
029-0414-A

Operating System
Reference Manual

for the Lisa -

Licensing Requirements for SOftware Developers
Apple has a low-cost licensing program, which permits developers of software
for .the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-hOuse and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada

eurtcmer Satisfaction
If you discover physical defects in the manuals distributed INith a Lisa
product or in the media on which a software product is distributed, f\pple
will replace the documentation or media at no charge to you during the
90-day period after you purchased the product.

Proc1Jct Revisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

Limitation on Warranties and Liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are
limited in duration to ninety (90) days from the date of original retail
purchase of this product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a
result, this software and manual are sold "as is," and you the purchaser are
assuming the entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct,
indirect, special, incidental, or consequential damages resulting from any
defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for
any programs or data stored in or used with Apple products, including the
costs of recovering or reproducing these programs or data

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No f\pple dealer, agent or
employee is authorized to make any modification, extension or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights that vary from state to state.

iii

License and eopyrl!Jlt
This manual and the software (computer programs) described in it are
copyrighted by Apple or by Apple's software suppliers, with all rights
reserved, and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. unaer the copyright laws ana the License
Agreement, this manual or the programs may not be copied, in whole or in
part without the written consent of Apple, except in the normal use of
the software or to make a backup copy. This exception does not allow
copies to be made for others, wnether or not sold, but al! of tne material
purchased (with all backup copies) may be sold, given, or loaned to other
persons if they agree to be oouna by tne provisions of the License
Agreement. Copying includes translating into another language or format.
You may use the software on any computer owned by you, but extra copies
cannot be made for tnls purpose. For some products, a multluse license
may be purchased to allow the software to be used on more than one
computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Lisa dealer for more information on multiuse
licenses.)

Product Revisions

Unless you have purchased the product update service avallable through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check per!od!cal!y with your authorized Lisa dealer.

iv

029-0415-A

Chapter 1
Introc11ct1m

Contents

1.1 The Main Functions... 1-1
1.2 Using the OS Functions .. 1-1
1.3 The File System .. 1-2
1.4 Process Management ... 1-3
1.5 l"lemory Management • . 1-4
1.6 Exceptions and Events 1-5
1.7 Interprocess cornrnuntcatton ... 1-s
1.8 USing the OS Interface 1-6
1.9 Running Programs under the OS ... 1-6
1.10 writing Programs That use the OS ... 1-6

Chapter 2
The File System

2.1 File Names ... 2-1
2.2 The Working Directory .. 2-2
2.3 Devices .. 2-3
2.4 Storage Devices .. 2-3
2.5 The VOlllT\e catalog .. 2-4
2.6 Labels .. 2-4
2.7 Logical and Ptlysical End Of File .. 2-4
2.8 File Access•............•.. 2-s
2. 9 Pipes ... 2-6
2.10 File System Calls .. 2-1

Cllapter 3
Processes

3.1 Process Structure .. 3-2
3.2 Process Hlerarcny ... 3-2
3.3 Process Creation ... 3-3
3.4 Process control .. 3-3
3.5 Process SChecluling . . •. •. 3-3
3.6 Process Termination .. 3-4
3.7 A Process-Handling Example ... 3-5
3.8 Process System cans... 3-7

v

cperating System Reference Hant/al contents

c::tq>ter 4
Merrory Mariagelllef'lt

4.1 Data segments .. 4-1
4.2 The Logical Data segment NUrnber .. 4-1
4.3 Shared Data Segments ... 4-2
4.4 Private Data Segments .. 4-2
4.5 Code segments ... 4-2
4.6 swapping ················· ...•................ 4-2
4.7 Memory Management System cans ... 4-3

~rs
Exceptions aro Events

5.1 Exceptions ...•.. 5-1
5.2 System-Defined Exceptions .. 5-2
5.3 Exception Handlers ... 5-2
5.4 Events .. 5-5
5.5 Event Channels ... 5-5
5.6 me System Clocl< .. 5-10
5.7 Exception Management system cans ... s-10
5.8 Event Management system Galls ... 5-17
5.9 Cloel<. System cans .. 5-27

Chapter 6
coon~uoo

6.1 Configuration System cans .. 6-1

Appendixes

A Q:>erating system Interface U'llt ... A-1
B System-Reserved Exception Names •••.••••••.•.••••••••••.••••••••••••••••••••••••••••• B-1
c System-Reserved Event Types •..................•...•.••.•............................... c-1
o Error 1'1essages .. 0-1
E FS_lf\F"O Fields ... E-1

Index

vi

Tables

2-1 CEVICE_a:NTRa.. Fl.llCUons Requited befOJe Using a Devlce ••••••••••• 2-25
2-2 CEVICE_CCNTRCL. Clltput Fl.llCUonal GJ'ol4>S •••••••••••••••••••••••••••••••••••• 2-26
2-3 ClccOde Mlefnenlcs •• 2-28
2-4 Device InfOnnatlon •••••••••••••••••·•••••••·••••••·••••·•••••••••••••••••••••••••••••••·•• 2-30
2-s Disk t-tard Error coaes ... 2-32

Figures

2-1 Disk t-tard Error CcldeS ••• 2-29
2-2 The Relatlmshlp Of a:J'YPACT cnJ lRLNCATE ••••••••••••••••••••••••••••••• 2-35

3-1 Process Address Space Layout •• •••• •• ••• ••• • ••• •• ••• •• ••••• ••• •• •••• ••••••• •••• ••••••• 3-2
3-2 Process Tree •• 3-3

5-1 stack at EXllePtlon f-Bldler lrMJCaUon • ••• • •• ••••• ••••• ••• •• • ••• ••• • •• ••••• ••• • •••• 5-4

V11

Preface

The contents of This Ml:l'lJal
This manual describes the q>erating System service calls that are available to
Pascal and assemt:Jler programs. It ls written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. we assume that you have read tne Lisa owner's GuitJe ana
WoTl<s/Jop User's Guide for tlJe Lisa and are famillar wltn your Lisa system.

cnapter 1 ls a general lntroauction to tne C\'.)eratlng system.

Chapter 2 describes the File System ana tne available File System cans. This
includes a description Of the interprocess communication faclllty, pipes, and
the C\'.)erating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
tne structure of processes.

Chapter l! describes how processes can control their use of available memory.
Chapter 5 describes tne use of events and exceptions tnat control process
synchronization. It also describes the use of tne system clock.
Chapter 6 describes tne calls you can use to find out about the configuration
of tne system.

~penaix A contains tne source text of SyscaJJ., the unit tnat contains the
type, procedure, and function definitions discussed in this manual.

~pendlx B contains a list of system-reserved exception names.

~penalx c contains a llst of system-reservea event names.

~pendix o contains a list of error messages tnat can be produced by tne
cans aocumented in this manual.

~pendix E contains a description of the information you can obtain from the
q>erating System about files and devices.

Type ancJ syntax cooventlons

029-o.416-A

Bold-face type is used in tnis manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. System call names are capitalized in tnls manual, altnough Pascal does
not distlngulSh between lower and upper case characters. It8llcs indicate a
new term whOse explanation follows.

ix

Future Releases
A few features of tne Lisa [\'.>eratlng System w1ll be ChangeC1 In future
releases:

• Pipes w1ll not be supported.
• Timed events wm not be ~rted.
• COnflguratton System cans w1ll be changed.

If you want your software to be upwarcl-compatit>le, please take tnese Changes
into cons1aeratlon. More lnformatlon ls provided ln t.ne appropriate sections
Of tne manual.

x

029-0053-A

Chapter 1
Introduction

1.1 The l"laln Ft.netlons .••..•...•..•.••.••.••.....•...•....•••....•.•..•.•.••••....•.•..•..•.•... 1-1

1.2 LJslng tne OS Fl.IEtl<JlS ••••..••..•.•.•••.••• 1-1
13 The Flle System••...................•.•....•...•..........•..•.•...•..•..•.•.•.... 1-2

1.4 Process 1'1anagernent .. 1-3

1.5 "1efnory l'1al iagerner tt ... 1--4

1.6 Exceptl(J'lS a1d Events ••.••..•••••••••••••••••••••••••••.••..••••.•••••••.••..•.•••••.•••••. 1-5

1. 7 Interprocess CORTiullcation•.........•.......•...•..•..•.••.•..••.••...•..•••••...• 1-5

1.8 Using the OS InteJface ••••.•••.••.••.••••••••.••.•••..•..•••••.•.••••..•.••••.••••.•..••••• 1-6

1. 9 Rt.flnlng Progn11 tsier the OS .. 1-6

1.10 Writing PIOQIClllS That LISe the OS .. 1-6

Introduction

The ~rating System (OS) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a file system for I/O
and information storage, handles exceptions (software interrupts), and performs
memory managemenL

Ll The Main Ft.rlCUons
This chapter describes the four main functional areas of the OS: the F1Ie
System, process management, memory management, and event and exception
handling.

The File System provides Input and output. The File System accesses devices,
volumes, and files. Each object, whether a printer, disk file, or any other type
of object, Is referenced by a pathname. Every 1/0 operation is performed as
an uninterpreted byte stream. Using the File System, all 1/0 is device
independent. The File System also provides device-specific control operations.

A process consists of an executing program and Its associated data several
processes can execute concurrently by multlplextng the processor between
them. These processes can be brOken into segments which are automatically
swapped Into memory as needed.
Memory management routines handle data segments. A data segment Is a file
that can be placed In memory and accessed directly.

Exceptions and events are process-communlcatlon constructs provided by the
OS. An event Is a message sent from one process to another, or from a
process to Itself, that ls dellvered to the receiving process only When the
process asks for that event. An exception Is a special type of event that
forces itself on the recelvlng process. There ls a set of system-Clef!neo
exceptions (errors), anCI programs can define their own. System errors such as
dlvlslon by zero are examples of system-Cleflned exceptions. You can use tne
system cans provided to define any exceptions you want

12 UslrJJ the 00 Ft.rlCUons
Both bU!lt-ln language features and explicit OS system calls can access OS
routines to perform desired functions. For example, the Pascal wrlteln
procedUre is a built-in feature of the language. The code to execute wrtteln
Is supplied in IOSPASLIB, the Pascal run-time support routines library. This
code, whieh is added to the program when the program Is linked, calls OS
File System routines to perform the desired output.

You can also can OS routines expllcltly. Thls ls usually oone when the
language does not provide tne operation you want OS routines allow Pascal
programs, for example, to create new processes, whleh could not otherwise be
done, since Pascal does not have any bullt-ln process-hanollng functions.

1-1

qJeratfrg system Reference /'1inJal

All calls to tne OS are syncnronous, Which means they Clo not return until tne
operation ls complete. Each can returns an error code to Indicate if anything
went wrong CIUrtng the operation. My non-zero value Indicates an error or
warning. Negative error codes indicate warnings. For a Ust of error codes
and their meaning, see ~x D.

1.3 The Flle System
The File System performs all 1/0 as uninterpreted byte streams. These byte
streams can go to fUes on Clisk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device-control functions, the FUe System treats devices and files
in the same way.
me F1le system allows snaring of an types of objeets.
The Flle System provides for naming objeets (devices, files, etc.~ A name in
the File System 1s called a patlnime A complete pathname consists of a
dlrectory name ana a flle name. The file name ls mecrilngful only for storage
devices (cievices that store byte streams for later use, SUCh as dlsl<s~
Each process has a working directory associated with lt. This allows you to
reference objects with an Incomplete pathname. To access an object in the
work.Ing Clirectory, you specify Its me name. To access an object In a
different directory, you specify its complete pathname.
Before a device can be accessed, it must be mounted. Devices can be
mount.ea using the Preferences tool or by using the MX..NT call. see Chapter
2 for an explanation of this call and other FUe system calls. If the device ls
a storage device, the mount operation makes a voJtme name available. A
volume name is a logical name for a CliSI<., and ls saved on the dlsK itself. The
mount operation logically connects the volume to the system, so that the files
on the volume may be accessed. The volume name can replace a device name
In a pathname used to access an Object on the disK. The volume name allows
you to access a flle with the same pathname no matter where the drive ts
actually connected.
A device can be accessed if it is specified In the configuration list created by
the Preferences toot ls physically connected to the Lisa and ls mounted.
There are some operations that can be performed on unmounted devices. Two
examples are CFIICE_CCNTRCL calls and scavenging. Logically mounting a
volume on a device makes file access to the volume possible. For storage
devices, a volt.me ls an actual magnettc medium that can contain recordeel
files. For non-storage devices, volumes and flies are concepts used to
maintain a uniform Interface. Flies on non-storage devices such as printers
Clo not store data bUt act as ports for performing I/O to the devices.

1-2

tperatlng System Refe.rence H8ni.181

me oaslc operations provloeo oy the Flle System are as follows:

mount and Ul1ffi0lllt - mal<e a volume access1ble/1naccesslble
open and close - maKe an ooject accessiOle/lnaccessiOie
read and write - transfer Information to and from an object
CleVlce control functions - control c:Jevlce-speclflc functions

some operations apply only to storage devices:

allocate and deallocate - specify size of an object
manipulate catalog - control naming of objects and creation and

destruction of objects
manipulate attrioutes - looK at or change the characteristics of

the object

In addition to the data in an object the object Itself has certain
characteristics called attrf/Jl.lte:; such as the length and creation date of a
file. Calls are avaUaole to access the attrtt>utes of any FUe System ooject. In
aeldttlon to Its system-defined attrtoutes, an ooject on a storage device can
have a 18/Jel The label is available for programs to store Information that
they can Interpret.

Non-storage devices sueh as printers are accessed with a limited set of
operations. They must oe mounted and opened Defore they can oe accessed.
Sequential read and/or write operations are available as appropriate for the
device. Device-control functions are available to perform any clevice-
speci fic functions needed. The file-name portion of the complete pathname
for a non-storage device ls not used by the File system, althOUgh you do have
to provide one When you open the deVice.

For storage devices, the same sequential read and write operations are val1d
as for non-storage devices. Storage devices also must oe mounted, and
particular files opened, Defore the files can be used. They have appropriate
device-control functions available.

When writing to a disk file, space for the file ls allocated as needed. Space
for a file ooes not need to be contiguous, and In some cases this automatic
allocation can result In a fragmented file, whleh may slow file access. To
insure rapid access, you can pre-allocate space for the file. Pre-allocating
the file also ensures that the process wUI not run out of space on the dlSI<.

Four types of objects can oe stored on storage devices. These are files, pipes,
data segments, and event enamels. Flies, already discussed, are simply arrays
of stored data Pipes are objects that provide Interprocess communication.
Data segments are special cases of flies that are loaded Into memory along
with program code. Event Channels are pipes with a specialized structure
Imposed oy the system.

1A Process Mar iagemer1t
A process Is an executing program and the data associated with It. several
processes can exist at one time, and they appear to run simultaneously
because the CPU is multiplexed among them. The Scheduler decides What

1-3

cperatlng System Reference H8ntJ8J Int.roalctlon

process ShOUid use the CPU at <Y'IY one tlme. It uses a generally non­
preempt1ve SChedUilng aigortttro. This means tnat a process wm not lose the
CPU lllless lt OIOCl<s. The OIOCl<ed state ts explalned later 1n this section.
A process can lose the CPU When one of the following happens:

• The process cans an q:>erating system proceoure or function.
• The process references one of 1 ts code segments tnat ls not currenu y in

memory.
If neither of these occur, the process will not lose the CPU.

Every process is started by another process. The newly started process is
called the son proces~ The process that started lt ls called its fat/ler proces~
The resulting structure ls a tree of processes. See Figure 3-2 for an
lllustratlon of a process tree.
When any process terminates, all its son processes and their descendants are
also terminated.
When the OS ls t>ooted, It starts a shell proces~ The shell process starts any
other processes desired by the user.
Every newly createa process has the same system-standard attrlOUtes and
capabUltles. These can be ctJanged by uslng system calls.
!vly processes can suspend, activate, or klll any other process for whietl the
global ID ls known, as long as the other process does not protect itself.
The memory accesses of an executing process are restricted to its own
memory address space. Processes can communicate with other processes oy
using Shared flles, pipes, event Channels, or shared data segments.
A process can be in one of three states: ready, rumlng, or blacked. A mady
p.raJeSS ls waiting for the SChedUler to select it to run. A nnifng p.raJeSS ls
currenuy using the CPU to execute Its code. A bloel<ed process is waiting for
some event, sucn as the completion of an I/O operation. It wm not be
scheouled until the event occurs, at whletl point it becomes ready. A
tennlnat.ed p.raJeSS has finished executing.
Each process haS a priority from 1 to 255. The higher the numDer, the hlg'ler
the priority of the process. Prlorttles 226 to 255 are reserved for system
processes. The SCl'leduler always runs the ready process with the hl~st
priority. A process can change lts own priority, or the prlorlty of any otner
process, while It ls executing.

1.5 Memory Mal egelllel ll
Memory managment ls concerned with what is In physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 !<bytes. Memory segments are of two types: cOde segments
and data segments. The total arnot.11t of memory used by any one process can
exceeo the available R.AM of the Lisa The (lleratlng System will swap code
segments in and out of memory as they are needed. To ald the q>eratlng

1-4

Q:Jeratlng system RefenJnCe Manual Introdlctlon

system ln swapping Clata segments, cans are provided to glve programs the
at>Ulty to define Wh10h data s~ts must be ln memory Whlle a particular
part of the program ls executing.
You have control of how your program ls dlvlded up. For executable coae
segments, you use the segmentation commands of the Pascal compiler to break
the program ln pieces.
In addltion to residing 1n memory, data segments can be stored permanently
on dlsk. They can be accessed with calls similar to File system calls. Thls
allows you to use a data segment as a direct-access file--a file that Is
accessed as part of your memory space.
cans are provided for mal<in~ Killin~ opening, and closing data segments.
You can also change the size of a Clata segment and set Its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you abUlty to
force the contents of the data segment to be swapped Into main memory so
they can be accessed by your process.

1.6 Exveptloos mci Events
M exception ls an unexpected condition in the execution of a process (an
Interrupt~ M event is a message from another process.
M exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, illegal instruction, and Illegal address. system exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions if you want to try to recover
from the error.
user exceptions can be declared and exceptlon handlers can be written to
process them. Your program can then signal this new exception.
Events are messages sent from one process to another. They are sent through
event ctlannels.
A process that expects a message from an event channel executes a call to
wait for an event on that Channel. This will give it the next message, if one
exists, or bloek. the process until a message arrives.
If a process wants to know when an event arrives, bl.It Cloes not want to wait
for it, It can use an event-can channel. This ts set up by associating a user
exception with the event cnanne1 When it ts opened. The q:Jerating system
wlll then lnVOl<e the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess COfmUllcaUon
There are four methOds for interprocess communication: shared files, pipes,
event channels, and shared Clata segments.

1-5

t:peratlng system Reference Manual lntJValctlon

Shared mes are used for nlgh volume transfers of Information. It ls necessary
to coordinate tne processes somehOW to prevent tnem from overwrttlng each
otner's Information.
Pipes are used for communication between processes witn an uninterpreted
byte stream. (Note tnat pipes will not be supported In future releases of tne
~rating system.) Tne pipe mechanism provides for tne needed
synchronization; a process will block if it is trying to read from an empty
pipe or wrtte to a full one. A read from a pipe consumes tne information, so
it is no longer available. Olly one process can read from a given pipe.
Event enamels are slmllar to pipes, except tnat event enamels transmit snort,
structureCI messages Instead of unlnterpreteCI bytes.
A strared data segment can be useCI to transmit a large amount of Clata
rapidly. HaVlng a snared data segment means tnat tnls data segment ls in tne
memory address space of an tne processes tnat want to use it All tne
processes can tnen dlrecuy react and wrtte Information ln tne data segment.
It ls necessary to provlcte some sort of synctuonizatlon to Keep one process
from overwriting anotner's information.

1.8 using tne oo Interface
rne interface to an tne system cans ls provided ln tne syscan ll"llt, founCI ln
Appenalx A. This unl t can be used to provide access to the cans. see tne
WOJ'ksncp user's Gl//de for the Lisa for more Information on uslng syscan.

1.9 Rtmlng P10g1ams uner tne Cl>
Progrcrns can be written anCI run by using tne WorKsnop, whleh provides
program development tools sucn as editing and Clet>Ugglng facillties.

1.10 wrttlng Programs That use tne Cl>
You can wrlte a program tnat cans OS routines to perform needed functions.
This program uses the Syscan unit and then cans the routines neected.

1-6

029-0417-A

Chapter 2
The File System

2.1 File f'.larlles •• 2-1

22 The WOI1dng Directory•.. 2-2

2.3 oevtces ... 2-3

2.4 Storage oevtces•.. 2-3

2.5 The VollJ'Tle Gatalog•.•.........•.......••..••..•....•.•...•......•.•.....•......••.. 2-4

2.6 Labels ...•.............•....•....•..............•.•...................•................•.........•. 2-4

2.7 Logical CllCJ Pnyslcal Ero Of FUe•.........•........••.....•...••....•.......... 2-4

2.8 File Access •..••...•.•...•••............•...•••...•...•..•..•.....••...••...........•....•.•..•• 2-5

2.9 Pipes •• 2-6

2.10 File System Galls •.•.•.•.••....••..••...••..•..••.•.••••.••.••••••...•••..••.....•••.••.••••.. 2-7

2.10.1 MAKE FILE and MAKE PIPE .. 2-8
2.10.2 KILL CB.ECT -:.•.......•..............•..•.........•......• 2-10
2.10.3 LINf'<ILL FILE •.....•...•.............. 2-11
2.10.4 RENAl'1E ENTRY•.....•..• 2-12
2.10.5 LCXJ<UP .:: ..•..................... 2-13
2.10.6 INFO ...•.......•......•......•........•...•... 2-16
2.10.7 SET FILE INFO•............................... 2-17
2.10.8 CPEN ~ •.......••.•......•......•.•..••......•..............•..•................. 2-18
2.10.9 CLOSE CBJECT •..•........•.....................•......................•..•..... 2-19
2.10.10 RE.AD -DATA and WRITE DATA•.....•...........•. 2-20
2.10.11 READ-LABEL and WRITE LABEL•................•........ 2-23
2.10.12 DEVICE CCJ\JTROL :: .. 2-24

2.10.12.f setting oevtce-Control Information ..•...................• 2-24
2.10.12.2 (])taining Device-Control Information•....... 2-28

2.10.13 ALLOCATE ... 2-33
2.10.14 G0-1P.A.CT .. 2-34
2.10.15 TRU!\ICATE .. 2-35
2.10.16 FLUSH••.......••.•........••..........................•...•........••..•.....•. 2-36
2.10.17 SET SAFETY .. 2-37
2.10.18 SET-WCRKING DIR and GET WCRKING DIR 2-38
2.10.19 REsET CAT ALOO and GET NEXT ENTRY 2-39
2.10.20 l"IClJNT and l.JNIV1Cl.Jl'IT :: -:. 2-40

The File System

The File System provides device-independent 1/0, storage with access
protection, and uniform file-naming conventions.

Device Independence means that all I/O ls performed In the same way,
whether the ultimate destination or source ls disk storage, another program, a
printer, or anytnlng else. In an cases, 110 ls performed to or from ffles.
altnough those flles can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A file that ls stored on a block-structured device, sucn as a disk, is listed in
a catalog(also called a dh·ectolfl and has a name. For each such file the
catalog contains an entry describing tne file's attributes, including the length
of tne file, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored In an area called tne file label
Each file has two associated measures of length, the Logjcal End of Fjje
(LECF) and the Pllysjcal End of FjJe (PECF) Tne LEa= ls a pointer tu the last
byte tnat has meaningful data. The PEa= is a count of the number of blocks
allocated to the file. Tne pointer to the next byte to be read or written ls
called the me marker.

Since I/O is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on blocK­
structured devices, programs can make I/O requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 1/0 requested is performed
before tne call returns. Tne actual l/O, nowever, ls asyncnronous, in that
processes may block when performing 1/0. See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Nanes
All the files known to tne Operating System at a particUlar time are organized
into catalogs. Each disk volume has a catalog that lists all the files on tne
disk.

My object catalogued in the File System can be named by specifying the
volume on Which the file resides and the file name. The names are separated

2-1

...

cperatlng system Reference Ma7lJ8J me File system

by the Character "-". Because the top catalog ln the system has no name, an
complete patmames begin with "-".

For example,
-LISA-FORMAT.TEXT

refers to a file naned FORMAT. TEXT on a volune nanect LISA. Tne flle
name can contain up to 32 cnaracters. If a longer name ls specified, the
name ts truncated to 32 cnaracters. ,A,ccesses to sequential devices use an
arbitrary durrrny fllename that ls ignored but must be present in the
pathname. For example, the serial port pathname

-RS232B

ls insufficient, but

-RS2326-XYZ
is accepted, even thOugh the - XYZ portion is ignored.
are predefined:

certain device names

RS232A
RS232B
PARAPORT
SLOTXCHANy
MAINCONSOLE
ALTCONSOLE
UPPER
LOWER
BITBKT

serial Port A
serial Port B
Parallel Port
serial ports: x is 1, 2, or 3 and y ls 1 or 2
wr1teln and readln CleV1ce
writeln and readln device
Upper Diskette drive (Drive 1)
Lower DiSkette drive (Drive 2)
Bit bUcl<et: aata ls thrown away When directed here

see Chapter 6 for more information on device names.
Upper and lower case are not slgilfiCMt in pathnames: 'TESTVU...' ls the same
ooject as 'TestVol'. My ASCII Character ls legal In a pathname, Including
non-printing Characters and blank spaces. However, use of ASCII 13,
RETURN, ln a pathname ls strongly discouraged.

2.2 Tile Work1rYJ Directory
It is sometimes inconvenient to specify a complete pathname, especially when
working with a group of files in the same volume. To alleviate this problem,
the qJeratlng system maintains the name of a working directory for each
process. wnen a pathname ls specified wltnout a leading "-", the name refers
to an object in the working directory. For example, if the working ctirectory
ls -LISA the name FCRMAT.TEXT refers to the same file as
-LISA-FCRMAT. TEXT. The default working directory name is the name of the
boot volt.me directory.
You can flnct out what the working directory ls with GET_WCRKIN3_DIR.
You can Change to a new working directory with SET_~_DIR.

2-2

t:peratlng system Reference Manu81 me File System

2.3 Devices
Device names follow the same conventions as file names. Attributes liKe baUd
rate are controlled oy using the DEVICE_C<NTRCl. call wttn the appropriate
pathname.

Eacn deVice has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button
serial port A (RS232A)
serial port B (RS232B, tne lcftloost port)
I/O slot 1
I/O slot 2
IIO slot 3
Keyboard, ~se, oattery-po~ered clocK
10 ms system timer
CRT vertical retrace interrupt
Parallel port
DiSl<.ette 1 (UPPER)
DisKette 2 (LOWER)
Video screen

The device driver associated with a device contains information about the
device's physical Characteristics such as sector size and interleave factors for
disKs.

2.4 Storage Devices
O'l storage devices such as disK drives, the File System reads or writes file
data ln terms of pages. A page ts the same size as a OlocK. My access to
data in a file ultimately translates Into one or more page accesses. When a
program requests an amount of data tnat does not flt evenly into some
number of pages, tne File system reads the next highest number of whole
pages. stmllarly, data ts actually written to a file only tn whOle page
increments.

A file does not need to occupy contiguous pages. The Flle system Keeps
track. of the locations Of all the pages that maKe up a file.

Eacn page on a storage device is self-identifying; the page descrfptoris stored
with tne page contents to reduee the destructive impact of an IIO error.
The eight components of the page descriptor are:

Version flUllt>er
Volune identifier
File identifier
~t of data on the page
Page name
Page position in the file
Forward link
BacKward link

2-3

Q:Jeratfng System Reference Manual T/Je File system

Eacn volume nas a Med/l/177 Descriptor Data File ~wnlcn Clescrtoes tne
various attributes of the medium sucn as its size, page lengtn, block layout,
and the size of the ooot area. Tne MODF ls created wnen tne voll.ITie ls
lnltlallzed.
The File system also maintains a record of Whleh pages on tne medium are
currently allocated, and a catalog of all the files on tne volume. Eacn flle
contains a set of file hints, Which describe and point to the actual file data.

2.5 The VOil.ille Gatalog
01 a storage device, the volume catalog provides access to the files. The
catalog ls itself a me tnat maps user names Into the Internal file Identifiers
used by the q:>erating system. Each catalog entry contains a variety of
Information about each me lnclUdlng:

~
Type
Internal file nullDer and address
Size
Date and time created, last IOC)(jified, and last accessed
File identifier
safety s1.111 teh

The safety switch ls used to avoid accidental deletions. While the safety
switch ls on, tne me cannot oe deleted. The other fields are described under
tne LCD<LP File System can.

Tile catalog can be located anywtiere on the meelium.

2.6 L<Dels
M application can store its own information abollt a file in an area called
tne file label The laDel allows an application to keep the flle data separate
from Information maintained allout tne flle. Labels can be used for any
OOject in tne File System. The maximum label size Is 128 bytes. I/O to 1aoe1s
Is handled separately from file data I/O.

2.7 Logical a-ll Ph~cal Ero Of File
A file contains some number of bytes of data recorded In some number of
physical pages. Additional pages which dO not contain any file data can be
allocated to the file. There are, therefore, two measures of tile end of tile
file. The Logical End of Flle (LECF) Is a pointer to tne last stored byte that
has meaning to the application. The Physical End of File (PEa=) Is a count of
tne number of pages allocated to tne me.
In addition, each open file has a pointer called tne Ille ITJ811<er Which points
to tne next byte in tne file to be read or written. When tne file ls opened,
tne f!le marker points to tne first byte (byte number oi The me marker can
be positioned automatically or explicitly using the r~ and write calls. For
example, when a program wrltes to a flle opened wltn AWerlO access, tne f!le
marker ls automatically positioned to tne end of tne file before new data are
written. Tne me marker cannot be positioned past LECF except by a write

2-4

[JJeratlng system Rererence tvtanual 7ne Fjje System

operation that appends data to a flle; in this case the file marker ls
positioned one byte past LECF.

When a flle Is created, an entry for It Is made in the catalog specified In its
pathname, but no space Is allocated for the file Itself. When the file Is
opened by a process, space can be allocated explicitly by the process, or
automatically by the qJeratlng System. If a write operation causes the file
marker to be positioned past the LECF marKer, LECF (and PECF If necessary)
are automatically extended. The new space Is contiguous If possible.

2.8 File Access
The Flle system provides a aevlce-lndependent bytestream Interface. As far
as an application program Is concerned, a specified number of bytes ls
transferred either relatlve to the flle marker or at a specified byte locatlon
in the flle. The physical attributes of the device or file are not important to
the appllcatlon, except tnat devices that Clo not support positioning can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's physical
characteristics.

Programs can request any amount of data from a flle. The actual 1/0,
hOwever, Is performed In whale-page increments when devices are block
structured. Therefore, programs can optimize 1/0 to such devices by setting
the flle marker on a page boundary and making I/O requests In whole-page
Increments.

A flle can be open for access by more than one process concurrently. All
requests to write to the flle are completed before any other access to the file
ls permitted. When one process writes to a file, the effect of the write
operation ls Immediately available to all other processes reading the file. The
other processes may, hOwever, have accessed the flle ln an earller state.
Data already obtained by a program are not changed. The programmer must
ensure tnat processes maintain a consistent view of a shared file.

When you open a flle, you specify the kind of access allowed on the file.
When the file Is opened, the (lleratlng System allocates a file marker for the
calling process and a run-time Identification number called the mfm.Jm The
process must use the refnum In sUbsequent calls to refer to the file. Each
operation using the refnum affects only the file marker associated with that
refnum.

Processes can share the same file marker. In gJofJa./ access rnocte. each
process uses the same refnum for the file. When a process opens a file in
global access mode, the refnum It gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a file with Global_Retrun.. but eaeh time the CPEN call ls used a
different refnum ls produced. Each of these refnums can be passed to other
processes, and each process using a particular return shares the same file
marker with other processes with the same refum. Processes using different

2-5

t:peIBtlng System Reference /'18fl()8J TIJe File System

refnums, hOwever, always nave <llfferent flle markers, wnetner or not tnose
refnums were obtained wltn Glooal_Retrun

A file can also be opened in private mooe, whieh specifies tnat no otner CPEN
cans are to be allowed for tnat file. A file can be opened witn
GlooaI_Retrun ano private, whleh opens tne fUe for global access, but allows
no otner process to open tnat file. By using tnis call, processes can control
wn1Ch otner processes nave access to a flle. Tne opening process passes tne
global refnurn to any otner process tnat ls to nave access, and tne system
prevents otner processes from opening tne file.
Processes using global access may not be able to mal<e any assumptions about
the location of the fUe marker from one access to the next.

2.9 Pipes
Because tne (llerating System supports multiple processes, a meehanlsm ls
provided for interprocess COfTllTll.Xlication. This mecnanlsm is called a pipe
Pipes are similar to tne otner objects In tne File System -- tney are named
accorcling to the same rules, and tney can have labels.

NJlE
Pipes will not be supported in future releases of the (lleratlng System.
oo not use the pipe mechanism lf you want your software to be
upward-compatible.

As with a file, a pipe Is a byte stream. Wltn a pipe, nowever, information Is
queued In a first-In-first-out manner. Also, a pipe can nave only one reader
at a time, and once data is read from a pipe it is removed from the pipe.
A pipe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data Into It.
Because the data read from the pipe ls consumed, tne flle marker Is always at
zero. If the pipe Is empty anc:I no processes have lt open for writing, ECF (End
Of File) Is returned to the reading process. If any process has the pipe open
for writing, the reading process Is suspended until enough data to satisfy tne
call arrives In the pipe, or until au writers close the pipe.
When a pipe Is created, Its size ls o bytes. l.Xlllke wltn orclinary files, tne
lnltiallzlng program must allocate space to the pipe before trying to write
data Into It. To avoid deadlocks between the reading process and the writers,
tne (llerating System does not allow a process to read or write an arnolllt of
data greater tnan half the physical size of the pipe. For tnis reason, you
should allocate to the pipe twice as much space as the largest amount of data
In any planned read or write operation.
A pipe is actually a circular bUffer with a read pointer and a write pointer.
All writers access tne pipe tnrOUgh the same write pointer. Whenever either
pointer reaches the end of the pipe, lt wraps back around to the first byte. If
the read pointer catches up wltn tne write pointer~ the reaCllng process blocks

2-6

qJe.ratlng System Reference M817t18l T!Je File system

unUl data are written or untll all the writers close the pipe. Slmllarly, lf the
write pointer catches up with the read pointer, a writing process blocks until
the pipe reacter frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant Flle System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the q:Jerating System always fully satisfies each read or
write request before returning to the program. In other words, lf a process
asks for 100 bytes of data from a pipe, the cperating System waits until there
are 100 bytes of data in the pipe and then completes the call. Slmllarly, lf a
process tries to write 100 bytes of data into a pipe, the (llerating system
waits until there ls room for the full 100 bytes before writing anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be possible for a reader and a
writer to deadloek, with neither having room in the pipe to satisfy its
requests.

Z.10 Flle system Calls
This section describes all the (llerating system cans that pertain to the Flle
System. A summary of all the cperating System calls can be found in
Appendix A The following special types are usea In the Flle System calls:

Patmame = STRIN;[MaX_Patmame];(• MaX_Patmame = 255 •)
E_N<lne = STRIN;[MaX_Erane]; (• MaX_EN<lne = 32 •)
Accesses = (Dread, o.rite, Append, Private, GIObal_Refrun);
tlSet = SET IF Accesses;
Iottxie = (Absolute, Relative, sequential);

The Fs_Info record and its associated types are described under the LCIKLP
call. me Dctype record ls described under the a:vICE_aNTRCI.. call.

2-7

t:pe.ratfng System Reference /l1antJal

2.10.1 M.AXE_FILE cnl M.AXE_PIPE Flle System calls

MAKE_FILE (Var Ecode:Integer;
Var Path:PattTicl!E;

Label_Size:Integer)

MAKE_PIPE (Var Ecode:lnteger;
Var Path:PattTicllE;

Label_Size:Integer)

Ecode: Error indication
Path : Narre of new object

TlJe File System

Label_Size: Nurroer of bytes for the object's label

MAKE_FILE and MN<E_PIPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Lct>el_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what Its initial size. My error indication Is returned
in Ecode.

~~~~~~~-~~~~~~l'-IJTE'"--~~~~~~~~~~~-
Pipes will not be supported in future releases of the q:Jerating system. 
Do not use the pipe mechanism if you want your software to be 
upward-compatible. 

The MAKE_FILE example on the next page checks to see Whether the 
specl fled file exists before opening It. 

2-8 



tperalfng System Refenmce ,...lanVal 

~T FileExists = 890; 
VM FileReftu\. Errol'Code: INlEGER; 

FlleName:Patttere; 
Happy :BOCl..EM; 
Response:(}M; 

EE GIN 
Happy:=FALSE; 
M-ilLE t«ll Happy 00 
ff:GIN 

T/Je File system 

REPEAT (* get a file naiE *) 
IRilE('File naie: '); 
REnN(FlleName); 
~TIL LEl'tiTH(FileName)>O; 
t'IAKE_FILE(ErrorGode,FlleName,O); (*nl label for this file*) 
IF (Errol'Code<>O) TIEN (* cioes file already exist? *) 
IF (ErrorGode=FileExists) TlEN (* yes •) 

EE GIN 
IRilE(FlleNane, • alreaoy exists. OVerwrite? • ); 
REnN(Response); 
Happy:=(Response IN [ 'y', 'V' ]); (-go ahead cr'ld overwrite*) 

Etfl 
ELSE IRITELN( 'Error ', Errorcooe, ' While creating file. • ) 
ELSE Happy:= TRl.E; 

Etfl; 
CPEN(ErroI'Code,FileName,FileReflt.111.[Dwrite)); 

00; 

2-9 



t:peratlng system Reference l'18ntlal 

2.10.2 KILL_CB.ECT File System Call 

KILL_oo.ECT (Var Ecode:Integer; 
var Path :PatlTa!B) 

Ecode: Error indicator 
Path: Narre of object to be deleted 

Tile File System 

KILL_CB.ECT deletes the object given in Path from the File System. ClJjects 
with tne safety switch on cannot be deleted. If a file or pipe ls open at the 
time of the KILL_CRJ::CT call, its actual deletion is postponed until It has 
oeen closed by all processes that nave It open. During thls period no new 
processes are allowed to open it. The object to oe deleted need not be open 
at the tlme of the KILL CB.ECT call. A KILL CB.ECT call can be reversed 
by LN<ILL_FILE, as Jong as tne object ls a fiJe and is still open. 

The following program fragment cteletes files until RETURN ls pressed: 

c:lH>T FileNotf()ll1(j=894; 
VM FileNalre:PatttOll!; 

ErrorCOCJe: INlEGER; 
IEGIN 

REPEAT 
IRITE( 'File to delete: • ); 
REAll..N(FileNallle); 
IF (FileNale<>'') TIEN 
BEGIN 
KILL_oo.ECT(Errorcode,FileNalre); 
IF (Errorcooe<>O) TIEN 
IF (ErrorCOCJe=f ilef«ltf Olll(j) TIEN 
IRITELN(FileNane,' not fOlll(j.') 

ELSE IRITELN('Error ',Errorcooe, • lhile deleting file.') 
ELSE IRITELN(FileNane, • deleted. • ); 

Ett> 
lt<ITIL (FileNane=''); 

Ett>; 

2-10 



cperating System Reference f'1anllal 

2.10.3 LM<ILL_FILE File System Call 

llf<Ill_FILE (Var Ecode:Integer; 
Reft«.111: Integer; 

Var Ne"'1CIE:e_nare) 

Ecoele: Error incticator 
RefNum: Refrun of the killed and open file 
NewnanE: New nanE for the file being restored 

T!Je File System 

lN'<ILL_FILE reverses the effect of KILL_CB.ECT as long as the killed 
object is a file that is still open. A new catalog entry is created for the file 
with the name given in Newr&ne. Newnime ls not a full pathname: the 
resurrected file remains in the same directory. 

2-11 



l;Jeratlng system Reference Manual 

2.10.4 RENAl"E_ENTRY Flle System Call 

RENAtE_ENTRY (Var Ecooe:Integer; 
var Path:Pattnl!B; 
var NeW"ICIE:E_Naoo) 

Ecode: Error indicator 
Path: Object's old na11e 
Nemarre: Object's new narre 

Tile File System 

RENAl'-E_ENlRY Changes the name of an object in the File system. 
Newrune cannot be a full pathname. The name of the object is changed, but 
the object remains In the same directory. The following program fragment 
changes the f!le name of FCRMATTER.LIST to NEWFCRMAT.TEXT. 

VAR 01<181B:Pattflalre; 
NelfN<IOO: E Naoo; 
ErrorCOde:INTE~ 

BEGIN 
Ol~:='-LISA-FCJl1AT1ER.LIST'; 
NewNale: = 'tEIFCR1AT. TEXT'; 
RENAtE_ENTRY(Errorcooe, 01~, NetfNare); 

ENJ; 

The f!le's full pathname after renaming is 
-LISA-NEWFffiMA T. TEXT 

Volume names can be renamed by specifying only the volume name In Path. 
Here is a sample program fragment which changes a volume name. Note that 
the leading dash (-), given In OllJ\Bne, Is not given in NewNclne. 

VAA Ol<ftlre :PathNa!E; 
Ne~:E Naoo; 
Errorccxie:INTEGER 

BEGIN 
Ol<ftlre:='-tholles'; 
NewNale: = • steams·; 
RENNE_ENTRY(Errorcode,Ol<RE,NewNaie); 

00; 

2-12 



cpe.ratlng system Reference HaniJal 

2.10.5 UIKLP File System Call 

LCXJ<lP (Var Ecode:Integer; 
Var Path:Patmane; 
var AttritJUtes:Fs_Info) 

Ecode: Error indicator 
Path: Object to lOOkup 
Attributes: Information returned about path 

rne File system 

UIKLP returns information aoout an ooject in the file system. For devices 
and mounted volumes, call Ull<J..P with a pathname that names the device or 
volume withOUt a file name component: 

DevNaie:='-lJIPER'; (* DiSkette llrive 1 *) 
LCXJ<\P(ErrorCode,DevNaie,InfoRec); 

If the clevlce is currently mounted and Is blocK structured, all of the record 
fields of AttrtbUtes contain meaningful values; otherwise, some values are 
undefined. 

me Fs lnfO record ls defined as follows. me meanings of the lnformatlon 
fields are given ln Appendix E. 

Fs_Info = RfC(Jt) 
name: e name; 
deVrlJll: INTEGER; 

CASE OType:info_type CF 
ciev1ce t, voltJIE t: 

(100tarel: :iNTEGER 
deVt: deVtype; 
slot no: INlEGER; 
fs_size: LIJ«iINT; 
vol size: LCN2INT; 
bloCkstrooturett, 
Rnllted: BCXl..EAN; 
openc:a.nt: LCN2INT; 
privatedeV, 
rennte, 
lockeddeV: BCXl..EAN; 
IOOlllt_peOOing, 
l.nlD.l'lt _pending: BCXl..~; 
volraie, 
pass.a.rd: e_name; 
fsversim, 
volid, 
volrun: INlEGER; 

2-13 



t::perating System Reference MBnllal Tile File system 

EN>; 

bloeks1ze, 
datasize, 
clusters1ze, 
filecot.llt: INTEGER; (-tUt>er of files on vol•) 
freecolllt: LIHJINT;(tlfU!tler of free bloel<S •) 
owe, (• Date Volt.IE created •) 
OTVB, (• Date Voll.lie last Backed ~ •) 
OTVS:LCJliINT;(• Date Voll.lie last scavenged•) 
Machine iO.. 
overmtiit_ staq:>, 
nester_cq,y_id: LCJliINT; 
privileged, 
write_protected: BOO..EAN; 
nester, 
copy, 
scavenge_ flag: BIXl.EAN); 

ooJect_t: ( 
size: L<H3INT; (-actual no of bytes written •) 
psize: LIHJINT; (-,:tlysical size in bytes •) 
lpsize: INTEGER; (*Logical page size in bytes •) 
ftype: f1letype; 
etype: entrytype; 
OTC, 
OTA, 
DTM. 
OTB: LCJliINT; 
refrun: INTEGER; 

(* Date Created *) 
(• Date last Accessed •) 
(* Date last Modified *) 
( • Date last Backed 14> •) 

fmark: Llll2INT; (• file marker •) 
acnoie: mset; ( • access IOOde •) 
nreaders, ( • tumer of readers •) 
rnn"iters, (* l't.lltler Of writers *) 
rusers: INTEGER; (* l't.lltler of users *) 
fuid: uid.: (* unique identifier •) 
eof, (* ElF encountered? *) 
safety_on.. (* safety s•itch setting *) 
ks•iteh: BIXl.EAN; (* has file been killed? *) 
private,(* File opened for private access? •) 
loeked, (• Is file loeked? •) 
protected:BOO..EAN);(* File copy protected? •) 

2-14 



cperatlng System Reference Manual T/7e File System 

U1t1 = INlEGCR; 
Info_Type = (deVice_t, vol1.111e_t, object_t); 
oevtype = (t11SkdeV, pascaltx1 seq<Jev, b1W<t, rm_io); 
Filetype = (t.lldefined, tlXlFFile, rootcat, freelist, 

ba(J)locl<s, sysdata.. spooL exec, usercat, pipe, 
bootfile, swapdata, swapoode, raEp, userfile, 
kllledobject ); 

Entrytype • (eoptyentry, catentry, linkentry, fileentry, 
pipeentry,ecentry, killedentry); 

me eof fleld of the Fs_Info record ls set after an attempt to reaa more 
bytes tnan are avallat:>le from the file marker to the logical end of the file, or 
after an attempt to write when no dlSI< space ls avallat>Ie. If tne me marker 
is at the twentieth byte of a twenty-five byte file, for example, you can 
reaa up to s bytes wlttlOUt setting eof, but lf you try to reaa 6 bytes, tne 
Flle System gives you only s bytes of Clata and eof ls set 
The following program reports hOw rrn11y bytes of data a given flle has: 

VAR InfoRec:Fs_Info;(•infonnation returned by LOO<lP a.:i Itf=O*) 
FileNanle :Pattl4ame; 
Errorcooe: INlEGER; 

EE GIN 
llU:TE('File: '); 
READLN(FileName); 
LOO<l.P(Errorr.ooe, FileNalle, InfoRec); 
IF (ErrorCO<Je<>O) TIEN 

MUTELN( 'C<rmt lOOI<~ ', FileN<llle) 
ELSE 

'IRITELN(FileNcllle, • nas ·, InfoRec.Size, • bytes of <Jata. • ); 
00; 

2-15 



t:peretlng System RefeJ'ellCe M8flf.18/ 

2.10.6 11'-FO File System Call 

Itf="O (Var Ecode:Integer; 
Reftbt: Integer; 

var Reflnfo:Fs_Info) 

Ecode: Error indicator 

Tl1e File System 

RefNum: 
Ref info: 

Reference nuRtJer of Object in File system 
Information returned about RefNum's Object 

lf'FO serves a function similar to tnat of LCD<LP out is applicaole only to 
oojects in the File system tnat are open. The deflnltlon of the Fs_Into 
record ls given under LCD<LP anc:I in Appendix A 

2-16 



cpe.ratlng system Reference /l1antlal 

2.10.7 SET_FD...E_IN=U File System call 

SET_FILE_ltf'"O ( Var Eeode:Integer; 
Refton: Integer; 
fsi :Fs_Info) 

Ecode: Error inclicator 

rne File system 

RefNum: 
Fsi: 

Reference nUllDer of object in Flle system 
New Information aOOUt the ooject 

SET_FILE_Df'O changes the status information assoclateel with a given ooject. 
This call works in exactly the opposite way that LIXKLP anCI 11\FO work, in 
that the status Information ls given oy your program to SET _FILE_Df'O. The 
Fsl argument ls the same type of Information recora as that retumea oy 
LCD<LP anCl Df'O. The object must be open at the time this call ls maae. 
The following ne1as of the lnformatlon report may be changed: 

file_scavengoo 
file_close(l by_os 
file_left_open 
user_type 
user_st.t>type 

2-17 



t:peretlng System Reference l'1CYNl81 

2.10.S CPEN File System Call 

(J>EN (Var Ecooe:Integer; 
var Path: Pa'tt'Jlale; 
var Refll.ll:Integer; 

Mcl11p:MSet) 

Ecode: 
Patti: 
RefNum: 
Manip: 

Error indicator 
Naire of Object to t:>e opened 
Reference nunt>er for ooject 
set of access types 

Tne File system 

Ttle CPEN can opens an object so tttat it can t:>e read or written to. When 
you call CPEN, you specify ttte set of accesses tttat will oe allowed on tttat 
file or sequential device. Ttle available access types are: 

• Dread -- Allows you to read tne file 
• o.rite -- Allows you to write in the file (to replace existing 

data) 
• AppeR:t -- Allows you to add on to ttle encl of ttle file 
• Private -- Prevents ottter processes from opening tne file 
• Global_Refrl.rn -- creates a refnum that can be passed to otner 

processes 
Note tttat you can give any numoer of ttlese modes simultaneously. If you 
specify Dwrite and ~ in tne same CPEN call, Dwrite access will t:>e used. 
see section 2.8 for more information on Global_RefrUTI and Private access 
modes. 
If the Object opened already exlsts and tne process cans WRITE_DATA 
witnout having specified Appero access, the Object can oe overwritten. Tne 
~rating System aoes not create a temporary flle and wait for ttte 
U..IEE_IRECT call before deciding what to do wittt tne old file. 
An object can be opened oy two separate processes (or more tnan once by a 
single process) simultaneously. If tne processes write to tne file witnout using 
a global refnum, tttey must coorellnate their file accesses so as to avoid 
overwriting each other's data 
Pipes CCfilOt oe opened for Dwrtte access. You must use Appero if you want 
to wrtte Into tne ptpe. To set up a private ptpe, the reader process opens the 
plpe first, specifying Dread mode; tne writer process tnen opens the pipe witn 
~ Private access moae. 

2-18 



cpe.rat/ng System Reference Mant./al 

2.10.9 a..e&::_CB.ECT File System Call 

QOSE_CIU:CT (Var Ecode:Integer; 
ReftUl:Integer) 

Ecode: Error indicator 
RefNum: Reference nul!Der of Object to be closed 

T!Je File System 

If RefN.rn is not glotJal, a..OOE rn.J:CT terminates any use of Reft'Un for 1/0 
operations. A FLUSH operation -ls performea automatically and the flle ls 
savea ln Its current state. If RefN.111 ls a global refnurn and other processes 
have the flle open, RefN.m remains valid for these processes and other 
processes can stlll access the file using RefN.m 

me following program fragment opens a flle, reads 512 bytes from lt, ano 
then closes the file. 

TYPE Byte=-128 .. 127; 
VAR FileNaoo:Pattfiane; 

Errol'Code,FileReflt.lll:Integer; 
ActualBytes:Longint; 
Mfer:ARRAY[O .• 511] IF Byte; 

EEGIN 
lFEN(Errol'Cocle, FileNare, FileRefft.lq, [ORead]); 
IF (Errol'Cocle>O) UEN 

IRilELN('Qln:Jt ~ ',fileNane) 
ELSE 

EEGIN 
REAO _DATA(Errorcooe, 

FileRem.111. 
CR>4(ilfllffer), 
512, 
ActualBytes, 
sequential, 
O); 

If (Actua1Bytes<512) TtEN 
IRITE('lllly reall ',ActualBytes, • bytes from ',FileNaoo); 

CLOSE _CIU:CT(ErrorGOOe, FileReftun); 
EN>; 

00; 

2-19 



cpemting System Reference Manllal 

2.10.10 READ_DATA cnl WRilE_DATA File System cans 
REAO_OATA (Var Ecooe:Integer; 

Refftlll: Integer; 
Data_Acldr:Longint; 
COUlt:LCOJint; 

var Actual:Longint; 
tklde: Icttlde; 
Offset:LroJint); 

~IlE_DATA (Var Ecooe:Integer; 
ReffUn: Integer; 
Data_Acldr:LITTJint; 
COU1t :Longint; 

var Actual :Longint; 
Node: IttlcJOe; 
Offset:Longint); 

Ecooe: Error indicator 

me File system 

RefNum: 
Data M<lr: 
Count: 
Actual: 

Reference nurroer of Object for IIO 
A<l<lress of aata (source or destination) 
Nunt:Jer of bytes of aata to oe transferred 
Actual nwlt)er of bytes transferred 

Node: IIO roode 
Offset: Offset (absolute or relative lllJCles) 

READ_DATA reads information from the aevice, pipe, or file specified by 
Re1N.m, ancJ WRITE DATA writes Information to It. Data AOjr is the 
address for the aestination or source of COl.rlt bytes of data. me actual 
number of bytes transferred Is returned In Actual. 

Mxie can oe absolute, relative, or sequential. In absolute mode, Offset 
specifies an absolute byte of tne flle. In relative mode, Offset specifies a 
oyte relative to tne me marl<er. In sequential mode, Offset Is lgnorea 
(assumed to oe zero); transfers occur relative to the flle marl<er. sequential 
mode (Whlctl is a special case of relative mode) ls tne only access moae 
allowed for reading or writing data in pipes or sequential (non-dist<) devices. 
Non-sequential modes are valid only on devices tnat support positioning. The 
first byte ls numbered o. 

If a process attempts to write data past the Physical End of Flle on a disk 
file, the qleratlng System automatically allocates enough additional space to 
contain the data. This new space, may not be contiguous with the previous 
bloei<s. You can use the ALLOCATE call to ensure that any newly allocated 
blocks are located next to eaeh other, although they may not oe located near 
tne rest of the flle. 

RE.AD_DATA from a pipe that ooes not contain enough data to satisfy COl.rlt 
suspends tne camng process 1X1t11 tne data arrives In tne pipe. If tnere are no 

2-20 



c:perating System Rere.rence Manllal Tile File System 

wr1ters, tne ena-of-flle lndlcat!on (error 848) ls returned in Ecode. Because 
pipes are circular, WRilE_DATA to a pipe witn insufficient room suspends tne 
calling process (tne writer) until enough space ls avallable (until tne reader 
has consumed enougn data~ If no process has the pipe open for reading and 
tnere ls not enough space ln tne pipe, tne ena-of-flle lndtcatlon (848) ls 
returned in Eoode. 

READ DATA from the MAJNC()\JSCl..E or AL TC()\JSCl..E devices must 
specify Gru'lt - 1. 

The following program copies a me. Note that you must supply the correct 
location for Syscall in the second line of tne program 

PROGRAM COpyf ile; 
USES (*Syscall.Cl>Jtt) syscan; 
TYPE By te=-128 •• 127; 
v~ Ol<F"ile,Ne.ifile:Pa~; 

Ol(flefton, NellReftt.111: INTEGER; 
BytesReacJ,Byteslritten:LCJ«iINT; 
Errorcooe: INTEGER; 
Response :CJ-M; 
Buffer:ARRAY (0 . .511) CF Byte; 

BEGIN 
.. UTE( 'File to cq>y: '); 
READLN(Ol<F"ile); 
OPEN(Errorcooe, Ol<F"ile, 01~ [ORead] ); 
IF (Errorcooe>O) llEN 
BEGIN 

llRITELN('Error ',Errorcoae, • .n11e openirg ',Ol<F"ile); 
EXIT(COpyfile); 

El\(); 

WRITE( 'New file rare: • ); 
READLN(Ne.ifile); 
MAKE FILE(Errorcooe, Ne.rile, O); 
OPEN(Errorcooe, Ne.rile, NellReft«.111. [otrite ]); 
REPEAT 

READ_DATA( Errol'Code, 
Olftftlln, 
CH)4(iilBUffer ), 
512, BytesReat1, sequential, O); 

IF (ErrofCOOe=O) Alf) (BytesReacl>O) TIEN 
llRITE_DATA (ErrorCOde, 

NellReflU\,. 
mD4(iilBUffer), 
BytesRead, Byteslri tten, S0cµ!nt1al, O ); 

lMTIL (BytesReall=O) m (Byteslritten=O) m (Error())(le>O); 

2-21 



[peratlng System Reference Manual rne File System 

IF (Errol'CocE>O) Tlt:N 
.UTELN( 'File copy encollltered error ', ErrorGOOe); 

CLOSE_ CRECT(Errol'CocE, NetllRefMJll); 
QOSE_ CRECT(Errol'CocE, Ol<Eemn); 

00. 

2-22 



cpe.ratlng system Reference Mantia/ 

2.10.11 READ_LABEL cm WRITE_LABEL Flle System cans 

READ_LABEL (Var Ecooe:Integer; 
Var Path:PattllCIE; 

Data_ A<nr: LorYJint; 
Cotrlt: LorYJlnt; 

var Actual:LorYJint) 

IRITE_LABEL (Var Ecooe:Integer; 
Var Path:PattTlelne; 

Data_ MCJr :LorYJlnt; 
COlflt: lorYJlnt; 

var Actual:LorYJint} 

ECOC!e: 
Path: 
Oata_Acldr: 
Count: 
Actual: 

Error indicator 
~ of object containing the label 
source or ctestination of 110 
Nunt>er of bytes to transfer 
Actual nunt:ler of bytes transferred 

Tile File system 

These calls reao or write the label of an object In tne Flle system. I/O 
always starts at the t>eglmlng of the label. Coult Is the number of bytes the 
process wants transferred to or from Data Addr, and Actual ls the actual 
number of bytes transferred. fV1 error Is returned If you attempt to read 
more than the maximum label size, 128 bytes. 

2-23 



cperatlng system Reference Manual 

2.10.12 CEVICE_CCNTRCI_ FUe System Gall 
CEVI~_CClffin. (Var EC<Xle:Integer; 

Var Patn:PattTaoo; 
var CParm:Dctype) 

Ecode: Error indicator 
Path: Device to be controlled 

Tt1e File System 

CParm: A record of information for the device ariver 

t:EVICE CCNTRCL Is usea to sena device-specific Information to a device 
driver or to obtain device-specific information from a device driver. 
Regardless of whether you are setting device-control parameters or requesting 
Information, you always use a record of type Dctype. The structure of Dctype 
ls: 

Dctype = RECCRJ 
ooversioo: INTEGER; 
dcCOOe: INTEGER; 
dcData: ARRAY ( 0 •• 9] CF LCNiINT 
EN>; 

dCVersion: currently 2 
dcCocle: control code for device driver 
dCOata: specific control or data parameters 

2.10.12.1 settirYJ oevtce-cmtro1 Informatloo 
Before you use a device, you call t:EVICE_CCNTRCL to set the device driver. 
cnce you begin using the device, you call DEVICE_CCNTRCL as necessary. 
Table 2-1 snows wh!Ch groups of device-control functlons must be set before 
using eacn type of device. Table 2-2 snows which characteristics are 
contained In eacn group. For example, you must set Group A for RS-232 
Input. As you see In Table 2-2, Group A indicates tne type of parity used 
with the device. Each group requires a separate call to CEVICE_CCNTRCL 
and you can set only one characteristic from each group. If you set more 
than one from the same group for a partlcular device, the last one set wm 
apply. 

2-2ll. 



tpe1ating system Ref'e1-ence /'JaouaJ 

Table 2-1 
DEVICE_CCJfTRO... Ft.flCtions Re<J.lired 

before Using a oev1ce 

The File System 

Device Type Device Nal!E Required Groups 
Serial-,R~s'""'-"""23=2~f o-r----=Rc.::cs-'-23=2=A-o'"""r=Rs_2 __ 3_2B--:...:.::..::A,i.:;C.=.;,:...:O:..::, Ec..,:::.:F:..::, G= 
input 

Serial RS-232 for 
output or printer 

RS232A or RS232B A, B, C, G, H, I 

Profile SLOTxCHANy (where J 
x and y are nufltJers) 
or PARAPORT 

Parallel printer SLOTxCHANy (where I 
x and y are nufltJers) 
or PARAPORT 

Console screen and MAINCONSOLE or I 
keyboard ALTCONSOLE 

Diskette drive UPPER or LOWER J 

Here is a sample program that shows how a device-control parameter is set. 
This program sets the parity attribute for the RS232B port to "no parity." 
Note that the parity attribute requires only that you set cpann<lCCOOe and 
cparrn.dcdatc(Ol other parameters require that you also set cparmdcdat<(l] 
and cparmdcdatc(2l They are set in a similar manner. 

VAR 
cparm: dctype; 
errl'l.lll: integer; 
path: patmaoo; 

BEGIN 
path:='-RS2328'; 
cparm.dcVersion:=2; (• always set this value •) 
cparm. ctccode: = 1; 
cparm. dcdata[ 0] : = O; 
DEVICE_ CDHIU .... ( errrun, path, cparm); 

Ettl; 

2-25 



cperating System Reference MantJal Tile File System 

Table 2-2 ShOWS hOW to set cparm.cJcoode, cparrn.dcdatc(O], cparrn.dcdatc(l], 
and cpamutldaU(2] for tne various avallaoJe attrloutes. Note tnat any values 
in cparrn.dcdata past cparm.dcdaU(2] are Ignored when you are setting 
attrloutes dOCumented here. 

Table 2-2 
IFJICE_CCM'Rll... MJlit fll'Utimal Gro1.4Js 

FUNCTION .decode .dcdataO] .dcdatall .dcdata2] 

Gm4> A--Parity: 
No parity 1 0 
Odd parity, no 1 1 
input parity 
Cl'leCl<ing 

Odd parity, 1 2 
input parity 
errors = oo 

Even parity, no 1 3 
input parity 
CtleCKing 

Even parity, 
input parity 

1 4 

errors = $80 

6I'Ol4l B--output HandShake: 
None 11 
DTR hClldShake 2 
XON/XOFF nanaShal<e 3 
delay after er, LF 4 ms delay 

Grol4J c--Baua rate: 
5 Oaud 

Gnq> D--Input waiting during Read_Data: 
wait for COlllt bytes 6 o 
return wnatever rec'd 6 1 

GrCJt4> E--Input handshake: 
no handShake 7 

9 -1 -1 32767 
DTR handShake 7 

XON/XOFF handshake 8 

2-26 



cperatJng System Reference /'1tnial Tile File System 

Table 2-2 (contil'l.led) 

F~TION .decode .dcdatc(O] .dcdatc(1] .dcdatc(2] 

~ F--Input typeahead bUffer: 

fluSh only 
flush ancl re-size 
flush, re-size, 
and set threstiold 

9 
9 
9 

~ G--Disconnect Detection: 

none 10 
BREAK detected 10 
rreans disconnect 

-1 
bytes 
bytes 

0 
0 

-2 
-2 
low 

0 
non-zero 

~ H--Tirreout on output (tianasnal<e interval): 

no timeout 
tirreout enabled 

12 
12 

0 
seconds 

~ !--Automatic linefeed insertion: 

disabled 17 o 
enabled 17 1 

-2 
-2 
hi 

~ J--DiSI< errors (set to 1 to enable, too to disable): 

enable sparing 21 sparing rewrite reread 

~ K--Break conmanct (never required -- available only on serial 
RS-232 devices): 

send break 13 millisecond O 
auration 

send break 13 millisecond 1 
while lowering DTR ouration 

Using Group c, you can set baud to any standara rate. However, 3600, 7200, 
and 19200 baUCJ are available only on the RS232B port. 
"Low" and "Hi" uncter Group F set the low and high threshOld in the typeahead 
input bUffer. Wtlen "Hi" or more bytes are in the input bUffer, XCFF ls sent 
or DTR ls dropped. When "Low" or fewer bytes are in the typearieaa buffer, 
X™ is sent or DTR is reasserted. The size of the typeanead buffer (bytes) can 
oe any value between o and 102ll bytes inclusive. 

In Group J, enabling disk sparing permits the device driver to relocate bloeks 
of data from areas of the dlSI< that are found to oe bad. Enaouno dlsk rewrite 

2-27 



QJeiatlng System Reference /vlanilal me File system 

permits the (l)eratlng System to rewrite data that It had trouole reading, out 
finally managed to read. This condition Is referred to as a soft e.rror. 
Enabling disk reread tells the (l)eratlng system to read data after they are 
written to make certain that they were written correctly. 
When sending a oreak command, as shown In Group K any device control from 
Group A removes the break condition even If the allotted time has not yet 
elapsed. Also, sending a break will disrupt transmission of any other character 
still being sent. If you want to make certain that enough time has elapsed for 
the last character to oe transmitted, call WRITE_DATA with a single null 
character (equal to O) just prior to caillng CEVICE_CCNTRCL to send the break. 
Table 2-3 gives a list of mnemonic constants that you can use ln place of 
explicit numbers when setting Dccocte. These mnemonics are provided for 
convenience. 

Table 2-3 
Decode M1emonlcs 

~ 

1 

Mlemonlc 

dvParity 
dvOUtDTR 
dVOUtXON 
dvOUtDelay 
dvBaud 
dVIn\llait 
cMnDTR 
dvinXON 
dVTypeahd 
dvDiscon 
dVOutNoHS 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
15 
16 
17 
20 
21 

no mnemonic 
no mnemonic 
dvErrStat 
dvGetEvent 
dvAutoLF 
dvDiskStat 
dvDiskSpare 

2.10.12.2 CIJtatnlng Devlce-COOtroI Information 
To use DEVICE_CCNTR(l_ to find out aoout the current state of a particular 
device, simply give the pathname for the particular device along w!Ul a 
function code for the type of !nfOrmatlon you need. The record of type Dctype 
that you supply is returned fllled witll information. 

2-28 



Q:JenJllng system Reference Mtnl8J 111e File System 

mere are tnree types of lnformatlon requests you can make. Note tnat each 
type applies only to some of tne available deVloes. The request types El'ld tne 
returned Information are deScrtt:>ea In Table 2-4. 
Table 2-S srows tne error COde provided in response to a IJcOOde-15 
information request. Tnls COde ls given in qJ8Il1Ubietl(O]. me code, a long 
integer, Is srown In Table 2-5; tne bits and bytes are runt>ered from tne rt~t, 
COt.llt.lng from o, as ShoWn ln Figure 2-1. me rTllmlng asst~ to tne bit 
applies If tne bit Is set (equals 1i 

7 ....•......••• 0 7 .••••...•••••• 0 7 ••..•••..•.•.. 0 7 ..•.••..•.•••. 0 

F~2-1 
Disk Ham Enor COdes 

Here ls a program fra;JflEIOt tnat uses CEVICE_CCNTRO... to get information 
about the upper d1Skette drive. 

VllR 
qJel'll: mtype; 
erm.a: IN1Ef£R; 
path: pattrw; 

BEGIN 
path•-"-iflPER"• 
cpari.~d0Verst00:•2; (• al.ays set this value •) 
cpat'll.dCCOde : .. 20; 
DEVICE_CDrnO...(~ patl\ cpan1); 
IITH cpat'll DO 
IRilB..N (OOdata( DL OOdata[l ) .. 00data[2L 00data(3 ] .. 

OOdata[ 4 L CbBt8[5 L 00data[6 n 
00; 

2-29 



cperating system Reference l'1anU8J me File system 

Table 2-4 
Device Informat101 

occme Devices 

15 

16 

ProFiles 

Console screen 
and KeytlOard 

Returned in oooata 

[OJ contains aisK error status on 
last hardware error (see Table 
2-5) 
[1] contains error retry count 
since last system boot 

[OJ contains nunt:iers 0-10, 
whieh indicate events: 

o = no event 
1 = upper diskette inserted 
2 = upper diSl<ette outton 
3 = lower diskette inserted 
4 = lower diskette outton 
6 = mouse outton aown 
7 = mouse plugged in 
8 = power Dutton 
9 = mouse Dutton up 

10 = mouse unplugged 
[1] contains the current state of 
certain keys, indicated by set 
bits (if the bit is 1, the key is 
pressed) (bits are numbered from 
the rignt) 

o = caps loci< key 
1 = shift key 
2 = option key 
3 = conmancJ key 
4 = mouse button 
5 = auto repeat 

(2] contains x and v coordinates 
of mouse, x in left 2 bytes,V in 
rift 2 bytes 
(3 contains timer value in 
milliseconc:ls 

2-30 



QJemlfng system Reference HcnJaJ me File s_ystem 

TB>le 2-4 (~tirl.led) 
OOCode Devices Returned 1n oooata 

20 ProFile or 
Diskette Drive 

(OJ contains: 
o = no Oisk present 
1 = disk present (out not 

accessed yet) 
The following indicate that a 
disk ls present ano has oeen 
accessed at least once. 

2 = baa block track appears 
unformatted 

3 = disk formatted by some 
program other than the 
Operating System 

4 = OS-formatted disk 
[1) contains: 

o = no button press pending 
1 = button press pencling, 

disk not yet ejected 
[2] contains llUlltler of available 

spare blocks, 0-16, 
rreaningful only wnen 
oooata(OJ = 4 and for a 
diskette 

(3) contains: 
o = both copies of the 

bad-block directory OK 
1 = one copy is corrupt 

(rreaningful only when 
Oot1ata[O] = 4) 

(4) contains: 
o = sparing disabled 
1 = sparing enabled 

[5] contains: 
o = rewrite disabled 
1 = rewrite enabled 

[6) contains: 

2-31 

o = rereao Oisabled 
1 = reread enabled 



me File system 

Table 2-5 
D19k Hard Error eooes 

Byte 3 
7 • Profile received <> 55 to its last response 
6 = Write or write/verify abOrtect t>ecause nore tnan 532 bytes of 

data were sent or because Profile could not read its spare 
tat:> le 

s = Host's data is no longer in RAM t>ecause Profile ~te<J its 
spare table 

4 = SEEK E~ -- t.nable in 3 tries to read 3 consecutive neaciers 
on a track 

3 = CRC error (only set during actual read or verify of 
write/verify, not W'lile trying to read neaaers after seeking) 

2 = Til't'.OUT E~ (could not find neacier in 9 revolutions)-- not 
set While trying to read neaciers after seeking 

1 = Not Used 
o = Operation trtsuccessful 

Byte 2 
7 = SEEK E~ -- U'lable in 1 try to read 3 consecutive headers 

on a track 
6 = Spared sector table overflow (nore trm 32 sectors spared) 
5 • Not Used 
4 = Bad blOCI< table overflow (nore tnan 100 baa blOCl<s in table) 
3 • Profile l.l'table to read its status sector 
2 = Sparing occurred 
1 = seek to wrong track occurred 
0 = Not Used 

Byte 1 
7 = Profile has been reset 
6 = Invalid bloel< l'l.lltler 
5 = Not used 
4 = Not Used 
3 = Not Used 
2 = Not Used 
1 • Not Used 
0 = Not Used 

Byte 0 
This byte contains the runber Of errors encot.l'lterect wnen rereading a 
block after ~Y read error. 

2-32 



cpetatlng System Reference Mant/al 

2.10.13 ALU:X:::A 1E Flle system cau 
N...LOCATE (Var Eeode:Integer; 

Rem.m: Integer; 
DlntitJ.DJS :8ooleE11; 
COU'lt :L<n;Jint; 

Var IEtU:11.:Integer) 

Ecode: Error indicator 

me File System 

RefNUm: Reference f'Ult)er of object to be allocatea space 
contiguous: True = allocate contiguously 
Cot.flt: Nt.l!Der of Oloel<s to be allocated 
Actual: IU!tler of blOCl<.s actually allocated 

use ALLOCAlE to Increase the space allocated to ~ OOjecL If possible, 
ALLOCAlE adds the requested number Of OlOCl<.S to the space available to the 
object referencecl by RefN.m 1lle actual number of bloel<s allocated ls 
returned in Actual If cmtl~ ls true, the new space is allocated in a 
single, unfragmented space on the dist<.. This space is not necessarily adjacent 
to ~Y existing fUe t>loeks. 

ALLOCAlE applies only to objects on Oloek-structurea ctevlces. M atterrl)t to 
allocate more space to a pipe ts successtul only if the pipe's reao pointer ls 
less than or equal to its write pointer. If the write pointer has wrapped 
arot.nl out the reao pointer has not.. ~ allocation would cause tne reader to 
read invattd ~ tr1initialized data, so the File System returns error 1186 in 
tnls case. 

2-33 



(J:leratlng System Reference Mtnl8J 

2.10.14 C»-PACT Flle System C811 

ccn>ACT (Var Eoode:Integer; 
Reffl.a: Integer) 

Eeooe: Error indicator 

me File system 

RefNl.ln: Reference nunt>er of object to be corrpacted 

C»-PACT changes the Physical Ena of FUe to deallocate any blocks after the 
blocK that contains tne Logical End of File for tne file referencee1 by RefN.ln 
(see Figure 2-1.) C(J1>ACT applies only to Objects on block-structured 
devices. As ln the case of ALLOCATE, compaction of a pipe ts legal only if 
the read pointer ls less tnan or equal to the write pointer. If the write pointer 
has wrapped around, out the read pointer has not, compaction could destroy 
data In the pipe. The File System returns error 1188 in this case. 

2-34 



cperating system Refefef?Ce Hant.la/ 

2.10.15 TRt..N;A TE Flle system can 

TRl.N!ATE (Var EcOde:Integer; 
ReftUI: Integer) 

Ecooe: Error indicator 

rne File System 

RefNum: Reference nunt>er of ooject to be truncated 

l'RU'CATE sets the Logical End of File indicator to the current position of 
the file marker. My data beyond the flle marker are lost TRLNCAlE 
applies only to bloel<-structured devices. Truncation of a pipe can aestroy 
data that have been written but not yet reaa. ~ the diagram shows, 
TRUCAlE Changes only LEIF. CCl"PACT, on the other hand, changes only 
PEIF. 

I TRUNCATE 

new new 
LBF PHF 

• __ ·f-~ 
t i i 

File Marker old old 
LECF PECF 

Figure 2--2 
The Relationship Of CCJvPACT CYlCI TRUNCATE 

In this figure the boxes represent blocks of data Note that LEIF can point to 
any byte in the fUe but PEIF always points to a bloel< boUndary. Therefore, 
TRUCATE can reset LEIF to any byte in the file, but CCl"'PACT can reset 
PEIF only to a block boUndary. 

2-35 



qJerstlng System Refereme /l1tinl8J 

2.10.16 FUB-1 Flle system Call 

FLUSH (Var Ecode:Integer; 
Rem.: Integer) 

Ecooe: Error inaicator 
ReftUI: Reference l'Ultler of destination of I/O 

TIJl:J File System 

FLL&i forces all bUffered Information aestlned for tne object ldentlfled oy 
Ref'tllm to be written out to that object 

A sloe effect Of FLL&i ls that all FS buffers and data structures are flustled 
(as wen as the control Information for the referenced file~ If RefN.rn ts -L 
only the glOl:>al File system ls flustled. This ls a methOO oy wtilcn an 
application can ensure that the File System ts consistent 

2-36 



cperatln; system Reference H8nUaJ 

2.10.17 SET_SN=ETY Flle System Call 

SET_SN'ElY (var Ecode:Integer; 
var Path:Patrww; 

O'l_off:Boolecll) 

EOOde: 
Path: 
(}'\_Off: 

Error indicator 
Name of object containing safety switch 
set safety switch: 

ll'l • true 
Off .. false 

The File System 

Each object in the File System haS a "safety switch" to help prevent accidental 
deletion. If the safety switch ts on., the Object cannot be deleted. 
SET_SAFEn' turns the S'Wltch on or off for the Object 1Clentifiet1 oy patn. 
Processes that are Sharing an Object ShoUld cooperate wttn eacn other When 
setting or clearing the safety S'Wltcn. 

2-37 



tpemtlng system Reference /'18nU8J me File system 

2.10.18 SET_WCR<Jt.6_DIR aro GET_WCRKJt.G_DIR File System Calls 

SET_otatt;_DIR (Var Ecode:Integer; 
Var Patn :Patmane) 

GET_QICIN;_OIR (Var Ecode:Integer; 

Ecode: 
Path: 

Var Patn :Patrnllle) 

Error 1na1cator 
working airectory name 

n-e ~rating system uses the working directory name to resolve partially 
speclflea patmcmes Into complete pathnames. GET_wmKJNG_DIR returns tne 
current working alrectory name in Path. SET_wmt<ING_DIR sets tne working 
alrectory name. 
Tne following program tragnent reports tne current name of tne working 
airectory and allows you to set it to sometnlng else: 

VAR wort<i~ir:Patt811e; 
Errorcooe :INTEGER; 

IEGIN 
GET_ota:N;_OIR(ErrorCode,lorki~ir); 
If (Errorcode<>O) TIEN 

WTB..N('camt get tne current IOrkirYJ directory!') 
ELSE IRITELN('lhe current wrking directory is: ',lork~ir); 
IRilE( 'New IOrking directory name: '); 
REAlll..N(lorki~ir); 
SET_QICitt;_DIR(ErrorQJde, lorkirglir); 

00; 

2-38 



q;eratlng Sptem Reference HanvaJ 

2.10.19 RESET_CAT~OO and GET_l'EXT_ENTRY File System Calls 

RESET CATN...00 (var Ecooe:INlEGER; 
- var Patn:PattY'ale) 

GET_tEXT_ENTRV (var Ecooe:INlEGER; 
Var Prefix, 

Entry:E_Nallle) 

Ecoele: 
Path: 
Prefix: 
Entry: 

Error 1na1cator 
WOrl<ing directory nane 
Begiming of file n~s rewrnea 
Nares from catalog 

Tlle File System 

RESET_CAT~OO and GET_rl£XT_ENTRY give a process access to catalogs. 
RESET_CAT~OO sets tne catalog file marker to the oeglmlng of the catalog 
specified by Path. Path should be a root volume name. GET_rl£XT_EN1RY 
then performs sequential reads through the catalog file speclfled ln the 
RESET_CAT~OO call and returns Flle System object names. M end-of-ftle 
error code (848) ls returned when GET_l\EXT_ENlRY reaches the end of the 
catalog. If Prefix ls non-null, only thOse entries ln the catalog that begin with 
that prefix are returned. If Prefix ls "AB", for example, only flle names that 
begin with "'°'8" are returned. The prefix and catalog marker are local to the 
calling process, so several processes Ccrl simultaneously read a catalog withOut 
affecting each other. 

2-39 



q;e111tlng System Reference MtnJaJ 

2.1020 MJ..Jl.IT axi lN'1l..NT Flle system cans 

tlllfT (Var Eeode:Integer; 
var VNallle:E Name; 
var Passeiord:E the 
var Devrae:E_i.e) 

lNDJfT (Var EcOOe:Integer; 
var vna..e:E_raie) 

Ecooe: Error indicator 
Vnaie: VOlt.m3 na1e 
Pass1«1rd: Pass1110rd for deVice (currently ignored) 
oevnc.ne: Device name 

me File system 

f"ll.NT ana ~ han<lle access to sequential devices or bloct<-structured 
aevlces. For bloel<-structured devices, M1N'T logically attacnes the volume's 
catalog to the File System. The ncrne of the vollll'le mount.ea ls returned ln 
the 'vt&ne parameter. 
l..H'D..NT detaches the specified volume from the File System. No object on 
that volume can be opene0 after l..H'D..NT has been called. The volt.me 
cannot be UITTIOl..l"\ted l.lltll all the objects on the volume nave been closed by 
i:lll processes using tnem. 

Dew&ne ls the name of the aevlce on wnleh a volume ls belng mounted. 
DevnElne shoUld be given wltnout a leading csasn (-~ 
vrene ls the nane of the volt.me that was successruny mounte<l, aia ts 
returned. 

2-40 



029-0418-A 

Chapter 3 
Processes 

3.1 Process structure •••.••••••.•••••.•••••.•••..•••..•••••••••••••••.•••••••.•••••••••••••••••••.. 3-2 

3.2 Process Hierarchy······································· ...................................... 3-2 
3.3 Process creauon •••••••..•••••.•••••••••.•••••.•.••.•..•••••••••••••••.••••••..••.•••••••..•.• 3-3 

3.4 Process Control •••.•.•.••...•...••••..•.......••.•....••.•••.•...••..•...••••..•..•.....•...... 3-3 

3.5 Process sctm.lllng ....•..••...•••...•...•.•.....•..•••........••...•.........•....••..•.....•. 3-3 

3.6 Process Terrnlnatlon •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••• 3-4 

3.7 A Process+IEl1dl1ng Exarfl)le •....•.....•...•...•.••....••••••.•.........•.•....••.••...•.• 3-5 

3.8 Process System cans ......................................................................... 3-7 

3.8.1 MAKE PROCESS ...................................................................... 3-8 
3.8.2 TERMiNATE PROCESS ............................................................. 3-9 
3.8.3 INFO PROCESs ...................................................................... 3-11 
3.8.4 KILL=PROCESS ...................................................................... 3-13 
3.8.5 SIJSPEND PROCESS ............................................................... 3-14 
3.8.6 PCTIVATE PROCESS .............................................................. 3-15 
3.8.7 SETPRiffilTY PROCESS ......................................................... 3-16 
3.8.8 YIELD CPU .: ....................................................................... 3-17 
3.8.9 MY _10-: ................................................................................. 3-18 





Processes 

A process is an entity in the Lisa system that performs work. When you ask 
the ~erating System to run a program, the OS creates a specific instance of 
the program and its associated data. That instance is a process. 

The Lisa can have a number of processes at any one time; they appear to be 
running simultaneously. Although processes can snare code and data eacn 
process has its own stack. 

011 y one process at a time can use the CPU. The Sctleduler determines 
which process is active at a particular time. The Scheduler allows each 
process to run until some condition that would slow execution occurs (an 1/0 
request, for example~ At that time, the running process is saved in its 
current state. The Scheduler then checks the pool of ready-to-run processes. 
When the original process later resumes execution, it picks up where it left 
Off. 

Tne process schedullng state has three posslolll ties. A 1mnfng pmcess ls 
actually executing instructions. A ready process ls ready to execute out ls 
being held oacK by tne scneduler. A lJJockect process ls Ignored by tne 
Scheduler. It cannot continue its execution until something causes it to 
become ready. Processes commonly become OlocKed whlle awaiting 
completion of IIO, al tnough there are a numoer of otner Ukel y causes. 

3-1 



tperatlng System Reference Mtnl8J P.rocesses 

3.1 Process Structure 
A process can use up to 16 data segments and 106 code segments. 
The layout of the process address space for user processes is shown in Figure 
3-1. 

Seg# 
+--------
o I unavailable 
... --------
1 I User Code Segments 

I 
I 
I 
I 

106 I 
+--------

107 I LDSN 1 
I 
I (data segnents) 
I 
I 

122 I LDSN 16 
+--------

123 I Stack 
+--------

124 I Shared Intrinsic unit Data 
+--------

125 I Screen ,.. _______ _ 
126 I Reserved 
+--------

127 I Reserved 
+--------

Fi(JJl'e 3-1 
Prooess Address Space Layout 

Each process has an associated priority, an integer between 1 and 255. The 
Scileduler usually executes the highest-priority ready process. The higher 
priori ties (226 to 255) are reserved for the ~rating System. 

3.2 Process Hierarchy 
When the system ts first started, several system processes exist. At the base 
of the process hierarchy, snown in Figure 3-2... ls the root process~ which 
handles various internal ~rating System functions. It has at least two sons: 
the Memory Manager process and the sneu process. 
The Memory Manager process handles COde and data segment swapping. 

3-2 



Q:Jeratlng System Refenmce /'1ant/al Processes 

me Shell process ls a user process tnat ls automatically started when the OS 
ls lnltlallzecl. It ls typically a command interpreter, but lt can be any 
program. The OS simply looks for tne program called SYSTEM.SHELL and 
executes It 

Root Process 

/ J.>"' roce~s ~ 
Memory Manager I other 

Process u ser 
Process 

/I\ 
Other User Processes 

Figure 3-2 
Process Tree 

My otl'ler system process {tl'le network control process, for example) ts a son 
of the root process. 

3.3 Process creattoo 
When a process is created, it ls placed ln the ready state with a priority equal 
to that of the process that created it. All the processes created by a given 
process can oe thOugtlt of as existing in a subtree. Many of the process 
management calls affect the entire subtree of a process as well as the process 
itself. 

3.4 Process control 
Three system calls are provided for explicit control of a process. These calls 
allow a process to Kill, suspend (block), or activate any other user process in 
the system, as long as tl'le process 1clentif1er ls Known. Process-handUng calls 
are not allowecl to control Q')erating System processes. 

3.5 Process SCheO.lllf'JJ 
Process scheauling is oasect on the priority established for tl'le process and on 
requests for q:Jerating System services. 
me scneciu1er generally executes tne hlghest-prtortty ready process. once a 
process ls executing, lt loses the CPU only unaer certain circumstances. The 
CPU ls lost wnen tnere ls some speclflc request for the process to watt (for 
an event, for example), wnen there ls an I/O request, or when tnere is a 
reference to a cocle segment tnat is not in memory. A process tl'lat mal<es 

3-3 



l}Je1-atfng System Refe1-e1-x::e Mantia/ Pnx:esses 

any cperatlng System call may lose the CPU. The process gets the CPU back 
"'1hen the cperating System is finished, except under the follo"'1ing conditions: 

• The running process requests input or output. The Scheduler starts the 
next highest-priority process running "'1hile the first process waits for the 
1/0 to complete. 

• Tne running process lowers Its prlorlty below that of another ready process 
or sets another process's prlorlty hlgher than lts o'-IJn. 

• The runnlng process explicitly yields the CPU to another process. 

• The running process activates a higher-priority process. 

• The running process suspends itself. 

• A higher-priority process becomes ready. 

• The running process needs code to be s"'1apped into memory. 

• The running process executes an event-walt call. 

• The running process cans DELAY _Til"E. 

Because the ~erating System cannot seize the CPU from an executing 
process except in the cases noted above, background processes Should be 
liberally sprinkled "'11th YIELD_CPU calls. 

When the Scheduler ls invoked, it saves the state of the current process and 
selects the next process to run by examining the pool of ready processes. If 
the ne'-IJ process requires that code or data be loaded into memory, the 
Memory Manager process ls launched. If the Memory Manager ls already 
working on a process, the Scheduler selects the highest priority process in the 
ready queue that does not need anything swapped. 

3.6 Process Termination 
A process terminates under one of the followlng condl tlons: 

• It calls TERMINATE_PROCESS. 

• It reaches an 'El\U.' statement 

• It is referred to in a KILL PRoc:ESS call. 

• Its father process terminates. 

• It runs Into an abnormal condition. 

When a process begins to terminate, a SYS_ TERMINATE exception condi lion ls 
signaled to the terminating process and all of the processes it has created. 
By means of the DEU..A.RE_EXCEP _1-£.L call (described in Chapter 5), any 
process can create an exceptlon handler to catch tne terminate exception and 
clean up before terminating. The SYS_ TERMINATE exception handler "'1lll be 
executed only once. If an error occurs wh!le the handler ls executing, the 
process terminates immediately. 

3-4 



QJemt/ng system Reference Naval Pra::esses 

A process can can KILL_PRCCESS on any user process whOse Proc_Id ls 
known. TERMINATE_PRCCESS, on the other hand, terminates the process that 
called it (and its descendants~ TERMINATE_PROCESS also allows an event to 
be sent to the father of the terminating process if a local event channel was 
speclfled In the l"IAKE_PRCCESS call. 
Termination involves the following steps: 

1. Signal the SYS_ TERMINATE exception on the terminating process. 

2. Execute the user's exception handler, if any. 
3. Instruct an sons of the current process to terminate. 
4. Close an open fUes, data segments,plpes, and event channels left open by 

the user process. 
5. send the SYS_S(J\J_ TERM event to the father of the termlnattng process 

if a local event channel exists. 
6. Wait for all the sons to finish termination. 

3.7 A Process-Hcrldl1ng E~le 
The following programs illustrate the use of many of the process-management 
calls described in this chapter. The program Father, below, creates a son 
process and lets it run for a wnile. It then gives the user a chance to 
activate, suspend, kill, or get information about the son. 

PIUiRAl1 Father; 
USES ("'$U sc.Jrce:SysCall.ClJj*) SysCall; 
VAR ErroI'Code:INTEGER;(-error returns fron system calls*) 

proc_id:LCJ«iINT; (* process global identifier *) 
prcqane:PatmanB; (* program file to execute *) 
run : Nclrestring; ( * progran entry point *) 
Info_Rec:ProcinfoRec; (* informati~ allOUt process *) 
i :INTEGER; 
Ansllfer : CHAR; 

3-5 



Q:Jeratlng System Reference Manual Processes 

BEGIN 
~: = 'S(JUEJ'; ( • this program is defined belor) 
tt.111 :='I; 
MAl<E_PROCESS(Errorcooe, Proo_ Id,~, tt.111, O); 
IF (Errorcooe<>O) TIEN 

IRITB..N( 'Error ', Errorcooe, ' <itrit'YJ process ne iagemei 1t. ' ); 
Fm 1:=1 m 15 oo (* idle for a.tlile *) 
BEGIN 

WUTELN( 'Father executes for a lllJllBlt. '); 
VIELO_CPU(Errol'COOe,FIU..SE); (* let son rt.fl *) 

Eff); 
IRITE('K(ill S(uspenct A(ctivate I(nfo'); 
REAOLN(Answer); 
CASE An5'1er IF 

'K', 'k': KILL_PROCESS(Errorcooe,Proc_Id); 
'S', 's': SlJSPEtt)_PROCESS(Errol'COOe,Proc_Id, TRlE (*suspend 

family *)); 
'A', 'a': ACTIVATE PROCESS(Errol'COOe,Proc Id, TRlE (*activate 

- fClllily •)); -
'I', '1': BEGIN 
Itt=O_PROCESS(Errorcooe, Proc_Id, Info_Rec); 
WUTB..N('SOl'l"s rae is ',Info_Rec.Pro;J>attt&ie); 
Eff); 

Eff); 
IF (Errol'COOe<>O) TIEN 

WUTB..N('Error ',Errorcooe, • <itring process neiagement. '); 
EN>. 

The program son is: 
PROOfW1 son; 
USES (*SU 8ource:SysGall.Cl>j•) SysGall; 
VAR Errol'COde:IN1£GER; 

run :NaleString; 
BEGIN 

KLE TRlE 00 
BEGIN 

IRITELN('son executes for a iooment. '); 
YIELO_CPU(Errol'COde,FIU..SE);(•let father process rt.fl*) 

Eff); 
Eff). 

3-6 



t:pemtlng System Reference Manl/al Pf'OCesses 

3.8 Process system ca11s 
This section describes the Q'.)eratlng system calls that pertain to process 
control. A summary Of au the Q:>eratlng system calls can oe found in 
Appendix A. The following special types are used in process-control calls: 

Pattnlle = STRIN3[255 ]; 
Namestrirg = STRIN3[20]; 
P s eventblock = "s eventblock; 
S-eVentblock = T event text; 
r:=event_text = array [o .. size_etextJ ot longint; 
Proclnf oRec = record 

prcg:JattTiane : patlnlle; 
glcml._id : longint; 
father_id : longint; 
priority : 1. .255; 
state : (~tive, psuspeucled, p.aitirg); 
data_in : boolean 
end; 

3-7 



[pe10ang System Reference Hanval 

3.&1 MAKE_PRoc::ESS Process System cau 

MAKE PRCll:SS (Var ErrtUl:Integer; 

Processes 

- var Proc_Id:L~Int; 
var Pro;tile:Pattnl!E; 
Var Entr}'NalE:NarEString; (* NaooString = STRINi[20] *) 

Evnt_Ctl'l_Reftt..ln:Integer) 

ErrNum: 
Proc Id: 
ProgFile: 
EntryName: 
Evnt_Chn_RefNum: 

Error indicator 
Process identifier (globally unique) 
Process file name 
Program entry point 
Cormunication channel between calling 
process and created process 

A son process is created when another process, the father process, calls 
MAKE_PROCESS. The son process executes the program identified by the 
pathname in Progflle. If Progflle is a null character string, the program name 
of the father process is used. A globally unique identifier for the son process 
is returned in Proc_Id. 
Evnt_OYl_RefN.rn ls a local event cnannel suppllecJ oy tne fatner process. 
Event channels are discussed In Chapter 5. The ~erating System uses the 
event channel lcJentlfled by Evnt_Oll_Refl\lm to send the father process 
events regarding the son process (for example, SYS_SCN_ TERMi If 
Evnt_Oll_Refl\lm ls zero, the fatner process ls not informed when sucn 
events are produced. 

Entryf'8Tle, if non-null, specifies the program entry point where execution ls 
to begin. Because alternate entry points have not yet oeen defined for 
Pascal, this parameter is currently ignored. 

Any error encountered Clurlng process creation ls reported In ErrtUn. 

3-8 



tpeiating System Refemnce /\-"tanual 

3.82 TERMINATE_PRoc:ESS Process System can 

TERMINATE_ PROCESS(Var ErrN..111: Integer; 
Event_ptr:P_s_eventblk) 

ErrNum: Error indicator 
Event_Ptr: Information sent to process's creator 

A process can be ended by lERMINAlE_PRoc:ESS. This call causes a 

Processes 

SYS_ TERMINATE exception to be signaled for the calling process and for all 
of the processes it has created. The process can declare its own 
SYS_ TERMINATE exception handler to handle whatever cleanup it needs to do 
before It Is actually terminated by the system. When the terminate exception 
handler is entered, the exception information block contains a lmglnt that 
describes the cause of the process termination: 

Excep_Dat<(O] - 0 Process called lERMINAlE_PROCESS. 

1 Process executed the 'EN:J.' statement. 

2 Process called KILL_PROCESS on Itself. 

3 Some other process called KILL_PROCESS on the 
terminating process. 

4 Father process ls terminating. 

s Process made an invalid system call (that is, an 
unknown call~ 

6 Process made a system call with an Invalid ErrNlrn 
parameter address. 

7 Process aborted due to an error while trying to swap 
in a code or data segment 

8 Process exceeded its maximum specified stack size. 

9 Process aborted due to possible lockup of the system 
by a data space exceeding physical memory size. 

10 Process aborted due to a parity error. 

There are an additional twenty-six errors that can be signaled. The entire list 
is shown at the beginning of Appendix A. 

If the terminating process was created with a communication channel, a 
SYS_S(]\J_ TERM event Is sent to the terminating process's father. The 
terminating process can specify the text of the SYS_S(]\J_ TERM with the 
Event_Ptr parameter. Note that the first (O'th) looglnt of the event text is 
reserved by the system. When the event Is sent to the father, the OS places 
tne termination cause of the son process !n the first looglnl This ls the same 
termination cause that was supplled to the terminating process itself In the 

3-9 



t:peratlng System RefeRJnCe Ma7t/8l P.rwesses 

SYS_TERMINATE exception information block. My user-supplied data ln the 
first Imgint of the event text ls overwritten. 
If a process specifies an event to be sent in the TERMINATE_PRCCESS call 
but the process was created withOut a local event channel, no event is sent to 
the father. 

If the process was created wlth a 10ca1 event channel, an event Is sent to the 
father if the process calls TERMINATE_PRCO::SS with a nil Event_Ptr or if 
the process terminates by a means other than caIUng TERMINATE_PRlllSS. 
The event contains the termination cause in the first looglnt and zeroes in the 
remalnlng event text 
P _s_eventblk is a pointer to s_eventblk, defined as: 

cm8T size_etext = 9; (* event text size - 40 bytes *) 
TYPE t_event_text = MRAV [O .. slze_etext] CF Looglnt; 

s_eventblk = t_event_text; 
If a process cans TERMINATE_PRCCESS twice, the QJeratlng System forces it 
to terminate even lf it has disabled the terminate exception. 

3-10 



t:,perating System Reference Manual 

3.8.3 Il'FO_PROC:ESS Process System Gall 

Itf'"O_PROCESS (Var Errtt.ln:Integer; 
Proc_Id:Longint; 

Var Proc_Info:ProcinfoRec); 

ErrNum: Error indicator 
Proc Id: Global identifier of process 

Processes 

Proc)nfo: Information about the process 1aent1f1ea by 
Proc_Id 

A process can call ll'FO_PRoc:ESS to get a variety of information about any 
process known to the ~erating System. use the function MY _ID to get the 
Proc _Id of the call!ng process. 

Proc:InfoRec Is defined as: 
TYPE ProcinfoRec = RECOOO 

Prcg:>attll"lCllE: Pattll"lCllE; 
Global_id :Longint; 
Priority :1. .255; 
state :(PActive,PSuspeneled,Pwaiting); 
Data in :Boolean 

Elf); -

Data_ln lndlcates whether the data space of the process ls currently ln 
memory. 
The procedure on the next page gets information about a process and displays 
some of It. 

3-11 



QJeratfng System Reference Manual 

PROCE:CllH: 01splay_Info(Proc_It1:UHJINT); 
VM ErrorCocJe: INTEGER; 

Info Rec:Procinf~; 
BEGIN -

IhfO_PRoc:ESS(Errorcooe, Proc_It1, Info_Rec); 
IF (ErrorCOde=lOO) TlEN 

WRITELN('Atteq:>t to display info about nonexistent 
process.') 

ELSE 
BEGIN 

WilH Info Rec 00 
BEGIN -

WRITELN( • progran nane: 
WRITELN(' global it1: 
WRITELN(' priority: 
WRITE ( ' state: 
CASE State CF 

', ProgPatrtere); 
', Global_it1); 
',priority); 

I); 

PActive: WRITELN( 'active'); 
PSuspendecl: WRITELN(' suspende(l' ); 
Plaiting: WRITELN('waiting') 

Ettl 
Ettl 

Ettl 
Ettl; 

3-12 

Processes 



cperat/ng System Reference Manual 

3.8.4 KILL_PRCCESS Process System call 

KILL_PROCESS (Var Errtiln:Integer; 
Proc_Id:Longlnt) 

ErrNum: 
Proc Id: 

Error indicator 
Process to be killed 

Processes 

KILL_PRCCESS kills the process referred to by Proc_Id and all of the 
processes in its subtree. The actual termination of the process does not occur 
until the process is in one of the following states: 

• Executing in user mode. 

• Stopped clue to a SUSPENJ_PRCCESS call. 

• Stopped due to a CELAY _TIM: call. 

• Stopped due to a WAIT_EVENT_a-N or SENJ_EVENT_a-N call, or 
REPD_DATA or WRITE_DATA to a pipe. 

3-13 



cperaUng system Reference Manual 

3.8.5 SlJSPEN)_PRoc:ESS Process System Gall 

SUSPEt()_PROCESS (Var Errt«.ln:Integer; 
Proc ld:L~Int; 
susp=Family:Bool~) 

ErrNum: Error indicators 

Processes 

Proc Id: Process to be suspended 
Susp=Family: If true, suspend the entire process subtree 

SUSPENJ_PROCESS allows a process to suspend (block) any process in the 
system. The actual suspension does not occur until the process referred to by 
Proc_Id Is In one of the following states: 

• Executing In user mode 

• Stopped due to a CELA Y _ Tif"E call 

• Stopped due to a WAIT _EVENT _CH\I call 

Neither expiration of the delay time nor receipt of the awaited event causes 
a suspended process to resume execution. SUSPENJ_PRoc:ESS is the only 
direct way to block a process. Processes, hOwever, can become blocked during 
I/O, by the timer (see CELAY _Tlf"E), or for many other reasons. 

If SUSp_Fcmlly ls true, the ~rating System suspends both the process 
referred to by Proc_ld and all of its descendents. If SUSp_Famlly Is false, 
only the process Identified by Proc_Id ls suspended. 

3-14 



cpe.ratfng System Reference Hamal 

3.8.6 ACTIVATE_PRo::ESS Process System call 

ACTIVATE_PROCESS(Var Errtt.ln:Integer; 
Proc_Id:Longlnt; 
Act_Fanily:Boole<rl) 

ErrNum: Error indicator 
Proc Id: Process to be activated 

Processes 

Act_Family: If true, activate the entire process subtree 

To awaken a suspended process, call AC:TIVATE_PROCESS. A process can 
activate any other process in the system. Note that ACTIVATE_PRo::ESS can 
awaken only a suspended process. If the process is blocked for some other 
reason, ACTIVATE_PRoc:ESS cannot unblock it. If Act_Fc.nily is true, 
ACTIVATE_PRo::ESS also activates all the descendents of the process referred 
to by Proc_Id. 

3-15 



t:peratlng System Reference Manual 

3.8.7 SETPRICRITY _PROCESS Process System Call 

SETPRICJUTY _ PROCESS(Var ErrtUI: Integer; 
Proc_Id:Longint; 
Ne•_Priority:Integer) 

ErrNum: Error indicator 
Proc Id: Global id of process 
New_Priority: Process's new priority nuntler 

SETPRICRITY _PRoc:ESS changes the scheduling priority of the process 

Processes 

referred to by Proc_Id to New_Priortty. The priority value must be between 1 
and 225. (q:Jeratlng system processes execute with priorities between 226 
and 255.) The higher the priority, the more likely the process is to be allowed 
to execute. 

3-16 



[/Jerating System Reference Manual 

3.8.8 YIELD_ CPU Process System Call 

VIELD_CPU(Var Errt«Jn:lnteger; 
To_Any:Boolean) 

ErrNum: Error indication 
To_Any: Yield to any process, or only higher or equal 

priority 

Processes 

Background processes should use YIELD_ CPU often to allow other processes to 
execute when they need to. Successive yields by processes of the same 
priority result in a "round robin" scheduling of the processes. If To_Any is 
true, YIELD_ CPU causes the calllng process to yield the CPU to any other 
ready process. If To_Any is false, YIELD_CPU causes the calling process to 
give the CPU to any other ready-to-execute process with an equal or higher 
priority. If no process meets the To_Any criterion, the calling process simply 
continues execution. 

3-17 



cperating System Reference Manual 

3.8.9 MY _ID Process System can 
MY_IO:Lcrgint 

Processes 

MY _ID is a function that returns the unique global identifier (a lcrgint) of the 
calling process. A process can use MY _ID to perform process handling callS 
on itself. 

For example: 

setPr1or1ty_Process(ErrttJn..My_Id,100) 
sets the priority of the calling process to 100. 

3-18 



029-0419-A 

Chapter 4 
Memory Management 

4.1 [)ata~ts ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-1 

42 The Logical C>ata Seglnetit N.rTtJer ...................................................... 4-1 

4.3 snared Clata ~ts ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-2 

4.4 PrlvateClata~.U ...................................................................... 4-2 

4.5 COdeSeg11e1.U ................................................................................. 4-2 

4.6 ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-2 

4.7 "1ernory fl1al iagei 1a1t Syst.ern cails ...................................................... 4-3 

4.7.1 MAKE DATASEG .••••••••..•••••.•••••.•••••••••.••..••••••••.•.•••.•••.•••••..•••• 4-4 
4.7.2 KILL DATASEG ••••••••••••••••.••.••••••••••.••••••.•••..••.•..••.••.•••.••••••••.• 4-6 
4.7.3 CPEN-OATASEG .•..•.••.•••••...•••••.•••••.••••••..••...•••....••..••••••..••••..• 4-7 
4.7.4 Cl..osE DATASEG •••••••.••••••••.••••••••.•••••••••••••••••••.••••••••••••..•..•..• 4-8 
4.7.5 FLUSt-f DATASEG ••..•...•••••••.•..•..•.•••••.••••.•.••••.••.•.•••••••••••.•.••••• 4-9 
4.7.6 SIZE DATASEG .••••••..•••••••..•.•.••••••.•.•.••••.•.•••.••••••••••...••••••••••• 4-10 
4.7.7 INFO-OATASEG ••.•••.•••••••••••..•••..••••..•.•..••••...•.••.•.•••..•..••.••••.• 4-11 
4.7.8 INFO-Losr-1 ••.•••.•••••••••••.•.••.••.••.••.•.••.•••••.•••••.••.••.•.....•.•.••..•..• 4-12 
4.7.9 INFO-ADDRESS •.••..••...•.•••••..•..••.•..•.••••.••...•••..••••.••..••••••.•••••• 4-13 
4.7.10 1'1EM-INFO ••.•.•.•••.••...•.•..•..•••••...•••.•..•.•..•..••....••••.•••.•.•.••.•...•. 4-14 
4.7.11 SETACcESS DATASEG ••..•.•.•••.••.•.•.•••.•.•...•.•••••.••.•.•••...•.••••••• 4-15 
4.7.12 BIND_DATASEGandLl'IBIND_OATASEG •.•...••••.•.••••••.••.•••.•••••. 4-16 





Memory Management 

Every process has a set of code segments and data segments which are in 
physical memory when they are used. The logical address used by the process 
must be translated into the physical address used by the memory controller. 
This function is handled by the memory management unit (MMU~ 

4.1 Data set;Jnents 
Each process has a data segment that the ~erating System automatically 
allocates to lt for use as a stack. The stack segment'S internal structures are 
managed by the hardware and the ~erating System. 

A process can acquire additional data segments for uses such as heaps and 
interprocess communication. These additional data segments can be private 
(or local ) data segments or shared data segments. Private data segments 
can be accessed only by the creating process. When the process terminates, 
any private data segments still In existence are destroyed. snared data 
segments can be accessed by any process that opens those segments. 

The ~erat!ng system requires that data segments be in physical memory 
before the data are referenced. The Scheduler automatically loads all of the 
data segments that the program says it needs. It is the responsibillty of the 
programmer to ensure that the program declares all its needs by associating 
itself with the needed data segments before they are needed. 

This process of association is called /Jinding. A program can bind a data 
segment to itself In several ways. When a program creates a data segment by 
using the MAKE_DATASEG call, the segment is automatically opened and 
bound to the program. If a program needs to open a segment that was 
created by another program, the CPEN_DATASEG call is used. That call binds 
the segment to the calling process, as well as opening the segment for the 
process. Since there may be times when a process needs to use more data 
segments than can be bound at one time, the U\1311\()_DATASEG call is 
provided to unbind the data segment without closing it. The program can then 
use 811\()_DATASEG to bind another data segment to the program. 

The ~erating System views all data segments except the stack as linear 
arrays of bytes. Therefore, allocation, access, and Interpretation of structures 
within a data segment are the responsibility of the program. 

42 The Logical Data 8eg'nent l'Ultler 
The address space of a process allows up to 16 data segments bound to a 
process at the same time, in addition to the stack. Each bound data segment 
is associated with a specific region of the address space by means of a 
Logical Data Segment Number (LDSN~ see Figure 3-1 for an illustration of 
the address space of a process. While a data segment is bound to the process, 
it is said to be a member of the working set of the process. 

4-1 



t:peratjng System Reference Manual Memory Management 

The process associates a data segment with a specific LDSN ln tne 
MAKE_DATASEG or CPEN_DATASEG call. 
The LDSN, which has a valid range of 1 to 16, is local to the calling process. 
The process uses the LDSN to Keep track of where a given data segment can 
be found. More than one data segment can be associated with the same LDSN, 
but only one such segment can be bound to a given LDSN at any instant and 
thus be a member of the working set of the process. 

4.3 Share<i Data set}nents 
Cooperating processes can share data segments. Shared segments cannot be 
larger than 128 Kbytes In length. As wlth local data segments, the segment 
creator assigns the segment a File System pathname. All processes that share 
that data segment then use the same pathname. If the shared data segment 
contains address pointers to data within the segment, the cooperating 
processes must also use the same LDSN with the segment. This ensures that 
all logical data addresses referencing locations within the data segment are 
consistent for the processes sharing the segment. A shared data segment ls 
permanent until explicitly killed by a process. 

4.4 Private Data segnents 
Data segments can also be private to a process. In this case, the maximum 
~~ize of the segment can be greater than 128 Kbytes. The actual maximum 
size depends on the amount of physical memory in the maehine and the 
number of adjacent LDSNs available to map the segment. The process gives 
the desired segment size and the base LDSN to map the segment. The 
Memory Manager then uses ascending adjacent LDSNs to map successive 128 
Kbyte Chunks of the segment. The process must ensure that enough 
consecutive LDSNs are available to map the entire segment. 
suppose a process has a data segment already bound to LDSN 2. If the 
program tries to bind a 256 Kbyte data segment to LDSN 1, the ~erating 
System returns an error because the 256 Kbyte segment needs two consecutive 
free LDSNs. Instead, the program should bind the segment to LDSN 3 and the 
system automatically also uses LDSN 4. 

4.5 COde ~ts 
Division of a program into multiple code segments (swapping units) is dictated 
by the programmer through commands to the Compiler and Linker. The MMU 
registers can map up to 106 code segments. 

4.6 ~Ing 
When a process executes, the following segments must be in physical memory: 

• The current code segment 
• All the data segments in the process working set (the stack and all bound 

data segments) 
The ~rating System ensures that this minimum set of segments is in physical 
memory before the process is allowed to execute. If the program calls a 
procedure in a segment not in memory, a segment swap-in request is initiated. 

4-2 



cperatlng System Reference l'1ant1al 1'1emOJY Management 

In tne simplest case, tnls request only requires tne system to allocate a block 
of physical memory and to read in tne segment from tne disK. In a worse 
case, tne request may require tnat otner segments be swapped out first to 
free up sufficient memory. A clocK algorl tnm ls used to determine which 
segments to swap out or replace. Thls process ls lnvlslble to tne program. 

4.7 f'Ylemory Mmagement system cans 
This section describes all tne Q:Jeratlng System calls tnat pertain to memory 
management. A summary of all tne Q:Jeratlng System cans can be found in 
Appenalx A The following special types are used in memory management 
calls: 

Pathnalre = STRI~[255 ); 
Tdstype = (ds_Shared, as_private); 
DsinfoRec = Record 

mem_s1ze:long1nt; 
disc_ size: longint; 
l'l.lllJ_open:integer; 
LDSN: integer; 
l:xJlll(J=" : IJool~; 
presentf:boolean; 
creatorF:IJoolean; 
rwaccess:IJoolean; 
seg>tr: Iong1nt; 
volnare: e __ nare; 

encl; 
E_nare = string [32); 

4-3 



tperating System Reference Manual 

4.7.1 MAKE_DATASEG Memory Ma'lagement System Call 

MAKE_OATASEG (Var ErrtUl:Integer; 

ErrNum: 

Var Se9"l<lle: Pattnlle; 
Mem_Size, DiSl<_Size:Longint; 

Var RefNl.ln:Integer; 
Var ~r:Longint; 

Lelsn:Integer 
Dstype:Telstype) 

Error indicator 
Segnaire: Pathnaire of data segrrent 

Memory Management 

Hem Size: 
Disk Size: 
RefNum: 

Bytes of nennry to be allocated to data segnent 
Bytes on disk to be allocated for swapping segnent 
Identifier for data segnent 

SegPtr 
Ldsn: 
Dstype: 

Address of data segnent 
Logical data segnent nuntler 
Type of dataseg (shared or private) 

MAKE_DATN>EG creates the data segment identified by the pathname, 
Segnoole, and opens It for Immediate read-write access. Segncrne Is a File 
System pathname. 

The parameter Mem_Slze determines how many bytes of maln memory are 
allocated to the segment. The actual allocation takes place ln terms of 
512-byte pages. If the data segment ls private (Dstype ls cis_prtvate), 
Mem_Slze can be greater than 128 Kbytes, but you must ensure that enough 
consecutive LDSNs are tree to map the entire segment. 

DlSl<_Slze determines the number of bytes of swapping space to be allocated 
to the segment on disk. If DlSl<_Size is less than Mem_Size, the segment 
cannot be swapped out of main memory. In this case the segment is memory 
resident until It is killeel or until its size in memory becomes less than or 
equal to its D1Sl<_S1ze (see SIZE_DATASEGi The application programmer 
should be aware of the serious performance implications of forcing a segment 
to be memory resident. Because the segment cannot be swapped out, a new 
process may not be able to get all of its working set Into memory. To avoid 
thrashing, each application should ensure that an of 1 ts data segments are 
swappable before it relinquishes the attention of the processor. 

Tne call1ng process associates a Logical Data Segment Number (LDSN) with 
the data segment. If this LDSN Is bound to another data segment at the time 
of the call, the call returns an error. 

Refl\Un ls returned by the system to be used ln any further references to the 
data segment. The cperat!ng System also returns SegPtr, an address pointer to 
be used to reference the contents of the segment. SegPtr points to the base 
of the data segment. 

My error condl ttons are returned ln Ell1'Un 

4-4 



cperat/ng System Reference Hamal HemoJy Hanagement 

wnen a data segment ls created, It Immediately becomes a member of tne 
working set of tne calllng process. You can use Ll'BINJ_DATASEG to free 
tne LDSN. 

4-5 



Q:Jeratfng System Reference Mamal 

4.7.2 KILL_DATASEG Memory Mcl1agement System Call 

KILL_OATASEG (Var Errtt.n:Integer; 
Var Segane: Patt'llall?) 

ErrNum: Error indicator 
segname: Name of data segment to be deleted 

Memory Management 

When a process ls finished with a shared data segment, it can issue a 
KILL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a 
private data segment.) If any process, including the calling process, still has 
the data segment open, the actual deallocation of the segment is delayed until 
all processes have closed it (see CLOSE_DATASEG). During the interim period, 
however, after a KILL DATASEG call has been issued but before the segment 
Is actually deallocated:- no other process can open that segment. 

KILL_DATASEG does not affect the membership of the data segment In the 
working set of the process. The Refl\Un and segPtr values are valid until a 
CLOSE_DATASEG call is Issued. 

01e important note: normally, when a data segment is closed, the contents 
are written to disk as a file with the pathname associated with the data 
segment. If, however, the program calls KILL_DATASEG on the data segment 
before closing it, the contents of the data segment are not written to disk and 
are lost when the segment is closed. 

4-6 



cperat/ng System Reference Manual 

4.7.3 CPEN_DAT ASEG Meroory Mcmgement System call 

CFEN_OATASEG (Var Erl"M.ln:Integer; 
var ~:Patl1"1cloo; 
Var Reftt.ln:Integer; 
Var ~r:Longint; 

ErrNum: 
Segname: 
RefNum: 

Ldsn:Integer) 

Error indicator 
Narre of data segment to oe opened 
Identifier for data segment 

MemoJY Management 

SegPtr 
Ldsn: 

Pointer to contents of data segment 
Logical data segment nuntler 

A process can open an existing shared data segment with CPEN_DATASEG. 
The calling process must supply the name of the data segment (~) and 
the Logical Data Segment Number to be associated with it. The LDSN given 
must not have a data segment currently bound to it. The segment's name is 
determined by the process that creates the data segment; it cannot be null. 

The q:Jerating System returns both RefNl.m, an identifier for the calling 
process to use In future references to the data segment, and seg>tr, an 
address pointer used to reference the contents of the segment. 

When a data segment is opened, it immediately becomes a member of the 
working set of the calling process. The access mode of the newly opened 
segment is Readonly. You can use SETACCESS_DATA'>EG to change the 
access rights to ReadWrite. You can use LN3INJ._DATASEG to free the 
LDSN. 

You cannot use CPEN on a private aata segment, since call!ng a...OSE on a 
private data segment deletes lt. 

4-7 



l.:perallng System Reference /V/anual 

4.7.4 QOSE_DATASEG Mem>ry Ma1agement System Call 

CLOSE_DATASEG (Var Errt-un:Integer; 
Reftt.ln:Integer) 

ErrNum: Error indicator 
RefNum: Data segment identifier 

Nemo.ty Nanagement 

a...OSE_DATASEG terminates any use of RefN.m for oata segment operations. 
If the Oata segment ls bouno to a Logical Data segment Number, 
a .. JJSE_DATASEG frees that LDSN. The data segment ls removed from the 
working set of the calling process. RefNl.m ls maoe invallo. My references 
to the oata segment using the original seg>tr will nave unpredictable results. 
If RefNl.m refers to a private data segment, UJJSE_DATASEG also kllls the 
oata segment, deallocating the memory and disk space used for tne data 
segment. If Refl'lrn refers to a shared data segment, the contents of the 
oata segment are written to dlsK as lf FLUSH_DATASEG nad been called. (If 
KILL DATASEG Is called before a...OSE DATASEG, tne contents of the data 
segment are thrown away wnen tne lasC process closes tne data segment.) 
Tne following proceoure sets up a neap for LlsaGraf using tne memory 
management calls: 

PROCEDlff In1tOa~orL1saGraf (var Errorcooe:integer); 
CONST HeapSize*16384; (* 16 KBytes for graphics heap *) 

Oisk.S1ze=16384; 
VAR Heapalf :LCNiINT; (* pointer to heap for LisaGraf *) 

GrafHeap:Pattteoo; (* ciata 5e!J181t patn naie *) 
Heap_Refruo:INTEGER; (* refruo for heap data seg *) 

BEGIN 
GrafHeap:='grafheap'; 
CJ>EN_DATASEG(Errorr.ooe, Graf~, ~_Ref!Ull. Heapalf, 1); 
If (ErrorCocJe<>O) TIEN 
BEGIN 

IRITELN( 'lilmle to open·. Grafheap, ·Error ls ·, Errorcooe) 
EMl 
ELSE 

Efol); 

In1~(POIN1ER(Heap8Jf),POINTER(Heap8Jf+HeapSize), 
ilHeapError ); 

4-8 



QJerat/ng System Reference Manual 

4.7.5 FLUSH_DATASEG Memory ~t System Call 
FUJSH_DATASEG (Var Errt«.ln:Integer; 

Ref~:Integer} 

ErrNum: Error indicator 
RefNum: Data segment identifier 

Memoiy Management 

FLUSH_DATASEG writes the contents of the data segment Identified by 
Ref'N.m to the Oisk. (Note that CLOSE_DATASEG automatically flushes the 
data segment before closing It, unless KILL_DATASEG was called first.) This 
call has no effect upon the memory residence or binding of the data segment. 

4-9 



cperatlng system Reference Manval 

4.7.6 SIZE_DATASEG Memory Malagement System Gall 

SIZE_DATASEG (Var Errt«.m:Integer; 

ErrNum: 
RefNum: 

Refrun: Integer; 
Delta1emSize:Longint; 

Var NeltlemS1ze: Longlnt; 
Delta01Sl<.Size:Longlnt; 

Var NeWOiskSize:Longlnt) 

Error indicator 
Data segment identifier 

Memory Management 

DeltaHemSize: AllDunt in bytes of change in 1re11Dry 
allocation 

NewMemSize: 
DeltaDiskSize: 
NewDiskSize: 

New actual size of segirent in JrellDry 
AIOCJunt in bytes of change in disk allocation 
New actual disk (swapping) allocation 

SIZE_DATA'X:G changes the memory and/or disk space allocations of the data 
segment referred to by Refl\i.rn. Both DeltaMemSlze and DeltaOiSl<.Size can 
be either positive, negative, or zero. The changes to the data segment take 
place at the high end of the segment and do not destroy the contents of the 
segment, unless data are lost in shrinking the segment. Because the actual 
allocation ls done in terms of pages (512-byte blocks), the NewMemSlze and 
NewDisl<.Size returned by SIZE_DATASEG may be larger than the old size plus 
delta size of the respective areas. 

If the Newaisl<.Size is less than the Ne'#MemSize, the segment cannot be 
swapped out of memory. The appllcatton programmer should be aware of the 
serious performance implications of forcing a segment to be memory resident. 
Because the segment cannot be swapped out, a new process may not be aole 
to get all of its working set into memory. To avoid thrashing, each 
application should ensure that all of Its data segments are swappable before it 
rellnquishes the attention of the processor. 

If the necessary adjacent LDSNs are available, SIZE_DATA'X:G can increase 
the size of a private data segment beyond 128 Kbytes. 

4-10 



tpemtlng System Rere.rence /'1arlual 

4.7.7 Il'FO_DATASEG Memory Mcrlagement System Call 

ltt="O_DATASEG (var ErrttJn:Integer; 
Refl't.lll: Integer; 

Var Dslnfo:OslnfoRec) 

ErrNum: Error indicator 
RefNum: Identifier of oata segrent 
Oslnfo: Attributes of data segment 

Memory Management 

Il'FO_DATASEG returns information aoout a data segment to the calling 
process. The structure of the Oslnfcftlc record is: 
Rf(lff) 

ttem_Size:Longint (* Bytes of renvry allocated to data ~t •); 
01sc_S1ze:Longint (* Bytes Of d1Sk space allocated to segle'lt *); 
~:Integer (*current rumer of processes with segle'lt open•); 
Ldsn:Integer (* LDSN for segle'lt binding *); 
BoulcF:Boolean (* True if ~t is bot.lld to LDSN of calling proc *); 
Presentf:Boolem (* True if segle'lt 1s present 1n renvry *); 
creatorF:Booleanm (* True if the calling process is the creator *) 

(* Of the segle'lt *); 
RIAccess:Boolean (* True if the calling process has lfrite access •) 

(* to segient *) 
EN>; 

4-11 



t:peratlng system Reference Manual 

4.7.8 Il'FO_LDSN Meroory Mariageinent System Call 

Itt=O_LDSN ( Var Erl'M.IA:Integer; 
Ldsn: Integer; 

Var Reftl.ln:Integer) 

ErrNum: Error indicator 
Ldsn: Logical data segroont nuntier 
RefNum: Data ~t identifier 

Memo!)' Hanagement 

Il'FO _LDSN returns the refnum of the data segment currently boUnd to LdSn 
You can then use IrfO_DATASEG to get information about that data segment. 
If the LOSN specified is not currently boUnd to a data segment, the refnum 
returned is -1. 

4-12 



cperating system Reference /'18rJuaJ 

4.7.9 Il'FO_~ss "1ernory Ma1agement System cau 
IN"O_ADOOESS (Var ErrtUl:Integer; 

Address:L~int; 
Var Reftul:Integer) 

ErrNUm: Error indicator 

Memory Management 

Address: The address about which the program needs information 
RefNum: Data segrent identifier 

This call returns the refnum of the currently bound data segment that 
contains the address given. 
If no data segment that contains tne address given ls currently bound to the 
calUng process, an error 1ndlcat1on ls returned ln EntUn. 

4-13 



t:pemtlng system Retefl!fXJe ,...lanclal 

4..7.10 l"'EM_JN=O Memory Management System can 
tE1_Itf="O (Var Erl'M.ln:Integer; 

Var swapspace; 
Dataspace; 
cur cooesize; 
MaX=cooes1ze:Long1nt) 

ErrNum: Error inClicator 
Swapspace: AllDUnt, in bytes, of swappable system memory 

available to the calling process 
oataspace: AllDUnt, in bytes, of system memory that the 

calling process neeas for its oounct aata areas, 
inclUding the process stack anCI the sharea 
intrinsic aata segment 

cur_coaesize: Size, in bytes, of the calling segment 
Max_coelesize: Size, in bytes, of the largest coae segment 

within the aaaress space of the calling process 
This can retrieves information about the memory resources used by the calling 
process. 

4-14 



cperating System Reference Mam.Jal Memo.ry Management 

4.7.11 SETACCESS_DATA5EG Memory Mcnlgement System call 

SETACCESS_DATASEG (Var ErrtUl:Integer; 
ReflUn: Integer; 
Readooly:Boole<Wl) 

ErrNum: Error indicator 
RefNum: Data segnent identifier 
Readonly: Access rrode 

A process can control the kinds of access it is allowed to exercise on a data 
segment with the SETACCESS_DATA5EG call. Refrun is the identifier for 
t.ne data segment. If Readonly is true, an attempt by the process to write to 
t.ne data segment results in an address error exception condition. To get 
readwrlte access, set Readonly to false. 

4-15 



cperatlng System Reference Manual MemoJY Management 

4.7.12 BINJ_DATASEG a'1d LN3INJ_OATASEG Memory Mmagement System Calls 

Blt-ll_OATASEG(Var Erl'M.lll:Integer; 
Reftun:Integer) 

tmlt-ll _DATASEG(Var Errt«.ln: Integer; 
Reftun:Integer) 

ErrNum: Error indicator 
RefNum: Data segnEnt identifier 

Blf\Cl_DATASEG binds the data segment referred to by RefM.m to its 
associated Logical Data segment Numtier(s~ LN3INJ_DATASEG unbinds the 
data segment from its LDSNs. BINJ_DATASEG causes the data segment to 
become a member of the current working set. At the time of the 
Blf\Cl_DATASEG call, the necessary LDSNs must not be bound to a different 
data segment. LN3If\Cl_DATASEG frees the associated LOSNs. A reference to 
the contents of an unbound segment gives unpredictable results. 
CPEN DAT ASEG and MAKE DAT ASEG define Which LDSNS are associated 
with a given data segment. -

4-16 



029-0420-A 

Chapter 5 
Exceptions and Events 

5.1 Exceptions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••.••••• 5-1 

5.2 Systern-IJeftneO Exceptions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-2 

5.3 Exception 1-Uldlen .........•..•............................................................. s-z 
5.4 Events ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-5 

5.5 Event Channels •.....••.......•..••.•........•.......•........•.•..•..•.•..........•.........•. 5-5 

5.6 The Systenl Clock •...•.•.••...•••.••.....•..•.........•...•..•..•••.....••••...••.•......•• 5-10 

5.7 Exception ~t Systenl calls •••...••..•••.....••.•..•..................•.•. 5-10 

5.7.1 DE.CLARE EXCEP HDL ...•.....•.......•..••.....•...........•..•••..•..••.•..• 5-11 
5.7.2 DISABLE EXCEP .:: •••.•••••••••.••••••.••••••.•••.••••••.••••••••••••••••.•••••••• 5-12 
5.7.3 ENABLE -EXCEP •••..•••.....•••••••••.•••.•.•..•.......••.••.....•.••..•••....•...• 5-13 

5.7.4 INFO EXCEP ·••••••···•·••••••·•••••······•···•·•·•·••···•····•••••·•·•••·•·••··••·•• 5-14 
5.7.5 SIGNAL EXCEP ·••······•••·••··••••··•·····••••··•·•·•····•••··•·•······••·•••••··· 5-15 
5.7.6 FLUSH_EXCEP ...................................................................... 5-16 

5.8 Event l'1al iage111e11t Systenl calls ..................................................... 5-17 

5.8.1 MAKE_EVENT_CHN ............................................................... 5-18 
5.8.2 KILL EVENT Cl-IN ................................................................. 5-19 
5.8.3 CJ>EN- EVENT- CHN ............•.......•................•............•..•.....•..•. 5-20 
5.8.4 ClosE EVENT CHN ............................................................... 5-21 
5.8.5 INFO_EVENT_CHN ................................................................. 5-22 
5.8.6 WAIT EVENT CHN ................................................................ 5-23 
5.8.7 FLusH EVENT CHN ................................•.•.•......................... 5-25 
5.8.8 SEl'-()_EVENT_CS!--N ................................................................ 5-26 

5. 9 Clock Systenl calls ...••..•...•............................•............••...•..•.•.•...•.• 5-27 

5.9.1 DE.LAY TIJVE ........................................................................ 5-28 
5.9.2 GET TliVIE ............................................................................. 5-29 
5.9.3 SETLOCAL TIJVE DIFF ••••••.••••....•••••••••••••••.•..•..•.•••...•...••••••.. .5-30 
5.9.4 ca-JVERT _TIME ... : ............................•........•........................... 5-31 





Exceptions and Events 

Processes have several ways to keep informed about the state of the system. 
Normal process-to-process communication and synchronization employ pipes, 
shared data segments, or events. Abnormal conditions, including those your 
program may define, employ exceptions (interrupts). Exceptions are signals to 
which the process can respond in a variety of ways under your control. 

5.1 Exceptions 
Normal execution of a process can be Interrupted by an exceptional condition 
(such as dlvlslon by zero or reference to an Invalid address). Some error 
conditions are trapped by the harelware and some by the system software. The 
process itself can define and signal exceptions of your choice. 

When an exception occurs, the system first checks the state of the exception. 
The three exception states are: 

•Enabled 

• Queued 

• Ignorea 
If a system-defined exception is enalJJea the system looks for an associated 
user-defined handler. If none is found, the system invokes the default 
exception handler, which usually aborts the process that generated the 
exception. If a user-defined exception is enabled, the system invokes the 
associated user-defined exception handler. You create a new exception by 
declaring and enabling a handler for it. 

If the state of the exception ls quet/8f.t the exception ls placed on a queue. 
When the exception is subsequently enabled, the queue is examined and the 
appropriate exception handler ls invoked. Processes can flush the exception 
queue. 

If the state of the exception is ignorea the system detects the occurrence of 
the exception, but the exception Is neither honored nor queued. Note that 
Ignoring a system-defined exception has uncertain effects. Although you can 
cause the system to Ignore even the SYS_ TERMINATE exception, that 
capabllity ls provided so that your program can clean up before terminating. 
You cannot set your program to Ignore fatal errors. 

Invocation of the exception handler causes the Scheduler to run, so it is 
possible for another process to run between the signaling of the exception and 
the execution of the exception handler. 

5-1 



cperaang System Reference Manual Excepaons and Events 

52 System-Defined Exceptions 
Certain exceptions are predefined by the C\')erating System. These include: 

• Dlvlslon by zero (SYS_ZERO_DIV). The default handler aborts the process. 

• Value out of bounds (that is, range checK error) or illegal string index 
(SYS_ VALUE_lXE). The default handler aborts the process. 

• Arithmetic overflow (SYS_OVERFLOW). The default handler aborts the 
process. 

• Process termination (SYS_ TERMINATE). This exception ls signaled when a 
process terminates, or when there ts a bus error. address error. illegal 
Instruction, privilege violation, or 1111 emulator error. The default handler 
does nothing. This exception is different from the other system-defined 
exceptions ln that the program always terminates as soon as the exception 
occurs. In the case of other (non-fatal) errors, tne program ls allowed to 
continue until the exception is enabled. 

Except where otherwise noted, these exceptions are fatal if they occur within 
C\')erating system code. The hardware exceptions for parity error, spurious 
Interrupt, and power failure are also fatal. 

5.3 Exceptlm Hcnners 
A user-defined exception handler can be declared for a specific exception. 
This exception handler Is coded as a procedure but must follow certain 
conventions. Each handler must have two input parameters: Envtronment_Ptr 
and Data_Ptr. The (l)erat!ng System ensures that these pointers are val!d 
When the handler is entered. Environment_ Plr points to an area in the stacK 
containing the interrupted environment: register contents, cona!tlon flags, ana 
program state. The handler can access this environment and can modify 
everything except the program counter, register A7, ana the supervisor state 
bit in the status register. Data_Ptr points to an area in the stacK containing 
information about the specific exception. 

Each exception handler must be defined at the global level of the process, 
must return, and cannot have any EXIT or global GOTO statements. Because 
the ~eratlng system alsables the exception before calling tne exception 
handler, the handler should re-enable the exception before It returns. 

If an exception handler for a given exception already exists when another 
handler ls declared for that exception, the old handler becomes dissociated 
from the exception. 

An exception can occur during the execution of an exception handler. The 
state of the exception determines whether it is honored,placed on a queue, or 
ignored. If the second exception has the same name as the exception that ls 
currently being handled and !ts state Is enabled, a nested call to the exception 
handler occurs. (The system always disables the exception before calling the 
exception handler, however. Therefore, nested handler calling occurs only if 
you explicitly enable the exception.) 

5-2 



cperatfng System Reference Hanua/ Exceptions and Events 

There ts an exception-occurred flag, Ex_occurroo_f, for every declared 
exception; It is set whenever the corresponding exception occurs. This flag 
can oe examined and reset using the Il'FO_EXCEP system cau. cnce the flag 
is set, it remains set until FLUSH_EXCEP is called. 
The following program fragment gives an example of exception handling. 
PROCEO...RE Hcnller (Envtrmnent_Ptr:p_env_bll<; 

Data_ Ptr.p _ex_Clata); 
VAA Efl1\lrn:INTEGER; 
BEGIN 
(-Envtromient_Ptr potnts to a recoro contatntng the progran *) 
(-col.llter a'ld an registers. Data_Ptr points to an array of 12 *) 
(*longtnts that contain the event header a'ld text tf this l'lenller *) 
(*ls associated with an event-can ct&Ylel (see below) *) 

. 
ENPilLE_EXCEP(emun..excep_rene); 

. 
ENJ; 

BEGIN (*Main progran*) 

Excep_ncrne:-'ErdlfDoc'; 
OEa...AA.E_EXCEP _1-Cl..(emun,excep_rene)ilHanOler); 

. 
SIQl\l,AJ__EXCEP(ertnun..excep_rene..excep_llata); 

At the time the exception handler is Invoked for a SYS_TERMINATE 
exception, the stack Is as shown in Figure 5-1. 

5-3 



cperatfng System Reference Hanva/ Exceptions and Events 

low add ress 
LlnK 

Program counter 

Data_Ptr i-----, 

,,,.--- Envlronment_Ptr 

Terminate Flag 

Exception Kind I+-"' 
Function Code (fc) 

Access Address (aa) Ex ception Data Block 

Instruction Register (SY S _TERMINATE Exception) 

Status Register 

Program Counter 
... 

~ Program Counter Exe eptlon Environment Block 

Status Register 

00-07 and AO-A7 

Link 

Program Counter 

nigh aoaress 

Figure 5-1 
Staci< at Exception H<nller Invocation 

The Exception Data Block given here reflects the state of the stack upon a 
SYS_ TERMINATE exception. The Term_Ex_Data record (described in Appendix 
A) gives the various forms the data block can take. The Excep_Klnd field (the 
first, or Oth, longint) gives the cause of the exception. The status register and 
program counter values In the data block reflect the true (current) state of 
these values. The same data in the Environment block reflects the state of 

5-4 



[/le.rating System Reference Manual Exceptions and Events 

these values at the time the exception was signaled, not the values at the 
time the exception acWally occurs. 

For SYS_ZERO_DIV, SYS_VALUE_CIB, and SYS_OVERFLOW exceptions, the 
Hard_Ex_oata record described in Appendix A gives the various forms that 
the data block can take. 

In tne case of a bus or address error, the PC (program counter) can be 2 to 10 
bytes beyond the current instruction. The PC and A7 cannot be modified by 
the exception handler. 
When a disabled exception ls re-enabled, a queued exception may be signaled. 
In this case, the exception environment reflects the state of the system at the 
time the exception was re-enabled, not the time at which the exception 
occurred. 

5.4 Events 
M event is a piece of information sent by one process to another, generally 
to help cooperating processes synchronize their act!vltles. An event ts sent 
through a kind of pipe called an event channel. The event is a fixed-size 
data block consisting of a header and some text. The header contains control 
information, the identifier of the sending process, and the type of the event. 
The header ts written oy the system, not the sender, and ts readable by the 
receiving process. The event text is written by the sender; its meaning is 
defined by the sending and receiving processes. 
There are several predefined system event types. The predefined type "user"' ls 
assigned to all events not sent by the (l:lerating System. 

5.5 Event Olamels 
Event channels can be viewed as higher-level pipes. 01e important difference 
ts that event channels require fixed-size data blocks, whereas pipes can 
handle an arbl trary byte stream. 

An event channel can be defined globally or locally. A global event channel 
has a globally defined pathname catalogued in the File System and can be 
used by any process. A local event channel, however, has no name and ls 
known only by the (l:lerating System and the process that opened it. Local 
event channels can be opened by user processes only as receivers. A local 
channel can be opened by the father process to receive system-generated 
events pertaining to its son. 

There are two types of glooaI and local event cnannels: event-walt and 
event-call. If the receiving process is not ready to receive the event, an 
event-wait type of event channel queues an event sent to it . An event-can 
type of event channel, however, forces its event on the process, in effect 
treating the event as CYl exception. In that case, an exception name must be 
given wnen the event-call event channel is opened, and an exception handler 
for that exception must be declared. If the process reading the event-call 
channel is suspended at the time the event is sent, the event is delivered 
wnen tne process oecomes active. 

5-5 



t:peratlng System Refe/E!l?Ce Hantlal Exceptions and Events 

When an event Channel ls created, the (i>eratlng System preallocates enough 
space to the Channel for typical interprocess conmunicatlon. If 
SENJ_EVENT_a-N ls called when the Channel ooes not have enough space for 
the event, the calling process is blocked until enough space ls freed up. 
If WAIT_EVENT_~ ls called When the Channel is empty, the calling process 
is bloeked until an event arrives. 
The following cooe fragments use event-wait Channels to handle process 
synchronlzauon. (i>eratlng System calls used in tnese program fragments are 
documented later In this chapter. 
Process I'.: 

. 
clTI f'BE := 'event ct&Tiel 1'· 
exception:= "; - - ' 
receiver := lRlE; 
CPEN_EVENT _Cl-fl ( errint, cm_raue, refrull., exception, receiver); 
CITI f'BE : = 'event ct&Tiel 2'· 
receiver := FALSE;- - , 
IPEN_EVENT_Cl-fl (errint, clTl_naE, refrun2, exception, receiver); 
.aitlist. length : = 1; 
wai tlist. refrun[ o] : = refrunl.; 
REPEAT 

eventl_ptr ... [O] := agreed~ value; 
interval.sec := O; (* seild event inlnediately *) 
interval. lllSeC : = O; 
SEN> _EVENT _Cl-fl ( errint, refrt.1112, eventl _ptr, interval, cll<tiE ); 
WT_EVENT_Cl-fl (errint, waitlist, refrun_sipliJYJ, event2_ptr); 

. 
( * processing performed here *) 

lJflll AllDone; 

5-6 



cperating system Reference ManlJ8/ 

Process B: 

cm name : = 'event ctlcnlel 2· · 
exception:= "; - - ' 
receiver := TRlE; 

Exceptions and Events 

<FEN_EVENT _ Ctfl ( errint, cm_name, refnum2, exception, receiver); 
cm name := 'event ctlcnlel 1'; 
receiver : = FALSE;- -
CPEN_EVENT_Clfl (errint, cm_naae, refrunl, exception, receiver); 
waitlist. lerJJtll : = 1; 
wa1tl1st.refr1.11[0] := refrunl; 
REPEAT 

event2_ptr"' .[O] := agreed_~_value; 
interval.sec := o; (* sero event 1111118diately *) 
interval.msec := O; 
IAIT_EVENT_llt4 (errint, waitlist, refrun_sipling, eventl_ptr); 

. 
(* processirYJ perfonned here *) 

. 
SEN)_EVENT_llt4 (err1nt,refrun2,event2_ptr, interval,clktine); 

llfTIL AllOone; 

Tl1e order of execution of the two processes is the same regara1ess of the 
process prlorlttes. Process switetl always occurs at tne WAIT_EVENT_a-N 
can. 
In the following example using event-call channels, process switetl may occur 
at different places ln the programs. Process A cans YIELD_a:iu, whicn gives 
the CPU to Process B only if Process B is ready to run. 

S-7 



[petat/ng System RefenJllCe MlTUJJ 

Process,,.._ 

PIUEXI£ Hcmler(Env_ptr:p_env_b~ 
Data_ptr:p_ex_dllta); 

BEGIN 
event2_ptr~. [OJ := agreed_14JOO_value; 

(* processirVJ perfo?Ed here •) 

. 
interval. sec : = O; ( • send IMl1t 1-ltately •) 
interval. llSeC : • O; 
SEtf.>_EVENT_ca (err1nt,retna2,ewnt2_ptr, interval, clktine); 
to_any : .. true; 
YIELD_CRI (errlnt, to_aiy); 

Etf.>; 

BEGIN (• tlain prograa•) 

. 
IECLARE_EllP _Kl.. (errint, excep_nane_l, ilHandler ); 
cm na111e := 'event Chcnlel r· 
exception:= excep ...]laie _ 1; - ' 
receiver := TRtE; 
lFEN _EVENT _(}fl ( errint, cm_ nane, refrunl, exception, receiver); 
cm nane : = ·event ct&Tiel 2·· 
receiver : = FN...SE;- - , 
exception:= • ·; 
(FEN_EVENT_~ (errint,cm_r&E,refr-...2,exception,,receiver); 
SEtf.>_EVENT_ca (err1nt,refrUll2,event2_ptr,1ntervaLclkt1ne); 
to_any := true; 
YIELO_CRI (errint, to_aiy); 

S-8 



qJe/BUng Syrtem Refelenee MarNJaJ Exceptions and Events 

Process B: 

PIUElR Hlrldler(Erw_ptr:p_env_bll<.; 
Data_ptr :p_ex_data); 

. 
BEGIN 

event2J>tr". [OJ : = agreed_l(XJ1_value; 

(• processirv;J perfoI'Ed here •) 

. 
interval.sec := O; (* sem event illllBdiately •) 
interval.mseo := O; 
SEN:>_EVENT_Dfl (errint, refrunL event2_ptr, interval, clkt111e); 
to any : = true; 
YIELD_(]lU (errint, to_any); 

EN:>; 

. 
BEGIN ("'Hain program •) 

DECLARE_EXCEP_Jlll... (errint,excep_llClllej_l,iiHandler) 
cm ·rane := 'event chcnlel 1 • · 
exception:= excep jiame _ 1; - ' 
receiver ·= FPL.SE; 
exception:= "; 
lFEN_EVENT-(}fi (errint, cm_name, retrunl, exception, receiver); 
cm name : = ·event chcnlel 2 ·; 
receiver := TRI.£; - -
lFEN _EVENT_ Dfl (err int, cm_neae, refrun2, exception, receiver); 

. 
EN:>. 

5-9 



t:pemtlng System RefeJ1J11Ce Harx,;aJ Exceptions and Events 

5.6 The System CIOO< 
A process can read the system clock time, convert it to local time, or delay 
its own continuation untU a given time. The year, mon~ day, hOUr, minute, 
second, and millisecond are available from the clock. The system clock is set 
up tnrougn tne WorkShop sne11. For more information, see tne WOJ1<sllop user's 
Guide for tile L/sa. 

5.7 Exceptim Mcliagei1a1t System Calls 
Ttlls section describes all the ~rating System calls that pertain to exception 
management A summary of all the qJerating system calls can oe found in 
Appendix A. The following special types are used in exception management 
calls: 

T_ex_na11e = SlRINi[16]; 
Longadr = "longint; 
T_ex_data = Array [O .• 11] Of longlnt; 
T ex sts = Record 
- - ex occurreu f:tJooleai; 

ex-state:t ex state; 
nt.i_excep: Integer; 
hdl_adr:longadr; 

enc1; 
T_ex_state = (enabled, queued, i~re<l); 

S-10 



cperatlng System Reference Manual Exceptions and Events 

5.7.1 c:ECLARE_EXCEP_HJL Exception ~t System Call 

CECLARE_EXCEP _I«. ( Var Errt«Jn:Integer; 
Var Excep _ Nane: t _ex_ naire; 

Entry_Point:LongAdr) 

ErrNum: Error indicator 
Excep_Na~: Nane of exception 
Entry_Point: Address of exception handler 

c:ECLARE_EXCEP _1-D_ sets the q:>erating system so that the occurrence of 
the exception referred to by Excep_Ncme causes the execution of the 
exception handler at Entry_Polnl 

Excep_N<me ls a character string name with up to 16 characters that ls 
locally defined 1n the process and Known only to the process and the c.peratlng 
System. If Entry_Polnt ls nll and Excep_N<me specifies a system exception, 
the system aefault exception handler ls usea. My previously declared 
exception handler ls dissociated by this call. The exception itself ls 
automatically enabled. 

If any Excep_Name exceptions are queued at the time of the 
DECLAAE_EXCEP _1-ll._ call, the exception is automatically enabled and the 
queued exceptions are handled by the newly declared handler. 

You can call DECLARE_EXCEP _1-D_ with an exception handler address ofnll 
to dlssoclate your handler from the exception. If there is no system handler 
defined, the program that signals the exception receives an error 201. 

5-11 



t:peratlng System Reference Manual 

5.72 DISABLE_EXCEP Exceptloo Management System Call 

DISAEl..E_EXCE> (Var ErrtUl:Integer; 
Var Excep Nclne: t ex rare; 

Queue:Booleal} -

ErrNum: Error indicator 

Exceptions and Events 

Excep_Name: Narre of exception to be disabled 
Queue: Exception queuing flag 

A process can expllcltly disable the trapping of an exception oy calling 
DISABLE_EXCEP. Excep_Nclne ls the name of the exception to be disabled. 
If Queue ls true and an exception occurs, the exception ls queued and ls 
ha"ldled When it ls enabled again. If Queue ls false, the exception ls ignored. 
When an exception handler ls entered, the state of the exception in question 
ls automatically set to queued. 

If an exception handler ls associated through CPEN_EVENT_a-N wlth an 
event channel and DISABLE_EXCEP is called for that exception, then: 

• If Queue is false, and if an event ls sent to the event channel by 
SENJ EVENT a-N, the SEJ\O EVENT a-N call succeeds, bUt It Is 
equivaient to not calling SE"'5_EVENT_a-N at all. 

• If Queue ls true, and If an event Is sent to the event cnannel by 
SENJ EVENT C>N, the SENJ EVENT a-N call succeeds and a call to 
WAIT.:::EVENT.:::a-N receives the evenC thUs dequeuing the exception. 

5-12 



tperatlng system Reference Manual 

5.7.3 ENABLE_EXCEP Exceptlm l"Blagement System Call 

ENAEl...E_EXCEP (Var ErrtUa:Integer; 
Var Excep-rere:t_ex_raie) 

ErrNum: Error indicator 

Exceptlms IYJd Events 

Excep_Name: Name of exception to be enabled 

ENABLE_ EXCEP causes an exception to be nandled again. Since tne 
q:Jeratlng System automatically disables an exception When its exception 
handler Is entered (see DISMl..E_EXCEP), tne exception nandler stloUld 
explicitly re-enable tne exception before It returns to tne process. 

5-13 



cpemting System Refemnce Manual 

5.7.4 ffU_EXCEP ExcepUm Management System can 
Irt=O_EXCB> (Var Er.rM.n:Integer; 

var Excep_Nale:t_ex_rane; 
var Excep_status:t_ex_sts) 

ErrNum: Error indicator 
Excep_Name: Name of exception 
Excep_Status: Status of exception 

Exceptions and Events 

IN=O_EXCEP returns information abOut the exception specified by 
Excep_Nane. Ttle parameter Excep_Status is a record containing information 
aboUt the exception. This record contains: 

t ex sts = RECCR> ( • exception status •) 
Ex_occurred_f:Boolem;(wexceptim occurred flag •) 
Ex_state:t_ex_state; (• exceptim status •) 
ttJR_excep:lnteger;(-ro. Of except1ms (JJet.led •) 
Hlll_oor:Lmgmr; (-exceptim ta.iler·s address •) 

ENJ; 

ll1ce Ex_occurred_f has been set to true~ only a call to FLUSH_EXCEP can 
set it to false. 

S-14 



q;eratlng system Reference l'1IK7UaJ 

5.75 SIGNM.._EXCEP Exceptlm 11-B1agement System Call 

S'IGNAL_EXCEP (Var Errtla:Integer; 
Var Exl::ep _NEIE: t _ex_ na111e; 
var Excep_Data: t_ex_data} 

ErrNl.111: Error indicator 

Exceptions and Events 

Excep_name: Nare of exception to t:Je si!J18lec:I 
Excep_oata: Information for exception handler 

A process can slglal the occurrence of an exception by calling 
SIGNM.._EXCEP. The exception hanc:ller associatec:I with Excep_Ncme ls 
entered. It ls passec:1 Excep_~ a aata area containing information aoout 
the nature Cl1CI cause of the exception. The structure of this information area 
ls: 

array[o .. size_eXdata] of LorJJint 
SIGNM.._EXCEP can t:Je useCI for user-Cleflnec:I exceptions anCI for testing 
exception handlers definec:I to handle system-deflnec:I exceptions. 

S-15 



cperating system Reference Mantia/ 

5.7.6 FLLS-l_EXCEP ExcepUoo Mcmge11ient System Gall 

FUJSH_EXCEP (Var ErrtOD:Integer; 
var Excep_Ncllle:t_ex_nane) 

ErrNlln: Error indicator 

Exceptions and Events 

Excep_Name: Ncm? of exception fdhose queue is flushed 

FU.JSl-f_EXCEP clears out tne queue associated wit.ti the exception 
Excep_Ncme ancJ resets Its "exception occurred" flag. 

5-16 



t:perat/ng System Reference t--tava/ Except/ms a7d Events 

5.8 Event Mmagement system cans 
This section describes an the q:>eratlng System cans tnat pertain to event 
management A summary of all tne (l)eratlng System calls can be found in 
Appendix A. The following special types are used in event management calls: 

Pattfane = S1Rlrt2[255); 
T_ex_rane = STRINJ[16]; 
T ctn sts = Recoro 
- - cm_type:c:tn_kiro; 

run_events: integer; 
open_recv:integer; 
open_send:integer; 
ec _ rane: pattfane; 

encl; 
c:tn_kiro = (wait_ec, call_ec}; 
T waitlist = Record 
- lerY;Jth:integer; 

refrun:array [O .. 10] Of integer; 
encl; 

P r eventblk = "r eventblk; 
R=eVentblk = Recore 

event header :t eheader; 
even(: text: t_eVerit _text; 

encl; 
T eheader = Record 
- sencl_pid:longint; 

event_type:longint; 
encl; 

T _event_ text = array [ o .. 9] Of longint; 
P s eventblk = "s eventblk; 
S-eVentblk = T event text; 
Tines~_interVal = Record 

Tine rec = Record 

sec: longint; 
lllSeC: 0 •• 999; 

end; 

- year: integer; 
day:l. .366; 
hoUr:-23 •. 23; 
lllirlrte: -59 .. 59; 
secmd:O .. 59; 
lllSeC: 0 •• 999; 

end; 

5-17 



tperat/ng System Reference Hamai 

5.8.1 MAKE_EVENT_a-f\I Event Mcmgement System can 

MAKE_EVENT_Dfl (Var Errtt.lll:Integer; 
Var Event_CJTl_Nale:PatlTele) 

ErrNum: Error indicator 
Event_Chn_Name: Patnnane of event enamel 

Exceptions and Events 

MAKE_EVENT_a-N creates an event channel with the name given in 
Event_OTI_Ncme.. The name must tJe a File System pathname; lt cannot oe 
null. 

5-18 



cpemtlng System Reference Manual 

5.8.2 KILL_EVENT_a--N Event Ma'lagement System Call 
KILL_EVENT_~ (Var Er~:Integer; 

Var Event_OTI_Nare:Pattl'lClre) 

ErrNum: Error indicator 

Exceptions and Events 

Event_Chn_Name: Pathname of event channel 

To delete an event channel, call KILL EV£NT Cl-N The actual deletion Is 
delayed until all processes using the event channel have closed it. In the 
perloa oetween the KILL EVENT a--N call and the channel's actual deletion, 
no processes can open it.- A channel can be deleted by any process that 
knows the channel's name. 

5-19 



[/Jeratfng System Reference Manual 

5.8.3 IFEN_EVENT_Cl-N Event Management System Call 
CFEN_EVENT_Cl-t4 (Var Errt«.m:Integer; 

var Event cnn Na11e:PatfTialre; 
var Refl"liii:Infeger; 

Excep_Narre:t_ex_nane; 
Receiver:Boolean) 

ErrNum: Error indicator 

Exceptions anti Events 

Event Chn Name: Pathnaire of event channel 
RefNuiii: - Identifier of event chamel 
Excep_Name: Exception name, if any 
Receiver: Access 11Dde of calling process 

CPEN_EV'ENT_D-f\I opens an event channel and defines its attributes from ttie 
process point of view. RefNlm is returned by the ~erating System to be 
used In any further references to the channel. 
Event_Chn_Name determines whether the event channel is locally or globally 
defined. If It is a null string, me event channel is locally defined. If 
Event_Chn_Name is not null, It Is the File System pathname of the ct1annel. 

Excep_Ncrne determines whether the channel is an event-wait or event-call 
channel. If it Is a null string, the channel is of event-wait type. Otherwise, 
the channel is an event-call channel and Excep_Ncrne is the name of the 
exception that is signaled when an event arrives in the channel. Excep_Name 
must be declared before I ts use in the CPEN _EVENT_ D-f\I call. 
Recelver ls a Boolean value !ndlcatlng whether the process ls opening the 
channel as a sender (Receiver ls false) or a receiver (Receiver is true~ A 
local cnannel (one with a null pathname) can be opened only to receive 
events. Also, a call-type channel can only be opened as a receiver. 

5-20 



cperat/ng System Reference fvlant.lal 

5.8.4 U..OOE_EVENT_a-f\I Event Mmagement System Call 

Cl..OSE_EVENT_cm (Var ErrttJll:lnteger; 
Rem.In: Integer) 

ErrNum: Error indicator 

Exceptions and Events 

RefNum: Identifier of event channel to be closed 

U..OSE_E"1:NT _a-N closes tne event channel associated with Refl\k.rn. My 
events queued in the channel remain there. The channel cannot be accessed 
until 1 t 1s opened again. 

If the channel has previously been killed with KILL_EVENT_a-N, you cannot 
open lt after lt has been closed. 

If the channel has not been killed, it can be opened by CPEN_EVENT_a-N. 

5-21 



cperating System Reference Manual 

5.8.5 ll'fO_EVENT_Cl-N Event Mcmgement System can 

ltf='O_EVENT_~ {Var Errtt.m:Integer; 
ReflUn: Integer; 

var Chn_Into:t_cm_sts) 

ErrNum: Error indicator 
RefNum: Identifier of event channel 
Chn_Info: Status of event channel 

Exceptions and Events 

il'FO_EVENT_Cl-N gives a process information about an event channel. The 
q:>erating System returns a record, cm_Info, with information pertaining to 
the channel associated with Refl'lrn. 

The definition of the type of the cm_Info record is: 

t cm sts = 
- -RECCRl ( * event chcnlel status *) 

Chn_type:Chn_kind; (* wait_ec or call_ec *) 
tun_events:Integer; (* l'Ulller Of queued events *) 
Open_recv:Integer; (* rutJer of processes reading chcnlel *) 
Open_send:integer; (* no. Of prooesses sending to this 

chcnlel *) 
Ec_name:patmame; (* event ct'lcn1el name *) 
ff(); 

5-22 



cperatfng System Reference ManlJBJ 

5.8.6 WAIT_EVENT_a-N Event 1'1a'lagement System Call 

IAIT_EVENT_~ (Var 
Var 
var 

ErrNum: 

ErrtUn:Integer; 
wait List:t waitlist; 
Refb: Integer; 
Event_ptr:p_r_eventt>lk) 

Error indicator 

Excepuons and Events 

Wait List: 
RefNum: 
Event_Ptr: 

Record with array of event channel refnums 
Identifier of channel that had an event 
Pointer to event data 

WAIT_EVENT_a-N puts the calling process in a waiting state pending the 
arrival of an event in one of the specified channels. Wait_List is a pointer to 
a list of event channel identifiers. When an event arrives in any of these 
channels, the process ls made ready to execute. RefN.ln identifies which 
channel got the event, and Event_Ptr points to the event itself. 

A process can wait for any Boolean combination of events. If it must wait 
for any event from a set of channels (an CR condition), 1t should call 
WAIT_EVENT_C!-1\1 with Wait_List containing the list of event channel 
Identifiers. If, on the other hand, It must wait for all the events from a set 
of channels (an ANJ condition), then for each channel in the set, 
WAIT_EVENT_a-N should oe called with Walt_Ust containing just that 
channel identifier. 

The structure of t_ waitlist is: 

RECOOO 
Length: Integer; 
Refrl.lll:Array[O .. s1ze_wa1tl1st] of Integer; 

ENJ; 

Event_Ptr is a pointer to a record containing the event header and the event 
text. Its definition is: 

P r eventt>lk = "'r eventt>lk; 
R:::eVentt>lk = Recofd 

event header:t eheader; 
event-text:t event text; 

end; - - -
T el'leOOer = Record 
- send_pid:longint; 

event_type:longlnt; 
end; 

T_event_text = array [O .. 9] of longlnt; 

Sencl_pid is the process id of the sender. 

5-23 



cpemt/ng System Refe.ronce Hanval Exceptions and Events 

currently, tne poss101e event type values are: 
1 Event sent by user process 
2 Event sent by system 

wnen you receive tne SYS_SCN_ TERM event, tne first Iongtnt of tne event 
text contains the termination cause of the son process. The cause ls same as 
tnat given in tne SYS_ TERMINATE exception given to the son process. Tne 
rest of the event text can be fllled by tne son process. 
If you call WAIT_EVENT_a-N on an event-call channel tnat nas queued 
events, tne event ls treated just llke an event in an event-wait channel. If 
WAIT_EVENT_a-N ls called on an event-call channel that does not have any 
queued events, an error ls returned. 

5-24 



QJeiating system Refeience t-"/anval 

5.8.7 FLUSH_EVENT_a-N Event Mcnigement System Call 

FLUSH_EVENT_Clfl (Var ErrtUn:Integer; 
Reft«.ln:Integer) 

ErrNum: Error indicator 

£weptims and Events 

RefNum: Identifier of event channel to be flushed 

FLUSH_E\IENT_a-N clears out the specified event channel. All events 
queued in the channel are removed. If FLUSH_EVENT_~ is called oy a 
sender, It has no effect. 

5-25 



Q:Jemtlng System Reference Mamal 

5.8.8 SENJ_EVENT_Cl-N Event 1'1ar1ageme11t System can 
SEN>_EVENT_llfl (Var ErrtUn:Integer; 

ErrNum: 
RefNum: 
Event Ptr: 
Interval: 
Clktime: 

Refl'Un: Integer; 
Event_Ptr:p_s_eventblk; 
Interval:Tinest8'J_interval; 
Clktime:Time_rec) 

Error indicator 
Channel for event 
Pointer to event data 
Tirrer for event 
Time data for event 

Exceptions and Events 

SE:r,o_EVENT_a-f\I sends an event to the channel specified by Refl\lrn. 
Event_Ptr points to the event that is to be sent. The event data area 
contains only the event text; the header is added by the system. 
If the event ls of the event-wait type, the event ts queued. Otherwise the 
q:ieratlng System signals the correspondlng exception for the process recelvlng 
the event. 

If the channel is opened by several senders, the receiver can sort the events 
by the process identifier, which the q:>erating System places in the event 
header. Alternatively, the senders can place predefined identifiers, which 
identify the sender, in the event text. 
The Interval parameter indicates whether the event is a timed event. 

f\llTE 

Tlmed events wlll not be supported In future releases of the [l>erating 
System. The Interval and Clktlme parameters will be Ignored In future 
releases. If you want your software to be upward-compatible, always 
set both fields of the Interval parameter to zero. 

TlmestfllJ_lnterval is a record containing a second and a millisecond field. If 
both fields are o, the event is sent immediately. If the second given ls less 
than 0, the millisecond field is ignored and the Tlme_rec record is used. If 
the time in the Tlme_rec has already passed, the event is sent immediately. 
If the millisecond field is greater than o, and the second fielcJ ls greater than 
or equal to o, the event ls sent that number of seconds and mllllseconds from 
the present. 
A process can time out a request to another process by sending itself a timea 
event and then waiting for the arrival of either the timed event or an event 
lncllcating the request has been served. If the timed event ls received flrst, 
the request has timed out. A process can also time its own progress by 
periodically sending Itself a timed event through an event-can event channel. 

5-26 



t:peratlng System Reference Hant/al Exceptions and Events 

5.9 CIOCI< system cans 
This section describes an the ~erating System calls that pertain to the clock. 
A summary of all the ~eratlng System calls can be found in Appendix A 

The following special types are used in clock calls: 
Tinestnp_interval = Record 

Tine rec = Record 

sec: longint; 
msec:O •. 999; 

end; 

- year: integer; 
oay:l. .366; 
hOUr:-23 .. 23; 
mil'lJte :-59 . .59; 
second:O .. 59; 
mseG: 0 .• 999; 

end· , 
Hour_range = -23 .. 23 
Hirute_range = -59 .. 59; 

5-27 



cperatlng System Reference M817l/8/ 

5.9.1 DELA y - Til"E Cloel< System can 
OELAV_TitE (Var Errrt.n:Integer; 

Interval:Timestnp_interval; 
Clktime:Time_rec) 

ErrNum: Error indicator 
Interval: Delay timer 
Clktime: Time information 

Exceptions and Events 

DELAY_ Til"E stops execution of the calling process for the number of seconds 
and milliseconds specified in the Interval record. If this time period is zero, 
DELAY_ Til"E has no effect If the period is less than zero, execution of the 
process ls delayed untll the time specified by Clktime. 

5-28 



t:peratlng System Reference /\18/l(/af 

5.9.2 GET_Til"'E Clock System call 

GET_TitE (Var Errt«.m:Integer; 
var Sys_Time:Time_rec) 

ErrNum: Error indicator 
sys_Time: Time information 

Exceptions and Events 

GET_ Til"'E returns the current system clock time in the record Sys_ Time. The 
rnsec field of sys_Ttme always contains a zero on return. 

5-29 



t:pemting system Reference HanvaJ 

5.9.3 SET_U:CAL_Tlf"E_DIFF Cloe!< System Call 

SET_LOCAL_TitE_OIFF (Var ErrfUl:Integer; 
tOJr :tb.lr _ ICWlge; 
Minute:Mirute_range) 

ErrNum: Error indicator 

Exceptions and Events 

Hour: Nurrt:Jer of hours difference from the system clocK 
Minute: Nurrt:Jer of minutes difference from the system clock 

SET_LCX:::AL_Tlf"E_DIFF informs the q:ieratlng system of the difference in 
hours and minutes between the local time and the system clock. Hrur and 
Mlrute can be negative. 

5-30 



tperatlng system Reference Hant/al 

5.9.4 CCNVERT_Til"E CIOCI< System can 
CONVERT_TitE {Var Errt«Jn:Integer; 

Var sys_Tine:Tine_rec; 
Var Local Time: Time rec; 

To_sys:Boolecrl)-

ErrNum: Error indicator 
sys_Time: system clock time 
Local Tirre: Local time 
To_Sys: Direction of time conversion 

Exceptions and Events 

al\IVERT _ Tlr"E converts between local time and system clock time. 
To_Sys is a Boolean value indicating in which direction the conversion is to 
go. If To_sys is true, the system takes the time Clata in Local_Tlme anel puts 
the corresponding system time in Sys_Time. If To_sys is false, the system 
takes the time data in Sys_ Time and puts the corresponding local time in 
Local_Ttme. Both time data areas contain the year, month, day, hour, minute, 
second, and m1llisecond. 

5-31 





029-0421-A 

Chapter 6 
Configuration 

6.1 conflguratlon Systefn cans ..............•.................................•.............. 6-1 

6.1.1 CARDS EQIJIPPED .................................................................. 6-2 
6.1.2 GET c:O\FIG N.AJVE ..................•............................................. 6-3 
6.1.3 osaOOTVCl.. .. :: .......•.••......•..............•.•....................................... 6-4 





Configuration 

Every Lisa system ts configured using the Preferences tool. Preferences 
places the OO"lftguratton state of the system in a special part of the system's 
memory called parameter rnemoJX Although parameter memory is not 
cootained on a diSk., lt is suppliecl with battery power so that the contents are 
kept even when the system ts turned off. The batteries are charged as long 
as the Lisa is plugged in, even if the unit ls powered off. If line power ls 
lost, the batteries wlll keep parameter memory securecl for several hours. In 
addition, every time parameter memory is changed, a copy of the new data ls 
made on the coot t11Sk.. If the contents of parameter memory are lost, this 
diSk. copy is automatically restored to parameter memory. 

Since the devices actually connected may differ from the configuration stored 
in parameter memory, three calls are provided that allow programs to request 
lnformatton aoout the conflguratton of the system. 

NJTE 

Configuration System cans will be Changed in future releases of the 
q:>erattng System. Do not use these cans If you want your software to 
be upward-compatible. 

6.1 coot1{JJI'atlon Syn.em Calls 
This section describes all the ~rating System calls that pertain to 
configuration. A summary of all the cperating System calls can be found in 
Appendix A. Special data types used by configuration calls are defined along 
with the calls. 

6-1 



tperstlng System Reference HtnJaJ 

6.1.1 CARa;_EQUIPPED Confl(JJlatlm System can 
CWl>S_~PPED (Var Erl'M.a:Integer; 

Var In_Slot:Slot_array) 

ErrNum: Error code 
In_Slot: Identifies the types of cards configured 

This call returns an array srowtng tne types of cards wtllcn are ln the various 
card slots. 

The definition of Slot_array ts: 

Where: 

slot_array = array (1 .• 3 J Of card_ types; 

card_types • (no_cant 
an>le_cant 
n_port_cant 
net_caro.. 
laser_card); 

6-2 



cpemting system Reference Manuel 

6.12 GET_alflG_NAl'"E conttguraUon System can 
GET_llff"IG_NN'E (var Emun:Integer; 

Devpostn: Tports; 
var Oevnilne:E_Nclle) 

Errrun: Error code 
Devpostn: A port identifier 
Devnare: The naJJE of the deVice attached to the port 

Conflgumtlon 

This call returns the ncrne of the deVlce configured at the port given In 
oevpostn See CJSBCIJTW.. for the definition of Tports. Type E_"8ne ls 
defined as: 

E_Nalle = STRINi [32]; 

6-3 



t:;;eratlng System Reference MlnJaJ 

6.1.3 OOBOJTW.... cootl~Uon System Call 

OSBCXJTV(L (Var Errtt.o:Integer) : Tports 

ErrNum: Error COde 
Tports: Identifies the port to 9Jhich the boot voluire is attached 

OOBClJT'J[l_ is a function tnat returns the identifier for the port attached to 
the boot volume. This port might not oe the port configured for the boot 
volume, since lt is possible for the user to override the default boot. Note 
tnat the port identifier ls not the same as the device name. You can use 
GET_<XlfIG_~ to find out the name of the device attached to the port. 

Tports ls a set tnat has tnls oeflnt tton: 
Tports = (~twig, la.ert•ig, parallel, 

slotll, slot12, slotB, slot14, 
slot2l, slot22, slot23, slot24, 
slot3l, slot32, slot33, slot34, 
seriala, serialb, main console, alt console, 
t_nwse, t_speaker, t_extral, t_extfa2, t_extra3); 

6-4 



029-0422-A 

Appendixes 

A ~raung System Interfaee Ullt .•.••.........•.....•.....•.•............•............... A-1 

B System-Reserved ExcepUon "'8fnes • • • • • •••••••••• •• • • • • • • •• • •• • • ••• • • • • • •• • • • • •• • • • •• • • B-1 

c System-Reserved Event Types ...•..........................•............................. C-1 

o Error "1essaQes .................................................................................. D-1 

E FS_Jf'l=O Fields •............•..•..•...•......•.........•••......•.•.••••....••..••....•...•..•.• E-1 





Appendix A 
Operating System Interface Unit 

OOT syscall; 
INTRINSIC; 

INTERFACE 

CCR>T 

(* system call definitiCJls 1i1it *) 

nex enc11E = 32· 
maxj>atmclle =' 255; 
max label size = 128; 
len:::: exname = 16; 
size_ ID«fata = 11; 

( ... nexi- length Of a file system ooject lkllE *) 
(* aex1- length of a file system patmane *) 
(* ~ size Of a file label, in bytes *) 
(* length of exception naoe *) 
( * 48 bytes, exception data block should have the 

saie size as r_eventblk, received event block *) 

size etext = 9· ( * event text size - 40 bytes *) 
size=waitlist : 10; (* size of wait list - should be sate as req:>tr_list *) 

(* exceptim kind definitims for 'SYS_TERt1INATE' exception ... ) 
call_ term = O; ( * process called terminate _process *) 
emed = 1; (* process executed 'end' statenelt *) 
self_killed = 2; (* process called kill_process on self *) 
killed = 3; (* process was killed by aiother process *) 
fthr_tem = 4; (* process's father is terminating *) 
bad_syscall = 5; (* process made invalid sys call - SliJcode bad *) 
bad_erm.n = 6; (* process passed bad address for errrun pam *) 
swap_error = 7; (* process aborted we to code swap-in error *) 
stk_overflow = 8; (*process exceeded max size (+T r«1) of strt *) 
data_overflow = 9; (* process tried to exceed nex data space size *) 
parity_err = 10; (* process got a parity error .tiile executing *) 

def div zero 
def-valiJe oob 
def-ovf. -
def=rni_key 
def_range 
def_str_index 

= 11;(* default handler for div zero exception was called *) 
= 12; ( * • for value oob exceptim *) 
= 13; (* • for overflow exception *) 
= 14; (... • for tf1I key exceptim ... ) 
= 15;(* •for 'SYS_VALLE_CXE' excep we to value range err *) 
= 16;(* • for 'SYS_VALLE_CXE' excep we to string indeX err *) 

A-1 



t:pe1atfng system Reference Ma/?l/al tperat/ng System Interface U7/t 

bUs error = 21; 
aofr error = 22; 
illg~)nst = 23; 
priv_violation = 24; 
line 1010 = 26· 
lir1E()111 = 27~ 

IM'lexpected_ex = 29; 

div zero = 31; 
vali:ie ooo = 32; 
ovfw - • 33; 
rwl_key = 34; 
value_range = 35; 
str_index = 36; 

(* bUs error occurred 
(* address error occurred 
(* illegal instnction trap occurred 
(* privilege violation trap occurred 
(* line 1010 enulator occurred 
(* line 1111 eoulator occurred 

(* an IM'lexpected exception occurred 

(• exception kind definitions for hardWare exception 

(• excep kind for value range cn:J string index error 
(* Note that these tw cause 'SVS_VALl£_CXE' excep 

(-flEVICl:_cnmn. flllCt1onS*) 

di/Parity = 1; 
d\O.rtOTR = 2; 
<Ml.rt><LW = 3; 
d\O.rtOelay = 4; 
dV8aW = 5; 
dVInlai t = 6; 
dVIrtHR = 7; 
dVInXLW = 8; 
dVTypecnj = 9; 
dVOiscon = 10; 
dVrutNoHS = 11; 
dVErrStat = 15; 
<MietEvent = 16; 
dVAutolf = 17; 
dV01SkStat = 20; 
dVOiSkSpare = 21; 

TYPE 

(t!ffS-232*) 
(-RS-232*) 
(-RS-232*) 
(t!ffS-232*) 
(-RS-232*) 
(-RS-232, ~E*) 
(t!ffS-232*) 
(-RS-232*) 
(-RS-232*) 
(-RS-232*) 
(t!ffS-232*) 
(-PRCFILE*) 
(*flH>Cl.E*) 
(-RS-232, C(Hi(li, PARN...LEL PRINTER*) (-not yet*) 
(*DISKETTE, PRCFILE*) 
(*OISKETTL PRlFILE*) 

pattl1alle = string [lllBX_patl'llClle]; 
e_naine = strirY;J [RBX_enane]; 
namestring = string [20); 
prooinfoRec = record 
png>atl'llClle : pattnlne; 

g1ooa1_id : longint; 
father_i<l : longint; 
priority : 1. .255; 
state : (pacttve ... psuspericioo, pwaiting); 
data in : boolean 

end; -

A-2 

*) 
*) 
*) 
*) 
*) 
*) 

*) 

*) 

*) 
*) 



cperatfng System Reference Manual t:peratjng System interface Unit 

Tdstype = (Cls_share<t Cls_private); (* types of Clata segirents *) 

ClsinfoRec = recorCI 
llEfll_size : longint; 
Clisc_size: longint; 
nuntl _open : integer; 
lc:lsn : integer; 
boundF : boolean; 
presentf : boolean; 
creatorF : boolean; 
rwaccess : OOOlean; 
segptr : longint; 
VO lnaire : e _naire; 

enCI; 

t_ex_nare = string [len_exnaire]; 
longadr = ftlongint; 
t __ ex_state = (enableCI, queued, ignoreCI); 
p_ex_Clata = ftt_ex_Clata; 

(* exception naire 

(* exception state 

*) 

*) 

t_ex_data =array [O .. size_eXClata] of longint; 
t_ex __ sts = record 

(* exception Clata blK *) 
(* exception status *) 

ex occurred f : boolean; 
ex-state : t ex state; run_ excep : Integer; 
hc:ll_adr : longadr; 
end; 
p_env_blk = ftenv_blk; 
env blk = record 

- pc longint; 
sr integer; 
CIO longint; 
dl longint; 
d2 longint; 

end; 

d3 longint; 
d4 longint; 
d5 longint; 
d6 longint; 
d7 longint; 
ao longint; 
al longint; 
a2 longint; 
a3 longint; 
a4 longint; 
a5 longint; 
a6 longint; 
al longint; 

(* exception occurred flag *) 
(* exception state *) 
(* nunt>er of exceptions q'ed *) 
(* handler address *) 

(* environREnt block to pass to handler *) 
(* program counter *) 
(* status register *) 
(* Clata registers o - 7 *) 

(* address registers o - 7 *) 

A-3 



QJeratjng System Reference Manual q;erating System Interface Unjt 

p _term_ ex_ aata = "term_ ex_ aata; 
term ex aata = record (* terminate exception aata block *) 

case excep_kind : longint of 
call term.. 
ended, 
self killect 
killed, 
ftnr_term. 
bad_ syscall, 
t>ad_errnum.. 
swap_ error, 
stk overflow, 
data overflow, 
parity_err : (); (* dUe to process termination *) 

1llg_1nst, 
priv violation, 

line 1010, 
line-1111, 
cJef div zero, 
cJef-valiie oob, 
cJef-ovfw, -

(* dUe to illegal instruction, privilege 
violation 

(* dUe to 11ne 1010, 1111 enulator 

*) 

*) 

cie()1ni_key ( * terminate aue to aefaul t nancner for hardware 
exception *) 

: (sr : integer; 
pc : longint); (* at the tine of occurrence *) 

Clef _raige, 
def str index ( * terminate due to default handler for 

·svs_VALLE_OOB' excep for value ra-ige or string 
index error *) 

: (value_cnecK : integer; 
upper_bound : integer; 
lower_bound integer; 
return_pc longint; 
caller a6 longint); 

bUs error, 
addf_error (* <lJe to bus error or address error 

(f1.11_field : packed record (* one integer 
filler : o .. S7ff; (* 11 bits 
r_w_flag : boolean; 
i_n_flag : boolean; 

fl.ll_coe1e : 0 .• 7; (* 3 bits•) 
end; 

A-4 

*) 
*) 
*) 



t:pemdng System Reference M8f1()8J 

end; 

access_acir : longint; 
inst_register : integer; 
sr _error : integer; 
pc_error : longint); 

p_naro_ex_data = ftnaro_ex_data: 

cpemdng System Interface Unit 

naro ex data = record (* nardware exception data bloek •) -case excep_l<100 : lorgint Of 
div zero, value oob, ovfw 
: (sr : integer; 
pc : longint); 
va1ue_range, str_index 
: (value_cnecl< : integer; 
t4JJ)er_tn.ni : integer; 

end; 

J ower _ bcJU'lO : integer; 
retum_pc : longint; 
caller_a6 : longint); 

accesses ,. (dread, dwrite, append, private, glot>al_refruo); 
mset = set Of accesses; 
iomde = (absolute, relative, sequential); 

UID s record ("'t.llique id*) 
a, o: longint 

end; 

tinest8')_1nterval = record 
sec : longint; 
msec : o .. 999; 

end; 

(• time interval *) 
( * l'Ultler Of secmds *) 
(* rumer Of milliseconds within a second *) 

1nfo_type = (oovice_t, vo11.111e_t, ot>ject_t); 
oevtype = (diSkoov, pascalbd, seqdeV, bitbkt, non_io); 
filetype = (Undefined.. tooffile, rootcat, freelist, bacl>loeks, sysdata. 

spool, exec, usercat, pipe, bootfile, s~ta. swapc00e, ranap, 
userfile, killeaot>Ject); 

entrytype= (enptyentry, catentry, 11A<entry, f ileentry, pipeentry, ecentry, 
killedentry); 

A-5 



t:peratlng system Reference Manual 

fS_infO = record 
nane : e nane; 
d1r_patn - : patmane; 
llllChine_id : longlnt; 
fs_overnead : integer; 
result_scavenge : integer; 
case otype : 1nfo_type Of 
deVice_t1 VOll.IDe_t: ( 
ioctm'lel : integer; 
deVt : deVtype; 
slot_no : integer; 
fs_size : longlnt; 
vol_size : longint; 
blockstructured,, llD.llted : bOOlean; 
opencnrlt : longint; 
privatedev1 reRDte, lockeddev : bOOleal; 
llD.l\t_pendirg. t.nD.llt_pending : bOOlean; 
volnaE, pass.am : e_nane; 
fsvers1<n volrun : integer; 
volid : UIO; 
baek~_vol1d : UIO; 

cperating system Interface unit 

blocksize, datasize, clustersize, fileco.llt : integer; 
lal:Jel_size : integer; 
freeco.llt : longint; 
OTVC, OTCC, OTVB, OTVS : longint; 
master_copy_id, oopy_tnread : longint; 
ovenD.llt_s~ : UIO; 
boot_code : integer; 
bOOt_envirm : integer; 
pr1v1leged, w1te_protected : bOOlean; 
master, copy, oopy_flag, scavenge_flag : boolean; 
vol_left_no.nted : ooolean ); 

object_t : ( 
size : longint; 
psize : longint; ( * physical file size in bytes *) 
J.psize : integer; (* logical page size in bytes for tnis file *) 
ftype : filetype; 
etype : entrytype; 
OTC, OTA, Ont. 018, DTS : longint; 
refrUR : integer; 
fmark : longint; 
8CIOOde : mset; 
nreaders, rwriters, rusers : integer; 
fUid : UIO; 
user_type : integer; 
user _st.t>type : integer; 

A-6 



cperating System Reference Manual cperating System Interface Unit 

system_type : integer; 
eof, safety_on, ks•itch : boolem; 
private, lOCl<ecJ, protecteci, master_flle : OOOlem; 
file_scavenged, file_closecJ_by_OS, file_left_open:OOOlem) 

end; 

dctype = record 
dcVersion : integer; 
decode : integer; 
dcdata : array [ o .. 9] of longint; 

end; 

t witlist = record 
- length : integer; 

(• user/driver Clefined <Jata 

(* wit list 

refl'Ull : array [O .. size_witlist] of integer; 
end; 

t etleader = record 
- sena_pia : longint; 

event_type : longint; 
end; 

(* event header 
(* sender's process id 
( * type of event 

t_event_text = array [O .. size_etext] of longint; 
p_r_eventblk = Ar_eventblk; 
r_eventblk = record 

event header : t etleader; 
event=text : t_e\ient_text; 

end; 

p_s_eventblk = As_eventblk; 
s_eventblk = t_event_text; 

tine rec = record 

end; 

}iear : integer; 
<lay : L .366; 
hour : -23 .. 23; 
minute : -59 .. 59; 
second : 0 - .59; 
msec : o .. 999; 

(* julim <late *) 

A-7 

•) 

*) 

*) 
*) 
*) 



Q:Jeratlng system Reference HantJaJ 

cm_kind = (wit_ec, can_ec); 
t cm sts = record 
- lirl_type : cm_k1nd; 

rui_events : integer; 
open_recv : integer; 
open_send : integer; 
ec_naoo : pattnne; 

em; 

hour_l'Cl'lge = -23 .. 23; 
lllirute_rcn;Je = -59 .. 59; 

{cmfiguratioo stuff: } 

Q:Jeratlng System Interface unit 

(* Chcnlel status •) 
(* ctlinlel type *) 
(* rut>er of events ~ *) 
(* rl.lltler of opens for receiving *) 
(* ruit>er of opens for sending *) 
(* event ctlinlel OCIE *) 

tports = (14>J>ertwig, lowertwig, parallel, 
slotu, slot12, slot13, slot14, 
slot21, slot.22, slot23, slot24, 
slot3L slot32.. slot33, slot34, 
seriala,, serialb, nein console, alt oonsole, 
t_nwse, t_speal<er, t_extral, t_extiaz, t_extra3); 

caro_types = (no_caro, apple_caro, n_port_cart1 net_caro, Iaser_card); 

slot_array = array [1. .3) of card_ types; 

{ Lisa Office Systelll parareter met1Dry type } 

pnfJyteltli<JJB = -128 .. 127; 
ittenflec = array[l .. 62] of pneyteltli(J.le; 

(* File System calls *) 

procewre tW<E_FILE (var ecode:integer; var path:patmane; 
label_size:integer); 

procecllre tw<E_PIPE (var ecooe:!nteger; var path:patfl'ae; 
label_size:integer); 

procewre MAKE_CATAL.lli (var ecooe:integer; var path:pattnne; 
label_siZe:integer); 

procewre MAKE_LIN< (var ecooe:integer; var path, ref:pattnne; 
label_size:integer); 

A-8 



q)eJatinq SJstem Reference /\-tanaal lf-le1ating SJYtem Jnteuace L.lnH 

procedure KILL_OB.:ECT (var ecooe:integer; var path:pathnalre); 

procedure lN<ILL_FILE (var ecode:integer; refnurn:integer; var 
new_naire:e_naire); 

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer; 
manip:mset); 

procedUre CLOSE_OBJECT (var ecode:integer; refrun:integer); 

procedure READ_DATA (var ecode:integer; refnurn:integer; oata_addr:longint; 
count:longint; var actual:longint; rtnde:iOl!Dde; 
offset:longint); 

procedUre WRITE_DATA (var ecOde:integer; refnum:integer; oata_addr:longint; 
count:longint; var actual:longint; rtnde:iOIOOde; 
offset:longint ); 

procedure FLUSH (var ecooe:lnteger; refnum:integer); 

procedure UJOKlP (var ecode:integer; var path:pathname; var 
attribUtes:fs_info ); 

procedure INFO (var ecode:integer; refnum:integer; var reHnfo:fs_info); 

procedure ALLOCATE (var ecode:integer; refnum:integer; contiguous:boolean; 
count:longint; var actual:longint); 

procedure TRf.lo.ICATE (var ecode:integer; refnuntinteger); 

procedure CONPACT (var ecode:integer; refnum:integer); 

procedure RENAME_ENTRY ( var ecode:integer; var path:pathname; var 
ne~e_naire ); 

procedure READ_LABEL ( var ecode:integer; var path:pathname; 
data_addr:longint; count:longint; var actual:longint ); 

procedure WRITE_LABEL ( var ecode:integer; var path:pathname; 
data_addr:longint; count:longint; var actual:longint ); 

procedure tDJNT ( var ecode:integer; var vnaire : e_naire; var password 
e_naire ;var devnare : e_naire); 

procedUre LN1JLNf ( var ecooe:lnteger; var vnaire : e_naire ); 

A-9 



LJ.7t31a!Jng ~~vstem ReftHence t-·lamal Lf..713Jallnp system Jl7teuace Uml 

procedure SET_WOOl<H-ll_DIR ( var ecoae:integer; var path:pathnalre ); 

procedure GET_WORl<ING_DIR ( var ecooe:integer; var path:path1alle ); 

procedure SET_SAFETY (var ecooe:integer;var path:pathnalle;on_off:boolean ); 

procedure DEVICE_CONTROL ( var ecooe:integer; var path:pathna'll!; 
var cparm : detype ); 

procedure RESET_CATALOG (var ecode:integer; var path:pattlnare); 

procedure GET_NEXT _ENTRV (var ecode:integer; var prefix, entry:e_._nane ); 

procedure SET_FILE_ItfO (var ecode :integer; refnum:integer; fsi:fs __ info); 

(* Process Manage~t system calls *) 

flllCtlon Ny_ID:longlnt; 

procedure Info_Process (var errnt.11tinteger; proc_1d:long1nt; var 
proc_info:procinfoRec); 

procedure Vield_CPU (var errnum:integer; to_any:boolean); 

procedure setPriority_Process (var errnum:integer; proc_id:longint; 
ne111_pr1or1 ty:integer); 

procedure SUspend_Process (var errnt.11tinteger; proc_id:longint; 
susp_family:boolean); 

procedure Activate_Process (var errnum:integer; proc_id:longint; 
act_family:ooolean); 

procedure Kill_Process (var errn1.11tintP.ger; proc_id:longlnt); 

procedure Terminate_Process (var errrun:integer; event_ptr:p_s_eventtllk); 

procedure tlal<e_Process (var errnum:integer; var proc_ld:longint; var 
progfile:pathnare; var entrynane:naioostring; 
evnt_Chn_refnum:integer); 

A-10 



L~1e1atifl!l ... 'i_y:ftem Rere1ence t!anaal tpe10tinp S)'stem Jnterfdce cMr 

(* Mel!Dry Managenent system calls *) 

procedure mal<e_dataseg(var errnum: integer; var segname: pathnarre; rrem_size, 
disc_size: longint; var refl1llll: integer; var segptr: 
Iongint; ldsn: integer; dstype: Tdstype); 

procedure kill_dataseg (var errnU11tinteger; var segnaire:pathnalre); 

procedUre open_dataseg (var errnum:integer; var segrn:vie:patnnare; var 
refnum:integer; var segptr:longint; ldsn:integer); 

procedure close_Clataseg (var errnum:integer; refnum:integer); 

procedure size_dataseg (var errnt111tinteger; refnum:integer; 
deltairemsize:longint; var newiremsize:longint; 
deltad1scs1ze: longint; var newdiscsize: longint); 

procedure info_dataseg (var errnum:integer; refnum:integer; var 
dsinfo:dsl.nfoRec); 

procedtJre setaccess_dataseg (var errnum:integer; refnum:integer; 
readOnly:bOOlean); 

procedure untlind_dataseg (var ermum:integer; refnum:integer); 

procedure tllnd_Clataseg(var errnum:lnteger; refnum:integer); 

proeedure info_ldsn (var erTilUl!tinteger; ldsn: integer; var refnum: integer); 

proeedure nush __ dataseg(var errnum: integer; refnum: integer); 

procedure rrem_info(var errnum: integer; var swapspace, ctataspace, 
cur_cooesize, max_codesize: longint); 

procedure info_address(var errnum: integer; address: longint; var refnum: 
lnteger); 

( * Exception Hanagenrot system calls *) 

procedure declare_excep_hdl (var errnum:integer; var excep_nare:t_ex_nare; 
entry_point:longadr); 

procedure disatne_excep (var errnum:integer; var excep_naire:t_ex_nare; 
queue:boo lean); 

A-11 



L/.Je1ating S)''.l'!em Reference f'!anuaJ {f..Jeratin9 S}~\·tem interlace Unit 

procedUre enao1e_excep (var errnum:integer; var excep_name:t_ex_nane); 

procedUre signal_excep (var errnuntinteger; var excep_nane:t_ex_nane; 
excep_data:t_ex_data); 

procedUre info_excep (var errnum:integer; var excep_nane:t_ex_name; var 
excep _ status:t _ex_ st s); 

procedUre flusn_excep (var errnum:integer; var excep_nane:t_ex_nane); 

(* Event Chalnel managenent system calls *) 

procedUre maKe_event_chn (var errnum:integer; var event_chn_nane:pattinane); 

procedUre kill_event_chn (var errnum:integer; var event_chn_naire:pathnalre); 

procedUre open_event_chn (var errnum:integer; var event_chn_name:pathnalle; var 
refnum:integer; var excep_nane:t_ex_nane; 
rece i ver:boole<Yl); 

procedUre close_event_chn (var errnum:integer; refnum:integer); 

procedUre info_event_chn (var errnum:integer; refnum:integer; var 
cnn_info:t_cnn_sts); 

procedUre wait_event_cnn (var errnum:integer; var wait_list:t_waitlist; var 
ref num: integer; event _ptr:p _ r _ eventb lk); 

procedure flusn_event_chn (var errnum:integer; refnum:integer); 

proceoure send_event_r..hn (var errnum:integer; refr4Jlltinteger; 
event_ptr:p_s_eventblk; interval:tinestnp_interval; 
clktine:tine_rec); 

(* Tiner functions system calls *) 

procedUre delay_time (var errnuntinteger; interval:timestnp_interval; 
c1Kt1ne:t1ne_rec); 

procedUre get_tire (var errnum:integer; var (Jllt_tine:tine_rec); 

procedure set_local_tine_diff (var errnum:integer; nour:nour_range; 
minute:minute _range); 

A-12 



Lf.7e1atinq ~~rstem Relemnce Namal l].7eJaUng S}'Ytem Jnte1tace f../oj{ 

proceaure convert_tiwe (var erlTlllltinteger; var gmt_tiwe:tiwe_rec; var 
local_tiire:tiire_rec; to_gmt:boolean); 

{configuration stuff} 

flXlCtion OSBOOTVOL(var error : integer) : tports; 

procedUre GET_CONFIG_NANE( var error:integer; devpostn:tports; var 
devnane:e_nane); 

procedUre CAROS_EQUIPPED(var error:lnteger; var ln_slot:slot_array); 

IMPLEMENTATION 

procedUre MAKE FILE; external; 

procooure MAKE PIPE; external; 

procooure MAKE CATALOG; external; 

procedUre MAKE_LINK; external; 

procedUre KILL_OBJECT; external; 

procedUre OPEN; external; 

proceciure CLOSE_OBJECT; external; 

proceaure READ_DATA; external; 

prOCedUre WRITE_DATA; external; 

procedUre FLUSH; external; 

procedllre LOOKUP; external; 

procedUre INFO; external; 

procedUre ALLOCATE; external; 

procedllre TRltEA TE; external; 

procedUre CIJPACT; external; 

A-13 



cperatfng system Reference Manual 

procewre REtWE_ENlRY; external; 

procewre READ_ LABEL; external; 

procewre IRITE_LABEL; external; 

proceciure to.lff; external; 

procewre LND.Jff; external; 

procewre SET_~INi_DIR; external; 

procewre GET_~Ni_DIR; external; 

proceciure SET_SAFETV; external; 

procewre DEVI~ ~TRCL; external; 

procewre RESET CATALOO; external; 

procewre GET_tEXT_ENlRY; external; 

procewre GET _OEV _NNE; external; 

fl.flCtion Hy_ID; external; 

procewre Info_Process; external; 

procewre Yield_CP\J; external; 

procewre sewriority_Process; external; 

procewre SUspend_Process; external; 

procewre Activate_ Process; external; 

proceciure Kill_ Process; external; 

procewre Terminate_Process; external; 

procewre Hake_Process; external; 

procewre SChed _Class; external; 

A-14 

t:peratfng System Interface Unit 



t:pe.ratlng System Reference /118/7l/8l 

procecl.lre make_ciataseg; external; 

procecl.lre kill_dataseg; external; 

procecl.lre ~ _ciataseg; external; 

procecl.lre close_ciataseg; external; 

procewre size_ciataseg; external; 

prooewre info_ciataseg; external; 

procecl.lre setaccess_ciataseg; external; 

procewre t.mind_dataseg; external; 

procewre bind_ootaseg; external; 

procewre info_lasn; external; 

procewre fluSh_ootaseg; external; 

prooewre nen info; external; 

procewre cleclare_excep_nal; external; 

procewre aisable_excep; external; 

procewre enat>le_excep; external; 

procewre sipl_excep; external; 

procewre info_excep; external; 

procewre fluSh_excep; external; 

procewre make_ event_cm; external; 

procewre kill_event_cm; external; 

prooewre ~_event_cm; external; 

procewre close_event_cm; external; 

A-15 

t:pe.rating System Interface Unit 



cperating System Reference Manual 

procerure lnfo_event_cm; external; 

proceellre wal t_event_cm; external; 

procewre f lusn_event_cm; external; 

proceellre seno_event_cm; external; 

procewre cie1ay_tire; external; 

procewre get_ tine; external; 

procewre set_local_tire_aiff; external; 

procewre convert_tire; external; 

procewre set_file_info; external; 

f1.11Ct1on ENAa.EOBG; external; 

f1.11Ct1on OSBOOTVll..; external; 

proce<l.lre GET_ cnt=IG_ NAtE; external; 

fl.flCtion DISK_LIKELV; external; 

proceaure CAROS_EQUIPPED; external; 

procewre Reacl _ PMem; external; 

procewre lri te PMem; external; 

em. 

A-16 

cperatlng system Interface unit 



Appendix B 
System-Reserved 
Exception Names 

SYS_CNERFLOW c:Nerflow exception. Signaled when the TRAPV instruction ts 
executed and ttle overflow condttion ts on. 

SYS_V~LE_CIB value-out-of-bound exception. Signaled when the ct-tK 
instruction is executed and ttle value is less than o or greater 
Ulan upper bot.rld. 

SYS_ZERO_DIV Division by zero exception. Signaled When the DIVS or DIVU 
instruction ts executed and the divisor ts zero. 

SYS_ TERMINATE Termination exception. Slgnalea When a process ls to IJe 
terminated. 

B-1 





SYS_SCN_ lERM 

Appendix C 
System-Reserved 

Event Types 

"Son terminate" event type. If a father process has created a son 
process with a local event Ctlannel, this event is sent to the 
father process when the son process terminates. 

C-1 





Appendix 0 
Error Messages 

-6081 End of exec file input 
-6004 Attempt to reset text file with typed-file type 
-6003 Attempt to reset nontext file with text type 
-1885 ProFile not present during driver initialization 
-1882 Profile not present during driver initialization 
-1176 Data in the object have been altered by scavenger 
-1175 File or volume was scavenged 
-1174 File was left open or volume was left mounted, and system crashed 
-1173 File was last closed by the OS 
-1146 011 ya portion of the space requested was allocated 
-1063 Attempt to mount boot volume from another Lisa or not most recent boot 

volume 
-1060 Attempt to mount a foreign boot disk following a temporary unmount 
-1059 The bad block directory of the diskette is almost full or difficult to read 
-696 Printer out of paper during initialization 
-660 Cable disconnected during Profile initialization 
-626 Scavenger indicated data are questionable, but may be CK. 
-622 Parameter memory and the disk copy were both invalid 
-621 Parameter memory was invalid but the disk copy was valid 
-620 Parameter memory was valid but the disk copy was invalid 
-413 Event channel was scavenged 
-412 Event channel was left open and system crashed 
-321 Data segment open when the system crashed. Data possibly invalid. 
~ 320 Could not determine size of data segment 
-150 Process was created, but a library used by program has been scavenged and 

altered 
-149 Process was created, but the specified program file has been scavenged and 

altered 
-125 Sepcified process is already terminating 
-120 Specified process is already active 
-115 Specified process is already suspended 
100 Specified process does not exist 
101 Specified process is a system process 
110 Invalid priority specified (must be 1..225) 
130 Could not open program file 
131 File System error while trying to read program file 
132 Invalid program file (incorrect format) 
133 Could not get a stack segment for new process 
134 Could not get a syslocal segment for new process 
135 Could not get sysglobal space for new process 
136 Could not set up communication channel for new process 

D-1 



[/JeJaUng System Reference Manual 

138 Error accesslng program flle whlle Ioadlng 
141 Error accessing a llbrary flle while loading program 
142 cannot run protected flle on this machine 

E.rro.r Messages 

143 Program uses an intrinsic unit not found in the Intrinsic Library 
144 Program uses an intrinsic unit whose name/type does not agree with the 

Intrinsic Library 
145 Program uses a shared segment not found in the Intrinsic Library 
146 Program uses a shared segment whose name does not agree with the Intrinsic 

Llbrary 
147 No space in syslocal for program file descriptor during process creation 
148 No space in the snared IU data segment for the program's shared IU globals 
190 No space in syslocal for program file description during Llst_ LibFiles 

operation 
191 could not open program file 
192 Error trying to read program file 
193 Cannot read protected program file 
194 Invalid program flle (incorrect format) 
195 Program uses a snared segment not found ln tile Intrinsic Library 
196 Program uses a snared segment whose name does not agree with tile Intrinsic 

library 
198 Disk 110 error trying to read the Intrinsic unl t directory 
199 Specified library file number does not exist in the Intrinsic library 
201 No such exception name declared 
202 No space left in the system data area for Declare_Excep_Hdl or 

Slgnal_Excep 
203 Null name specified as exception name 
302 Invalid LDSN 
303 No data segment bound to the LDSN 
304 Data segment already bound to the LDSN 
306 Data segment too large 
307 Input data segment path name ls invalid 
308 Data segment already exists 
309 Insufficient disk space for data segment 
310 An invalid size has been specified 
311 Insufficient system resources 
312 Unexpected File System error 
313 Data segment not found 
314 Invalid address passed to Info Address 
315 Insufficient memory for operation 
317 Disk error while trying to swap in data segment 
401 lnvalld event channel name passed to Make_Event_Chn 
402 No space left in system global data area for Q')en_Event_ Chn 
403 No space left in system local data area for Q')en_Event_Chn 
404 Non-block-structured device specified in pathname 
405 catalog is full In Make_Event_cnn or Open_Event_Chn 
406 No such event channel exists in Klll Event Chn 
410 Attempt to open a local event channel to send 

D-2 



rpe;-atfng System Refe1ence Manual Eno.r Messages 

£111 Attempt to open event channel to receive when event channel has a receiver 
413 Unexpected File System error in Open_Event_Chn 
416 Cannot get enough disk space for event channel in Open_Event_Chn 
417 unexpected File System error in Close_Event_Chn 
420 Attempt to wait on a channel that the calling process did not open 
421 Wait_ Event_ Chn returns empty because sender process could not complete 
422 Attempt to call Walt_Event_Chn on an empty event-call channel 
423 Cannot find corresponding event channel after being blocked 
424 Amount of data returned while reading from event channel not of expected 

size 
425 Event channel empty after belng unblocked, Wait_Event_Chn 
£126 Bad request pointer error returned In Walt_Event_ Chn 
£127 Wal t_Ust has lllegal length specified 
£128 Receiver unblocked because last sender closed 
429 unexpected F!le System error Jn Walt_Event_Chn 
430 Attempt to send to a channel which the calling process does not have open 
431 Amount of data transferred whlle writing to event channel not of expected 

size 
432 Sender unblocked because receiver closed In send Event Chn 
433 Unexpected File System error In send_Event_Chn- -
£140 unexpected Flle system error in Make_Event_Chn 
441 Event channel already exists In Make_Event_Chn 
445 Unexpected File System error in Kill_Event_Chn 
450 unexpected Flle system error in Flush_Event_Chn 
530 Slze of stack expansion request exceeds llmi t specified for program 
531 Cannot perform explicit stack expansion due to lack of memory 
532 Insufflclent dlsk space for expllclt stack expansion 
600 Attempt to perform I/O operation on non 1/0 request 
602 No more alarms available during driver initialization 
605 Call to nonconfigured device driver 
606 cannot find sector on floppy diskette (dlsk unformatted) 
608 Illegal length or dlsk address for transfer 
609 Call to nonconflgured device driver 
610 No more room In sysglobal for I/O request 
613 Unpermltted direct access to spare track wlth sparing enabled on floppy 

drive 
614 No disk present In drive 
615 Wrong call version to floppy drive 
616 Unpermltted floppy drive function 
617 Checksum error on floppy diskette 
618 cannot format, or write protected, or error unclamping floppy diskette 
619 No more room in sysglobal for I/O request 
623 Illegal device control parameters to floppy drive 
625 Scavenger Indicated data are bad 
630 The tlme passed to Oelay_Tlme, convert_ Time, or send_Event_Chn has 

invalid year 
631 Illegal timeout request parameter 

D-3 



tpe1ati119 system Reference l'lanr.1a1 Elnv /vtessages 

632 No memory available to Initialize clock 
634 Illegal timed event id of -1 
635 Process got unblocked prematurely due to process termination 
636 Timer request did not complete successfully 
638 Time passed to Delay_ Time or Send_Event_ Chn more than 23 days from 

current time 
639 Illegal date passed to set_ Time, or lllegal date from system clock in 

Get Time 
640 RS-232 drl ver called wl th wrong version number 
641 RS-232 read or write initiated with illegal parameter 
642 unimplemented or unsupported RS-232 driver function 
646 No memory available to initialize RS-232 
647 unexpected RS-232 tlmer interrupt 
648 Unperml tted RS-232 lnl tlallzatlon, or disconnect detected 
649 mega! device control parameters to RS-232 
652 N-port driver not initialized prior to ProFile 
653 No room ln sysglobal to lnltlallze ProFlle 
654 Hard error status returned from drive 
655 Wrong call version to ProFlle 
656 Unpermitted ProFile function 
657 Illegal device control parameter to ProFlle 
658 Premature end of file when reading from driver 
659 Corrupt File System header chain found in driver 
660 Cable disconnected 
662 Parity error while sending command or wrltlng data to ProF!le 
663 Checksum error or CRC error or par! t y error in data read 
666 Timeout 
670 Bad command response from drive 
671 Illegal Jengtri specified(must-1 on input) 
672 Unimplemented console driver function 
673 No memory available to initialize console 
674 Console driver called with wrong version number 
675 Illegal device control 
680 Wrong call version to serial driver 
682 Unpermitted serial driver function 
683 No room in sysglobal to initialize serial driver 
685 Eject not allowed this device 
686 No room in sysglobal to initialize n-port card driver 
687 Unpermitted n-port card driver function 
688 Wrong call version ton-port card driver 
690 wrong call version to parallel printer 
691 Illegal parallel printer parameters 
692 N-port card not initialized prior to parallel printer 
693 No room in sysglobal to initialize parallel printer 
694 Unimplemented parallel printer function 
695 Illegal device control parameters (parallel printer) 
696 Printer out of paper 

0-4 



r;.1eratjng System Reference Manual E1Tor Messages 

698 Printer off11ne 
699 No response from printer 
700 Mismatch between loader version number and ~eratlng System version 

number 
701 OS eXhausted its internal space during startup 
702 Cannot make system process 
703 cannot klll pseudo-outer process 
704 Cannot create driver 
706 Cannot initialize floppy disk driver 
707 Cannot initialize the File system volume 
708 Hara dlsk mount table unreadable 
709 Cannot map screen data 
710 Too many slot-based devices 
724 The boot tracks do not know the right File System version 
725 Either damaged Flle system or damaged contents 
726 Boot device read falled 
727 The OS wlll not flt into the avallable memory 
728 SYSTEM.OS is missing 
729 SYSTEM.CCNFIG ls corrupt 
730 SYSTEM.OS Is corrupt 
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt 
732 SYSTEM.LLD is corrupt 
733 Loader range error 
734 wrong driver Is found. For Instance, storing a diskette loader on a ProFile 
735 SYSTEM.LLD is missing 
736 SYSTEM.UNPACK is missing 
737 Unpack Of SYSTEM.OS wlth SYSTEM.UNPACK failed 
801 HResul t <> o on IIO using the Monitor 
802 Asynchronous 1/0 request not completed successfully 
803 Bad combination of mode parameters 
806 Page specified is out of range 
809 Invalid arguments (page, address, offset, or count) 
810 The requested page could not be read in 
816 Not enough sysglobal space for File System buffers 
819 Bad device number 
820 No space in sysglobal for asynchronous request list 
821 Already initialized I/O for this device 
822 Bad device number 
825 Error in parameter values (Allocate) 
826 No more room to allocate pages on device 
828 Error in parameter values (Deallocate) 
829 Partial deallocation only (ran into unallocated region) 
835 lnvalld s-file number 
837 Unallocated s-file or I/O error 
838 Map overflow: s-fl!e too large 
839 Attempt to compact file past PECF 
841 Unallocated s-file or I/O error 

D-5 



Lpe;aUng System Reference Manual 

843 Requested exact flt, but one couia not be provlded 
847 Requested transfer count is<- o 
848 End of file encountered 
849 Invalid page or offset value ln parameter llst 
852 Bad unit number 
854 No free slots in s-l!st directory (too many s-files) 
855 No available disk space for flle riints 
856 Device not mounted 
857 Empty, Jocked, or lnvalld s-file 
861 Relative page ls beyond PEOF (bad parameter value) 
864 No sysglobal space for volume bitmap 
866 wrong FS version or not a valid Lisa FS volume 
867 Badunltnumber 
868 Bad unl t number 
869 unit already mounted (mount)/no unlt mounted 
870 No sysglobal space for DCB or MDDF 
871 Parameter not a val!a s-flle JD 
872 No sysglobal space for s-file control block 
873 Specified file is already open for private access 
874 Oevicenotmounted 
875 Invalid s-flle ID or s-flle control block 
879 Attempt to postion past LECF 
881 Attempt to read empty file 
882 No space on volume for new data page of file 
883 Attempt to read past LEOF 
884 Not first auto-allocation, but flle was empty 
885 couJa not update fllesize riints after a wr! te 
886 No syslocal space for 1/0 request list 
887 catalog polnter does not lndlcate a catalog (bad parameter) 
888 Entry not found in catalog 
890 Entry by mat name already exists 
891 Catalog is full or is damaged 
892 Illegal name for an entry 
894 Entry not found, or catalog ls damaged 
895 Invalld entry name 
896 Safety switcri is on--cannot kill entry 
897 Invalld bootdev va!Ue 
899 Attempt to allocate a pipe 
900 Invalld page count or FCB pointer argument 
901 Could not satisfy allocation request 
921 Patriname invalld or no sucri device 
922 Invalid label size 
926 Patriname invalld or no sucri device 
927 Invalid label size 
941 Patriname invalld or no sucri device 
944 Objectls not a file 
945 File is not in trie killed state 

D-6 

EJTor Messages 



cpe1-aang System Refe1-ence l"'la!ll1a1 

946 Pathname Invalid or no such device 
947 Not enough space in syslocal for File System refdb 
948 Entry not found in specified catalog 
949 Private access not allowed if file already open shared 

E1Tor t-"fessages 

950 Pipe already in use, requested access not possible or dwrite not allowed 
951 File Is already opened in private mode 
952 Bad refnum 
954 Bad refnum 
955 Read access not allowed to specified ooject 
95b Attempt to posi lion FMARK past LECF not allowed 
957 Negative request count Is mega! 
958 Nonsequential access is not allowed 
959 System resources exnausted 
960 Error wri tlng to plpe while an unsatisfied read was pending 
961 Bad refnum 
962 No WRITE or APPEND access allowed 
963 Attempt to position FMARK too far past LEOF 
964 Append access not allowed in absolute mode 
965 Append access not allowed in relative mode 
966 Internal inconsistency of FMARK and LECF (warning) 
967 Nonsequential access is not allowed 
968 Bad refnum 
971 Pathname invalid or no such device 
972 Entry not found in specified catalog 
974 Bad refnum 
977 Bad refnum 
978 Page count ls nonpos!tive 
979 Not a block-structured device 
981 Bad refnum 
982 No space has been allocated for specified file 
983 Not a block-structured device 
985 Bad refnum 
986 No space has oeen allocated for specified flle 
987 Not a block-structured device 
988 Baa refnum 
989 Caller is not a reader of the pipe 
990 Not a Olock-structured device 
994 Invalid refnum 
995 Not a block-structured device 
999 Asynchronous read was unblocked before it was satisfied 

1021 Pathname invalid or no such entry 
1022 No such entry found 
1023 rnvalid newname, check for·-· in string 
1024 New name already exists In catalog 
1031 Pathname invalid or no such entry 
1032 Invalid transfer count 
1033 No such entry found 

0-7 



q.1eraUng System Reference Manual 

1041 Pathname lnvalld or no such entry 
1042 lnvalld transfer count 
1043 No such entry found 
1051 No device or volume by that name 
1052 A volume is already mounted on device 

EJror Messages 

1053 Attempt to mount temporarily unmounted boot volume just unmounted from 
tnis Llsa 

1054 The bad block directory of the diskette is invalid 
1061 No aevice or volume by that name 
1062 No volume is mounted on device 
1071 Not a valid or mounted volume for working directory 
1091 Pathname invalid or no such entry 
1092 No such entry found 
1101 Invalid device name 
1121 Invalid device, not mounted, or catalog is damaged 
1128 Invalid pathname, device, or volume not mounted 
1130 Flle ls protected; cannot open due to protection violation 
1131 No device or volume by that name 
1132 No volume is mounted on that device 
1133 No more open files in the file list of that device 
1134 Cannot find space in sysglobal for open f!le list 
1135 Cannot find tt1e open file entry to modify 
1136 Boot volume not mounted 
1137 Boot volume already unmounted 
1138 Caller cannot have higher priority than system processes when call!ng ubd 
1141 Boot volume was not unmounted when calling rbd 
1142 Some other volume still mounted on the boot device when calling rbd 
1143 No sysglobal space for MDDF to do rbd 
1144 Attempt to remount volume which is not the temporarily unmounted boot 

volume 
1145 No sysglobal space for bit map to do rbd 
1158 Track-by-track copy buffer ls too small 
1159 Shut.down requested wh!le boot volume was unmounted 
1160 Destlnatlon device too small for track-by-track copy 
1161 Invalid final shutdown mode 
1162 Power is already off 
1163 Illegal command 
1164 Device is not a diskette device 
1165 No volume ls mounted on the device 
1166 A valid volume is already mounted on the device 
1167 Not a block-structured device 
1168 Device name is invalid 
1169 could not access device before initialization using default device 

parameters 
1170 could not mount volume after !nl tlallzatlon 
1171 ·-·is not allowed in a volume name 
1172 No space available to ini tlalize a bitmap for the volume 

D-8 



!peiating j_ystem Rele1ence Nanual 

1176 cannot read from a pipe more man half of its allocated physical size 
1177 Cannot cancel a read request for a pipe 
1178 Process waiting for pipe data got unblOcked because last pipe writer closed 

it 
1180 cannot write to a pipe more than ha! f of l ts allocated physical size 
1181 No system space left for request block for pipe 
1182 Writer process to a pipe got unblocked before the request was satisfied 
1183 Cannot cancel a wrl te request for a pipe 
1184 Process waiting for pipe space got unblocked because the reader closed tne 

pipe 
1186 cannot allocate space to a pipe whlle it has data wrapped around 
1188 Cannot compact a pipe while it has data wrapped around 
1190 Attempt to access a page that is not allocated to the pipe 
1191 Bad parameter 
1193 Premature end of file encountered 
1196 something is still open on devlce--cannot unmount 
1197 Volume Is not formatted or cannot be read 
1198 Negative request count is illegal 
1199 Function or procedure is not yet implemented 
1200 Illegal volume parameter 
1201 Blank flle parameter 
1202 Error writing destination file 
1203 Invalid ucso directory 
1204 File not found 
1210 Boot track program not executable 
1211 Boot track program too big 
1212 Error reading boot track program 
1213 Error writing boot track program 
1214 Boot track program me not found 
1215 Cannot write boot tracks on that device 
1216 could not create/close internal buffer 
1217 Boot track program has too many code segments 
1218 could not find configuration Information entry 
1219 could not get enough working space 
1220 Premature ECF in boot track program 
1221 Posl ti on out of range 
1222 No device at that position 
1225 Scavenger has detected an internal inconsistency symptomatic of a software 

bug 
1226 Invalld device name 
1227 Device is not block structured 
1228 Illegal attempt to scavenge the boot volume 
1229 cannot read consistently from the volume 
1230 Cannot write consistently to the volume 
1231 cannot allocate space (Heap segment) 
1232 Cannot allocate space (Map segment) 
1233 cannot allocate space (SFDB segment) 

0-9 



L{JtYating ~~rstem Reference Na11ua1 

1237 Error rebulld!ng trie volume root directory 
1240 Illegal attempt to scavenge a non-OS-formatted volume 
1296 Bad string argument has been passed 
1297 Entry name for the object is invalid (on the volume) 
1298 S-list entry for tne object is invalid (on tne volume) 
1807 No disk in floppy drive 
1820 Write-protect error on floppy drive 
1822 Unable to clamp floppy drive 
1824 Floppy drive write error 
1882 Bad response from ProFile 
1885 Profile timeout error 
1998 Invalid parameter address 
1999 Bad refnum 
6001 Attempt to access unopened file 

EnvI Nessages 

6002 Attempt to reopen a file which Is not closed using an open FIB (file Info block) 
6003 QJeration incompatible with access mode with which file was opened 
6004 Printer offline 
6005 File record type incompatible with character device (must be byte sized) 
6006 Bad integer (read) 
6010 QJeration incompatible with file type or access mode 
6081 Premature end of exec file 
6082 Invalid exec (temporary) file name 
6083 Attempt to set prefix witn null name 
6090 Attempt to move console with exec or output file open 
6101 Bad real (read) 
6151 Attempt to reinitalize heap already in use 
6152 Bad argument to NEW (negative size) 
6153 Insufficient memory for NEW request 
6154 Attempt to RELEASE outside of heap 

[llerating System Error Codes 
The error codes listed below are generated only when a nonrecoverable error 
occurs while in Operating System code. 

10050 Request block is not chained to a PCB (Unblk _ Req) 
10051 Bld_Req is called witn interrupts off 
10100 An error was returned from SetUp_Oirectory or a Data Segment routine 

(Setup_IU!nfo) 
10102 Error> o trying to create shell (Root) 
10103 Sem_count> l(Init_Sem) 
10104 Could not open event cnannel for snell (Root) 
10197 AUtomat!c stack expansion fault occurred in system code (Check_Stack) 
10198 Need_Mem set for current process while scheduling is disabled 

(SimpleScneduler) 
10199 Attempt to block for reason other tnan I/O wnile scheduling is disabled 

(S!mplescneduler) 
10201 Hardware exception occurred wnile in system code 
10202 No space left from Sigl_Excep call in Hard_Excep 

D-10 



(JJeraUng System Refe1ence Mama! 

10203 No space left from Slgl_Excep call in Nml_Excep 
10205 Error from Wait_Event_Chn called in Excep_Prolog 
10207 No system data space in Excep_Setup 
10208 No space left from Sigl_Excep call in range error 
10212 Error In Term_Def _Hdl from Enable_Excep 
10213 Error in Force_ Term_Excep, no space in Enq_Ex_Data 
10401 Error from Close_Event_Chn In Ec_Cleanup 
10582 unable to get space in Freeze_seg 
10590 Fatal memory parity error 
10593 Unable to move memory manager segment during startup 
10594 unable to swap In a segment during startup 
10595 unable to get space in Extend_MM11st 

Env1 Messages 

10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size) 
10597 Trying to allocate space to an allocated segment (Alloc _ Mem) 
10598 Attempting to allocate a nonfree memory region (Take _Free) 
10600 Error attempting to make timer pipe 
10601 Error from Kill_ctiject of an existing timer pipe 
10602 Error from second Make _Pipe to make timer pipe 
10603 Error from Open to open timer pipe 
10604 No syslocal space for head of timer list 
10605 Error during allocate space for timer pipe, or interrupt from nonconfigured 

device 
10609 Interrupt from nonconf!gured device 
10610 Error from info about timer pipe 
10611 Spurious Interrupt from floppy drive #2 
10612 Spurious Interrupt from floppy drive tH, or no syslocal space for timer list 

element 
10613 Error from Read_Data of timer pipe 
10614 Actual returned from Read_Oata is not the same as requested from timer 

pipe 
10615 Error from open of the receiver's event channel 
10616 Error from Write Event to the receiver's event channel 
10617 Error from Close=Event_Chn on the receiver's pipe 
10619 No sysglobal space for timer request block 
10624 Attempt to shut down floppy disk controller while drive is still busy 
10637 Not enough memory to initialize system timeout drives 
10675 Spurious timeout on console driver 
10699 Spurious timeout on parallel printer driver 
10700 Mlsmatcn between Joader version number and Operating System version 

number 
10701 OS eXhausted Its Internal space during startup 
10702 Cannot make system process 
10703 cannot kill pseuao-outer process 
10704 Cannot create driver 
10706 cannot initialize floppy disk driver 
10707 cannot lnltlal1ze the File system volume 
10708 Hara dlsK mount table unreadable 

D-11 



tpe1atlng :>_y'Stem Rele1mce l'Iam.;aJ 

10709 cannot map screen data 
10710 Too many slot-based devices 
10724 The boot tracks do not know the right Flle System version 
10725 Either damaged File System or damaged contents 
10726 Boot devlce read falled 
10727 The OS will not flt into the avallable memory 
10728 SYSTEM.OS is missing 
10729 SYSTEM.CCNFIG is corrupt 
10730 SYSTEM.OS Is corrupt 
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt 
10732 SYSTEM.LLD ls corrupt 
10733 Loader range error 

Enor t--/essages 

10734 wrong driver ls found. For instance, storing a diskette loader on a Profile 
10735 SYSTEM.LLD ls missing 
10736 SYSTEM.UNPACK is rnisslng 
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed 
11176 Found a pending write request for a pipe while !n Close_!l:lject when it is 

called by the last writer of the pipe 
11177 Found a pending read request for a pipe while ln Close_Object when it is 

called by the (only possible) reader of the pipe 
11178 Found a pending read request for a pipe while in Read_Data from the pipe 
11180 Found a pending write request for a pipe while in Write_Data to the pipe 
118xx Error xx from diskette R01'1 (See OS errors 18xx) 
11901 Call to Getspace or Relspace with a bad parameter, or free pool is bad 

D-12 



Appendix E 
FS INFO Fields 

* defjned fo.r mounted o.r unmounted de1dces 
$ defjned for mounted devices only 

All otl7e.r fjelds are defjned fOJ mounted block-stmctu.red devjces only. 

OEVICE_T, Vll..UME_T: 

backup __ volld 
blocksize 

* blockstructured 
boot code 
booC environ 
clustersize 
copy 
copy_flag 
copy_ thread 
datasize 

* devt 
.. dir_path 

DTCC 
DTVB 
DTVC 
DTVS 
filecount 
freecount 
fs overhead 

fs size 
fsversion 

" iochannel 

label size 

$ lockeddev 
machine_ID 
master 
master_copy_ID 

*mounted 
$ mount_pending 
* name 
$ opencount 

overmount_ stamp 
password 

ID of the volume of which this volume is a copy. 
Number of bytes in a block on this device. 
Flag set if this device is block-structured. 
Reserved. 
Reserved. 
R.eserved. 
Reserved. 
Flag set if this volume is a copy. 
count of copy operations involving this volume. 
Number of data bytes in a page on this volume. 
Device type. 
Pathname of the volume/device . 
Date/time volume was created if it is a copy. 
Date/time volume was last backed-up. 
Date/time volume was created. 
Date/time volume was last scavenged. 
Count of flies on this volume. 
Count of free pages on this volume. 
Number of pages on this volume required to store 
File System data structures. 
Number of pages on this volume. 
Version number of the File System under which 
this volume was initialized. 
Number of the expansion card channel through 
which this device ls accessed. 
Size in bytes of the user-defined labels associated 
with objects on this volume. 
Reserved. 
Machine on which this volume was lnitiallzed. 
Reserved. 
Reserved. 
Flag set if a volume is mounted. 
Reserved. 
Name of this volume/device. 
count of objects open on this volume/device. 
Reserved. 
Password of this volume. 

E-1 



cperating System Reference Manual FS INFO Fje/ds 

$ prlvatedev 
pr! vileged 

$remote 
result_scavenge 
scavenge_ flag 

* slot_no 

$ unmount_pending 
volid 
vol_Ieft_mounted 

vol name 
volnum 
vol_size 

wr! te _protected 

OOJECT T: 

acmode 
dir_path 
OTA 
OTB 
OTC 
OTM 
DTS 
eof 

etype 
file_closed_by_OS 

file _left_ open 

file_scavenged 

fmark 
fs_overhead 

ftype 
fuid 
ksw!tch 
locked 
Jpsize 

Reserved. 
Reserved. 
Reserved. 
Reserved. 
Flag set by the Scavenger if it has altered this 
volume in some way. 
Number of the expansion slot nolding the card 
through which this device Is accessed. 
Reserved. 
Unique identifier for this volume. 
Flag set if this volume was mounted during a 
system crash. 
Volume name. 
Volume number. 
Total number of blocks In the File System volume 
and bOot area on this device. 
Reserved. 

Set of access modes associated with this refnum. 
Pathname of the directory containing this object. 
Date/time object was last accessed. 
Date/time object was last backed-up. 
Date/time object was created. 
Date/time object was last modified. 
Date/time object was last scavenged. 
Flag set if end of file has been encountered on 
this object (through the given refnum~ 
Directory entry type. 
Flag set if this object was closed by the Operating 
System. 
Flag set if this object was open during a system 
crash. 
Flag set by the Scavenger if this object has been 
altered in some way. 
Absolute byte to which the file mark points. 
Number of pages used by the File System to store 
control information about this object. 
OOject type. 
Unique identifier for this object. 
Flag set when the object is k!lled. 
Reserved. 
Number of data bytes on a page. 

E-2 



r;pe1-atin!} S_y:>tem RNerence Nanual FS_ JNFO nellis 

machine ID 
master_ file 
name 
nreaders 

nwriters 

nusers 
private 
protected 
psize 
refnum 

result_ scavenge 
safety_on 
size 
system_ type 
user_type 
user_subtype 

Machine on which this object may be opened. 
Flag set if this object is a master. 
Entry name of this object. 
Number of processes with this object open for 
reading. 
Number of processes with this object open for 
writing. 
Number of processes with this object open. 
Flag set if this object is open for private access. 
Flag set if this object is protected. 
Physical size of this object in bytes. 
Reference number for this object (argument to 
INFO). 
Reserved. 
Value of the safety swltch for this object. 
Number of data bytes In this object (LECF). 
Reserved. 
user-defined type field for this object. 
user-defined subtype field for this object. 

E-3 





Index 

Please note that the topic references in this Index are by section number. 

----------A----------
accessing devices 1.3, 2.8 
ACTIVATE_PROCESS 3.8.6 
ALLOCATE 2.10.13 
Append access 2.10.8 
attribute 1.3, 2.10.5 

----------8----------
baud rate 2.10.12.1 
binding 4.1 
BIND OATASEG 4.7.12 
blocked process 1.4, 

3 (introduction), 3.8.5 
buffer 2.9, 2.10.12.1, 2.10.16, 

5.5, 5.8 

----------c----------
CARDS_EQUIPPEO 6.1.1 
catalog 2.1, 2.5, 2.10.19 
changing file size 2.10.13-2.10.15 
clock 5.6 
clock system calls 5.9 
CLOSE DATASEG 4.7.4 
CLOSE EVENT CHN 5.8.4 - -
CLOSE_OBJECT 2.10.9 
code segment 4.5 
cormunication between processes 1.7 
COMPACT 2.10.14, 2.10.15 
configuration 6 (introduction) 
configuration system calls 6.1 
controlling 

029-0427-A 

a device 2.10.12 
a process 3.4 

IndeX-1 

CONVERT TIHE 5.9.4 
creating 

a data segment 4.7.1 
an event channel 5.8.1 
an object 2.10.1 
a process 3.3, 3.8.1 

----------D----------
data segment 

creating 4.7.1 
private 4.1, 4.4 
shared 1. 7, 4. 1, 4 . 3 
swapping 4.6 

Decode nneRDnics 2.10.12 
Dcdata 2 .10. 12 
Dctype 2 .10 .12 
Dcversion 2.10.12 
DECLARE EXCEP HOL 5.7.1 - -
DELAV_TIHE 5.9.1 
deleting 

a process 3.8.2, 3.8.4 
an object 2.10.2 

device 2.3-2.7, 2.10.12 
accessing 1.3, 2.8 
control information 2.10.12 
11Dunting 1.3, 2.10.20 
names 2.1, 2.3, 2.10.12.1 
priority 2.3 
storage 2.4 

DEVICE CONTROL 2.10.12 
directory 2 (introduction) 
DISABLE EXCEP 5.7.2 
disk hard error codes 2,10.12.2 



cperating system Reference Manual 

division by zero 5.2, B 
Dread, Dwrite access 2.10.8 

----------E----------
ENABLE EXCEP 5.7.3 
end of file 2.7, 2.10.14, 2.10.15 
eof 2.10.5; see also end of file. 
error 

disk hard error codes 2.10.12.2 
error messages D 
soft error 2.10.12.1 
See also exception. 

event 1.6, 5.4, C 
event channel 1.7, 5.5, 5.8.l 
event management system calls 5.8 
event types C 
exception 1.6, 5.1-5.3, B 
exception handler 5.1, 5.3 
exception management system calls 

5.7 
exception names B 

----------F----------
father process 1.4, 3.6, 3.7, 

3 . 8 . 1, 3 . 8 . 2 
file 2 (introduction) 

access 2.8 
attributes 2.10.5-2.10.7 
changing size 2.10.13-2.10.15 
label 2.6, 2.10.11 
marker 2.7, 2.10.15 
name 2 . 1, 2 . 10 . 1 
private 2.8 
shared 1. 7, 2 .8 

File System 1.3, 2 
File System calls 2.10 
FLUSH 2.10.16 

Jndex-2 

FLUSH_DATASEG 4.7.5 
FLUSH EVENT CHN 5.8.7 - -
FLUSH EXCEP 5.7.6 
FS INFO fields E 

----------G----------
GET_CONFIG_NAHE 6.1.2 
GET NEXT ENTRY 2.10.19 
GET TIME 5.9.2 
GET_WORKING_DIR 2.10.18 
global access to files 2.8 
global event channel 5.5 
Global __ Refnum 2.8, 2.10.8 

----------H----------
handshake 2.10.12.l 
hierarchy of processes 3.2 

----------I----------
INFO 2.10.6 
INFO ADDRESS 4.7.9 
INFO DATASEG 4.7.7 
INFO EVENT CHN 5.8.5 - -
INFO_EXCEP 5.7.4 
INFO LDSN 4.7.8 
INFO PROCESS 3.8.3 
interface unit A 

Index 

interprocess collllllnication 1.7, 2.9 
I/O 2 (introduction) 

----------K----------
KILL DATASEG 4.7.2 
KILL_EVENT_CHN 5.8.2 
KILL OBJECT 2.10.2 
KILL_PROCESS 3.8.4 



cperating system Reference Mant.lal 

----------L----------
label, file 2.6, 2.10.11 
LDSN 4.2, 4.4, 4.7.8 
LEOF. See end of file. 
local data segment 4.1 
local event channel 5.5 
logical data segnent nuntJer 4.2, 

4.4, 4.7.8 
logical end of file. see end of 

file. 
LOOKUP 2.10.5 

----------H----------
MAKE_DATASEG 4.7.1 
HAKE EVENT CHN 5.8.1 - -
MAKE FILE 2.10.1 
HAKE_PIPE 2.10.l 
MAKE_PROCESS 3.8.1 
mem::iry management 1.5, 4.1-4.6 
me11Dry management system calls 4.7 
memJry, paraneter 6 (introduction) 
MEM_INFO 4.7.10 
nnem::inics for Decode 2.10.12.1 
MOUNT 2.10.20 
mounting a oevice 1.3, 2.10.20 
MY ID 3.8.9 

----------N----------
naming an object 2.1, 2.10.1, 

2.10.4 

----------0----------
object 1.3 

creating 2.10.1 
deleting 2.10.2 
naming 2.1, 2.10.1 
renaming 2.10.4 

Index-3 

OPEN 2.10.8 
OPEN_DATASEG 4.7.3 
OPEN_EVENT_CHN 5.8.3 
OS interface A 
OSBOOTVOL 6.1.3 

----------P----------
pege 2.4 

Index 

parameter merrory 6 (introduction) 
parity 2.10.12.1 
pathname 1.3, 2.1, 2.2 
PEOF. See end of file. 
physical end of file. See end of 

file. 
pipe 1.7, 2.9. 2.10.1, 2.10.8 
priority of devices 2.3 
priority of processes 3.5, 3.8.7, 

3.8.8 
private access to files 2.8, 2.10.8 
private data segment 4.1, 4.4 
process 1. 4, 3 

blocked 1.4, 3 (introduction), 
3.8.5 

creating 3.3, 3.8.1 
father 1.4, 3.6, 3.7, 3.8.1, 

3.8.2 
hierarchy 3.2 
priority 3.5, 3.8.7, 3.8.8 
queuing 3.5, 3.8.5-3.8.8 
schedUling 3.5, 3.8.5-3.8.8 
shell 1.4, 3.2 
son 1.4, 3.7, C 
starting 3.8.1, 3.8.6 
stopping 3.8.2, 3.8.4 
structure 3.1 
termination 1.4, 3.6, 5.2, B, c 

process system calls 3.8 



[peratlng System Reference MB/7{,/aJ 

----------0----------
queuing a process 3.5, 3.8.5-3.8.8 

----------R----------
range check error 5.2, B 
READ DATA 2.10.10 
READ LABEL 2.10.11 
refnum 2.8; see also Global_Refnum. 
RENAME_ENTRV 2.10.4 
renaming an object 2.10.4 
RESET CATALOG 2.10.19 
running a program 1. 4, 1. 9, 3. 8. 1, 

3.8.6 

----------s----------
safety switch 2.5, 2.10.17 
Scheduler 3 
scheduling processes 3.5, 

3.8.5-3.8.8 
SEND EVENT CHN 5.8.8 - -
SETACCESS DATASEG 4.7.11 
SETPRIORITV PROCESS 3.8.7 
SET FILE INFO 2.10.7 
SET_LOCAL_TIHE_DIFF 5.9.3 
SET_SAFETV 2.10.17 
SET WORKING DIR 2.10.18 - -
shared data segment 1.7, 4.1, 4.3 
shared file 1.7, 2.8 
shell process 1.4, 3.2 
SIGNAL_EXCEP 5.7.5 
SIZE DATASEG 4.7.6 - . 
soft error 2.10.12.1 
son process 1.4, 3.7, c 
sparing 2.10.12 
starting a process 3.8.1, 3.8.6 
stopping a process 3.8.2, 3.8.4 
storage device 2.4 
SUSPEND PROCESS 3.8.5 

lnaex-4 

swapping 4.6 
Syscall unit A 
system calls 

clock 5.9 
configuration 6.1 
event management 5.8 
exception manageJTEnt 5.7 
file 2.10 
me1RJry management 4.7 
process 3.8 

Inc/ex 

system clock 5.6, 5.9 
system-defined exceptions 5.2, B 
SVS_OVERFLOW 5.2, B 
SVS_SON_TERM C 
SVS_TERMINATE 5.2, B 
SVS_VALUE_OOB 5.2, B 
SVS_ZERO_OIV 5.2, B 

----------T----------
terminated process 1.4, 3.6, 5.2, 

B, C 
TERMINATE_PROCESS 3.8.2 
timed events 5.8.8 
tree, process 3.2 
TRUNCATE 2 .10 .15 

----------u----------
UNBIND_DATASEG 4.7.12 
UNKILL FILE 2.10.3 
UNMOUNT 2.10.20 
user-defined exception handler 5.3 

----------v----------
value out of bounds 5.2, B 
voluJTE catalog 2.1, 2.5, 2.10.19 
volume naJlE 1.3 



cpe.rating System Reference MarKJaJ 

----------w----------
WAIT _EVENT _CHN 5.8.6 
working directory 2.2 
..iorking set 4.2 
WRITE_DATA 2.10.10 
WRITE_LABEL 2.10.11 
writing buffered data 2.10.16 

----------v----------
VIELO CPU 3.8.8 

Index 

Index-5 





Tais MANUAL was produced using 
LisaWrite, LisaDraw, and 

LisaList. 

LL PRINTING was done with an 
Apple Dot Matrix Printer. 

the Lisa'" 
... we use it ourselves. 





Lperating .~ystem Reference l'-k11x/d/ l'laiJ-Back F01m 

Apple publications would like to learn about readers and what you think about tllis 
manual in order to make better manuals in the future. Please fill out tllis form, or 
write all over it, and send it to us. we promise to read it. 

How are you using tills manual? 
[ ) learning to use tile product [ ] reference [ ] both reference and learning 

[ ]otller_~~~~~~~~~~~~~~~~~~~~~~~~~­
Is it quick and easy to find tile information you need in tills manual? 
[ ] always [ ] often [ ] sometimes [ ) seldom [ ) never 

Commen~---------------------------~ 
What makes this manual easy to use? __________________ _ 

What makes this manual hard to use? ____________________ _ 

What do you Jlke most about the manual? ________________ _ 

What do you like least about the manual?-------------· 

Please comment on, for example, accuracy, level of detail, number and usefulness of 
examples, length or brevity of explanation, style, use of graphics, usefulness of the index, 
organization, suitability to your particular needs, readability. 

---------------------------- ---------
Wllat languages do you use on your Lisa? (clleck eacll) 
[ ) Pascal [ ) BASIC [ ) CCBCL [ ) otller _____________ , 

How long have you been programming? 

[] 0-1 years [] 1-3 [] 4-7 [)over 7 []not a programmer 
What is your job title? _______________________ _ 

Have you completed: 

[ ] high school [ ] some college ( ] BNBS ( ] MAIMS [ ] more 
What magazines do you read? ____________________ _ 

Other commen~ (please attach more shee~ if necessary) ___________ _ 

029-0408-A 



· FaD··· 

.. rau ................................................................................. ........................................................ . 

'-tl!lPplC! computer 
POS Publications Department 

20525 Mariani Avenue 

Cupertino, Cal!fomla 95014 

TAPE tR STAPLE 

Pl/ICC 

S!llfP 
HERE 






	Preface
	Chapter 1: Introduction
	1.1 The Main Functions
	1.2 Ustag the OS Functions
	1.3 The File System
	1.4 Process Management
	1.5 Memory Management
	1.6 Exceptions and Events
	1.7 Interprocess Communication
	1.8 Using the OS Merface
	1.9 Running Programs Under the OS
	1.10 Writing Programs That Use the OS

	Chapter 2: The File System
	2.1 File Names
	2.2 The Working Directory
	2.3 Devices
	2.4 Storage Devices
	2.5 The Volume Catalog
	2.6 Labels
	2.7 Logical and Physical End of File
	2.8 File Access
	2.9 Pipes
	2.10 Flle System Calls
	2.10.1 MAKE_FILE and MAKE_PIPE File System Calls
	2.10.2 KILL_OBJECT File System Call
	2.10.3 UNKILL_FILE File System Call
	2.10.4 RENAME_ENTRY Flle System Call
	2.10.5 LOOKUP File System Call
	2.10.6 INFO Flle System Call
	2.10.7 SET_FILE_NFO File System Call
	2.10.8 OPEN File System Call
	2.10.9 CLOSE_OBJECT Flle System Call
	2.10.10 READ_DATA and WRITE_DATA Flle System Calls
	2.10.11 READ_LABEL and WRITE_LABEL Flle System Calls
	2.10.12 DEVICE_CONTROL File System Call
	2.10.12.1 Setting Device-Control Information
	2.10.12.2 Obtaining Device-Control Information

	2.10.13 ALLOCATE File System Call
	2.10.14 COMPACT File System Call
	2.10.15 TRUNCATE File System Call
	2.10.16 FLUSH File System Call
	2.10.17 SET_SAFETY Flle System Call
	2.10.18 SET_WORKING_DIR and GET_WORKING_DIR File System Calls
	2.10.19 RESET_CATALOG and GET_NEXT_ENTRY Flle System Calls
	2.10.20 MOUNT and UNMOUNT File System calls


	Chapter 3: Processes
	3.1 Process Structure
	3.2 Process Hierarchy
	3.3 Process Creation
	3.4 Process Control
	3.5 Process Scheduling
	3.6 Process Termination
	3.7 A Process-Handling Example
	3.8 Process System Calls
	3.8.1 MAKE_PROCESS Process System Call
	3.8.2 TERMlNATE_PROCESS Process System Call
	3.8.3 lNFO_PROCESS Process System Call
	3.8.4 KiLL_PROCESS Process System Call
	3.8.5 SUSPEND_PROCESS Process System Call
	3.8.6 ACTlVATE_PROCESS Process System Call
	3.8.7 SETPRIORITY_PROCESS Process System Call
	3.8.8 YIELD_CPU Process System Call
	3.8.9 MY_ID Process System Call


	Chapter 4: Memory Management
	4.1 Data segments
	4.2 The Logical Data Segment Number
	4.3 Shared Data Segments
	4.4 Private Data Segments
	4.5 Code Segments
	4.6 Swapping
	4.7 Memory Management System Calls
	4.7.1 MAKE_DATASEG Memory Management System Call
	4.7.2 KILL_DATASEG Memory Management System Call
	4.7.3 OPEN_DATASEG Memory Management System Call
	4.7.4 CLOSE_DATASEG Memory Management System Call
	4.7.5 FLUSH_DATASEG Memory Management System Call
	4.7.6 SIZE_DATASEG Memory Management System Call
	4.7.7 INFO_DATASEG Memory Management System Call
	4.7.8 lNFO_LDSN Memory Management System Call
	4.7.9 INFO_ADDRESS Memory Management System Call
	4.7.10 MEM_NFO Memory Management System Call
	4.7.11 SETACCESS_DATASEG Memory Management System Call
	4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls


	Chapter 5: Exceptions and Events
	5.1 Exceptions
	5.2 System-Deflned Exceptions
	5.3 Exception Handlers
	5.4 Events
	5.5 Event Channels
	5.6 The System Clock
	5.7 Exception Management System Calls
	5.7.1 DECLARE_EXCEP_HDL Exception Management System Call
	5.7.2 DISABLE_EXCEP Exception Management System Call
	5.7.3 ENABLE_EXCEP Exception Management System Call
	5.7.4 INFO_EXCEP Exception Management System Call
	5.7.5 SIGNAL_EXCEP Exception Management System Cal!
	5.7.6 FLUSH_EXCEP Exception Management System Call

	5.8 Event Management System Calls
	5.8.1 MAKE_EVENT_CHN Event Management System Call
	5.8.2 KILL_EVENT_CHN Event Management System Call
	5.8.3 OPEN_EVENT__CHN Event Management System Call
	5.8.4 CLOSE_EVENT_CHN Event Management System Call
	5.8.5 INFO_EVENT_CHN Event Management System Call
	5.8.6 WAIT_EVENT_CHN Event Management System Call
	5.8.7 FLUSH_EVENT_CHN Event Management System Call
	5.8.8 SEND_EVENT_CHN Event Management System Call

	5.9 Clock System Calls
	5.9.1 DELAY_TIME Clock System Call
	5.9.2 GET_TIME Clock System Call
	5.9.3 SET__LOCAL_TIME_DIFF Clock System Call
	5.9.4 CONVERT_TIME Clock System Call


	Chapter 6: Configuration
	6.1 Configuration System Calls
	6.1.1 CARDS_EQUIPPED Configuration System Call
	6.1.2 GET_CONFIG_NAME Configuration System Call
	6.1.3 OSBOOTVOL Configuration System Call


	Appendix A: Operating System Interface Unit
	Appendix B: System-Reserved Exception Names
	Appendix C: System-Reserved Event Types
	Appendix D: Error Messages
	Appendix E: FS_INFO Fields
	Index

