More on
Debugging

isa ack Frame Informatio

Register Usage:
DO - D2 and AO - Al
D0 - D3 and AD - A2
D4 - D7 and A3 - A4

AS Pointer to global stack frame (for main program)
A5 Pointer to current local stack frame (current procedure)

A7

Can be used as user temporaries by your procedure

Used for compiler temporaries
Compiler uses for locals and pointers

Pointer to the top of stack (Supervisor if domain = 0 otherwise user)

[] byte pointers

One entry for each intrinsic unit,
each entry = address of start of
imtrinsic global variables for
that intrinsic unit.

Stack grows down from high address to low address

High Address -
Jump Table
Segnent (1oader info about where segments are) Fixed Size
Data Pu Table (512 bytes, up to 128 intrinsic units)
F80000 > Shared Main (Global) Params, 256 bytes, system use
25 > Private Main (Global) Params, 256 bytes, system use
Rain Program Globals > Link #5.0..
Regular Unit Globals > Common s:ze
Intrinsic Unit Globals > Sun of Areas Referenced
% — Oynawic Stack Area
4 melc in main 32K Mex for beth conbined
mnm] off FFFEFFFF from AS

mc xeoulax unit method slice tables
Includes intrinsic unit method slice tables

3 Hax for each intrinsic Unit

Local Stack Frame (usual case):

High Address

Function Result (0, 2 or 4 bytes)

Parameters (N bytes depending on parsmeter list) First Parameter > .
: Last Parameter
Static Link (For local procs only, Frame proc defined in) | 0 or 4 sasr Parameter Is always SELF if this
Return Address (To procedure that called this procedure) | 4 Is & Clascal method,
" > 01d A8 (Frame of procedure that called this procedure) 4
(Stack Frame Local variables of this procedure Link A6.8
in Stack Crawl) Compiler Tempories for this procedure ‘
a7 > Oynamic Stack Area
Low Address

Parameter Information:

Info passed for Parametric Procedures and Functions:

Address of procedure body 4
Static Link, value = 0 if this is not a local procedure . 4
k Frame of iew, N P :
. High Address
Before call to Address of mouseLPT 4
Houserress SELF 4
Return Address (To procedure that called MousePress) 4
" o 0ld A6 (Frame of procedure that called this procedure) 4
(Stack Frame Copied local version of 5
in Stack Crawl) mouselPT paraneter Local Variables
panel
pickSelection
pickedBox
sketchSelection
thekind
Al ——P Dynanic Stack Ares
During MousePress
Low Address
Local Variables Assigned to Regi in TSamView. HousePress
panel = A3 pointer to UABC globals = A4
sketchSelection = D6 pickSelection = D5

theKind = D7

Using LisaBug in the ToolKit — Clascal Environment

Hoving Around Stack Frames

You can use the following information about stack frames and register usage
while debugging in the Toolkit environment. The Global stack frame is the
stack frame for the main program. There is one global stack frame for each
process. All other procedures, functions and methods have a unique local stack
frame created each time they are called. Local stack frames for methods always
have the handle SELF as the last parameter. Local stack frames for procedures
and functions that are not at the outer most level will contain a Static link
pointing to the stack frame of the procedure they were defined within. This
allows that local procedure to access variables defined in it's parent
procedure. When a local procedure is passed as a procedure parameter, this
static link is also passed. Clascal methods. procedures and functions declared
in the interface of a unit and procedures declared in the outer most level of
the main program never contam a static link. They don't have to since their
parent procedure is the main program whose stack frame is always referenced by
the A5 register.

Finding Where You Are W¥ithin a Clascal Method - Comparing Source to Object Code

Here is an example of a Clascal Method.
PNOEME TSamView. Mse?ress(msem LPoint).

VAR panel:

pickSelection: TPmcsaecuon

pickedBox:

sketchSelection: TSketchSelecuon
BEGINMM. INTEGER;

{SIFC fTrace)BP(10);{$ENDC)

IFC T ; (SENDC
0. {s Tace}tP; {SENDC}

A method is similar to a procedure or function call. The runtime environment
for the method includes a stack frame containing information used in that
particular call of the method. The stack frame contains a place to store all
the local variables and parameters to the method. It also contains information
about the procedure that called the method. This is the caller's return
address and the location of the caller‘'s stack frame. You can use this stack
frame information to look around on the stack and inspect the local variables
of all methods in the call chain. The local stack frame of TSamWiew.MousePress
can be found on page two of this section. Notice where the particular
parameters and local variables for this method ended up in the stack frame. To
understand what code is generated for each method source statement, you can use
compiler options to crezt~ a listing of your source along with the assembly

language format of the code generated. The use of these compiler options is
cumented in the 3.0 Workshop manuals. After you study a fes examples of this
agile looking at the actual code with LisaBug. you will find it is not that
ard to figure out what line of code you are executing within a particular
method.

Uéing IL (((AHandle))) to See What Handle You Have or If You Have a Handle

You can find out if a certain address is a handle, or if you have a handle to
the correct thing. In LisaBug you can continue to add levels of indirection
to IL of that address until you get to the CREATE (NEW) method of some class.
You will get there if you have a handle then the name of that class will be
listed by LisaBug. You can do this with an address you key in or with a
Register. A handle points to a master pointer which pointS to an object. the
first field of the object points to the method table for that object. The
first entry in that table points to the CREATE (NEW) method.

¥hat It Probably Heans When You Call a Method You Did Not Expect to Call

If you see an object or method in your stack crawl that makes no sense, you may
have performed a coercion, assigning one handle to another, and ended up with
an object of a different type than you intended to have. This indicates a bug
in the logic of your program that can be confusing to find while debugging. If
you have range checking turned on {$R+} these errors will be caught by the
system when they happen except when a coercion is done by passing a handle as
the actual parameter to a formal VAR parameter.

in Hassles and the NV Bug

By entering LisaBug through the ToolKit debugger, you are forced to enter while
executing code in the domain of your application. This means the symbols you
want to see, the methods of your application, will be available in LisaBug. If
you enter LisaBug in Domain 0, you will notice that it does not know about your
symbols. The ToolKit debugger saves you from this type of hassle except for
the NV Bug. This is a bug in LisaBug that occurs when one of your procedures
contains the characters '‘NV' next to each other in that order and this
combination is also on a word boundary. LisaBug suddenly thinks it has found a
1link instruction, or something, and for some strange reason, this makes LisaBug
forget all the rest of the symbols in that segment! If you ever enter LisaBug
from the ToolKit debugger and it doesn't know about your program symbols, that
is probably the problem. The solution is to rename the procedure containing
the Nv.

Strategy When You Crash and Fall into LisaBug

First do a Stack Crawl to get an idea of where you are. You can also do an IL
of PC-20 to look at the code surrounding the crash. If you have an address
error or something and you need to figure what source statement you are
executing in your method, look through the code using IL while looking at a

source listing of the method. A paper listing helps at this point! If you
need to find out the values of any variables, you can access them as offsets
from the various stack frames found in stack crawl. Finding out the values of
variables in an object can be done using InspectObject within the ToolKit
debugger or by poking around in memory with Lisabug using the information
presented in this document about the format of things. Further documentation
on LisaBug commands can be found in the Workshop Manual.

TidBits of Info

The top two digits of any address divided by 2 gives you the Lisa Segment
number. LDSN 1 = D6 & D7 (Seg 107), LDSN 2 = D8 (Seg 108)... FO = the
Clipboard segment (Seg 120). DA = the start of your document (Seg 109).

17

106
107

122

124

126
127

Process Address Space Layout

User Mode

unavailable

Code seg (future)

1st User Code Seg

Last User Coge Seg
LOSN 1

LDSN 16

Stack

Shared IU Global Data

. ScTteen

Unavailable

Unavailable

0

85

100
101

102
103

107

Trao (1)

124
125

126
127

- SystemMode'
Segl

P

L)

Supervisor’'s Stack
SysGlobal

Systocal

m
Screen

f I/OkSpace

Prom Access

Harduare Segmentation: 24 bit acgress - 7 bit seg# and 17 bit offset

