
More on
Debugging

Lisa Stack Frame Information
Register US8g~

DO - D2 and An - Al Can be used as user temporaries by your procedure
DO - D3 and AD - A2 Used for c~iler t~rarie$
04 - 07 and A3 - A4 Compiler uses for locals and pointers
AS Pointer to global stack frame (for main proor.-)
A5 Pointer to current local stack frame (current procedure)
A7 Pointer to the top of stack (Supervisor if domain • 0 otherwise user)

4 bYte pointers

one entry for each intrinsic ...ut,
each entry : address of start of

intrinsic glOO4l variables for

::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::;::::::::::::::::::::::
:::.~~~ .. ~.J~.~.~~:.::

that intrinsic ... i t. i!ill~it;I,~Z;illi!1
::::::::::::Size of table depends on :::::::::::::
:::::::~I"of";""""""'in""""""""'r":':':~j{ · ... · J~ ~.P .. ~

Global Stack Frame: .. . ~ I ::::::::::::::::;:;:::;:::::;::
~aCk grows down from high address to low address

Hij\ Address . .

<loader info abOUt .-re ~s are) fixed Size
Data Pu • e (512 bytes" up to 128 inuins1c "'its)

Shared nain (GlObal) ParMS, 256 bYtes, WlteA use
fmDOO--~~~~----~~~~----~~--~------~

AS _---t .. 1-__ Pl'...;..,;;..iv...;,.au_tlain....;.;;,..· _(~G.;;;.;loba..;;..;;..;;.;l;..) ..;..PIt.;;..;;.,.,;;;;aRS..;;;.;,.-" .;;;.;2S6;...;....;;;bytes~;.;.,,_sys~teR~.;;;.;use~---f,
nain progrM GlODalS > Link A5#'" ..

~----------------~----------~------~. Regular lMi t Q1Gbals > COMon Size
~------~----~~~--------~~----~ ~ ____ --. __ t--I_ntr __ inS1_· c_tm __ " t_Gl_obal __ S_ ---'I ... ~_-t>: SuR of Areas Referenced

L.jtu:um
orO(Jl'lS ofT ffffffff flOll A5

InclUdes regular wU t MthOd slice tables

~ncludes intrinsic Wlit Rethod slice tables

32K ... for Nib CORbined

Local Stack Frame (usual case}:

Hi. Address

fWlCtion Result (0. 2 or ~ bytes)
Par_ters (I bytes CleDendina on DIl_ter list) first Par_ter

list Para.tU'
SUtic Link (For local Drocs only .. Fra. proc defined inl o or ~ I.lSt 7it, is VIIiIYS SEI.F i' tJu~

is , &l1SC1J Mt/I()(/.

• .. AI
(StICk rr
inStlCk cr.l)

Return Address 00 procedure that called this procedure) ~

Old AI (fl_ Of proceGlre that called this proceGlre) 4
Local variables of this procedure

Link Ai ••...
CoRpiler T~ries for this procedUre

AT • >~e$
Low ACldress

Parameter Information:

sed for PllaMtric Procedures Met Fen:tions:
Address of procedUre body •

Static Link. valCJe = 0 if this is not a local, procedure ~

Stack Frame of TSamVie.,MousePreSSj

1 to
A7

Defore cal
IIoUSePr ess

r ..

~

~ -AI5
(StICk f
in Stack Cr.l)

Hi" Address
Address Of IIOUSeLPT

SElf
Return Addless (To procedure that called JIOUSePress)

Old AI (fr .. of procedure that called this procedure)
COpied local Yenion Of

__ LPT ,.tlMtar

Nne1
pidcSelecUcrt

,ictce&lJox
stcetchSelection

1heKind

4

• • •
I

A7-
During JIOUSePr • as ~~e

loll Address

Local VlIilbln

Stack Area

Local Variables Assigned to Registers in TSa.Vie.,MousePress
panel = A3 pointer to tJNI! globals = A4
sketchSelection = OS pickSelection • OS
theKind = 07

Using lisaBug in the ToolKit - Clascal Environment

Moving Around Stack Frames

You can use the following information about stack frames and register usage
while debugging in the Toolkit environment. The Global stack frame is the
stack frame for the main program. There is oneolObal stack frame for each
prooess. All other procedures, functions and methods have a unique local stack
frame created each time they are called. Local stack frames for methods always
have the handle SELF as the last parameter. Local stack frames for procedures
and functions that are not It the outer .ost level will contain a Static link
pointing to the stack frame of the procedure they were defjne~ wi thin. This
allows that local procedure to access variables defined in it's parent
procedure. When a local procedure is passed as a procedure parameter, this
static link is also passed. Clascal methods, procedures and functions declared
in the interface of a unit and procedures declared in the outer most level of
the main program never contain a static link. They don't have to since their
parent procedure is the main program whose stack frame is always referenced by
the AS register.

FindinG 'here You Are 'ithin • Cllse.l nethod -COIP.rina Source to Object Code

Here is an example .of a Glaseal Method.
PROCEDlME TSMView. tIousePress(ftOU'SeLPt: LPoint);
VM ~: TPanel:

p1ckSelection: TPickSelec1.ion;
pickec80x:. TBox;
SketchSelection: TSketchSelection;
theKind: INTECER;

BECI.
($IFt fTrace)8P(10):{$ENDC}

01);
{$IFC· fTrace}EP; {$EMDC}

A method is similar to a procedure or function call. The runtime environment
for the method includes a stack frame containing info~tion used in that
particular call of the method. The stack frame contains a place to store all
the local variables and parameters to the .. thad. It also contains information
about the procedure that called the method. This is the caller's return
address and the location of the caller's stack frlM. You can use this stack
frame infonnation to look around on the stack and inspect the local variables
of all _thods in the call chain. The .local stack fr.. of TSaalIiew. t10usePress
can be found on page two of this section. Notice where the particular
parameters and local variables for this .. thod ended up in the stack frame. To
understand what code is generated for each method source statement. you can use
c~iler options to crect~ a listing of your source along with the assembly

language format of t~ code generated. The use of these compiler options is

E
cumented in the 3.0 lorkshop .anuals. After you study a few examples of this

, ile looking at the actual code with LisaBug. you will find it is not that
ard to figure out what line of code you are executing within a particular

method.

UsinG IL «(AHandle») to See 'hat Handle You Have or If You Have a Handle

You can find out if a certain address is a handl~ or if you have a handle to
the correct thing. In LisaBuQr you can continue to add levels of indirection
to IL of that address until you get to the CREATE (NE') method of some class.
You .ill get there if you have a handle then the name of that class .ill be
listed by LisaBug. You oan do this with an address you key in or with a
Register. A handle points to a master pointer which points to' an object, the
first field of the object points to the method table for that object. The
first entry in that table points to the CREATE (NEW) _thode

.hat It Probably "eans Ihen You Call a Hethod You Did Not Expect to Call

If you see an object or method in your stack crawl that makes no sense, you may
have performed a ooercio~ assigning one handle to another, and ended up with
an object of a different type than you intended to have. This indicates a bug
in the logic of your program that can be confusing to find while debugging. If
you have range checking turned on {IR+} these errors .ill be caught by the'
system when they happen except when a ooercion is done by passing a handle as
the actual parameter to a formal VAR parameter.

I ~in Hassles and the IV Bug

By entering LisaBug through the ToolKit debugger, you are forced to enter while
executing code in the domain of your application. This aeans the symbols you
.ant to see, the methods of your application, will be available in LisaBug. If
you enter LisaBug in Domain 0, you will notice that it does not know about your
symbols. The ToolKit debugger saves you from this type of hassle except for
thetN Bug. This is a bug in LisaBug that occurs when one of your procedures
contains the characters 'tN' next to each other in that order and this
oombination is also on a word boundary. LisaBug suddenly thinks it has found a
link 1nstructio~ or somethinQr and for some strange reason, this Mkes LisaBug
forget all the rest of the symbols in that segment! If you ever enter LisaBug
from the ToolKit debugger and it doesn't know about your program synmols, that
is probably the problem. The solution is to rename the procedure containing
the NV.

StrateGY Ihen You Crash and Fall into LisaBua

First do a Stack Crawl to get an idea of where you are. You can also do an IL
of PC-20 to look at the code surrounding the crash. If you have an address
error or something and you need to figure what source statement you are
executing in your _thod, look through the code using IL while looking at a

source listing of the method. A paper listing helps at this point! If you
need to find out the values of any variables, you can access them as offsets
from the various stack fraMeS found in stack cr_l. Finding out the values of
variables in an object can be done using InspectObject .ithin the ToolKit
debugger or by poking around in memory .ith Lisabug using the info~tion
presented in this document about the format of things. Further documentation
on LisaBug oommands can be found in the Workshop Hanual.

TidBits of Info

The top t.o digits of any address divided by 2 gives you the Lisa Segment
fu.Jlt)er. LDSN 1 = D6 & 01 (SeQ 101), LOON 2 = [fj (Seg 1(11)... FO = the
Clipboard segment (Seg 120). DA· the start of your document (Seg 109).

sag.

o

1

17

106

107

122

123

124.

125

126

127

Process Address Space Layout

User Mode

unavailable

COda sag (future)

1st User Code Seg

Last user COde Seg

LOSN 1

•••••

LOSN 16

Stack

Shared IU Global Data

. SaBen

unavailaDle

Unavsil8ble

sag.

o

85

100

101
102
103

107

Trap (.1)
)I.

124

125

126

127

System Mode

..

Supervisor's Stack
SysGIODal
SySlocal

Screen

IIO Space

Pro... Acce~s

Hardware 5egPIentat1on: 24 b1t aaaress - 1 b1t s. and 11 bit Offset

