specifies where to put the image in the grafPort. The ViewPort 
rectangle Is In integer QulckDraw coordinates, and tells where to map the 
LookAt coordinates. 

ProcedUre LookAt(left, top, right, bottom: real); 

LookAt specifies the real number x and y coordinates corresponding to the 
vlewRecl 

ProcedUre ViewAngle(angle: real); 

ViewAngle controls the amount of perspective by specifying the horizontal 
angle (in degrees) subtended by the viewing pyramid. TypIcal vIewing angles 
are 0° (no perspective), 10° (telephoto lens), 25° (normal perspective of the 
human eye)., and 80° (wIde angle lens~ 

E.13.4.2 The Transfonnation Matrtx 
The transformation matrix allows you to impose a coordinate transformation 
between the coordinates you plot and the viewing coordinates. Each of the 
transformation procedures concatenates a cumulative transformation onto the 
xFonn matrix. Subsequent lines drawn are first transformed by the xFonn 
matrix, then projected onto the screen as specified by ViewPort, LookAt, and 
VieWAngle. 

Procewre Identity; 

Identity resets the transformation matrix to an identity matrix. 

E-78 



Pascal Reference Manual QulckDJaw 

ProceWre scale(Xfactor1yFactorlZfactor: real); 
Scale modifies the transformation matrix so as to shrink or expand by xFactor, 
yFactor, and zFCK}tor. For example, 8Cale(2.02.D.2.0) wIll make everythIng 
come out twice as big when you draw. 

ProcedUre Trmslate(dX., dYI <22: real); 

Translate modifies the transformation matrix so as to displace by dx"dy,dZ. 

ProceWre Pitch(XAngle: real); 

Pitch modifies the transformation matrix so as to rotate xAngle degrees 
around the x axis. A positive angle rotates clockwise when lOOKIng at the 
origin from positive x. 

ProceWre Yaw(yArYJle: real); 

Yaw modifIes the transformation matr1x so as to rotate yAngle degrees around 
the y axis. A positive angle rotates clockwise when lOOking at the origIn 
from posItive y. 

ProcedUre Roll(ZAngle: real); 

Roll modifies the transformation matrix so as to rotate zAngle degrees around 
the z axis. A positive angle rotates clockwise when lOOking at the origin 
from positive z. 

ProcedUre SkeW(ZAngle: real); 
Skew modifies the transformation matrix so as to skew zAngle degrees 
around tne Z axIs. Skew only cnanges tne x coordInate; the result Is mUCh 
like the slant QuickDraw gives to italic characters. (Skew(lS.0) makes a 
reasonable ltaIlc.) A posIt1ve angle rotates clockwIse when lOOkIng at tne 
origin from positive z. 

ProcedUre TrmSform(src: Point30; var dst: Point30); 

Transform applies the xForm matrix to SIC and returns tne result as dSl If 
the transformation matrix is identity, dSt will be the same as SIC. 

E-79 



Pascal Reference ManUal 

E.13 QulOkOraw InterfOOe 

UNIT QuiCkOraw; 

{ copyright 1983 Apple computer Inc. } 

INTERFACE 

CONST sreCOpy 
sreOr 
sreXor 
sreBie 
notsrCCOpy 
notSrcor 
notSreXor 
notSrcBie 
patCOpy 
patOr 
patxor 
patBic 
notPatcopy 
notPatOr 
notPatXor 
notPatBic 

= 0; {the 16 transfer modes } 
= 1; 
= 2; 
= 3; 
= 4; 
= S; 
= 6; 
= 7; 
= 8; 
= 9; 
= 10; 
= 11; 
= 12; 
= 13; 
= 14; 
= IS; 

{ Qu1CkDraw color separation constants } 

normalB1 t = 0; 
inverseB1t = 1; 
redBit = 4; 
greenBit = 3; 
blueBit = 2; 
eyanB1t = 8; 
magentaBi t = 7; 
yellowBit = 6; 
blacKBit = S; 

{ normal screen mapping } 
{ inverse screen mapping } 
{ RGB additive mapping } 

{ CMVBK sUbtractive mapping } 

QlIlckDraw 

blacKCOlor = 33; 
whiteCOlor = 30; 
redColor = 205; 
greenColor = 341; 

{ colors expressed in these mappings } 

blueColor = 409; 
cyanDolor = 273; 
magentacolor = 137; 
yellowcolor = 69; 

pielParen 
picRParen 

= 0; 
~ 1; 

{ standard picture comments } 

E-80 



Pascal Reference Manual 

TYPE QOByte = -128 .. 127; 
"QOByte; 

= "QOPtr; 
= String[2SS]; 

{ blind pointer } 
{ blind handle } 

= PACKED ARRAV[O .. 7] OF 0 .. 255; 
= ARRAV[O .. 15] OF INTEGER; 
= (v, tl); 

(frame, paint, erase, invert, fill); 

Qu!ckDI8W 

QOPtr 
QDt-Iarldle 
Str2SS 
Pattern 
Bits16 
VHSelect 
GrafVerb 
Styleltem = (bOld, italic,underllne, outllne, ShadOw,conoense, 

extend); 
Style = SET OF StYlelt~ 

FontInfo = RECORD 
ascent: INTEGER; 
descent: INTEGER; 
widt1aX: INTEGER; 
leading: INTEGER; 

END; 

Point = RECORD CASE INTEGER OF 

0: (v: INTEGER; 
h: INTEGER); 

1: (Vh: ARRAV[VH5electJ OF INTEGER); 

END; 

Rect = RECORD CASE INTEGER OF 

0: (top: 
left: 
bottom: 
right: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER); 

1: (topLeft: Point; 
botRight: Point); 

END; 

E-81 



Pascal Reference Mantlal 

B1 tMap = RECORD 
baseAddr: QOPtr; 
ro~Bytes: INTEGER; 
bOunds: Rect; 

END; 

Cursor = RECORD 
data: Blts16; 
mask: Blts16; 
hOtSpot: Polnt; 

END; 

Penstate = RECORD 
pnLoc: 
pnS1ze: 
pnHOde: 
pnPat: 

END; 

Point; 
Polnt; 
INTEGER; 
Pattern; 

PolyHandle = APolyPtr; 
PolyPtr = "POlygon; 
POlygon = RECORD 

polySlze: INTEGER; 
pOlyBBOX: Rect; 
polyPoints: ARRAV[O .. O] OF Point; 

END; 

RgnHandle = "RgnPtr; 
RgnPtr = "Reglon; 
Region RECORD 

QulckDraw 

rgnS1ze: INTEGER; { rgnS1ze = 10 for rectangular } 
rgnBBox: Rect; 
{ plus more data 1f not rectangular } 

END; 

P1cHandle = ~p1cPtr; 
PicPtr = "Picture; 
P1cture = RECORD 

picSize: INTEGER; 
p1cFrame: Rect; 
{ plus byte codes for picture content } 

END; 

E-S2 



Pascal Reference Manual 

QDProcsPtr = AQlJProcs; 
QDProcs = RECORD 

textProc: QDPtr; 
lineProc: QOPtr; 
rectProc: QDPtr; 
rReotproc: QOPtr; 
ovalProc: QDPtr; 
arcProc: QOPtr; 
polyProc: QDPtr; 
rgnProc: QOPtr; 
bltsProc: QDPtr; 
conwnentProc: QOPtr; 
tXf1easProc: QDPtr; 
getplcProc: QOPtr; 
putPlcProc: QOPtr; 

END; 

GrafPtr = AGrafPort; 
GrafPort = RECORD 

device: 
portB1ts: 
portRect: 
v1sRgn: 
CllpRgn: 
bkPat: 
flllPat: 
pnLoc: 
pnSize: 
pnt1Ode: 
pnPat: 
pnVis: 
txFont: 
txFace: 
txt1Ode: 
tXSize: 
spExtra: 
fgColor: 
bkColor: 
colrB1t: 
patStretch: 
p1csave: 
rgnsave: 

INTEGER; 
BitMap; 
Rect; 
RgnHandle; 
RgnHancIle; 
Pattern; 
Pattern; 
Point; 
Point; 
INTEGER; 
Pattern; 
INTEGER; 
INTEGER; 
Style; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
LongInt; 
INTEGER; 
INTEGER; 
QOHancJle; 
QOHandle; 

E-83 

QtIlckDraw 



Pascal Reference Manual QulckDraw 

polySave: QDHandle; 
grafProcs: QOProcsPtr; 

END; 

VAR thePort: GrafPtr; 
white: Pattern; 
black: Pattern; 
gray: Pattern; 
1 tGray : Pattern; 
dkGray: Pattern; 
arrow: Cursor; 
screenBi ts: 81 tHap; 
randSeed: LongInt; 

{ GrafPort Routines } 

PROCEDURE InitGraf (glObalPtr: QDPtr); 
PROCEDURE OpenPort (port: GrafPtr); 
PROCEDURE InitPort (port: GrafPtr); 
PROCEDURE ClosePort (port: GrafPtr); 
PROCEDURE SetPort (port: GrafPtr); 
PROCEDURE GetPort (VAR port: GrafPtr); 
PROCEDURE GrafDevice (device: INTEGER); 
PROCEDURE SetPortB1ts(bm: B1tMap); 
PROCEDURE PortSize (~idth,height: INTEGER); 
PROCEDURE MovePortTo (leftGlObal,topGlObal: INTEGER); 
PROCEDURE setOrlgin (h, v: INTEGER); 
PROCEDURE setC11p (rgn: RgnHandle); 
PROCEDURE GetClip (rgn: RgnHandle); 
PROCEDURE C11pRect (r: Rect); 
PROCEDURE BackPat (pat: Pattern); 

{ CUrsor Rout1nes } 

PROCEDURE In1tCUrsor; 
PROCEDURE setCUrsor(crsr: cursor); 
PROCEDURE H1deCUrsor; 
PROCEDURE ShoWCUrsor; 
PROCEDURE ObscureCUrsor; 

E-84 



Pascal RefeJ1:Jnce Manual 

{ Line Routines } 

PROCEDURE HidePen; 
PROCEDURE ShowPen; 
PROCEDURE GetPen (VAR pt: Point); 
PROCEDURE Getpen5tate(VAR pnState: PenState}; 
PROCEDURE setPenState(pnstate: pen8tate); 
PROCEDURE PenSize (width, height: INTEGER); 
PROCEDURE PenMOde (rode: INTEGER); 
PROCEDURE PenPat (pat: Pattern); 
PROCEDURE PenNormal; 
PROCEDURE NoveTo 
PROCEDURE Move 
PROCEDURE LineTo 
PROCEDURE Line 

(h, v: INTEGER); 
(dh,dV: INTEGER); 
(h, v: INTEGER); 
(dh,dV: INTEGER); 

(font: INTEGER); 
(face: Style); 
(rode: INTEGER); 
(s1ze: INTEGER); 
(extra: LongInt); 
(00: char); 
(s: Str2SS); 

QulckDraw 

{ Text Routines } 

PROCEDURE TextFont 
PROCEDURE TextFace 
PROCEDURE TextMOde 
PROCEDURE TextSize 
PROCEDURE SpaceExtra 
PROCEDURE DraWChar 
PROCEDURE DrawString 
PROCEDURE DrawText 
FUNCTION CharWidth 
FUNCTION Stringwidth 
FUNCTION TextWidth 

(textBuf: QDPtr; firstByte,byteCOunt: INTEGER); 
(ch: CHAR): INTEGER; 
(s: Str255): INTEGER; 
(textBuf: QOPtr; firstByte,byteCount: INTEGER): 

INTEGER; 
PROCEDURE GetFontInfo (VAR info: FontInfo); 

{ Point calculations } 

PROCEDURE AddPt (src: Point: VAR dst: Point): 
PROCEDURE SUbPt (src: Point; VAA dst: Point); 
PROCEDURE 5etPt (VAR pt: Point; h,v: INTEGER); 
FUNCTION Equalpt (pt1 ... pt2: Point): BOOLEAN; 
PROCEDURE SCalePt (VAR pt: Point; fromRect,toRect: Rect); 
PROCEDURE MapPt (VAR pt: Point; fromRect,toRect: Rect); 
PROCEDURE LocalToGlobal (VAR pt: point); 
PROCEDURE GlObalToLocal (VAR pt: point); 

E-8S 



Pascal Reference Manual QulckDraw 

{ Rectangle Calculations } 

PROCEDURE setRect (VAR r: Rect; left" top" right" OOttom: INTEGER); 
FUNCTIOO Equa1Rect (recti, rect2: Rect): BOOlEAN; 
FUNCTIOO El1f)tyRect (r: Rect): BOOlEAN; 
PROCEDURE OffsetRect (VAR r: Rect; dh,dV: INTEGER): 
PROCEDURE MapRect (VAR r: Rect; fronAect, toRect: Rect).: 
PROCEDURE InsetRect (VAR r: Rect; dh,dV: INTEGER): 
FUNCTION sectRect (srcl" src2: Rect; VAR dstRect: Rect): BOOLEAN; 
PROCEDURE unionRect (srcl,src2: Rect; VAR dstRect: Rect); 
FUNCTION PtInRect (pt: Polnt; r: Rect): BOOLEAN; 
PROCEDURE Pt2Rect (ptl,pt2: POint; VAR dstRect: Rect); 

{ Graphical Operat1ons on Rectangles } 

PROCEDURE FrameRect (r : Rect); 
PROCEDURE PaintRect (r: Rect); 
PROCEDURE EraseRect (r : Rect); 
PROCEDURE InvertRect (r: Rect); 
PROCEDURE F111Rect (r: Rect; pat: Pattern); 

{ RoundRect Routines } 

PROCEDURE FrameRoundReot (r: Reot; ovWd,ovHt: INTEGER); 
PROCEDURE PalntRoundRect (r: Rect; ovWO"ovHt: INTEGER); 
PROCEDURE EraseRot.rldReot (r: Rect; ovWd, ovHt: INTEGER); 
PROCEDURE InvertRoundRect (r: Rect; ovWd"ovHt: INTEGER); 
PROCEDURE FillRoundRect (r: Reot; ovWd,ovHt: INTEGER; pat: Pattern); 

{ Oval Routines } 

PROCEDURE Frameova1 (r: Rect); 
PROCEOlR: PaintOVal (r: Rect); 
PROCEDURE Eraseoval (r: Rect); 
PROCEDURE InvertOVal (r: Rect); 
PROCEDURE F1110va1 (r: Reot; pat: Pattern); 

{ Arc Routines } 

PROCEDURE FrameArc (r: Rect; startAng1e,arcAngle: INTEGER); 
PROCEDURE PaintArc (r: Rect; startAng1e"arcAngle: INTEGER); 
PROCEDURE EraseArc (r: Reot; startAngle,arCAngle: INTEGER); 
PROCEDURE InvertArc (r: Rect; startAngle"arcAngle: INTEGER); 

E-86 



Pascal Reference MantIaJ QuICkDraw 

PROCEDURE Fl11Arc (r: Rect; startAngle,arCAngle: INTEGER; pat: 
Pattern); 

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER); 

{ Polygon Routines } 

FUNCTION OpenPoly: 
PROCEDURE ClosePoly; 
PROCEDURE KillPoly 
PROCEDURE OffsetPoly 
PROCEDURE t1apPoly 
PROCEDURE FrsnePoly 
PROCEDURE PaintPoly 
PROCEDURE ErasePoly 
PROCEDURE InvertPol y 
PROCEDURE FillPoly 

PolyHandle; 

(poly: PolyHanclle); 
(poly: PolyHanclle; dh, dV: INTEGER); 
(poly: PolyHanclle; fronflect,toRect: Rect); 
(poly: PolyHanclle); 
(poly: PolyHanclle); 
(poly: PolyHandle); 
(poly: PolyHanclle); 
(poly: PolyHandle; pat: pattern); 

{ Region calculations } 

FUNCTION Ne~: Rg1iandle; 
PROCEDURE DisposeRgn(rgn: RgnHandle); 
PROCEDURE COpyRgn ( srcRgn, dstRgn: RgnHaIldle); 
PROCEDURE setE~tyRgn( rgn: RgnHandle); 
PROCEDURE setRectRgn(rgn: Rg1iandle; left, top, right, bOttom: INTEGER); 
PROCEOlR: RectRgn (rgn: RgnHandle; r: Rect); 
PROCEDURE 0penRgn; 
PROCEDURE CloseRgn (dStRgn: RgnHandle); 
PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dV: INTEGER); 
PROCEDURE MapRgn (rgn: RgnHandle; fr~ect, toRect: Rect); 
PROCEDURE InsetRgn (rgn: RgnHandle; dh,dV: INTEGER); 
PROCEDURE 5ectRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle); 
PROCEDURE lJnionRgn (srcRgnA, srcRgnB, dstRgn: RgnHancUe); 
PROCEDURE DiffRgn (srcRgnA, srcRgnB, dStRgn: RgnHandle); 
PROCEDURE xorRgn (srcRgnA .. srcRgnB .. dstRgn: RgnHandle); 
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN; 
FUNCTION Eq:>tyRgn (rgo: RgnHandle): BOOLEAN; 
FUNCTION PtInRgn (pt: point; rgn: RgnHandle): BOOLEAN; 
fUNCTION RectInRgn (r: Rect; rgn: RgnHandle): BOOlEAN; 

{ Graphical Operations on Regions } 

PROCEDURE FrameRgn (rgn: RgnHandle); 
PROCEDURE PaintRgn (rgn: RgnHandle); 
PROCEDURE EraseRgn (rgn: RgnHandle); 

E-87 



Pascal RefeIenCe Manual QuICkDraw 

PROCEDURE InvertRgn (rgn: RgnHandle); 
PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern); 

{ Graphical Operat1ons on B1tMaps } 

PROCEDURE scrollRect(dstRect: Rect; dh,dV: INTEGER; updateRgn: 
rgnHandle); 

PROCEDURE COpyBits (srcBits,dstBits: BitMap; 
srcRect,dstRect: Rect; 
mode: INTEGER; 
maskRgn: RgnHandle); 

{ Picture Routines } 

FUNCTION OpenPicture(picFrane: Rect): PicHandle; 
PROCEDURE ClosePicture; 
PROCEDURE DrawPicture(~icture: P1cHandle; dstRect: Rect); 
PROCEDURE PicConment(kind, dataSize: INTEGER; dataHandle: QOHandle); 
PROCEDURE KillPicture(~icture: PioHandle); 

{ The Bottleneck Interface: } 

PROCEDURE setStcProcS(VAR procs: QOProcs); 
PROCEDURE StdText (count: INTEGER; textAddr: QOPtr; numer,denom: 

PROCEDURE Stdl1ne 
PROCEDURE StdRect 
PROCEDURE StdRRect 
PROCEDURE StdOVal 
PROCEDURE StdArc 

Point); 
(newPt: P01nt); 
(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; OVWd,ovHt: INTEGER); 
(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; startAngle,arcAngle: 

INTEGER); 
PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle); 
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle); 
PROCEDURE StdBi ts (VAR srcBi ts: B1 tMap; VAR srcRect, dstRect: Rect; 

rode: INTEGER; maSkRgn: RgnHandle); 
PROCEDURE StdConlnent (kind, data5ize: INTEGER; dataHandle: QOHanclle); 
FUNCTION stdTxMeas (count: INTEGER; textAddr: QOPtr; 

VAR numer,denOm: Point; 
VAR 1nfo: FontInfo): INTEGER; 

PROCEDURE StdGetPic (dataPtr: QOPtr; bytecount: INTEGER); 
PROCEDURE StdPutP1c (dataPtr: QOPtr; bytecount: INTEGER); 

E-88 



Pascal Reference ManUal 

{ M1se Ut1l1ty Rout1nes } 

FUNCTION GetPlxel (h, V: INTEGER): BOOLEAN; 
FUNCTION Random: INTEGER; 
PROCEDURE Stuff Hex (thlngptr: QDPtr; s:Str255); 
PROCEDURE Forecolor (color: LongInt); 
PROCEDURE BackCOlor (color: Longlnt); 
PROCEDURE COlorS1t (wn1ch8it: INTEGER); 

E.13.1 Graf30 interfaCe 

{$S Graf } 

UNIT Graf3D; 

QulCkOraw 

{ three-dimensional graphics routines layered on top of QuickDraw } 

INTERFACE 

USES {$tJ QO/QuiCkDraw.OBJ} Qu1CkDraw; 

CONST radConst=S7.29578; 

TVPE Point3D=RECORD 
x: REAL; 
y: REAL; 
Z: REAL; 

END; 

Polnt20=RECORD 
x: REAL; 
y: REAL; 

END; 

XfMatrix = ARRAV[O .. 3,O .• 3] OF REAl; 
Port3OPtr II "Port3D; 
Port3D = RECORD 

GPort: GrafPtr; 
vlewReet: Reet; 
Xleft, yTop, xR1ght, yBottom: REAL; 
pen, penPr11re, eye: Polnt3D; 
hSize,vSize: REAL; 
hCenter, vCenter : REAL; 
xCotan, yCotan : REAL; 
ldent: BOOLEAN; 
xForm: XfMatrix; 

END; 

E-89 



Pascal Reference Manual QuickDraw 

VAR tnePort30: Port3OPtr; 

PROCEDURE Open3OPort (port: Port3OPtr); 
PROCEDURE 5etPort3D (port: Port30Ptr); 
PROCEDURE GetPort30 (VAR port: Port3OPtr); 

PROCEDURE HoveTo2O(x,y: REAL); PROCEDURE HoveTo30(x,y,Z: REAL); 
PROCEDURE L1neT02D(x,y: REAL); PROCEDURE L1neTo30(x,y,Z: REAl); 
PROCEDURE Hove2D(dx,dy: REAL); PROCEDURE Move30(dx,dy,dZ: REAL); 
PROCEDURE L1ne2D(dX,dy: REAl); PROCEDURE L1ne3D(dx,dy,dZ: REAL); 

PROCEDURE V1elJlPort (r: Rect); 
PROCEDURE LOOkAt (left, top, right, bottom: REAL); 
PROCEDlft V1e.Angle (angle: REAL); 
PROCEDURE Identity; 
PROCEDURE Scale 
PROCEDURE Translate 
PROCEDURE P1 too 
PROCEDURE Vaw 
PROCEDURE Roll 
PROCEDURE Skew 
PROCEDURE TransForm 
FUNCTION C11p30 

PROCEDURE setPt3D 
PROCEDURE 5etpt20 

(xFactor, yFactor, zFactor: REAL); 
(dX, dy, dZ: REAL); 
(xAngle: REAL); 
(yAngle: REAL); 
(ZAngle: REAL); 
(zAngle: REAL); 
(src: Po1nt30; VAR dst: Po1nt30); 
(srcl,src2: Polnt30; VAR dstl,dst2: POINT): 

BOOLEAN; 

(VAR pt3D: Point30; x,y,z: REAL); 
(VAR pt20: Point2D; X, y: REAL); 

E-90 



Pascal Reference /'-1anUaJ QjlckDraw 

E.t4 QulCkDraW 8afJ1)le ProgrCIus 
This section provides listings Of two sample programs that are inclUded with 
the WOrkshop software. 

E.14.1 QIJSar4lle 
The program QIJSar4lle (in the file QOIQOSa IIple. TEXl) CIemOnstrates 
different things that QulCkDraw can do. Its output Is Shown In Figure E-26. 

Text 

Bold 
Itolic 
Underline 

~!tm1 

~ 

RoundRects 

took what you can draw with QuickDraw 

Rectangles 

Bit Images Wedges 

~ ~ .at 
~m~ 

Ovals 

,~ ''''0 
. 

Ill/i'/ 
\\\\\\\ 
111/1/ 

,\\\\\\' 

"""'~..J-/ 

Fl~E-26 
QIJSar4l1e 

The fIle QDlM/QIJSafT1)le. TEXT Is an exec fHe that can be used to rebulld 
thIs sample program. Disregard any warning messages from the llnker aboUt 
name conflIcts. 

E-91 



Pascal Reference Manual 

PROGRAM QOSanple; 

{ Sample program illlustrating the use of QuickDraw. } 

USES {$U QO/QuiCkDraw.OBJ} QuickDraw .. 
{$U QO/QOSUpport.OBJ} QOSupport; 

TYPE IconData = ARRAY[O .. 95] Of INTEGER; 

VAR heapBuf: 
myPort: 
icons: 

ARRAY[O .. 10000] OF INTEGER; 
GrafPort; 
ARRAY[O . .5] Of IconData; 

FUNCTION HeapFUll(hZ: QOPtr; bytesNeeded: INTEGER): INTEGER; 

QulckDraw 

{ this function will be called if the heapzone runs out of space } 
BEGIN 

WRITELN(' The heap is full. The program rust now terminate! '); 
Halt; 

END; 

PROCEDURE Ini tIcons; 
{ Manually stuff some icons. Normally we would read them from a file } 
BEGIN 

{ Lisa } 
StuffHex(micons[O, 0], 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlfFFFFfFFC'); 
StuffHex(micons[0 .. 12] .. '0060000000060180000000OB060000000013OFFFFFFFFFA3'); 
StUffHex(miconS[0,24], '18000000004311fFfff0002312000008OF23120000OBf923'); 
StUffHex(mlcons[O .. 36], '120000080F23120000OB0023120000OB0023120000OBOF23'); 
StuffHex(mlcons[O,48], '1200000Bf9231200000S0f231200000B002311FfFfF00023'); 
StUffHeX(mlcons[O .. 60] .. 'OS000000004307FFFFFFFFA3010000000026OFFfFFFFFE2C'); 
StUffHex(micons[0,72], '18000000013832AAAAASA9f065555551538OC2AAAA82A580'); 
StUffHex(mlcons[0 .. 84] .. '8000000009SOFFFFFFFFF300S0000000160OFFFFFFFFfCOO'); 

{ Printer } 
StuffHex(micons[l, 0], '000000000000000000000000000000000000000000000000'); 
StUffHex(mlconS[1 .. 12], '00000000000000007FFFFF000000800002S0000111514440'); 
StUffHex(mlconS[1,24] .. '0002000008400004454510400004000017COOOO4A5151000'); 
stUffHex(micons[l,36], '0004000010000004A54510000004000017FEOOF4A5151003'); 
StuffHex(mlconS[l,48], '0184000013870327ffffflOf06400000021BOCffffFFfC37'); 
StUffHex(mlconS[1 .. 60] .. 'lS000000006B3000000000077FFFFFFFFFABC00000000356'); 
StuffHex(mlconS[l,72], '8000000001AC87F00000015884100OCCCIBOB7FOOOCCC160'); 
StUffHex(mlconS[l,84] .. 'SOOOOOOOOlCOC000000003S07FFFFFFFFF0007S00001EOOO'); 

E-92 



Pascal Reference Manual Qulcl<Draw 

{ Trash Can } 
StUffHex(iilcons[2, 0], '000001FCOOOOOOOOOE060000000030030000000OC0918000'); 
StuffHex(mlconS[2,12), '00013849800000026C4980000004C0930000000861260000'); 
StuffHex(iilconS[2,24], '0010064FE0000031199830000020E6301800002418EOOBOO'); 
StUffHex(mlcons[2,36), '0033E3801C0000180E002COOOOOFF801CC0000047FFEOCOO'); 
StuffHex(mlconS[2,48), '000500004C0000OS259A4C0000052SOA4C00000525FA4C00'); 
StuffHex(mlconS[2,60), '000524024C00000524924C00600524924C0090E524924C7C'); 
StuffHex(mlcons[2,72), '932524924C82A44524924001C88S24924CFIOC4524924C09'); 
StUffHex(mlcons[2,84), '0784249258E70003049233100000EOOOE40800001FFFC3FO'); 

{ tray } 
StuffHex(mlcons[3, 0), '000000000000000000000000000000000000000000000000'); 
StuffHeX(m1cons[3,12), '0000000000000000000000000000000000000007FFFFFFFO'); 
StUffHex(mlconS[3,24], 'OOOE00000018001A00000038003600000078006A000000D8'); 
StuffHeX(m1cons[3,36], 'OOO7FFFFFFB801AC000003580358000006BB07FCOOOFFD58'); 
StUffHeX(iilconS[3,48], '040600180AB80403FFF00D58040000000AB8040000000058'); 
StuffHeX(m1conS[3,60], '040000000ABB07FFFFFFFD5806ACOOOOOAB8055800000DS8'); 
StUffHex(mlconS[3,72], '06B000000AB807FCOOOFFD70040600180AE00403FFFOOOCO'); 
StUffHex(m1conS[3,84], '040000000B8004000000OF00040000000E0007FFFFFFFCOO'); 

{ F1le Cab 1 net } 
StUffHex(iilconS[4, 0), '0007FFFFFC0000080000OCOOOOI000001C00002000003400'); 
StUffHex(m1conS[4,12], '004000006COOOOFFFFFFD40000800000ACOOOOBFFFFED400'); 
StUffHex(&lconS[4,24), 'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StuffHex(m1conS[4,36], 'OOA00002ACOOOOAOB082D40000AOFF82ACOOOOA000020400'); 
StUffHeX(iilconS[4,48], 'OOA00002ACOOOOBFFFFED40000800000ACOOOOBFFFFED400'); 
StuffHex(m1conS[4,601, '00A00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StUffHex(&1cons[4,72), 'OOA00002ACOOOOAOBOB2D40000AOfF82ACOOOOA00002D800'); 
StuffHex(m1conS[4,841, '00AOOOO2B0000OBFFFFEE0000080000OCOOOOOFFFFFF8000'); 

{ dratrrer } 
StUffHex(mlcons[S, 0), '000000000000000000000000000000000000000000000000'); 
StUffHex(m1cons[S,12], '000000000000000000000000000000000000000000000000'); 
StUffHex(mlcons[S,24], '000000000000000000000000000000000000000000000000'); 
StUffHex(mlcons[5,36], 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFO'); 
StuffHex(iilcons[S,48], '000038000030000068000070000008000000003FFFFFFIBO'); 
StuffHex(mlcons[SI60], '0020000013S00020000016B000201FEOID50002010201ABO'); 
StUffHeX(iilconS[5,72], '00201FEOl560002000001AC0002000001580002020101BOO'); 
StuffHex(mlconS[S,84], '00203FF01600002000001C00002000001800003FFFFFFOOO'); 

END; 

E-93 



Pascal Reference MantIal 

PROCEDURE orawIcon(1lIh1chIcon, h, V: INTEGER); 
VM sroB1 ts: B1 tHap; 

srcRect, OstRect: Rect; 
BEGIN 
srcB1ts.baseAddr:=m1conS[Wh1OhIcon]; 
srcB1ts.rowBytes:=6; 
5etRect(srCB1ts.bOUnCIS, 0,0,48,32); 
srcRect:=srCB1ts.boUndS; 
astRect:=srcRect; 

QlIlckDraw 

OffsetRect(dstRect,h,v); 
COpyBlts(srCBlts,thePort~.portB1ts,srcRect,OstRect,srCOr,N11); 

EN); 

PROCEDURE orawStUff; 

VAR 1: INTEGER; 
teftl)Rect: Rect; 
myPoly: Po lyHcn1 Ie; 
myRgn: RgnHandle; 
myPattern: Pattern; 

BEGIN 
stUffHex(~attern, '8040200002040800'); 

t~ect :.. ttlePort;'. portRect; 
Cl1pRect(tempRect); 
EraseRoundRect( teqlReot, 30, 20); 
FrameRounoRect( tempRect, 30, 20); 

{ draw two hOr1zontal l1nes across the top } 
ttoveTo(O,18); 
l1neTo(719,18); 
ttoveTo(0,20); 
l1neTo(719,20); 

{ Oraw d1v1der l1nes } 
tIoveTO(0,134); 
llneTo(719,134); 
ttoveTo(0,248); 
l1neTo(719,248); 
ttoveTo(240,21); 
llneTo(240,363); 
NoveTo( 480,21); 
l1neTo(480,363); 

E-94 



Pascal Reference H8nt18l 

{ draw title } 
TextFont(O); 
HoveTo(210,14); 
Drawstring("LOOk what you can draw with QuickDraw'); 

{--------- draw text samples --------- } 

Move To (80, 34); DraWString( 'Text "); 

TextFace([bold]); 
HoveTo(70,55); DrawStr1ng('Bold'); 

TextFace([italic]); 
MoveTo(70,70); DrawString("Italic'); 

TextFace([underline]); 
HoveTo(70,85); DrawString('Underline'); 

TextFace([outline]); 
HoveTo(70,100); DrawString('OUtline"); 

TextFace([shadow]); 
MoveTo(70,115); DrawString('ShadDw'); 

TextFace([]); {restore to normal} 

{ --------- draw line samples --------- } 

MoveTo(330,34); DraWString('lines'); 

HoveTo(280, 25); Line(160,40); 

PenS1ze(3,2); 
HoveTo(280,35); Line(160,40); 

PenSize(6,4); 
HoveTo(280, 46); L1ne(160,40); 

PenSize(12,8); 
PenPat(gray); 
HoveTo(280,61); Line(160,40); 

E-95 

QuickDmw 



PascBl Reference MantIBi 

PenSize(15,10); 
PenPat(myPattern); 
t1oveTo(280,80); Llne(160,40); 
PenNormal; 

{ --------- draw rectangle samples --------- } 

HoveTo (S6 0, 34); OraWString('Rectangles'); 

SetRect(tellJ)Rect, 510, 40, 570, 70); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2); 
EraseRect(tempRect); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
PalntRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenNormal; 
Fi 1 1 Rect(tempRect, gray); 
FrameRect(tempRect); 

OffsetRect(tempRect,25, 15); 
FillRect(tempRect,myPattern); 
FrameRect(tempRect); 

{ --------- draw roundRect samples --------- } 

MoveTo(70,148); DrawString('RoundRects'); 

SetRect(telJ1)Rect ... 30 ... 150 ... 90 ... 180); 
FromoRoundRoot(tompReot,30,20); 

OffsetRect(tempRect,25,1S); 
PenSlze(3,2); 
EraseRoundRect(tempRect,30,20); 
FrameRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
PaintRoundRect(tempRect,30,20); 

E-96 

QuickDraw 



Pasc81 Reference Man£lBJ 

OffsetRect(tempRect,25,15); 
PenNormal; 
F1 1 1 RoundRect(tempRect, 30, 20, gray); 
FrameRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
FillRoundRect(tempRect, 30, 20,myPattern); 
FrameRoundRect(tempRect,30,20); 

{ --------- draw bit image samples --------- } 

HoveTo(320,148); DrawString('Sit Images'); 

Drawlcon(0,266,156); 
Drawlcon(1,336,156); 
Drawlcon(2, 406,156); 
Drawlcon(3,266,196); 
DrawIcon(4,336,196); 
Drawlcon(5,406,196); 

{ --------- draw Wedge samples --------- } 

HoveTo(570,148); DrawString('WedgeS'); 

SetRect(tempRect,520,153,655,243); 
FtllArc(tempRect,135,65,dkGray); 
FillArc(tempRect,200,130,~Pattern); 
Fi1 1 Arc (teq:>Rect, 330, 75, gray); 
FrameArc(tempRect,135,270); 
OffsetRect(tempRect,20,O); 
PaintArc(tempRect,45,90); 

{ --------- draw polygon samples --------- } 

HoveTo(BO,262); DrawString('Polygons'); 
myPoly:=OpenPoly; 

HoveTo(30,290); 
LineTo(30,280); 
LineTo(50, 265); 
L1neTo(90,265); 
LineTo(BO,2BO); 
LineTo(95,290); 
LineTo(30,290); 

ClosePoly; { end of definition } 

E-97 

QuickDmw 



Pascal Reference fvI8nu81 

FramePoly(~ly); 

Off setPo ly (myPoly, 25, 15); 
PenSize(3,2); 
ErasePoly(myPoly); 
FramePoly(myPoly); 

Off setPo ly (myPoly, 25, 15); 
PaintPoly(~ly); 

Off setPoly (myPoly, 25, 15); 
PenNormal; 
FillPoly(myPoly,gray); 
FramePoly(myPoly); 

OffsetPoly(myPoly,25,15); 
FillPoly(myPoly,myPattern); 
FramePoly(myPoly); 

KillPoly(myPoly); 

{ --------- demonstrate region clipping --------- } 

MoveTo(320,262); OraWString('Regions ' ); 

myRgn: =NewRgn; 
OpenRgn; 

ShowPen; 

SetRect(tempRect, 260, 270, 460, 350); 
FrameRoundRect(tempRect,24,16); 

MoveTo(275, 335); {define triangular hole } 
lineTo(325, 285); 
lineTo(375 .. 335); 
LineTo(275o, 3350); 

SetRect(tempRect, 365,277, 445, 325); {oval hole} 
Frameoval(tempRect); 

HidePen; 
CloseRgn(myRgn); 

SetClip(myRgn); 

{ end of definition } 

E-98 

QuickDraw 



PascBl Refe.rence ManuBl 

FOR i:=O TO 6 00 {draw stuff inside the clip region } 
BEGIN 
MoveTo(260,280+12*1); 
DrawString('Arbitrary Clipping Regions'); 

END; 

Cl1pRect(thePort A .portRect); 
Di sposeRgn( myRgn); 

{ --------- draw oval samples --------- } 

HoveTo(580,262); DrawString( • Ovals' ); 

SetRect(tempRect, 510,264,570, 294); 
FrameOval(tempRect); 

OffsetRect(tempRect,2S,lS); 
PenSize(3,2); 
EraseOval(tempRect); 
FrameDval(tempRect); 

OffsetRect(tempRect,2S,15); 
PaintOval(tempRect); 

OffsetRect(tempRect,25,15); 
PenNormal; 
FillOval(tempRect,gray); 
Frameoval(tempRect); 

OffsetRect(tempRect,25,15); 
FillOVal(tempRect,myPattern); 
FrameOval(tempRect); 

END; {DrawStuff} 

E-99 

QuickDmw 



P8scBi Refe.mnce H8ntJ81 QuickD.18k1 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickDraw } 
QOlnit(mheapBuf, WheapBuf[10000], ~ull); { Must do this once at 

beginning } 
OpenPort(mmyPort); 
PaintRect(thePortA.portRect); {Paint grey background } 

InitIcons; 
DrawStuff; 
Tone (2000, 500); { Beep tone of (1/2000)*10A6 == 500 cycles/sec for 

SOD milliseconds } 
Readln; {Wait until RETURN entered before terminating program } 

END. 

E-100 



Pascal Reference M8I7lJal quickDraw 

El4.2 Boxes 
The program Boxes (in the file QOIBoxes. TEXT) uses the Graf30 routines to 
draw random three-dimensional boxes on a grid, as shown in Figure E-27. 

Fi~ E-27 
Boxes 

The file QOIMIBoxes. TEXT is an exec file that can be used to rebuild this 
sample program. Disregard any warning messages from the lInker about name 
conflicts. 

E-IOI 



Pascal Refemnce M8nual QuickDmw 

PROGRAM Boxes; 

{ Sample program illustrating use of the Graf3D unit by drawing random 
3D boxes on a grid. } 

USES 
{$U QD/QuickDraw.OBJ} QuickDraw .. 
{$U QO/Graf30.OBJ } Graf3D, 
{$U QO/QOSupport. OBJ} QDSupport, 

CONST boXCount = IS; 

TYPE Box3D=RECORD 
ptl: Point3D; 
pt2: Polnt3D; 
dist: REAL; 

END; 

VAR 
heapBuf: 
GPortl: 
GPort2: 
myPort: 
myPort3D: 
boxArray: 
nBoxes: 
1: 

ARRAV[O •• 8192) OF INTEGER; 
GrafPort; 
Port3d; 
GrafPtr; 
Port3DPtr; 
ARRAY [0 •• bOxCount) OF Box3D; 
INTEGER; 
INTEGER; 

{16k bytes} 

FUNCTION HeapError(hz: QDPtr; bytesNeeded: INTEGER): INTEGER; 
{ this procedure gets called when the heap zone is full } 
BEGIN 

WRITELN('The heap is full. The program must now terminate! I); 
HAlT; 

END; 

FUNCTION Oiet8nOe(ptl, pt2: POINT30): REAL; 
VAR dx, dy, dz: REAL; 
BEGIN 

dx:=pt2.X - ptl.X; 
dy:=pt2.V - ptl.V; 
dz:=pt2.Z - ptl.Z; 
D1stance:=SQRT(dX*dx + dy*dy + dz*dz); 

END; 

E-102 



Pascal Reference Manual 

PROCEDURE HakeBox; 

VAR myBox: 
i, j, h, v: 
p1,p2: 
myRect: 
testRect: 

BEGIN 

Box30; 
INTEGER; 
Po1nt3D; 
Rect; 
Rect; 

pl.x:=Random mod 70-15; 
pl.y:=Random mod 70 -10; 
p1.z:=O.O; 
p2.x:=p1.x + 10 + ABS(Random) HOD 30; 
p2.y:=p1.y + 10 + ABS(RandOm) HOD 45; 
p2.z:=p1.z + 10 + ABS(RandOm) HOD 35; 

QuickDraw 

{ reject box 1f 1t 1ntersects one already 1n list } 
SetRect(myRect,ROUND(p1.x),ROUND(p1.y),ROUND(p2.x),ROUND(p2.y»; 
FOR 1: =0 TO nBoxes-1 00 

BEGIN 
11TH boxArray [ i] 00 

SetRect(testRect,ROUND(pt1.x),ROUNO(pt1.y), 
ROUNO(pt2.x),ROUND(pt2.y»; 

IF SectRect(myRect,testRect,testRect) THEN EXIT(HakeBox); 
END; 

myBox. pt1 : =p1; 
myBox. pt2 : :ap2; 

{ calc midpoint of box and its distance from the eye } 
p1.x:=(p1.x + p2.x)/2.0; 
p1.y:=(p1.y + p2.y)/2.0; 
pl.z:=(p1.z + p2.z)/2.0; 
Transform(p1,p2); 
myBox.dist:=D1stance(p2,myPort3D~.eye); {distance to eye} 

1:=0; 
boxArray[nBoxes].dist:-myBox.dist; { sentinel} 
WHILE myBox.dist > boxArray[i).d1st 00 1:=1+1; {1nsert 1n order of d1st} 
FOR j: -nBoxes OOWNTO i + 1 00 boxArray [j ) : -boxArray[ j-l ]; 
bOxArray[i):=~Box; 
nBoxes:=nBoxes+l; 

END; 

E-I03 



PascBl Reference /Vf8nuaJ 

PROCEDURE DrawBox(ptl, pt2: Point30); 
{ draws a 30 box with shaded faces. } 
{ only shades correctly in one direction } 
VAR t~gn: RgnHandle; 

BEGIN 
te~gn: =NeI.\lRgn; 
OpenRgn; 
MoveTo3D(ptl.~ptl.y,ptl.z); { front face, y=yl } 
LineTo30(pt1.~ ptl.y, pt2 .z); 
L1neTo3D(pt2 .x, ptl.y, pt2.z); 
L ineTo3D(pt2 . x, ptl. y, ptl. z); 
LineTo30(pt1.x, pt1.y,pt1.z); 

CloseRgn(tempRgn); 
FillRgn(tempRgn,white); 

OpenRgn; 
HoveTo30(ptl.x,ptl.y,pt2.z); { top face, z=z2 } 
LlneTo3D(pt1.x, pt2.y,pt2 .z); 
LineTo30(pt2.x,pt2.y,pt2.z); 
LineTo3D(pt2.~ ptl.y, pt2 .z); 
LineTo30(pt1.x, ptl.y, pt2.z); 

CloseRgn(tempRgn); 
fillRgn(tempRgn,gray); 

OpenRgn; 
HoveTo3D(pt2 .x, pt1.y, pt1.z); { right face, x=x2 } 

LineTo30(pt2 .x, pt1.y, pt2.z); 
LineTo3D(pt2.X,pt2.y,pt2.z); 
LineTo30(pt2. X, pt2. y, ptl. z); 
L1neTo3D(pt2 .x, ptl.y,ptl.z); 

CloseRgn(tempRgn); 
Fi 1 1 Rgn(tempRgn, black); 

PenPat(White); 
HoveTo30(pt2.x,pt2.y,pt2.z); {outline right} 
lineTo3D(pt2. X, pt2 .y, ptl.z); 
LineTo30(pt2. x, ptl.y, ptl.z); 
PenNormal; 

01 sposeRgn( teqlRgn); 
END; 

E-I04 

QuickDrsw 



Pascal Reference Hanual QujckDmw 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickOraw } 
QOInit(iilheapBuf, iiheapBuf[8192], iiheapError); { t1ust do this once at 

begiming ) 

myPort := aGPortl; 
OpenPort(myPort); 
myPort3D := &GPort2; 
Open3DPort(myPort3D); 

VielllPort(myPort" .portRect); { put the image in this reet } 
LookAt(-100,7S,100,-7S); { aim the camera into 30 space } 
Vie",Angle(30); { choose lens focal length } 
Identity; Roll(20); Pitch(70); {roll and pitch tfie plane } 

PenPat ( lI1i te); 
BackPat( black); 
EraseRect(~ort".portRect); 

FOR i:=-10 TO 10 DO 
BEGIN 

HoveTo30(i*10, -100,0); 
LineTo30(i*10, +100, 0); 

END; 

FOR i:=-10 TO 10 DO 
BEGIN 

HoveTo30( -100, i *10,0); 
LineT03D( +100, i*10, 0); 

END; 

nBoxes:=O; 
REPEAT HakeBoX; UNTIL nBoxes=boxCount; 
FOR i: =nBoxes-l OOWNTO 0 00 

OrawBox(boxArray[i].pt1,boxArray[i].pt2); 

Tone(2000, 500); {Beep tone of (1/2000)*10"6 == 500 cycles/sec for 
500 milliseconds } 

ReadLn; {Wait until RETURN entered before terminating program } 

END. 

E-l05 



Pascal Reference Manual Qt,IICkDJ'8W 

E.15 ~rt 
The ~rt unit (in the f1le QO~rt. TEXl) provides the 
Inltlal1zatlon that you need to use QulcKDraw In the QDInlt procedUre, as well 
as procedures for simplified access to mouse tracKing, the mouse bUtton., and 
soun<l generation, and useful definitions of font numbers. For more detalled 
information on mouse-handling routines and sound, refer to ~ndlx F, 
Har(1ware Interface. 

UNIT QDSupport; 

INTERfACE 

USES 
{$U QO/unitStd.OBJ } unitStd, 
{$U QO/unitHz.OBJ } unitHz, 
{$U QDlHardware.OBJ } Hardware, 
{$U QO/Fontngr .OBJ } Fontngr, 
{$U QO/QuiCkDraw.OBJ} QuiCkDraw; 

CONST 
{---------- Font Numbers ----------} 

FTile12 = 4; {proportional} 
FTile18 = 5; {proportional} 
FTile24 6; {proportional} 
FP15Tile = 7; {Monospaced - 8 lines/inch & 15 chars/inch} 
FP12Tile = 8; {Monospaced - 6 lines/inch & 12 chars/inch} 
FP10Tile = 9; {HonospaCed - 6 lines/inch & 10 Chars/inch} 
FCent12 = 10; {proportional} 
FCent18 = 11; {proportional} 
FCent24 = 12; {proportional} 
FP12Gent = 13; {Honospaced - 6 lines/inch & 12 Chars/inch} 
FPIOCent = 14; {Honospaced - 6 lines/inch & 10 chars/inch} 
FP20Tile = 19; {HonospaCed} 

E-I06 



Pascal Reference M8nu8J QuickDraw 

PROCEDURE QOlnit(startPtr, I1mltPtr: QDPtr; ErrorProc: QOPtr); 
{ QDInit: Initializes QuickOraw unit by setting up its heap 

zone, global vars, cursor, and the Font Manager it 
calls 011. } 

PROCEDURE GetHouse(VAR pt: Point); 
{ GetHouse: Returns the current rouse location in the local 

coordinates of the current grafPort. } 

FUNCTION HouseButton: BOO..EAN; 
{HouseButton: Returns TRtE if the rouse button is currently held 

down, other"i se FALSE. } 

PROCEDURE Tone{waveLength, duration: LongInt); 
{ Tone: Produces a square wave tone of the specified 

wavelength (microseconds) for the ~ified duration 
(milliseconds). } 

E-107 



Pascal Refemnce Manual QlIickDl1!1W 

E.16 Glossary 
bit image: A collection of bits in memory that have a rectilinear represen­
tation. The Lisa screen is a visible bit image. 
bltfnaJt A pointer to a bit Image, the row width of that image, and its 
boundary rectangle. 

tnn:tary rectangle: A rectangle defined as part of a bitmap, Which encloses 
the active area of the bit image and imposes a coordinate system on it Its 
top left corner is always aligned around the first bit in the bit image. 

canera eye: A concept in three-dimensional graphics: the point of view and 
the viewing angle in which an object appears, independent of the objeCt's 
coordinates. 

character style: A set of stylistic variations, such as bold, italic, and 
underline. The empty set indicates normal text (no stylistic variations~ 

clipplrYJ: Limiting drawing to within the bounds of a particular area 

cliAling region: Same as clipRgn 

cliJ:Rgt The region to which an application limits drawing in a grafPort. 

coordinate plene: A two-dimensional grid. In QuickDraw, the grid coordinates 
are integers r~ing from -32768 to +32767, and all grid lines are infinitely 
thin. 

cursor: A 16-by-16-bit image that appears on the screen and is controlled by 
the mouse. 

amor level: A value, initialized to 0 when the system is booted, that keeps 
track of the number of times the cursor has been hidden. 

errpty: Containing no bits, as a shape defined by only one point 

font: The complete set of characters of one typeface, such as Century. 

fmne: To draw a shape by drawIng an outline of it 

global cooldinate system: The coordinate system based on the top left comer 
of the bit image being at (O,o~ 

Graf3D: A three-dimensional graphics unit that calls QuickDraw routines. 

grafPort: A complete drawing environment, including such elements as a 
bitmap, a subset of it in which to draw, a character font, patterns for drawing 
and erasing, and other pen characteristics. 

grafPtr. A pointer to a grafPort. 

tmdIe: A pointer to one master pointer to a dynamic, relocatable data 
structure (such as a region~ 

hotspot: The point in a cursor that is aligned with the mouse position. 

kem To stretch part of a character back under the previous character. 

E-l08 



Pascal Reference fvIanuaJ 

local coordinate system: The coordinate system local to a grafPort, imposed 
by the bol.n:Jary rectangle defined in its bitmap. 
mlsslfYJ syntJOl: A character to be drawn in case of a request to draw a 
character that is missing from a particular fonl 
pattem M 8-by-8-bit image, used to define a repeating design (such as 
stripes) or tone (such as gray~ 
pattern tnnfer mode: 01e of eight transfer modes for drawing lines or 
shapes with a pattern. 
picture: A saved sequence of QuickDraw drawing commallds (and, optionally, 
picture comments) that you can play back later with a single procedure call; 
also, the image resulting from these commands. 
picture conments: Data stored in the definition of a picture which does not 
affect the picture's appearance but may be used to provide additional 
information about the picture when it's played back. 

picture fnme: A rectangle, defined as part of a picture, which surrounds the 
picture and gives a frame of reference for scaling when the picture is drawn. 
pixel: The visual representation of a bit on the screen (white if the bit is 0, 
black if it's 1~ 

point: The intersection of a horlzontal grid line and a vertical grid line on 
the coordinate plane, defined by a horizontal and a vertical coordinate. 
polygm: A sequence of connected lines, defined by QuickDraw line-drawing 
Commands. 

port: GrafPort or Port3D. 
Port3D: A data structure. in Graf30 that maps three-dimensional coordinates 
into a two-dimensional QuickDraw grafPort. 
Port3£Ptr: A pointer to a Port30. 
port8its: The bitmap of a grafPorl 
portBlts..b0tn2s: The boUndary rectangle of a grafPort's bItmap. 

portRect: A rectangle, defined as part of a grafPort, which encloses a subset 
of the bitmap for ~e by the grafPort. 
regtm: Nt arbitrary area or set of areas on the coordinate plane. The 
outline of a region should be one or more closed loops. 
row width: The number of bytes in each row of a bit image. 
scale: To shrink or expand by a specified factor. 
soUd: Filled in with any pattern. 
source transfer rmde: O'le of eight transfer modes for drawing text or 
transferring any bit image between two bItmaps. 

E-l09 



style: see Character style. 

thePort: A global variable that points to the current grafPort. 

thePort3D: A global variable that points to the current Port3D. 

tnmfer rTI:I1e: A specification of which boolean operation QuickDraw should 
perform when drawing or when transferring a bit image from one bitmap to 
another. 
tm'lslate: To move in three-dimensional space by a specified amount 

tm'lsfonnatlon mat.rbe same as xForm matrix. 

viewing pynmld: The portion of three-dimensional space that a camera eye 
can see. The pyramid's apex: ~s the point of the camera eye; its base is the 
viewRect in a Port3D. 

visR~ The region of a grafPort which is actually visible on the screen. 

xForm matrix: A 4x4 matrix that holds an equation to transform points 
plotted in three-dimensional coordinates into two-dimensional screen 
coordInates. 

E-ll0 



Appendix F 
Hardware Interface 

F.1 llle ~ ........•..................................................................••......... F-1 

F.1.1 
F.1.2 
F.1.3 
F.1.4 

f'1ouse location ..................................................................... F-1 
I'1ouse lJpdate Frequency ........................................................ F-1 
tvIouse ScalirlQ ....................................................................... F-1 
IVIouse Il::forneter .................................................................... F-2 

F.2 llle 0Jrmr ...........................•.......................................................... F-2 

F.2.1 
F.2.2 

CUrsor JIv10use Tracking........................................................... F -3 
The Busy CUrsor ..................................................................... F -3 

F.3 llle Oi:qllay ~reet1 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• F-4 

F.3.1 
F.3.2 

Screen Contrast ..................................................................... F-4 
.A.l.Jtornatic Screen FadirlQ ........................................................ F-4 

F.4 llle SJJeaker ...•...•.•••.•...•••.•.•.•••....•.•.•..••.•...•...••....••.•...•.........•.•.•••...• F-5 

F.S llle I<eytxJard ••••••.•••••••••••••..••.••••.•••••.•••••••.••••••••••••••••.•••.••••••••••••••••• F-S 

F.S.1 
F.5.2 
F.5.3 
F.5.4 
F.S.5 

Keyboard Identification .......................................................... F-7 
Keyboard State.... ...... .• •.•.. . . . . .•.• .••. .. .•••.••••... •. ••..• ... •. ............... F-8 
Keyboard Events .................................................................... F-8 
CJead Key Diacri ticals ........................................................... F -10 
Repeats ............................................................................... F-ll 

F.6 llle I'1iC11lSeCOl Q TImer .................................................................... F-ll 

F.7 llle 1'1iliisecond Tirrer •.••••••..•.•..••.•••.•••••.•••.••.•••.•.•••.•••.•••••.•••••••.•.•••• F-12 

F.8 [)ate 5I:t lln1e •••.•••••••....•...•.•.•...•••...•.••..•.••.•.•••••••••.•.•.•••.•.•••••••.•••••• F-12 

F.9 TIrnesta11l ...........•..............•...........•.•..•...•.....•.......•.........••.......... F-12 
F .10 Irlterface of ttle I-IardwaIe UUt ......................................................... F -13 





Hardware Interface 

The hardware interface software provides an interface for accessing and 
controlling several parts of the Lisa hardware. The hardware/software 
capabilities addressed include the rrouse, the cursor, the display, the contrast 
control, the speaker, roth Llldecoded and decoded keyboard access, the micro­
second and millisecond timers and the hardware clock/calendar. 

This appendix contains Pascal procedure and function declarations interleaved 
with text describing them. Pascal type declarations and a summary of the 
flllCtion and procedure declarations CCI1 be found in Section F.10, Interface of 
the Hardware Llnit. 

Programs using this LIlit should be compiled against the file QOlHardware.CBJ 
and linked to the file QDIHWlntl.OOJ. 

F.1 11le Mouse 
F.l.l Mouse Location 

Prt:Jce(lJre MouseLocatim (var x: Pixels; var y: Pixels); 

The motJSe is a poInting devIce used to indIcate screen locations. 
MouseLocatim returns the location of the mouse. The X -coordinate can range 
from 0 to 719, and the Y -coordinate from 0 to 363. The inl tlal mouse 
location is 0,0. 

F.l.2 Mouse Update Frapn:y 

ProceWre t1J Isel 'PdBtes (delay: MlllISectms); 

Software knowledge of the mouse location is updated periodically, rather than 
continuously. The frequency of these updates can be set by calling 
fvblSel ~tes.. The time between updates can range from 0 milliseconds 
(continuous updating) to 28 milliseroids, in intervals of 4 milliseCOlids. The 
initial setting is 16 milliseconds. 

F.L3 MlUSe SCBllf¥:J 

ProcettIre f'ob 1SeScal~ (scale:Boolem); 

ProceWre Mruse1hresh (threstold: Pixels); 

The relationship between physical mouse movements and logical mouse move­
ments is not necessarily a fixed linear mapping. Three alternatives are 
available: 1) lI1SC8led, 2) scaled for fine movement and 3) scaled for coarse 
movement Initial} y mouse movements are lI'lSCaled. 

When mouse movement is lII1scaJect, a horizontal mouse movement of x tIlits 
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical 
movement of y units yields a change is the mouse Y -coordinate of y pixels. 
These rules apply independent of the speed of the mouse movement. 

F-l 



PsscBi Refe.l1N7Ct!J M8f1UBl HBn:tw8Ee Interface 

When mouse movement Is scaJet:t hOrizontal movements are magnified by 3/2 
relative to vertical movements. This is to compensate for the 2/3 aspect 
raUo of pixels on the screen. When scallng Is In effect, a dIstinction Is made 
between nne (small) movements cn:J ctJ8.ISe (large) movements. Fine move­
ments are sll~tly reduced, while coarse movements are magnIfIed. For scaled 
fine movements, a horizontal mouse movement of x lI'llts yields a change in 
the X-coordinate of x pixels, bUt a vertical movement of y lXlits yields a 
ctwlge of (213}*y pixels. For scaled coarse movements, a horizontal movement 
a x lI'lits yieldS a ctwlge of (3/2}*x pixels, while a vertical movements of y 
lI'lits yields a change of y pixels. 

The distinction between fine movements and coarse movements is determined 
by the still of the x and y movements each time the mouse location is 
updated. If this SlIll is at or below the tI1nJslxJlq the movement is considered 
to be a fine movement. Values of the threshold range from 0 (which yields all 
coarse movements) to 2S6 (which yields all fine movements~ Given the 
default mouse l4Jdating freq..ency, a threshold of about 8 (thIeshokfs initial 
setting) gives a comfortable transition between fine and coarse movements. 
t-aJSeSca)q enables CVld dIsables mouse scallng. r1lUSelhresh sets the 
threshold between fine cn:J coarse movements. 

F .1.4 J'IID.ISe Obneter 

Fmctim M:lJseODneter: ~yPIxels; 

In order to properly specify, desiCJl and test mice, it's important to estimate 
how far a mouse moves clIring its lifetime. MlLIseO:bneter returns the sun 
of the X a1d Y movements of the mouse since boot time. The value returned 
is in (tmealed) pixels. There are 180 pixels per inch of mouse movemenL 

F.2 The CUrsor 

ProcedJre CUnorln'BJe (hotX: Pbel!; tIltY: Pixels; heigtt: CUrsoIHeigtt; data: 
CUnmPtr; mask: CUnmPtr); 

The etmO.r is a small image that Is displayed on the screen. Its shape is 
specified by two bitmaps, called data cn:J mask. These bItmaps are 16 bIts 
wide cn:J from 0 to 32 bits hi~ The rule used to combine the bIts already 
on the screen with the data and mask Is 

screen <- (screen 51d (rot mask» xor data. 

The effect is that white areas of the screen are replaced with the cursor 
data Black areas of the screen are replaced with (not mask)xor data If the 
data and mask bitmaps are identical, the effect is to or the data onto the 
screen. 
The cursor has both a location and a hotspot The location is a position on 
the screen, with X-coordinates of 0 to 719 a1d Y -coordinates of 0 to 363. 
The hotspot is a position within the cursor bitmaps, with X- and V-coordi­
nates ranging from 0 to 16. The cursor is displayed on the screen with its 

F-2 



PascBi Reference Hsnua/ Hardware Interface 

hOtspot at its location. If the cursor·s location is near an edge of the screen, 
the cursor image may be partially or COf'Tllletely off the screen. 

Most cursor operations cal be performed by calling the SetCursor, HdeCursor, 
ShlwCursor, and CIJscureCursor procedures defined by QuickDraw (see section 
E.9.2, CUrsor-Handling Rrutines~ Additional capabilities are provided by the 
Hardware Interface routines described below. 

The CUI'sorlmage procedure is used to specify the data bitmap, mask bitmap, 
heIght and hotspot of the cursor. Initially the cursor data and mask bitmaps 
contain all zeros, whiCh yields a blank (invisible) cursor. The initial hotspot is 
0..0. 

F.2.1 CUrsorJt1Juse T~ 

ProcedIre CUnorTnDir¥J (track: Boolean); 

ProcedIre CUnmLocat.ioo (x: Pixels; y: Pixels); 

CUrsorT~ enables and dIsables cursor I.nJckjng of the mouse. When 
tracking is enabled, the cursor location is changed to the mouse location each 
time the mouse moves. Setting the cursor location by call1ng CUrsorLocation 
will have no effect; the cursor sticks with the mouse. 
When tracking is disabled, the mouse location and cursor location are indepen­
dent Calling cursorLocation wUI move the cursor; moving the mouse will not 
When tracking is fIrst enabled (I.e., on each transItion from dIsabled to 
enabled) the mouse location Is modi fled to equal the cursor location. there­
fore, enabling tracking does not move the cursor; it does modify the mouse 
location. Initially trackIng Is enabled. 

F .2.2 1he Busy cursor 

ProcedIre BusyImage (tntX: Pixels; tIltY: Pixels; heictat: CUrsorHeictat; data: 
CUnorPtr; mask: OJrsorPtr); 

ProcedJre BusyDelay (delay: MllIisecor Ids); 

Applications may desire to display a busy CtUSOr (e.g., an hourglass) when an 
operation in progress requIres more than a few seconds to complete. The 
BusyImage procedure is used to specify the data bitmap, mask bitmap, height 
and hotspot of the busy cursor. 

A call to BusyDelay specifies that the normal cursor should current! y be 
displayed, and that display of the busy cursor· should be delayed for the 
specified runber of milliseconds. SUbsequent calls to BusyDelay override 
previous calls, postponing display of the busy cursor. If no calls to BusyDelay 
occur for the specified number of milliseconds, the busy cursor will be 
displayed until the next call to BusyOelay. 

Initially the busy cursor data and mask bitmaps contain all zeros, which yields 
a blank (invisible) cursor. The Initial hotspot is 0..0. The initial busy delay is 

F-3 



PBSCBl ReFerence /VI8nu8l I-IBniw8re lnterfl:1ce 

infinite, that is, the busy cursor will not be displayed until BusyDelay is 
called. 

F.3 The Display Screen 

ProcedIIe ScreenSlze (var x: Pixels; var y: Pixels); 

The display screen is a bit mapped displsy; that is, each pixel on the screen 
is controlled by a bit in main memory. The display has 720 pixels horizontally 
and 364 lines vertically, and therefore requires 32,760 bytes of main memory. 
The screen size may be determined by calling ScreenSize. 

Ftretioo FICI'JleC(ulter: Fumes; 
The screen is redisplayed about 60 times per second. A frame cOIJnter is 
incremented between screen updates, at the vertical retrace interrupt. The 
frame counter is an lIlSigned 32-bit integer which is reset to 0 each time the 
machine is booted. FICI'JleC(ulter returns this value. An application can 
synchronize with the vertical retraces by watching for changes in the value of 
this COlIlter. The frame counter should not be used as a timer; use the 
millisecond and mircosectJlld timers instead. 

f.3.1 Screen CootJast 

Ftretion Cootrast: ScreerContmst; 

ProcedIIe Setcontrast (contrast: ScreenContrast); 

The display's contrast level is under program control. Contrast values range 
from 0 to 255 ($FF), with 0 as maxinun contrast and 2SS as minilTUll. 
Cmtrast returns the contrast setting; setCont.rast sets the screen ccntrast. 
The low order two bits of the contrast value are ignored. The initial contrast 
value is 128 ($SO} 

ProcedIIe R~trast (contrast: ScreenContrast); 

A sudden change in the contrast level can be jarring to the user. 
R811JCcntmst gradually changes the contrast to the new setting over a period 
of about a second. ~ returns immediately, then ramps the 
contrast using interrupt driven processing. 

F.3.2 Al.ItomBtic Screen Fading 

Fl.I1Cti01 DimCmtrast: ScreenCa1trast; 

ProcedIIe SetOlrnCmtJast (contrast: ScreenContrast); 

The screen contrast level is automatically dirrmed if no user activity is noted 
over a specified period (usually several minutes~ This is done in order to 
preserve the screen phospher. Din'Contrast returns the contrast value to which 
the screen is dirrmed; SetDirTC01trast sets this value. The initial dim 
contrast setting is 176 ($BO~ 

F-4 



Pascal Reference Manual I-I8.rliwl1J1! Interface 

Ft.retim FadeOelay: MlllISecmds; 

ProceWre SetFadeOelay (delay: Milliseams); 

The delay between the last user activIty and dImmIng of the screen Is under 
software control. FadeOelay returns the fade delay; SetFadeOelay sets it 
The actual delay wHI range from the specIfied delay to twice the specIfied 
delay. The initial delay period Is five mInutes. 

When the screen is dim, user interaction will cause the screen contrast to 
return to its nonnal bri~t level (determined by the Cootmst cn:j SetCootrast 
routines defIned above~ I'1ovlng the mouse or pressing a key on the keyboard 
(e.g., SHIFT) is enough to trIgger the screen brIg"ltening. Calling 
CUrsorLocaUon or SetfadeOelay also indicates user activity. 

F.4 The Speaker 

Ftn:tlon Volt.me: SpeakerVolt.me; 

ProceWre SetVolt.me (volune: SpeakerVolt.me); 

ProceWre ~se (waveL.engttt MicroSeams); 

ProcedIre Slleree; 

ProcedIre Beep (waveLengttt MlcroSecoOOs; dlratlon: MilliSecmds); 

The routines in this section provide square wave output from the Lisa speaker. 
The speaker vOlt.me can be set to values in the range 0 (soft) to 7 (loud). 
Velure reads the volume setting; SetVOlune sets it The initial voIlI'1le 
setting is 4. 

Noise produces a square wave of approximately the specified wavelength. 
Silence shuts off the square wave. The minirrun wavelength is about 8 
microseconds, which corresponds to a frequency of 125,000 cycles per second, 
well above the audible range. The maxinun wavelength is 8,191 micro­
seconds, which corresponds to about 122 cycles per second. 

Noise and Silence are called in pairs to start and stop square wave output In 
contrast, Beep starts square wave output which will automatically stop after 
the specified period of time. The effects of ~lse, Silence and Beep are 
overridden by subSequent calls. 

F.5 1he Keyboard 
The routines in this section provide an interface to the k.eyboard, the k.eypad, 
the mouse button and plug, the diskette buttons and insertion switches, and 
the power switch. Two interfaces are prOVided, a pollable k.eyboard state and 
a queue of keyboard events. 

Three physical keyboard layouts are defined, the MOld US Layout" (with 73 
keys on the main keyboard and numeric keypad), the "Final US Layout" (76 
keys) and the "European Layout" (77 k.eys~ Each key has been assigned a 
key~ which uniquely identifies the key. Keycode values range from 0 to 

F-5 



PsscaJ Reference I'18ntI8l I-I8Jr1w8re Interface 

127. Table F-1 defines the keycodes for the "Final US Layout", using the 
legends from the US Keyboard. The "Old US Layout" has three less keys; I\, 
Alpha Enter, and Rlglt ~tlon are not on the old keyboard. The "Europe8'l 
Layout" has one additional key, ><, wIth a keycode of $43. 

Two keys on the "Old US Layout" generate keycodes dIfferent from the 
corresponding keys on the "Final US Layout". To aid In compatibility, 
software changes the keycode for -, from S7C to $68, and the keycode for 
Right ~Uon from $68 to $4t:. 

Talle F-1 
Keycodes for ""Final US Layout-

HIGH" 000 001 
1 Lf 0 

0000 
o 

0001 
1 

0010 
2 

0011 
3 

0100 
4 

0101 
5 

0110 
6 

0111 
7 

1000 
8 

1001 
9 

1010 
A 

1011 
B 

1100 
C 

1101 
D 

1110 
E 

1111 
F 

............ 
DISK 1 ::::::::::::::::::::::: 

INSERTED '::::::::::::::::::::::: 

............ 
PARAlLEL ,::::::::::::::::::::::: 

PORT '::::::::::::::::::::::: 

l100SE 
BUTTON 

l100SE 
PLUG 

PtJlER 
BUTTON 

............ ............ ............ 
-:-:.:.:-:-:-:.:-:-:.:-: ............ 
............ ............ ............ ............ ............ ............ 
.:.:-:.:.:.:.:-:-:.:.:.: ............ ............ ............ ............ 

010 
2 

CLEAR 

7 

8 

9 

I 

rn 
4 

5 

6 

, 
(J] 

2 

3 

011 
3 

............ ............ 
-:.:.:-:.:-:.:.:.:-:-:.: ............ ....................... 
............ ............ 
. ::::::::::::::::::::::: ............ 

............ 
-:.:.:.:.:.:.:-:-:.:-:.: ............ 
.:-:-:.:-:.:-:.:-:.:-:.: ............ . .......... . 

100 
4. 

+ 

\ 

p 

)}»» BACKSPACE ............ 
............ 
'::::::::::::::::::::::: ALPHA 
'::::::::::::::::::::::: ENTER 

.:.:.:-:-:.:-:.:-:-:.:.: ............ ............ . .......... . . .......... . . .......... . ............ ............ ............ 
-:.:.:.:-:.:-:-:-:.:-:.: 

............ 
-:.:-:-:.:-:.:.:-:.:-:.: ............ 
:.:.:-:.:.:.:-:.:.:-:.: ............ ............ ............ 
:.:.:-:.:.:.:.:-:.:.:.: ....................... 
. :.:.:-:-:.:-:.:-:.:.:.: ............ 
:.:.:-:.:.:.:.:.:.:.:.: ............ 

F-6 

RETURN 

o 

? 
/ 

1 

RIGHT 
(PTION 

101 
5 

) 
o 
u 

J 

K 

{ 
[ 

} 
] 

M 

L 

; 

SPACE 

< 

> 

o 

110 
6 

E 

6 

& 
7 

* 
8 

% 
5 

R 

T 

y 

F 

G 

H 

v 

C 

B 

N 

111 
7 

A 

iii 

2 

it 
3 
$ 
4 

1 

Q 

s 

w 

TAB 

z 

x 

o 
LEFT 
{PTI~ 

CAPS 
LOCK 

SHIFT 



P8SC8l Rerel7!!flCe M8ntJ81 

F 5.1 KeybOard Identification 

FlIlCtion KeybOard: KeytxBd; 

FlIlCtion Legends: KeytldId; 

ProceWre setLegerm (ld: KeytxJld); 

l-lardware InteJl'ace 

LIsa software supports a host of dIfferent Keyboards. Each Keyboard has three 
major attrIbutes: manufacturer ... physIcal layout, and legendS. The Chart 
below describes hOw these three attrIbutes are combIned to form a Keyboard 
Identl- ficatlon number. The keyboards self Identify when the machIne Is 
turned on and when a new Keyboard Is attached. KeybOard returns the 
Identlfication number of the Keyboard currently attached. LegeOOs and 
seu..egerm provIde a means Of pretendIng to have dIfferent legendS ... wIthOUt 
physIcally replacIng the Keyboard. 

Keyboard IdentifIcation numbers: 

7 6 
I McnJfacturer Lavrut 

McnJfacturer: 

00 APD (I.e .... TKC) 
01 --
10 -- Keytronlcs 

Layout: 

00 Old US (73 keys) 
01 
10 -- European (77 keys) 
11 -- Final US (76 Keys) 

LayrutIlegends: 

$OF Old US 

$26 
$27 
$29 
$29 
$2A -­
$28 -­
$2C -­
$20 -­
$2E 
$2F --

Swiss-German 
Swiss-FrenCh 
Portuguese 
SpaniSh-Latin American 
Danish 
Swedish 
Italian 
French 
German 
UK 

F-7 

3 2 1 o 
LeaendS 

(allocated for proposed SOftware) 
(allocated for proposed software) 
(allocated for proposed software) 
(allocated for proposed SOftware) 
(allocated for proposed software) 
(hardware not yet available) 
(hardWare not yet avallable) 



Pascal Reference Manllal Hardware interface 

$3C -- APL 
$30 -- French-Canadian 
$3E -- US-Dvorak 

(allocated for proposed sOftware) 
(allocated for proposed software) 
(allocated for proposed sOftware) 

$3F -- Final US 
F .52 Keyboard state 

Ft.rlCtioo KeylsDown (key: Keycap~ BooleCl'l; 

ProceWre KeyMap (var keys: Keycapset); 

Low level access to the keyboard is provided through a pOllable keybOard 
state. This state Informat1on Is based on the physical keycooes defined above. 
KeylsDown returns the position of a single specified key. Keytvlap returns a 
128-b1t map .. one btt for each key. A zero Indicates the key Is up .. a one 
indicates dOwn. For the mouse plug.. a zero indicates unplugged .. a one indi­
cates plugged in. Certain keys are not pollable; the corresponding bits wUl 
always be zero. These keys are the diskette insertion switches and buttons, 
parallel port .. and power switCh. (The parallel port and mouse plug keys are 
unreliable across reboots on older hardware.) 

F .5.3 Keyboard Events 
The hardware Interface provides a queue of keyboard events. The events in 
the Input queue are generally key down transitions. Each event contains the 
following information: 

keycode physical key 
ascU ASCII Interpretation of this key 
state caps-lock, Shift, option, ti, mouse button and repeat 
mouseX X-coordInate of the mouse when the key was pressed 
mouseY Y-COOrdinate of the mouse when the· key was pressed 
time value of the mIll1second timer when the key was pressed 

Keycode -- Keycodes are defIned In Table F-l, above. 
AscII -- The ASCII Interpretation of keys depends on the state of the caps­
locK, shift and option Keys. SIx Interpretations are assocIated wIth eaCh 
different keyboard layout: 

normal 
capS-lOCk 
shift or both shift and caps-lock 
option 
option with caps-lOCk 
option with shIft or bOth Shift and caps-lOCk 

F-8 



Pascal Reference fvfanu8) 

In most cases the ASCII value returned Is obvious. 
cases that aren't so obvious. 

:g ffil 
$00 (N ... J 

$01 SCH 
$03 ETX 
$08 ) 

:~(~ 
$18 (ESC) 

$1C (FS) 
$10 (GS) 
$lE (RS) 
$lF (US) 
$20 (SP) 

Disk 1 Inserted 
DIsk 1 Button 
DIsk 2 Inserted 
Disk 1 Button 
Power Button 
Mouse Buttm (dOwn) 
Mouse Plug (In) 
Mouse Button (l4l) 
Moose Plug (out) 
Enter 
BackSpace 
Tab 
Return 
Clear 

left 
Right 
Up 
Down 
Space 

l-lan:fwam Interface 

The table below lists the 

State -- A 16-bit word is used to return the state of several keys with each 
event Each bit represents one or more keys; a zero indicates that all of the 
keys are up, a one indicates that at least one of the keys is down. All 
additional bit indicates, if it is a one, that the event was generated by 
repeating the previous event. The following bits of state are currently 
assigned: 

bit 0: caps-lock 
bit 1: left or right shift 
bit 2: left or right option 
bit 3: • key 
bit 4: mouse button 
bit 5: this event is a repeat 

certaIn Keys never generate events. These Keys are caps-lOCk, both shift 
keys, option keys, and the • key. The mouse button generates events on both 
the down and up transitions. Down transItions have an ascll value of 0, up 
transitions 1. The mouse plug also generates two different events. When the 
mouse is plugged in an event wIth an ascII value of 0 Is returned, when It Is 
unplugged a value of 1 is returned. 

F-9 



FlIlCtion KeybPeek (repeats: Boolean; Index: Keytda;)lndeX; var event: 
KeyEvent~ Booleen; 

KeybPeek Is used to examine events in the keyboard queue, without removing 
them from the queue. The fIrst Input parameter indicates whether repeats are 
desired. The second parameter Is the queue index. The first output para­
meter indicates whether the specIfIed queue entry contains an evenl To 
examine an entire queue, first call KeybPeek with a queue index of 1. If an 
event Is returned, call it again wIth a queue index of 2, etc. 

FUlCtion KeybcEvent (repeats: Boolem; walt: BooltBl; var event: KeyEvent} 
Boolean; 

KeybcEvent is used both to determine if a keyboard event is available, and to 
return the event if one is available. The event is removed from the queue. 
KeybcEvent returns a boolean result which is true if an event is returned. 
The fint parcmeter to KeytxEvent is used to indicate if the caller will 
accept repeated events on this call. The second parameter indicates if the 
fLl1Ctions should wait for an event if one is not immediately available. 

F 5.4 Dead Key Diacriticals 
Many languages ef11)loy diacritical marks on certain letters. Several of the 
required diacritical mark-letter combinations appear on Europe€l1 keyboards, 
but others do not. The combinations shown in the table below may be typed as 
a two-key sequence, by first typing the dead key diacritical (which has no 
immediate effect), and then typing the letter. Dead key diacriticals appear on 
keyboard legends as the diacritical mark over a dotted square or hollow box. 

circumflex -- €lei 0 a 
grave accent ' -- a e 0 U 
tilde - -- a iif\J 5 
acute accent ' -- a et 6 u 
umlaut .. -- aA e i olj 00 

A dead key diacri tical followed by a letter which appears in the table above 
yIelds the corresponding character. The event that is generated contains the 
keycode, state, mouse location and time that correspond to the letter, but the 
ASCII value of the letter-diacritical combination. A dead key diacritical 
followed by a space yIelds just the dIacritical mark. The event contaIns the 
keycode, state, mouse location and time corresponding to the space, but the 
ASCII value of the dIacrItical mark. FInally, a dead key diacritical followed 
by any other character (Le., not a space or defined letter) yields the diacri t­
ical mark followed by the other character. 

diacritical, defined letter --> foreign character 
diacritical, space --> diacritical 
diacritical, other character --> diacritical, other character 

F-IO 



Pascal Reference Hanusl HaJriwaTe Interface 

F 55 Repeats 
tvIost keys, if held down for an extended period of time, may generate 
multiple events (repeats} The keys that are not repeatable are caps-lock, 
both shifts, both options, the • key, the diskette insertion switches and 
dIskette buttons, parallel port, the mouse button and plug, and the power 
button. Several conditions must be satisfied before a repeat is generated. 
These condltions are as follows: 
1. KeytxPeek or Keyt:x£vent is called with repeat.sOesired true. 
2. The keyboard event queue is empty. 
3. The key returned in the last event is still doWn. 
4. No down transitions have occurred since the last event. 
S. The key is repeatable. 
6. Enough time has elapsed. 

Repeats generate events wIth the following attributes: 
keycode original keycode 
ascii original ASCII interpretation 
state original position of the caps-lock, shift, etc. 
mwseX revised X -coordinate of the mouse 
mouseY revised Y -coordinate of the mouse 
time revised value of the millisecond timer 

ProceWre RepeatRate (var initial: MIlliSeconds; V8I stmequent: MilliSeconds); 

ProceWre setRepeatRate (initial: MUlisecon1s; ~ MilliSeconds); 
The repeat rates can be read and set by calls to RepeatRate and 
SetRepeatRate. The rates include an initial delay, which occurs prior to the 
first repetition, and a subseqUent delay, prIor to adcJitional repetitions. They 
are both in units of milliseconds. The default repeat rates are 400 
milliseconds initially and 100 milliseconds subsequently. 

F.6 The MiCIOSeCOl ~ Timer 

FU1Ction MicroTimer: Microseca ds; 

The MicroTImer flXlCtion simulates a contirlJOlJSly nn11ng 32-blt COlIlter 
which is incremented every microsecond. The timer is reset to 0 each time 
the machine is booted. The timer ctalges slfll about once every 35 minutes, 
and rolls over about every 70 minutes. 
The microsecond timer is deslgled for performance measurements. It has a 
resolution of 2 microsecondS. callIng MicroTlmer from Pascal takes aboUt 135 
microsecondS. Note that interrupt processing will have 8 major effect on 
mIcrosecond timIngs. 

F-ll 



Pssc81 Reference l'18nu8i 

F.7 The MlIUsea:n:I Timer 
FUlCtioo TImer: Mllllseca ads; 

I-laJrlware interface 

The Timer flllCtion slrrulates a continuously running 32-blt counter which is 
incremented every mnllsecond. The timer is reset to 0 each time the 
machine is booted. The timer changes sign about once every 25 days, and 
rolls over about every 7 weeks. 

The millisecond timer is designed for timing user interactions such as mouse 
clicks and repeat keys. It can also be used for performance measurements, 
assuming that millisecond resolution is sufficient 

F.8 oate anj Time 

ProcetUe Date1lme (var date: DateArray); 

ProcetUe SetDateTlme (date: DateArray); 

ProcetUe DateToTIme (date: DateArray; var time: Seconds); 

The current date and time are available as a set of 16-bit integers Which 
represent the year, day, hour, minute and second, by calling DateTIme and 
SetDateTlme. The date and time are based on the hardware clock/calendar. 
This restricts dates to the years 1980-1995. The clOCk/calendar continues to 
operate during soft power off, and for brief periods on battery backup if the 
machine is unplugged. If the clOCk/calendar hasn"t been set since the last loss 
of battery power, the date and time will be midnight prior to January 1, 1980. 
Setting the date and time also sets the time stamp described below. 
DateToTime converts a date and time to a time stamp, defined in the next 
section. 

F.9 TIme~ 

FtMlCtioo ~ seconds; 

ProcetUe SetTirneSta'flJ (tinE: Seconds); 

ProcetUe TImeTaJate (time: Seconds; var date: DateArray); 
The current date and time are also available as a 32-bit unsigned integer 
which represents the number of seconds since the midnight prior to 1 January 
1901, by calling TinleSta11> and SetT~ The time stamp will roll over 
once every 135 years. Beware--for dates beyond the mid 1960's, the sign bit 
is set The time stamp is based on the hardware clock/calendar. This clock 
continues to operate during soft power off, and for brief periods on battery 
backup if the machine is unplugged. If the clock/calendar hasn't been set 
since the last loss of battery power, the date and time will be midnight prior 
to January 1, 1980.. Setting the time stamp also sets the date and time 
described above. Since the date and time is restricted to 1980-1995, the time 
stamp is also restricted to this range. TlmeTdJate converts a time stamp to 
the date and time format defined above. 

F-12 



Pascal Reference Hanual 

F.1D Interface of the Hardware lillt 

Unit Hardware; 

Interface 

type 

Pixels 
HanyPixels 
CUrsorHeight 
CursorPtr 
oateArray 

Frames 
Seconds 
HilliSeconds 
Hicroseconds 
SpeakerVolume 
Screencontrast 
KeybdQlndex 
KeybdId 
KeyCap 
KeyCapSet 
KeyEvent 

{ House } 

= Integer; 
= Longlnt; 
= Integer; 
= "'Integer; 
= Record 

year : Integer; 
day: Integer; 
hour: Integer; 
minute: Integer; 
second : Integer; 
end; 

'" Longlnt; 
= LongInt; 
= LongInt; 
= LongInt; 
'"' Integer; 
= Integer; 
= 1. .1000; 
= Integer; 
= o .. 127; 
= Set of KeyCap; 
= Packed Record 

key: Keycap; 
ascii: Char; 
state : Integer; 
roouseX: Pixels; 
rouseV: Pixels; 
time: HilliSeconds; 
end; 

HardwaJ"B Interface 

Procedure HouseLocation (var x: Pixels; var y: Pixels); 
Procedure HouseUpdates (delay: MilliSeconds); 
Procedure HouseScaling (scale: Boolean); 
Procedure HouseThresh (threshold: Pixels); 
Function HouseOcfolJeter: HanyPixels; 

F-13 



Pascal Refemnce H8nual 

{ CUrsor } 

Procedure CUrsorlocation (x: Pixels; y: Pixels); 
Procedure CUrsorTracking (track: Boolean); 

HBrdW8R!! Interfsce 

Procedure CUrsorlmage (hotX: Pixels; hotY: Pixels; height: 
CUrsorHeight; data: CUrsorPtr; mask: CursorPtr); 

Procedure Busylmage (hotX: Pixels; hotY: Pixels; height: 
CUrsorHeight; data: CUrsorPtr; mask: CursorPtr); 

Procedure BusyDelay (delay: Milliseconds); 

{ SCreen } 

Function FrarreCounter: Frames; 
Procedure ScreenSize (var x: Pixels; var y: Pixels); 

Function Contrast: ScreenContrast; 
ProcedUre SetContrast (contrast: ScreenContrast); 
Procedure R8fIl)Contrast (contrast: ScreenContrast); 
Function DimContrast: SCreencontrast; 
Procedure SetOimContrast (contrast: ScreenContrast); 

Function FadeOelay: MilliSeconds; 
Procedure SetFadeOelay (delay: MilliSeconds); 

{ Speaker } 

Function Volume: SpeakerVolume; 
Procedure SetVolume (volume: SpeakerVolume); 
Procedure Noise (wavelength: MicroSeconds); 
Procedure Silence; 
Procedure Beep (wavelength: MicroSeconds; duration: MilliSeconds); 

F-14 



Pascal Reference Manual 

{ Keyboard } 

Function Keyboard: Keybdld; 
Function LegendS: Keybdld; 
ProcedUre setLegends (id: Keybdld); 
Function KeylsOown (key: KeyCap): Boolean; 
Procedure KeyMap (var keys: KeyCapSet); 

Hardware Interface 

Function Ke~eek (repeats: Boolean; index: KeybdQlndex; var 
event: KeyEvent): Boolean; 

Function KeytxEvent (repeats: Boolean; wai t: Boolean; var event: 
KeyEvent): Boolean; 

Procedure RepeatRate (var initial: MilliSeconds; var subsequent: 
MilliSeconds); 

Procedure SetRepeatRate (initial: MilliSeconds; subsequent: 
MilliSeconds); 

{ Timers } 

Function HicroTirer: MicroSeconds; 
Function Timer: MilliSeconds; 

{ Date and Time } 

Procedure DateTime (var date: DateArray); 
Procedure SetDateTime (date: DateArray); 
Procedure DateToTire (date: DateArray; var time: Seconds); 

{ Time Stalp } 

Function TimeSt~: Seconds; 
Procedure SetTireStClf1) (tine: Seconds); 
Procedure TimeToOate (time: Seconds; var date: DateArray); 

F-1S 





0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

Appendix G 
Lisa Extended Character Set 

0 2 3 4 5 6 7 8 9 A B C 

IUL OLE SP 0 @ p p A e t 00 ~ 

SOH OC1 1 A Q a q A e 0 ± 
STX OC2 II 2 B R b r C r ¢ i ...... 

• 
3 C S E 

, 
£ J ElX DCl # C S I L 

fOT OC4 $ 4 D T d t ~ i § ¥ f 
flQ flAK % 5 E U e u 0 I • U. AS 

ACK SY. & 6 F V f V 0 ii 1r a ~ 
IfL fll I 7 G W 9 w a 6 B L « 

BS co ( 8 H X h x it 6 ® 1T » 

) A A HT En 9 I Y Y a 0 @ 1T . .. 
Lf SUB * J Z j z a 0 1M I ~ 

+ K [ k { a 0 51 A VT ESC . 
I 

ff fS < L \ I 
0 , 

Q A , a u 
eR as M ] } u ;C Q 0 - m c • 

N 
, 

" RE-so RS > n e u ce CE 
SI us I ? 0 0 DEL e U 0 f2J CB 

The first 32 characters and DEL are nonprinting control codes. 

The shaded area is reserved for future use. 

G-1 

D E F 

- Iff ............. 

- ~~tt~~~ ~)~I)~l~l 
" rr(~ 

............ 

" t~I} 
............ 
~:~:~:~:~:~: , 

~ilIIil !Ilt!! 
, jfff .......•.•.• 

............. ............ . 
-r ............. ............ 

(> .•........... •........... 
::::::::::::: :::::::::::: 

y ............. ............ 
............. 

~~l}~lt 
............ 

I~rr ...... ...... 
............. .............. 

IIf ............. 
............. ............. . ........... 
............. ?\?~ ............ 

............. 
............. . ............ . ........... 
............. ............. ............ 

}>}~ .......•..... :.:.:.:.:.: . 

·f~?? It?~ ...... 





Appendix H 
Error Messages 

H_l Error Re,:KXting ________________________________________ . _____ . _____ . _. _______ H-l 

H.2 Lexical Errors • __________ . ______________________________________________ . ____ H-l 

H.3 5yrJtact.ic Errms _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ H-2 

H_4 Serraartic mors _____________________________________________________________ H-2 

H.5 Conditional Compilation _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ H-5 

H_6 Compiler Specific Limitations ____________________________________________ H-5 

H_1 YO Errors _. ________________ . _______ . ____ . _____________ .. _____________________ H-5 

H.8 Clasc81 Errors ____________ .. ________ .. __________ .. _____ .. ________________ . ___ H-5 

H.9 Code Generation Errors ____ . __________________________________ . __ . _. _______ H-6 

H_10 Verification Errors _______________________________________ . _________ . __ . _ _ _ _ _ H-6 





Error Messages 

H.l Error Reporting 
Error reports show the entire line containing an error. Error lines displayed 
on the screen and written to the error listing file ($E Compiler command) 
usually show the line preceding the error for context~ too~ although there are 
some circumstances in which that line is not shown. 

12 Read(Argurnent) 
13 If (IOResut<=O) AND (Arg>=O) THEN 

? 
*** Error 36 *** ';' expected. 

? 
? 

*** Error 102 *** Identifier not declared. 
*** file example/errors.TEXT *** 

Errors for any one line are accumulated (up to a maxinlum of 10) and 
reported after the line is fully scanned. Both the error number and its 
associated text are shown along with a "?II pointer to the error's approximate 
location. The pOinter usually pOint.s t.o the last character of the token that 
was being processed when the error occulTed. The pointer for an elTor 
message is shown on t.he line before the message. There may be multiple 
pointers associated with a single message., or multiple messages associated 
with a single pOinter. The source line is shown only once. The line number 
preceding it is the line position within the file whose name is shown as the 
last line in the error report. That line number may be lIsed in conjunction 
with the Editor's "Goto line II" feature to quickly find the errors in the 
specified file. 

H.2 Lexical Errors 
10 Too many digits 
11 Digit expected after '.' in real 
12 Integer overflow 
13 Digit expected in exponent 
14 End of line encountered in string constant 
15 Illegal character in input 
16 Premature end of file in source program 
17 Extra characters encountered after end of program 
18 End of file encountered in a comment 

H-l 



Pascal Reference fr.1snuaJ 

H.3 Syntactic Errors 
20 Illegal symbol 
21 Error in simple type 
22 Error in declaration part 
23 Error in parameter list 
24 Error in constant 
25 Error in type 
26 Error in field list 
27 Error in factor 
28 Error in variable 
29 Identifier expected 
30 Integer expected 
31 '(' expected 
32 ')' expected 
33 '[' expected 
34 ']' expected 
35 ':' expected 
36 ';' expected 
37 '=' expected 
38 ' .. ' expected 
39 '.' expected 
40 ':=' expected 
41 'program' expected 
42 'of' expected 
43 'begin' expected 
44 'end' expected 
45 'then' expected 
46 'until' expected 
47 'do' expected 
48 'to' or 'downto' expected 
49 'file' expected 
50 'if' expected 
51 '.' expected 
52 'implementation' expected 
53 'interface' expected 
54 'intrinsic' expected 
55 'shared' expected 
56 A '.' or '(I is expected following a type-id 

HA Semantic Errors 
100 Identifier declared twice 
101 Identifier not of the appropriate class 
102 Identifier not declared 
103 Sign not allowed 
104 Number expected 
105 LaNer bound exceeds upper bound 
106 Incompatible subrange types 

H-2 

Error fr.1esssges 



Pasc81 Reference Manual 

107 Type of constant must be integer 
108 Type must not be real 
109 Tagfield must be scalar or subrange 
110 Type incompatible with with tagfield type 
111 Index type must not be real 
112 Index type must be scalar or subrange 
113 Index type must not be integer or longint 
114 Unsatisfied forward reference for type identifier: 
115 Illegal use of forward reference type identifier 

Error fo,less8ges 

116 Parameter list is inconsistent with original specification 
117 function result type is inconsistent with original 

specification 
118 function result type must be scalar~ subrange~ or pointer 
119 file value parameter not allowed 
120 Missing result type in function declaration 
121 f-format for real only 
122 Error in t'ype of standard function parameter 
123 Error in type of standard procedure parameter 
124 Number of parameters does not agree wi th declaration 
125 Illegal parameter substitution 
126 Result type of parameteric function does not agree with 

declaration 
127 Expression is not of set type 
128 Only tests on equality allowed 
129 Strict inclusion not allowed 
130 file comparison not allowed 
131 Illegal type of operand(s) 
132 Type of operand must be boolean 
133 Set element type must be scalar or subrange 
134 Set element types not compatible 
135 Type of variable is not array or string 
136 Index type is not compatible with declaration 
137 Type of variable is not record 
138 Type of variable must be file or pointer 
139 Illegal type of loop control variable 
140 Illegal type of expression 
141 Assignment of files not all~~ed 
142 Label type incompatible with selecting expression 
143 Subrange bounds must be scalar 
144 Type conflict of operands 
145 Assignment to standard function is not allowed 
146 Assignment to formal function is not all~~ed 
147 No such field in this record 
148 Type error in read 
149 Actual parameter must be a variable 
150 Multidefined case label 
151 Missing corresponding variant declara.tion 

H-3 



Pascal Reference fr.1anual 

152 Real or string tagfields not allowed 
153 Previous declaration was not forward 

ErrOT f-.1essages 

154 SUbstitut'ion of standard procedure or function is not 
allowed 

155 Multidefined label 
156 Multideclared label 
157 Undefined label: 
158 Undeclared label 
159 Value parameter expected 
160 Multidefined record variant 
161 File not allowed here 
162 Unknown compiler directive (not 'external'~ 'forward'~ 

I i n1 i ne I, or I c I ) 

163 Variable cannot be packed field 
164 Set of real is not allowed 
165 Fields of packed records cannot be var parameters 
166 Case selector expression must be scalar or subrange 
167 String sizes must be equal 
168 String too long 
169 Value out of range 
170 Address of standard procedure cannot be taken 
171 Assignment to function result must be done inside function 
172 Loop control variable must be local 
173 Label value must be in 0 .. 9999 
174 Must exit to an enclosing procedure 
175 Procedure or function has already been declared once 
176 Unsatisfied forward declaration for Procedure 
177 Unsatisfied fonlJard declaration for Function 
178 Type conversion to a different size type is not allQl,cled 
179 Illegal type of operands in constant expression 
180 Division by 0 
181 NIL is not allowed in a constant expression 
182 ~ is not allowed in a constant expression 
183 Only certain pre-defined functions are allowed here 
184 Dereferencing is not allowed here 
185 INLINE code constants must be single word integers 
186 INLINE not allowed because procedure/function is already 

declared 
190 No such unit in this file 

H-4 



Pascli-J Reterence A1BnuBl Error A'Ies:sBges 

H.5 Conditional Compilation 
260 N~~ compile-time variable must be declared at global level 
261 Undefined c~npile-time variable 
262 Error in compile-time expression 
263 Conditional compilation options nested too deeply 
264 Unmatched ELSEC 
265 Unmat ched ENDC 
266 Error in SETC 
267 Unterminated conditional compilation option 

H.6 Compiler Specific Umitations 
300 Too many nested record scopes 
301 Set limits out of range 
302 String limits out of range 
303 Too many nested procedures/functions 
304 Too man'y nested include/uses files 
305 Includes not allowed in interface section 
306 Pack and unpack are not implemented 
307 Too manv uni ts 
308 Set constant out of range 
309 Structure too large ( ) 32K ) 
310 Parameter list too large ( )= 32K ) 
312 Size of local data is too large ( ) 32K ) 
313 Size of global data is too large ( ) 32K ) 
350 Procedure too large 
351 File name in option too long 
352 Too many errors on this line 

H.1 1/0 Errors 
400 Not enough room for code file 
401 Error in rereading code file 
402 Error in reopening text file 
403 Unable to open uses file 
404 Error in reading uses file 
405 Error in opening include file - compilation terminated 
406 Error in rereading pr~~iously read text block 
407 Not enough room for I-code file 
408 Error in writing code file 
409 Error in reading I-code file 
410 Unable to open listing file 
420 I/O error on debug file 

H.B CI8SC8I ErTtn 
800 OF missing 
801 Superclass identifier missing 
802 Method NEW is not declared 
803 Subclass declaration not allowed here 
804 Method is not a procedure 

H-5 



805 Unimplemented method: 
806 Unimplemented class: 
807 Superclass identifier is not a class 
808 Identifier is not a class 
809 'NB~' not allowed here 
810 'NEW' was expected here 
811 Illegal 'NE~~' method 
812 Illegal use of class identifier 
813 Unsafe use of a handle in an assignment statement 
814 Unsafe use of a handle in a ~HTH statement 
815 Unsafe use of a 11andle as a var parameter 
817 Compiler error!!! 
818 OVerride of non-existent procedure or function 
819 ThisClass function is only legal in methods 

H.9 Code Generation Errors 
1000-1999 I nt ernal code generati on errors 
2000 End of I-code file not found 

El'b?i'" 1\'/eSsBges 

2001 Expression too complicated, code generator ran out of 
registers 

2002 Code generator tried to free a register that was already 
free 

2003-2005 Error in generating address 
2006-:-2010 Error in expressions 
2011 Too many globals 
2012 Too many locals 

H.l0 Verification Errors 
4000 Bad verification block format 
4001 Source code version conflict 
4002 Compiler version conflict 
4003 Linker version conflict 
4100 Version in file less than minimum version supported by 

program 
4101 Version in file greater than maximum version supported by 

program 

H-6 



Appendix I 
Pascal Workshop Files 

This appendix lists the files provided on the Pascal 3.0 micro diskettes, first 
alphabetically" then by diskette. 

file NfDe 
Alert 
apin/syslib.obj 
Archiver .Obj 
Assembler .Obj 
8\jteOi ff .Obj 
ChangeSeg.Obj 
ChBICount .Obj 
Code.Obj 

CodeSize.Obj 
Comp .Text 
CompBIe .Help. Text 
Compere .Obj 
Conca.t.Obj 
Copy .Obj 
Diff .Obj 
DumpObj.Obj 
DumpPatch .Obj 
Edit.Menus.Text 
Editor.Obj 
ErrTool.Obj 
fileDiv.Obj 
FileJoin.Obj 
find.Obj 
findlD.Obj 

Pascal. 
Diskette Notes Description 

9 

7 
5 
7 
7 
7 
5 

7 
7 
7 
7 
7 
7 
7 
7 
7 
5 
5 
7 
7 
7 
7 
7 

E 
1 

C 

c 

c 
c 

QuickPort support file 
A I ntri nsi c uni t-mi sc . 
Utility progrem 
Workshop program-68000 Assembler 
Utili ty prograIR 
Ut iIi ty program 
Utili ty progrem 
Workshop program-Pascal Code 
Generator 
Utili ty program 
Utili ty program 
Support file-CompBIe 
Utility program 
Utili ty program 
Utili ty program 
Utility program 
Util i ty program 
Utility program 
Support file-Editor menus file 
Workshop program-Editor 
Utili ty program 
Ut iIi ty program 
Utili ty program 
Utility program 
Utility prograIll 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files are the minimum necessary to run a user program in t.he 

tHorkshop environment.. A user program ma.y require other files as well. 
Note C: These files are necessary for running t.he minimum Pascal Workshop 

(Editor .. Assembler ... Pascal Compiler and Code Genel·ator .. Linker .. and 
Debugger). 

Note 0: These files are needed only for developing Macintosh software. 
Note E: These files are needed only for developing Lisa QuickPort software. 
Note F: These file-.s are needed only by the Lisa Office System. 
Note G These files are needed only for developing Lisa QuickDraw software. 

1-1 



Pascal hteference !'4anual Pascal (.vorkshop Files 

Pascal 
File Halle Diskette Notes Description 
FindWord.Obj 7 Utili ty program 
font.heur 1 A Support file 
font.heur 2 C Support file 
font.lib 1 A Support file-tiny font library 
font.lib 2 C Support file-font library 
gxref.Obj 7 Utili ty program 
InstallTool.Obj 8 E Utili ty program 
inst allwsphrase 1 A Support file 
Intrinsic. Lib 1 A Library directory-intrinsic units 
Intrinsic.Lib 2 BC Library directory-intrinsic units 
IOSfPLIB.Obj 6 C Intrinsic unit-floating pOint 
iospaslib.obj 1 A Intrinsic unit-Pascal support 
iospaslib.obj 2 Be Intrinsic unit-Pasc8.1 support 
IUManager .Obj 3 Utility program 
LIBTKIPABC.TEXT 9 E QuickPort support file 
LineCount .Obj 7 Utili ty program 
Linker.Obj 6 C Workshop program-Linker 
LWCcount.Obj 7 Utili ty program 
NAClMac .Boot 9 D Support file-Mac boot code 
MAC/MacCom .Obj 9 D Utility program 
MAClRMaker .Obj 9 D Utili ty program 
N68K.ERR 5 C Support file-Assembler 
N68K.OPCODES 5 C Support file-Assembler 
ObjIOLib.Obj 4 C Intrinsic unit-object files 
OEMsyscall .Obj 6 Regular unit-privileged syst~o calls 
OSErrs.Err 5 C Support file-error message text 
paper. text 5 C Support file-Editor stationery 
Pascal.Obj 5 C Workshop program-Pascal Compi 1 er 
PasErrs .Err 5 C Support file-error message text 
PasLibCall.Obj 6 Intrinsic unit-Pascal support 
Past1at .Help. Text 7 Support fi I e-Pasffta.t 
PasMat .Obj 7 Utility program 
PortConfi g .Obj 4 Utility program 
PRLib.Obj 6 f Intrinsic unit-Printing 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files are the minimum necessary to run a user program in t.he 

Workshop environment. A user program m8.'Y require ot.her files as well. 
Note C: These files ere necessary for running t.he minimum Pascal It-k1rkshop 

(Editor .. Assembler .. Pascal Compiler and Code Generator .. Linker ... and 
Debugger). 

Note 0: Tflese files ere needed only for developing fv1acintosh softwere. 
Note E: These files are needed only for developing Lise. Quic:kPort softtHare. 
Note F: These files are needed only by the Lisa Office Sygtem. 
Note G: These files ere needed only for de·/eloping Lisa QuickDraw softl,a/are. 

1-2 



Pascal Reference ft.1aJ7uai 

file Nelle 
ProcNernes .Help .Text 
ProcNernes .Obj 
OO/boxes.Obj 
OO/boxes.text 
iJ)/graf3d .Obj 
OD/graftypes.text 
ODAiardware .Obj 
QD/m/boxes.text 
OD/m/sernple.text 
OD/sernple .Obj 
OD/sample. text 
QD/support .Obj 
OP/BOXES.llIST.TEXT 
qp/boxes.text 
OP/Graf3D .Obj 
1:Jl/Hardware .Obj 
qp/mainbaud.text 
QP !Make. T ex t 
qp/MBAUD.CONfIG.TEXT 
qp/MBAUO.VT1OO.TEXT 
qp/mouseinput.text 
qp/mouseinput2.TEXT 
QP/PHRASE 
qp/phuser.text 
qplOOSAMPlE .CONfIG. TE;<1 
qp/qdsample.pic.TEXT 
qp/qdsarnple. text 
qp/ubaudrate. text 
OP/UOPortCall.Obj 
1:JllUOPortGraph.Obj 
OP/UOPortSoroc.Obj 
qp/uqportuser.TEXT 
OP/UOPortVT100.0bj 
qp/uqpsupport.TEXT 

Pascal l,yorkshop Files 

Pascal 
Diskette Notes Description 

7 Support file-ProcNames 
7 Utility program 
9 G QuickDraw example program 
9 G 'QuickDraw example source 
9 G 'Regul ar uni t-3D graphi cs 
9 G QuickDraw assembly interfaces 
9 G Regular unit-hardware interfaces 
9 G QuickDraw example exec file 
9 G QuickDr8.\AI exarnple exec file 
9 G QuickDraw example program 
9 G QuickDraw example source 
9 G Regular unit-QuickDraw support 
9 E Quicf<Port sample program 
9 E QuickPort sample program 
9 E Regular unit-3D graphics 
9 E Regular unit-hardware interface 
9 E QuickPort sample prograrn 
9 E QuickPort exec file 
9 E Qui ckPort sampl e program 
9 E QuickPort sample program 
9 E QuickPort sarople prograrn 
9 E QuickPort sample program 
9 E Support file-QuickPort 
9 E QuickPort sample program 
9 E Qui ckPort sarople prograrn 
9 E QuickPort sample program 
9 E QuickPort sarnple program 
9 E QuickPort sample program 
9 E Regular unit-OuickPort interfaces 
9 E Regular unit-OuickPort interfaces 
9 E Regular unit-OuickPort interfaces 
9 E QuickPort sample program 
9 E Regular unit-OuickPort interfaces 
9 E Qui ckPort support fi 1 e 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files 8l"e the minimum necess8l"Y to run a user program in t.he 

Workshop environment. A user program may require ot.her files es well. 
Note C: These files are necessary for running t.he minimum P~cal lr)orkshop 

(Editor .. Assembler .. Pascal Compiler and Code Generator .. Linker,. 8Jld 
Debugger). 

Note 0: These files are needed only for developing Macintosh software. 
Note E: These files 8l"e needed only for developing Lisa Quic:kPort software. 
Note F: These files are needed only by the Lisa Office Syst.em. 
Note G: These files are needed only for developing Lis:a QuickDraw soft.Y/are. 

1-3 



Pas-c-ai Reterel7ce fr.1a.lUJa.l 

File Name 
OP/UOuickPort.Obj 
qp/usertab.TEXT 
qp/uuserterm.text 
IPlib.Obj 
qps~nple.note.text 
Search.Obj 
SegMap.Obj 
shell.Workshop 
Showlnterface.Help.Text 
Showlnterface.Obj 
SUlib.Obj 
SXref.Assembly.Text 
S;:<ref .Basic.Text 
SXref.Obj 
St~ef.Pascal.Text 
SyslLib.Obj 
Sys2Lib.Obj 
SysCall.Obj 
system.bt_Pri~n Disk 
system.bt_Profile 
system. bt_Sony 
system.cdd 

svstem.cd 2 Port Card 
sYstem. cd=Archive Tape 
svstem.cd Console 
sYst em . cd}1odem A 
svstem. cd Perallel Cable 
sYstem. cdYri em Cerd 
syst em. cd_Pri ern Di sk 
system.cd_Profile 

system.cd_Serie.l Cable 

PBSca.l l.vorkshop Files 

Pascal 
Diskette Hotes Description 

9 E Regular unit-QuickPort interfaces 
9 E QuickPort sample progrerfl 
9 E Qui ckPort sampl e program 
9 E Intrinsic unit-QuickPort 
9 E QuickPort sample program notes 
7 utility program 
7 Utility program 
5 BC Workshop shell 
7 Support file-Sho~Interface 
7 Utility program 
4 BC Intrinsic unit-standerd units 
7 Support file 
7 Support file 
7 Ut iIi ty program 
7 Support file 
4 Be Intrinsic unit-misc. 
6 EF Intrinsic unit-misc. 
6 Intrinsic unit-OS interfaces 
1 C System support-Priam boot tracks 
1 e System support-ProFile boot tracks 
2 C Syst~n support-Sony boot tracks 
1 Be System support-configurable driver 

directory 
1 C System support-2-port card driver 
1 e System support-Archive tape driver 
1 Be Syst~n support-console driver 
2 C System support-Europe-mod~R A driver 
2 C System support-perallel cable driver 
1 C System support-PrieIR card driver 
1 e System support-Pri8fR disk driver 
1 Be Syst~n support-ProFile or internal 

hard disk driver 
2 e System support-USA-serie.l cable 

driver 

Note A: These files are used for the installation procedure but are not installed. 
Note B: n·,ese files are the minimum necessary to run a user program in the 

Workshop environment. A user program may require other files as welL 
Note C: These files are necessary for running U·,e minimum Pascal tA)orkshop 

(Editor., Assembler., Pascal Compiler and Code Generator., Linker ... and 
Debugger). 

Note D: These files are needed only for developing Macintosh software. 
Note E: These files are needed only for developing Lisa QuickPort softth'are. 
Note F: These files are needed only by the Lisa Office System. 
Note G: These files are needed only for developing Lisa QuickDraw software. 

1-4 



Pascal l,'/arkshop Files 

Pascal 
File Halle Diskette Notes Description 
syst em . cd_Sony 
syst ern . debug 
s\}stem.debug2 
system .lld 
system .lld 
system.os 
syst ern . os 
SYSTEM.PRO 

1 
3 
3 
1 
2 
1 
3 
3 

System.PR_DaiSY Wheel Printer 3 
systerfl.PR_Imagewri ter / II Dt1P 3 
System.PR_Ink Jet Printer 1 
S'y'stern.shell 1 
svst ern. shell 2 
S'(STEt1 . UNPACK 1 
TK2LIB.Obj 8 
TKLIB.Obj 8 
Tools.Help.Text 7 
Transfer.Menus.Text 6 
Transfer.Obj 6 
Translit.Obj 7 
IJXref.Obj 7 
WordCount.Obj 7 
Workshop.Step.Help.Text 5 
~~RKSHOPERRS.ERR 5 
xref.help.text 7 
xref.Obj 7 
{Tl1}BJTTONS 3 
{Tll}obj 3 
{Tll}PHRASE 3 

8C 
c 
C 
A 
BC 
A 
8C 
C 

F 
F 
F 
A 
Be 
BC 
E 
E 

c 
c 
c 

Systern support-micro diskette driver 
System program-debugger 
System program-debugger 
Systern progrem-lO'tl-level drivers 
Systern program-Iow-Ievel drivers 
System program-OS 
System progrN~OS 
System support-print code 
confi gur at i on 
System support-daisy wheel printer 
System support-Irnagewri terIDt1P 
Systern support-ink jet printer 
Installation shell 
Environments windO'tl 
System support-unpack table 
Intrinsic unit-ToolKit 
Intrinsic unit-ToolKit 
Support file-various utilities 
Support file-Transfer menus file 
l,yorkshop prograr~ Transfer program 
Utili ty progrerR 
Utili ty progrerR 
Utility progr81fl 
Support file-Workshop shell 
Support file-error message text 
Support file-XRef 
Utility progrerR 
Support file-Preferences 
Workshop prograrn-Preferences 
Support file-Preferences 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files are the minimum necessary to run a user program in t.he 

Workshop environment. A US81· program may require ot.her files es well. 
Note C: These files are necessary for running t.he minimum Pascal t;.,'orkshop 

(Editor .. Assembler .. Pascal Compiler and Code Generator .. Linker .. and 
Debugger). 

Note 0: These files are needed only for developing l"'Iacintosh software. 
Note E: These files are needed only for developing Lisa QuickPort software. 
Note F: These files are needed only by the Lisa Office System. 
Note G: These files are needed onl~1 for developing Lisa QuickDraw soft'.-'/are. 

1-5 



Pascal Reference /\1anua} 

Pascal Diskette 1 

Filenerne 

apin/syslib.obj 
font.heur 
font.lib 
i nst allwsphrase 
Intrinsic.Lib 
iospaslib.obj 
system.bt_Priam Disk 
~Jstem.bt_Profile 
system.cdd 
systern.cd_2 Port Csrd 
system.cd_Archive Tape 
svstem.cd Console 
sYstem.cdYriefn Card 
svsterR.cd Pri8l'R Disk 
sYst~R.cd=Profile 
system. cd_Sony 
system.lld 
system.os 
system.shell 
SYSTEM.UNPACK 

Size Psize 

89600 175 
1536 3 
5746 12 

17422 35 
1536 3 

24576 48 
11264 22 
11776 23 
1536 3 
1024 2 
4096 8 
5120 10 
2048 4 
3584 7 
5632 11 
3584 7 

10240 20 
142848 279 
16896 33 
1024 2 

707 total blocks for files listed 
31 blocks of OS overhead for catalog and files listed 
34 blocks free out of 772 

Pascal Diskette 2 

Filename 

font.heur 
font.lib 
Intrinsic.Lib 
iospaslib.obj 
syst ern . bt _Sony 
syst em . cdJ10dem A 
svst~n.cd Parallel Cable 
sYstem.cd-Serial Cable 
sYstem.lld 
syst ern . shell 

Size Psize 

1536 3 
264070 516 

5120 10 
47616 93 
11776 23 
8192 16 
2560 5 
7168 14 

10240 20 
7680 15 

715 total blocks for files listed 
21 blocks of OS overhead for catalog and files listed 
36 blocks free out of 772 

1-6 

Pascal l-vorkshop Files 



Pascal Refel'ence f.,1Bnusl 

Pascal Diskette 3 

Filename 

IlJ1anager .Obj 
system.debug 
system.debug2 
system.os 
SYSTEM.PRO 
System .PR_Daisy Wheel P ... 
system .PR_Imagewri ter /. .. 
{T 11 } BUTTONS 
{T11}obj 
{T11}PHRASE 

Size Psize 

14336 28 
32768 64 
16384 32 

161792 316 
402 1 

15872 31 
17408 34 
43520 85 
31232 61 
11215 22 

674 total blocks for files listed 
32 blocks of OS overhead for catalog and files listed 
78 blocks free out of 772 

Pascal Diskette -4 

Filename 

ObjIOLib.Obj 
PortConfig.Obj 
SUlib.Obj 
Sys1Lib .Obj 
System.PR_Ink Jet Print ... 

Size Psize 

59392 116 
6144 12 

27648 54 
275968 539 

14336 28 

749 total blocks for files listed 
27 blocks of OS overhead for catalog and files listed 
8 blocks free out of 772 

1-7 

Pascal {,y'orkshop ,clles 



Pascal Reference ft.18nl.Jal 

Pascal Diskette 5 

Filename 

Assembler.Obj 
Code .Obj 
Edit .Menus.Text 
Editor.Obj 
N68K.ERR 
N68K.OPCOOES 
OSErrs.Err 
paper. text 
Pascal.Obj 
PasErrs . Err 
shell.~~orkshop 
Workshop.Step.Help.Text 
WORKSHOPERRS • ERR 

Size Psize 

42496 83 
51712 101 
3072 6 

40960 80 
3072 6 
4096 8 

22528 44 
2048 4 

116736 228 
7680 15 

76800 150 
2048 4 
2048 4 

733 total blocks for files listed 
35 blocks of OS overhead for catalog and files listed 
16 blocks free out of 772 

PEcal Diskette 6 

Filename 

IOSFPLIB.Obj 
Linker.Obj 
CEMsyscall.Obj 
PasLibCall.Obj 
PRLib.Obj 
Sys2Lib.Obj 
SysCall.Obj 
Transfer .t1enus. Text 
Transfer .Obj 

Size Psize 

66048 129 
37888 74 
4608 9 
2560 5 

43520 85 
134656 263 
22016 43 

2048 4 
14336 28 

640 total blocks for files listed 
30 blocks of as overhead for catalog and files listed 
114 blocks free out of 772 

1-8 

Pascal Workshop Files 



Pascal Reference f..1anual 

Pascal Diskette 7 

Filename Size Psize 
-------- ---- -----
Archiver .Obj 12288 24 
ByteOiff.Obj 2560 5 
ChangeSeg .Obj 2560 5 
CharCount.Obj 5120 10 
CodeSize.Obj 8704 17 
Comp.Text 2048 4 
Compare.Help.Text 7168 14 
Compare .Obj 12800 25 
Concat.Obj 5120 10 
Copy .Obj 6144 12 
Diff .Obj 9216 18 
DumpObj .Obj 22016 43 
Dumppatch .Obj 8192 16 
ErrTool.Obj 3072 6 
FileOiv.Obj 4608 9 
FileJoin.Obj 3584 7 
Find.Obj 8192 16 
findID.Obj 2560 5 
FindWord.Obj 1536 3 
gxref .Obj 14848 29 
lineCount.Obj 5120 10 
lWCcount.Obj 5120 10 
PasMat.Help.Text 11264 22 
PasMat .Obj 37376 73 
ProcNemes .Help. Text 5120 10 
ProcNames .Obj 19968 39 
Search.Obj 8192 16 
SegMap.Obj 2560 5 
Showlnterface.Help.Text 4096 8 
Showlnterface.Obj 29696 58 
&~ef.Ass~nbly.Text 3072 6 
:5Xref .Basic. Text 3072 6 
SXref.Obj 15360 30 
SXref.Pascal.Text 2048 4 
Tools .Help. Text 8192 16 
Transli t .Obj 7168 14 
UXref.Obj 14336 28 
WordCount .Obj 5120 10 
xref.help.text 5120 10 
xref .Obj 25600 50 

703 total blocks for files listed 
70 blocks of OS overhead for catalog and files listed 
11 blocks free out of 772 

1-9 

Pascal l.vorkshop FJ1es 



Pas-cal Reference ft.1sniJ81 

Pascal Diskette 8 

Filename 

InstallTool.Obj 
TK2LIB.Obj 
TKLIB.Obj 

Size Psize 

14336 28 
155136 303 
174592 341 

672 total blocks for files listed 
25 blocks of OS overhead for catalog and files listed 
87 blocks free out of 772 

Pascal Diskette 9 

Filename Size Psize 
------
ALERT 18432 36 
LIBTKlPABC.TEXT 11264 22 
MAClMac . Boot 2560 5 
MOClMacCorn .Obj 20992 41 
MOC/RMaker .Obj 24576 48 
OOlboxes.Obj 7680 15 
ODlboxes.text 6144 12 
OD/graf3d .Obj 10752 21 
OD/graftypes.text 14336 28 
ODlHardware .Obj 4608 9 
ODlmlboxes.text 2048 4 
OO/rolsarople. text 2048 4 
OD/sample .Obj 7680 15 
OD/sarnple.text 12288 24 
OD/support.Obj 3072 6 
QPIBOXES .llIST . TEXT 2048 4 
qplboxes.text 6144 12 
OPAiraf3D.Obj 10752 21 
QPlHerdwere .Obj 3584 7 
qp/roainbaud.text 2048 4 
OPlMake. Text 5120 10 
qpA18Al1D . CONFIG. TEXT 3072 6 
qp/MBAUD.VT100.TEXT 2048 4 
qp/roouseinput.text 7168 14 
qp/mouseinput2.TEXT 8192 16 
OPIPHRASE 7288 15 
qp/phuser.text 4096 8 
qpIODSAMPLE.DDNFIG.TEXT 14336 28 
qp/qdsarnple.pic.TEXT 13312 26 
qp/qdsarople.text 13312 26 
qp/ubaudrate.text 3072 6 

1-10 

Pasc81 Workshop Files 



Pascal ,Reference "'''anusl 

OPIUOPortCall.Obj 
OPlUOPortGraph.Obj 
OP/UOPortSoroc.Obj 
qp/uqportuser.TEXT 
OP/UOPortVT100.0bj 
qp/uqpsupport.TEXT 
OP/UOuickPort.Obj 
qp/usertab.TEXT 
qp/uuserterm.text 
OPlib.Obj 
qpsample.note.text 

6656 13 
1536 3 
1536 3 
2048 4 
1536 3 
3072 6 
1536 3 
2048 4 
3072 6 

60416 118 
3072 6 

666 total blocks for files listed 
72 blocks of OS overhead for catalog and files listed 
46 blocks free out of 772 

1-11 

Pascal Workshop Files 





Appendix J 
Listing Formats 

Six different listing formats can be generated by the Compiler and Code Generator, 
allowing you to show different. amounts of generated assembly code and other 
information intermixed with your Pascal source. All the listings show the total line 
number count and the line number within each include file" plus lexical information. 
An example of each of the listing formats is shown at. the end of t.his appendix. 
The Compiler commands and Compiler and Code Generator options that control the 
listing are described in the Release 3.0 Notes to Chapter 12. 

The six different listing formats are: 

1. A basiC' listing as produced by the Compiler. The other five listing formats 
are modifications of this basic format, .. Unless you specify $L- as an option 
to the Code Generator, you won't see this listing" because its presence is a 
signal to the Code Generator that it Sl10uld modify the listing to one of the 
other five formats (its name is passed in the I-code). 

In the basic listing" each line of the source is preceded by five fields of 
information: 

Field 1: The total line count. 

Field 2: The current include and uses nesting depth. If the input is not. 
from either a uses or include, this field will be blank. 

Field 3: The line number of each line with respect to the include file 
containing that line. All error references are reported in terms of 
this line number. You may use it in conjunction with the Editor's 
"Goto line #" feature to easily locate the lines: that cont.ain the 
reported errors. 

Field 4: This field consists of t.wo indicators (left and right) that reflect the 
static block nesting leveL The left indicator is incremented (mod 
10) and displayed whenever a begin, repeat" or case is encountered. 
On termination of these structures with an end or until" the right 
indicator is displayed and then decremented. It is thus easy to 
match begin" repeat" and case statements with their matching 
terminations. 

J-l 



PBS'C81 Reference ft.1Bnt181 Listing Formats 

field 5: A letter in the this field reflects the static level of procedures and 
functions. The character is updated for each procedure or function 
nest level ("A" for levell, "8" for level 2, and so on), and 
displayed on the line containing the heading, and on the begin and 
end associated with the procedure or function body. Using this 
field you can easily find the procedure or function body for its 
corresponding heading when .there are nested procedures declared 
between the heading and its body. 

Note that if the source being shown in the listing is being skipped due to a 
$lFe Compiler command, the lexical information (fields 4 and 5) is not 
shown. You can then tell from the listing what is being skipped. 

2. A minimum listing containing all the basic listing information plus the 
LisaBug procedure-relative addresss corresponding to the statements. 
Generally, the addresses reflect the start of the associated statements. This 
is the form of listing produced by the Code Generator when $ASM- is in 
effect (either by option or Compiler commands). 

3. A ftll} listing containing the basic listing plus the generated assembly code 
int.erleaved wit.h the Pascal source. In general, the code generated fClr a 
statement follows that statement, but the.re are some conditions which cause 
the code to precede its assOCiated statement. The full listing is produced 
when $ASIvI+ is in effect (either by option or Compiler commands). 

4. A ftlll listing by procedure containing the basic listing plus the generated 
assembly code on a procedure basis, that is, all the source for a procedure is 
shown before its generated code. This listing is produced when $ASM+ is in 
effect and you specify the $ASM mac option. 

5. An A.~embler input source containing the original Pascal source as 
comments int.erleaved with the corresponding assembly code. This listing is 
produced when $ASM+ is in effect and you specify the $ASM ONlY option. 
There is no guarantee t.hat the source produced is completely valid 
Assembler input (although what is gene.rated will be syntactically correct). 
The Code Gene.rat.or generates appropriate .DEf and .REF statements and 
labels for branches and data Procedure references whose names conflict 
t,alith Assembler opcodes and direct.ives are renamed by padding the original 
name with percent characters (e.g ... "MOVE" would become "MOVE%%%%'~. A 
conflicting name is defined as one that occurs in the Assembler's opcode file 
N68K.OPCOOES. (This file is now also used by the Code Generator when t.he 
$ASM ON.. Y option is used.) 

J-2 



Listing FormBts 

6. An AssembJer input source by procedure containing the original Pascal 
source for an entire procedure as comments followed by the corresponding 
assembly code. This listing is produced when $ASM+ is in effect and you 
specify both the Code Generator options $ASM ONLY and $ASrv1 PROC. 

Note that the only we:y to see the generated code is to use SASM+ .. either as an 
option to the Compiler or Code Generator or as Compiler directives. SASM PROC 
causes t.he disple:y of the code on a procedure basis .. and SASM ONLY causes the 
listing to be produced in Assembler input format. 

J-3 



,~~C8J Reference "'''anua} Listing Form8ts 

LISTING FORMAT 11 - Bmic listing fermat as produced by the Compiler 

Lisa. Pascal COI'Ipiler V3.22 (14-Ja.n-84) 13:31:43 15-Jun~ 

1 
2 
3 
4 
5 
6 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1-
Z --
3 --
4 --
5 --
6 --
1 -- A 
2 --
3 0- A 
4 --
5 --
I) --

7 --
8 -0 A 
7 --
8 0-
9 1-

10 --
11 --
12 --
13 --
14 --
15 --
16 -1 
17 -0 

PROGfWI EXSPIple; 

\lAR 
ArglJllent: Longlnt; 

{$I Factorial} 
FUNCTION Factorial(Arg: LongInt): Long Int; 

BEGIN {Factorial} 
If Ar9<=1.THEN 

Factonal := 1 
ELSE 

Factorial := Arg*factorial(Arg-1); 
END; {Factorial} 

BEGIN (EXSllple} 
REPEAT 

wri teLn; 
wri tee 'Enter argu'lfmt: '); 
Re&j(Argt.l'1ent); 
IF (IOResult<=O) AND (Ar~nt>=O) THEN 

'iri teln( 'Factorial ( " Argt..l'1eflt: 1, .) =', 
Factorial (Argu1ent): 1); 

UNTIL Argurrent<O; 
END. {EXSAple} 

Elapsed til'le: 1.483 secOnds. 

COPlpilation COFIplete - no errors found. 25 lines. 

J-4 



PB..t;"C-a1 Reference !·4e.nlle.l Listing ForrnBts 

LISTING FORMAT 12 - Minimum listing format showing LisaBug addresses 

Lisa Pascal COMpiler V3.Z2 (14-Jun-84) 
Lisa Pascsl ~&8000 COde Generator V3.14 (14-Jun-84) 

13:31:43 lS-Jun-84 
13:36:41 lS-Jun-64 

1 
2 
:3 
4 
5 
6 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 --
2 --
3 --
4 --
5 --
6 --
1 -- A 
2 --
3 0- A 
4 -- 000008 
5 -- 000012 
6 -- 00001A 
7 -- 00001A 
8 -0 A 
7 --
60-
9 1-

10 --
11 --
12 --
13 --
14 --
15 --
16 -1 
17 -0 

000016 
00001E 
00002C 
000038 
0OOO4A 
00004A 
OOOO9C 

PROGRAM EXSMple; 

'JAR 
ArguMent: Longlnt; 

($1 Factorial} 
FUNCTION factorial(Arg: Longlnt): Longlnt; 

BEGIN (factorial} 
IF Arg<=l THEN 

faDtorial := 1 
ELSf 

FaDtorial := Al·g*Factorial (Al"g-l); 
BiD; (faDtorial) 

BEGIN {ExSPlple} 
REPEAT 

\lri telIl; 
IIrite('Enter arguMent: '); 
Read (Argupten t) ; 
IF (l~ul t<=O) AND (Argu'4eOt>=O) THEN 

wri telIl(' Factorial(', ArgUl'lent: 1, • > =', 
Factorial (Ar9Ul'lent): 1); 

lIfT 1 L ArguPJent<o; 
END. (EXSI'lple) 

El~sed '::»P1pilation tiMe: 1.483 seconds. 

COPlpilation eo:mplete - no errors found. 25 lines. 

Elapsed code generator tiM: 1.226 secondS. 

Total code size = 284 

J-5 



,Pasc-al Rererence "'''anua} Listing Formats 

LISTING FORMAT 13 - Full listing format with generated code interleaved 

lisa Pasoal COPlpiler \/3.2"2 (14-Jt.rt-84) 
liss. Pascal t1C68f..(lO COde Generator Y3.14 (14-Jun-84) 

13:31:43 lS-Jun-84 
13 :37 :09 15-Jun-8lI 

1 1 -- PROORAM EXSI'Iple; 
2 2 --
3 3 -- 'JAR 
4 1I -- ArguMent: Longlnt; 
5 5 --
6 6 -- ($1 Factorial} 
7 1 1 -- A FUNCTION Factorisl(Arg: LongInt): LongInt; 
8 1 2 --
9 1 30- A BEGIN {factorial} 

00000o 4A6f fOOO fACTORIA TST.W $fOOO(A7) 
000004 lIES6 0000 LII'f( A6.I$OOOO 

10 1 4 -- IF Arg<=l THEN 
000008 OCAf 0000 0001 CNPI.l 8$00000001, $0008 (A6) 
OOOOOE 0008 
000010 6EOS Bt~T .S L.DOO1 ; OOOOOOiA 

11 1 5 -- Factorial := 1 

12 1 
13 1 

6 --
7 --

000012 7001 MOVEQ 8$01,00 
000014 2040 OOOC MOVE.l 00, $OOOC(A6) 
000018 601A BRA .s 1.0002 ; 00000034 

ELSf 
Factorial 

LOOO1 0000lA 42A7 
OOOO1C 202E 0006 
000020 5380 
0000222fOO 
000024 lIEBA 0000 
000028 2F2E 0008 
00002C /lEBA (0)() 
000030 2DSF OOOC 
000034 4ESE 
000036 2E9f 
000038 /lE75 

00003A C041 4354 4F52 
0000404941 

:= Al·9*Factorial (Al·9-1); 
CLR.L -(A7) 
MOVE.L $OOO6(A6),DO 
S1..IBQ .l 1$1, 00 
tIOVE.L DO,-(A7) 
JSR FACTORIA 
tIOVE.L $OOO6(A6).-(A7) 
JSR "l MUUl 
tIOVE.L (A7)+,$OOOC(A6) 
UNUC; A6 
MOVE.L (A7)+,(A7) 
RTS 

.'IORD $C6lI1,$4354,$4F52; N .ACTOR" 
_WORD $4941 "IA" 

000042 0000 CstSize .',iORD Last-CstSize-2 
000044 L.as t 

14 1 8 -0 A END; {Factorial} 
15 7 --
16 8 0- BEGIN {ExSAple} 
17 9 1- REPEAT 

000000 4EBA 0000 EXAI'fl'lf JSR ~ BEGIN 
000004 4E56 0000 LINK A6, 1$0000 
000008 2CSF 11000.l (A7)+,A6 
OOOOOA /lESS ffFC LINK A5,a$fFFC 
OOOOOE 9FED 0010 SUBA.l $0010(AS),A7 
000012 'lEBA 0000 JSR ~_I"n 

18 10 -- l,iri teLn; 
000016 2F2O OOOC L.OOO2 l'IOVE.l $OOOC(AS),-(A7) 
00001A 4EBA 0000 J--~ W I)f 

19 11 -- 'hoi te(, Enter argUPJent: ');-
0000lE 2f20 OOOC MO'JE. L $OOOC(AS), -(A7) 
000022 tJ87A 0002 PEA Cs w003 ; OOOOOOC6 
000026 4267 CLR.W -(A7) 
00CI028 IIEBA 0000 JSR M# STR 

20 12 -- Resd(ArgtJP1E!nt);-

J-6 



P85'csl Reference fo,18nl.l81 Listing Formats 

00002C 2F20 0008 I1(M:.L $0008(AS),-(A7) 
000030 lIEBA 0000 JSR ~_I 
000034 285f fFFC I1OVE.L (A7)+,$FFFC(AS) 

21 13 -- IF (IOResult<=O) AND (Arguwlent>=O) THEN 
000038 lIEBA 0000 JSR "IQRES 
00003C 4ASF TST.IN (A7). 
00003E SFCO SLf DO 
000040 liMO FFFC rST .L $fFFC(AS) 
000044 5CC1 93E 01 
000046 COO1 AND.B O1,DO 
000048 674A BEQ.S LOOOl : 00000094 

22 14 -- wri telIl( 'Factorial(', Arglll'lent: 1, ') =', 
23 15 -- Factorial (Al·guMent): 1); 

00004A 2F20 OOOC ttOVE.L $OOOC(AS),-(A7) 
00004E 467A 006A PEA Cst0002 ; OOOOOOBA 
OOJOS2 4267 CLR.W -(A7) 
000054 lIEBA 0000 JSR W STR 
000058 2F20 OOOC tIO\JE.L $OOOC(AS), -(A7) 
OOOOSC 2F20 FFFC ttM.L $FFFC(AS) ,-(A7) 
000060 3F3C 0001 MOVE.Ii 1$OOO1,-(A7) 
000064 'lEBA 0000 JSR ~I 
000068 2F20 OOOC MOVE.L $OOOc(AS),-(A7) 
00006C 467A 00Q8 PEA CstOOOl ; 00000086 
000070 4267 CLR.W -(A7) 
oooon 'lEBA QI.))() J...~ W STR 
000076 2F2D OOOC HOVE.L $oOOc(AS),-(A7) 
00007A 1t2A7 CLR.L -(A7) 
00007C 2F20 FFFC ttOVE.L $FFFC(AS),-(A7) 
000080 ItEBA 0000 JSR FACTOiUA 
000084 3F3C 0001 MO\IE.W 1$OOO1,-(A7) 
fXOO86 4EBA 0000 JSR ,,~ I 
00008C 2F20 OOOC ttOVE.L $oOoc(AS),-(A7) 
000090 4EBA 0000 JSR WIJ4 
0C0094 LIMO fFFC LDOOl TST .L $FFFC(AS) 
000098 6COO FF7C BGE LOOO2 :.00000016 

211 16 -1 lJfTIL ArguMent<O; 
00009C ItEBA 0000 JSR " TERI'I 
OOOOAO lIESD UNIY. AS 
OQ()()A2 'lEBA 0000 JSR "_00 
0000A64E75 RTS 
OOOOAS 4ESE UNLK A6 
0000AA4E75 RTS 

00l0AC CS58 4140 SOlIC .WIR) $CS58. $4140, $S04C ; n .XAMPL n 

000082 4520 .wa:ID $4520 "E .. 

0000B4 0022 CstSize JIORD Las t-Cs tSi ze-2 
000066 CstOOOl 
0000B6 03 • BYTE 3 
OOOOB7 2920 30 • ASCI I ') =' 
OOOOBA CstOOO2 
OOOOBA OA .B\'TE 10 
OOOOBB 4661 6374 6Fn • Ag:; I 1 'FactOl·· 
OOOOC1 6961 6C28 .ASCII 'ial( , 
0000C5 00 • BYTE $00 
0000C6 CstOOO3 
0000C6 10 • BYTE 16 
OOOOC7 4SSE 7465 7220 • ASCI I 'Enter ' 
OOOOCD 6172 6775 6065 .A~II 'argul'le' 
OOOOD3 6E74 3A2O • ASCI I 'nt: ' 
000007 00 • BYTE $00 
000008 Last 

J-7 



P8S'Csi Reference f.."8nll81 

25 17 -0 END. (EXSIlple} 

Elapsed COPlpilation tiMe: 1.463 seconds. 

COrtpilation COI'lplete - no errors found. 25 lines. 

Elapsed code generator tiM: 3.106 seconds. 

Total cOde size = 284 

J-8 

Listing Formats 



PBScal Reference />-'Ienue} Listing Formats 

LISTING FORMAT 14 - Full listing fart1'l& with the $ASM PROC in effect 

Lisa Pascal c~Mpiler V3.22 (14-Jun-64) 
Lisa P8SOSJ. 11C68000 COde Generator Y3.14 (14-.Jun-84) 

13:31:43 15-Jun-84 
13:38:34 lS-Jun-84 

1 
2 
3 
II 
5 
6 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 -- PROORAM EXaAple; 
2 --
3 --
4 --
5 --
6 --
1 -- A 
2 --

VAA 
ArgUAent: Longlnt; 

($1 Fectorisl} 
FUNCTION Fsctorial(Arg: LongInt): Longlnt; 

3 0- A BEGIN {FSI)torial} 
4 -- IF Arg<=l THEN 
5 -- Factorial := 1 
6 -- ELSf 
7 -- Factorial := Arg*Factorial(Arg-1); 
8 -0 A END; (Fectorial) 

00000o 4A6F FOOO fACTORIA TST.W $fOOO(A7) 
00000lI llE56 0000 Uti< A6.#$OOOO 
000008 OCAE 0000 0001 CMPI.L l$ooOOOOOl,$0008(A6) 

7 --
8 0-
91-

10 --
11 --
12 --
13 --
14 --
15 --
16 -1 
17 -0 

OOOOOE 0008 
0000106EOS 
000012 7001 
000014 2040 OOOC 
000018 60lA 
oooOlA 42A7 
0000lC 202E 0008 
000020 5380 
000022 2FOO 
000024 4EBA 0000 
000028 2F2E 0008 
00002C tlEBA 0000 
000030 2DSF OOOC 
000034 4ESE 
000036 2E9F 
oooo384E75 

LDOO1 

LOOO2 

OOT .s 
MOVEQ 
MO'JE.L 
BRA.S 
CLR.L 
MOVE.L 
SUBQ.L 
MOVE.L 
J~ 
MOVE.L 
JSR 
MOVE.L 
UtU..K 
tlOVE.L 
RTS 

LDOO1 
#$01,00 
00,$OOOC(A6) 
LD002 
-(A7) 
$OOO6(A6) ,00 
U$1,OO 
OO.-(A7) 
FACTORIA 
$0008(A6),-(A7) 
"I ~1ULA 
(A7)+,$OOOC(A6) 
A6 
(A7)+, (A7) 

; 000000lA 

; 00000034 

00003A C641 4354 4F5Z 
000040 119111 

.~(R) $C641,$4354,$4F52;· .ACTOR" 

000042 0000 
00()()Q4 

.~ $49'11 n IA" 

CstSize .WORD Last-CstSize-2 
Last 

BEGIN {ExMPle} 
REPEAT 

Wri telJ"l; 
Wri te( 'Enter arguMent: '); 
Re-.a.d(Al"9UAent); 
IF (IOResult<=O) AND (ArguMent>=O) THEN 

writeLn('faotorial(', Ar~JMent: 1, ') =', 
Fsctori8.l(ArQUMent): 1); 

I~TIL ArguMent<O; -
END. {ExMPle} 

00000o llEBA 0000 EXAI'Plf 
000004 llES6 0000 
000008 2CSF 
I)oooOA 4E55 FFFC 
OOOOOE 9FED 0010 
000012 4EBA 0000 
000016 2F20 OOOC LDOO2 

J~ 
Uti< 
t10VE.L 
LJI't< 
SJJ6A.L 
JSR 
tl0'JE.1. 

J-9 

" BEGIN 
A6,U$OOOO 
(A7)+,Ph 
AS,8;FfFC 
$0010(AS),A7 
" INIT 
$000c(AS),-(A7) 



F'8scsl Reference f>."8nlJ81 Listing Form8ts 

OOOO1A 4EBA 0000 JSR lWlJi 
OOOO1E 2f20 OOOC ttOVE.L $oOOc(AS).-(A7) 
000022 481A 00A2 PEA CstoOO3 000000C6 
000026 4261 CUUJ -(A?) 
000028 4EBA 0000 JSR MIl STR 
00002C 2F20 0008 MOVE.L $OOoa(AS).-(A7) 
000030 4fBA 0000 JSR ~l 
000034 2B5F FFFC HOVE.L (A7)+.~FFC(A5) 
000038 4EBA 0000 JSR ~ IORES 
00003C 4A5F TST.'" (A1)+ 
00003E SFCO SlE DO 
000040 4AAD FFFC TST.L $FFFC(AS) 
000044 5CCi SGE 01 
000046 COO1 AND.B 01,00 
000048 674A BEQ.S L.0001 00000094 
00004A 2f20 OOOC I'1OVE.L $OOOC(AS).-(A7) 
00004E 481A 006A PEA CstOOO2 OOOOOOBA 
0000524261 CUUI -(A7) 
000054 4EBA 0000 JSR MIl STR 
000058 2f20 OOOC ttOVE.L $000c(AS).-(A7) 
OOOOSC 2F20 FFFC ttOVE.L $FFFC(AS),-(A7) 
0CI0060 3F3C 0001 MOVE.'" 1$0001.-(A7) 
000064 4EBA 0000 JSR WI 
000068 2F20 OOOC t1O\IE.L $OCWJc(AS).-(A7) 
00006C 48?A 1)()48 PEA CstoOO1 000000B6 
000070 4267 CUUI -(A7) 
oooon 4EBA 0000 J~ W STR 
000076 2f20 OOOC MOVE.L $oOOC(AS).-(A7) 
00007A 42A? CLR.L -(A7) 
00007C 2F20 FFFC HOVE.L $FFFC(AS),-(A7) 
000080 4EM 0000 JSR fACTORIA 
000084 3F3C 0001 HOVE.II U$OOO1.-(A7) 
I)'J()088 4EBA 0000 J~ WI 
00008C 2f20 OOOC HOVE.L $oOOc(AS),-(A7) 
000090 4EBA 0000 JSR ~ Ltf 
000094 4AAD FFFC LDOO1 TST.L $FFFC(AS) 
000098 6COO FF7C BGE 1.0002 00000016 
00009C 4EM 0000 JSR " TERtI 
OOOOAO liES[) UtUK AS 
0000A2 4EBA 0000 JSR "_END 
0000A6 4E75 RTS 
OOOOAS 4ESE UNLK A6 
OOOOAA 4E75 RTS 

OOOOAC C558 4140 504C .WORD $C558,$414D,$504C ; " .XAI1PL" 
OOOOB2 4520 . 'lORD $4520 "E .. 

0000B4 0022 Cstsize . WORD Last-cstsize-2 
0000B6 CstoOOl 
OOOOB6 03 • BYTE 3 
OOOOB7 2920 30 • ASC II ') =' 
OOOOBA CstOOO1 
OOOOBA OA • BYTE 10 
OOOOBB 4661 6374 6F72 • AS: II 'Factor' 
OOOOC1 6961 6C28 .AS:II 'isl( , 
0000C5 00 • BYTE $00 
0000C6 Cstf.X)()3 
0000(:6 10 • BYTE 16 
OOOOC? 456E 7tl65 n20 .ASCII 'Enter ' 
OOOOCD 6172 6775 6065 .ASCII 'Sl'guJlle' 
000003 6E?4 3A20 • AS: II 'nt: ' 
OOOOD7 00 • BYTE $00 

J-10 



l.9.st 

El8p:sed COMp il at ion t i PIe: 13183 seconds. 

COplpilation COMplete - no errors four.:!. 25 lines. 

Elapsed code generator tiMe: 2.846 secondS. 

Total code size = 2S4 

J-11 

Listing Forrnsts 



Pas-C"8i h.teference 1\:I8nlJ8i Listing Forrn8ts 

LISTING fORMAT 15 - Assembler input interleaved with Pmcal source as 
comments 

; PRO~RAt1 EX8I'1ple; 

VAR 

1.0001 

Argul'leflt: L.onglnt; 

{$I Factorial} 
FUNCTION Factorial(Arg: LDngInt): LoogInt; 

BEGIN {factorial} 

.FUHC FACTORIA 

. REF ~ MULA 

. REf FACTORIA 

TST.W -4096(A7) 
LINK A6,~tO 

IF Arg<=l THEN 
CMPI.L 11,8(A6) 
BGT .S 1.0001 

Factorial := 1 
MOVEQ #1,00 
MOVE.l DO, 12(A6) 
BRA.S LOOO2 

ELSE 
Factorial := Al·g*Factol·ial (Al·g-l); 

eLR.L -(A?) 
MOYE.l 6(A6),OO 
SJ6Q.l ~~l,OO 
MOYE.l DO,-(A7) 
JSR fACTORIA 
MOYE.L 8(A6),-(A7) 
JSR ~ I1JLA 
MOYE.l (A7)+,12(A6) 

1..0002 UNLK A6 
~10""E.l (A7)+, (A7) 
RTS 

.WORD $C641, $4354,$4f52, $4941 

CstSize .WORD Las t-CstSize-2 
last 

END; {Factorial} 

BEGIN {ExMple} 
REPEAT 

.MIN EXAl'PI.f 

.REF "Em 

. REF !lfrTERtI 

. REF »il 

. REF " JCRES 

. REF ~I 

. REF ""-STR 

. REF ~:~ 

. REF FACTORIA 

. REF " INIT 

. REF ":BEGIN 

J-12 



Pas-cal Reterenee Af8nual 

LDOO2 

JSR " BEGIN 
LINK A6,UO 
MM.L (A7)+,A6 
LINK AS, 8-4 
SUBA.L 16(AS),A7 
J~ " INIT 

..,ri telJ1; 
ffirlE.L 12(AS),-(A7) 
JSR !JItI LN 

I,4rite('Enter arguMent: '); 
MOYE.L 12(AS),-(A7) 
PEA CstOOO3 
CLR.1rI -(A7) 
J~ "'" STR 

Re80(ArgUplent) ; 
MOVE.L 8(AS),-(A7) 
JSR '-R I 
M~JE.L (A7)+,-4(A5) 

IF (IOResult<=O) AND (ArguMent>:O) THEN 
JSR " IORES 
T5.1' .'tI (A7)+ 
Sl.E DO 
TST .L -4(AS) 
S~ D1 
AND.B 01,00 
BEQ .s L.OOO1 

WriteLn('Factorial(', Ar~t: 1, ') :', 
Factorial (Argul'leOt): 1); 

MOVE.L 12(AS),-(A7) 

LDOO1 

PEA CstOOO2 
CLR.W -(A7) 
J~ W srR 
MOYE.L 12(AS),-(A7) 
MOYE.L -4(AS),-(A7) 
MOYE.W 11,-(A7) 
JSR !JItI I 
MOVE.L 12(AS),-(A7) 
PEA CstOOO1 
CLR.W -(A7) 
JSR W STR 
MOVE.L 12(AS),-(A7) 
CLR.L -(A7) 
MOVE.L -4(AS),-(A7) 
J~ FACTORIA 
MOVE.W 81,-(A7) 
JSR W I 
MOYE.L 1Z(AS),-(A7) 
JSR W LN 
TST .L -"(AS) 
BGE L.OOO2 

UNTIL Argunent<O; 
JSR "TERM 
UHLK AS 
JSR "EIt) 
RTS -
UNLK A6 
RTS 

.WORD $C55S,$414D,$504C,$4520 

CStSize .WORD Last-CstSize-2 

J-13 

Listing Formats 



CStoOOl. 

CstOOO2 

cstoOOJ 

Last 

.BVTE 3 

.ASCII '):' 

.BYTE 10 

. ASCI I 'F80torieJ(' 

.BYTE $00 

.BYTE 16 

.ASCII 'Enter arguPlE!nt: ' 

.BYTE $00 

END. {ExMple} 

• Etc 

Listing Formats 

J-14 



Pas-cal Reference A18mJ81 Listing Form8ts 

LISTING FORMAT 16 - Assembler inpe.£ with the $ASM PROC in effect 

; PROGfW1 EX8PlJ>le; 

VAR 
Argurtent: ~Int; 

($1 F80torial) 
FUNCTION F80torial(Arg: Longlnt): Longlnt; 

LDOO1 

LOOO2 

BEGIN (Factorial) 
IF Arg<=1 TtEH 

Factorial := 1 
ElSE 

Factorial := Arg*Factorial(Arg-l); 
00; {F80torial} 

.FUMe FACTORIA 

.REF ~ ttJiA 
• REF FACTORIA 

TST.V 
LItfK 
CHPI.L 
BGT .S 
HOYEQ 
I"IOVE.L 
BRA.S 
CLR.L 
l"IOVE.l 
SUBQ.L 
1'1000.L 
JSR 
MOYE.L 
JSR 
MOVE.L 
UtfLK 
MOYE.l 
RTS 

-4096(A7) 
116.10 
#1,8(A6) 
1.0001 
#1,00 
00,12(116) 
LOOO2 
-(A7) 
8(116),00 
81,00 
00,-(A7) 
FACTORIA 
8(A6),-(A7) 
~ I'IJLA 
(A7)+,12(A6) 
AS 
(A7)+,(A7) 

.WORD $C641, $4354, $4F52, $4941 

CStSize .WORD l.8st-CstSize-2 
l.8st 

BEGIN (Ex8PIPle) 
REPEAT 

lh'itel.Tl; 
~rite('Enter 8r9U"iOt: '); 
Read(ArguMent) ; 
IF (lOReslJl t<=O) AHD (Ar9lJ'1E!flt>=O) THEH 

Writel.Tl('Factorial(" Argup1E!Ot: 1, ') =', 
Fectorial(ArguMnt): 1); 

UNTIL ArguAent<O; 
END • (ExaPIp Ie ) 

.MAIN EXAl'PI.£ 

. REF " Et[) 
• REf "-TERH 
• REF -'_I 

J-15 



Pascal Reference "'''anull} Listing Formllts 

• REF "IORES 
• REF ~I 
. REF "'-STR 
. REF W-lJII 
. REF FACTORIA 
. REF "INIT 
. REF ":8EGIN 

JSR " BEGIN 
LINK A6,80 
tlCM.L (A7)+,A6 
LINK AS,I-4 
SUBA.L 16(AS),A7 
JSR "INIT 

I.DOO2 MOVE.L 12(AS),-(A7) 
JSR 5IlJII 
"OYE.L 12(AS),-(A7) 
PEA CstOOO3 
CLR.W -(A7) 
JSR W STR 
MM.L 8(A5),-(A7) 
JSR !llR1 
MM.L (A7)+,-4(AS) 
JSR "IOlES 
TST.W (A7)+ 
su:: DO 
TST.L -!l(AS) 
SGE 01 
AND.B 01,00 
SEQ.S LOOO1 
MOVE.l 12(AS), -(A7) 
PEA CstOOO2· 
CLR.W -(A7) 
J..~ W_STR 
MOVE.L 12(AS),-(A7) 
MOVE.L -!l(AS),-(A7) 
tlOVE.W a1,-(A7) 
JSR '*II 
MOVE.l 12(AS),-(A7) 
PEA CstOOO1 
CLR.W -(A7) 
JSR »I STR 
MO'JE.L 12(AS), -(A7) 
CLR.L -(A7) 
MOVE.L -4(AS),-(A7) 
JSR FACTORIA 
MOVE.'" 81,-(A7) 
JSR '*II 
I'IOVE.L 12(AS),-(A7) 
JSR »IlJII 

LOOO1 TS7.L -4(AS) 
BGE LOO02 
JSR "TERM 
UHLK AS 
JSR "_EIt) 
RTS 
UHU\ A6 
RTS 

. WORD $C558,$4140,$S04C,$4520 

CStsize • WORD Las. t-cs. tsize-2 

J-16 



Listing Formats 

CStoOO1 
.B'fTE 3 
.Ast:II ') =' 

CstOOO2 
.B'fTE 10 
• ASCII 'Fe.ctorial( , 
.B'fTE $00 

CStOOO3 
.ME 16 
.ASCII 'Enter arguMent: ' 
.8'fTE $00 

I..8.st 

• END 

J-17 





Pascal Reference Ifanual Index 

Index 
Please note that the topic references in this index 
are by section number. 

II 
Abs Function 11.4.2 
Abs2X D.4.3. 0.4.12 
Absolute value 0.9.2 
AbsX 0.3.9.2. 0.3.12 
Accuracy in Real Arithmetic D 
ACosX 0.4.3. 0.4.12 
Actual-Parameter 5.2. 1.1. 1.3 

syntax 5.2 
Actual-Parameter-List 5.2 

syntax 5.2 
Actual-Parameters in Procedure Call 6.1.2 
Add. 0.3.3.1 
AddPtd Procedure E.9.17 
AddC. 0.3.3.1. 0.3.12 
AddD 0.3.3.1. 0.3.12 
AddS 0.3.3.1. D.a12 
AddX D.3.3.1. 0.3.12 
Anomalies in Lisa Pascal B 
Annuity D.3.10.3. 0.3.12 
Apple II Pascal A 
Apple III Pascal A 
Apple II and Apple III Pascal: Other Differences 

A.3 
Apple Numerics Manual 0.1 
Applestuff Unit A 
Arc. Graphic Operations E.9.10 
Arctan Function 11.4.9 
Arctangent D.3.10.4 
Arithmetic Functions 11.4 
Arithmetic Operations 0.3.3 
Arithmetic Operators 5.1.2. D 
Array 3.2.1. 4.3.1 

component 3.2.1. 4.3.1 
reference 4.3.1 

Arrays and Matrices D.4.10.3 
Array-type 3.2.1 

syntax 3.2.1 
Ascent Line E.5.2 
ASCII 3. 1. 1. 5 
ASinX 0.4.3. D.4.3. D.4.12 

Index-l 



P8SC81 ReFerence 1'18nu81 

Assembler Input Source J-2 
Assembler Input by Source J-3 
Assemably Language 0.5.1 
Assembly Language, Quickdraw E.11 
6502 Assembly-Language SANE Engine 0.1 
68000 Assembly-Language SANE Engine 0.1 
Assignment-Compatibility 3.4.3 
Assignment-Statement 6.1.1 

syntax 6. 1. 1 
ATanX 0.3.10.4, 0.3.12 
ATan2X 0.4.3, 0.4.12 
Auxiliary Procedures 0.3.9 

B 
BackColor Procedure E.9.5 
BackPat Procedure E.9.1 
Base-2 logarithm D.3.10.1 
Base Line E.5.2 
Base-Type 3.2.3, 3.3, 5.3 

of pointer-type 3.3 
syntax 3.3 
scope anomaly B 
of set-type 3.2.3, 5.3 

Basic Listing Formats J-1 
Beep Procedure F.4 
Binary Log 0.3.9.4 
Binary Scale D.3.9.4 
Bit Image E.4.1 
Bit Transfer Operations E.9.13 
BitMap Oata Type E.4.2 
Bitmaps E.4.2 
Bitwise Boolean Operations A 
Blank Character 1.1 
Blank Segment 8.3, 9.1 
Block 2 

syntax 2.1 
Block-Structured I/O 3.2.4, 

10. 1. 1-2, 10. 4 
Blockread Function 3.2.4,10.4.1 
Blockwrite function 3.2.4,10.4.2 
Boolean 3.1.1.4, 5.1.3, 5.1.5.2, 

10.3.3.7, 12.3-12.4 
comparisons 5.1.5.2 
constants as control values 12.3.-4 

Index-2 

Index 



Pascal Reference lfanlJal 

operands, evaluation of 5.1.3 
operators 5. 1. 3 
data type 3.1.1.4 
values in text-oriented output 

10.3.3.7 
Boundary Rectangle E.4.2 
Boxes Program E.14.2 
Buffer Variable 10.1.3, 10.1.7 
Built-In Procedures and Functions 10, 

11 
Busy Cursor F.2.2 
BusyOelay Procedures F.2.2 
BusyImage Procedures F.2.2 
Byte Array 11. 7 
Byte-Oriented Procedures and Functions 

11. 7 
Byte-Size Files 3.2.4 
Bytestream Type A 

C 
C20ec 0.3.4.2, 0.3.12 
C2Str 0.3.4.2, 0.3.12 
C2X D.3.4.1, 0.3.12 
Camera Eye E.12 
Case 6.2.2.2 

syntax 6.2.2.2 
Case-Constant in Case Statement 

6.2.2.2 
Case-Sensitivity 1.1, 1.2, 1.4 
Case-Statement 6.2.2.2, Notes 6-1 

efficiency 12.5 
syntax 6.2.2.2 

Char 1.6.1, 3.1.1.5, 10.3.1.1, 
10. 3. 3. 2, 11. 5 

constant 1. 6. 1 
type 3.1.15 
values in text-oriented I/O 

10.3.1.1, 10.3.3.2 
Character 1.1. 3.2.4. 4.3.1 

device 3.2.4, 10.1.1-2 
files 3.2.4 
font E.5.2 
in string 4.3.1 

Index-3 

Index 



Pascal Ref'erence Ifanual 

set 1. 1 
Character Style E.5.2 
CharWidth Function E.9.4 
Chr Function 11.5.2 
Class Functions 0.3.7.1 
ClassC 0.3.7.1, 0.3.12 
ClassO 0.3.7.1, 0.3.12 
ClassS 0.3.7.1, 0.3.12 
ClassX 0.3.7.1, D.3.12 
ClearHlts 0.4.2, 0.4.12 
ClearXcps 0.4.2, 0.4.12 
Clip30 Function E.12.4 
ClipRect Procedure E.9.1 
ClipRgn E.5 
Clock/Calendar F.8, F.9 
Close Procedure 10.1.5 
ClosePicture Procedure E.9.14 
ClosePoly Procedure E.9.15 
ClosePort Procedure E.9.1 
CloseRgn Procedure E.9.11 
Closing a File 10.1.5 
CmpX 0.3.6, 0.3.12 
Code Generation 12.1 
Code Generator Invocation Options Notes 12-4 
Code Generator Invocation Options (Table) 

Notes 12-7 
Color Orawing E.7.2 

routines E.9.5 
ColorBit Procedure E.9.5 
Column Pivoting 0.4.10.9 
Comment 1.8 
Comp 0.3.2, 0.3.12 
Comparison to Apple II and Apple III Pascal 
Comparison Functions 0.3.6 
Comparisons 5.1.5 
Comparisons Involving NaNs 0.2.4 
Compatibility of Parameter Lists 

7.3.5 
Compatible Types 3.4 
Compile-Time Expressions and Variables 

12.2.1-3 
Compiler 1.8, 12, A 

commands 1.8, 12.1-2, A, Notes 12-1 
Compiler Commands (Table) Notes 12-7 
Compiler Invocation Options Notes 12-2 

Index-4 

Index 



Pascal Reference I'/anual 

Compiler Invocation Options CTable) Notes 12-7 
Component of Array 3.2.1, 4.3.1 
Component of File 3.2.4, 4.3.3 
Component-Type of Array 3.2.1 
Component-Type of File 3.2.4 
Composing Transformations D.4.10.3 
Compound D.3.10.3, D.3.12 
Compound Interest D.3.10.3 
Compound-Statement 6.2.1 

syntax 6.2.1 
Concat Function 11.6.3 
COND D.4.10.4 
Conditional Compilation 12.2 
Conditional-Statement 6.2.2 

syntax 6.2.2 
Conditioned Problems D.4.10.4 
Condition number D.4.10.4, D.4.10.10 
Constant 1. 4-7 

syntax 1. 7 
Constant-Declaration 1.7, 2.1, B 

scope anomaly B 
syntax 1. 7 

Constant-Declaration-Part 2.1 
syntax 2.1 

Constant Expressions Notes 1-1 
Constants, Assembly Language E.11.1 
Contrast Control F.3.1 
Contrast Function F.3.1 
Control-Variable 6.2.3.3 

syntax 6.2.3.3 
Conversion, Type Notes 3-1 
Conversions D.3.4 
Conversions To and From Extended D.3.4.1 
Conversions Betveen Binary and Decimal D.3.4.2 
Converting Decimal Strings into SANE Types 

D.3.4.2 
Converting SANE Types into Decimal Strings 

D.3.4.2 
Coordinate Conversion D.4.3 
Coordinate Plane E.3.1 
Coordinates, GrafPort E.3.1, E.6 
Copy Function 11.6.4 
CopyBits Procedure E.9.13 
CopyRgn Procedure E.9.11 
Correctly Rounded Conversion D.4. 7 

Index-S 

Index 



Pascal Reference lfanlJal 

Correlation Matrix 0.4.10.7 
Cos Function 11.4.5 
CoshX 0.4.3, 0.4.3, 0.4.12 
CosX 0.3.10.4, 0.3.12 
Cosine 0.3.10.4 
CpySgnX 0.3.9.2, 0.3.12 
CR Character 1.1, 1.S, 10.3 

in text-oriented I/O 10.3 
Crunch 10.1.5 
Current Block Number 10.4 
Current File Position 4.3.3 
Cursor Control 10.3.7, F.2 
Cursor Data Type E.4.4 
Cursor-Handling Routines E.9.2 
CursorHeight Data Type F.I0 
Cursorlmage Procedure F.2 
CursorLocation Procedure F.2.1 
CursorPtr Oata Type F.I0 
Cursor, QuickDraw E.4.4 
CursorTracking Procedure F.2.1 
Customizing QuickOraw Operations 

E.I0 

o 
020ec 0.3.4.2, 0.3.12 
02Str 0.3.4.2, 0.3.12 
02X 0.3.4.1, D.3.12 
Data Bitmap F.2 
Data Types 0.3.2 
Data Types 3 

assembly language E.l1.2 
Graf30 E.12.3, E.13.5 
QuickDraw E.2.2, E.13.2 

DataFile 10.1. 2 
Date F.8, F.9 
DateArray Data Type F.I0 
DateTime Procedure F.B 
DateToTime Procedure F.B 
DblPrecision D.4.12 
Dead Key Diacriticals F.5.4 
Debugging 12.1 
Oec2C 0.3.4.2, D.3.12 
Dec2D 0.3.4.2, D.3.12 
Dec2S D.3.4.2, D.3.12 

Index-6 

Index 



P8sc81 Reference 1f8nu81 

Dec2X D.3.4.2, 0.3.12 
DecForm D.3.4.2, D.3.12 
Decimal D.3.4.2, 0.3.12 
Decimal Record Conversions 0.3.4.2 
Decimal Record Type 0.3.4.2 
DecStr D.3.4.2, 0.3.12 
DECSTRLEN 0.3.12 
Defining Declaration 7.1 
Delete Procedure 11.6.5 
Deletions A.2 
DENORMAL D.3.t.1, 0.3.12 
Denormalized number 0.3.7.1 
Denormalized Numbers 0.3.7 
Descent Line E.5.2 
Determinant D.4. 10. 10 
Determinants D.4.10.5 
Device 10. 1. 1-2 

character 10.1.1, 10.1.2 
file-structured 101.1, 10.1.2 
types 10.1.1, 10.1.2 

Diacritical Marks F.5.4 
DiffRgn Procedure E.9. 11 
Digi t 1. 1 
Digits 0.3.4.2, 0.3.12 
Digit-Sequence 1.4 

syntax 1. 4 
DimContrast Function F.3.2 
Dimensions of Lisa Screen E.4.1 
Directi ve 1. 3 
Diskette Insertion Switches F.5 
Display Screen F.S 
DisposeRgn Procedure E.9.11 
DIVBYZERO D.3.B.2. D.3.12 
Div Operator A 
DivC D.3.3.1, 0.3.12 
DivO D.3.3.1. 0.3.12 
DivS D.3.3.1, 0.3.12 
DivX D.3.3.1, 0.3.12 
Divide D.S.3.1 
Division by Zero (Real Arithmetic) 

3.1.1. 3. 0 
DLE Character 10.3 
Double D.3.2, D.3.12 
DblPrecision D.4.2 
DOWNWARD D.3.8.1, D.3.12 

Index-7 

Index 



Pascal Reference Ifanual Index 

DrawChar Procedure E.9.4 
Drawing £.7 

color E.7.2 
DrawPicture Procedure E.9.14 
DrawString Procedure E.9.4 
DrawText Procedure E.9.4 
Dynamic Allocation Procedures 11.2 
Dynamic storage 0.4.4 

£ 
Efficiency, Case-Statements 12.5 
E format 0.4.6 
ELEMS D.3.12 
Elementary Functions 0.3.10, D.4.3 
Empty Set 5.3 
EmptyRect Function E.9.6 
EmptyRgn Function E.9.11 
Enumerated-Type 3.1.2 

syntax 3.1.2 
Environ D.3.B.2, D.3.12 
Environmental Control D.3.8 
Eof Function 10.1.7 

and various procedures 10.1.3-4, 
10.1.7, 10.2.1-2, 10.2.4, 
10.3.1-2, 10.4.1 

Eoln Function 10.3.5 
and read and readln procedures 
10.3.1, 10.3.2 

EQ D. 3. 6, 0.3.12 
Equal D.3.6 
EqualPt Function E.9.17 
EqualRect Function E.9.6 
EqualRgn Function E.9.11 
EraseArc Procedure E.9.10 
EraseOval Procedure E.9.8 
ErasePoly Procedure E.9.16 
EraseRect Procedure E.9.17 
EraseRgn Procedure E. 9. 12 
EraseRoundRect Procedure E.9.9 
Error Messages H 
Error Reporting H.1 
ETX Character A 
Euclidean Length D.4.10.3 
EX - 1 D.3.10.2 

Index-8 



P8sc81 Reference 1f8nu81 

Exception 0.3.8.2, 0.3.12 
Exception Flags 0.3.8.2 
Existence 0.4.10.3 
Exit Procedure 11.1.1, A 
Exp 0.3.4.2, 0.3.12, 0.4.7, 0.4.12 
Exp Function 11.4.6 
Exponential format 0.4.6 
Exponentials 0.3.10.2 
Exp1X 0.3.10.2, 0.3.12 
Exp2X 0.3.10.2, 0.3.12 
ExpX 0.3.10.2, 0.3.12 
Expression Evaluation 0.3.5 
Expressions 5 

syntax 5 
Extended 0.3.2, 0.3.12 
Extended Comparisons A 
Extended Temporaries 0.3.5 
Extended-Based Expression Evaluation 0.3.5 
Extensions A.l 
External File 10.1 
External Function 7.2 
External Procedure 7.1-2 
External Rate of Return 0.4.9 
ExtPrecision 0.4.12 

F 
Factor 5 

syntax 5 
FadeDelay Function F.3.2 
F format D.4.6 
Field of Record 3.2.2, 4.3.2, 6.2.4 
Field-Declaration 3.2.2 

syntax 3.2.2 
Field-Designator 4.3.2 

syntax 4.3.2 
Field-List 3.2.2 

syntax 3.2.2 
File 3.2.4, 4.3.3, 10 

buffer 4.3.3 
Buffer and Eof Function 10.1.1 
Buffer and Reset Procedure 10.1.3 
Component 3.2.4, 4.3.3 
Identifier As Parameter Type 1.3 
Of Char 3.2.4 
Position and Reset Procedure 

Index-g 

Index 



Pascal Reference l1anual 

10.1.3 
Record 10.2 
Reference 4.3.3 
Species 10.1.2 
Standard File-Type Identifier 

3.2.4, 10.1, 10.4 
Types and Reset Procedure 10.1.3 
Variable 3.2.4, 4.3.3, 10 
File-Buffer-Symbol4.3.3 

syntax 4.3.3 
File-Structured Device 3.2.4, 

10. 1. 1-2, 10. 4 
File-Type 3.2.4 

syntax 3.2.4 
FillArc Procedure E.9.10 
FillChar Procedure 11.8.3 
FillOval Procedure E.9.8 
FillPoly Procedure E.9.1S 
FillRect Procedure E.9.7 
FillRgn Procedure E.9.12 
FillRoundRect Procedure E.9.9 
Final-Value 6.2.3.3 

syntax 6.2.3.3 
Financial Analysis 0.4.8 
Financial Functions 0.3.10 
Finite Real Values 3.1.1.3 
Fin-Npv 0.4.8: 0.4.12 
Fin-Return D.4.8, D.4.12 
FIXEOOEClMAL 0.3.4.2, 0.3.12 
Fixed Decimal Point Format 0.4.6 
Fixed-Part 3.2.2 

syntax 3.2.2 
Fixed-Point Output of Real Value 

10.3.3.4 
FLOATDEClMAL D.3.4.2, D.3.12 
Floating-Point Arithmetic 0 
Floating-Point Output of Real Value 

10.3.3.4, A 
Font Numbers £.15 
Fonts E.S.2 
For-Statement 6.2.3.3 

syntax 8.2.3.3 
ForeColor Procedure £.9.5 
Foreign Characters F.S.4 
Formal-Parameter-List 7.3 

Index-IO 

Index 



Pascal Reference Hanual 

syntax 7.3 
Formal-Parameters and Procedure Call 

6.1. 2 
Forward Declaration 7.1-2, Notes 7-1 
FP68K D.4.5 
FP-Free-ASCII D.4.6, D.4.12. 
FPLib 0.1. 0.3.D.3.12. 0.5.3 
FP-New D.4.4. 0.4.12 
FP-Size D.4.4, D.4.12 
FP-Type D.4.4 0.4.12 
FPUnit D.5.3 
FrameArc Procedure E.9.10 
FrameCounter Function F.3 
FrameOval Procedure E.9.8 
FramePoly Procedure E.9.16 
FrameRect Procedure E.9.7 
FrameRgn Procedure E.9.12 
FrameRoundRect Procedure E.9.9 
Frames Data Type F.10 
Free Fomat D.4.6, D.4.12 
Free Format Conversion D.4.6 
Full Listing J-2 
Full Listing By Procedure J-2 
Full Rank D.4.10.2 
Function 7.2-3 
Function-Body 7.2 

syntax 7.2 
Function-Call 5, 5.2, 7.2, 7.3 

syntax: 5.2 
Function-Declaration 7.2 

syntax 7.2 
Function-Heading 7.2 

syntax 7.2 
Functional Parameter 7.3.4 
Functions, Assembly Language E.11.4 
Future Value D.3.10.3 

G 
GE D.3.6, D.3.12 
GEL D.3.6, D.3.12 
Get Procedure 10.2.1, 10.2.3 
GetClip Procedure E.9.1 
GetEnv D.3.8.2, D.3.12 

Index-ll 

Index 



Pascal Reference Ifanual 

GetFontInfo Procedure E.9.4 
GetHltAddress D.3.11, D.3.12 
GetPen Procedure E.9.3 
GetPenState Procedure E.9.3 
GetPixel Function E.9.18 
GetPort Procedure E.9.1 
GetPort30 Procedure E.12.4 
GetPrecision D.4.2, D.4.12 
GetRnd D.3.8.1, D.3.12 
GL 0.3.6, 0.3.12 
Global Coordinated E.6, E.9.17 
Global Constants D.3.5.1 
Global Variables, Assembly Language 

E.l1. 3 
GlobalToLocal Procedure E.9.11 
Goto-Statement 6.2, A 

syntax 6.1.3 
Gotaxy Procedures 10.3.1.2 
Graf30 E.12 

data types E.12.3, E.13.5 
sample program E.14.2 

GrafDevice Procedure E.9.1 
GrafPort Coordinates E.3.1, E.6 
GrafPort Data Type E.5 
GrafPort Routines E.9.1 
GrafPorts E.5 
GrafPtr Data Type E.5 
GrafVerb Data Type E.10 
Graphic Pen E.5.1 
Greater than D.3.6 
Greater than or equal D.3.6 
Greater than or less than 0.3.6 
Greater than. equal. or less than 0.3.6 
GT 0.3.6) D.3.12 

H 
Halt Address 0.3.11 
Halt Procedure 11.1.2) A 
Halts D.3.8.2 
Halt Vector D.3.8.2 
Handles E.3.4 

picture £.8.1 
polygon E.8.2 
region E.3.4 

Index-12 

Index 



P8sc81 Reference 118nu81 Index 

Hardware Interface F 
Hardware Interface, Linking To Notes F-1 
Heap 11.2, 0.4.4 
Heapresult Function 11.2.2 
Hex-Oigi t 1. 1 
Hex-Oigit-Sequence 1.4 

syntax 1. 4 
Hexadecimal Constants 1.4 
HideCursor Procedure E.9.2 
HidePen Procedure E.9.3 
Horner's Method 0.4.9 
Horner's Rule 0.3.5 
Host Program or Unit 9 
Host-Type of Subrange 3.1.3 
Hotspot E.4.4, F.2 
Hourglass Cursor F.2.2 
Hyperbolic Cosine 0.4.3 
Hyperbolic Sine 0.4.3 
Hyperbolic Tangent 0.4.3 

I 
I2X 0.3.4.1, D.3.12 
Identical Types 3.4 
Identifier 1. 2 

of program 8.1 
syntax 1. 2 

Identifier-List 3.1.2 
syntax 3. 1. 2 

Identity Procedure E.12.4.2 
IEEE Arithmetic D.2.1 
IEEE Standard D.3.1 
IEEE Standard D.3.1 
If-Statement 6.2.2.1 

optimization 12.3 
syntax 6.2.2 

Implementation-Part 9.1.1 
syntax 9.1.1 

In Operator 5.1.5.5 
Index 4.3.1 

in variable-reference 4.3.1 
syntax 4.3.1 

Index-Type 3.2.1 
syntax 3.2.1 

INEXACT 0.3.8.2, 0.3.12 

Index-13 



Pascal Reference H8IIUal 

INF D.2.1 
IFINITE D.3.7.1, D.3.12 
Infinities 3.1.1.3, D.3.7 
Infinities D.3. 7 
Infinity D.2.1 D.3. 7.1 
InitCursor Procedure E.9.2 
InitFPLib D.3.11, D.3.12 
InitGraf Procedure E.9.1 
Initial-Value 6.2.3.3 

syntax 6.2.3.3 
Initialization-Part A 
InitPort Procedure E.9.1 
Inline Declaration Notes 7-1 
Input (Standard File) 10.1.7, 10.3 
Input File Control (In Compilation) 

12.1 
Input Variables in Read Procedure 

10.3.1 
Input/Output 10, Notes 10-1 
Inquiries D.3. 7.1 
Insert Procedure 11.S.S 
InsetRect Procedure E.9.6 
InsetRgn Procedure E.9.11 
Int-EForm D.4.S, D.4.12 
Integer 1.4. 3.1.1.1-2. 10.3.1.2. 

10.3.3.3. 11.3-5. 0 
arithmetic 3.1.1.1. 3.1.1.2 
constant 1.4 
conversion overflow 0 
data type 3.1.1.1. 3.1.1.2 
data type conversions 3.1. 

3.1.1.5. 3.1.2. 11.5.1 
values in text-oriented I/O 

10.3.1.2. 10.3.3.3 
Interactive File-Type A 
Integral format D.4.6 
Interface 0.3.12 
INTERFACE 0.4.12 
Interface-Part 9.1.1 

syntax 9.1.1 
IRR D.4.8 
Internal Rate of Return 0.4.8 
Intrinsic Libraries Notes 9-3 
Intrinsic-Unit Syntax Notes 9-2 
INTRINSIC. LIB 9.2. 12.1 

Index-14 

Index 



Pascal Reference HanlllJl 

INVALID D.3.B.2, D.3.12 
Invalid Operations in Real Arithmetic 
Inverse D.4.10.1 
Inverse cosine D.4.3 
Inverses D.4.10.3 
Inverse sine D.4.3 
InvertArc Procedure E.9.10 
InvertOval Procedure E.9.8 
InvertPoly Procedure E.9.16 
InvertRect Procedure E.9. 7 
InvertRgn Procedure E.9.12 
InvertRoundRect Procedure E.9.9 
Ioresult Function 10.1.2, 10.1.6 
IOSFPLib D.1, D.4 
IOSPasLib D.1 
Iteritive Improvement D.4.10.6 

K 
Key State F.5.3 
KeyboEvent Function F.5.3 
KeyboId Data Type F.10 
KeyboPeek Function F.5.3 
KeyboQIndex Data Type F.10 
Keyboard 3.2.4, 10.1.1, 10.3, 

10.3.7.1, F.5 
attributes F.5.1 
echoing on input 10.3 
events F.5, F.5.3 
identification F.5.1 
layouts F.5.1 
legends F.5.1 
physical 3.2.4, 10.1.1, 10.3, 

10.3.7.1 
queue F.5.3 
repeats F.5.5 
state F.5.1 
testing 10.3.7.1 

Keyboard Function F.5.1 
KeyCap Data Type F.10 
KeyCapSet Data Type F.I0 
Keycodes F.5 
KeyEvent Data Type F.10 
KeyIsDown Function F.5.2 
KeyMap Procedure F.5.2 

Index-15 

Index 



P8sc81 Reference H8nu81 

Keypress Function 10.3.7.1 
Keystate F.S.3 
KillPicture Procedure E.9.14 
KillPoly Procedure E.9.15 

l 
L2X D.3.4.1~ D.3.12 
Label 1.5, 2.1, 6 

on statement 6 
syntax 2. 1, 6 

Label-Declaration-Part 2.1 
syntax 2.1 

LDec2X 0.4.7, 0.4.12 
LE D.3.6, 0.3.12 
Legends Function F.5.1 
Length Attribute 3.1.1.6 
Length Function 11.6.1 
Less than D.3.6 
Less than or equal D.3.6 
Letter 1.1 
Libraries, Intrinsic Notes 9-3 
Linear Algebra D.4.10 
Linear Algebra Procedures D.4.10.8 
Linear Equations D.4.10.3 
Linear Least Squares 0.4.10.3 
Lineat Least Squares Problems D.4.10.9 
Line-Drawing Routines E.9.3 
Line Procedure E.9.3 
Line2D Procedure E. 12. 4 
Line3D Procedure E.12.4 
LineTo Procedure E.9.3 
LineTo2D Procedure E. 12. 4 
LineTo3D Procedure E.12.4 
Linker 7.1 
Linking D.1 
Lisa Extended Caracter Set G 
Listing Control 12.1 
Listing Formats J 
Ln Function 11.4.7 
Local Coordinates E.6, E.9.17 
LocalToGlobal Procedure E.9.17 
Lock 10.1. 5 
Logarithms D.3.10.1 
LogbX D. 3. 9. 4. D.3.12 
Loge (1 + x) D.3.10.1 

Index-IS 

Index 



Pascal Reference /1anual 

Log2X D.3. 10. 1, D.3.12 
LnX D. 3. 10. 1, D.3.12 
LnlX D. 3. 10. 1, D.3.12 
LongDecimal D .. 4. 7, D.4.12 
Long Integer Data type A 
Longint 1.4, 3.1.1.2, 10.3.1.2, 

10.3.3.3, 11.3-5, D 
arithmetic 3.1.1.2 
constant 1.4, 1.S, 1.7 

11. 3. 4 
data type 3.1.1.2 
data type conversions 11.3.3, 
values in text-oriented I/O 

10.3.3.3 
LoneSieDie D.4. 7, D.4.12 
LookAt Procedure E.12.4.1 
LSigDigLen D.4, 7, D.4.12 
Lt D.3.S, D.3.12 

H 
Macintosh 0.1 
Macintosh Code Generation Notes 12-6 
Macintosh Floating-Point Programming D.4.5 
Macwkorks 0.5 
Managing Environmental Settings D.3.8.3 
ManyPixels Data Type F.10 
MapPoly Procedures E.9.18 
MapPt Procedure E.9.18 
MapRect Procedure E.9.18 
MapRgn Procedure E.9.18 
Mark D.4.4 
Mark Procedure 11.2.3, A 
Mask Bitmap F.2 
MathLib D.1, D.4, D.4.12, D.5.3 
Math-Solve D. 4. 9, D.4.12 
Math Sort 0.4.5 
Math-Sort 0.4.5. 0.4.12 
MathUnit D.5.3 
Mat-Mult D. 4. 10.8, D.4.12 
Matrix 0.4.10.3 
Matrix Multipication 0.4.10.3) D.4.10.8 
Maxint 3. 1. 1. 1 
MaxSig 0.4.5. 0.4.12 
Memavail Function 11.2.5 

Index-17 

Index 



P8sc81 Referencelf8nu81 

Member-Group 5.3 
syntax 5.3 

Memory Allocation Procedures 11.2 
Merge sorting D.4.5 
Microsecond Timer F.6 
MicroSeconds Data Type F.10 
MicroTimer Function F.6 
Millisecond Timer F.7 
MilliSeconds Data Type F.10 
Minimum Listing J-2 
Missing Symbol £.5.2 
Mod Operator A 
Mouse F.1 

button F.5 
plug F.5 

MouseLocation Procedures F.1.1 
MouseOdometer Procedure F.1.4 
MouseScaling Procedure F.1.3 
MouseThresh Procedure F.1.3 
MouseUpdates Procedure F.1.2 
Move Procedure E.9.3 
Move2D Procedure £.12.4 
Move3D Procedure E.12.4 
Moveleft Procedure 11.7.1 
MovePortTo Procedure E.9.1 
Moveright Procedure 11.7.2 
MoveTo Procedure £.9.3 
MoveTo2D Procedure E.12.4 
MoveTo3D Procedure 
MulC D.3.3.1, 0.3.12 
MulC D.3.3.1, D.3.12 
MulS D.3.3.1, 0.3.12 
MulX D.3.3.1, D.3.12 
Multiply D.3.3.1 

N 
NaN D.2.1 
NaN Arithmetic D.2.4 
NaN Code 0.2.1 
NaNCond 0.4.11 
NaNOet 0.4.11 
NaNIRR 0.4.8, D.4.11 
NaNs 3.1.1.3, D.3.7 
Natural (base-e) logarithm D.3.10.1 

Index-18 

Index 



Pascal Reference Hanual 

Negation D.3.9.2 
Negative Zeros D.2.1 
NegX D.3.9.2, D.3.12 
Nev Prodedure 3.3~ 11.2.1~ A 
NevRgn Function E.9.11 
Next-After D.3.9.3 
NextD D. 3. 9. 3, D.3.12 
NextS D.3.9.3, D.3.12 
NextX D.3.9.3, D.3.12 
NextRandom D. 4. 3, D.4.12 
Nil 3.3, 4.3.4, 11.2.1 
Noise Procedure F.4 
Nonsingular-transfomations D.4.10.1 
Normal 10. 1. 5 
NORMAL D.3.7.1, D.3.12 
Normalized Number D.3. 7.1 
Not-a-Number D.2.1 
Number 1. 4 
NumClass D.3.7.1, D.3.12 
Numerical Comparisons 5.1.5.1 

o 
Object File 9 
Object of Pointer 4.3.4 
ObscureCursor Procedure E.9.2 
Odd Function 11.4.1 
OffsetPoly Procedure E.9.15 
OffsetRect Procedure E.9.6 
OffsetRgn Procedure E.9.11 
Open3DPort Procedure E. 12. 4 
Opening a File 10.1, 10.1.2-4 
OpenPicture Function E.9.14 
OpenPoly Function E.9.15 
OpenPort Procedure E.9.1 
OpenRgn Procedure E. 9. 11 
Operands 5 

compile-time 12.2.3 
in expressions 5 

Operators 5 
compile-time 12.2.3 
in expressions 5 

Options, Code Generator Notes 12-4 
Options, Code Generator (Table) Notes 12-7 
Options, Compiler Notes 12-2 

Index-19 

Index 



Pascal Referencelfanual 

Options, Compiler (Table) Notes 12-7 
Optimization Of If, Repeat, and While 

statements 12.3, 12.4 
Ord Function 3.1, 3.1.1.5, 3.1.2, 

11. 5. 1 
Ord4 Function 3.1.1.2, 11.3.3 
Order of Evaluation of Operands 

5.1.1 
Ordinal Functions 11.5 
Ordinal-Type 3.1 

and ord function 11.5.1 
and ord4 function 11.3.3 
and pred function 11.5.4 
and succ function 11.5.3 
syntax 3.1 

Ordinal-Type-Identifier 3 
Ordinality 3.1 
Otherwise-Clause 6.2.2.2 

syntax 6.2.2.2 
Output (Standard File) 10.3 
Output Expression in Write Procedure 

10.3.3 
Output File in Write Procedure 

10.3.3 
Output-Specs in Write Procedure 

10.3.3 
Ovals, Graphic Operations E.9.8 
OVERFLOW D.3.8.2. D.3.12 
Overflow (Real Arithmetic) 

3.1. 1. 3, D 

P 
P154 D.3.1 
Packed Array of Char 5.1.5.6, 

10.3.1.5, 10.3.3.6, 11.8 
comparisons 5.1.5.6 
fillchar procedure 11.8.3 
scanning functions 11.8.1, 11.8.2 
text-oriented 1/0 10.3.1.5, 

10.3.3.6 
Packed Data Types 3.1.1.6, 3.2 
Page Procedure 10.3.6 
PaintArc Procedure E.9.10 
PaintOval Procedure E.9.8 
PaintPoly Procedure E.9.16 

Index-20 

Index 



Pascal Reference Ifanual Index 

PaintRect Procedure E.9. 7 
PaintRgn Procedure E.9.12 
PaintRoundRect Procedure E.9.9 
Parameter 7.1, 7.3 
Parameter-Declaration Syntax Notes 1-2 
Parameter List Compatibility 7.3.5 
Parameter-Declaration 7.3 

syntax 7.3 
Parameters in Procedure Call 6.1.2 
Pascal Compiler 12 
Pascal Diskette Description 1-6 
Pascal Real Arithmetic 0.5.2 
Pascal Workshop Files I 
Pattern Data Type E.4.3 
Pattern Transfer Mode E.7.1 
Patterns E.4.3 
Pen E.5.1 
Pen Routines E.9.3 
PenMode Procedure E.9.3 
PenNormal Procedure E.9.3 
PenPat Procedure E.9.3 
PenSize Procedure E.9.3 
Performance Penalty for Longint 

val ues 3. 1. 1. 2 
PicComment Procedure E.9.14 
PicHandle Data Type E.8.1 
PicPtr Oata Type E.8.1 
Picture Comments E.8.1 
Picture Data Type E.8.1 
Picture Frame E.8.1 
Picture Routines E.9.14 
Pictures E.8.1 
Pitch Procedure E.12.4.2 
Pixtel E.4. 1 
Pixtels Data Type F.10 
Plus-EForm 0.4.6, 0.4.12 
Point Data Type E.3.2 
Pointer 4.3.4. 11.2 
Pointer Function 3.3, 11.3.4 
POinter-Object-SymboI4.3.4 

syntax 4.3.4 
Pointer-Reference 4.3.4 
POinter-Type 3.3 

conversions 11.3.3. 11.3.4 
syntax 3.3 

Index-21 



Pascal ReFerence l1anual 

Pointer-Type-Identifier 3 
Points E.3.2 
Points, Calculations E.9.17 
Polar Coordinates 0.4.3 
Polygon Data Type E.8.2 
Polygons E.8.2 

calculations E.9.15 
graphic operations E.9.16 

PolyHandle Data Type E.8.2 
Polynomial 0.3.5 
PolyPtr Data Type E.8.2 
PorBits E.5 
PortRect E.5 
PortSize Procedure E.9.1 
Pos Function 11.6.2 
Power Switch F.5 
P-QR-Record 0.4.12 
Precedence of Operators 5 
Pred Function 3.1, 11.5.4 
Predecessor 3.1 
Predefined Identifiers A.4 
Present Value D.3.10.3 
Procedural Parameter 7.3.3 
Procedure 7.1, 7.3 
Procedure-and-Function-Declaration-

Part 2.1 
syntax 2.1 

Procedure-Body Syntax Notes 7-1 
Procedure-Declaration 7.1 

syntax 7.1 
Procedure-Entry D.3.8.3 
Procedure-Exit D.3.8.3 
Procedure-Heading 7.1 

syntax 7.1 
Procedure-Statement 6.1.2, 7.1 

syntax 6.1.2 
Procedures, Assembly Language E.11.4 
ProcEntry D.3.8.3, D.3.12 
ProcExit D.3.8.3, D.3.12 
Program 8 

identifier 8.1 
segments 8.3 
syntax 8.1 

Program-Heading 8.1 
syntax 8.1 

Index-22 

Index 



Pascal Reference Ifanual 

Program-Parameters 8.1, 8.2 
syntax 8.1 

Pseudo-inverse P 0.4.10.3 
Pseudo-inverses D.4.I0.1 
Pt2Rect Procedure E.9.S 
PtlnRect Function E.9.S 
PtlnRgn Function E.9.11 
PtToAngle Procedure E.9.S 
Purge 10.1.5 
Put Procedure 10.2.2-3 
Pwroften Function 11.4.10 
Pyramid £.12 

q 
QDProcs Data Type E.I0 
QDProcsPtr Data Type E.10 
QDSample Program E.2.1, E.14.1 
QDSupport Unit E.15 
QNAN D.3.7.1, D.3.12 
QR-Condition D.4.10, D.4.10.10, D.4.12 
QR-Oeterminant 0.4.10.8) 0.4.10.10, 0.4.12 
QR-Factor D.4.10.8, D.4.10.10, D.4.12 
QR Factorization 0.4.10.9 
QR-Improve 0.4.10.8) 0.4.10.10) 0.4.12 
QR-Residual D.4.10.8, D.4.10.10, D.4.12 
QR-Solve 0.4.10.8) 0.4.12 
QR-Solve finds D.4.10.10 
QR-TransOeterminant 0.4.10.8) 0.4.10.10, 0.4.12 
QR-Transolve D. 4. 10. 8, D. 4. 10. 10, D.4.12 
Quadratic Equation 0.3.5 
Qualifier 4.3 

syntax 4.3 
QuickOraw E 
QuickDraw Oata Types E.2.2. E.13.2 
QuickDraw Glossary E.16 
QuickOraw, Linking To Notes E-l 
QuickDraw Routines E.9 

arcs E.9.10 
bit transfer E.9.13 
color drawing E.9.5 
cursor handling E.9.2 
customizing E.I0 
grafPorts E.9.1 

Index-23 

Index 



PIJSClJl Ref'erence HlJnulJl 

line drawing E.9.3 
miscellaneous utilities E.9.18 
ovals E.9.8 
pen E.9.3 
pictures E.9.14 
points E.9. 17 
polygons E.9. 1S, E.9.1S 
rectangles E.9.S, E.9.7 
regions E.9.11, E.9.12 
rounded-corner rectangles E.9.9 
text drawing E.9.4 
wedges E.9.10 

QuickDraw Sample Programs E.2.1, 
E.14 

QuickDraw Summary E.13 
QuickDraw, Text Notes E-l 
QuickDraw, Using From Assembly 

language E.11 
Quiet NaN D.3. 7.1 
Quo D.3.3.2. D.3.12 
Quoted-Character-Constant 1.6.1 

syntax 1. 6. 1 
Quoted-String-Constant 1.6 

syntax 1. 6 

R 
RampContrast Procedure F.3.1 
RandModulus D.4.3, D.4.12 
Random Function E.9.18 
Random Number Generator D.3.10.5 
RandomX D. 3.10. 5, D.3.12 
Range-Checking 3.1.3, 12.1 
Rank-Deficient D.4.10.2 
Read Procedure 10.3.1 
Readln Procedure 10.3.2 
Real 1.4, 3.1.1.3, 10.3.1.3, 

10.3.3.4, 11.3-4, D 
arithmetic D 
constant 1. 4 
data type 3.1.1.3 
data type and round function 11.3.2 
val ues 3. 1. 1. 3 
values and write procedure D 
values in text-oriented I/O 

10.3.1.3, 10.3.3.4, D 

Index-24 

Index 



Pascal Reference Ifanual 

RealPrecision D.4.2~ D.4.12 
Real-Type 3.1 

syntax 3.1 
Real-Type-Identifier 3 
Record 3.2.2, 4.3.2 

field 3.2.2, 4.3.2 
number and seek procedure 10.2.4 
or file 10.2 
reference 4.3.2 
reference in with statement 6.2.4 

Record-Oriented I/O 10.2 
Record-Type 3.2.2 

new procedure 11.2.1 
syntax 3.2.2 

Rectangle Calculation Routines £.9.6 
Rectangle Data Type £.3.3 
Rectangles E.9.9 
Rectangles E.3.3 

graphic operations E.9.7 
RectlnRgn Function E.9.11 
RectRgn Procedure E.9.11 
Recursion 7.1-2 
Redeclaration of Identifier 2.2.2, 

2.2.4 
Region Data Type E.3.4 

calculations E.9.11 
graphic operations E.9. 12 

Regression D.4.10.7 
Regular-Unit Syntax Notes 9-2 
Relational Operators 5.1.5 
Relaxed Order of Declarations Notes 2-1 
Release D.4.4 
Release Procedure 11.2.4~ A 
RelX D. 3. 6, D.3.12 
RelOp D.3.S, D.3.12 
Remainder D.3.3.2 
RemX D.3.3.2, D.3.12 
Repeat-Statement 6.2.3.1 

optimization 12.4 
syntax 6.2.3.1 

Repeating Keys F.5.5 
RepeatRate Procedure F.5.5 
Repetitive-Statement 6.2.3 

syntax 6.2.3 
Reserved Words 1.1 

Index-25 

Index 



Pascal Ref'erencel1anual 

Reset Procedure 10.1, 10.1.5, A 
Residual D. 4. 10. 6, D.4.10.10 
Result-Type 7.2 

syntax 7.2 
Rewrite Procedure 10.1.4 
RgnHandle Data Type E.3.4 
RgnPtr Data Type E.3.4 
RintX D.3.9.1, D.3.12 
Roll Procedure E.12.4.2 
Rotation E.12 
Round D.2.4 
Round Function 11.3.2, D 
Rounding D.2.2 
RoundDir D.3.12 
Rounding Direction D.3.8.1 
Rounding Error D.4.9 
Rounding Function D.3.8.1 
Rounding in Real Arithmetic D 
Rounding precision D.3.8 
Rounding Direction D. 3. 8. 1. 
RoundDir D.3.8.1 
Roundoff Errors D.4.10.4 
RoundPrecision D.4.2, D.4.12 
Round to Integral Value D.3.9.1 
Row Width E.4.1 

S 
S2Dec D.3.4.2, D.3.12 
S2Str D.3.4.2, D.3.12 
S2X D.3.4.1, D.3.12 
Sane D.1 
SANE Environ D.3.11, D.3.12 
ScalbX D.3.9.4. D.3.12 
Scale Procedure E.12.4.2 
Scale-Factor 1.4 

syntax 1. 4 
ScalePt Procedure 
Scan Function A 
Scaneq Function 11.8.1 
SCanne Function 11.8.2 
Scope 2.2 

of standard objects 2.2.5 
Screen 10.3, 10.3.7.2, F.3 

contrast F.3.1 
cursor control 10.3.7.2, F.2 

Index-26 

Inde,y 



P8sc81 Reference 118nu81 

fading F.3.2 
physical 10.3 

ScreenContrast Data Type F.10 
ScreenSize Procedure F.3 
ScrollRect Procedure E.9. 13 
Seconds Data Type F.10 
SectRect Function E.9.6 
SectRgn Procedure E.9.11 
Seed 0.3.10.5 
Seek Procedure 10.2.3 
Segment Keyword A 
Segmentation 8.3~ Notes 9-1 
Segments 8.3, 9.1, 9.2.1 
Selector in Case Statement 6.2.2.2 
Series of payments 0.4.8 
Set 3.2.3, 5.1.4, 5.1.5.4, 5.3 

comparisons 5.1.5.4 
membership testing 5.1.5.5 
operators 5. 1. 4 
values 5.3 

Set-Constructor 5, 5.3 
syntax 5.3 

Set-Type 3.2.3 
syntax 3.2.3 

SetClip Procedure E.9.1 
SetContrast Procedure F.3.1 
SetCursor Procedure E.9.2 
SetOateTime Procedure F.8 
SetOimContrast Procedure F.3.2 
SetEmptyRgn Procedure E.9.11 
SetEnv 0.3.8.1, D.3.8.2 0.3.12 
SetFadeDelay Procedure F.3.2 
SetHlt D.3.8.2? D.3.12 
SetHlt Address 0.3.8.2, 0.3.11, 0.3.12 
Set Legends Procedure F.5.1 
SetOrigin Procedure E.9.1 
SetPenState Procedure E.9.3 
SetPort Procedure E.9.1 
SetPort30 Procedure E.12.4 
SetPortBits Procedure E.9.1 
SetPrecision 0.4.2, 0.4.12 
SetPt Procedure E.9.17 
SetPt20 Procedure E.12.4 
SetPt3D Procedure E.12.4 
SetRect Procedure E.9.6 

Index-27 

Index 



Pascal Reference H8I1ual 

SetRectRgn Procedure E.9.11 
SetRnd D. 3. 8. 1, D.3.12 
SetRepeatRate Procedure F.5.5 
SetStdProcs Procedure E.l0 
SetTimeStamp Procedure F.9 
SetVolume Procedure F.4 
SetXcp D.3.8.2, D.3.12 
Sgn D.3.4.2, D.3.12, D.4.7, D.4.12 
Shared Intrinsic-Unit Notes 9-1 
ShowCursor Procedure E.9.2 
ShowPen Procedure E.9.3 
Sig D.3.4.2, D. 3. 12, D.4.7, D.4.12 
SigDig D.3.12 
SIGDIGLEN D.3.12 
Sig-FFarm D.4.6 
Sig-FForm D.4.12 
Sign 1. 4 

syntax 1. 4 
Sign D.3. 7.1 
SignDfX D.4.4 
SignOfX D.4.12 
Sign Manipulation D.3.9.2 
SignalIng NaN D.3. 7.1 
Signed Zero 3.1.1.3 
Signed-Number 1.4 

syntax 1. 4 
Silence Procedure F.4 
Simple-Expression 5 

syntax 5 
Simple-Statement 6.1 

syntax 6.1 
Simple-Type 3.1 

syntax 3.1 
Simple-Type-Identifier 3 
Sin Function 11.4.4 
Sine D.3.10.4 
Single D.3.12 
Sinele, Double, Comp Extended D.3.2 
Singular D.4.10.1 
SinhX D. 4. 3, D.4.12 
SinX D. 3. 10. 4, D.3.12 
Size-Attribute 3.1.1.6 

syntax 3. 1. 1. 6 
Sizeof Function 11.1.3 
Skew Procedure E.12.4.2 

Index-28 

Index 



P8sc81 Reference 1f8nu81 

SNAN 0.3.7.1, 0.3.12 
Solving a system of linear equations 0.4.10.3 
Sorted 0.4.5 
Source Transfer Mode E.7.1 
SpaceExtra Procedure £.9.4 
Speaker F.4 
SpeakerVolume Data Type F.l0 
Special Symbols 1.1 
Sqr Function 11.4.3 
Sqrt Function 11.4.8, D 
SqrtX 0.3.3.3, D.3.12 
Square Root 0.3.3.3 
Stable 0.4.5 
Stack Space and Memavail Function 

11. 2.5 
Standard Apple Numeric Environment 0-1 
Standard errors D. 4. 10. 7 
Standard Procedures and Functions 

for I/O 10 
10, 11 

Standard Simple-Types 3.1 
Statement 6 

syntax 6.1 
Statement-Part 2.1 

syntax 2.1 
Statistical Computatins D.4.10.7 
StdArc Procedure E.10 
StdBits Procedure E.10 
StdComment Procedure E.l0 
StdGetPic Procedure E.10 
StdLine Procedure E.l0 
StdOval Procedure E.10 
StdPoly Procedure E.10 
StdPutPic Procedure E.10 
StdRect Procedure E.10 
StdRgn Procedure E.10 
StdText Procedure E.l0 
StdTxMeas Function E. 10 
Str2C D.3.4.2, D.3.12 
Str2D 0.3.4.2, D.3.12 
Str2S D.3.4.2. D.3.12 
Str2X 0.3.4.2, D.3.12 
Str20ec 0.3.12 
String 1.6, 3.1.1.6, 4.3.1, 5.1.5.3, 

10.3.1.4, 10.3.3.5, 11.6, A 

Index-29 

Index 



P8Scal Reference IfanfRIl 

character 4.3.1 
comparisons 5.1.5.3 
concatenation 11.6.3 
constant 1.6. 3.1.1.6 
constant comparisons 5.1.5.3 
length function 11.6.1 
procedures and functions 11.6 
reference 4.3.1 
substring copying 11.6.4 
substring deletion 11.6.5 
substring insertion 11.6.6 
substring search 11.6.2 
values in text-oriented IIO 

10.3.1.4. 10.3.3.5 
String-Character 1.6 

syntax 1. 6 
String-Type 3.1.1.6 

syntax 3. 1. 1. 6 
String-Type-Identifier 3 
StringWidth Function E.9.4 
Structured-Statement 6.2 

syntax 6.2 
Structured-Type 3.2 

syntax 3.2 
Structured-Type-Identifier 3 
Stuff Hex Procedure E.9.18 
Systems of linear equations 0.4.10.9 
Style D. 3. 4. 2. D.3.12 
SubPt Procedure E.9.17 
Subrange-Type 3.1.3 

syntax 3. 1. 3 
Subtract D.3.3.1 
SubC 0.3.3.1. D.3.12 
SubD D.3.3.1. D.3.12 
SubSx D.S.3.1, D.3.12 
SubX D.3.3.1. D.3.12 
Succ Function 3.1, 11.5.3 
Successor 3.1 
Swap D.4.5 
Syntax Diagrams, Complete Collection 

C 
Syntax Diagrams. Explanation Preface 
System Intrinsic Library 9.2.2. 12.1 

Index-3D 

Index 



P8sc81 Reference 1f8nu81 

T 
Tag Constants In New And Dispose 

procedures 11.2.1-2 
Tag-Field 3.2.2 
Tag-Field-Type 3.2.2 

syntax 3.2.2 
Tangent D.3.10.4 
TanhX D.4.3, D.4.12 
TanX D.3.10.4, D.3.12 
Term 5 

syntax 5 
TestHlt D.3.8.2, D.3.13 
TestXcp D.3.8.2, 0.3.12 
Testing Set Membership 5.1.5.5 
Text E.5.2 
Text Type 3.2.4, 10.1.2, 10.3 
Text-Drawing Routines E.9.4 
Text-Oriented I/O 10.3 
TextFace Procedure E.9.4 
Textfile 10.1.2, 10.3, Ar 
TextFont Procedure E.9.4 
TextMode Procedure E.9.4 
TextSize Procedure E.9.4 
TextWidth Function E.9.4 
Three-Dimensional Graphics. See 
TFP-byte D.4.4, D.4.12 
TFP-Comp 0.4.4, 0.4.12 
TFP-Double D.4.4, D.4.12 
TFP-Extended 0.4.4, 0.4.12 
TFP-integer D.4.4, 0.4.12 
TFP-longint 0.4.4, 0.4.12 
TFP-real 0.4.4, D.4.12 

Graf30 
Time F.8. F.9 
Time Stamp F.9 
Timer Function (Millisecond Timer) 

F. 7 
Timers F.6, F.7 
TimeStamp Function F.9 
TimeToOate Procedure F.9 
TONEAREST 0.3.8.1, 0.3.12 
TOWARDZERO D.3. 7.1, 0.3.12 

Index-31 

Index 



Pascal Reference Hanual 

Trail-Point D.4.6, D.4.12 
Transfer Functions 11.3 
Transfer modes E.7.1 
TransForm Procedure E.12.4.2 
Transformation D.4.10.1 
Transformation Matrix E.12 
Translate Procedure E.12.4.2 
Transpose D.4.10.3 
Treesearch Procedure A 
Trigonometric Functions D.3.10.4 
Trunc D.2.4 
Trunc Function 11.3.1, A, D 
Turtlegraphics Unit A 
Type 3 

compatibility and identity 3.4 
syntax 3 

Type-Conversion Notes 3-1 
Type-Declaration 3 

syntax 3 
Type-Declaration-Part 2.1, 3.5 

syntax 2.1 

u 
UCSD Pascal A 
Unary Arithmetic Operators 5.1.2 
UNDERFLOW D, 3._ 8. 2, D. 3. 12 
Underscore Character 
UnionRect Procedure E.9.6 
UnionRgn Procedure E.9.11 
Uniqueness 0.4.10.3 
Unit 9 

intrinsic 9.2 
regular 9.1 

Unit-Heading Syntax Notes 9-2 
Unit, Intrinsic Notes 9-1 
Univtype Notes 7-2 
UNORD 0.3.6, 0.3.12 
Unordered 0.3.6 
Unsigned-Constant 5 

syntax 5 
Unsigned-Integer 1.4 

syntax 1.4 
Unsigned-Number 1.4 

syntax 1. 4 

Index-32 

Index 



Pascal Ref'erenceHanual 

Unsigned-Real 1.4 
syntax 1.4 

Untyped File 3.2.4, 10.1.1-2, 10.4 
I/O 10.4 

UPWARD 0.3.8.1, 0.3.12 
Uses 0.3.1, 0.4.1 
Uses-Clause 8.1, 9.1.1-2, 9.2, 9.3 

syntax 8.1 
Utility Procedures 0.4.4 

v 
Value Parameter 7.3.1 
ValidPrefix 0.3.12 
Variable 4 
Variable Parameter 7.3.2, A 
Variable-Declaration 4.1 

syntax 4.1 
Variable-Declaration-Part 2.1 

syntax 2.1 
Variable-Identifier 4.1 

syntax 4.1 
Variable-Reference 4.2 

syntax 4.1 
Variant 3.2.2 

records, new procedure 11.2.1 
syntax 3.2.2 

Variant-Part 3.2.2 
syntax 3.2.2 

Vectors and Linear Transformations D.4.10.1 
Vector space 0.4.10.1 
Vertical Retrace F.3 
VHSelect Data Type E.3.2 
ViewAngle Procedure E.12.4.1 
Viewing Pyramid E.12 
ViewPort Procedure E.12.4.1 
VisRgn E.5 
Volume Function F.4 

, 
Wedges, Graphic Operations E. 9. 10 
While-Statement 6.2.3.2 

optimization 12.4 
syntax 6.2.3.2 

Index-33 

Index 



Pascal Reference Itonuol 

With-Statement 6.2.4 
syntax 6.2.4 

Wordstream Type A 
Write Procedure 10.3.3. A 

with real values D 
Write-Protection of File 10.1.5 
Writeln Procedure 10.3.4. A 

.r 
X2C D.3.4.1, 0.3.12 
X20 D.3.4.1, 0.3.12 
X2I 0.3.4.1, 0.3.12 
X2L 0.3.4.1, 0.3.12 
X2LDec D.4. 7, D.4.12 
X2S D.3.4.1, D.3.12 
X2X D.3.4.1, D.3.12 
X2Dec D.3.4.2, D.3.12 
X2Str D.3.4.2, D.3.12 
XForm Matrix E.12 
XpwrI D.3.10.2, D.3.12 
XpwrY D. 3. 10. 2, D.3.12 
XorRgn Procedure E.9.11 

y 
Yaw Procedure E.12.4.2 

z 

ZERO 0.3.7.1, D.3.12 
Zero D.2.1. D.3.7.1 
Zero of a Nonlinear Function D.4.9 
Zero of polynonial function D.4.9 
Zero Signed 3.1.1.3 

CHARACTERS 
$C Compiler Commands 12.1 
$0 Compiler Commands 12.1 
$DECL Compiler Command 12.2.1 
$E Compiler Command 12.1 
$ELSEC Compiler Command 12.2.4 
$ENDC Compiler Command 12.2.4 
$1 Compiler Command 12.1 

Index-34 

Index 



P8sc81 Reference 1f8nu81 

$IFC Compiler Command 12.2.4 
$L Compiler Commands 12.1 
$R Compiler Commands 3.1.3, 12.1 
$S Compiler Command 8.3. 9.1. 9.2. 

12.1 
$SETC Compiler Command 12.2.1 
$U Compiler Commands 9.1.2, 9.2.2, 

12.1 
$X Compiler Commands 12.1 
0, Signed 3.1.1.3 
1S-Bit Integer Arithmetic 3.1.1.1-2, 

11. 3. 3 
32-Bit Integer Arithmetic 3.1.1.2, 

11. 3. 3 
3D Graphics. See Graf3D. 
@ Operator 3.3, 5.1.6 

Index-35 

Index 





Notes 




