
GUIDE TO THE OPERATING SYSTEM

June 15, 1982

Introduction • • .'. • • • • • • • • 1

Configuration • • • • • • • • • • • • • 1

OS Volume Types •••••••••••• 2

System Files • • • • • • • • • • • • • • 3

Installing the OS •••• • • • • • • • 4

How to Boot the OS • • • • • • • • • • • 6

Shutting Down the OS •••••••••• 7

Program Development •••••••••• 8

The OS Command Shell • • • • • • • • • • 8

The Filer . . . ·
The Privileged Filer ••••

The Asynchronous File System • •

Printers and RS232 Input/Output

Stack Size •

Intrinsic Units

Pas lib

·
·
·

The OS Interface

Additions to the OS

·
·

OS Error Messages

10

13

15

15

18

19

20

24

39

41

5. \ Venso"

Confidential Guide to OS

INTRODUCTION

This document explains how to use the 5.1 release of the Operating System.
It includes all relevant material from prior releases and also describes
the new features of this release. The User's Guide does not explain each
feature of the OS in detail; instead, it explains operations such as
installing and booting the system, and presents the details of the Command
Shell and Filer commands (see the Operating System Reference Manual for a
complete description of the Operating system).

The User's Guide also contains explanations of any new features or calls
that may not fit into the above topics because the Operating System
Reference Manual is not updated for each new release. The User's Guide
assumes that the Operating System Reference Manual that you have is dated
March 1, 1982.

The 5.1 release of the Operating System is the firs~ Operating system that
boots from a Profile or Twiggy rather than the Apple II. The standalone OS
is installed and operates differently than previous releases in several
ways. Please read the paragraphs below that explain the environment that
this version of the OS supports before attempting to install and run it.
REMEMBER: Standalone mode is new to the OS group, too. We welcome your
questions and appreciate suggestions.

CONFIGURATION

The standalone OS boots from either a Profile or a Twiggy. However, most
people will boot the standalone OS from a Profile, and use another hard
disk for the monitor.

The Corvus can be reached from the 5.1 OS only as a source of monitor type
files, not as an OS volume. The Apple is totally inac.cessible from the 5.1
OS, which rules out both Disk-II floppies and the Sanyo screen. The Lisa
screen and keyboard are reserved for Applications. Readlns and writelns
can only be seen on your Soroc. THEREFORE: IF YOU DON'T HAVE A SOROC, YOU
WILL NOT BE ABLE TO USE THIS VERSION OF THE OS!

Attach the Soroc to channel A of the Lisa; this channel is the second from
the left when standing in front of the system. The Soroc driver supports

When the OS boots from a Profile, that Profile must be attached to the
parallel port (the connector farthest to the right.when viewed from the
front). The parallel port is named 'PARAPORT' by the OS, and '&3' by the
monitor.

Your other hard disks are attached to the N-Port card, which must (for now)
be in Slot 1 (the middle slot). Starting from the bottom of the N-Port
card, the ports are named '&4', '&5', and '&6' by the monitor, and
'SLOTICHANO', 'SLOTICHANl', and 'SLOTICHAN2' by the OS. The monitor gives
preference to disks attached to the bottom of the N-Port card, so your
monitor disk should probably be attached to &4.

Calvert 1 June 15, 1982

Confidential Guide to OS

Before installing the OS, you need to run the OSCONFIG program under the
monitor. OSCONFIG produces a configuration file that defines, at boot
time, which devices are attached at each port (&3 thru &6), and which ONE
disk the OS can access Monitor files from; this disk is known as the
'Monitor's Working Device'.

The devices OSCONFIG knows about are Profile, Corvus, and printers. If a
device isn't reported to the configuration program, the OS doesn't see it
even if you try to explicitly mount it. If you want to change your
configuration, re-run OSCONFIG (under the monitor again), FTP the new
configuration file into the OS as SYSTEM.CONFIG, shutdown the OS,
physically switch to the new arrangement, and then re-boot the OS. If your
boot volume contains no file SYSTEM.CONFIG then the only device configured
is the disk you are booting.

OS VOLUME TYPES

The OS currently supports two types of OS file system volumes, one built on
top of the Monitor's concept of logical volumes and one entirely
independent of Monitor volumes. The type of OS file system volume built
within a Monitor logical volume is what you've used for the last few months
when running the OS under the Monitor on a single disk.

Under the current OS, you can only access this type of volume on the
designated Monitor working device. This type of OS vQlume CANNOT be a boot
volume. It can reside anywhere on the disk and its access is totally
protected by the Monitor's mount table.

'os Devices' is the term used to describe the second type of volume. This
type of volume CAN be a boot volume. However, an OS device has only a
single OS volume and it must start at the beginning of the device. When
you initialize the os volume, you tell the OS how many blo.cks (pages) are
in that volume.

The OS initializes the specified number of pages on the OS device. For
example if you answer with 9720 blocks when initializing a Profile as an OS
device, all 9720 blocks are re-written from the front of the disk without
regard for any monitor volumes that may already exist there.

WARNING: The OS doesn't check the mount table to avoid destruction of
Monitor volumes on the device.

Calvert 2 June 15, 1982

Confidential Guide to OS

However, it is possible for a device to be both an OS and a Monitor device
if you create the Monitor volumes BEYOND the portion of the disk used as
the OS Device. To reserve the portion of the disk you need for the OS
volume, create a Monitor volume (under .the volume manager) that starts at
the first physical block, i.e. block 8, of the disk and has the same size
as the number of blocks to be initialized for the OS device. The remaining
space is usable for other Monitor volumes.

WARNING: When initializing an OS device that is split between an OS volume
and Monitor volumes, be sure to initialize the correct number of pages.
Specifying too large a number of blocks results in the destruction of
Monitor volumes that follow the OS volume. In general, BE CAREFUL when
mixing OS volumes and Monitor volumes on one device.

SYSTEM FILE S

The standalone OS is distributed on a Profile that holds a bootable copy of
the OS, miscellaneous release files, and the installation utilities. The
files below define the 5.1 Release and all, except OSCONFIG and OSINSTALL,
must be on the OS boot volume.

SYSTEM.OS - the main portion of the OS code.

SYSTEM. SHELL - OS command shell

SYSTEM.BT PROF - the profile version of the OS loader

SYSTEM.BT TWIG - the twiggy version of the OS loader

SYSTEM.PROC - initial system process

SYSTEM.DEBUG - first part of Lisabug

SYSTEM.DEBUG2 - second part of Lisabug

SYSTEM.LLD - low level drivers

SYSTEM.CONFIG - user produced definition of desired configuration

IOSPASLIB.OBJ - system runtime library

INTRINSIC.LIB - intrinsic unit directory

FXFER - file transfer utility

RS232TEST - serial port driver

OSINSTALL.TEXT - exec file that transfers files onto your OS volume

OSCONFIG - MONITOR-basea utility to generate a 'SYSTEM.CONFIG'

Calvert 3 June 15, 1982

Confident ial Guide to OS

The files in the following list may be useful to you, but are not required
to install the OS.

SYSCALL.OBJ -·public system calls unit

PSYSCALL.OBJ - privileged system calls unit

INSTALLING THE OS

The following are the steps required to install OS 5.1 onto a Profile:

1) Be sure the Sysmgr 'Zero' has been run at some time on your
target OS boot Profile. OS devices need to have a valid volume
table, both to avoid confusion when examining the drive from the
monitor, and to allow the OS has to use the drive as the Monitor's
working device if necessary.

2) Attach the library OS Profile to &3, the parallel port of your
system, attach your target OS boot Profile to &5, the port on
the N-port card that is second from the bottom, and attach the
source of the monitor's root volume (ie, US:) at &4, the bottom
port of the N-port card.

3) Boot the Monitor and make sure that the library Profile containing
this version of the OS contains all the files listed above.

4) Run the OS51:0SCONFIG program to produce the configuration you
want. The program expects single character numeric input. Save
the configuration file in OS51:SYSTEM.CONFIG.

5) Boot the library copy of the OS (see the section below on booting
the OS for directions).

6) Type 'P' to run the privileged filer and then type 'I' (for I(nit)
to initialize your OS device (see the section on P(rivfiler if you
ne~d assistance). Use the name SLOT1CHAN1 to identify your profile
at posi tion &5. Depending on whether you have any moni tor volumes
on your profile, you may want to respond with less than the maximum
device size (9720) when I(nit asks how many pages (blocks) it should
initialize for the OS volume. The OS uses 1300 blocks of your boot
volume, so you will want to create at least 1500 blocks even if you
don't intend to store anything else on the volume. However, the OS
boot volume must have enough space for the preallocated swap region,
swap space for the applications, and swap space for data segments.
Therefore, the minimum recommended size is 2000 blocks.

7) Execute W(riteBT, the write boot tracks utility, in P(rivFiler. Use~
the name SLOT1CHANl to identify your target Profile boot volume at &5.

8) 'M(ount' your newly initialized profile using the name SLOT1CHANl.
The Mount command is described under the OS Filer.

Calvert 4 June 15, 1982

Conf ident ial Guide to OS

9) Change your working directory to the name of your OS volume. If you
don't change the working directory, the macro that transfers the
system files to your OS boot volume will not run correctly.

10) Execute <OS51:0SINSTALL, a macro that transfers each of the following
files into your newly initialized volume using the FTP utility 'T(rans':

OS51: SYSTEM.OS
OS51:SYSTEM.SHELL
OS51:SYSTEM.BT PROF
OS51:SYSTEM.BT-TWIG
OS51:SYSTEM.PROC
OS51:SYSTEM.DEBUG
OS51:SYSTEM.DEBUG2
OS51:SYSTEM.LLD
OS51:SYSTEM.CONFIG
OS51:IOSPASLIB.OBJ
OS51:INTRINSIC.LIB
OS51 :FXFER
OS51:RS232TEST

11) If you are developing programs on the Monitor to run on the OS, you will
have to transfer the following files from the library profile to a
Monitor volume:

OS51:IOSPASLIB.OBJ
OSSI:INTRINSIC.LIB
OS51:SYSCALL.OBJ
OS51:PSYSCALL.OBJ

Also transfer

OS51:0SCONFIG

to a Monitor volume so that you can change configurations.

12) Detach the library Profile that contains the OS and your Profile that
contains the 5.1 OS from the Lisa. Re-connect your OS 5.1 standalone
Profile at the parallel port, and attach all other devices comprising
the configuration you stored in the configuration file. You should
now be able to boot the OS from your Profile (see BOOTING below for
ins truct ions) •

Remember that the OS and UCSD file systems are not compatible.

When the OS initializes a boot volume, it preallocates swapping space for
eight processes (three system processes and five user processes). If an
application needs more than five concurrent processes will execute
correctly. However, each additional process takes longer to create because
its swapping space must be dynamically allocated.

Calvert 5 June 15, 1982

Conf i de nt ial Guide to as

HOW TO BOOT THE as

The boot prom can boot either the as or the Monitor. To decide which
system to boot and which device to boot from, the prom selects the FIRST of
the following list of possibilities that it encounters:

1. If one of the combinations of keys listed below is depressed at the
right time, the prom selects the corresponding system/boot device.

'Command' followed by 'h' means boot the as from the Profile
on the parallel port

'Command' followed by 'f' means boot the OS from the top
Twiggy drive

'Command' followed by 'g' means boot the as from the bottom
Twiggy drive

'Command' followed by 'm' means boot the Monitor from the Apple

Learning the key press timing can be frustrating. The sweep pattern
that appears about 3 or 4 seconds into the system power on process
is your cue. Depress and HOLD DOWN the command key after the sweep
pattern appears, and then press the second key about 2 or 3 seconds
later. You will probably make more mis takes by typing too soon than
too late, so take your time. Within another 3 or 4 seconds either
the 'BOOTING' message appears on the left of the screen (the prom
saw the keys and is obeying) or the standard prom version display is
seen (you'll have to try again). To try again, press the 'reset'
button on the back of your machine, if you have one, or power your
system off and back on. Pause at least 1 second between turning the
machine on (in back) and pushing the 'power' button (in front).

Version 102 of the boot prom makes a soft click when it's ready for
you to type a boot device keycode, and a second click when it's no
longer receptive. For version 104 of the prom change the 'm' to an
'a' for a monitor-boot.

2. If parameter memory is 'valid', the prom uses the boot device stored
there. Only version 102 of the prom stores a valid combination of
boot keys in parameter memory. No other method of writing to parameter
memory exists yet.

3. Boot from the 'default' device. Currently, this means to boot the
Monitor from the Apple. Some day, it will mean the top Twiggy.

The Profile must be left on for each attempt to boot the OS. Hopefully,
this won't endanger disk integrity. If you have a Corvus attached to the
system, you may want to turn it off before powering the prom off and on.

After booting the OS, the Soroc displays the as version number, the
devices in the current configura tion, and the numbe rs of the available
volumes. REMEMBER: only one Monitor file disk is accessible.

Calvert 6 June 15, 1982

Confidential Guide to OS

S HUTTI NG DOWN THE OS

Whenever a user process returns to the Shell, you can quit the OS.
However, if a user-process exception or system exception occurs, special
action is necessary to preserve the integrity of files. During the normal
course of running the OS, the system buffers user and system data destined
for a disk, volume. If you have to reset the machine and reboot while data
is in the buffer, the disk will be in an inconsistent state. The table
below describes several situations that cause this problem and recommends
an action for each.

Calvert

Error

Exception in USER process
such as divide by zero,
bus error, address error,
etc.

NMI in USER process that
is indicated by entering
debugger in a domain other
than zero AND without
the debugger condition
, DOMAIN=2 , OVERIDDEN TO 0'

Exception in system
code

NMI in system code

7

Action

Type 'g' from the debugger
and the OS continues to
abort the process and do any
necessary clean up work.

Type 'g' from the debugger
to continue executing the
process. To abort the
process, induce an arti
ficial exception. One way
to do this is to set PC to
o ('pc 0') and then type
'g'. The process will
probably get an illegal
instruction exception and
the OS should be able to
abort it and do any clean
up work necessary.
REMEMBER: this only works
if the domain IS NOT ZERO.

Once in the debugger, type
'OSQUIT' from the debugger
and the OS attempts to shut
down the OS file system in
an orderly fashion.

Type 'g' to continue. To
recover from a fatal error
in the OS, type 'OSQUIT'.
You may have to type 'OSQUIT'
several times before it works
DO NOT use NMI and 'rb' to
reset the machine unless
OSQUIT does not work.

June 15, 1982

Confidential Guide to OS

PROGRAM DEVELOPMENT

To write a program that can run on the OS:

1. On the Monitor:

Compile your program using the SYSCALL unit

Link the compiled version of your program with IOSPASLIB

2. Boot the OS

3. T(ransfer the linked .OBJ file to an OS file system volume

4. X(ecute the program

THE OS COMMAND SHELL

When the OS comes up, a system process (the Root process) looks on the OS
volume for a program file named SYSTEM.SHELL. If the OS finds one, it uses
it as the OS command shell. If the OS doesn't find a SYSTEM.SHELL file,
the Root process complains and goes automatically to the file transfer
utility. At this point you can transfer any file from the UCSD world to
serve as the OS shell. When you leave the file transfer utility, the Root
process again looks for SYSTEM.SHELL. It repeats this cycle until it
finally finds and starts up a shell.

To change the shell, you need merely kill the current SYSTEM. SHELL,
transfer a new SYSTEM.SHELL to the OS volume, and reboot. This procedure
assumes, of course, that your current shell can kill and transfer files.

When the Shell starts up, it automatically mounts several devices in
addition to the boot volume. One of these is the RS232B device which can
drive a printer. The RS232B port is the leftmost serial port as you face
the front of the machine. The other devices that are mounted are the 'bit

·buckets' DEV4, DEV6, DEV7, and DEV8.

The position of a device determines its OS device name. The definitions of
OS device names are as follows:

-PARAPORT is the device attached to the parallel port.

-SLOTxCHANy is the device attached to a 4-port card's
slot x and channel y where slots and channels are
numbe red 0, 1, and 2. Slot 0 is the slot furt hes t
from the power supply side of the machine; channel 0
is the bottom channel. EXAMPLE: A drive connected to
the bottom port on a 4-port card that is in slot 1 is
mounted as device -SLOTICHANO.

Calvert 8 June 15, 1982

Confidential Guide to OS

The remainder of this section presents the OS Command Shell line and
explains the OS command shell options. The OS command shell behaves like
the UCSD command shell; to invoke an action, type the first character of
the option you desire.

lisaOS: X(ecute, D(ebug, F(iler, P(rivFiler, T(ime, Veers, O(ff, Q(uit

Calvert

X(ecute

D(ebug

F(iler

P(rivFiler

T(ime

L(ib

Veers

O(ff

Executes a program. It prompts for the name of
the program file to execute and expects the full
OS file system name of a file that is on the OS
volume. You must compile a program that runs on
the OS with the SYSCALL unit and link it with
IOSPASLIB before transferring it to the OS file
sys tem.

Same as X(ecute.

Enters the Filer (described below).

Enters the privileged Filer (described below).

Displays the current date/time setting and lets you
enter a new date and/or time if desired. Type <CR)
to indicate no change. To change the date or time,
enter the new date and/or time in the format that
the prompt specifies.

Re-installs the Intrinsic Unit Directory file in
memory. The command assumes that the new
INTRINSIC. LIB file is already on the OS volume
and that the Shell is the only process running in
the system. If any error occurs during directory
installation, a system error results and you must
restart the OS. You can transfer and use a new
INTRINSIC. LIB and use it while the OS is rebooting.
Usually, no problems should occur when installing
a new directory. NOTE: you cannot change IOSPASLIB
using this command. Currently, you must reboot the
OS to change this file.

Lists module version numbers. The OS group uses
it to determine which versions of the OS components
are being used.

Turns Lisa off. The user is warned that power is
about to be turned off. Answering yes ('y' or 'Y')
to the warning prompt terminates the Shell and turns
off the Lisa. Any other answer returns to the Shell
command line.

9 June 15, 1982

Confidential

Q(uit

THE FILER

Guide to OS

Terminates the current Shell process. The user is
asked if a new shell should be created or if the
Operating System should be shut down and the Lisa
reset (the power is left on). Note that the Q(uit
and O(ff commands are

THE ACCEPTABLE WAYS TO LEAVE THE OS
AND RETURN TO THE MONITOR.

·These alternatives allow the Operating System to
completely close and flush files that are open
and to put the disk in a consistent state. If you
do not wish to shut down the the system, the OS
tries to start another SYSTEM.SHELL program. Use
this to change Shells while running under the OS.
You can also type 'OSQUIT' to return to the Monitor.
This alternative is not desirable but is encouraged
if the other alternatives don't work.

There are two 'Filers' in the OS environment. The 'Filer' handles normal
file operations. The 'PrivFiler' handles special privileged operations
mostly used to manage volumes.

When prompted for a device name, a response of <CR> is sufficient to
specify the current working directory. In general, however, a response of
<CR> to a prompt indicates that the command should be aborted. In those
situations where <CR) means the current wor~ing directory, a response of
<ESC) aborts the command.

The first half of the Filer command line is:

Filer: T(rans, L(ist, N(ew, K(ill, R(ename, M(ount, U(nmount, Q(uit, ?

Note that '?' is a command, not a request for information. It causes the
command prompt to flip to the other half of the command line and display
the other available commands. The other half of the Filer command line
is:

W(orkingDir, S(afety, D(eleteFiles

Calvert 10 June 15, 1982

Confidential Guide to as

T(rans

T(rans invokes the file transfer utility FTP. FTP transfers files from
the Monitor to the as. Give FTP the source file name using the UCSD file
name syntax and the destination file name using the as syntax. If a file
with that name already exists, FTP asks you for confirmation before
writing over the old file. Once the transfer is complete, FTP asks for
the next file to transfer. Type <cr> to exit.

Because two different file naming conventions are in use here', perhaps an
example will be useful:

T(ransfer
What UCSD file to transfer? VOL:MYTEXT.TEXT <cr>
What Lisa file to transfer into? -DISK-MYFILE <cr>
What UCSD file to transfer? <cr>

This example takes the Pascal text file MYTEXT. TEXT fr.om the Pascal volume
named VOL and places it in the Lisa file MYFILE that is on the Lisa volume
named DISK.

If you have multiple hard disks connected to your system via the 4-port
card, you can only transfer the ucsn' files stored on a single device. To
select a working device you run the OSCONFIG program and copy the result
into your as boot volume.

Note that the transfer utility does not recognize the new Monitor file
name syntax (DEV/VOL: FILE).

If you transfer a file into the Lisa file INTRINSIC. LIB, the system asks
you if it should install the new Intrinsic Unit Directory immediately.
The system installs it if you respond 'Y' or 'y'. If you choose not to
install the new directory at that time, you must use the L(ib command
later to install it yourself before running any programs that use the new
INTRINSIC. LIB file.

L(ist

List lists the files on a given directory, their sizes and the disk space
that each uses. The disk space size is the number of bloCks (488 bytes)
currently allocated to the file (the PEOF), whereas the file size is the
number of bytes of data in the file (the LEaF).

N(ew

New creates a new file.

K(ill

Kill deletes a file.

Calvert 11 June 15, 1982

Conf i de nt ial Guide to os

R(ename

R(ename renames an existing file or volume. If a volume is renamed, you
must precede the volume name with a dash. Do not specify the dash if
you are renaming a file on the working directory.

M(ount
U(nmount

Mount and Unmount permit you to manage multiple OS file system volumes.

S(afety

S(afety toggles the safety switch of a file on or off. The command asks
for a file name and then asks whether the switch should be turned on
(respond 'y' to the question) or off (respond 'n' or just <CR».

W(orkingDir

W(orkingDir displays the current working directory and then prompts for a
new one. To change it, type the name of the new working directory; <CR>
indicates no change. When changing the working directory, use a complete
volume name (remember to include the '-') or the command has no effect.
'-DEV9' and '-MyVol' are two example volume names. Once a working
directory is set, partially specified pathnames are evaluated using that
directory. If you UNMOUNT the volume containing the current working
directory, the boot volume becomes the working directory.

D(eleteFiles

The D(eleteFiles command deletes files using a simple wild card mechanism.
The command first asks for the name of the directory to be searched and
then asks for the partial file name for the search. The partial file name
must be the initial characters of the file names you want. For example,
if you type 'ABC' the Filer searches for any file beginning with 'ABC'.
If you type <cr>, all files in the directory match. After searching the
directory, it prompts you to enter whether or not you want to delete the
files, if any, that match the partial name. To stop file deletion before
going through the whole directory, type <ESC>.

Calvert 12 June 15, 1982

Confidential Guide to os

THE PRIVILEGED FILER

The P(rivFiler command line is:

PrivFiler: O(nline, E(ject, F(ix, I(nit, Z(ap, N(ewTwig, W(riteBT, Q(uit, ?

As with the Filer, the? command flips to the other half of the PrivFiler's
command line which is:

D(ump

O(nline

Online lists each currently mounted volume and the device it is mounted
on. It also prints the name of the current working directory.

E(ject

Eject ejects a Twiggy disk from the specified device. Note that the
button on a drive will not eject a disk in that drive; you must use the
E(ject command. However, the command does not eject a disk that is not
mounted.

F(ix

The Fix command recovers allocated space on a Lisa volume that the Filer
cannot recover using normal means. This situation can occur if the
following happens. A process opens a file, then kills it to delete the
file's name so that other processes cannot access that file. The file
space is allocated, but only the process that opened it has any handle on
it. If the system crashes before the process can clean up the space
itself, the file space remains allocated, but the Filer cannot get at it
in any normal manner.

I(nit

Initialize creates an OS file system volume. The volume initialized must
not be mounted. After you specify the device name (without the '-'), the
Filer asks for the set up information it needs. If the device is a
diskette (not a Corvus or the network), you must first format the media.
Although I(nit destroys the current volume contents the Pascal directory
is untouched so that the Monitor can still read the volume. Once you have
initialized the volume, remember to mount it so that you can use it.

DO NOT attempt to Initialize an illegal device.

Do not confuse initialization with formatting. Volumes must be formatted
before they are initialized. Corvus volumes are already formatted; use
the Apple II Formatter program to format floppies. On a
non-direct-connect Corvus, initializing 500 blocks takes about a minute.

Calvert 13 June 15, 1982

Conf i dent ial

Z(ap

Zap invalidates an as file system volume. To use the
have to initialize the volume the next time you start
you change your mind after Zapping a volume, just Zap
the volume appear to be an unmountable non-OS volume.
in the Monitor is not equivalent to Zap.

N(ewTwig

Guide to as

volume again, you
up the as. If
it again. Zap makes
The Z(ero command

N(ewTwig formats a twiggy diskette. The command prompts for the device
name; "UPPER" or "LOWER" are appropriate names for twiggies. After
formatting the diskette, you should initialize it as an as volume.

W(riteBT

WriteBT writes boot track information on a formatted Twiggy diskette or
Profile to allow you to boot the standalone as. You can initialize a
diskette either before or after writing the boot tracks. NOTE: you can't
write boot tracks on your boot volume. Instead, you must boot the as from
another Profile, attach your boot Profile to the N-port card, and then
write boot tracks to your boot volume in the same way as when installing a
new as.

D(ump

Dump provides a nicely formatted hexadecimal and ASCII dump of any page in
the Lisa file system. It does not allow you to change the contents of that
page. Dump is used primarily by the as group as a debugging aid.

Q(uit

Quit exits the PrivFiler and returns you to the as command shell.

Calvert 14 June 15, 1982

Confidential Guide to OS

THE ASYNCHRONOUS FILE SYSTEM

Because your OS volume can only be on a Profile or a Twiggy, the OS blocks
a process calling a system procedure that involves an I/O operation until
the operation is complete. If there is a ready process at that time, the
scheduler starts that process running during the time necessary for the I/O
operation.

This feature may improve overall performance of the OS. However, it can
cause some problems. It is possible with this feature that writeln
messages from several processes can get interspersed. This occurs if a
writeln message from one process interrupts a wri.teln message from another
process currently blocked for an I/O operation. Although this feature
should not affect application programs, problems may occur with executing
processes that share variables. A situation that could cause problems with
shared data is the following. A process sets up a shared data address and
then calls READ DATA to this address. The READ DATA call blocks this
process and alLOws a second process, possibly of lower priority, to run.
If the second process attempts to use the shared data, it might receive
erroneous data. If you have any problems protecting shared data, consult
the OS group.

PRINTERS AND RS-232 INPUT/OUTPUT

The Operating System supports the parallel ports and one serial RS-232
port; the other RS-232 port is reserved for Lisabug on the standalone OS.
The parallel ports on the 4-port card are named -slotxchany-anything, where
x and yare numbers 0 through two depending on the configuration. The
device pathname for the OS supported RS-232 port is '-RS232B-anything'
where 'anything' is any sequence·of characters. RS232B is the leftmost
port when facing the front of the machine. There is no device control
required for printing on the parallel ports. The remainder of this section
is devoted to serial printing.

Follow the directions in this paragraph to set up a printer. Set the
printer to handle 1200 baud serial communications. Connect the printer
cable to a modem eliminator, and connect the modem eliminator to the RS232B
port. If you want to connect the printer to. a Soroc instead, set the Soroe
to 1200 baud (set its rotary switch to 6) and connect the Soroe to the
RS232B port using a standard Lisa-to-Soroe cable.

Calvert 15 June 15, 1982

Confident ial Guide to as

The default configuration is no parity, DTR handshake, 1200 Baud. You can
change the configuration by using the DEVICE CONTROL procedure. A sample
program fragment that calls DEVICE CONTROL follows.

VAR
cparm: dctype;
errnum: integer;
path: pathname;

BEGIN
pa th: =' -RS232B' ;
cparm.dcversion:=2; (* note version change *)
cparm.dccode:= « w »; (* see below *)
cparm.dcdata[O):= «x »;
cparm.dcdata[l):= «y »;
cparm.dcdata[2]:= «z »;
DEVICE CONTROL(errnum,path,cparm);
END; -

« w », «x », « y », and « z » are defined as follows:

FUNCTION « w » « x » « y » « z »

Group A--Parity:

No parity 1 0

Odd parity, no 1 1
input parity
checking

Odd parity 1 2

Even parity, no 1 3
input parity
checking

Even parity 1 4

Group B--Qutput Handshake:

DTR handshake 2

XON/XOFF handshake 3

delay after Cr, LF 4 ms delay

Group C--Baud rate: 5 baud

Calvert 16 June 15, 1982

Conf i de nt ial

FUNCTION « w »

Group D--Input waiting:

wait for full line 6

return whatever rec'd 6

Group E--Input handshake:

no handshake 7
9

DTR handshake 7

XON/XOFF handshake 8

Group F--Input type-ahead buffer:

flush only

flush & re-size

flush, re-size,
and set thres h

9

9

9

Group G--Disconnect Detection:

none

device on
RS232B

10

10

« x »

o

1

o
-1

-1

bytes

bytes

o

o

Guide to OS

« y » « z »

-1 65

-2 -2

-2 -2

low hi

o

-128

To change the configuration, call DEVICE CONTROL for the option you want in
each group. You can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are available only on the RS232B port.

'Low' and 'Hi' under Group F set the low and high threshhold in the type
ahead input buffer. When 'hi' or more bytes are in the input buffer, XOFF
is sent or DTR is dropped. Then when 'Low' or fewer bytes are in the type
ahead buffer, XON is sent or DTR is re-asserted. The size of the type
ahead buffer can be anywhere between 0 and 64 bytes inclusive.

Once the device is properly configured, OPEN a pathname 'RS232B-any' where
'any' can be any string of characters. You can now WRITE DATA and
READ DATA with any size data block to the refnum opened.

Calvert 17 June 15, 1982

Confidential Guide to OS

STACK SIZE

The stack size that a process requires depends on several factors. These
include the amount of storage necessary for program global variables,
regular unit global variables and intrinsic unit global variables, but do
not include shared intrinsic variables.

Besides the static stack space requirements, a process also requires stack
space dynamically for procedure stack frames. These stack frames contain
the procedure linkage information, procedure local variables, and space for
temporary expressions. The initial amount of dynamic stack space is
obtained from the program file the process is to execute and is allocated
when the OS creates a process. The default initial dynamic stack size is
10K (set by the Linker). The user can set the initial dynamic stack size
to any desired valu~ using the +S option of the Linker.

During the course of execution, it is possible for a program to require
more dynamic stack space than is currently allocated to the stack (stack
overflow). When this occurs, the operating system automatically expands
the stack by the necessary amount. Stack expansions occur as needed until
an expansion would make the stack larger than the maximum stack size
contained in the program file. The default value for maximum stack size is
128K (again set by the Linker). You can set the maximum stack size to any
desired value using the +T option of the Linker.

Under the current system, if a process requires a stack expansion that
would cause the stack to exceed the maximum stack size, the process gets a
bus error and enters LisaBug. Once in LisaBug, the system displays the bus
error message and allows the user to do any debugging desired. To
continue, type 'g' to exit LisaBug and allow the OS to abort the process.

Under the final (production) system, the Operating System terminates a
process needing more stack space than the maximum. The cause of the
termination, located in the exception information block associated with the
SYS_ TERMINATE except ion, will indicate "s tk-overflow' (see Uni t Syscall).

Currently, the Operating System does not allow a stack size greater than
128K (the size of a hardware segment). So if you specify a value greater
than 128K in either the +S or +T option, the OS lowers it to 128K when the
process is created. Note also that there can be a performance penalty
associated with stack expansion since Memory Manager must be run in order
to make space (possibly causing I/O) for the larger stack segment.

Calvert 18 June 15, 1982

Confidential Guide to OS

INTRINSIC UNITS

To use Intrinsic Units under the OS you need the Monitor release 8.0
versions of the compiler and code generator, the 8.2 versions of the
Intrinsic Unit Manager and Intrinsic Unit Linker, an INTRINSIC. LIB file,
and the linked library file IOSPASLIB.OBJ found on the OS release disks.

The INTRINSIC.LIB file used must contain the 4 units that comprise PasLib.
These are units 1 (PASLIB), 102 (BLKIOINT), 103 (BLOCKIO), and 104
(PASHEAP). The INTRINSIC.LIB file may contain anything else that you
require for the application. Before using the INTRINSIC. LIB and
IOSPASLIB.OBJ to link a new unit or program, you must I(nstall the
IOSPASLIB.OBJ from the OS release disk with the Intrinsic Unit Manager.

The INTRINSIC. LIB file, IOSPASLIB.OBJ file, and any other library files
required must be on the Monitor root volume and the OS volume before
executing programs under the OS.

You must compile programs that callOS routines using the SYSCALL unit. If
a program calls anything from the privileged OS interface, you must include
the PSYSCALL unit as well. In addition, you must link programs calling OS
routines from either interface with IOSPASLIB.OBJ.

Because both the INTRINSIC. LIB file and the various library files are
required to run any programs that use Intrinsic Units, several problems can
occur if you are not careful about keeping these files consistent with each
other. If a library file is ever changed, you must re-install it in
INTRINSIC. LIB, and you must transfer both the new library file and the new
INTRINSIC. LIB to the OS volume.

When you transfer a new INTRINSIC. LIB file to the OS volume, you must also
change the memory resident copy of INTRINSIC.LIB. You can change the
memory resident copy of the file either while in the T(ransfer command of
the F(iler or later with the L(ib command of the Shell (see the
descriptions of these commands for details).

If any of these steps are omitted, various errors can occur. For example,
if you define a new Intrinsic Unit, build a program that uses the unit, but
forget to transfer and change the INTRINSIC. LIB file on the OS volume,
Make Process returns an error saying that the unit was not found in the
Intrinsic Unit Directory. The error occurs because it is not in the memory
copy of INTRINSIC. LIB.

As an aid in tracking these kinds of errors, the OS Loader currently
displays the Intrinsic Unit number and name that was not found on the
screen. This display will not be in the production system. Similar errors
occur when you change the name or type of a unit and forget to transfer
over the new INTRINSIC. LIB and/or library file before executing a program
that uses the unit.

Calvert 19 June 15, 1982

Confidential Guide to OS

More complicated errors can occur if the size of a shared code segment
associated with an Intrinsic Unit or its location in a library file changes
and the new INTRINSIC. LIB and/or library file is not transferred to the OS
volume. In this case, the error is not detected until the code segment is
swapped into memory. At this point, you get the message

*** Error swapping in private code segment U nn for process id U pp
OR

*** Error swapping in shared code sement U nn (segname) for process
id U pp

where nn is the code segment number the application process uses, segname
is the name of the shared segment from Intrinsic.Lib, and pp is the process
identification number of the process for whom the segment is swapped in.

If the swap-in error is for a shared segment, it is generally due to an
inconsistency between Intrinsic.Lib and the library file containing ·the
shared segment. If this is the case, the correct Intrinsic.Lib and the
library file associated with the bad segment are probably not on the OS
volume.

If the swap-in error is for a private segment, it is generally due to
either an improper link or a bad spot on the disk. To solve this problem,
relink the program and transfer the relinked version to the OS volume.

Regardless of the kind of swap-in error, type < ret > to continue. The OS
terminates the failing process and the information bolck associated with
the process's SYS TERMINATE exception indicates that the OS is terminating
the process due to a swap-in error.

PASLIB

The standalone OS does not support some of the Paslib routines. The
remainder of this section explains how you use PASLIB routines in the OS
world. If an unsupported function is called in the stand alone OS, the
system displays the following message:

MONITOR TRAP (E) occurred, index=<iiii> (routine name) in process of gid <gggg>

where <iiii> is the routine's index to the Monitor's TRAP E handler. See
the Pascal Development System Internal Documentation for the identity of an
index without a routine name.

The standalone OS does not support unit 10 routines such as Unitread and
Unitwrite and does not support the seek routine.

Because all of the Blockio code is currently in Paslib, processes running
on the OS do not know about any 'prefix' settings made in the Monitor. If
you don't include a volume name when specifying a UCSD file, the OS assumes
that the volume is US on the Monitor's working device.

Calvert 20 June 15, 1982

Confidential Guide to os

The Pas lib routines for value range check and string index check run in the
OS environment. If the range check indicates an error in OS code, a system
error is signalled. The message displayed is:

or:

VALUE RANGE ERROR in system code!
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

where:

<pppppp> is the address of the next statement of the call
to the range check routine in Paslib,

<cccccc> is the address of the link field at the time of
the call to paslib

ILLEGAL STRING INDEX in system code!
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

Do not type 'g' to continue. If you do, you get system error 10201 and
you must reboot the system.

If a range check error occurs in application code, the system exception
'SYS_VALUE_OOB' is signalled. The message displayed is:

or:

VALUE RANGE ERROR in process gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

ILLEGAL STRING INDEX in process of gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

If the process has not declared an exception handler for the exception that
occurs, the system exception handler is entered after you type 'g' to
contine. It terminates the process. If the process has declared a
handler, the handler is called after you type 'g', and the process then
continues execution.

The intrinsic procedure HALT calls TERMINATE PROCESS without passing an
event.

Calvert 21 June 15, 1982

Confidential Guide to OS

The block 10 routines, RESET, REWRITE, BLOCKREAD, BLOCKWRITE, and IORESULT,
act in the operating system just as they do in the Monitor. Because RESET
and REWRITE take UCSD file names, applications cannot do 10 using these
routines with OS file system volumes. IORESULT returns error 2 (bad
device/volume number) if you do try to use OS file names with these
routines. Only units 5, and 9 through 20 are considered block structured
devices. Block 10 to a non-block structured device is not supported.
IORESULT can return an additional error number:

17 - device error, non-zero value returned from last LISAIO call

Text file block 10 works as expected. RESET and REWRITE of a text file
(.TEXT suffix) sets the current block number to 2, thereby bypassing the
text file header blocks. Note that RESET and REWRITE only accept names of
files on the working device. In addition, the two routines do not support
the new Monitor file name syntax (DEV/VOL: FILE) yet.

Support for the built in Pascal Heap routines has been in the OS Pas lib
since OS release 4.4.1. Currently, the OS supports routines NEW, MEMAVAIL,
MARK, and RELEASE. These routines work exactly as they would in the
Monitor.

The current implementation of the heap is a temporary implementation that
allows the Pascal Compiler to work properly on the OS. The heap
implementation will become more automatic in the future and will probably
include DISPOSE. For the time being, there are a few things you need to do
when using the Pascal heap. They are:

• Make the following heap initialization call before making any
calls to the heap routines:

PLINITHEAP (ERROR,SIZE,9,FALSE,HREFNUM);

PLINITHEAP is defined in the PASLIBCALL unit as follows:

PROCEDURE PLINITHEAP (var ERNUM: integer; SIZE: longint;
LDSN: integer; SWAPABLE: boolean;

var REFNUM:integer);

PLINITHEAP returns an error if there are any problems making a data
segment that has SIZE bytes memory resident. The data segment is
made with the null pathname so that the OS will remove it when the
process calling PLINITHEAP terminates. LDSN refers to the desired
data segment. Currently SWAPABLE has no effect on PLINITHEAP and
the data segment is always made with a disk size of O. The data
segment REFNUM is passed back in case you need to use it •

• The unit PASLIBCALL contains the interface for the PLINITHEAP call.
Your program must USE the unit PASLIBCALL and call PLINITHEAP if
your program uses the Pascal heap.

Calvert 22 June 15, 1982

Confidential Guide to OS

The implementation of the heap will change in a future OS PASLIB. The
first set of changes will probably include the following features:

• A default initheap call that makes a data segment with a "default
SIZE and LDSN. This default call will be made the first time a
Pascal program calls NEW, MARK, RELEASE, or MEMAVAIL. This call
allows use of the heap without a USES statement for the PASLIBCALL
unit and without an explicit PLINITHEAP call.

Automatic expansion of the heap's data segment by some amo nt DELTA
when there is not enough space for a particular NEW. The OS will
continue to increase the size of the heap data segment as long as
the OS can provide more contiguous memory. The size of the heap is
also bound by what LDSN is used. The default LDSN will be 13 which
allows for a maximum heap of 1/2 meg unless a specific initheap call
is made •

• A specific PLINITHEAP call that specifies the LDSN, the initial heap
SIZE, whether the heap is swapable to disk, and the heap DELTA size
for those having special needs,.

Calvert 23 June 15, 1982

UNIT syscall;
INTRINSIC;

INTERFACE

CONST
max ename = 32;
len-exname = 16;
size exdata = 11;

size etext = 9;
size-waitlist = 10;

(* system call definitions unit *)

(* maximum length of a file system object name *)
(* length of exception name *)
(* 48 bytes, exception data block should have the same

size as r_eventblk, received event block *)

(* event text size - 40 bytes *)
(* size of wait list - should be same as reqptr_Iist *)

(* exception kind definitions for 'SYS_TERMINATE' exception *)

call term = 0;
ended = 1;
self killed = 2;
killed = 3;
fthr term = 4;
bad syscall = 5;
bad-errnum = 6;
swap error = 7;
stk overflow = 8;
data overflow = 9;
parity_err = 10;

def div zero
def-value oob
def-ovfw
def-nmi key
de f-range
def-str index

= 11;
= 12;
= 13;
= 14;
= 15;
= 16;

bus error = 21;
addr error = 22;
illg-inst = 23;
priv-violation = 24;
line-lOla = 26;
li~e-I111 = 27;

div zero
value oob
ovfw
nmi key
val~e_range
str index

Calvert

= 31;
= 32;
= 33;
= 34;
= 35;
= 36;

(* process called terminate_process *)
(* process executed 'end' statement *)
(* process called kill process on self *)
(* process was killed by another process *)
(* process's father is terminating *)
(* process made invalid sys call - subcode bad *)
(* process passed bad address for errnum parm *)
(* process aborted due to code swap-in error *)
(* process exceeded max size (+T nnn) of stack *)
(* process tried to exceed max data space size *)
(* process got a parity error while executing *)

(* default handler for div zero exception was called *)
(* " for value oob exception *)
(* " for overflow exception *)
(* " for NMI key exception *)
(* " for 'SYS VALUE OOB' excep due to value range err *)
(* n for 'SYS-VALUE-OOB' excep due to string index err*)

(* bus error occurred *)
(* address error occurred *)
(* illegal instruction trap occurred *)
(* privilege violation trap occurred *)
(* line 1010 emulator occurred *)
(* line 1111 emulator occurred *)

(* exception kind definitions for hardware exception *)

(* excep kind for value range and string index error *)
(* Note that these two cause 'SYS VALUE OOB' excep *)

24 June 15, 1982

TYPE
pathname = string [255];
e name = string [max enamel;
namestring = string T20];
procinfoRec = record

progpathname
global id
father-id

pathname;
longint;
longint;
1 •• 255; priority

state
data in

(pactive. psuspended. pwaiting);
boolean

end;

dsinfoRec = record
mem size: longint;
disc size: longint;
numb-open : integer;
ldsn-: integer;
boundF : boolean;
presentF boolean;
creatorF boolean;
rwaccess boolean;

end;

t ex name = string [len exname];
longadr = longint; -
t ex state = (enabled. queued. ignored);
p-ex-data = t ex data;
t-ex-data = array-[O •• size exdata] of longint;
t-ex-sts = record -

(* exception

(* exception

(* exception
(* exception

name *)

state *)

data blk *)
status *)

ex_occurred_f : boolean;
ex state : t ex state;
num excep : Integer;
hdl-adr : longadr;

(* exception occurred flag*)
(* exception state *)
(* number of exceptions q'ed*)
(* handler address *)

end;

Calvert 25 June 15, 1982

p env blk = Aenv blk;
env blk = record-

pc longint;
sr integer;
dO longint;
dl longint;
d2 longint;
d3 longint;
d4 longint;
d5 longint;
d6 longint;
d7 longint;
aO longint;
al longint;
a2 longint;
a3 longint;
a4 longint;
a5 longint;
a6 longint;
a7 longint;

end;

p term ex data = Aterm ex data;
term ex data = record - -

case excep kind
call term,
ended,
self killed,
killed,
fthr term,
bad syscall,
bad_errnum,
swap error,
stk 'Overflow,
data overflow,
parity_err: ();

illg inst,
priv violation,

line 1010,
line-l 111 ,
def div zero,
def-value 00 b,
def-ovfw,
def_nmi_key

(* environment block to pass to handler *)
(* program counter *)
(* status register *)-
(* data registers 0 - 7 *)

(* address registers 0 - 7 *)

(* terminate exception data block *)
longint of

(* due to process termination *)

(* due to illegal instruction,
privilege violation *)

(* due to line 1010, 1111 emulator *)

(* terminate due to default handler for
hardware exception *)

: (sr : integer;
pc : longint);

def_range,
(* at the time of occurrence *)

Calvert 26 June 15, 1982

def str index (* terminate due to default handler for
'SYS VALUE OOB' excep for value
range or string index error *)

(value check
upper-bound
lower-bound
return pc
cal ler-a 6

integer;
integer;
integer;
longint;
longint) ;

bus error,
addr error

(fun_field
(* due to bus error or address error *)

packed record (* one integer *)
filler: 0 •• $7ff; (* 11 bits *)
r w flag boolean;
i-n-flag boolean;
fun-code 0 •• 7; (* 3 bits *)

end;

end;
access_adr : longint;
inst register : integer;
sr error integer;
pc_error: longint);

p hard ex data = Ahard_ex_data;
hard ex data = record (* hardware exception data block *)

case excep kind longint of
div zero,-value oob, ovfw

:-(sr : integer;
pc : longint);

value range, str index
: (value check-: integer;

upper-bound integer;
lower-bound integer;
return pc longint;
caller-a6 longint);"

end;)

accesses = (dread, dwrite, append, priyate, global_refnum);
mset = set of accesses;
iomode = (absolute, relative, sequential);

urD = record (*unique id*)
a,b: longint

end;

(* time interval *)
(* number of seconds *)

timestmp_interval = record
sec : longint;
msec : 0 •• 999;

end;
(* number of milliseconds within a second *)

info type = (device t, volume t, object t);
devtype = (diskdev,-pascalbd,-seqdev, bItbkt, non io);
filetype = (undefined, MDDFfile, rootcat, freelist, badblocks,

sysdata, spool, exec, usercat, pipe, bootfile,
swap data , swapcode, ramap, userfile, killedobject);

Calvert 27 June 15, 1982

entrytype= (emptyentry, catentry, linkentry, fileentry, pipeentry, ecentry,
killedentry) ;

fs info = record
name : e name;
devnum :-integer;
machine id : longint;
case otype : info type of

device t, volume t: (
iochannel : integer;
devt : devtype;
slot no : integer;
fs size : longint;
vol size: longint;
blockstructured, mounted : boolean;
opencount : longint;
privatedev, remote, lockeddev : boolean;
mount pending, unmount pending : boolean;
volname, password e name;
fsversion, volnum : integer;
volid : UID;
blocksize, datasize, clustersize, filecount
freecount : longint;

integer;

DTVC, DTCC, DTVB, DTVS : longint;
master copy id, copy thread longint;
overmount stamp : UID;
privileged, write protected
master, copy, scavenge_flag

object t : (

boolean;
boolean) ;

(* physical file size in bytes *)
size -: longint;
psize : longint;
lpsize : integer;
ftype : filetype;
etype : entrytype;

(* logical page size in bytes for this file *)

DTC, DTA, DTM, DTB, DTS
refnum : integer;
fmark : longint;
acmode : mset;

longint;

nreaders, riwriters, nusers : integer;
fuid : UID;
eof, safety on, kswitch : boolean;
private, locked, protected, master file : boolean;
file scavenged, file closed byOS,-file left open

end; - - - - --
boolean)

dc type = record

Calvert

dcversion : integer;
dccode integer;
dcdata : array [0 •• 9] of longint; (* user/driver defined data *)

end;

28 June 15, 1982

(* wait list *)
integer;

t waitlist = record
length
refnum

end;
array [O •• size_waitlist] of integer;

t eheader = record
send_pid : longint;
event type: longint;

end; -

(* event header *)
(* sender's process id *)
(* type of event *)

t event text = array [O •• size etext] of longint;
p-r eventblk = r eventblk; -
r-eventblk = record

event header : t_eheader;
event text t_event_text;

end;

p s eventblk = s_eventblk;
s-eventblk = t_event_text;

time rec = record
year : integer;
day : 1 •• 366;
hour: -23 •• 23;
minute: -59 •• 59;
second: 0 •• 59;
msec 0 •• 999;

end;

chn kind = (wait ec, call ec);
t chn sts = record -

chn type : chn kind;
num-events : integer;
openrecv : integer;
open-send : integer;
ec name pathname;

endj-

hour~range = -23 •• 23;
minute_range = -59 •• 59;

Calvert 29

(* julian date *)

(* channel status *)
(* channel type *)
(* number of events queued *)
(* number of opens for receiving *)
(* number of opens for sending *)
(* event channel name *)

June 15, 1982

(* File System calls *)

procedure MAKE FILE (var ecode:integer; var path:pathname; label_size: integer);

procedure MAKE PIPE (var ecode:integer; var path:pathname; label_size:integer);

procedure MAKE_CATALOG (var ecode:integer; var path:pathname; label_size:integer);

procedure MAKE_LINK (var ecode:integer; var path, ref:pathname; label_size:integer);

procedure KILL_OBJECT (var ecode:integerj var path:pathname)j

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integerj manip:mset)j

procedure CLOSE_OBJECT (var ecode:integerj refnum:integer);

procedure READ DATA (var ecode integer;
refnum integerj

data addr longint;
count longint;

var actual longintj
mode iomodej

offset longint) ;

procedure WRITE DATA (var ecode integer;
refnum integer;

data addr longint;
count longint;

var actual longint;
mode iomode;

offset longint);

procedure FLUSH (var ecode:integer; refnum:integer);

procedure LOOKUP (var ecode
var path

var attributes

integer;
pathnamej
fs_info) ;

procedure INFO (var ecode:integerj refnum:integerj var refinfo:fs_info);

procedure ALLOCATE (var ec.ode integer;
refnum. integer;

contiguous boolean;
count longint;

var actual longint) ;

procedure TRUNCATE (var ecode integer; refnum : integer);

procedure COMP ACT (var ecode : integer; refnum . integer); .
procedure RENAME ENTRY (var ecode:integer; var path:pathname; var newname

Calvert 30 June 15, 1982

e name);

procedure READ LABEL (var ecode integer;
var path pathname;

data addr longint;
count longint;

var actual longint)j

procedure WRITE LABEL (var ecode integerj
var path pathnamej

data addr longintj
count longintj

var actual longint)j

procedure MOUNT (var ecode:integerj var vname : e_namej var password
var devname : e_name);

procedure UNMOUNT (var ecode:integer; var vname : e_name);

procedure SET WORKING DIR (var ecode:integerj var path:pathname)j

procedure GET WORKING DIR (var ecode:integerj var path:pathname);

e name

procedure SET_SAFETY (var ecode:integer; var path:pathname; on_off:boolean);

procedure DEVICE CONTROL (var ecode:integerj var path:pathnamej
cparm: dctype);

procedure RESET CATALOG (var ecode : integer; var path: pathname);

procedure GET_NEXT_ENTRY (var ecode : integer; var prefix t entry: e_name)j

procedure GET DEV NAME (var ecode : integerj var path : pathnamej
var devname e_name);

(* Process Management system calls *)

function My_ID : longintj

procedure Info Process (var errnum : integerj proc id : longintj
var proc_info : procinfoRec);

procedure Yield CPU (var errnum : integer; to_any: boolean);

procedure SetPriority_Process (var errnum : integer; proc id
new_priority: integer); -

longint;

procedure Suspend_Process (var errnum : integer; proc id longint;
susp_family : boolean)j -

Calvert 31 June 15, 1982

procedure Activate Process (var errnum
act_family

integer; proc_id
boolean) ;

longint;

procedure Kill_Process (var errnum : integer; proc_id: longint)j

procedure Terminate Process (var errnum : integer; event ptr : p_s_eventblk);

procedure Make Process (var errnum : integer; var proc id : longint;
var progfile : pathname; var entryname : namestringj
evnt chn refnum : integer);

(* Memory Management system calls *)

procedure make_dataseg (var errnum : integer; var segname : pathname;
mem size, disc size : longintj var refnum : integer;
var-segptr longint; ldsn : integer);

procedure kill_dataseg (var errnum integer; var segname pathname);

procedure ope~dataseg (var errnum integer; var segname pathname;
var refnum integer; var segptr : longint;
ldsn : integer);

procedure close_dataseg (var errnum : integer; refnum : integer);

procedure size_dataseg (var errnum : integer; refnum : integer;
deltamemsize : longint; var newmemsize : longintj
deltadiscsize: longintj var newdiscsize: longint);

procedure info_dataseg (var errnum
var dsinfo

integer; refnum : integer;
dsinfoRec) ;

procedure setaccess_dataseg (var errnum : integer; refnum
readonly : boolean);

integer;

procedure unbind_dataseg (var errnum : integer; refnum : integer);

procedure bind_dataseg(var errnum : integer; refnum : integer);

procedure info_ldsn (var errnum : integer; ldsn: integer; var refnum: integer);

procedure flush_dataseg(var errnum: integer; refnum: integer);

procedure MEM_INFO(var errnum: integer;
var swapspace, dataspace,

cur_codesize, max codesize: longint);

Calvert 32 June 15, 1982

(* Exception Management system calls *)

procedure declare_excep_hdl (var errnum : integer;
var excep name : t ex name;
entry_point : longadr);

procedure disable_excep (var errnum : integer;
var excep name : t ex name;
queue : boolean); - -

procedure enable_excep (var errnum : integer;
var excep_name :, t_ex_name);

procedure signal_excep (var errnum : integer;
var excep name : t ex name;
excep_data : t_ex_data);

procedure info_excep (var errnum : integer;
var excep name : t ex namej
var excep:status :-t_ex_sts);

procedure flush_excep (var errnum : integer;
var excep_name t_ex_name);

(* Event Channel management system calls *)

procedure make event chn (var errnum : integer;
var event_chn_name : pathname)j

procedure kill event chn (var errnum : integer;
var event_chn_name : pathname);

procedure ope~event_chn (var errnum : integer;
var event chn name : pathname;
var refnum : integer;
var excep name : t ex name;
receiver: boolean); -

procedure close event chn (var errnum : integer;
refnum : integer);

procedure info event chn (var errnum : integer;
refnum : integer;
var chn info: t_chn_sts);

procedure wait event chn (var errnum : integer;
var wait list : t waitlist;
var refnum : integer;
event_ptr : p_r_eventblk);

procedure flush event chn (var errnum : integer;
refnum : integer);

Calvert 33 June 15, 1982

procedure send event chn (var errnum : integer;
refnum : integer;
event ptr : p s eventblk;
interval : timestmp interval;
clktime : time_rec);

(* Timer functions system calls *)

procedure delay_time (var errnum : integer;
interval : timestmp interval;
clktime : time_rec);

procedure get_time (var errnum : integer;
var gmt_time time_rec);

procedure set local time diff (var errnum : integer;
hour : hour range;
minute: minute_range);

procedure convert time (var errnum : integer;

Calvert

var gmt time : time rec;
var local time : time rec;
to_gmt: boolean); -

34 June 15, 1982

UNIT psyscall;
INTRINSIC;

(* privileged system call definitions unit *)

INTERFACE

(*$U object:syscall.obj *)
USES syscall;

const buff too small = 1158;
e sdubd -; 1159;

type

ddev too small = 1160;
inv shutdown mode = 1161;
pwr-already off = 1162;
badcmd err -; 1163;
not twig err = 1164;
notmounted err = 1165;
alreadymounted err = 1166;
notblocks tr err = 1167;

vers info = record (* version information
PPrim V integer;
PM V . integer; .
GDV · integer; · MMPrimV integer;
MMV · integer; · DSV · integer; · ExprmV integer;
ExmgrV integer;
ECV : integer;
TimeV integer;
VMV : integer;
SFV · integer; · PrimV integer;
UIV · integer; · InitV ,integer;
CUR V integer

end;

Calvert 35

record *.)

June 15, 1982

ut commands

\

= (no op,
online,
initvol,
zap,
dumpdata,
setfstrace,
fsscavenge,
writeBT,
format,
verify,
eject,
flushbuffers,
boot unmount,
boot-remount,
copy-volume,
shut-down sys,
mount_BD);

ut_parmt = record

Calvert

gp parm : longint;
case command ut commands of

no op,
online,
flushbuffers,
boot remount : (

initvol

zap,
format,
verify,
wri teBT,
eject

dumpdata

setf s trace,
boot unmount

fsscavenge

(idev name : e name;
pages: longint;
newvolname : e name;
newpassword : e name

(ddev_name : e name;
pagenum : longint

(level : integer

(sdev name : e name;
files reclaimed integer;
pages:scavenged : longint

36

) ;

) ;

);

);

)j

);

(* returned *)
); (* returned *)

June 15, 1982

mount BD

end;

ioop = (readop, writeop);

(from dev
to dev
buffaddr
buff size

e_name;
e name;
iongint;
longint

(mon unitnum : integer;
twig_unitnum : integer

refnum_type = (frefnum, dsrefnum, ecrefnum);

);

) (* 1 = UPPER *)
(* 2 = LOWER *)

openrec = record (* open list info record *)
procid longint;
refnum integer;
refntype refnum type;
globalrefn-: boolean;

end;

= (log dump,log flush,log reset,log shutdown);(*logging commands*)
. - - - -

procedure POPEN (var ecode
var path

var refnum
manip

var allowed

procedure protect (var ecode
var path
ismaster

m serial no

integer;
pathname;
intege~j

msetj
boolean);

integer;
pathname;
boolean;
longint);

procedure get_serial no (var ecode integer; var s_no : longint);

procedure GET OPEN LIST (var ecode integer; var devname : e_name;
var openinfo : openrec);

procedure fs utilities (var ecode integer; var parms ut_parmt);(* replaces OSVM *)

procedure list_versions (var info

procedure 10ckseg (var errnum: integer);

procedure unlocksegs (var errnum: integer);

procedure unitio (var errnum : integer; devnum : integer; bufadr : longint;
numblocks : longint; blocknum : longint; op : ioop);

(* a subsitute routine for unitread and unitwrite *)

procedure monio (var ch : char; op : ioop);

Calvert 37 June 15, 1982

procedure set_time (var ecode : integer; time: time_rec);

procedure Change_Directory (var errnum : integer; restartShell

function LOGGING: boolean;

procedure LOG(var errnum: integer; ptr_arr: longint);

procedure LOG_NEWCMD(var errnum: integer; cmd: Tlog_cmds);

procedure Size_Stack(var errnum: integer; delta size: longint);

Calvert 38

boolean);

June 15, 1982

Confidential Guide to OS

ADDITIONS TO THE OS

This section documents all the changes to the OS that have occurred since
the last release of the OS Reference Manual. 'When the manual is updated,
the material will be deleted from this section.

OS PROCEDURES

The OS procedure defined below retrieves information concerning the memory
resources that the calling process uses.

MEM INFO (var errnum : integer
var swapspace;

where:

dataspace;
cur codesize;
max-codesize: longint)

swapspace = the amount of system memory available
(in bytes) for swapping

dataspace = the amount of memory (in bytes) the
calling process requires for its bound
data areas. This value includes the
stack of the process and the data segment
for shared intrinsic data.

cur codesize = the size (in bytes) of the calling segment.

max codesize = the size (in bytes) of the longest code
segment within the address space of the
calling process.

/

Calvert 39 June 15, 1982

Confidential Guide to OS

In release 5.1 of the Operating System, OPEN DATASEG is much less sensitive
to the values of LEOF and PEOF within the data segment being opened. The
results of an OPEN DATASEG call under various conditions are outlined
below:

Condition

o < LEOF <= 128kb
PEOF = any value

LEOF > 128kb
PEOF = any value

LEOF = 0
o < PEOF <= 128kb

LEOF = 0
PEOF > 128kb

LEOF = 0
PEOF = 0

Resulting Data Segment

memory size = LEOF; disk size = PEOF
errnum = 0

errnum = 306 (data segment too big)

memory size = PEOF; disk size = PEOF
errnum = -320 (a warning)

memory size = 128kb; disk size = PEOF
errnum = -320 (a warning)

memory size = 512 ; disk size = 0
errnum = -320 (a warning)

Those conditons which result in a warning error (-320) should be checked
via INFO DATASEG to verify that the resulting data segment has the desired
memory and disk sizes before the segment is used.

Calvert 40 June 15, 1982

Confidential Guide to OS

OS ERROR MESSAGES

The following list of OS error messages is in ascending numerical order.
However, the ordering scheme ignores the sign of the error number; the
minus sign preceding an error number indicates that the message is a
warning; the OS mayor may not have completed the flagged action.

o no error

PROCESS MANAGEMENT

100
101
110

-115
-120
-125

130
131
132
133
134
135
136
138
139
141

142
143

144

145

146

Specified process does not exist
Specified process is a system process
Invalid priority specified (must be 1 •• 255) (SetPriority Process)
Specified process is already suspended (Suspend Process)
Specified process is already active (Activate Process)
Sepcified process is already terminat.ing (Ki.ll Process)
Could not open program file -
Error while trying to read program file
Invalid program file (incorrect format)
Could not get a stack segment for new process
Could not get a syslocal segment for new process
Could not get a PCB for new process (no sysglobal space)
Could not set up communication channel for new process
Error accessing program file while loading
Could not get a PLCB to load the program (no sysglobal space)
Error accessing a library file while loading program (e.g. the
library file containing required shared segment not found)
Can't run p~otected file on this machine
Program uses an intrinsic unit not found in the Intrinsic
Library
Program uses an intrinsic unit whose name or type does not
agree with the Intrinsic Library
Program uses a shared segment not found in the Intrinsic
Library
Program uses a shared segment whose name does not agree with
the Intrinsic Library

EXCEPTION MANAGEMENT

201
202

203

Calvert

No such exception name declared
No space left in the system data area for declare_execp_hdl
or signal excep.
Null name-specified as exception name.

41 June 15, 1982

/

Confident ial, Guide to OS

MEMORY MANAGEMENT

302
303
304
306
307
308
309
310

311
312
313

-320

Invalid ldsn
No data segment bound to an ldsn when there should be
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Data segment already exists
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- memory size of shared data segment > 128K
- disk size < 0

Insufficient system resources
Unexpected file system error
Data segment not found
Could not determine size of data segment. Defaults used
were: memory size = 512 bytes, disk size = 0 bytes

EVENT MANAGEMENT

401

402
403
404
410
411

412

414
-415

420

421

422

423

424

425
430

431

-440

Calvert

invalid event channel name passed to make event chn:
empty string or string longer than 16 characters
no space left in system global data area for open event chn
no space left in system local data area for open event chn
Non-block structured device specified in pathname -
attempt to open a local event channel to send
attempt to open an event channel to receive when event
channel already has a receiver
calling process has already opened this channel to send
or receive
attempt to open channel that is being killed
warning: wrong number of bytes in channel when open
attempt to wait on a channel that the calling process
did not open
wait event chn returns while waiting on an empty channel
because a sender process was not able to successfully
complete sending an event.
attempt to call wait event chn on an empty event-call
channel --
cannot find corresponding event channel after being
blocked (wait event chn)
the actual amount of data returned while reading an event
from a channel is not the same as the size of that event
block in wait event chn (probably disk I/O failure)
event channel-empty-after being unblocked (wait event chn)
attempt to send to a channel which the calling process
does not have open
the actual amount of data transferred while writing an
event to a channel is not the same as the size of an
event block in send event chn (disk is probably full)
wrong number of bytes in channel when info event chn called.

42 June 15, 1982

Confidential Guide to OS

TWIGGY DISK ERRORS

606
611
612
613
614
617
618

TIME MANAGEMENT

630

635

636
638

RS-232

640
641
642
643
646
647
648

can't find sector (disk unformatted)
unexpected interrupt from drive 2
unexpected interrupt from drive 1
illegal disk address or transfer length
no disk present in drive
checksum error
can't format write-protected or bad file system header

the time passed to delay time, convert time, or
send event chn is such that the year is less than 1900
or greater-than 2035.
process got unblocked prematurely due to process
termination (delay time)
timer request did not complete successfully (delay time)
the time passed to delay time or send event chn is-more
than 23 days from the current GMT time

RS-232 driver called with wrong version number
RS-232 read or write initiated with illegal parameter
Unimplemented or unsupported RS-232 driver function
Unexpected RS-232 interrupt
No memory available to initialize RS-232
Unexpected RS-232 timer interrupt
Attempt to send unpermitted command to serial controller card

PROFILE DISK ERRORS

659
660
662
663
666
685

Invalid file system header
Cable disconnected
Parity error
Checksum error
Timeout
Eject not allowed this device

PARALLEL PRINTING ERRORS

694
696
698

Calvert

Unimplemented device control
Out of paper
Offline

43 June 15, 1982

Confident ial

STARTUP

700

701
702
703
704
705
706
707
708
709
710

FILE SYSTEM

VmStuff:
801
802
806
809
810
816
819
820
821
822

SFileIO:
825
826
828
829
835
837
838
841
843
847
848
849
852
854
855
856
857
861
864
866
867
868
869
870

Calvert

Guide to OS

Mismatch between loader version number (in OS.OBJ) and
operating system version number (in SYSTEM.OS.OBJ)
OS exhausted its internal space during startup
Cannot make system process
Cannot kill pseudo-outer process
Cannot create driver
Cannot program NMI key
Cannot (soft) initialize Twiggy
Cannot (soft) initialize the file system volume
Profile not readable
Cannot map screen data
Too many slot-based devices

IoResult <> 0 on I/O using the Monitor (LISAIO)
Asynchronous I/O request not completed successfully
Page specified is out of range (TFDM)
Invalid arguments (page, address, offset, or count) (VM)
The requested page could not be read in (VM)
Not enough sysglobal space for file system buffers (initqvm)
Bad device number (10 INIT)
No space in sysglobal-for asynchronous request list
Already initialized I/O for this device
Bad device number (IO_DISINIT)

Error in p~rameter values (Allocate)
No more room to allocate pages on device
Error in parameter values (Deallocate)
Partial deallocation only (ran into unallocated region)
s-file number < 0 or > maxfiles (illegal value) (SList_IO)
Unallocated s-file or I/O error (FMap Mgr)
Map overflow: s-file too large -
Unallocated s-file or I/O error (Get PSize)
Requested exact fit, but one couldn't be provided (AppendPages)
Requested transfer count is <= 0 (DataIO)
End-of-file encountered
Invalid page or offset value in parameter list
Bad unit number (FlushFS)
No free slots in s-list directory (too many s-files) (New_SFile)
No available disk space for file hints
Device not mounted
Empty, locked, or invalid s-file (Kill SFile)
Relative page is beyond PEOF (bad parameter value) (AbsPage)
No sysglobal space for volume bitmap (Real Mount, Real Unmount)
Wrong FS version or not a valid Lisa FS volume -
Bad unit number (Real Mount, Real Unmount)
Bad unit number (Def Mount, Def Unmount)
Unit already mounted-(mount)/no-unit mounted (unmount)
No sysglobal space for DCB or MDDF (mount)

44 June 15, 1982

Confidential

FS Primitives:
871
872
873
874
875
879
881
882
883
884
885
887
888
890
891
892
894
895
896

FS Init:
897

FS Interface:
921
922
926
927
941
946
947
948
949
950

951
952
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
971
972
974

Calvert

Parameter not a valid s-file ID (Open SFile)
No sysglobal space for s-file control-block
Specified file is already open for private access
Device not mounted

Guide to OS

Invalid s-file ID or s-file control block (Close_SFile)
Attempt to postion past LEOF (Direct 10)
Attempt to read empty file (FileIO) -
No space on volume for new data page of file
Attempt to read past LEOF
Not first auto-allocation, but file was empty
Could not update filesize hints after a write (fileio)
Catalog pointer does not indicate a catalog (bad parameter)
Entry not found in catalog (Lookup by ename)
Entry by that name already exists (Make Entry)
Catalog is full, or was not as catalog -
Illegal name for an entry
Entry not found, or not a catalog (Kill Entry)
Invalid entry name (kill entry) -
Safety switch is on--cannot kill entry (kill_entry)

Invalid bootdev value

Pathname invalid or no such device (Make_File)
Invalid label size (Make File)
Pathname invalid or no such device (Make_Pipe)
Invalid label size (Make Pipe)
Pathname invalid or no such device (Kill_Object)
Pathname invalid or no such device (Open)
Not enough space in syslocal for file system refdb
Entry not found in specified catalog (Open)
Private access not allowed if file already open shared
Pipe already in use, requested access not possible OR
dwrite not allowed for pipe
File is already opened in private mode (open)
Bad refnum (Close Object)
Bad refnum (Read data)
Read access not allowed to specified object
Attempt to position FMARK past LEOF not allowed
Negative request count is illegal (read data)
Non-sequential access is not allowed (read data)
System resources exhausted -
Error writing to pipe while an unsatisfied read was pending
Bad refnum (write data)
No WRITE or APPEND access allowed
Attempt to position FMARK too far past LEOF
Append access not allowed in absolute mode
Append access not allowed in relative mode
Internal inconsistency of FMARK and LEOF (warning)
Non-sequential access is not allowed (write data)
Bad refnum (Flus h) -
Pathname invalid o~ no such device (Lookup)
Entry not found in specified catalog
Bad refnum (Info)

45 June 15, 1982

Confident ial

977
978
979
981
982
983
985
986
987
988
989
990
999

1021
1022
1023
1024
1031
1032
1033
1041
1042
1043
1051
1052
1053

-1063

1061
1062
1071
1091
1092
1121
1128-
1130

get open lis t
1131 -
1132
1133

reg open lis t
1134 -
1135

Calvert

Bad refnum (allocate)
Page count is non-positive (allocate)
Not a block structured device (allocate)
Bad refnum (Truncate)
No space has been allocated for specified file
Not a block structured device (truncate)
Bad refnum (Compact)
No space has been allocated for specified file
Not a block structured device (compact)
Bad refnum (Flush Pipe)
Caller is not a reader of the pipe
Not a block structured device (flush pipe)

Guide to OS

Asynchronous read was unblocked before it was satisfied.
This may occur during process termination.
Pathname invalid or no such entry (Rename Entry)
No such entry found (rename entry) -
Invalid newname, check for '-' in string (rename entry)
New name already exists in catalog (rename entry)
Pathname invalid or no such entry (Read Label)
Invalid transfer count (read label) -
No such entry found (read label)
Pathname invalid or no such entry (Write Label)
Invalid transfer count (write label) -
No such entry found (write label)
No device or volume by that name (mount)
A volume is already mounted on device
Attempt to mount the temporarily unmounted boot volume
just unmounted from this machine (MOUNT)
warning, attempt to mount a temporarily unmounted boot
volume that was either unmounted from another machine or
was not the most recently unmounted boot volume. The
mount is completed (MOUNT)
No device or volume by that name (Unmount)
No volume is mounted on device
Not a valid or mounted volume for working directory
Pathname invalid or no such entry (Set Safety)
No such entry found (set safety) -
Invalid device, not mounted, or not a catalog (reset catalog)
Invalid pathname, device, or volume not mounted (get-dev name)
File is protected; cannot open due to protection violation

No device or volume by that name
No volume is mounted on that device
No more open files in the file list of that device
(no files, data segments, event channels open on that device)

Cannot find space in sysglobal for open file list
Cannot find the open file entry to modify

46 June 15, 1982

Confidential Guide to OS

f s ut iIi ties calls:
1136 Boot volume not mounted (fs utility, ubd)
1137 Boot volume already unmounted (fs utility, ubd)
1138 Caller cannot have higher priority than system

1141
1142

1143
1144

1145
1159

fs shutdown
1158
1159
1160
1161
1162

fs utilities
T163
1164
1165
1166
1167
1168

processes when calling ubd (fs utility, ubd)
Boot volume was not unmounted when calling rbd
Some other volume still mounted on the boot device when
calling rbd
No sysglobal space for MDDF to do rbd
Attempt to remount a volume which is not the temporarily
unmounted boot volume from the same machine (rbd)
No sysglobal space for bit map to do rbd
fs shutdown is not allowed while boot volume unmounted
but operation is carried out

calls:
Track-by-track copy buffer is too small
Shutdown requested while boot volume was unmounted
Destination device too small for track-by-track copy
Invalid final shutdown mode
Power is already off

calls:
Illegal command
Device is not a Twiggy device
No volume is mounted on the device
A valid volume is already mounted on the device
The Device is not blockstructured
Device name is invalid

newvolume
1169
1170
1171
1172

(volume initialization):
Could not default mount volume before initialization
Could not mount volume after initialization
'-' is not allowed in a volume name
No space available to initialize a bitmap for the volume

WARNINGS!
-1173

from opening a file or mounting a volume:
File was last closed by the OS

-1174
-1175

File was left open or volume was left mounted, and system crashed
File or volume was scavenged

Calvert

When these warnings occur on an OPEN call for a file or a MOUNT
call for a volume, the OS goes ahead and opens the volume/file'
for access as usual. HOWEVER, the contents of the file might
be inconsis tent.

47 June 15, 1982

Confidential

CIRCULAR PIPES:
1176

1177
1178

1180

1181
1182

1183
1184

1186

1188

1190

OTHER:
1196
1197
1198
1199
1998
1999

Guide to as

Cannot read from a pipe more than half of the allocated
physical size (read data)
Cannot cancel a read request for a pipe (read_data)
Process waiting in read data for pipe data got unblocked
because the last writer-of the pipe has closed it (read data)
Cannot write to a pipe more than half of the allocated -
physical size (write data)
No system space left-for request block for pipe (write data)
Writer process to a pipe got unblocked before the request
was satisfied (this can occur during process termination)
(write data)
Cannot-cancel a write request for a pipe (write data)
Process waiting in write data for pipe space got unblocked
because the reader closed the pipe (write data)
Cannot allocate space to a pipe while it has data wrapped
around (allocate)
Cannot compact a pipe while it has data wrapped around
(compact)
Attempt to access a page that is not allocated to the
pipe (absrelbyte)

Something is still open on device--cannot unmount (real unmount)
Volume is not formatted or cannot be read (def mount) -
Negative request count is illegal (write data)-
Function or procedure is not yet impleme;ted
Invalid parameter address
Bad refnum

The pathname error codes (921, 926, 941, 946, and 971) often mean that
the volume specified in the pathname is not mounted. If error 966 occurs
while writing a file using the FTP utility, you probably ran out of space
on the destination volume.

Calvert 48 June 15, 1982

Confidential

OS LOADER DIAGNOSTICS

Error Message

FILE SYSTEM VERSION MISMATCH

FILE SYSTEM CORRUPT

MEMORY EXHAUST

SYSTEM CODE FILE NOT FOUND

SYSTEM CONFIGURATION FILE
NOT FOUND

BOOT DEVICE READ FAILED

CODE FILE CORRUPT

TOO MANY OS SEGMENTS

SYSTEM DEBUG FILE NOT FOUND

PROGRAM NOT EXECUTABLE

SYSTEM LOW LEVEL DRIVER FILE
NOT FOUND

CONFIGURATION FILE NOT USABLE

WRONG DRIVER

RANGE ERROR, OR UNKNOWN BOOT
ERROR

SYSTEM ERRORS

Guide to OS

Cause or Description

The boot tracks don't know
the right file system version

Either damaged file system or
damaged contents

The OS will not fit

Cannot find SYSTEM.OS

Cannot find SYSTEM.CONFIG

Device could not be read for
whatever reason

Refers to SYSTEM.OS

Refers to SYSTEM.OS

Cannot find SYSTEM.DEBUG

Refers to SYSTEM.OS, SYSTEM.DEBUG
or SYSTEM.LLD

Refers to SYSTEM.LLD

Refers to SYSTEM.CONFIG

For instance, storing a
Twiggy drive.r on a Profile

A loader bug

A system error indicates that something has gone seriously awry within the
Operating System code. When a system error occurs, the Operating System
reports the error and.stops. Please report the occurrence of any system
errors to the Operating System group.

Common system errors:
. 10102
10201

Calvert

Error while creating System. Shell during StartUp
Hardware exception (divide by zero, for example)
in Operating System code

49 June 15, 1982

Confidential GUide to OS

EXCEPTIONS

During execution applications can field hardware exceptions. If such an
exception occurs, the system displays one of the following messages:

Bus error or address error exception:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
access address = <aaaaaaaa> = mmuU <mmm> (segment name), offset <0000>
inst reg = <rrrr> sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type g to continue

Any other hardware exception:

where:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type g to continue

<gggg> is the global ID of the process that incurred the exception.
<aaaaaaaa> is the address that caused the bus or address error
<mmm> is the segment number represented by <aaaaaaaa> and
<0000> is the offset within that segment "
<rrrr> is the value of the instruction register at the time of the exception
<ssss> is the value of the status register at the time of the exception
<pppppp> is the value of the program counter at the time of the exception
<xxxxxxxx> is the address of the saved register information

All numbers displayed are decimal; the segment name is displayed only if
the segment number makes sense to the Operating System.

If the exception is divide by zero, overflow, or CHK out of bounds, the
process is not terminated and the line to that effect is not shown. If
the process has declared an exception handler for this exception, that
handler is entered after you type g to LisaBug, and the process then
continues execution. If no handler has been declared, the system default
handler terminates the process. If the exception is a bus error and the
segment name is 'stack seg', a stack overflow has probably occurred. The
Operating System cannot currently recover from this error.

Calvert 50 June 15, 1982

Confidential Guide to OS

\

If the exception occurs in Operating System code, the displays are the same
as given above except that the first two lines are replaced by:

EXCEPTION in system code!

If you type g in Lisabug after this exception, a system error 10201 occurs
and you must reboot.

You should use release 7.4 or later of the Monitor because in these
versions the Lisabug register display is the user's register display and
the user can use the stack crawl command to find the calling procedures.
You should not examine the memory location <xxxxxx> that contains the
saved registers because the debugger saves the system's registers there.

Calvert 51 June 15, 1982

Confidential Guide to OS

Operating System Error Codes by Procedure

PROCESS MANAGEMENT
Note that Yield CPU and Terminate Process return no errors

Returned by all procedures except Make Process
100 Specified process does not exist
101 Specified process is a system process

SetPriority_Prqcess
110 Invalid priority specified (must be 1 •• 255)

Suspend Proces s
-115 - Specified process is already suspended

Activate Process
-120 Specified process is already active

Kill Process
-125

Make Process
13'0
131
132
133
134
135
136
138
139
141

142
143

144

145

146

Calvert

Specified process is already terminating

Could not open program file
Error while trying to read program file
Invalid program file (incorrect format)
Could not get a stack segment for new process
Could not get a syslocal segment for new process
Could not get a PCB for new process (no sysglobal space)
Could not set up communication channel for new process
Error accessing program file while loading
Could not get a PLCB to load the program (no sysglobal space)
Error accessing a library file while loading program
(e.g. library file containing shared segment required by
program not found)

Can't run protected file on this machine
Program uses an intrinsic unit not found in the Intrinsic
Library
Program uses an intrinsic unit whose name or type does not
agree with the Intrinsic Library
Program uses a shared segment not found in the Intrinsic
Library
Program uses a shared segment whose name does not agree
with the Intrinsic Library

52 June 15, 1982

Confidential

EXCEPTION MANAGEMENT

Returned by all procedures
1998 Invalid parameter address

Declare excep hdl
201 - -No such exception name declared
202 No space left in the system data area
203 Null name specified as exception name.

Disable excep
201 -
203

Enable_excep
201
203

Info excep
20T
203

Flush excep
201
203

Signal excep
201 -
202
203

No such exception name declared
Null name specified as exception name.

No such exception name declared
Null name specified as exception name.

No such exception name declared
Null name specified as exception name.

No such exception name declared
Null name specified as exception name.

No such exception name declared
No space left in the system data area
Null name specified as exception name.

MEMORY MANAGEMENT
Returned by all procedures

1998 Invalid parameter address

Guide to OS

Returned by all procedures except INFO LDSN, MAKE_DATASEG, OPEN_DATASEG,
KILL DATASEG, and MEM INFO -

1999 Bad refnum

Note that SETACCESS DATASEG and INFO DATASEG return only 1998 and 1999
and that MEM INFO returns only 1998 -

INFO LDSN
302 Invalid ldsn
303 No data segment bound to an ldsn when there should be

UNBIND DATASEG
303 No data segment bound to an Idsn when there should be

BIND DATASEG
302 Invalid ldsn
304 Data segment bound to an ldsn when it shouldn't be

Calvert S3 June 15, 1982

Confidential

MAKE DATASEG
302
304
306
307
308
309
310

311
312

OPEN DATASEG
302
304
306
307
311
312
313

-320

Invalid ldsn
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Data segment already exists
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- memory size of shared data segment > 128K
- disk size < 0

Insufficient system resources
Unexpected file system error

Invalid ldsn
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Insufficient system resources
Unexpected file system error
Data segment not found
Warning: could not determine size of data segment.
The following defaults were used:

- memory size = 512 bytes
- disk size = 0 bytes

CLOSE DATASEG
312- Unexpected file system error

KILL DATASEG
307
312
313

SIZE DATASEG
306
307
309
310

312

FLUSH DATASEG
312-

Calvert

Input data segment path name is invalid
Unexpected file system error
Data segment not found

Data segment too large
Input data segment path name is invalid
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- memory size of shared data segment > 128K
- disk size < 0

Unexpected file system error

Unexpected file system error

54

Guide to OS

June 15, 1982

Confidential

EVENT MANAGEMENT
Returned by all procedures

1998 Invalid parameter address

Make Event Chn
401 Invalid event channel name passed to Make Event Chn:

empty string or string longer than 16 characters
404 Non-block structured device specified in pathname to

Make Event Chn, Kill Event Chn, or Open Event Chn
614 No disk present in drive - --
617 Checksum error

Guide to OS

618 Can't format write-protected or bad file system header
659 Invalid file system header
660 Cable disconnected
662 Parity error
663 Checksum error
666 Timeout
802 Asynchronous I/O request not completed successfully
848 End-of-file encountered (catalog is full)
854 No free slots in s-list- dir~ctory (too many s-files) (New_SFile)
855 No available disk space for file hints
890 Entry by that name already exists (Make Entry)
891 Catalog is full or was not as catalog -
892 Illegal name for an entry

Kill Event Chn
401 Invalid event channel name passed to Make Event Chn:

empty string or string too long --
404 Non-block structured device specified in pathname
614 No disk present in drive
617 Checksum error
618 Can't format write-protected or bad file system header
659 Invalid file system header
662 Parity error
663 Checksum error
666 Timeout
802 Asynchronous I/O request not completed successfully
848 End-of-file encountered
884 Not firs t auto-allocation, but file was empty
894 Entry not found, or not a catalog (Kill Entry)
895 Invalid entry name (Kill Entry) -
896 Safety switch is on--cannot kill entry (Kill_Entry)

Open Event Chn
20r - No such exception name declared
402 No space left in system global data area for Open Event Chn
403 No space left in system local data area for Open Event Chn
404 Non-block structured device specified in pathname -
411 Attempt to open an event channel to receive when event

412

414
-415

Calvert

channel already has a receiver
Calling process has already opened this channel to send
or receive
Attempt to open channel that is being killed
Wrong number of bytes in channel when open

55 June 15, 1982

Confidential Guide to OS

416
871
872
946
947
948

Cannot get enough disk space for event channel at open
~arameter not a valid s-file ID (Open SFile)
No sysglobal space for s-file control-block
Pathname invalid or no such device (Open)
Not enough space in syslocal for file system refdb
Entry not found in specified catalog (Open)

-1173 File was last closed by the OS
-1174 File was left open or volume was left mounted, and system

crashed
File or volume was scavenged

when the event channel is local:
Attempt ,to open a local event channel to send

No disk present in drive
Checksum error

-1175
Returned

410
614
617
618
659
662
663
666
802
848
884
890
891
892
894
895
896

Can't format write-protected or bad file system header
Invalid file system header
Parity error
Checksum error
Timeout
Asynchronous I/O request not completed successfully
End-of-file encountered
Not first auto-allocation, but file was empty
Entry by that name already exists (Make Entry)
Catalog is full or was not as catalog -
Illegal name for an entry
Entry not found, or not a catalog (Kill Entry)
Invalid entry name (Kill Entry) -
Safety switch is on--cannot kill entry (Kill_Entry)

Close Event Chn
201- No such exception name declared
614 No disk present in drive
617 Checksum error
618 Can't format write-protected or bad file system header
659 Invalid file system header
662 Parity error
663 Checksum error
666 Timeout
802 Asynchronous I/O request not completed successfully
848 End-of-file encountered
849 Invalid page or offset value in parameter list

1999 Bad refnum

Info Event Chn
1999 Bad refnum

Calvert 56 June 15, 1982

Conf i de nt ial Guide to OS

Wait Event Chn
402 No space left in system global data area
420 Attempt to wait on a channel that the calling process

422
423
424

425
426
802
959

1178

1999

Flush Event
982-
614
617
618
659
662
663
666
802
835

1999

did not open \
Attempt to call Wait Event Chn on an empty event-call (~~nnel
Cannot find corresponding event channel after being blocked
The actual amount of data returned while reading an event
from a channel is not the same as the size of an event
block in Wait Event Chn (probably disk I/O failure)
Event channel-empty-after being unblocked
Bad request pointer error return from Can Aread Pipe
Asynchronous I/O request not completed successfully
System resources exhausted
Process waiting in Read Data for pipe data got unblocked
because the last writer-of the pipe has closed it (Read_Data)
Bad refnum

Chn
No space has been allocated for specified file
No disk present in drive
Checksum error
Can't format write-protected or bad file system header
Invalid file system header
Parity error
Checksum error
Timeout
Asynchronous I/O request not completed successfully
s-file number < 0 or > maxfiles (illegal value) (SList_IO)
Bad refnum

Send Event Chn
430 Attempt to send to a channel which the calling process

431

630

638

614
617
618
659
662
663
666
802
872

1181
1184

1999

Calvert

does not have open
The actual amount of data transferred while writing an
event to a channel is not the same as the size of an
event block in Send Event Chn (disk is probably full)
The time passed to Delay Timet Convert Timet or
Send Event Chn is such that the year is less than 1900
or greater-than 2035
The time passed to Delay Time or Send Event Chn is more
than 23 days from the current GMT time
No disk present in drive
Checksum error
Can't format write-protected or bad file system header
Invalid file system header
Parity error
Checksum error
Timeout
Asynchronous I/O request not completed successfully
No sysglobal space for s-file control block (timed event)
No system space left for request block for pipe (Write Data)
Process waiting in Write Data for pipe space got unblocked
because the reader closed the pipe (Write Data)
Bad refnum -

57 June 15, 1982

Confidential Guide to OS

TIME MANAGEMENT
Returned by all procedures:

(Note that this is the only error message that Set Local Time Diff
returns)

1998 Invalid parameter address

Delay Time
630-

632
635

636
638

Convert Time
630 -

Get Time
639

Set Time
639

PWBT
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Calvert

The time passed to Delay Time, Convert Time, or
Send Event Chn is such that the year is less than 1900
or greater-than 2035
No space in sysglobal
Process got unblocked prematurely due to process
termination (Delay Time)
Timer request did not complete successfully
The time passed to Delay Time or Send Event Chn is more
than 23 days from the current GMT time

The time passed to Delay Time, Convert Time, or
Send Event Chn is such that the year is less than 1900
or greater-than 2035

Year not between 1980 and 1995 in Get Time or Set time.
In Get Time the error indicates a dead battery. -

Year not between 1980 and 1995 in Get Time or Set Time.

Boot track program not executable
Boot track program too big
Error reading boot track program
Error writing boot track program
Source file not found
Can't write boot tracks on that device
Couldn't create/close internal buffer
Boot track program has too many code segments
Couldn't find configuration information entry
Couldn't get enough working space
Premature EOF in boot track program

58 June 15, 1982

