|eosed

Language
Part1o0f3

ABLO111

Pascal

Pascal
Reference Manual
for the Lisa™

029-0391-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Reorder Apple Product #A6D0101 (Complete Pascal package)
#A6L0111 (Manuals only)

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product. ‘You should check periodicaily
with your authorized Lisa dealer.

Limitation on warranties and Liability
All implied warranties concemning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited

in duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. As a result, this
software and manual are sold "as is,” and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

1i1

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a muitiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

Chapter 1

Tokens and Constants
1.1 Character Set and Special SYMBOLSccciiiiiiiiriiiin et 1-1
DI (s - 114 1T OO w12
B TN)3 =2 8 1 O 1-2
Tl NUIMDEIS .ot ee et et ceee e e e se e s omaenm et s e e mem e s ae e cmaneenans 1-2
15 LBDBIS ittt sttt e e s s s e e s s s e e 1-4
16 Quoted String Constantsccceviiiiiiiininirnt et e 1-4
1.7 Constant DeCIarationscc.coviicaiiinreierestteesirt et e cete e s e nees 1-5
1.8 Comments and Compiler COmMMAanGs.......ccccviiiiairirimmmsemescceeeeneseennansaseas 1-5

Chapter 2

Blocks, Locality, and Scope
2.1 Definition of @BIOCKceeveiieivimieiiietintenierennnnnssesssenne s sassssssssas 2-1
2.2 RUIESOf SCOPE ..oeiniiiimtiiireinseetenttrteeetsstn st s s e ssasss e nses s an s snnarassmaes 2-3

Chapter 3

Data Types
3.1 Simple-Types(and Ordinal-TYPES) -..cccociiiieieriaacarrrrcreterecece s e eeneneeenes 3-2
3.2 SLIUCTUTEO-TYPES iiviiiiiiiiiciiee e se i s s s s e s s s s s e cmcesm s s naaas 3-7
3.3 POINLEI=TYPES .o teer e ceoe et eerr e e e e e e re e e e e e en 3-13
34 Identical and Compatible TYPES... ..o ccre e rree e er e e enccaene 3-13
3.5 The Type-Declaration—Part..........ccoccoiimiimmiic e 3-16

Chapter 4

Variables
4.1 Variable-Declarationsc.ceveeveeiiiiiniiinitniciennee et s e 4-1
4.2 Variable-REfEYBNCESccivuviiiimiicececr e nesresctanmr s rere v memees e nenssnannse 4-1
B3 QUBLIFIEYS .cooceiiiiiiit ittt acnecn e s s s s e s s e s e e s re e e nenae 4-2

Chapter 5

Expressions
5.1 OPEIBLOTS..ccciiiiiutiiiicreietiaenie st tsrettensasserassasstesnassssassnsssnnnssssennanen 5-4
5.2 FUNCHON-CAllS ..ottt e s se s nenenees 5-10
5.3 Set-CONSLIUCLOISoviereiieeeneiietecerreensesansren e et et aane s e nannasasasassnanes 5-11

029-0292-A

Pascal Refererice Manual Contents

Chapter 6

Statemnents
6.1 SIMpPle StAtBMBNLS «oo ittt trccs ettt s se et senn e se s e e e e s e e s ananens 6-1
6.2 StrUCLUIEO-StateMENLS .. c.ce e ccccearreneeaceceeenrarnesantasseasasesanssesenssasasseane 6-4

Chapter 7

Procedures and Functions
7.1 Procedure~Declarationscccceiiccecrrreeiceetorcrncneeeasstessencescnnanescanssasannns 7-1
7.2 FUunCtion-Declarationsc.c.eeeeieeeieeeieietacccerereereerensererensasensesnsasasennes 7-4
7.3 PAIBIMBLETS ..o ceeeeeceereietereenseraeeeennsessnrassssaanssasssanssesnssenssesnsassnssensnns 7-5

Chapter 8

Programs
BL SYNLAX ittt ittt et ee ettt et s et ta s s s e e e s e s e e e s 8-1
8.2 Program-Parameters. . ..coiiirieeeaareaareemeaeaneeeanaeneee aaaananansaareenenanne 8-1
B3 SegmMEntationottt et ae e e e e n e 8-1

9

Units
9.1 ReQUIAT-UNILS .o ciiiiiiiiiccnetite e e see s et ttesannseanasnssnsseetannansessssssmnannns 9-1
IV 1418 910 n3 (ot) S 9-4
93 Unitsthat Use Bther UNits ... crreiieeeieneceersasnsesresecncannannnannnn 9-4

Chapter 10

Input/Output
10.1 INtroguetiontOI/0. ettt ce e s e ean e ansansannesn e nnennn 10-1
10.2 Record-0riented 170 ... e erertcncetecniaerereeenrensarsnesesensussansasnasann 10-8
10.3 Text—Oriented I/0. ... et cceresecscarsensnneanssensessnnnnsesnnnns 10-9
104 UNtyped FIIB I/D.. .o e receeetcc e s enemam e ee e mnen s eeeeeaeseas 10-18

Chapter 11

Standard Procedures and Functions
111 EXit an0 HAIt PIOCEOUIES ... ouieereeneeeeenennereenrseseeseesnsssssnsassssesssnsansansnns 11-1
11.2 DynamicC AlIOCELION PIOCEOUTES «..uvuieeereeeeierserenstennssssssenseessssensssensaces 11-1
113 Tran s Y FUNC I ONS oo ceeeeeieeeccaireenecreeaecenaeaarerssassesansmnsasenssssnsnnnsnsnses 11-4
11.4 ArithmetiCFUNCLIONSoe et eeccrecenecaneeceeneemeseennneneesnsennannns 11-5
115 Ordinal FUNCHIONS ..ccon i cecenceenetireneterenerencencannaransnesensanssnasanesnnns 11-8
11.6 String Procedures ant FUNCHIONS v riceenicence i ceenar s onseaanene 11-9
11.7 Byte-Oriented Procedures and FUnCtions.......cocoveievemieinenninnnnennnnncnen. 11-11
11.8 Packed Array of Char Procedures and FUunctions..........ccceeceeeernecccnnecens 11-12

vi

Pascal Rerferernce Maral Contents

Chapter 12

The Compller
12.1 Compller Commands ...cc.cevrveeriine. cvererensernaeens errrreeerae s s sseearenas 12-1
12.2 Conditional Compllation.....cieieemsisinininiereneree s 12-3
12.3 Optimization of If-StateMENLS ...cuvcericerrrrreterrennesiesiannsasasesenenes ceeneee 12-5
12.4 Optimization of While-Statements and Repeat-Statementscovveeeee. 12-7
12.5 Efficlency of Case-Statements ... veeeesermeriniiineninn Ceressnssinrerensanes 12-7

Appendixes
A Comparison to Apple 11 and Apple ITTPastalcorevieeerssesssserinisernnerensseenns A-1
B Known Anomalies inthe Compller.. ... B-1
C SyntaX of the LanQUAQE ..vuuieeieeemsssrecrimrussmantimiestsasmssmmsnmessssssssmvanssssssans Cc-1
D Floating-Polnt Arithmetic. ...cciiiinmncinc s s enene D-1
E QUICKDIBW . .oiiiiiuterrniiisinsisssnsssetsmenisissssessssssnssnmnnsseisssassnsansassanmsensernans
F Hardware Interface
G LISBChAraCter SBl.......cumrericrcresnrenmssessssssssssssersersrnssannes
H EYTOY MESSA0ES 1iieiernnssiensinmstnsnssseeesanssssssnnsesnsssssaanencesas
I Pascal workshop Flles

Index

Tables
S-1 Precedence of Operationsccccicccieseerierinessseressesssnesasnsssesensnesssensens 5-1
5-2 Binary Arithmetic Operations.....c.ceeciincinssenens Cresernterssse s eesesasenns 5-4
S-3 Unary Arithmetic Operations(SIgns) ... iiciienssnniinisssesissscereeereeensene 5-4
S-4 Boolean Operations e cescrnsenceisresnnencsnes Cesreennssresstenassrasernssranses w56
5-5 St OPEIAtIONS ciireereeremrerrirentserneareerarserseensserrresrasrsnsssersnssseasessrsnnerenns 5-6
5-6 Relational OpPeIatioNS ... cccceieiecrreeririrenerirteessenersesernasessrasieseannnee 5-7
5-7 PointerOperation........ceneee rereiarrsesiirensssttensetsiiasasraatrettearsstenasaanss 5-8
10-1 Combinations of File Variable Types withExternal File
Species and Categoriescoiivirirviiriiarmmiisestnmnmssisesmessirssssnrasensssssne 10-3

D-1 Results of Addition and Subtraction on INfINItieseeeeecrrnecerrnnicenennnes D-2
D-2 Results of Multiplication and Divislonon Infinities ...ceeecerciiienncininnnnen. D-3

vii

Syntax Diagrams

BCLUBI-DAYBMELEY ..ccvreeiieiiirceiereieriirinirirtrecineseiisssssnsaststseassssrsssasssssssssnnes
actual-parameter-list
E510 651 R 7 o N
assignment-statement

COMPOUNT-SLALBMEBNL ..ceeet i itcnicnesranne ot nmarssecnnasssnnrenssssamarnnnsns
conditional-Statementoeememeeeierrrercmeceirressccresa e nm e e e anancnees

Lo u g 7 g U
constant-declarationc...ceeeeeeeeemeiriieesccecet e nenrer et eeaee
constant-declaration-part

(o 10 €0) B c 4 E<) L=

OIGIt~SBOUBNCE ... rerecsrcressesecaesenee e e s snan e e n s asssnsssasssnsnsns
ENUMETALEO-LYPE ..oeeivreeciieenieirireeinirescsssesaeissrae e srsessasesssssasssasessnsasses
b0 0) €203 L0 RO
L2101) S PO SOt
L (52 Lot Lo = 1 O

FIEl—0SIONALON ..c.coeeeeeeiieeereiieiemeeeeecrinesstaermenucicnecsnneseesernacasessensesstomanseneones
L 153 (o p 15 PR RSPUPO OO SRR
FIle-DUFFEY—SYMDOL ..cconeeiieieeemeeecieceeiccieeiteiireiciiti s csnsesceseneseesssnesneessaenans
FILB=EYP ot eeceeeeerctee ettt et et e et st e r e e tasn s et st e aee s anas s anne

final-value.

fOrmal-paramMELer-1iSt........criiriiiicrene e ce ittt ettt csesseesan e
FUNCHIOND00Y .coeeeeeeeriremieteiccsnsctcsssss s cccnsesscnsensaecsenssaessosnensssssnosose
FUNCUION=CALL ... ettt es s ne e eeesesaa s

viii

Pascal Reference Mol Contents

G HI
QOLO-SEALBMENT ...t et e 6-3
NEX-0igit-SEQUBNCE ... e 1-2
1o = gL = P UPPRR
identifier-list
if-statement
implementation-part
INOBX ..ottt ettt sttt s s s eesess et s e s s e e st s s s nen e an s e
INOBXEYPE .. eeeeeeeere e tr ettt e e ce s s e e s et e e e e se e se s e e e s s mananes
initial-value
interface-part
TBIEL ..ottt ettt n e teeee e s as s s sassesnees
label-declaration-part
MEMDET=GIOUD «.ccevvrernenrecsnssrssonernesmesssinirensenssessssssssrmsnsasssssssssessrsasssasaans 5-11
OFOINAI-LYPR .eecrreerereenireieaeitiiniciretvstesisiiesrrssecasassessssasssusessrnssasssssasssansnns 3-2
OLNEIWISE-CIAUSEoierrerveiisiiernnerriveeiisisirrrrnsasaeiasssmssrassassassnasssasssssnssanssns 6-6
p
parameter—deClarationceeeeevimmiciimmenircirerese et e 7-6
POINLET-0DJECL=SYMIOL....ceeeeeeereiencceccerietreteenieeersecrastnacreernesaaesasnsnnnnannnss 4-4
POINEEI~LYPR .eiiciciriceerine s cerieernreesssesnenneeoretsacesasecatssssasmanssssnssossarsasssnes 3-13
procedure-and-function-geclaration=part...........ccoceveeeeiremmoreccrcetmmrsnnecnnns 2-2
) Cuwicio B (e Lo 7-1
Procedure-aeclaralionccoccciurireemeeiiiseneeemaceeeetitnie e ereerecncenereneeeeeannns 7-1
PrOCEOUIE-NEAOING ..cocccerirreieaieiiiiieecrteermrecaieaeteneeeansisnnnsseserssserssneennsesnessnss 7-1
ProceauIe-StatemMEBNt........cooouriiiieiiitcrtnt et cire sttt erinas bt e e rsaeeanas 6-2
() £ 3 S 8-1
Program-NeaOINGcocereeeeeisumirmiireecceimrsieierancasesesevemsamamscnesrsoesseneansaneanns 8-1
PrOGIAM-PAIAMELELS ...cieiereirnerereriiecrcrrenmminmenseessomsesssessnsessossssssosnssssmassnreans 8-1
QR
100§ [T 4-2
quoted-charaCter-constant ... e 1-4
QUOLEO-SEIING-CONSANT ..o e rcrereeaaieenrteetinnesereesesetrensassanansscnnssscanasseannnss 1-4
=] 8 o < TN 3-2
LU= 1) (0 4 3-9
regular-unit ... eteererusaeeseeeesatsnsteiteeteetten ar it e e tartaraate nansn b aaeerantrarees 9-1
1EPEAL-STALEMBNL ... ittt s e ee et e sttt b e e e e e e s e saena e e e e canenes 6-7
TEPEtItiVE-StAtEMEBNT .. oottt et nr e s e e e e anane 6-6
=0T 7-4

ix

Pascal Reference Manual Contents

f1a72) (T = T) N 1-3
RLC1al0en, 0138 (052 {0 GO 5-11
set-type tteesseesseeieseiessestnssasieanseanatentasetsntenatetsantetanasartssareeenrans 3-11
04 £ TSRO PUPRR 1-3
fes 10 g =0 T 1-3
SIMPIE-EXPYESSION -...oeiiiiiiiiiciicicriritinmnnctstteremeruen et eremaannessransssnsssesssnanannsss 5-3
SIMPLE-STAEMENL . ..ottt caieereneecerennsaeeceneesaresssasarsanmnnsssennsasasanasns 6-1
£ (1 0o Y o RSP PRON 3-2
BIZB-At IIBULE . ..ottt ae e e e e es 3-S5
STALEIMEBNT ..ttt e st a e e e st et e e e e s e s e 6-1
SEALEMENE-PAIT ...ttt ettt e e e st et e e e e s e 2-2
LR g108 Rl 172 €= 0 U= PR 1-4
LR 810 o e Y OO ESRURIONt 3-5
SEIUCTUTEd-StAtBMENL ...t e cer e e r e ccceenee s e et e ecn e se e e oma s e e e s e anceas 6-4
STTUCELITEO-LYPE . c.cciee e imci ettt ceet e et e et st e e s e n semn e s s amea s aansasssan 3-7
SUDTANGELYPE .. ceeiieniiiimciecr it aeaeemmerreeraruenase e aamnearaa s oaeesnramneseneaamneaannse 3-7
T
L2 v T (o N 3-10
£ 3 4 U 5-2
DY ittt ettt ettt st n et e s e e n s et e et e e e e m e s aa e e a e anen 3-1
LYPE-OECIATALION.con i reeetiiemceeeeireanoneerereeeeean e aeraranaee s aeannessnaeerennasnnns 3-1
type-declaration-part ...t s 2-2
U
UNIE-NBAOING .. eeoeeeiaiiireit e et et e s e e e e e ocanea e e e e cenene searenmean s s e e e nannenn 9-1
UNBIgNEd-CONSEANT ..ottt c et ettt e e e eecm e ae s e mena e e e e aemannas 5-2
Vgt (o 1o g 1110 - GRS ORISR SUORRUOPUREIRt 1-3
UNSIONEO-TINMDET ...oeniiiriieriacanserseaeeenenseensersraceeenmenssesesnessasasasnsenssnssssasascssas 1-3
UNSIGNEO-TEAL ..ceenerrniiiiinitiittrees ettt este st oo sses et s e m s e seansnssssetesanaanssns 1-3
USES—CLAUSEieniiiieiicciinnec i ste et istcman s aesaesssscaen st assarsanesnensssaansssseseasnsse 8-1
V, W
VariabDIE—dECIATALION ...ccoviiiiaiiiiiiriiicerene it s s s s e an s s e e s s e aansenns 4-1
variable-declaration-partcccvciiiiiiniiiiitnnisiii et saaaaane 2-2
(722 = e (=2 g1 T OO 4-1
V=1 ST 13 (T (oo OSSOSO 4-1
1751 £ E- o | P OO 3-10
(V221 T g o < & AR 3-10
WHILE-SEALEMENT ... ittt e st oo e e e e s e re s e 6-7
WHNSLAtEMENL <ottt ettt e e e st e e e s e e e r e e e sen e 6-10

Preface

This manual s Intended for Pascal programmers. It describes an implemen-
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.

The language is reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.

In additlon to providing nearly all the features of standard Pascal, as described
in the Pascal User Marwal and Report (Jensen and wirth), this Pascal provides
a varlety of extensions. These are summarized in Appendix A. They include
32-bit integers, an otherwise clause in case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

Operating Environment
The compliler will operate in any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents
Pascal User Manual and Report Jensen and Wirth, Springer-Verlag 1975.

Workshop User’s Gulae for the Lisg Apple Computer, Inc. 1983,
Other Lisa documentation.

Definitions
For the purposes of this manual the following definitions are used:

* frror: Either a run—-time error or a compiler error.

» Seqpe: The body of text for which the declaration of an identifier or
label is valig.

* Lnoerfined: The value of a variable or function when the varlable does not
necessarlly have a meaningful value of its type assigned to it.

s nspecifled: A value or action or effect that, although possibly
well-defined, 1s not specifled and may not be the same In all cases or for
all versions or configurations of the system. Any programming construct
that leads to an unspecified result or effect is not supported.

Notation and Syntax Diagrams
All numbers in this manual are in decimal notation, except where hexadecimal
notation is specifically indicated.

Throughout this manual, bold-face type Is used to distinguish Pascal text from
English text. For example, sqr(n div 16} represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

X111
029-0393-A

Pascal Rererence Mamal Preface

bold-face; for example, "The declaration of a Pascal procedure begins with
the word procedure.”

lallcs are used when technical terms are introduced.

Pascal syntax Is specified by diagrams. For example, the following diagram
glves the syntax for an identifier:

igentifier @

>

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. Thus the diagram embodies the following
rules:

* An ldentifler must begin with a Jetter since the first arrow goes directly to
a box containing the name “letter.”

* An ldentifier might consist of nothing but a single letter, since there is a
path from this box to the arrow-head on the right, without going through
any more boxes.

* The Initlal letter may be followed by another letter, a alg/{ or an
waerscore, since there are branches of the path that lead to these boxes.

* The Initlal letter may be followed by any number of letters, digits, or
underscores, since there is a loop in the path.

A word contained In a rectangular box may be a name for an atomic element
like "letter" or “digit,” or it may be a name for some other syntactic
construction that is specified by another diagram. The name in a rectangular
box is to be replaced by an actual instance of the atom or construction that it
represents, e.g. "3" for "digit” or “counter” for "variable-reference”.

Pascal symbols such as reserved words, operators, and punctuation, are
bold-face and are enclosed in circles or ovals, as in the following diagram for
the construction of a compound-statement:

compouna-statement
()

xiv

Pascal Reference Maial Preface

Text in a circle or oval represents itself, and is to be written as shown (except
that capitalization of letters is not significant). In the dlagram above, the
semicolon and the words begin and end are symbols. The word "statement”
refers to a construction that has its own syntax diagram.

A compound-statement consists of the reservea word begin, followed by any
number of statements separated by semicolons, followed by the reserved word
end. (As will be seen In Chapter 6, a statement may be null; thus begin end is
a valld compound-statement.)

XV

Manual
Chapter Release Note

workshop The character set in the Appendix should show the full

Appendix B Intemational Lisa Character Set, because this Is now supported
by the workshop screen and for printing to a dot-matrix printer.
(A new page B-1 Is attached; take a moment now to make the
supstitution.) Printing ASCII characters to a daisy wheel printer
is supported for the following print wheels:

* Gothic, 15 pitch
* Prestige Elite, 12 pitch
¢ Courier, 10 pitch
* Boldface/Executive, PS.

Printing ASCII characters to a daisy wheel printer is not
supported for the three print wheels with Modern type styles.

September 1983

Chapter Release Note

Pascal If a variable T Is defined as T:PACKED ARRAY][0..100] OF

Chapter 5 0..255, the statement T[1] := 255 Is not accepted by the compiler.
Use TEMP = 255; T[1] := TEMP; as a workaround. The same is
true for all subranges from 0..128 to 0..255 and for all constant
values from 128 to 255.

Pascal If a USES statement Including the $U compiler option is

Chapter 9 followed on the same line by a comment, the tralling comma of
the statement must be separated from the opening brace of the
statement by a blank; otherwise, the code will be incorrectly
parsed. Example:

USES {$U foo.obj} unitl fcomment} BAD
{$U bar.obj unitz;

USES {$U foo.obj} unitl, {comment} OK
{#) bar.obj} unit2;

Pascal The GXRef utility accepts a maximum of 4095 procedure names.
Chapter 11
Pascal You cannot exit the ChangeSeg utility by typing <CR> in

Chapter 11 response to the first prompt line, 'File to Change'. You must
type <ESC><CR>.

September 1983

029-0050-A

11

13

ELE

17

Chapter 1
Tokens and Constants

Character Set and Special Symbols

Identifiers
Directives

Numbers

Labels

Quoted String Constants

1.6.1 Quoted CharaCter CoNStaNtS. ... iceeecireeeeiieeeinraeraceanaessnnsesennsennnes
Constant Declarations

Cormments and Compiler Commands

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens
of Pascal are classified into special symbols ldentifiers numbers labels and
quotead string constants

The text of a Pascal program consists of tokens and separators:a separator is
either a t/ank or a comment Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except in gquoted string
constants.

1.1 Character Set and Special Symbols
The character set used by Pascal on the Lisa is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:
* The Jetters are those of the English alphabet, A through Z and a through z.

* The ofgits are the Arabic numerals 0 through 9; the /sex-digits are the
Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

* The blanks are the space character (ASCII 32), the horizontal tab character
{ASCII 9), and the CR character (ASCII 13).

Special symbols and reserveq words are tokens having one or more fixed
meanings. The following single characters are special symbols:

+ =% f = <> [1., () :; " a {}s
The following character pairs are special symbols:

<> <= >= = (* *)

The following are the reserved woros:
and end label program until
array file methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation* if of subclass*
div implementation or then
downto in otherwise to
do interface packed type
else intrinsic* procedure unit N

1-1

Pascal Reference Marnsl Tokens & Constants

The reserved words marked with asterisks are reserved for future use.
Corresponaing upper and lower case letters are equivalent in reserved words.
Only the first 8 characters of a reserved word are significant.

12 Identifiers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

foentiter @

underscore

NOTE

The first 8 characters of an identifier must not mateh the first 8 char-
acters of a reserved word.

Examples or loentirlers:
X Rome ged SUM get_byte
1.3 Directives

Directives are worgs that have speclal meanings in particular contexts. They
are not reserved and can be used as identifiers in other contexts. For
example, the word forward Is Interpreted as a directlve if it ocours
immediately after a procedure-heading or function-heading, but in any other
position it s interpreted as an identifier.

1.4 Numbers
The usual decimal notation is used for numbers that are constants of the data
types integer, longint, and real (see Section 3.1.1). Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for

longint).
olqit-sequence

hex-gigit-seqence hex-digit

1-2

Pascal Reference Manual Tokens & Constarnts

={ digit-sequence [L >
Lb@—b{ hex-digit-sequence
~—»()—»

unsigriea-integer

wnsignea-real

digit-sequence ‘ digit-sequence | \ »
>{ soale—faotor]—/
LSy (F) »| digit-sequence |—
R@J “{sign -

Lrsigned uumber b{ unsigned-integer
unsigned-real
signea-rmber

’{ unsigned-number l————b

The letter £ or e preceding the scale in an unsigned-real means “times ten to
the power of".

Examples of mumoers:

1 +100 -0.1 SE-3 87 .35e+8 $A0SD
Note that 5E-3 means leﬂ'3, and 87.35e+8 means 87.35x108.

1-3

Pascal Rererernce Manua! Tokens & Constants

1.5 Labels
A label is a digit-sequence in the range from 0 through 9999.

16 Quoted String Constants
A guoted-string-constant is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

quoted-stiing-constant

@ (-[string-character }4-)

string-character wlany char except O orCR N

Examples or quoted-string-constants:
‘Pascal’ "THIS IS A STRING' ‘Don’ 't worry!'

DAI 0;. I E N NI (X}

All string values have a Jengi/ attribute (see Section 3.1.1.6). In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant

whose length is exactly 1.

Quotedcnargcier-constant b@—bl string-character H@—b

A quoted-character-constant is compatible with any char-type or string-type;
that is, it can be used either as a character value or as a string value.

Pascal Rerference Marnual Tokens & Constants

1.7 Constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

canstant-declaration (=) C>)

={ constant-identifier

signed-number

canstant

guoted-string
9

uoted-char |

NOTE

A constant-ldentifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compller Commands
The constructs:

{ any text not containing right-brace }
(» any text not containing star-right-paren %)

are called commenis

A compiler command is a comment that contains a $ character immediately
after the { or (» that begins the comment. The $ character is followed by the
mnemonic of the compiler command (see Chapter 12).

Apart from the effects of compller commands, the substitution of a blank for a
comment does not alter the meaning of a program.

A comment cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {..} delimiters can be
nested within a comment formed with (*...%) delimiters, and vice versa.

1-5

Chapter 2
Blocks, Locality, and Scope

2.1 Definitionof aBlock 2-1
22 Rulesof Scope 2-3
2.2.1 Scope of @DBCIAIALION.ccuiemui ittt er s 2-3
2.2.2 Redeclaration inan EnClosed BIOCKc.vveieiieniireeeeenerncacencnennes 2-3
2.2.3 Position of Declaration within Its BIOCK «.cenneneeeniiniiiecieeeeeeceneens 2-3
2.2.4 Redeclaration within@BlocKcevuieieeiiiiiiicieeiirieeeeneeeceennns 2-3
2.25 Identifiers of Standard OBJBOLSciviemicemniai i tarrcerec e cacrmnsaenas 2-4

029-0394-A

Blocks, Locality, and Scope

2.1 Definition of a Block
A block consists of declarations and a statement-part. Every block is part of
a procedure~declaration, a function-declaration, a program, or a unit. All
identifiers and labels that are declared in a particular block are Joca/ to that
block.

block

label-declaration-part h

constant-declaration-part]——7

type-declaration-part ’—>

variable-declaration-part ;—j

procedure-and-function-declaration-part h

IANANANANS

statement-part II >

The Jabel-declaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement-part.

label-geclaration-part

(el)izl |y
®

120/l Gigit-sequence |—

Pascal Reference Merua! Blocks, Locality, & Scope

The constant-declaration-part contains all constant-declarations local to the
block.

constant-ageclaration-part

constant-declaration }—j——b

The type-ceclaration-part contains all type-declarations jocal to the block.

Lype-oeclaration-part

'C’(type-declaration }—‘7_.’

The variable-oeclaration-part contains all variable~declarations local to the
block.

varisble-declaration-part

——b@—cbl variable-declaration]—7—-0

The procealre-ana-ruction-aeclaration-part contains all procedure and
function declarations local to the block.

procedure-and-fnction-oeclarstion-part
procedure-declaration
function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activation of the block.

Stotemen Pyl compound-statement |——

Pascal Reference Manial Blocks, Locallty, & Scope

NOTE

At run time, all variables declared within a particular block have
unspecified values each time the statement-part of the block Is entered.

22 Rules of Scope
This chapter discusses the scope of oblects w/tnin the program or wit In which
they are aefined See Chapter 9 for the scope of abjects defined in the
interface-part of a unit and referenced In a host program or unit.

221 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scgue of this declaration.

This scope is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block inner, then block inner and all blocks enclosed by inner are excluded
from the scope of the declaration in block outer. (See Appendix B for some
odd cases.)

223 Position of Declaration within Its Block
The declaration of an ldentifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used untll after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Regeclaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a particular block, except for record fleld identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a fleld identifier can be declared
again within the same block, as long as it is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

Pascal Reference Manual Blocks, Locality, & Scope

2.25 ldentifiers of Standard Objects
Pascal on the Lisa provides a set of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they
were declared in an outermost block enclosing the entire program; thus their
scope includes the entire program.

029-0395-A

31

3.2

33
34

35

Chapter 3

Data Types

Simple-Types (and Ordinal- Types)
3.1.1 Standard Simple-Types and String-Types

3.1.1.1 Thelnteger Typecccceumeeenene. .

3.1.1.2 The Longint TYPE ..ot er e ereeans

3.1.1.3 The Real TYPE ..cciieiiirimnniieiineiencnsesenennnsan e sesesennnnneeas

3.1.1.4 The BOOIEaN TYPE ...cueriireneninireetnunnasraneeenaenusesanesnansennaennas

3.1.15 The Char TYPE c.coeieeerreeceeeeierien e ennne e s e e enae e enaanenee e

10 U0 T 1 1o Sl I o
3.1.2 ENUMETateOd-TYPLSreciriricreecrrresseseeneiesenrateseseees s e mananennannnnseas
3.1.3 SUDTBNOE-TYPES ...onoieeeeiiiieateennnaessnntransessenasnn s annsasansnnerasnsnes
Structured-Types 3-7
3.2.1 AITAY-TYPES covciiiriitietnnatsessiserir s siisrestsassessssnsss saasanssssanssnnnsssns 3-8
3.2.2 RECOTA-TYPES «.iieiiceerireiceriairtee e s ree e erenn s cras e e ns e s an s s naa e s snnnees 3-9
3.2.3 SBL-TYPES..ciitiiiinerriiritiuneisrertir e s ss e s e s v sse e s s e e s e runsnasan 3-11
328 FIlB-TYPBS..uuuiiirreeiecscastssiseseeese st e s ae e nt e e e se s e s e e e n s s anananasananen 3-12
Pointer-Types 313
Identical and Compatible Types 3-13
3L TyPE IOty ottt ee et e oo e s e e eaae 3-14
3.4.2 Compatibility Of TYPES ..oco it 3-15
3.4.3 Assignment-CompatiDilityo 3-15
The Type-Declaration—Part ...3-16

Data Types

A Hpe Is used In declaring variables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A Ype-odeclaration associates an identifier with a type.

type-geciaration ©)

simple-type

structured-type

The occurrence of an identifier on the left-hand side of a type-declaration

declares it as a type-lidentifier for the block in which the type-declaration

occurs. The scope of a type-identifier does not include its own declaration,
except for pointer-types (see Sections 2.2.3 and 3.3).

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simpie-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-ldentifier
real-type-identifier
string-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolean,
ete.

Pascal Reference Marnual Data Tyes

3.1 Simple-Types (and Ordinal-Types)
All the simple-types define ordered sets of values.

ordinal-type

string-type

simple-type

LEALDE 3] real-type-identifier ————

#| subrange-type
enumerated-type
ordinal-type-identifier

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

aroinal-types are a subset of the simple-types, with the following special
characteristics:

* Within a given ordinai-type, the possible values are an ordered set and each
possible value is associated with an aralalfty, which is an integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a pregecessor based on
this ordering, and each possible value except the last has a swecessor based
on this ordering.

* The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal~type, and returns the ordinality of the value.

* The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value In the ordinal-type, the result is unspecified.)

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and retums the successor of the value. (For the first value
in the oradinal-type, the result is unspecified.)

aradinal-type

Pascal Reference Manual Data Types

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are:

integer
longint
char

boolean

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
user-oefined simple-types.

3.111 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4) The predefined integer constant maxint
is defined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's~-complement integers

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4) The range is the set of values from
~231-1) to 231-1, e, 2147483648 to 2147483647
These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic rules:

* All "integer" constants In the range of type integer are considered to be of
type integer. All "integer" constants in the range of type longint, but not
in the range of type integer, are considered to be of type longint

* When both operands of an operator (or the single operand of a unary
gperator) are of type integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary).

* when one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result is
of type longint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

Pascal Reference Manual Data Types

* The expression on the right of an assignment statement is evaluated
inokpendently or the size of the varlable on the left. If necessary, the
result of the expression is truncated or extended to match the size of the
variable on the left.

The org4 function (see Section 11.3.3) can be used to convert an integer value
to a longint value.

IMPLEMENTATION NOTE

There is a performance penalty for the use of longint values. The
penalty is essentlally a factor of 2 for operations other than division
and multiplication; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.1.3 The Real Type
For detalls of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

* Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 in Pascal notation.

The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
in textual output.

* Infinite values, +~ and -, These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these values.

» NaNs (the word “NaN" stands for “Not a Number™). These are values of
type real that convey diagnostic Information. For example, the result of
multiplying « by 0 is a NaN.

3.1.1.4 The Boolean Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is “less than" true. The
function-call ord(false) returns 0, and ora{true) retumns 1 (see Section 11.5.1).

3.1.15 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes in the
range 0.255. The ordering of the char values is defined by the ordering of
these numeric codes. The function-call ordc), where ¢ Is a char value, returns
the numeric code of ¢ (see Section 11.5.1).

Pascal Reference Manual Data Types

3.1.16 String-Types
A string value is a sequence of characters that has a dynamic /engé? attri-
bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size iIs the maximum Himit on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type Is defined.

string-type
® 0

string-type-identifier J‘

size-altrioute y[ncioned-integer —

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 255.

The ordering relationship between any two string values Is determined by
lexical comparison based on the ordering relationship between character values
in corresponding positions in the two strings. (wWhen the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character In the shorter one compares "higher”; thus the string ‘attribute’ is
ordered higher than ‘at')

Do not confuse the size with the length.

Pascal Reference Manual Data Types

NOTES

The size attribute of a string constant is equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters in a string can be accessed as if they were
corponents of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sections
7.3.2,5.16.1, and 11.7).

Do not make any assumptions about the Internal storage format of strings, as
this format may not be the same in all implementations.

Operators applicable to strings are specified in Section 5.1.5. Standard
procedures and functions for manipulating strings are described in Section 11.6.

3.1.2 Enumerated-Types
An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence in which the identifiers are listed.

Enmerarea-tyoe identifier-list

loentifier-list (
(e

s

The occurrence of an identifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant Is the enumerated-type
being declared.

Examples of enmerateq-types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, wldowed, single)

Given these declarations, yellow Is a constant of type color, diamond is a
constant of type suit, and so forth.

when the ord function (see Section 11.5.1) is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value

Pascal Rerference Marual Data Types

with respect to the other values of the enumerated-type. For example, given
the declarations above, ord(red) retums 0, ord(yellow) returns 1, and ordblue)
returns 3.

3.1.3 Subrange-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

subrange-tyoe . °

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type
longint. If both are of the same ordinal-type, this type is called the /Zwost-type
If one is of type Integer and the other of type longint, the host-type is longint.
Note that no range-checking is done if the host-type is longint.

Examples of Subrange-types:

1..100
-10..+10
red. .green

A variable of subrange-type possesses all the properties of variables of the
host type, with the restriction that its run-time value must be In the specified
closed interval.

IMPLEMENTATION NOTE

Range-checkling 1s enabled and disabled by the compller commands $R+
and $R- (see Chapter 12). The default is $R+ (range-checking enabled).

3.2 Stuctured-Types
A structured-type is characterized by its structuring method and by the type(s)
of its components. 1f the component type is itself structured, the resulting
structured-type exhibits more than one level of structuring. There is no
specified 1imit on the number of levels to which data-types can be structured.

StruCreo-tye - array-type |
{1 —
record-type

structured-type-identifier }

>

Pascal Reference Manual Data Types

The use of the word packed in the declaration of a structured-type indicates
to the compiler that data storage should be economized, even if thls causes an
access to a component of a varlable of this type to be less efficient.

The word packed only affects the representation of one level of the
structured-type In which it occurs. If a component Is itself structured, the
component's representation is packed only if the word packed also occurs In
the declaration of its type.

For restrictions on the use of components of packed varlables, see Sections
7.3.2, 5.1.6.1, and 11.7.

The implementation of packing Is complex, and details of the allocation of
storage to components of a packed variable are wspecified

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.21 Array-Types
An array-type consists of a fixed number of components that are all of one
type, called the component-type The number of elements is determined by
one or more Joex-types one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every possible value of the corresponding index-type, so the
number of elements is the product of the cardinalities of all the index-types.

array-Yype

(amay)>(D (Dr-»(or)-+{oe |
(e

I0EX-LY0E [ordinal-type

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contain more than 32767 bytes.

3-8

Pascal Reference Manual Data Types

Examples of array-types:

arrayf1..100] of real
array[boolean] of color

If the component-type of an array-type is also an array-type, the result can be
regarded as a single muiti-dimensional array. The declaration of such an array
is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[{boolean] of array{l..10] of array[size] of real
is equivalent to:

array[boolean, 1..10, size] of real
Likewise,

packed array[1..10] of packed array[1..8] of boolean
is equivalent to:

packed array[1..10,1..8] of boolean

"Equivalent” means that the compiler does the same thing with the two
constructions.

A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1).

3.22 Record-Types
A record-type consists of a fixed number of components called /e/as possibly
of different types. For each component, the record-type declaration specifies
the type of the field and an identifier that denotes it.

record-t record

rleiq-list

fixed-part —
(3) variant-part \b@J
Axed-part (bi field-declaration l——j—————b

3-9

Pascal Reference Maral Data Types

dely-oeciarslion identifier-list °

The fixed-part of a record-type specifies a list of “fixed" flelds, giving an
ldentifier and a type for each field. Each of these flelds contains data that Is
always accessed in the same way (see Section 4.3.2).

Example of a recora-tywe:

record

year: integer;
month: 1..12;

day: 1..31

end

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Each
list of flelds is called a var/ant The variants "overlay" each other in memory,
and all fields of all variants are accessible at all times.

variant-part

= i ity o (o) v |
G

centirer o)

varisnt

—rlem O+ (D>
Oe

taq-rield-type ®| ordinal-type-identifier [—#

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

3-10

Faseal Reference Maral Lata Types

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4).

The variant-part allows for an optional identifier, called the tag-rfelq
loentiffer 1f a tag-field identifier is present, it is automatically declared as
the identifler of an additional fixed field of the record, called the lap-rlela

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other criterion,

Examples of recorad-types with variants:

record
name, firstName: string(80];
age: 0..99;

case married: boolean of
true: (spousesName: string[80]);
false: ()

record
X y: real;
area: real;
case s: shape of
triangle: (side: real; inclination, anglel, angle2:

angle);
rectangle: (sidel, side2 : real; skew, angle3: angle);
circle: (diameter: real);

end
NOTE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2). Vvariant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2).

323 Set-Types
A set-type defines a range of values that is the powerset of some ordinal-type,
called the sase-type In other words, each possible value of a set-type Is some
subset of the possible values of the base-type.

3-11

Pascal Rerference Marnal Data Types

IMPLEMENTATION NOTE

In the present implementation the base-type must not be longint. The
base-type must not have more than 4088 possible values. If the base-
type is a subrange of integer, it must be within the limits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) is a possible value of every set-type.

324 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type The component-type may be any
type.

The component data is not in program-addressable mernory but is accessed via
a peripheral device. The number of components (i.e. the length of the file) is
not fixed by the file-type declaration.

Hle-tyoe @ >

The type file (without the “of type" construct) represents a so-called "untyped
file“) type for use with the blockread and blockwrite functions (see Section
10.4).

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character cevice such as the Lisa keyboard. Files of type
text are supported by the specialized 1/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char
(unlike standard Pascal). The type file of char is a file whose records are of

3-12

Pascal Reference Manual Data Types

type char, containing char values that are not interpreted or converted in any
way during 1/0 operations.

In a stored file of type text or flle of -128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

33 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the base-¢type

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the @ operator (see Sectlon 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

pamler-ime O

pointer-type-identifier

Lase-lpe gl 1ypeidentifier

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be Joentical and identity is
required in some contexts but nat in others.

3-13

Pascal Rererervce Marnial! Lata Types

Even if not identical, two types may still be compatible and this is sufficient
in contexts where identity is not required--except for assignment, where
assignment-compalibility is required.

3.4.1 Type Identity
Identical types are required a2/y in the following contexts:

* Variable parameters (see Section 7.3.2).
* Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

* One~-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1 and t2, are Joentical if either of the following Is true:
* The same e Joentiffer Is used to declare both t1 and t2, as in
foo = "integer;

t1 = foo;
t2 = foo;
* 11 is declared to be equivalent to t2 as in
t1 = t2;
Note that the declarations
t1 = t2;
t3 = tL;

do not make t3 and t2 identical, even though they make tl1 identical to t2 and
t3 identical to t1!

Also note that the declarations

t4 = integer;
t5 = integer;

ao make t4 and t5 identical, since both are defined by the same type
igentifier. In general, the declarations

t6 = 17;
t8 = t7;

oo make t6 and t8 identical if t7 is a type-identifier.
However, the declarations

t9 = "integer:
t10 = integer;

do ot make t9 and t10 identical since integer is not a type identifier but a
user-defined type consisting of the special symbol = and a type identifier.

o

3-14

Pascal Reference Marual Data Tyes

Finally, note that two varlables declared in the same declaration, as in
varl, var2: ~integer;

are of identical type. However, if the declarations are separate then the
gefinitions above apply.

The declarations

varl: "integer;
var2: "integer;
var3: integer;
vard: integer:

make var3 and vard identical in type, but not varl and varz.

3.4.2 Compatibility of Types
Compatibility is required in the majority of contexts where two or more
entities are used together, e.g. In expressions. Specific instances where type
compatibility is required are noted elsewhere in this manual.

Two types are compatlbie If any of the following are true:
* They are identical.
* One is a subrange of the other.
* Both are subranges of the same type.
* Both are string-types (the lengths and sizes may differ).
* Both are set-types, and their base-types are compatible.

3.4.3 Assignment-Compatibility
Assignment-compatibility Is required whenever a value is assigned to
something, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp is assignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

* vtyp and exptyp are identical and neither is a flle-type, or a structured-
type with a file component.

= vtyp is real and exptyp is integer or longint (expval is coerced to type
real).

* vtyp and exptyp are compatible ordinal-types, and expval is within the
range of possible values of vtyp.

* viyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

* vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

3-15

Fascal Reference Mamal Lata Types

* vtyp is a string type or a char type and expval is a quoted-character-
constant.

* vtyp is a packed array{l..,7] of char and expval is a string constant
containing exactly »~ characters.

If the index-type of the packed array of char is not 1.7, but the array
does have exactly /7 elements, no error will occur. However, the results
are unspecified.

whenever assignment-compatibility is required and none of the above is true,
either a compiler error or a run-time error occurs.

35 The Type-Declaration-Part
Any program, procedure, or function that declares types contains a type-
declaration-part, as shown in Chapter 2.

Example of a type-declaration-pert:

type count = integer:
range = integer;
color = (red, yellow, green, blue):
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[l..80] of char;
str = string[80];
polar = record r: real: theta: angle end;
person = ~personDetails;
personDetails = record
name, firstName: str;
age: integer;
married: boolean;

father, child, sibling: person;

case s: sex of
male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

end;
people = file of personDetails;
intfile = file of integer:

In the above example count, range, and Integer denote identical types. The
type year is compatible with, but not identical to, the types range, count, and
integer.

3-16

Chapter 4

Variables
4.1 Variable-Declarations . 4-1
4.2 Variable-References...... 4-1
43 Qualifiers ..-4-2
4.3.1 Arrays,Strings, and INUEXESceeeereeeireciec e cee s enennneees 4-2
4.3.2 Records and Field-Designatorscoeoveeveieieeinniiiinii e, 4-4
B33 FIle-BUf OIS <o ciecciieiciecacaecacecceenereastnreransasnasaanesaanannans 4-4
4.3.4 Pointers and Their OBJEOLS ..o e 4-4

029-0396-A

Variables

4.1 Variable-Declarations

A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

variaole-GRCIBalon o[genifier-list |-{:))

The occurrence of an identifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specified in Section 2.2.2.

Examples of varigble-oeclarations:

X y,z: real;

i, }: integer;

K: 0..9

p,q T: boolean;

operator: (plus, minus, times);

a: array[0..63] of real;

¢: color;

f: file of char;

huel, huez: set of color;

pl,p2: person;

m ml,m2: array[1..10,1..10] of real;

coord: polar;

pooltape: array[l..4] of tape;

4.2 variable-References

A variable-reference denotes the value of a variable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-rererence

———»] variable-identifier | >
-

varisble-identifier

Pascal Rererence Manual variables

Syntax for the various kinds of qualifiers is given below.

43 Quallfiers

As shown above, a variable-reference is a variable-identifier followed by zero
or more qualiffers Each qualifier modifies the meaning of the varlable-
reference.

fleld-cesignator }—

file-buffer-symbol

pointer-object-symbol

An array ldentifier with no qualifier is a reference to the entire array:
xResults

If the array identifier is followed by an index, this denctes a specific
component of the array:

xResults[current+1]

If the array component is a record, the index may be followed by a fleld-
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+1].11ink

If the fleld is a pointer, the field-designator may be followed by the pointer-
object-symbol, to denote the object pointed to by the pointer:

XResults{current+1].1ink "

If the object of the pointer is an array, another index can be added to denote
a component of this array (and so forth):
XResults{current+1].11nkK " [1]

431 Arrays, Strings, and Indexes
A specific component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character position.

!miex@(

4-2

Pascal Rerference Marnugl variables

Examples of Indexed arrays:

mi,]
a[i+3]

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m{1][3]
Is equivalent to

m[i, j]

For array variables, each index expression must be assignment-compatible with
the corresponding index-type specified in the declaration of the array-type.

A string value can be indexed by only one index expression, whose value must
be in the range 1../7, where » is the current length of the string value. The
effect is to access one character of the string value.

WARNING

when a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval is declared as follows:

strval: string[10];

The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--i.e.,
the number of char values currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[1]:="F"'

may or may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value 'F' in character
position 1, but the length of strval remains unspecified. In other words,
the value of strval[1] is now F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writeln(strval) is
unspecified.

Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they modify.

Pascal Rererence Marnal Vvariables

4.3.2 Records and Field-Designators
A specific field of a record variable is denoted by a variable-reference that

refers to the record variable, followed by a field-designator that specifies the
field.

fiela-aeslqnator o identifier

Examples or riela-aesignators:

p2 .pregnant
coord.theta
433 File-Buffers

Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the cwrrent Ale position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component is via a special variable associated with the file, called a
Ale-burrer

The file-buffer Is implicitly declared when the flle variable is declared. If F
is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable-

reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-tuffer-symbol .@ >

Thus the file-buffer of file F is referenced by F".

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the file-
buffer and the current file component.

434 Pointers and Their Objects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the obtject of the pointer

The object pointed to by a pointer variable is denoted by a variable-reference
that refers to the polnter variable, followed by a qualifier called the pointer-
object-symbol.

pointer-object-symbol » O‘ >

Pascal Rererence Manusl variables

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the @ operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4).

The constant nil (see Section 3.3) does not point to a varlable. If you access
memory via a nll pointer reference, the results are unspecified; there may not
be any error indication.

Examples of references to aujects of pointers:

-

p1 .
p1 .sibling

Chapter 5

Expressions

5.1 Operators S-a4
5.1.1 Binary Operators: Order of Evaluation of Operandscccccecrececesecnnne. 5-4

5.1.2 ArithmetiC Operators.ccciii i ccreeerm e et et cersseasrtreeseosana 5-4
5.1.3 B00IEEN OPBIALOTS .ccueeniiniiieccntcmtansemcttacaansassesasenssancensensanssncssanss 5-6

5.1.8 SEtOPEIAtors ...cciiiieiiiiiiriersttnecratseeere e crssasaresaseses s ansssnseneasanne 5-6
5.1.4.1 Result Type inSet Operations........cocococvoeniiiiniinniniennneneees 5-7

5.1.5 Relational Operatorsccciiiiiiriiiiinnersr e 5-7
5.1.5.1 Comparing NUMDETScccciiiiiiniiiinniiitrnetr e ccreenaaaseannenee 5-7

5.1.5.2 Comparing BOOIEaANS.......eueeeeeeeeinrireeeene s e e eaaeaees 5-8

5.1.53 Comparing Strings ... nee et 5-8

5.1.5.4 Comparing Setscoeee vt 5-8

5.1.55 TestingSet Membership......voe e ccerenennene 5-8

5.1.5.6 ComparingPacked Arrays of Charccceeeeeeeeceneneneesnnnnee. S-8

5.1.6 @-0PEIALOT ..oouiiiiineenraiiieneannreasesieaanaassnnrisanaaasnsseasasannsnsassenanns 5-8
5.1.6.1 @-OperatorwithaVarablecociiiiimmnninniiiiciiinnns 5-9

5.1.6.2 @-Operator witha Value Parameter........cceceivevanienncvennnnennns 5-9

5.1.6.3 @-Operator witha Variable Parameter.........ccceevveeniiennnnnns 5-9

5.1.6.4 @-Operator withaProcedure or Functionccccovvnnenne 5-9

52 Function-Calls 5-10

5.3 Sel—CONSIIUCTOTSceeeeeeeceecceeecceeecte e ee e seenensmessaasaensesassanmansennns 5-11

029-0397-A

Expressions

Expressions consist of operators and operands, l.e. variables, constants, set-
constructors, and function calls. Table 5-1 shows the operator precedence:

Table 5-1
Precedence of Operators
Qerators Precegerce | Categories
@, not highest unary operators
», /, div “ “
e fo B, second rmultipl rators
mod, and plying” ope
+, -, 0r third “adding" operatars & signs
= > %>, lowest relational operators
<= >=_ in

The following rules specify the way in which operands are bound to operators:

* when an operand is written between two operators of different precedence,
it is bound to the operator with the higher precedence.

* When an operand is written between two operators of the same precedence,
it Is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a factorallows the unary operators @ and not to be applied to
a value:

factor

A — > b{ variable-reference l————————\

\—{ unsigned-constant |
\—»{ set-constructor |
O
.

A B

Pascal Rererence Marnual Expressions

A Runction-call activates a function, and denotes the value returned by the
function (see Section 5.2). A set-constructordenotes a value of a set-type (see
Section 5.3). An wrsignea-constant has the following syntax:

unsignea-constant

bl unsigned-number

quoted-string-constant

constant-identifier

»>

Examples of factors:

X {variable-reference}

ax {pointer to a variable}

15 {unsigned-constant}

(x+y+2) {sub-expression}

sin(x/2) {function-call}

['A*.."F ", "a".."f"] {set-constructor}

not p {regation of a boolean}
The syntax for a fenm allows the "multiplying” operators to be applied to
factors:

=
A ®‘ A
. O‘ A

~

Examples or temms:

x»y

1/(1-1)

padq

(x <= y) and (y < 2)

Pascal Reference Manual Expressions

The syntax for a simple-expression allows the "adding” operators and signs to
be applied to terms:

simple-expression

Yoy

Examples of simple-expressions:

X+y

-X

nuel + huez
1%] + 1

The syntax for an expression allows the relational operators to be applied to
simple-expressions:

Expression

—={ simple-expression | >
sirmple-expression }—/

200005

Examples of expressions:
X =1.5
p<=q
P =qand
(1<))=
¢ in huel

r
(J<xk)

5..

N

Pascal Reference Marual

5.1 Operators

S.1.1 Binary Operators: Order of Evaluation of
The order of evaluation of the operands of a binary operator is unspecified.

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations

are shown in Tables 5-2 and 5-3 respectively.

Expressions

Table 5-2
Binary Arithmetic Operations
Qperator | (peration {perard Types Type of Result
+ addition
- integer, real, or integer, real, or
subtraction " it
bl multiplication
/ alvision integer, real, or real
longint
div division with integer or longint | integer or longint
integer result ong! tege
mod modulo integer or longint integer
Apte: The symbols +, -, and * are also used as set operators (see
Section 5.1.4)
Table 5-3
Unary Arithmetic Operations (Signs)
Qoerator| Queration Qperana Types e of Result
+ identity
integer, real, or same as operand

Any operand whose type is subr, where subr is a subrange of some ordinal-type

ordtyp, is treated as if it were of type ordtyp. Consequently an expression
that consists of a single operand of type subr is itself of type ordtyp.

5-4

Pascal Reference Manual Expressions

If both the operands of the addition, subtraction, or multiplication operators
are of type integer or longint, the result is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real

NOTE

See Appendix D for more information on all arithmetic operations with
operands or results of type real

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of i div j is the mathematical quotient of i/}, rounded toward zero
to an integer or longint value. An error occurs if j=0.

The value of 1 mod j is equal to the value of
i-(idiv j)*j

The sign of the result of mod is always the same as the sign of 1. An error
occurs if §=0.

The predefined constant maxint is of type integer. Its value is 32767. This
value satisfies the following conaitions:

* All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

* Any binary integer operation on two whole numbers in this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval,
If the mathematical result is not in this interval, then the actual result is
the low-order 16 bits of the mathematical resuit.

* Any relational operation on two whole numbers in this same interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

Pascal Rerference Marnual Expressions

5.1.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table

5-4.
Table 5-4
Boolean Operations
Qerator|) queration perang Tyoes Tvpe or rResult
or disjunction
and conjunction boolean boolean

not negation

whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation Is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression wili
always have the value true, regardless of the result of boolTst(x) The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be Important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table 5-5.

Table 5-5
Set Operations
eratory Qoeration perand Types e or Result
+ union
co tible
- difference wmpes (see 5.1.4.1)
» intersection

Pascal Reference Marnial Expressions

5.1.4.1 Result Type in Set Operations
The following rules govern the type of the result of a set operation where one
(or both) of the operands is a set of subr, where ordtyp represents any
ordinal-type and subr represents a subrange of ordtyp:

 If ordtyp is not the type integer, then the type of the result is set of
oratyp.
« If oratyp is the type integer, then the type of the result is set of 0.4087 in

the current implementation (0..32767 in a future implementation). This rule
results from the limitations on set-types (see Section 3.2.3).

5.15 Relational Operators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

Operator | OQperation Querangd Types Tvoe of Result
- equal compatible set-,
simple-, or
<> not equal pointer-types
(& see below)
< less
> greater compatible
simple-types
<= less/equal (& see below) boolean
> greater/equal
<= subset of compatible
>= superset of set-types
lert guerana-
in member of any ordinal-type T
right goerand
setof T

5.15.1 Comparing Numbers
when the operands of <, >, >=, or <= are numeric, they need not be of
cornpatible type /7 one operand is real and the other is integer or longint.

NOTE

See Appendix D for more information on relational operations with
operands of type real.

Pascal Reference Manual Expressions

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p=g denotes their equivalence and p<=~q
denotes the implication of q by p (because false<true). Similarly, p<>q denotes
logical “exclusive-or.”

5.15.3 Strings

when the relational operators =, <>, <, >, <=, and > are used to compare
strings (see Section 2.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCIHl character set. Note that any two string values can be
compared since all string values are compatible.

5.15.4 Comparing Sets
If u and v are set operands, then u<=v denotes the inclusion of u in v, and
w=v denotes the inclusion of v in w

5.155 Testing Set Membership
The in operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwise it yields the value false.

5.1.56 Comparing Packed Arrays of Char
In aadition to the operand types shown in the table, the = and <> operators can
also be used to compare a packed array{1.N] of char with a string constant
containing exactly N characters, or to compare two one-dimensional packed
arrays of char of Jaentical type.

5.1.6 @®-Operator
A pointer to a variable can be computed with the @-operator. The operand
and result types are shown in Table 5-7.

Table 5-7
Pointer Operation

Gperstor | peration Gperang Type of Result
inter variable, parameter,
e ?grmauon procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value Is equivalent to the type of nil, and consequently can be assigned to
any pointer variable.

Pascal Reference Manual Expressions

5.1.6.1 @-Operator With a Vvariable
For an ordinary variable (not a parameter), the use of @ is straightforward. For
example, if we have the declarations

type twochar = packed array[0..1] of char;
var int: integer;
twocharptr: twochar;

then the statement

twocharptr := aint

causes twocharptr to point to int. Now twocharptr” is a reinterpretation of
the bit value of int as though it were a packed array{0.1] of char.

The operand of @ cannot be a component of a packed variable.

5.1.6.2 @-Operator With a Value Parameter
When @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := afoo

then fooptr~ is a reference to the value of foo. Note that if the actual-
parameter is a variable-reference, fooptr = is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 @-Operator with a Variable Parameter
when @ is applied to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer is taken from the stack). Suppose that fum
is a formal variable parameter of a procedure, fie is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := @fum
then fumptr is a pointer to fie. fumptr” is a reference to fie itself.

5.1.6.4 @-Operator With a Procedure or Function
It is possible to apply @ to a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pointer is to pass it to an assembly-
language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, @ returns the current
address of the procedure's entry point. If the procedure is in some other
segment, however, @ returns the address of the jump table entry for the
procedure.

Pascal Reference Maral Expressions

In logical memory mapping (see Workshop User’s Guide for the L7sg), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valid despite swapping because the jump table is not
moved.

5.2 Function-Calls
A function—call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list of
formai-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal~parameter. The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.

The order of evaiuation and binding of the actual-parameters is unspecified.

Ractlonr-cali

~———->{ function-identifier } »
\bi actual-parameter-list }J

aclual-parameter-list NO, (»| actual-parameter }j——»®—+
(e

actual-parameter

expression

variable-reference

procedure-identifier

function-identifier

A function-identifier is any identifier that has been declared to denote a
function.

5-10

Pascal Reference Manual Expressions

Examples of fuction-calls:

sum(a, 63)
gcd(147,k)

5.3 Set-Constructors
A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets] Each expression denotes a value of the set.

set-construetor .@ .@__’
s}y
(e

’

member-group D{ expression ,! >
O

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group X.y denotes as set members the range of all values of the base-
type in the closed interval x to y.

If x is greater than y, then x.y denotes no members and [x..y] denotes the
empty set.

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resulting
set. If an integer value designated as a set member is outside the limits glven
in Sectlon 3.2.3 (0..4087 in the current implementation), the results are
unspecified.

£Examples of set-constructors:

[red, c, green]
[1, S, 10..k mod 12, 23]
['A*..*Z", *a'..'z", chr({xcode)]

5-11

029-0398-A

Chapter 6

Statements

6.1 Simple Statements 61
6.1.1 ASSignment-Statements ... e 6-1
6.1.2 Procegure-Statements ... ceeeee e eeee e e v e e e 6-2

O W I € a1 ST = 11110 = R U T 6-3

6.2 Structured-Statements 6-4
6.2.1 Compound=-StatemENts ... oo eae e e ne e e ae e eeeaanaas 6-4
6.2.2 Conditional-Statementscooe e e enanes 64
6.2.2.1 H-StalemMentS ..o cecececeeneereeaceernanceernnarennnnns 6~-5

6.2.2.2 Case-StalemMeNts. ot an e eaeeaae 6-5

6.2.3 Repetitive-Statements. .. oo cetre e e e et e e e oo annan 6-6
6.2.3.1 Repeat-Statementsccoviireiiriiiniinrercirte e rnaeee 6-7

6.2.3.2 WHIlE-StatBMBNLS ...ceeiieiieeicececertceeceeerereceraransennsenes 6-7

6.2.3.3 FOr-StatBmMEnt 5. e et ceeiiieseeceesesesnensasanansnsenes 6-8

6.2.4 With-StalBmMBNLS e eee e reeieccenireeeesereesnnasassmsenesnessnssnanann 6-10

Statements

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a goto-statement.

statement

L
° t: simple-statement

structured-statement

%ﬁigit—sequence >

A digit-sequence used as a label must be in the range 0..9999, and must first
be declared as described in Section 2.1.

6.1 Simple Statements
A simple-statement is a statement that does not contaln any other statement.

simple-statement

4{ assignment-statement

procedure-statement

goto-statement | >

6.1.1 Assignment-Statements
The syntax for an assignment-statement is as follows:

assignment-statement

variable-reference

function-identifier °
The assignment-statement can be used in two ways:

* To replace the current value of a variable by a new value specified as an
expression

* To specify an expression whose value is t0 be retumned by a function.

Pascal Rerference Mamial Statements

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:
X = y+2;

p := (1<=1) and (i<100);

1 == sqr(k) - (i*j);

huel := [blue, succ(c)];
6.1.2 Procedure-Statements

A procedure-statement serves to execute the procedure denoted by the
procedure-identifier.

procegure-statement

——b[procedure-identifier } ~

>

actual-parameter-list }J

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure-
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is established
by the positions of the parameters in the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formal-
parameter FP:

* If FP is a value parameter, AP must be an expression. The type of the
value of AP must be assignment-compatible with the type of FP.

* If FP is a variable parameter, AP must be a varlable-reference. The type
of AP must be identical to the type of FP.

s If FP 1s a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Reference Marnual Statements

* If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP, and the result-type of AP must be
identical to the result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of procequre-statements:

printheading;
transpose(a, n, m);
bisect(fct, -1.0,+1.0,%);

6.1.3 Goto-Statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

Qot0-st2AMEN!_ g 3015w Tanel |

NOTE

The constants that Introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced In goto-statements.

The following restrictions apply to goto-statements:

* The effect of a jump into a structured statement from outside of the
structured statermnent is unspecified.

¢ The effect of a jump between the then part and the else part of an if-
statement is unspecified.

* The effect of a jump between two different cases within a case-statement
is unspecified.

Pascal Reference Manual Statements

6.2 Structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structureg-sitatement

»! cormpound-statement

conditional-statement

repetitive-statement

with-statement } >

6.2.1 Compound-Statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compolwnd-statement

(begin) (ena)
Example of compouna-statement:
begin

wun
NS &

§.‘<><N

An important use of the compound-statement is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement. The symbaols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

6.2.2 Conditional-Statements
A conditional-statement selects for execution a single one (or none) of its
component statements.

conitional-statement if-statement

case-statement

6-4

Pascal Reference Manual Statemernts

6.2.2.1 If-Statements
The syntax for if-statements is as follows:

(ﬂb(then}-bl statement | -

else statement

The expression must yield a result of type boolean. If the expression ylelds
the value true, the statement following the then is executed.

If the expression ylelds false and the else part is present, the statement
following the else is executed; If the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if el then
if e2 then si1
else s2

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then si
else s2

end
Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;

if p1 <> nil then p1 := p1 .father;

6.222 Case-Statements

The case-statement contains an expression (the selecto) and a list of
statements. Each statement must be prefixed with one or more constants
(called case-canstantd), or with the reserved word otherwise. All the case-

constants rmust be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

Cose- SNy case)] expression ‘—’@U

case »(end)—+
\-l otherwise-clause if \@j

6-5

Pascal Reference Maral Statements

T e

atherwise-clause »@—0(otherwise)—D{ statement }———"

The case-statement specifies execution of the statement prefixed by a case-
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise is executed; if no otherwise part is present, nothing is executed.

Examples of case-statements:
case operator of
plus: X := X+y;
minus: x := x-y;
times: x := xwy

end

case 1 of
1: X := sin(x);
2: X := cos(x);
3,4,5: x = exp(x);
otherwise x := In(x)

end

IMPLEMENTATION NOTE

In the current implementation, the case-statement will not work
correctly if any case-constant is of type longint or the value of the
selector Is of type longint.

6.2.3 Repetitive-Statements
Repetltive-statements specify that certain statements are to be executed
repeatedly.

Jepetitive-staterment

+{ repeat-statement

while-statement

for-statement, } »

Pascal Reference Marnugl Statements

6.2.3.1 Repeat-Statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

18DRAt-Statement

———b(repeat}C{ statement]-j—{mtia——b{ expression [—&

The expression must yield a result of type boolean. The statements between
the symbols repeat and untll are repeatedly executed until the expression
ylelds the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated grter execution of the seguence.

Examples of repeat-statements:

repeat
mnd)

H II "
x%ah"

K :

i:

J:

until j=0

repeat R
process(f ");
get(f

until eof(f)

6.23.2 While-Statements
A while-statement contalns an expression which controls the repeated

execution of one statement (possibly a compound-statement) contained within
the while-statement.

while-statement

(i) —{ Sepresion (@)

The expression must yleld a result of type boolean. It is evaluated sefore the
contained statement is executed. The contained statement is repeatedly
executed as long as the expression yields the value true. If the expression
yields false at the beginning, the statement is not executed.

Pascal Reference Manual Statements

The while-statement:
while b do body
is equivalent to:

if b then repeat

body
until not b
Examples or while-statements:
while afi] < x do 1 := i+1

while i>0 do begin
if odd(i) then z := z»x;
i:=1div2;
X := sqr(x)

while not eof(f) do begin
process(f ");
get(f)
end
6.2.3.3 For-Statements
The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned
to a variable called the control-varigble

rar-statement

contror-varatie |(=)

(@ @)+ [t

CNOlVIITRNE _y[" ariabie-identifier |—

Initial-vaiue
et

6-8

Pascal Reference Manual Statements

The control-variable must be a variable-identifier (without any qualifier). It
must be local to the innermost block containing the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
or?inal—type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. When each value is assigned to the control-variable, it is
compared to the final-value; if it is less than or equal to the final value, the
contalned statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-variable s the predecessor (see Section 3.1) of
the previous value. When each value is assigned to the control-variable, it is
compared to the final-value; If it Is greater than or equal to the final value,
the contained statement is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect Is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := el to e2 do body
is equivalent to:

begin
templ := el;
= @2;

temp2
if templ <= temp2 then begin
v := templ;
body;
while v <> temp2 do begin
v := succ{v);
body
end
end
end

Pascal Reference Mar&l! Statements

and the for-statement:
for v := el downto e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ >= temp2 then begin
v := templ;
body;
wvhile v <> temp2 do begin
v := pred(v);
body
end
end
end

where templ and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.

Examples of for-statements:
for 1 := 2 to 63 do if a[i] > max then max := a[i]
for i :=1tondo for }J :=1 tondo

begin
X = 0;
for K := 1 tondox :=x+m[ik]Pmlk, j);
m[i, j] := x

end

for ¢ := red to blue do g(c)

6.2.4 With-Statements
The syntax for a with-statement is

with-statement

——b(with record-variable-reference @

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement following
the word do. Fields of the record-variable can be referenced by their field-
identifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Manual Statements

Example of with-statement:

vwith date do if month = 12 then begin
month := 1;

year := year + 1

end

else month := month + 1
This is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1
end

else date.month := date.month + 1

within a with-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real
end;
var baz: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record variable baz and to a
variable of type integer. Now consider the statement

with baz do begin
foo := 36; {which foo is this?)

end

The foo in this with-statement is a reference to the field baz.foo, not the
variable foo.

The statement:
with viv2, ... vndo s
is equivalent to the following "nested" with-statements:

with vl do
with v2 do

withvwn do s

6-11

Pascal Reference Manual Staternents

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean v2.n, not vivn. The list of record-variable-references in the with-
staternent is checked from right to left.

If the selection of a variable in the record-variable-list involves the indexing
of an array or the de-referencing of a pointer, these actions are executed
before the component statement is executed.

WARNING

If a variable in the record-variable-list is a pointer-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the pointer is altered, the results are unspecified.

Example of wnsare with-stalement using pointer-reference:
with ppp” do begin

new(ppp); {Don't do this ...}
;3{:{)::)00(; {... or this}

end

6-12

029-0399-A

Chapter 7
Procedures and Functions

7.1 Procedure-Declarations

7.2 Function-Declarations

7.3 Parameters

7.3.1 ValUE PArameLeISccceiuieiracaceaneracecacccnssnsnssesmnsnsasesnesasasasnsnases
7.3.2 VBTI8DIE ParaMBLEIS.ceee i ceiieeiainiencereeemneenaansesasnsessesansansnssenses
7.3.3 Procedural Parameters ..o ceceencnceeeeeeeacmensnaceressanrancennnn
7.3.4 Functional ParaimBlers v crmrct e e cacacensnacecnacnscannes
7.3.5 Parameter List Compatibilityc.cooooiiiiiiiiiinee.

Procedures and Functions

7.1 Procedure-Declarations
A procedure-declaration associates an ldentifier with part of a program so that
it can be activated by a procedure-statement.

proceaure-oeciaration

—b{ procedure-heading }-b@-bi procedure-body l—b@—b

orocedure-toay

The procedure-heading specifies the identifier for the procedure, and the
formal parameters (if any).

2100888 -hescing

———-b(proceduxe)——bl identifier } >
\~»{ formal-parameter-list }J

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
block, the procedure is executed recursively.

7-1

Pascal Reference Manual Proceaures & Functions

Example of a proceoure-declaration:

procegure readInteger (var f: text; var x: integer);
var value, digitvalue: integer;
begin .
shile (f° = " ') and not eof(f) do get(f);
value := 0;
while (f" in ['0"..°9']) and not eof(f) do begin
digitvalue := ord(f) - ord(‘0');
value := 10=value + digitvalue;
get(f)
end;

X = value

end;
A procedure-declaration that has forward instead of a block is called a
forward oeclaration Somewhere after the forward declaration (and in the
same block), the procedure is actually defined by a defining declaration-a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-list, and inciudes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of forward declaration:
procedure walter(m n: integer); {forward declaration}
forward;
procedure clara(x, y: real);
begin
;léiter(lt, 5); {OK because walter is forward declared}
procedure walter; {defining declaration}
begin

clara(s.3, 2.4);

end;

A procedure-declaration that has extemal instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a .PROC in the case
of assembly language). The external code must be linked with the compiled

7-2

Pascal Reference Manual Procedures & Functions

Pascal host program before execution; see the warkshigp Users Guide rfor the
Lisa for details.

Example of an extemal procedure-ageclaration:

procedure makescreen(index: integer);
external; :

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

It is the programmer’s responsibility to ensure that the external
procedure is compatible with the extemnal declaration in the Pascal
program; the current linker does no checking.

NOTE

This Pascal {unlike Apple I and Apple 111 Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = bigpaoc;

proced\.lre whatever (bytearray: bigpaocptr);
external;

The actual-parameter can be any pointer value obtained via the @
operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing

whatever(adots)

This description of external procedures also applies to external functions.

Pascal Rererence Mansl Proceoures & Functions

7.2 Function—-Declarations
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

runction-aeclaration

——-—»(function-heading

function-boay

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result.

Anction-heading_y(sunction)-#{ identifier }—)

(
list l—j

\—[formal-parameter-

result-type

b{ orainal-type-lgentifier

real-type-identifier

pointer-type-identifier

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression is evaluated by executing the function, and replacing the function-
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.

If no such assignment-statement exists, or if it exists but is not executeqd, the
value returned by the function is unspecified.

7-4

Pascal Reference Manusl Proceoures & Functions

If the function's identifier is used in a function-call within the function's
block, the function is executed recursively.

Examples of function-declarations:

function max(a: vector; n: integer): real;
var x: real; i: integer;

begin
x := af1];
for i :=2 tondo if x < a[i] then x := a[i}
max := X

end;

function power(x: real; y: integer): real; { y >= 0}
var w,z: real; 1: integer;
begin
wi=xX z:=11:=
while i > 0 do begi
{z#(w=1) =
if odd(i) then z := z*w;
1 :=1div 2;
== sqr(w)
end
{z = xxny }
power := z
A function can be declared forward in the same manner as a procedure (see
Section 7.1 above). This permits mutual recursion.

A function-declaration that has external instead of a block defines the Pascal
interface to a separately compiled or assembled external routine (@ JFUNC In
the case of assembly language). See the explanation in Section 7.1 above.

7.3 Parameters
A formal-parameter-list may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.

If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

y-

Pascal Reference Marial Proceaures & Funetions
this case there is no associated block and the identifiers of parameters in the
formal-parameter-1ist are not significant (see Sections 7.3.3 and 7.3.4 below).

farmal-parameter-list
»(O »| parameter-declaration
procedure-heading

function-heading

fdentifier-list

Srameter -geclaration

type-identifier |-

There are four Kinds of parameters: value parameters varigble parameters
procedural parameters and Aunctionsl psrameters They are distinguished as
follows:

* A parameter-group preceded by var is a list of variable parameters.
* A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

NAOTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type In a
formal-parameter-list. To use a type such as array[D..255] of char as
the type of a parameter, you must declare a type-identifier for this
type: :

type charray = array[0..255] of char;

The identifier charray can then be used in a formal-parameter-list to
denote the type.

7-6

Pascal Reference Mamal Proceaures & Fuctions

NOTE

The word flle (for an “untyped” file) is not allowed as a type-identifier
in a parameter-declaration, since it is a reserved word, To use a
parameter of this type, declare some other identifier for the type flle
--for example,

type phyle = file;

The identifier phyle can then be used in a formal-parameter-list to
denote the type file.

7.3.1 Value Parameters
For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of file-type or of any structured-type that contains
a flle-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable-
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Joentical to that of the formal variable-parameter.

NOTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a polnter, these actions are executed
before the actlvation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.33 Procedural Parameters
when the formal-parameter is a procedure-heading, the corresponding actual-
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

Pascal Reference Marsl Procegures & Functions

Example of proceaural parameters:

program passProc;
var i: integer;

prowtiiure a(procedure x) {x is a formal procedural parameter.}
n

write('About to call x *):
x {call the procedure passed as parameter}
end;

procegure b;

begin
write('In procedure b")
end;

function c{procedure x): integer;
in

x; {call the procedure passed as parameter}
c:=2
end;
begin
a(b); {call a, passing b as parameter}
i:= c(b) {call c, passing b as parameter}
end

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list -is omitted.

Example of proceaural parameters with thelr own fonmal-parameter-lists:
program test;
procecixn.nre xAsPar(y: integer);
writeln(‘y=*, y)
end;
procedure callProc(procedure xAgain(z: integer));
begin
xAgain(1)
end;
begin {body of program}
callProc(xAsPar)
end.

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity

Pascal Reference Marual Procegures & Functions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstReceiver, passing pp as an
actual parameter.

3. firstReceiver calls secondReceiver, again passing pp as an actual
parameter.

4. secondReceiver calls pp (first execution of pp).

5. secondReceiver calls thirdReceiver, again passing pp as an actual
parameter.

6. thirdReceiver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp is called first from secondReceiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.

Each time pp is called, which xxx does it access? The answer is that in eac»
case, pp accesses the xxx that is local to the Arst execution of flrstPasser--

that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

73.4 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
adoitional rule that corresponding formal and actual functions must have
Ioentical result-types.

7.35 Parameter List Compatibility
Parameter list compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

Pascal Reference Maral Proceaures & Functions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

» They are both value parameters of Joenlical type.
* They are both variable parameters of Joentical type.
* They are both procedural parameters with compatible parameter lists.

* They are both functional parameters with compatible parameter lists and
laentical result-types.

7-10

029-0400-A

Chapter 8

Programs
81 Syntax 8-1
82 Program-Parameters... 8-1
83 Segmentation 8-1

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional wses-clause

program
—+{ program-heading }-+(;)
orogram-heaaing

—{program}-»| identifier | A >
\—@-»l program-parameters }—D@J

LIOYEIN PAINCLELS [1qontifler-1ist
uses-clause identifier-list

The occurrence of an identifier immediately after the word program declares it
as the program's ldentifter.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

8.2 Program—Parameters
Currently, any program-parameters are purely decorative and are totally
ignored by the compller.

8.3 Segmentation
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment”). Any other block can
be placed in a different segment by using the $S complier command (see
Chapter 12 and Appendix A). If no $S command is used in the program, all
code is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unit, but it cannot be mixed with
code from an iIntrinsic-unit (see Chapter 9).

029-0401-A

92
93

Regular-Units

9.1.1 writing Regular-Units

Intrinsic-Units

..

9.1.2 Using Regular—Unitscccoooicciariimnrosranmnnneennenenns

...................

Units that Use Other Units

Units

A unit is a separately complled, non-executable object file that can be linked
with other object files to produce complete programs. There are two Kinds of
units, called reguiar-unlts and intrinsic-units In the current implementation of
the workshop, you can use Intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be compiled, and its object
file must be accessible to the compiler, before the host program (or unit) can
be compiled.

9.1 Regular-Units
Regular-units can be used as a means of modularizing large programs, or of

making code available for incorporation in various programs, without making
the source avallable.

when a program or unit (called the sost) uses a regular-unit, the linker inserts
a copy of the compiled code from the regular-unit into the host's object file.

By default, the code copled from the regular-unit is placed In the blank
segment (see Chapter 8). The code of the entire unit, or of blocks within the
unit, can be placed in one or more different segments by using the $S compiler
command (see Chapter 12).

9.1.1 Wrlting Regular-Units
The syntax for a regular-unit is:

requiar-unit unit~heading ;)
(b[interrace-part_|#{ implementation-part_}(end (.)—»

lt-heang oy uepe)—wf icentifier —»

Pascal Reference Manual hits

nterface-pe interface N

constant-declaration-part h

jl

type-declaration-part |—)

IARANS

variable-declaration-part h

P
“#{ procedure-and-function-declaration-part |———»

inwlementatian-paft’(implementation)) ™

-
\DI constant-declaration-part }—)

(
#{ type-declaration-part }—)

»
\b[variable-declaration-part l—)

P
\#| procedure-and-function-declaration-part |——=#

The Interface-part declares constants, types, variables, procedures, and
functions tThat are "public," i.e. available to the host.

-
The host can access these entities just as if they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated
to nothing but the procedure or function name, parameter specifications, and
“function result-type.

NOTE

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3).

9-2

Pascal Reference Manual Lnits

The (ir_!_\p_lier_ngbrltgion;pg& which follows the last declaration in the interface-
part, begins by declaring any constants, types, variables, procedures, or
functions that are "private,” l.e. not available to the host.

i The public procedures and functions are re-declared in the implementation-

' part. The parameters and function result types are omitted from these

' geclarations, since they were declared in the interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “initialization” section in Pascal units on the Lisa (unlike
Apple 11 and Apple Il Pascal). If a unit requires initialization of its
data, it should define a public procedure that performs the initialization,
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit is:

unit Simple;
INTERFACE {public objects declared}
const Firstvalue=1;
procedure AddOne(var Incr:integer);
function Addi(Incr:integer):integer;
IMPLEMENTATION
procedure AddOne; {note lack of parameters...}
begin
Incr:=Incr+1
end;
function Addl; {...and lack of function result type}
begin
Addl:=Incr+1
end
end.

9.1.2 Using Regular-Units
The syntax for a uses-clause is given in Section 8.1. Note that in a host
program, the uses-clause (if any) must immediately follow the program-
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol interface. Only one uses-clause may appear in any host program or
unit; it declares all units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

Pascal Reference Maral Lnits

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more details.

Assume that the example unit Simple (see above) is compiled to an object file
named APPL:SIMPLE.OBJ. The following is a short program that uses Simple.
It also uses another unit named Other, which is in file APPL:0THER.OBJ.

program CallSimple;
uses {$U APPL:SIMPLE.OBJ} {file to search for units}

Simple, {use unit Simple}
{$U APPL:0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i:integer;
begin
1:=Firstvalue; {Firstvalue is from Simple}
write('i+1 is ', Add1(i)); {Addl is defined in Simple}
write(xyz(i)) {xyz is defined in Other}
end.

9.2 Intrinsic-Units

The only intrinsic-units you can use are the ones provided with the Workshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code in the system. The code is kept on disk, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units).

By default, the system looks up all intrinsic-units in the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U filenarne compiler command is not needed with intrinsic-units.

9.3 Units that Use Other Units
As explained above, the uses-clause in the host must name ail units that are
used by the host. Here "used" means that the host directly references
something in the interface of the unit. Consider the following diagram:

unitA
interface
uses unitC;

Host Program implementation \q
uses unitA, unitB;

unitC

interface

unitB - .
implementation

interface

implementation

Pascal Reference Manugl nits

The host program directly references the interfaces of unitA and unitB; the
uses—clause names both of these units. The implementation-part of unitA also
references the interface of unitC, but it is not necessary to name unitC in the
host-program’s uses-clause.

In some cases, the uses—clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the /nferrace of unitA references the interface of unitcC,
and unitC must be named in the host-program’s uses-clause. Note that unitC
must be named berore unitA

unitA
interface
uses unitcC; n
\ unitC
imy en
Host Program plermnentation Interface

uses unitC, unita,

unitB; unitB
implementation

interface

implementation

In a case like this, the documentation for unitA should state that unitC must
be named In the uses-clause before unitA.

029-0402-A

10.1

10.2

103

Chapter 10

Input/Output
Introduction to 1/0
10.1.1 DEVICE TYPES couuieenciriineiirneerintanssrnensseeansaassstnsssestennressessanns
10.1.2 External File SPetieso irieiiiimiccciircret st ee e eeanaas
10.1.3 The Reset Procedure
10.1.4 The Rewrite Procedure
10.15 The ClOSE PTOCEBOUTE.......cciecreecucanattansccnsstiensesrnssanresassasnseanens
10.1.6 The Ioresult FUNCHION.....c.ccoiiiiiiiiiiinissnstneen st
10.1.7 TheEof FUNCHION ...t enenens
Record-Oriented 1/0 .. 10-8
10.2.1 The GELPYOCEOUIEc.cooomecreerrremeanenreeercncanannncesereancnnaseeranannns 10-8
10.2.2 The PULPTOCEOUTE.civuuiiiiiiienrernnceenseet e e s sscannsssannnnnn 10-8
10.2.3 The SEEK PYOCEOUIEccuceumeneeerieanannesateeeenmnrennnssseresennsaseesaasnnnn 10-9
Text-Oriented 1/0 . -10-9
10.3.1 TheRea0PTOCEOUTEccimiiieneiencnnitenentetenaneetenansseensassanann 10-11
10.3.1.1 Read withaChar Varablecccoiiconeiciiiiininncannne. 10-12
10.3.1.2 Read with an Integer or Longint Variable..................... 10-12
10.3.1.3 Read withaReal Variable........cccooooaiiiinnincannennnans 10-12
10.3.1.4 ReadwithaStringVariable.......cccccoooiiiiiiiiinnciicnnas 10-13
10.3.1.5 Read with aPacked Array of Char Variable................. 10-13
10.3.2 The Readln PIOCEOUTE..... i criaereacrencreasecnnnnerasmmeseee e mnnan 10-14
1033 The WIIte PIOCEOUTE.....ccium e aecreeeentemtacsseeecas e neessanen 10-14
10.3.3.1 OUEPUL=SPEES . oo iiiciiinacctccceer e ce et et e mn et e e e aaee 10-15
10.3.3.2 WritewithaChar Value.......c.ccccveiiiniiiiinaacnaceannnne ip-15
10.3.3.3 write withanIntegerorlLongint Value 10-15
10.3.3.48 write withaReal Valugccoviiacainiiicnniiiinnnanas 10-16
10.3.3.5 Write withaString ValLgcoviieiiiinnmnniiiiciinninnesn. 10-16
10.3.3.6 Write with a Packed Array of Char Valueveeeeennee. 1D-17
10.3.3.7 Write withaBoolean Valuecccccccveeccacnncennannanes 10-17
1034 The WHLEIN PIOCEOUTE ... ieeiiiiieciiriciinreeiecnneensssaeaesennnesee 1017
10.35 TheEoINFUnCion ...ttt ceceanaee 10-17
10.3.6 ThePage PTOCEOUTEcveucciiraeecnecrrsstirtesnsensnssssssansesseasennse 10-18
10.3.7 Keyboard Testing and Screen Cursor Controloeee. 10-18
10.3.7.1 The Keypress Functionooooooiircaaincanncacaarnaaas 10-18
10.3.7.2 The GotoxXyPTOCBOUIE eeeceeenaes 10-18

Pascal Rerference Marsl
10.4 UntypedFile 1/0 10-18
10.4.1 TheBlockread FUNCLIONc.cceevieieiieeneerncncaneeesnasnsansreesnsenanes 10-19
.. 10-20

10.4.2 The Blockwrite Function

Input/Output

This chapter describes the standard (“built-in") 1/0 procedures and functions of
Pascal on the Lisa

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a “block” surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.,

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modified BNF notation, Instead of syntax
diagrams, to indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parameter List: new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

*p, t1, and t7~ stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t7 means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0
This section covers the 1/0 concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and “untyped” flles (see Section
10.4). ,

To use a Pascal file variable (any variable whose type is a file-type), it must
be associated with an external flle. The external file may be a named
collection of informatlon stored on a peripheral device, or (for certain file-
types) it may be the peripheral device itself.

The association of a file variable with an extemal file is made by goening the
file. An existing file is opened via the reset procedure, and a new flle is
created and opened via the rewrite procedure.

10-1

Pma] Reference Manal nout/anput

NOTE

Pascal on the Lisa does not provide automatic 170 checking. To check
the result of any particular 1/0 operation, use the loresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

* A fle-structured device Is one that stores files of data, such as a diskette.

* A charscter device is one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 Extemal File Species
There are three “species” of external files that can be used in Pascal 1/0
operatlons:

* A dataffle is any file that is stored on a file-structured device and was
not originally created in association with a file variable of type text.

* A textflle is a file that is stored on a file-structured device and was
originally created in association with a file variable of type text. Textfiles
are stored in a specialized format (see Section 10.3).

* A character aevice tan be treated as a file.

Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external file species. The “ordinary cases” in the table
reflect the basic intent of the various file-types. Other combinations, such as
block-orlented access to a textfile via a variable of type file, are legal but
may require cautious programming.

10-2

Pascal Rerference Marval Input/uipent
Table 10-1
Combinations of File Variable Types with Extemal File Species
and Categorles
var f: flle of .
sorne"rype; var f: text; var f: file;
Ordinary case. (Textflle format { COrdinary case.
datafile | After reset, asmmed!l After]Block access.
f" = 1st record | reset~, f" is
file. unspecified.
(Textfile format | Qrdinary case. (Textflle format
not assumed!) Textfile format |} not assumed!)
. After reset», assumed. After [Block access.
textfile |¢- - 15t record {reset, £ is
of file (as unspecifieq,
declared).
After reset, Ordinary case. Block access,
f = 1st char. After reset, if allowed by
character | from device f" is unspeci- device.
device |(system walts for | fied (no wait
it!). 1/0 error if for input char).
file record type
not byte-sized.
= In these cases, the loresult function will retum & “waming”
(ie, a negative rumber) immediately after the reset gperation.

10.1.3 The Reset Procedure
Opens an existing file.

Parameter List: reset(f, title)

1. f Is a variable-reference that refers to a variable of file-type. The file
must not be open.

2. title is an expression with a string value. The string should be a valid
pathname for a file on a file-structured device, or a pathname for a
character device.

10-3

Pascal Reference Maral Input/Quiput

NOTE

Both parameters are required (unlike Apple Il and Apple III Pascal,
where the second parameter is optional).

Reset(f, title) finds an existing external file with the pathname title, and
associates f with this external file. (If there is no existing external file with
the pathname title, an 1/0 error occurs; see Section 10.1.6.

If title is the pathname of a character device, then
* Eof(f) becomes false.

* If f is of type text, the value of f" is unspecified. The next read or readin
on f will walt until a character is available for input, and begin reading
with that character.

* If f Is of type flle and the device Is one that allows block access, there is
no file buffer variable £~ and the "current file position” is set to the first
block {block D) of the file. If the device does not allow block access, an
1/0 error occurs (see Section 10.1.6).

* If f is not of type text or file, its component-type must be a "byte-size™
type such as the type -128..127. Note that char is not a byte-size type! If
the cimponent—type of f is not byte-size, an 1/0 error occurs (see Section
10.1.6

If no 1/0 error occurs, the system waits until a character is available from
the device and then assigns the character's 8-bit code to f".

If title is the pathname for an existing file on a file—structured device, then

* Eof(f) becomes false if the external file is not empty. If the external file
is empty, eof(f) becomes true.

 If £ is not of type text or file, reset sets the "current file position" to the
first record in the external file, and assigns the value of this record to the
file buffer variable f. If the external file is a textfile, the ioresult
function will retumn a negative number as a warning (see Section 10.1.6).

* If f is of type text, the value of £~ is unspecified. If the file is a textfile,
the next read or readin on f will begin at the first character of f. If the
file is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the ioresult function will return a negative number as a waming
(see Section 10.1.6).

* If f is of type file, there is no file buffer variable f~ and the “current file
position” is set to the first block (block 0) of the file.

10-4

Pascal Reference Manua! Input/Qutput

10.1.4 The Rewrite Procedure
Creates and opens a new file.

Parameter List: rewrite(f, title)
1. f is a variable-reference that refers to a variable of file-type.

2. title Is an expression with a string value. The string should be a valid
pathname for a file on a flle-structured device, or a pathname for a
character device.

If f Is already open, an 1/0 error occurs (see Section 10.1.6).
If title is the pathname of a character device, then
* Eof(f) becomes false. |
* Rewrlte(f, title) simply associates f with the device and opens f.
* The status of the device is not affected. :
* The value of f~ becomes unspecified.
If title is the pathname for a new file on a flie-structured device, then
* Eof{f) becomes true.

= Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file. This is the only way to create a new
external file.

* The species of the new external file is set according to the type of f--
“textfile" for type text, or “datafile” for any other type.

* The value of £~ becomes unspecified.

* If fis not of type file, the "current file position” is set to just before the
first record or character position of the new external file.

= If f is of type file, the “current file position" is set to block O (the first
block in the file)

= If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new external file is discarded at that time. Closing f
with lock or crunch is the only way to make the new extemal file
permanent.

¢ If title is the pathname of an existing external file, the existing file will be
discarded only when f is subsequently closed with the lock or crunch option
(see Section 10.1.5).

Unspecified effects are caused if the current file position of a file f is altered
while the file-buffer £~ is an actual variable parameter, or an element of the
record-varlable-reference list of a with-statement, or both.

10-5

Pascal Rererence Manual Input/utout

10.15 The Close Procedure
Closes a file.

Parameter List: close(f [, option])
1. f is a variable-reference that refers to a variable of file-type.

2. optlon (may be omitted) is an identifier from the list given below. If
omitted, the effect is the same as using the identifier normal.

Close(f, option) closes f, if f is open. The association between f and its
external file is broken and the flle system marks the external file “closed”. 1If
f is not open, the close procedure has no effect.

The option parameter controls the disposition of the extemnal file, iIf it is not a
character device. If it is a character device, f is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for option are as follows:

* nommal - If f was opened using rewrite, it is deleted from the oirectory.
If f was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter is omitted,

* lock -- If the external file was opened with rewrite, it is made permanent
in the directory.

If £ was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch is "on™). If the old file has the
safety switch “on,” it remains in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

* purge -- The extemal file is deleted from the directory (unless the safety
switch is "on"). In the special case of a file that already exists and is
opened with rewrlte, the original file remains in the directory, unchanged.

* crunch —- This Is like lock except that it locks the end-of-file to the point
of last access; i.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the file system to mark the
external file “closed" and will make the value of £ unspecified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

NOTE

If you open an existing file with reset and modify the file with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

Pascal Rererence Marvial Input/uipet

10.16 The Ioresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 170 operation, you must use the ioresult function.

Result type: integer
Parameter List: no parameters

loresult returns an integer value which reflects the status of the last com-
pleted 1/0 operation. The codes are given in the workshgp Users Gulde for the
L/sa. Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are “warnings” (see Table 10-1).

Note that the codes returned by loresult are not the same as the codes used in
Apple I and Apple 111 Pascal.

NOTES

The read, readin, write, and writeln procedures described in Section 10.3
may actually perform multiple 1/0 operations on each call. After one of
these procedures has executed, loresult will return a code for the status
of the Jast of the multiple operations.

Also, beware of the following common error in diagnostic code:

read(foo);
writeln('ioresult=', ioresult)
The intention is to write out the status of the read operation, but

instead the status written out will be that of the write operation on the
string ‘joresult=",

10.1.7 The Eof Function
Detects the end of a file.

Result Type: boolean
Parameter List: eof [(f)]
1. f is a variable-reference that refers to a variable of file-type.

If the parameter-list is omitted, the function is applied to the standard file
input (see Section 10.3).

After a get or put operation, eof(f) retumns true if the current file position is
beyond the last external flle record, or the external file contains no records;
otherwise, eof{f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
file record (or the file is empty).

* After a put, eof(f) returns true if the record written by the put is now the
last flle record.

10-7

Pascal Reference Marnal Input/utput

If £ is a character device, eof{(f) will always return false.
See Section 103 for the behavior of eof{f) after a read or readin operation.
NOTE

whenever eof(f) is true, the value of the file buffer varlable f~ s un-
specified.

10.2 Record-Oriented 1/0
This section covers the get, put, and seek procedures, which perform record-
oriented 1/0; that is, they consider a file to be a sequence of variables of the
type specified In the file-type. These procedures are not allowed with files of
type file.
The effects of get and put are unspecified with files of type text, and seek has
no effect with files of type text. The text type Is supported by specialized
procedures described in Section 10.3.

10.21 The Get Procedure
Reads the next record in a file.

Parameter List: get(f)

1. fis a varlable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) is false, get(f) advances the current file position to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof{f) becomes true, and the value of f" becomes unspecified.

If eoff) Is true when get(f) is called, then eof(f) remains true, and the value of
f" becomes unspecified.

If the external file is a character device, eof{f) is always false and there is no
“current file position. In this case, get(f) waits until a value is ready for input
and then assigns the value to .

10.2.2 The Put Procedure
writes the current record in a file.

Parameter List: put(f)

1. f Is a variable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) is false, pul(f) advances the current file position to the next file
record and then writes the value of f~ to f at the new file position. If the
new file position is beyond the end of the file, eof(f) becomes true, and the
value of f~ becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof(f)
remains true.

10-8

Pascal Reference Menual InputQutput

If the external file is a character device, eof(f) is always false, there is no
“current file position,” and the value of f is sent to the device.

NOTE

If put is called immediately after a file is opened with reset, the put
will write the secono record of the file (since the reset sets the
current position to the first record and put advances the position before
writing). To get around this and write the first record, use the seek
procedure (see Section 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record in a file,

Parameter List: seek(f, n)

1. f is a variable-reference that refers to a variable of flle-type. The file
must be open.

2. nis an expression with an integer value that specifies a record number in
the file. Note that records in files are numbered from O.

If the flle is a character device or is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the file,
forcing it to access file record n instead of the "next” record. Seek(f, n) does
not affect the flle-buffer f~.

A get or put must be executed between seek calls. The result of two con-
secutive seeks with no intervening get or put is unspecified. Immeoiately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

NOTE

The record number specified in a seek call Is not checked for validity.
If the number is not the number of a record in the file and the program
tries to get the specified record, the value of the file-buffer becomes
unspecified and eof becomes true.

10.3 Text-Oriented 1/0
This section describes input and output using file variables of the standard type
text. Note that in Pascal on the Lisa, the type text is distinct from file of
char (see Section 3.2.4).

when a text file is opened, the external file is interpreted in a special way. It
is considered to represent a sequence of characters, usually formatted into
Jines by CR characters (ASCH 13).

The Lisa keyboard and the Workshop screen appear to a Pascal program to be
built-in files of type text named input and output respectively. These flles

10-9

Pascal Reference Manual Inout/utoet

need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program is taking input from input, typed characters are echoed on the
workshop screen. In addition to the Input file, the Lisa keyboard is also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external file pathname.

Other interactive devices can also be represented in Pascal programs as files of
type text.

when a text file is created on a file-structured device, the external file is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

* The stored file Is a sequence of 1024-byte pages

* Each page contalns some number of complete lines of text and is padded
with null characters (ASCII 0) after the last line.

* Two 512-byte feader blocks are also present at the beginning of the file.

* A sequence of spaces in the text may be compressed Into a two-byte code,
namely a ZL£ character(ASCII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other file-type).

Certain things that can be done with a record-structured file are impossible
with a file variable of type text:

* The seek procedure does nothing with a file variable of type text
* The effects of get and put are unspecified with a file variable of type text.

* The contents of the file buffer variable are unspecified with a file variable
of type text.

* A file variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented 1/0 provides the following:
* Automatlc conversion of each input CR character into a space.

* The eoln function to detect when the end of an input line has been
reached.

* The read procedure, which can read char values, string values, packed array
of char values, and numeric values (from textual representations).

10-10

Pascal Rerference Manual InputQutout

* The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readin and writeln procedures.

= The page procedure, which outputs a form-feed character to the external
file.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE-codes.

= Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procedure
Reads one or more values from a text file into one or more program variables.

Parameter LIst: read([f,] vi [, v2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-list.

1. f (may be omitted) is a variable-reference that refers to a variable of
type text. The flle must be open. If f Is omitted, the procedure reads
from the standard text file input, which represents the Lisa keyboard.

2. vl .. vn are Input variables Each is a variable parameter, used as a
destination for data read from the file. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

* char, integer, or longint (or a subrange of one of these)
* real
* a string-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Read(f,vl...v7) is equivalent to:

begin
read(f,v1);

fééd(f, vn)
end

10-11

Pascal Reference Marugl Input/Qutout

NOTE

Read can also be used to read from a file fil that Is not a text file. In
this case read(fil,x) is equivalent to:

begin .
== il ;
get(fil)
end

10.3.1.1 Read with a Char Variable
If £ is of type text and v is of type char, the following things are true
immediately after read(f,v)

* Eof{f) will return true if the read attempted to read beyond the last
character in the external file.

* Eoln(f) will return true, and the value of v will be a space, if the character
read was the CR character. Eoln{f) will also retumn true if eof(f) is true.

10.3.1.2 Read with an Integer or Longint Variable
If f is of type text and v is of type Integer, subrange of integer, or longint,
then read(f,v) implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation is not allowed). If the value read is assignment-
compatible with the type of v, it is assigned to v; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character Is reached that, together with the
characters already read, does not form part of a signed whole number.

An error occurs If a signed whole number is not found after skipping any
preceding blanks and CRs.

If f is of type text, the following things are true immediately after read(f v}

* Eof(f) will return true if the last character in the numeric string was the
last character in the external file.

* Eoln{f) will retum true if the last character in the numeric string was the
last character on the line (not counting the CR character). Eoln(f) will also
returmn true if eof(f) is true.

10.3.1.3 Read with a Real Varlable
If f is of type text and v is of type real, then read(f,v) implies the reading
from f of a sequence of characters that represents a real value. The real
value is assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the

10-12

Pascal Reference Marual Input/Qutput

characters already read, does not form a valid representation. A “valid
representation” is either of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Section 1.4 (except that hexadecimal notation is
not allowed). An integer or longint value is converted to type real

* An infinite value or Nan represented as described in Appendix D.

An error ocecurs if a valld representation is not found after skipping any
preceding blanks and CRS.

Immediately after read(f,v) where v is a real variable, the status of eof(f) and
eoln(f) are the same as for an integer variable (see Section 10.3.1.2 above).

10.3.1.4 Read with a String variable
If f is of type text and v is of string-type, then read(fv) implies the reading
from f of a sequence of characters up to &t not including the next CR or
the end of the file. The resulting character-string iIs assigned to v. An error
occurs if the number of characters read exceeds the size attribute of v.

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR s left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readin to read string values (see Section 10.3.2). Readin
skips to the beginning of the next line after reading.

The following things are true immediately after read(f,v}
» Eof(f) will return true if the line read was the last line in the flle.
* Eoln(f) will always return true.

10.3.1.5 Read with a Packed Array of Char Variable
If £ is of type text and v is a packed array of char, then read(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in v until all positions have been filled, or until
a CR or the end of the file is encountered. If a CR or the end-of-file is

encountered, it is not read into v; the remaining positions in v are filled with
spaces.

10-13

Pascal Reference Maral Input/Quiput

10.3.2 The Readin Procedure
The readin procedure is an extension of read. Essentially it does the same
thing as read, and then skips to the next line in the input file.

Parameter LIst: The syntax of the parameter list of readin is the same as that
of read, except as follows:

* A readin call with no input variables is allowed. Example:
readln(sourcefile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure reads from the standard file Input, which represents the
Lisa keyboard.

ReadIn(f), with no input-variables, causes a skip to the beginning of the next
line (If there is one, else to the end-of-file).

Readin can an/ybe used on a text file. Except for this restriction,
readin(f v1...,v/?) is equivalent to:
begin
read(f,vi, ...,vn)
readln(f)
end

The following things are true immediately after readln(f,v) regardless of the
type of v

» Eof(f) will retumn true if the line read was the last line in the external file.
* Eoln(f) will always return false.

1033 The Write Procedure
writes one or more values to a text file.

Parameter List: write([f,] p1 [, p2, ... pr])

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f(may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure writes to
the standard file output, which represents the Workshop screen.

2. pl .. prare oulput-specs Each output-spec includes an owiowt
expression, whose value is to be written to the file. As explained below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Reference Manual Inputaunput

write{f p1...p»n) is equivalent to:
begin
write(f,p1);

l'n.'ite(f, pn)
end

Immediately after write(f), both eof(f) and eoln(f) will return true.
NOTE

write can also be used to write onto a file fil that is not a text file.
In this case write(filX) is equivalent to:

begin
fl :=x
put(fil)
end

10.3.3.1 Output-Specs
Each output-spec has the form

outExpr [: Minwidth [: DecPlaces]]

where QutEXpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwldth specifies the minimun fleld width, with a default value that
depends on the type of the value of OUtEXpr (see below). Minwidth should be
greater than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when OUtExpr
has a nwnerfc value that requires more than Minwldth characters; In this
case, enough characters are written to represent the value of OUEXpT.

DecPlaces specifies the number of decimal places in a fixed-point repre-
sentation of a real value. It can be specified only if OutExpr has a real value,
and if Minwidth is also specified. If DecPlaces Is not specified, a floating-
point representation is written.

10.33.2 write with a Char Value
If OUtExpr has a char value, the character is written on the file f. The default
value for Minwidth is one.

10.33.3 write with an Integer or Longint Value
If QUEXPr has an integer or longint value, its decimal representation is written
on the flle f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value Is
negative, and any leading spaces that may be required to satisfy Minwidth. If
}he representation requires more than Minwidth characters, Minwidth is
gnored.

10-15

Pascal Reference Manual Inoututput

10334 write with a Real Value
If OUtExpr has a real value, the default value for Minwidth is 12,

If QUtExpr has an Infinite value, it Is output as a string of at least two "+"
characters or at least two “-" characters. If OUtEXpr is a NaN, it is output as
the character string “NaN", possibly followed by a string of characters enclosed
by single-quotes. See Section 10.3.3.5 for details on string output.

If QULEXpr has a zero value, it Is represented as 0" or “-0"

If OUtExpr has a finite value, its decimal representation Is written on the file
f. This representation Is the nearest possible decimal representation, depending
on Minwidth and DecPlaces. If the unrounded value Is exactly halfway
between two possible representations, the representation whose least significant
digit is even is written out.

If DecPlaces Is not specified, a Aoating-point representation is written as
follows:

* If Minwidth is less than &, then its value is set to 6 (Internally). This is the
minimum usable width for writing a floating-point representation.

= If the sign of the value of OUtExpr is negative, a minus sign Is written;
otherwise, a space is written.

 If Minwidth 2 8, the significant digits are written with one digit to the left
of the decimal point and (Minwidth - 7) digits to the right of the decimal

point.

= If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

* The exponent is written as the letter "E", an explicit “+" or "-" sign, and
two digits.

If DecPlaces is specified, a Axeg-point representation is written as follows:
* Enough leading spaces are written to satisfy Minwidth.

= If the value is negative, the minus sign “~" is written; if it is not negative,
a space s written.

« If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

* If DecPlaces < 0, only the integer part of the vaiue is written and no
decimal point is written.

10.3.3.5 write with a String Value
If the value of DUtEXpr is of string type with length L, the default value for
Minwidth is L. If Minwidth>~L, the value is written on the file f preceded by
(Minwidth-L) spaces. If Minwldth<L, the first Minwidth characters of the
string are written.

10-16

Pascal Reference Marual Inpututput

10336 Write with a Packed Array of Char Value
If E Is of type packed array of char, the effect is the same as writing a string
whose length is the number of elements in the array.

103.3.7 Wwrite with a Boolean Value ,
If the value of OUtExpr is of type boolean, the string * TRUE" (with a leading
space) or the string "FALSE" is written on the file f. The default value of
Minwidth is 5. If Minwldth>5, leading spaces are added; if MinwWidth<5, the
first Minwidth characters of the string are written. This is equivalent to:

write(f,' TRUE':Minwidth)
or
write(f, ‘FALSE' :Minwidth)

10.3.4 The writeln Procedure
The writeln procedure is an extension of write. Essentially it does the same
t{\in)? as write, and then writes a CR character to the output file (ending the
line

Parameter List: The syntax of the parameter list of writeln is the same as
that of write, except as follows:

s A writeln call with no output-specs is allowed. Example:
writeln(outputfile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a flle, or if the parameter-list is
omitted, the procedure writes to the standard flle output, which represents the
workshop screen.

writeln{f) writes a CR character to the file f.

writeln can or/ybe used on a text flle. Except for this restriction,
writeln(f p1....p») is equivalent to:

begin
vrite(f,pl,...,pn)
writeln(f)

end

Immediately after writeln(f), both eof(f) and eoln(f) will return true.

10.35 The Eoln Function
Result Type: boolean

Parameter List: eoln[(f)]

1. f is a variable-reference that refers to a varlable of type text. The file
must be open.

The actual-parameter-list can be omitted entirely. In this case, the function is
applied to the standard file input (the Lisa keyboard).

10-17

Pascal Reference Marial Inputautput

Eoln(f) returns true "if the end of a line has been reached in £." The meaning
of this depends on whether the external flle Is a character device, on which 1/0
procedure was executed last, and on what type of variable was used to receive
an Input value. For detalls, see Sections 10.3.1 through 10.3.4.

The end of the file Is considered to be the end of a line; therefore eolr(f) will
return true whenever eof{f) is true.

103.6 The Page Procedure
Parameter List: page(f)

1. f is a variable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file £. This will cause a skip to the top of a new page when
f is printed.

Note that page{output) sends a form-feed to the Workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the Wwarkshop Users Guiae for the Lisa .

10.3.7 Keyboard Testing and Screen Cursor Control
103.7.1 The Keypress Function
Tests the Lisa keyboard to see if it has a character awaiting input.

Parameter LIst: no parameters.
Result Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This is done by testing the
typeahead queue; if the queue is empty, keypress is false, otherwise it is true.

10.3.7.2 The Gotoxy Procedure
Moves the Workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(x, ¥y)

1. x is an expression with an integer value. If x < 0, the value D will be
used; if x > 79, the value 79 will be used.

2. y is an expression with an integer value. If y < 0, the value D will be
used; if y > 31, the value 31 will be used.

Gotoxy(x, y) moves the cursor to the point (Xy) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10.4 Untyped File 110
Untyped file 1/0 operates on an “untyped file," i.e., a variable of type flle (no
component type). An untyped flle is treated as a segquence of 512-byte S/ocks:
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be interpreted at all during I/0
operations.

10-18

Pascal Referernce Manual Input/output

The blocks in an untyped file are considered to be numbered sequentially
starting with 0. The system keeps track of the cwrrent block number:this is
block 0 immediately after the file is opened. Each time a block is read, the
current block number is incremented. By default, each 1/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped file 1/0, an untyped file is opened with reset or rewrite, and
the blockread and blockwrite functions are used for input and output.

10.4.1 The Blockread Function
Reads one or more 512-byte blocks of data from an untyped file to a program
variable, and returns the number of blocks read.

Result Type: integer
Parameter LIst: blockread(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type file. The file
must be open.

2. databuf is a varlable-reference that refers to the variable into which the
blocks of data will be read. The size and type of this variable are not
checked; if it is not large enough to hold the data, other program data
may be overwritten and the resuits are unpredictable.

3. count is an expression with an integer value. 1t specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks
as it can, up to this limit.

4, blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockread(f, databuf, count, blocknum) reads blocks from f into databuf, starting
at block blocknum. Count is the maximum number of blocks read; if the
end-of-file is encountered before count blocks are read, the transfer ends at
that point. The value returned is the number of blocks actually read.

If the last block in the file was read, the current block number is unspecified
and eof{f) is true. Otherwise, eof(f) is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Reference Merusal Inout ot

104.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written.

Result Type: Ineger
Parameter List: blockerite(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type flle. The flle
must be open.

2. databuf is a variable-reference that refers to the variable from which the
_ blocks of data will be written. The size and type of this variable are not
checked.

3. count s an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are seguential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockwrlte(f, databuf, count, blocknum) writes blocks into f from databuf,
starting at block blocknum. Court is the maximum number of blocks written;
if disk space runs out before count blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written,

If disk space ran out, the current block number is unspecified. Otherwise, the
current block number is advanced to the block after the last block that was
written.

NOTE

Unlike Apple 11 and Apple 1l Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps in it.

10-20

029-0403-A

111

11.2

113

114

Chapter 11
Standard Procedures and

Functions

Exit and Halt Procedures - 11-1
11.1.1 TRe EXIt PTOCEOUTE..... . i ceeeeeeieeeeemeeaenaneraneaaecmsanensansesannnen 11-1
11.1.2 ThEHBILPTOCEBOUTEcccceeeieeeieeieeeennreecarecanennsensanssnsesnsnsnns 11-1
Dynamic Allocation Procedures 11-1
1121 TheNEW PTOCEOUTEceeieieeecrccenceanaeenenaanannannsnnsnsnasnnnnn 11-2
11.2.2 The HeapResult Function erteeemieretaseeeeaaaanaeeaaaanas 11-3
11.2.3 The MArK PTOCEOUTEceuveiieeiecaenaeccacaececmnennsaesansasmnsnnsnsnnennnnn 11-3
1124 The Releast PIOCEOUTEccccceviieeeeiecetucesanantessasassssasasasasasssanans 11-3
11.25 The Memavall FuNCLION....c.cciceiirciecerenecteieanecnseasecnsaenansonnes 11-3
Transfer Functions 11-4
11.3.1 The TIUNC FUNCLION ... eeieeeeereeneaeeseeereansnennsennnnnns 11-4
1132 The ROUNAFUNCION ... cne e rvec e eacnas s amacasnanannen 11-4
1133 The Orol FUNCHION ... ce e crec e vare e ceecaenesesasvesseannnns 11-4
1134 The PoIMter FUunCEION ..ot creecreneaeesaee e se s anasanenn 11-5
Arithmetic Functions

11.4.1 TRE OO FUNCLION ..cieeieieeeeereitirecreieeseeresasernsaanesesansassesnssansans
11.4.2 ThEe ADSFUNCHION ..o e ecceceenceee e sesaecesnesennsessannnennas
1143 TheSgrFunCHIoN. ..ttt e et e nn e ce e ceenanne
1144 The SINFUNCLION .o eecceetcencemecenneneennaennsensasnsnnssnsanssannns

11.45 The CosFunction
11.46 The ExpFunction ..

1147 TheLRFUNCHION ceae e ceee et e se e e e e e e anennannnes
11.4.8 The Sgrt FUNCHIoN ...t areressessasene
1189 The ATCLaN FUNCTION. ... iiirereeiincncrereesaseersessssasaesasassesnsnnnns
11.48.10 The PWIoften FUNCLIONoe ettt e e s ceesa e eanaes

115 Ordinal Functions 11-8
1151 The Ord FUNCE O . i teeeetereracnreseeesesnsesasesassennanssane 11-8
1152 The ChrFUNCLION ... eee e eme e reeanan 11-8
1153 The SUCC FUNMCHION ...ttt ceae e e e annseennnan 11-8
1154 ThePred FUNCLION cecceeceecere e seenreaeenranenenanen 11-9

Pascal Reference Manusal Standsard FProceaures & Furnctions

116

117

118

String Procedures and Functions 11-9
11.6.1 ThelLength FUnCION......cccciiiiiiniiinnieretire st e enssenens 11-9
11.6.2 ThePOSFUNCLION ..ottt ccte e tenete e e e emnenes 11-9
11.6.3 The Concat FUNCLIONcociiiirrmmeicriiiinerennn s ceste e e e eacenas 11-10
11.6.4 The Copy FUNCLION «.cooe e ctre e e enes 11-10
11.6.5 TheDelete PTOCEOUTEcccceuiiremmcinimmnnisernnenttmessrionessansanes 11-10
1166 TheINSert PrOCEAUTEc.civvivminieeniiriennrieenecseeanestenassseenns 11-10
Byte-Oriented Procedures and Functions 11-11
11.7.1 The Moveleft PTOCEOUTEccueeureeeiiieininiiennceseeneietnsacsenennes 11-11
11.7.2 The Moveright PIOCEOUIEccovteeecraraeetetcnnnerceereeeasesaesaemnne 11-12
11.7.3 The Sizeof FUNCHION ..o cmeet e ee e ee e e e e onae 11-12
Packed Array of Char Procedures and Functions 11-12
11.8.1 TheScaneqFunctionottt rer e csemcaneeenann 11-12
11.8.2 TheScanne FURCLIONccoiiiiiiiciiiiiiirtrce e cee e e e caes 11-13

11.8.3 The Fillchar PTOCEOUTEccceveeveceancenccensenerasceseerenssnsanssasasnses 11-13

Standard Procedures and
Functions

This chapter describes all the standard ("built-in") procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax dlagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
11.1.1 The Exit Procedure
Exits immediately from a specified procedure or function, or from the main
program.
Parameter List: exit(id)

1. id is the identifier of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(id) causes an immediate exit from id. Essentially, it causes a jump to the
end of id.

NOTE

The halt procedure (see below) can be used to exit the main program
from a unit without knowing the main program's identifier.

11.1.2 The Halt Procedure
Exits immediately from the main program.

Parameter List: no parameters
Halt causes an immediate exit from the main program.

11.2 Dynamic Allocation Procedures
These procedures are used to manage the /egg a memory area that is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal Reference Marnal Standard Proceaures & Functions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to return the status of the last preceding dynamic allocation operation..

11.2.1 The New Procedure
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List: new(p [, t1, ... tn])

1. p is a variable-reference that refers to a variable of any pointer-type.
This is a varlable parameter.

2. 11, .. tnare constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p . Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nil and a subsequent call to the heapresult function will retum a
non-zero result.

If the base-type of p is a record-type with variants, new{p) allocates enough
space to allow for the largest variant. The form

new(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values ti,
.. tnn (instead of enough space for the largest variants). The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

WARNING

when a record variable is dynamically allocated with explicit t