
LISA

C>.peratlng System
RefERENCE MANUAL

Bill .. Schqttst~

Ext 2379

l-Mar-82 Operating System Reference Manual

TABLE OF CONTENTS

INTRODUCTION • • • 0 • • • • • • • • • • • • • • • • • 1

THE FILE SYSTEM • • • • • • • • • • • • • • • 3

File System Overview • • • •
F11e System Calls ••••• · • 4 . . • 10

PROCESSES · 31

Process Structure and Management • • • • • • • •
Process System Calls • •• • • • • • • • • •

• 32
• 37

MEMORY MANAGEMENT • • • • • • • • • • • • 47

Memory Management Overview • • •
Memory Management Sys tem Calls •

· • 48.
• 52

EXCEPTIONS AND EVENTS 63

Excep t ions •. 64
Events • • • • • .0 . • • . • • . • . • . • • . • .0 6~
The System Clock. 69
Exception Management System Calls •••• e. e .•• 69
Event Management System Calls • • • • 76
Clock Sys tem Calls ~ • • • • • .• •.• • • • • • • • 84

SYSTEM CONFIGURATION AND STARTUP • • 89

Sys tem Startup • • • • • • • • • • • .'. • • • • • g.C).
Self~diagnost1cs ••••••••••••••••• 90
Customizing Your System ••••••••••••• 91

APPENDICES • • • 0 93

Operating System Interface ••••••••••••• 94
Reserved Exception Names • • • • • • • • • • • • 106
Reserved Event Types • • • • • • • • • • • • • • • • 106
Error codes •••••••••• • • • • • • • 107

l-Mar-82 Operating System Reference Manual Confidential

l-Mar-82 Operating System Reference Manual Confidential

INTRODUcrION

The Operating System is a single user system providing concurrent
processes, events, exceptions, device independent I/O in a hierarchical
file sys tem, and management of code and data segmentdation. This manual
is intended for applications programmers who deal directly with the
Operating System.

The Operating System falls naturally into four categories: file
management, process management, memory management, and process
communication. In each of the four chapters describing these
portions of the Operating System, there is an overview of the subject
that explains the terms and concepts used in the system calls. The
system calls themselves are then described in some detail. A fifth
chapter describes system startup procedures. The Appendices describe
the Operating System interface and error codes.

Page 1

l-Mar-82 Operating System Reference Manual Confidential

Page 2

l-Mar-82 Operating System Reference Manual Confidential

CHAPTER 1

THE FILE SYSTEM

Introduction 4
File Names • • 4
The Working Directory • 5
Devices • 5
The Volume Catalog • • 7
Labels • • 7
Logical and Physical End Of File • • 7
File Access • 8
Pipes • 9
File System Calls • • • • 10

HAKE FILE • • • • • • • 11
MAKE:PIPE • • • 11
KILL OBJECT · . • • • • 12
RENAME ENTRY • • 13
LOOl(IJP-. • • 14
INFO. • • • 17
OPEN • • 18
CLOSE OBJECT • 19
READ DATA • • 20
WRITE DATA. · . • • 20
READ t'ABEL • • 22
WRITE LABEL . . • 22
DEVlc!' CONTROL • 23
ALLOCATE. . • • 24
COMPAct • • • 25
TlUlNCATE • • • • 2S
FLUSH • • • • 26
SET SAFETY • ·0 · • • • 27
SET-WORKING DIR .0 28
GET-WORKI!I;-DIR • • • 28
RESET CATALOG 29
GET NEXT ENTRY. · . • 29 - -MOUNT • • 30
UNMOUNT • • • • • 30

Page 3

l-Mar-82 Ope ra ting" S ysEem Ref e renceMatiual

FILE OVERVIEW

INTRODUCTION

The File System provi4~s,.:~e!;~~,;.;i~:,,~~~ent.:. I/;?!,~ re,l~,ab~e storage
with access protection, uniform file naming conventions, and
c ouf i~r~,Qle;;c;ley+ce t:4~i ,,?,~;-s •.

Confidential

A file is d~~,,;~g~e;p!"e;~dj~;~~~m 9f eight .. Qit. ~tes. A t1~e that
is stored on a block structured device resides~:,ll't a' catalog and has
a name. For each such file the catalog contains an entry describing
the file's attributes including the length of the file, its position
on the disk, and the last backup copy date. Arbitrary application-def1ned
attributes can be stored in an area called the file label.

Each file has two associated measures of length, the Logical End of
File (LEOF) and the Physical End of File (PEOF). The LEOF is a
po1nter~~£t~;:.las~ >\ll.c~~~t:bat. has .meaning to the application.
The PEOF is a count of the number 'of blocks allocated to the
file. The pointer to the next byte to be read or written is called
the file marker.

To handle input and output, app~~c;a_t.~~~~ :~o tft:0tv_~ee~t to know the
physical characteristics of a dev~.c,e" AP'R11,c~t.~~t1S~/.t~t do, however,
can increase the I/O performance~ by' causfng' f"ile~~c"c~sses on block
boundaries. Each Operating System call is sync,hronous in that the
I/O reques ted is, perfomed. before the=cill?l 'rethr~~:~';"'The actual I/O t
however,is asynchronous ,and· is always performed in the context of an
Operating Sys tem process'. ' ,~ . cT'

To reduce the impact of an error, the file system maintains a high
level of distributed, redundant infor.mation about the files on
storage devices. Duplicate copies of critical information are stored in
different forms and in d1f ferent places on the media. All the files
are able to identify and..des~;,ibe~~themselves, ,,~nd there are usually
several ways to 1\ecov~i. ~ lost "illf,ormat:Lon. ; The scavenger program is
able to discover alld: recotiitruct,,,~~ged "directories from the
information stored with-each fiie..'''', . t:

... ~. I,. (~, .. ~ ': V",

FILE NAMES

All the files known-to the·operaflng Sysfem. at: a-particular time are
organized into a tree of ca talogs. At the top of this tree is a
predefined catalog with names for the highest level objects seen by
the system. These include physical devices, such as a printer or
a modem, and the volume names of any disks that are available.

Any object catalogued in th! .. f~e' sI§~t'JIl Cfj;,l.~:>¥".d .by, specifying
the volume i~. w\l:!ch the ~i+~: r~~d~~; i¥ fhe~~ftl:~: ~~~. ~,! The names
are separated by the ch~J~c~~JLr·:n,.!ld::J ~,~~au~~;} .. FP~;"t,op·i,~~ftalog in the
tree has no name, all compl~:5~'j,Pt~n~~~!~)?~r§i~i.~1~f:7!'i "

l-Mar-82 Ope ra ~~,1}g "Sys tem ,Ref e r~nce Manual
',,' ,"" ;I

Confidential

For example,

-PRINTER names the physical printer,

-LISA-FORMAT. TEXT
names' a file on av()"lum:~ "named <;tIS~~'

.. '" ,~ .. , ,;;". t . ~_ ,,,,.

the file name can contain up to 32 characters. If a longer name'is;specified,:
the name is truncated to 32 characters. Accesses to sequential devices
use a dummy filename that is ignored:"but'must be preseiitI::1n~·~he2patnnaD1e.
For example, the serial port pathname'

-RS232B

is illegal, but

-RS232B-XYZ

is accepted, even though the -XYZ portion is ignored.:;' Certal:ndev'icaf;names'
are predefined:

RS232A
RS232B
UPPER
LOWER

Serial Port 1
Serial Port 2, "
Upper .. T~~ggy::d~iv~, '<Dr1~~' i) ,
Lower", '~ggy" 'ati~e" '(Dr1 ve" 2)

DEVO, DEV6, DEV7 DEVS'''' ,
, ," "j

Bit bucke:t- ,(byte s'tream is' flushed into obllvion)

Upper and lower case are significant in file names: 'TESTVOL' is not the
same object as 'TestVol'. Any ASCII character is legal in a pathname,
including the non-printing characters.

THE WORKING DIRECTORY

It is sometimes inconvenient to: s'peeifya 'coinp'ret'e;patlulame,
especially when working with a group of ,files '10 'the same volume.~
To alleviate this problem, the operating system-maintains 'the "
name of a working directory for each process. When a 'pathname is'
specified without a leading "_It, the name refers to an object in the
working directory. For example, if the working directory is -LISA
the name FORMAT.TEXT refers to the same file as -LISA-FORMAT.TEXT.
The default working directQr'Y-, ~m~ i. t;,9.EL,~~m,~C?~ ~~!.rb<l9t !()l~~
directory.

DEVICES

The Lisa hardware supports a variety of I/O devices including the
keyboard, mouse, clock, tw~ ~~:igy"*~i~k~ d~lyi$~~wr serial porti~~ ;:-."
a parallel port, and three ~pa~;gn '. tlo s'l&ti~::'1$~ '; se'reen, keyb-oardr,J
and mouse are accessed through', Llis~Graf;.;"ifld thE!~in:dow~Managere
The other devices are hanCiled lby~l:h~~Operi:trfii\:S,siem~ ,

Page 5

l-Mar-82 Operating System Reference Manual Confidential

Device names follow the same conventions as file names. Attributes
like baud rate and",:p~i~t"~nt~ns~lty a~econtrolled by using the
DEVICE_CONTROL Caflwi.th 'the' approp.r1at'e pa thname. "

All device calls are synchronous from the process point of view.
Within the Operating System, however, I/O operations are asynchronous.
The process doing the I/O is blocked until the operation is complete.

Each device has a permanently assigned priority. From highest to lowest
the priorities are~

(ltS232A) Serial Port 1
Serial ;'Port 2 (RS232B~ the "~lef tmos t port)
I/O Slot 0
I/O Slot 1
I/O Slot 2
Speaker
10 IDS system timer
Keyboard, mouse, safe-off switch,
CRT vertical retrace interrupt'
Parallel Port
Twiggy 1
Twiggy 2
Video Screen

(UPPER)
(LOWER)

battery powered clock

The Operating System maintains a 'Mount Table which connects each available
device with a name and a device number. The Device Driver associated with
a device knows about the device's physical characteristics such as sector
size and interleave factors for disks.

STRUCTURED DEVICES

On structured .. de.vices, such as disk drives, the File System maintains a
higher level '0£ .data acces s built out' of pages (logical names for blocks),
label contents ,'and data clusters (groups of contiguous pages). Any
file access ultimately translates 'into a page access. Intermediate
buffering is provided only when it is needed. Each page on a structured
device is self-identifying, and the page descriptor is stored with the
page contents to reduce the destructive impact of an I/O error. The eight
components of the page descriptor are:

Version number
Volume identifier
File, identifier
Amoun~ of data on the;'\l4g'i!
Pagefiame' ..
Page posi tlon in the' £il~·L
Forward link
Backward link

Each structured device has a Media Descriptor Data File (MODF) which
describes the various attributes of the media such as its size, page
length, block layout, and the size of the boot area. The MDDF is

Page 6

l-Mar-82 Operating System Reference Manual Confidential

created when the volume is initialized.

The File Sys tem also maintains a bi tmap of which pages _"q~ t~~ !nedi~
are currently allocated, and a catalog of all the file-s""oil .the'vplume,.·
Each file contains a set of file hints which describe and~; point to .. ,'
the actual file data. The file data need not be allocated in contiguous
pages. ' : .,. ' ..

THE VOLUME CATALOG

On a block structured device, the volume catalog provides access to
the files. The catalog is itself a file which maps user,·names in~q
the internal files used by the Operating System. Each ,catalog en~,ty
contains a variety of information about each file includfng: . .

name
type
internal file number and address
size
date and time created or last modified
f Ue identifier
safety switch

The safety switch is used to avoid accidental deletions. While the safety
switch is on, the file cannot be deleted. The other fields are described
under the LOOKUP file system call.

The catalog can be located anywhere on the media, and the Operating System
may even move it around occassionally to avoid wear on the media.

LABELS

An application can store its own information about file attributes'in'
an area called the file label. The label allows the application to
keep the file data separate from information maintained about the
file. Labels can be used for any object in the file system. The
maxiDllm label size is 488 bytes.

LOGICAL AND PHYSICAL END OF FILE

A file contains some number of bytes recorded in some number of
phYSical blocks. Additional blocks might be allocated to the' file,
but not contain any file data. There are, ther_fpre",; two meaSllres 9f'
the end of the file called the logical and physical end of file. nle~
logical end of file (LEOF) is a pointer to the laS1:,stored byte which;~
has meaning to the application. The physical end of file' (PEOF), is .
a count of the number of blocks allocated to the file.

Page 7·

l-Mar-82 Operating System Reference Manual Confidential

In addition, each, open f11e,.1n each proces~ has a pointer associated
wi th it called the: file marker that points to the next byte in the
file to be read or written. Whe~ the file is opened, the file marker
points to the first byte (byte number 0). The file marker can be .
positioned implicitly or explicitly using the read and write calls.
It cannot be positioned past LEOF, however, except by a write
operation that appends data to a tile.

When a file is created, an entry for it is made in the catalog
specified in its pathname, but no space is allocated for the file
itself. When the file is opened by a process, space can be allocated
explicitly by the process, or automatically by the operating system.
Ifa write operation causes the file marker to be positioned past the
Logical End Of File (LEOF) marker, LEOF and PEOF are automatically
extended. The new space is contiguous if possible, but not
necessarily. adjacent to. the previously allocated space.

FILE ACCESS

There are several modes in which an application can perform input,
output, or device control operations. Applications are provided with
a device independent byte stream interface. A specified number of
bytes is transferred either relative to the file marker or at a
specified byte locatio~ in the file. The physical attributes of the
device or file are not seen by the" application, except that devices
that do not support positioning can only perform sequen~ial
operations •

Applications that know the block size for structured devices can
optimize performance by performing I/O on block boundaries in
integral block multiples. This mode bypasses the buffering of parts
of blocks that the system normally performs. Data transfers take
place directly between'the device and the computer memory. Although
data transfers occur in physical units of blocks, the file marker still
indicates a byte position in the file.

A file can be open for access simultaneously by multiple processes.
All write operations are completed before any other access to the
file is permitted. When one process writes to a file the effect of
that write is immediately visible to all other processes reading the
file. The other processes may, however, have accessed the file in
an earlier state and not be aware. of the change .until the next time
they access the file. It is·left ~p to the applications to insure
that processes maintain a co~"istent view of a shared file.

Page 8

l-Mar-82 Operating System Reference Manual Confidential

Each time a file is opened, the Operating System allocates a file
marker for the calling process and a run-time identification number
called the refnum. The process uses the refnum in subsequent calls
to refer to the file. Each operation using the refnum affects only
the file marker associated with it. The refnum is global only
if a process has opened the file with global access. The LEaF and
PEOF values, however. are always global attributes of the file,
and any change to these values 1s immediately visible to all processes
accessing that file.

Processes can share the same file marker. In this access mode
(global access) each of the processes uses the same refnum for
the file. When a process opens a file in global access mode,
the refnum it gets back can be used by any process. Note that
[Global Access] access allows the same file to be opened globally by
any number of processes, creating any number of simultaneously
shared refnums. [Global Access,Private] access opens a file for global
access. but allows no other process to Open that file. Applications
must be aware of all the side effects that global accesses cause.
Por example, processes making global accesses to a file cannot
make any assumptions about the location of the file marker from
one access to the next.

Even if the access mode is not global, more than one process can have
the same file open simultaneously. Each process, in this case, has
its own refnum and file marker. A write operation to the file, however,
is immediately vi~ible to all readers of that file.

PIPES

Because the Operating System supports multiple processes, a mechanism
is needed for interprocess communication. This mechanism is called a
pipe. A pipe is very similar to any other object in the file system
it is named according to the same rules, and can have a label.
A pipe also implements a byte stream that queues information in a
first-in-first-out manner for the pipe reader. Unlike a file,
however, a pipe can have only one reader at a time, and once data is
read from a pipe it is no longer available in the pipe.

A pipe can only be accessed in sequential mode. Only one process can
read data from a pipe, but any number of processes can write data
into it. Because the data read from the pipe is consumed, the file ::(",
marker is always zero. If the pipe is empty and no processes have it'
open for writing, End Of File is returned. If any process does have ~
it open for Writing, the reading process is suspended until data
arri ves in the pipe, or unt il all wri ters close the pipe.

When a pipe is created, its physical size is 0 bytes. You must allocate
space to the pipe before trying to write data into it. To avoid
deadlocks between the reading process and the writers, the Operating
System does not allow a process to read or write an amount of data
greater than half the physical size of the pipe. For this reason,
you should allocate to the pipe ewice -as much space as the largest

Page 9

l-Mar-82 Operating System Reference Manual Confidential

amount of data in any planned read or write operation.

A pipe is actually a circular buffer with a read pointer and a write
pointer. All writers access the pipe through the same write pointer.
Whenever either pointer reaches the 'end' of the pipe, it wraps back
around to the first byte. If the read pointer catches up with the
write pointer, the reading process blocks until data is written or
until all the wri ters close the pipe. Similarly J if the write
pointer catches up with the read pointer, a writing process blocks
until the pipe reader frees up some space or until the reader closes
the pipe. Because pipes have this structure, there are certain
restrictions on some operations when dealing with a pipe. These
restrictions are discussed below under the relevant file system calls.

For massive data transfers, it is recommended that shared files or
data segments be used rather than pipes.

PoltE SYSTEM CALLS

This section describes all the operating system calls that pertain
to the file system. A summary of all the Operating System calls can
.be found. in Appendix A. The following special types are used in
the file system calls:

'Pathname - STRING[25S] j

E Name - STRING [Max Enamel j (* Max EName - 32 *)
Accesses • (DRead, DWrite, Append, Private, Global_Access) j
MSet - SET OF Accesses;

"loMode - (Absolute, Relative, Sequential);

The fs info record and its associated types are described under the LOOKUP
call. -

Page 10

l-Mar-82 Operating System Reference Manual Conf ide nt ial

MAKE FILE (Var Ecode:lnteger;
Var Path:Pathnamej
Label_size: Integer)

MAKE_PIPE (Var Ecode:lntegerj
Var Path:Pathnamej
Label_size: Intege.r)

Ecode: Error indication
Path: Full name of new object
Label size: Number of bytes for the object's label

MAKE FILE and MAKE PIPE create the specified type of object in the catalog
give; in pathname.- If the pathname specified in Path does not specify
a volume name. the working directory is used. Label size specifies the
initial size in bytes of the label that the application wants to maintain
for the object. It must be less than or equal to 488 bytes. The label
can grow to contain up to 488 bytes no matter what its initial size is.
Any error indication is returned in Ecode. An object cannot be created
in the root catalog.

In the example below, we check to see whether the specified file exists before
opening it. Applications that use the Window Manager must use a dialog
box. rather than READ and WRITE.

CONST ~ileEx1sts - 890;
VAR FileRefNum,ErrorCode:INTEGER;

FileName:PathNamej
Happy:BOOLEANj
Res ponse: CHAR;

BEGIN
Happy: -FALSEj
WHILE NOT Happy DO

BEGIN
REPEAT

WRITE('File name: ')j
READLN(FileName);

UNTIL LENGTH(FileName»Oj
MAKE FlLE(ErrorCode,F11eName.O);
IF (ErrorCode<>O) THEN

IF (ErrorCode-FileExists) THEN
BEGIN
WRITE(FileName,' already exists.
READLN(Response) ;
Happy:-(Response IN ['y','Y']);
END

(* get a file name *)

(* no label for this file *)
(* does file already exist? *)
(* yes *)

Overwri te? ') j

(* go ahead and overwrite *)

ELSE WRITELN('Error ' ,ErrorCode,' while creating file.')
ELSE Happy:-TRUEj
END.;

OPEN(ErrorCode,FileName,FileRefNum,[Dwrite]);
END;

Page 11

l-Mar-82 Operating System Reference Manual

KILL OBJECT (Var Ecode:Integer;
- Var Path:Pathname)

Ecode: Error indicator
Path: Full name of object to be deleted

KILL_OBJECT deletes (removes) the entry given in path from the
file system. Objects in the root catalog and objects with the
safety switch on cannot be deleted. If a file or pipe is open
at the time of the KILL_OBJECT call, its actual deletion is

Confidential

postponed until it has been closed by all processes that have it open.
During this period no new processes are allowed to open it. The
object to be deleted need not be open at the time of the KILL OBJECT
call. A KILL_OBJECT call cannot be overridden. -

The following code fragment deletes files until carriage return is typed:

CONST FileNotFound-894;
VAR FileName:PathName;

ErrorCode:INTEGER;
BEGIN
REPEAT

WRITE('File to delete: ');
READLN(FileName);
IF (FileName<>") THEN

BEGIN
KILL OBJECT(ErrorCode,FileName);
IF (ErrorCode<>O) THEN

IF (ErrorCode-FileNotFound) THEN
WRITELN(FileName,' not found.')

ELSE WRITELN('Error ' ,ErrorCode,' while deleting file.')
ELSE WRITELN(FileName,' deleted.');
END

UNTIL (FileName-");
END;

Page 12

1-Mar-82 Operating System Reference Manual

RENAME ENTRY (Var Ecode:lntegerj
Var Path:Pathnamej
Var NewName:E_Name);

Eeode:
Path:
Newname:

Error indicato~
Object's old (full) name
Object's new (partial) name

RENAME ENTRY changes the name of an object in the file system.
Newname is not a full pathname, but the new name for the object
identified by Path. That is,

VAR OldName:PathNamej
NewName: E_ Name;
ErrorCode:INTEGER

BEGIN
OldName:-'-LISA-FORMATTER.LIST'j
NewName:-'NEWFORMAT.TEXT';
RENAME_ENTRY(ErrorCode,OldName,NewName)j
END;

renames FORMATTER. LIST to NEWFORMAT. TEXT. The new file's full
pathname is ' -LISA-NEWFORMAT. TEXT' •

Confidential

Predefined names in the root catalog cannot be renamed, but volume names
can be renamed by specifying only the volume name in Path.

Page 13

l-Mar'-82 Operating System Reference Manual

LOOKUP (Var Ecode:Integer;
Var Path:Pathname;
Var Attributes:Fs_Info)

Ecode: Error indicator
Path: Object to lookup
Attributes: Information returned about Pathname

Confidential

LOOKUP returns information about an object in the file system. For devices
and mounted volumes, call LOOKUP with a pathname that names the device or
volume without a filename component:

DevName:-'UPPER'; (* Twiggy drive 1 *)
LOOKUP(ErrorCode,devname, InfoRec)j

If the device is currently mounted and is block structured, the record
fields contain meaningful values; otherwise, these values are undefined.

When LOOKUP is called for a file system object (not a device or volume),
the refnum field and all the record fields that follow that field contain
invalid data. Use INFO to get this information.

The fs_info record is defined as:

Uid - INTEGER;
Info Type • (device t,volume t, object t)j
Devt;Pe - (diskdev,-pascalbd,'-seqdev, bltbkt, non_io); .
Filetype - (undefined, MDDFFile, rootcat, freelist, badblocks,

sysdata, spool, exec, usercat, pipe, bootfile,
swapdata, swapcode, ramap, userfile, killedobject)j

Entrytype • (emptyentry, catentry, linkentry, file entry , pipe entry ,
ecentry, killedentry);

fs info • RECORD
name: e_name;
devnum: INTEGER;
CASE OType :"info type OF

device t, -
volume-t:

(iochannel: INTEGER
devt: devtype;
slot no: INTEGER;
fs sIze: LONGINTj
voT size: LONGINT;
bloCks tructured,
mount ed: BOOLEAN;
opencount: LONGINTj
privatedev,
remote,
lockeddev:' BOOLEAN;
mount_pending,
unmount_pend~ng: BOOLEAN;
volname,
pas sword: e _name;
fsversion,

Page 14 .

l-Mar-82

END;

Operating System Reference Manual Confidential

volnum:
blocksize,
datasize,

INTEGER;

clustersize,
filecount: INTEGER;
freecount: LONGINT;
DTVC,
DTVB,
DTVS: LONGINT:

(* Date Volume Created *)
(* Date Volume last Backed up *)

Machine_id,
overmount stamp,
mas ter_copy _id: LONGINT;
privileged,
wri teJrotected: BOOLEAN;
master,
copy,
scavenge flag: BOOLEAN);

object t: -
(sIze: LONGINT; (*actual no of bytes written*)
psize: LONGINT: (*physical size in bytes*)
lpsize: INTEGER; (*Logical page size in bytes*)
ftype: filetype;
etype:
DTC,
DTA,
D'l'M,
DTB: .
refnum:
furk:
acmode:
nreaders,
nwrlters,
nusers:
fuid:
eof,
safety_on,

entrytype;

LONGINT;
INTEGER;
LONGINT;
mset;

INTEGER;
uid;

kswi tc:h : BOOLEAN ;
private,
loc:ked,
protected:BOOLEAN);

(* Date Created *)
(* Date last Accessed *)
(* Date last Mounted *)
(* Date last Backed up *)

(* file marker *)
(* access mode *)

(* unique identifier *)

(* safety switch setting *)

The EOF field of the fs info record is set after an attempt to
write when no disk space is available, and after an attempt to
read more bytes than are available from the file marker to the
logical end of file. If the file marker is at the 20-th byte
of a 25 byte file, you can read 5 bytes without setting EOF,
but if you try to read 6 bytes, you get 5 bytes of data and
EOF is set.,

Page 15

l-Mar-82 Operating System Reference Manual Confidential

The following code reports how many bytes of data a given file has:

VAR InfoRec:Fs Info; (* information returned by LOOKUP and INFO *)
FileName:PathNamej
ErrorCode:INTEGER;

BEGIN
WRITE('File: ');
READLN(F1leName);
LOOKUP(ErrorCode,FileName,InfoRec);
IF (ErrorCode<>O) THEN

WRITELN('Cannot lookup ',FileName)
ELSE

WRITELN(F1leName,' has ',InfoRec.Size,' bytes of data.');
END;

Page 16

l-Mar-82 Operating System Reference Manual

INFO (Var Ecode:lnteger;
Refnum: Integer;
Var RefInfo:Fs_Info);

Ecode:
Refnum:
Refinfo:

Error indicator
Reference number of object in file system
Information returned about refnum's object

Confidential

INFO serves a function similar to that of LOOKUP, but is applicable
only to objects in the file system which are open. The definition
of the Fs_Info record is given under LOOKUP and in Appendix A.

Page 17

l-Mar-82 Operating System Reference Manual

OPEN (Var Ecode:lnteger;
Var Path:Pathnamej
Var Refnum:lnteger;
Manip:MSet)

Ecode:
Path:
Refnum:
Manip:

Error indicator
Name.of object to be opened
Reference number for object
Set of accesses

Before a process can perform I/O operations upon an object in the
file system, it must OPEN that object. Path must specify either

Confidential

a pipe, device, or file. OPEN returns refnum to the process, and
the process subsequently uses refnum for I/O and control operations
on the open file. the manip parameter specifies the kind of access
the process wants to the file: DRead, DWrite, Append, Global Access, or
Private. [DWrite] access is equivalent to [Dwrite,Append] access.
If a process wants exclusive access to an object (a printer, for
example), it must specify [Private 1 as its access mode.

If the object opened already exists and the process calls WRITE DATA
without specifying Append access, the object is overwritten. The
Operating System does not create a temporary file and wait for the
CLOSE_OBJECT call before deciding what to do with the old file.

An object can be open fo.r writing by two separate processes
simultaneously. If the processes do not share a global refnum,
they must'coordinate their file accesses so as to avoid overwriting
each other's data. To do this, both processes can, for example,
open the file with [Append] access.

Page 18

1-Mar-82 Operating System Reference Manual

CLOSE_OBJECT (Var Ecode:Integer;
Refnum: Intege r)

Ecode: Error indicator
Refnum: Reference number of object to be closed.

If refnum is not global, CLOSE OBJECT terminates any use of refnum
for I/O operations. A FLUSH operation is performed automatically
and the file is saved in its current state. If refnum is

Confidential

and other processes have the file open, refnum remains valid for
these processes, and other processes can open the file using refnum
even though a CLOSE_OBJECT call has been made against it.

The following code fragment opens a file, reads S12 bytes from it, then
closes the file.

TYPE Byte--128 •• 127j
VAR FileName:PathNamej

ErrorCode,FileRefNum:lnteger;
ActualBytes:Longlnt;
Buffer:ARRAY[O •• S111 OF Byte;

BEGIN
OPEN(ErrorCode,FileName,FileRefNum,[DRead]);
IF (ErrorCode<>O) THEN

WRITELN(' Cannot open ' ,FileName)
ELSE

BEGIN
READ DAXA(ErrorCode,

- FileRefNum,
ORD4(@Buffer),
512,
ActualBytes,
Sequent ial,
0) ;

IF (ActualBytes(S12) THEN
WRITE('Only read ',ActualBytes,' bytes from ',FileName);

CLOSE OBJECT(ErrorCode,FileRefNum);
END; -

END;

Page. 19

l-Mar-82 Operating System Reference Manual

READ DATA (Var Ecode:lntegerj
Refnum: Integer;
Data Addr:Longlnt;
Count:Longlnt;
Var Actual:Longlntj
Mode: IoMode ;
Offset: Longlnt)

WRITE DAXA (Var Ecode:lnteger;
Refnum: Integer;
Data Addr:Longintj
Count:Longlntj
Var Actual:LongIntj
Mode": IoMode ;
Of f se t: Long Int)

Ecode:
Refnum:
Data_Addr:
Count:
Actual:
Mode:
Offset:

Error indicator
Reference number of object for I/O
Address of data (source or destination)
Number of bytes of data to be transferred
Actual numbe r of bytes transferred
I/O mode
Offset from file marker

READ_DATA reads information from the pipe or file specified by
refnum t and WRITE DATA writes informatiQn to it. Data Addr is the
address for the destination or source of count bytes of data. The
actual number of bytes transferred is returned in Actual.

Mode can be absolute, relative, or sequential. In absolute mode,
offset specifies an absolute byte of the file. In relative mode,

Confidential

it specifies a byte relative to the file marker. In sequential mode,
the offset is ignored (it is assumed to be zero) and transfers occur
relative to the file marker. Sequential mode (which is a special case
of relative mode) is the only allowed access mode for reading or writing
data in pipes. Non-sequential modes are valid only on devices that
support positioning. The first byte is numbered O.

If a process attempts to write data past the physical end of file
on a disk file, the Operating System automatically allocates enough
additional space to contain the data. This new space, however, might
not be contiguous with the previous blocks. You can use ALLOCATE to
ensure phys ical cont igui ty bef 0 re wri ting pas t PEOF.

READ_DATA from a pipe that does not contain enough data to satisfy
count suspends the calling process until the data arrives in the
pipe if any other process has that pipe open for writing. If there
are no writers, the end of file indication is returned by Info.
Beacuse the pipe is circular, WRITE DATA to a pipe suspends the
calling process (the writer) until ;nough space is available
(until the reader has consumed enough data) if there is a reader.
If no process has the pipe open for reading and there is not enough
space in the pipe, the end of file indication is returned.

Page 20

l-Mar-82 Operating System Reference Manual

The following program copies a file:

PROGRAM CopyFile;
USES (*$U Source:Syscall.Obj*) SysCalij
TYPE Byte--128 •• 127;
VAR OldFile,NewFile:PathNamej

OldRefNum,NewRefNum:INTEGERj
BytesRead,BytesWri tten: LONGINT;
ErrorCode:INTEGERj
Response: CHAR;
Buffer:ARRAY [0 •• 511] OF Byte;

BEGIN
WRITE('File to copy: ');
READLN(OldFile) ;
OPEN(ErrorCode,OldFile,OldRefNum, [DRead]);
IF (ErrorCode<>O) THEN

BEGIN
WRITELN('Error ',ErrorCode,' while opening ',OldFile);
EXIT(CopyFile) ;
END;

WRITE('New file name: ')j
READLN(NewFile) ;
MAKE FILE(ErrorCode,NewFile,O);
OPEN(ErrorCode,NewFile,NewRefNum,[DWrite]);
REPEAT

READ DAXA(ErrorCode,
- OldRefNum,

ORD4(@Buffer) ,
512,BytesRead,Sequential,O);

IF (ErrorCode-O) AND (BytesRead>O) THEN
WRITE DAXA(ErrorCode,

- NewRefNum,
ORD4(@Buffer),
S12,BytesWritten,Sequential,O);

UNTIL (BytesRead-O) OR (BytesWritten-O) OR (ErrorCode<>O)j
IF (ErrorCode<>O) THEN

WRITELN('File copy encountered error' ,ErrorCode);
CLOSE OBJECT(ErrorCode,NewRefNum)j
CLOSE-OBJECT(ErrorCode,OldRefNum);
END. -

Page 21

Confidential

l-Mar-82 Operating System Reference Manual

READ LABEL (Var Ecode:Integer;
Var Path:Pathname;
Label Addr:Longint;
Count:LongInt;
Var Actual:LongInt)

WRITE_LABEL (Var Ecode:lnteger;
Var Path:Pathname;
Label Addr:Longint;
Count:LongInt;
Var Actual:LongInt)

Ecode: Error indicator
Path: Name of object containing the label
Label· addr: Source or destination of I/O
Count: Number of bytes to transfer
Actual: Actual number of bytes transferred

Confidential

These calls read or write the label of an object in the file system.
~/O always starts at the beginning of the label. Count is the
number of bytes the process wants transferred to label addr, and
actual is the actual number of bytes transferred. An error is
returned if you attempt to read more bytes than were available
in the label. You can read up to the m~ximum number of bytes
written to the label. but cannot write more than 488 bytes to it.

Page 22

l-Mar-82 Operating System Reference Manual

DEVICE CONTROL (Var Ecode:Integer;
Var Path:Pathname;
Var CParm:dctype)

Ecode: Error indicator
Path: Device to be controlled

Confidential

CParm: A record of information for the device driver

DEVICE CONTROL sends a device-specific control request to the device
driver-for the device named by path. Path must name an object in the
root catalog. The record dctype is defined:

Dctype - RECORD

dcVersion:
deCode:
dcData:

END;

dcVersion: INTEGER;
dcCode: INTEGER;
dcData: ARRAY[O •• 9] OF LONGINT

version number of format for application to driver data
control code for device driver
specific control data parameters

Page 23

l-Mar-82 Operating System Reference Manual

ALLOCAXE (Var Ecode:Integer;
Refnum:Integer;
Contiguous:Boolean;
Count:Longint;
Var Actual:Integer)

Ecode: Error indicator

Confidential

Refnum:
Contiguous:

Reference number of object to be allocated space
True-allocate contiguously

Count: Number of blocks to be allocated
Actual: Number of blocks actually allocated

Use ALLOCATE to increase the space allocated to a disk file. If
possible, ALLOCATE adds count blocks to the space available to the
file referenced by refnum. The actual number of blocks allocated is
returned in actual. If contiguous is true, the new space is
allocated in a single, unfragmented space on the disk. This space is
not necessarily adjacent to any existing file blocks.

ALLOCATE applies only to block structured devices and pipes. An attempt
to allocate more space to a pipe is successful only if the pipe's read
pointer is less than or equal to its write ·pointer. If the write
pointer has wrapped around, but the read pointer has not, an allocation
would obviously cause the reader to· read invalid and uninitialized data,

. so the File Sys te~ returns an error in this case. .

Page 24

l-Mar-82 Operating System Reference Manual

COMPACT (Var Ecode:Integer;
Refnum: Integer)

Ecode: Error indicator
Refnum: Reference number of object to be compacted

Confidential

COMPACT deallocates any blocks after the block· that contains the
logical end of file for the file referenced by refnum. (See Figure 3
below). COMPACT applies only to block structured devices and pipes.
As is the case with ALLOC!!E, compaction of a pipe is legal only if
the read pointer is less than or equal to the write pointer. If the
write pointer has wrapped around, but the read pointer has not,
compaction could destroy data in the pipe, so the File System returns
an error in this case.

TRUNCAlE (Var Ecode:Integerj
Refnum: Int eger)

Ecode: Error indicator
Refnum: Reference number of object to be truncated

TRUNCATE sets the logical end of file indicator to the current
position of the file marker •. Any file data beyond the file marker
is lost. TRUNC!!E applies only to block structured devices and
pipes. Truncation of a pipe can destroy data that has been
wri tten but not yet read. As the diagram shows, TRUNCATE does no~
change PEOF, oniy LEOF.

I·

+<-Compact-+

I
File Marker

I

I
LEOF

I
+<---Truncate----+

I I
v v

I
PEOF

The Relationship of COMPACT and TRUNCATE

In this figure the boxes represent blocks of data. Note that LEOF
can point to any byte in the file, but PEOF can only point to a block
boundary. Therefore, TRUNC!!E can reset LEOF to any byte in the file,
but COMPACT can only reset PEOF to a block boundary.

Page .25

l-Mar-82 Operating System Reference Manual

FLUSH (Var Ecode:Integer;
Refnum: Integer)

Ecode: Error indicator
Refnum: Reference number of destination of I/O

FLUSH forces all buffered information destined for the file
identified by refnum to be written out to that file.

Page 26

Confidential

l-Mar-82 Operating System Reference Manual

SET_SAFETY (Var Ecode:Integer;
Var Path:Pathname;
On_off: Boolean)

Ecode: Error indicator
Path: Name of object containing safety switch

Conf ide nt ia1

On Off: Set saftey switch (On-true), or clear it (Off-false)

Each object in the file system has a "safety switch" to prevent
costly accidents. If the safety switch is on, the object cannot be
deleted. SET SAFETY turns the switch on or off for the object
identified by-path. Processes which are sharing a file should
cooperate with each other when setting or clearing the safety switch.

Page 27

l-Mar-82 Operating System Reference Manual

SET_WORKING_OIR (Var Ecode:Integerj
Var Path:Pathname)

GET.JlORKING _OIR (Var Ecode: Integer;
Var Path:Pathname)

Ecode:
Path:

Error indicator
Working directory name

The Operating System uses the name of the working directory to
resolve partially specified pathnames into complete pathnames.
GET WORKING OIR returns the current working directory name in
patti. SET_WORKING_OrR sets the working directory name.

Confidential

The following code reports the current name of the working directory
and allows you to set it to something else:

VAR WorkingOir:PathNamej
ErrorCode:INTEGERj

BEGIN
GET WORKING OIR(ErrorCode,WorkingOir)j
IF (ErrorCode<>O) THEN

WRITELN('Cannot get the current working directory!')
ELSE WRITELN(' The current working directory is: " WorkingDi,r) j
WRITE('New working directory name: ')'j
READLN(WorkingDir)j ,
SET WORKING DIR(ErrorCode,WorkingDir);
END; - .

Page 28

l-Mar-82 Operating System Reference Manual

RESET CATALOG(VAR Ecode:INTEGER;
- VAR Path:Pathname);

GET_NEXT_ENTRY(Var ECode:INTEGER;
Var Prefix,

Entry:E_Name);

Confidential

RESET CAXALOG and GET NEXT ENTRY give a process access to catalogs.
RESET CAXALOG sets the 'catalog file marker' to the beginning of the
catalog specified by Path. Path should be a root volume name.
GET NEXT ENTRY then performs sequential reads through the catalog
file rebirning file system object names. An end of file error
code is returned when GET NEXT ENTRY reaches the end of the catalog.
If prefix is non-null, only those entries in the catalog that begin
with that prefix are returned. If prefix is 'AB', for example, only
file names that begin with 'AB' are returned. The prefix and catalog
marker are local to the calling process, so several processes can
simultaneously read a catalog without clobbering each other.

Page 29

l-Mar-82

MOUNT

Operating System Reference Manual

(Var Ecode:Integer;
Var VName:E Name;
Var Password, Device:E Name
Var devName:E_Name) -

UNMOUNT (Var Ecode:Integer;
Var VName:E_name)

Ecode: Error indicator
VName: Volume name
Password: Password for device
Devname: Device name

Confidential

MOUNT and UNMOUNT handle access to block structured devices. If the
password given matches the password for the volume found on the device
specified, MOUNT creates an entry in the root catalog which logically
attaches that volume's catalog to the file system. The name of the
volume mounted is returned in the parameter vname.

~NMOUNT removes the specified volume from the root catalog, thereby
removing its subtree from the file system. Nothing on that volume
can be opened after UNMOUNT has been called. The volume cannot be
unmounted until all the objects on the volume have been closed by all
processes using them.

VName can be a: device name ('RS232B' or 'DEV8', for example). In
the UNMOUNT call, VName can also be a volume name without the
preceding dash ('TESTVOL', not '-TESTVOL').

Page 30

l-Mar-82 Operating System Reference Manual

CHAPTER TWO

PROCESSES

Introduction . . · . . · . .
• 0 32

32
34

Process Structure • •
Process Hierarchy ••••
Process Creation • • • • •
Process Control • • • • •
Process Scheduling • •
Process Termination
Process System Calls •

• • • • • • • • • 35 · . • • • • 35
· . • • • • • 35

• • • • • • • • • • 36

MAKE PROCESS ••••
• • • • • • • • • • • 37

• • • • • • • • • 37
• • • • • • • • • • 39
• • • • • • • • • • 40

TEBMlNATE PROCE 55
INFO PROcEss • • •
KILL-PROCESS • • . . • • • • 41
SUSPEND PROCE SS
AcrIV ATE PROCE 55 • • •
SETPRIORI'TY PROCESS
YIELD CPU - . .

· . .
· .

• • • • • 42
• 43 . . . • 44 . . . • 45

MY ID . . . • • • • • • • • • • • • • 45

Page 31

Confidential

l-Mar-82 Operating System Reference Manual Confidential

PROCESSES

INTRODUCTION

A process is a piece of executable code that can be run at the same
time as other processes. Although processes can share code and data,
each prGcess has its own stack. In most systems, including the one supported
by the Operating System, the parallel or concurrent execution of the
processes is simulated by using re-entrant code and a scheduler. The
scheduler allows each process to run until some condition occurs. At
that time, the state of the running process is saved, and the scheduler
looks at the pool of ready-to-run processes for the next one to be
executed. When the first process later resumes execution, it merely
picks up where it left off in its execution.

The status of a process depends on its scheduling state, execution state,
and memory state. The memory manager handles the process memory state.
If any code or data segments need to be swapped in for the process to execute,
t,he memory manager is called before the process is launched by the scheduler.

The process execution state depends on whether the process is executing
in user mode or in system mode. In system mode, the process executes
Operating System code in the hardware domain O. In user mode, the process
executes user code in domains 1, 2, or 3.

The process scheduling state has four possibilities. The process is
"running" if it is actually engaging the attention of the CPU. If it
is ready to continue execution, but is being held back by the scheduler,
the process is said to be "ready". When it has completed its task and
has exitted its outer block, it is "termi~ted". A process can also
be "blocked". In the blocked state, the' process is ignored by the
scheduler. It cannot continue its execution until something causes
its state to be changed to "ready". Processes commonly become
blocked while awaiting completion of I/O. Certain Operating System
calls distinguish between a process that is blocked by an I/O operation,
and a process that is blocked because it has been suspended by some
other process.

PROCE SS STRUCTURE

A process is a program. It can use up to 7 data segments and 116 code
segments simultaneously. When a process is instantiated, the Operating
System creates a Process Control Block (PCB) for it. The PCB contains
the process state, global id, and a pointer to a record of the process's
current needs. These include pointers to its code and data segments, its
stack, an area to save registers, and so on. When a process calls the
Operating System, the data segments and stack of the process are
remapped into domain 0 where the Operating System executes. The
address space layout of system and user processes is set up to make
this remap as efficient as possible:

Page 32

1-Mar-82 Operating System Reference Manual Confidential

PROCESS ADDRESS SPACE LAYOUT

User Mode System Mode

Segll Segll
+-

0 I Unavailable 0 Low memory (512 Read-Only bytes)
+

1 User Code Segments 1 OS Code Segments

95 Real Memory Access (I/O Space)
• (16 needed for 2 megabyte access)

III

112 Supervisor Stack

113 System Jump Table
-+---

114 Sysglobal data

115 SysLocal of currently executing process
+-

116 I LDSN 1 116 User .Data Space
I
I
I
I

122 I LDSN 7
I

123 I Stack

124 Shared Intrinsic Unit Data

125 I/O Space

126 Reserved

127 Screen 127 Screen

Page 33

l-Mar-82 Operating System Reference Manual

During execution, the process stack is:

High Memory

PROCESS STACK LAYOUT

Caller's stack frame

Caller's dynamic link

Function Result (only
for a function)

•
1<- - +

+--------------f-
I Procedure arguments
+-~- .. ----- .. ---f-
1 Static Link (only for a 1
I level 2 or higher proc) 1
+----- .. ------...f-
1 Return Address 1
+------------...f-

(A6) - - - -) I Dynamic Link 1- - ...f-
+-----..:I------...f-
I Local frame I
+-------~------+-

Dynamic requirements I
Low Memory -t----.---.-----++«- - - (A7)

Confidential

Each process has an associated priority, an integer between 1 and 255.
The process scheduler usually executes the highest priority ready process.
The higher priorities (200 to 255) are reserved for Operating System and
Filer processes.

PROCESS HIERARCHY

When the system is first started, several system processes exist. At the
base of the process hierarchy is the root process which handles various
internal Operating System functions. It has at least three sons, the memory
manager process, the timer process, and the shell process. The memory
manager process handles code and data segment swapping. The shell
process is a simple command interpreter which you can use to run programs
and create other processes. In the final Lisa system, the shell process
will be the Filer. The timer process handles timing functions such as
timed event channels.

Page 34

l-Mar-82 Operating System Reference Manual

Root Process

/
/

+-/
I

Memory Manager
Process

/
/

1\\
I \ \------+
I \ I

Shell \ Other •••
Process \----+

I I
I Timer

User
Process
/ I \

/ I \

Process

Other User Processes

Confidential

Any other system process (the Network Control Process, for example)
is a son of the root process.

~ROCESS CREATION

When a process is created, it is placed in the ready state, with a
priority equal to that of the process which created it. All the
processes created by a given process can be thought of as existing in
a subtree. Many of the process management calls can affect the entire
subtree of a process as well as the process itself.

PROe! SS CONTROL

Three system ca~ls are provided for explicit control of a process.
These calls allow a process to kill, suspend (block), or activate
any other user process in the system. Process handling calls are not
allowed on Operating System processes.

PROCE SS SCHEDULING

Process scheduling is based on the priority established for the
process. The system usually attempts to execute the highest priority
ready process. Once it is executing a process loses the CPU only
under the following conditions:

*
*

*

*

The running process becomes blocked (during I/O, for example).

The running process lowers its priority below that of another
ready process or sets another process's priority to be higher
than its own.

The running process yields the CPU to another process.

The running process activates a higher priority process or suspends
itself.

Page 35

l-Mar-82 Operating System Reference Manual Confidential

*

*

The running process makes any Operating System call when a higher
priority ready process exists.

The running proces s cau!es code to be swapped or its s tack to be
expanded.

Because the Operating System currently cannot seize the CPU from an
executing process except in the cases noted above, background processes
should be liberally sprinkled with YIELD_CPU calls.

When the scheduler is invoked, it saves the state of the current process
and selects the next process to run by examining its pool of ready processeso
If the new process requires code or data to be swapped in, the memory
manager proces s is launched. If the memory manager is already working on a
process, the scheduler selects the highest priOrity process in the ready
queue that does not need anything swapped.

PROCE SS TERMINATION

A process terminates when it hits its 'END.' statement, when it calls
TERMINATE PROCESS, when some process calls KILL PROCESS on it, when iOts
father process terminates, or when it runs into-an abnormal condition.
When a process terminates, a "terminate" exception condition is
signalled on the calling process and all of the processes it has
createde A process can declare an exception handler for this
condition to' insure that its house is in .order before its demiseo

Termination involves the following steps:

1. Signal the SYS_TERMINATE exception on the current process.

2. Execute the userPs exception handler (if any).

3. Send the SYS SON TERM event to the father of the current process
if a local event-channel exist'S.

4. Instruct all sons of the current process to terminate.

5. Close all open files, data segments, and event channels.

6. Wait for all the sons to finish termination.

7. Release the PCB and return to the scheduler.

A process can protect itself from termination by disabling the
"terminate" exception. Under normal circumstances, however, a
process should cooperate with the Operating System by viewing the
terminate exception as an opportunity to clean up its act before it
is terminated. If a process disables the terminate exception and then,
illogically, calls TERMINATE_PROCESS, the Operating System forces the
process to terminate.

Page 36

l-Mar-82 Operating System Reference Manual Conf ide nt ial

PROCE SS SYSTEM CALLS

MAKE PBOCESS (Var ErrNum:Integer;
Var Proc id:LongIntj
Var ProgFile:Pathname;
Var EntryName:NameStringj
Evnt_chn.;...refnum: Integer) j

. ErrNum:
Proc id:
ProgFile:
EntryName:
Evnt_chn_refnum:

Error indicator

(* PathName - STRING(255] *)
(* NameString • STRING(20] *)

Process identifier (globally unique)
Process file name
Program entry point
Communication channel between calling process
and created process

A process is born when another process calls MAKE_PROCESS. The new
process executes the program identified by the pathname, progfile.
If progfile is a null character string, the name of the calling process's
program file is used. A globally unique identifier for the created
process is returned in proc_id.

Evnt chn refnum is an event channel supplied by the calling process
(eve~t channels are discussed later). The Operating System uses the
event channel identified by evnt chn refnum to send the calling process
events regarding the created process-(for example, SYS SON TERM).
If evnt chn refnum is ze"ro, the calling process is not-informed when
such events-are produced.

Enttyname, if non-null t specifies the program entry point where execution
is to begin. Because alternate entry points have not yet been defined,
this parameter is currently unused.

Any error encountered during process creation is reported in ErrNum.

Page 37

l-Mar-82 Operating System Reference Manual Confidential

The following example uses Operating System calls that have not been
fully discussed yet. It should, however, provide an example of
process and event management.

PROCEDURE ExecuteProgram;
CONST CannotOpenProgFile-130;
VAR PName:PathName;

Null Entry:NameString;
Errorcode:INTEGER;
S0n.:..Id:LONGINT;
ec re£num.: INTEGER;
term event:r eventblk;
event-ptr:p_r_eventblk;
comm. chan: INTEGER;
Son· Wait List:t waitllst;
nuiI_ec:'PathName;
null excep:t ex name;

BEGIN - - -
Null Entry: -' , ; - " null ec:- ; - " null excep:- ;
event-ptr:-@term_event;
WriteDialog('Execute what file?

ReadDialog(pname);

IF (pname<>") THEN
BEGIN

(* error returned by MAKE PROCESS *)
(* pathname of program to-execute *)
(* null entry point name *)
(* Error return for system calls *)
(* id of new process for program *)
(* returned by WAIT EVENT CHN *)
(* 'SYS SON TERM' event bTock *)
(* pointer to term event *)
(* refnum of c01llDllnication channel for sons *)
(* record for WAIT EVENT CHN *)
(* null exception Pathnai'e for OPEN EVENT CHN *)
(* null exception name *) --

(* alternate entry points are currently no-ops *)

') ;
(* WriteDialog opens a dialog box, sets its

height, and writes the string in it *)
(* ReadDialog gets the program file name from

the dialog box using EventAvail and
GetNextEvent supplied by the Window Manager *) -

(* if pname is null, quit *)

OPEN EVENT CHN(ErrorCode,Null ec,Comm Chan,Null excep,TRUE (* receive *»;
- - -(* set ~p cOlDDllnication channel for process

that will run the program pname *)
WITH Son Wait List DO

BEGIN - -
Length:-l;
re£num [0] : -Comm Chan;
END; -

MAKE PROCESS(ErrorCode,Son id,pname,Null Entry,comm chan);
IF (ErrorCode-CannotOpenProgFile) THEN - -

WriteDialog(CONCAX(pname,' not found.'»;
SETPRIORITY PROCESS(ErrorCode,MY ID,I);

- (*-wait at low priority for son to terminate *)
WAIT_EVENT_CHN(ErrorCode,Son_Wait_List,ec_refnum,event-ptr);
SETPRIORITY PROCESS(ErrorCode,MY ID,200);

END;
END;

- (*-return to normal priority *)

Page 38

l-Mar-82 Operating System Reference Manual Confidential

TERMINATE_PROCESS(Var ErrNum:Integer;
Event-ytr:P_S_Eventblk)

ErrNum: Error indicator
Event-ptr: Information sent to process's creator

The life of a process is ended by TERMINATE_PROCESS. This call
causes a "terminate" exception to be signalled on the calling process
and on all of the processes it has created. The process can
declare its own "terminate" exception handler to handle whatever
cleanup it needs to do before it is completely terminated by the
system. When the terminate exception handler is entered, the
exception information block contains an integer that describes
the cause of the process termination:

Excep_Data[O] - 0 Process called TERMINATE_PROCESS

1 Process executed the 'END.' statement

2 Process called KILL_PROCESS on itself

3 Some other process called KILL PROCESS
the terminating process

4 Father process is terminating

on

If the terminating process wa~ created with -a comDIlnication channel,
event-ptr point's to the event text information that the Operating System
sends to the process's creator. The event type in this case is SYS_SON_TERM.

P_s_eventblk is a pointer to an s~eventblk. S_eventblk is defined as:

CONST size_etext • 9; (* event text size - 40 bytes *)

TYPE t event text • ARRAY [O •• size_etext] OF LongInt;
s:eventblk • t_event_text;

If a process calls TERMINATE_PROCESS twice, the Operating System forces it to
terminate even if it has disabled the terminate exception.

Page 39

1-Mar-82 Operating System Reference Manual

INFO PROCESS (Var ErrNum:Integer;
Proc Id:LongInt;
Var Proc_Info:ProcInfoRec);

ErrNum: Error indicator
Proc Id: Global identifier of process

Confidential

Proc-Info: - Information about the process identified by Proc_id

A process can call INFO PROCESS to get a variety of information about
any process known to the Operating System. Use the function My Id to
get the Proc_id of the calling process. ProcInfoRec is defined as:

TYPE ProcInfoRec • RECORD
ProgPatbname:Pathname;
Global id :Longint;
Priority :1 •• 255;
State : (PActive,PSuspended,PWaiting)j
Data in : Boolean

END; -

Data_In indicates whether the data space of the process is currently in
memory.

The following procedure gets some of this information about a process
and displays it: .

PROCEDURE Display Info(Proc Id:LONGINT);
V AR ErrorCode: INTEGER; -

Inf 0 Rec: ProcInf oRec;
BEGIN -
INFO PROCESS(ErrorCode .Proc Id, Info Rec);
IF (ErrorCode-lOO) THEN - -

WRITELN('Attempt to display info about nonexistent process.')
ELSE

BEGIN
WITH Inf 0 Rec DO

BEGIN -
WRITELN(' program name:
WRITELN(' global id:
WRITELN(' priority:
WRITE(' state:
CASE State OF

, ,ProgPathName);
, ,Global id);
, ,priority);

');

PActive: WRITELN('active');
PSuspended: WRITELN('suspended')j
PWaiting: WRITELN('waiting')
END

END
END

END;

Page 40

1-Mar-82 Operating System Reference Manual

KILL PROCESS (Var ErrNum:lnteger;
Proc_Id:Longlnt)

ErrNum:
Proc Id:

Error indicator
Process to be killed

Confidential

KILL PROCESS kills the process referred to by proc id and all of
the processes in its subtree. The actual terminatIon of the process
does not occur until it is in one of the following states:

* Executing in user mode.

* Stopped due to a SUSPEND PROCESS call.

* Stopped due to a DELAY_TIME call.

* Stopped due to a WAIT_EVENT_CHN or SEND_EVENt_caN call, or
READ_DATA or WRITE_DATA to a pipe.

Page 41

l-Mar-82 Operating System Reference Manual

SUSPEND PROCESS (Var ErrNum:Integerj
Proc id:LongIntj
Susp:Family:Boolean)

ErrNum: Error indicators
Proc Id: Process to be suspended
Susp-Family: If true, suspend the entire process subtree

Confidential

SUSPEND PROCESS allows a process to suspend (block) any other process
in the system. The actual suspension does not occur until the
process referred to by proc_id is in one of the following states:

• Executing in user mode.

• Stopped due to a DELAY_TIME call.

• Stopped due to a WAIT_EVENT_caN call.

Neither expiration of the delay time nor receipt of the awaited event
causes a suspended process to resume execution. SUSPEND PROCESS is
the only direct way to block a process. Processes, however, can
become blocked during I/O, and by the timer (see DELAY_TIME), and for
many other reasons.

If susp family is true, the Operating System suspends both the process
referred. to by proc_id and all of its descendents. Ifsusp_family is
false, only the process identified by proc_id is suspended.

Page 42

l-Mar-82 Operating System Reference Manual

ACTIVATE_PROCESS(Var ErrNum:lntegerj
Proc Id:LongInt;
Act_Family: Boolean)

ErrNum: . Error indica tor
Proc Id: Process to be activated
Act_Family: If true, activate the entire process subtree

Confidential

To awaken a suspended process, call ACTIVATE PROCESS. A process can
activate any other process in the system. Note that ACTIVATE PROCESS can
only awaken a suspended process. If the process is blocked for
some other reason, ACTIVATE PROCESS cannot unblock it. If act family
is true, ACTIVATE PROCESS also activates all the descendents of the
process referred to by proc_id.

Page 43

l-Mar-82 Operating System Reference Manual

SETPRIORITY PROCESS(Var ErrNum:Integer;
- Proc Id:LongInt;

NeW~riOrity:Integer)

ErrNum: Error indicator
Proc id: Global id of process
New_Priority: Process's new priority number

Confidential

SETPRIORlTY_PROCESS changes the scheduling priority of the process
referred to by proc_id to new-priority. The higher the priority value
(which must be between 1 and 255), the more likely the process is
to be allowed to execute. Because Operating System processes execute
with priorities between 200 and 250, it is suggested that applications
execute at lower priorities.

Page 44

1-Mar-82 Operating System Reference Manual

YIELD_CPU(Var ErrNum:Integer;
To_Any:Boolean)

Error indication

Conf ide nt ial

Yield to any process, or only higher or equal priority

If To Any is false, YIELD CPU causes the calling process to yield the
attention of the system to any other ready-to-execute process with an
equal or higher priority. If To Any is true, YIELD CPU causes the
calling process to yield the CPU-to any other ready-process. If no
such process exists, the calling process simply continues execution.
Successive yields by processes of the same priority result in a
"round-robin" scheduling of the processes. Background processes
should use YIELD_CPU generously to allow more urgent processes to
execute when they need to.

MY ID

MY ID is a function that returns the unique global identifier (a longint)
of the calling process. A process can use My Id to perform process handling
calls on itself. -

SetPriority_Process(Errnum,My_Id, 100)

sets the priority of the calling- process to 100.

Page 45

l-Mar-82 Operating System Reference Manual Confidential

The following little programs illustrate the use of most of the
process management calls described in this chapter. The program FATHER
creates a son process, and lets it run for awhile. It then gives you
a chance to activate, suspend, kill, or get information about the son.

PROGRAM Father;
USES (*$U Source:SysCall.Obj*)
VAR ErrorCode:INTEGER;

proc id:LONGINT;
progname:Pathname;
null:NameStringj
Info Rec:ProcInfoRec;
i: INTEGER;
Answer: CHAR;

BEGIN
ProgName:-'SON.OBJ';
Null:-' ';

SysCall;
(* error returns from system calls *)
(* process global identifier *)
(* program file to execute *)
(* program entry point *)
(* information about process *)

(* this program is defined below *)

MAKE PROCESS{ErrorCode,Proc Id,ProgName,Null,O);
FOR 1:-1 TO 15 DO - (* idle for awhile *)

BEGIN
WRlTELN('Father executes for a moment.');
YIELD CPU(ErrorCode,FALSE); (* let son run *)
END; -

WRITE('K(ill S{uspend A(ctivate I(nfo');
READL.'i(A.Q.swer) ;
CASE Answer OF

'K' , 'k': KILL PROCESS{ErrorCode ;Proc Id) j
's' ,'s': SUSP~ PBOCESS(ErrorCode,ProcId,TRUE (* suspend family *»;
'A','a': AcrIVAXE_PROCESS(ErrorCode,Proc_Id,TRUE (* activate family *»;
, I' , ' i ': BEGIN

INFO PROCESS(ErrorCode,Proc Id,Info Rec);
WRITELN('Son"s name is ' ,Info_Rec.ProgPathName);
END;

END;
IF (ErrorCode<>O) THEN WRITELN('Error ' ,ErrorCode,' during process management.');
END.

The program SON is:

PROGRAM Son;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER;

null:NameString;
BEGIN
WHILE TRUE 00

BEGIN
WRITELN('Son executes for a moment.');
YIELD CPU(ErrorCode,FALSE); (* let father process run *)
END; -

END.

Page 46

l-Mar-82 Operating System Reference Manual

CHAPTER 3

MEMORY MANAGEMENT

Introduction. • •••• • 48
A Limited Hardware Perspective • • • • • • • • • • 48
Data Segments •• • • • • • • 48
The Logical Data Segment Number • • • • • • • 49
Shared Data Segments • • • • • • • • • 49
Private Data Segments ••• • • • • 49
Code Segments 0.....
The Process Stack • • •••

• • • 50
• • • • • 50

Swapping • • • • • • • • • • • 51
Memory Management System Calls •••••••••• 52

MAKE DATASEG • • • • • • • • • • • • • • • • 52
KILL-OATASEG • • • • • • • • • • • • 53
OPEN-DAXASEG • • • • • • • • • • • • 54
CLOS E DATAS EG • • • • • • • • • • • • • • • 55
FLUSH - DATAS EG • • • • • • • • • • • 56
SIZE DATASEG • • • • • • • • • • • • • • • • 57
INFO-DATASEG • • • • • • • • • • • • • • • • 58
INFO-LDSN ••••••••••• • • • • • • 59
SETACCESS DATASEG •••••••••• • • • • • 60
BIND DATASEG • • • • • • • • • • • • • • • 61
UNBIND DATASEG • • • • • • • • • • • • 61

Page 47

Confidential

l-Mar-82 Operating System Reference Manual Confidential

MEMORY MANAGEMENT OVERVIEW

INTRODUCTION

Each process has a set of code and data segments which must be in
physical memory during execution of the process. The transformation
of the logical address used by the process to the physical address
used by the memory controller to access physical memory is handled by
the memory management unit (MMU).

A LIMITED HARDWARE PERSPECTIVE

Addresses in LISA have three parts: a domain (context) number, a
hardware segment number, and an offset. A hardware segment is a
contiguous logical address space with a distinct address protection.
The hardware mapping registers determine each hardware segment's type,
length (in pages of 512 bytes), and Origin in physical memory. The
s.egment type (ReadOnly, ReadWri te, or Stack) controls access to that
segment.

Each segment can have up to 128 Kbytes of memory. The Operating System
provides data segments larger than 128 Kbytes by allocating adjacent
HMO regist~rs to a single logical segment. 128 segments are
mapped by a single domain, so each of the four domains provides a
cache of an entire segment map. The Operating System runs 'in domain 0;
ap plica t ion programs ca n ope ra te· in domains 1, 2, or 3. The use of
domains speeds up process switching.

DATA SEGMENTS

Each process has a data segment that the Operating System
automatically allocates to it for u~e as a stack. The stack
segment's internal structures are managed directly by the
hardware and the Operating System.

A process can require additional data segments for such things as
heaps and process to process communication. These added requirements
are made known to the Operating System at run time. The Operating
System views all data segments except the stack as linear arrays of
bytes. Therefore, allocation, access, and interpretation of
structures within a data segment are the responsibility of the
process.

The 68000 hardware requires that all data segments that are part of
the process's working set be in physical memory and mapped by
hardware segment registers during execution of the process. It is
the responsibility of the process to ensure that this requirement
is met.

Page 48

l-Mar-82 Operating System Reference Manual

THE LOGICAL DATA SEGMENT NUMBER

Besides the stack segment, a process can have up to seven data
se~ents in its working set at any given time. Other data
segments can be available to the process, but not actually be
members of the working set. To inform the Operating System

Confidential

that it wants a certain data segment to be available, the process
associates that segment with a "logical data segment'number" (LDSN).
When the process wants the data segment placed in memory and made
a member of the working set, it "binds" that segment to its
associated LDSN. The LDSN, which has a valid range of 1 to 7,
is local to the calling process. The process uses the LDSN to
keep track of where a given data segment can be found. More than
one data segment can be associated with the same LDSN, but only
one such segment can be bound to an LDSN at any instant and thus
be a member of the working set of the process.

SHARED DATA SEGMENTS

Cooperating processes can share data segments. The segment
creator assigns the segment a unique name (a file system pathname).
All processes that want to share tr~t data segment must then use the same
segment name.' If the shared data segment contains address pointers
to segments, then the cooperating processes must also agree upon a
common LDSN to be associated with the segment. This LDSN is
transformed by the Operating System into a specific mapping register,
so all 199ical data addresses referencing locations within the, data
segment are consistent for all processes sharing the segment.'

As an example of the use of shared data segments, constder the
following situation: a process cre~tes five other processes and
wants to use a different data segment for communication with each of
them. The process can associate and bind the five data segments with
LDSN values 1 to 5. Since it can access all five segments at will,
this method can have performance advantages, but all five data
segments must be in memory during execution. If on the other hand,
the process associates all five data segments with the same LDSN,
only one such segment mus. t be in memory at any time, but the
process must bind and unbind the segments to the LDSN whenever
a specific segment is needed. The application designer must
weigh the advantages and disadvantages of each method for the
application being developed.

PRIVATE DAXA SEGMENTS

Data segments can also be private to a process. In this case, the
maximum size of the segment can be greater than 128 Kbvtes. The
actual maximum size depends on the amount of physical memory in
the machine and the number of adjacent LDSN's available to map the
segment. The process gives the desired segment size and the base
LDSN to use to map the segment. The Memory Manager then uses
ascending adjacent LDSN's to map successive 128 Kbyte chunks of

Page 49

1-Mar-82 Operating System Reference Manual Confidential

the segment. The process must insure that enough consecutive LDSN's
are available to map the entire segment.

Suppose a process has a data segment already bound to LDSN 2. If
the program tries to bind a 256 Kbyte data segment to LDSN 1, the
Operating Sys tem retu':>':ns an error because the 256 Kbyte segment
needs two consecut~e free LDSN's. Instead, the program should
bind the segment to LDSN 3 and the system implicitly also uses
LDSN 4. If the program has no bound LDSN's, it can start its
heap segment at LDSN 1, and as the heap grows, it can expand
upward through the 7 LDSN's.

CODE SEGMENTS

Division of a program into multiple code segments (swapping units) is
dictated by the programmer. If a program is so divided, the Linker
creates a jump table to insure that 1ntersegment procedure references
are handled properly. The HMO registers can map up to 116 code segments.
!.he allocation of the register numbers is given in the Process Structure
section of the Process chapter.

A JSR, RTS, or JMP.L to a non-resident code segment causes a bus error
which results in a trap to the Operating System (a software
implementation of absence traps). The Operating System brings the
code segment into physical memory and returns control to the process,
allowing the procedure reference to continue.

THE PROCESS STACK

Because the Operating System sometimes needs to scan the stack of a
process, certain conventions must be observed:

* Register A7 is the stack pointer of the process.

* Register A6 is the link register for the process stack.

* All procedures must execute the LINK instruction using A6 as the
link register before any local data is placed on the stack or
another procedure call is executed.

These conventions .are obviously hidden from the programmer's view in
high level languages, but must be followed by assembly language
programmers.

Stack expansion is handled automatically by the Operating System.

Page 50

l-Mar-82 Operating System Reference Manual Confidential

SWAPPING

When a process executes, the following segments are required to be in
physical memory and mapped by mapping registers:

* The current code segments being executed

* All the data segments in the process working set.

The Operating System insures that this minimum set of segments is in
physical memory before the process is allowed to execute. If a
required segment is not in memory, a segment swap-in request
is initiated. In the simplest case, this request only requires
the system to allocate a block of physical memory and to read in the
segment from the disk. In a worse case, the request may require that
other segments be swapped out first to free up sufficient memory. A
clock algorithm is used to determine which segments to swap out or
replace.

Page 51

l-Mar-82 Operating System Reference Manual

MEMORY MANAGEMENT CALLS

MAKE_DATASEG (Var ErrNum:Integer;
Var Segname:Pathname;
Hem Size, Disk Size:LongInt;
Var-RefNum:Integer;
Var SegPtr:LongInt;
Ldsn: Integer)

ErrNum: Error indicator
Segname: Pathname of data segment

Confidential

Hem Size:
Disk Size:
RefN~m:

Bytes of memory to be allocated to data segment
Bytes on disk to be allocated for swapping segment
Identifier for data segment

SegPtr
Ldsn:

Pointer to contents of data segment
Logical data segment number

MAKE_DATASEG creates the data segment identified by the pathname,
s.egname, and opens it for immediate read-write accessc Segname
is a true file system pathname. If segname is null, the data
segment can be accessed only by the calling process; otherwise,
the segname allows the segment to be shared with any process in
the system.

The parameter, Hem_size, determines how many bytes of main memory
the segment is allocated. The actual allocation takes place in
terms of 512 byte pages. If the data segment is private (segname
1s null), Mem size can be greater than 128 Kbytes, but you must
insure that e;ough consecutive LDSN's are free to map the entire
segment.

Disk size determines the number of bytes of swapping space to be
allocated to the segment on disk. If Disk size is less than Hem size,
the segment cannot be swapped out of main memory. In this' case the
segment is memory resident until it is killed or until its size in
memory becomes less than or equal to its disk_size (see SIZE_DATASEG).

The calling process associates a logical data segment number (Ldsn)
with the data segment. If this Ldsn is already bound to another data
segment, the call returns an error.

Refnum 1s returned by the system to be used in any further references
to the data segment. The Operating System also returns segptr, an
address pointer to be used to reference the contents of the segment.

Any error conditions are returned in ErrNum.

Page 52

l-Mar-82 Operating System Reference Manual

KILL DAXASEG (Var ErrNum:Integer;
Var Segname:Pathname)

ErrNum: ~rror indicator
Segname: Name of data segment to be deleted

Confidential

When a process is finished with a data segment, it can issue a
KILL DAXASEG call for that segment. If any process, including
the calling process, still has the data segment open, the actual
deallocation of the segment is delayed until all processes have
closed it (see CLOSE DAXASEG). During the interim period, however,
after a KILL DAXASEG-call has been issued but before the segment
is actually deallocated, no other process can open that segment.

KILL_DAXASEG does not affect the membership of the data segment in
the working set of the process. The refnum and segptr values are
valid until a CLOSE_DAXASEG call is issued.

Page 53

l-Mar-82 Operating System Reference Manual

OPEN DAXASEG (Var ErrNum:Integerj
Var Segname:Pathname;
Var RefNum:Integerj
Var SegPtr:LongInt;
Ldsn:Integer)

ErrNum:
Segname:
RefNum:
SegPtr
Ldsn:

Error indicator
Name of data segment to be opened
Identifier for data segment
Pointer to contents of data segment
Logical data segment number

Confidential

A process can open an exis ting data segment wi th OPEN DAXASEG. The
calling process must supply the name of the data segment (segname)
and the logical data segment number to be bound to it. The logical
data segment number given must not have a data segment already bound
to it. The segment's name is determined by the process which creates
the data segment; it cannot be null.

The Operating System returns both refnum, an identifier for the ealling
process to use in future references to the data segment, and segptr,
an address pointer used to reference the contents of the segment.

When a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the process

- is Readonly. Use SETACCESS DAXASEG to change the access rights to
Readwrite. .-

Page 54

l-Mar-82 Operating System Reference Manual

CLOSE DATASEG (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Data segment identifier

Conf ide nt ial

To remove a data segment ,from the working set of a process, call
CLOSE DATASEG. The data segment referred to by refnum is severed
from the context of the calling process, refnum is made invalid, and
any reference to the data segment using the original segptr will
have unpredictable results. If refnum refers to a local data segment
(one created with a null segment name), CLOSE DAXASEG also deletes
the data segment. If the data segment is bound to a logical data
segment number, CLOSE_DAXASEG also frees that LDSN.

The following procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForLisaGrafj
CONST HeapSize-16384; (* 16 KBytes for graphics heap *)
VAR HeapBuf:LONGINTj (* pointer to heap for LisaGraf *)

GrafHeap:PathName; (* data segment path name *)
Heap Refnum:INTEGER; (* refnum for heap data seg *)
Errotcode:INTEGER;

FUNCTION HeapError(hz:THz; BytesNeeded:INTEGER):INTEGERj
BEGIN (* handle heap expansion errors *)
WRITELN('Heap is fulll Need ',BytesNeeded,' bytes.');
HeapError:'-Oj
END;

BEGIN
GrafHeap:-'grafheap';
OPEN DATASEG(ErrorCode,GrafHeap,Heap Refnum,HeapBuf,l);
IF (ErrorCode-O) THEN (* grafheap already exists! *)

BEGIN
KILL DATASEG(ErrorCode,GrafHeap);
CLOSE_DAIASEG(ErrorCode,Heap_Refnum);
END;

MAKE DATASEG(ErrorCode,GrafHeap,HeapS1ze,Heap Ref Num, HeapBuf, 1);
InitHeap(POINTER(HeapBuf),POINTER(HeapBuf+HeapSize),@HeapError);
END;

Page 55

l-Mar-82 Operating System Reference Manual

FLUSH DAXASEG (Var ErrNumj
Refnum:lnteger)j

ErrNum: Error indicator
Refnum: Data segment_identifier

Confidential

FLUSH_DAXASEG writes the contents of the data segment identified by
refnum to the disk. This call has no effect upon the memory residence
or binding of the data segment.

Page 56

l-Mar-82 Ope ra· ting Sys tem Ref e rence Manual

SIZE DATASEG (Var ErrNum:Integer;
Re£num: Integer;
deltaMemSize:LongIntj
Var NewMemSize:Longlnt;
deltaDiskSize:Longlnt;
Var NewDiskSize:LongInt)

ErrNum: Error indicator,
Data segment identifier

Confidential

Refnum:
deltaMemSize:
NewMemSize:
deltaDiskSize:

Amount in bytes of change in memory allocation
New actual size of segment in memory

NewDiskSize:
Amount in bytes of change in disk allocation
New actual disk (swapping) allocation

SIZE DATASEG changes the memory and disk space allocations of the data
segment referred to by RefNum. Both deltaMemSize and deltaDiskSize can
be either positive, negative, or zero. The changes to the data segment
take place at the high end of the segment and do not destroy the contents
of the segment. Because the actual allocation is done in terms of pages
(512 byte blocks), the newMemSize and newDiskSize returned by SIZE_DATASEG
may be larger than the oldsize plus de1taSize of the respective areas.

If the NewDiskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The application programmer should be aware of
the serious performance implications of forcing a segment to be memory
resident. Because the segment cannot be swapped out, a new process may
not be able to get all of its working set into memory. To avoid thrashing,
each application should insure that .11 of its data segments are
swappable before it relinquishes the attention of the processor.

If the necessary LDSN's are available, SIZE DAXASEG can increase the
size of a private data segment beyond 128 Kbytes.

Page 57

l-Mar-82 Operating System Reference Manual Confidential

INFO_DAXASEG (Var ErrNum:lnteger;
Refnum: Integer;
Var Dslnfo:DslnfoRec)

ErrNum:
Refnum:
Dslmo:

Error indicator
Identifier of data segment
Attributes of data segment

INFO DAXASEG returns information about a data segment to the
caliing process. The structure of the dsinforec record is:

RECORD
Mem Size:LongInt
DisC. Size:Longlnt
NumbOpen:Integer
Ldsn:Integer
BoundF:Boolean
PresentF:Boolean
CreatorF: Boolean

(* Bytes of memory allocated to data segment
(* Bytes of disk space allocated to segment
(* Current open count
(* Ldsn for segment binding
(* True if segment is bound to ldsn
(* True if segment is present in memory
(* True if the calling process is the creator
(* of the segment

*) ;
*)j
*)j
*);
*);
*);
*)
*)j

RWAccess:Boolean
END;

(* True if the.calling process has Read/Write *)

Page 58

l-Mar-82 Operating System Reference Manual

INFO LDSN (Var ErrNum:Integer;
Ldsn:Integer;
Var RefNum:Integer);

ErrNum: Error indicator
Ldsn: logical data segment number
RefNum: data segment identifier

Confidential

INFO LDSN returns the refnum of the data segment currently bound to Ldsn.
You can then use INFO DAXASEG to get information about that data segment.
If the ldsn specified-is not currently bound to a data segment, the refnum
returned is -1.

Page 59

l-Mar-82 Operating System Reference Manual

SETACCESS DATASEG (Var ErrNum:Integer;
Refnum: Integer;
Readonly:Boolean)

ErrNum: Error indicator
Refnum: Data segment identifier
Readonly: Access mode

Confidential

A process can ·control the kinds of access it is allowed to exercise
on a data segment with the SETACCESS DATASEG call. Refnum is the
identifier for the data segment. If-readonly 1s true, an attempt by
the process to write to the data segment results in an address
error exception condition. To get readwrite access, set readonly to
false.

Page 60

l-Mar-82 Operating System Reference Manual

BIND_DATASEG(Var ErrNum:Integer;
RefNum:Integer);

UNBIND DATASEG(Var ErrNum:Integer;
- RefNum:Integer);

ErrNum: Error indicator
RefNum: Data segment identifier

Confidential

BIND DAXASEG binds the data segment referred to by refnum to its
assoCiated logical data segment number(s). UNBIND DATASEG unbinds
the data segment from its ldsn's. BIND DATASEG ca'ii'ses the data
segment to become a member of the current working set. At the time
of the BIND DAiASEG call, the necessary ldsn's must be available.
UNBIND DAXASEG frees the associated Idsn's. A reference to the
contents of an unbound segment gives unpredictable results.
OPEN_DAXASEG and MAKE DATASEG determine which ldsn's are associated
with a given data segment.

Page 61

l-Mar-82 Operating System Reference Manual Confidential

Page 62

1-Mar-82 Operating System Reference Manual

CHAPTER 4

EXCEPTIONS AND EVENTS

Introduction • • • • • • • • • • • • • • • • • • 64
Exceptions • • • • • • • • • • • • • • 64
System Defined Exceptions ••••••••••• 65
Exception Handlers • • • • • • • • • • • • 65
Events • • • • • •.• • • • • • • • • • • • • • • 68
Event Channels • • • • • • • • • • • • • • • • • 68
The System Clock • • • • • • • • • • •••• 69
Exception Management System Calls ••••• 69

DECLARE EXCEP HDL • • • • • • • • • • • • 70
D ISABLE-EXCEP- • • • • • • • • • • • • • • • • 71
ENABLE ExCEP • • • • • • • • • • • • • • • • • 72
INFO EXCEP • • • • • • • • • • • • • • • • • • 73
SIGNAL_EXCEP • • • • • • • • • • • • • • • 74
FLUSH EXCEP • • • • • • • • • • • • • • • • • 75

Event Management System Calls ••••••••• 76
MAKE_EVENT_CHN •••••••••••••••.• 76
KI LL EVENT CHN • • • • • • • • • • • • • • • • 77
OPEN EVENT-CHN • • • • • • • • • • • • • • • • 78
CLOSE EVENT CHN • • • • • • • 79 - -INFO EVENT CHN • • • • • • • • • • • • • • • • 80
WAIT-EVEN-r-CHN • • • • • • • • • • • • • • • • 81 - -FLUSH EVENT CHN • • • • • • • • • • • '. • 82
SEND EVENT 'CHN • • • • • • • • • • • • • • • • 83

Clock Sys tem-Calls ••• • ~ • • •. • • •. • 84
DELAY nME • • • .- • • • • • • • • • • •. • • • 84
GET TIME •• • • • • • • • • • • • • • • • • • 85
SET-LOCAL TIME DIFF • • • • • • • • • • • • • 86
CONVERT TIME • -. • • • • • • • • • • • • • • • 87

Page 63

Confidential

l-Mar-82 Operating System Reference Manual Confidential

EXCEPTIONS and EVENTS

Processes have several ways to keep informed about the state of the
world. Normal-process-to process communication and synchronization
can be handled using events or shared data segments. An abnormal
condition can cause an exception (interrupt) to be signalled which
the process can respond to in whatever way it sees fit.

EXCEPTIONS

Normal execution of a process can be interrupted by an exceptional
condition (such as division by zero or address error). Some of these
conditions are trapped by the hardware, some by the system software,
and others can be signalled by the process itself. Exceptions have
character string names, some of Which are predefined and reserved by
the Operating System.

When an exception occurs, the system first checks the state of the
exception. The three exception states are:

* Enabled

* Queued

* Ignored

If the exception is enabled, the system next looks for a user defined
handler for that exception. If none is found, the system default
exception handler is invoked. It usually aborts the current process.

If the state of the exception is queued, the exception is placed on a
queue. When that exception is subsequently enabled, this queue is
examined, and if any exceptions are found, the appropriate exception
handler is entered. Processes can flush the exception queue.

If the state of the exception is ignored, the system still detects
the occurrence of the exception, but the exception is neither honored
nor queued.

Invocation of the exception handler causes the sceduler to run, so it
is possible for another process to run between the signalling of the
exception and the execution of the exception handler.

Page 64

l-Mar-82 Operating System Reference Manual Confidential

SYSTEM DEFINED EXCEPTIONS

Certain exceptions are predefined by the Operating System. These include:

* Division by zero (SYS~ZERO_DIV). Default handler aborts process.

* Value out of bounds (SYS_VALUE_OOB). Default handler aborts process.

* Overflow (SYS_OVERFLOW). Default handler aborts process.

* Process termination (SYS TERMINATE). This exception is signalled when
a process terminates, or-when there is a bus error, address error,
illegal instruction, privilege violation, or line 1010 or 1111 emulator
error. The default handler does nothing.

Except where otherwise noted, these exceptions are fatal if they occur
within Operating System code. The hardware exceptions for parity error,
spurious interrupt, and power failure are also fatal.

EXCEPTION HANDLERS

A user-defined exception handler can be declared for a specific
exception. This exception handler is coded as a procedure, but must
follow certain conventions. Each handler must have two input
parameters: Environment Ptr and Exception Ptr. The Operating System
ens~res that these pointers are valid when-the handler is entered.
Environment Ptr points to an area in the stack containing the
"interrupted-environment: register contents, "condition flags, and
program state. The handler can access this environment and can
modify everything except the program counter and register A7.
The Exception Ptr points to an area in the stack containing
information about the specific exception. "

Each exception handler must be defined at the global level of the
process, must return, and cannot have any "Exit" or "Global Goto"
statements. Because the Operating System disables the exception
before calling the exception handler, the handler should re-enable
the exception before it returns.

If an exception handler for a given exception already exists when
another handler is declared for that exception, the old one becomes
disassociated. There is no notion of block structured declaration of
exception handlers.

An exception can occur during the execution of an exception handler.
The state of the exception determines whether it is queued, honored,
or ignored. If the ser;ond exception has the same name as the exception
that is currently being handled and its state is enabled, a nested
call to the exception handler occurs.

There is an "exception occurred" flag for every declared exception;
it is set whenever the corresponding exception occurs. This flag
can be examined and reset. Once the flag 1s set, it remains set

Page 65

l-Mar-82 Operating System Reference Manual Confidential

until FLUSH_EXECP is called.

The following code fragment gives an example of exception handling.

PROCEDURE Handler(Env Ptr:p env blk;
Data. Ptr:p ex-data);

V AR ErrNutr.-:rNTEGER; - --
BEGIN
(* Env Ptr points to a record containing the program counter. *)
(* and-all registers. Data Ptr points to an array of 12 longints *)
(* that contain the event header and text if this handler is *)
(* associated with an event-call channel (see below) *)

ENABLE EXCEP(errnumtexcep name); - -
•

END;

(* this is either in a different segment or at the top level *)

•
Excep name:-'EndOfDoc';
DECLARE_EXCEP_HDL(errnum.excep_name,@Handler)j
•

Page 66

l-Mar-82 Operating System Reference Manual Conf ide nt ial

At the time the exception handler is invoked, the stack is:

low 1
address I Exception Handler

I
I .. -----------------+
I Link I
+-- ---+
1 @Return_Exception 1
I --+
1 Data Ptr 1----+ -+ -+ 1

+--1 Environment Ptr I 1
1 1
1 Terminate Flag 1
1 I 1
I I Exception Kind 1(---+
1 1 Function Code (fc) 1 Exception Data Block
1 1 Access Address (aa) 1 (Sys_Terminate exception)
I 1 Instruction Register 1
I I Status Register I
I I Program Counter I
I I --+-
+->1 Program Counter I Exception Environment Block

I Status Register I
I Do--D7 and AO--A7 I

i
Link I

1

I Program Counter I
+ -I

high I I
address I I

I I

The Exception Data Block given here reflects the state of the stack
upon a SYS TERMINATE exception. The term ex data record described
in the Int;rface appendix gives thevario~s forms the data block can
take. The status register and program counter values in the data
block reflect the true (current) state of these values. The same
data in the Environment block reflects the state of these values
at the time the exception was signalled, not the values at the time
the exception actually occurs.

In the case of a bus or address error, the PC can be 2 to 10 bytes
beyond the current instruction. The PC and A7 cannot be modified
by the exception handler.

When a disabled exception is re-enabled, a queued exception may be
signalled. In this case, the exception environment reflects the state
of the world at the time the exception was re-enabled, not the time at
which the exception occurred.

Page 6i

l-Mar-82 Operating System Reference Manual Confidential

EVENTS

An event is a piece of information sent by one process to another,
generally to help cooperating processes synchronize their activities.
An event is sent through a kind of pipe called an event channel.
The event is a fixed size data block consisting of a header and some
text. The header contains control information; the identifier of
the sending process and the type of the event. The header is written
by the system, not the sender, and is readable by the receiving process.
The event text is written by the sender; its meaning is defined by the
sending and receiving processes.

There are several predefined system event types. The predefined type
"user" is as signed to all events not sent by the Ope rating Sys tem.

EVENT CHANNELS

Event channels can be viewed as a higher-level approach to pipes.
The most important difference is that event channels deal with fixed
s.ize data blocks, whereas pipes can handle an arbi trary byte stream.

An event channel can be globally or locally defined. A global event
channel has a globally defined pathname catalogued in the file
system, and can be used by any process to handle user defined events.
A local event ch~nnel, however, has no name and is known only by the
Operating Sys tem and the process that opened it'.

A local event channel is automatically created when a process 1-s created.
This channel can be opened by the father process to receive system
generated events pertaining to its son.

There are two types of event channels: event-wait and event-call.
If the receiving process is not ready to receive the event, an
event-wait type of event channel queues an event sent to it. An
event-call type of event channel, however, treats its event as an
exception. The excep,tion name must be given when the event-call
event channel is opened, and an exception handler for that exception
mus t be declared. When an event is sent to an event-call event
channel, the Operating System signals the associated exception. If
the process reading the event-call channel is suspended at the time
the event is sent, the event is queued and is executed when the process
becomes active.

When an event channel is created, the Operating System preallocates
enough space to the channel for typical interprocess cOtnDllnication.
If SEND_EVENT_CHN is called when the channel does not have enough
space for the event, the calling process is blocked until enough
space is freed up.

Page 68

l-Mar-82 Operating System Reference Manual

The following code fragment uses event-wait channels to handle
process synchronization:

PROCESS A

Open Chn_l to receive;

Open Chn_2 to send;

REPEAT

Send to Chn_2;

UNnL AlIDone;

PROCESS B

Open Chn_l to send;

Open Chn_2 to receive;

REPEAT

UNTIL AllDone;

Confidential

The order of execution of the two processes is the same regardless of the
process priorities. In the following example uSing event-call channels,
however, the process priorities do affect the order of execution.

PROCESS A PROCESS B

Declare Excep_l j . Declare Excep_2;

Open Chn_l to receive Excep_l; Open Chn_l to send;

Open Chn_2 to send; Open Chn_2 to receive Excep_lj

Send Chn,:..2;

PROCEDURE Handler;
Send Chn 2;
Yield_Cp~;

THE SYSTEM CLOCK

PROCEDURE Handler;
Send Chn 1;
Yield_Cp~;

A process can read the system clock time, convert to local time, or
delay its own continuation until a given time. The year, month, day,
hour, minute, second, and millisecond are available from the clock.
The system clock is in Greenwich mean time.

EXCEPT! ON MANAGEMENT CALLS

The event and exception management routines use several special types
and constants. To save space and reduce redundancy, these types are
defined only in Appendix A, and are referred to in the rest of this
chapter without much further comment.

Page 69

l-Mar-82 Operating System Reference Manual

DECLARE_EXCEP_HDL (Var ErrNum: Integer;
Var Excep name:t ex name;
Entry-point:LongAdr)

ErrNum: Error indicator
Excep name: Name of exception
En,trYJoint: Address of exception handler

Confidential

DECLARE EXCEP HDL informs the Operating System that the occurrence of the
exception referred to by excep name should cause' the execution of the
exception handler whose address is given by entry_point. Excep_name
is a character string name that is locally defined in the process and
known only to the process and the Operating System. If entry-point
is nil, the system default exception handler for that exception is
used. Any previously declared exception handler is disassociated
by this call. The exception itself is automatically enabled.

If some excep_name exceptions are queued up at the time of the
DECLARE_EXCEP_HDL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.

If DECLARE EXCEP HDL is called with an exception handler address of
@NIL and there is no system default handler for the exception, the
exception will have no handler defined.

Page 70

1-Mar-82 Operating System Reference Manual

DISABLE EXCEP (Var ErrNum:Integer;
Var Excep name:t ex name;
Queue:Boolean) - -

ErrNum: Error indica tor
Excep name: Name of exception to be disabled
Queue: Exception queuing flag

Confidential

A process can explicitly disable the trapping of an exception by
calling DISABLE EXCEP. Excep name is the name of the exception to be
disabled. If queue is true and an exception occurs, the exception is
queued and is handled when it is enabled again. If queue is false,
the exception is ignored. When an exception handler is entered,
the state of the exception in question is automatically set to
queued.

If an exception handler is associated through OPEN E~~T CHN with an
event channel and DISABLE_EXCEP is called for that-exception, then:

1) if queue is false, and if an event is sent to the event channel
by SEND EVENT CHN, the SEND EVENT CHN call succeeds, but it is
equivalent to-not calling SEND_EVENT_CHN at all.

2) if queue is true, and if an event is sent to the event channel by
SEND_EVENT_CHN, the SEND EVENT CHN call succeeds and a call to
WAIT_EVENT_CHN also succeeds.

Page 71

l-Mar-82 Operating Sys tem Reference ~ianual Confidential

ENABLE EXCEP (Var ErrNum: Integer;
Var Excep-name:t_ex_name)

ErrNum: Error indicator
Excep_name: Name of exception to be enabled

ENABLE_EXCEP causes an exception to be handled again. Since the
Operating System automatically disables an exception when its
exception handler is entered (see DISABLE EXCEP)t the exception
handler should explicitly re-enable the exception before it returns
to the process.

Page 72

l-Mar-82 Operating System Reference Manual

INFO_EXCEP (Var ErrNum: Integer;
Var Excep name:t ex name;
Var Excep:status:t_;x_sts)

ErrNum: Error indicator
Excep name: Name of exception
Excep Status: Status of exception

INFO EXCEP returns information about the exception specified by
excep name. The parameter excep status is a record containing
info~tion about the exception.- This record contains:

t ex sts • RECORD (* exception status *)

Confidential

Ex occurred_f:Boolean;
ex state:t ex state;
num excep: integer;
Hdl:adr:Longadr;

(* exception occurred flag *)
(* exception status *)
(* no. of exceptions queued *)
(* exception handler's address *)

END;

Qnce Ex_occurred· f has been set to true, it is reset to false only by
a call to FLUSH EXCEP.

Page 73

l-Mar-82 Operating System Reference Manual

SIGNAL EXCEP (Var ErrNum:Integer;
Var Excep name:t ex name;
Var Excep_data: t_ex_data)

ErrNum: Error indicator
Excep name: Name of exception to be signalled
ExcepJ)ata: ,Information for exception handler

A process can signal the occurrence of an exception by calling

Confidential

SIGNAL EXCEP. The exception handler associated with excep name is
entered. It is passed excep data, a data area containing Information
about the nature and cause of the exception. The structure of this
information area is:

array[O •• size_exdata] of Longint.

Page 74

l-Mar-82 Operating System Reference Manual

FLUSH EXCEP (Var ErrNum:lnteger;
Var Excep_name:t_ex_name)

ErrNum: Error indicator
Excep_name: Name of exception whose queue is flushed

FLUSH EXCEP clears out the queue associated with the exception
excep_name and resets its "exception occurred" flag.

Page 75

Confidential

l-Mar-82 Operating System Reference Manual

EVENT MANAGEMENT CALLS

MAKE_EVENT_CHN (Var ErrNum:lnteger;
Var Event_chn_name:Pathname)

ErrNum: Error indicator
Event_chn~name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel with the name given in
event chn name. The name must be a file system pathname; it
cannot be-null.

Page 76

Confidential

l-Mar-82 Operating System Reference Manual Confidential

KILL_EVENT_CHN (Var ErrNum:Integer;
Var Event_chn_name:Pathname)

ErrNum: Error indicator
Event_c~name~ Pathname of event channel

To delete an event channel, call KILL EVENT eRN. The actual
deletion is delayed until all processes usiig the event channel have
closed it. In the period between the KILL EVENT CHN call and the
channel's actual deletion, no processes can open-it. A channel can
be deleted by any process that knows the channel's name.

Page 77

l-Mar-82 Operating System Reference Manual

OPEN_EVENT_CHN (Var ErrNum:Integer;

ErrNum:

Var Event_chn_name:Pathname;
Var Refnum:Integer;
Excep name:t ex name;
Receiver: Boolean)

Error indicator
Event_chn_name: Pathname of event channel

Identifier of event channel
Exception name, if any

RefNum:
Excep _name:
Receiver: Access mode of calling process

Confidential

OPEN_EVENT_CHN opens an event channel and defines its attributes from
the process point of view. Refnum is returned by the Operating System
to be used in any further references to the channel.

Event chn name determines whether the event channel is locally or
globally defined. If it is a null string, the event channel is locally
defined. If event_chn_name is not null, it is the file system pathname
o~f the channel.

Excep_Name determines whether the channel is an event-wait or
event-call channel. If it is a null string. the channel is of event-wait
type. Otherwise, the channel is an event-call channel and excep name
is the name of the exception that is signalled when. an event -
arrives in the channel. The excep_name must be declared before
its use in the OPEN_EVENT_CHN call.

Receiver is a boolean value indicating whether the process is opening
the channel as a sender (receiver is false) or a receiver (receiver
is true). A local channel (one with a null pathname) can be opened
only to receive events.

Page 78

l-Mar-82 Operating System Reference Manual

CLOSE EVENT CHN (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Identifier of event channel to be closed

Confidential

CLOSE_EVENT_CHN closes the event channel associated with refnum. Any
events queued in the channel remain there. The channel cannot be
accessed until it 1s opened again.

Page 79

l-Mar-82 Operating System Reference Manual

INFO~EVENT_CHN (Var ErrNum:Integerj
Refnum:Integer;
Var Chn_Info:t_chn_sts)

ErrNum: Error indicator
Refnum: Identifier of event channel
Chn~Info: Status of event channel

INFO EVENT eRN gives a process information about an event channel.
The operatIng System returns a record. chn info. with information
pertaining to the channel associated with refnum. The information
includes:

t_chn_sts •
RECORD (* event channel status *)

(* wait ec or call ec *)
(* number of queued events *)

Confidential

Chn type:Chn kind;
Num-events:Integerj
Open recv:lnteger;
Ope~send:integer;
Ec name:pathname;
END;

(* number of processes reading this channel *)
(* no. of processes sending to this channel *)
(* exception name for event-call *)

Page 80

l-Mar-82 Operating System Reference Manual

WAIT_EVENT_CHN (Var ErrNum:lnteger;

ErrNum.:

Var Wait_List:t_waitlistj
Var RefNum:lnteger;
Event_ptr:p_r_eventblk)

Error indicator
Wait_list: Record with array of event channels

Identifier of channel containing an event
Pointer to event data

Refnum.:
EventJtr:

Confidential

WAIT_EVENT_CHN puts the calling process in ~ waiting state pending the
arrival of an event in one of the specified channels. Wait list is a
pointer to a list of event channel identifiers. When an event arrives
in any of these channels, the process is made ready to execute. Refnum
identifies which channel got the event, and event-ptr points to the
event itself.

A process can wait for any boolean combination of events. If it must
wait for any event from a set of channels, an "or" condition, it
should call WAIT EVENT CHN with wait list pointing to the list of
event channel identifiers. If, on the other hand, it must wait for
all the events from a set of channels, an "and" condition, then for
each channel in the set, WAIT EVENT CHN should be called with a
wait_list pointing just to tb;t cha;nel.

The structure of t waitlist is:

Record
Length: Integer;
Refnum.:Array[O •• size waitlist] of Integer;,
End; -

P r eventblk is a pointer to a record containing the event header and the
event text.

Currently the possible event type values are:

1 - Event sent by user process
2 - Event sent by system

If you call WAIT EVENT CHN on an event-eall channel which has queued
events, the event is treated just like an event in an event-wait channel.
If WAIT_EVENT_CHN is called on an event-call channel which does not have
any queued events, an error is returned.

Page 81

l-Mar-82 Operating System Reference Manual

FLUSH_EVENT_CHN (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Identifier of event channel to be flushed

Confidential

FLUSH_EVENT_CHN clears out the specified event channel. All events
queued in the channel are removed.

Page 82

l-Mar-82 Operating System Reference Manual

SEND_EVENT_CHN (Var ErrNum:Integer;
Refnum:Integer;
Event ptr:p s eventblk;
Interval:t Interval;
Clktime:Tiie~rec)

ErrNum: Error indicator
Refnum:
Event-ytr:
Interval:
Clktime:

Channel for event
Pointer to event data
Timer for event
time data for event

SEND· EVENT CHN sends an event to the channel specified by refnum.
Event-ytr points to the event that is to be sent. The event
contains only the event text; the header is added by the system.

Confidential

If the event is of the event-wait type, the event is queued. Otherwise
the Operating System signals the corresponding exception for the
process receiving the event.

If the channel is open by several senders, the receiver can sort the
events by the process identifier which the Operating System places
in the event header. Alternatively, the senders and receiver can place
predefined identifiers in the event tex~ which identify the sender.

The parameter, interval, indicates whether the event is a timed
event. T_interval is a record containing a day and a millisecond
field. If both fields are 0, the event is sent immediat~ly. If the

'day given is less than 0, the millisecond'field 1s ignored and the
time rec record is used. If the time in the time rec has already
passed, the event is sent immediately. If the millisecond field
is greater than 0, and the day field is greater than or equal to 0,
the event is sent that number of days and milliseconds from the present.
The time given in time_rec is in Greenwich Mean Time.

A process can time out a request to another process by sending itself
a timed event and then waiting for the arrival of either the timed
event or an event indicating the request has been served. If the
timed event is received first, the request has timed out. A process
can also time its own progress by periodically sending itself a timed
event through an event-call event channel.

Page 83

l-Mar-82 Operating System Reference Manual

CLOCK CALLS

DELAY TIME (Var ErrNum: Integer;
Interval:T interval;
Clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

DELAY_TIME stops execution of the calling process for the number

Confidential

of days and milliseconds specified in the interval record. If this
time period is zero, DELAY TIME obviously has no effect. If the
period is less than zero, execution of the process is delayed until
the time specified by Clktime in Greenwich Mean Time. Time_rec is
a record defined as:

time_rec • RECORD

.END;

Year: Int ege r;
Day:1 •• 366;
Hour:-23 •• 23;
Minute:-59 •• 59;
Second:O •• 59;
Msec:O •• 999;

Page 84

l-Mar-82 Operating System Reference Manual

GET TIME (Var ErrNum:Integerj
Var GMT_Time:Time_rec)

ErrNum: Error indicator
GMT_Time: Time information

Confidential

GET_TIME returns the current system clock time in the record GMT Time.

t!me rec - RECORD -

END;

Year: Integerj
Day: 1 •• 366;
Hour:-23 •• 23j
Minute:-59 •• 59j
Sec:ond:O •• 59j
Msec:O •• 999j

Page 85

l-Mar-82 Operating System Reference Manual

SET_LOCAL_TIME DIFF (Var ErrNum:lnteger;
Hour:Hour range;
Minute:Minute_range)

ErrNum: Error indicator

Confidential

Hour: Number of hours difference from Greenwich Mean Time
Minute: Number of minutes difference from Greenwich Mean Time

SET_LOCAL_TIME_DIFF informs the Operating System of the difference in
hours and minutes between the local time and Greenwich Mean Time (that
iS t GMT-localTime). Hour and Minute can be negative.

Page 86

l-Mar-82 Operating System Reference Manual

CONVERT TIME (Var ErrNum:Integer;
Var GMT Time:Time rec;
Var Local Time:Time rec;
To_gmt:Boolean) -

ErrNum:
GMT Time:
Local_Time:
To_gmt:

Error indicator
Greenwich Mean Time
Loeal time
Direction of time conversion

Confidential

CONVERT· TIME converts between local time and system clock time. The
system ~lock is in Greenwich Mean Time. To gmt is a boolean
value indicating which direction the conversion is to go. If it is
true. the system takes the time data in local time and puts the
corresponding GMT time in gmt Time. Otherwise. it takes the time
data in gmt Time and puts the-corresponding local t~e in local time.
Both time data areas contain the year, month, day, hour, minute7
second, and millisecond.

Page 87

l-Mar-82 Operating System Reference Manual Confidential

Page 88

l-Mar-82 Operating System Reference Manual

CHAPTER 5

SYSTEM CONFIGURATION AND STARTUP

• • • • 90
• • • • • 90

Sys tem Startup •
Self-Diagnostics
Customizing Your System • • • 91

Page 89

Confidential

l-Mar-82 Operating System Reference Manual

SYSTEM CONFIGURATION AND STARTUP

SYSTEM STARTUP

Startup is a multi-step operation. After the startup request 1s
generated, code in the bootstrap ROM executes. This code runs a
series of diagnostic tests, and signals by a beep that all is
well.

Confidential

The ROM next selects a boot device. The default boot device is the
Twiggy drive 1, but this can be overridden by the keyboard or by
parameter memory. The ROM passes the memory size, the boot device
position, and the results of the diagnostics to the loader found
on the boot device.

The loader allocates physical memory and loads three types of Operating
System segments needed during Startup, including the configurable
device drivers. It creates a pseudo-outer-process, enters the Operating
System, and passes to Startup a physical address map and some parameter
data.

Startup inherits the unmapped address space of the loader, initializes
the memory map, initializ~ all the Operating System subsytems, creates
the system process, then destroys the pseudo-outer-process (itself),
passing control to the highest priority process. At this point the
boot process is complete and the outer shell process or the Filer is
in control.

SELF-DIAGNOSTICS

The self-test code in ROM performs an overall diagnostic check at
power-up and then executes the bootstrap routine from the disk.

The first tests initialize various system controls; MHO registers,
contrast control, parity logic, etc. You should hear a beep notifying
you that the startup tests have begun. A checksum is done on the ROM
itself, then all of the RAM in the system is tested for shorts and
address uniqueness. The Memory Management Unit is also tested in
this manne r.

Parts of the video and parity generator/checker circuitry are tested
next. The keyboard and mouse interfaces are tested by checking various
modes of the Versatile Interface Adapter operation, and by running a
ROM/RAM test of all the processors used in the interfaces. Meanwhile,
the disk controller is running its own tests of ROM and RAM. Finally,
the RS232 port and the clock are tested.

Page 90

1-Mar-82 Operating System Reference Manual Confidential

CUSTOMIZING YOUR SYSTEM

The features and design of the system configuration program have not yet
been defined.

Page 91

l-Mar-82 Operating System Reference Manual Confidential

Page 92

l-Mar-82 Operating System Reference Manual

APPENDICES

System Calls ••••••••••
System Reserved Exception Names
System Reserved Event Types
Error Codes •••••••••

.
. . .

Page 93

• • • • 94
• • • • 106

• 106
• • 107

Confidential

l-Mar-82 Operating System Reference Manual Conf ide nt ial

OPERATING SYSTEM INTERFACE

CONST
Max ename - 32;
Len-exname - 16;
Size exdata - 11;
Size-etext - 9
Size:waitlist - 10;

(* max length of file system object name *)
(* exception name length *)
(* 48 bytes in exception data block *)
(* 40 bytes of event text *)
(* current size of wait list *)

(* exception kind
call term • 0;
ended • 1;

definitions for SYS TERMINATE exception *)
(* process called TERMINATE PROCESS *)

self killed • 2;
killed • 3;
fthr_term • 4;

def div zero • 11;
def-val~e oob - 12;
def-ovfw -: 13;
def-nmi key • 14;
def-range • 15;
def:str_index - 16;

bus error • 21;
addr error - 22;
illg-ins t • 23;
pr1v-violation -24;
line-l0l0 - 26;
line:l11l • 27;

div_zero - 31;
value oob • 32;
ovfw -; 33;

TYPE

nmi key • 34;
val~e range • 35;
str_lndex -= 36;

Pathname -= STRING[255];
E Name - STRING [Max Ename];
NameString • STRINGT20];

(* process executed 'END' statement *)
(* process called KILL PROCESS on self *)
(* process killed by another process *)
(* process's father is terminating *)

(* default handler called for SYS ZERO DIV *)
(* default handler called for SYS-VALUE OOB *)
(* default handler called for SYS-OVERFLOW *)
(* default handler called for NMI-key excep *)
(* SYS VALUE OOB due to value range error *)
(* SYS:VALUE:OOB due to string index error *)

(* bus error occurred *)
(* address error occurred *)
(* illegal instruction trap occurred *)
(* privilege violation- trap occurred ,*)
(* line 1010 emulator occurred *)
(* line 1111 emulator occurred *)

(* hardware exception kind ~efinitions *)

Accesses - (DRead, DWrite, Append, Private, Global_Access);
MSet • SET OF Accesses;
IoMode • (Absolute, Relative, Sequential);
Uid • INTEGER;
Info Type - (device t, volume t, object t);
Devtype - (diskdev,-pascalbd,-seqdev t b1tbkt, non io);
Filetype -= (undefined, MDDFFile, rootcat t freelist, badblocks,

sysdata, spool, exec, usercat, pipe, bootfile,
swapdata, swap code , ramap, userfile, killedobject);

Entrytype • (emptyentry, catentry, linkentry, fileentry, pipeentry,
ecentry, killedentry);

Page 94

l-Mar-82

f s info - RECORD

Operating System Reference Manual

name: e_name;
devnum: INTEGER;
CASE OType:info type OF

device t t -

volume-t:(iochannel: INTEGER
- devt: devtype;

slot no: INTEGER;
fs sIze: LONGINT;
voT size: LONGINT;
blo(kstructured,
mounted: BOOLEAN;
opencount: LONGINTj
privatedev,
remote,
lockeddev: BOOLEAN;
mountJending,
unmount Jending: BOOLEAN;
volname,
password: e_name;
fsversion,
volid,
volnum: INTEGER;
blocksize,
datasize,
clustersize,
filecount: INTEGER;
freecount: LONGINT;
DTVC,
'DTVli,
DTVS: LONGINTj
Machine_id,
ove rmount stamp,
master copy id: LONGINTj
priviieged,
writeJrotected: BOOLEAN;
master,
copy,

Confidential

scavenge flag: BOOLEAN);
object t: (size: - LONGINT;

- psize: LONGINT; (*physical size in bytes*)
Ipsize: INTEGER; (*Logical page size in bytes*)
ftype: ' filetype;
etype: entrytype;
DTC,
DTA,
DTM,
DT1i:
:..:efnum:
fmark:
acmode:
nreaders,
nwriters,
nusers:

Page 95

LONGINT;
INTEGER;
LONGINTj
mset;

INTEGER;

l-Mar-82

END;

Operating System Reference Manual

fuid: uidj
eof,
safety on,
kswitch: BOOLEANj
private,
locked,
protected:BOOLEAN)j

ProcInfoRec • RECORD
ProgPathName:Pathname;
Global Id : LONGINT;
Priority :1 •• 255;

Confidential

State : (Pactive,PSuspended,Pwaiting);
Data In :Boolean

ENDj -

DsInfoRec •
RECORD

Hem Size:LONGINTj
Disc size:LONGINT;
NumbOpen:I~~GERj
Ldsn: INTEGER;
BoundF:BOOLEANj
PresentF:BOOLEANj
CreatorF:BOOLEAN;
RWAcces s: BOOLEAN;
END;

t ex name - STRING[len exname]; (* exception name *) - - - . LongAdr • ALONGINIj
t_ex_state • (enabled, queued, ignored);

(* exception state *)
p. ex data • At ex data;
t:e~data • ARRAY-[O •• size_exdata] OF LONGINT;

(* exception data block *)
t_ex_sts • RECORD (* exception status *)

Ex occurred f:BOOLEAN;
ex-state:t ex state;
num excep :INTEGER; (* no. 'of exceptions queued *)
Hdl-adr:Longadr;

END; -

P env blk. • Aenv blk.;
Env bik • RECORD- (* environment block for handler *)

PC:LONGINT; (* program counter *)
SR:INTEGERj (* status register *)
DO,Dl,D2,D3,D4,D5,D6,D7:LONGINT;
AO,Al,A2,A3,A4,AS,A6,A7:LONGINT

END;

Page 96

l-Mar-82 Operating System Reference Manual Confidential

p_term_ex_data • Aterm_ex_data;
term ex data • RECORD (* SYS TERMINATE exception data block *)

CASE execp kind:LONGINT OF
call term,
ended,
s elf killed,
killed,
fthr term:(); (* due to process termination *)
illg-inst,
priv-violation,
line-IOIO,
line-llll,
def div zero,
def-value oob,
def-ovfw,-
def-nmi key:

- - (SR: INTEGER;
PC: LONGINT) ;

def range,
def-str index:{value check:INTEGER;

- - upper-bound: INTEGER;
lower-bound: INTEGER;
return pc:LONGINT;
caller:a6:LONGINT);

bus error,
addr error: ,

END;

(f~n field:PACKED RECORD (* one INTEGER *)
- filler:O •• $7FF; (* 11 bits *)

r w flag:BOOLEAN;
i-n-flag:BOOLEAN;
fun:code:O •• 7;

END;
access adr:LONGINT;
ins t regis ter: INTEGER;

. sa Error:INTEGER;
PC-Error:LONGINT);

p hard ex data - Ahard ex data;
hard_ex_data • RECORD - -

CASE excep kind:LONGINT OF
div zero,
value_oob,

END;

ovfw:
(SR:INTEGER;
pc: LONGINT) ;

value_range,
str index:

- (value check:INTEGER;
upper:bound:INTEGER;
lower bound:INTEGER;
return pc:LONGINT;
caller:a6:LONGINT) ;

Page 97

l-Mar-82 Operating System Reference Manual

T_waitlist - RECORD
Length: INTEGER;
Refnum:ARRAY [O •• Size waitlist] OF INTEGER;

END; -

T_eheader - RECORD (* event header *)
Send-yid:LONGINT;(* sender's process id *)
Event type:LONGINT;

END; -

Confidential

t event text • ARRAY [O •• size etext] OF LONGINT;
p-r· eventblk. • r_eventblk.; -

. r -e-;entblk - RECORD
Event header:T eheader;
Event-Text:t event text;

END; - - -

p_s_eventblk. • s_eventblk;
s_eventblk - t_event_text;

t~interval • RECORD
Day: INTEGER; (* number of days *)
Mlllisec:LONGINT,(* number of millisecond in day *)

(* should be 0 •• 86399999 *)
END;

time_rec - RECORD

END;

Year: INTEGER;
Day:l •• 366;
Hour:-23 •• 23;
Minute:-59 •• 59;
Second:O •• 59;
Msec:0 •• 999;

Chn_kind - (wait ec, call ec);
t chn sts • RECORD - (* channel status *)
- - ehn type: Chn kind;

Num-events:INTEGER;
Open recv:INTEGER;
Open-send: INTEGER;
Ec_name:pathname;

END;

Hour_range - -23 •• 23;
Minute_range - -59 •• 59;

Page 98

l-Mar-82 Operating System Reference Manual

(* File System Calls *)

PROCEDURE MAKE FILE
(vIR Ecode:INTEGERj

VAR Path:Pathnamej
Label_size: INTEGER)

PROCEDURE MAKE PIPE
(vIR Ecode:INTEGERj

VAR Path:Pathname;
Label_size: INTEGER)

PROCEDURE KILL OBJECT
(VAR Ecode:INTEGER;

VAR Path:Pathname)

PROCEDURE RENAME ENTRY
(viR Ecode:INTEGERj

VAR Path:Pathname;
VAR Newname:E_name)

PROCEDURE LOOKUP
(VAR Ecode:INTEGERj

VAR Path:Pathnamej
Index: INTEGER;
VAR Attributes:Fs_Info)

PROCEDURE INFO
(VAR Ecode:INTEGERj
Refnum: INTEGER;
VAR Ref Info: Fs_Info)

PROCEDURE OPEN
(VAR Ecode:INTEGERj

VAR Path:Pathname;
VAR Refnum:INTEGERj
Manip:MSet)

PROCEDURE CLOSE OBJECT
(viR Ecode:INTEGERj
Refnum:INTEGER)

PROCEDURE READ DATA
(VAR- Ecode:INTEGERj
Refnum: INTEGERj
Data Addr: LONGINTj
Count: LONGINT;
VAR Actual: LONGINTj
Mode: IoModej
Of f set: LONGINT)

Page 99

Confidential

1-Mar-82 Operating System Reference Manual

PROCEDURE WRITE DATA
(VAR- Ecode:INTEGER;
Refnum: INTEGER;
Data Addr:LONGINT;
Count: LONGINT;
VAR Actual: LONGINT;
Mode: IoMode ;
Offset:LONGINT)

PROCEDURE READ LABEL
(VAl Ecode:INTEGER;

VAR Path:Pathname;
Data Addr:LONGINT;
Count: LONGINT;
VAR Actual:LONGINT)

PROCEDURE WRITE LABEL
(vA[Ecode:INTEGER;

VAR Path:Pathnamej
Data Addr:LONGINTj
Count: LONGINT;
VAR Actual:LONGINT)

PROCEDURE DEVICE CONTROL
(VAR. Ecode:INTEGER;

VAR Path:Pathname;
Ceode, CParm:INTEGER)

PROCEDURE ALLOCATE
(VAR Ecode:INTEGERj
Refnum: INTEGER;
Contiguous:BOOLEAN;
Count:LONGINT;
VAR Actual: LONGINT)

PROCEDURE COMPACT
(VAR Ecode:INTEGERj
Refnum:INTEGER)

PROCEDURE TRUNCATE
(VAR Ecode: INTEGER;
Refnum:INTEGER) .

PROCEDURE FLUSH
(VAR Ecode:INTEGER;
Refnum: INTEGER)

PROCEDURE SET SAFETY
(VAR Ecode:INTEGER;

VAR Path:Pathname;
On_off:BOOLEAN)

PROCEDURE SET WORKING DIR
- (VAR -Ecode: INTEGER;

Page 100

Confidential

l-Mar-82 Operating System Reference Manual

VAR Path:Pathname)

PROCEDURE GET WORKING DIR
- (V AR -Eeode: INTEGER;

VAR Path:Pathname)

PROCEDURE MOUNT
(VAR Ecode:INTEGER;

VAR VName:E name;
VAR Password, Devname:E_name)

PROCEDURE UNMOUNT
(VAR Ecode:INTEGER;

VAR VName:E_name)

PROCEDURE RESET CATALOG
-(VAR ecode:INTEGER;

VAR Path:Pathname)

P.ROCEDURE Get NEXT ENTRY
- (viR. Ecode:INTEGER;

VAR Prefix,Entry:E_Name)

(* Process Management System Calls *)

PROCEDURE MAKE FROCE SS
(VAR ErrNum:INTEGER;

VAR Proc_Id:LONGINT;
VAR ProgFile:Pathname;
VAR EntryName:NameString;
Evnt_chn_refnum:INTEGER)

PROCEDURE TERMINATE PROCE 5S
(VAR ErrNum:INTEGER;
Event-ytr:P_S~Eventblk)

PROCEDURE INFO PROCESS
(VAR ErrNum:INTEGER;
Proc Id:LONGINT;
VAR -Proc_Info:ProcInfoRec)

PROCEDURE KILL PROCE SS
(V AR ErrNum: INTEGER;
Proc_Id:LONGINT)

PROCEDURE SUSPEND PROCESS
(VAR ErrNum:INTEGER;
Proc Id:LONGINT;
Susp:Family:BOOLEAN)

PROCEDURE ACTIVATE PROCE ss
(vIR ErrNum:INTEGER;
Proc_ Id: LONGINT;
Act_Family:BOOLEAN)

Page 101

Confidential

1-Mar-82 Operating System Reference Manual

PROCEDURE SETPRIORITY PROCESS
(VAR ErrNum:INTEGER;
Proc Id:LONGINT;
New_Priority: INTEGER)

PROCEDURE YIELD CPU
-(VAR Errnum:INTEGER;

To_Any: BOOLEAN)

FUNCTION MY ID:LONGINT

(* Memory Management System Calls *)

PROCEDURE MAKE DATASEG
(VAR ErrNum:INTEGERj

VAR SegName:Pathname;
Mem Size,Disk Size:LONGINT;
VAR- RefNum:I~EGERj
VAR SegPtr:LONGINT;
Ldsn:INTEGER)

PROCEDURE KILL DAXASEG
(VAR ErrNum:INTEGER;

VAR SegName:Pathname)

PROCEDURE OPEN DAXASEG
(VAR ErrNum:INTEGERj

VAR SegName:Pathname;
VAR RefNum:INTEGERj
VAR SegPtr:LONGINT;
Ldsn:INTEGER)

PROCEDURE CLOSE DAXASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER)

PROCEDURE FLUSH DATASEG
(VAR ErrNum;
RefNum:INTEGER)

PROCEDURE SIZE DATASEG
(VAR ErrNum: INTEGER;
RefNum: INTEGER;
DeltaMemsize:LONGINT;
V"AR NewMemSize:LONGINT;
DeltaDiskSize:LONGINT;
VAR NewDiskSize:LONGINT)

PROCEDURE INFO DAIASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER;
VAR DsInfo:DsInfoRec)

Page 102

Confidential

l-Mar-82 Operating System Reference Manual

PROCEDURE SETACCESS DATASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER;
Readonly:BOOLEAN)

PROCEDURE BIND DATASEG
(VAR- ErrNum:INTEGER;
Ldsn:INTEGER)

PROCEDURE UNBIND DATASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER)

PROCEDURE INFO LDSN
(V~ ErrNum:INTEGER;
.Ldsn: INTEGER;
VAR RefNum:INTEGER)

(* Exception Management System Calls *)

PROCEDURE DECLARE EXCEP HDL
(viR ErrNum:INTEGER;

VAR Excep Name:t ex name;
EntrY-POine:LongAdr)-

PROCEDURE DISABLE EXCEP
(viR ErrNum:INTEGERj
V Ai. Excep Name: t ex name;
Queue: BOOLEAN) --

PROCEDURE ENABLE EXCEP
(VAR ErrNum:INTEGER;
va . Excep_Name: t_ex_name)

PROCEDURE INFO EXCEP
-(VAR ErrNum:INTEGER;

VAl Excep Name:t ex name;
va Excep:status7t_;x_sts)

PROCEDURE SIGNAL EXCEP
(VAR ErrNum:INTEGER;

VAR Excep Name:t ex name;
va Excep:data: t_ex_data)

PROCEDURE FLUSH EXCEP
TVAR ErrNum:INTEGER;

VAR Excep_Name:t_ex_name)

(* Event Managem!m.t Sys tem Calls *)

PROCEDURE MAKE EVENT CHN
-(VAR -ErrNum:INTEGER;

VAR Event_chn_name:Pathname)

Page' 103

Confidential

l-Mar-82 Operating System Reference Manual

PROCEDURE KILL EVENT CHN
-(VAR -Err Num: INTEGER;

VAR Event_chn_name:Pathname)

PROCEDURE OPEN EVENT CHN
-(VAR -ErrNum:INTEGER;

VAR Event chn name:Pathname;
VAR Ref Num: INTEGER;
VAR Excep Name:t ex name;
Receiver:BOOLEAN)- -

PROCEDURE CLOSE EVENT CHN
(VAR ErrNum:INTEGER;

RefNum: INTEGER)

PROCEDURE INFO EVENT CHN
-(VAR -ErrNum: INTEGER;

RefNum:INTEGER;
VAR Chn_Info:t_chn_sts)

PROCEDURE WAIT EVENT CHN
-(VAR -Err Num: INTEGER;

VAR Wait List:t waitlistj
VAR RefN~m:INTEGER;
Event-ytr:p_r_eventblk)

PROCEDURE FLUSH EVENT CHN
(VAR ErrNum: INTEGER;

RefNum: INTEGER)

PROCEDURE SEND EVENT CHN
-(VAR -ErrNum:INTEGER;

RefNum: INTEGER;
Event ptr:p s eventblk;
InterVal:t Interval;
Clktime:Time_rec)

Page 104

Confidential

l-Mar-82 Operating System Reference Manual

(* Timer Function System Calls *)

PROCEDURE DELAY· TI}m
TVAR ErrNum:INTEGER;

Interval:T interval;
Clktime:Time_rec)

PROCEDURE GET TIME
- (VAR ErrNum: INTEGER;

VAR GMT_Time: Time_rec)

PROCEDURE SET LOCAL TIME OIFF
- (VAR- ErrNum:INTEGER;

Hour:Hour range;
Minute:Minute_range)

PROCEDURE CONVERT TIME
(vIR ErrNum:INTEGER;

VAR GMT Time:Time ree;
V AR Local Time: Time rec;
To_gmt: BOOL!AN) -

Page 105

Confidential

l-Mar-82 Operating System Reference Manual Confidential

System Reserved Exception Names

SYS OVERFLOW

SYS V ALOE OOB - -
SYS ZERO DIV - -

SYS POWER ON - -

overflow exception. Signalled if the TRAPV
instruction is executed, and the overflow
condi tion is on.

value out of bound exception. Signalled if
the CHK instruction is executed, and the value
is less than 0 or greater than upper bound •.

division by zero exception. Signalled if the
DIVS or DlVU instruction is executed, and the
di visor is zero.

termination exception. Signalled when a process
is to be terminated.

system shut off exception. When the system
is to be shut off, this exception is
signalled to every process to save the
current state.

system power on exception. After the system
is powered on, this exception is signalled
to every process to continue where it
'left off when system was shut off.

System Reserved Event Types

"son terminate" event type. This event is sent
to the father process when a son process makes
a TERMINATE_PROCESS call.

Page 106

l-Mar-82

ERROR CODES

o
1
5

Operating System Reference Manual

no error
invalid refnum
parity error

Confidential

PROCE SS MANAGEMENT

100
101
110
115
120
125

130
131
132
133
134
135
136
137

138
139

140

141

Specified process does not exist-
Specified process is a system process
invalid priority specified (must be 1 •• 255)
specified process is already suspended (Suspend-yrocess)
specified process is already active (Activate Process)
sepcified process is already terminating (Kill_Process)

can not open program file
error while trying to read program file
invalid program file (not executable)
cannot make process stack for new process
cannot make process syslocal for new process
cannot get a PCB for the new process
cannot set up communication channel for new process
program uses an invalid intrinsic unit (either names
do not agree, or unit is not intrinsic)
cannot access program file during loading
cannot get a PLCB (program load control block) for
program--out of sysglobal space
program uses an invalid shared segment (either names
do not agree,-or segment is not in- Intrinsic.Lib)
cannot access a shared library file while loading

EXCEPTION MANAGEMENT

201
202

no such exception name declared
no space left in the system data area for declare_execp_hdl
or signal_excep.

MEMORY MANAGEMENT

301
302
303
304
305
306
307
308
309
310

input refnum is invalid
input ldsn value is invalid
no data segment bound to an Idsn when there should be
data segment bound to an Idsn when it shouldn't be
data segment already bound to an ldsn
data segment too large
input data segment path name is invalid
data segment already exists
insufficient disk space for data segment
An invalid size has been specified

memory size <- 0
memory size of shared data segment > 128K
disk size < 0

Page 107

1-Mar-82 Operating System Reference Manual Confidential

EVENT MANAGEMENT

401

402
403
404

410
411

412

414
415
420

421

422

423

424

425
430

431

440

invalid event channel name passed to make event chn:
empty string or string longer than 16 characters
no space left in system global data area for ope~event_chn
no space left in system local data area for open_event_chn
Non-block structured device specified in pathname to
make event chn, kill event chn, or open event chn
atteipt to-open a local event channel to send-
attempt to open an event channel to receive when event
channel already has a receiver
calling process has already opened this channel to send
or receive
attempt to open channel that is being killed
warning: wrong number of bytes in channel when open
attempt to wait on a channel that the calling process
did not open
wait event chn returns while waiting on an empty channel
beca~se a sender process was not able to successfully
complete sending an event.
attempt to call wait event chn on an empty event-call
channel --
cannot find corresponding event channel after being
blocked (wait event chn)
the actual amount of data returned while reading an event
from a" channe,lis not the same as the size of an event
block in wait event chn (probably disk I/O failure)
event channel-empty-after being unblocked (wait_event_chn)
attempt to send to a channel which the calling process
does not have open
the actual amount of data transferred while writing an
event to a channel is not the same as the size of an
event block in send event chn (disk is probably full)
warning: wrong number of bytes in channel when
Info_Event_Chn called

TWIGGY DISK ERRORS

611
612
613
614

TIME MANAGEMENT

630

635

unexpected interrupt from drive 2
unexpected interrupt from drive 1
illegal disk address or transfer length
no disk present in drive

the time passed to delay· time, convert time, or
send· event chn is such that the year is less than 1890
or greater-than 2069.
process got unblocked prematurely due to process
termination (delay_time)

Page 108

l-Mar-82

636
638

RS-232

640
641
643
644
645
646
647
648

STARTUP

700

701
702
703
704
705
706
707
708

FILE SYSTEM

VmStuff:
801
802
806
809
816
819
820
821
822

SFileIO:
825
826
828
829
835
837
838
841
843
847
848
849
852

Operating System Reference Manual Confidential

timer request did not complete successfully in delay_time
the time passed to delay time or send event chn is more
than 230 days from the c~rrent GMT tiie -

RS-232 drive·r called with wrong version number
RS-232 read 'Or write initiated with illegal parameter
Unexpected RS-232 interrupt
Illegal refnum used to call T DISABLE from within RS-232 driver
Illegal refnum used to call T-RE ENABLE from within RS-232 driver
No memory available to initializ; RS-232
Unexpected RS-232 timer interrupt
Attempt to send unpermitted command to serial controller card

Mismatch between loader version number (in OS.OBJ) and
operating system version number (in SYSTEM.OS.OBJ)
OS exhausted its internal space during startup
Cannot make system process
Cannot kill pseudo-outer process
Cannot create driver
Cannot program NMI key
Cannot (soft) initialize Twiggy
Cannot (soft) initialize the file system volume
Profile not readable

IoResult <> 0 on I/O using the Monitor (LISAIO)
Asynchronous ~/O request not completed successfully
Page specified is out of range (TFDM)
Invalid arguments (page, address, offset, or count) (VM)
Not enough sysglobal space for file system buffers (initqvm)
Bad device number (10 INIT)
No space in sysglobal-for asynchronous request list
Already initialized I/O for this device
Bad device number (IO_DISINIT)

Error in parameter values (Allocate)
No more room to allocate pages on device
Error in parameter values (Deallocate)
Partial deallocation only (ran into unallocated region)
s-file number < 0 or > maxfiles (illegal value) (SList_IO)
Unallocated s-file or I/O error (FMap_Mgr)
Map overflow: s-file too large
Unallocated s-file or I/O error (Get PSize)
Requested exact fit, but one couldn't be provid~d (AppendPages)
Requested transfer count is <- 0 (DataIO)
End-of-file encountered
Invalid page or offset value in parameter list
Bad uni t numbe r (Flus hFS)

Page 109

1-Mar-82 Operating System Reference Manual Confidential

854 No free slots in s-list directory (too many s-files) (New_SFile)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file (Kill SFile)
861 Relative page is beyond PEOF (bad parameter value) (AbsPage)
864 No sysglobal space for volume bitmap (Real_Mount, Real_Unmount)
866 Wrong FS version or not a valid Lisa FS volume
867 Bad un! t numbe r (Real Mount, Real Unmount)
868 Bad un! t numbe r (Def Mount, Def Unmount)
869 Unit already mounted-(mount)/no-unit mounted (unmount)
870 No sysglobal space for DeB or MDDF (mount)

FS Primitives:
~71 Parameter not a valid s-file ID (Open SFile)
872 No sysglobal space for s-file control-block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-file ID or s-file control block (Close_SFile)
879 Attempt to postion past LEOF (Direct IO)
881 Attempt to read empty file (FileIO) -
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but file was empty
885 Could nor update filesize hints after a write (fileio)
887 Catalog pointer does not indicate a catalog (bad parameter)
888 Entry not found in catalog (Lookup by ename)
890 Entry by that name already exists (Make Entry)
891 Catalog is full, or was not as catalog -
892 Illegal name'for an entry
894 Entry not found, or not a catalog (Kill Entry)
895 Invalid entry name (kill entry) -
896 Safety switch is on--cannot kill entry (kill_entry)

FS Init:
897

FS_Interface:
921
922
926
927
941
946
947
948
949
950
951
952
954
955
956
957
958
959
960
961

Invalid bootdev value

Pathname invalid or no such device (Make_File)
Invalid label size (Make File)
Pathname invalid or no such device (Make_Pipe)
Invalid label size (Make Pipe)
Pathname invalid or no s~ch device (Kill_Object)
Pathname invalid or no such device (Open)
Not enough space in syslocal for file system refdb
Entry not found in specified catalog (Open)
Private access not allowed if file already open shared
Pipe already in use, requested access not possible
File is already opened in private mode (open)
Bad refnum (Close Object)
Bad refnum (Read data)
Read access not ~lowed to specified object
Attempt to position FMARK past LEaF not allowed
Negative request count is 'illegal (read data)
Non-sequential access is not allowed (read data)
System resources exhausted -
Error writing to pipe while an unsatisfied read was pending
Bad refnum (write_data)

Page 110

l-Mar-82

962
963
964
965
966
967
968
971
972
974
977
978
979
981
982
983
985
986
987
988
989
990
999

1021
1022
1023
1031
1032
1033
1041
1042
1043
1051
1052
1061
1062
1071
1091
1092
1121
1128
1196
1197
1198
1.199

Operating System Reference Manual

No WRITE or APPEND access allowed
Attempt to position FMARK too far past LEOF
Append access not allowed in absolute mode
Append access not allowed in relative mode
Internal inconsistency of FMARK and LEOF (warning)
Non-sequential access is not allowed (write data)
Bad refnum (Flush) -
Pathname invalid or no such device (Lookup)
Entry not found in specified catalog
Bad refnum (Info)
Bad refnum (allocate)
Page count is non-positive (allocate)
Not a block structured device (allocate)
Bad refnum (Truncate)
No space has been allocated for specified file
Not a block structured device (truncate)
Bad refnum (Compact)
No space has been allocated for specified file
Not a block structured device (compact)
Bad refnum (Flush Pipe)
Caller is not a reader of the pipe
Not a block structured device (flus~ipe)

Confidential

Asynchronous read was unblocked before it was satisfied.
This may occur during process termination.
Pathname invalid or no such entry (Rename- Entry)
No such entry found (rename entry) -
Invalid newname, check for T_, in string (rename entry)
Pathname invalid or no such entry (Read Label) -
Invalid transfer count (read label) -
Nop such entry found (read label)
Pathname invalid or no such entry (Write Label)
Invalid transfer count (write label) -
No such entry found (write label)
No device or volume by that name (mount)
A volume is already mounted on device
No device or volume by that name (Unmount)
No volume is mounted on device
Not a valid or mounted volume for working directory
Pathname invalid or no such entry (Set Safety)
No such entry found (set safety) -
Invalid device, not mounted, or not a catalog (reset catalog)
Invalid pathname, device, or volume not mounted (get-dev name)
Something is still open on disk--cannot unmount (real unmount)
Volume is not formatted or cannot be read (def mount)
Negative request count is illegal (write data)-
Function or procedure is not yet implemented

The pathname error codes (921, 926, 941, 946, and 971) often mean that
t.he volume specified in the pathname is not mounted. If error 966 occurs
while writing a file using the FTP utility, you probably ran out of space
on the destination volume.

Page III

1-Mar-82 Operating System Reference Uanual Confide ntial

OS LOADER DIAGNOSTICS

Error Message

FILE SYSTEM VERSION MISMATCH
FILE SYSTEM CORRUPT
MEMORY EXHAUST

Cause or Description

When booting from the Twiggy
When booting from the Twiggy
You forgot to run SETSP, or used
an incorrect value

SYSTEM CODE FILE NOT FOUND Cannot find SYSTEM.OS.OBJ
SYSTEM CONFIGURATION FILE NOT FOUND Nor does it exist yet
BOOT DEVICE READ FAILED IoResult was not 0 for whatever reason

PROGRAM NOT EXECUTABLE
CODE FILE CORRUPT
TOO MANY OS SEGMENTS
UNKNOWN BOOT ERROR

while trying to read SYSTEM.OS.OBJ
Refers to SYSTEM.OS.OBJ
Refers to SYSTEM.OS.OBJ

Page 112

