
THE PASCAL DEVELOPMENT SYSTEM MANUAL

BillSchottstaedt
Ext. 2379
16-Feb-82

The Pascal Development System Manual

TABLE OF CONTENTS

The Monitor •

The Pascal Compiler •

The Linker . .
The Assembler.

LisaBug • ., .,

The Symbolic Debugger •

The Filer.

The Editors

The Lisa Editor "
The UCSD Editor.

Utilities •

" "

., 1

• 7

• 15

• 23

• 37

47

• 53

" 59
63

71

Segmentation and Intrinsic Unit Management
IUManager • • '72
ChangeSeg • •• .., ., 74
SegMap ••• ., • • 74

System Configuration
Configure •
Contrast
SetSP •
ChangeMem • . . Flip4 •
MoveSoroc •

· . .
· . · .

File Transfer
FileDiv •
FileJoin . .

Source File Debugging
Diff
FindID
Pret ty Lis t "
PascalRef "

Object File Debugging
DumpOBJ "

" .

DumpHex " • " •
Patch "
OBJDiff "
ByteDiff
GXRef •

. . . .
. . "

" 75
• 75
" 76
• 76
• "76
• '76

• 77
" "77

• 78
" 80
" 81
" 82

" 87
88
89

" 90
" 90
" 90

16-Feb-82

The Pascal Development System Manual

Hardware Debugging
LisaTest . . .

Performance Measurement
Perform • • • • •
Coverage Analysis •

Document Compiler

• • • • • .• • • • 91

• • • • • • • • 93
• • • • • • 94

Script •••••••••••••• ~ 96

Other
Terminal Emulator • • • • • • • • • • 98

Error Mes sages • • • • • • • • • • • • • • • 101

16-Feb-82

The Pascal Development System Manual

MONITOR

The ~tonitor is an operating system for the Lisa computer. Its user
interface is patterned after that of the UCSD system on the Apple II.
There are several possible system configurations. A standard one
is:

+------1-
I Disk I
+-... ----+ (or a hard disk)
I Disk I
+----+-

v

+---------+
I Apple II 1<-
I 1-
+----------+

I
v

+-----... --+
I Soroc t
I or I
I Apple II I
I monitor 1

+---------+

+
I
I+-- -
J I

......---------+
I UART I
I 1

-I LISA I
->1 I

I I
I --------+

II

I Keyboard

+--------+
I Sorpc I
1 for I
I Debugger I
+---------+

1
--+

--+
I

+---------+
I Corvus I
I or I
I Profile I
+--------+

16-Feb-82

The hard disk can be connected directly to the Lisa, or it can be accessed
through the Apple II. It can also be omitted.

BOOTING THE MONITOR

To boot from a diskette based Apple II, first power up the Apple II with
the male boot diskette in drive #4:. Insert the female boot in drive #5:
and power up the Lisa. The female boot volume can also reside on a hard
disk. SYSTEM.STARTUP on the male boot volume automatically executes
MONBOOT, the program that starts up the Monitor on the Lisa. If you
type space during the boot process, MONBOOT is not executed. If you
type 'D' during the boot process, the debugging version of the Monitor
is booted.

Page 1

The Pascal Development System Manual

The Moni tor comes up on the Lisa scret!n. If you want it to appear
on the Apple II monitor or the Soroc (~onnected to the UART port,
change the MON.STARTUP program as follows:

1) for the Apple window: remo",e MON. STARTUp·

2) for the Lisa window (the dE~fault): transfer MONSTARTl.OBJ
to MON.STARTUP

3) for the UART window: transj:er MONSTART2.0BJ to MON.STARTUP

16-Feb-82

To move the Monitor around after boot:Lng, execute MOVESOROC. MOVESOROC
simply asks you for the new source and destination for Monitor I/O:
A(pple, L(isa, or U(art. Input alwayel comes from the terminal to which
output has been directed. WRITELNs uned for debugging purposes appear
on the Monitor screen, so you may not always want the application and
Monitor screens to be together on the Lisa.

CONFIG.DATA tells the monitor how much RAM your system has. The default
configuration assumes that you have a megabyte of RAM. For a 256K byte
system, CONFIG.DATA should be a copy ()f NPC4.DATA. For a 512K byte system,
use NPCB.DATA. NPC16.DATA is a copy ()f the default CONFIG.DATA, in case
you ever" need to back up. See CONFIGtmE in the Utilities chapter if you
want to change CONFIG.DATA to suit your own needs.

The moni tor's keyboard driver supportel the Lisa User Interface Keyboard
layout. SHIFT [is {, SHIFT] is }, SHIFT. is >, and SHIFT, is <.
NMI is the third key from the left in the upper row of the numeric
keypad. Currently, the "4" key is backspace. The CODE key is in the upper
left corner of the keyboard. CODE; J.s I, CODE + is -, CODE is \, and
CODE " is' ESCAPE is the upper left key of the numeric keypad.
Control-S is the key in the upper right corner of the numeric keypad.

THE COMMAND LINE

The Monitor command line is:

Moni tor: E(dit, C(ompile, F(ile, L(ink, A(ssemble, D(ebug, ? [0.1]

There are several hidden commands. Type? to see them displayed.

E(dit
C(ompile
F(ile
I(intrinsic
L(ink
A(ssemble
D(ebug
M(acsBug
G(enerate
U(CSD
X(ecute

Lisa-style Editor
Pascal Compile:r I-code generator
Filer
Intrinsic Unit: Linker (release B.O and beyond)
Linker
Assembler
Symbolic Debugger
LisaBug (low level debugger)
Pascal compiler OBJ file generator
UCSD Editor
Execute a program or an EXEC file

Pa,ge 2

The Pascal Development System Manual 16-Feb-82

The Monitor recognizes male volumes and logs them off-line so that
they cannot be accidentally overwritten. The volume MEMORY: is always
available" MEMORY: allows you to use the Lisa RAM as a file storage area.
Of course t anything in MEMORY: is, lost when the power is turned off, or
the system is rebooted. MEMORY: is mounted as unit #4:, and its default
size is 10 blocks. Its size can be changed by the Z(ero command in the
Filer, or by the CHANGEMEM program described in the Utilities section of
t his manual.

When X(ecuting a program, the monitor searches for the program filename
as follows:

Filename
Filename.OBJ
*Fi Ie name
*FiIename.OBJ
Filename. TEXT (* as an exec file *)

When you invoke a program from the Monitor command line (F for Filer.Obj,
for example), the Monitor looks first at the MEMORY: volume.

EXEC FILES

EXEC files (~n be used on the Monitor. They must be created in the
Editor (there is no M(ake command). To execute such a file,

X(ecute <filename>

If an object: file exists with the same name as that of the EXEC file, the
object file is executed. The first character of an EXEC file (a textfile)
defines the termination character. The first occurrence of two terminators
marks the end of the EXEC file. Certain portions of the system (the compiler,
for example) terminate an EXEC file if an error is encountered. If you
X(ecute a .TEXT file, the monitor assumes that the file is an EXEC file.
EXEC files cannot be nested, nor can parameters be passed to them.

Page 3

The Pascal Development System Manual 16-Feb-82

LOW MEMORY LAYOUT

From

0000
0100
0200
0300
0342
0400
0800
0900
OBOO
OCOO
0000
OEOO
OFOO
1000
1800
4000

Regis ters

A7
A6
AS
A3-A4
A2-AO

Do-D3
D4-D7

To

OOFF
01FF
0300
0341
03FF
07FF
08FF
OAFF
OBxx
OCFF
ODxx
OEFF
OFFF
17FF
3FFF

Description

Exception vectors (see 68000 manual)
Memory configuration map (see page IH/)
Free space for user assembly globals
KCS n.umeri-cs status information
Free space
LisaBug Globals
Boot stack
LisaGraf Glo bals
Unit Table
Pointer array
Syscom, miscinfo
Strin.g buffer
Unused (reserved) space
User code buffer
User Jump Table
Heap Bottom

Description

Stack Pointer
Stack frame Pointer
Global Data Pointer
Used for code optimization
Scratch

Scratch
Used for code optimization

Registers 03 and A2 may someday be used by the compiler for code
optimization.

P.age 4

The Pascal Development System Manual 16-Feb-82

MEMORY MAP

A set of very detailed memory maps can be found in the Linker chapterc
We give below a general view of mem~ry and a detailed view of the
Monitor's Map Table.

+----_ _-----+ +-----------------+
I Memory 1<- - - - -I UART I $llC
I mapped I +---~------~--_r
I I/O 1<- -I Port to Apple 1 $118

+-----------+ +-----------------+
1 I

+------.. ------+< - - - 1 1
1 Screen 1 1 +------------+
1 Memory 1 + - - - - 1 Memory Top 1 $114
1 1 +-----------------+ +-------------+<- - - - - - - -I Screen Base 1 $110
1 LisaBug 1 +----------------+ ,+-------------+ +- - -I Buffer Pointer I $10C
1 Disassembler 1 1 +-----------------+ +---------+ 1 1 Not Used I $108
1 Graphics 1 I +------------+
+-----------_+<~ - - - -1- - -I Monitor Top 1 $104
I Monitor 1 I +-----------------+
+-------------+<- - - - -1- - -I Monitor Bottom 1 $100
1 Code 1 I +----------------+<- - -+
I I 1 <- - - - -+ I
1 v 1 I
+-------------+<- - - - - Default Stack Pointer 1
1 Stack 1 1
1 1 1 1
1 vi+- - - -)+---------... -+ 1
1 I 1 1 Assembly Globals 1 1

1 I I +--------------+ 1
I Heap I I 1 Map Table at $1001- - -+
+----------+ I 1 1
I MEMORY: 1 I I 1

+-------------+- -+ +------------------+
1 Globals 1 I Trap Vectors I

$0 +------------+- - - - - -)+------------------+

Page 5

The Pascal Development System Manual

THE MAP TABLE

Monitor bottom
Monitor top

Buffer pointer
Screen base
Memory top
Port to Apple II
UART
Ptr to Lisabug jump table
Ptr to GOTOXY
Ptr to Soroc driver
Ptr to soft break table
Ptr to UART driver
Ptr to Corvus card
Ptr to base of heap
Default SP
Ptr to user's las t A6
Ptr to MEMORY:
Ptr to Twiggy driver
Ptr to hard disk Jump
Ptr to debug card
Ptr to loader for IUs

Apple net
Apple net

Table

$100
$104
$108
$10C
$110
$114
$118
$11C
$120
$124
$128
$12C
$130
$134
$138
$13C
$140
$144
$148
$14C
$150
$154
$158
$15C
$160
$164
$168
$16C

16-Feb-82

Many of these vectors can be changed by the CONFIGURE program described in
the Utili ty section of this manual. ~rhe main vector of interest is the
default stack pointer ($13C). The ut:lli ty program SETSP can be used to
change the default s tack pointer ValUE! temporarily. CONFIGURE can be
used to change it permanently. Unused addresses are reserved for future
use by the Monitor.

Page 6

{The Pascal Development System Manual

THE COMPILER

Files needed: COMPILER.OBJ
.CODE.OBJ
MPASLIB.OBJ. NOFPLIB.OBJ, or IUPASLIB.OBJ

GENERAL INFORMATION

The compiler is split into two programs. COMPILER.OBJ and CODE.OBJ.
COMPILER.OBJ (invoked by the Monitor's C(ompile option) parses the
Pascal program text into semantically equivalent tree structures.
COOE.OBJ (invoked by the G(enerate command) then turns these trees
into 68000 code. The compiler follows the proposed ISO standard
Pascal with some exceptions and extensions. A complete definition
of 1.isa Pascal can be found in the Pascal Language Reference Manual.
The defini t:ion of I-code formats and MPaslib information can be found
in the Development System Internal Documentation.

The compiler first asks for the

Input file

The .TEXT extension is added, if necessary. In the following prompts,
the bracketed text is used if you leave out that portion of the file names.

Listing file «cr> for none) -
Outp ut file [<input name>] [. I]
Debug file [<input name>] [.DBG] -

If you do not want a debug file created, type <ESC><cr>. <cr> always
accepts the default setting. If you write both the .I file and the
.DBG file t() the same volume, use the [*] specification on the .1
file to avoid space problems. The trouble arises when you have
one large block on the volume. When the operating system allocates
space for a file, it gives the file all of the largest block it can find
unless you specify otherwise. If no other block of space exists
and all of the existing block has been allocated to the .1 file,
you get a "no room on vol" error when the system attempts to
open the .DEG file, even if there is plenty of room for both. The
[*] specification tells the operating system to allocate only
half of the largest available block to the file.

The Pascal run time support routines are in MPASLIB. If you do not
need the floating point arithmetic routines, you can use NOFPLIB
instead of MPASLIB. If you are using intrinsic units, use IUPASLIB.

Page 7

The Pascal Development System Manual 16-Feb-82

COMPILER OPTIONS

$C+ or $C- - Turns code generation on (+) or off (-) on a procedure
by procedure basis. The default is C+.

$D+ or $D- - If the $D option is on (the default), the compiler places
procedure names in the object file. The object file is
slightly larger, but LisaBug use becomes much more
pleasant.

$DECL - Compile time variable declaration (conditional compilation).
Compile time variables must be declared before they can be
used (in $SETC), and all declarations must precede the
first procedure or function definition in the program.
The $DECL compiler option does not exist until the
version 8.0 compiler.

$E filename - Starts logging compile time errors as they are encountered.
This option is analogous to the $L option.

$ELSEC - Conditional compilation.

$ENDC - Conditional compilation.

$1 filename - Includes the file 'filename' in the compilation. 'The
filename cannot begin with a '+' or a '-'.

$IFC - Conditional compilat.ion.

$L filename - Starts making a listing of the compilation in file
, filename'. If a Ii,s ting is already in progress t that
file is closed and saved before the new listing file
is opened.

$L+++ or $L--- - The first +/- turns listing on (+) or off (-) during the
first pass. The second +/-, if present, turns on or
off the listing with object code offsets during the
second pass. The third +/-, if present, controls
the production of an interlisting during the second pass.

$R+ or $R- - 'rurns range checking on (+) or off (-). Currently.
range checking is d()ne in assignment statements, on
array indexes, and j:or string value parameters. The
default is $R+.

$S segment - Starts putting code modules into the segment named
, segment' • The defnult segment (' ') holds the
main program and all built-in support code. All other
code can be placed :Ln any segment.

$SETC - Compile time variable declaration and assignment.

$U filename - Searches the file ' :Eilename' for any subsequent uni ts.

PiElge 8

t'l'he Pascal Development Sys tem Manual 16-Feb-82

$X+ or $X- - Turns stack expansion code on (+) or off. The default
is $X+.

$%+ or $%- - Allows the use of. percent signs as legal characters
in identifier names. The default is $%-. The % option
should not be used by normal applications.

PACKING INFORMATION

Packed records are very expensive in terms of the number of bytes of
code. generated by the compiler to reference a field of a packed
record. In general, you should avoid packing records unless there
are many more instances of a particular record than there are
refe'rences to it.

Packed arrays are also code~expensive, with one exception. Packed arrays
of char are treated as a special case, and the code associated with
them is compact.

To paraphrase von Neumann, anyone who needs to know the details of
the packing algorithms is in a state of sin, but the following is
provided for the sake of completeness.

Elements of packed arrays are stored with multiple values per byte
whenever'moI'e than one value can be fit into a byte. This only
happens when the values require 4 bits or less. Values requiring
3 bits are stored into 4 bits.

The first value in a packed array is stored in the lowest numbered
bit position of the lowest addressed (most significant) byte.
Subsequent values are stored in the next available higher numbered
bit positions within that byte. When the first byte is full, the
same positions are used in the next higher addressed byte. Consider
the following examples:

a: PACKED ARRAY [1 •• 12] OF BOOLEAN

byte 1: bit 0
+---.-+----+----+-----+----+----+---+-----1-
I a8 I a7 I a6 I a5 I a4 I a3 I a2 I a1 I
+-.-+---+--+----+----+-----+----+---1-

byte 2:
+----+---+---+-- - I ---+----+--+---'-1-
I .. - Unused --- I a121 alII a10 I a9 I
+-.-+----+-- I •• --+---+-----+---+----'-1-

Page 9

The Pascal Development System Manual

b: PACKED ARRAY[3 •• 8] OF 0 •• 3

'byte 1:
+---+---+---+---+----+----+---+----+
1 a[6] 1 a[5] 1 a[4] 1 a[3] 1
+----+----+----+----+----+----+----+----+

byte 2:
+----+----+----+----+----+----+----+----+
1 -- Unus ed --- I a [8] 1 a [7) 1
+----+----+----+---+----+----+----+----+

c: PACKED ARRAY [O •• 2] OF 0 •• 7
or

PACKED ARRAY[0 •• 2) OF 0 •• 15

byte 1:
+----+----+----+----+----+----~----+----+

I a[l) I a[O] 1
+---+----+----+----+----+----+----+----+

byte 2:
+----+---+----+----+----+----~----+----+

I. -- Unused --- I a[2] I
+----+----+----+----+----+---.~--+----+

You can use the @ operator to poke arc)und inside any packed value
and thereby discover what the packing algorithm (probably) is. For
example, to get the data given above, you can use a program like
the following:

Program Tes t;
Var i:integerj

p:'"'integer;
boolArr:packed array [1 •• 12] of boolean;

Begin
boolArr[l]:-truej (* find out where 1st bit is put *)
for i:-2 to 12 do bpolArr[i] ::-false;
p:-@boolArr; I

WriteLn('equiv word is ',p'"');

16-Feb-82

(* wr:lte the packed array as an integer *)
End.

Page 10

The Pascal Development System Manual

Consider also the following program fragment:

BITE - O •• 255;
WORDSWAP - PACKED RECORD

CASE INTEGER OF
0: (HWord:INTEGER);
l:(HiByte,LoByte:BITE);
2: (High:BITE;

Low:BITE) ;
3:(Hexl,Hex2,Hex3,Hex4:0 •• 15);
4:(Bool:0 •• l;

Octl,Oct2,Oct3,Oct4,Oct5:0 •• 7)j
5:(Al:0 •• 15;

Bl:0 •• 7j
B2:0 •• 7j
B3:0 •• 7j
B4:0 •• 7)j

6:(Bin:PACKED ARRAY[0 •• 15] OF 0 •• 1)
END;

16-Feb-82

Each. variant gets packed into 16 bits. The question then is, where in
the 16 bits do the various portions of the variants get placed:

+-+-+-+-+-+-+-+ ~ =+ I I -+-+
115 01
+-+-+-+-1111 IIII111
I HiByte LoByte
+-+-+-+-r-+-+-+ I I - I I I I I
I High Low
+-+-+-+-1111 III III
I Hexl I Hex2 Hex3 Hex4
+-+-+-+-1 I I I I I 1 I I I I I
IBIOctl IOct2 IOct3 IOct4 IOct5

+ I I I I I I I I I I I I I I I
I Al I Bl I B2 I B3 I B4
+-+-+-+-r-+-+-+-+ I I I I I I 1-+

1716151413121110lFIEIDICIBIAI9181
+-+-+-+-1 I I I I I 1 1 1 I 1 I t

Integer'

HiByte,LoByte:0 •• 255

High:O •• 255j Low:0 •• 255j

Hexn: O •• 15

B:O •• l; Octn:0 •• 7j

Al:0 •• 15; Bn:0 •• 7j

Variant #6 (using hex digits)

Page 11

The Pascal Development System Manual 16-Feb-82

LISA PASCAL AND APPLE PASCAL

Lisa and Apple Pascal are qui te simil,ar. We give below a lis t of the major
differences, and a section of hints for translation from Apple to Lisa
Pascal. Full details can be found in the Pascal Language Reference Manual.

EXTENSIONS TO APPLE PASCAL

@ Operator
CASE OTHERWISE Clause
POINTER function
Hexadecimal constants
DISPOSE
ORD4 function
Global GOTO
Parametric Procedures and Functions

DELETIONS FROM APPLE PASCAL

Initialization block in UNIT declaration
PWROFTEN, TREESEARCH, BYTE STREAM , WORD S TREAM , KEYBOARD
Extended comparisons
Some Compiler options
SEGMENT Procedures and Funct ioo:s

REPLACEMENTS FOR APPLE PASCAL FEATURES

Long Intege~s -- 32 bit integers
Scan -- ScanEq and ScanNe
TURTLEGRAPHICS and APPLESTUFF -- LisaGraf

TRANSLATION FROM APPLE PASCAL TO LISA PASCAL

Translation of Apple Pascal programs is usually not very difficult. The
following hints may be of use to you if you find yourself saddled with
the translation task. Thanks to Ken :Friedenbach for the hints!

MOVELEFT(Source_Buf[i],Dest_Buf[k],n) can be translated into:

FOR LocaII:-O TO n-1 DO Dest_Buf[LocalI+k]:-Source_Buf[LocalI+i];

It may be necessary to declare the local integer used as the FOR loop
control variable.

MOVERIGHT(Source_Buf[i],Dest_Buf[k],n) becomes:

FOR LocaII:-n-1 DOWNTO 0 DO Dest Buf[k+LocalI]:-Source_Buf[i+LocalI];

Page 12

. The Pascal Development System Manual

FILLCRAR(Buf(i],n,Ch) becomes:

FOR LocalI:-O TO n-1 DO Buf[i+LocalI]:-ch;

i: -SCAN(n, <)ch ,Buf [k]) becomes:

LocalI:-O;
IF n)O THEN

WHILE (LocalI<n) AND (Buf[k+LocalI]=ch) DO LocalI:=LocalI+l
ELSE

WHILE (LocalI)n) AND (Buf[k+LocalI]-ch) DO LocalI:-LocalI-1;
:1: -Local I;

16-Feb-82

If SCAN is looking for =ch, just substitute <)ch in the loops above.

READ(KEYBOARD,ch) becomes:

UNITREAD(2,ChArr,1);
ch: -ChAx'r[01;

where chArr-packed array [0 •• 1] of char.

EOLN(KEYBOARD)

can check the character read above. If ch-CHR(13) then EOLN is true.

KEYPRESS

is NOT UNITBUSY(2).

Strings must be given a length, non-local EXITs must be replaced with GOTOs.

ClearScreen and other such functions can be handled by Jim Merritt's
CUSTOMIO unit: ClearScreen on the Lisa is presently WRITE(CHR(27),CHR(42»;

If underbars are used in the Apple Pascal program, they must be used
consistently (they are ignored by the Apple Pascal Compiler!).

If the ApplE~ Pascal um ts have code in the intialization block, put it
in a procedure called at the beginning of the program.

Page 13

The Pascal Development System Manual 16-Feb-82

To force segments to be resident, build a chain of dummy procedure calls
that forces the loader to keep them all in core.. The main program then
becomes a procedure called by the top of the chain. Say we have 3 segments
called SEG1, SEG2, and SEG3, and have put our main program into a procedure
named MAIN PROGRAM. We can now force everything to be memory resident by
adding the-following procedures:

(*$S SEG1*)
Procedure Kludge3;
BEGIN
Main Program;
END;-

(*$S SEG2*)
Procedure Kludge2;
BEGIN
Kludge3;
END;

(*$S 5EG3*)
Procedure Kludge1;
BEGIN
Kludge2;
END;

) ($5
BEGIN
Kludge 1 ;
END. (* end of main program *)

Page 14

· The Pascal Development System Manual 16-Feb-82

THE LINKER

Files needed: LINKER. OBJ or IULINKER.OBJ

GENERAL INFORMATION

The Linker c:ombines object files. Its input consists of commands and
object files. Its output consists of object files, link-map information,
and error messages. Partial links are allowed. The output of the
compiler must be linked with some version of PASLIB.OBJ before it
can be executed. Other object files, including libraries, partial
links, and <>bject files produced by the Assembler, can also be linked
into the output object file.

The Intrinsic Unit Linker (IULINKER.OBJ) expects to find the file
*INTRINSIC.l~IB even if you are not using any intrinsic units. LINKER.OBJ
('The Linker' in this chapter) expects to find LOADER.IMAGE somewhere
on the system.

LINKER PROMPTS

The linker first prompts for the names of the input files:

Input file [.OBJ] -

It continues to ask for input files until you type <cr>. The
next request is for the

Lis ting file -

Type <cr> if you don't want any listing file. The last request
is for the llame of the

Output file [.OBJ] -

LINKER COMMAND FILES

The Linker can read commands from a text file. At any time
you can switch to such a file by typing '<' followed by the name
of the file in which the commands res ide. If there is a blank line
in the file, the Linker assumes that this line is equivalent to the
<cr> typed to end input file input. The line after the blank
line (if any) is the listing file name, and the line after
that is the output file name. These two files need not be
given in the command file.

Page 15

The Pascal Development System Manual 16-Feb-82

LINKER OPTIONS

Linker options can be entered at any time in response to the prompt for
an input file. The options do not ha"ve any effect until the link begins.
In particular, segment names cannot be mapped to several different names.

The Intrinsic Unit Linker has the following options:

+A Alphabetical listing of symbols. The default is -A.

+D Debug information. The default is -D.

+H num +H sets the maximum amount of heap space the Operating
System can give a program before allowing it to die.
Here, as in the other options, 'num' can be either
decimal or hexadecimal.

-H num -H sets the minimum amount of heap space needed by a
program.

+L Location ordered "listing of symbols. The default is -L.
The location is the s.egment name plus offset.

+M fromName toName
+M maps all occurrences of the segment 'fromName' to the
segment 'toName'. This allows you to map several small
segments into a single larger segment. You can thereby
postpone the segmentation decision until link time by
using many segment names in the source code.

+P Production link. The default is -P. +P produces a

+5 num

+T num

, production' .OBJ file. A product ion object file
does not contain information used by the debugger
and the linker, and intrinsic unit files do not
contain a jump table. The production object file can
be executed, but cannot be handled by the linker or
the debugger.

+S sets the starting dynamic stack size to
default is currently 10000.

, ,
num • The

+T sets the maximum allowed location of the top of the
stack to 'num'. The default is 128K.

? Prints the options available and their current values.

The Linker has the following options:

?

Q

Print out the options and their current values

Use Quick Load blocks in place of Executable blocks.
The Monitor has never supported this option.

Page 16

,The Pascal Development System Manual 16-Feb-82

P Do a Physical (+P) or Logical (-P) link. +P is the
default. The logical link uses the MMU's to map logical
addresses into physical memory. The physical link
maps all of memory linearly. A logically linked program
is more sensitive to uninitialized pointer problems than
a physicaly linked program. If a physical link is
performed, the linker and the executable program it
produced must execute with the default stack
pointer set to the same location. The default stack
pointer value is $80000.

THE LINKER OUTPUT FILE

If no errors occur during the link, the output file contains the result
of the link. If all external references are resolved and a starting
location is specified, the output file is an executable object file.
You must link in MPASLIB.OBJ or its equivalent to resolve all external
references.

ERROR MESSAGES

The :Linker reacts in three general ways to dubious usage. It
gives a warning message if some action carinot be performed. This
kind of message can be distinguished from the others by carefully
noting that it begins with:

*** Warning

In order to recover from the error, simply reenter the command
correctly, and all will proceed as though no error had occurred.

An error tha,t makes it impossible for the Linker to complete the
link successfully causes a message that begins:

*** Error

The link process can be continued, however, so that any further problems
can be discovered.

A fatal error causes the link to be terminated immediately and sends
a message beginning with:

*** Fatal Error

See the section on errors for a complete list of the Linker error messages.

Page 17

The Pascal Development System Manual

EXTERNAL NAME S

An external name is a symbolic entry point into an object module.
All such names are visible at all time\s--there is no notion of
the nesting level of an external name. External names can be
either global or local. A local name begins with a $ followed
by 1 to 7 digits. No other characters are allowed. A global
name is any name which is not a local name.

The scope of a global name is the entfre program being linked.
Unsatisfied references to global names. are allowed. Only one
definition of a given global name may occur in a given link.

The scope of the local name is limited to the file in which it
resides. When a partial link is done,. global names are passed
through to the output file unmodified, but local names are
renamed so that no conflicts occur between local names defined
in more than one file. All references; to a given local name must
occur within the same input file.

MODULE INCLUSION

The first file presented to the IntriI~ic Unit Linker must be either
a main program file to be linked, or an unlinked intrinsic unit file.

16-Feb-82

You cannot have both intrinsic unit and main program files in a single
link. All modules from a non-library file are included in the output file.
Only those modules which are needed in the link, however, are taken
from a library file. The Linker considers a module to be needed if:

1) it defines an unresolved global name, or

2) it is referenced by a module in the same library file
that is included in the output file.

A module is not included simply becaul;e it references an already
defined global name. Thus, the inclusion of a library module
is dependent on the order in which files are specified to the
Linker--the module must be specified after the modules that
reference it. You can easily use an a.lternate module to one in
a library by including the alternate prior to specifying the
Ii brary file.

After linking an intrinsic object filfa and before referring to it in
another link, ypou must update the segment and unit tables in
*INTRINSIC.LIB with the IUMANAGER utility. IUMANAGER is described
in the Utilities Chapter of this manual.

Page 18

The Pascal Development System Manual

STRUCTURE OF AN EXECUTING PROGRAM

When a program is executing, the Lisa memory map is:

+--------------------+<- - - - - - ($114)
I Screen Memory I

+------------------+-<- - - - ($110)
I Bootfiles I
I (LisaBug, GotoXY) I
J (Core, MonSoroc) J

+--------------------+<- - - ($104)
I Monitor . J

. +--------------------r<- - - ($100)
I Program Code J

CODE J I J

I V J

'J • • • ~J J
I (Jump Table) I

JUMP J (data ptrs) I (see below)
+--------------------r(- - - - - - ($13C)

TABLE J pars to main prog I (see below)
' .••• +- - - - - - - - - - +<- - - (AS)

I Globals I
I ,
I Stack (grows down),
+- - - - - - - - - - +<- - - - - - (A6)

DATA ,(locals) I
+- - - - - - - - - - +<- - - - - - (A7) , ,
, I
I Heap (grows up) I

. . . . +------.. .-~-----__r
I MEMORY: I
+---------...---------+
I Monitor heap I
+---------------_+(- - - - - - ($138)
I Jump Table ,
+-------------------_+(- - - - - - $1800
I Monitor globals I
+-------------------_+(- - - - - - $0100
, Exception vectors I
+--------------------+<- - - - - - $0000

Page 19

16-Feb-82

(Top of memory)

(Screen Base)

(Monitor top)

(Monitor bottom)

(physical link)

(SETSP default)-

(top of globals)

(stack frame pointer)

(top of stack)

(Heap base)
(logical link)
(used to be A4)

The Pascal Development System Manual 16-Feb-82

A physical link places the Jump Table above A5 t but a logical or Intrinsic
Unit link places the Jump Table at $1800 to free up A4 for code optimization.
Even when placed at $1800, the Jump T~ible- is logically above A5. The
program globals are located below A5. The details of the portion of
memory addressed by offsets from A5 is:

+------------------------+
I Jump Table I

+------------------------+
n I Intrinsic Uni t I

+ Data Ptr + JT SEGMENT
I ~b~ I

of
+ - -. n Units

+ +
1 I I

+------------------------+
I JTSegDelta I (d:lstance to jump table)
+------------------------+< - .. - - - - ($13C)
I StkSegDelta I (distance to stack)

+------------------------+
I main program parameters I (sfae below)
+- - - - - - - - - - - - +<- .• - ..;. - - (A5)
I Main program globals I
+- - - - - - - - - - - - + STACK SEGMENT
I Regular Uni t globalsl
+- - - - - - - - - - - - +

+ - > I Intrinsic Uni t Glo bals I (Shared Int rins ic Unit glo bals are elsewhe re)
+------------------------+

If the program is using shared intrinl3ic units, some of the intrinsic unit
data pointers point to locations in the Shared Data Segment which contains
global data used by all processes. TI1e JT Segment is read-only and grows
up. The stack segment is read-wri te .and grows down.

Page 20

The Pascal Development System Manual 16-Feb-82

The parameters to the main program are:

+--------------------+
I pointer to $$FIRST I +58
+--,------------------+
I reserved I +56
+--------------------+
I L:Lsagraf info 1 +52
+--.-----------------+
I Saved registers I
+-.----------------+
I Monitor flag +21
1 Physical Size +20
+--.------------------+
1 Common Size +16 (regular and intrinsic unit size)
+--------------------+
'I @OUTPUT I +12
+--------------------+
I @INPUT I +8
+_._-----------------+
I RE~turn address I +4
+---------------------+
I Old AS 1 +0
+--------------------+<- - - - - -(AS)
I (Globals) I

A6 is the stack frame pointer. The stack frame of a procedure is:

High Memory ~-~-~--~---~~~----------+
Caller's stack frame

Caller's dynamic link 1<- - +

~------------------------+
I Function Result (only 1
I for a function) 1
+-------------+
I Procedure arguments I
+- - - - - - - - - - - - -+
I Static Link (only for a I
1 level 2 or higher proc) I

+- - - - - - - - -+
1 Return Address I
+- - - - - - - - -+

(A6) - - - ->1 Dynamic Link 1- - -+
+------- -+
I Local frame I
+------- -+
I Dynamic requirements I

Low Memory +------------------------+<- - - (A7)

Page 21

The Pascal Development System Manual 16-Feb-82

Page 22

, The Pascal Development Sys tem Manual

THE 68000 ASSEMBLER

Files Needed: ASSEMBLER.OBJ
N68K.OPCODES
N68K.ERRORS

GENERAL INFORMATION

The Assembler is derived from the TLA Assembler on the Apple II.
When invoked, it asks first for

Input file [.TEXT] -

16-Feb-82

You can reset the values of the options displayed, or give the name of
the assembly source file. The next prompts are:

Listing file (<CR> for none) -
Output file [inputname] [.OBJ[*]] -
Symbols file [inputname] [.SYMBOLS] (<ESC> for none) -

The symbols file is sometimes used during debugging, although the compiler
D+ option provides a similar service with less hassle. The symbol table is
discussed in more detail below in the section "Communication with
Pascal' •

If you specify a file, rather than PRINTER: or CONSOLE: as the listing
file, it is probably wise to specify that the listing file take only
half of the largest area on the volume by adding [*] to the file name.
If this is not done, the first opened file may take up all the free
area on the volume, and later attempts to open a file will fail.
The assembler uses a temporary work file, so even if you do not ask
for a listing file, the system may complain about not being able to
find room on the volume. If you specify a size, be certain the size
is not too small for the listing file.

If an error is encountered and the file N68K.ERRORS is on your prefix
volume, the Assembler gives an error message as well as the error number.
The error messages are also given in the Errors chapter of this manual.

The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User's Manual. The assembler has two variant mnemonics for branches
(BHS for BCe and BLO for BCS). The variant names are more indicative of
how the instruction is being used after unsigned comparisons. The
default radix is decimal. It should be noted that the Assembler accepts
generic instructions and assembles the correct form. The instruction
ADD, for example, is assembled into ADD, ADDA, ADDQ, or ADDI, depending
on the context.

ADD D3,D5

becomes ADDA D3,D5.

MOVE, CMP, and SUB are handled in a similar manner.

Page 23

The Pascal Development System Manual 16-Feb-82

ASSEMBLER OPTIONS

The Assembler has three options:

M toggles whether detaill~d Pass2 information is printed

S toggles whether information about available space is printed

c determines whether a .CODE or .OBJ file is created.
+C produces a .CODE file (for male byte sex machines).
-C (the default) produces a .OBJ file.

The current value of each option is displayed when the Assembler is invoked.

ASSEMBLER SYNTAX

$ - hex

@ • local label

is a legal identifier character

% A legal identifier character except inside a macro definition.
In a macro definition, %n is a reference to the nth parameter
of the macro.

is a legal character

immediate operand

delimits strings

begins comments

* current location

The size of an operation (byte, word, or long) is specified by
appending either .B, .W, or .L to the instruction. The default
operation size is word. To cause a short forward branch,
append a .S to the instruction. The default branch size is Long.

Only the first eight characters of idE~ntifier names are meaningful to the
assembler. The first character must be alphabetic; the rest must be
alphanumeric, period, underbar, or percent sign.

Labels begin in column one. They can be followed by a colon, if you
like. Local labels can be used to avoid using up the storage space
required by regular labels. The local label stack can handle 21
labels at a time. It is cleared every time a regular label is
encountered. Local labels in this assembler start with the character @.

Page 24

The Pascal Development System Manual 16-Feb-82

All quantities are 32 bits in size unless constrained by the instruction.
ExprE!ssions are evaluated from left to right with no operator precedence.
Angle brackets can be used to control expression evaluation. The following
operators are available:

The

-I- unary or binary addition
unary minus or subtraction
ones complement (unary operator)
exclusive or

* multiplication
I division (DIV)
\ MOD
I logi,cal OR
& logical AND
• equal (used only by .IF)
<> not equal (used only by .IF)

following is a summary of the addressing mode syntax for

Mode Register Syntax Meaning Extra Words

0 0 •• 7 Di Data direct 0
1 Oe.7 Ai Address direct 0
2 0 •• 7 (Ai) Indirect 0
3 o •• 7 (Ai)+ Postincrement 0
4 0 •• 7 -(Ai) Predecrement 0
5 Oe.7 e(Ai) Indexed 1
6 0 •• 7 e(Ai,Ri) Offset indexed 1
7 0 e Absolute short address 1
7 1 e Absolute long address 2
7 2 e PC Relative 1
7 3 e(Ri) PC Relative indexed 1

the 68000:

7 4 lie Immediate 1 or 2

Notes:
1) The indexed and PC relative indexed modes are determined

by the opcode.
2) ~fue absolute address and PC relative address modes are

determined by the type of the label (absolute or relative).
3) The absolute short and long address modes are determined by

the size of the operand. Long mode is used only for long
<:ons tants.

4) The number of extra words for immediate mode is determined
by the opcode (.W or .L).

To specify which ,registers are affected by Move Multiple (MOVEM),
specify ranges of registers with "_tl, and specify separate registers
with "I". For example, to push registers DO through D2, D4, and
AO t.hrough A4 onto the top of the stack:

MOVEM.L DO-D2/D4/AO-A4,-(A7)

Page 25

The Pascal Development System Manual 16-Feb-82

ASSEMBLER DIRECTIVES

The Assembler directives (pseudo-ops) are:

.PROC

.FUNC
• END

.ASCII
• BYTE
• BLOCK
• WORD
• LONG
.ORG
.EQU

• MACRO
.ENDM

.IF

.ELSE

.ENDC

.DEF

.REF

.LIST
• NOLIST
• PAGE
• TITLE

<identifier>[,Expr]
<1dentifier>[,Expr]

'<character-string>'
<value-list>
<length> [,value]
<value-lis t>
<value-list>
<value>
<value>

<identifier>

<expr>

<identifier-list>
<identifier-list>

'<title>'

.INCLUDE <filename>

begin procedure with Expr args
begin function with Expr args
end o:E entire assembly

place ASCII equivalents of chars in code
allo~ate a byte in code for each value
alloc~te length bytes of value
alloc~te a word for each value
allo~ate a long word for each value
place next byte at <value>
set Label equal to <value>

begin macro definition
end m~cro definition

begin conditional assembly
optional alternate to .IF block
end clondi tional assembly

make :identifiers externally available
declare external identifiers that will be used

turn I::>n assembly lis ting
turn I::>ff assembly listing
issue a page feed in listing
title of each page in listing

insert <filename> into assembly

COMMUNICATION WITH PASCAL (.PROC and .FUNC)

Pascal programs can call assembly language procedures in a manner
similar to that found in the UCSD system. The Pascal program declares
the assembly language procedure or fUllction to be EXTERNAL. If the
assembly routine does not return a value, use .PROC. If .FUNC is used,
space for the returned value is inserted on the stack just before the
function parameters, if any. The amount of space inserted depends on
the type of the function. A LongInt Ilr Real function result takes
two words, a Boolean result takes one word with the result in the
high order byte, and other types take one word. In the following example, we
link a bi t-twiddling as sembly laoguagc~ rout ioe into a Pascal program.
The Pascal host file is:

Page 26

The Pascal" Development System Manual

PROGRAM BITTESTj
VAR I,J: INTEGER;
FUNCTION Iand(i, j INTEGER) : INTEGER;

EXTERNAL; (* external • Assembly language *)

BEGIN
i : - 255;
j :- 33;
WRITELN (I,J,' AND - ',land (I, J»;
END.

The Assembler file is:

.FUNC
RORG
MOVE.L
MOVE.W
MOVE.W
AND.W
MOVE.W
JMP
.END

IAND,2
o
(A7)+,AO
(A7)+,DO
(A7)+,D1
01,00
DO, (A7)
(AO)

two arguments

return addres s
J
I
I AND J

16-Feb-82

In the example given above we have made little attempt to make the assembly
language procedure mimic the structure of a procedure generated by the
Pascal Compiler. A complete description of this structure requires some
prel:Lminary discourse.

Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment is large enough before the procedure is
entered, the compiler emits code to 'touch' the lowest point that will be
needed by the procedure. If we 'touch' an illegal location (outside the
current stack bounds), the MMU hardware signals a bus error which causes
the 68000 to generate a hardware exception and pass control to an exception
handler. This code, provided by the operating sys tem, must be able to
restore the state of the world at the time of the exception, and then
allocate enough extra memory to the stack that the original instruction can be
re-executed without problem. To be able to bac'k up, the ins truction that
caused the exception must not change the registers, so a TST.W instruction
with indirect addressing is used.

Page 27

The Pascal Development System Manual 16-Feb-82

In the normal case, the procedure's LINK instruction should be preceded
by a TST.W e(A7) which attempts to reach the stack location that can
accomodate the static and dynamic stack requirements of the procedure.
If the static a·nd dynamic stack requirements of your assembly language
procedurez are less than 256 bytes, y,ou can assume that the compiler's
fudge factor will protect the assembly language procedure, so the TST.W
can be omitted. If the requirements ,are greater than 32K bytes, e(A7)
may not be sufficient because only 16 bits of addressability are available (
the 68000 does call a 16-bit processor). In this case, the compiler
currently emits code something like:

MOVE.L
SUB.L
TST.W

A7,AO
IfSize,AO
(AO)

;#size-dynamic + static requirements

If the compiler option D+ is in effect (the default), the first eight
bytes of the data area following the final RTS or JMP (AO) contain the
procedure name. LisaBug gets the procedure name from this block, making
debugging much more pleasant. The following example is provided to show
how an assembly language programmer can provide LisaBug with all the
information it needs to perform fully symbolic low level debugging.

ASSEMBLY LANGUAGE EXAMPLE

DEBUGF .EQU 1 true -> allow debugging with proc names

HEAD -- This MACRO can be used to signal the beginning of an assembly
language procedure. HEAD should be used when you do not want to
build a stack frame based on A6, but do want debugging information.

No arguments

• MACRO
.IF
LINK
MOVE.L
.ENDC
.ENDM

HEAD
DEBUGF
A6, liD
(A7)+,A6

fancy NOP just for debugging purposes

TAIL -- This MACRO can be used as a generalized exit sequence. There
are two cases. First, if you build a stack frame, TAIL can be used
to undo the stack frame, delete the parameters (if any) and return.
Second, if you do not want to build a stack frame based on A6,
this MACRO can be used to signal the end of an assembly language
procedure. In either case 1f DEBUGF 1s true, the Procedure name
1s dropped by the MACRO as an 8 character name.

Page 28

The Pascal Development System Manual 16-Feb-82

Three arguments:

1) Number of bytes of parameters to delete
2) Procedure Name (maximum of 8 chars, no trailing blanks)
3) Number of-blanks needed to complete 8 character name

If the 7.0 assembler is used the .BLOCK kludge can be removed.
The previous as.sembler (good old TLA) removes trailing blanks from
strings passed as arguments to a MACRO

• MACRO TAIL
UNLK A6
.IF %1 - 0

RTS
.ELSE

.IF %1 - 4
MOVE (A7)+,(A7)
RTS

.ELSE
MOVE (A7)+,(AO)
ADD. w 11%1,A7
JMP (AO)

.ENDC
.ENDC
.IF DEBUGF
.ASCII %2
.BLOCK %3,$20
.ENDC
.ENDM

o bytes of parameters

4 Dytes of parameters

2 or)4 bytes of parameters
asm ADDQ.W or ADDA.W

The following example demonstrates the use of the TAIL macro for the
purpose of debugging. The example assumes that you want to build
a stack frame based on A6. In a real assembly language procedure the
zeroes below would be replaced by the local size and parameter size.

.PROC SIMPLE t °
LINK A6,II0 zero here indicates zero bytes of locals
NOP body of procedure
TAIL 0, 'SIMPLE' ,2 zero here indicates zero bytes of parameters

.END

Page 29

The Pascal Development System Manual I6-Feb-82

These macros are sufficient for the programmer writing small assembly language
routines to be called from Pascal. If, however, you want the debugger
to be able to handle symbols in a single huge .PROC (an interpreter, or
an operating system, for example), you need to set up the symbol table
yourself. The Assembler can create a .SYMBOLS file for you. Each entry
in the file (and in the symbol table) contains 12 bytes. The first 8
bytes are the symbol. name, left justified and padded with trailing spaces.
The last 4 bytes are the symbol's valu.e. The debugger uses location $406
to find the first entry in the table. Location $40A points to the first
free entry (just past the last entry in the table).

+-------+---i---------+----+-.--- ---+--------i-----i-
1 name 1 val 1 name 2 vall. •• 100000000 00001
+-------+--+--------+----+-.-- ----i--------+----i-

1
$406

8 4 8 4 A (need not be loaded)
1

The Symbol Table $40A

To load your symbol table, load the .SYMBOLS file into memory, offset
each of the symbol values by the loadj.ng address of your program, and
reset the pointers in $406 and $40A to point to the new location of the
table. The debugging version of the Honitor loads M.SYMBOLS into memory
in exactly this manner so that the debugger can provide symbolic
disassembly of the Monitor. If the symbols for the regis ters (RDO •• RD7,
and so on) are not in the table, the debugger appends them to the table
when it is first invoked.

Upon entry to the assembly routine, the stack is:

• • • I
I User Stack I (previous stack data)

+-------------------+
1 Function result 1
+-------------------+
I Parameters 1
+-------------------+

Static Link
+-------------------i-
1 Return Address 1
+------------------i- (-- SP

Do-D2/ AO-AI : Scratch registers (ca:n be clobbered)
Scratch registers, but should be preserved
Used for code optimization

D3,A2
D4-D7/A3,A4
AS:
A6:
SP:

Pointer to user globa.ls (must be preserved)
Pointer to base of st,ack (must be preserved)
Top of stack

Registers D3 and A2 may be used at sO'me time in the future by the compiler
for code optimization, so the assembly language programmer should
preserve them also.

The function result is present only if the Pascal declaration is for

Page 30

'The Pascal Development Sys tem Manual

a function. It is either one or two words. If the result fits in a
single byte (a boolean, for example), the most significant half
<the lower addressed half) gets the result value.

Parameters are present only if there are parameters. They are pushed
on the stack in the order of declaration. All reference parameters
are represented as 32 bit addresses. Value parameters less than 16
bits in size always occupy a full word. All non-set value parameters
larger than 4 bytes are passed by reference. It is the procedure's
responsibility to copy them. All large set value parameters are
pushed onto the stack by the calling routine.

16-Feb-82

The static link is present only if the external procedure's level of
declaration is not global. The link is a 4 byte pointer to the enclosing
static scope.

It is the responsibility of the assembly language procedure to deallocate
the return address, the static link (if any), and the parameters
(if any). The SP must point to the function result or to the previous
top of the stack upon return •. Registers D4 through D7 and A3 through A7
must be preserved. It is recommended that you also preserve D3 and A2.

SPACE ALLOCATION DIRECTIVES

The space allocation directives are .ASCII, • BYTE , • WORD , • LONG , and
• BLOCK.

.ASCII ' string'

converts 'string' into the equivalent ASCII byte constants and places
the bytes in the code stream. The string delimiters must be single
quotes. To insert a single quote into the code:

'AB' .ASCII
• BYTE
.ASCII

$27 jASCII equivalent of single quote
'CD'

assembles the string AB'CD.

• BYTE <values>

allocates a byte of space in the code stream f()r each of the values given.
Each value must be between -128 and 255 •

• BLOCK <length>[,value]

allocates <length> bytes for each value listed~ If no value is given, a
block of zeros is allocated.

Page 31

The Pascal Development System Manual 16-Feb-82

• WORD <values>

allocates a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65535. For example,

TEMP • WORD 0,65535,-2,17

creates "the assembled output:

0000
FFFF
FFFE
0011

.LONG <values>

allocates two words of space for each value in the list. For example,

STUFF .LONG 0,65535,-2,17

creates the output:

00000000
OOOOFFFF
FFFFFFFE
00000011

<label> .EQU <value>

assigns <value> to <label>. <value> can be an expression containing other
labels.

.ORG <value>

puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are insc!rted from the current location to
<value> •

• RORG

is similar to .ORG. It indicates that the code is relocatable. Because
the loa de r does not support the .ABSOLUTE pseudo-op, RORG is mos tly
cosmetic.

RORG (without the leading period) is the same as .RORG. Similarly,
END - .END, EQU - .EQU, PAGE - • PAGE , LIST - .LIST, NOL - .NOLIST,
and TTL - .TITLE. The TLA directives .INTERP and .ABSOLUTE have not
been implemented. The TLA directives • PRIVATE , .PUBLIC, and .CONST
are currently unimplemented.

Page 32

The Pascal Development System Manual 16~Feb-82

MACRO DIRECTIVES

A macro consists of a macro name, optional arguments, and a macro body~
. When. the assembler encounters the macro name, it substitutes the macro
body for the macro name in the assembly text. Wherever %n occurs in the
macro body (where n is a single decimal digit), the text of the n-th
parameter is substituted. If parameters are omitted, a null string is
used in the macro expansion~ A macro can invoke other macros up to five
levels deep~ In the assembly listing, macros are shown fully expanded
and marked with a '#' in the left margin •

• MACRO <identifier>

.ENDM

defines the macro named <identifier>. The macros HEAD and TAIL are defined
above. As a further example, consider:

.MACRO Help
MOVE %1,DO
ADD DO,%2
.ENDM

If 'Help' is called in an assembly with the parameters 'Alpha' and 'Beta',
the listing created would be:

Help
MOVE
ADD

Alpha,Beta
Alpha ,DO
DO,Beta

Page 33

The Pascal Development System Manual 16-Feb-82

CONDITIONAL ASSEMBLY DIRECTIVES

The conditional assembly directives .IF, .ELSE, and .ENDC are used to
include or exclude sections of code at assembly time based on the value
of some expression •

• IF <expression)

identifies the beginning of a conditional block. <expression> is considered
to be false if it evaluates to zero. Any non-zero value is considered true.
The expression can also involve a test for equality (using <> or -). Strings
and ari thmetic expressions can be compared. If <expression> is false, the
Assembler ignores code until a .ELSE ()r .ENDC is found. The code between
the optional .ELSE and .ENDC is assembled if <expression> is false. Otherwise
it is ignored. Conditionals can be nested. The macros HEAD and TAIL
given above provide examples of the use of conditionals. The general
form is:

.IF <expression>
;assembled only if <expression> is true

[• ELSE] ; opt ional
;assembled only if <expression> is false

.ENDC

EXTERNAL REFERENCE DIRECTIVES (.REF and .DEF)

Separate routines can share data structures and subroutines by linkage
between assembly routines using .DEF lind .REF. These directives cause
the Assembler to generate link information that allows separately compiled
assembly routines to be linked togethc~r. .DEF and .REF associate labels
between assembly routines, not between assembly routines and Pascal.
The Linker resolves the references •

• DEF <identifier-list>

identifies labels defined in the currc~nt routine as available to
other assembly routines through match:Lng .REFs. The .PROC and .FUNC
directives also generate a .DEF with the same name, so assembly
routines can call external .PROCs and .FUNCs with .REFs.

Page 34

The Pascal Development System Manual

Alpha

Beta

.PROC Simple, 1

.DE:F Alpha, Beta

BNE Beta

MOVE

RTS
MOVE

RTS
• END

16-Feb-82

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF •

• REF <identifier-list>

identifies the labels in <identifier-list) used in the current routine
as available from some other assembly routines which used .DEFs •

• PRD.C Simple
.REF Alpha

JSR. Alpha

• END

uses the label 'Alpha' declared in the .DEF example.

When a .REF is encountered, the assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of
O's). The assembler's second pass transforms each of these into a
short external reference with an address pointer to the word of O's
following the opcode. If the referenced label and the reference are
in the same segment module, the Linker changes the addressing mode
from short absolute to single word PC relative. If, however, the
referenced procedure is in a different segment, the Linker converts the
reference to an indexed addressing mode (off A5) and the word of
zeros is converted into the proper entry offset in the jump table.
If the referenced procedure is in an intrinsic unit (and therefore
in a different segment), the IUJSR, IULEA, IUJMP, and IUPEA instructions
are used (see page DR). The Linker blindly assumes that the word
immediately before the word of zeros is an opcode in which the low
order 6 bits are the effective address. Thus, a .REF label cannot be
used with any arbitrary instruction. The .REF labels are intended for
JSR" JMP, PEA, and LEA ins tructions.

Page 35

The Pascal Development System Manual

LISTING CONTROL DIRECTIVES

The directives that control the Assembler's listing file output are
.LIST, .NOLIST, .PAGE, and • TITLE. If you do not specify a name for
the listing file in response to the ASBembler's prompt:

Listing file «cr> for none) -

the listing directives are ignored •

• LIST and .NOLIST

16-Feb-82

can be used to select portions of the :source to be listed. The listing
goes to the specified output file when .LIST is encountered. • NOLIST
turns off the listing. .LIST and .NOLIST can occur any number of times
during an assembly •

• PAGE

inserts a page feed into the listing file.

• TITLE '<title>'

specifies a title for the listing page. <title> can contain up to 80
characters •

• TITLE 'Interpreter'

places the word, Interpreter, at the head of each page of the listing.

FILE DIRECTIVE

The pseudo-op

• INCLUDE <filename>

causes the contents of <filename> to t~ assembled at the point of the
• INCLUDE. <filename> need not specify the .TEXT suffix. The last
character of the filename must be the last non-space character on the
line--do not put a comment on this line. An included file cannot itself
contain a .INCLUDE statement.

Page 36

The Pascal Development System Manual

LISABUG

LisaBug allows you to examine, disassemble, and change the contents
of memory, set breakpoints, and do immediate assemblies. If the
compiler D option is on (the default), procedure names are available
to the debugger, and Lisabug uses the symbols wherever appropriate.

Type M to the Monitor command prompt to invoke LisaBug.. It asks:

What file?

16-Feb-82

You can type <cr) to enter LisaBug without any .file. If you type a
file name, that code file is loaded into LisaBug. The LisaBug command
prompt is ')'. The default radix is hexadecimal.

You can drop into LisaBug by hitting the NMI key which is currently
the third key from the left in the top row of the numeric keypad.

A FEW EXAMPLES

If you type a file name, LisaBug starts up with the program
counter at t.he start of the program. To see one instruction
disassembled (say at 32F96), type

)ID 32F96

(followed by RETURN, of course). ID stands for Immediate Disassemble.
Each subsequent ID command, if given without any address,
disassembles., the next instruction found. In addition to printing
the value of each byte, LisaBug prints the ASCII equivalent
of that value, if a printable one exists. If none exists, it
prints a period.

To disassemble 20 consecutive addresses, type

)IL

IL (Immediate Disassemble Lines) can also be followed by an address.
Subsequent IL commands disassemble successive blocks of 20
cons,ecutive locations in memory.

If the object file being examined was compiled with the D+ compiler
option, the procedure names are available in LisaBug and can be used
in any expressions. For example,

)IL Foo 5

disassembles the first 5 lines of procedure 'Foo'.

)BR Foo+40

sets a break point 40 bytes into procedure 'Foo'.

Page 37

The Pascal Development System Manual

You can also use labels in immediate assemblies:

>sy Ken 6000
>A Ken NOP

assembles a NOP instruction at the address 'Ken'.

>A 6000 <cr>
>Rich: TAS $100
> <cr>

enters the immediate assembler at 6000, defines the label 'Rich', and
assembles a TAS instruction.

THE SYMBOL TABLE

16-Feb-82

The symbol table is the union of the user symbol table and the distributed
procedure names. The user symbol table contains the user declared symbols
(like 'KEN' in the example above) and the predefined symbols (RDO and
friends). Each entry contains twelve bytes. The first eight bytes are
the symbol name, and the last four bytes are the symbol's value.
Location $406 gives the beginning of the symbol table, and $40A points
to the end of the table. The section 'Communication with Pascal' in
the Assembler chapter of this manual contains more information about
the symbol table.

Pa.ge 38

The Pascal Development System Manual 16-Feb-82

LISABUG COMMANDS

Definitions:

Constant

$Constant

&Constant

, ASCI I Stri ng'

Name

RegName

Expr

Exprlist

Register

A constant in the default base

A hex constant

A decimal constant

An ASCII string

A symbol in the symbol" table

ROO •• RD7, RAO •• RA7, PC, US, or SSe
A predefined symbol in the symbol table
with a value set by LisaBug. The
value is equal to the value of the
register in question. LisaBug
automatically updates the values of these
symbols. The 'R' is appended to distinguish
the register names from hexadecimal numbers.

An expression. Expressions can contain
names, regnames, strings, and constants.
Legal operators are + - * I. Expressions
are evaluated left to right. * and I
take precedence over + and -. (and)
can be used to indicate indirection.
< and> can be used to nest expressions.
In those cases where an odd value is probably
a mistake, LisaBug warns you that you
are trying to use an odd address. If you
decide to go ahead, it subtracts one from
the address given. If the compiler option
D+ is used, procedure names are also legal
in expressions.

A list of expressions separated by blanks.

DO •• D7, AO •• A7, PC, SR, US, or SSe Note
that A7 is SP (the stack pointer).

Moving the LisaBug Window:

P expr Set port number to expr. Valid port numbers
are:

o Lisa keyboard and screen (default)
1 UART Po:r:t A (farthest from Power Supply)
2 UART Port B

If you move the port to a UART, you must have a
modem eliminator connected to that port.

Page 39

,

The Pascal Development System Manual 16-Feb-82

Symbols and Base Conversion:

SY Display the values of all symbols

SY name Display the value of the symbol name

SY name expr Assign expr to the symbol name

CV exprlist Display the vnlue of each expression in hex and decimal.

SH Set the default radix to hex

SD Set the default radix to decimal

Assembly and Disassembly:

A expr statement

A expr

ID

ID expr

IL

IL expr

IL exprl expr2

Assemble one Btatement (instruction) at expr. If
you use the f()rm A expr, LisaBug asks you for the
statement to 1~ assembled. You can continue
assembling inBtructions into consecutive locations.
Type <cr> to f!xit the immediate assembler.

Disas semble one line at the next address

Disassemble one line at expr

Disassemble 20 lines at the next address

Disassemble 20 lines starting at expr

Disassemble expr2 lines starting at exprl

Upon entering LisaBug, the 'nc!xt address' is the current PC.

Page 40

The Pascal Development System Manual 16-Feb-82

Set, Display, and Find Memory:

SM exprl exprlist
Set memory with exprlist starting at exprl. SM assumes
that each element of exprlist is 32 bits long. To
load different length quantities, use SB or SW described
below. If the expression given is longer than 32 bits,
SM takes just the upper 32. For example, if we ask
LisaBug to:

SM 1000 'ABCDE'

it deposits the ASCII equivalent of 'ABCD' starting
at 1000.

SB expr1 exprlist
Set memory in bytes with exprlist starting at expr1

SW expr1 exprlist
Set memory in words with exprlist starting at expr1

SL expr1 exprlist
Set memory in long words with exprlist starting at exprl.
For example,

5L 100 1

is equivalent to

SM 100 0000 0001

DM expr Display memory at expr. DM RA3+10, for example,
displays the contents of memory from the address
pointed to by A3 for 10 bytes. DM (110) displays
the contents of the memory location addressed by
the contents of location 110.

DM exprl expr2 Display memory. If exprl < expr2, then display
memory from expr1 to expr2. Otherwise, display
memory for expr2 bytes starting at expr1.

DB expr Display memory as bytes.

DWexpr Display memory as words.

DL expr Display memory as long words.

FB starting addr count data Find Byte.
- Find the byte or bytes 'data' in memory between

'starting_addr' and 'starting_Addr'+'count'.

FM starting_addr count data Find Memory

FW starting_addr count data Find Word

Page 41

The Pascal Development System Manual 16-Feb-82

FL starting_addr count data Find Long

Set and Display Registers:

TD

register

Display the Trace Display at the current PC

Display the current value of the register.
DO, for example, is a command to LisaBug to
display the current value in the register DO.
RDO, on the eIther hand, is a name automatically
placed in thE~ symbol table to give you a handle
on the contents of DO in an expression.

regis ter expr Set the register to expr

Memory Management:

LP expr

DO expr

WP 0 or 1

Convert logical address to physical address.

Set the SEG1/SEG2 bits. These bits determine the
hardware domnin number. If the Status Register
shows that you are in supervisor state, then the
effective domain is zero, and the domain number
returned by LisaBug is the domain which would be
active if thE! SR were changed to user state.

Diable (0) or. Enable (1) Write Protection. The default
is 1.

MM start [end or count]
- MM with one ()r two arguments displays information

about the ~J registers. The second argument
defaults to 1. If the starting address is
greater than the second argument, the second
argument is a count of the number of MMU registers
to be displayed. If the starting address is less
than the second argument, the second argument is
the las t reg:ls ter displayed.

MM 70

displays

Segment [70] Origin[OOO] Limit [00] Control[C]

These values are the Segment Origin, Limit, and
Control bits stored by the hardware for each MMU
register. As can be seen from a careful perusal
of the hardware documentation, a Control value of
C means the segment in question is unused (invalid).
If the Control value is valid (F, for example),
the debugger also displays the Physical Start

Page 42

The Pascal Development System Manual 16-Feb-82

and Stop addresses of the segment.

MM &100 8

displays the MMU register information for the 8
registers starting at register 64 (decimal 100).

MM num org lim cntrl
The MM command followed by four arguments sets the
MMU information for segment 'num'. The Origin,
Limit, and control bits can be changed. The
Monitor uses the first 16 registers, so it is
safer not to mess with them.

MM 70 100 ff 7

sets the Origin of segment 70 to 100 and the
control bits to 7 (a regular segment). The
segment limit of -1 makes the segment 512 bytes
long.

Breakpoints, Patchpoints, Traces, Calls:

BR

BR exprlist

Display the breakpoints currently set. Up to 16
breakpoints can be handled by LisaBug. Break points
are displayed both as addresses and as symbols.
An asterisk marks the point of the breakpoint in
the disassembly. Patch points are marked with 'I'.

Set each breakpoint in exprlist. Symbols are
legal, of course, so we can:

BR Ralph+4

if Ralph is a known symbol.

PA insertion addr destination addr
- Insert a Patch. PA can be used to insert a

sequence of code terminated by a TRAP #$f
into another sequence of code. Lisabug maintains
a table of patches and return addresses to
implement this facility_ The trace command
works with patches. It displays the next
instruction to be executed and its environment.
You can have ~p to 16 patches. A patch can be
removed by using the CL (Clear) command with
the patch insertion address.

PA Display patch addresses

CL Clear all breakpoints and patchpoints

CL exprlist Clear each breakpoint or patchpoint in exprlist

Page 43

The Pascal Development System Manual 16-Feb-82

G

G expr

T

T expr

CA expr

SC expr

Q

RM

RB

Start running at the current PC

Starting run~l?g at expr

Trace one instruction at the current PC

Trace one instruction at expr

Call a subroutine in the debugger's environment.

Stack Crawl. Display the user call chain. Expr
sets the depth of the display. It can be omitted.

Exit LisaBug. if it was called from Talk

Return to the Monitor. RM checks the interrupt
level. stops 4~xec files. and sets the domain to
zero. If you are in an interrupt handler. RM
may refuse to do anything. If the SR shows
2nxx where n :Ls not zero. you are in an interrupt
handler. To get back to the monitor, type G,
hit NMI. and try RM again. With any luck. you
will escape eventually.

Reboot. The Lisa is reset. Reboot the Apple II
and the Lisa should also reboot automatically.

Overcome Inadequate Hardware:

DU expr

DC expr

RS

Disk unclamp. The Twiggy may not reliably eject
the disk at the right time. If you have trouble,
try the DU command followed by the drive number.
Valid drive numbers are 1 and 2.

Disk Clamp. If the Twiggy refuses to suck up the
disk and clamp it in place. try the DC command
followed by the drive number (1 or 2).

Display the piitch Return address Stack

If you have the debug card,

DR Display index or ranges of dump RAM.

MR Set a value l4!vel 115 interrupt on a word change.

Page 44

The Pascal Development System Manual 16-Feb-82

register
regis ter expr
A expr statement
A expr
BR
BR exprlist
CA expr
CL
CL exprlis t
CV exprlist
DB expr
DC expr
DL expr
OM exprl expr2
DO expr
DR
OU expr
OW expr
FB starting addr
FL starting-addr
FM starting-addr
M'"W start ing - addr
G -
G expr
ID
ID expr
IL
IL expr
lL exprl expr2
LP expr
~1M exprl expr2

Display the current value of the regis tero
Set the register to expr

Assemble one statement (instruction) at expr.
Display the breakpoints currently set.
Set each breakpoint in exprlist.
Call a LisaBug subroutine
Clear all breakpoints and patchpoints
Clear each breakpoint or patchpoint in exprlist
Display the value of each expression in hex and decimal.
Display memory as bytes.
Disk Clamp.
Display memory as long words.
Display memory.
Set the SEGl/SEG2 bits.
Display index or ranges of dump RAM.
Disk unclamp.
Display memory as words.

count data Find Byte.
count data Find Long
count data Find Memory
count data Find Word

Start running at the current PC
Starting running at expr
Disassemble one line at the next address
Disassemble one line at expr
Disassemble 20 lines at the next address
Disassemble 20 lines starting at expr
Disassemble expr2 lines starting at exprl
Convert logical address to physical address.

MM num org lim ctrl
MR

Display MMU information
Set MMU information
Set a value level #5 interrupt on a word change.

P expr Set port number to expr.
P A ins rt addr
PA

destaddr Insert a Patch.

Q
RB
:aM
RS
SB exprl exprlist
SC expr
SD
SH
SL exprl exprlist
SM exprl exprlist
SW exprl exprlist
SY
SY name
SY name expr
T
T expr
TD
WP 0 or 1

Display patch addresses
Exit LisaBug, if it was called from Talk
Reboot.
Return to the Monitor.
Display the patch Retur'n address Stack
Set memory in bytes with exprlist starting at exprl
Stack Crawl.
Set the default radix to decimal
Set the default radix to hex
Set memory in long words with exprlist starting at exprl.
Set memory with exprlist starting at exprl.
Set memory in words with exprlist starting at exprl
Display the values of all symbols
Display the value of the symbol name
Assign expr to the symbol name
Trace one instruction at the current PC
Trace one instruction at expr
Display the Trace Display at the current PC
Diable (0) or Enable (1) Write Protection.

Page 45

The Pascal Development System Manual 16-Feb-82

INTRINSIC UNIT INSTRUCTIONS

LisaBug recognizes the Intrinsic Unit Instructions IUJSR t IUJMP, IULEA,
and IUPEA. These ins tructions use the! Line 1010 exception handler, and
are created by the Linker. Full deta:lls can be found in the Development
System Internal Documentation.

Page 46

The Pa$cal Development System Manual

THE SYMBOLIC DEBUGGER

File Needed: DEBUGGER.OBJ
(the debugger is currently broken)

The debugger allows the programmer to follow the execution of a
Pascal program, set traces and break points, and display or change
variables without the need to insert cumbersome diagnostic
statements. The basic unit of program execution is the Pascal
statement and the basic unit of program data is the variable.
If the debugger is present, run time errors drop the program into
the debugger.

To use the debugger, first create a .DBG file in the compiler, then
link the .DBG file with the output of the code generator, MPASLIB,
and any other units that are needed. The .OBJ file that results
can be executed normally, or you can X(ecute DEBUGGER and hand it the
.OBJ file. The D(ebug option in the Monitor command line also
invokes the Debugger.

Source Program Text
I

Compiler
I I

+-----+ +----+
I I

.1 file .DBG file
I I

Code Generator I
I I

.OBJ file I MPASLIB, LOADER. IMAGE, etc
I I I
+----------->Linker<------+

I
linked .OBJ file
which can be X(ecuted or
passed to DEBUG

16-Feb-82

Once executed, DEBUG takes the .OBJ file and asks you for a command. The
first "command:" prompt occurs just after the start up of the program
being debugged. The available commands are:

Set <proc [:offset] I address>

Set a breakpoint at the location given. PROC is the name of a
procedure or function. The offset, if given, specifies the byte
offset from the beginning of the procedure within the object code
of the procedure. You can disassemble the procedure code and
compare it with the source to decide where to set the breakpoint.
ADDRESS is the absolute location at which the breakpoint i~ set.
All numbers in the debugger are in deci.mal radix unless
prefixed with '$' (for hexadecimal). The address given

Page 47

The Pascal Development System Manual 16-Feb-82

mus t be in core and wi thin thea code image.

Set Value <VarID I Address [size]>

Set Value sets ~ value breakpoint at the address given, or at the
address of the variable ident:lfier given. VarID can be either
an entire variable, or just a field of it. When a check point
is encountered therafter. the debugger checks all the value breaks.
If the value of the variable c)r address has changed, the debugger
stops, prints the old and new values of the variable or address
in ques tion, and waits for thea next command. If you Set Value p'"
(which sets a value breakpoint on the variable pointed to by p),
do not change the value of p. You cannot set a value breakpoint
on a field of a packed variable.

Set <VarID>

Deposi t a value in VarID. Thea debugger waits for the value to be
typed. To retain the old value, type <cr>. To set the value of
a string variable, just type 1!::he new value (without quotes). It
is not possible· to set a strillg variable to the null string. String
variables cannot be subscriptl~d.

Set <Reg> <Num>

Set ••

Clear

Clear

Deposit a value into one of the 18 registers (RDo-RD7, RAO-RA7,
RPC, and RSR).

Set "array abbreviation" m04e. While in this mode, the present
values in any array that is not a packed array of char are presented
as first value, second value,u •• ", last value.

Clear •• gets you out of "arriay abbreviation" mode.

Clear clears all breakpoint and trace settings.
You cannot clear the breakpoint which caused you to drop into the
debugger.

Clear <Proc [:offset]>

Clears the breakpoint set by Set <Proc [:offset]>.

Clear Value

Clear Value clears all value breakpoints and traces.

Clear Value <VarID I Address [Size]>

Page 48

The Pascal Development System Manual 16~Feb-82

Clear Value removes the breakpoint specified.

List Break

List Break lists the current break and trace points.

List <Proc [:offset] I Address>

Regs

Trace

List disassembles 20 lines of code starting at the address given.
Sometimes fewer than 20 lines are disassembled. To continue the
disassembly from this point, type List (without any arguments).

Regs lists the current values of all the user registers in hexadecimal.

Tra(:e puts a trace on all procedure entries, but does not display
procedure parameters.

Trace Proc

Trace Proc traces all procedure and function entries, displaying
the parameters.

Trace Proc <Proc [:offset] I Address>

When an argument is given to Trace Proe, a trace is set in that
procedure at the offset given. The parameters to the procedure
are also displayed.

Trace <Proc [:offset] Address> also puts a trace on the address given.
The parameters to the procedure, howver, are not displayed.

Trace Value <VarID>

Crawl

MacsBug

Trace value reports changes in the value of <VarID>, but does not
stop execut ion.

Crawl allows you to crawl up the stack as far as you like. Crawl
starts at the current PC. At each stack location Crawl prints the
current value, then waits for a carriage return. Any response
other than <cr> exits Crawl and returns to the command request
of 'the Debugger.

The Macsbug command drops you into Lisabug (the low level debugger).
When entered in this manner, you are still in the debugger's
env:1ronment. To get into Lisabug in the program's environment,
first get the current PC of the program (from the Debugger), set a

Page 49

The Pascal Development System Manual 16-Feb-82

Lisabug breakpoint at that loc~tion (BR or G TILL), then return
to the debugger. Give the debugger the GO command,_ and when
the program is started back up, you are dropped into Lisabug
in the correct environment.

Check <Proc' [:offset] I Address>

Go

Quit

The debugger needs to be told when to check value breakpoints and
traces. Check sets the locati.on at which you want these checks
to be made.

Go restarts the program being debugged.

Quit causes the debugger to relturn you to the Monitor.

You can also poke around inside your code with the debugger. If you respond
to the Command request with a name or a number, DEBUG responds as follows:

Name's Type

Procedure or Function

Variable identifier

Number

<Number> TYPEID

Action

Display segment number and offset within
segment of that procedure or function,
and the routine's in-code address, if any.

Displa.y the current value of the variable.
The variable can (but need not) be qualified
by field selection, indexing, or subscripting.
Subscripts can be either integer constants,
or a variable of the appropriate type.

Convert hex to decimal, or vice versa,
and di.splay 16 bytes starting at that
memory location. If there is an equivalent
<Proc [:offset]> value, that too is reported.

Print memory starting at <number> as if it
were ~L variable of type TYPEID.

You should not use any identifiers in your program that conflict with DEBUG
command names. If your program tertn.i.nates normally during debugging,
DEBUG also quits.

If DEBUG does not understand a command, it me+ely asks you again for a command.
In general, if DEBUG does not say it has done something, then it has taken
no action at all.

To interrupt a program and drop into the debugger at almost any point,
hit the NMI button on the side of the machine. In certain situations
NMI may drop you into LisaBug instead of the debugger.

Page 50

lbe Pascal Development System Manual 16-Feb-82

At link time, remember to include the .DBG extension when loading the
debug file into the .OBJ file. The .DBG file must follow the .OBJ file
to which it corresponds in the link. All separate compilation units
mus·t precede the main program in the link. If you want to use the .DBG
files, you cannot do a partial link. The .DBG files and the resulting
debuggable .OBJ files are significantly larger than the corresponding
.OBJ files. The Debugger takes up about 10K of RAM plus about 60 words
pe r procedure.

Page 51

The Pascal"Development System Manual 16-Feb-82

Page 52

The Pascal Development System Manual 16-Feb-82

THE FILER

File Needed: FlLER.OBJ

INTRODUCTION

The Filer is modeled after the UCSD P-system's Filer and provides a similar
set of functions. However, there are some small but important differences
between the two.

The Moni tor lriler requires that a colon follow a volume name in every case.
It provides access to as many as 20 on-line volumes. The maximum number of
files in a volume directory is 77.

All "workfile" commands and workfile-oriented features of the UCSD Filer
have been omitted from the Monitor Filer. The functions of the Monitor
utility programs Flipdir and Verify are provided by the Filer commands
"S(ex" and "V(erify," respectively.

The UCSD Filer's "V(olume" command has been changed to "O(n-line" in the
Monitor Filer. The UCSD Filer's "eX(amine" command is not available in
the Monitor Filer.

The Moni tor Filer's "T(ransferlt command performs automatic verification of
all transfers between blocked devices.

ESCAPE aborts the currently executing function. When a wildcard R(emove
or C(hange is aborted, you are asked whether to update the directory.
A response of ESCAPE to this question is interpreted as 'No'.

The Monitor Filer includes a volume manager subsystem that permits you to
maint.ain and manage the volume population on a Corvus drive. This subsystem,
accessible through the "M" command, replaces the old VMGR utility.

FILER COMMANDS

The following is a list of commands that are recognized by the Filer.
Filer commands are invoked by pressing the key which corresponds to the
first letter of the command name.

B(ad-blocks - Scans for and reports bad blocks on blocked device.

C(hange

D(ate

E(xtended
directory
listing

- Changes a volume or file name on a blocked device.
"Wildcard" file name specifications are recognized.

- Sets or changes the system date.

- Provides a detailed list of the contents of a blocked
volume. "Wildcard" file names specify the display of a
directory subset. You can write a directory to a
printer with E #4:,PRINTER:

Page 53

The Pascal Development System Manual 16-Feb-82

K(runch

L(ist

- Creates the largest possible block(s) of contiguous space
on a blocked volume: by relocating exis ting files on that
volume. It's a goc.d idea to scan a volume for bad blocks
before any attempts are made to Krun~h it. Do not Krunch
a volume that has tad blocks.

directory - Provides an summary of the contents of a blocked volume.

N(ew

O(n-line

P(refix

Q(uit

R(emove

S(ex

T(ransfer

See "E(xtended dire~ctory lis ting, It above.

- Creates a directory entry with the specified file name.
Any volume name use:d to prefix the file name must be
that of an on-line, blocked device. You can attach
a size-specificatic,n suffix to the end of the file name.
This suffix indicat:es the number of blocks to be occupied
by the new file. 1~e suffix consists of a non-negative
integer cons tant 01' an as terisk ("*"), enclosed
in square brackets ("[]"). For example,

FARLEY:MYFILE.TEXT[40]
XRAY.OBJ[*]

The new file. is pla;ced on the specified volume in the
first empty space that is large enough to hold it.
The as terisk indica. tee that the file should fill half the
largest free area em the volume, or all of the second
largest area, whichever is larger. In the absence of a size
specification, the newly-created file occupies the largest
area of contiguous free blocks on the volume. Files
created with N(ew BLre stamped with the current system date,
while the storage areas to which they correspond are left
unaltered. N(ew pe:rmits the creation of zero-length files.

- Provides a list of all volumes that are on-line.

- Changes the system prefix volume name.

- Exits the Filer.

- Deletes entries frc)m the directory of a blocked volume
on a single-file or "wildcard" basis.

- Performs sexual re~Lssignment of a blocked volume's
directory. This ccmllDand corresponds to the FLIPDIR
utility. The Lisa is a female machine, whereas the
Apple II is a male machine.

- Copies and transfers information between volumes.
Single-file or multiple-file wildcard transfers are
allowed. You can ~Llso transfer between blocked
and unblocked volunles. Transfers between blocked volumes
are automatically verified, but transfers involving
unblocked volumes cLre not. .

Page 54

The Pascal Development System Manual 16-Feb-82

V(erify -

Z(ero

Compares blocked files for equality. You can compare
single-files or multiple files common to two blocked volumes.
Wildcard specifications can be used to name the comparands,
so subsets of the files on one volume can be compared with
a congruent subset of files on another volume. Verify
detects and reports the following situations:

* The "source" and "destination" files match;
* The source differs from the destination in

date-stamp, size, and/or contents (contents
are always compared if sizes match, whether
or not dates match);

* No counterpart to a given source file exists
on the destination volume.

The report produced by Verify can be redirected to a
device or file other than the console by following
the destination file/volume name specification with
a comma, then the name of the desired output device
or file. For example,

Verify what file/vol ? VOLl:,VOL2:,PRINTER:

is equivalent to:

Verify what file/vol ? VOLl:
Against what file/vol? VOL2:,PRINTER:

The verification report in either of these cases is
diverted to the PRINTER: device.

Erases and initializes the directory area of a blocked
volume. If the volume already has a directory prior to
the Z(ero, you have the option of retaining the old
volume name and/or volume size. Z(ero can be used to
increase or decrease the size of the virtual volume MEMORY:.
Caution should be exercised, however, because it is possible
to specify a volume size that is much larger than the LISA
memory complement permits. In this case, a "memory overflow"
is reported, and you should again invoke Z(ero to shrink
MEMORY: to a reasonable size. Do not leave the Filer
or attempt to use MEMORY: after receiving the "memory
overflow" message!

Remember that Z(ero produces an empty directory. Therefore,
to change the size of MEMORY: without erasing the directory,
you must still use the CHANGEMEM utility.

vM(gr - Enters the volume manager (vMgr) subsystem, which presents
its own sub-menu, and offers the following commands:

L(ist - List the hard disk Volumes (like Filer's O(n-line command).
From time to time, you may destroy the directory of one or
more volumes that reside on the hard disk. The vMgr

Page 55

The Pascal Development System Manual 16-Feb-82

subsystem assigns temporary names to these "bad" volumes
so that you can be warned of their contamination, and can
also manipulate thcam, if necessary. The form of such
temporary names is BAD*n, where n is an integer (e.g.,
BAD*l, BAD*10, etc). Temporary names for "bad" volumes
are effective only within the vMgr subsystem.

M(ount - M(ount assigns a hard disk volume to a specific Monitor device
number, taken from the set [4,5, 9 •• 20]. You can specify
the device number to which a volume is associated, or you
can accept the default selected by the vMgr. When vMgr
picks a default unit number, it chooses the highest number
that is not currently in use.

N(ew - N(ew creates new volumes. You can accept the default
values for volume uize and location as offered by the
vMgr, or specify your own.

Q(uit - Leave vMgr subsystf!m. If you have made any changes to the
volume table you must confirm whether or not they should be
made permanent in the default mount table. If you respond
with any character other than 'Y', any changes made are
temporary -- when the system is .rebooted, the original
settings will take effect.

R(emove - R(emove unmounts and destroys a volume. You can R(emove a
M(ounted volume, but to do so you must approve the
U)nmounting of that: volume.

U(nmount - U(nmount is comparnble to removing a floppy from a drive. It
disassociates the volume from the unit on which it was mounted.
The U(nmounted volume and the data it contains still exist

W(rite-

on the hard disk drive, but can not be accessed through any
Moni tor device.

protect - W(rite-protect toggles the write-protection status for a
volume. The contents of a write-protected volume cannot
be changed. This c!ommand changes the default mount table.
Newly-created VOlU1l1eS are not wri te-protected.

See the Apple Pascal Operating System Reference Manual for further information.

Page 56

The Pascal Development System Manual 16-Feb-82

PROFILE OR CORVUS INSTALLATION

To connect a Corvus or Profile hard. disk to y·our Lisa:

1. Turn everything off. You need two floppy disk drives, a controller
card, and the latest monitor release with both the male and female
boot volumes.

Set up the Apple so that drives #4 and #5 are available. Do not
connect the hard disk yet.

2. Place the male boot volume in #4: and the female boot volume in #5:.
Turn on the Apple, the Lisa, and the hard disk. After awhile, the
Monitor command line should appear on the Lisa.

Plug the hard disk cable into the parallel port on the back of the
Lisa. If the monitor command line starts flickering, type RETURN.

3. Execute NEWZERO and respond 'Y'. NEWZERO initializes the hard disk
mount and volume tables.

4. Execute the Filer and enter the volume Manager (type M).

5. ·Create (N(ew) a volume (MBOOT:) with 2048 blocks of space. Mount it
as #20: (or anything other than #5:). Q(uit the Volume Manager and
update the mount table (type 'Y').

6. Transfer all of the files on the female boot diskette (#5:) to the new
volume (#20:). T #5:-,#20:$

7. Enter the Volume Manager again and mount the new volume as #5:.
Q(uit the volume manager and update the mount table.

9. Turn everything off. Set up the floppy disk drives as #9: and #4:
(if you have two disk controller cards). Place the male boot volume
in #4:. Turn on the Apple, the Lisa, and the hard disk.

10. Copy the entire monitor release onto the female boot volume (#5:), but
do not overwrite any files that are already on #5:.

Page 57

The Pascal Development System Manual 16-Feb-82

Page 58

The Pascal Development System Manual

THE EDITOR

File needed: EDITOR.OBJ

INTRODUCTION

LISA: ED ITOR. FONT
LISA:EDITOR.MENUS
LISA:SYSTEM.FONT

16-Feb-82

The 'mouse oriented editor is invoked by the monitor command E. ,Unlike the
UCSD editor (invoked by U), this editor adheres to the Lisa User Interface.
When invoked, it displays its menu, a portion of the Scrap folder, and
a dialog box which asks you for the name of the file to be edited:

Get Document named?

Type the name of the desired file, followed by <RETURN>. The editor opens a
folder and displays the first portion of the file. To open an empty folder
(to start a new file), type just <RETURN> to the request for a document name.

The arrow or I-beam shows the current position of the mouse. The blinking
vertical bar marks the insertion point. Activity takes place at the
insertion point even if that point is 'not visible. If, for example,
you open a folder, scroll ·to the end of the file, then start typing, the
characters you type are inserted at the start of the file (where the cursor is),
rather than at the end of the file (which you are merely looking at).

To mark text to be deleted or copied, set the insertion point to the start of
the text (move the mouse there and click), then drag the mouse through the text
to be acted upon. Selected text is displayed in inverse video. Click twice
to s,elect a word, three times to select an entire line. To select large
piec,es of text, put the cursor at the start of the text, move the mouse
to the end of the text, and shift click at that point.

At any time you can,

Open a new folder
(select the PULL item in the DESKTOP menu)

Start editing in any folder on the screen
(select the desired folder from the tray icon menu, or
click in the body of the desired folder)

Move the folder around on the screen
(drag the folder's tab)

Make the folder larger or smaller
(drag the grow box. The grow box is the square in the
lower right corner of the folder)

Scroll up a line
(click the up arrow box in the lower right corner. To
scroll continuously, hold the button down in the box)

Page 59

The Pascal Development System Manual 16-Feb-82

Scroll down a line
(click the down arrow box in the upper right corner. To
scroll continuously, hold the button down in the box)

Jump back a windowful
(click in the grey arE~a above the elevator. Hold the
button down in this area to continue flipping pages.
The elevator is the empty box in the vertical scroll
bar)

Jump forward a windowful
(click in the grey area below the elevator. Hold the
button down to continue flipping pages)

Jump to certain place in the folder
(drag the elevator to the position in the scroll bar that
corresponds roughly tc. the desired position in the file)

Cut out the selected text and place it in the Scrap
(select the CUT item j.n the EDIT menu, or type Command-Z)

'Paste the Scrap contents into the folder at the selection point
(select PASTE in the EDIT menu, or type Command-X)

Copy the selected text into the Scrap
(select COpy in the EDIT menu, or type Command-C)

Adjust the selected text right: one space
(select ADJUST RIGHT in the EDIT Menu, or type Command-R)

Adjust the selected text left one space
(select ADJUST LEFT in the EDIT Menu, or type Command-L)

Save all your edits and close the folder
(select PUT BACK in the DESKTOP menu)

Save all your edits, but remain in the folder
(select A~CEPT ALL EDITS in the DESKTOP menu)

Wri te the current folder contE~nts to another file
(select CROSSFILE TO. ' •• in the EDIT Menu. CrossFile asks
you for the file name to cross file to. If that file
already exists, you are given a chance to change your
mind before the old file is overwritten. CrossFile does
not change the file nnme used by Accept All Edits or
Put Back. If you do not want to crossfile after all,
type <RETURN> as the 1:ilename).

Cancel all the editing done since the last save command
(Select UNDO ALL EDITS from the DESKTOP menu. The editor
gives you a chance to change your mind before it cancels
all your edi ts) •

Page 60

The Pascal Development System Manual 16-Feb-82

Exit from the Editor
(Select EXIT EDITOR from the DESKTOP menu. If there are
unsaved edits in the folder. the editor asks you if these
should be thrown away. The prompts force you to answer
"Y" then "N" or vice versa to be able to get out, which is
less than friendly.)

Set tab stops
(select SET TABS ••• from the EDIT Menu. You can change the
numbe r of spaces between tab stops. The de·fault is eight)

Find. some target string starting from the current selection
(select FIND ••• from the SEARCH Menu. The default search
ignores case and is token oriented. To change either of
these, select the appropriate item in the SEARCH menu. FIND
asks you for the target string. To find the same thing again,
select FIND SAME. FIND & PASTE ALL performs a global find
and replace. FIND can be invoked by Command-F, and FIND
SAME can be invoked by Command-So Only the first eight
characters of a token-oriented search target are significant).

To move text: from one folder to another, select and COpy the text from the
source folder. activate the destination folder, set the cursor to the desired
insertion point, and select ~ASTE.

CUSTOMIZING THE EDITOR

The ·editor uses whatever font it finds in the file LISA:EDITOR.FONT to
display the folder contents. The suggested fonts are:

TITLE12R12S.F
SARA8~F
TlLEX.F
TlLE7R15S.F
TlLE5R18S.F

20 lines x 82 chars
26 lines x 83 chars
32 lines x 82 chars (default)
32 lines x 94 chars
37 lines x 132 chars

Page 61

The Pascal Development System Manual 16-Feb-82

Page 62

The Pascal Development System Manual

THE UCSD EDITOR

File needed: UCSDEDITOR.OBJ

INTRODUcrION

The Editor 1s divided into the modes listed in the Editor's
command line. A mode is invoked by typing the first letter of its
name. Many of these modes also have command lines to further specify
what action the Editor is to take. To insert new text, for example,
you must type I when at the top level. Once in Insert mode, text can
be inserted at that point in the file simply by typing it in •. To

16-Feb-82

accept the insertion type Ctrl-C (ENTER). To forget the insertion, type
<ESCAPE> (the CLEAR key in the numeric keypad). To get to another mode
(to move to a different place in the file, for example), you must first
exit the mode you are in.

The entire file being edited must be in memory at all times during
editing. TIlere is no macro facility. The cursor is sometimes not where it
appears to be. If a key is held down for more than a fraction of a second,
the key's action is repeated at about 10 times per second.

Elaborate documentation can be found 1n the Apple III Introduction, Filer,
and Editor Manual or in the Apple][Pascal Operating System Reference
Manual. The Apple][manual is somewhat inaccurate because our Editor
is an "enhanced version of the Pascal 1.1 update of the original Editor.

CURSOR MOVEMENT

Numerical Arguments

Set Direct ion

Most commands can be preceded by a numerical
argument. The argument can be an integer
between 0 and 9999, or the character I
which means "as many times as possible".
The numerical argument defaults to 1.
It is abbreviated as "n" below.

The Set direction is the direction in
which some commands move through the file.
The first character in the command line
tells what the current direction is:
> is forward, < is backward.

At the top level of the Editor, the keys
> +

change the direction to forward, and
< ,

change it to backward.

Page 63

The Pascal Development System Manual 16-Feb-82

Simple Cursor movement
<SPACE>
<RETURN>

move n spnces in set-direction
move n lines in set-direction

G(oto

Up-Arrow
Down-Arrow
Left-Arrow
Right-Arrow
<TAB>
<-> •

o
$
W
E
B
T

(you end up at the start of the line)
move n lines up
move n lines down
move n spElces lef t
move n spllces right
move n tab positions in set-direction
move to start of last text replaced, found,

or inserted
move to s t:art of line
move to end of line
move to beginning of next word
move to end of current word
move backuard one word
move to the next occurrence of a specified

chara(:ter

You can also use the main kE~yboard "h", "j", "k", and "1"
keys for cursor movement:

h
j
k
1

move left
move down
move up
move right:

Jump to some place in the file. You are presented
with a secondary co~~nd line to tell the cursor
where to Jump:

B(eginning of file
E(nd of File
M(arker

P{oint

Jump to a specific marker. You can have up to 10 active
markers set by the Set command (see ·below). Markers are
pointers to file, not text, locations. You can return to
the point you jumped from if you immediately type
<ESCAPE).

like <-> above.
<ESCAPE> exits wi thout Jumping.~

P(age

F(ind

Move the cursor n windows in the set-direction.

Find a target string nnd place the cursor just after it.
The normal mode is cane sensitive. With the exceptions
of S, L, U, and T, thE~ firs t character following
the F (for FIND) is the delimiting character. The
target string specifi(!ation ends when the delimiting
character is repeated.. Thus F.hi. looks for one

Page 64

The Pascal Development System Manual 16-Feb-82

occurrence of the lowercase word "hi". /F(HI(places
the cursor after the last occurrence of the uppercase
word "HI".

L(iteral, T(oken
FIND can be told to look for any occurrence of the
target string (Literal mode), or only for delimited
occurrences (Token mode). The default is the one
not given as an option when you type F (usually
Token mode is the default). To override the default
for one search, type L or T after F, but before the
delimiting character. FL. hi. looks for any occurrence
of the two characters "hi" in the file. A delimiter
(for Token mode) is any character which is not a
letter or a number. See S(et E(nvironment below
to change the default mode. Note also that
FL/<RETURN><RETURN>/ finds the next blank line.

U(pper-and-Lower-Case
To get a case insensitive search, type U before the
delimiting character. FU.hi. looks for any occurrence
of "HI", "hi", "Hi", or "hI" in the file.

S(ame-String

<ESCAPE>

TEXTUAL COMMANDS

I(nsert

To repeat ~ search using the same target string as
was used in the last search, you can type S in place
of the delimited string. The Environment information
(see S(et E(nvironment) tells you the current target
string. If we last searched F.hi., FS searches
again for "hi". Mode changing letters can be
concatenated: FLUS looks for the target string last
specified, in Literal mode without sensitivity to
upper or lower case.

exit Find mode without taking any action.

Insert text into a file. Insertion takes place
between the character on which the cursor is sitting
and the character immediately to its left. Ctrl-C
accepts an insertion, <ESCAPE> forgets it. At any
point during an insertion, left arrow deletes the
character to the left of the cursor. You can't
backspace past the beginning of the insertion.
If you accidentally hit <ESCAPE> during an insertion
(and thereby delete everything you just typed),
you can rescue the inserted tex.t by C(opying it
from the B(uffer.

Page 65

The Pascal Development System Manual 16-Feb-82

D(elete

Z(ap

Delete text moving in the Set-direction. Ctrl-C accepts
a deletion, <ESCAPE> :restores the deleted text. All deleted
text is stored in the Copy Buffer, so to move a piece of text
from one place to another, first delete it, move the
cursor to the new 10~ition, then C(opy from the B(uffer.
D(elete accepts numerical arguments (including /
and P(age).

Delete all text betwejen the current cursor posi tion and
the current location of the "Point" (the location of the
last text inserted, found, or replaced). Zapped text
is placed in the Copy Buffer.

C(opy

F(ile

Copy text into the file at the current cursor position.
The copied text can be taken from the Copy Buffer, or
from a file ~

Copy a file, or some portion of that file. If the file
has markers placed in it, you can choose to copy only
the portion between a:ny two markers by enclosing the
names of the markers :In square brackets af ter the file
name. HI.TEXT[PROCl,:E>ROC3] copies the portion of HI.TEXT
lying between the markers PROCl and PROC3. [,MARKER]
copies from the begin:ning of the file to MARKER, and
[MARKER,] copies froID MARKER to the end of the file.
If no marker specific.3.tion is given, the entire file
is copied.

B(uffer
Copy the contents of the Copy Buffer.

M{arker
Copy text between two markers, using exactly the same
syntax as that used i:n copying from a file.

<ESCAPE>

X{Change

R{epIace

Exit Copy mode withou't copying anything.

Exchange mode allows you to overwrite text (exchange
old text for new). You cannot exchange characters
past a <RETURN>. Ctrl-C accepts an exchange, <ESCAPE>
forgets it. Right arrow copies characters as it passes
over them.

R(eplace mode is very simi1a-r in syntax to the F{ind
mode. R(ep1ace takes two strings-the target string
(as in F(ind), and the string to substitute for an
occurrence of the target. Numerical arguments are
valid.

L(iteral, T(oken
See F(ind above.

U{pper-and-Lower-Case

Page 66

The Pascal Development System Manual 16-Feb-82

See F(ind above.
S(ame-String

V(erify

See F(ind above. Note that S can be used for either
or both strings: RSS looks for the previous target
string and replac'es it with the previous substitute
string.

If the find-and-replace operation is done in V(erify
mode, you are asked before each replacement whether
the replacement should take place for the given
occurrence of the target. /RV.hi./ho/ looks in the
set-direction for every occurrence of "hi", then on
each one asks you if you really want to replace that
"hi" with "ho".

<ESCAPE>

A(djust

Exit Replace mode without replacing anything.

Adjust the indentation of a line, or a group of lines.
Left and Right Arrow push the entire line left or right.
<SPACE> moves a line a space in the set direction.
Up and Down Arrow cause the same adjustment to affect
lines above or below the first adjusted line. <RETURN>
affects the lines above or below, depending on the
set direction. <TAB> moves li~es over 8 spaces.

Alternate choices are: .
L(eft-justify
R(ight-justify
C(enter
P(age

M(argin

O(bscure

Ctrl-C accepts the adjustment--you have no other choice.
Numerical arguments (including /) can be used.

The M(argin command attempts to fit a paragraph into the
prevailing paragraph formatting parameters set in the
E(nvironment. M(argin only works when I(ndent-Auto
is false and F(illing is true. A paragraph is defined
to be any text bounded above and below by two ttelimiters.
The allowed delimiters are a blank line, the beginning
of the file, the end of the file, and a line which
begins with the Command Character. To M(argin a
paragraph, move the cursor to any point within the
paragraph and type M.

o means "join" for some reason.» It replaces the <cr> at
the end of the current line with a space, thereby joining
t he two lines.

Page 67

The Pascal Development System Manual 16-Feb-82

EDITOR DIRECTIVES

S(et
S(et mode allows you to set Markers and to change
various global Editor settings.

M(arker
A Marker is an absolute location in a file to which
you can J(ump. A maximum of ten markers can be active
at one time in a file '. T.o set a marker t move. the
cursor to the desired location, then type SM. You
are then asked for thE! marker's name (a character
string of up to 8 characters).

E(nvironment
The editing "environm(~nt" can be customized to suit
your whims. The E(nv:lronment command displays the
current settings of vnrious parameters, the current
size of the file, the current target and replacement
strings· for F(ind and R(eplace, the markers currently
in the file, and vari()us other information.

To change the setting of the parameters, type the first
let ter, then the new ',alue. SEAF, for example, enters
S(et mode, enters the E(nvironment menu, then sets
A(uto-Indent to False '. To exi t the Environment menu
and retain the changed values, type Ctrl-C (ENTER).

A(scii-file
Used by BASIC on Apple III. Not applicable to Lisa.

C(ommand Character
You can set the Edi tor Command Character to be any
printing character. The command character can be
used to protect a lin(~ from the Margin command.

F(illing
If Filling is true t l:lnes are automatically broken at
the right margin betwc~en words.

I (ndent-Auto
If I(ndent-Auto is true t a new line is automatically
indented to the position of the first non-space character
of the previous line.

L(eft, R(ight, P(aragraph margin
These three parameters control the layout of the
paragraphs when using Filling or Margin. P(aragraph
margin is the indentation of the first line of the
paragraph.

N(ame-of -file
When you Q(uit the Editor, the S(ave option can be
used to write the edited file to the file named in

Page 68

The :Pascal Development Sys tem Manual 16-Feb-82

the N(ame field. You can change this name to any
legal file name.

S(pace-continue
If TRUE. a space must be typed before you can continue
editing after an error has occurred. If FALSE. any
character can be typed to allow you to continue.

T(oken
T(oken defines whether the F(ind and R(eplace commands
use the T(oken or L(iteral mode as a default.

<ESCAPE)

V(erify

Q(uit

Restore all the parameter values that were in force when
Set mode was entered. and exit Set mode.

V(erify causes the Editor to redisplay the screen·.

Exit the Editor or load a new file.
U(pdate

E (Jeit

Update the "workfile". It is not an accident that
this is the only mention of the "workfile".

Exit the Editor without saving anything that you did.
R(E!turn

S(ave

W(rite

Return to the Editor (in case you didn't want to quit).

Save the current edited file under the name given
when the Editor was entered; or (if you started a new
file) under the name last given in a W(rite command.
Return to Q(uit menu.

Write the current edited file to a diskette file.
You must give the file's name. W(rite returns to
Q(uit menu.

C(hange
Load a new file into the Editor without restarting the
Editor. The previous target and substitution strings are
carried over. and the copy buffer is maintained intact
(if possible).

Page 69

The Pascal Development System Manual 16-Feb-82

Page 70

The Pascal Development System Manual 16-Feb-82

UTILITY PROGRAMS

(IUManager, ~hangeSeg, SegMap) ••• • • • • • • • • • 72

(Configure. Contrast, SetSP, ChangeMem, Flip4, MoveSoroc). • 75

(FileDiv, FileJoin) •••••••••••••••••••••• 77

(Diff, FindID, Pretty List, PascalRef) • • ••

(DumpObj, DumpHex, Patch, ObjDiff, ByteDiff, GxRef) ••

(LisaTest) • • • • • • • • • • •

(Perform, Coverage Analysis) •

(Script) • • • • • • •••

.

• • • 80

. . . • • 87

• • • 91

• • 93

. ,. . • • 96

(Terminal Emulator). • • 98

Page 71

The Pascal Development System Manual

IUMANAGER

IUMANAGER modifies the file INTRINSIC. LIB used by the intrinsic unit
Linker and loader to find the intrinsic unit files. INTRINSIC. LIB

16-Feb-82

is essentially a directory of unit na,mes, segment names, and file names.
When executed, IUMANAGER asks for the input and output files to be modified.
The default name for both files is *lNTRINSIC.LIB. The intrinsic unit
manager has three modes: Manage Segments, Manage Units, and Manage
Files. Each mode operates on an associated table of information used
by the loader to properly link intrin.sic unit code and data into an
executing program.

Manage Segments Mode operates on the Segment Table which contains a list
of segment names with information abo.ut each segment for the loader and
linker. Manage Units operates on the, Unit table which contains the
unit names and information used by the loader and linker to build the
data pointer table. Finally, Manage Files operates on the File Table
which contains a list of files indexe,d by a file number. The loader
uses the file number to find the intrinsic units and segments on the
disk.

IUMANAGER has the following commands:

Q(uit

S(egments

U(ni ts

F(iles

Write the output file and exit from IUMANAGER.

Enter the Segment Manager and list the contents of
the Segment Table.

Enter the Unit Manager and list the contents of the
Uni t Table.

Enter the File Manage~r and lis t the contents of the
File Table.

In each of the modes you can:

L(ist

R(emove

C(hange

N(ew

List the contents of the currently active table.
If you have more than 32 entries in the table,
you can stop the' listing with Control-S (the
'.' key on the numeri,c keyboard).

Remove an entry from the currently active table.

Modify information in the currently active table.
The Change command prompts you for the value of
each field. A response of <cr> accepts the default.

Create an entry in the currently active table.
The New command prompts you the value of each field.
A response of <cr> accepts the default value.

Page 72

The Pascal Development System Manual

In the File Manager you have one further command choice:

l(nstall Install (update) the segment and unit tables from
a linked object file. The Install command prompts
you for the file number of the entry to be updated.

Page 73

16-Feb-82

The Pascal Development System Manual

CHANGESEG

CHANGESEG ch~nges the segment name in the modules in an object file.
The first prompt asks for the object :file you want to change:

File to change:

Changes are made in place (the file itself is changed). You are next
asked:

Map all Names (YIN)

16-Feb-82

If you want to change segment names i:n all modules, respond Y. If you
want to be prompted for the new segment name for each module, type N.
A response of <cr> accepts the default name.

SEGMAP

SEGMAP produces a segment map of one -Dr more object files. The firs t
prompt:

Files to Map ?

accepts either an object file name or a command file name. A command file
must be preceded with a <. SEGMAP adds the .TEXT suffix to the command
file name. The next prompt:

Lis ting File ?

directs the map information to the file given. A response of 111: or
CONSOLE:, for example, send the map i:nformation to the screen. The
map information includes the object fIle name, the name of the unit
in the file, the names of the segment:s used in that unit (if any),
and the new segment names.

Page 74

The Pascal Development System Manual

CONFIGURE

CONFIGURE modifies some of the vectors in the Monitor Map Table.
These vectors are stored in CONFIG.DATA on the male boot volume
and are used by the Monitor to configure your system when it is
booted. To use CONFIGURE, copy CONFIG.DATA from the male side to
a female volume, or flip the sex of the boot diskette. X(ecute
CONFIGURE. CONFIGURE asks you whether it should Go or Quit. Type
G to run CONFIGURE, Q to return to the Monitor command line.
CONFIGURE asks you for the file containing the vectors you want to
change. If you do not give a volume name, it look on the .prefix
volume. If you give just the volume name, it looks for CONFIG.DATA
on that volume. CONFIGURE can change the following vectors:

dE(bug pointer
D(efault Stack pointer
H(eap pointer
C(orvus pointer
U(art pointer
A(pple port
M(emory top
S(creen base
B(uffer pointer

[$150]
[$13C]
[$138]
[$134]
[$llC]
[$118]
[$114]
[$110]
[$10C]

(* most important *)

The old and new value of each vectors is also displayed. Type the
capitalized letter of the vector you want to change. Lower case is
allowed in hexadecimal numbers. When you are done, type Q to Quit.

16-Feb-82

At this point you are asked where to save the new values. You can
write the changes back to CONFIG.DATA, exit without making any changes,
and so on.

A memory map is given in the Monitor chapter showing the relationship of
these vectors. Do not place the start of the heap above the stack pointer.
Because CHANGEMEM sets aside heap space, it is safer to set the stack
pointer befl)re grabbing a lot of the heap with CHANGEMEM.

Once you have finished modifying CONFIG.DATA, transfer it back to the
male: boot volume so that it can take effect when the system is rebooted.

CONTRAST

CONTRAST changes the contrast setting of your screen without changing the
default setting. It is a simple program that should be self-explanatory.
Like CONFIGURE, it first asks whether to G(o or Q(uit. If you type G,
some alphanumeric characters are scattered around the screen for reference.
You can type ')' or '.' to increase and '<' or ' , to decrease the screen
contras t.

Page 75

The Pascal Development System Manual 16-Feb-82

SETSP

SETSP sets the address at which t~e stack pointer starts. Memory above
that address is then reserved for cod(~t and memory below it is the stack
and heap space. If your program req~Lres a great deal of room
for data t set the stack pointer to a high address. If the program
requires a great deal of code t set thE! SP to a low address. The
Monitor default SP starting address d(!pends on the version of
CONFIG.DATA on your male boot volume. The highest possible address
is the bottom of the Monitor.

All SETSP I/O is in hex. When X(ecut,~dt it displays the current
stack pointer value. Type 0 to exit the program. The optimal value
to give SETSP may not be obvious at f:lrs t t since code swapping can
change your memory requirements. It :is qui te possible that a program
will run happily for hours t then die l¥'ith a Loader Error when a
piece of code couldn't be fi t in memo:ry. If this happens, set the
stack pointer to a lower starting address, and try again.

CHANGEMEM

CHANGEMEM changes the size of the predeclared RAM-resident volume MEMORY:.
Its interface is identical to that of SETSP. The default size of MEMORY:
is 10 blocks. Space for the MEMORY: volume is taken from the available
heap space.

FLIP4

Volume (/4: is normally the RAM-based '~olume MEMORY:. The Disk drive
t ha t would usually be (/4: is hidden from the moni tor to avoid overwri ting
the male boot volume. If you want aCI::ess to that disk drive from the
monitor, run FLIP4. FLIP4 executes a simple loop until you tell it to
Quit. After asking whether to continue or to quit, FLIP4 gives you a
chance to toggle the state of #4:. #4: is either MEMORY: or the disk
drive. Remember to remove the male bl)ot volume before writing to (14:.

MOVE SO ROC

MOVESOROC (also sometimes known as MS) determines where the Pascal WRITELN
output goes. It normally is sent to the Lisa screen. When an application
is running on this screen, however, debugging WRITELNs mess up the program's
pretty output. MOVESOROC redirects this output to either the Apple monitor,
the UART (serial port #2), or back to the Lisa. Monitor input always comes
from the terminal to which output has been directed.

Page 76

The Pascal Development System Manual 16-Feb-82

FlLEDIV and FlLEJOIN

It is often necessary to distribute files that are too large to fit onto a
single floppy diskette. FlLEDIV can be used to break a large file
into several diskette-sized pieces. FlLEDIV can then be used to rejoin
these pieces at the file's destination. These two programs replace the
TRANSFER program.

To divide a large text or object file, execute FILEDIV.

Input file: <give the name of the file to be divided>
Output file: <give the name to be used for the output files>

Do not include the suffix in the file name. If, for example, you want
to d.ivide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever)
as the output file. FlLEDIV will create a group of files named TEMP.I.TEXT,
TEMP.2.TEXT t and so on, until TEMP.TEXT is completely divided up. If you
use the drive number (#9:, for example), rather than the volume name, the
new files can be written to mUltiple diskettes. When space on a diskette
is exhausted, FlLEDIV asks you to insert another diskette.

To rejoin the pieces of the file, execute FlLEJOIN. Using the example given
above, we can rejoin TEMP.I.TEXT and friends into TEMP.TEXT by responding:

Input file: TEMP
Output file: TEMP

<will read TEMP.I.TEXT, etc>
<will create TEMP.TEXT>

FILEDIV and FILEJOIN use regular directories, so a spurious sex change
cannot destroy your file. Files are verified in both directions.

Page 77

The Pascal Development System Manual

DIFF

DIFF is a program for comparing ".TEXT" files, in the LISA Pascal
development environment. DIFF is strongly oriented toward use with
Pascal or Assembler source files.

DIFF is not sensitive to upper/lower c.ase differences. All
input is shifted to a uniform case before comparison is done.
This is in conformance with the langu~ige processors, which ignore
case differences.

DIFF is 'not sensitive to blanks. All blanks are skipped during
comparison. This is a potential source of undetected changes,

16-Feb-82

since some blanks are significant (in string constants, for instance).
However, DIFF is insensitive to "trivIal" changes, such as indentation
adjustments, or insertion and deletion of spaces around operators.

DIFF does not accept a matching conte:K:t which is "too small".
The current threshold for accepting a match is 3 consecutive matches.
The M option allows you to change this number. This has two effects:

Areas of the source where almost "every other line" has been
changed will be reported as a single change block, rather than
being broken into several small change blocks.

Areas of the source which are tl'entirely different" are not
broken into different change blocks because of trivial similarities
(such as blank lines, lines with only "begin" or "end", etc.)

DIFF makes a second pass through the :lnput files, to report the
changes detected, and to verify that matching hash codes actually
represent matching lines. Any spurious match found during
verification is reported as a "JACKPOT". The probability of a JACKPOT
is very low, since two different lines must hash to the same code at a
location in each file which extends the longest common subsequence, and
in a matching context which is large I:!nough to exceed the threshold for
acceptance.

DIFF can handle files with up to 2000 lines.

DIFF first prompts you for two input file names: the "new" file, and the
"019." file. DIFF appends ".TEXT" to these file names, if it is not
present. DIFF then prompts you for a filename for the listing file.
Type carriage-return to send the list:lng to the console.

DIFF does not (currently) know about INCLUDE files. However, DIFF does
allow the processing of several pairs of files to be sent to the same
listing file. Thus, when DIFF is fin:lshed with one pair of files, it
prompts you for another pair of input files. To terminate DIFF, simply
type carriage-return in response to the prompt for an input file name.

The output produced by DIFF consists C)f blocks of "changed" lines.
Each block of changes is surrounded by a few lines of "context" to aid

Page 78

The Pascal Development System Manual

in finding the lines in a hard-copy listing of the files.

There are.three kinds of change blocks:

INSERTION -- a block of lines in the "new" file which does not
appear in the "old" file.

16-Feb-82

DELETION a block of lines in the "old" file which does not appear
in the "new" file.

REPLACEMENT -- a block of lines in the "new" file which replaces a
corresponding block of different lines in the old file.

Large blocks of changes are printed in summary fashion: a few lines
a t the beginning of the changes and a few lines at the end of the
changes, with an indication of how many lines were skipped.

DIFF has three options which allow you to change the number of context
lines displayed (+C), the number of lines required to constitute a
match (+M), and the number of lines displayed at the beginning of a
long block of differences (+D). To set one of these numbers,
type the option name followed by the new number to the prompt for
the first input file name. +D 100, for example, causes DIFF to
print out up to 100 lines of a block of differences before using
an ellipsis. The maximum number of context lines you can get is 8.

Page 79

The Pascal Development System Manual 16-Feb-82

FINDID

FINDID searches code files for an identifier. It provides a service
similar to that of the editor's literal search, but the search can
cover any number of files of any size. When executed, it asks first
for the name of the. file which contains the list of files through which
you want to search. For example, if you want to search the files
CODE. TEXT, CODEl.TEXT, and CODE2.TEXT, make a file which contains:

Code. Text
Codel.Text
Code2.Text

and give FINDID this file's name. FINDID then asks for the identifier
you want to search for. Only the first eight characters are significant.
The search is always literal--any identifier beginning with the specified
eight characters is considered a match. FINDID's last prompt asks whether
the search should ignore case differences. FINDID then grovels through
files in the list reporting any occurrences of the identifier. To get
out of FINDID, hit NMI, then type RM to LisaBug.

Page 80

The Pascal Development System Manual

PRETTY LIST

Pretty List scans a listing produced by the Assembler, and replaces
the asterisks in the displacement portion of branch instructions with
the actual forward reference value. When you X(ecute PRETTY, you

16-Feb-82

are asked for the Input File (the Assembler listing file). Because this
file can be either a data file or a text file (with a • TEXT extension),
the ~ext prompt is:

If input file is a text file (file.text) type 1 else type 0 --

Pretty List then asks for the output file nameo

If the listing file contains:

03601 CHKLO BSR4
03601 49FA ****
03641 6000 ****
0362* 0006

II LEA
/I BRA

Pretty list produces:

03601 CHKLO
03601 49FA 0006 /I
03641 6000 OOSA /I

BSR4
LEA
BRA

Page 81

CHKMEM
@1,A4
CHKMEM

CHKMEM
@1,A4
CHKMEM

The Pascal Development System Manual

PASCALREF

Pascalref is a cross reference utility for Lisa Pascal programs.
It can perform partial or complete cr()ss. references, can handle

16-Feb-82

USES and INCLUDE statements correctlY9 and imposes no limit on the size
of the target program.

Pascalref assumes that the program or unit to be referenced (target
program) has been compiled without sY1ltax errors. It also assumes
that the font BOLDIOV and the file MPMENUFILE.TEXT are available on
your prefix volume or the boot volume (#5:).

THE USER INTERFACE

AcrION

Setup Files
Set Scope
Begin Pascalref

SEARCHOPTIONS

Interactive
Reloffsets
Procdic
Widepaper
Used Unit Int
Out Scope Vars

:FINDTYPES

Declared
l~odified
,~ccessed

:Stnd PFT

YN-TF

Yes-True
No-False

<- The Menu Bar

The line in capitals at the top represents the menus in the menu bar.
The lower case names are the items in each pull down menu. A shaded
menu item shows that the option represented by that item is active.
To change the 'Procdic' option, for example, use the mouse to select
, Procdic' then select either True or :~alse. You can also type SP, then
enter Y(es or T(rue, N(o or F(alse. When you have all your options set up,
select 'Begin Pascalref'.

OPTIONS

Setup Files

You are asked for the names of the listing file, source file, and
output file.

Set Scope

Pascalref allows you to set the scope to be a single procedure.
Only identifiers within that procedure and its local procedures are
referenced. Of course, accesses to any variables global to the
procedure are included in the OUT OF SCOPE section. The default
scope is the whole program. Currently, when referencing a Unio by
itself, only set the scope to the whole unit. Also, don't set the
scope to a FORWARD procedure or a procedure in the interface of a
unit.

Page 82

The Pascal Development System Manual 16-Feb-82

Begin Pascalref

Star~ the cross reference.

SF.ARCHOPTIONS

Interactive

When Interactive is true (the default), Pascalref looks only for
those names that occur in the list of variables that you type in.

When a particular reference is finished, Pascalref asks you 'Look at
more :ldentifiers?'. If you answer yes, PascalRef returns to the options
setting routine with the same files set up. You can change the options
and the files on each pass if you want to.

When Interactive is false, Pascalref cross references all identifiers
within the specified scope.

Reloffsets

Next to each occurrence of an identifier is the line number it occurs
on. When Reloffsets is true (the default), the line numbers are listed
relat:lve tio the procedure the occurrence is in.

When Reloffsets is false, offsets are given relative to the beginning
of the program.

Procdic

If Procdic is true, Pascalref creates a procedure dictionary listing
each Procedure with the line it starts on. The default for ProcDic is
false" The program or outermost procedure in the scope is procedure 111.
Nested procedures are indented.

In the case of forward procedures and procedures declared in the
interface of a unit, the procedure number listed reflects where
the procedure declaration occurs. '-Forward Proc' appears in the
procedure dictionary after the 'STARTING LINE H'. The ordered location
of the procedure name and the starting line number within the procedure
dicti()nary reflect where the header to the body part of the procedure
occurs.

Widepaper

The default value (False) should be used when sending output to the
console or to standard 8-1/2 inch wide paper. When printing on
132 column paper, set Widepaper to true.

Page 83

The Pascal Development System Manual 16-Feb-82

Used Un! tInt

The default value of True causes the INTERFACE parts of USED units
to be included in the PASCALREF scan. This allows you to see where
every identifier used by a Pasca.l program is defined. If you are
not interested in the INTERFACE of a unit, set 'Used Unit Int' to
false.

Out Scope Vars

When a program accesses a ident:l.fier that has not been defined, that
access shows up in the OUT OF SCOPE VARIABLES OR PROCEDURES section of
the PASCALREF listing. This part of the listing is present when
'Out Scope Vars' is true (the default).

FINDTYPES

The three 'Find Types' are DECLJ~ED, MODIFIED and ACCESSED. The
default value of each type is true. Each type can be set independently.
When all are true, all occurreoc!es of an identifier are listed. If, for
example, only ACCESSED is true, PascalRef lists only places where a
variable is accessed. MODIFIED flags places where a variable occurs
to the left of :-, and where it is passed as the actual parameter
to a formal VAR parameter. DEC1~ED lists places where an identifier
is declared.

Stnd PFT lis ts occurrences of s1:andard procedures, functions and types.
Its default is false.

YN-TF

This menu gives you an option f()r answering Yes-No and True-False
ques tions. Choosing Yes-True in the same as entering a Iy' or 'T'
from the keyboard and choosing No-False is the same as entering a
'N' or 'F'.

Page 84

The Pascal Development System Manual 16-Feb-82

OUTPUT FORMAT

LISTING (Pascalref can prod~ce a listing identical to that produced ~y
the compiler)

PROCEDURE DICTIONARY:

PROC II, PROC NAME,

1:
3:
4:
5:
2:
6:
7:

MAINPROGRAM
NESTEDPROC

FURTHERNESTEDPROC
PROC
FORWARDP ROCWHOSEBODYCOME SAFTERPROC

PROCNESTEDINBODYOFFORWARDPROC
LASTGLOBALPROC

STARTING LINE II

° 80
120
200
40-Forward Loc

280
300

The
I

identifier we
The
I

are referencing
procedures it occurs in

I The occurrences within those procedures
I
IDENTIFIER

I
PROCEDURE

I
OCCURRENCE (D-defined, A-accessed, M=modified,
---------- V-Var param def, P=passed to Var param)

I PROCA D 10, P 4.5, A 50, A -60.
PROCB D 16, A 20, A 30,

STRNG PROCA D 12, M 41, M 62, A 50, A 58,
A 60,

PROCC V 75, M 80, A 82.

OUT OF SCOPE VARIABLES OR PROCEDURES

These are listed in the same format as that of the regular identifiers,
but represent items that are global to the chosen scope. To find out
what global variables a procedure and its nested procedures access,
set the scope to the procedure, set INTERACTIVE to false and look at
the resulting OUT OF SCOPE items.

GENERAL NOTES ON THE USE OF PASCALREF

Pascalref does not store information about variable types or record
structures. If you have both a stand alone variable named AVAR and
a record field named AVAR, PascalRef lists both as the same
identifier.

Include commands are recognized by Pascalref and the INTERFACE
parts of units USED by the target program are included in the

Page 85

The Pascal Development System Manual 16-Feb-82

refe rence if the scope is set tC) the whole program.

To find variables that are deculred but no longer used bya program,
do a refe rence of the whole program. Variables that have a 'D'
occurrence and no others can oft:en be removed from the program.

Occurrences of a particular identifier are always exactly in order
when interactive is true. When interactive is false, occurrences are
grouped by the procedures where the identifier is declared locally.
In the case where interactive is false, you may notice the following:

I PROCA
PROCB

D
D

10, P
16, A

45, A
20, A

50, A
30,

60.

The variable ' I' was declared and accessed in PROCA and declared and
accessed in PROCB. The accessen in PROCA occur after the declaration
and accesses in proc B but they are listed first.

If 'I' were not defined in PROCB, it would look like:

I PROCA D 10,
PROCB A 20, A 30,
PROCA P 45, A 50, A 60.

If the first exampl"e were done :In interactive mode, it would look like:

I PROCA D 10,
PROCB D 16, A 20, A 30,
PROCA P 45, A 50, A 60.

Procedures and Functions as parameters are currently not fully
implemented in Pascalref. They are parsed by Pascalref, but
Variables passed to a procedure or function that is a parameter are
always marked as modified in that occurrence.

Page 86

The Pascal Development System Manual

DUMPOBJ

DUMPOBJ is a disassembler for 68000 code. It can disassemble either
an entire file, -or specific modules (procedures) within the file.
DUMPOBJ replaces DUMPMCODEe

DUMPOBJ first asks for the input file which should be an unlinked
object file. The output (listing) file defaults to CONSOLE:.
You are asked whether you want to dump

A(ll, S(ome, or P(articular modules.

16-Feb-82

If you respond S(ome, DUMPOBJ asks you for confirmation before dumping
each module. A response of <ESC> gets you back to the top level. If
you respond P(articular, DUMPOBJ asks you for the· particular module(s)
you want dumped.

l'he next ques tion is: 'Dump file posi tions [N]?' The file posi tion
is a number of the form [0,000] where the first digit is the block
number (decimal) within the file and the second number is the byte
number (hexadecimal) within the block at which the module starts.
This information can be used in conjunction with the PATCH program.
Finally, D~~OBJ asks if you want the object code disassembled.

Page 87

The Pascal Development System Manual 16-Feb-82

DUMPHEX

DumpHex provides a textual representation of the contents of any file.
The file dump is block-oriented with the hexadecimal representation on
the left and the corresponding ASCII representation on the right. If
a byte cannot be conve-rted to a printiable character, a dot is substituted.

When DumpHex is X(ecuted, it asks you for the name of the output file.
A .TEXT extension is added if necessa:ry. To direct the output to the
console, type carriage return. After getting a valid output file name~
DumpHex asks for the input file to be dumped. No extensions are
appended, so give the full filename. Once a file has been completely
dumped, DumpHex asks you for the next file to dump. Type carriage
return to exit the program.

After opening the input file, DumpHex asks you which block to dump.
The default (carriage return) is block O. If the output is going to
a file, you are asked which block is the last you want dumped. The
default here (carriage return) is the last block in the file.

The format of the console output depends on the number of lines your
screen has. If fewer than 33 lines are available, the output is
displayed only a half block at a time. Between blocks or block
halves you have the option to

Type <space> to continue, <esc:ape> to exit.

Escape returns to the prompt for an input file.

Page 88

The Pascal Development System Manual 16-Feb-82

PATCH

Patch allows you to examine and change the contents of any file. The
display of the file's contents is exactly like that of DumpHex. With
Patch, however, you can use the cursor control keys to move around in
the block and change the value of any byte using either the hexadecimal
representation on the left or the ASCII representation on the right.

After X(ecuting Patch you are asked for the full name of the file to
patch. Carriage return exits Patch. No extension is appended to the
file name. You are then asked for the number of the block you want
to mess around with. Carriage return here returns you to the file
name prompt ..

'The block is displayed with the cursor in the upper left corner at
word 0 of the block. The arrow keys can be used to move around in
the block. If you move the cursor up from the top line, you get the
bottom line of the preceding block. Similarly, if you move down
from the bottom line, you move into the top line of the next block.

When the cursor is on the hex~decimal side of the display, you can
change any byte by typing the new hexadecimal value. Any non-hex
characters are ignored. You can impress your friends by pointing
out that the change is reflected automatically in the ASCII portion
of the display. When the cursor is on the ASCII side, type any
character to replace the value of the byte. Until you move out of
the block you can undo any changes by typing <escape).

Page 89

The Pascal Development System Manual

OBJDIFF

OBJDIFF performs a comparison of two object (.OBJ) files. The two
files being compared should be very s:Lmilar. OBJDIFF uses procedure
boundaries to get itself back in sync after a difference is found.

BYTEDIFF

BYTEDIFF compares any binary files, but once it finds a difference
between the two files, it does not al,~ays find where the differences
end.

GXREF

16-Feb-82

GXREF lists all the modules which call a given procedure, and all the
modules which that procedure calls. It provides a global cross reference
of subroutines and modules.

Page 90

, The Pascal Development System Manual 16-Feb-82

LISATEST

LISATEST i.s a package of hardware test routines. The DlAG: diskette
which contains these programs can be obtained from Rich Castroe To use
the programs, boot the Apple II with the Lisa in the power-on reset
state, then X(ecute LISATEST. You have eight choices:

1) Apple-Lisa Interface Test
2) Memory Test (RAMTEST)
3) Display Memory Test Results
4) UART Wrap Around Test
5) Video Latch Test
6) MMU Test
7) Keyboard Tes t
9) Quit

The tests are, for the most part, self-explanatory. For a complete
description of each test, its prompts, error messages, and options
please see the Lisa Production Tests documentation by Rich Castro.
A short description of each test is given below.'

Apple-Lisa Interface Test

The Interfa(~e Tes t attempts to use the parallel port interface between
the Apple II and the Lisa to verify that the two systems can communicate
with each other. .

Memory Test

The Memory Test program tries to single out bad or marginal memory chips
and provides trouble shooting information about other memory board
problems. It is essentially an updated and easy to use version of
RAMTEST.

Display Memory Test Results

After running the Memory Test, you can have the results of that test
redisplayed by the Display Memory Test Results program.

UART Wrap Around Test

The UART Test checks the UART on the CPU board that controls the RS-232
port #1 (the one on the left as you face front of the machine). To run
the test you need a specially wired wrap around DB-25 male connector.

Video Latch Test

The Video Latch Test checks the operation of the video page latch on the
MCU board.

Page 91

The Pascal Development System Manual 16-Feb-82

MMU Test

The MMU Test tries to verify that the MMU is working properly. It sets
up the base and lim! t regis ters in thE~ MMU with various values and then
attempts to access the corresponding ID.emory segments.

Keyboa rd Tes t

The Keyboard Test checks the keyboard and mouse buttons to verify that
the COPS interfaces are functioning properly.

Page 92

· The Pascal Development System Manual 16-Feb-82

PERFORM

Perform monltors the execution performance of a program. After X(ecuting
Perform, yO\.1 are asked for the lis ting file's name. A carriage return
directs output to the console. If necessary, .TEXT is appended to the
listing file name. You are next asked for the name of the program
you want to analyze. If necessary, the extension .OBJ is added to
the file name. The program file must be executable and must be
linked with the corresponding .DBG files.

Perform scans the program file for procedure entry points, listing them
as they are found. It then waits for you to type a space before executing
the program. Every 1/60 second the program's program counter is checked
to find out which routine is executing at that moment. When the program
terminates, Perform produces a listing of the routines it found executing
ordered according to the amount of time spent in each routine. Routines
,that were never caught executing are listed separately. Perform may miss
the execution of short or rarely called routines.

The longer the program runs, the more trustworthy the analysis. Routines
that are synchronous with the 60 Hz clock are not measured correctly.
If M.SYMBOLS is included, PERFORM also gives information on the
amount of time spent in the monitor (MPASLIB).

Page 93

The Pascal Development System Manual 16-Feb-82

COVERAGE ANALYSIS

The CA program provides a coverage analysis of a Lisa Pascal program. Branch
counters are inserted into the source (.TEXT file) of the program under test.
The output of the CA program is then compiled and linked. At the end of
the program's execution, a text file :Ls produced giving the branch numbers
and the number of times each branch was executed.

To run the coverage analysis program you need to get the sources of any of
the uni ts and programs you want to aniilyze and the .OBJ versions of any
other units that are required to link the program. You should be able to
coompile and link these sources without error. To add counters to a uni t
or program:

X(ecute CA

CA first asks for the name of the source file:

Input file -

Give it the name of the file you want analyzed. The output of CA is another
source file containing the original S4)UrCe modif ied by the addition of the
counters and the analysis machinery. The output file can be very large, so
give it plenty of room.

Output file -

The name you give here is the name of the new source (with the branch
counters added in).

The next prompt is:

Count B(ranches, P(rocedures, O(ne unit

You can count every branch (every THEN, ELSE, CASE branch, REPEAT, DO, etc),
just procedure entries, or just report on the branch counters in a unit that
has already been run through CA. If you ask that every branch be counted, CA
also asks:

Routine to skip «cr> for nonle):

The compiler has a fixed code buffer :size. If a procedure in the original
program is close to the size limit, it may be impossible to add counters
to every branch and still compile that procedure. The compiler error is
11350, "procedure too large". If you add the counters and the compiler
complains about some procedure, run CA again, and give the offending
procedure name here. If more than one procedure is too large, either
complain to the developers, or ask SOlDeone to make the 'routine-to-skip'
code take a list of names.

The next prompt was Pete Cressman's idea:

Enable tracing?

Page 94

'!'he Pascal Development Sys tern Manual 16-Feb-82

Type 'y' and every time the program is executed you will be asked if you
want to be informed about every procedure entry during execution of the
program. This avalanche of names can be very tedious to watch. If you
respond "n", the tracing machinery is omitted from the program and you are
never asked whether it should be activated.

The next p~()mpt is:

DatCL file -

The data file is the file containing the coverage analysis after the program
has executed. It is a text file, so you can read it with the mouse editor.
You can match each counter number up with the code it is counting by
examining the output file that CA produces. At each branch you will find
a procedure call of the form:

where n is the counter number. All objects added by CA to the program
start with the the four letters '_CA_' to try to avoid naming conflicts.

Finally, you are given a chance to place some arbitrary sequence of text
in the header of the data file (date of the test, or whatever). Type <cr>
to end the comments.

If you are adding counters to a unit, some of these questions are omitted
because they are irrelevant.

Once CA has added the counters, you must compile the output file, generate
the .OBJ file, and link it with all the units it requires. If all goes
well, each time you execute the program the data file is updated. If the
data file dc)es not exist, it is created. If it does exist, the counter
data it contains are added to the current counter values. The resulting
data file therefore c_ontains a record of an arbi trary number of program
execut ions •

If you get the Linker warning:

Segment <mumble> too large

you will have to break that segment into two pieces, write a procedure to
force the new segment to be resident whenever the old one was, and start
over with the CA program. The problem here is that a segment can contain
no more than 32 Kbytes of code or data. There is no way the CA program can
tell when a segment is close to the limit. If a segment is right on the
borderline, it 1s not inconceivable that the branch counters will cause it
to overflow.

The counters pin at 32767. Programs that run in the Window Manager-oS
environment are recognized, and theoretically correct code is issued,
but no promises are made yet. CA increases the size of both the source
.TEXT file and the final .OBJ file by about 30 percent. It may slow
execution rates noticeably.

Page 95

The Pascal Development System Manual I6-Feb-82

SCRIPT

SCRIPT is Colin McMaster's text formatting program.
are:

SCRIPT commands

Name Default

Page Length 66
Page Number 1
Page Break
Need Lines
Line Space 1
Space 1
Break Line
Page Offset 0
Indent 0
Temporary Indent 0
Right Margin 72
Fill
No Fill
Justify
No Justify
Center 1
Text
Change command
Title
Margin 1 4
Margin 2 2
Margin 3 2
Margin 4 4
Header
Even Header
Odd Header
Footer
Even Footer
Odd Footer
Source
Zero Slash
No Zero Slash
Keywords
No Keywords
Define Macro
Terminate Macro
Append Macro
Delete Macro

Example Effect

ApI N Define page length to be N lines
-pn N Start page numbering at N
Abp Start a new page
Ane N :Make sure at least N lines remain on page
Als 1 Set single or double spacing
ASp N Space N lines
Abr Start a new line
ApO N Start leftmost printing at column N
Ain N Indent N columns from page offset
Ati N Indent N columns for next line only
Arm N Set line length to N characters
Afi Set filling mode to true
Aof Set filling mode to false
"ad Justify text to right margin
Ana 'Turn justification off
Ace N Center next N lines
Atx 'N Display N literally
"'cc N Change SCRIPT command character to N
Atl 'L'C'R :Print titles Left, Center, Right
AmI N Set number of lines above and including header
"m2 N Set number of lines below header
Am3 N Set number of lines above and including footer
""m4 N Set number of lines below footer
Ahe 'L' C'R :Place headers Lef t, Center, Right
Aeh 'L'C'R Place even headers Left, Center, Right
"'oh 'L'C'R :Place odd headers Left, Center, Right
Afo 'L'C'R Place footers Left, Center, Right
"ef 'L 'C'R etc
.... of 'L'C'R
.... so 'File'
.... zs
.... nz
.... kw
.... nk
"'de VO

Aam VO
.... dm VO

:Segin printing text of File
'Turn on zero slashing
Turn off zero slashing
Underline Pascal keywords
:Do not underline Pascal keywords
Begin definition of macro VO
.End definition of macro
Append to macro VO
:Delete macro VO

Page 96

The Pascal Development System Manual

SCRIPT OPTIONS (specified when SCRIPT is executed)

-cC
-fFlLE
-k
-1
-nN
-oLIST
-p
-q
-s
-zN

Change command character to C
Send output to FILE (eTEXT is not appended for you)
Underline Pascal keywords
Assume output is going to a Printronix-style printer
Start page numbering at.N
Output only the pages given in LIST
Assume printer has full control of page
Assume output is going to a Qume-like printer
Stop printing after each page and wait for <cr> or <ESC>
Set page offset to N

16-Feb-82

This version of Script does not attempt to return to its top level when
it has finished with a file. Because it is trying to exit the program
from a unit, it usually quits with 'fatal error 1'. Do not use the
opt:lons that refer to printers. To see your formatted text, use either
-5 or -Fe

More complete documentation is available from Publications.

Page 97

The Pascal Development System Manual

Files needed:

TERMINAL EMULATOR

TERM.OBJ
LISA:SYSTEM.FONT
LISA:TERM.MENUS
LISA: SARA8F

16-Feb-82

The terminal emulator (TERM) provides ;a Lisa folder which is a full duplex
virtual terminal. The terminal control commands implemented here are
similar to those of the Hewlett-Packard 2640 and 2645, the DataMedia,
Perkin-Elmer Fox and Owl, Beehive, and the DEC VT-52 terminals, as well
as the "VT52" modes of the DEC VT-100 ,and HeathKit R19 terminals.

The terminal emulator works only with the "new" Lisa hardware. In addition,
you must make a hardware modification to your Lisa: open the back of the
machine and find the three large chips in the center of the visible board
(the 10 board). The chip nearest the power supply should already have the
10th pin from the bottom on the power supply side raised. For the terminal
emulator, the 9th pin from the bottom on the same side should also be raised.

To invoke the emulator, copy the files given above, and X(ecute TERM.
The emulator has three menus and a tray icon. The Speed menu sets the
baud rate. Available speeds are 300, 600, 1200, 2400, 4800, 9600, and
19200 baud. 600 baud is not available on Port #1. The default speed
is 300 baud.

The Port Menu determines which serial port is connected to the modem.
Port til is the connector in the center. Port tt2 is the connector neares t
the power supply. The default port is tt2.

The control menu has four items: Record, Play Back, Debug, and Quit. If
you select Record, all characters recE~ived by the UART are saved in the
file RECORD. TEXT. If you select Play Back, the contents of the file
PLAYBACK. TEXT are sent to the UART just as if they had been typed. If you
want to see exactly what characters are being received, including control
characters and escape sequences, seleC!t Debug. To exit the terminal
emulator, select Quit.

The control commands are:

Ctrl-G
Ctrl-H
Ctrl-I
Ctrl-J
Ctrl-M
Ctrl-[

Escape-@
Escape-A
Escape-B
Escape-C
Escape-D
Escape-E
Escape-H

Bell (screen flashes)
Backspace
Tab (8 spaces)
Linefeed
Carriage return
Start Escape Sequence (see below)

Enter Insert Character Mode
Cursor Up
Cursor Down
Cursor Right
Cursor Left
Clear screen
Cursor home (top left corner)

Page 98

The Pascal Dev.elopment Sys tem Manual

Escape-I
Escape-J
Escape-K
Escape-L
Escape-M
Escape-N
Escape-Q
Escape-P·
Escape-Y
Escape-b
Escape-j
Escape-k
Escape-l
Escape-o
Escape-p
Escape-q
Escape-z

Scroll down
Clear to end of screen
Clear to end of line
Insert line position
Delete line position
Delete character position
Leave Insert Character Mode
Insert character position
Absolute character positioning (Y+31, X+31)
Clear to beginning of screen
Save Cursor position
Restore saved cursor position
Erase line
Clear to beginning of line
Stand out (bold characters)
Reset Stand Out (normal characters)
Initialize terminal

All other Escape and Control sequences are ignored.

Page 99

"1"1- n _ "'"' , T\,.. • __ .., ____ ,.. " .. 'I!" '. ". ~ ,

16-Feb-82

- --- - -- --- - - . -- - r ----- - '" .., ---~ _."_'We'_

Page 100

'"'-_ '1"1_ •.•• 1 '1"1 __ .1 .. n .. , ,

~ae rasca~ ~~ve~OpmenL ~ysLem ~anua~

ERROR MESSAGES

There are several error categories--I/O errors, Loader errors,
trap handler errors, and Pascal Compiler errors. In most cases)
you can type SPACE to return to the Monitor command line. Since
nothing in the Monitor is tied to the user stack pointer, the
Monitor can usually recover from errors that are fatal in the
Apple II UCSD system. The Monitor's globals are hidden beneath
the heap, and the Monitor code itsel£" sits above your code
space, so both are somewhat protected from inadvertent destruction.

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
64

o
1
2
3
4
5
6
7
8
9

10
11
12
13

I/O ERRORS

No error
Bad Block (Parity error)
Bad device number
Bad mode (Illegal operation)
Undefined hardware error
Lost device
Lost file
Bad file name
No room
No device
No file
Duplicate file
File not closed before open.
File not open
Bad format
Ring buffer overflow
Write-protect error
Device error

LOADER ERRORS

Unknown segment
No room in memory
Bad block
Can't read code file
Jump table overflow
SetSP at wrong place (after a physical link)
This loader does not handle intrinsic units
Too many uni ts
Bad uni t numbe r
No INTRINSIC. LIB file
No unit location table
No segment location table
Cannot open intrinsic segment file
Cannot read file names block

Page 101

",'- _ " _ _ ~ .. 1 '" ____ 1 _ _ _ _ _ _ t"t ___ _ '-I _.. _ 1

J.o-reD-Cl~

, r 'I n",

o
1
2
3
4
5

FATAL ERRORS

Illegal index ,at trap handler
Stack Overflow
Programmed Halt
Range value error
Illegal string index
Can't read Root; Volume

Page 102

.....

l.o-reo-o,",

J.nE:: r-asca.L l.JeVtuopmel11: ;:)ys cem JYlanua.L

PASCAL COMPILER ERRORS

Lexical Errors:

10 Too many digits
11 Digit expected after '.' in real
12 Integer overflow
13 Digit expected in exponent
14 End of line encountered in string constant
15 Illegal character in input
16 Premature end of file in source program
17 Extra characters encountered after end of program
18 End of file encountered in a comment

Syntactic Errors:

20
21
22,
23
24,
25
26
27
28
29
30
31
32
33
34
35
36
37
38

? 39
40
41
42
43
44
45
46
47
48

? 49
? 50

51
52
53
54
55

Illegal symbol
Error in simple type
Error in declaration part
Error in parameter list
Error in constant
Error in type
Error in field list
Error 1n factor
Error in variable
Ident:Lfier expected
Integer expected
'(' expected
')' expected
'[' expected
']' expected
':' expected
';' expected
'.' expected
',' expected
,*, expected
, :.' expected
'program' expected
'of' expected
'begin' expected
'end' expected
'then' expected
'until' expected
, do' (expected
'to' or 'downto' expected
'file' expected
'if' expected
'.' expected
'implementation' expected
'interface' expected
'intr:insic' expected
'shared' expected

Page 103

l.o-.t'eo-o",

.LV ,L' eu v'"

Semantic Errors:

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115

116
117
118
119
120
121
122
123
124
125

? 126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

? 146
147

? 148

Identifier declared twice
Identifier not of the appropriate class
Identifier not declared
Sign not allowed
Number expected
Lower bound exceeds upper bound
Incompatible subrange types
Type of constant must be integ(!r
Type must not be real
Tagfield must be scalar or subrange
Type incompatible with with tagfield type
Index type must not be real
Index type must be scalar or subrange
Index type mus t not be ' integelr' or ' longint '
Unsatified forward reference
Forward reference type identif:Ler cannot appear in variable
declaration
Forward declaration - repetiti()n of parameter list not allowed
Forward declared function - repetition of result type not allowed
Function result type must be s(!alar, subrange, or pointer
File value parameter not allowcad
Missing result type in function declaration
F-format for real only
Error in type of standard function parameter
Error in type of standard proc€!dure parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of parameteric fun(!tion function does not agree with
dec lara tion
Expression is not of set type
Only tests on equality allowed
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be Boolean
Set element type must be scalar or subrange
Set element types not compatible
Type of variable is not array or string
Index type is not compatible w:Lth declaration
Type of variable is not record
Type of variable must be file ()r pointer
Illegal type of loop control variable
Illegal type of expression
Assignment of files not allowed
Label type incompatible with sE~lecting expression
Subrange bounds must be scalar
Type conflict of operands
Assignment to standard function is not allowed
Assignment to formal function :ls not allowed
No such field in this record
Type error in read

Page 104

"I'l.-e"' " ___ ".' T'_ ... __ ., ---_~~,., ,,,. , on

J.U~ L'al:ScaJ.. J.)t:vt!J..vpmem: ';:)ys cem danUa.l.

149
150
151

? 152
153

? 154
155
156
157
158
159
160

? 161

Actual parameter must be a variable
~lultidefined case label
Miss:Lng corresponding variant declaration
Real or string tagfields not allowed
Previous declaration was not forward
Substitution of standard pro~/func is not allowed
Multidefined label
Multideclared label
Undefined label
Undeclared label
Value parameter expected
Multidefined record variant
File not allowed here
Unknown compiler directive (not 'external' or 'forward')
Variable cannot be packed field
Set of real is not allowed
Fields of packed records cannot be var paramet~rs
Case selector expression must be scalar or subrange
String sizes must be equal
String too long
Value out of range
Address of standard procedure cannot be taken

.1.0-J:'eo-o.::.

162
163
164
165
166
167
168
169
170
171
172

Assignment to function result must be done inside that function
Loop control variable must be local

190 No such unit in this file

Conditional Compilation:

260 New compile-time variable must be declared at global level
261 Undefined compile-time variable
262 Error in compile-time expression
263 Conditional compilation options nested too deeply
264 Unmatched ELSEC
265 Unmatched ENDC
266 Error in SETC
267 Unterminated conditional compilation option

Compiler Specific Limitations:

300 Too many nested record scopes
301 Set limits out of range
302 String limits out of range
303 Too many nested procedures/functions
304 Too many nested include/uses files
305 Includes not allowed in interface section
306 Pack and unpack are not implemented
307 Too many units
308 Set constant out of range

350 Procedure too large
351 File name in option too long

Page 105

'T"1..._ n ____ ' 1'_ .. __ ' _____ ... '"' __ ... __ ""' ___ ._1

I/O Errors:

400 Not enough room for code file
401 Error in rereading code file
402 Error in reopening text file
403 Unable to open uses file
404 Error in reading uses file
405 Error in opening include file
406 Eror in rereading previously read text block
407 Not enough room for i-code file
408 Error in writing code file
409 Error in reading i-code file
410 Unable to open listing file
420 I/O error on debug file

Code Generation Errors:

1000+ Code generator errors - should never occur

2000 End of I-code file not found

J.o-.reo-o~

2001
2002
2003-2005
2006-2010
2011

Expression too complicated, code generator ran out of registers
Code generator tried to free a register that was already free
Error in generating address
Error in expressions
Too many globals

2012 Too many locals

Verification Errors:

4000
4001
4002
4003

4100
4101

Bad verification block format
Source code version conflict
Compiler version conflict
Linker version conflict

Version in file less than minimum version supported by program
Version in file greater than maximum version supported by program

Page 106

"" "'

.&.ne rasca.L JJeve.Lopmem: ;)ys cem Manua.l .LO-~·eb-Oi.

ASSEMBLER ERRORS

o.
1. undefined label
2. operand out of range
3. must have procedure name
4. number of parameters expected
5. extr~L garbage oli line
6. input line over 80 characters
7. not enough .IF's
8. must be declared in .ASECT before used
9. identifier previously declared

10.. improper format
11. .EQU expected
12. must .EQU before use if not to a label
13. macro identifier expected
14. word addressed machine
15. backward .ORG currently not allowed
16. identifier expected
17. constant expected
18. invalid structure
19. extra special symbol
20Q branch too far
21. variable not PC relative
22. illegal macro parameter index
23. not enough macro parameters·
24. operand not absolute
25. illegal use of special symbols
26. ill-formed expression
27. not enough operands
28. cannot handle this relative expression
29. constant overflow
30. illegal decimal constant
31. illegal octal constant
32. illegal binary constant
33. invalid key word
34. macro stack overflow - 5 nested limit
35. include files may not be nested
36. unexpected end of input
37. this is a bad place for an .INCLUDE file
38. only labels & comments may occupy coli
39. expected local label
40. local label stack overflow
41. string constant must be on one line
42. string constant exceeds 80 characters
43. illegal use of macro parameter
44. no local labels in .ASECT
45. expected key word
46. string expected
47. bad block, parity error (CRC)
48. bad uni t numbe r
49. bad mode, illegal operation
50. undefined hardware error
51. lost unit, unit is no longer on-line

Page 107

"""'" .. ",_,. "'_ .. __ ' __ - •• '. ,...- .. ~" 'l'

---- ------ ------r--··- -.1---- .. _ ... _--

52. lost file, file is no longer in directory
53. bad title, illegal file name
54. no room, insufficient space on disk
55. no uni t, no such volume on-linle
56. no file, no such file on volume
57. duplicate file
58. not closed, attempt to open an open file
59. not open, attempt to access a closed fil
60. bad format, error in reading real or int
61. nested macro definitions illegal
62. '.' or '<>' expected
63. may not EQU to undefined label:;
64. must declare .ABSOLUTE before 1st .PROC
65.
66.
67.
68.
69.
70. Not even a register
71. Not a Data Register.
72. Not an Address Register
73. Register Expected
74. Right Paren Expected
75. Right Paren or Comma Expected
76. Unrecognizable Operand
77. Odd location counter
78. Unimplemented Motorola directive
79. Comma Expected.
80. One operand must be a data register.
81. Dn,Dn or -(An),-(An) expected.
82. No longs allowed.
83. Firs t ope rand mus t be immediate.
84. First operand must be Dn or HE
85. (An+),(An+) expected
86. Second operand must be an An
87. Second operand must be a Dn
88. U<data>,Dn expected.
89. first operand must be a Dn.
90. An,II<displacement> expected
91. An is not allowed with byte
92. only alterable addressing modes allowed
93. only data alterable addr modes allowed
94. An is not allowed
95. USP, SR, and CCR not allowed
96. Cannot move from CCR
97. Dx,d(Ay) or d(Ay),Dx expected.
98. Only memory alterable addr mod,es allowed
99. Only control addressing modes allowed

100. Must branch backwards to label

Page 108

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108

