
Pascal

Workshop Manual
ParI 2 01 3

A6L0111

I-O'51-A

Workshop User's Guide

for the Lisa"

Licensing Re(JJirements for SOftware Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distribUting any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

@1983 by Apple Computer, Inc.
20525 Mariani Avenue
CUpertino, California 95014
(408) 996-1010

Apple, Usa, and the Apple logo are trademarks of Apple Computer, Inc.

Simultaneously publiShed in the USA and Canada

OJstorner satisfactloo

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed ... Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

ProWctRevlslons

Unless you have purchased the product update service available through your
authorized Lisa dealer ... Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual ... even if you have returned
a registration card received with the prodUCt. You should check periodically
with your authorized Lisa dealer.

Llmltatloo 00 Wanmtles a1d LiabIlity

All Implied warranties concerning this manual and media ... including implied
warranties of merchantability and fitness for a particular purpose ... are limited
In duration to ninety (90) days from the date of original retail purchase of thIs
product

Even though Apple has tested the software described in this manual and
reviewed its contents ... neither Apple nor Its software suppliers make any
warranty or representation ... either express or Implled ... with respect to this
manual or to the software described in this manual ... their quality ... performance ...
merchantabIlity ... or fitness for any particular purpose. /ls a result ... this
software and manual are sold "as Is and you the purchaser are assuming the
enUre rIsk as to theIr quallty and performance.

In no event will Apple or its software suppliers be liable for direct... indirect ...
special ... incidental ... or consequential damages resulting from any defect in the
software or manual ... even if they have been advised of the possibility of such
damages. In particular ... they shall have no liability for any programs or data
stored in or used with Apple products ... including the costs of recovering or
reproducing these programs or data

The warranty and remedIes set forth above are exclusIve and in lIeu of all
others ... oral or written ... express or Implied. No Apple dealer ... agent or
employee Is authorIzed to make any mOdIfication ... extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages ... so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights ...
and you may also have other rights that vary from state to state.

ii1

LIcense ern COpyrt{flt

This manual and the software (computer programs) described in it are copy­
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if ·they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, bUt extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, InclUdIng a shared-dISk system. (contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

29-03S2-A

Chapter 1
Int.J'O(ljCtioo

Contents

The Workshop provides tools for program development. It provides facilities
for edIting, language processIng, and debugging, as well as commands for
managing files and configuring the system. The system also includes many
other utilities.

ampter 2
The File Mcniger

The Flle Manager enables you to manage and manIpulate fUes and volumes.

ampter 3
The System Mcniger

The System Manager enables you to set default and confIguration parameters
for the LIsa, and manage processes.

Olapter4
The EdItor

The Editor enables you to create and modify text files. These text files are
used as input to the Compiler and the Assembler.

Olapter5
The Pascal ~l1er

The CompHer translates Pascal source code Into object code. Translation
requires two steps: first the compiler translates Pascal into I-code; then the
code Generator translates the I-code Into object code.

Olapter6
The AssefrOler

The Assembler translates assembly language programs Into object code.

Olapter7
The Unker

The LInker combInes object code flIes Into executable programs.

Olapter8
The Debugger

The DebUgger enables you to examIne memory, set breakpoInts, and perform
other run-time debuggIng functions.

v

~ter9
Exec FUes

Exec flIes enable you to execute a serles of commands and programs
automatically.

~ter 10
The TrCllSfer Progran

The Transfer Program enables you to transfer fUes between the Lisa and a
remote computer. It can also let you use the Lisa as a terminal for a
remote computer.

Chapter 11
The utilities

Utility programs are provided for debugging, configuring the system, and
manipulating fUes.

AppendIxes

A Error Messages
This section contains a list of error messages for the system, the Linker,
and the Assembler.

B The Lisa Omacter set
This section defines the complete Lisa character set.

C Screen Cmtrol Omacten
This section lists character sequences that can be used for controlling trle
screen display.

o COfTmoI. Problems
This section contains some common problems and suggestions for handling
them.

IndeX

vi

-03SJ-A

Preface

This manual Is intended for experienced Pascal" BASIC" or COOl1..
programmers. It describes the Workshop system" which is the environment in
which these languages are used. We assume you have read the Lisa OWner's
Guide and are familiar with your Lisa system.

Related Doct.ments
F or Pascal programming:

• Pascal Reference Manual for tl7e Lisa

• MC6800016 Bit Microprocessor User's Manual

• t:perating ~JlSt.em Reference I'1antJal fOJ" tI7e Lisa

For BASIC programmlng:

• BASIC-Plus LJseJ"'s GuIde fOJ" tI7e Lisa

For CCEl1.. programming:

• CCl3a.. User's Guide for tl7e Lisa

• cIBa Reference Manual for tl7e Lisa

Type and Syntax COnventions
Boldface type Is used In this manual to distinguIsh program text from Engllsh
text.

Italics are used when technical terms are introduced.
Syntax dIagrams are used to descrIbe fIle specIfiers and the syntax of exec
files. For example" the following diagram descrIbes a wild-card-spec:

wUd-can:t-spec

vii

Start at the left and follow the arrows through the diagram. Several paths
are possible. Every path that begins at the left and ends at the arrowhead on
the right is valid, and represents a valid way to construct a file specifier.
The boxes traversed by a path through the diagram represent the elements
that can be used to construct a wUd-card-spec. Thus the diagram embodies
the following rules:

• A wlld-card-spec can begln with a string (strIng-l) or the string can be
omitted.

• A wild-card-spec must contain one of ".It, "?., or "~ •.
• The 11.11, "?'., or "~' can be followed oy a string (string-2) or the string can

be omitted.
The name contained in a rectangular box is the name for some other
syntactic construction that is specified by another diagram. The name in a
rectangular box is to be replaced by an actual instance of the construction
that it represents.

Symbols such as reserved words, operators, and punctuation, are enclosed In
circles or ovals. Text In a circle or oval represents itself, and is to be
written as shown (except that capitalization is not required~

viii

9-0389-A

Pascal for the Lisa
Release 1.0 Notes

What's in the Pascal Release Notes?

These notes describe situations that were brought to our attention after it
was too late to document them in the Pascal manuals.

Insert these notes in the bacK of their respective manuals, so that you can
refer to them as necessary.

If you have a question or a problem that you can't resolve usIng the manuals
or these notes, call the Lisa Telephone Support Line, (800) 553-4000.

ManJal
~ter Release I\k)te

Workshop The installation instructions state that you must install the Usa
Chapter 1 Office System before installing any optional language prodUCts.

However, these instructions apply to only the installation order.
You do not need to Install the Office System If you intend to do
only language development.

Workshop After you press the on-off button (at the start of Installation),
Chapter 1 walt for a quICk tone before selecting the dIsk drIve.

Workshop Although the installation instructions state that the Installation
Chapter 1 procedure should be aborted if any error messages are returned,

you mIght normally encounter error 950 or 948 when you try
to install SYSTEM.TIMER PIPE and RESIDENT CHAl'JNEL. You
mIght also encounter error 1176 for these pIpes if you use the
Equal command after installation.

Workshop Correctly installing Pascal 1.0 on top of your Office System
Chapter 1 Release 1.0 pulls the OffIce System up to level 1.2. All

subsequent installations of system software are then order
dependent, requirIng installation from the Workshop to follow
that of the Office System. Do not reinstall the Office I and
OffIce II dIskettes wIthout immediately reinstalllng the language
products(s~ However, if your Office System is already at level
1.2, the Installation Is order Independent.

Workshop After successfully addIng Pascal to a ProFlle containIng the
Chapter 1 Office System, If the system Is merely allowed to reboot, the

default of the EnvIronments wIndow wIll cause the OffIce
System to restart To cause the ini tial1zation to pause at the
Environments window In order to examIne or Change the default,
press the space bar after the machine set ftest, whlle the
hourglass leon Is showIng.

WOrkShop If you have just prInted anythIng on a daIsy wheel prInter from
Chapter 1 the Office System, and you return to the Workshop using the

EnvIronments wIndow, prInting to logIcal devIce "-prInter" wIll
be garbled until the printer is swItched off and then on agaIn.

septen1lJe.r 1983

Mcn.Ial
Olapter Release Note

workshOp The pr1nt commands of the Ed! tor always use the logIcal device
Chapter 1 "-prIntet' set In the system Manager. ChoosIng "Daisy Wheel

Printet' or "Dot Matrix PrInter" from the Print menu does not
Change the system's configuration, bUt only adjusts the Editor to
the intended device.

WorkShop My program intended to run as a background process
Chapter 1 (MakeBacKgrOUndProcess) must Include frequent and judIcIous

calls to the operating System procedUre YIeld_CPU and must
not expect 1/0 from the console devIce. Hence, system utilI ties
should never be run In the backgrOUnd. Also, a background
process ShOUld not have any Interaction wIth the console, and It
cannot pull events from the hardware event queue.

WOrkShOp DesIgnate user flIes wIth the pathname "SHELL:' only if you
Chapter 2 want them to appear In the EnvIronments wIndow as an

alternative shell.

Workshop You cannot directly rename a file to a name that differs from
Chapter 2 the original only in the case of the characters, because the

internal representation of the names is the same. Instead,
rename the file to a temporary name, and then change that
to the name you want.

Workshop Be careful if you unmount the prefix volume by ejecting the
Chapter 2 diSkette, scavenging the volume, or using the Unmount command.

If the same volume is remounted by reinserting the diskette,
scavenging the diskette, or using the Mount command, you w111
need to reset the prefix with the Prefix command. Do not
accept the default, even though the default w111 seem correct.
Instead, retype the prefix.

Workshop The Output Redirect function of the System Manager does not
Chapter 3 correctly handle screen output that uses GOTOXY, for example,

screen output done by the File Manager when listing wildcard
matches. This results In redirected output to the printer being
overwritten on one line.

September 1983

McnJal
Olapter Release Note

WOrkshop The Ed! tor changes the creation date of a text fIle to the
Chapter 4 current date each time the fIle Is modI fled.

WOrkShOp If the Inltiallzation Of the EdItor falls dUe to lack of dIsk space
Chapter 4 (error 309), and space on the disk is then made free, the next

attempt to start the EdItor wIll also fall (error 304). You must
enter the Process Manager of the System Manager, KIll the
Editor process, and then retry.

WOrkShOP The language processors, EdItor, and other utillties of the
Chapter 4 Workshop expect as input a standard .TEXT file. The internal

structure of a text fUe In a block-structured devIce Is
described In the Usa Pascal Reference Manual:

WOrkShop
Chapter 4

WOrkShOp
Chapters 4

and 10

WOrkShop
Chapters 4

and 10

• Each page (two 512-byte blocks) contains some number of
complete lines of text and Is padded with null characters
(ASCII 0) after the last line as necessary to complete the
page.

• Two 512-byte header blocks are also present at the
beginning of the fUe. These mayor may not contaln
information.

• A sequence of spaces (ASCII 32 decimal., $20 hexadecimal)
can be compressed into a 2-byte code namely, a OLE
character (ASCII 16 decimal, $10 hexadecimal), followed by a
byte containing the value 32 decimal plus the number of
spaces represented.

The fUe name "PAPER.TEXT" Is reserved for the default
stationery template of the Editor and shoUld not be used for
other purposes.

Cursor resIdUe mIght be left on the screen In the Editor and the
Transfer program, especially after an error message has
appeared.

The names of flIes created by the EdItor and Transfer wIll be
changed to be all upper case, regardless of how they are typed
In.

september 1983

McnJal
Chapter Release Note

WOrkShOp If multiple errors occur dUring a link" dUe an attempt to llnk
Chapter 7 regular unIts wIth IntrInsIc unIts" the LInker wIll termInate after

reporting only the first error.

WorkShOp For the DebUgger" >PR 2 is print to SLOT2CHANZ" not
Chapter 8 SLOT2CHAN1. Upper and lower are reversed In the manual.

WOrkShop DIsplay of error message 647 whIle you are usIng the Transfer
Chapter 10 utility might indicate only that after a timeout the program has

faIled to receive the approprIate handshake from the hOst

WOrkShop If you type any key ouring "PlaybaCk from what fHe .. In the
Chapter 10 Transfer program" the playback will abOrt

WorkshOp If you use the Transfer program to make contact with a hoSt
Chapter 10 computer" and you exit the program wIthOut loggIng off

explicl tl y" the connection will not be automatically terminated.
ThIs Is usUally a convenIence, but mIght not meet user
expectations.

WorkshOp When the Workshop shell is InItialized" all serial ports are
Chapter 10 configured by default as if they were prInters (e.g." 9600 baUd,

DTR handshake" automatic linefeed insertion)" whether or not
they are 11sted as such by Preferences. If you subsequently use
and then exit the Transfer program" the printer configuration is
restored automatically for ONLY those ports 11sted In
Preferences as printers; others will retain the properties set by
the Transfer program.

WOrkShOp To termInate recordIng to a flIe opened by the Transfer program
Chapter 10 dUrIng "Record to'·" open the Control menu and agaIn select

"Record to·'. ThIs termInates recordIng and closes the fIle.
Note that, unlike the Edi tor" Transfer does not automatically
insert a carrIage return at the end of the fHe. If you use thIs
recording to capture text suCh as a source program, and the
language processor (such as BASIC-Plus) expects to see a
carriage return at the end of the file" attempting to run the raw
recorded text mIght cause the system to hang.

WOrkShop The manual states that the default handshake In the Transfer
Chapter 10 program Is XQnIXOff. The correct default Is None.

september 1983

.-OO54-A

Chapter 1
Introduction

1.1 The WOIkst"loJ) •••••••••••••.•• 1-1
The WorkshOp provides the functions necessary to develop and run
programs on the Lisa The WorkShop can be booted from eIther a
diskette or a ProfIle.

1.2 start.lrlg the WoIkst'q:) .. 1-2
The Workshop is started by booting the Lisa from a disk containing the
Workshop software. You can use the Environments window to select
one of several available environments.

1.3 The WoIkst"loJ) c:ornrr.ar ld Line ... 1-3
The WOrkShop command line gives you access to the main system
functions and subsystems. All the Workshop commands are described in
this section.

1.4 Flle System OI'gB'llzatlon CJ1d NiJnlng .. 1-6
FUes are stored on disk volumes and are accessed by specIfyIng the
volume name and the fne name.

15 The WOIkstloJ) lJser InterfalCe ••••••.••.•••••• 1-6
this section gives information on the user Interface conventions used In
the WOrkshop system.

1.6 utlHty ProgICI'nS .. 1-9
utility programs prOVide additional functions for the WorkshOp. A
utility program is started by choosing the RLN command from the
WorkShop command Une.

1.7 How Do I Install the Pascal LcnJlI8Qe System? 1-9
This section provides instruct10ns for installing the Pascal Language
System onto your Profile.

1.8 How Do I WrIte CI'ld Rl.Il a Pascal Prognm? 1-11
A Pascal program Is written' with the Editor. The source fUe must be
compUed and linked before it can be run.

1.9 How Do I WrIte CI'ld Rtn at Assembly LcnJlI8Qe Prognm? ••••••••••••••• 1-11
An assembly language program is written with the Editor. It must be
assembled and linked with a Pascal main program before it can be run.

L1D How Do I Install the BASIC LCf9J8Qe System? 1-12
This section provides instructions for installing the BASIC Language
System onto your Profile.

Lll How Do I use the BASIC Interpreter? ... 1-13
A BASIC program can be written using either the Editor or the BASIC
Interpreter to create the source file. The BASIC Interpreter will run
the program.

1.12 How 00 I Install tl1e Cl:B::L LCf9J8Qe System? 1-13
This section provides Instructions for Installing the cca£l. Language
System onto your ProFile.

1.13 How 00 I Write a am.... ProgrcIn? ... 1-15
A CCBa.. program is written with the Editor. After writing the
program, enter the CCBCl.. language system to compUe and run the
program. The CCBCl. system Is invoked by pressing C in response to the
Workshop command prompt.

1.14 lJsing the Printer ... 1-15
This section provides instructions on how to configure your Usa for a
printer. Information is also provided on how to specify a default
printer when you have more than one printer connected to your Usa

L1S Ttle q:Jeratirlg System•......•..•.•..........•...•...................•. 1-16
The Workshop runs under the ~erating System for the Usa computer.
You can access ~erating System routines through the SYSCALL
interface. More information about this interface can be found in the
Q:Jeratfng System Reference Manual for tlJe Lisa

Introduction

1.1 1he WOl1<sIql
The Workshop allows you to develop and run programs on the Usa It
provides tools necessary to write, debug, and run programs in Pascal, BASIC,
and COOtl... This manual explains how to use the Workshop and all of its
tools.
Command Jines provide access to all Workshop functions. The main command
line, WCRKSHCP, allows you to edit programs, run utilities or user programs,
and use the languages available on the system. It also provides access to two
subsystems: the File Manager and the System Manager.
The File Manager allows you to copy, delete, rename, and list disk files. It
includes a backup function, and functions for manipulating volumes. These
functions are listed in the FILE -MGR command line. (See Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment Its commands are listed in the SYS-MGR command line.
(See Chapter 3.)

The Lisa system can display one of two screens, called the main sc.reen and
the altemate screen. The Workshop system normally displays on the main
screen. The alternate screen Is used by the system Debugger. You can
change to the other screen display b)' pressing the right hand [CPTICJ\I] key and
holding it down while you press the [ENTER] key. The System Manager
contains the Console command, which can be used to specify where the
Workshop shoUld display.
You can currently use the Workshop to write programs in Pascal, CCBa..., and
BASIC. To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Progranming:
• P8SC8J Refemnce ManuaJ for /he Lisa

• MC68000 16 Bit Microprocessor User's MantIal (if you want to use
assembly language or the Debugger)

• tperating System Reference MantIal for tile Lisa (for information on
system calls)

For BASIC Programming:
• BASIC-PJus User's Guide for the Lisa

1-1

WorkShcp user's GuIde IntnJductlm

For CCBCl.. Programming:

• CtBa. user's Guide For the Lisa

• CtBa. Reference MantJa/ for the Lisa
If you have only a BASIC or CCI3eL system, you will not have all the software
described in this manual. Specifically, you w111 not have the Debugger and
can disregard the sections that pertain to it. The portions of this manual that
will be most· useful to BASIC and CCI3CL programmers are:

• The IntrodUction, whIch describes hOw to use the Workshop.
• The File Manager, which describes files and how to manipulate them.

• The System Manager, which describes setting up the system configuration
parameters.

• The Editor, which describes how to create and modify text files, which are
used as source files.

You may also use some of the utllltles if they are Included In your software.
1.2 StartIng the WOrkshop

The Workshop can be booted from a diskette or a Profile"'. It will most
commonly be used with a ProFile, because hard disks have more space and are
faster. See the Lisa OWner's Guide for instructions on booting the system.
To start the system, bOOt from a disK that contains the Workshop software. If
your disk contains only the WOrkshop environment, the Workshop command
11ne wIll appear at the top of the screen. If you have more than one
environment (for example, the Workshop and the Office system) you can use
the EnvIronments wIndow to start up the envIronment you want, and swItch
between environments.
The Environments window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically When you boot the system. To access the Environments window
while booting the system, press any key while the Lisa is starting up. The
Environments window will be displayed.
The Environments wIndOW Is shown In FIgure 1-1. It dIsplays five bUttons:
Power Off Tum off the Lisa
Restart Reboot or reset the Usa
start Start the selected environment
set Default Set the default to the selected envirorment
NJ Default Display the Environments window on startup.

1-2

WOJ1<"SI7op user's GI.Ilde IntJVdlIction

To select an envIronment, move the poInter to the checkbox of that
environment and cllck the mouse button. Then move the pointer to the start
button and click. The selected envIronment wIll start
To access the Environments window from the Workshop, for example, to select
another environment, use the Quit command from the WOrkShOP command line.

Environlllent!

(Restart (Power Off:

• loIorl<Shop (Set Default

o Ott ice S~ste1ll
No Dehult

Start

Fi~e 1-1
The Envirorments Window

13 The WoIkshop comrnc:m Line
When you select the Workshop environment, the Workshop command line
appears at the top of the screen. This command line lists all the primary
WOrkShop commands and gives access to several subsystems with additional
commands. The Workshop line displayed contains only some of the commands
available. You can see the rest of the commands by pressing It?", the last
symbOl on the line. To return to the original command line, press [RETURN).
Pressing the first letter of a command initiates the command.
Most commands will ask for additional information. Type in the information
using the Usa keyboard. Some questions have a default Value, displayed In
square brackets ([default]). To accept the default value, press [RETURN). If
you don't want the default value, type 1n the value you want.
Two other SUbsystems have separate command lines: the File Manager and the
System Manager. Their command lines can be accessed from the Workshop
command 11ne, and are used the same way.

1-3

WOd<ShOp User's Guide Introdllctlon

The maln, or Workshop, command Une Is as follows:
WlRKSI-IP: FILE-MGR, SYSTEM-MGR, Edit, RU'l, Pascal, Basic, CObOl, QJlt, ?

The addIt10nal portIon .. dIsplayed by pressIng It?" .. Is:
Assemble, Debug, Generate, Mak~gI"Cll.M, Link, TICI'lSfeIProgrcm

All the main command line commands are described as follows:
F1LE-MGR (F)
This command puts you into the File Manager subsystem, which is used to
manipulate the files and volumes on the system. For more information on the
fUe manager .. see Chapter 2 in this manual.
SYS1B+~(S)
ThIs command puts you Into the System Manager SUbsystem. ThIs subsystem
provIdes varIous confIguration and utilIty functions. See Chapter 3 In thIs
manual for more Information.
Edit (E)
The Edit corrmand puts you into the text editor, which is used to create and
modify text files. The Editor is used to create source fUes for BASIC, CCBCl...,
and Pascal. It is also used for assembly language programming and to create
exec fUes. The Editor is described in Chapter 4 in this manual.
Ru'l (R)
The Run command causes a complled and Hnked program to execute. ThIs
command Is used for user-written Pascal programs, utillty programs, and any
other software that runs under the WorkShop. The Run command asks you for
the flIe to run. ThIs fUe must be an executable ObJect flIe or an exec flle.
When you gIve the Run command a fUe name wIth no .CBJ extension, it wIll
first search for that fUe name. If It Is not found, It wIll search for
fllename.obJ. If you dO not specIfy a volume name, the Run command will
search through up to three default volumes for the file. (see Section 2.4.1 for
an explanation of volume name.) These defaults can be set by the FHe
Manager's PrefIx command. See Chapter 2 for more information on the PrefIx
COmmand.

The Run command w1l1 also accept an "exec f11e" as input. M exec fUe is a
scenario of commands for the Workshop system to carry out. An exec file
name must be preceded by a "<" or "exec/' to be processed correctly. For
more information on exec fUes, see Chapter 9 in this manual.
Pascal (P)
This command starts the Pascal COmpiler. The Compiler asks for the input
f11e .. whICh must be a text f11e; the list1ng fUe; and the output fUe, whIch wIll
contain the object code. The Pascal compiler is described in Chapter 5.
Further Informat1on on the Pascal language can be found In the Pascal
Reference Manual for tfJe LIsa.

1-4

Workshop User's Guide Intn:Jduction

CompllatIon Is In two steps. The first step, done by the Pascal command,
produces an intermediate COde f11e. After thIs, you must use the Ganerate
command, (press G) to generate an object fUe from the IntermedIate code fIle.
Basic (8)
This command puts you into the BASIC Interpreter. More information on
BASIC programming can be found in the BASIC-PJus User's Guide for the
Lisa.

COOOl(C)
This command puts you into the COBOL language system. More information
on COBOL programmIng can be found in the COBa User's Guide for the Lisa
and the COBOL Reference Mentlal for tile Lisa.

Qult(Q)
The Quit command ends the Workshop environment You can use it to access
the Environments window to start another environment or to tum off your
Usa.
The following prompt line appears after you confirm that you want to leave
the shell:

WorkShop_shell, Another_shell, RebOOt, Power_off
Type the first letter of what you want to do, for example, type A to access
the Environments wIndow.
~le(A)
The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MC6800016 Bit Microprocessor
User's Manual

Debug (0)
The DebUg command causes your program tarun wIth a breakpoInt inserted at
the first instruction in the program, so you can use the debugger on the
program. More Information on the Debugger can be found in Chapter 8 of
this manual.

Generate (G)
The Generate command converts intermediate code files produced by the
Pascal compUer into object code. It is used with the Pascal compUer and is
described in Chapter S.

MakeBackQIOUld (M)
The MakeBackground command allows you to start up a background process,
then continue using the Workshop for other functions. It is assumed that the
backgroUnd process wIll not try to display on the console or require keyboard
input.

l-S

WoIksIIt:p User's Guide Intn:JdK:tim

Link (L)
The Link command executes the Linker. The Linker Is used to prepare
complled Pascal programs and assembled routines for execution, and to link
together sepm:ately compiled pieces of a program. The Linker is described in
Chapter 7.

TIlI1SfeIProgta •• (T)
The Transfer Program allows your Usa to communicate with a remote
computer. It can be used as a terminal, or to transfer files between the Lisa
and the remote computer. The Transfer Program is described in Chapter 10.

1.4 File System Orgirizatim Sld Naming
FUes are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains. A file is specified by giving
the name of the volume and the name of the file:

-volumename-filename
The Workshop maintains a working directory; you can access files in it
without specIfying a volume name. The working directory can be changed by
using the File Manager's Prefix command. Files on the working directory can
be specified by just the fUe name, with no leading "_":

filenana
Further information on the file system can be found in Chapter 2 of this
manual and in the t:peratJng System Reference Manual for the Lisa.

1.5 The WOrkshop User Interface
This section describes conventions and standards used in the Workshop system.
These ways of requesting input from the user are standard throughoUt the
system to make it easier to use.

1.5.1 FHe NBne ProIl1Jts
Many of the Workshop prompts are for file names. In the Usa qJerating
System, you have few restrictions on what characters you can put in file
names. However, you should be aware that the following restrictions exist in
the Workshop:
1. You can embed blanks.., but leading and trailing blanks and tabs will be

removed when the Workshop processes your file prompt input.
2. cases are preserved as you specify them.
A pattname has three parts: a device name, a file name, and an extension.
The following conventions apply to a path name:

device (or volume) name Is up to 32 characters long, excluding '_0.

file name is composed of alphabetic or numeric
characters; spaces are permitted.

1-6

Wo.rksllop User's Guide

extension

Introduction

is composed of alphabetic or numeric
characters; spaces are permitted. All
extension is optional. If present, it is the
final ': and any characters that follow
(there must be at least one) in the
pathname.

The combined length of the file name, plus extension, cannot exceed 32
characters.

Prompts often InclUde default values. You do not have to enter parts of fIle
names already suppUed by defaults.

If a prompt inclUdes a default extension which you don't want (except If the
fHe name consists of only a logical device name), put a period at the end of
the fIle name. The periOd will be removed and no extension wlll be added.

The following sections explaIn the standard responses allowed to prompts.

L5.1.1 The CLEM Key
The [CLEM] key on the Lisa keyboard is an escape key. You can use it in
response to a file name prompt to abort out of the command or program. No
[RETURN] is required after pressing the key.

15.1.2 ProfJ1)ts with ~e Default V81ues
When a default value for part of a fHe name exists, it is shOwn enclosed In
brackets in the prompt message; for example, [.text] Indicates that there Is a
default file name extension value, and that that value is .text. If a default
value Is present, you need specIfy only the fHe name part not supplled by the
default

Extensions will not be added to file specifications consisting of device names
only. Therefore, If you want to specify only a device when there is an
extension default (for example, when prompted for a listing file with a default
extension . TEXT and you want -printer), simply use -printer.

To use the default value for an entire file name, respond with [RETURN~ If
you do not want any fHe to be used, even If a default value exists, respond
wIth a backslash II,".

LS.l.3 PImlJtS with Alternate OefaIlt values
Alternate defaults are indicated by a slash. For example:

[-console H. text]

means you have a choice of either the console or a I'.textll file. To choose the
console, simply press [RETURNl To choose a text file, respond with a file
name.

15.1.4 ProfJ1)ts with separate Defadt values
Each of the parts of a file name might have a separate default value, such as
[-parapert] [-Intrinsic) [.lIbl If each of the defaults Is Independent:

1-7

Workshop User's Guide introduction

• a response with no device specification gives you the default device.

• a response with no file name gives you the default file name.

• a response with no extension gives you the default extension.

Sometimes the defaults depend upon each other. For instance, the prompt
[-paraport-intrinsic] [.lib] indicates dependency, because the first two
components are enclosed in the same set of brackets. When defaults are
dependent, if you choose one or the other of them, you will get both. Be sure
to look at what has been included in the brackets to see whether the defaults
are independent or not.

15A15 Prompts with No Default Values
If you find that no default value is given in the file name prompt, use
[RETURN] or a backslash to specify no file. Sometimes a file is required for
the system to perform its function. If this is the case, and you specify no
file, the program terminates.

15AIA6 Ending a List of PIllfTllts
Some Workshop tools prompt for lists of files, as does the Linker. To indicate
that you are finished responding to a prompt for a list of files, use [RETURN].

L5.1.7 The? Response
If you need help, or a list of program options, respond to a file name prompt
by pressing the ? key followed by [RETURN~ Then proceed according to the
information that appears on your screen.

1.5.2 How to Terminate CI1 QJeratioo
You can terminate the operation of most commands and programs by pressing
.-period, although termination might not be immediate if the program being
run does not recognize .-period.

NOTE

Note that most Workshop tools check for .-period from the keyboard
even when running under exec files. This means that you can abort
Workshop tools in exec files.

Unless user programs are written to recognize the .-period key combination
as an abort mechanism, pressing those keys will not terminate the program
being run. (See PASLIBCALL, Section 5.4, for information on the function
PAbortFlag, which tells whether or not those keys have been pressed.) If this
is the case, you can either:

• wait for the user program to terminate so that .-period can be recognized
by something else, or

• press the NMI key, which forces the system into the Debugger. The NMI
key is the "-" key on the numeric keyboard.

See Section 8.2 for instructions on how to stop a user program early.

1-8

Workshop User's Guide Introduction

1.5.3 How to Halt a SCreen Display
If you want to temporarily stop the screen display, press the • key and type
S, which stops the program from running by blocking its current output
operation. When you want to restart the screen display, again press .-S.

LS.4 Inserting em Ejec~ Diskettes
You can usually insert a diskette at any time. It will be mot.I1ted and
accessible after you press any key, except the ., [CAPS LOCK], [CPTI(N], or
[SHIFT] key, on the keyboard. You can usually eject a diskette by pressing
the diskette button and then hitting any key on the keyboard. (When you are
in the Editor, the Preferences tool, or TransferProgram, you do not need to hit
a key after pressing the diskette bUtton.)

Mounting and unmounting diskettes is handled by the Pascal run-time system
in the WOrkShOp. Therefore, the act of inserting a diskette or pressing the
eject button Is not recognized until Pascal 110 is performed, thUs the necessity
of hitting a key. If the program you are running does not use Pascal 110, you
must first return to the Workshop command Une. Then enter the FHe Manager
and Mount or Llnmount your diskette.

L6 UtIlity programs
The Workshop provides various utility programs, Which support functions used
less often than the functions you Obtain through primary commands. The
utHities are described in Chapter 10.

You must Run utilIties. Choose the Run command from the main command
line by pressIng R when the maln command line is dIsplayed. The system wIll
ask you for the name of the fIle to run. Type In the name of the utilIty you
want to run.

L1 t-Ow Do I Install the Pascal La1QU8Qe system?
Because the Lisa Office System Is a standard product, you must install it
before you install any optional language systems.

To Install the Pascallanguage system, start wIth your ProfIle on and your
LIsa off.

1. Insert the "Pascal 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the • key and type either 1, if you put the diskette in drive 1
(the upper drive), or 2, if you used drive 2 (the lower drive).

4.. Wait. It will take about 3 minutes for the Lisa to load in the qleratlng
System and the Workshop Shell from the diskette.

1-9

Workshop User's Guide Introduction

If you want to stop the loading process at any time after the system
has booted, hold down the • key while you type a period. The system
will stop copying files and you will enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN) to terminate
your responses.

• The system wUI ask if you want to go ahead with the process. (Type Y
for yes.)

• The system wlll ask you where the target ProFile is attached. It must
be attached to the built-in parallel connector (PARAPCRT), or the
upper or lower connector of the parallel Interface card In expansIon
slot 2 (SLOT2CHAN2 and SLOT2CHAN1, respectively~

• The system wlll then ask you to insert the second Workshop diskette,
"Pascal 2".

• The system will then ask if your ProFile needs to be initialized. Do
not initialize your ProFile if there Is already an Office System on It!

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the ProFile, then "enough space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it. Answer Y if the ProFile has ever been used with
a Lisa.

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually being executed.

If you get any error messages, stop the process by typing .-perlod, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple@ Support Hotline to find out what to do.

When all the fUes on the "Pascal 2" dIskette have been copIed, the system
will eject the diskette and ask you to insert the "Pascal 3" diskette, then
continue to copy files.

1-10

Wo.rksl1op User's Guide Intn:x:iA::tion

When the system is finished copying files, the Workshop command line will
appear.

1.8 How 00 I Write B'¥i Rl.rl a Pascal Program?
To write and run a Pascal program, proceed as follows:

1. use the Editor to create a text fIle wIth the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See the
Pascal ReFe.mnce fvIanua/ for IJJe Lisa for information on the language.

2. Compile the program with the Pascal command (press P while the
Workshop command line is displayed~ The output from the compiler is an
intermediate file.

3. The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object fUe. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more information on complUng Pascal programs.

4. Link the program with the Link command. In order to be executable, the
program must be linked with the Pascal support routines contained In
IOSPASLIB.CBJ. If you are using any REAL variables, you must link your
program to IOSFPLIB.CBJ. For other applications you can also use other
libraries and units, or assembly language routines. More information on
the Linker can be found in Chapter 7.

5. The linker prodUCes an executable object file. Press R to run the program.

Information on making system calls from Pascal can be found In the tperating
System Ref'emnce /'4anuaJ lOr the Lisa.

1.9 J-klw Do I W11te en:! Rlil an ~ly LCI'QJ8Qe Prognm?
Assembly language programs must be called as procedures or functions from a
Pascal main program. To write an assembly language routine, proceed as
follows:

1. Use the Editor to create an assembly language source program. See
Chapter 6 of this manual for information on assembly language. Chapter 4
describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text file
you created and produces an object file.

3. Declare the routines you wrote in assembly language as EXTERNAL in the
main Pascal program that calls them.

4. Use the Pascal and Generate commands to create an object file from the
Pascal program. See Section 1.8 for more information.

1-11

Workshop User's Guide Introduction

5. Use the Link command to link the Pascal object file, the assembly object
fUe, IOSPASLIBJEJ, and any other needed unIts or llbraries.

6. Use the Run command to run the resulting object fUe.

1.10 How Do I Install the BASIC language System?
Because the lisa Office System is a standard prOdUCt, you ITlI.ISt install it
before you install any optional language systems.

To install the BASIC language system, start with your ProFile on and your
Usa off.

1. Insert the "BASIC 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the " key and type either 1, if you put the diskette in drive 1
(the upper drive~ or 2, if you used drive 2 (the lower drive~

4. Wait. It will take about 3 minutes for the Lisa to load in the ~rating
System and the Workshop Shell from the diskette.

~

If you want to stop the loading process at any time after the system
has booted, hold down the " key while you type a periOd. The system
will stop copying files and you will enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a serIes of questions. Be sure to type [RETURN) to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

• The system will then ask you where the target Profile is attached. It
must be attached to the buUt-in parallel connector (PARAPCRT~ or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLOT2CHAN1, respectively~

• The system will then ask you to insert the second Workshop diskette,
"BASIC 2".

• The system wUl then ask If your ProFile needs to be initialized. Do
not initialize your ProFile if there is already an Office System on it!

1-12

WOrksl1t:p User's Guide IntrodKJtJon

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the ProFile, then "enOUgh space" means
about 700 blocks. (The language systems share about 800 blocks.)

• If you do initialIze your ProfIle, you wIll be asked if there is now a
Usa OS voltrne on it Answer Y If the ProFIle has ever been used with
a Lisa.

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.

If you get any error messages, stop the process by typing .-period, tum off
your Usa, and start over. If you get the same error again, write it down, and
call the Apple SUpport Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.

1.11 How Do I use the BASIC Interpreter?
To use the BASIC Interpreter, proceed as follows:

1. Use the' Basic command by pressing B when the main command line is
displayed. You will enter the BASIC Interpreter.

2. Enter the BASIC language statements and commands necesary to write and
execute your program. The BASIC Interpreter can execute statements
immediately or save them to run later. You can return to the main
command line by using the BASIC command BYE.

You may also use the EdItor to prepare or modIfy the BASIC source program,
then use the BASIC Interpreter to run it. see Chapter 4 In this manual for
more Information on the EdItor.

See the BASIC-Plus User's Guide for the Lisa for more information on the
language.

1.12 How Do I Install the a:Bl... LarlJU8Qe System?
Because the Lisa Office System is a standard product, you fTJtISt install it
before you install any optional language systems.

To install the CCBCl.. language system, start with your ProFile on and your
Usa off.

1. Insert the "ema... 1" Language System diskette into your Usa's upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the • key and type eIther 1, If you put the diskette In drIve 1
(the upper drive), or 2, if you used drive 2 {the lower drive~

1-13

WOrkshop User:r Guide int.n:Jd.lctim

4. Wait It will take about 3 minutes for the Lisa to load in the ~rating
System and the Workshop shell from the diskette.

t-mE

If you want to stop the loading process at any time after the system
has booted, hold down the • key while you type a perIod. The system
will stop copying files, display "Exec processing aborted", and you will
enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the cistarttext exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for ves.)

• The system will ask you where the target Profile is attached. It must
be attached to the built-in parallel connector (PARAP£Rl), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAf\J2 and SLOT2CHAN1, respectively~

• The system wIll then ask you to insert the second Workshop diskette,
"CffiCl. 1".

• The system will then ask if your ProFile needs to be initialiZed. Do
not initialize your Profile if there is already an Office system on it!

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
WOrkshop Language System on the Profile, then "enough space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it Mswer Y if the Profile has ever been used with
a Lisa

You wIll now see a lot of text flash by on your screen--don't worry, thIs is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.

If you get any error messages, stop the process by typing .-period, tum off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.

l-i4

WoIkshop User's Guide IntJr:xiuction

1.13 How 00 I Write a can... Prognm?
To write a COOn.. program, proceed as follows:

1. Create a text file containing the source program by using the Editor. See
Chapter 4 in this manual for more information on the Editor.

2. Press C to enter the COOn.. language system. More Information on COOn..
programming can be found in the ClBll.. User's Guide For tI1e Lisa and the
ClBll.. ReFemnce I'1a7tI8l For the LIsa.

Use the Quit coomand to exit back to the main command line.
1.14 Using the Printer

To use a printer with the WOrkshOp system, you must set up the printer
correctly, and confIgure your system for the printer. If you have more than
one printer you will want to set up one of them as the default printer. These
operations are explained below.

Setting ~ the Printer
The procedure for setting up a printer varies with the type of printer. See
the instruction manual that came with your printer for directions on how to
set it up correctly.

If your printer is an Apple Imagewriter, the default standards which have been
factory preset should be satisfactory for normal use. However, if you want to
modify the performance of the lmagewriter, you can get the technical
specifications from the /J,ppIe lmagewdte.r User's Manual, Part l' Reference.

Confi~ Your Lisa for a Printer
Follow these steps to configure your Lisa for a printer:

1. From the Workshop command Une, press S to enter the System Manager
subsystem.

2. Then press P for Preferences. The Preferences tool is used to set up the
configuration of the Lisa system and the Workshop.

3. Click on Device Connections to display what devices are connected to the
Lisa

4. Select the port to which your printer is connected. When you select the
port, all devices that can be connected to that port are displayed.

5. Select printer, and additional confIguration options are displayed.

6. When you are finished configuring your printer, select Quit from the Tools
menu.

7. Then exit from the System Manager back to the Workshop command line
by pressing Q for Quit

1-15

workshOp User's Guide Introduction

My changes made with the Preferences tool are made immediately to
Parameter Memory, but changes In device connections do not take effect untU
the next time the Lisa is booted. Therefore, if you want to continue working,
it Is necessary to rebOOt your Lisa now. For additional Information on the
Preferences Tool, refer to Section 3.3.

To reboot, perform the following steps:

1. Press Q for QuIt

2. Select Y in answer to "Are you SURE you want to LEAVE the shell?"

3. Press R for Reboot.

When the system haS finished rebooting, the changes you made will be in
effect.

setting a Default with MJltiple Printen
If you have multiple printers connected to your liSa, you can specify whIch
one is to be the default printer. This means that you can establish which
printer wIll be deSignated by -prInter.

First configure all of the devices you want connected to the Lisa (see the
previous section and section 3.3 for instructions on configuring devices.)
After you have rebOOted, return to the System Manager command Une. Select
o for Defaultprinter, and enter the device name of the default printer. If you
do not want to change the device name, because you want the default to
remaln as it is, press [RETURN] to exit back to the System Manager command
line.

Rebooting is not required for the default printer setting to take effect.
However, If output redIrect to the prInter Is in effect, you wUI have to do the
output redirection again.

Details on the Defaultprinter option are available in section 3.2.

1.15 The qJeraung System
The WorkshOp runs under the ~rating System of the Lisa computer. You can
use some qJeratlng System routInes from a Pascal program to perform specIal
system functions for you. TheSe system calls are defined in the intrinsic unit
SYSCALL. The dependencIes of the LIsa WorkshOp environment are shown in
Figure 1-2 on the follOWing page.
More Information on the SYSCALL interface and routines can be found in the
Usa ~rating System dOCUmentation.

1-16

Workshop User's Guide Introduction

QuickDraw

Bit-Map Graphics

FIt Pt Library

FUll IEEE Numerics

Pascal Run-Time Library

I/O

Lisa Operating System

Memory Mgmt File System Process Mgmt

Figure 1-2
Lisa WOrkshop Envirooroont

1-17

Chapter 2
The File Manager

2.1 1lle File rv&lager •.•.•.••..•••.•....••••.•••••..••....•...•...•..................•...••...•.• 2-1
The File Manager allows you to manIpulate flIes" volumes" and devIces.

2.2 lJSltlg the File rv&lager •••.•.•.•...•..........•.•.•.•••.••.••.•••.•.•.•.••.•.•.•...•....... 2-1
Press F at the Workshop command line to display the File Manager
commands. The first letter of each FlIe Manager command invOkes
that command.

2.3 1lle File rv&lager COITrnaI.:iS .. 2-1
This section lists and defines all FHe Manager operations.

2.4 TIle WOrkshoJl \'lew of Files •...•••...•.•....•••••.•.••••..•••••..•....•••....•.•..•..•••. 2-8
Each disk can contain a volume which has a directory of files. File
extensions (. TEXT, .CJ3J, and so fOrth) are added to some flIes with
special uses.

2.5 lJsirlg Wild caret ~ters .. 2-11
WHd card characters allow you to name groups of flIes by giving
filename patterns to be matched. The wild card characters are -, $, ?

2.6 I-tow [)() I List Exlstlrlg Files? ... 2-13
To lIst all the flIes on a volume, use the Ust command or the Nemes
command. You can use wild cards to list subsets of the files on the
volume.

2.7 t-fOW [)() I COlly a File? .. 2-13
To copy a file, use the File Manager COlly command. SimHar to the
Copy command, the Back~ command is also used to copy files. If you
want the old fHe deleted after the copy operation is successful, use the
Tnmfer command. You can copy multiple flIes by usIng wlId cards.

2.8 t-fOW [)() I [)elete a File? .. 2-14
To delete a f11e, use the File Manager Delete command. You can
delete more than one fHe by usIng wild cards.

2.9 t-fOW [)() I create CIld lJse a VOltJTle? ••.•.••..••....•.•••.•.•••.•.••.•••••••.•••••• 2-15
Use the Initialize command to create a volume. The volume must be
mounted before you can use it.

2.10 How Do I Ctalge the Nane Of a File or VOltme? 2-15
To change the name of a f1le or volume, use the Rerane command.

The File Manager

2.1 The FHe Manager
The File Manager is a subsystem of the Workshop. It provides file and device
manipulation facillties, and handles most of the tasks of transferring
information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directories, rename or delete files,
find out what volumes are on line, initialize new disks or diskettes, print files,
and so on. See the tperating System Reference MBnlIBJ for the Lisa for more
information on the File System and supported devices.

22 l.JsirlJ the File Mal aager
To use the File Manager, press F in response to the Workshop command
prompt. The File Manager begins executing, and displays the File Manager
prompt line:

FlLE-MGR: Backl4l, Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?

Pressing "?" displays the additional command line:

E(JJ8l, FlleAttrlbutes, Initialize, rvkUlt, Nemes, Bll1ne, scavenge, UInot.rlt

To redisplay the original conmand line, press [RETURN}

To execute any corrmand, press the first character of that command name
While the File Manager command line is displayed. Most commands aSk for
file names, or other input parameters. If there is a default value for a
parameter, It is displayed In square brackets { [default] ~ To accept the
default, just press [RETURNl If you do not want the default, type in the
value you want

To manipulate files with the File Manager you need to address the file with a
file specifier. A file specifier can be an OS pathname (representing a file on
a diSk or diSkette), an OS volume name (for example, -MYDISK), the name of a
physical device (for example -RS232A), or the name of a logical device (for
example -printer} File specifiers can contain wildcards enabling them to
specify a collection of files. see Section 2.5 for more information on
Wildcards. See Section 2.4 for more information on file specifiers.

2.3 The File Manager CorrmaI M1s
The File Manager commandS are listed In the File Manager prompt line. They
are: Backup, COpy, Delete, Ust, Prefix, Rename, Transfer, QJIt, Equal,
FlleAttributes, InitIallze, rvtlunt, Names, O'lline, Scavenge, and urnount
Each of these operations Is described below. Information on wild card
characters can be found in Section 2.5.

2-1

WOd<sI1op User's Guide

2.3.1 Backl4l (6)
The Backup command executes a sImple backup utility, simllar to Copy. It
asks for source and destination file specIfiers, which will most likely contain
wild cards (see Section 2.5~ It then compares the source files to the
destination files. Whenever the contents of the two files are not equal, the
source file Is copIed. If a source flIe is mIssIng from the destination, It Is
copied. Thus it copIes only tUl'ferenl files from the source to the destination.

I'IJTE

The destination file is temporarily named WorkshOp. temp, and the
source file is automatically copied. If the copy is successful, the
destination file Is renamed with its original name, and the files are
compared. If the files are different, the first fUe is deleted. Ordering
the process this way prevents deletion of the destination file before
verification that the source fUe is good.

Because the file name Workshop.temp is internally involved in the
Backup command, do not assign that name to your files.

2.3.2 Copy (C)
The Copy command copies files. It asks for a .source file specifier and a
destination file specifier. You can use wild cards if you want to copy more
than one file. The source fUe(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. If you change the
default, the source file is compared to the destination file after the copy
operation to ensure that they are the same. The Validate command is
described in Chapter 3.

Text files are handled specially when copied to the -printer or -console
log!cal devices. Leading blanks in a line of text might have been replaced by
a (DLE,.count) pair to save disk space. As such patterns are detected, they are
replaced by (count) blanks in the copy of the file sent to the prInter or
console. All other files are sent byte by byte unchanged.

2.33 Delete (0)
The Delete command is used to delete a file or a number of files specified by
a wild card expression. It asks you to specify the files to be deleted.

2.3.4 List (L)
The List command lists information about the files matching the given file
specification. If all you need is the names of the files, use the Names
command described in Section 2.3.13.

2-2

WoJ1<shop User's Guide TI7e File M8n8ger

• If the file specifier is a file name (for example -MYDISK-example.text)
information from only that file is listed.

• If the fUe specifier is a volume name (for example -MYDISK), information
about all fUes on the volume is listed.

• If the file specifier includes a wildcard character (for example ..
-MYDISK--.text) information about all matching files is listed.

The list command displays the following information:

Fllencme The name of the flle.
Size
Psize
Last-Mod-Date
Creatlon-Date
Attr

The logiCal fUe length in bytes.
The physiCal file length in blocks (512 bytes~
Date and time the fUe was last changed.
Date and time the flIe was created.
FUe attribUtes, a combination of the following:

C File was closed by the (l)erating System.
L Flle Is locked. It cannot be deleted until the file

safety switch is turned off. (See FlleAttribUtes
command later In this section.)

o Flle was left open when the system crashed.
P Flle is protected.
S File has been scavenged.

AA example of the list display is shown In Figure 2-1.

Contents of volume -paraport-=
F i 1 enarae Size Ps i ze last-Hod-Oate Creation-Date Attl'

---- ----- ------------- -------------
SYSTEM. DEBUG2 14848 29 03103183-15:46 06/10/82-21 :57
SYSTEM.l UD I RECTORY 7168 14 07/18/83-09 :31 02123/83-10 :33
SYSTEM.llD 9216 18 06102182-00: 24 02123183-10 : 24
SYSTEM.LOG 2992 6 07/18183-16:56 06/08/83-17:49 0
SYSTEM.OS 188928 369 05104183-10: 08 05/04183-10 :08 CO
SYSTEM. SHELL 8704 17 06/02182-00: 26 03129/83-15:14 CO
XEJECTEM.OBJ 512 1 06/02182-00 : 27 03129/83-15:22

FI~ 2-1
The Un Display

2.35 PrefIx (P)
The Prefix command enables you to set up default volume names to search
when you specify a file name without a volume name. You can set up to three
volume names that will be searched in order, when you try to run a program,
until the file is found. The first prefix Is the name of the working directory.

2-3

Wod<shop User's Guide The File Manager

It wUl be searched anytime you specIfy a fUe name without a volume name.
The second and third prefIxes are searched When you try to Run a program
wIthout specIfyIng the volume It Is on.

I\IlTE

The second and third prefixes affect the running of programs directly
from the WorkshOp Shell. They are not searched for programmatic fUe
operations, such as opening files, or for other FHe Manager operations.

The last option of the Prefix command asks If you want to Initial1ze the
Prefix set at boot time. Answer Y if you want what you have entered to be
established as defaults When you boot.

ThIs command asKs you for the three prefIxes. If you want to accept the
default, If any, press [RETURNl If you want to set a prefix, type in the
volume name that you want. If you want to have no prefIx, press [CLEAR] as
the prefix for that level.

2.3.6 Rencme (R)
The Rename command enables you to change the name of a file. It asKs for
the file name to Change and the name to change it to. You can also use the
Rename command to change the name of a volume. The Rename command
can change the name of a number of files specified by wild cards. See
sections 2.5 and 2.10 for more information on using wild cards and renaming
files.

2.3.7 Transfer (T)
The Transfer command asks for an Input fUe specIfier and a destination f1le
specIfier. It copies the input fUe(s) to the destination and then, if the copy
was successful, deletes the Input f1le(s~ However, if you Transfer to the
-console or the -prInter, the Input flle(s) wIll not be deleted.

2.3.8 G.'Jlt (Q)
The Quit command exits from the File Manager subsystem back to the
Workshop command line.

2.3.9 E(JJ81 (E)
The Equal command compares the contents of two files to determine if they
are exactly the same. It asks for the names of the fUes to compare, then
compares them byte by byte and tells you if they are equal or unequal.

2.3.10 FlleAttritlJtes (F)
This command Is used to set and clear fUe attributes. You can set the safety
attribute, which prevents you from accidentally deleting a file. You can also
make a fUe into a protected master (see below~
To use the FileAttributes command press F in response to the File Manager
command prompt It displays the command Une:

FlleAttrlbutes: ClearAttritlJtes, safety, Protect, QuIt.

2-4

WoJ1<sI7op User's Guide TI7e File Man8ger

These commands are accessed by pressing the first character of the conmanc1.
They perform the followIng functions:

ClearAttrlbutes (C)
The ClearAttributes command clears the C, 0, and S attribUtes on the
specified volume, file, or set of files with wildcards. These attributes are set
by the system, and have the following meanings:

C File was closed by the q>erating System.
o File was left open when the system crashed.
S File has been scavenged.

see the SCavenge command in Section 2.3.15 for more information.

safety (S)
The Safety command allows you to set or remove the safety attribute (L) on
any fUe. When the safety attribUte Is set, the fUe Is called "LocKecr and
cannot be deleted. To delete a file with safety on, use the Safety command
to remove the attribUte, then delete the f11e.

Protect (P)
The Protect command is used to make an executable object fUe into a
protected master. This is a form of copy protection for programs. O'lce a
file is made into a protected master, this protection cannot be remoVed. A
protected master has the following characteristics:

• It can be run on any Lisa machine

• It can be copied on any Lisa machine.

• COpies made wlll run only on the LIsa that made the Hrst copy of the
flle.

O'lce a fHe Is made Into a protected master, there Is no way to
unprotect It. Be sure you understand the Characteristics of a protected
master before you create one.

This protection sCheme is for executable object fUes. Note that
protecting a fUe dOes not prevent you from deleting It.

QJ1t (Q)
The Quit command exits from the FlleAttrlbUtes SUbSystem to the FHe
Manager.

Z3.11 InlUallze (I)
The Initialize command is used to format and initialize the File System on a
diskette or Profile. It asks you for the device name to initialize, the number
of blocks to initialize, and the volume name. If you want the entire device to
be initialized, press [RETURN] for the number of blocks (accepting the

2-5

WoJ1<sfIop User's Guide The File Manager

default~ If the device Is a diskette, it Is formatted (ProFUes are factory
formatted~ Boot tracks are automatically written to any deVice that is
Initialized. M inItialized device is automatically mounted.
The InItia11ze command warns you If you attempt to Initiallze a diSk that
already contains a volume, because the contents will be erased. A volume Is
initiaUzed to allow a certain maximum number of fUes. You can make this
number larger or smaller (if you know you wUI have a large number of small
fUes, for example) when Initializing it.

2.3.12 Mou1t (M)
The Mount command Is used to make an OS devIce accessIble. It requests a
device name. It shoUld be used Whenever you connect a new device, such as a
ProFlle. The unmount command, descrIbed In section 2.3.16, Is used to
remove a device. All configured devices are mounted at boot time. The
confIguration can be Changed wi tn the Preferences tool, WhIch Is described in
section 3.3.

2.3.13 Nemes (N)
The Names command is a faster version of the List command. It gives you a
list of fUe names only. It asks for a fUe specifier, and displays the names of
all fUes matching the given file specifier.

2.3.14 O1line (0)
The O111ne command prodUces a Ust of all the devIces that are currently
mounted and available, wIth the following information:

OevlceNcme The name of the device.
VOlt.meName The name of the volume.
VOlSize The runber of blocks on the volume.
FreeBlks The number of blocks stUI avallable.
FUes The fU1't)er of fUes stored on the volume.
q&l The f"IUllber of fUes open on the volume.
Attr The atU'ibUtes of the volume:

B The Boot volLrne.
P The Prefix volume (prefix 1~
M Volume is currently mounted.

The O111ne display Is ShOWn in Figure 2-2.

2-6

WOJ'kslJop user's Gldde The File fo18nager

FILE-MGR: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, 71

Volumes on line
DeviceName VolumeName VolSize FreeBlks Files Open Attr
---------- ---------- --------
PARAPORT Fred's Workshop 969B 754 178 16 MBP
SLOT2CHAN2 e e e e M
RS232A e e e e M
RS232B e e a e M
MAINCONSOLE B B B 1 M
ALTCONSOLE e e e e M

Fl~ 2-2
The fl'lline Display

2.3.15 scavenge (8)
The Scavenge command runs the OS scavenger, Whlch restores damaged flIes.
FUes can be damaged any time the £lleratIng System terminates abnormally.
The Scavenger searches through a dIsk and restores Its dIrectorIes, files, and
allocation tables to a consIstent state.

To scavenge a dIsk, use the SCavenge command and specIfy the device ncme.
After the scavenge Is complete, use the Mount command to mount It again,
and continue using it The bOOt volume cannot be unmounted; therefore it
cannot be scavenged. If the ProFile is normally your bOOt volume and you
need to scavenge it, it Is necessary to bOOt from a diskette or another ProFlle
and run the Scavenger from it

If a file is changed in any way by the SCavenger, the fUe attributes are set to
S, for scavenged. This attribute Is dIsplayed by the L1st command. The
Changes made to the fUe might or might not affect the data in the fUe,
dependlng on What state the fUe was In when It was scavenged. ExamIne any
fUe that has the scavenged attribute before relying on its contents. After the
fUe has been checked, you can remove the scavenged attribute wIth the
FileAttrIbute command.

2-7

WOrkShOp User's Guide The File Manager

A disk's File System can get into an inconsistent state if the qJerating
System terminates abnormally, because the directories and allocation
tables are kept in memory and only written out to disk periodically. If
there is an abnormal termination, such as a power fallure, the changes
to the state of the File System since these tables were written to disk
might be lost. Information can also be lost if you disconnect a ProFlle
from the Usa without first t.a1fTlOl.I'lting it. If the disk is used after
such an event, more data can be lost if the system allocates the same
blocks to more than one file.
Ttle scavenger always returns the disk to a consistent state, bUt it Is
possible to lose data when the system crashes. ThIs damage can
become even worse If the dIsk Is used whIle In an inconsIstent state.
All scavenged files shOUld be checked before you depend on their
contents.

2.3.16 U'mOt.Ilt (U)
This command makes a device Inaccessible (takes it off llne~ It asks for a
device name. For diskettes, use a volume name to unmount, or a device name
to unmount and eject, the diskette. Always unmount a deVice before
disconnecting it from a running machine.

2.4 1he WOIkShop View of Files
Workshop users are provided with a view of files and devices that is actually
a composite of what is prOvided by the Usa qJerating System, the Pascal
run-time system, and the File Manager itself. Each contributes a specific set
of facilities:
• The Usa ~rat1ng System provideS support for a variety of Input and output

devices, Including bOth bJa::k-st.n.ctu.red deVices (diskS and diskettes) and
set1J!!I1t1aJ deVices (RS232 ports, consOles~

• The Pascal run-time system provides support for several logical-devices
(console, printer, keybOard) WhIch are not provided by the OS.

• The FHe Manager provides wUd-card facilities which enable many FHe
Manager cOflVTlands to be applied to a whole set of files, rather than just
one at a time.

2.4.1 OS Voll.l1leS on OlSk
Every block-structured device is organized as a single volume with a flat
directory structure. Volumes can be initially created on a disk by using the
FUe Manager's InitiaUze command. The Initialize commant1:

1. Formats the disk (If necessary~
2. Records its assigned volume name of up to 32 characters.

2-8

WoJ1<sI1Op User's Guide TIle File Manager

3. Creates its initial, empty directory (also called a cat81og~

4. Mounts the ini tlal1Zed diSk.

When an object is created on a disk., its file name of up to 32 characters is
entered In the diSk's directory. FUe names must be unique within a volume so
that every object can be clearly Identified.

2.4..2 File Specifiers
Within the Workshop, file specifiers are used to Identify the volume, deVice,
file, or set of files an operation appUes to. The diagrams that follow show
the makeup of a file specifier and its components.

ftle-speclfter

volt.me-rB1le wild-card-spec

physical-device

loglcal-deVlce

physlcal-devlce
l.PPER

LOWER

PARAPfRT

SLOTIlCHMh

RS232A

RS232B

1~oo~re8 a.:NSa...E

8 PRINTER

KEYBOARD

2-9

WorkShop User's Guide The File Manager

A physical device name refers to a specific hardWare device or port, whether
or not there is actually anythIng comected or mounted there. When a device
is block-structured and mounted, its physical device name can be used in a
fUe specifier instead of the disk or diskette's volume name. Since sequential
devices are not mass storage devices, they never have volume names. The
only way to specify them Is to use theIr physical device names followed by
dummy file names; for example, It-RS232A-X". Logical devices are also not
mass storage deVices and do not have volume names. They can be referred to
by their logical device names only.

2.4.3 The WOIkIn'J Directory cni the Preflx
sometimes, specifying the same volume name or physical device name again
and again is inconvenient. With the File Manager's Prefix command you can
establish a particular volume as the OS's working directory. Otherwise, the
default working directory is the volume the system was bOOted from. If a file
specifier omits the volume or physical device name, the file or set of fUes is
assumed to be in the working directory. For example, if the working directory
is -MYDISK, the file specifier PROORAfv11.CBJ refers to the same file as
-MYDISK-PROORAI'11.CBJ.

-l.PPER The upper dIskette; drive 1.
-LOWER The lower diSkette; drive 2.
-PARAPmT Profile attached to the parallel connector.
-SLOTIllCHAtfl ProFUe attached to the Parallel Interface card in slot m,

channel n (where m Is a slot between 1-3, and n Is
channel 1 or 2~

2-10

WOrkstJop user~ GuIde The File /Vlln8ger

To avoid confusion within the system, dO not assign a device name to a
volLrne.

There are also two serial deVices, -RS232A and -RS232B. These provide
access to external RS232 devices.

There are three logical devices that can be used for input and output. These
deVices are:

-aNS(LE Used for output to the screen and input from the keyboard.
The actual devIce that Is used as the console can be
changed by the Console command in the system Manager.
see section 3.2 for Information on the console command.

-PRINTER Used to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tool,
described In Section 3.3.3. If you have more than one
printer, the one that will be used is specified by the
DefaultPrinter command described in Section 3.2.

-KEYBOARD Used as a nonechoing input device from the keyboard. This
is the keyboard on the console device.

certain types of files in the system have standaRi file extensions. These
extensions make it easier to keep track of the different types of fUes. These
file extensions are:

.TEXT This indicates a text file in the format created by the Editor.

JBJ This indicates an object code file. OJject files are created by
the code Generater, the Assembler, and the Linker. OJject fUes
created by the Linker are executable .

.I This indicates an intermediate (I-COde) file prodUCed by the
Pascal Compiler. The Generate command converts an
intermediate fUe into an object code flIe .

. LIB This indicates a library directory.

25 Using Wild card Characters
Wild card characters allow you to specify a set of flies to operate on. The
command is perfOrmed on all fUes whose pathname matches the set specified.
WlId card characters are tI.tI, """, and tlS'". 011y one wlld card character can
appear In a fUe specifier. These characters are used as follows:

st.rlrY;ll-strlng2
The ""."" character stands for any sequence of zero or more characters that
can be ignored in the search. The surrounding strings (strlng1 and string2)
must be matched exactly, ignoring case. EIther or both strIngs can be null.

2-11

WOJ1<SI1op User's Guide The File Manager

Here are some examples of usIng the "_" wIld card character as a source fUe
name:

ds-.text
-.OOj

All files beginning with ds and ending in .text.
All flIes ending with .OOJ.
All flIes.

When "." Is used In a destination fUe name, It Is replaced wIth the characters
that were matched by a wild card in the source file. This enables you to do
operations lIke change the name of a lIst of fIles as they are copIed. t-fere
are examples of usIng "-" as a destination file name:

dS-.text to bu/ds-.text Change all fUes starting wIth ds and endIng
with .text so they begin wIth 00/.

qcS.- to qulckdraw.- Change all flIes starting wIth qd to begin wIth
qulCkdraw.

StrmJl ?strlng2

The ".,' character is the same as the ".", except that the system asks you to
confirm each fUe name before performIng the operation. The "?" wlld card
can be used only· in a source string.
When you use a "?" in a source specIfier, you are presented with a Ust of fUes
that match it. You can move backwards and forwards through the list by
using the up and down arrows on the numeric keypad. Press Y besIde every
fUe that you want to be proceSSed. When you have selected all the fUes you
want, press [RETURN]. The operation will then be performed on the files you
selected after confirmation.
When using the List command, you cannot use the "?" wUdcard in response to
the prompt for a volume name.
strtngl$string2

The "S" Character can stand for part of a destination fUe name only. It is
replaced by the enUre source file name. For example, if you have the source
fUes matching ds-.text:

dsfmgr.text
dssmgr.text

If the destination expression is bk$, the output files will be:

bkdsfmgr.text
bkdssmgr.text

contrast this with the output expression bk-.text, Which results in:
bkfmgr.text
bksmgr.text

2-12

WorkstJop User's Guide The File Manager

Hint: You can adopt conventions for naming files that pretend there is a
hierarchical file system: for example,

SourcelF1.text
SourcelF2.text
SourcelXYZ.text

2.6 How Do I List Existing Files?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command, but
it gives you only the file names.

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Execute the List command by pressing L, or the Names command by
pressing N.

3. If you want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed. (The "?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default volume, press [RETURNl

The listing produced by the List command is explained in Section 2.3.4.

You can send a copy of the directory to (3 file by following the specification
with a cotnma and then the name of the file- to send the directory to. For
example,-=

-paraport -bk/= ,foo. text

sends the directory to foo.text.

For more information on wild card characters, see Section 2.5 in this chapter.

2.7 How Do I CqJy a File?
You can Copy a file and leave the original file intact, or you can Transfer a
file, which copies the file, then deletes the original file. To copy a file:

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press C to start the Copy command. (Press T, for Transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press [RETURNl

4. Enter the pathname you want the file to be copied to. Press [RETURNl

The fHe is copied or transferred as you specified.

2-13

Workshop User's Guide The File Manager

If you want to copy a number of files with similar names, or all the files on a
volume, you can use wild card characters. See Section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all
the copies of the selected files.

The following are examples of copy and transfer operations:

Copy from what existing file(s)? myprog
Copy to what new file? -backup-$

(This copies the file myprog on the working directory to the volume
-backup with the same name, myprog.)

Copy from what existing file(s)? ds=
Copy to what new file? -backup-$

(This copies all files beginning with "ds·· on the working directory to
the volume backup with the same file name.)

Transfer from what existing file(s)? -osback-osg=
Transfer to what new file? -oswork-$

(This copies all files beginning with "osg" on the volume -osback to the
volume -oswork using the same file name. When the files have been
copied successfully, the Original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (,) in response to
the request for the source file.

Transfer from what existing file(s)? -osback-osg=,-oswork-$

(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? dS=,-backup-backds=

(This copies all files beginning with lIds" in the working directory to the
volume -backup with back inserted as the begiming of each file name.)

The Backup command is another way to copy files. It is selective, in that
only different files will be copied. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for more information on the Backup
command.

2.8 How Do I Delete a Flle?
To delete a file:

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the Workshop command prompt.

2. Invoke the Delete command by pressing D.

2-14

Wo.r1<shop User's GlIJde The File Manager

3. Enter the pathname of the fUe you want to delete.
4. The system asks you to confirm that you want to delete the fUe. Reply Y

to delete the fUe or N to keep it
If you want to delete more than one flle, you can use wIld cards. See section
2.5 for more information on using wlldcards.

2.9 HoW Do I Create and Use a Voltme?
A volume can be created on either a disKette or a ProFile disk. Each disK
can contain one volume. creating a volume on a disK gives the disk a name
and sets up a directory for fUes.
1. If you are not in the File Manager subsystem, enter it by typing F in

response to the Workshop command prompt
2. Press I to invoke the Initialize command. This command asks for:

a The device name (upper or lower for a diskette, slot2chan2 or paraport
for a ProFUe, and so forth)

b. The number of pages to initialize; the default is to initialize the whole
device.

c. The volume name.
d. The maximum number of files on the deVice; the default is a good

value unless you are using a large number of very small fUes or a few
very large fUes.

The volume Is inlt1aUzed, with an empty directory. (If the device is a
diskette, It is first formatted.) The system warns you If you are inltiallzlng a
device that has an existing volume on it, and gives you a chanCe to change
your mind before destroying the existing volume.
After initialization, the device is automatiCally mounted so it can be used.

2.10 How 00 I Cha1ge the Ncme of a File or VoIU'Tle?
The Rename command allows you to change the name of any fUe or volume.
1. If you are not in the File Manager SUbsystem, enter it by typing F in

response to the Workshop command prompt.
2. Execute the Rename command by pressIng R

3. Enter the pathname of the flIe or volume you want to rename.
4. Enter the new name. (The same device name Is assumed for a fUe.)
The name of the fUe or volume is changed.

You can use the Rename command to change the name of a group of fUes by
usIng wild card expressIons.

2-15

·0355-A

Chapter 3
The System Manager

3.1 TIle System I'1arlager .. 3-1
The System Manager allows you to set certain system defaults and set
up the Lisa configuration .. including external device connections and the
startup devIce.

32 TIle SysterTl I'1arlager FlJ'lCtiOl'lS ... 3-1
The System Manager is activated by pressing S in response to the
Workshop command line. Its functions are accessed from a command
line similar to the Workshop command line.

3.3 llle Preferences Tool .•• 3-3
The Preferences tool allows you to set up the system configuration and
to specify what external devices are connected.

3.4 Prooess lVlalaagernent u .. 3-9
The process management SUbsystem allows you to make selected
processes resident .. display the status of all currently existing processes ..
and remove processes.

The System Manager

3.1 The System Manager
The System Manager allows you to set system defaults and specify the system
configuration. Using it, you can:

• Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating keys.

• Set the configuration of external devices such as disks and printers.

• Set the default startup device.

• Set processes to be resident or nonresident, for performance tuning your
Workshop system.

• Set which device is to be the console.

• Redirect output from the console to a file or external device.

• Monitor all currently existing processes, and remove processes.

3.2 The System Manager FLIlCtions
By pressing S in the main comand line, you can enter the System Manager
subsystem.

The System Manager command line is:

SYSlEM-r'-1GR: ManageProcess, OJtputRedirect, Preferences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing "?" shows you the additional line of commands:

Console, FilesPrivate, validate, OefaultPrinter

Each System Manager command is described below.

MalageProcess (M)
This command puts you into a process management SUbsystem, which allows
you to select which processes should be resident for performance reasons. A
resident process will not be removed from memory when it terminates, so it
will not have to be reloaded when it is run again. It also allows you to
display the status of all currently existing processes, and remove processes.
The process managment subsystem is described in Section 3.4.

OJtputRedirect (0)
This command allows you to send a copy of all output that is displayed on the
console to another device, such as the -printer, or to a file on a disk. The
command asks you for the pathname to send the copy to. In order to return
to displaying only on the console, use the command again and redirect the
output to the -console device {Which is the default~

3-1

workshop User's Guide The System Manager

Preferences (P)
This command starts the Preferences tool which allows you to set up the
confIguration of the Usa system and the WorkshOp. The Preferences tool is
described in section 3.3.
TIme (T)
This command allows you to set the hardware clock/calendar's date and time.
see the Lisa OWners Guide for more information on the system clock and
calendar. The date and time values are used for the creation and
modification dates on your files, so they shoUld be kept correct.
QuIt (Q)
This command exits from the System Manager and returns to the maln
WOrkshOp command lIne.
COnsole (e)
This command allows you to change where the WOrkshop console is displayed.
It may be displayed on the main screen, which is the default, on the alternate
screen, where the Debugger displays, or on an external terminal connected to
the RS232A or RS232B connector. When the main or alternate screen is used
for the console, output can be stopped and restarted by pressing .-S. If an
external terminal is used with XO'lIXOff processing enabled, then control-S
stops output and control-Q restarts it.
The console can be moved to the al temate screen when you run a graphics
program to prevent output from wrltelns from appearIng on the graphIcs
screen (the maln screen~ You can dIsplay eIther the alternate or the maIn
screen by pressIng (PTICN-ENTER. When the console is moved to the
alternate screen, both the console output (wrltelns) and the Debugger output
wIll be mIxed together on the same screen.
FllesPrlvate (F)
This command enables or disables the selection of private system files. The
Lisa Office system uses fUe names beginning with the "r' character for its
tools and documents, and the Workshop user shoUld rarely be concerned with
such files. These files are called "private". When selection of private files is
disabled (the default), the Workshop File Manager's wild card mechanism will
exclude them from its selections unless the file specifier explicitly includes
the leading "r". '
There are just a few private files which are used by the WOrkshop (for
example, {Tll}menus.text~ You must enable the selection of private fUes If
you want a single file specifier to refer to the entire set of WOrkShop system
fUes.

3-2

WoJ1<slJop User's Guide The system Manager

validate M
This command is used to set up how much verifying you want the Workshop to
do for you. There are two values you can set with this command. The first
Is whether or not to verify file copies. The system verifies a copy by
comparing the original file with the copy to be sure they are the same. The
default is to never verify. You should have no reason to verify unless you
suspect something is wrong with your disk. The second value you can set is
whether or not your selections for File Manager commands are verified.
Selections are verified by listing the file names and asking you to confirm the
operation.

OefaullPrlnter (0)
This command is used when you have more than one printer connected to your
Lisa It tells the system which one will be the -printer logical device. It
first gives you a list of all the physical devices that have been configured by
the Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as -printer.

3.3 TIle Preferences Tool
Start the Preferences tool by pressing P in response to the System Manager
command line. It displays a window with four checkboxes and a tools menu.
The Preferences display is shown in Figure 3-1.

Tools
I:j '"111 p,.efe,.etl(~s I II II!

OConvenience Settings o Startup OOevice Connections OWorkshop

Figure 3-1
The Preferences Window

After you have finished with the Preferences tool, you can exit back to the
System Manager by selecting Quit from the Tools menu.

I
The Preferences tool allows you to set up your Workshop system the way you
want it. It contains four sections:

• Convenience Settings that allow you to regulate screen contrast, the
speaker volume, and repeat delays.

• Device Connections that tell the Lisa system what external devices are
connected.

3-3

Workshop User's Guide The System M8n8ger

• Startup, which tells the Lisa what device to use as a startup device.

• Workshop which sets up defaults for the Workshop.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 10 hours when the Usa is unplugged. If your Lisa is without
power for longer than this, and the parameter memory is lost, the preference
settings will be restored from information on the startup disk.

My changes made with the Preferences tool change parameter memory
immediately, but some of them, such as device connections and startup
options, have no effect until the system is booted again.

The Preferences tool displays a window containing a number of buttons and
checkboxes. You set the values you want by using the mouse to move the
pointer to the desired options and clicking.

Four areas of preferences are described briefly below. More information on
the first three areas can be found in the Lis8 OWners Gt/ide, Section D,
Desktop Manager Reference Guide. Select the area you want to view or
change by moving the pOinter with the mouse to the checkbox in front of the
section name and clicking.

3.3.1 Convenience Settings
The Convenience Settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa These
characteristics are divided into three sections: Screen Contrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-2.

3-4

Wo.rkshop User's Guide The System Manager

Tools
IIIII Preferences 1IIIfi

IConvenience Settings DStortup oDevlce Connections oWorkshop

DSet All Convenience Settings to Lisa Defaults

Screen Contrast
Normol LeVW!1

dark 0 DOD D DODO 1 D DODO 0 bright

Minutes Until Screen Dims
01-2 12-4 05-10 010-20 015-30 030-60

Dim LeVW!1
dark 0 DOD 0 DIDO 0 0 DOD 0 0 bright

Speaker Volume
Silent (Flash menu bar) 0 Soft 1 0 0 0 0 loud

Repeating Kegs
Delay

Short 0 • 0 0 0 0 Long

Rote
fast • 0 0 0 0 0 Slow

Mouse Double [lick Delay
Short o. 0 0 Long

Ftg.rre 3-2
Convenience Settings

SCreen Contrast
The contrast portion contains three sections. The first allows you to select
the normal screen contrast level. Check in a contrast box until the contrast
level is comfortable. CheCking a box immediately changes the contrast

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place is set with the Minutes Until SCreen Dims section.

3-5

WorkslJop User's Guide The System /'1anager

The third section allows you to set the dim contrast level. Checking a box in
the Dim Level section makes the screen dim to that level until you move the
mouse.

Speaker Volune
The speaker volume section allows you to set how loud the Lisa's audible
alerts will be. Checking a box demonstrates the volume by causing two beeps
at the level you selected.

Rates
There are three rates that can be set, two for the keyboard and one for the
mouse. The fiIst is the initial keyboard repeat delay. This is the length of
time a key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how quickly a key repeats after it has
started repeating. The third rate is the mouse double Click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click. These three values should be set for your most comfortable use.

3.3.2 startup
The Startup display allows you to specify the boot device and the type of
memory test to be performed on startup. The Startup display is shown in
Figure 3-3.

The Startup display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you want

The Startup display also allows you to select a long or short memory test
The brief test takes about 20 seconds, the long test takes about 40 seconds.

Changes made to the Startup display are put into parameter memory
immediately, but have no effect until the system is booted again.

3-6

Workshop User's Guide The System M8I78!JBr

:;1111 Preferences I!I'I

OConvenience Settings • Startup 'ODevice Connections OWorkshop

start Up from:
ODiskette in Drive 1 (Upper)
DDiskette In Drive 2 (Lower)
.Disk Attached to Parallel Connector

Memory Test
.Brief
DThorough

Fi~ 3-3
The Starf.l4l Display

3.3.3 Device Ccnlections
The Device Connections display allows you to specify what external devices
are attached to the Lisa When you choose Device Connections, the Lisa
displays a table showing all the connectors available, and the device (if any)
that is attached to it.

To tell the Lisa that you are attaching, removing, or changing an external
device, check the box for the connector you are using. The Lisa will display
a list of all devices that can be attached to that connector. Check the
correct device. If you are removing a device, check No Device.
For some devices, such as printers, another set of specifications appears.
Check the appropriate boxes for the device you are attaching.

3-7

Worksl1op User's Guide Tile System Manager

My changeS made to the device connections are made immediately to
parameter memory, but they dO not take effect untU the Lisa is rebOOted.
For the two serial ports, see the PortConfig utility in Section 11.10. A
typical device connections display is shOwn in Flgure 3-4.

ToolS
11111 PreFerences IIIII~

OConvenience Settings o startup .Oevice Connections

[onnedors Devices [urrentlg [onneded
o Expansion 2 lower ProFile
o Expansion 2 upper Dot Matrix Printer
o Parallel ProFile
I Serial A Nothing tonneded
o Serial B Nothing Connected

Device You Intend to Conned:

3.3.4 WOI1<Sfq)

INo Device oOalsy Wheel Printer oOot Matrix Printer
GMRernote [oh1puter

Figure 3-4
A DevIce C€nleCti(l'lS Display

OWorksholJ

The Workshop display, shown in Figure 3-5, allows you to set parameters of
the Workshop system. These parameters will not go into effect until you
rebOot the system. Then they are stored in parameter memory and w111 stay in
effect until you change them.

Note that changes to the memory size affect all other systems (for example,
the Office System) and will prevent large programs from running.
With mouse scaling, equivalent X and Y movements of the mouse cause
diagonal cursor movement on the rectangular Lisa screen. Without scaling,
the cursor would move at a true 45-degree angle on the screen when X and Y
movements of the mouse are the same.

3-8

Workshop User's Guide TIle System Manager

Tools
IIIII Preferences III ~

DConvenience Settings Dstortup OOevice Connections IWorkshop

Memory to use(ouuming 1 megobyte machine)
Ifull megabyte Dthree quarter megabyte Ohalf megabyte

Enable House Scollng?
Ino Dyes

Fl~ 3-5
The WOrkshop Display

3.3.5 The Tools MerlJ
The tools menu provIdes you with two functions: Set all of PM to defaults,
and QuIt Set all of PM to defaults resets parameter memory to the standard
Usa defaults. Quit ex! ts from the Preferences tool, and puts a copy of the
current settings of parameter memory on the disk.

3.4 Process Mal aagerre It
The process management subsystem is started by pressing M in response to the
System Manager command 11ne. This subsystem displays the fOllowing
command line:

McWlage Process: Ad€Resident, OeleteResident, KillProcess, ProcessStatus, Quit ?

3-9

WOrkshop User's Guide The System Manager

This subsystem is used to control which processes will be resident. After a
resident process runs to completion, it is suspended and retained in memory, if
possible, rather than terminated and removed from memory. This allows it to
restart faster, because the process does not have to be recreated. For
example, if you are often using the Pascal Compiler and the Editor, you can
improve the performance of your Workshop system for these applications by
making the Compiler and the Editor resident. This will allow much more
rapid shifting between the two.
See the t:perating System Reference ManuaJ for tIJe Lisa for more
information on processes
AORes1dent (A)
The AddResident command adds a process to the list of processes that are
resident. You supply the fHe name of the object file that you want to be
made resident the next time it is executed.
DeleteRes1dent (0)
The DeleteResident command removes a process from the list of resident
processes, but does not kill the process if it is currently ruming.
KlllProcess (K)
The KillProcess command terminates a currently existing process, including a
backgrOUnd process, but does not remove It from the Ust of resident processes.
ProcessStatus (P)
The ProcessStatus command gives you information about all currently existing
processes. It provides the following information:
PattYBne The name of the processes Object file.
PI'oceSs_ID The unique Identifier assigned to the process.
State The current state of the process: Active, Suspended, or

Waiting.
Resident Tells you if this is a resident process.
Quit
The Quit command exits from the process management subsystem back to the
System Manager command line.

3-10

-O'56-A

Chapter 4
The Editor

4..1 TIle Editor ... 4-1
The Editor Is used to create and modify text fUes.

4.2 lJslrlg the Editor .. 4-2
Start editing by pressing E in response to the command prompt. The
Editor creates a new file or edits an existing one. ~erat1ons are
provided in five menus: File, Edit, Search, Type Style, and Print.

4.3 selectirlg Text ••••••..•••.•.•••.•.•••.••••••••...•••••••.•.•••.•.••••.•.••••.•••.•.•••••••••••. 4-4
The mouse Is used to select text and to move the Insertion point.

4.4 Scrolling and Moving the Display•.........•...........•..........•..••.........•.. 4-5
The display can be scrolled by using the scroll bar on the right side of
the window. The window can be moved by clicking in the title bar.
The size of the window can be changed by using the size control box.

4.5 TIle File Functions .•••.•.•...•...••.••.•..•••.•.•.••..•.....••••..•••••••••••.••.•••.••.••.••• 4-6
The fHe functions are used for retrieving and saving text files. You
can also save or revert to a previous version and exit the Editor.

4.6 TIle Edit Functions •.•...•.•.••••.•.••.••....••••...•.••••••..•....•.•...•...••.••.•...•.•••.• 4-8
The three basic edit functions are cut., paste, and copy_ The Edit menu
also gives you functions to adjust text to the left and right, and to set
tabs.

4.7 TIle search Functions•...........•..............•••...............•.•.....•...... 4-9
Search gives you functions to find text strings in the file, and
optionally replace them.

4.8 The Type style Functions .. 4-11
The Type Style menu enables you to change the font that the file is
displayed and prInted in.

4.9 The PrInt Functions ..•...•...•......•.........•...•.•.•.•.•..••.......•.•....••...•...•..•• 4-12
The Print menu enables you to print the file, and to specify the format
it should be printed in.

The Editor

4..1 The Editor
The Editor is used to create and modify text files. These files can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen, a portion of the file
is displayed. This "window" into the file can be moved to display any part of
the file you want. An example of the Editor display is shown in Figure 4-1.

Open ...
Duplicate ..•
Tear Off Stationery ...

Exit Editor

3
Edit
Undo lest Chenge

Cut IX
CopylC
Paste/V

Shirt LeftA
Shi ft RightlR

Fi~ 4-1
The Editor Display

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a speCial
window called the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion point. The insertion point is
marked oy a blinking vertical 11ne Where the next character will be plaCed.
Any characters typed or pasted from the Clipboard are inserted at this point.
This Is true even If the insertion poInt Is not currently displayed In the
window. The window is automatically scrolled to show the insertion point ..

4-1

Workshop User's Guide The Editor

The Editor is met11O.IY based. This means that there is a physical limit
on the size of the file that can be edited. If a file is too big to edit,
it should be split into more than one file of manageable size. The
FileOiv and FileJoin utilities can be used for this. They are described
In Chapter 11.

The mouse is used to scroll the text in the window, move the insertion point,
select text to be cut or copied, point to menus, and select items on menus.

4.2 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press [RETURN] for the default, which is blank paper, or enter a name.
For more information on stationery, see Section 4.2.3.

The file that you are worKing on is called the active document You can have
several documents open and accessible at anyone time, but only the active
document can be edited. The active window is indicated by a darkened title
bar and scroll bars, and is always on top of all the windows.

To leave the Editor, select Exit from the file menu, and you will return to the
Workshop command line.

4.2.1 Editing ~rations
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut or copied. Select text by moving the
mouse while holding down the button. See Section 4.3 for complete
information on selecting text. Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

4.2.2 The MenJs
Q:Jerations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

4-2

Workshop User's GlIjde TIle Edj[or

You select an operation from a menu by moving tne arrow pointer to the
menu name on tne menu bar and holding down the button. The menu Is
displayed. Choose tne menu item by movIng the mouse down until the Item
you want appears in reverse video. Releasing the mouse button starts the
operation.

4..2.3 Creating tI1d UsinJ Stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired text. To
use any stationery other than the default blank paper, choose Tear Off
Stationery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing tne text you want on the
stationery. save tnis document on the disk. To use this stationery, choose
Tear Off Stationery from the Edit menu, and give it the fUe name of the
stationery you created.

4.2.4 Editing MJItlple Files
More than one document can be open at one time, but only one document is
the active document. To read in a document when you already have an active
document, choose ~en from the File menu. It asks you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pOinter into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

This capability of working with more than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations:

• ~en the document containing the text you want to copy.

• Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the CUpboard. You can use Cut if you
want the text to be removed from its original file.

• ~n the document you want the text to be copied to. It becomes the
active document.

• Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

• Choose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

4-3

Workshop User's Guide The Editor

4.3 SelectirYJ Text
The basic editing functions are cut, copy, and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion point where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pOinter on
the screen.

Within an active document, the pointer will have one of three shapes:

Text pointer in a document

Arrow pointer for menus and scroll bars

Hourglass when an operation will take over 20 seconds

Use the mouse to move the pointer on the screen. The shape of the pointer
changes when you move in and out of the document window.

Within the window, the text pointer is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, words, or lines. Selected text is displayed in
reverse video.

4.3.1 Moving the Imertioo Point
The insertion point is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion pOint, move the pointer to where you want it to be and
click. Note that the insertion point moves when you select text.

43.2 Selecting Characters
To select characters, move the text pointer to the beginning of the characters
you want to select, press and hold the mouse button while moving to the last
character you want to select

M alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
begiming of the text you want to select and click the mouse button. Then
move the pointer to the end of the text you want selected and shift click.
Shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrolling controls to display the end of the
text you want selected if it is too big to fit in the window.

4.3.3 SelectirYJ Words ald Lines
To select a word, move the pointer into the word and click the mouse button
twice. To select a line, move the pointer into the line and click the mouse
button three times.

4-4

Workshop User's Guide The Editor

To select multiple words or lines, click the mouse button the required number
of times, and hold. Move the pointer to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, the selection expands or contracts by lines.

AA alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item
you want selected, shift Click, and the entire block of text becomes selected.

il3.4 AdjJsting the Amou1t of Text Selected
To change the amount of text selected, move the pointer to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

il4 SCmllir¥J and Moving the Display
When a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part is
displayed by "scrolling" through the display. The vertical bar on the right side
of the active window is the scroll bar. AA example of a text window showing
the scroll bar is in Figure 4-1.

The display window can be changed in size and moved on the screen. This
enables you to have multiple documents displayed on the screen. These
operations are done using the title bar and size control box as explained in
Section 4.4.2.

4.4.1 ScrolllrlJ the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative poSition of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the position of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the window makes use of the view bUttons. The
view buttons are the boxes at each end of the scroll bar. If you move the
pointer to a view bUtton and cllcK, the display moves one windOwful toward
the beglming or end of the document, depending on which button you clicked.

4-5

Work'sIJop L!se['S GlUde The Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document If you hold the button down, the window will
continue to move a line at a time until you release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document.

ll..l1.2 Mlving the WlOOow
You can move the window on the screen and change its size. This lets you
display multiple documents on the screen. You can make any visible window
be the active window by moving the painter into it and clicking.

To move a window, move the pOinter to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.

To change the size or shape of the active window, move the painter to the
size control box, press the button, and move the painter until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. Olly the active window can be resized.

4.5 The File FlI1Ctions
The file menu provides functions for reading in and writing out documents,
updating documents, copying documents, and exiting the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.

save & Put Away
This writes out the active document and closes it

Save a COpy in ...
This writes out a copy of the active document to another document name.
You are prompted for the name of the document to write to.

Save & Continue
This saves all changes made so far by writing out the document to disk,
without closing the document.

Revert to Previous Version
This returns the document to the way it was before you started editing it, or
when you last saved it. This is done by reading in the document from the
disk.

4-6

Workshop User's Guide

~ ...

-l------.
Save & Put Away
Save a Copy in II.

Save & Continue
Revert to Previ ous Versi on

Open III

Dup Ii cate ."
Tear Off Stationery "'

Exit Editor

Figure 4-2
The File Meru

The Editor

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active document The Editor supplies
the .TEXT extension on the file name. If the file name that you want does
not end in .TEXT, you must end the file name with a period. See Section 1.5,
The Workshop User Interface.

lJl.4llicate . . .
This enables you to read in a copy of an existing document to edit into a new
document. It is read in with the default name "untitled"

Tear Off Stationery ...
This gets a new piece of stationery and makes it the active document. See
Section 4.2.3 for more information on stationery. The stationery is given the
default name "untitled".

Exit Editor
This first asks you if you want to put away any modified dOcuments. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor reSident, you can exit and restart the Editor without losing
any information between invocations. Section 3.4, Process Management, gives
instructions on how to make the Editor resident.

4-7

Workshop User's Guide The Editor

4.6 The Edit Ft.rlCtlons
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.

The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting, it in the active document,
and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion pOint with the paste operation.

C~~t:

COPM
Paste

ShiH: Left
Shi H: Bt~'mt

Set Tabs II.

Select All of Document etA

Figure 4-3
The Edit Menu

For example, to move text from one place in a document to another:

1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

It Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion point.

The Edit menu also enables you to adjust selected text left or right by
inserting or deleting spaces, and to set tabs.

4-8

Workshop User's Guide T!Je Editor

Some edit functions can also be done by holding down the" key and pressing
another key. The key that corresponds to each function is shown in the Edit
menu, as you can see in Figure 4-3.

Uldo Last Cha1ge
This command puts the document back to the way it was before the previous
operation, if possible. You will receive a warning message if the last
operation cannot be undone.
QJt

Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the active document. You can also Cut by pressing the
X key while holding down the " key.

Copy
Copy places a copy of the currently selected text onto the Clipboard, but
does not remove it from the active document. You can also COpy by pressing
the C key while holding down the " key.
Paste
Paste inserts a copy of the text on the Clipboard at the insertion point in the
active document If a section of text is selected, Paste replaces it You can
also Paste by pressing the V key while holding down the " key.
Shift Left
Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing the L key while holding down the " key.

Shift Ri~t
Shift Right is Similar to Shift Left, except that it moves the selected text to
the rIght by inserting spaces at the beginning of each line. This can also be
done by pressing the R key while holding down the " key.
Set Tabs __ _
Set Tabs enables you to set the spacing of the tab stops.

Select All of Doct.ment
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the" key.

4..7 The Search FLIlCtions
The Search menu gives you the ability to search for a text string in the
active document. The basic operation is Find, which locates the next
occurrence of the string and selects it. Find & Paste All replaces each
occurrence of the string with the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

4-9

Workshop User's Gujde

l------
Find III

Find Same
Find & Paste All

..tSeparate Identifiers
All Occurrences

..tCases Need Not Agree
Cases Must Agree

Figure 4-4
The search Meru

The EdHor

All searches start at the insertion poInt, and go to the end of the document.

There are three search operations in the Search menu, as follows:

Find ...
FInd prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it is selected. If not, the system tells you. '
The Find command can also be executed by pressing the F key whUe holding
down the " key.
Find same
Find Same repeats a previously specified Find, and selects the next occurence
of the string. You can do a Find Same by pressing the S key while holding
down the " key.
Find & Paste All
Find & Paste All finds all occurrences of the specified string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case must be matched. The options currently in effect have a check mark in
front of them. To change the option, you choose a new one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

Workshop User's Guide The Editor

separate Identifiers
When Separate Identifiers is chosen, the search operation looks for a ""token""
or word to match the search string. A token is a word bounded by spaces.

All CknIrrences
When All Occurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a word.

The next options indicate if case is signi ficant in finding a match:

cases Need Not Agree
When Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

cases MAst Agree
When Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

4.8 1he Type style FlIlCtitX1S
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a line, and
whether or not the display is proportionally spaced. When a document is
printed, It is prInted In the same type style It is displayed in, if that type
style is available on your printer.

12 Pitch Modern
12 Pitch EI ite
10 Pitch Modern
10 Pitch Courier
PS Modern
PS Executive

Figure 4-5
The Type Style Menu

4-11

WoJ'ksl1op User's Guide The Editor

4.9 The Print FtrlCtions
The Print menu provides functions for printing a document You can print all
or part of a document, choose what form of footers are to be printed, specify
If Pascal keywords are to be emphasized, and tell what type of printer Is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of Docunent
The Print All of Document command prints the entire document

Print Selection
The Print Selection command prints only the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the print is to be
performed. They are organized into three sets of two options. The currently
selected option in each set is indicated by a check mark. You can choose any
combination of options you want

Print All of Document
Print Seft!f.tion

..fFull Footers
Page Numbers Only

..fPlain Keywords
Differentiated Keywords

..fDot Matrix Printer
Daisy Wheel Printer

Figure 4-6
The Print Meru

The first options control what type of footers are printed at the bottom of
the page.

4-12

Workshop User's Guide Tfle Editor

Full Footers
When Full Footers Is chosen, each page printed has a footer consisting of the
document name, the page number, and the date. If the document is less than
one page long, no footer will be printed.

Page Nt.mber Dlly
Choosing Page Number O1ly results in only a page number on the bottom of
each printed page. If the document is less than one page long, no page
number will be printed.

The next options are used for printing Pascal programs.

Plain Keywords
Choosing Plain Keywords causes Pascal keywords to print as normal text.

Differentiated Keywords
Choosing Differentiated Keywords causes Pascal keywords to print with
underlining. In addition, the read procedure, write procedure, and other
standard Pascal procedures and functions are underlined.

You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
Wheel Printer.

4-13

~:557-A

Chapter 5
The Pascal Compiler

5.1 The Pascal Cc:lI'11>iler .. 5-1
The Pascal CompHer translates Pascal source statements Into Object
cOde. This translation is in two steps. The source statements are first
translated into Intermediate code (I-COde), then the I-code Is translated
into object Code.

5.2 lJSil1Q the Pascal Cc:lI'11>iler ••.••••••••••••••••••••••• 5-1
The CompHer expects as Input a text fHe contaInIng a Pascal program.
The Compiler translates source code into intermediate code (I-code),
then the code generator translates I-code into Object COde.

53 The Pascal Cc:lI'11>iler COf11Tl8I m .. 5-2
You enter Compiler commands into the Pascal source file. They
provide for symbolic debUggIng information and conditional compilation.

5.4 The Pascal RtIl-TIme Envll'Orlllel'lt •••.••••••..••.••.•••••••.••••••••••...••••••••••••• 5-3
This section explains how to use the PASLIBCALL unit, which provides
some special system functions to Pascal programs. It also explaIns hOw
the Pascal heap operates.

The Pascal Compiler

5.1 The Pascal compiler
The Compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step, parsing, converts the program
into semantically equivalent tree structures called I-code. The second step
translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the PBSC8l ReFerence HlJnu81
For tIJe Lisa A Pascal program can call assembly language routines. More
information on assembly language is in Chapter 6 of this manual.

The ~rating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in the
SYSCALL unit, which is described in the QJerating System ReFerence Mantlal
For the Lise.

The Pascal run-time support routines are in the library IOSPASLIB.CBJ. The
support routines for floating point operations are in IOSFPLIB.OOJ. After
generating the object code, it is necessary to link the program with
IOSPASLIB.CBJ before you can run it. If you are using real numbers, you must
also link with IOSFPLIB'(EJ. For information on how to link the program, see
Chapter 7 in this manual.

5.2 Using the Pascal compiler
The Compiler expects a text file containing a Pascal source program as input.
You can create this text file using the Editor.

When you have prepared a source program, use the Compiler to translate it
into object code. Start the Compiler by preSSing P in response to the
Workshop command prompt The Compiler first asks:

Input file[.TEXT]

Type the name of the fUe that contains the source program. You do not need
to add the . TEXT extension. The Compiler then asks:

List file[.TEXT]

Type the name of the file that you want the listing to go to, or press
[RETURN) if you don't want a listing. You can display the listing on the
console by using the -console pathname. The Compiler next asks you where
to store the I-code form of the program:

I-code file[<input name>][.I]

5-1

Wo.rkshop User's Guide Pascal Compiler

If you want the I-code to be stored in a file with the same name as the
source file, but with a .I extension instead of the .TEXT, just press [RETURN].
If you want another name, type the name and press [RETURN}

After the last input, the Compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they are displayed in
the listing file, or on the console if there is no listing file. When a message
is displayed on the console, you are given a choice of aborting the compile by
pressing [CLEAR], or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $E Compiler command.

5.2.1 Using the Code Generator
To translate the I-code into object code, press G in response to the Workshop
command prompt. The code generator first asks:

Input file [.IJ -

Type the name of the I-code file. You do not need to add the J extension.
The generator then asks:

OUtput File [<input name>][.OBJ] -

To accept the default name, press [RETURN). If you want a different name
for the output file, type the name and press [RETURN} The .CBJ extension
will be added to the name for you.

The output file from the code generator Is object code, but it Is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB.CBJ, and
IOSFPLIB.CBJ for floating point operations. These routines must be added to
the Object file by using the Linker. See Chapter 7 in this manual for more
information on the Linker.

5.3 The Pascal COfTlliler carma m
Compiler commands allow control of code generation, input file control, listing
control, and conditional compilation. The commands all start with a $, and
are placed as comments in the source program where you want the command
to take effect. All the Compiler commands are listed in Table 5-1. A
complete explanation of the Compiler commands is found in the Pascal
Reference Manilal for t/Je Lisa.

5-2

WoIksl7op User's Guide

$1 filename

$U filename

$C+ or $C-

$R+ or $R­

$S segname

$X+ or $X-

$0+ or $0-

$E filename

$L filename

$L+ or $l­

$OECL list

$SETe
$IFC

$ELSEC

Pascal Compiler

Table 5-1
Pascal CorT1liler COrrmands

fVIea1ing

Include contents of filename in this compilation.

Search filename for units used.

Tum code generation on (+) or off (-) for a procedure. v/
Default $C+. (eGse c;,(J VL -i-?'L<>L cc...-~<- 4)

Tum range checking on (+) or off (-). Default $R+. v/

Start putting code modules into segment segname.

Tum automatic stack expansion on (+) or off (-).
~~~~~ ~ 

Tum procedure name generation for Debugger on (+) 
or off (-). Default $0+. 

List Compiler errors in filename. 

Produce Compiler listing in filename. 

Tum source listing on (+) or off (-). Default $l +. v' 
Declare compile time variables. 

Assign a value to a compile time variable. 

Begin conditional compilation section. 

Begin ELSE clause of conditional compilation. 
$ELSEC is optional. 

$ENDC End of conditional compilation section. 

5.4 The Pascal Rt.Il-Time Envirorment 
The Pascal run-time environment provides a unit PASLIBCALL which allows 
you to use some special system functions. It also provides special heap 
manipulation functions. 

5.4.1 The PASLIBCALL Ulit 
The unit PASLIBCALL provides you with some additional system functions. In 
order to access the PASLIBCALL routines., you must use the units SYSCALL 
and PASLIBCALL: 

USES 
{$U syscall} SVSCALL, 
{$U paslibcall} PASlIBCALl; 

This gives you access to the routines listed below. These routines are 
contained in IOSPASUB.CBJ, so programs using them require no additional 
inputs to the Linker. 

5-3 



Workshop User's Guide Pascal Compiler 

flllCtioo PAbortFlag : boolean 

This function tells whether or not the .-period key combination has been 
pressed. It enables programs to exit out of long operations. The flag is 
cleared when PAbortflag is called. If you want your program to stop 
when you press .-period, you must use this function in the program to 
detect that the key combination has been pressed. for example: 

{This program frafJlBlt ha1gs in an infinite loop lIltil .-period 
is pressed} 

aborted : =false 

Repeat {Walt for .-pertod. You mi(1lt .ant to do other things 
here} 

aborted : =PAbortflag; 

Ultil aborted. 

proceclrre Screenctr (contrf..... : integer ); 

This procedure provides standard screen control functions, and enables 
programs to perform screen control without having to to use escape 
sequences. Escape sequences are explained in Appendix C. The parameter 
specifies the screen control function. It is defined in the constants as 
follows, in the PASLIBCALL unit: 

Function 

clear screen 
clear to the end of screen 
clear to end of line 
move cursor to home position 
cursor left one posi tion 
cursor right one position 
cursor up one line position 
cursor down one line position 

Screen control example: 

Constant 
Value 

DecTrnal Hex 

CclearScreen 1 
CclearEScreen 2 
CclearELine 3 
CgoHome 11 
CleftArrow 12 
CrlghtArrow 13 
CupArrow 14 
CdownArrow 15 

1 
2 
3 
B 
C 
o 
E 
F 

{thiS program fl'a9JBlt clears the screen, 81d posi tioos the 
cursor 00 the third line} 

ScreerCtr (CgoHome); 
ScreenGtr (CclearScreen); 
Screerctr (CdoWlArrow); 
SCreeR!tr (CdoMlArrow); 

5-4 



Workshop User-S Guide Pascal Compiler 

proceWre GetGPrefix (var prefix: patl"nlE); 

This procedure provides your program with the first level prefix setting in 
the File-Mgr in the Workshop. 

proceWre Ge'tPrDevice (var PrOevice : e _name); 

This procedure returns the corresponding default printer device name so 
that you can perform additional device control functions using 
DEVlCE_ Cfl\ITRCl... (The tpemting system Reference M8nuaJ for tile Lisa 
explains the device control call.) The default printer device name is the 
one corresponding to the logical device '-printer'. Note that the device 
name returned contains a leading I_I. 

proceWre PlINIll£AP (var eroun, refrun: integer; 
size,delta:loogint 
Idsn: integer; 
swapable:boolean); 

where: 

errun is the error number returned if the procedure has any 
problems making a data segment having a mem _size of 
size bytes. Appendix A contains an explanation of the error 
codes for the Workshop. 

size is the number of bytes in the heap. 

refrun is the refnum of the heap. 

delta Is the amount you want the data segment to increase when 
the current space is used up. If you use a large heap, use a 
large number for delta. 

Idsn is the logical data segment number used for the heap. The 
default is 5. For more information see the Q:Jemting System 
Reference ManlIaJ for tI7e Lisa. 

swapable is the boolean that determines if the system can swap the 
heap data segment out to disk if it needs to. 

This procedure can be used when you have special needs; for example, 
when you want to specify your own Idsn or heap size. When you use 
PLINITHEAP, you must call it before calling other heap routines. For 
more information on the heap, see Section 5.5. 

5.4.2 TIle Pascal ~ 
The Pascal heap is one contiguous piece of memory, a data segment, which 
works automatically without any initialization call. See Chapter 11 of the 
Pascal Reference H8nu81 for tlJe Lisa for information on the normal heap 
functions. 

5-5 



Wod<sI7op User's Guide Pascal Compiler 

When a Pascal program starts execution, no heap space is allocated (no data 
segment made). 01 the first call to one of the heap routines or on the first 
PLINITHEAP call, the heap is created with either a default size of 16k bytes 
or the size specified in the PLINITHE,AP call. 

PLINITHEAP makes the heap as a private data segment so that the qJerating 
System removes it when the process calling PLINITHE,AP terminates. Note 
that when the heap is initialized, size and delta are put on 512 byte block 
boundaries. Therefore, if you use the PLINITHEAP call and specify values for 
size and delta that do not fall on block boundaries, the procedure increases 
the values to the next block boundary. 

If the heap runs out of space while it is being used, the size of the heap is 
increased by the default of 16k or the delta specified in PLINITHEAP. The 
default Idsn used is 5. If you want a different Idsn for the heap data 
segment, call PLINITHEAP. Remember that the size of a data segment is 
limited by the Idsn you use. For Idsn 16, you can get only 128k (actually 96k 
safely), for Idsn 15 you can get only 256k, for Idsn 14 you can get only 384k, 
and so forth. See the QJerating system Reference Manual for the Lisa for 
more information on Idsn's and data segments. 

If swapable is true, the heap is made with disc_size equal to size so the data 
segment is not memory resident. This uses up disc_size bytes on the startup 
disc. The default for swapable is false. When swapable is false, the 
procedure creates a data segment that has a disc_size of 0 (zero), which 
makes it memory residenL 

The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and 
HEAPRESUL T. 

• If you call NEW and not enough space is available, the size of the heap is 
increased by either the default of 16k or the delta size specified in 
PLINITHEAP. 

• MEMAVAIL provides the maximum number.of words you could ever expect 
to get, taking into account the Idsn you used as well as the amount of free 
space the qJerating System currently has available. If another process is 
using memory concurrently, its use of memory also affects MEMAVAIL. 
MEMAVAIL does not show the amount of memory left in the heap's data 
segment alone, since the heap's data segment can grow and shrink over 
time. 

• MARK sets a pOinter to the lowest free area on the heap. It is used with 
RELEASE to deallocate variables from the heap. 

• RELEASE deal locates variables from a marked area of the heap. If you 
release the heap to a point within the original size of the heap data 
segment, the heap data segment is reduced to its original size. More 
information on MARK and RELEASE can be found in the Pascal Reference 
Manual for the Lisa. 

5-6 



Workshop User:S Guide Pascal Compiler 

• HEAPRESUL T returns a 0 if the last heap operation was successful, 
otherwise it contains the QJerating System error number indicating what 
failed. A list of the QJerating System errors is in Appendix A 

5-7 





Chapter 6 
The Assembler 

6.1 llte Asserntller .....•................•......................•.......•...•.•...•.•..............•. 6-1 
The Assembler translates 68000 assembly language into macnine 
language. 

62 USiflg the Assernt3ler ......................................................................... 6-1 
The Assembler accepts a text fUe as Input and prOdUCes a machIne 
language (.ceJ) file as output. 

6.3 Assembler ~ •..••••.•..••••.•.••••••.••.•••.•••..•••.••.•..•••.•.••..••••..•.••.•.••.••• 6-3 
The Assembler opcOdes are tne standard 68000 opcodes, wIth a few 
al temate forms for some instructions. 

6.4 Assernt31er Syntax ••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-5 
An Assembler statement consists of an optional label, the opcode, and 
one or two operands. The operands can contain expressions. 

6.5 Assembler Directives ..•.•••••.•.•..•...•..•••.•..••...••••••...•.•.•.•••.•.••••••••.•.••.••• 6-9 
The Assembler directives provIde for procedure and function definition, 
macros, label and constant declaration, listing control, storage 
allocation, and COnditional assembly. 

6.6 COOIlUllcatlOl1 WIth Pascal ............................................................. 6-16 
Assembly language routines can be either procedures or functions called 
from a Pascal program. Parameters are passed on the Pascal stack. 

6.7 Assembly LartgUage E~les .......................................................... 6-21 
This section provides example assembly language routines illustrating 
parameter passing and other functions. 





The Assembler 

6.1 The AsserJt)ler 
The Assembler is a program that translates assembly language source 
statements into object code. The Assembler accepts a text file containing the 
source statements as input" and produces an object file as output. The object 
file produced must be linked with a Pascal main program before it can be 
executed. 

Assembly language routines are used to implement low level or time critical 
functions. This chapter describes how to use the Assembler" and the syntax of 
assembly language programs. Information on the machine instructions 
available on the 68000 processor can be found in the Motorola MC68000 
Reference Manual. 

6.2 Using the Assembler 
To assemble a program" press A from the Workshop command line. Then 
specify the input file (the file that contains your source program) and two 
output files: an optional listing file and the object file (the file that will 
contain the object code produced by the Assembler). 

The input file must be a text file containing assembly language source 
statements. You can create this file with the Editor. The output file produced 
is an object file (.OOJ) that must be linked with a Pascal main program to be 
run. 

Any errors in the program will be indicated by messages on the console or in 
the listing file. A complete list of Assembler error messages is found in 
Appendix A of this manual. 

6.2.1 Assembler Options 
When you start the Assembler" the option settings are displayed. You can 
enter the options selection mode by responding to the input file prompt with 
"?". There are two Assembler options: 

P Pretty listing. 
S Print information about available space. 

Each option may be set to + or -: 
+ On 

Off 

When pretty listing is on" the forward referenced labels or offsets are filled in 
with the correct values in the listing. 

After setting options" press [RETURN]' and the Assembler asks you for the 
name of the input file. The Assembler then asks you for the name of the 
listing" and the object files. 

6-1 



Workshop User's Guide The Assembler 

6.2.2 The Input File 
The input file is a text file containing Assembler language source statements. 
A file created using the Editor will be in text file format. 

When the Assembler asks you for the name of the input file, type "?" if you 
want to change Assembler options at this time; otherwise type the pathname 
of your source file. File naming is explained in Chapter 2. 

6.2.3 The Object File 
The object file produced by the Assembler contains a machine code version of 
your source program. The name of an object fUe ends with 1BJ. A raw 
assembly Object fHe is not executable; it must be linked with a Pascal 
program that calls it. See Section 6.6 for further information. 

The output file will be an object file which must be linked with a Pascal main 
program before it can be executed. The object file goes to the same volume 
as the input text file was on unless another volume is specified. 

6.2.4 The listing File 
The listing file produced by the Assembler contains a list of source statements 
and their machine-language equivalent. If pretty listing is off, all addresses 
for forward referenced labels will be presented in the listing file as asterisks 
(*). If pretty listing is on, the actual values will be filled in. 

Source statement errors are flagged in the listing. Refer to the Appendix for 
a list of Assembler error messages. 

M example of an Assembler listing file is shown in Figure 6-1. Figure 6-2 
shows the same file listed with the pretty list option. 

6-2 



WoIkshop l/se['s Guide 

0000 I 0000 0001 
0000 0000 0020 
0000 
0000 303C 0020 
0004 4240 
0006 '240 
OOOB 6700 •••• 
OOOC GOFB 

one .equ 1 
hbe12 .equ $20 

move 
clr 

III abel 2, dO 
dO 

12 ~;1""" /' " 
'1 lea data, rj) 

bra.s done 

; show listing patch lng 
; address filled in 
; for backward brenchi ng 

; some more code ... 

nop 

done rts 

The AssembleJ" 

data .byte 2', $30, 19 ; odd ntJllber of bytes 
. 81ign 2 ; make sure next instruction 

; is on even 

Figure 6-1 
AssefTtller Listing 

If you specify a device name such as -printer or -console for the listing file, 
the listing will be printed on that device. If you specify a disk file, the 
listing will be created as a text file; you may then print it by using the Copy 
command in the File Manager command line. 

NOlE 

If you want pretty listing, the listing output must be sent to a file, not 
to a device. Pretty listing is done by making an additional pass 
through the listing file to patch in the forward references. There must 
be enough disk space for two listing files for this operation to succeed. 

6-3 



The Assembler 

~I .proc eXMlple 

00001 0000 0001 
one .equ 1 

()()()() ()()()() 0020 label2 .equ $20 

:g 303C 0020 move III abel 2, dO 
0004

1"<0 
clr dO 

0006 5240 1i2 add liane, dO 
0008 6700 0004 beq lil ; show listing patching 
OOOC 60fB bra 1i2 i address filled in 

i for backward branching 
CXXlEI 
CXXlE 
CXXlE 41fA 0006 Iii lea data,~ 
0012 6002 bra.s done 
0014 
0014 ; SOOIe more code ... 
0014 
0014 4E71 nap 
0016 4E75 done rts 
0018 
0018 19 30 13 data .byte 25, $30, 19 i odd number of bytes 
0016 00 .align 2 ; make sure next instruction 

; is on even 

Figure 6-2 
Pretty Listing 

6.3 Assembler qJcodes 
The 68000 opcodes are described in the Motorola MC68000 Microprocessor 
User's Manual. The Assembler has two variant mnemonics for branches that 
are more indicative of how the instruction is being used after unsigned 
comparisons. These variants are BHS (Branch on High or Same) for BCC, and 
BLO (Branch on Low) for BCS. The default radix is decimaL 

The size of an operation (byte, word, or long) is specified by appending either 
.B, .W, or .L to the instruction. The default operation size is Word. To cause 
a short forward branch (an 8-bit displacement rather than a word 
displacement), append a .S to the instruction. The default branch size is Word. 

Note that the T AS (test and set) instruction is not implemented on the Lisa 
hardware. Using this instruction may cause timing problems. 

Note that the Assembler accepts generic instructions and assembles the 
correct form. The instruction ADD, for example, is assembled into ADD, 
ADOA, ADOQ, or ADD I, depending on the context. 

ADO 03, AS 
becomes AOOA 03., AS. 

MOVE, CMP, and SUB are handled in a similar manner. 

6-4 



Workshop User's Guide The Assembler 

6.4 ~ler Syntax 
This section describes the form in which the Assembler expects an assembly 
language program. The structure of an assembly language program is shown in 
Section 6.4.1. Rules for forming constants, identifiers, labels, expressions, and 
addressing modes are provided in the following sections. 

6.4.1 Structure of an Assembly Language Progrcm 
An assembly language program contains one or more procedures or functions. 
The structure of an assembly language source file is shown in Figure 6-3. The 
source file contains an (optional) section of operations that doesn't generate 
code. Constants or macros are usually defined here. Next it conains one or 
more procedures (.PRCC) or functions (.FUNC). These each contain a sequence 
of directives and code generating operations. A procedure or function ends 
when the Assembler encounters the next .PROC or .FUNC. The .END directive 
is the last statement that is processed by the Assembler. Any text beyond the 
.END is ignored. 

nt¥l code genemting cpemtilKlS 

PRoo (or.F\...t>C) 
t:Oti! g:nemUng tpeJ'BUlY1S and my di.J'l!CUves neetB1 

.PROO 

.FlJI.C 
etc. 

.EN) 

Figure 6-3 
Structure of an Assen1lly Language Progrcm 

The directives that don't generate code are: 

.EQU .MACRO .IF .LIST 
.ENDM .ELSE .NCLIST 

.REF .ENDC .PAGE 

.DEF .TITLE 

6.4.2 Constants 

.MACRCLIST 

.NCJV1ACRCLIST 

.PATCHLIST 

.NCPATCHLIST 

Constants in the Assembler can be either numeric or strIng constants. 

6.4.2.1 Nt.rneric constants 
Numeric constants in the Assembler can be expressed in decimal, hexadecimal, 
octal, or binary. The default radix is decimal. Numeric constants are 
expressed as follows: 

6-S 



WOrkshop User's Guide The Assembler 

Decimal 
Decimal numbers are formed with the decimal digits (0-9~ Examples: 

10 
13 
137 

Hexadecimal 
Hex numbers can be expressed in two ways: 

1. Preceed the number with a "$"'. Examples: 

$FF13 
$127 

2. Follow the number with an "Hit. Using this form, the number must start 
with a digit (0-9~ Examples: 

OFF13H 
195H 

fXtal 
Octal numbers are followed by the character "a', Note that this is the letter 
0, not the number zero (O~ Examples: 

770 
1040 

Binary 
Binary numbers are followed by the character "B". Examples: 

10118 
1110008 

6..4.2.2 String Constants 
String constants are delimited by matching pairs of single or double quotes. 
Examples of string constants are: 

"this is a string constant" 
'using single quotes as delimiters lets you include "double" quotes' 

6..4.3 Identifiers 
Olly the first eight characters of identifier names are meaningful to the 
Assembler. The first character must be alphabetic; the rest can be 
alphanumeric, period, underbar, or percent sign. 

Examples of identifiers are: 

LOCP 
EXIT PRe 
NUM-
num64% 

6-6 



Workshop User's Guide The Assembler 

6.4.4 Labels CI1d Local Labels 
Labels begin in column one. They can be followed by an optional colon. 

Local labels can be used to avoid using up the storage space required by 
regular labels. The local label stack can handle 50 labels at a time. It is 
cleared every time a regular label is encountered. A local label is an @l 

followed by a string of decimal digits (0-9~ Examples of local labels are: 
@l123 
@2 

@l79 

6.4.5 Expressions and ~ratoIS 
All quantities are 32 bits long unless constrained by the instruction. 
Expressions are evaluated from left to right with no operator precedence 
Angle brackets can be used to control expression evaluation. The operators 
are: 

+ 

* 
/ 
\ 
I 
ex 

<> 

positive sign or binary addition 
unary minus or subtraction 
ones complement (unary operator) 
exclusive or 
multiplication 
division (DIV) 
MID 
logical CR 
logical Al'JD 
equal (used only with .IF) 
not equal (used only with .IF) 

There is no operator precedence in expressions. For example, in the 
expression 2 + 9 * 4, the addition is. performed first. To perform the 
multiplication first, rewrite the expression with angle brackets to show 
precedence: 2 + <9 * 4>; or reorder the operands: 9 * 4 + 2. 

6.4.6 Addressing tvtodes 
Refer to the Motorola 68000 manual for detailed information on the 
addressing modes supported by the 68000 microprocessor. Table 6-1 gives a 
summary of the addressing modes including their syntax. 

6-7 



Wo.d<shop User's Gl/jde The Assembler 

Table 6-1 
Slmmary of Addressing Modes 

Mode Register Syntax Meaning Extra Words 

0 0 . .7 Di Data direct 0 
1 0 . .7 Ai Address direct 0 
2 0 . .7 (Ai) Indirect 0 
3 0 .. 7 (Ai)+ Postincrement 0 
4 0 .. 7 -(Ai) Predecrement 0 
5 0 .. 7 ~Ai) Indexed 1 
6 0 . .7 AiBi) Offset indexed 1 
7 0 e Absolute short address 1 
7 1 e Absolute long address 2 
7 2 e PC Relative 1 
7 3 e(Ri) PC Relative indexed 1 
7 4 4te Immediate 1 or 2 

Notes: 

The indexed and PC relative indexed modes are determined by the opcode. 

The absolute address .and PC relative address modes are determined by the 
type of the label (absolute or relative~ 

The absolute short and long address modes are determined by the size of the 
operand. Long mode is used only for long constants. 

The number of extra words for immediate mode is determined by the opcode 
size modifier (.W or .L~ 

I'()TE 

All programs that run under the Lisa OS must be relocatable. 
Addresses should not be absolute. 

6.4.7 MiscellaleOUS Syntax 
Ccmnents 
A comment in an assembly language program begins with a semicolon. The 
Assembler ignores all characters after a semicolon in a line. Examples are: 

; This· is a COIIIIB'lt on a line by i tsel f 
ClR.L 00 ;comment after a statement 

6-8 



Workshop User's Guide The Assembler 

CUrrent Program Location 
The current program location is indicated in assembly language by the symbol 
".". Examples of its use are: 

.l'P * 

.:tP *-4 
Move MJltiple (tveVEM) 

; loop infinitely 
; ~ back 4 bytes 

To specify which registers are affected by Move Multiple (MOVEM), specify 
ranges of registers with "-" and specify separate registers with "I'. For 
example, to puSh registers DO through 02, 04, and AD through A4 onto the top 
of the stack: 

tIlVEH.l DO-D2ID4/AO-M,-(A7) 

65 Assembler Directives 
Assembler directives tell the Assembler to do various functions besides 
generating executable code. These functions include defining symbols and 
constants, defining macros, doing conditional assembly, and controlling listing 
options. 

The Assembler directives (pseudo-ops) are shown in Table 6-2. 

Table 6-2 
lhe Asserrtller Directives 

Directive qJerCl'lds Metring 
.PROC <identifier> begin procedure 
.FUNC <identi fier> begin function 
.OEF <identifier-list> make identi fiers externally available 
.REF <identi fier-list> declare external identifiers 
.SEG '<name>' put code of next .PRCC in segment 'name' 
.END end of entire assembly 

.ASCII '<char -string> ' place ASCII string in code 

.BYTE <value-list> allocate a byte in code for each value 

.BLOCK <length>[,value] allocate length bytes of value 

.WCRO <value-list> allocate a word for each value 

.LCl'JG <value-list> allocate a long word for each value 

.ALIGN <Expr> allign next code on mul tiple of Expr 

.CRG <value> place next byte at <value> relative to 
beginning of assembly 

.RCRG <value> same as .eRG 

.EQU <value> set label equal to <value> 

.MACRO <identi fier> begin macro definition 

.ENOM end macro definition 

6-9 



Warkshop User's Guide 

Directive 
.IF 
.ELSE 
.ENDC 

.LIST 

.NOLIST 

.PAGE 

qJelCllds 
<expr> 

. TITLE '<title>' 

.MACRCl.IST 

.NOVIACRCl.IST 

.PATCHLIST 

.NIF ATCHLIST 

.INCLUDE <filename> 

Table 6-2 (cont.iR.led) 
The Assembler Directives 

Meaning 
begin conditional assembly 
optional alternate to .IF block 
end conditional assembly 

turn on assembly listing 
turn off assembly listing 
issue a page feed in listing 

The Assembler 

ti tie of each page in listing 
turn on macro expansion listing 
turn off macro expansion listing 
turn on patchlist 
turn off patchlist 

include contents of <filename> in a8sembl y 

6.5.1 Space Allocation Directives 
The space allocation directives are .ASCII, .BYTE, . WCA.O, .LCNG, and .BLOCK 

.ASCII 'stIirg' 
Converts 'string' into the equivalent ASCII byte constants and places the bytes 
in the code stream. The string delimiters must be matching single or double 
quotes. To insert a single quote into the code use double quotes as delimiters. 
Similarly for double quotes: 

. ASCII "don't" ; string containing single (JJOte 

. ASCII 'a "glitch'" ; string containing double CJ.IOte 

.BYlE <values> 
Allocates a byte of space in the code stream for each of the values given. 
Each value must be between -128 and 255 . 

. BL£CK <length>[,Value] 
Allocates <length> bytes, each filled with the value given. If no value is 
given, a block of zeroes is allocated . 

• W(R[) <values> 
Allocates a word of space in the code stream for each of the values listed. 
The values must be between -32768 and 65535. 

6-10 



Woikshop User's Guide 

For example, 

TEMP.IORD 0,65535,-2,17 

creates the assembled output: 

0000 
FFFF 
FFFE 
0011 

.L£NG <values> 

The Assembler 

Allocates two words of space for each value in the list. F or example, 

STlFf • LONG 0,65535, -2, 17 

creates the output: 

00000000 
OOOOFFFF 
FFFFFFFE 
00000011 

<label> .EQU <Value> 
Assigns <value> to <label>. <value> can be an expression containing other 
labels. 

JRG <value> 
Puts the next byte of code at <value> relative to the beginning of the 
assembly file. Bytes of zero are inserted from the current location to 
<value> . 

. RfRG 
is similar to .ffiG. It indicates that the code is relocatable. Because the 
loader does not support absolute loading, .ORG and .RCRG accomplish the 
same function. All addressing must be PC relative. 

6..5.2 Macro Directives 
A macro consists of a macro name, optional arguments, and a macro body. 
When the Assembler encounters the macro name, it substitutes the macro body 
for the macro name in the assembly text. Wherever "%11" occurs in the macro 
body (where n is a single decimal digit), the text of the n-th parameter is 
substituted. If parameters are omitted, a null string is used in the macro 
expansion. A macro can invoke other macros up to five levels deep. In the 
assembl y listing, the listing of the expanded macro code is controlled by the 
options .MACRCLIST and .NCMACRCl.IST. These options are described in 
Section 6.5.5. 

6-11 



Workshop User's Gujde The Assembler 

.MACRO <identifier> 

.Et01 
defines the macro named <identifier>. The following is an example of a 
macro: 

• MACRO 
tIlVE 
ADO 
.Eto1 

Help 
%1, DO 
DO,t2 

If "Help" is called in an assembly with the parameters "Alpha" and "Beta", the 
listing created would be: 

Help Alpha, Beta 
II tI1VE Alpha, DO 
II ADO DO, Beta 

6.5.3 Conditional Assen1lly Directives 
The conditional assembly directives .IF, .ELSE, and .ENOC are used to include 
or exclude sections of code at assembly time based on the value of the 
condi tional expression . 

.IF <expressioo> 
Identifies the beginning of a block of source statements that is assembled only 
under certain conditions. If <expression> is false, the Assembler ignores all 
statements until a .ELSE or .ENOC is found. The statements between the 
optional .ELSE and .ENOC are assembled if <expression> is eva luted to be 
false at the time of assembly. Otherwise they are ignored. 

<expression> is considered to be false if it evaluates to zero. My non-zero 
value is considered true. The expression can also involve a test for equality 
(using <> or::~ Strings and arithmetic expressions can be compared. 
Conditionals can be nested. The macros HEAD and TAIL given in Section 
6.6.1 provide examples of the use of conditionals. The general form is: 

.If <expr> 
;assembled if <expr> is true 

[ .ELSE] ; optional 
;assentJled if <expr> is false 

.ENlC 

6-12 



Wo.rkshop User's Guide The Assembler 

6.5.4 External Reference Directives 
Separate routines can share data structures and subroutines by linkage 
between assembly routines using .DEF and .REF. These directives generate 
link information that allows separately assembled routines to be linked 
together . 

. OEF and .REF directives associate labels between assembly routines" not 
between assembly routines and Pascal. The onIY'.-.Jl=lY_t9J~-'~!DIDldl}ig~t~. data 
bet\tJ_eenPa_scalJ~odJ~ss..emblY-lQ!!tJrl~S_ i~~~~~~1n~_thEt_~_~9~~ This-h--done by 
passing the data as parameters in the procedure or function call. Information 
on parameter passing between Pascal and assembly language routines is found 
in Section 6.6 . 

. DEF <identifier-list> 7 
Identifies labels defined in the current routine as available to other assembly (' 
routines through matching .REFs. The .PROC and .FUNC directives also 
generate code similar to that generated by a .DEF with the same name" so 
assembly routines can call external .PROCs and .FUNes with .REFs . 

. PROC Simple"l 

. Off Alpha" Beta 

BNE Beta 

Alpha I1JVE 

RTS 
Beta tolE 

RTS 
• EM) 

This example defines two labels" Alpha and Beta, which another assembly 
routine can access with .REF . 

• REf <identifier-list> 
Identifies the labels in <identifier-list> used in the current routine as 
available from some other assembly routines, which defined these identifiers 
using the .DEF directive . 

• PROC Simple 
• REf Alpha 

JSR Alpha 

.Effl 

This example uses the label "Alpha" declared in the .OEF example. 

6-13 



Workshop User's Guide The Assembler 

When a .REF is encountered, the Assembler generates a short absolute 
addressing mode for the instruction (the opcode followed by a word of D's) and 
a short external reference with an address pointer to the word of D's following 
the opcode. If the referenced label and the reference are in the same 
segment module, the Linker changes the addressing mode from short absolute 
to single-word PC relative. If, however, the referenced procedure is in a 
different segment, the Linker converts the reference to an indexed addressing 
mode (off AS), and the word of zeros is converted into the proper entry offset 
in the jump table. If the referenced procedure is in an intrinsic unit (and 
therefore in a different segment), the IUJSR, IULEA, IUJMP, and IUPEA 
instructions are used. The Linker blindly assumes that the word immediately 
before the word of zeros is an opcode in which the low order 6 bits are the 
effective address. Thus, a .REF label cannot be used with any arbitrary 
instruction. The .REF labels aIe intended for JSR, JHp,. PEA, and LEA 
instmctions. 

.SEG 
Default segment name is " " (8 blanks~ .SEG "segment name" puts the 
code in segment called "segment name". The .SEG directive takes effect 
when the next .PRCC or .FUNC is reached. Thus it is not possible to split one 
procedure into two segments. This is an example of how the .SEG directive 
works: 
.SEG ·namel· 

.PROC A 

{code in PROC A} 

.SEG ·name2· 

{code still in .PROC A} {thiS code will still be in segment "namel1 

FROO B {code of .PROO B will be in segment ·narne21 

6.5.5 Listing Control Directives 
The directives that control the Assembler's listing file output are .LIST, 
.NCLIST, .PAGE, .TITLE, .MACRIl....IST, .NCJV1ACRIl....IST, .PATCHLIST, and 
.NCPATCHLIST. If you do not specify a name for the listing file in response 
to the Assembler's prompt, the listing directives are ignored 
The default for the Assembler is for .LIST, .MACRIl....IST, and .PATCHLIST to 
be in effect when the Assembler starts. . TITLE defaults to blank . 
.LIST and .f'O...IST 
Can be used to select portions of the source to be listed. The listing goes to 
the specified output file when .LIST is encountered. .NIl....IST turns off the 
listing. .LIST and .NCl.IST can occur any number of times during an assembly. 

6-14 



Wo.d<shop User's Guide 

.PAG: 
Causes the next line of the listing file to be printed on the next page . 

. TITLE ·<title>· 
Specifies a title for the listing page. <title> can contain up to 80 characters, 
and can be enclosed in either single or double quotes. For example: 

. TITLE 'Interpreter' 
places the word, "Interpreter", at the head of each page of the listing . 

. PATCI-LIST 
Patches the forward referenced labels in the listing. It must be on if you 
want pretty listing. See Section 6.2.4 for more information on pretty listing . 

. NlPATa-LIST 
Turns off patching of forward references . 

• MACR£l...IST 
Turns on listing of the expanded code from a macro. 

J\KMACR£l...lST 
Turns off listing of macro expansion. See Figure 6-4 for examples of macro 
listing. 

~I 
0000 
0000 
0000 
0000 
0000 

51 
~I 
~I 
~I 

51,440 
0002 
00021 '24C 
0004 
00041 0443 OOFF 
0008 

2 parlmeters in 11£: 
%1 - the !mount to edd to 

register that is passed as %2 
i %2 - register n!me 
. macro 11£ 
edd 11'41, %2 
.enlin 

par!met ers pes sed to etC: 
%1 - !mount to subtract 

from register %2 
i %2 - register name 
. macro etC 
sub trd, %2 
.enlin 

. proc Hacn£xemple 
He 2,dO 

fro #2 dO 
11£ 1, a4 ' 

fro #1 a4 
etC $ff, d3 

Sl.6 #$ff, d3 
. end 

Fi~ 6-4 
Macro Usting 

6-15 



Workshop User's Guide 

65.6 File Directive 
JNCLUOE <filename> 

The Assembler 

Causes the contents of <filename> to be assembled at the point of the 
.INCLUDE .. You need not specify the .TEXT suffix. An included file cannot 
itself contain an .INCLUDE statement. 

6.6 Cormulication with Pascal 
Assembly language routines must be called from a Pascal program. In order 
to call an assembly language routine, the Pascal program declares the n 
assembly language procedure or function to be EXTERNAL. If the assembly 
routine does not return a value, declare the assembly routine as a 
PROCEDURE in the Pascal program. If a function result is to be returned 
from the assembly routine, declare it as a FUNCTIO\1 in Pascal and space for 
the returned value is allocated (by the Pascal Compiler) on the stack just 
before the function parameters, if any. The amount of space allocated 
depends on the type of the function. A Longint or Real function result takes 
two words, a Boolean result takes one word with the result in the high order 
byte, and other types take one word. A Boolean result of 0 indicates false, 
any non zero value indicates true. 

t-lJTE 

Assembly language programs are in read only memory segments. Thus 
they have no data space to write into. Any data space needed must be 
allocated by the Pascal Compiler. A pOinter to the space is then 
passed to the assembly language routine. "Writes" to the data space 
are done by pointer references using modes like (Ax), i(Ax), etc. For 
examples of this technique see Section 6.7.5 

In the following example, an assembly language routine is linked to a Pascal 
program. The assembly language routine accepts two integers and returns the 
logical AND of them. The Pascal host file is: 

PROGRAM BlnEST; 
VAR I,J: INTEGER; 
fUNCTION Iand( i, j INTEGER): INTEGER; 

""EXTERNAL; (* external =' AssentJly language *) 

BEGIN 
i := 255; 
j := 33; 
~ITELN (I, J,' AND = ., land (I, J»; 

EtIl. 

6-16 



Workshop' User's Guide 

The Assembler file is: 

.Fl.J£ 
t'IlVE.L 
I1lVE •• 
t1lVE.W 
AND. II 
t1lVE.W 
J'P 
• END 

IAN) 
(A7)+,AO 
(A7)+,00 
(A7)+,01 
01,00 
DO, (A7) 
(AO) 

; return address 
; J 
; I 
; I AND J 

Tfle Assembler 

; put func!i~ result on stack 

In the example given above little attempt has been made to make the 
assembly language procedure mimic the structure of a procedure generated by 
the Pascal Compiler. A complete description of this structure requires some 
preliminary discourse. 

6..6..1 TIle RLIl-Time stack 
Automatic stack expansion code makes procedure entries a little complicated. 
To ensure that the stack segment is large enough before the procedure is 
entered, the Compiler emits code to 'touch' the lowest point that will be 
needed by the procedure. If we 'touch' an illegal location (outside the current 
stack bounds), the f'!)~mj:)rY __ fD~Q.99~'!'~":lt. har~~ar.~_~ignals.a ~us error that 
causes the 68000 to generate a hardware exceptlOn and pass control to an 
exception handler. See the Lisa HardwaIe Manual for more information on 
the memory management hardware. This code, provided by the qJerating 
System, must be able to restore the state of the world at the time of the 
exception, and then allocate enough extra memory to the stack that the 
original instruction can be reexecuted without problem. To be able to back 
up, the instruction that caused the exception must not change the registers, so 
a TST.W instruction with indirect addressing is used. 

In the normal case, the procedure's LINK instrUction should be preceded by a 
TST. W e(A7), which attempts to reach the stack location that can accomodate 
the static and dynamic stack requirements of the procedure. If the static and 

c( dynamic stack requirements of your assembly language procedure are less than 
? 256 bytes, you can assume that the Compiler's fudge factor will protect the 

assembly language procedure, so the TST.W can be omitted. If the 
requirements are greater than 32K bytes, e(A7) may not be sufficient because 
only 16 bits of addressability are available. In this case, the Compiler 
currently emits code that in some cases looks like: 

t1lVE.L A7,AO 
SW. L lSize, AD ; Isize=dynamic + static needed 
TST.' (AO) 

If the Compiler option D+ is in effect (the default), the first eight bytes of 
the memory area following the final RTS or JMP (AO) contain the procedure 
name, in upper case (produced by the Pascal Compiler~ The Debugger gets 
the procedure name from this block, allowing you to use procedure names in 

6-17 



Workshop User's Guide The Assembler 

the Debugger. The following example shows how an assembly language 
programmer can provide the Debugger with information it needs to perform 
symbolic low level debugging. Note that all procedure names must be in 
upper case to be compatible with the Debugger. 
, 
; ASSEIft..V LANGUAGE EXAtR.E 

; 
; 
· , 
; 
; 

[EBUGF .EQU 1 ; true => allow debugging with 
; proc I18IIES 

I£AD -- This MACRO ca1 be used to signal the 
begiming of an assemly language procedure. HEAD 
should be used when you do not IIBlt to bUild a stack 
frcune based on A6, but do want debugging information. 

; No argtJlBlts 

; 
; 
; 
; 
; 
; 
; 
· , 
; 
· , 
; 
· , 
; 
· , 
; 
; 

.MACRO I£AD 
.IF DEBlIlF 

LINK A6,'0 
.ENOC 

.EtD1 

; falCY N(p used by Debugger 

TAIL -- This MACRO can be used as a generalized exit 
sequence. There are tIC) cases. First, if you build 
a stack frcune, TAIL can be used to undo the stack 
franE, delete the pal'anEters (if any) C:I1d return. 
Second, if you do not want to build a stack frane 
based on A6, this MACRO can be used to signal the 
end of an assemly language procedure. In either 
case if DEBUGF is true, the Procedure nanE 
is dropped by the MACRO as an 8-charaCter nanE. 

Two argt.llB1ts: 
1) NuntJer of bytes of paranEters to delete 
2) ProceWl'e_NanE as string exactly 8 characters, 

RUst be ~r case. 

.MACRO TAIL 
lH...K A6 
.IF %1 = 0 

RTS ; 0 bytes of paranEters 
• ELSE 

.IF %1 = 4-
tDlE.L (A1)+, (A1) ; La. bytes of paranBters 
RTS 

6-18 



Workshop User's Guide The Assembler 

; 
; 
; 
; 
. , 
; . , 

• ELSE 
HOVE.L (A7)+,AO 
AOO.' Al,A7 
JP (AO) 

.ENDC 
.ENlC 
.IF 0E1UlF 

. ASCII ~ 
.ENlC 

.ENl1 

; put return addr into AO 
; renDVe params from stack 
; return to caller 

The following e~le denDnstrates the use of the 
TAIL macro for the purpose of debugging. The eXClJl)le 
assumes that you want to build a stack f1'8llE based 
on A6. In a real assentJl y language proceclJre the 
zeroes below would be replaced by the local size and 
paranEter size . 

.PROC SIf1lLE 
LINK A6,1O ; zero bytes of locals 
t«.P ; body of procedure 
TAIL 0, • SItR..E • ; zero bytes of paranEters 
• EN> 

These two macros, HEAD and TAIL, can be used to make it easier to debug 
assembly language routines called from Pascal programs. 
Upon entry to the assembly routine, the stack is as shown in Figure 6-5. 

6-19 



Worksl7op User's Guide The AssembJer 

callers Stack Frame 
~-- ... 

callers Dynamic LlA< ..- +-... 
Ft.rCt1oo Result (if a ftrlCtioo) 

. _. 
ProceO.Ire Argt.ments (if any) 

static LlA< (if any) 

Return AddreSS 

Dynamic Link (old /146) -
Local Frame _.-

Dynamic Stack Area 

Figure 6-5 
The Pascal Ru1-Tune stack 

The tinction .reStl./t is present only if the Pascal declaration is for a function. 
It is either one or two words. If the result fits in a single byte (a boolean, 
for example), the most significant half (the lower-addressed half) gets the 
result value. 

Procedu.re argf.llT7el1ts are present only if parameters are passed from Pascal. 
They are pushed on the stack in the order of declaration. All reference 
parameters (parameters declared as VAA.'s in the Pascal Procedure or Function 
declaration) are represented as 32-bit addresses. Value parameters less than 
16 bits long always occupy a full word. A boolean parameter passed by value 
occupies a word with the value in the most significant byte (the 
lower-addressed byte~ All non-set value parameters larger than 4 bytes are 
passed by reference. 

The static Jink is present only if the external procedure's level of declaration 
is not global. The link is a 4-byte pointer to the enclosing static scope. 
It is the responsibility of the assembly language procedure to deallocate the 
return address, the static link (if any), and the parameters (if any~ The SP 
(stack pointer) must point to the function result or to the previous top of 
stack upon return Registers 04 through 07 and A3 through A7 must be 
preserved. We recommend that you also preserve 03 and A:2. 

6.6.2 Register conventions 
The followIng are the register conventions used in the Lisa system. It is your 
responsibility to preserve these registers. 

6-20 



Workshop User's GlIkJe The Assembler 

DO-D2/AO-A1: Scratch registers (can be clobbered) 
D3,A2: 
D4-D7/A3,A4: 
A5: 
A6: 
SP: 

Scratch registers, but should be preserved 
Used for code optimization (must be preserved) 
Pointer to user globals (must be preserved) 
Pointer to base of stack (must be preserved) 
Top of stack 

Registers 03 and A2. may be used at some time in the future by the Compiler 
for code optimization, so you should preserve them also. 

6.6.3 Parameter Passing Between Pascal and Assembly L~ 
Parameters are passed between Pascal and assembly languagp. routines in the 
following ways: 

by value: 
boolean a word on the stack with the boolean value in the 

most significant byte of the word (lower, or even 
address). 

integer a word 
longint two words 
data structure by address (4 bytes~ It is the responsibility of the 

assembly language routine to interpret the data 
structure correctly. 

by reference (VAA parameters} 
all types by address (4 bytes on the stack) 

6.7 Assembly L~ Examples 
6.7.1 Using .REF and DEF Directives 

The first example illustrates the use of .REF and .OEF. These two directives 
allow an assembly language routine to reference other assembly routines. 

The pasca~iS: 
progran "asteTire; W t 
procewre lait (time: integer); - a.i 

external; 
begin 

writeln CGoing to waste SOlIE tire'); 
wait (50); WOo· t 

-writeln ('finished wasting tire'); - , 
efKL 

Thec§mblY language ~ is: 
.prQC__ wit 

---:ref ' cycle 

. ref rore time 
---.. rove.l (a7)+,aO 

; need to use a piece of code 
; .oose entry point is cycle 
; defined outside procedure wait 
; another outside procedure 
; return address in aO 

6-21 



Wol1<sflop User's Guide 

__ -- ADVe.W 

jsr 
jsr 

-.----~ jnp 

(a7)+,dO 

cycle 
note tilE 
(aO)-

The Assembler 

; need to wait this omy cycles 
; a parameter for cycle 

; waste IIDre tilE 
; return 

; the stbroutine used by wait is defined in the 
; follo.irYJ code. this proc could dO other things 
; besides the cycle routine 
.prog..--~ def _cycle 
-;~/ cycle ; cycle visible to other procs 
, 
; code (3l go here 
, 
oop 

cycle 

StiJ 
roe 
rts 
, 

'l,dO 
cycle 

; exanple Of a line of COde 
; begiming Of the cycle routine 
; paraooter is in dO 

; IIDre code CCI1 go here 
, 
.proc 
clr 

-1 add 
roe 
rts 

.em 

IIDre time 
dO -
12, dO 
ill 

6.7.2 string Panmeters 

; tfaste IIDre tilE 
; use dO as tilEr 

The followIng program Illustrates hOw to pass a Pascal strIng to an assembly 
language program, modify the string, and return it Pascal strings have their 
length stored as the first byte in the strIng. 

I\IlTE 

Assembly language routines are in read only segments and do not have 
theIr own data (read/write) area All read/write data should be 
declared in Pascal and passed to the assembly routines using pointers. 

6-22 



Workshop User's GlIjde 

The Pascal source file is: 

progran paSStr; 
type strType = string[80]; 
var str : strType; 

ch : char; 

procedure AsmStr (var str strType); 
external; 

begin 
str : = I initial string in Pascal main progran"; 
writeln (str); 
AsmStr (str); 
llIl'iteln (str); 
lIJriteln; 
write ("press any key to continue"); 
read (ch); 

end. 

The assembly language file is: 

,.proc AsmStr 
;return address saved in AO 

Tile Assembler 

'"'nDve.l (A7)+,AO .. 
move. I (A7)+,Al 
move.l A2, -(A7) 

; address of string from Pascal 
;save scratch register A2 

lea 
elr.l 
IIDve.b 

move.b 
copy subq 

blo 
move.b 
bra 

done move.l 
jnp 

size .byte 
myStr 

. align 

size,A2 
00 
(A2), DO 

(A2)+, (Al)+ 
11,00 
done 
(A2)+, (Al)+ 
copy 

(A7)+,A2 
(AO) 

38 
. ascii 
2 

6.7.3 Writing a FlIlCtioo 

;get size of string 

;copy size of string 
;done copying string? 
;yes, return to Pascal 
; one char of string 

;restore scratch register 
;return to Pascal 

'this string is from the Lisa Assentller' 
; get on a word bot.I1dary 

The following example shows how to write a function in assembly language. 
This function returns a boolean value. 

6-23 



Workshop User's Guide 

The Pascal program is: 
progran booleanFl.I1Ction; 

var int: integer; 
Ch : Char; 

i-lIlCtion swapBytes (var int : integer) : boolean; 
~l;_ 

{ if a parameter is passed by reference 
(8 var parameter) its addesss is passed 
to the assentlly routine on the stack } 

begin 
int := 256; 
wri teln (I the initial value of int = I, int: 1); 
repeat 

if S~S(int) then 
~~'int = I, int:1) 

else writeln ('int = 0, function value is false I ); 
int := int - 1; 

until (int < 0); 
write ('press any key to continue I ); 
read (Ch); 

end. 

The assembly language function is: 
. func swapBytes 
mve.l (A7)+,AO ; pop retum address 
mve.l (A7)+,A1 ; get address of word to swap 
IJI)ve,vU (Al),OO ; get the rumer 
ror 18,00 ; swap the bytes 
lOOVe Op, (Al) ; put it back 
bne ill 

The Assembler 

elr (A7) ; rutJer = 0 so return false (0) 
bra iit2 

ill lOOVe #$FFFF, (A7) ; return result true (non zero) 
ill j~ (AO) . return to calling program , 

• end 

6-24 



WOIkshop User's Gldde The Assembler 

6.7.4 Calling Pascal 110 Routines 
The following example illustrates how to call Pascal routines from assembly 
language to do 110. Note the use of macros for calling the Pascal routines. 

program AsmIO; 

type strType = string[80]; 

var str:strType; 
f1, f2: text; 
ch: char; 

procedure main; 
external; 

{THE FOlLOWING FUNCTIONS ARE CAlLED FROI1 THE ASSEI1Bl... Y LANGUAGE 
PROGRAM MAIN TO PERFORM I/O} 

function f_rewrite (f_num: integer; f_name: strType):integer; 
begin 

case f run of 
1: rewrite (fl, f nane); 
2: rewrite (f2, f-name); 

end; -
f rewrite := ioresult; 

end; 
function f reset (f run: integer; f flaRE: strType): integer; 
begin -- -

case f run of 
1: reset (fl, f_name); 
2: reset (f2,f flaRE); 

end; --

f reset : = ioresul t; 
end; 
procedure writeline (f_ruD: integer; var S: strType); 
begin 

case f num of 
0: write (s); {file id = 0 means write to -console} 
1: write (fl, s); 
2: write (f2, s); 

end; 
end; 

procedure writelF (f_num: integer; var S: strType); 
begin 

6-25 



WOlkshOp User's Guide 

case f run of 
0: .riteln (s); 
1: .riteln (f1, s); 
2: .riteln (f2, s); 

end; 
end; 

procedure f_close (f_ruR: integer; lock_file: boolea1); 
begin 

case f run of 
1: if lock file then 

close-(f1,lock) 
else 

close(f1); 
2: if lock_file then close(f2,lock) 

else close(f2); 
end-, 

end; 

{llE HAIN PROGRAM CAllS 11£ ASSEtD...V LANGUAGE HAIN} 

The Assembler 

begin 
writeln (Itest program - using assembly main routine to do I/OW); 
.riteln; 

( OBin; 
. write ('press any key to continue ' ); 

read (input,ch); 
end. 

The assembly language file is: 

· proc l118in 
;==============~========================= 

; EXTERNAl REFERENCES AN) CONSTANTS 
;======================================== 

· ref wri telf 
. ref writeline 
· ref f rewrite 
· ref f-reset 
.ref (:close 

first file .equ 
printerld .equ 

1 
2 

; id , of file one 
; id , of file '-printer' 

; return address to the Pascal main routine is left 00 the stack 

6-26 



Workshop User's GlIfde The Assemble.r 

;====================================== 
; t1A(B)S TO CALL PASCAL FlH}TIOOS 
;====================================== 

iil 

iil 

.lDBCro open_taite_file 
; %1 --- file , 
, 
elr 

%2 --- file name 
-(a7) 

rove ftl, -(a7) 
lea %2,aO 
rove. I aD, -(a7) 
jsr f rewrite 
rove (87)+,aO 
ble ill 
error %2 

.erdn 

.macro open_read_file ; '1 --- file , 
, 
clr 

%2 --- file name 
-(a7) 

rove 
lea 
rove. 1 
jsr 
rove 
ble 
error 
.erOn 

1%1, -(a7) 
%2,aO 
aO,-(a7) 
f reset 
(87)+,80 
ill 
%2 

.macro write file ; '1 --- fife , 

; reserve space for fU'lCtioo 
; result fron f rewrite 
; file id , as first param 
; second pamn is file I'lClIIE 

; pop IGresult 

; IGresuit > 0 -> error 
; (nested macro call) 

; reserve ~ for fll'lCtioo 
; result of f _reset 

; pop IDresul t 

; IDresult > 0 -> error 

; write a line (with no linefeed) 

; %2 --- label of string to be written 
rove ft1, -( a7) 
lea %2,a1 
rove. 1 al, -( a7) 
jsr writeL1ne 
.erQn 

; puSh string address roto stack 
; write it out 

.macro writeLn_file ; write a line of text with 
; l1nefeed 

; %1 --- file , 
; %2 --- lalel of string to be written 

6-27 



Wo.rkshOp User's Guide 

mve 
lea 
nove. 1 
jsr 
.aron 

'%1,-(a7) 
%2,a1 
a1, -(a7) 
writeLF 

.macro close file 
; %1 --- fife # 

The AssetnIJler 

; puSh string address onto stack 
; write it out 

; %2 --- close status COde 
; 0 - $OOff normal close 
, $0100 - Sffff lOCk 
move '%1,-(a7) 
mve '%2,-(a7) 
jsr f_close 
.erdn 

.macro error 
; %1 --- file name 
write_file O,erIStr 

writeLn file 0,%1 
rts -
• erdA 

; write error message 
; to -console 
; (file id , 0) 
; output file nane also 
; quit 

;===================================== 
; MAIN ASSEtIl. Y lANiUAGE PROGRAt1 
;===================================== 

open_write_file first file, file1 ; open IO/record. text 
open_write_file printerId,prlnter 

writeln_file 0, openstr ; write the openstr 
; to -console (file • 0) 

writeLn_file first_file, string ; write string to 
; first file 

writeLn_file printerId, strl ; write-strl to printer 

close file first file,$0100 ; lOCk first f1le 
close=file printerld,O ; dO not lock the printer 

open_read_file 1,file1 ; no error ShOUld occur 
close_file l,Sffff ; preserve filel 

6-28 

; no errFile around, Should 
; cause error. 



Wad<shop User's Guide 

rts 

; =============== 
; ~TANTS 
; =============== 

file1 

printer 

string 

strl 
myStr 

openstr 

errStr 

errfl1e 

. byte 

. ascii 

.aligl 

• byte 
. ascii 
.aligl 

. byte 

. ascIi 

.aligl 

. byte 

. ascii 

.allgl 

. byte 

. ascii 

.aligl 

. byte 

. ascii 

.aligl 

. byte 

. ascii 

.aligl 

• end 

The Assembler 

; back to Pascal maIn 
; program 

14 
'IO/record. text " 
2 

8 
'-printer' 
2 

38 
'this string is from the lisa Assembler" 
2 ; make sure on even meIOOry 

34 
'another string from Lisa Assenbler' 
2 

26 
'opened file IO/record.text' 
2 . 

22 
'error in opening file ' 
2 

6 
'noFile' 
2 

6-29 



WO.d<shop User's Guide The Assembler 

6.7.5 Using Pascal Data Areas 
Assembl y language routines are in read only segments and do not have a data 
area. My data area that must be written into must be declared in the Pascal 
program and referenced in the assembly language program by pOinters. The 
following two examples illustrate the correct and incorrect ways of doing this. 
The correct example illustrates how to do a READLN from an a8sembl y 
language program. 

The first example illustrates the "obvious" and incorrect way of doing a 
READLN from an assembly language program. The Pascal program is as 
follows: 

program AStI)en(); 

{ BAD EXAJ1ll.E: Note that this exatple does rot work, becaJse 
it tries to write into a EIIllry space reserved by the 
AssenfJler. Data space rust be set l4> in the Pascal program 
and referenced by a pointer variable. The following example 
illustrates the correct .ay of doing this. } 

type 
Passtr = string[255]; 

var 
ch: char; 

procedure w_write(S: PasStr); 
begin 

write(s); 
end; 

procewre w_WIitelo; 
begin 

writeln; 
end; 

procedure w _ readln( var s: PasStr); 
{ read a line fran -DHn.E and put it into 

(WIi te to) string s } 
begin 

readln(s); 
end; 

proceOJre main; external; 

begin {AStI)en()} 
min; { call to assenbl y language routine } 
WIi tee · That' • s all folks, type space to contirue'); 

6-30 



Workshop User's Guide 

repeat read(ch); lntil ch = • '; 
end. {AStIlenD} 

This is the corresponding incorrect assembly language program: 
.• proc 

. ref 

.lIIaCro 

lea 
rove.1 
jsr 
.erdn 

. macro 

main 

%1, ao 
aO, -(a7) 
._vite 

jsr ._writeln 
.erDn 

. macro 

; (s: passtr) 
; %1 = string label 

; no paraneters 

; (var s: passtr) 
; %1 = string label 

The Assembler 

; =================================== 

lea 

rove. I 
jsr 
.erdn 

; Put the address of the string into 
; which a line is to be read on the 
; stack a1d call Pascal routine to 
; read the string. 

=================================== , 
%1, aO ; This space has been 

aO, -(a7) 
._readln 

; reserved for the string. 

=============================== , 
; t1AIN ASSEt8... V lANGUAGE PRf:GW1 
; =============================== 
a vite string1 
a-viteln 
a=vite hello 

6-31 

; This will vite a string 
; and a newline. 



WOrksl7op User's Guide 

hello 

a write1n stringspace 
rts 

. byte 

. ascii 

.aligl 

13 
'Type a line: ' 
2 

StringSpace .block 256 

. a1igl 2 

Stringl 39 

The Assembler 

; ========================-= 
; f«)TE: this will fail 
; with a bus error 
; because stringspace is 
; in progran space (read 
; only), not in read/write 
; EllDry space. 
; ========================= 

; Save SORE space for a 
; readln. This block of 
; nemry is in progran 
; space, therefor it is 
; read only . 

. byte 

. ascii 

.a1igl 
-This string is from the lisa Assembler.' 
2 

• end 

This is the corfllCt way of doing a READLN from an assembly language 
program. Note that the string "s", declared in the Pascal program, is used in 
the w_readln function and passed to the assembly language program by 
pOinter. 

program AStIlenD; 

{ GOOO EXAtR.E: This eXCllp1e does a recKiln by using a pointer 
variable as a parCIIEter. This allows the string to be 
reserved by the Pascal ~iler. } 

type 
PasStr = string [ 255 ); 
ByteP = "'PaSStr; 

var 
s: PasStr; {this string is allooated in read/write 

mennry by the Pascal ~iler } 

6-32 



WoIkshop User's Gt/jde 

ch: char; 

proceclJre "_.rite(S: PasStr); 
begin 

write(s); 
end; 

pI"OCeOJre "_.ri teln; 
begin 

"riteln; 
end· , 

function ",_readln: 8yteP; 

The Assembler 

{ This fUlCtion reads a line into the string s (space 
allocated by the Pascal Conpiler in read/"rite EIOOry 
segnent) cn:i returns address of s to assentll y routine } 

begin 
readln(s); 
"_readln := pointer (its); 

end· 
" 

procedure lIBin; external; 

begin {AStIlenD} 
main; { call to assemly ICl1gl.l8ge routine } 
write(,That"s all folks, type space to contirMJe'); 
repeat read(ch); lIltil ch = • '; 

end. {AStIleno } 

This is the correct assembly language program: 
.proc lIBin 

.ref ,,_.rite, "_"riteln, "_readln 

. macro a_write ; (s: passtr) 
; '1 = string label 

lea '1, aO 
lIIlVe.l aO, -(a7) 
jsr ,,_.rite 
.endn 

. macro a_writeln ; no paraneters 

jsr "_.riteln 
.endm 

6-33 



WOIkshcp user's GuIde 

hello 

Str1ngl 
. ascii 
.a11~ 

; ft.rlCtlon ,,_reCMtln: ByteP; 
; ======================================== 
; This ft.rlCtioo e><peets the Pascal rrut1ne 
; "_readln to return the pointer to the 
; string in .... 1Ch a l1ne has been read 
; =========================.=============== 

clr.l -(a7) 
jsr "_readln 
.erDn 

a_write string1 
a "liteln 
a-"rite hello 
a=readln 

jsr ,,_write 

a "riteln 
rts 

• byte 
. ascii 
.ali~ 

13 
'Type a line: ' 
2 

.byte 39 

; this "ill "rite a string 
; and a ne,,11ne 

; leaves the address of 
; string read at top of 
; stack 
; takes top of stack as 
; paraweter 

'This string is from the lisa Assembler.' 
2 

.en:j 

6-34 



·O:S59-A 

Chapter 7 
The Linker 

7.1 TI1e Linker ...................................................................................... 7-1 
The Linker is a program that combines object fUes to create an 
executable file. 

72 lJsir.g the Linker ............................................................................... 7-2 
The Linker combines object files to prodUce executable programs. 
Inputs to the Linker are object files, command files, or options. 

7.3 TIle Linker ~tiOl'lS ............................................................................ 7-2 
The Linker options control how a link Is performed. A list of the 
current option settings is displayed when you enter a "? .. to the options 
prompt. 

7.4 .-tow [)o I Link a fv1aIn Program? ........................................................ 7-4 
A main program is linked by giving the Linker the object file from a 
Pascal program, along with all assembly language routines, complled 
units, and libraries that the program uses. 

7.5 Regular and Intrinsic lJrtits ............................................................... 7-4 
Regular and intrinsic units are both Pascal unIts ... separately complled. 
A regular unit is linked with a main program and becomes part of the 
executable f11e. An intrinsiC unit Is shared among all programs that 
use it, both on disk and in memory. 

7.6 The Linker Listirlg •.••••••••.•••.•••••..••••••.••••••••••••..••...•••.•.••••••••••...••.••...• 7-5 
The Linker listing provides a summary of the linking process and 
resources used. ~tionally, you can request lists of all symbols used. 

7.7 Resolv1rlg ExtelTlal I'b'nes ................................................................. 7-6 
Extemal names are symbolic references to separately compiled modUles. 
The Linker maps them to actual addresses. 

7.8 t-1odule Irlclusioo .•••..•••...•.•••.•.••..•••••...•.••••...•.•.•••.•.••..•.•.••..•.•••........•.• 7-6 
The Linker only inclUdeS modules that are actually referenced. 

7.9 8e{Jnerltatioo .......................................................................................... 7-7 
Segmenting a program allows portions of it to be swapped out of 
memory when not in use. segmentation Is controlled by a combination 
of compiler commands, Linker options, and the ChangeSeg utility. 





The Linker 

7.1 The Linker 
The Linker combines object files. Its input consists of commands and object 
files. Its output consists of Object files, link-map information, and error 
messages. The output of the Pascal compiler must be llnked with 
IOSPASLIBJEJ before it can be executed. Other object files, including 
Intrinsic unIt libraries, and object files produced by the Assembler, can also be 
linked into the output object file. 

When a program is compiled into an object file, it contains the following sorts 
of things: 

• Cbject code, in the form of relocatable machine language, that expresses 
the algorithm of the program. 

• SymbOlic (named) references to all locations that were not known at 
compile time. These include externally compiled routines (units and 
intrinsic units) and the Pascal library support routines (IOSPASLIB-lBJ). 

• Other information to be used by the Linker. 

The purpose of the Linker is to resolve all the symbolic references (link 
references to definitions), and output an object file that can be executed. The 
Linker also sorts the code modules into named segments. These segments are 
swapped into memory at run time by the qJerating System. 

The Linker does its work in two phases. In the first phase, it reads all the 
input files, and fInds all symbollc references and theIr correspondIng 
definitions. Errors such as duplicate and missing references are detected 
during phase one. In the second phase, the Linker copies code from the input 
files into the output files in executable format 

If the Linker can't find something that is addressed symbolically, this is an 
error. An error message will be printed, indicating the missing module. This 
process of finding the real addresses that correspond to the symbolic addresses 
is called msolvlng the ex/ema} references 

The Linker expects to find the file INTRINSIC.LIB. INTRINSIC.LIB is a 
directory of libraries and intrinsic units, and includes information for the use 
of the Linker. INTRINSIC.LIB defines all the intrinsic units supplied with the 
WorkshOp system. 
To create an executable fUe, the Linker must have the following inputs: 

• The object file from a main Pascal program. 

• IOSP ASLIB.CBJ to provide the standard Pascal procedures and functions. 

7-1 



Workshop User's Guide The Linker 

• IOSFPLIB.OOJ, If you are using any floating point varIables. 

• (l)ject files for any other external procedures referenced by the main 
program. These can be Pascal units, assembly language routines, or 
IntrinsIc unIts defIned In INTRINSIC.LIB. 

The Linker combines these files and creates an executable object file. If it is 
unable to link these flIes correctly to create a legItimate output file, the 
Linker displays an error message. If there is an error, the object file is not 
prOduced. 

When linking a main program, all references to external objects must be 
resolved. Partial links are not supported. 

WhIle it Is lInkIng a maIn program, the LInker does a dead COde analysis and 
dOes not inclUde any routines that are not referenced. Unnecessary routines 
are ellminated from the maIn program, and from the regular unIts given as 
Inputs to the 11nk. 

7.2 Using the linker 
The Linker is started by pressIng L in response to the WOrkShop command 
prompt. The Linker prompts you for the input files, the listing file, and the 
output file. qltions can be entered after entering .. ? .. in response to the input 
file prompt. After all file names and options are entered, the link begins. 
Hence the set of options in effect is the same throughout the link. It is not 
possible to change options part 'Way through the link. When entering an input 
file name, it is not necessary to enter the .OOJ extension; the Linker will 
provide that as needed for input files. 

The Linker wIll accept option commands and Input fHe names from a 
command flle. A command file Is a text file containing the fUe names and 
options, one per 11ne. If a blank lIne exists In the flIe, the Linker treats thIs 
as the [RETURN] that signals the end of the input files. You use a command 
file by typIng "<" followed by the name of the text fBe the commands are in. 
It Is not necessary to enter the • TEXT extension; the Linker will provide that 
as needed for all Input command flIes. Create the text file by usIng the 
Editor. 

The default llstIng Is -console. You can send the listing to a text file by 
entering its name in response to the listing fUe prompt. When sending the 
listing to a text f11e, you do not need to provide the . TEXT extension, since 
the Linker provides it. 

After entering the ouput file name, the link begins. If no errors occur during 
the link and all external references are resolved, the output fHe is executable. 
A message Is printed at the end of the link to tell you if the output is 
executable. 

7.3 The L,inker ~tlons 
To enter the Linker options mode, type .. ? [RETURN]' in response to the 
prompt for an input file. To leave options mode and return to entering input 
files, press [RETURN] in response to the options prompt. The order in 'WhiCh 

7-2 



Workshop User's Guide The Linker 

options are entered is unimportant, because they have no effect until the link 
begins. The last value entered for an option is the value used when the link 
is performed. 

~tions are represented by a single character. A" +" in front of the character 
makes that option take effect. A "-" sets the Linker so that option will not 
happen. In addition to being set on or off, some options have additional 
parameters. Numeric parameters can be in either decimal or hexadecimal. 
Hexadecimal numbers are indicated with a leading "$". The current setting 
of all options can be displayed by entering a "?" in response to the request 
for an input file or an option. 

The Linker options are as follows: 

+A Alphabetical listing of symbols. The default is -A 

+0 Debug information. The default is -0_ 

-H num -H sets the initial disk space allocated to the program's stack. 
The default is to automatically include space for the program 
variables and the value specified in the +S option. 

+L Location ordered listing of symbols. The default is -L. The 
location is the segment name plus offset. 

+M fromName toName 
+M maps all occurrences of the segment fromName to the 
segment toName. This allows you to map several small segments 
into a single larger segment. You can thereby postpone 
segmentation decisions until link time by using many segment 
names in the source code_ 

NJTE 

Because options have an effect only when the link begins, it is not 
possible to map a segment name to several different names using this 
option. Also, you cannot use this option to map segments to or from 
the blank segment.. 

+S num +S sets the starting dynamic stacksize to ·num·_ The default is 
10000_ 

+ T num + T sets the maximum allowed location of the top of the stack to 
·num'. The default is 128K 

+ W + W tells the Linker to get intrinsic unit information from a file 
other than INTRINSIC_LIB. 

? Prints the options available and their current values. 

7-3 



WorkshOp User's Guide TIle Linker 

7.4 How Do I Lin< a MaIn Program? 
A main program consists of a Pascal program linked wIth all routines 
necessary for It to run. A main program is the only type of executable object 
fUe produced by the Linker. To link a main program you must have the 
following: 

• A ?omplled Pascal PROORAM object file. 

• !'m~t files fQLcmy. other_l..Inlts the program uses. ThIs Includes fUes for 
regular unIts and assembly language routines. Any Intrinsic units used 
must be defined In INTRINSIC.LIB. 

• IOSPASLIB.OOJ, and (IOSfPLIB.~JXif any real varIables are used~ 

When you have all the above files, proceed as follows: 

1. Execute the LInker by pressIng tiL" when the Workshop command prompt Is 
displayed. The Linker displays a header and asks you for an input f11e. 

2. Enter any desired options. To enter the options mode, press "7JRETURNl' 
In response to the request for an Input file. see section 7.3 In this 
chapter for information on Linker options. Press [RETURN] after each 
optlon entered. When you have entered all the optlons, press [RETURN] to 
begin entering input fUe names. 

3. Enter the file names f~ all the objeqt files, pressing [RETURN] after each 
one. The file names can be entered in any order. You do not need to 
enter the JEJ extension; the Linker will automatically append it. 

4. Press [RETURN] to indIcate the end of the Input fUes. 

5. The Linker prompts you for a listing file. Enter the file name desired, or 
press [RETURN] to accept the default of displayIng the listing on the 
-console. 

6. The Linker prompts you for the. output file. Enter the name of the 
executable flle you want produced. You do not need to enter the J13J 
extension; it is supplied automatically. 

The linking process begins when you press [RETURN] after entering the output 
fUe name. If the link is successful, the message "llJtput is executable·· will be 
displayed. If the link is not successful, error messages are displayed. 

7 5 R~ar CI'ld Intrinsic Ullts 
The two types of units are regular units and intrinsic units. Each is a 
separately compiled code module that may be used by a main program or 
another unit. The syntax of a Pascal unit is explained in the Pascal 
Reference Manual for tile Lisa. 

A regular unit Is combined with a main program by the Linker and included in 
the resulting Object fUe. An intrinsic unit, on the other hand, is stored 
separately on the disk, and loaded at run time. Thus, only one copy of an 
intrinsic unit is kept on the disk, no matter how many main programs use it. 

7-4 



WorkslJop User's Guide The Linker 

In addition to being shared on the dIsk, an intrinsIc unit Is also shared In 
memory. 

The current Implementation has no provision for users to create new 
intrinsic units. All intrinsic units are supplied by Apple Computer. 

75.1 How Do I lin< with a Regular U1it? 
A regular unit is a separately compiled segment of code. It is written in 
Pascal, and compiled like a regular program. See the Pascel Reference 
M8nlJel for tIJe Lise for information on hoW to write a unit See Chapter 5 
in this manual for information on compiling the unit. 

After you have created a unit, the routines in it can be accessed from any 
other program or regular unit you write. The Linker combines a main program 
with all units it uses. The result is an executable object file containing all 
the needed routines. 

To use regular units with a main program, follow the procedure in Section 7.4. 
As input, you must give the Linker: 

• The object file of the main program. 

• The object files of all units used by the main program. 

• IOSPASLIB.CBJ, and IOSFPLIB.CBJ (if any floating point variables are used). 

The Linker combines all these Object files into an executable Object file. It 
also doe~ __ a dead code analysis. to elimif1ate any routines that are not used, to 
reduce tne·siZlfoft.neoojectflle. 

7.6 The lin<er listing 
A listing is produced each time a program is linked. This listing can be sent 
to a file, or displayed on the console (the default). The +A option gives you 
an alphabetical list of the symbols (procedUre names) used in the link. The. +L 
option gives you a list of the names in order of their location. The listing n--­
produced in stages, as follows: 

1. The input files are read, and a summary of the resources used is prInted. 

2. The linking process begins. Information about the size of each segment is 
printed. 

Errors are reported as they are found, and you are told whether or not the 
output is executable. 

If you requested optional listings, they are also printed. An example of a 
Linker listing with no options requested is shown in Figure 7-1. Linker 
listings are mainly used for debugging at the machine code level. See 
Chapter 8 for more information on the Debugger. 

7-5 



Workshop User's Guide 

Beginning Inory - 262~8e 
After static allocation, lIIuory - le681~ 
Input file ['OBn ? TRANSVOL 
I nput filII [. OBn ? I OSPASLI B 
Input fI h! LOBJJ ? 
Listing file [CONSOLEIJ/L TEXTJ -
Output flit LOBJ] - TRANSFER]LS 
Rudlng flllli TRANSVOL.OBJ 
Reading fllel IOSPASLlB.OBJ 
Read 2 flies, lIIax· lee 

.. sellnnts, IlX· 128 
16 .odullll, lIIax· 1459 
32 entrlu, .ax· 2ge9 
39 ref. lists, IlX· eeee 

12" reftrlmcls, ux • 16eee 
Linking Haln Progr ... 
Actlvltl ~ of 16 r .. d. 
Vlslblltl 1 of 32 read. 
Global datu Seee67C 
Conon datu teeeeee 
Linking seg.tnt tl: 9 I filII (JT) ngl 1 slul 

Beginning lelor\l - 19<4487 
Endlnll lIIe1ll0rl/ - 1e"e32 

9 Error. dllbctRd. 

The output 15 executabl,. 
Elapsed thel 298 and 39"/1ge9 II!condl. 
That's al I Folks !!! ••• 

Figure 7-1 
A Lir1<er Listing 

7.7 Resolving External Nfmes 

The Linker 

2998 

M external name is a symbolic entry point into an object module. All such 
names are visible at all times--there is no notion of the nesting level of an 
external name. External names can be either global or local. A local name 
begins with a $ followed by 1 to 7 digits. Local names are generated by the 
Pascal compiler. A global name is any name that is not a local name. 

The scope of a global name is the entire program being linked. Unsatisfied 
references to global names are not allowed. 011 y one definition of a given 
global name can occur in a given link. The one exception to this is that the 
Linker accepts duplicate names where one instance is in a main program or 
regular unit, and the other is in an intrinsic library file. In this case, a 
warning is issued, and the entry in the main program or regular unit is used. 

The scope of the local name is limited to the file in Which it resides. All 
references to a given local name must occur within the same input file. 
When a link is done, global names are passed through to the output file 
unmodified, but local names are renamed so that no conflicts occur between 
local names defined in different files. 

7.8 Module Inclusim 
When linking an intrinsic unit, all code modules in the unit are included. 
When linking a main program with regular units, the Linker does a dead code 
analysis and does not include any modules that are not called. 

7-6 



Wo.rkshop User's Guide The Linker 

7.9 SEgnentatlon 
Segmenting a program makes it possible for portions of the program that are 
not being used to be swapped out to disk, thus making better use of memory. 
The way a program is segmented affects its performance. 

Segmentation is controlled by three things: 

• The $S compiler command and the .SEG Assembler option, which assign 
segment names to source code modules. 

• The +M Linker option, which enables you to remap compiler segment 
names into new segment names. 

• The ChangeSeg utility, which enables changing the segment names prior to 
linking. See Chapter 10 for information on Changeseg. 

7-7 





'O'60-A 

Chapter 8 
The Debugger 

8..1 1lle lJebtJgger •••..••••••.•.••••.••.•..••.•..•.•••••.....••••...••.••.••..•..••••••••..••••••••.• 8-1 
The Debugger allows you to examine and modify memory" set 
breakpoints" assemble and disassemble instructions" and provides other 
functions for run-time debugging. 

8.2 InadVerterlt Entry Into the lJebtJgger •.•••••••••••..••••••••.•.••••••••.•.••••••••••••• 8-1 
If you have a bug in your program or a system malfunction, you may 
Inadvertently enter the DebUgger. This section tells you how to deal 
with this. 

8.3 USlrlg the lJebtJgger ••.•••.•.•.•.•.••••••...•••••.•••.•.•••••••••.•••...•••••••..••••••.••••.• 8-6 
Enter the Debugger by pressing 0 in response to the command prompt, 
or by pressing the NMI key. The Debugger prompt (» indicates that it 
is ready to accept commandS. 

8..4 TIle lJebtJgger Q::Jn1nalds .................................................................. 8-10 
Commands are available for assembly and disassembly of instructions, 
displaying memory and registers" setting breakpoints and traces" memory 
management, and base conversions. 

85 Slnnlary of lJebtJgger CornrnaI Kts .................................................... 8-20 





The Debugger 

8.1 The Deb .gger 
The Debugger allows you to examine and modify memory, set breakpoints, 
assemble and disassemble Instructions, and perform other functions for 
run-time debugging. 

Procedure names are available to the Debugger for program units compiled 
with the D option on. The Debugger uses the symbolic names wherever 
appropriate. 
The Debugger"s symbol table contains the user symbol table and the 
distribUted procedure names. The user symbol table contains symbols the user 
defines while using the Debugger and the predefIned symbols for registers. 
Section 6.6 in this manual contains more information about the run-time 
environment of programs. 
When you enter the Debugger, the Debugger screen is made visible by. the 
Debugger. You can display the main screen by pressing [CPTICN} and [ENTER} 
to see the state of· the program before the Debugger was entered. Redisplay 
tne Debugger screen (by pressing [CPTlCN}-[ENTER) again) to continue with 
debugging. 

8.2 Inadvertent Entry into the DetlJgger 
Accidental entry into the Debugger can be caused by a bug In the program 
you are running or by some malfunction In the system. A message from the 
Debugger will suggest the type of problem. The messages and the actions you 
can take for program bugs are described in Section 8.2.1 below. System 
malfunctions are described in Section 8.2.2. 

8.2.1 Prognm Bugs 
You can enter the Debugger while your program is executing for any of the 
following reasons. rvtore information on these conditions can be found in the 
MC6800016 Bit Mlc171p.n:JCeSSl7r User's M8ntt8J. 

• A value range error 
• AA illegal string index 

• A bus error or address error 
• M Illegal InstructIon or a privilege violation 

• Integer division by zero 
• Spurious interrupt or unexpected exception 
• OVerflow when TRAPV is executed 
• Une 1111 Emulator 

8-1 



Wo.rksl7op User's Guide The Debugger 

• System malfunction 
• Intentionally, by pressing the NMI key. This is the way to terminate an 

infinite loop (when .-period doesn't stop your program~ Do not use NMI 
when running system programs. 

Usually the system will tell you the most appropriate action to take, for 
example, "type g to continue". Follow these instructions unless you have a 
speCial reason for doing something different. 

Programming errors are described in Section 8.2.1.1 below. Stopping an 
infinite loop is described in Section 8.2.1.2 below. 

8.2.1.1 Program errors 
If you have an error in your program it will drop into the Debugger and 
display one of the following messages: 

If a range check error occurs in application code, the message displayed is: 

or: 

VALUE RANGE ERROR in process gid <gggg> 
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu> 
return pc = <pppppp> caller a6 = <cccccc> 
Going to Lisabug, type 9 to continue. 

ILLEGAl STRING INDEX in process of gid <gggg> 
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu> 
return pc = <pppppp> caller a6 = <cccccc> 
Going to Lisabug, type g to continue. 

where: 
<gggg> 

<vvvv> 
<nnnn> 
<uuuu> 
<pppppp> 

<cccccc> 

is the global process 10 of the process that incurred the 
exception. 
is the value that is outside the range. 
is the lower bound of the range. 
is the upper bound of the range. 
is the address of the statement after the call to the range 
check routine in Paslib. 
is the address of the link field at the time of the call to 
Paslib. 

During execution applications can field hardware exceptions. Refer to the 
MC6800016 Bit Microprocessor User's Manl/81 for definitions of these 
hardware exceptions. If such an exception occurs, the system displays one of 
the following messages: 

8-2 



Workshop User's Guide The DelJtJgger 

Bus error or address error exception: 
EXCEPTION in process of gid <ggggp 
Process is abOut to be terminated. 
access address = <aaaaaaaa> = mmu# <mmm> (segment name), offset 
<0000> 

inst reg = <rrrr> sr = <ssss> pc = <pppppp> 
saved registers at <xxxxxxxx> 
Going to Lisabug, type 9 to continue 

My other hardware exception: 
EXCEPTION in process of gid <gggg> 
Process is about to be terminated. 
sr = <ssss> pc = <pppppp> 
saved registers at <xxxxxxxx> 
Going to Lisabug, type 9 to continue 

where: 
EXCEPTION is one of: 

BUS ERROR 
ADDRESS ERROR 
ILLEGAL INSTRUCTION 
PRIVILEGE VIOLATION 
SPURIOUS INTERRUPT 
UNEXPECTED EXCEPTION 
ZERO DIVIDE 
CHI< RANGE ERROR 
OVERFLOW 
LINE 1111 EMULATOR 

<gggg> is the global 10 of the process that incurred the exception. 
<aaaaaaaa> is the address that caused the bus or address error 
<mmm> is the segment number represented by <aaaaaaaa> and 
<0000> is the offset within that segment 
<rrrr> is the value of the instruction register at the time of the 

exception 
<ssss> is the value of the status register at the time of the 

exception 
<pppppp> is the value of the program counter at the time of the 

exception 
<xxxxxxxx> is the address of the saved register information 

All numbers displayed are decimal; the segment name is displayed only if the 
segment number makes sense to the qJerating System. 
If the exception Is divIde by zero, overflow, or CHK out of bounds, the 
process is not terminated and the line to that effect is not shown. If the 
process has declared an exceptIon handler for thIs exception, control passes to 

8-3 



WOJ'kshop User's Guide TI7e Debugger 

the handler after you type 9 to LisaBug, and the process then continues 
execution. If no handler has been declared, the system default handler 
terminates the process. If the exception is a bus error and the segment name 
is 'stack seg', a stack overflow has prObably occurred. To find your bug you 
can do a SC (staCk crawl) and IL (immediate disassemble) to find where you 
are in the program. The instruction register tells you the exact instruction 
being executed. The PC might be 2 to 10 bytes ahead. 
You can declare an exception handler in your program to handle divide by 
zero, overflow, or CHK out of bounds exceptions. Then your process will not 
be terminated by the system if this type of exception occurs. You can also 
declare an exception handler for the "SYS _ TERMINATE" exception in your 
program. This exception handler will then get executed if your process has a 
fatal error as described above. This allows you to clean up your pro~ram, 
close your fUes, etc. (in this exception handler) before your program IS 
terminated. See the tpeJ11ting system ReFerence Hanual for the Lisa for 
how to declare an exception handler. 

82.12 Tenninating 81 Infinite loop 
I'UfE 

The following procedure should be used on user programs only. To 
terminate a systems program use .c-period. 

If your program is in an infinite loOP, or appears to be doing nothing, you can 
enter the Debugger by pressing the NMI key (the - key on the numeric 
keypad~ This will put you into the Debugger and show the trace display, 
which looks something like: 

Level 7 Interrupt 
aaaaaaaa bbbb <instr> 
PC=>OOOOOOO( SR:xxxxxxxx US=xxxxxxxx SS=xxxxxxxx OO=d PROC=yyy 
OO=xxxxxxxx 01 =XXXXXXXX D2=xxxxxxxx D3=xxxxxxxx 
04=>0000000( 05=xxxxxxxx D6=xxxxxxxx 07 =>0000000< 
AO=xxxxxxxx Al=xxxxxxxx A2=xxxxxxxx A3=xxxxxxxx 
A4:s>OOOOOOO( AS=xxxxxxxx A6=xxxxxxxx A7=~ 
> 

where: 
aaaaaaaa is the current address 
bbbb is the contents of the current address 
<instr> is the current instruction disassembled 
xxxxxxxx is the contents of the specified register 
d is the current domain (0 - 3) 
yyy is the process ID of the interrupted process 

This information Is used in debugging your program. If your program Is In an 
infinite loop, proceed as follows: 

8-4 



The Debugger 

1. Check the domain (DO-d). If the domain is zero, you are currently 
executing in system code. You must be executing user code before you 
can work on your program (domain 1 - 3). see section 8.2.1.3 "User Break" 
below for a procedure to get you Into user code. 

2. Make sure you are In your own process, instead of another process that 
may be running in the background. If the current address does not show 
the name of one of your procedures, type SC (stack craWl). The procedure 
names displayed should be from your program. 

3. If you are In a tight loop you can step the PC beyond it by using other 
Debugger commands. In order to do this you must be familiar with 68000 
assembly language and the Debugger commands. Most often you will just 
want to stop your program. This is explained below. 

4. First make sure the domain is not zero. Type "PC 0" and press [RETURN} 
This will cause an exception when you restart your program. 

S. Type "G" and press [RETURNl Your program will restart, cause an 
exception, and inmediatly drop back into the Debugger with an exception 
message that includes the instructions "Type 9 to continue". 

6. Type lOG" and press [RETURN} Your program will be terminated. 
8.2.13 User Break 

The user break facility stops processing in user process code. Use this 
procedure if the trace display indicates that the domain is zero. (Either 
OOV1AlN-O or DCMAlN - n OVERRIDDEN TO 0.) The UBR command will set a 
breakpoint at the next instruction to be executed In the user process. To stop 
your program in user process code, proceed as follows: 
1. Type ""UBRtI and press [RETURN} 
2. The system will continue executing until it returns to user process code, 

then it wlll drop back into the Debugger. You can now proceed to work 
on your code. 

8-S 



Workshop User's Guide The Debugger 

There are two cases when UBR will not set a breakpoint The first is 
if the system is interrupted while a system process is running (PROCESS 
= 0, 1, or 2~ The second is if the system is interrupted while the 
scheduler is running and it has not chosen a process to run. If UBR 
does not seem to be working, check for this as follows: 

Type "10 PC-I.,..' and press [RETURN). If the STCP instruction is 
displayed, you are in the scheduler. You must press "G" and return to 
start the system running again and press NMI again. 

If your program is doing a READ or READLN, the system will display 
the STCP instruction. The only way to continue execution is to press 
"G" and enter something from the keyboard to satisfy the react 

8.2.2 System Malft.rlctlons 
If there is a system malfunction, the system will enter the Debugger with a 
message indicating a system error or an EXCEPTICN display with the domain 
zero. The message will include instructions telling you what command to 
type. Ususally it wlll tell you to type OSQUIT. It may be necessary to type 
this command several times. 

If you are having problems with system malfunctions, call your support hotline 
for more information. It will be useful to have copies of the messages that 
were displayed. If you have a printer comected to the lower or upper port, 
use PL or PU to generate a bug report 

8.3 Using the Debugger 
Type 0 to the command prompt to invoke the Debugger. It asks: 

Debug what OS file? 

Enter the name of the object file you want to debug. It is run with a 
breakpoInt set at the first Instruction and drops you into the Debugger 
immediately. The Debugger command prompt is >. The default radix is 
hexadecimal. 

Another way of getting into the Debugger is by pressing the NMI key, Which 
is the "-" key in the top row of the numeric keypad. 

When you get the command prompt, the Debugger Is ready to accept 
commands that allow you to: 

• Display and set memory locations 

• Set and display registers 

• Assemble and disassemble instructions 

• Set breakpoints, patchpoints, and traces 

8-6 



WoIksllop User's Guide Tile Debugger 

• Manipulate the memory management hardware 

• Set up timing buckets for execution timing 

• Perform utility functions including: 

• Symbol and base conversion 

• Move the Debugger window 

• Print Debugger information 

8.3.1 EXBfT1lles of Using the DetJclQger 
This section gives examples of how to use the Debugger. M explanation of 
all Debugger commands is in Section 8.4. A summary of all Debugger 
conmands is In Section 8.5. 

I f you type a file name to the prompt from the Debug command, the 
Debugger starts up with the program counter at the start of the program. To 
see one instruction disassembled at 32F96, type: 

>ID 32F96 

10 stands for Immediate Disassemble. Each subsequent 10 command, if given 
without any address, disassembles the next instruction found. In addition to 
printing the value of each byte, the Debugger prints the ASCll equivalent of 
that value, if a printable one exists. If none exists, it prints a period. 

To disassemble 20 consecutive addresses, type 

>IL 

IL, ImmedIate Disassemble Lines can also be followed by an address. 
SUbsequent IL commands disassemble successive blocks of 20 consecutive 
locations In memory. 

If the object file being examined was compiled with the 0+ Compiler option, 
the procedure names are available in the Debugger and can be used in any 
expressions. For example, 

>IL Foo 5 

disassembles the first 5 lines of procedure "Foo". 

>BR Foo+40 

sets a breakpoint 40 bytes into procedure ifF 00". 

8-7 



Workshop User's Guide 

You can also use labels in immediate assemblies: 
>sy Ken 6000 
>A Ken NCP 

TI1e Debugger 

assembles a NCP instruction at the address "Ken", which in this case is 6000. 
>A 6000 
>Rich: JMP $100 
> [RETURN] 

enters the immediate assembler at 6000, defines the label 'Rich', and 
assembles a JMP instruction. 

8.32 A Pascal EX8'fl)le: Range Errors 
The Debugger can be used for run-time debugging of Pascal programs. Its 
displays and commands reference Pascal procedure names to make it eaSier to 
debug programs. If your program has a fatal run-time error, it win drop into 
the DebUgger and give you a trace display. The trace display will include the 
name of the procedUre that was executing. 
Ole common reason for dropping into the Debugger is: if you get a range error. 
Range errors can be caused by array indexes, string value parameters, and 
assignments to variables of a subrange type. If you get a range error, you 
will drop into the Debugger with the RANGE ERRCR exception message .. 

To help find the error in your program, give the Debugger an IL PC-20 
command. This will give you a display of the previous 20 lines of assembly 
code. You should see an instruction of the form: 

CHK ~t<lim>, <data reg> 

Where <lim> is an integer, and <data reg> is a data register (DO - D7~ Lim is 
the allowable value. The contents of the data. register is the actual value 
that was out of range. The contents of all the registers can be displayed with 
the TO (trace display) command. 
Figure 8-1 shows a Pascal program that produces a check range error. Figure 
8-2 shows the resulting Debugger display, with an explanation of what the 
display means. 

8-8 



Wod<sI1op USer's GIIide 

program checK; 
var ch:char; 

procedure localproc; 
var 

i : integer; 
a:array[O •• 10] of 1 .• 7; 

begin 
i := 9; 
a( 3] := i; 

end; 

begin 
~riteln(/press space to run •.• /)j 
read(ch)j 
localproc; 

end. 

Figure 8-1 
Pasca1 Program that ProclJces a Check Ra1ge Error 

CHK RANGE ERROR in process of gid 25 
sr = 8 pc = 2359338 CD saved reo;.listers at 13369278 
Going to Lisabug, type 9 to continue. 

Level 7 Interrupt ~ 

TIle Debtlgger 

LOCAlPRO+001A 1D48 FFFS PC MOVE.B D0,$FFFS(A6) 
PC=0e24BB22 SR=Beea" o~US=eeF7FBEC SS=aeCBFEEe DO=1 p~=e0819 
nB=e0100ee9 D1=eOO~ D2=OeeeOOCB D3=Oe0264A7 
D4=aeaeee01 DS=4EF9aea4 D6=12CC4EF9 D7=ee848eae 
Ae=8eF8126E A1=a8CCA22A A2=ae24e860 A3=8eCCA22A 
~A AS=aaF7FC44 A6=eSF7FBFA A7=eeF7FBEC 

~ <> il pc-2BJ 
\.V"" ae24eea2 €leM ee24 aBBa 4A6F EFF2 4E56 FFF2 3D7C ... $ •• J 0 •• NV .. = I 

LOCAlPRO+BBee 4A6F EFF2 LOCALPRO TST.I-! $EFF2(A7) ~ 
LOCAlPRO+Bae4 4E56 FFF2 LrNK Ab,#$FFF2 
LOCALPRo+eeos 3D7C a009 FFFE MOVE.W Mfoee9,fFFFE(A6) ~ 
lOCALPROteeeE 302E FFFE MOVE. ~f $FFFE (A6)~a 
LOCAlPRo+eS12 3288 MOVE.W nB,D1 ~ 
LOCAlPRo+ee14 5341 SUBQ.~J lU1 @ 
lOCALPRo+oe16 43BC Bee6 CHK Ufee06'D1 
lOCALPRO+Be1A 1MB FFFS PC ~MOVE.B ,tFFFS(A6) 
LOCALPRo+es1E 4E5E ~I UNLK A6 
lOCAlPRO+BB2e 4E75 RTS 
)101 Fj~ 8-2 

Check Ra1ge DebIgQeT Display 

8-9 



WorksllOP USer's Guide Tile Debugger 

Notes: 
1. Debugger display prodUced by check range error. 
2. Actual value In 01. This is the value that was checked and found out of 

range. 
3. Disassembly command typed in to display the assembly language display of 

the program causing the errOT. 
4. Look for the CHK instruction near the PC. 
5. Note that the previous identifier is LOCAL PRO, therefore the error 

occurred near the begiming of LOCALPRO. 
6. Value in register 01 was supposed to be in range 0 .. 6. 

7. Pascal lower limit (1t$1) was subtracted from 01. Therefore the range in 
the Pascal type was 1 . .7. 

More Information on the run time envIronment of a Pascal program Is found In 
Chapter 6. 

8.4 The Debugger ca'lIlaI os 
This section gives the definition of each Debugger command. 
are grouped together according to function. 

The commands 

8.4.1 DefIn1Uons 
Constant 
$Constant 
&.Constant 
'ASCII String' 
Name 
Expr 

ExprUst 
RegIster 

RegName 

A constant in the default base. 
A hex constant. 
A decimal constant. 
Art ASCII string. 
A symbol in the symbol table. 
An expression. Expressions can contain names, regnames, 
strings, and constants. Legal operators are + - * /. 
ExpressIons are evaluated left to r1ght * and / take 
precedence over + and -. (and) can be used to indicate 
Indirection. < and > can be used to nest expressIons. In those 
cases where an odd value is probably a mistake, the 
Debugger warns you that you are trying to use an odd 
address. If you decide to go ahead, it subtracts one from the 
address gIven. If the Compiler option 0+ was used., 
procedure names are legal in expressions. 
A list of expressions separated by blanks. 
The name for any of the 68000 registers, as follows: 00 .. 07 
are the data registers, AO .. A7 are the address regIsters, the 
program counter PC, the status registers SR, US, or SS. Note 
that A7 Is SP (the stack pointer~ 
RDO .. RD7, RAO .. RA7, PC, US, or SS. A predefined symbol in 
the symbol table with a value set by the Debugger. The 
value is equal to the value of the register in question. The 
Debugger automatically updates the values of these symbols. 

8-10 



Workshop User's Guide 

The 'R' Is appended to distinguIsh the register names from 
hexadecimal numbers. 

8.4.2 Display CI1d set t-1emory Locations 
The following Commands dIsplay and set memory locations. 

SM exprl exprllst 
Set memory with exprlist starting at exprl. SM assumes that each element of 
exprllst is 32 bits long. To load different length quantities, use sa or SW 
descrIbed below. If the expression given is longer than 32 bits, SM takes just 
the upper 32. For exarnple, if we ask the Debugger to: 

SM 1000 'ABCOE' 

it deposIts the ASCII equivalent of "ABeD" starting at 1000. 

sa exprl exprl1st 
Set memory in bytes with exprlist starting at expr1. 

SW exprl exprUst 
Set memory in words with exprllst starting at exprl. Exprl must be an even 
address, or the address wUl be rounded down to the nearest even address. 

SL exprl exprllst 
Set memory in long words with exprlist starting at exprl. Exprl must be an 
even address or it will be rounded down to the nearest even address. For 
example, 

SL 100 1 
is equivalent to 

~ 100 0000 0001 
[J"'1 expr 
Display memory. Display 16 bytes of memory starting at expr. OM RA3+10, 
for example, displays the contents of memory from 10 bytes beyond the 
address pointed to by A3. OM (110) displays the contents of the memory 
location addressed by the contents of location 110. Expr must be an even 
address or it will be rounded down to the nearest even address. 

[J"'1 expr1 expr2 
Display memory. If exprl < expr2, then display memory from expr1 to expr2. 
otherwise, display memory for expr2 bytes starting at exprl. 

00 expr 
Display memory as bytes. Expr can be any byte address. 

OWexpr 
Display memory as words. Expr must be an even address or it wIll be rounded 
down to the nearest even address. 

CL expr 
Display memory as long words. Expr must be an even address or it wUl be 
rounded down to the nearest even address. 

8-11 



Workshop User's Guide 

8.4.3 Finding Patterns in f'1emory 
FB exprl expl2 exprllst 

The Debugger 

Find Byte. Find the byte or bytes 'exprlist' in the address range specified. If 
expr 1 < expr2 then searCh the range from exprl to expr2. Otherwise search 
for expr2 bytes starting at exprl. 

fM exprl expr2 exprlist 
Find Memory. 
FW expr1 expJ2 e>cprl1st 
Find Word. 
FL exprl expr2 exprlist 
Find Long word. 

8.4.4 Set Cfld Display Registers 
TO 
Display the Trace Display at the current PC. M example of the trace dIsplay 
is shown in Figure 8-3. It shows the instruction executing at the time the 
program was interrupted, the current value of all the regIsters, and the 
current domain and process . 

• Level 7 Interrupt 
LOCALPRO+001A 1040 FFF5 MOVE.B 00,$FFFS(A6) 
PC=00240022 SR=0000 0 US=00F7FBEC SS=00CBFEE0 00=1 P#=00010 
00=013C0009 01=00000008 02=000000C9 03=09199752 
04=00000001 05=53656759 06=78487A20 07=9909000a 
A0=00F8126E A1=00CCB614 A2=00240a60 A3=00CCB614 
A4=00CC75FC A5=00F7FC44 A6=00F7FBFA A7=90F7FBEC 

register 

Fi~ 8-3 
l1le Trace Display 

Display the current value of the register. 00, for example, is a command to 
the Debugger to display the current value in the register 00. ROO, on the 
other hand, is a name automatically placed In the symbOl table to give you a 
handle on the contents of 00 in an expression. Thus, to display the current 
value In the DO data register, type the command 00. To display the 
instruction pointed to by the AO address register, type the command 10 RAe 
(immediate dlssassemble at the address RAO, Which Is predefined to be the 
contents of the AO register.) 

8-12 



Wo.rkshop User's Guide The Debugger 

register expr 
Set the register to expr. For example, to set regIster 03 to zero, type 03 O. 

8.45 Assermle cn::t Disassentlle Inst.nctions 
These commands are used to display code in assembly language format, and to 
enter code in the form of assembly language statements. 

A expr statement 
Assemble one or more assembly language statements (instructions) starting at 
expr. You can continue assembling instructions into consecutive locations, 
pressing [RETURN] after each statement Press just [RETURN] to exit the 
immediate assembler. Note that the immediate assembler cannot assemble 
any intrinsic unit instructions, bUt they are correctly disassembled. Code 
segments can be write protected, Which prevents you from assembling 
instructions into them. This can be overridden with the WP 0 command to 
disable write protection. 

A expr 
If you use the form A expr, the Debugger prompts you for the statement to be 
asSembled. 
10 
Disassemble one line at the next address. 

ID expr 
Disassemble one line at expr. 

IL 
Disassemble 20 lines at the next address. 

IL expr 
DIsassemble 20 lines starUng at expr. 

IL exprl e><pr2 
Disassemble expr2 lines starting at exprl. 

IX statement 
Immediate execution of a single instruction. The user's PC is not changed by 
this operation. 

8.4.6 Set Breakpoints cn::t Traces 
These commands are used to trace program execution. 

8R 
Display the breakpoints currently set. You can set up to 16 breakpoints with 
the Debugger. BreakpOints are displayed both as addresses and as symbols. M 
asterisk marks the point of the breakpoint in the disassembly. 

8-13 



BR exprlist 
Set each breakpoint In exprllst. SymbOlS are legal, of course, SO you can: 

BR Ralph+4 
if Ralph is a known symbol. 
Expressions can be of the form: 

pp:aaaaa 
where pp is the process 10, and aaaaa is the address in that process where 
you want the breakpoint set. If the process 10 is 0, the breakpoint Is set in 
system code in domain O. If no process is given .. the current process is 
assumed. The current process is shown in the TO display described above. 
BreakpoInts cannot be set on intrinsic un1 t instructions. 
CL 
Clear all breakpoints. 
a.. exprllst 
Clear each breakpoint in exprlist. 
G 
Start running at the current PC. 
G expr 
Starting running at expr. 
T 
Trace one instruction at the current PC. 

T expr 
Trace one instruction at expr. 
SC expr 
Stack Crawl. Display the user call chain. Expr sets the depth of the display. 
It can be omitted. The Stack Crawl display is shown in Figure 8-4. More 
information on the Pascal stack can be found in Section 6.6. 

)sc 
f\t LOCf\LPRO+001A 
StacK frame at aaF7FBFA called from CHECK+0038 
StacK frame at 00F7FC44 
) Figure 8-4 

The Stack crawl Display 

8-14 



Workshop User's Guide The Debugger 

procedUre name 
This calls a user procedure or function. It is your responsibility to save and 
restore registers and push any necessary parameters. If you want execution to 
stop upon return, you must set a breakpoint on the current PC. For example: 

BR PC ; set breakpoint on PC. 
IX MOVEM.L DO-A6,-(A7) ; save registers. 

Fen 
IX MDVEM.L (A7)+J)O-A6 
CL PC 

; push params if needed. 
; call procedure FOO. 
; restore registers. 
; remove break pOint. 

A function can be called in a similar manner. Remember to allocate space 
for the function result before pushing any parameters. Use either CLR.W 
-(A7) or CLR.L -(Al). 

OSQUIT 
A procedure that might need to be called is OSQUIT. It exits from the OS. 
We recommend that you avoid this whenever possible. 

UBR 
UBR is a procedure that sets a breakpoint in the IJser code so that you will 
drop into the Debugger as soon as you reenter user code. UBR is explained in 
Section 8.2.1.3. 

8.4..7 Manipulate the Memory Mallagement Hardware 
These commands change the memory management hardware of the Lisa More 
information on the memory managment hardware can be found in the Lisa 
HamWBrB Manual 

LP expr 
Convert logical address to physical address. 

00 expr 
Set the SEG1/SEG2 bits. These bits determine the hardware domain number. 
If the Status Register shows that you are in supervisor state, then the 
effective domain is zero, and the domain number returned by the Debugger is 
the domain that would be active if the SR were changed to user state. Note 
that if you change domain, you should restore the original domain before you 
type g. 
WP 0 or 1 
Disable (0) or Enable (1) Write Protection. The default is 1. 

M'v1 start [end_Of_COUlt] 
MM with one or two arguments displays information about the MMU registers. 
The second argument defaults to L If the starting address is greater than the 
second argument, the second argument is a count of the number of MMU 
registers to be displayed. If the starting address is less than the second 
argument, the second argument is the last register displayed. 

8-15 



Wod<sI7op User's Guide 

MM 70 

displays 

Segment[70] Origir(OOO] limit[OO] Control[C] 

The DeblIgger 

These values are the Segment Origin, Limit, and Control bits stored by the 
hardware for each MMU register. As can be seen from a careful perusal of 
the hardware documentation, a Control value of C means the segment in 
question is unused (invalid). If the Control value is valid (7, for example), the 
Debugger also displays the Physical Start and Stop addresses of the segment. 

MM &100 8 

displays the MMU register information for the 8 registers starting at register 
64 (decimal 100). 

fYIv1 run org 11m ootrl [encLor_cot.rlt] 
The MM command followed by four arguments sets the MMU information for 
segment "num". The Origin, Limit, and control bits can be changed. 

MM 70 100 ff 7 

sets the Origin of segment 70 to 100 and the control bits to 7 (a regular 
segment). The segment limit of -1 makes the segment 512 bytes long. 

8.ll8 TimirYJ FUlCUOOS 
The Debugger allows you to create up to 10 timing buckets for measuring 
execution times. Using the microsecond timer in Drivers, time is accumulated 
in each bucket and saved along with a count of the number of times the 
bucket was entered. 

Typically, this would be done as follows: 

1. Enter the Debugger and enter the process number that you want to time 
using the BT command. 

2. Create one or more timing buckets with the TB command. 

3. Set a breakpoint to stop execution at some point 

4. Go. 

s. When the breakpoint is reached, print the timing summary with the PT 
command. 

6. Use the End Timing (ET) command to remove all timing buckets. 

The timing commands are as follows: 

BT expr 
Begin timIng. Expr specIfies the process number. If the expr is not given, the 
current process is assumed. A process number of 0 can be used to indicate 
domain O. 

8-16 



Workshop User's Guide 

TB addr1 addr2 
A timing bucket is created from addrl to addr2. 
PT 
Print timing summary. There are five columns printed: 

ET 

1. Bucket number 
2. Total time in this bucket. 
3. Number of times this bucket was entered. 
4. Starting address for this bucket. 
S. Ending address for this bucket. 

The Debtlgger 

End timing. This command prints the timing summary and removes all the 
timing buckets. 
KB expr 
Kill Bucket. This can be used to remove a single bucket. Expr is the number 
of the bucket to remove. 
RT 
Reset timers. This resets the timing and count tables while leaving the 
bucket definitions intact. 
Note that all addresses are in the same process. The process number is 
defined by either the BT command or the first T8, PT, KS, or RT command. 
If the process number is not given in the BT command, the current process is 
assumed. 

8.4.9 utility fLrlctions 
The utility functions include: 

• Symbol and base conversion 
• Moving the Debugger window 
• Setting the NMI key 
• Printing Debugger displays 
• Dumping memory to a diskette 

8.4..9.1 SymbOls and Base Cooversim 
SY 
Display the values of all symbols. 
SY rane 
Display the value of the symbol name. 
SY rane expr 
Assign expr to the symbol name. 

8-17 



Wod<shop User's Guide 

CVexprlist 
Display the value of each expressIon in hex and decimal. 
SH 
Set the default radix to hex. 

SO 
Set the default radix to decimal. 

8.4..9.2 Moving the Debugger Wirmw 
CS 
The CS command clears the Debugger screen. 

P expr 
Set port number to expr. Valid port numbers are: 

o Usa keyboard and screen (default) 
1 Serial A 
2 Serial B 

Tile Debugger 

I f you move the port to a serial port you must have a modem eliminator 
connected to that port. 
RS 
Display the patch Return address Stack 

8.4.9.3 Setting the t-.MI Key 
NM 
Displays the key code for the NMI key. 

N'1 expr 
Sets the NMI key to be key code expr. A value of zero disables the NMI key. 

~ 

This affects the entire system. If the NMI key is disabled, you cannot 
use it to stop an infinite loop, or a system hang. 

F or example: 
>NM $21 

Sets the NMI key to be hex 21, which is the "_" key in the top row of the 
numeric keypad. This is the default NMI key. 

8.4.9.4 Printing from the Debugger 
The following commands allow you to print information from the Debugger on 
the dot matrix printer. 

PR expr 
The PR command enables or disables printing to the two-port card. When 
printing is enabled, all Debugger output to the screen is printed. 

8-18 



Workshlp l.Jser's Guide 

expr = 1 
expr - 2 
expr = 0 

enable printing upper port 
enable printing lower port 
disable printing 

~ 

The Debugger only supports printing to a printer connected to the 
lower or upper port. The serial printer is not supported. If the printer 
is not connected the Debugger will hang when you try to print with the 
Pl, PU, or PS corrmand. 

PS expr 
The PS command prints the entire primary or alternate screen. Printing must 
be enabled (the PR command) before PS is used. Expr tells which screen to 
print: 

FF 

expr = 1 
expr = 0 

print primary screen 
print alternate screen 

The FF command sends a form feed to the printer if printing is enabled. 

Pl and PU 
The Pl and PU commands print a bug report on the lower and upper ports 
respectivly. The bug report consists of the following: 

Dump of the primary screen 
Dump of the alternate screen 
Description of the exception 
Trace Display 
Stack Crawl 
Disassemble of 20 lines from PC-$20 
Display words from RA6-$20 for $80 bytes 

8.4.9.5 Dumping Memory to Diskette 
The following commands allow you to create a copy of the contents of 
memory on a diskette. 

M.. a1d M.J 
The Ml and MU commands dump a copy of memory to the lower and upper 
diskette respectivly. This information can be used to reconstruct the 
conditions at the time of a crash, for example. These commands work as 
follows: 

• If there is a disk in the drive, it is ejected. 

• You are prompted to insert a disk. 

• The disk is formatted and all necessary information is copi~d to it. This 
process takes about 3 1/2 minutes. 

8-19 



Workshop User's Guide The Debugger 

8.5 Stmnary of the DeblQQer Conmarm 
procedure name Call the procedure. 
regIster Display the current value of the register. 
register expr Set the register to expr. 
A expr statement Assemble statement at expr. 
A expr Assemble one statement (instruction) at expr. 
BR Display the breakpoints currently set. 
BR exprlist Set each breakpoint in exprlist. 
BT expr Begin timing process expr 
Cl. Clear all breakpoints 
Cl... exprlist Clear each breakpoint in exprlist 
CV exprlist Display the value of each expression in hex and 

DB expr 
DL expr 
OM exprl expr2 
00 expr 
DR 
OWexpr 
ET 
FB exprl expr2 exprlist 
FF 
FL exprl expr2 exprlist 
FM exprl expr2 exprlist 
FW exprl expr2 exprlist 
G 
G expr 
10 
10 expr 
IL 
IL expr 
IL exprl expr2 
IX statement 
KB expr 
LP expr 
tv1L 
MM exprl expr2 
MM num org lim ctrl 
MR 
MU 
NM 
N'-1 expr 
OSQUIT 
P expr 
PL 
PR expr 

decimal. 
Display memory as bytes. 
Display memory as long words. 
Display memory. 
Set the SEG1/SEG2 bits. 
Display index or ranges of dump RAfv1. 
Display memory as words. 
End Timing; print summary and remove buckets 
Find Byte. 
Send form feed to printer 
Find Long word 
Find Memory 
Find Word 
Start running at the current PC 
Starting ruming at expr 
Disassemble one line at the next address 
Disassemble one line at expr 
Disassemble 20 lines at the next address 
Disassemble 20 lines startIng at expr 
Disassemble expr2 lines starting at exprl 
Immediate execution of one instruction 
Kill Bucket expr 
Convert logical address to physical address. 
Dump memory to lower diskette 
Display MMU information 
Set MMU information 
Set a value level #S interrupt on a word change. 
Dump memory to upper diskette 
Displays the keycode of the NMI key 
Sets NMI keycode to expr 
Exits from the operating system * 
Set port number to expr. 
Print bug report on lower port 
Enable printing. O-disable, l-upper port, 2-10wer 
port. 

8-20 



Workshop User'S Guide 

PS expr 
PT 
PU 
RB 
RS 
RT 
S8 exprl exprllst 
SO expr 
SO 
SH 
SL exprl exprlist 

SM exprl exprllst 
SW exprl exprlist 
SY 
SY name 
SY name expr 
T 
T expr 
TB addr1 addr2 
TO 
UBR 
WP 0 or 1 

Print screen. O=aletmate, l=primary 
Print timing summary 
Print bug report on upper port 
Reboot 
Display the patch Return address Stack 
Reset timers 

The Debugger 

Set memory in bytes with exprllst starting at exprl 
Stack Crawl. 
Set the default radix to decimal 
Set the default radIx to hex 
Set memory in long words with exprllst starting at 
expr1. 
Set memory with exprllst starting at exprl. 
Set memory in words with exprlisl starting at exprl 
Display the values of all symbols 
Display the value of the symbol name 
Assign expr to the symbol name 
Trace one instruction at the current PC 
Trace one instruction at expr 
Create Timing Bucket from addr1 to addr2 
Display the Trace Display at the current PC 
User break* 
Disable (0) or Enable (1) Write Protection. 

* These are procedure calls to ~erating System procedures. They are 
explained in Section 8.2. 

8-21 





OJ61-A 

Chapter 9 
Exec Files 

9.1 Exec Files ...........................•...........•.............•................................. 9-1 
Exec files are scenarios of commands to be automatically performed by 
the Workshop system. 

9.2 Exec File Statements ••.........•........................................................•.. 9-2 
Exec file statements are of two types: normal lines, that contaIn 
Workshop commands, and exec command lines, that tell how to process 
the exec file. Exec command llnes include lines to set parameter 
values, perform input and output, and control conditional execution. 

9.3 Exec Files ...........................•......................................................... 9-14 
Exec files are invoked using the Workshop Run command. This 
invocation line can set the values of parameters, as well as select exec 
options. 

9.4 Example Exec Files ..............•......................................................... 9-18 
This section contains examples of exec files. 

9.5 E>Ce(} File Prograrrmirlg Tips ........................................................... 9-22 
This section contaIns tips on writing exec fHes. 

9.6 Exec File Errors ...................•......................................................... 9-23 
This section explains the format in which errors are reported, and lists 
the errors. 





Using Exec Files 

9.1 Exec files 
Exec files are scenarios of commands to the Workshop system. They are 
contaIned irltextfUe.s, created with the Editor, and are executed with t~e 
RtJrL~Qmmand. "Exec files consist of characters you typetotfie Workshop-to 

·perforrri"lhe"functions you want., and special exec fUe commands, which enable 
you to use parameters and conditions to vary portions of the scenario. 

In its simplest form, an exec file contains the characters you press to perform 
a desired operation. AA example of an exec file to compile a Pascal program 
is: 

$EXEC 
Pmyprog 

$EN)f)(fC 

{ You need to enter two blank lines here } 
{ to lU'l the Gonpiler } 

where P is the command to invoke the Pascal Compiler, and myprog is the 
name of the source file. Further lines to Generate, Link, and Run the 
program might follow. 

Two separate activities occur while running an exec file: processing and 
runnIng. First, during process lime, the exec processor creates a temporary 
file, which consists of a stream of Workshop commands~ This temporary file is 
then sent to the Workshop ... which executes the command stream at lUfl lime 
A simple diagram of this procedure follows: 

exec file (s) exec processor 

process time 

WorkshOp 
tempfUe / 

GII····'····j 

. : .. 'Il'-
,: -':"'~'.;~j • .. ,'. x.:-/.: . 
,', .... ' .. "" . 
. 0· "1t. 
run time 

With special exec file commands, you can use parameters and conditionally 
perform the WorkshOp commands. An example of an exec file for a simple 
Pascal program is shown in Figure 9-1. 

9-1 



Workshop User's GlIlde Exec FIles 

$EXEC { Hmakeprog" -- This exec file COIIlliles, generates, and 
links a Pascal program. } 

P%O 
{ no listing file} 
{ default I-code file } 
~O 
{default object file} 
L%O 

IOSPASLIB 
{ end Of ll,*er Input } 
{ no list file } 
%O{ output file nare } 

$EN)EXEC 

Figure 9-1 
Exarrple Exec File 

You have several options available to you when running the exec file 
processor. The Step Mode option, which enables you to selectively skip 
command lines going to the temp file, could be used in the above example to 
choose whether to do only the compile, generate, or link. Section 9.3.1 
contains additional information on the exec file options. 

92 Exec File statements 
Exec file statements are Une oriented. Two types of exec file lines exist: 
exec COfl?fJ?a/1l1lflles and llo1n'J81 lineJ: Normal lines contain Workshop 
commands. Exec command Hnes handle the other features of exec files .. such 
as parameters and conditional statements. 
You can use up to 10 parameters in an exec file, numbered %0 through %9. 

parameter 

---@-C 0 ... 9 )--+ 

You can pass parameters when you invoke an exec file and use them during 
the execution of the exec file. For example, if you wanted to pass a 
parameter in the Example Exec File shown in Figure 9-1, you would Run: 

<mkeprog (myprog) 

The value "myprog" would then be assIgned at each reference to %0. 
When a parameter appears in a normal line, it is replaced by the string value 
of that parameter. These parameters can be used both as inputs to the exec 
file and as temporary variables wi thin it. 

9-2 



WOrkshop User's Gtiide Exec Files 

Exec command lines start with a $ (dollar sign~ They control the operation of 
the rest of the exec file. Exec command Hnes are free format, as long as the 
order of their elements is preserved. You can have any number of spaces 
before or after any element of a command line. These can go on to more 
than one line. The processor will look on the next line if it does not have a 
complete command at the end of a 11ne. 
Normal lines contain commands for the Workshop system. These lines are sent 
to the Workshop as they appear, with the following exceptions: 
1. Leading and tra111ng blanks are removed from these lInes unless the ··B" 
option is in effect. See section 9.3.1 for more on the "B" option. 
2. Comments are removed. 
3. Parameters are expanded. 
4. The tilde C) literalizing character is processed. 
comments are delimited by brackets { }, and can appear in either a normal or 
an exec command 11ne. These can cross line boundaries. They can be used to 
comment out carriage returns in normal lines. 
The .. "' .. is used as a literalizing character in normal lines, meaning it passes 
the character following it through without processing. With a tilde you can 
pass the character $, %, or { to the Workshop system without having it be 
interpreted as part of an exec command, a parameter, or a comment. To 
represent a tilde, use a double tilde C .. ~ 
Note that while the exec fHe processor is not case sensItive, 1 t does preserve 
the case of parameters and strings supplied by the user. 
A description of each exec command follows. 

9.2.1 Begimlng and Ending Exec Flles 
Generally, exec files must begin with an EXEC line and must end with an 
ENJEXEC line. The exceptions to this basic rule, for those who embed exec 
files in their program sources, are: (1) one line of text can preceed the EXEC 
line if the I (Ignore) invocation option is used, and (2) any amount of text can 
follow the Ef\lJEXEC line, but it is ignored. 

9.2.2 Setting Paraneter values 
You can set parameter values in an exec file by using the SET and OEF AUL T 
commands. The REQUEST command prompts the user for the value Of a 
parameter. 



Workshop User's Gtljde Exec Fjles 

9.2.2.1 The SET CI'ld DEF ALL T Cormlands 
The SET and DEF ALL T commands provIde ways to change the value of a 
parameter inside of an exec file. The forms of these commands are: 

set statement 

-( $ SET)-1 parameter ~tring expreSSionr. 

and 

default statement 

$ DEFAULT parameter 

string expression 

"String expression" Is described in Section 9.2.5. 
The SET command changes the value of the specified parameter to the value 
of the given string expression. The OEF ALL T command is similar to the 
SET command, except that the assignment takes place only if the value of the 
specified parameter is the null string when the DEFALL T command is 
encountered. Thus, you can use this command to supply default values to 
parameters that have been left unspecified or empty in the exec invocation 
line. 
These commands also allow you to use unused parameters as variables wi thin 
the exec file. 

9.2.22 The REQLEST cmmand 
The REQl,.EST command provides a way to prompt for values from the 
console. The form of this command is: 

request statement 

--C $ REQUEST H parameter 

/' 

~strlng expresslon~ 

9-4 



Workshop User's GI/jeje Exec Files 

The REQUEST command prInts the gIven strIng expressIon to the console, and 
reads a 11ne, which it assIgns to tile specIfied parameter, from the console. 
Thus, "str expr" prompts the user for the value. 

9.2.3 Input cnj tlJtput 
You can request input to an exec file with the REACLN and READCH 
commands. You can output values by using the WRITE and WRIlELN 
commands. 

9.2.3.1 The READLN and REAIJCH COImlandS 
The REAfJLN and REAECH commands enable exec files to read in text from 
the console ... and to assign it to a parameter varIable. You can use these 
commands to: 

• obtain parameter values 
• obtaIn values to control conditional selection 
• pause until the user indicates to continue 

The forms of these commands are: 

read In statement 

~EADLN )-i parameter ~ 

and 

readch statement 

-( $ READCH )-i parameter ~ 

The REAI1N commana reaas a line from the console ana assIgns It to the 
specified parameter. The REAECH command reads a sIngle character from 
the console. If you press [RETURN], READCH wl11 interpret It as a space. 

9.2.3.2 The WRllE cnj WRllELN COImlandS 
The WRITE and WRllELN commands enable exec files to write text to the 
console screen. You can use thIs text for Informatory messages or prompts. 
The forms of these commands are: 

9-5 



£)(ec Files 

write statement 

string expression 

and 

writeln statement 

$ WRITELN 

string expression 

These commands take an arbitrary number of string expressions" separated by 
commas, as arguments. The strings are written to the current console line. 
The WRITELN command adds a final carriage return. 

9.2.4 conditional Statements - the IF Statement 
Conditional statements enable you to perform commands depending on 
conditions existing at process time (when the temporary file is created~ The 
condition is stated in the form of a boolean expression, and can include 
built-in boolean functions. 

The IF, ELSEIF" ELSE" and EI\()IF commands enable conditional selection in 
exec files. The forms of these commands are: 

if statement 

$ ENOIF 

elseif part else part 

9-6 



Works!7op User's Guide E,xec Files 

if part 

~boolean expression ~ 

C-c. THE N )---[iii!!] • 

elseif part 

ELSEIF Hboolean expression ~ 

cc-------------------) 
THEN H stuff I .. 

else part 

-( $ ELSE )---[i~Uff }+ 

where "boolean expression" is described in Section 9.2.4.1" and "stuff" is 
composed of arbitrary normal and command lines, other than commands that 
would be a part of the current IF construct. The IF statement is multiline ... 
meaning that the components IF .. ELSEIF, ELSE, ENOIF, and "stuff' each need 
to be on separate lines. 

The IF construct is evaluated in the usual way. First ... tt1e boolean expression 
on the IF command itself is evaluated. If it 1s true ... the "stuff" between the 
IF and the next ELSEIF (if any)" or ELSE (if any) ... or ENDIF is selected; 
otherwise" it is not selected. The remaining parts of tt1e IF construct., up to 
the ENJIF command ... are parsed, but are not selected once one of the boolean 
expressions is true and its corresponding "stuff" is selected. Selecting "stuff" 
means that any normal lines are processed by the WorkShop, and any command 
lines are processed. Conversely" if "stuff" is not selected .. any normal lines 
and command lines are not executed. However ... the command lines are parsed 
for correctness. 

If the boolean expression on the IF construct is not true, the ELSEIF or ELSE 
command that follows is processed. If an ELSEIF command is next .. its 
boolean expression is evaluated. If true .. its corresponding "stuff" is selected 
and the remainder of the IF construct is not selected. Processing the IF 

9-7 



WOJ1<YfJop User's Gl.l.lde Ewe Ffles 

construct continues untll one of the boolean expressIons on an IF or ELSEIF 
command is true, or until the Et-VIF is reached. If no boolean expression is 
true before the ELSE (if any) Is reached, the "stuff" corresponding to the ELSE 
command is selected. 
IF constructs can be nested within each other to an arbitrary level. 

92.4..1 BooleCll ExpressIons -- CCJr11m1son CVld LogIcal £l>erators 
Boolean expresslons enable you to test strlng values and check properties of 
fUes. The syntax for boolean expressions Is: 

boolean expression 

boolean term 

boolean term 

--~~boolean factor~-----------------------------~ 

boolean expression 

boolean factor 

--.....-----1 bo ole an f unc t i on 1----------------;;;-. 

string expression 

string expression 

9-8 



WOrkshop User's Gujde Exec Fjles 

The baste element of a boolean expressIon, a "bool factor", is either a noolean 
function (see Section 9.2.4.2) or a string comparison, testing string expressions 
for equalIty or Inequallty (see Section 9.2.4,3~ The basIc elements can be 
combined with the logical operators Al'O, £R, and f'IJT, with parentheses for 
groupIng. These operators functlon In the usual way. 

9.2.42 Boolean FlIlCtions -- EXISTS CJ'ld !'EWER 
Several functions returning boolean results are provided for use with the 
condi tIonal contructs. 

boolean function 

string expression 

string expression 

~~preSSion 
The EXISTS function enables you to determine whether or not a file, volume, 
or device exists. If you specify a device, the function will return a value of 
TRUE if the device has a volume mounted on it. The string expreSSion 
arguments to these functions should specify names of files. Typically these 
string expreSSions will be expanded string constants, discussed in Section 
9.2.4.3, such as "%l.obj", 
The f\EWER function enables you to determIne if one flIe Is newer than 
another file; that is, whether or not its last-modified date is more recent than 
the last-modifIed date of another fHe, A value of TRUE Is returned If the 
first file is newer than the second. During processing, an error will occur if 
one of the files does not exist 

9.2.4..3 string Expressions 
A string expression can specify a string in a variety Of ways, as noted in the 
following: 

9-9 



Workshop Users Guide El(BC' Files 

string expression 

• A I.'7Clral17eter has tt'te form 5'>'01'1. 

• A :UJi17!1 canstant has the standard form of text. de1imitl:~d by single quotes 
'.f wIth an embedded quote spec.ified by the double quote rule, as in 'Tl"lat"s 
all... folKS!', 

• tJ.Jl f:;'Xpandt!d stJi!~q constant is similar to a string constant, except t.hat 
double quotes" are used as delimiters, arHj parameter references are 
expanded within the string. 

• A stfit~q function is an exec file processor function that returns a strinq 
value. A detailed description Of string functions is provided in Ule 
following section. 

• An ext.'c fUf7ction call is an invocation Of an exec file tt18t returns a 
string value, as described in Section 9.2.5.3. 

9.2)1-.4 string Functions-.. ·· CCNCAT and UPPERCASE 
The string functions et::NCAT and UPPERCASE can be applied to other string 
expressions to produce new string values. 
The CCNCAT function enables you to combine several string expressions to 
produce a single string resul t. The CCNCAT function takt;$ a list of string 
expressions, separated t)y commas, as arguments. 
The UPPERC~ function converts any lowercase letters in its argument to 
upper case. 

9··10 



WOlkstJop usef~' Gil/de 

The form of these functions is: 

string function 

string expression 

string expression 

M example Of the use of the UPPERCASE function ls 

$ SET %0 TO UPPERCASE <%0) 

Exec Ffles 

which sets parameter 0 to an uppercase version of its previous value. 

9.2.5 Nesting Exec Files 
Exec files can be nested in two ways. O1e is to use the Sl..HVUT command to 
call another exec file in the same way that you would call a procedure. 
Alternately, you can call exec files as functions (returning string values to a 
string expression), as explained in Section 9.2.5.3. 

9.2.5.1 The SLl3MIT COO'mcIld 
The Sl.JBIv11T command enables you to nest exec files; that is, you can call 
one exec file within another exec file. The form of the SlEMIT command is: 

submit statement 

.-.(~~~~,~~ I T)--{. e ~e c - c ~~~~~-d-J-. 

where "exec command" is an exec command of the same form as would 
follow the exec/ or < at the Workshop command level. This exec command 
can include parameters and exec options in the usual fashion (see Section 9.3~ 

The SlBMIT command processes the specified exec file, putting any generated 
exec output text into the current exec temporary file. Thus, while a single 
exec file can have several nested sut>exec files, only one temporary output 
fHe Is generated. This fUe contains the output generated by all of the input 
files. Exec files can be nested to an arbitrary level. 

9-11 



Worksnop User's Guide Exec Files 

Wi thin the text of the exec command, references to %n parameters are 
expanded, and the literalizing character tilde C) is processed. Be aware that 
thIs is the only processIng that takes place within the exec command. 
Everything up to the first left parentheSis, or the end of the line if no 
parameter Ust Is present, Is taken to be the exec file name. If a left 
parenthesis exists, the parameter list is taken to be everything between this 
parenthesis and the next right parenthesis. The exec command cannot be spUt 
across lines. 
Note that only the I (Ignore first line) and B (Blanks significant) options are 
valid on a SUBMIT command. The R (Rerun), S (Step mOde), and T (Temporary 
file saved) options are applicable only from the main exec invocation line. 

92.5.2 The REnJRN ConTnand 
The RETURN command allows exec files to return string values to other 
(calling) exec fUes. Thus the REnJRN command can transform an exec fHe 
into a function. The form of the RElLRN command is: 

return statement 

$ RETURN 

string expression 

Executing a REnJRN command terminates the current exec file, and returns 
to the calling exec file with the speCified string value. (Section 5.2.5.3 
describes how exec functions are called.) You can use a RETURN command 
without a string expression to exit from exec files which are not used as 
functions. 
O'le way you can use exec functions Is to determIne If a program fIle, 
including any correspondIng include files, has been modified since its last 
compllatIon. ThIs function can then be used to condl tionall y sUbml t compiles. 
If written generally enough, such a function could be used by many exec files. 
Exec functions can prOduce side effects; that Is, they can contain normal Hnes 
that get placed in the temporary flle. While the intentional use of such side 
effects is unllkely, inadvertent instances can occur and are potentially 
hazardous to your exec files. All unexpected blank Une In the middle of an 
exec fUe can often throw it out of sync. 

9.2.53 Exec FU'lCtlon Galls 
Exec function calls return string values, and are thus one of the basic 
elements of string expressIons. They can also appear in boolean expressions, 
supplying arguments for string comparisons. A typical use of an exec function 
Is to return a boolean value by returning either the string T or F. The form 
of an exec function call is: 

9-12 



WorkShop User's Guide Exec FiJes 

exec function call 

filename 

parameter list 

parameter list 

Where < is the character that signals a function invocation, in the same way 
that this character identifies exec files for the WOrkshOp'S Run cOmmand. 
The "file name" and optional "parameter lIst" are the same as described in the 
Sl.BMIT command section, Section 9.2.5.1. 

Due to the liberal conventions concerning what characters, including blanks, 
can appear In file names, the exec fHe processor must make some assumptions 
about how to identify the exec function file name and the argument list. 
The followIng rule is used: If the exec fUnction invocation has an argument 
list, the file name is assumed to be everything between the "<" and the "C' 
begiming the argument list; otherwIse, the file name Is assumed to be 
everything between the "<" and the end of the Une. This means that if the 
function call is not the last thing on the command line, you must supply an 
empty argument list to an exec function with no arguments. 

Processing the text of a function call is the same as with a SLeMlT 
command; that is, the only processing that takes place is the expansion of %n 
parameters and recognition of the l1teraUzing character .. "'". This means that 
the text Of a function call cannot contain an embedded function call. Note 
also that a function call cannot be spUt across lines. 

9-13 



Worksnop User's Guide Exec Files 

9.3 Using Exec Files 
You invoke the exec file processor in response to the WorkShOp Run commano 
prompt. Art invocation line for the exec file processor has the form: 

exec lnvocation llne 

--~ rmc command t+ 
\.crnc;~ 

exec command 

filename 

par arne t e r lis t 1-<------------,........., 

exec options 

The "exec flIe" Is the name of the exec flIe you want to run. An extensIon of 
".TEXT" is assumed if no extension is specified. However, you can override 
the mechanism that suppl1es the ... TEXT" extensIon by endIng your exec fIle 
name with a perIOd; for example, using "foo." causes the exec fUe processor to 
search for the flIe "foo" rather than "foo.text". 
The optlonal "parameter list" is enclosed in parentheses. The parameter list 
can be empty or It can include up to ten parameters separated by commas. 
For example, an exec flIe to run compiles, which takes volume and source fUe 
parameters, might be invoked with "complle(foo,-work)". You can omit 
parameters, leaving them as null paramaters, by specIfying them with the null 
string, as in "compUe(foo,)". The volume that was present in the previous 
example has been omitted. Alternately, parameters can be left unspecified 
altogether, as in "compile(foo)". In this case, they also get null values. O'le 
reason to omit parameters Is that the exec file mIght have been set up to 
supply default values, as described In Section 9.2.2.1. 
The exec options that follow the closing right parenthesIs of the parameter 
list consist of single-letter commands, which change the behavior of the exec 
fHe processor; for example, you use the letter S to indIcate that you want to 
step through the exec file as it is being processed, conditionally selecting 
which commanOs are to be sent to the WOrkShOp. The exec options are 
discusseO in Oetail in Exec Invocation ClJtions, Section 9.3.1. 

9-14 



Wod<sI7op l.Jser's Gukle Exec Files 

The exec file processor's output is a temporary file with a " .. text" extension. 
The temporary file is the processed version of your exec commands; that is, 
all exec command lines have been processed and removed, leaving only the 
resulting WorkshOp commands. This temporary file is passed to the Workshop 
when the processing is completed. The Workshop then runs the temporary 
exec file, and automatically deletes it when finished. 

NJTE 
To terminate the processing of the exec file while the exec file 
processor is running, you press c-period. 

9.3.1 Exec Invocatioo Clltions 
Several options are available when running the exec file processor. You can 
specify these options when invoking the exec file processor or on SLeMIT 
commands. The options are specified by single letter commands following the 
exec parameter list. A null parameter list should be used if you want to use 
options without parameters, as in II <foc()s". The options are as follows: 

B indicates that the exec file processor should not trim blanks on output 
lines. Normally the exec file processor trims off leading and trailing 
blanks on the lines that it outputs to the temporary file. Trimming 
enables you to indent normal lines (lines that are not exec command lines) 
without worrying about generating spurious blanks. In other words, the 
exec file processor assumes that leading and trailing blanks are 
insignificant. While this assumption is true for Workshop commands, it 
might not be true for some other programs you can run with exec files. 
Using this option tells the exec file processor not to trim such blanks. 
The option applies to only the exec file being run or SU3MITted, and not 
to any nested exec files. 

indicates that the first line of the exec file is to be ignored by the exec 
file processor. This option is intended for those who embed exec files in 
their program sources. When using this option, you should begin the first 
line of the source with a "(*", and follow the end of the exec file with a 
"*r, thus commenting it out of the program source. Note that you should 
use "(*" and u*)" instead of lOr and It}"', since the latter are comment 
delimiters in exec files. 

T indicates that the temporary file, which is created (I.e., the expanded form 
of the exec file), should not be automatically deleted after it is run. This 
option enables you to to rerun an exec file created with the step option 
(see below) without going through the stepping prompts a second time by 
running a previously created expanded exec file. The R exec option, 
described next, is used to run old temporary exec files. Note that the T 
option is not allowed on SUBMIT commands. 

9-15 



Workshop User's Guide Exec Files 

R indicates that the an exec temporary fUe, saved with the T option, should 
be rerun, bypassing the normal processing by whiCh the temporary was 
created. For example, "foo" might be an exec file that generates a 
complicated system using a large number of nested exec fUes that take a 
significant amount of time for the processor to digest. If you know you 
are going to run "foo" repeatedly, you might want to generate the 
temporary file only once but run It several times. The first time you 
would Invoke the exec file processor with "<fOc()t" to Indicate that the 
temporary file should not be automatically deleted after it is run. 
SUbsequently, you would invOke the exec flIe processor with "<foCX)r" to 
rerun the old temporary f11e. Note that the R option overrides any others 
that might be specified; since, If you are rerunnIng an old exec temporary 
fUe, all the processing has been performed and the other options make no 
sense. Using the R option is not allowed on SLeMlT commands. 

S indicates that the exec file should be processed in "Step Mode", WhiCh 
allows selective Skipping of output Unes and SLeMJTs. 

9.3.Ll USing the step FUlCtlm 
If you use the step option, the following prompts appear when you invoke the 
exec fUe processor: 

step Mode: 
-- in response to "InclUde ?" answer: 

Y, N, A (Abort), K (Keep rest), or I (Ignore rest~ 
-- in response to "Submit ?" answer: 

Y, N, S (Step), A (Abort), K (Keep rest), or I (Ignore rest~ 
More details? (Y or N) [NO] 

If you repond with Y (yes) to the "Hore details 7'" proq>t, you get 
additional information as to what each of stepping responses means. 
When you invOke an exec flIe with the step option, you are prompted When a 
Une haS been generated and Is about to go into the temporary f11e. The Une 
1s displayed followed by 1.<- Include ?". 

• A response of Y inclUdes the Une In the expanded exec fUe. 
• A response of N omits the displayed line. 
• A response of A aborts out of the exec file processor, and no exec file is 

run. 
• A response of K keeps (includes) all the remaining lines of the exec file, 

leaving step mode. 

• A response of I ignores the remainder of the exec file. No more lines are 
inclUded. 

9-16 



Workshop User's Guide Exec Files 

When a Sl.BMIT command is encountered in stepping, the St...JBIv1IT line is 
displayed followed by "<= Submit ?". 

• A response of Y performs the SlJ3MIT unconditionally; that is, without 
stepping through it. 

• A response of N ignores the SlEMlT. 

• A response of S steps through the SlJBMIT file. 

• A response of A aborts out of the exec file processor, and no exec file is 
run. 

• A response of K keeps the rest of the exec file, leaving step mOde. 

• A response of I ignores the remainder of the exec file. 

I'IJTE 

A reponse of ? to a "Submit 1" or "Include ?" prompt elicits an 
explanation of the accepted responses. 

Some examples of how to use the exec file processor's stepping facility follow. 

Stepping can be used to resume execution of an exec file that did not run to 
termination. For example, if your "compile" exec file includes both a compile 
and a generate step, and if you want to resume with the generate step, you 
invoke the exec file with "compile(foo,-work)s". Then, in response to the 
"Include?" prompt for lines corresponding to the compile step, you hit N to 
skip the lines. Upon reaching the first line of the generate step you respond 
with K to keep the rest of the file. Thus the generate step of the exec 
process would be performed. 

The stepping mechanism can be used to run only selected parts of an exec 
file. Say, for instance, that you have a modular set of exec files, which 
generates a whole system of programs, such as the Workshop, and that one 
exec file called "make/all" can generate the whole system by Sl..JBt-1ITting 
exec files for each of the component programs. The exec files for each 
component program (development system tool) make use of other exec files to 
perform such standard activities as compiling (and generating) a Pascal unit or 
program, performing an assembly, installing a library, or manipulating files 
with the Workshop's filer. If you perform a system build and find yourself 
constantly having to regenerate parts of the system, the ability to step by 
SlJBIVUTs proves very useful. You can regenerate arbitrary parts of the 
system by running "<make/allOs" (our master exec file invoked with the 
stepping option), and selectively submitting the subexec files for only those 
things that you want to rebuild, while stepping over the others. 

9-17 



Wo.rkshop User's Guide Exec Files 

Stepping in conjuction with the T option, for saving the temporary file created 
by the exec file processor, can be useful when you are going to be 
regenerating a single component of a program or system a number of times in 
succession; for example, when you are fixing a bug in an element of a system 
build and you expect that several iterations will be needed to correct the 
problem. To continue the previous example, suppose that while building the 
development system, you have a problem with the "fileio" unit of the 
"objiolib" library. Suppose also that an exec file called "make/objiolib" 
generates and installs the library, submitting compiles and assemblies for all 
of its units, linking everything together, and finally performing the 
installation. By invoking the exec file processor with "make/objiolibQst", you 
can go into step mode and submit onI y those things related to the compilation 
of the "fileio" unit, the link, and the installation of the library in the intrinsic 
library. Then, after each successive refinement of "fileio", you can run the 
saved temporary file by running "<make/objiolit()r" without having to go 
through the stepping process. The alternatives to this procedure are: to 
create another exec file to generate only the selected parts, to run (and rerun) 
the exec file for the whole library, or to run each subprocess independently 
(which requires more of your attention). 

9.4 Exaflllie Exec Files 
9.4-1 AA Exec File to 00 a Pascal Compile 

This exec file does a Pascal compile and generate. Note how comments are 
used to make the single character Workshop commands more intelligible. 

$EXEC { "coq>" -- perform a Pascal conpile 
%0 -- the nanE of the tIli t to conpile } 

P{Pascal compile}%O{source} 
{no list file} 
{default i-code file} 

G{generate code}%O 
{default obj file} 

$ENOEXEC 

9.4.2 AA Exec File to Do an Assembly 
This exec file performs an assembly, and allows for an optional output file 
name which can be different from the source name. 

$EXEC { "assentJ" -- perform an assentJly 
%0 -- the nane of the lIli t to assentJle } 
%1 -- (optional ) alternate nane of OOJ output } 

SOEFAl.l.T %1 TO %0 { use source nanE if no output nane is given} 
A {assentJle}%O{source} 

{no list file} 
%l{obj file} 

$ENOEXEC 

9-18 



Workshop User's Guide Exec Files 

9.4.3 A rvIOre Flexible Exec FUe to Do Pascal GorTlllIes 
This exec file performs compiles, allowing for an output file with a different 
name than the souce. 

$EXEC { -coop1" -- perform a Pascal conpile 
%0 -- the rane of the lIlit to conpile '1 -- (optIonal) alternate name for OBJ fIle } 

$OEFAlL T %1 TO %0 { if no alternate OOJ name use sanE nafOO as 
source} 

P{Pascal compile}%O{source} 
{no list file} 
{default i-code file} 

G{generate code}%O 
'1{00J file} 

$Eta:XEC 

9.4.4 A "smart" Exec File to Do Pascal compiles 
This complle exec flIe only performs the compile if e1 ther the object fHe does 
not exist or the source file is newer than the object file; that is, the source 
has changed since it was last complled. It uses the compi exec file shown in 
Section 9.4.3 above. 

$EXEC { -comp2· -- perform a Pascal cOfll)ile (only if really 
required) 

'0 -- the name of the lIli t to conpile 
'1 -- (optIonal) alternate name for OBJ file } 

$OEFAll. T %9 m %1 { set %9 to name of output OOJ file } 
$DEFAlL T %9 m %0 
$IF EXISTS (·%9.objll) 1lEN 

$IF NEIER (-'o.text-, -'9.ODj-) 
TJ£N {reconp if source newer than object} 

$SlD1IT conp1('O, %1) 
$EN)IF 

$ELSE {(BJ file ODes not exist, so generate it } 
$SlD1IT comp1(%O, %1) 

$ENDIF 
$ENlEXEC 

9.4.5 Exec File cnatn1ng 
This example, "maKe/Prog", uses the smart compile exec file C'comp2") 
def1ned in the last example to demonstrate how to cnaln exec fUe execution. 
Assume you want to generate a particular program composed of three units 
(unitt, unlt2 ,unit3), and that you have written lllink/Prog", a smart exec file 
which performs a link only when one of the object. files for one of the units is 
newer than the llnked program fUe. Your generation exec fHe uses these 
smart exec fUes to perform the minimal required amount of wOrk. Thus it 
can be used to ensure that you have the latest version of the program without 
performing a full regeneration. 

9-19 



WoIksl7op User's Guide 

$EXEC {"make/Prog" -- smart versioo, only reconpiles 
a links when it has to} 

$SUBMIT comp2(unitl) 
$SUBMIT comp2(unit2) 
$SUBMIT comp2(unit3) 

Exec FjJes 

R<linklProg { Run link exec file after coopiles have 

$EN)fXEC 

rU1 so that it gets the correct file 
dates. This is me e~le of Wlen you 
should note the difference between 
process time and run time.} 

Note that in the last line of the above exec file you have scheduled an exec 
file to be run at a later time, as opposed to SUBMITting it now, so that the 
file dates for the link step are accessed after the compiles have had a chance 
to run. The differences between running and submitting and exec files are 
demonstrated in the following scenario. When an exec file is submitted, it is 
processed immediately by the exec file processor. Its output goes to a 
temporary file, which is then passed back to the Workshop. The Workshop 
runs the commands in the temporary file until it comes to the command to 
Run another exec file. At this point it discards the remainder of the 
temporary file, and runs the exec file processor with the new exec command. 
This exec file invocation results in another temporary file of commands, Which 
is then run by the Workshop. This means that some exec processing has been 
scheduled to follow some exec running, rather than all of the processing 
taking place first. 

9.4.6 A Recursive Exec File to Do Pascal Ct:JrJl)iles 
This compile exec file performs up to 10 compiles. It takes an argument list 
with the names of the units to be compiled. 

$EXEC { -rcoop" -- perform any nuntler (14l to 10) Pascal coopiles. 
It calls "comp" 00 its first argument and then calls 
itself recursively with its arguments shifted left } 

$IF %0 <> • I 1l£N 
$SlB1IT coop(%O) {"coop" the first me } 
${ "rcomp" the rest, less first} 
$SlD1IT rcoop(%I, %2, %3, %4, %5, %6, %7, %8, %9) 

$ENJIF 
$EN)EXEC 

9.4.7 A BASIC EXBf'f1Jle 
This exec file demonstrates, by generating the BASIC Interpreter, some of the 
constructs in the exec file processor's meta language. The comments in the 
body of the example should be sufficient to describe what is taking place. 
The essential idea is that BASIC is made of three components and that you 
might want to generate only one or two of them at a time. 

9-20 



Workshop User's Guide Exec Files 

$EXEC { IIlIBke/basicll 
-- generate the BASIC Interpreter. 

There are three paranEters -- if a paralEter is a ·V· 
(yes) the correSfXlt1ding part of the system should be 
generated: 

(0) the b-code interpreter 
(1) the run-time system 
(2) the COIII1I8Ild interpreter 

If no parClEters are specified, the exec file prtJqlts to 
see .tlat parts of the system should be generated _ } 

$lRITELN 'Starting generation of the BASIC system' 
$IF %0 = •• AN) %1 = II AN) %2 = II ll£N 

$ {no parans Sl4lPlied -- pronpt for info} 
$lRITE • 00 you walt to assentlle the b-code interpreter?' I 

I (y or [n])' 
RADCH %0 
ftRITELN {this writeln puts us on a new line for the next 

proopt } 
$WRITE too you want to conpile the run-time system? I , 

'(y or[n]) , 
$READCH %1 
$WUTElN 
$WITTE '00 you want to conpile the COIIII18rld interpreter?', 

I(y or [n))' 
$READCH %2 
$MUmN 

SENlIF 
$ 
$IF lPPERCASE(%O) = 'V' TI£N {assentlle the b-code interpreter} 

$SlB1IT assentl (int . main) 
SENlIF 
$ 
$IF lPPERCASE(%l) = 'V' TI£N {conpile the IUl-tine ooit } 

$SUBHIT comp(b.rtt.Ilit) 
SEMlIF 
$ 
$IF lJlPERCASE(%2) = 'V' m lPPERCASE(%l) = 'V' 11£N 

${ compile the COIII1I8Ild interpreter } 
${ compile also if the roo-tine lIlit has changed } 
$SlB1IT conp(b . basic ) 

$EMlIF 

9-21 



Worksl7op User's Guide 

$ 
${ link it all together } 

L{link} b.basic 
b.rtunit 
int.lIIBin 
h.intl 
iosfplib 
iospaslib 
basic{exeoutable output} 

$EN)EXEC 

9.4.8 M Exec File Function 

Exec Files 

This exec file is a function which prompts the user for the location of a 
ProFile, and returns a string with the name of the device to which the ProFile 
is attached. Note that the function calls itself recursively until a valid 
device name is specified. 

$£XEC { "GetProfLoc" -- get location of Profile by asking user } 
$REQl£ST ~ WITH 
"Where is the Profile attached (paraport/slot2Chanl/slot2chan2)" 
$SET %9 TO lPPERCASE (%9) 
SIf (~ <> "PARAPmT') At{) <%9 <> ISLOT2CHAN1") 

AN) (~ <> I SlOT2CHAN2 ") TI£N 
$lRITELN "lllat is not a valid device nanE. Let" "s try again. I 

$RElrnN <GeWrofloc {recursi ve function call } 
$ELSE 
$RE~~ 

$ENlIF 
$£ff)fXEC 

95 Exec File Prograryming Tips 
The following pOints might be useful to remember when creating exec files. 

1. Use modular exec files. Think of exec files as procedllres that are 
called by the SU3MIT command. The more modular your exec files are, 
the easier it is to use the stepping facility on them. 

2. Create standaId exec files for common functions; for example, use one 
exec file to perform all your compilations. Therefore, if changes become 
necessary, you have only one place to change. 

3. Use optional parameteIS to support features of your exec files that you 
do not always use. The parameter mechanism enables you to ignore 
optional parameters if you do not need the functions they supporL 

9-22 



Workshop Use['s Guide Exec FjJes 

9.6 

4. Wri te your exec files to prompt for information not supplied in the 
parameters. Thus you do not need to remember the meaning of a large 
number of parameters. 

Exec File Errors 
The exec file processor can recognize a number of errors during its invocation 
and execution. The format in which errors are reported is: 

where 

ERR(R in <err lac> 
<curr line> 
<err marker> 
<err msg> 

<err loc> is either 'invocation line' or 'line 1t<n> of file "<file>". 

<curr line> is the text of the current exec line where the error was 
detected. 

<err marker> is a line with a question mark indicating where the exec 
file processor was in <curr line> when the error was 
detected. 

<err msg> is one of the messages listed below. 

I/O errors are followed by an additional line with the text of the OS error 
raised during the liD operation. The errors detected are listed below. 

9.6.1 I/O Errors 
Unable to open input file "<file>". 
Unable to open telTf.lorary file "<file>". 
Unable to access file "<file>". 
Unable to rerun file "<file>". 

9.6.2 other Errors 
File does not begin with "$EXEC". 
End of Exec file before II$ENDEXEC". 
$EXEC command other than at start. 
No Exec file specified. 
Hore than 10 parameters. 
No closing ")" found. 
Line buffer overflow (>255 chars). 
Invalid Exec option: <option char>. 
Invalid Exec option on SUBHIT: <option char>. 
End of Exec file in comment. 
Invalid percent: not "%n" form. 
Garbage at end of command. 
No argument to SUBHIT. 
ELSE, ELSEIF, or ENDIF not in IF. 
ELSEIF after ELSE. 
File contains unfinished IF. 

9-23 



Wo.rkshop User's Guide 

and 

Nothing following "<tilde>". 
Out of memory. Processing aborted. 
Bad telJl) file narre generated: "<file>". 
No value returned from file called as function. 
RETURN with value in file not called as function. 

Invalid command. <token> expected. 
where <token> might be: 

String value 
""nil parameter 
Terminating string delimiter 
11::." or "<>" 

"<>" 
Boolean value 
Comma (list delimiter) 
"(" 
")" 
Valid command keyword 
Conmand 

9-24 

Exec Files 



I-0437-A 

Chapter 10 
The Transfer Program 

10.1 Introdl.lction.................................................... ............................... 10-1 
The Transfer program is a communications package that allows you to 
transfer text between your Lisa and a remote computer. 

10.2 l-Iardware COrrleCtions arld ConfIguration ......................................... 10-1 
To use the transfer program you need a modem connected to one of 
the serial ports. Use the Preferences tool from the System Manager to 
configure the Usa to use the modem. 

In3 setting Trmsfer Progrcm Characteristics ......................................... 10-1 
Use the menus to set the baud rate, parity, handshake, and full or half 
duplex so that the transfer program will be compatible wIth the remote 
computer. 

10.4 lJsirg the Transfer ProgIanl ............................................................ 10-5 
The transfer program can be used to transfer a fUe from a remote 
computer to the Lisa, or from the Lisa to the remote computer. It can 
also allow you to use the Usa as a terminal connected to the remote 
computer. 





Worksnop User's Guide The Transfer Program 

The Transfer Program 

10.1 Intrcwctim 
The transfer program is a data communications package that allows you to 
transfer text fUes from your Lisa to another computer. You can also receive 
text from the remote computer and store It in a text file, which can then be 
read by the Editor. 

To use the transfer program, you must either: 

• Get the necessary modem and attach it to the Serial A or Serial B 
connector on the back of your Usa. Then tell the Preferences tool in the 
System Manager the you are attaching to a Remote Computer. 

• Or, get the necessary modem eliminator cable and attach it to the Serial A 
or Serial B connector on your Usa Then attach the other end to a serial 
port on another computer, and tell the Preferences tool that you are 
attaching to a Remote Computer. 

When you have completed either action, set the Transfer Program 
characteristics to match the requirements of the remote computer. 
These operations are explained in Sections 10.2 and 10.3 below. Section 10.4 
explains how to use the Transfer Program to send and receive data 

102 HardWare COfYlectlons CI1d cmt1guratlm 
In order for the Lisa to communicate to a remote computer the Lisa can be 
connected to a modem or a modem el1minator cable through eIther the Serial 
A or the Serial B connector on the back of the Usa. 

In addition to connecting the hardware, you must configure the software To 
do this, use the Preferences tool from the System Manager command line. 
Access the Device Connections display, and set either Serial A or Serial B to 
Remote Computer. More information on the Preferences tool can be found in 
Section 3.3. 

You must also set the active Transfer Program to access the correct 
connector. Do this by selecting either Serial A or Serial B from the 
Connector menu. The default Is SerIal A 

10.3 setting Transfer Progra1l Characteristics 
In order to communicate with a remote computer, the Transfer Program must 
be set up so that it transmits and receives data in the same way as the host. 
These settings are made by using the Baud Rate, Parity, HandShake, Duplex, 
and Control menus. These settings are explained below. 

10-1 



WO.rl<sflop user's Guide The Transfer prognm 

Baud Rate 
The baUd rate is the speed at which data passes to and from the remote 
computer. The baUd rate must be set to agree with the remote computer and 
modem you are using. The baUd rate menu is shown in Figure 10-1. The 
default is 1200 baUd. See the note in Section 11.10, PortConfig, for the valld 
baUd rate settings for each Serial port. 

ParIty 

110 
134.5 
150 
200 
300 
600 

-.11200 
1800 
2000 
2400 
3600 
4800 
9600 
19200 

Fi~ 10-1 
The Baud Rate Meru 

Parity refers to the process of checkIng that data was not damaged in 
transmission. Parity shoUld be set to agree with the host computer. Parity 
can be even, odd, or turned off (none~ Select the option desired from the 
Parity menu. The default Is none. The parity menu is ShoWn In Figure 10-2. 

10-2 



Wo.rkshop User's Guide 

HcI1dshake 

Even 
Odd 

Fl~ 10-2 
The partty Meru 

The Transfer Program 

The handshaKe menu, shown in Figure 10-3, selects either an X01IXOff 
protocol, or no handshake. The X())IXOff protocol allows the remote computer 
and the Transfer Program to tell each other whether they are ready to 
receive more information. Using this protocol, the Lisa can stop transmission 
from the host by sending XOff, and start it again by sending X01. The host 
can start and stop transmission from the Transfer Program by sending X01 
and XOff to the Lisa. The XCtl character is a control-Q, XOff is control-So 
The default is for handshaking to be turned on. 

Figure 10-3 
TIle HcI1dshake Meru 

I:qJlex 
This menu allows you to select Full or Half duplex. Full duplex sends all 
characters typed from the Lisa keyboard to the remote computer, but does not 
display them on the Lisa screen. All characters sent from the host are 
displayed on the screen. Using full duplex, you will only see what you type if 
the remote computer sends back the characters you type. Most hosts you are 
likely to use with a Lisa do send back the characters they receive to be 
displayed. 

Half duplex displays the characters typed on the keyboard, bacause it does not 
expect the host to send them back. The default is full duplex. The duplex 
menu is shown in Figure 10-4. 

10-3 



Workshop User's Guide 

Control 

Half 

Figure 10-4 
The DLplex JVIenu 

The Transfer Program 

The control menu allows you to set two delay times, if needed. The first is a 
delay between each character sent, the second is the delay between each line. 
Both are in milliseconds. Delays are used to simulate typing speeds when 
transmitting to a remote computer that can not keep up with full speed 
transmission. The default is for no delay. The control menu is shown in 
Figure 10-5. 

-------, 
Record to '" 

Record All Text 
.../Record Filtered Text 

Ploy Bock from "' 
Character Delay "' 
Litle Delay "' 

Exit 

Figure 10-5 
The Control MenJ 

10-4 



Workshop Use.r's Gujde The T.ransfe.r Prog.ram 

10.4 USing the Trcnfer Prognm 
Start the Transfer Program by pressing T in response to the Workshop 
command line. The Transfer Program will display a window on the screen 
with menus at the top. You must configure the Transfer Program to match 
the remote computer you wish to communicate with. Information on 
configuring it can be found in Section 10.3 earlier in this chapter. 

After the Transfer Program comes up, it is ready to act as a terminal 
emulator. Evrything you type on the keyboard will be transmitted through the 
modem to the remote computer. 

The Transfer Program can also be used to transfer files back and forth 
between the Lisa and the remote computer. The functions for doing this are 
in the Control menu. The control menu is shown in Figure 10-6. 

To transfer a file from the Lisa to the remote computer, select ''Play Back 
From ... " from the control menu. It will ask you for the file name to play 
back. It expects a . TEXT file. The contents of that file will be transmitted 
to the remote computer. 

To transfer a file from the remote computer to the Lisa, select "Record to ..... 
from the control menu. It will ask you for the name of the file to record to. 
After you have set up the remote computer to transmit the file you want (by 
typing commands at the keyboard) select "Record All Text" from the control 
menu. When you tell the remote computer to transmit the file, it will be 
recorded in the file you specified. This command will record the file exactly 
as transmitted, including all control characters. If you don't want the control 
characters, select "Record Filtered Text". This option changes carriage 
returns to newlines and replaces tabs by the appropriate number of spaces. 
All other control characters are thrown away. The filtering option affects 
only the disk file, not what Is dIsplayed on the screen. The default is "Record 
Filtered Text". 

To transmit control characters from the keyboard, hold down the " key and 
press the character. Other special purpose characters can be transmitted as 
shown in Table 10-1. ~tion keys are treated as no-ops. 

10-5 



Wol1<slJop User's Guide T!Je Transfer Program 

Table 18-1 
Transmitting Special Characters from the Keyboard 

Key/JOlUd TmnsmJts 

Apple backspace del 

clear esc 

ENTER (alpha keyboard) break 

ENTER (numeric keypad) return 

arrow keys their symbols 

Apple Q XO'l 

Apple S XOff 

10-6 



'0J62-A 

Chapter 11 
The Utilities 

11.1 ByteDlff ........................................................................................ 11-1 
Byteolff compares two files, byte by byte, and shows where they are 
different. 

11.2 ctlarlgeSeg ••••••••••••••••••••••.•••••.••••• •••••.•••••.. •.••••••. ..••.•• ..•••••• . •••••.••••••. 11-2 
Ct1angeSeg allows you to Change the segment names In the models In 
an unlinked Object file. 

11.3 COdeSlze..... •••.•. ••••... ..•••......•.... ........•...•.•••.•...•..••......•.••..•.... ..•.. ...• 11-3 
COdeSize gives you a summary of the contents of an object fUe 

11.4 Diff •..••..•..•........•.••••...........•................•.....••••....•.•.................••..... 11-6 
oiff compares two text files and shows their differences. 

11.5 [).rnp(bJ ..............................•......................................................... 11-8 
OUmp(l)j displays the contents of an Object fUe. 

11.6 ~tdl ••• *" ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-9 
OUmpPatch displays and edits the contents of any fUe. 

11.7 FileDiv and FileJoin •.••••.••.•..•.••.••.•••..••.••......•.•.••.••...•••.••.•.•.•...•. 11-11 
FlleoIv divides large files into smaller ones. FUeJoin rejoins the 
resulting small files back into the original large file. 

11.8 Find ........................................................................................ 11-12 
Find searches a text fHe for a pattern, sUCh as identifIcation. 

11.9 GXRef ••.•.•.•...•.••••.••.•.••••.••.•.••.....•.......••.•.•••••.•.••.•.•...•••....•••..••••. 11-13 
GXRef provides a glObal cross reference of subroutines and modules. 

11.10 PortCorlfig ................................................................................ 11-14-
PortConfig enables you to confIgure the RS232 ports. 

11.11 ~ .................................................................................... 11-16 
SegMap produces a segment map for one or more Object files. 

11.12 SXRef ................................................................................... 11-17 
SXRef prOdUCes a cross reference of source fUes. 



11.13 UXRef .................................................................................... 11-18 
UXRef prOduces a cross reference of USES statements in programs 
and units. 



The Utilities 

11.1 ByteOiff 
Synopsis 
ByteDlff compares the contents of two files and reports which bytes (words) 
are different. 

Dialog 
Source file? 
Target file? 

Descrlption 
ByteDiff compares the source file to the target file and reports on their 
differences. This utility Is useful for finding the first differences between 
files or for finding a small number of differences. 

The program prompts for an input fUe and an output fl1e. The two fUes can 
be in any format: .text, .obj, .i, and so forth. 

The output is of the form: 

Where: 

Bytes $xxxxxx differ aaaa bbbb 

xxxxxx is the byte address in hex 
aaaa is the word (two bytes) from the source fUe 
bbbb is the word from the target file 

After 20 lines of output the user can either terminate by pressing [CLEAR] or 
continue by pressing the space bar. 

see Also 
DIff, E(qual command of the File Manager 

i'btes 
ByteDiff compares any binary files, but once it finds a difference between the 
two files, it dOes not try to resynchronize. This utility does block-at-a-time 
110. The program stops at the first end-of-file and has no termination 
message. ByteDiff is nonstandard user interface. 

11-1 



Workshop User's Guide 

11.2 ChCIlgeSeg 
Synopsis 

The utilities 

Changeseg Changes the segment name In the modules In an unlinked object 
fIle. 

Dialog 
File to Change: 
Map all Names (YIN) 
DescrlpUon 
The first prompt aSks for the unlinked object file you want to Change. 
You are next asked if you want to map all names. If you want to change 
segment names in all modules, respond Y. If you want to be prompted for the 
new segment name for each modUle, type N. A response of [RETURN] accepts 
the default name. 
Notes 
Changes are made In place (the fHe Itself Is changed). 

11-2 



WOrkshop User's Guide 

11.3 CodeSlze 
Synopsis 

TIle Utilities 

DetermInes the cOde size and code segmentaUon for a unl t, a program, or a 
lIbrary. 
Dialog 
Input flIe ['(13J] -
Resident file [. TEXT) -
OJtput fUe [-CCNSCLE]t{.TEXT] -
The resident file is the file that contains the segemnt names that are 
considered resIdent. The names In the fUe must be the same case as in the 
code fUe itself. The resident information is used in the summary reports to 
automatically sum the resIdent and swapping code. 
At any time when specifying the file names, the run-time options can be 
turned on or off. The run-time options are: 

+% turns the mapping of calls to system extemals on or off. System 
externals are procedures whose names begin with a "%". USing this 
option, the system will count the number of procedures that call a 
particular system external. This option is used to determine which 
system routines are being uSed, for example, if WRlTELNs are left 
in the code. 

+E turns the mapping of calls to l1OI7System extemals on or off. 
Nonsystem externals are procedUres in a segment other than the 
calling procedure. Using this option, the system will count the 
number of procedUres that call a particular nonsystem external. 
This option is used to determine which routines are being used, for 
example, which library routine the code is using. 

+M tells COdeSize that a particular segment is mapped onto another 
segment. This information generates the segment mapping summary 
and the segment summary. This option is used when smaller 
segments are mapped into larger segements, and the sizes of the 
smaller and resulting larger segements are needed . 

.. s turns the maIn report on and off. Sometimes the summary report is 
all that is needed. Use this option to print only the summary 
report. 

DescrlpUm 
COdeSize generates two types of reports depending on the type of input fUe(SF 
main report and summary report. The input file can be an execution file" a 
library, or an object file. For each fUe, the report format wUl be: 

11-3 



WO.!ks!1op User's Guide TIle Utilities 

Type of File 
Execution file 

IV1ain Report 
segment information 

SU'mlary Report 
segment summary 
maln summary 

Library file unit information 
segment Information 

unit summary 
segment summary 
maln summary 

(l)ject fUe unit information external summary( +E or +%) 
procedUre information uni t summary 

segment mapping summary( +M) 
segment summary 
main summary 

The contents of the report section are: 
segment information 

segment type 
segment name 
segment size 

unit information 
unit name 
unit global size 
unit type 

ProcedUre information 
procedUre name 

associated S9gnl9nt 
procedure size 
interface information 

external references 

External summary 
external procedUre name 
4t of occurrences 

LJnit summary 
unit name 
unit size 
unit type 
unit glObal size 

intrinsic, nonintrinsic, main program 
first eight charcters of the segment's name 
size of the segment in decimal or hex 

first eight characters of the unit name 
hOW much global space the unit uses 
intrinsic, shared intrinsic, regular 

first eight characters of the procedUre's 
name 
first eight characters of its Segnl9nt's name 
size of the procedUre in decimal or hex 
is the procedure In the interface of the 
unit? 
list of all the external calls the prOCedUre 
makes. This is triggered by the +E or +% 
options 

name of the procedUre 
how many different procedUres called the 
procedUre. This is triggered by the +E or 
+% options. 

first eight characters of the unit's name 
size of the unit in decimal or hex 
intrinsic or not 
how much global space the unit uses 

11-4 



WOJ1<SI1op User's Guide 

segment mappIng summary 
original segment name 
new segment name 
segment size 

segment summary 
segment type 

segment name 
segment size 

Main summary 
total code sIze 
total resIdent cOde 

total swappIng code 

total data globalS 
total maIn prog glooal8 

total glObalS 

total jump table 

Tile Utilities 

name of the original segment 
name the segment Is being mapped Into 
size of the segment being mapped. This is 
triggered by the +M option. 

swapping or resident. Resident segment is 
specified to COdeSize by the "resident flIe". 
first eight characters of the segment's name 
size of the segment in decimal or hex 

summation Of the code sIze 
summation of the code that Is consIdered 
resIdent all the time. ResIdent cOde Is 
specIfIed to CodeSIze by "resIdent fIle". 
summation of the code that Is considered 
swappIng all the time. SwappIng code Is 
specIfied to CodeSize by "resident f11e." 
summation of the global space for data 
summation of the global space In the main 
program 
sum of main program globalS plus data 
globals 
size of the jump table 

11-5 



WOrkshop user's Guide 

11.4 Dlff 
Synopsis 

Tfle UU1IUes 

Diff is a program for comparlng .TEXT flIes, In the WorkShOp. Diff Is 
designed to be used wIth Pascal or Assembler source fUes. 

DIalog 
(Type '?' to change or display options.) 

New file name [.TEXT] -
Old file name [.TEXT] -
Listing file [.TEXT] «CR> = -CONSOLE)-
Description 
Dlff first prompts you for two Input flIe names: the "new" flle, and the "old" 
f11e. Diff appends ".TEXTH to these fUe names, if It Is not present Diff then 
prompts you for a fUename for the listing fUe. Press [RETURN] to send the 
listing to the console. 

Diff does not know aboUt INCLUDE files. However, Diff does enable the 
processing of several pairs of files to be sent to the same listing file. Thus, 
when DUf is finiShed with one pair of fUes, it prompts you for another pair of 
input files. To terminate Diff, simply press [RETURN] in response to the 
prompt for a new file name. 

The· output prOdUCed by Diff consIsts of blocks of "changed" llnes. Each blOCk 
of changeS Is surrounded by a few Unes of "context" to aid in fIndlng the Unes 
In a hard-copy listing of the flIes. 

There are three kinds of change blocks: 

INSERTI(]\.J a block of Unes in the "new'· file whIch does not appear 
In the "old" file. 

DELETI(]\.J 

REPLACEMENT 

a block of lines in the "old" file whiCh does not appear in 
the '·new" fUe. 

a block of lines In the "new" fUe WhIch replaces a 
corresponding block of different llnes In the old file. 

Large blocks of Changes are printed in summary fashion: a few lines at the 
ooglming of the changes and a few lines at the end of the Changes, with an 
indication of hoW many l1nes were Skipped. 

Diff has three options: 

C change the number of context lines displayed. 

M the number of lines required to constitute a match. 

o the number of lines displayed at the beginning of a long block 
of differences. 

11-6 



Workshop User's Guide T!Je Utilities 

To set one of these numbers, type the option name and [RETURN1 followed by 
the new number to the prompt for the first input fUe name. M entry of 0 
[RETURN] 100, for example, causes Oiff to print out up to 100 lInes of a 
block of differences before using an ellipsis. The maximum number of context 
Hnes you can get is 8. You can get a display of the current option settings 
by pressing "?" in response to the first file prompt. 
OUf is not sensitive to upperllower case differences. All input is shifted to a 
uniform case before comparison is dOne. This is in conformance with the 
language processors" which ignore case differences. 
Diff Is not sensitive to blanks. All blanks are SkIpped dUrIng comparIson. 
This is a potential source of undetected changes, since some blanks are 
sIgnificant (In string constants, for Instance~ However, Dlff Is InsensItive to 
U1vIal changeS, such as Indentation adjustments, or Insertion and deletion of 
spaces around operators. 
Olff does not accept a matching context which is too small. The current 
threshold for accepting a match is 3 consecutive matches. The M option 
allows you to change this number. This has two effects: 
1. Areas of the source where almost every other Une has been changed wUI 

be reported as a sIngle Change block, rather than beIng broken Into several 
small change blocks. 

2. Areas of the source which are entirely different are not broken into 
different change blocks because of trivial similarities (SUCh as blank 11nes, 
lines with only begin or end, and so forth) 

Diff makes a second pass through the Input files, to report the Changes 
detected, and to verify that matchIng hash codes actually represent matching 
lines. MY spurious match found during verification Is reported as a 
ttJACKPOr'. The probabIl1ty of a JACKPOT is very low, since two dIfferent 
Unes must hash to the same code at a location in each file Which extendS the 
longest common SubSequence, and In a matching context which Is large enough 
to exceed the threshOld for acceptance. 
see Also 
ByteDlff 

I'kltes 
Oiff can handle fUes with up to 2000 lines. 

11-7 



Workshop User's Guide 

115 ~J 
Synopsis 

The Utilities 

~j Is a dIsassembler for 68000 cOde. thIs option provIdes a SymbOlIC 
and formatted l1stlng of the contents of Object flIes. It can disassemble 
eIther an entire flIe, or specIfic modUles wIthIn the fUe. 

Olalog 
Input file? [.OBJ) 
Output file? [-CONSOLE] 

Dump A(ll, S(ome, or P(articular modules [S]? 
OUfll) file positions [N]? 
Dump selected Object cOde [N]? 

Description 
DUmp(l)J first aSks for the Input fUe whIch ShOUld be an unlInked object flle. 
The output (listing) fUe defaults to -C(J\JS(] .. .E. You are asked Whether you 
want to dUmp All, some, or Particular modUles. 

If you respond S, DUmpCl)j asks you for confirmation before dUmping each 
modUle. A response of [CLEAR] gets you back to the top level. If you 
respond P, DumpCllj asks you for the particular modUle(s) you want dumped. 

The fUe position Is a number of the form [0,000] where the first digit is the 
blOCk number (deCimal) within the fUe and the second number is the byte 
number (hexadecimal) within the block at which the module starts. This 
Information can be used In conjunction wIth the DumpPatch program. 

If you want the selected object COde to be dumped, respond Y to the final 
prompt. The default for this prompt is N. 

see Also 
DumpPatch 

~tes 
DUmp(l)j displays only the low order 24 bits of longint fields, which are 
interpreted as addresses. This is consistent with the hardware, but causes 
some bytes of the fUe not to be displayed. 

11-8 



WoJ'kslJop User's Guide 

11.6 IJlfTlJPatch 
Synopsis 
Dump and/or patch a file 

Dialog 
OUmpPatch - Hexadecimal Dump and PatCh 

File: - ClItput: [-C(J\JSCl.E) [.TEXT] -

The Utilities 

If you want to select the default of [-C(J\JSCl.E], press [RETURN] and select 
the block number you want to start with; for example, 2. 

If you type a file name, the following prompt appears: 

Would you lIke to access (Input fUe name) interactively? (Y or N) 

If you respond V, you will be prompted for the block number you want to 
start with. If you respond N, you will be prompted for starting and ending 
block numbers. The default values are 0 for the starting block number and 
ECF for the ending block number. 

Descrlptlon 
OUmpPatch provides a textual representation of the contents of any file and 
the ability to change its contents in either the ASCII character or 
hexadecimal form. The file dump is block oriented with the hexadecimal 
representation on the left and the correspondIng ASCII representation on the 
right If a byte cannot be converted to a printable character, a dot is 
substituted. The patch facility uses the arrow keys to move around within the 
displayed block and change the value of any byte. 

When OumpPatch is Run, you will be asked for the full name of the input file. 
No extensions are appended. Pressing [RETURN] will exit DUmpPatch. If the 
input file can be found, you will be asked where you want to direct the 
output. The default for the output fUe is [-printerl If you type an output 
file name, a . TEXT extension will be added if necessary. If you type a device 
name; for example, -printer, no extension will be appended. 

If an output file name or a valid device name was entered, you will be asked 
If you would llke to access the input fUe interactively. If you answer No, you 
will get a quick dump of the input file and will be prompted for the starting 
block to dump. The default [RETURN] for the last block to be dumped is the 
last block of the input file. If you specify a block that is beyond the 
end-of-flle, you wlll be given the block number of the last block In the f11e. 
Pressing [CLEAR] enables you to exit with no dumping. 

Olee a file has been completely dumped, DumpPatch asks you for the next 
input file. Press [RETURN] to exit the program. 

11-9 



Workshop User's Guide TIle Utilities 

If you access the Input flIe interactively, you wUl be asked for the block to 
dUmp. The output will be dUmped to the screen wIth the option of dUmping it 
to the output file When you are ready to leave that block. Press the space 
bar to lOOk at the next halfblOCk. Press [CLEM] to go into patch mode. 
Press [RETURN] to quit the present blOCk. 
When you are In patch mode, the cursor will be found In the upper left comer 
at word 0 of the block. The arrow keys are used to move the cursor aroUnd 
In the current block and to previous or successive blocks. Press [T AS] to 
toggle between the hexadecimal and the ASCII portions of the display. A 
Change made on one side of the display is automatically updated on the other 
side as well. Until you get ready to move out of the current block you may 
undo any changes by pressing [CLEAA]. When leaving a block in which you 
made changes, you will be asked if you want to write the changed block back 
to the input file. This is your last chance to undO any unwanted changes! If 
you specified output to something other than the console, you wUl also be 
asked if you want to dump the current block to the output file when you try 
to leave that block. To exit patch mode press [RETURNl 

See Also 
DumpCbj 

11-10 



WOJ1<SI1op User's Guide 

11.7 FIleD1v ens Fn~1n 
Synopsis 

Tfle Utilities 

FUeDiv can be used to break a large flIe Into several smaller pieces. FlleJoln 
can then be used to rejoin these pieces into one flIe. These functions are 
most useful When saving and restorlng very large flIes, or When you want to 
break a large text fUe Into smaller ones to be vIewed In the Editor. 
Dialog 
Is this a .TEXT fUe? (Y or N) 

Infile name : [.text] 
OJtfUe name : [.text] 
You might want to keep portlons of a fUe on more than one disk. To give 
you an opportunity to do that, FileDiv contains the following additional 
prompts: 
Another disk? (Y or N) 

Have you inserted the next disk? (Y or N) 

Description 
Do not include the suffix in the file name. If, for example, you want to 
divide TEMP.TEXT, give TEMP as the input fUe, and TEMP (or whatever) as 
the output file. FileDiv will create a group of files named TEMP.l.TEXT, 
TEMP.2.TEXT, and so on, untll TEMP.TEXT Is completely divided up. 
To rejoin the pieces of the file, Run FUeJoin. The dialog is the same as for 
FUeDlv. 

11-11 



Workshop User's Guide 

11.8 Find 
Synopsis 
FIno searches a text flIe for a pattern. 

Dialog 
type "?" to display or Change options 
Enter input f11e name [. TEXT] (name of the f11e to be searChed) 
Enter output f11e name [-C()\ISCLE]I[.TEXT] (default is the console) 
Enter pattern: (pattern to be matched) 

Description 

Tfle Utilities 

FInd searches text fUes for Hnes which match a string pattern. LInes found 
are printed to the console. The following options are recognIzed: 

+C Matches are case sensitive 

+S Matches are space sensitive. 

+0 Print dots as lines which do not match are scanned. 

+L N> lines are reported, print out the relative line numbers. 

+ T Report the files that are being scanned. 

TypIng ? In response to any of the Input prompts will dIsplay a descrIption of 
the options available and read In the options. You can leave Find by typing 
[RETURN] or [CLEAR] In response to the Input or pattern prompts. 

More than one file can be Input at a time. Find supports the same wlldCard 
scheme as the Workshop Flle Manager. So submitting "-paraport-ch·fI will 
direct Find to search all of the text files beginning with "ch" on the paraport 
dIrectory. Find can also search predefined l1sts of fUes; suppose the file 
"foobar.text" contained: 

•• hooha. text 
grOk.text 
bruhahatext" 

Then submitting "<foobar.text" will direct Find to search, sequentially, 
"hoohatext", "grok.text", and then "bruhahatext". If you type "foobar.text" 
(without the leading '<') then Find will search "foobar.text", not the files listed 
therein, for the pattern. 

Nltes 
FInd truncates output llnes to 256 characters. 

11-12 



WorkstJop User's Guide 

11.9 GXRef 
Synopsis 
Global Cross Reference. 
Dialog 
Input file (.OBJ] ? 
Listing file [CONSOLE:]/[.TEXT] -
Description 

The Utilities 

GXRef lIsts all the modUles WhIch call a given procedUre, and all the modUles 
which that procedure calls. It provides a global cross reference of subroutines 
and modUles. 
GXRef accepts any number of object file as Input. When you have entered all 
the object files, press [RETURN] in response to the input fUe request. 

11-13 



WoJ1<SIIop User's Guide 

11.10 PortCooflg 
Synopsis 
PortCOllflg enables you to confIgure the RS232 ports. 
Dialog 
First you must supply information on how to configure the port. 
Which RS232 port dO you want to configure ? (A or B) 
What parity setting ? 

0) No par1ty 
1) OXI parity; no input parity checking 
2) o:td parity; input parity errors - 00 
3) Even parity; no Input parity checking 
4) Even parity; input parity errors - $80 

Enter selection (0 - 4) [0] 

What output handshake protocol ? 
0) None 
1) OTR handshake 
2) XCNlXCFF handshake 
3) Delay after CRJ-F 

Enter selection (0 - 3) [0] 

What baud rate? [9600] 

ReceIve and buffer input how ? 
0) Buffer Input until full request Is satisfied 
1) Return whatever Is received 

Enter selection (0 - 1) [1] 

What Input handshake protocol ? 
0) None 
1) OTR handshake 
2) X{]\f!XCFF handshake 

Enter selection (0 - 2) [0] 

Adjust type-ahead bUffer hOw ? 
0) FlUSh only 
1) Flush and re-size 
2) FlUsh, re-sIze, and set thresholds 

Enter selection (0 - 2) [0] 

What form of disconnect detection ? 
0) None 
1) BREAK detected means disconnect 

Enter selection (0 - 1) [0] 
Timeout on output after hOw many seconds (0 - no timeout)? [0] 

11-14 

The Utilities 



Workshop USer's Guide The Utilities 

Automatic linefeed insertion ? 
0) Disabled 
1) Enabled 

Enter selection (0 - 1) [0] 

We are now ready to configure the port. Shall we proceed? (Y or N) 

PortConfig contains a series of questions. After you answer one, you will be 
prompted for an answer to the next one. The default values for each question 
are shown in brackets. 

Descrlptloo 
With the PortConfig utility, you can configure the RS232 ports, and establish 
such things as the parity setting, handshake protocol, baud rate, disconnect 
detection, and so forth. If you are using Pascal and want addItional 
information on port configuration, see Section 2.10.12 in Q,JeI8ting System 
Reference Manl.lal for the Lisa. 

NOTE 

For Serial A and Serial B ports, the baud rate can be set to 50, 75, 
110, IS0, 200, 300, 600, 1200, 1800, 2000, or 2400. Serial A can also be 
set to 4800 or 9600. 

F or output only, Serial B can also be set to 3600, 4800, 7200, 9600, or 
19200. 

11-15 



WO.rkSllop User:r Guide 

11.11 ~ 
SynopsIs 
SegMap prodUces a segment map of one or more object files. 
Dialog 
Files to Map ? [JEJ] 
Listing File ? [-C(NSCLE] 

Description 

l11e Ulflilfes 

SegMap accepts either an Object file name or a command file name ... which 
enables you to include predefined lists of fUes. 
A command file must be preceded with a "<". SegMap adds the .TEXT suffix 
to the command file name. 
For example, If the fHe ",Apple. text" contaIns: 

"COde" 
"pascal" 
"basic" 

SUbmitting "<Apple" directs SegMap to accept, sequentially ... "COOO.OOj"" 
"pascal.obj", and "basic.obj"'. 
The map information includes the Object file name ... the name of the unit In 
the file, the names of the segments used in that unit (if any), and the new 
segment names. 

11-16 



WorkslJOp USer's GlIide 

11.12 SXRef 
Synopsis 
Pascal cross reference utlIlty 
Dialog 
Source File ? [. TEXT] 
OJtput file for Listing ? [-CrossRef] [. TEXT] 

The Utilities 

Do you want a numbered listing of the source ? (Y or N) 
Flag the declarations and assignments of each indentifier ? (Y or N) 
Declaration Character? [*] 
Assignment Character? [ .. ] 
Text fUe of words to O1llt ? [SXRef.01llt] [.TEXT] 
Descrlptloo 
SXRef gives a numbered listing of the source files and an alphabetical listing 
of identifiers found. For each identifier, all references to the Identlfler are 
listed in the order in which the references were encountered. Procedure and 
Function names along with all references to them wUl be found at the end of 
the cross reference listing. 
Identifiers follow current Lisa Pascal conventions: the first eight characters, 
without regard to case senslstivity. Case insensitivity is achieved by shifting 
identifiers to lower case, within the Cross Reference section. 
INCLUDE flIes are automatically processed. User Interfaces are not 
processed. Comments and strings are recognIZed and skIpped. There Is no 
conditional compUation processIng or eUmInation of cOde controlled by 
boolean constants. 
SXRef will accept multiple source files. This can be used to get a cross 
reference of a set of Main Programs together with the units which the 
programs use. References are given by file number and Une number within 
the flle. A directory of files read is printed at the end of the source listing, 
and before the cross reference section. 
SXRef attempts to read a fHe for a lIst of wordS to omIt from the cross 
reference. The default name Is SXRef.omittext, but other names can be 
gIven. If the fHe cannot be opened, execution proceeds normally wIthout 
omitting any identifiers. 
SXRef will optionally flag where all identifiers are declared and assigned 
values. The default flag characters are: [*] for declaration and [-] for 
assignment 
If SXRef runs short of storage, an error message Is given and the program 
aborts. 
see Also 
GXRef, UXRef 

11-17 



WoIkS!7op user's GuIde Tile UtilIties 

11.13 UXRef 
Synopsis 
Show unit dependencies of one or more Pascal source programs 
Dlalog 
Type "?" to see current options 
Source FHe ? [.TEXT] 
ClItput file for listing ? [-Cross Ref] [. TEXT) 
Text File of unit names with unexpected pathnames ? [UXRef.UMap] [.TEXT] 
Description 
UXRef gIves an alphabetlcalllstIng of programs and unIts. Each program or 
lIlit listed inclUdes two parts: 1) alphabetlcally llsts all programs and units 
that USE that program or unIt, and 2) alphabetically lists all units that ARE 
USED BY that program or unlL 
UXRef recognizes conditional compllation and will determine the truth value 
of any {$ifC ... } expression. Complle-time variables can be of bOth bOOlean 
and integer types and a {$setc ... } can Change a variable to a new type. 
warnings will be sent to the console if a syntactical or semantic error is 
found in an {$ifc ... } expression 
warnings about units that canl be found are sent to the console. Even though 
a unit cannot be found it wll1 still shOw up on the Cross Reference I1st1~ 
cptions may be turned on or off during fUe name prompt stage of UXRef. 
Four options are included: 

+C You will be asked to manually clarify a compile-time expression 
or variable that cannot be evaluated correctly. Enter 'T' for 
true and 'F' for false. If this option is off, the entire expression 
w111 be treated as false. 

+F As eaCh fUe is opened, a message will be printed on the 
-console specifying the fUe name and the unit name being read. 

+1 "InclUde FlIes" wIll be treated as unIts and will ShOw up on the 
Cross Reference llstlng. O1ly thOse "inclUde fUes" that are 
found between the beglmlng of the program/unit and the end of 
the uses section will be llsted. 

+W All warnings will be written at the beglmlng of the Cross 
Reference listing as well as on the console. 

By entering ? dUring the flIe name prompt stage a shOrt descriptlon Of each 
option wlll appear along with their current values. The default values of the 
optlons are: -C, +F, -1, and -W. 
UXRef provides a facUlty to map a unit to an unexpected pathname. For 
example, the unIt "FOO' mIght not be compiled yet (e.g., "FCXlCEJ" dOes not 
exist) and the source Is named "UNIT IFOO. TEXT". UXRef will attempt to read 
a file for a list of logically connected unIts and pathnames and if 
FOO,-UPPER-UNIT lFoo. TEXT Is an entry In that flIe then "UNIT IFOO.TEXT" 

11-18 



WOrksllOp User's Guide The Utilities 

wIll be located and searched on the UPPER dIskette when the unl t FOO Is 
referenced. The unIt name and the pathname must be separated by a comma 
wIth no extra spaces between. In addition thIs same facilIty can be used to 
shut off unnecessary warnIngs that occur When an inaccessable unit Is 
referenced. Normally warnIngs will be prInted when a unIt cannot be found, 
but if the unit name followed by a comma appears on UXRef.OlliLTEXT (or 
some other name provided by the user) the warnIngs for that unIt wlll be 
bypassed. Example entries are: 

FOO,-UPPER-UNIT IFOO.TEXT 
SYSCALL 

see Also 
GXRef, SXRef 

11-19 





Appendix A 
Error Messages 

Al Assembler Errors ............................................................................. A-I 
A2 Linker Errors .................................................................................. A-3 
A3 Messages Generated by (])jICl..ib ....................................................... A-6 
A4 qJeratlng System Errors .................................................................. A-7 





Error Messages 

A.1 Assen1>ler ErroIS 
The following errors can be produced by the Assembler. 
1 undefined label 
2 Qlerand out of range 
3 Must have procedUre name 
4 Number of parameters expected 
5 Extra garbage on Une 
6 Input line over 80 characters 
7 Not enough .IFs 
8 Illegal use of .REF label 
9 Identifier previously declared 

10 Improper format 
11 .EQU expected 
12 Must .EQU before use if not to a label 
13 Macro identifier expected 
14 Word addressed machine 
15 Backward .CRG currently not allowed 
16 Identifier expected 
17 Constant expected 
18 Invalid structure 
19 Extra special symbol 
20 Branch too far 
21 Variable not PC relative 
22 Unexpected .ENDM 
23 Not enough macro parameters 
24 qlerand not absolute 
25 Illegal use of special symbols 
26 Ill-formed expression 
27 Not enough operands 
28 Too many undefined lables in this expression 
29 Constant overflow 
30 Illegal decimal constant 
31 Illegal octal constant 
32 Illegal binary constant 
33 Invalid key word 
34 Macro stack overflow - 5 nested limit 
35 Include fUes cannot be nested 
36 Unexpected end of input 
37 This Is a bad place for an .INCLUDE fUe 
38 011y labels and comments may occupy col 1 
39 Expected local label 
40 Local label stack overflow 

A-1 



Works!1op User's GUide 

41 StrIng constant must be on one Une 
42 String constant exceeds 80 Characters 
43 Illegal use of macro parameter 
44 Illegal use of .DEF label 
45 Expected Key word 
46 String expected 
47 Nested macro definitlons Illegal 
48 '-' or '<>' expected 
49 Cannot .EQU to undeflned labels 
50 Not even a register 
51 Not a Data Register 
52 Not an Address Register 
53 RegIster expected 
54 RIght paren expected 
55 RIght paren or comma expected 
56 unrecogniZable operand 
57 OXJ location counter 
58 comma expected 
59 Ole operand must be a Data Register 
60 OnJ)n or -(An), -(An) expected 
61 No longs allowed 
62 FIrst operand must be immedIate 
63 First operand must be On or #E 
64 (An+ )~An+) expected 
65 Second operand must be an M 
66 Second operand must be a On 
67 ~t<data> Dn expected 
68 FIrst operand must be a on 
69 M,#<dlsplacement> expected 
70 An Is not allowed wIth byte 
71 ())ly alterable addressing modes allowed 
72 O'lly data alterable addr modes allowed 
73 An Is not allowed 
74 USP, SR, and CCR not allowed 
75 Cannot move from CCR 
76 DX):(Ay) or «AY)Dx expected 
77 ())ly memory alterable addr modes allowed 
78 O'lly control addressing modes allowed 
79 Must branch bacKwards to label 
80 Patch out of code bUffer boundarIes 
81 COde bUffer overflow 
82 Segment name must be In a strIng 
83 cannot .DEF macro 
84 MACRO defined already 
85 Illegal use of MACRO 
86 ERRCR While WRITING SYMBCl.. TABLE FILE 
87 Not enough ENDCs 

A-2 

Error Messages 



Wo.rksl7op User's Guide 

88 Must have an <EA> (effective address) 
89 Unimplemented Motorola directive 
90 q:lerand size must be a word 
91 No undefined or forward label in .BlOCK 
92 O1ly byte-size displacement value allowed 

A2 Linker ErmIS 

Error Messages 

LInker errors are either WarnIngs, Errors, or Fatal Errors. All LInker errors 
are lIsted below, along wIth a brief description of their probable cause. The 
LInker can also prodUce errors from (l)JICLib. These errors are llsted In 
Section A3. 

A2.1Wamings 
A warning message is an indication of a potential error. However, the link is 
allowed to continue normally and may prodUCe a valid output file. warnings 
cannot be ignored! You must make sure that the conditions indicated by the 
waming are what was intended. When in doubt, attempt to remedy the 
conditions which caused the warning message to occur. 
I\k) starting Locatic:n 

The fUe containing the main Pascal program has probably been omitted. 
~l1cate entry definltiOlS: 

All entry name has been found in a library file which is the same as a 
name In the main program. References to the name are interpreted as 
referring to the main program entry_ (NOTE: this can be an error if a Unit 
In the link was trying to reference the library entry.) 

CO'lfllct with IntrinsIc U'llt Nmle: 
A regular unit in the link has the same name as a library Intrinsic Unit. 

Also an IU seJlBlt: 
A segement in the link has the same name as as a library segment. 

A.22 Erron 
A error message Is an indication of a condition whIch prevents the production 
of a valid output file. The link Is allowed to continue, in order to detect any 
other errors. However, the output fHe wlll not be produced. 
MJltiple start locations.. 

More than one main program file has been provided as input to the LInker. 

~llcate deflnltlon of U'llt Nane 
[){)t.t)ly defined Global Data area: 

Two unIts of the same name haVe been provided as Input to the LInker. 
~l1cate entry definitions.. 

Two entrIes of the same name have been found in the Linker Input fUes. 

A-3 



Enor fvlesSages 

Uldeflned entry: 
The entry name has been referenced, bUt not defIned. EIther an Input fIle 
has been omitted or a spelling error was made in a procedUre name. 

Uldeflned COde ModUle: 
The module name has been referenced, but not defined. Either an input 
file has been omitted or a spelling error was made in a procedure name. 

Ln1ef1ned data area: 
The unIt name has been referenced, but not defined. Either an input fUe 
has been omItted or a spellIng error was made In a unit name. 

segnent name not fOUld In Intrlnsic.lib: 
A name Which occurs In an IntrInsic library fUe does not appear In the 
directory f11e. Probably indicates an "architecture" consIstency error; that 
ls, the library fUe was not linked agaInst the same directory as the current 
dIrectory. 

Bad blOCk In Library file. 
The llbrary fHe being read dOes not have valld contents. 

Relooation Block. 
COfmlc:rl Deflnltim Bloo1<. 

The IULinker does not support these Object blocks. Either the Object fUe 
Is very old, or an error has occured in the object file format. 

Bad blool<, start Of fUe: 
Bad block type 

The object fHe dOes not have val1d contents. Most llkely a dIsk error has 
caused to object fUe to be damaged. You shOUld regenerate the object 
fUe or obtain a copy from a backup dISk. 

Bad ModUle type: 
This indicates an internal Linker error, or perhaps an undetected memory 
error. 

IU Code with maln program. 
The Input contains bOth unlInked IntrInsIc unIts and an unlinked main 
program. Link the intrinsIc unIts into a library f11e. Then link the maln 
program, using the Intrinsic lIbrary as Input. 

More ttm 32K Of globalS 
The globals required by the main program and regular units exceeds the 
current limitation of 32K You will need to recompile the program or the 
units, moving some large variables to the heap. 

COde SIZe too bIg: 
The code in the segment being linked exceeds the current limitation of 
32K. YouwUl need to resegment the program either using the +M Linker 
option, or by recompiling with different $S compiler options. 

A-4 



WOd<shop user's GuIde Error Messages 

segs 1-16 are ReseIVed: 
The dIrectory IndIcates that a segment name haS been assocIated wIth one 
of the segments reserved for physIcal addresses. 

A2..3 Fatal Errors 
A fatal error indicates a condition whiCh prevents the link from continuing. 
Lln<er error -

Indicates an error in internal Linker logic, perhaps caused by an 
undetected disk or memory error. 

InconsIstent IntrlnslcJIb. 
Probably indicates an I/O error, such as bad media, which has corrupted the 
directory fUe, or the specification of a bad directory. 

CCJl't re-open lrFlle: xxxxxxx 
M 110 error has occured Which prevents the opening of file 'xxxxxxx' for 
phase 2 processing. Examine the file using the File Manager, or 
regenerate the file. Then attempt to do the link again. 

Too fT81y code SEgnet1ts. 
The program has too many small segments. The current limitation is for 
segments numbered 17 through 105. ReclUce the number of segments by 
combining small segments with the +M option in the Linker. 

Regular t.I1it 0JrIng Intrinsic LIn<. 
Intrinsic t.I1it daIlng Regular LInk. 
MairProg as part of intrinsic Library Lin<: 

The Linker has detected an unlinked regular unit or main program mixed 
with unlinked intrinsic units. 

R~ t.I1it In Intrinsic seg Flle: 
The Linker has detected an unlinked regular unit in an intrinsic library 
fUe. 

I'klt I'1aln or Intrtnslc Lin<: 
The Linker has not seen a valid input file to decide What type of link is 
desired. 

I'kl starting location, 11t1dng I'1aln Program: 
The fUe containing the Pascal maIn program has been omitted from the 
input list, or is damaged. 

Ole or more IU segs not in Intrtnsic.Llb: 
All intrinsic segment name does not appear In the directory file. Probably 
indicates an architecture consistency error; that is, the library file was not 
linked against the same directory as the current directory. 

Bad Wt Block (Old .cBJ file?) 
EIther this is a very old Object f11e, not supported by this linKer, or a disK 
error has occured. 

A-5 



Worksllop User's Guide Error Messages 

A.3 Messages Generated by (l)jl(l..ib 
The IULinker uses a number of units from the CbjICl.ib intrinsic library fUe. 
These units are also used by the Compiler, Code Generator, and object file 
utUity programs. These units detect some error conditions and issue messages. 

A.3.1Wamlngs 
I'Ib COde BlOCk fCUld in i~ .LIB file. 

For the D.S. Loader, there should be a Code Block in the directory file. 
Perhaps this is an old directory file, or a directory for another operating 
system. 

ErroIS detected: No 0Jtput .LIB file written. 
When the error count is nonzero, the directory fUe is not rewritten. 

A.3.2 Errors 
Bad Peek 
Bad Peek2: 

Indicates an internal error in the CbjlCl..ib library, perhaps caused by a disk 
or memory error. Check your hardware then retry the link. 

I/O error, CCI'l"t write last buffer: 
Either the volume does not have enOUgh space for the fUe or a hardware 
error has occurred. 

MernMal Error. 
An error has occurred in the managing of storage elements. Usually this 
error is due to insufficient initial space (Allocation error) or dUe to 
eXhaustion of available space (Memory Full~ The cause of the error is 
indicated on the next output line. 

Atterf1lt to delete vertex with arcs. 
Argl.ment to ~Itevertex Is not a1 ~jnt: 

These are errors reported by the Graphs unit If they occur whIle the 
Linker Is executing, there has been an internal logIc error, perhaps caused 
by an undetected 110 or memory error. 

A.33 Fatal Errors 
I/O error. 

An 1/0 error has occurred within FileID. Usually this is the result of a 
volume being almost full or a hardWare failure. The previous message line 
indicates whether the error occurred during reading or writing and at what 
position within the fUe the error occurred. 

No Versloncootrol BlOCk.. 
No lklit Table. 
No ~t Table. 
t-«> File Names Table: 

Indicates a bad format for the dIrectory fHe. The IndIcated block Is 
missing from the directory, but Is requIred. 

A-6 



WOrkshop l..Iser's GlIlde Error fvJessages 

Errors cl.a1ng Installation: 
Indicates errors during the Installation of an Object file llbrary. 

seUlljlnvar: VaISlze Is not divisible by variant size: 
Indicates an Internal logic error In (])jID. Either InltiaUzation was not 
caned, or (J)jIO globals have been clobbered. 

File Buffer less U&'l 2 blOCks: 
Indicates an internal logic error In FlleID. perhaps InitialIzation was not 
called. 

AtterTlrt to delete Item not 00 lIst: 
This is an error reported by the Usats unit. If it occurs while the Linker 
is executing, there haS been an internal logic error, perhaps caused by an 
undetected I/O or memory error. 

A.4 ~rating system Erron 
-6081 End of exec fUe Input 
-6004 Attempt to reset text file with typed-file type 
-6003 Attempt to reset nontext fUe with text type 
-1885 Profile not present dUring driver initialization 
-1882 Profile not present dUring driver InItialization 
-1176 Data in the object have been altered by Scavenger 
-1175 FUe or volume was scavenged 
-1174 File was left open or volume was left mounted, and system crashed 
-1173 File was last closed by the OS 
-1146 tl'lly a portion of the space requested was allocated 
-1063 Attempt to mount boot volume from another Lisa or not most recent 

boot volume 
-1060 Attempt to mount a foreIgn boot dIsK following a temporary unmount 
-1059 The bad blOCk directory of the disKette Is almost full or difficult to 

read 
-696 Printer out of paper dUring initialization 
-660 Cable disconnected dUring Profile InitialIzation 
-626 scavenger indicated data are questionable, but may be (K 
-622 Parameter memory and the disK copy were both invalid 
-621 Parameter memory was invalid but the disk copy was valid 
-620 Parameter memory was valid but the disk copy was invalid 
-413 Event Channel was scavenged 
-412 Event Channel was left open and system crashed 
-321 Data segment open when the system crashed. Data possibly invalid. 
- 320 COUld not determine size of data segment 
-150 Process was created, but a library used by program has been scavenged 

and altered 
-149 Process was created, but the specified program file has been scavenged 

and altered 
-125 Sepcified process is already terminating 
-120 Specifled process is already active 

A-7 



WorkstJop User's Guide 

-115 Specified process Is already suspended 
100 SpecifIed process doeS not exist 
101 SpecIfied process Is a system process 
110 Invalid priority specified (must be 1 .. 225) 
130 COUld not open program fHe 
131 File System error whUe trying to read program fUe 
132 InvalId program fHe (Incorrect format) 
133 Could not get a stack segment for new process 
134 Could not get a syslocal segment for new process 
135 COUld not get sysglobal space for new process 
136 Could not set up communIcation Channel for new process 
138 Error accessIng program fUe while loading 
141 Error accessIng a llbrary fHe Whlle lOadIng program 
142 cannot run protected fne on this machine 

Error Messages 

143 Program uses an IntrInsic unIt not found In the IntrInsIc LIbrary 
144 Program uses an intrinsic unit WhOse name/type does not agree with 

the Intrinsic Library 
145 Program uses a shared segment not found in the Intrinsic Library 
146 Program uses a shared segment whose name does not agree with the 

Intrinsic Library 
147 No space In syslocal for program file descriptor during process creation 
148 No space in the shared IU data segment for the program's shared IU 

glObals 
190 No space In syslocal for program file description during List_LibFiles 

operation 
191 Could not open program file 
192 Error trying to read program fUe 
193 Cannot read protected program file 
194 Invalid program file (Incorrect format) 
195 Program uses a shared segment not found in the Intrinsic Library 
196 Program uses a shared segment whOse name does not agree with the 

Intrinsic Library 
198 DIsK I/O error trying to read the intrinsIc unit dIrectory 
199 Specified llbrary fUe number does not exIst in the Intrinsic Library 
201 No such exception name declared 
202 No space left in the system data area for Declare _ Excep _Hdl or 

Slgnal_Excep 
203 Null name speCified as exception name 
302 Invalid LDSN 
303 No data segment bound to the LDSN 
304 Data segment already bound to the LDSN 
306 Data segment too large 
307 Input data segment path name is invalid 
308 Data segment already exists 
309 Insufficient disK space for data segment 
310 M invalid size has been specified 
311 Insufficient system resources 

A-8 



WOd<shop User's Guide 

312 unexpected FIle System error 
313 Data segment not found 
314 Invalid address passed to Info_Address 
315 Insufficient memory for operation 
317 DISk error whIle tryIng to swap In data segment 
401 Invalld event channel ncme passed to Make_Event _ Cttn 

Error Messages 

402 No space left In system global data area for ~n_Event_Chn 
403 No space left In system local data area for q>en_Event_Cttn 
404 Non-blOCk-structured deVIce specIfied In pathname 
405 catalog Is full In Make_Event_Chn or ~_Event_Chn 
406 No such event Channel exists In Kill Event Chn 
410 Attempt to open a local event chanOOl to Send 
411 Attempt to open event channel to receIve When event Channel has a 

receiver 
413 Unexpected FHe System error in Qlen_Event_Ct'ln 
416 cannot get enough diSk space for event Channel in ~_Event_cm 
417 unexpeCted FHe System error In Close_Event_Chn 
420 Attempt to walt on a Channel that the callIng process did not open 
421 Walt_Event_ em returns empty because sender process could not 

complete 
422 Attempt to call Walt_Event_Chn on an empty event-call Channel 
423 Cannot find corresponding event channel after being blOCked 
424 Amount of data returned whIle reading from event channel not of 

expected size 
425 Event channel empty after beIng unblOCked, Walt_Event_Chn 
426 Bad request pointer error returned in Walt_Event_Chn 
427 Walt_LIst has lllegal length specIfied 
428 Receiver unblocked becaUSe last sender closed 
429 unexpected F1le System error In WaIt_Event_Chn 
430 Attempt to send to a Channel which the call1ng process does not have 

open 
431 Amount of data transferred while writing to event channel not of 

expected size 
432 Sender unblocked because receiver closed in Send Event Chn 
433 Unexpected File System error In Send_Event_ Chn - -
440 Unexpected FHe System error in Make_Event_Chn 
441 Event Channel already exists In Make_Event_Chn 
445 Unexpected FHe System error in Klll_Event_ Chn 
450 Unexpected FHe System error in Flush_Event_Chn 
530 Size of stack expansion request exceeds limit speCified for program 
531 cannot perform explicit stack expansion dUe to lack of memory 
532 Insufficient disk space for expUcit stack expansion 
600 Attempt to perform 110 operation on non 110 request 
602 No more alarms avaHable dUring driver Initialization 
605 can to nonconfIgured devIce driver 
606 Cannot find sector on floppy diskette (disk unformatted) 
608 Illegal length or dIsk address for transfer 

A-9 



WOrksflop USer's Guide EJ11)r Messages 

609 Call to nonconfigured deVIce drIver 
610 No more room in sysglobal for 110 request 
613 unpermitted dIrect access to spare track with sparing enabled on 

floppy drive 
614 No dISk present In fJrlve 
615 Wrong call version to floppy drive 
616 unpermitted floppy drive function 
617 Checksum error on floppy diSkette 
618 Cannot format, or write protected, or error unclamplng floppy diSkette 
619 No more room In sysglobal for 110 request 
623 Illegal devIce control parameters to floppy drIve 
625 scavenger Indicated data are bad 
630 The time passed to Delay_TIme, convert_TIme, or sencCEvent_Chn has 

invalid year 
631 Illegal timeout request parameter 
632 No memory available to initiaUze clOCk 
634 Illegal timed event Id of -1 
635 Process got unblOCked prematurely dUe to process termination 
636 TImer request dId not complete succeSSfully 
638 Time passed to Delay_Time or send_Event_Chn more than 23 days from 

current time 
639 Illegal date passed to Set_Time, or illegal date from system clock in 

Get Time 
640 RS-232 driver called with wrong version number 
641 RS-232 read or write Initiated with illegal parameter 
642 unImplemented or unsupported RS-232 driver function 
646 No memory available to Initialize RS-232 
647 Unexpected RS-232 timer interrupt 
648 unpermItted RS-232 Inlt1allzat1on, or disconnect detected 
649 Illegal device control parameters to RS-232 
652 N-port drIver not InitialiZed prior to ProfIle 
653 No room in sysglobal to initialize Profile 
654 Hard error status returned from dl1ve 
655 Wrong call version to Profile 
656 unpermitted ProFUe funct10n 
657 Illegal device control parameter to Profile 
658 Premature end of fHe when reading from driver 
659 Corrupt File System header chain found in driver 
660 Cable disconnected 
662 ParIty error while sendIng command or writing data to Profile 
663 Checksum error or CRC error or parity error In data read 
666 Timeout 
670 Bad command response from drIve 
671 Illegal length specified (must - 1 on input) 
672 unimplemented console driver funct10n 
673 No memory available to initialize console 
674 Console drIver called wIth wrong versIon number 

A-10 



Wo.rkSl1qJ l.Jser's GuIde 

675 Illegal devIce control 
680 Wrong call version to serIal driver 
682 unpermItted serIal drIver function 
683 No room in sysglobal to initialize serial driver 
685 Eject not allowed thIs deVice 
686 No room in sysglobal to initialize n-port card driver 
687 unpermitted n-port card driver function 
688 Wrong call version to n-port card driver 
690 Wrong call version to parallel printer 
691 Illegal parallel printer parameters 
692 N-port card not Initlallzed prIor to parallel prInter 
693 No room in sysglobal to initialize parallel printer 
694 unimplemented parallel printer function 
695 Illegal device control parameters (parallel printer) 
696 Printer out Of paper 
698 Printer offline 
699 No response from printer 

Er.mr /'1eSs8ges 

700 Mismatch between loader version number and tperatlng System version 
number 

701 OS eXhausted its internal space during startup 
702 Cannot make system process 
703 Cannot kill pseudo-outer process 
704 Cannot create driver 
706 Cannot initialize floppy disk driver 
707 Cannot initialize the File System volume 
708 Hard disk mount table unreadable 
709 Cannot map screen data 
710 Too many slot-based devices 
724 The boot tracks do not know the right File system version 
725 Either damaged File System or damaged contents 
726 Boot devIce read failed 
727 The OS will not fit into the available memory 
728 SYSTEM.OS Is missing 
729 SYSTEM.CCNFIG Is corrupt 
730 SYSTEM.OS is corrupt 
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 Is corrupt 
732 SYSTEM.LLD is corrupt 
733 Loader range error 
734 Wrong driver Is found. For instance, storIng a diskette loader on a 

ProF lIe 
735 SYSTEM.LLD Is missIng 
736 SYSTEM.UNPACK Is missing 
737 unpack of SYSTEM.OS wIth SYSTEM.UNPACK falled 
801 ICResult <> 0 on I/O using the MonItor 
802 AsynChronous 110 request not completed succeSSfully 
803 Bad combination of mode parameters 
806 Page specIfIed Is out Of range 

A-11 



WOJ'kSl1qJ user~ Gulde 

809 InvalId arguments (page, aClClress, offset, or count) 
810 The requested page could not be read In 
816 NOt enough sysglobal space for FlIe System bUffers 
819 Bad device number 
820 No space In sysglobal for asynchronous request llst 
821 Already InlUal1zed 110 for this device 
822 Bact device number 
825 Error In parameter values (Allocate) 
826 No more room to allocate pages on deVIce 
828 Error in parameter values (Deallocate) 
829 Partial Cleallocation only (ran Into unallocated region) 
835 Inval1d s-flle number 
837 Unallocated s-flIe or 110 error 
838 Map overflow: s-flle too large 
839 Attempt to compact flIe past PECF 
841 unallocated s-flle or lID error 
843 Requested exact fit, but one could not be provided 
847 Requested transfer count Is <- 0 
848 End of flIe encountered 
849 Invalid page or offset value In parameter lIst 
852 Bad unit number 
854 No free slots In s-llst directory (too many s-flles) 
855 No available dIsk space for fUe hInts 
856 Device not mounted 
857 Empty, locked, or invalid s-flle 
861 Relative page is beyond PECF (bad parameter value) 
864 No sysglobal space for volume bItmap 
866 Wrong FS version or not a valid Usa FS volume 
867 Bad unit number 
868 Bad unit number 
869 Unit already mounted (mount)/no unit mounted 
870 No sysglobal space for OCB or MDDF 
871 Parameter not a valld s-flle ID 
872 No sysglobal space for s-flle control block 
873 SpecIfied file Is already open for prIvate access 
874 Device not mounted 
875 Invalid s-flle ID or s-flle control blOCk 
879 Attempt to postion past LECF 
881 Attempt to read empty fUe 
882 No space on volume for new data page of file 
883 Attempt to read past LECF 

Error /'1ess8geS 

884 Not first auto-allocation, bUt fUe was empty 
885 Could not update fnesize hints after a write 
886 No syslocal space for I/O request list 
887 Catalog pointer dOes not indicate a catalog (bad parameter) 
888 Entry not found In catalog 
890 Entry by that name already exists 

A-12 



WorkstJop USer's Guide 

891 Catalog Is full or Is damaged 
892 Illegal name for an entry 
894 Entry not found, or catalog Is damaged 
895 Inval1d entry name 
896 Safety swItch Is on--cannot Kill entry 
897 InvalId bootdev value 
899 Attempt to allocate a pIpe 
900 Invalid page count or FCB pointer argument 
901 Could not satisfy allocation request 
921 Pathname invalid or no SUCh device 
922 InvalId label sIze 
926 Pathname invalId or no SUCh deVice 
927 Invalid label size 
941 Pathname invalid or no SUCh device 
944 (l)Ject Is not a flIe 
945 Flle Is not In the Killed state 
946 Pathname Inval1d or no SUCh devIce 
947 Not enough space In syslOCal for FHe system refdb 
948 Entry not found In specIfied catalog 
949 Private access not allowed if flIe already open shared 

Error Messages 

950 Pipe already In use, requested access not poSSible or dwrl te not allowed 
951 File is already opened In private mode 
952 Bad refnum 
954 Bad refnum 
955 Read access not allowed to specifIed object 
956 Attempt to posItion FMARK past LECF not allowed 
957 Negative request count Is mega} 
958 Nonsequent1al access is not allowed 
959 System resources eXhaUSted 
960 Error writing to pipe whlle an unsatisfied read was pending 
961 Bad refnum 
962 No WRITE or APPEND access allowed 
963 Attempt to posltIon FMARK too far past LECF 
964 Append access not allowed in absolute mode 
965 ~nd access not allowed In relative mode 
966 Internal inconsistency of FMARK and LECF (warning) 
967 Nonsequential access is not allowed 
968 Bad refnum 
971 Pathname Invalld or no such devlce 
972 Entry not found in specified catalog 
974 Bad refnum 
977 Bad refnum 
978 Page count Is nonposltIve 
979 Not a block-structured device 
981 Bad refnum 
982 No space haS been allocated for specified file 
983 Not a blocK-structured devIce 

A-13 



WorkstJop User's Guide 

985 Bad refnum 
986 No space has been allocated for specified fUe 
987 Not a blOCk-structured device 
988 Bad refnum 
989 Caller Is not a reader of the pipe 
990 Not a blOCk-structured device 
994 Invalld refnum 
995 Not a blOCk-structured device 
999 Asynchronous read was unblocked before It was satisfied 
1021 Pathname invalid or no such entry 
1022 No such entry found 
1023 Invalid newname., check for ,_, in string 
1024 New name already exists In catalog 
1031 Pathname invalid or no such entry 
1032 InvalId transfer count 
1033 No such entry found 
1041 Pathname invalid or no sUCh entry 
1042 Invalid transfer count 
1043 No suCh entry found 
1051 No device or volume by that name 
1052 A volume Is already mounted on device 

Error Messages 

1053 Attempt to mount temporarily unmounted boot volume just unmounted 
from this LIsa 

1054 The bad blocK directory of the disKette Is invalid 
1061 No device or volume by that name 
1062 No volume is mounted on device 
1071 Not a valld or mounted volume for WOrking directory 
1091 Pathname invalid or no such entry 
1092 No such entry found 
1101 Invalid device name 
1121 Invalid deVice., not mounted, or catalog is damaged 
1128 Invalid pathname., device, or volume not mounted 
1130 File Is protected; cannot open due to protection violation 
1131 No device or volume by that name 
1132 No volume Is mounted on that device 
1133 No more open files in the file list of that device 
1134 Cannot find space In sysglObaI for open fUe Ust 
1135 cannot find the open fUe entry to mOdify 
1136 Boot volume not mounted 
1137 Boot volume already unmounted 
1138 Caller cannot have hIgher priority than system processes When call1ng 

ubd 
1141 Boot volume was not unmounted when callIng rbd 
1142 some other volume sUll mounted on the boot device when Call1ng rbd 
1143 No sysglObal space for MDDF to dO rbd 
1144 Attempt to remount volume whiCh is not the temporarily unmounted 

boot volume 

A-lll 



WoIksf/op USer's Guide 

1145 No sysglObal space for bit map to dO rOd 
1158 Track-by-track copy bUffer is too small 
1159 8nutdown requested while boot volume was unmounted 
1160 Destination device too small for track-by-track copy 
1161 Invalid fInal shUtdOwn mode 
1162 Power Is already off 
1163 Illegal command 
1164 oevice is not a diSkette device 
1165 No volume Is mounted on the devIce 
1166 A valld volume Is already mounted on the device 
1167 Not a block-structured deVIce 
1168 oevice name is invalid 

Error Messages 

1169 Could not access devIce before InItialization usIng default devIce 
parameters 

1170 Could not mount volume after InItiallzatlon 
1171 ,_, Is not allowed In a volume name 
1172 No space avallable to InltIallze a bItmap for the volume 
1176 Cannot read from a pIpe more than half of Its allocated physIcal sIze 
1177 Cannot cancel a read request for a pipe 
1178 Process waIting for pIpe data got unblocKed because last pIpe writer 

closed 1t 
1180 Cannot write to a pipe more than half of its allocated physical size 
1181 No system space left for request block for pIpe 
1182 Writer process to a pipe got unblocked before the request was satisfied 
1183 Cannot cancel a write request for a pIpe 
1184 Process waiting for pipe space got unblocked because the reader closed 

the pipe 
1186 Camot allocate space to a pipe while it has data wrapped around 
1188 Cannot compact a pIpe while It has data wrapped around 
1190 Attempt to access a page that Is not allocated to the pipe 
1191 Bad parameter 
1193 Premature end of file encountered 
1196 Something Is still open on deVice--cannot unmount 
1197 Volume is not formatted or cannot be read 
1198 Negative request count Is Illegal 
1199 Function or procedUre is not yet implemented 
1200 Illegal volume parameter 
1201 Blank fUe parameter 
1202 Error wrIting destination fHe 
1203 Invalid UCSD directory 
1204 FUe not found 
1210 Boot track program not executable 
1211 Boot track program too bIg 
1212 Error reading bOot track program 
1213 Error wrIting boot track program 
1214 Boot track program file not found 
1215 Cannot write boot traCKs on that devIce 

A-1S 



WOJ1<SI7op USer's Guide 

1216 Could not create/close Internal bUffer 
1217 Boot track program has too many code segments 
1218 Could not fInd configuration Information entry 
1219 COUld not get enough working space 
1220 Premature ECF In bOot track program 
1221 PosItion out of range 
1222 No devIce at that posItion 

Error Messages 

1225 Scavenger has detected an internal inconsistency symptomatic of a 
software bUg 

1226 Invalid device name 
1227 DevIce Is not block structured 
1228 Illegal attempt to scavenge the boot volume 
1229 Cannot read consistently from the volume 
1230 Cannot write consistently to the volume 
1231 Cannot allocate space (Heap segment) 
1232 Cannot allocate space (Map segment) 
1233 Cannot allocate space (SFDB segment) 
1237 Error rebUilding the volume root directory 
1240 lllegal attempt to scavenge a non-OS-formatted volume 
1296 Bad string argument has been passed 
1297 Entry name for the Object Is Invalid (on the volume) 
1298 S-llst entry for the Object Is invalid (on the volume) 
1807 No dIsk in floppy drIve 
1820 write-protect error on floppy drive 
1822 unable to clamp floppy drtve 
1824 Floppy drive write error 
1882 Bad response from ProFlle 
1885 Profile timeout error 
1998 Invalid parameter address 
1999 Bad refnum 
6001 Attempt to access unopened flle 
6002 Attempt to reopen a file which is not closed using an open FIB (file 

info blOCk) 
6003 qleratIon incompatible with access mode with whiCh fUe was opened 
6004 PrInter offline 
6005 FUe record type incompatible with character device (must be byte 

sIzed) 
6006 Bad integer (read) 
6010 qleratIon Incompatible with fUe type or access mode 
6081 Premature end of exec file 
6082 Invalid exec (temporary) fUe name 
6083 Attempt to set prefix with null name 
6090 Attempt to move console wIth exec or output file open 
6101 Bad real (read) 
6151 Attempt to relnltallze heap already In use 
6152 Bad argument to I\EW (negative size) 
6153 InsufficIent memory for NEW request 

A-16 



Works/lOp user's Gult1e Error I'-1essages 

6154 Attempt to RELEASE outside Of heap 
qlerating System Error Codes 

The error codes listed below are generated only when a nonrecoverable error 
occurs while in ~erating System code. 

10050 Request block. is not chained to a PCB (Unblk_Req) 
10051 Bld_Req is called with interrupts off 
10100 An error was returned from SetUp_Directory or a Data Segment routine 

(Setup _IUInfo) 
10102 Error > 0 trying to create shell (Root) 
10103 Sem_Count > 1 (Init_Sem) 
10104 Could not open event channel for shell (Root) 
10197 Automatic stack expansion fault occurred in system code (Cheek_Stack) 
10198 Need_Mem set for current process while scheduling is disabled 

(SimpleScheduler) 
10199 Attempt to block for reason other than 110 while scheduling is disabled 

(SimpleScheduler) 
10201 Hardware exception occurred while in system code 
10202 No space left from Sigl_Excep call in Hard_Excep 
10203 No space left from Sigl_Excep call in Nmi_Excep 
10205 Error from Walt_Event_Chn called in Excep_Prolog 
10207 No system data space in Excep_Setup 
10208 No space left from Sigl_ Excep call in range error 
10212 Error in Term_Def_Hdl from Enable_Excep 
10213 Error In Force_ Term_Excep, no space in En~Ex_Data 
10401 Error from Close_Event_Chn in Ec_Cleanup 
10582 Unable to get space in Freeze_Seg 
10590 Fatal memory parity error 
10593 Unable to move memory manager segment during startup 
10594 Unable to swap in a segment during startup 
10595 Unable to get space in Extend _ MMlist 
10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size) 
10597 Trying to allocate space to an allocated segment (AlIOC_Mem) 
10598 Attempting to allocate a nonfree memory region (Take_Free) 
10600 Error attempting to make timer pipe 
10601 Error from Kill_Object of an existing timer pipe 
10602 Error from second Make_Pipe to make timer pipe 
10603 Error from ~en to open timer pipe 
10604 No syslocal space for head of timer list 
10605 Error during allocate space for timer pipe, or interrupt from 

nonconfigured device 
10609 Interrupt from nonconfigured device 
10610 Error from info about timer pipe 
10611 Spurious interrupt from floppy drive #2 
10612 Spurious interrupt from floppy drive -ttl, or no syslocal space for timer 

list element 
10613 Error from Read_Data of timer pipe 

A-17 



WOIkslJop User's Guide Error Messages 

10614 Actual returned from Read_Data is not the same as requested from 
timer pipe 

10615 Error from open of the receiver's event channel 
10616 Error from Write Event to the receiver's event channel 
10617 Error from Close=Event_Chn on the receiver's pipe 
10619 No sysglobal space for timer request block 
10624 Attempt to shut down floppy disk controller while drive Is still busy 
10637 Not enough memory to InitIallze system timeout drives 
10675 Spurious timeout on console driver 
10699 Spurious timeout on parallel printer driver 
10700 Mismatch between loader version number and ~erating System version 

number 
10701 OS exhausted its internal space during startup 
10702 Cannot make system process 
10703 Cannot kill pseudo-outer process 
10704 Cannot create driver 
10706 Cannot initialize floppy disk driver 
10707 Cannot initialize the File System volume 
10708 Hard disk mount table unreadable 
10709 Cannot map screen data 
10710 Too many slot-based devices 
10724 The boot tracks do not know the rIght File System version 
10725 Either damaged File System or damaged contents 
10726 Boot device read falled 
10727 The OS wlll not fit into the available memory 
10728 SYSTEM.OS is missing 
10729 SYSTEM.CCNFIG is corrupt 
10730 SYSTEM.OS Is corrupt 
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt 
10732 SYSTEM.LLO is corrupt 
10733 Loader range error 
10734 Wrong driver Is found. For Instance, storing a diskette loader on a 

ProFile 
10735 SYSTEM.LLO Is mIssing 
10736 SYSTEM.UNPACK is mIssIng 
10737 unpaCk of SYSTEM.OS wlth SYSTEM.UNPACK failed 
11176 Found a pending write request for a pipe while in CloseJ])ject when it 

is called by the last wrIter of the pipe 
11177 Found a pending read request for a pipe While in Close_{])ject when It 

Is called by the (only possible) reader of the pipe 
11178 Found a pending read request for a pipe while in Read_Data from the 

pipe 
11180 Found a pending wrIte request for a pipe while in Write_Data to the 

pipe 
118xx Error xx from diskette RCM (See OS errors 18xx) 
11901 Call to Getspace or Relspace wIth a bad parameter, or free pool Is bad 

A-18 



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

0 

E 

F 

0 1 2 

IU. OLE SP 

SOt OCl 

STX DC2 II 

ETX OC3 # 

EOT DC4 $ 
ENO MK % 
~ SVN & 
BEl ElB • 

BS eM ( 
HT En ) 
IF sw * 
YT ESC + 
Ff FS 

I 

CR cs 

so RS 

SI us I 

Appendix B 
Workshop Character Set 

3 4 5 6 7 8 9 ABC 0 E F 

0 @ p P A e f 00 

1 A Q a q A e 0 ± 

2 B R b r C i ¢ 1 

3 C S c S E i f, ~ 
....... -.- .. - ..... . 

4 D T d t ~ i § ¥ f l~%l~{j}~{~~ ~?t~~~ 
5 E U e u 0 i • J.1 
6 F V f v U Ii U d 

7 G W 9 w a 6 B L ....................................... 

8 H X h x a 0 ® 1T » .\}\~ .~>}> :}{} 
........ :-:-: .:-............ :-: ...... . 

9 I y i y a 6 © 11' ~??? }«~~ \??~ ... . .................................... . ........................... ........... . 

J Z j Z a 0 '1M J .......................... . K [ k { I a -0 a \)%~} )//\ }?H)~ nun 
................. -................................... . 

< L \ 1 I 0 U a O 
.................................................... . 

- r((~ :/j(( )j((~ :))) 

= M ] m } c U '* , Q t){( \\\:~ .r:)n ·nr) ................................................... 

> N n e a If. 
? 0 0 DEL e ij 0 

The first 32 characters and DEL are nonprinting control codes. 

The shaded area Is reserved for future use. 

B-1 





Appendix B 
Workshop Character Set 

0 1 2 345 6 7 8 9 ABC 0 E F 

0 NUl OlE 

1 
S(Jf DCl 

2 S1X DC2 

3 Ell< DC3 
# 3 

4 EOT DC ... $ 4 
5 EMO MAK 96 5 
6 ACK SVN & 6 
7 BEL ETB t 7 

aBS CAN ( 

9 HT En ) 
A IF SUB * 

B VT ESC + 
C FF FS 

o CR OS 

E SO RS 

8 

9 

. , 
< 

= 

> 
F SI US /? 

c s c 

D T d 

E U e 
F V f 

G W g 

H X h 
I Y i 

J Z j 

K [ k 

L " 1 

M ] m 

N 
,.. 

n 

0 0 

The first 32 characters and DEL are nonprinting control codes. 

The shaded area is reserved for future use. 

B-1 





Appendix C 
Screen Control Characters 

To perform standard screen control functions in Pascal, use the SCreenCtr 
procedure of PASLIBCALL as detaIled in section 5.4. For an alternative 
method of screen control, you can use WRITE or WRITELN's with the 
correspondIng character strIng from Table C-I. 

In BASIC, you Should use PRINT with the Cl-RS function and the argument 
that corresponds to the desired action. For example: 

10 print Chr$(27); ChrS(42); Chr$(10); ChrS(10) 
20 enJ 
IU1 

should erase the screen, and position the cursor on the third line. 

Desired function 

position to home 

one position left 

one position right 

position up one line 

position down one Une 

erase to end of Une 

erase to end of screen 

erase screen 

Tcmle C-l 
SCreen Control Character strings 

Single-character string 
ASCII 
Char HEX Decimal 

1E 30 

BS 8 8 

FF C 12 

VT B 11 

LF A 10 

C-1 

2-character string 
ASCII 
Char HEX Decimal 

ESC-T 1B-54 27-84 

ESC-Y 18-59 27-89 

ESC-* lB-2A 27-42 





Appendix 0 
Common Problems 

0.1 What to 00 When You Find Yourself in the Debugger ...•...•..............• 0-1 
0.2 How to stop Your Program .•............................................................ 0-2 
0.3 What to 00 When a Diskette Won't Eject ......................................... 0-2 
0.4 What to Do When You Get a Range Error ........................................ 0-2 
0.5 What to Do When the System Does Not Respond .............•...............•. 0-2 
0.6 What to Do with a Runaway Exec FUe ......................•....•........•........ 0-3 





Common Problems 

This section presents the most common problems that programmers seem to 
have with the Workshop with suggestions for handling them. 

0.1 What to Do When You Find Yourself In the DebUgger 
You can tell you have entered the Debugger when you suddenly end up with 
cryptic looking numbers and symbols on your screen. You are actually viewing 
the alternate screen, and the numbers and symbols are a disassembly of the 
code Where you have stopped and the values of the machine registers. To 
return to the normal screen to see where you were before you entered the 
Debugger, hold down the [(PTIeN] key and press the [ENTER] key. Additional 
information on the alternate screen is available in Section 3.2. 
Often the Debugger display will include suggestions for what to do next, such 
as "Press g to continue". Figure 0-1 is an example of what appears on the 
screen when you enter the Debugger. 

Level 7 Interrupt 
LOCALPRO+001A 1D40 FFFS PC MOVE.B D0,$FFFS(A6) 
PC=00240022 SR=0000 0 US=00F7FBEC SS=00CBFEE0 DO=1 P#=00019 
D0=00100009 D1=0000000S D2=000000C0 D3=000264A7 
D4=00000001 DS=4EF900S4 D6=12CC4EF9 D7=00S40000 
A0=00FS126E A1=00CCA22A A2=00240060 A3=00CCA22A 
A4=00CCA22A AS=00F7FC44 A6=00F7FBFA A7=00F7FBEC 
) 

Figure 0-1 
DebUgger Screen Display 

You can enter the Debugger In a number of ways, most commonly by havIng 
an error In your program, pressing the NMI (nonmaskable Interrupt) key, or 
havIng a memory parity error. Tne NMI key Is the "_" key on the numeric 
keypad. 
More information on handling the DebUgger is given in Chapter 8. Section 8.2 
will help you handle accidental entry into the Debugger. Section 8.3.2 
contains information aboout Pascal run-time errors, particularly range errors. 

0-1 



WOrkshOp User's Guide Common Problems 

0.2 How to Stop Your Progrcm 
If your program has been ruming for longer than you thInk it needs to, it 
might be in an infinite loop. Before you stop the program, you shOuld: 

• Check the alternate screen. Maybe your program is waiting for input. 
• Try .-periOd to see If It responds. 

If neither of these actions works, press the NMI key, which stops your program 
in the Debugger. see Section 8.2 for information about what you can do from 
the DebUgger. 

0.3 What to Do When a Diskette won't Eject 
The eject request bUttons are only recognized after the Workshop system does 
a Pascal 110 operation. Thus when you press an eject bUtton, nothing will 
happen untll you press a key, or 110 happens for some other reason. (When 
you are in the Editor, the Preferences tool, or TransferProgram, you do not 
need to hit a key after pressing the diskette button.) 
In general, if a diskette will not eject, it means that the fUe system still has 
some file open on it Use the O1l1ne command to check the open count, 
which will tell you if any files are still open. Then use the List command 
from the File Manager to list the contents of the diskette. If some files are 
open, there is prObably a resident process that has a file open or a data 
segment open that has been mapped to the disk. Use the ManageProcess 
sUbsystem in the System Manager to kill the process. This will close the fUes 
and the disk will eject. 
Further Informatlon on the Ust command can be found In Sectlons 2.3 and 2.6. 
The ManageProcess sUbsystem Is described in Section 3.4. 

0.4 What to Do When Yru Get a RCI1Q8 Error 
A range error drops you into the Debugger. Instructions for handling range 
errors are in section 8.3.2. 

D.5 What to Do When the System Does Not Respond 
Some of the reasons your WOr1(shop might not respond are: 
1. You might be running a program with an infInite loop. 
2. You might have stopped console output by pressIng .-S. 
3. You might have the alternate screen Showing. 
4. You might have altered the NMI character. 
Press the NMI key (the "-"key on the numeric keypad) to drop into the 
Debugger. See Section 8.2 for further instructions. 
If pressing the NMI key does not work, power off your Lisa and reboot the 
system. 

0-2 



WoJ1<shop User's Guide common Problems 

0.6 What to Do with a RlniWaY Exec File 
If you think that your exec fUe has gone wild, how do you stop it? 

When the exec fUe processor has finished processing your exec file (s), it has 
created a temporary file with the stream of characters that are to perform 
the actions in the exec fUe. The Workshop then sets the run-time 
environment so that standard input comes from the temporary file, and begins 
executing the commands In the temporary file. While they are executing, the 
Workshop ignores the keyboard, although the characters you type will be 
remembered. 

You can terminate standard Workshop programs by presslng .t-period, althoUgh 
termination might not be Immediate If the program being run does not 
recognize .-period. 

f'IJTE 

Note that most WOrkShOP tools check for .t-perlod from the keybOard 
even when running under exec files. This means that you can abort 
Workshop tools In exec flIes. 

Unless user programs are written to recognize the .-period key combination 
as an abort mechanism, pressing those keys wUl not terminate the exec fUe if 
a user program is being run. (See PASLIBCALL, Section 5.4, for information 
on the function PAbortFlag, which tells whether or not those keys have been 
pressed.) If this Is the case, you can either: 

• walt for the user program to terminate so that .t-perIod can be 
recognized by something else, or 

• press the NI'1I key, which forces the system into the Debugger. 

If the user program does recognIze .-perIod, pressing It will terminate the 
program but not the exec f11e. To termInate the exec f11e, walt until the 
WorkShop prompt appears and press .t-perlod again. 

see section 8.2 for Instructions on how to stop a user program early. 

0-3 





----------A----------
active document 4.2 
AddResident conmand 3.4 
address error exception 8.2.1.1 
addressing modes 6.4.5 
All Occurrences 4.7 
alternate screen 1.1 
ei-period key 1.5.2, 5.4.1 
.-s key 1.5.3 
ASCII Assembler directive 6.5.1 
Assemble command 1.3 
Assemble instruction 1n Debugger 

8.4.5 
Assemler 6 

addressing modes 6.4.5 
assemble from exec file 9.4.1 
Assembler direct1ves 6.5 
calling Pascal 110 6.7.4 
comments in program 6.4.7 
conditional assembly directives 

6.5.3 
constants 6.4.2 
current program location 6.4.7 
error messages A.I 
expressions 6.4.5 
external reference directives 

6.5.4 
function, how to write 6.7.3 
generic instructions 6.3 
labels and local labels 6.4.4 
listing file 6.2.4 
macro directives 6.5.1 
object file 6.2.3 
opcodes 6.3 
operators 6.4.5 
options 6.2.1 
Pascal data areas 6.7.5 
program structure 6.4.1 
pseUdo-ops 6.5 
space allocation directives 

6.5.1 
asterisk 6.4.7 

)29-0367-A 

Index 

Index-1 

----------6----------
Backup conmand 2.3.1, 2.7 
BASIC 

installing 1.10 
Interpreter 1.11 

Basic command 1.3 
6aud Rate roonu 10.3 
.BLOCK Assembler directive 6.5.1 
block-structured device 2.4.1 
Boolean expression, in exec file 

9.2.4.1 
Boolean function, in exec file 

9.2.4.2 
boot device 3.3.2 
booting 1.2 
breakpoint, Debugger 8.2.1.3, 

8.4.6 
bus error 8.2.1.1 
.BVTE Assembler directive 6.5.1 
ByteDiff utility 11.2 

----------c----------
Cases Hust Agree 4.7 
Cases Need Not Agree 4.7 
chaining exec files 9.4.5 
ChangeSeg utility 11.2 
Changing a volume or file name 

2.10 
character set, Lisa B 
CLEAR key 1.5.1.1 
Clipboard 4.1, 4.6 
Cobol conmand 1.3 
CodeSize utility 11.3 
COtml8nd file, Linker 7.2 
COIII118rld line 

File Hanager 2.2, 2.3 
System Hanager 3.2 
Workshop 1.1, 1.3 

commands, Debugger 8.S 
comments 1n Assembler program 

6.4.7 
comments 1n exec f1le 9.3.1 



lIIorkshop User's Guide 

communications. See Transfer 
program. 

comparing binary files 11.1 
comparing .TEXT files 11.4 
Compiler, Pascal 5 
Compiler commands, Pascal 5.3 
CONCAT function in exec file 

9.2.4.4 
conditional aSSembly directives 

6.5.3 
configuring an RS232 port 11.10 
connectors 3.3.3 
Console COmmand 3.2 
constants, Assembler 6.4.2 
control menu 10.3 
Convenience settings 3.3.1 
Copy 4.6 
Copy cOlTllland 2.3.2, 2.7 
copying 

files 2.7 
text 4.2.4 

cross-reference, Pascal 11.12" 
11.13 

cross-reference utility 11.9 
current program location, 

Assembler 6.4.7 
CUt 4.6 

----------0----------
data communications. See Transfer 

program. 
date, file 9.2.4.2 
dead code analysis 7.1.1, 7.8 
Debug cOmmand 1.3 
Debugger 8 

Assemble instruction 8.4.5 
breakpoint 8.2.1.3, 8.4.6 
commands 8.3-8.5 
Disassemble instruction 8.4.5 
display memory 8.4.2 
display registers 8.4.4 
execution time, measuring 8.4.8 
memory dUmp to diskette 8.4.9.5 
memory management hardware, 

changing 8.4.7 
NHI key, setting 8.4.9.3 

Index-2 

Index 

printing 8.4.9.4 
problem diagnosis 0.1 
and run time stack 6.6.1 
search memory 8.4.3 
symbols and base conversion 

8.4.9.1 
trace commands 8.4.6 
UBR command 8.2.1.3 
window, moving 8.4.9.2 

.0EF Assembler directive 6.5.4 
DEFAULT exec file command 9.2.2.1 
DefaultPrinter command 3.2 
Delete command 2.3.3, 2.8 
OeleteResident command 3.4 
deleting a file 2.8 
Device connections option 3.3.3 
DEVICE_CONTROL system call 5.4.1 
Differentiated Keywords 4.9 
Diff utility 11.4 
directives, Assembler 6.S 
directory, working 1.4 
Disassemble instruction, Debugger 

8.4.5 
disassembler utility 11.S 
diskette 

mounting and unmounting 
1.5.4 

nonejecting 0.3 
volume 2.4.1 

domain 8.2.1.2 
dUmping a file 11.6 
DumpObj utility 11.S 
DumpPatch utility 11.6 
Duplex menu 10.3 
Duplicate... 4.5 

----------E----------
Edit 

Cut 4.6 
Paste 4.6 

Edit command 1.3 
Edit menu 4.2.2, 4.6 
Editor 4 

copying text 4.2.4 
Edit menu 4.2.2, 4.6 
File menu 4.2.2, 4.5 



fIIorkshop User's Guide 

menus 4.2.2 
multiple files 4.2.4 
operations 4.2.1 
Print menu 4.9 
Search menu 4.2.2, 4.7 
Type Style menu 4.2.2, 4.8 

.ELSE Assembler directive 6.5.3 
ELSE exec file command 9.2.4 
ELSEIF exec file command 9.2.4 
.ENOC Assembler directive 6.5.3 
ENOIF exec file command 9.2.4 
.ENOM Assembler directive 6.5.2 
Environments windOw. 1.2 
Equal command 2.3.9 
error messages A 

Assent>ler A. 1 
Linker A.2 
ObjIOLib A.3 
Operating System A.4 

errors, program. See program bugs. 
errors in exec file 9.6 
escape key 1.5.1.1 
exception handler 8.2.1.1 
exec file 9 

as function 9.4.8 
assembly 9.4.1 
Boolean expression 9.2.4.1 
Boolean function 9.2.4.2 
chaining 9.4.5 
command 1 ines 9.2 
comments 9.2, 9.3.1 
CONCAT string function 9.2.4.4 
conditional statements 9.2.4 
DEFAULT command 9.2.2.1 
ELSE command 9.2.4 
ELSEIF command 9.2.4 
ENDIF command 9.2.4 
errors 9.6 
EXISTS function 9.2.4.2 
function calls 9.2.5.3 
IF command 9.2.4 
nesting 9.2.5 
NEWER function 9.2.4.2 
options 9.3 
parameter list 9.3 
parameters 9.2 

Index-3 

Index 

Pascal compile 9.4.1, 9.4.3, 
9.4.4, 9.4.6 

processor 9.3 
programming tips 9.5 
READCH command 9.2.3.1 
READLN command 9.2.3.1 
recursive function 9.4.6 
REQUEST command 9.2.2.2 
RETURN command 9.2.5.2 
SET command 9.2.2.1 
statements 9.2 
stopping execution 0.6 
string express10ns 9.2.4.3 
string functions 9.2.4.4 
SUBMIT command 9.2.5.1, 9.3.1.1 
temporary file 9.1, 9.3.1.1 
UPPERCASE string function 

9.2.4.4 
WRITE command 9.2.3.2 
WRITELN command 9.2.3.2 

execution time, measuring 8.4.8 
EXISTS exec file function 9.2.4.2 
Exit Editor 4.5 
expressions, Assembler 6.4.5 
extension to file name 2.4.3 
external procedures and functions, 

6.6 
external reference directives, 

Assembler 6.5.4 
external references, reSolving 

7.1, 7.7 

----------F----------
file 

copying 2.7 
deleting 2.8 
dump utility 11.6 
exec temporary 9.1 
FileDiv utility 11.7 
listing 2.6 
patch utility 11.6 
search utility 11.8 

FileAttributes command 2.3.10 
file date 9.2.4.2 
FileDiv utility 11.7 
FlleJoin utility 11.7 



fIIorks/1op User's Guide 

File Manager 2 
File Manager commands 

Backup 2.3.1, 2.7 
ClearAttributes 2.3.10 
Copy, 2.3.2 2.7 
Delete, 2.3.3 2.8 
Equal 2.3.9 
FileAttributes 2.3.10 
Initialize, 2.3.11, 2.4.1 2.9 
List 2.3.4, 2.6 
Mount 2.3.12 
Names 2.3.13, 2.6 
Online 2.3.14 
Prefix 2.3.5 
Protect 2.3.10 
Quit 2.3.8 
Rename 2.10, 2.3.6 
Safety 2.3.10 
Scavenge 2.3.15 
Transfer 2.3.7 
Unroount 2.3.16 

File menu 4.2.2 
FILE-HGR command 1.3 
file natre 1.4, 4.5 

changing 2.10 
pro~ts 1.5.1, 1.5.1.2-1.5 •. 1.6 
standard extenSion 2.4.3 

file specifier 2.2, 2.4.2, 2.5 
FilesPrivate conmand 3.2 
Find... 4.7 
Find & Paste All 4.7 
Find Same 4.7 
Find utility 11.8 
font 4.8 
full dUplex. See Duplex menu. 
Full Footers 4.9 
function, hOIll to IlIrite in 

Assembler 6.7.3 
function as exec file 9.4.8 
function calls in exec file 

9.2.5.3 
function result 6.6.1 

------·----G----------
Generate command 1.3 

Index-4 

Index 

generic instructions, Assembler 
6.3 

GetGPrefix procedure, Pascal 5.4.1 
GetPrOevice procedure, Pascal 

5.4.1 
glObal cross-reference utility 

11.9 
global name 7.7 
GXRef utility 11.9 

----------H----------
half duplex. See Duplex menu. 
Handshake menu 10.3 
hardlllare exception 8.2.1.1 
HEAD macro 6.6.1 
heap, Pascal 5.4.2 
HEAPRESULT, Pascal heap routine 

5.4.2 
help 1.5.1.7 

----------1----------
I-code 5.1, 5.2, 5.2.1 
.If Assembler directive 6.5.3 
IF exec file camand 9.2.4 
.1 file extension 2.4.3 
.INCLUDE Assentller directive 6.5.5 
infinite loop 8.2.1.2, 0.2 
Initialize camand 2.3.11, 2.4.1, 

2.9 
insertion point 4.1, 4. :3.1 
installing 

BASIC 1.10 
CQ60L 1.12 
Pascal 1.7 

intrinSiC units 7.5 

----------K----------
keyboard repeat delay 3.3.1 
KillProcess commands 3.4 

----------L----------
labels, Assembler 6.4.4 
.LIB file extenSion 2.4.3 



(f/Orksnop User 's Guide 

Link command 1.3 
Linker 7 

error messages A.2 
listing 7.6 
options 7.3 

Lisa character set B 
.LIST Assembler directive 6.5.5 
List cOf1l1lal'ld 2.3.4, 2.6 
listing file, Assembler 6.2.4 
listing files 2.6 
Literal search 4.7 
local labels, Assembler 6.4.4 
local name 7.7 
.LONG Assembler directive 6.5.1 
loop 8.2.1.2, 0.2 

----------M----------
.MACRO Assembler directive 6.5.1 
macro directives, Assembler 6.5.1 
.MACROLIST Assembler directive 

6.5.5 
main conmand line. see WorkShOp 

COAJnands 11ne. 
main program, linking 7.4 
main screen 1.1 
MaKeBaCkground command 1.3 
ManageProcess conmand 3.2 
MARK, Pascal heap routine 5.4.2 
MEMAVAIL, Pascal heap routine 

5.4.2 
memory 

display in Debugger 8.4.2 
dumping to diskette 

8.4.9.5 
parameter memory 3.3, 3.3.5 
test 3.3.2 

memory management hardware, 
changing 8.4.7 

modem 10.2, 10.3 
Mount command 2.3.12 
mounting a diskette 1.5.4 
mouse 4.1 
mouse doUble click delay 3.3.1 
moving the display window 4.4.2 

Index-5 

----------N----------
Names command 2.3.13, 2.6 
nesting exec files 9.2.5 

Index 

NEW, Pascal heap routine 5.4.2 
NEWER exec file function 9.2.4.2 
NMI key 8.3, 8.4.9.3 
.NOLIST Assembler directive 6.5.5 
.NOMACROLIST Assembler directive 

6.5.5 
nonmaskable interrupt key (NMI) 8.3, 

8.4.9.3 
.NOPATCHLIST Assembler directive 

6.5.5 

----------0----------
.OBJ file extension 2.4.3 
object code, Pascal 5.1, 5.2.1, 7.1 
Object file, AsSembler 6.2.3, 7.1 
ObjIOLib errors A.3 
Online command 2.3.14 
opcodes, Assembler 6.3 
Open... 4.5 
Operating System error messages 

A.4 
operators, Assembler 6.4.5 
options for file name prompts 

1.5.1.7 
options in exec file 9.3 
.ORG Assembler directive 6.5.1 
OUtputRedirect command 3.2 

----------P----------
PAbortFlag function, Pascal 5.4.1 
.PAGE Assembler directive 6.5.5 
Page NUmber Only 4.9 
parameter list in exec file 9.3 
parameter memory 3.3, 3.3.5 
parameter passing 6.6.3 
Parity menu 10.3 
Pascal Compiler 5 
Pascal 

compile from exec file 9.4.1, 
9.4.3, 9.4.4, 9.4.6 

Compiler commands 5.3 



IIIorkstJop User's Guide 

cross-reference utility 11.12, 
11.13 

heap 5.4.2 
HEAPRESULT 5.4.2 
MARK 5.4.2 
MEMAVAIL 5.4.2 
NEW 5.4.2 
object code 5.1, 5.2.1 
printing a program 4.9 
RELEASE 5.4.2 

Pascal commana 1.3 
PASLIBCALL unit, Pascal 5.4.1 
Paste 4.6 
patching a file 11.6 
.PATCHLIST Assembler directive 

6.5.5 
pathname 1.5.1 
Plain keywords 4.9 
PLINITHEAP procedure, Pascal 

5.4.1, 5.4.2 
PortConfig utility 11.10 
Preferences command 3.2, 3.3 

Convenience Settings 3.3.1 
Device Connections 3.3.3 
Rates 3.3.1 
SCreen COntrast 3.3.1 
Speaker Volume 3.3.1 
Startup option 3.3.2 
Tools menu 3.3.5 
workshop option 3.3.4 

prefix 2.4.3 
Prefix command 2.3.5 
pretty listing, Assembler option 

6.2.1, 6.2.4 
Print All of Document 4.9 
printer 1.14 
printing 

from the Debugger 8.4.9.4 
Pascal programs 4.9 

Print menu 4.2.2, 4.9 
Print Selection 4.9 
problems D 
procedure arguments 6.6.1 
Process Management commands 

AddResident 3.4 
OeleteResident 3.4 
KillProcess 3.4 

Index-6 

ProcessStatus 3.4 
Quit 3.4 

processor, exec file 9.3 
ProcessStatus command 3.4 
program bugs 8.2.1 

Index 

programming tips, for exec file 
9.5 

program structure, Assembler 6.4.1 
protected master 2.3.10 
pseudo-ops 6.5 

----------Q----------
Quit command 1.3, 2.3.8, 3.2, 3.4 

----------R----------
range check error 8.2.1.1, 8.3.2 
Rates option 3.3.1 
REAOCH exec file command 9.2.3.1 
REAOLN exec file command 9.2.3.1 
recursive function 9.4.6 
.REF Assembler directive 6.5.4 
register conventions 6.6.2, 8.4.1 
registers, display in Debugger 

8.4.4 
regular units 7.5 
RELEASE, Pascal heap routine 5.4.2 
remote computer 10.1, 10.2 
Rename command 2.10, 2.3.6 
REQUEST exec file command 9.2.2.2 
RETURN exec file command 9.2.5.2 
Revert to Previous Version 4.5 
.RORG Assembler directive 6.5.1 
RS232 port, configuring 11.10 
Run command 1.3 
running 

ASSembly language program 1.8 
Pascal program 1.8 

run time stack 6.6.1 

----------S----------
Save a Copy in... 4.5 
Save & Continue 4.5 
Save & Put Away 4.5 
Scavenge command 2.3.15 



IIIorkshop User's Guide 

SCreen Contrast option 3.3.1 
screen control 

characters C 
functions 5.4.1 
stopping the display 1.5.3 

SCreenCtr procedure, Pascal 5.4.1 
scrolling 4.4.1 
search file for pattern 11.8 
search menu 4.2.2, 4.7 
.SEG Assembler directive 6.5.4 
segMap utility 11.11 
segmentation 11.3, 7.9 
segment map utility 11.11 
segment name 

Assembler 6.5.4 
changing 11.2 

Select All of Document 4.6 
selecting text 4.3 
separate Identifiers 4.7 
SET exec file command 9.2.2.1 
set Tabs 4.6 
setting WorkShop parameters 3.3.4 
Shift Left 4.6 
Shift Right 4.6 
space allocation directives, 

Assembler 6.5.1 
Speaker Volume option 3.3.1 
stack 6.6.1 
stack overflow 8.2.1.1 
Startup option 3.3.2 
statement, in exec file 9.2 
static link 6.6.1 
stationery 4.2.3 
stopping 

screen display 1.5.3 
operation 1.5.2 

string expressions, in exec file 
9.2.4.3 

SUBMIT exec file command 9.2.5.1, 
9.3.1.1 

SXRef utility 11.12 
symbolic references 7.1 
system malfunctions 8.2.2 
System Manager 3 
System Manager cotmtands 

COnsole 3.2 
convenience Settings 3.3.1 

Index-7 

DefaultPrinter 3.2 
FilesPrivate 3.2 
ManageProcess 3.2 
OutputRedirect 3.2 
Preferences 3.2, 3.3 
Quit 3.2 
Time 3.2 
Validate 3.2 

SVSTEM-MGR command 1.3 

----------T----------
TAIL macro 6.6.1 
TAS Assembler opcode 6.3 
Tear Off Stationery 4.5 
temporary exec file 9.3.1.1 
test and set instruction 6.3 
text, selecting 4.3 
.TEXT file extension 2.4.3 
Time command 3.2 

Index 

.TITLE Assembler directive 6.5.5 
Token search 4.7 
Tools menu 3.3.5 
trace Comnands in Deougger 8.4.6 
Transfer command 2.3.7 
Transfer program 10 
TransferProgram command 1.3 
Type Style menu 4.2.2, 4.8 

----------u----------
UBR coomand, Debugger 8.2.1.3 
underlining 4.9 
undo Last Change 4.6 
unmount coomand 2.3.16 
unmounting a diskette 1.5.4 
UPPERCASE function, in exec file 

9.2.4.4 
user break facility 8.2.1.3 
utilities 11 

ByteDiff 11.1 
Changeseg 11.2 
CodeSize 11.3 
comparing binary files 11.1 
comparing .TEXT files 11.4 
Diff 11.4 
disassembler 11.5 



ltIorks/7op User's Guide 

dump a file 11.6 
DU"ll0bj 11. 5 
Du"llPatCh 11.6 
FileDiv 11.7 
FileJoin 11.7 
Find 11.8 
GXRef 11.9 
patch a file 11.6 
PortConfig 11.10 
search file for pattern 11.8 
segMap 11.11 
segmentation 11 .3 
segment mapping 11.3 
SXRef 11.12 
UXRef 11.13 

UXRef utility 11.13 

----------v----------
Validate command 3.2 
volume 2.4.1 

Changing the name 2.10 
creating 2.9 

----------w----------
~ild card characters 2.5 
~indow 

Debugger 8.4.9.2 
Environments 1.2 

~indow, moving 4.4.2 
.WORD Assembler directive 6.5.1 
~orking directory 1.4, 2.4.3 
Workshop command line 1.1, 1.3 
workshop commands 

Assent>le 1.3 
Basic 1.3 
Cobol 1.3 
DebUg 1.3 
Edit 1.3 
FllE-HGR 1.3 
Generate 1.3 
link 1.3 
Hakebackground 1.3 
Pascal 1.3 
Quit 1.3 
Run 1.3 

Index-8 

SYSTEM-MGR 1.3 
TransferProgram 1.3 

Workshop option 3.3.4 

Index 

WRITE exec file command 9.2.3.2 
WRlTElN exec file command 9.2.3.2 



-r;IS MANUAL was produced using 
LisaWrite, LisaDraw-, and 

LisaList. 

AIL PRINTING was done with an 
Apple Dot Matrix Printer. 

the LisalM 

... we use it ourselves. 





Worksl1op USer's Guide MaiJ-BaCk Form 

Apple publlcaUons would Uke to learn about readers and what you thInk abOUt this 
manual in order to make better manuals in the future. Please fill out this form, or 
write all over It, and send It to us. We promIse to read It 
How are you using this manual? 
[ ] learning to use the product [] reference [] both reference and learning 
[]o~r ______________________________________________ __ 

Is It quiCk and easy to find the information you need In thIs manual? 
[ ] always [] often [] sometimes [] seldom [] never 
commenu _______________________________________________ __ 
What makes this manual easy to use? ___________________________ __ 

What makes this manual hard to use? ______________________ __ 

What do you like most abOUt the manual? ______________ _ 

What do you like least aboUt the manual? ________________ _ 

Please comment on, for example, accuracy, level of detaU, number and usefulness of 
examples, length or brevity of explanation, style, use of graphiCS, usefulness of the 
index, organization, suitability to your particular needs, readablllty. 

What languages dO you use on your Lisa? (cheCk each) 
[ ] Pascal [] BASIC [] COOCl. [] other _____________ _ 

How long have you been programming? 
[ ] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer 
What Is your jOb tiUe? ______________________ _ 

Have you completed: 

[ ] high school [] some college [] BAlBS [] MNMS [] more 
What magazInes dO you read? ___________________ _ 

Other comments (please attach more Sheets If necessary) _________ _ 

029-0J69-A 



......................................................................................................................................................... Fll.D ....................................................................................................................................... .. 

......................................................................................................................................................... FaD· .. ······· .. ············· .. ·· .. ····· .. ·········· .. ······· ................................................... , ............................ . 

'-
.~ppIc! computczr 

POS Publications Department 

20525 Mariani Avenue 

cupertino ... Cal1fornla 95014 

TAPE lR S TAPL E 

PUll. 
.... TI1-
HEI( 


