
--------------------~--~~---~-------------------~-----------

To: Nellie Conners, Di~rJ< van Nouhuys, Bill Libby, Sheila Mulligan,
Bar·ry .Haynes, Rorii Johnston, Fred F'orsmant Pete Cressmant
Keri Doyle, DicK Young, Steve LucKau

From: Larry Roth

Subject: Review of the WorKshop Manual

Date: 25 February, 1903

Attached you will find a copy of the Workshop manual in its
current state for your review. Please return comments to
me as scJon as possible, by March 7.

I think 1:his manual wou)d be much more useful with more
examples,. Please looK for places that could use examples,
then supply the exampl~ needed, or tell me where to find it.

Because of the short notice involved in getting this review
out, the chapters are Mot all in the best of states. Please
note the following:

o I have received comments for chapters 6 and 8 <The
Assembler arid The Debugger> that I have not yet
incorporated. ·

o Chapter 9 <U$ing S:xec. Files> is not complete, but the
outline of all I plan to cover is there.

o Chapter 10 <The Utilities> is not complete. The format is
not correct either. S:ach utility write up will contain three
sections, as follows:

Purpose : A two to four line statement of the function and
capa.bili ties of the utility.

Dialog : A print out of a typical dialog with the user,
showing Rrompts and responses.

Explanation : This section explains all the things you might
need to Ktiow about the utility and using it. This is
similar in scope and function to the current write ups
we have on the utilities.

Tha.nK yc>u for your attention to this matter.

l..-...IORJ-C:::SHOP USER...-SGUIDE

Larry Rot~
29 Ja.nuary 1983
Alpha Draft

COt-..ITENTS

1 • INTRODUCTI ctl
The Workshop provides tools for- prc)gram deve'loprnent. It provides
f ac i 1 it i es for editing, 1 anguage proc:ess i ng, and debugging, as we 11 as
commands for managing files and con~=igur-ing the system. The system
a 1 so inc 1 udes many other u ti 1 it i es.

2. THE FI LE MANAGER
The Fi 1 £r Manager- a 11 ows you to manage cLnd man i pu 1 ate f i 1 es and volumes.

3. THE SYSTEM MANAGER
The System Manager allows you to set default and configuration
parameters for the Lisa, and manage processes.

4. THE EDITOR
The Edi tor· a 11 ows you to ere ate and mc•d if)• text ~; i 1 ec: .• These text f i 1 es
are used as input to the Comp i 1 er and the Assembl t~r.

5 I THE PASCAL Cet1PJ LER
The Compiler translates Pascal source codi~ into c•bject code.
Translation requires two steps: fir~~t the compiler translates Pascal
into I-code; then the code Generator translates the I-code into obj Ht
code.

6. THE ASSEMBLER
The Assembler translates assembly language progr·ams into object code.

7. THE LINKER
The Linker combines object code files into executable programs.

8. THE DEBUGGER
The Debugger allows you 'to examine memory, set brn.Kpoin1:s, and perform
other run-time debugging functions.

9 I USING EXEC Fl LES
E:xec files allow you 'to execute a s1~ries of commands and programs
automatically.

10 I THE UTI LJTI ES
Util it>· programs a.re provided for debugging, cc:mfiguring the system,
and man i p u 1 at i n g f i le s.

APPENDICES

A. ERROR MESSAGES

WorKshop User's Guide for the Lisa

Cha.pte~r 1

INTRODUCTION

Introduction

1.1 The Workshop • .. • • • • • • • • • • • • • • • • • • • 1-1
The WorKshop provides the functions necessary to dt?velop and run programs
on the Lisa. The Workshop can be booted from either a. disKette or a. Profile.

1.2 Starting the Workshop • .. • • • • • • • • • • • • • • • • .. • • 1-1
The Worl<shop is started by booting the Lisa. from a disk containing the
WorKshop software. You can use the Environments window to select one of
several available environments.

1.3 The Workshop User lnter-f a.ce • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • • • • 1-3
The WorKshop user interface consists of three comm1md lines: the WorKshop
command line, the File Manager, and the s;ystem Mana9er.

1.4 File System Organization and Na.ming •••••••••• ,, • • • • • • • • • • • • • • • • • • • 1-4
Files a.re stored on disk volumes and are accessed by specifying the volume
name and the file name.:

1.5 Using Utility Progra.ms ... 1-7
Utility programs provide additional func:tions for the Worl<shop. A utility
program is started by choosing the HUN command from the WorKshop
command line.

1.6 How do I Write and Run a Pa.seal Program? • • • • • • .. • • • • • • • • • • • • • • • • • • • 1-8
A Pascal program is written with the Editor. The source file must be
compiled and linked before it can be run.

1.7 How doiwrite and Run an Assembly Li:t.nguage Program? •••••••••••• 1-8
An assembly language program is wri1:'ten with the Editor. It must be
assembled and linked with a. Pascal main program before it can be run.

1.8 How do I Use the BASIC ln'terprttter? ••••••••••• 1•. • • • • • • • • • • • • • • • • • • 1-S
A BASIC program can be written using either the Editor or the BASIC
interpreter to create the source file. The BASIC :interpreter will run the
program.

1.9 How do I write a COBOL Program? ••••••••••••• ".... • • • • • • • • • • • • • • • 1-8
A COBOL program is written with the Editor. Aft1~r writing the programt
enter the COBOL language system to compile and run the program. The
COBOL system is invoKed by pressing C in response to the WorKshop command
prompt.

1.1e The Operating System •••••••••••••••••••••••• ,, ••••••••••••••••••• 1-8
The WorKshop runs under the Operating System for the Lisa. computer. You
can access operating system routines thr1:>ugh the SYSCALL interface. More
information about this interface can be found in the Operating System
Reference H anual for the Lisa. •

alpha draft 1-1 27 January 1983

____ Worl<sbop ___ Use_~s __ Guide _ __foLlhe~L_ii.a_ _Introduction

a 1 pha draft 1-2 27 January 1983

WorKshop User's o·uide for the Lisa Introduction

I NTRODUC~T J: 01'.J

1.1 The Workshop Manager.
The WorKshop allows you to develop and run programs on the Lisa. It provides
tools necessary i:o write, debugt and run programs in Pa.sca.lt BASIC, and
COBOL This manual e>:plains how to use "the WorKshop and all of its tools.

Access to all WorKshop functions is provided by command lines. The main
command line, 'WORKSHOP allows you to edit programs, run utilities or user
programs, and use the various languages~ available on the sys1:em. It also
provides access to two subsystems; the File Manager, and the System
Manager.

The File Manager allows you to copy, delete, renamE~, and list disk files. It
includes a backup function, and functions:• for manipulating volumes. These
functions are listed in the FILE:- MGR cc>mmand line, which is similar to the
main command line. <See Chapter 2.>

The System Manager provides for syste•m configuration and defaults and
process ma.nagment. Its commands are li!ited in the S~YS-MGR command line.
<See Chapter 3.>

All command lines are displayed at the top of the L:lsa screen. If there are
more commands than will fit on one line, a "?" is at the end of the line.
Pressing "?" will display the remaining commands. To access any command,
press the first character of the commcLnd name. To redisplay the first
command line, press RETURN.

Most commands will ask for additional in-Formation. Type in the information
using the Lisa. Keyboard. Some questions have a default value, displayed in
square bracKets ([defa.ultJ>. To accept the default vdue, press RgTURN. If
you don't wa.nt the default value, type in the value yell want.

The Lisa system can display one of two screens, called the main screen and
the alternate screen. The WorKshop system normally displays on the main
screen. The alternate screen is used by the system debugger. You can
change to the other screen display by p1~essing the right hand OPTION and
ENTER Keys. The System Manager contains the Console command, which can
be used to specify where the WorKshop sh1:3uld display.

The WorKshop can be used to write progr.a.ms in Pasc~~.l, COBOL, and BASIC.
To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:

o Pascal Reference Manual for the Lisa

o MC68000 16 Bit Microprocessor Use•r's Manual <for assembly language
programming>

o Operating System Reference Manual for the Lisa. <for information on
system calls>

alpha draft 1-3 27January1983

Workshop User's Guide for the Lisa

For BASIC Programming:

o BASIC User's Guide for the Lisa

For COBOL Programming:

o COBOL User'!s Guide for the Lisa

o COBOL RefeNmce Manual for the Lisa

Introduction

If you have only a. BASIC or COBOL system• you will not have all the software
described in this manual. The portions of this manual that will be most useful
to BASIC and COEIOL programmers are:

o The Introduction, which describes how 1:o use the WorKshop.

o The File Manager, which describes files and how to manipulate them.

o The System Manager, which describes setting up the system
configuration parameters.

o The Editor, which describes how to create and modify text files that are
used as source files.

You may also use !Some of the utilities if they are included in your software.

1.2 Starting the Workshop
The WorJ.<shop can be booted fl'om a disKette or a Profile. I't will most
commonly be used with a Profile.

To start the system, boot from a, disK that contains 'the WorJ.<shop softwa!'e.
If your disK contains only the Workshop environment, the Worl<shop command
line will appear at the top of the screen. If you have more than one
environment <for example, the WorKshop and the desKtop> you can use the
Environments wirtdow to s'ta.rt up the environment you want, and switch
between them.

The Environments Window allows you to select the envil'onment you want to
start. You can also set a default environment that will be started
automa'tically whEm you boot the system. To access the environments window
while booting the~ system, press any Key while the Lisa is starting up. The
environments win1jow will be displayed.

The Environments window is shown in Figure 1-1. It displays five buttons:

Power OH Turn oH the Lisa
Restart Reboot or reset the Lisa
Sbrt Start the selected environment
Set Default Set the de~ault to the selected environment
No Defaul't The Envirohments ~indow will always be displayed on

startup.

To select an environment, move the pointer to the checKbox of that
environment and dick the mouse button. Then move the pointer to the start
button and clid<. The selected environment will start.

To access the Environments window from the WorKshop, and select another

alpha. draft 1-4 27 ,January 1983

WorKshop User's C~ide ior the Lisa. Introduction

environmentt use the Quit command from the WorKshop command line, or
press the on-off button. To access the Environmimts window from the
Des~OPt press the on-off button while hollding down the <apple> l<ey.

theenvironmentswindOl.l

Figure 1-1. The Envirt:>nments Window

1.3 The WorKshop User Interface.
When the worKshop environment is selectt?dt the systt~m will come up with the
WorKshop command line at the top of the screen. This command line lists all
the actions you can currently request of the systt?m. The WorKshop line
displayed contains only some of the commands avadlable. The rest of the
commands can be. displayed by pressing 11 ? 11

, the last symbol on the line. The
original command line can be redisplayed by pressing RETURN. A command is
executed by pressing the first letter of the command name.

There are two other ; subsystems that have separCLte command lines; the

alpha draft 1-5 27 ~lanuary 1983

WorKshop User's Guide for the Lisa. Introduction

File-Manager, and the System:Manager. Their comma.nd lines ca.n be
accessed from tht~ WorKshop command line, and are used the same wa.y.

You ca.n termina.1te the operation of most commands by pressing <apple>
I

period. You can "turn off the Lis~ by pressing the on-off button at any time.
The system will shut, down in an o~derly manner. A disKette can be inserted at
any time. It wm automatically 1 be mounted and accessible. Diskettes are
ejected by pressing the disKette ~utton.

The maint or Workshop. commctnd ;line is as follows:

WORKSHOP: Fl LE-MGIR, SYSTEM-MGR, Edi t, Run, Pase a 1 , Basic, Cobo 1 , Gui t, ?

The additional po1rtiont displayed by pressing 11 ? 11
, is:

Assemb 1 e, Debugi, Link, MakeBackground, Gener-ate

All the main command line commanps are described below.

FILE-MGR CF>
This command puts you into the File Manager subsystem, which is used to
manipulate the files and volumes: on the system. For more information on the
file manager, see Chapter 2 in thi~ manual.

SYSTEM-MGR <S:~
This command puts you into the System Manager subsystem. This subsystem
provides various configuration a.nd utility functions. See Chapter 3 in this
manual for more i1nformation.

Edit <E>
The Edi't command puts you into the text editor, which is used to create and
modify text files:>. The E:ditor is used to create source files for BASIC,
COBOLt a.nd Pascal. It is also used for assembly language programming and to
crea.te exec files. The Editor is d~scribed in Chapter 4 in this manual.

Run CR>
The Run command causes a compiled and linKed program to e>:ecute. This
command is used for user-written· Pascal programs, utility programs, and any
other software that runs under the Workshop. The Run command asKs you for
the file to run. This file must be 4n executable object file or an e>:ec file. <An
exec file name must be preceded ; by a 11 <11

.) If you do not give it a complete
pathname, the Run command will !search through up to three default volumes
for the file. These defaults tan be set by the File-Manager's Prefix
command. See the Prefi>: command in Chapter 2 for more information.

The Run command will also a.ccep~ an "exec file" as input. An exec file is a
scenario of commands for the WorKshop system to carry out. An exec file
name must be pr·eceded by a "<" to be processed correctly. For more
information on ex 1ec files, see Chapter 9 in this manual.

Pucal CP>
This command stc~rts the Pascal ;compiler. The compiler a.sKs for the input
file, which must be a te>:t file; th:e listing file; and the output file, which will
contain the objec:t file. The Pa!scd compiler is described in Chapter S.
Further information on the Pascal language can be found in the Pa.seal

alpha draft 1-6 27 January 1983

Wor-Kshop User's Guide --- for 1:he Lisa -Introduction

Reference Manual for the Lisa..

The compilation is done in two steps. The first step, done by the Pascal
command, produces an intermediate code file. After thist you must use the
Generate command, <press G> to generate an object file from the
intermediate code file.

Basic
This command puts you into the BASIC interpreter. More information on
BASIC programming can be found in the BASIC User's Guide for the Lisa.

Cobol <C>
This command puts you into the COBOL language system. More information
on COBOL programming can be found in t!ne COBOL User's Guide for the Lisa
and the COBOL Reference Manual for the Lisa •

Quit <G>
The Quit command ends the WorJ<shop environment.
Environments window to star1: another environment.

Assemble <A>

You can access the

The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MC 68000 Microprocessor User's
Manual •

Debug CD>
The Debug command causes your program to run with a breaKpoint inserted at
the first instruction in the program, so you can use the debugger on the
program. More in-formation on the Debug~1er can be fc:>und in Chapter 8 of this
manual.

link <L>
The linK command executes the linKer. The LinlKer is used to prepare
compiled Pascal programs and assembled routines fctr execution, and to linK
together separa1:ely compiled pieces of a program. The linKer is described in
Chapter 7.

M&Ke&cKground <M>
The MaKeBacKground command allows you to start up a bacKground process,
then continue using the WorKshop for other functions;. It is assumed that the
bacKgrond process will not try to display t:>n the console.

Generate CG>
The Generate command converts intermediate codE' files produced by the
Pascal compiler into object code. It is used with th1~ Pascal compiler and is
described in Chapter S.

1.4 File system organization and naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains. A file is specified by giving the
name of the volume and the name of 'the fiJ:e:

-volumename-filename

alpha draft 1-7 27 January 1983

-Workshop User's Guide for the Lisa. Introduction

The Workshop maintains a wor~ng directory; you can access files in it
without specifyin!~ a. volume na.m+. The worKing directory can be changed by
using the File Manager's Prefix dommand. Files on the worKing directory can
be specified by just the file nameti with no leading "-":

filename

Further informatjlon on the file; system can be found in Chapter 2 of this
manual and in the Operating Syst~m Reference Manual for the Lisa..

1.5 Utility Programs.
There are variou~~ utility programs provided with the Workshop. These are
used for functions not as commonly used as the commands.

The utilities are clescribed in Chapter 16.
i

You must Run utilities. Select t~e Run command from the main command line
by pressing R whim the main com~and line is displayed. The system will ask
you for the name 1Jf the file to run'. Type in the name of the utility you want to
run.

1.6 How do ·I Write and Run a Pasci.l Program?
To write and run il Pascal progra.mt proceed as follows:

1. Use the EditiJr to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See
the Pascal Reference Ha.rlua.l for the Lisa for information on the
language.

2. Compile the program using the Pascal command <press P while the
WorKshop cc1mmand line is displayed) from 1:he main command line. The
output from the compiler is •n intermediate file.

3. The output from the Pascal ~ommand is a.n I-code file. Use the Generate
command to convert the l·tcode file into an object file. To use the
Generatort press G when t~e WorKshop command line is displayed. See
Chapter 5 for more informatipn on compiling Pascal programs.

4. linK the prc1gram using the; linK command. In order to be executablet
the program must be linKed ~ith the Pascal support routines contained
in IOSPASLIEr. For other applications you may also use other libraries
and unitst or assembly language routines. More information on the
linKer can b1e found in Chapter 7.

5. The linKer produces an e>:~cutable objec1: file. Press R to run the
program.

Information on ma.King system call!s from Pascal can be found in the Operating
System Reference Manual for the :usa.

1.7 How do I Write and Run an Assertibly language Program?
Assembly language1 programs must: be called as procedures of functions from a.
Pascal ma.in progr·am. To write ·an assembly language routine, proceed as
follows:

1. Use the Editor to create an assembly language source program. See

alpha draft 1-S 27 January 1983

Worl<shop User's Guide for the Lisa -Introduction

Chapter 6 of this manual for ir1formation on assembly language.
Chapter 4 describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text file
you created and produces an object file.

3. Declare the routines you wrote in cLssembly language as EXTERNAL in
the ma.in Pascal pl'Ogra.m that calls them.

4. Use the Pascal and Generate commands to create1 an object file from the
Pa.seal program. See Section 1.6 for more inform,a.tion.

5. Use the Linl< command to linl< the Pa!ical object ~rile, the assembly object
file, IOSPASLIB, and any other needE~d units or hbraries.

6. Use the Run command to run the resulting object file.

1.8 How do I use the BASIC Int~r,:nter?
To use the BASIC interpreter, proceed as follows:

1. Use the Basic command by pressing, B when the main command line is
displayed. You will enter the BASIC interpreter.

2. Enter the BASIC language sta:temen·ts and commands necesa.ry to write
and execute your program. The BASIC in·terpreter can execute
statements immediatly or save them to run later. You can return to the
main command line by using the BASIC command BYE.

You may also use the Editor to prepare or modify the BASIC source program,
then use the BASIC interpreter to run i't. See Chap·ter 4 in this manual for
more information on the Editor.

See the BASIC User's Guide for the Lisa for mc1re informa.tion on the
language.

1.9 How do I Write & COBOL Pl'Ogram?
To write a COBOL program, proceed as follows:

1. Create a text file containing the source progra.m by using the Editor.
See Chapter 4 in this manual for mort! information on the editor.

2. Pr-ess C to enter the COBOL language system. More information on
COBOL programming can be found in the COB01L User's Guide for the
Lisa and the COBOL Reference Manual for the Lisa •

1.19 The Opertlting System.
The Worl<shop runs under the Operating System of the Lisa computer. You
can use some operating system routines from a Pascal program to perform
special system functions for you. The!ie system c:alls are defined in the
intrinsic unit SYSCALL. More informa.tion on tht! syscall interface and
routines can be found in the Lisa Operatin!J System doicumentation.

alpha draft 1-9 27 _January 1983

Workshop User's Guide for the Lisa The File Manager

Cha.pter2

THE FILE MANAGER
2.1 The File Mant11Lger •••••••••• •: ••••••••••••••••••••••••••••••••••••••• 2-1
The File Manager allows you to manipulate files, volumes, and devices.

2.2 Using the FilE~ Manager ••••• , ••••••••••••••••••••••••••••••••••••••• 2-1
Press F at the wc~rKshop command! line to display the File Manager commands.
The first letter o.f each File Man~ger command makes it worK.

2 .s The File M anaiger Commands : • 2-1
This section lists and defines all rile Manag.er operations.

2.4 Disk Storage Organization an;d File Na.ming ••••••••••••••••••••••••• 2-6
E:ach disK can contain a. volume which has a directory of files. File extensions
<.TEXT, .OBJ, etc:.> are. added to some files with special uses.

2.5 Using Wild Ca.rd Characters • 2-7
Wild card characters allow you ·to name groups of files by giving filename
patterns to be be matched. The Wild card characters are =, $, ? •

2.6 How do I Copy a File? •••••• •:• •••••••••••••••••••••••••••••••••••••• 2-8
To copy a file, u~ie the File Manager Copy command. If you want the old file
deleted after thE? copy is successful, use the Transfer command. You can
copy multiple files by using wild ~ards.

2 .7 How do I Delete a File? •••••.••••••••••••••••••••••••••••••••••••••• 2-9
To delete a. file, iuse the File Manager Delete command. You can delete more
than one file by u!sing w.ild cards.

2.8 How do I Crea1te and Use & Vol~me? •••••••••••••••••••••••••••••••• ·• 2-9
Use the Initialize command to create a volume. The volume must be mounted
before you can use it.

2.9 How do I Chan~~e the Name of a. Fil~ or Volume? 2-18
To change the name of a file or volumet use the Rename command.

2.1e How do I list Existing Files? ••••••••••••••••••••••••••••••••••••• 2-1e
To list all the fil12s on a. volume, use the List command or the Names command.
You can use wild c:a.rds to list subsets of the files on the volume.

Alpha draft 2-1 27 January 1983

Wort<shop User's GUide for _ the Lisa __The_Eile _Manager

Alpha draft 2-2 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

THE FI4EMANAGER

2.1 The File Manager
The File Manager· is a subsyste~ of the Workshop that provides file a.nd
device manipulati()n facilities. It handles most of the tasKs of transferring
information from one place to a~other. Using the file manager, you can do
such things as maLKe copies of files, list directories, rename or delete files,
find out what vollumes are on 1i6e, initialize new disKs or disKettes, print
files, and so on. See the Operating1 System Reference Manual for the Lisa for
more information on the file syst~m and supported devices.

A file specifier can be an OS pathname <representing a file on a disK or
disKette>t an OS volume name <forl example, -MYDISIO, the name of a physical
device <for example -RS232A), o~ the name of a logical device (for exampel
-PRINTER>. File specifiers may icontain wildcards <see section 2.5> a.llowing
them to specify a collection of files.

2.2 Using the File Mar1ager
To use the File Manager, press; F in response to the WorKshop command
prompt. The File, Manager begin$ executing, and displays the File Manager
prompt line.

The File Manager prompt line is:

FlLE-MGR: BacKup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?

To display the i!.dditional commands, press 11 ? 11
• The line of additional

commands is:

Equal, FileAttributes, Initialize, iMount, Na.mes, Online, Scavenge, Unmount

To redisplay the 01riginal command! line, press RETURN.

To execute any command, press the first character of that command when the
File Manager command line is displayed. Most commands will asK for file
names, or other ir:1put parameters. : If there is a default value for a parameter,
it is displayed in square bracKets <EdefaultJ>. To accept the default, just
press RE:TURN. H you do not wan~ the default, type in the response you want.

2.3 The File Manager Commands
The File Manager commands are ~isted in the File Manager prompt line. They
are: Ba.cKup, Copyt Delete, List, Prefixt Rename, Transfert Quit, Equal,
FileAttributes, Initialize, M ount,j Names, Online, Scavenge, and Unmount.

Some of these operations can be performed either on a. single file, or on a. list
of files specified by wild card cha~acters.

;

Each of these operations is de$cribed below. Information on wild card
characters can be found in section: 2.5 below.

2 .3 .1 BacKup

Alpha draft 2-3 27 January 1983

Wor~shop User's Guide. for the Lisa -The File Manager-

This command executes a simple bacl<up utility, simi.lar to Copy. It asKs for
source and destination file specifiers, which will rnost liKely contain wild
cards, <see Section 2.5> and compares ·the source files to the destination
files. Whenever the contents of the two files are not equalt the file is copied.
If a. source file is missing from the destination, it is cc)pied.

2 .3 .2 Copy <C>
The Copy command copies files. H asks for a sou1"ce file specifier and a
destination file specifier. You may use wild cards H you want to copy more
than one file. The source file(s) are not changed by this command.

The default is not to verify copy opera1:ions. You can change this default
with the Validate command in the System Manager. H you change the default,
'the source file will be compared to 'tine destination file after the copy
operation to insure that they are the same. This.> Validate command is
described in Chapter 3.

You can copy files to the -PRJNTgR or tlhe -CONSOLlt logical devices. Text
files (ending in 11 .te>:t11 > will be displayed as a text file. All other files will be
sent byte by byte •

2.3.3 Delete <D>
The Delete command is used to delete a file or a numbt?r of files specifi~d by a.
wild card expression. It asKs you to specHy the files to be deleted.

2.3.4 List CU
The List command lists information abotJt the files matching the given file
specification. If all you need is the 1names of the filest use the Names
command described below.

o If the file specifier is a file na.me <ft)r example ·-MYDISK-exa.mple.text>
that file is listed.

o If the files specifier is a. volumt~ na.me <for example -MYDISK>,
information about all files on the volume is listed.

o If the file specifier includes a wildcard character (for exa.mplet
-MYDISK-=.text> information about all matching files is listed.

The list command displays the following information:

Filename
Size
Psize
last-Hod-Date
Creation-Date
Attr

The name of the file,,
The logical file length in bytes.
The physical length 1of the file in blocks.
Date and time the file was last changed.
Date and time the file was crea.te·d.
File attributest a combination o·f the following:

C File was closed by the OS
l File is locl<ed <cannot be deleted>
0 File was left open whE!n the system crashed
P File is Prcitected
S File has been Scavenge~d.

Alpha draft 2-4 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

An example of the~ list display is shown in figure 2-1.

the 1 i st di ~>P 1 ay

Figure 2-1. The list Display

2.3.5 Prefix <P>
This command allows you to set OP default volume names to sea.rch when you
specify a file name without a volume name. You can set a sequence of up to
thr-ee volume narnes that will bk searched in order when you try to run a
program until the! file is found. , The first prefix is the name of the worKing
directory. It will be -searched :anytime you specify a filename without a
volume name. Boiot defaults for prefixes can be set using this command. The
second and third prefixes will be searched when you try to Run a program
without specifyin!~ the volume it is on.

!

This command· a.sKs you for the ·three pre-fixes. If you want to accept the
default, <if any>, press RETURN~ If you want to set a prefix, type in the
volume name. H you want to have no prefix, press CLEAR as the prefix for
that level.

2.3.6 Rename ffi)
The Rename command allows you i to change the name of a file. It a.sKs for the
filename to cha.ng 1e and the name ~o change it to. You can also use the Rena.me
command to chan~1e the name of a volume. The Rename command can change
the name of a number of files by using wild cards. See Sections 2.S and 2.9 for
more information.

2.3.7 Transfer <T>
The Transfer command asKs for ~n input file specification and a destination
file specification. It copies the' input file<s> to the destination and then, if
the copy was successful, delete$ the input file<s>. If you Trans.fer to the
-console or the -printer, the input file will not be deleted.

2.3.8 Quit (Q)

This command e'dts fr-om the File Manager subsystem to the WorKshop
command line.

2.3.9 Equal <E>
The Equal command compares the: contents of two files to determine whether
they are exactly the same. It asK~ for the names of the files to compare, then
compares them byte by byte and tells you if they are equal or unequal.

2.3.10 FileAttributes <F>

Alpha draft 2-5 27 January 1983

WorKshop _User's . Guide_ for .the Lisa T.he ___ File _Manager

This command is used to set me attribute!~. You can !~et the sa.fe1:y attribute,
which maKes the file so you cannot accidentally delett~ it. In order to delete a
file with the sasfety attribute set, use the FileAttributes command to unset
the attribute on the file. You can also mal-<e a file info a protected master.

Use the FileAttributes command by pressing F in response to the File
Manager command prompt. It displays a ctJmmand line:

FileAttributes: ClearAttributes, Safety, Protect, Quit.

These commands a.re accessed by pressing the ·first character of the
command. They perform the following functions:

ClearAttributes <C>
The clear attributes command clears the c, o, a.nd S attributes on the
specified volume. These attrubutes are set by the system, and have the
following meanings:

C File was closed by the Operc:lting System
0 File was left open when the system era.shed.
S File has been scavenged.

The clear attributes command should be used before scavenging a volume so
that you can tell if any files were chan9ed. See the Scavenge command in
Section 2.3.15 below for more information ..

Sde1y <S>
The Safety command allows you to set or remove the safety attribute on any
file. When the safety attribute is set. thie file canno1: be deleted. To delete a
file with safety on, use this command tc1 remove thE~ attribute. then delete
the file.

Protect <P>
The Protect command is used to maKe a file into a protected master. This is a
form of copy protection for object files. Once a file is made into a protected
mas1er. this protection canno1: be remcived. A pr1otected master has the
following characteristics:

o It can be run on any Lisa machine

o It can be copied on any one Lisa machine.

o Copies mclde will run only on the ma.chine that made the copies.

o After the file is copied the first time, furth1er copies of the master
can be made only on the same machine.

Alpha draft 2-6 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

NOTE

Once a file ils made into a: protected master. there is no way to
unprotect it. Be sure you: understand the characteristics of a
protected ma$~1:er before you create one.

This protectic1n · scheme is f:or executable object files. Note that
protecting a file does not pre~ent you from deleting it.

Quit (Q)

The quit command exits you from the file attributes subsystem to the File
Manager.

2.3.11 Initialize <I>
The Initialize command is used to set up an OS device. It is used to format
and initialize the1 file system on a diskette or ProFile. It asKs you for the
device name to in:itialize, the number of blocKs to initialize, the volume name,
and password. If you want the eritire device to be initialized, enter RE:TURN
<accepting the default> . for the n~mber of blocKs. If the device is a diskette,
it is formatted <ProFiles ar• factory formatted>. Boot tracKs are
automatically written to any device that is initialized. An initialized device
is automatically mounted.

The initialize command will w11rn: you if you attempt to initialize a. disK that
already contains .a. volume. A vol'-'me is initialized to allow a. certain maximum
number of files. You can ma.Ke this number larger or smaller <if you Know you
will have a large number of small files, for example> when initializing it.

2.3.12 Mount CM>
This command is iused to ma~e an OS device accessible. It requests a device
name. It should bu used whenever , you connect a new device, such as a Profile.
The Unmount command, described below, is used to remove a device. All
configured device1s a.re mounted · at boot time. The configuration can be
changed with the Preferences too~, which is described in Sechon 3.3

2.3.13 Names <N>
The names commandis a faster ve~sion of the List command. It gives you a list
of file names onl)'. It asKs for a ·file specifier, and displays the names of all
.files matching the given file specifier.

2.3.14 Online CO>
The Online commc:md produces a list of all the devices that are currently
mounted and available. It tells you the devices mounted, the names of the
volumes contained on them, the number of files on each volume, the size of
the volume, and the a.mount of free space on it. The online display gives the
following information:

VolumeName The name of the volume.
VolSize The number ~f blocKs on the volume.
OpenCount The number Of files open.
FreeCount The number of blocKs still available.

Alpha draft 2-7 27 January 1983

WorKsbop~_User_'s _ Guide for _the Lisa.

FileCount
VolA't

The number of files stored on the volume.
The attributes of the volume:

B the boot vt::>lume.
P the pref ix volume.
M volume is <:urrently mc1unted.

The Online display is shown in Figure 2-2.

The On 1 i neDi splay

Figure 2-2. The Online Displa.·~

2.3.15 Scavenge <S>

The File Manaoer

This command runs the OS Scavenger which res'tores damaged files. Files can
be damaged a.ny time the system termir1ates abnormally. The Scavenger
searches through a disK a.nd restores it!~ directories, files, and allocation
tables to a. consistent state.

A disK must be unmounted before it can be scaven~~ed. Use the unmount
command to unmount the disK, scavenge it, then mount it again to continue
using it. The boot volume cannot be unmounted; ·therefore it cannot be
scavenged. If the ProF'ile is normally your boot volume and you need to
scavenge it, it is necessary to boot from: a diskette and run the Scavenger
from it.

If a file is changed in any way by the Scavenger, the file attributes will be set
to s, for scavenged. This attribute is displayed by 'the List command. The
changes made to the file may or may not a.Hect the data in the file, depending
on what state the file was in when it was scavenged. ChecK any file with the
Scavenged attribute before relying on i1:1s. contents. After the file has been
checKedt the Scavenged attribute can bl! removed with the FileA1:tributes
command.

Alpha draft 2-8 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

NOTE

The file system can get iMto an inconsistent state because the
directories and allocation ta~les a.re Kept in memory and only written
out to disK pe1r'iodically. If th1ere is an abnormal termination, such as a
power failure, the changes to! the state of the file system since these
tables were written to disK will be lost. Information can also be lost if
you disconnect a ProFile fromJ the Lisa. without first unmounting it. If
the disK is U!sed after such :an event, more data ccm be lost if the
system allocates the same blo~Ks to more than one file.

The Scavenger will always re1urn the disK to a consistent state, but it
is possible to lose data when; the system crashed. This damage can
become even worse if the disK !is used while in an inconsistent state.

All Sea venged files should be checked before you depend on their
contents.

2 .s .16 Unmount <U>
This command ma~<es a device inadcessible. Ii a.sl<s for a device name. Always
unmount a device before disconnedting it.

2.4 DisK Storage Orgardz1tion and N4ming
E:ach disK contains a. volume. The volume name is the name of the disK.
Volumes a.re created with the Ini'.t:ialize command, which sets up the disK and
puts an empty directory on it. As files a.re entered on the disK, their names
are entered in the· directory. A co;mplete path name consists of a volume name
followed by the file na"!e in the fqllowing format:

-volna me-filename

A worKing directc1ry is maintai~d by the WorKshop allowing you to access
files on it without using the volun)e name. This worKing directory defaults to
the boot device. The worKing ! directory can be changed by the Prefix
command. The worKing directory is the first prefix specified in the Prefix
command. Files 01n the worKing directory are specified by j.Jst the file name,
with no leading u_u:

filename

A volume must be mounted befor~ it ca.n be accessed. Volumes are mounted
with the Mount co1mmand in the Fi)e Manager. To mount a. volume, you specify
the device on which it resides. Device names that can be used for dis~s are as
follows: .

-UPPER
-LOWER
-PARAPORT
-SLOT2CHAN2

The upper di~Kette. Drive 1.
The lower di$Kette. Drive 2.
ProFile atta.¢hed to the parallel port.
ProFile attached to the N-port card in slot 2, channel 2,
etc.

There are also two serial devices, -RS232A and -RS232B . These provide

Alpha draft 2-9 27 January 1983

WorJ<shop User's Guide for 1:he Lisa The File Manager

access to external RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

-CONSOLE

-PRINTER

-KEYBOARD

Used for output 1:t:> the screen and input from the
Keyboard. The ac1:ual device which is used as the
console can be chanued by the Console command in the
System Manager. See Section 3.:2.

Used to output to the printer. The physical port that
the printer is cdnnected to is set by the Preferences
tool, described in Seii:'tion 3.3.3.

Used as a non-echoir1g input device from the Keyboard.
This is the Keyboard on the consc,le device.

Certain types of files in the system have standard file extensions. These
extensions mat<e it easier to Keep tra.cK of the different types of files. These
file extesions are:

• TEXT

·.OBJ

.I

This indicates a tex1: file :in the format created by the Editor •

This indicates an object code file. C>bjec:t files are created
by the code generater, th1~ Assembler, and the LinKer. Object
files created by the LinKer· are executable.

This indicates an intermediate a-COJ:>E>file produced by 1:he
Pascal compiler. The Generate ccJmmand will convert an
intermediate file into an i:>bject code file •

• LIB This in~icates a. library file •

• SHELL This indicates a shell file that c:an be started by the
environments window.

2.5 Using Wild Card Characters
Wild card characters allow you to speci 4y a set of mes 'to operate on. The
command is performed on all files whose pathname miltches the set specified.
Wild card characters are 11 =11

,
11 ?11

, and 11 $ 11
• These characters are used as

follows:

string 1 =string2

The "=11 character stands for any sequenet? of cha.ractt?rs that can be ignored.
The surrounding strings <string1 and !string2> mu~>t be matched exactly,
ignoring case. Either or both strings can· be null. HE~re a.re some examples of
using the 11 =11 wild c:ard character as a source file namt?:

ds=.text
=.obj
=

all files beginning w:tth ds and eniding in .text.
all files ending with .obj.
all files.

When 11 =11 is used in a destination file name, it is replaced wi1:h the characters
that were matched by a. wild ca.rd in the source file. This allows you to do
operations liKe change 1:he name of a. list of files as 'they are copied. Here are

Alpha draft 2-10 27 January 1983

WorKshop User's Guide for the Lisa The File M ana.ger

examples of using 11=11 a.s a destination file name:
I

ds=.text tc> bu/ds=.text Change all files starting with ds and
ending with .text so they are prefixed
with bu/

=.obj tel x/=.obj Put xi in front of the file name.

string 1 ?string2

The "?" character is the same as:the "=", except that the system a.sKs you to
confirm each file name before p~rforming the operation. The 11 ? 11 wild card
can be used only as a source strin~.

When you use a. "?" in a sourc'? sptcHier, you are presented with a list of files
that match it. You can move b.ckwards and forwards through the list by
using the up and clown arrows on ~he numeric keypad. Press "VU beside every
file that you wan·t to be processe~. When you have selected all the files you
want, press RETURN. The operaiion will then be performed on the files you
selected. ·

string S htring2

The "$" character is used only as a destination file name. It is replaced by the
entire source filEl name. For exa;mple, if you have the source files matching
ds=.text:

· dsfmgr.1:e>ct
dssmgr. te:K t

If the destination expression is bK$, the output files will be:

bKdsfmgr.1text
bKdssmgr.text

Contrast this with the output expression bK=, which results in:

bl<fmgr.te>:t
bKsmgr.te"t

2.6 How do I Copy a Jiile?
You can either Copy a file and 1 leave the original file intact, or you can
Transfer the file, which will copy the filet then delete the original file. To
copy a file, proceed as follows: ·

1. If you are not in the File lif anager subsystem, enter it by typing F in
response to 'the WorKshop co'mmand prompt.

2. Press C to start the Copy command. <Press T, for transfer, if you want
the original file to be delete~ after the copy operation.)

I

3. E:nter the pa"thname of the fi'~e you want copied. Press RETURN.

4. E:nter the pathname you want 1:he file to be copied to. Press RE:TURN.

The file will be copied or transfer~ed as you specified.

If you want to copy a number of flles with similar names, or all the files on a
I

Alpha draft 2-11 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

volume, you can use wild card characters. See section 2.S for more
information on using wild cards. Wild cards can also !be used to rename all the
copies of the selected files.

You can use a shorthand method of enter·ing the file names by entering both
1:he source and destination file names, separated by a comma (,) in response to
the request for the source file.

See Figure 2-3 for examples of copy and tr·a.nsfer oper·ations.

Copy from what existing f i 1 e(s)? myprog
Copy to what new f i 1 e? -bacKup-$

<This copies the file myprog on tl1e worKing directory to the volume
-bacKup with the same name, myprc>g.>

Copy irorn what existing ii 1 e(s.)? ds=
Copy to what new f i 1 e? -backup-$

<This copies all files beginning with ds on the worl<ing directory to the
volume bacKup with the same file ria.me.>

Tr an sf er fr-om what existing f i 1 e < !s.)? -osbac l<-osg=
Transfer to what new f i 1 e? -oswork-$

<This copies all files beginning with osg on the volume -osbacK to the
volume -osworK using the same f:lle name. when the files have been
copied successfully, the original files are deleted.>

Transfer from what existing f i le<~s)? -osback:-osg=,-oswork-$

<This is the shorthand version of the above tra.1"tsfer operation.>

Copy from wha.t existing file<s>? ds=.-backup-bacl<ds=

<This copies all mes beginning wi1th ds in the worKing directory to the
volume -bacKup with bacK inserted as the beginning of each file name.>

Fig~ 2-3. Copy and Transfer oper-ations

2.7 How do I Delete a File?
To delete a file, proceed as follows:

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the WorKshop command prompt.

2. Select the Dele1:e command by pressing D.

3. Enter the pathname of the file you want to delete.

4. The system asKs you to confirm tha1t you want to delete the file. Reply
Y to delete the file or N to J.<eep it.

If you want to delete more than one file, you can use wild cards. See the

Alpha draft 2-12 27 January 1983

WorKshop · User's Guide for the Lisa The File Manager

section 11 Using Wild Card Chara.ctejrs" in this chapter for more information.

2.8 How do I Cr-eate a1nd Use a Volurrte?
A volume can be c:reated on eithe~ a. disKette or a ProFile disK. Each disK can
contain one volume. Creating a ~olume on a disK gives it a name and sets up a
directory for file!s.

1. H you are not in the File Manager subsystem. enter it by typing F in
response to ·the WorKshop cdmmand prompt.

2. Press I to invoKe the Initialize command. This command asKs for:

o The device name <upper or lower for a disKette. slot2chan2 for a ProFile,
etc.>

o The number of pages to initialize. The default is to initialize the whole
device.

o The volume name.

o The volume password Coptiona~>.

o The maximum number of files; on the device. The default is a good value
unless you are using a large niµmber of very small files or a few very large
files.

The volume is initjlalized, with an empty directory. <If the device is a diskette
it is first formatted.> The system will warn you if you are initializing a
device that has an e>:isting volum• on it, and give you a chance to change your
mind before destr1:iying the existing volume.

After initialization, the device is: automatically mounted so it can be used.

2.9 How do I Change the Na.me of a File or Volume?
The Rename comm1md allows you fo change the name of any file.

1. If you are not in the File l!f anager subsystem, enter it by typing F in
response to ithe WorKshop command prompt.

2. Execute the Rename command by pressing R.

3. Enter the pa.·thname of the file or volume you want to rename.

4. Enter the new name.

The name of the fi.le or volume is changed.

You can use the Hename command to change the name of a group of files by
using wild card expressions.

2.1e How do I List Exlisting Files?
You can use ei1:he1r the List comm~nd, or the Names command to list existing
files. The Na.mes command executes much faster than the List command, but
it gives you only the file names.

1. If you a.re n1ot in the File Manager subsystem, enter it by typing F in
response to the WorKshop co~mand prompt.

2. Execute the List command by pressing L, or the Names command by

Alpha draft 2-13 27 January 1983

-WorKshop User's Guide for the Lisa The File Manager

pressing N.

3. If you want to list an entire volume, enter the pa.thname of the volume or
device. If you want to list only a ce1rtain set of files, enter a wild card
expression or pathname describing the files to be listed.

The listing produced· by the list command is explained in Section 2.3.4.

For more information on wild card characters, ·see Section 2.5 in this
chapter.

Alpha draft 2-14 27 January 1983

WorKshop User's GUide for the Lisa. The System Manager

Cha.pter3

THE SVSTS:: MM AN AGS: R

3.1 The SystemManager •••••••••••••••••••••••••••••••• 3-2
The System Mana~Jer, allows you fa set certain system defaults and sei: up the
Lisa configuration. including e>:terna.l device connections and the startup
device.

3.2 The System M&n&ger Function$ •••••••••••••••••••••••••••••••••••• 3-2
The System Mana1ger is activated· by pressing S in response to the WorKshop
command line. It allows you : to set system defaults and access the
Preferences tool that allows you ·to set the configuration of the system.

3.3 The Preferenctts Tool • B-3
The Preferences tool allows you 'to set up system details and to specify what
external devices 1are connected.

3.4 Process.Management ••••• , ••••••••••••••••••••••••••• 3-6
The process management subsystem al lows you to make selected processes
resident, display the status of all currently existing processes, and
remove processes.

Alpha draft 3-1 3 February 1983

Worl<shop User's Guide for 1:he Lisa The System Manager

Alpha drift 3-2 3 February 1983

WorKshop User's Guide for the Lisa The System Manager

THE SYSTEM MANAGER

3.1 The System Ma.n1gi!r.
The System Mana,1er allows you to set system defaults and configuration. l't
allows you to:

o Set the Lisa system characteristics such as screen contrast, speaker
volume, and ti.me la.gs for repeating l<eys.

o Set the configuration of exter,na.l devices such a.s disKs and printers.

o Set the default start up device.

o Set processes to be resident ~r non resident, to allow you to performance
tune your Worl<shop system. ·

o Set what devic:e is to be the console.

o Redirect output from the con$ole to a file or external device.

o Monitor all currently existing: processes, and remove processes.

3.2 The System Manag1?r Functions.
By pressing S in the ma.in comanp line, you ca:n enter the System Manager
subsystem. The System Manager' command line worKs the same as the main
Workshop command line. Pres~ing "?" shows you the additional line of
commands. ·

The System Managier command line is:

SYSTEM-MGR: ManageProcess, OutputRedirect, Preferences, Time, Quit, ?

Press "'?" to see the additional commands:

Console, FilesPriva.te, Validate

Each System Mana.ger command is described below.

ManageProcess OU
This command puits you into a process management subsystem, which allows
you to select whic:h processes sh¢luld be resident for performance reasons. It
also allows you tc> display the sta:,tus of a.ll currently existing processes, and
remove processes,, This subsystem: is described in section 3.4 below.

OutputRedirect <iD> ,
The OutputRedirect command allows you to send a copy of all output that is
displayed on the console to anotHer device <such as the -printer> or to a file
on a disK. The coimmand asKs yo~ for the pathname to send the copy to. In
order to return te> displaying only on the console, use the command again and
redirect the outpt.1t to the -console device <the default>.

Preferences <P>
The Preferences tool is used to pet up the configuration of the Lisa system
and the WorKshop. It is described ·in section 3.3 below.

Time IT>

Alpha draft 3-3 3 February 1983

_\..JorKshop User's GUide for the Lisa _The __ System Manager

The Time command allows you to set the date and time~. The date and time will
be maintained automatically by the Lisa system.

Quit (Q)

The Quit command exi1:s from the System Manager ba1:K to the main WorKshop
command line.

Console <C>
This command allows you to change where the Worl<sh1::>p console is displayed.
It may be displayed on the main screen <the default> or on the alternate
screen <where Lisa.Bug displays>, or on ar1 external terminal connected to the
RS232A or B port.

Files.Private <F>
The FilesPrivate command selects whether or not the private system files
should be displayed by the List command. The default is to not display the
private files. Private files are any filt~s with a nia.me beginning with 11

{
11

•

These file names are used by the system for files you !should not normally need
access to.

Validate <V>
The validate command is used to set up defaults for verifying operations.
Currently the only default of this type tells if the system will verify file
copies or not. The system verifies a copy· by compar-ing the or-iginal file with
the copy to be sure they are the same. The boot default is to never verify.
You should have no reason to verify unle5fs you something is wrong with your
disK.

3 .• 3 The Preferences Tool
The Preferences tool is started by pressing P in response to the System
Manager command line. After you are filnished with it, you can exit bacK to
the System Manager by selecting Quit froim the Tools menu.

The Preferences tool allows you to set up your WorKsfhop system the way you
want it. It contains four sections:

o Convenience settings that allow you to set up the screen contrast, the
speaKer volume, and repeat delays.

o Device connections that tell the liscl system what external devices are
connected.

o Startup that tells the Lisa what devicE~ to use as a startup device.

o WorKshop defaults that set up things ·the WorKshop needs to Know.

These default settings are stored in p.arameter m 1~mory, a small area of
memory that is preserved as long a.s the Lisa is plugged into a worKing outlet
and for up to 10 hours when the Lisa is unplugged. If your Lisa is without
power for longer than this, the preference setting!; will be restored from
information on the startup disl<.

Any changes
immediately,

Alpha draft

made with the Preferences~ tool change Parameter Memory
but some of them, such 1as device connections and startup

3-4 3 Februar-y 1983

Workshop User's Guide for the Lisa The System Manager

options have no effect until the ~ystem is booted again.

The preferences tool displays a! window containing a. number of buttons and
checKboxes. You set the value$ you wa.nt by using the mouse to move the
pointer to the de~iired options an~ clid<ing.

These four areas are described ~riefly below. More information on the first
three areas can be found in the[Lisa Owners Guide Section D. Select the
area you want to view or change iby moving the pointer with the mouse to the
checl<box in front of the section name and clid<ing.

3.3.1 Convenience S1~ttings.
The Convenience Settings portion of the Preferences tool allows you to
customize the :input and outi:Jut characteristics of the Lisa. These
characteristics 1ire divided into' three sections: Screen Contrast, Spea.Ker
Volumet and Rate!s. The Convenience Settings display is shown in Figure 3-1.

conveniencesettings

Figure 3-1. :convenience Stttings.

Screen Contrast
The contrast portion contains th('ee sections. The first allows you to select
the normal screen contrast leveU Chee!< in a contrast box until the contrast

Alpha draft 3-5 3 F ebruar>' 1983

WorKshop User's Guide for the Lisa The System Manager

level is comfortable. ChecKing a box immediately changes the contrast.

The Lisa screen automatically dims if no activity is ta.King place on the
screen to protect the screen from damage. The delay time before this
dimming taKes place is set with the Fade Delay section.

The third section allows you to se1: the dim contrast level. ChecKing a box in
the Dim Level section maKes the screen dim to that level until you move the
mouse.

Speaker Volume
The speaKer volume section allows you to set how loud the Lisa 1s audible
alerts will be. ChecKing a. box causes two beeps a.t the level you selected.

Rates
There are three rates that can be set, two for the Kt~yboard and one for the
mouse. The first is the initial Keyboard repeat delay. This is the length of
time a Key must be depressed before it begins repea·ting. The second is the
subsequent repeat delay. This is how quicKly a KE~Y repeats after it has
started repeating. The third rate is the mouse doublE~ clicK delay. This sets
the maximum amount of time between two clicKs that will be considered a
double clicK. These three values should be· set for your· most comfortable use.

3 .3 .2 Start Up.
The Start Up display allows you to specHy the boot device, and the type of
memory test to be performed on startup.. The Start Up display is shown in
Figure 3-2.

Start Up Display

FigUl"'e 3-2. The S'ta.r•t Up Displa.y.

The Start Up display lets you select the Lisa system boot device. You are
given a list o-f all possible boot devices. St?lect the om~ you want.

The Start Up display also allows you to 1select a lon~~ or short memory test.
The brief tes1: taKes about 30 seconds, the long test ta.Kes about a minute.

Changes made to the Sta.rt Up display are put into Parameter Memory
immediately, but have no effect until the system is bo1:)1:ed again.

3.3.3 Device Connections. ·
The Device Connections
connected to the Lisa.

Alpha draH

display allows you to sp1?cHy what devices a.re
When it is se~lected, it displays. all ports that

3-6 3 F~bruary 1983

Worl-<shop User's Guide for the Lisa. The System M ana.ger

currently exist, dong with the d'vices that are currently connected. To addt
delete, or change 1:he device con~ected to a port, select the port. All devices
that may be conm~cted to that port ar-e displayed; you may also choose to have
no device connec·ted. When you !select the device to connectt any additional
configuration op·tions for that ty:pe of device are displayed.

Any changes maLde' to the device connections are made immediately to
Parameter Memor·y, but they do ~ot taKe eHect until the next time the Lisa is
booted. A typical device connections display is shown in Figure 3-3.

deviceconnectionsdisplay

Figure 3-3. A D.evice Connections Dis.play.

3.3.4 Workshop
The WorKshop di!splay allows you! to set parameters of the WorKshop system.
The WorKshop di~>pla.y is shown in' Figure 3-4.

TheWorkshopOisplay

Figure 3-4. 'The WorKshop Display.

3.3.5 The Tools Menu
The tools menu provides you with functions i:o access Paramei:er Memory.
There are three ·functions provid~d: Set PM to defaults; Quit; and Print PM.
Set PM to defaults sets para.meter memory to the standard Lisa defaults.
Quit exits you from the Preferences tool, and puts a copy of the current
settings of parameter memory ori the disK. Print PM displays all the values in
parameter memory on the console.

Alpha draft 3-7 3 Februar>' 1983

-Worl<shop User's Guide for the Lisa The System Manager

3.4 Process Management

The Process Management subsystem is ·:.tarted by pressingM in response
to the System Manager command 1 i ne, This s.ubsystem displays the
fol 1 owing command 1 i ne:

MAnageProcess.: AddResident, DeleteResident, ICillProcess, ProcessSta.tus, Quit ?

This subsystem is used to control which processes will be resident.
MaKir1g a process resident means that after it has run to completion, it
will be suspended and retained in memory rather than terminated and
removed from memory. This a 11 ows it 1~o r·estar· t ·fas hr, because it does
not have to be re 1 oaded from disk. Fe>r ex amp 1 e, if you are of ten using
the Pascal compiler and the Edi tor, >'OU can improve the performance of
your Workshop system for these appl ic:ations by making the compiler and
the Editor r·esident. This will allow much more rapid ~-hitting between
the two.

S£-e the 0p£-ra ting Sy~. tern Referenc4? Manua 1 for the Lisa for more
information on processes

AddRes i dent <A>
The AddResident command adds a proces1s. to the 1 is.t of processes that are
resident. You supply the file name of the object file that you want to
be made r·esident the next time it is executed.

De le teRes i dent <D>
The DeleteResident removes a process from the list of resid<?nt
processes.

Ki 11Pr-ocess <K>
Th i s c c•mm and te r·m i n ates a cur re n t 1 y e :< i st i n g pr 01 c e s s •

ProcessStatus <P>
The Pr· o c e s s Sta tu s c omm and g i v E! s you i n f orm at i c:i n ab ou t a 1 l cur· re n t 1>'
existing processes. It provides the -following iinformation:

Quit

Pathni.me The name of the object file in the process.
Process! D The unique identifier ass i gn 1ed to the process.
State The current st;:de of the process: Active,

Suspended, or Waiting.
Resident Tel ls you if this is a resident process.

Exit frmr the processmanagement subsystem baclK to the S>·stem Manager·
command l i ne.

Alpha draft a-e: 3 Fe-bruar·y 1983

Worl<shop User's Guide for the Lisa

Cf;1a.pter4

TH~B: S:DITOA

The E:ditor

4.1 The Editor •••••••••••••••• • ••••••••••••••••••••••••••••••••••••••• 4-2
The Editor is used to create and modify text files.

I

4.2 Using the Editor- ••••••••••• ' ••••••••••••••••••••••••••••••••••••••• 4-2
Start editing by pressing e: in response to the command prompt. The E:ditor
will create a new file or edit an 1existing one. Operations are provided in five
menus: File, E:dit, Search, Type Stylet and Print. The mouse is used to select
menu items.

4 .3 Selecting Te>rt • 4-4
The mouse is used to select text and to move the insertion point.

4.4 Scrolling and Moving the Dis~lay ••••••••••••••••••••••••••••••••••• 4-S
The display can be scrolled by using the scroll bar on the right side of the
window. The window can be move:d by clicKing in the title bar. The size of the
window can be ch4anged by using the size control box.

4.5 The File Func:tions •••••••• ~ ••••••••••••••••••••••••••••••••••••••• 4-5
The File functions are used for ~etrieving and saving text files. You can also
save or revert to a previous versfon and exi't the Editor.

4.6 The E:dit Fun1:tions •••••••• "' ••••••••••••••••••••••••••••••••••••••• 4-6
The three basic l~dit functions ~re cut. paste, and copy. The Edit menu also
gives you functions to ~djust left, and right. and to set tabs.

4.7 Th~ Sea~h Functions •••••• •: ••••••••••••••••••••••••••••••••••••••• 4-8
Search gives you functions to ~ind text strings in the file, and optionally
replace them.

4.8 The Type Stylle Functions ••• i ••••••••••••••••••••••••••••••••••••••• 4-9
The Type Style menu allows you ;to change the font that the file is displayed
and printed in.

4.9 The Print Fl.Kletions ••••••• •' •••••••••••••••••••••••••••••••••••••• 4-ie
The Print menu allows you to print the file, and to specify the format it
should be printed in.

Alpha draft 4-1 27 Januar-y 1983

Workshop User's Guide for 'the Lisa The Editor

Alpha draft 4-2 27 Januar)' 1983

Workshop User's Guide for the Lisa The Editor

THE EDITOR

4.1 The Editor
The Editor is useid to create and modify text files. These files may be used
for many purpose~s including inpot to the language processors and as exec
files.

If the file you a.re editing is too bfg to fi't on the screen, a portion of the file is
displayed. This "window" into th~ file can be moved to display any part of the
file you want. A.n example of the Editor display window is shown in Figure
4-1.

The basic editing operations are inserting characters, cutting a portion of
the text, and pa5fting text into a new location. Items that are cut go into a
special window called The Clipb~a.rd. Text on the Clipboard can be pasted
into any place in ~the file, or into ~nether file.

All editing a.ction1 taKes place a.~ the insertion point. The insertion point is
maM<ed by a blin~Cing vertical li~e where the next character will be placed.
Any characters typed, or pasted: from the Clipboard will be inserted at this
point. This is true even if the ins:ertion point is not currently displayed in the
window. The window will autom:a.tically be scrolled to show the insertion
point.

NOTE

The editor is memory based. :This means that 1:here is a practical limit
on the size of the file that ca.11 be edited. If a file is too big to edit, it
should be spli't into more than; one file of manageable size. The F'ilediv
and Filejoin 1~.rtilities ca.n be: used for this. They a.re described in
Chapter 10.

The mouse is usecl to scroll the t'xt in the window, move the insertion point,
and select text tcJ be cut or copied. Other operations, provided in five menus,
a.re selected usin~J the mouse.

displaYWindCM

Alpha draft 4-3 27 .January 1983

. WorKshop .User-'s Guide for the Lisa The Editor

Figure 4-1. The Editor· Displa.y Window

4.2 Using the Editor
Start the Editor by pressing E in respons~~ to the Wor·Kshop command prompt.
The Editor will prompt you for a document name. If you want to edit an
existing file, enter its name. If you wa.nt to create a new file, select Tear
Off Stationery from the filing menu. 'rhe Editor will prompt you for the
stationery name. Press RETURN for the~ defau11:, wl1ich is blanK paper. For
more information on stationery, see below.

The file that you are working on is called the active document. You may have
several documents open and accessible a:t any one time, but only the active
document may be edited. The active win1jow is indicated by a darKened ti"tle
bar.

4.2.1 Editing Operations
The basic editing operations are Cut, Paste, and Copy. To cut or copy te>:t,
you must first select the text to be cut or copied. S1~lect text by moving the
mouse while holding down the button. See section 4.3 below for complete
information on selecting text. Text that is selected and cut is removed from
the active document and placed in a special window called The Clipboard.
Te>:t that is copied is placed on The Clipboard and also left in place in the
active document.

The contents of The Clipboard may be inserted at any point in the active
document by moving the insertion point to where yotJ want the text inserted
and selecting Paste from the edit menu.

4.2.2 The Menus
Operations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to a.ccess things outside the E:ditor, such as
documents and stationery. The Edit menu contains the editing operations.
Search provides for finding strings in the active dc1cument. The Type Style
menu selects the font for document display. The Print menu controls
printing. &:a.ch of these menus is described in more de1tail below.

You select an operation from a menu by rrioving the arrow pointer to the menu
name on the menu bar and holding down the button.. The menu is displayed.
Select the menu item by moving the mouse up or down until the right item
appears in reverse video. Releasing the button start5f the operation.

4.2.3 Creating and Using Stationery
Stationery for a special purpose <such cLS a letterhead> can be created with
the Editor. Stationery is j,Jst a reguh;r document containing the desired
te>:t. To use any stationery other than the default blanK paper, select Tear
Off Stationery from the File menu, a1nd type the name of the document
containing the stationery when it asKs yc1u for the sti:ttionery name.

To create stationery, ma.Ke a document containing the standard text you
want on the stationery. Save this d<Jcument on the disK. To use this
stationery, select Tear Off Sttltionery from the Edit menu, and give it the
file name of the stationery you created.

A 1 P. ha dr ii t 4-4 27 January 1983

WorKshop User's Guide for the Lisa The E:ditor

4.2.4 Editing Multipl~e Files
More than one fille may be open: at one time, but only one document is the
active document. To read in a jdocument when you already have an active
document, select Open from the: File menu. It will ast< you for the document
na.me. The new document will b~ read in to a window on the screen and will
become the active document. ; To ma.Ke another document the active
document, use thie mouse to move' the pointer into a. portion of that document
and clicK.

This capability may be used to copy text from one file to another by using the
following sequence of operations:·

o Open the document containing: the te>:t you want to copy.

o Select the te·>:t you want to: copy and select Copy from the Edit menu.
This places a copy of the text: onto the Clipboard. You can use Cut if you
want the te>:t to be .removed from its original file.

o Open the document you want the 'te>d: to be copied to. It becomes the
active docume11t.

o Move the insertion point to 'tMe place you want the text to be inserted.

o Select Paste, which will copy the te>:t from the Clipboard to the active
document.

Further informati1on on each of these operations may be found below.

4.3 Selecting Text
The basic editing functions are Qut, Copy, and Paste. Before you can Cut or
Copy text, you must s~lect the text to be cut or copied. Before you Paste,
move the insertion point 1:0 wher~ you want the te>:t to be placed. You select
te>:t and move the insertion point by using the mouse to move the pointer on
the screen.

When there is an active document,; the poin1:er will have one of two shapes:

Text pointer iri a document

Arrow po:inter for menus 'and scroll bars

Use the mouse to move the pointer on 1:he screen. The shape of the pointer
will change when you move in and out of the document display window.

Within the displa.y window, the :ted pointer is used to move the insertion
point and to select text.

In selecting text, you may select characters, words, or lines. You may also
select any number· of characters, ; words, or lines. Selected te>:t is displayed
in reverse video.

4.3.1 How do I Hove the Insertion Point?
The insertion poi.nt is indicated by a blinking vertical line where the ne>:t
character will be! inserted. All. insertion, whether from typing or pa.sting,
taKes place at thi!s point in the file, even if it is not visible in the window.

To move the inser·tion point, move the te>:t pointer to where you want i.t to be

Alpha draft 4-5 27 Januar-y 1983

WorKshop User's Guide for the Lisa The-Editor

and clicK. Note that the insertion point is also moved when you select text.

4.3.2 How do I Select Characters?
To select characters, move the text pointer to the beginning of the
characters you want selected, press and hold the button while moving to the
last character you want selected.

An alternate way of selecting characters, which is especially useful when
selecting a large blocK of text, is as follows. Move the pointer to the
beginning of the text you want selected and clicK. Then move the pointer to
the end of the text you want selected and shift clicK (hold down the shift Key
on the Keyboard and clicK the mouse bt.1tton>. You may use the scrolling
controls to display the end of the text you want selected if it is too big to fit
in the window.

4.3.3 How do I Select Words and Lines?
To select a. word, move the text pointer into the wo1;-d and clicK twice. To
select a line, move the pointer into the lini? and clicK tlnree times.

To select multiole words or lines, clicK the requirecl number of times, and
hold. Move the pointer to the la.st word or line you want selected and release.

An alternate method, especially useful when you wa.nt to select more text
than will fit in one display window, is as fallows. ClicK the required number of
times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item you
want selected, shift clicK, and the entire blocK of text will be selected.

4.3.4 How do I AdjJst the Amount of Text Selected?
To change the amount of text selected, move the pointer to the position that
you want the selection to e>:tend to and shift clicK. This can be used to either
expand or contract the selection.

4.4 Scrolling and Moving the Display
When a document is longer than will fit into the displ,tty window, only part of
the document is displayed at one time. You can changE~ what part is displayed
by 11 scrolling" through the display. The vertical bar on the right side of the
active window is the scroll bar. An example of a te>:t window showing the
scroll bar is in Figure _4-1.

The display window can be changed in s:lze and movt~d on the screen. This
allows you to have multiple files displaye·d on the screen. These operations
are done using the title bar and size control bo>:.

4.4.1 Scrolling the Display
There a.re three ways of moving the display window through the document.
The first is by using the elevator. The ell!vator is th 1e white rectangle in the
scroll bar. Its position in the "elevator ~shaft" <the ~~rey portion of the bar>
indicates the relative position of the cur·rently displayd te>:t window in the
document. H the elevator is near the top, you are ne·a.r the beginning of the
document. If it is near the middle, the tex1: displayed cm the screen is near the
middle of the document, and so on. To change the position of the te>:t window,
you can use the mouse to move the arrow pointer into the elevator, clicl< and

Alpha draft 4-6 27 Januar>· 1983

WorKshop User's GUide for the Lisa The Editor

hold the button down while you~ move the elevator to the position in the
document you war1t to display. When you release the button, the display will
be updated to the new position.

The second way 1of moving the '1indow maKes use of the view buttons. The
view buttons are the bo>:es at eadh end of the elevator shaft. H you move the
arrow pointer to a 'view button i and clicK, the display will move one text
window toward the beginning or\ end of the document, depending on which
button you clicKed,,

The third way of moving the winpow uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arri::>w and click, tHe display window will move one line toward
the end of the document. If you hold the button down, the window will
continue to move a line at a time :until you release it. The upper scroll arrow
worKs the same Wt'iYt except it moves the window towards the beginning of the
document.

4.4.2 Moving the Display
You can move the display window : on the screen and change its size. This lets
you display multiple files on the $creen. You can maKe any visible window be
the active window by moving the pointer into it and clicKing.

To move a window1> move the pointer to the title bar, press the mouse button
a.nd hold it while you move the *'indow. When you release the button, the
window will be reclisplayed at the ·new location.

To change the si~:e or shape of the active window, move the pointer to the
size control box, press the button, and move the pointer until the window is
the right size and shap~. Release: the button and the resized window will be
displayed. The size control bm~ 1s the box in the lower right hand corner of
the window. Only the active windtjw can be resized.

4.5 The File Functions
The file menu provides functions ! for communicating with the outside world.
Functions are prtJvided for read~ng in and writing out documents, and for
exiting the E:ditor. The Filing me:,nu is shown in Figure 4-2. Each function is
e>:plained below.

f i 1 i ng menu

Figure 4-2. The Filing Menu

Alpha draft - 4-7 27 January 1983

WorKshop User's Guide for the Lisa The Editor

Save & Put Away
This writes out the active document and closes it.

Sa.ve a Copy in ...
This writes out a copy of the active document to another file name. You are
prompted for the name of the file to write to.

Save & Continue
This saves all changes made so far by writing out the document to disK,
without closing the document.

Revert to Previous Version
This returns the document to the way it was before you started editing it, or
when you last saved it. This is done by reading in the file from the disK.

Open ...
This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and ma.Kes it the active docLrment. The E:ditor will
supply the .TEXT extension on the file name.

Duplicate ...
This allows you to read in a copy of an e:i<isting document to edit into a new
file. It is rea.d in with the default na.me "untitled"

Tear Off Stationery ...
This gets a new piece of stationery and maKes it the~ active document. See
section 4.2.3 above for more information. The stationery is given the default
name 11 untitled11

•

Exit Editor
This first asKs you if you want to put a'A'ay any modified documents. If you
answer yes, they are written out to disK. Then it exits; the Editor.

4.6 The Edit Functions
The Edit menu provides the editing functions and ta!b setting. It is shown in
Figure 4-3.

The three ba.sic edit functions a.re Cut, Paste, and C<:>py. These ma.Ke use of
the special window called The Clipboard. The Clipboard ca.n hold one piece of
text. Text is put into The Clipboard by ~:.electing it in the active document,
and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion point with the paste operation.

edit menu

Alpha dra.f t 4-8 27 Januar·y 1983

WorKshop User's Guide for the Lisa The Editor

Figure 4-$. The Edit Menu

For example, to move a blocK of text from one place in a document to another,
follow these steps:

1. Select the blocK of text to be moved.

2. Select Cut i:rom the Edit ~enu. The text is removed from the active
document and placed on the Clipboard.

3. Move the insertion point to where you want the te>:t to be.

4. Select Paste from the Edit menu. The te>:t on The Clipboard is inserted
a.1: the inserti.on point.

The edit menu also allows you :to adjust selected te>:t left or right by
inserting or deleting spaces. It also allows you to set tabs.

Some edit functions may also be\ done by holding down (apple> and pressing
another Key. The Key that corresponds to ea.ch function is shown in the edit
menu. See figure ~•-3.

Undo Last Change
This command puts the document ;bacK to the way it was before the previous
operation if possible. The system will tell you if the last operation cannot be
undone.

Cut
Cut places a copy of the currently selected text into The Clipboard and
removes the text from the active documen~. You may also Cut by pressing
<apple> X.

Copy
Copy places a copy of the currenUy selected text onto The Clipboard, but
does not remove it from the active document. You can also Copy by pressing
<apple> C.

Paste
Paste inserts a copy of the text on The Clipboard at the insertion point in the
active document. You can also Pa~te by pressing <apple> V.

;

Shift Left
Shift Left moves !~elected te>:t left by deleting a single space from the left of
each line. It will not delete any characters other than spaces. It is most
often used to adjust the left marg~n of a blocK of text. You can shift left by
pressing (apple> L ·

Shift Right
Shift Right is simHar to Shift LeH, except that it moves the selected text to
the right by inserting spaces at ihe beginning of each line. This can also be
done by pressing (ctpple> R.

Set Tabs ...
Set Tabs allows you to set the spading of the tab stops.

Select All of Document

Alpha draft 4-9 27 January 1983

WorKshop User's Guide for the Lisa

This command selects the entire document.
document by pressing <apple> A.

4.7 The Sea.N:h Functions.

The Editor

You can select the entire

The Search menu gives you the ability to s>ea.rch for a. te>d string in the active
document. The basic operation is Findt which locates the next occurrence of
the string and selects it. Find & Paste All will replace ea.ch occurrence of the
string with the contents of The Clipboard. Several options are provided to
specify how the match is to be found. The Search menl1 is shown in Figure 4-4.

searchmenu

Figure 4-4. The Search Menu:

All searches start at the insertion pointt a.nd go to the! end of the file.

There a.re three search operations in the Search menu1, a.s follows:

Find ...
Find prompts you for the string to search fort then finds the ne>:1: occurrence
of the string. If a match is found, it will be selected and displayed. The Find
command can also be executed by pressing <apple> F.

Find Same
Find Same repeats a previously specified Find, and selects the next
occurence of the string. You may do a Find Sa.me by pressing <apple> S.

Find &. Paste All
This finds all occurrences of the specifie1~ string from the current insertion
point to the end of the file, and replaces; each of them with the contents of
the Clipboard.

The other four items in the search men1J tell how ,a matc:h is to be found.
There a.re two areas to describe: searching for toli<ens or characterst and
whether or not case must be matched. The options cL1rrently in effect have a
checK marK in front of them. To change the option, use the mouse to select
the one you want.

The first set of options tells whether to search for toKens or to search
literally:

Alpha draft 4-10 27 January 1 S'83

Worl<shop User's G_uide for the Lisa The Editor

Separate IdentifiE~rs

When Separate Identifiers is se~ected, the search operation will looK for a
11 t0Ken11 or word to ma.tch the se~rch string. Only the first 8 cha.ra.cters a.re
significant in a this type of searcn.

All Occurrences
When All Occurrences is selected!, the search operation will match any string
containing the sa.me characters, 'ven if it is only pa.rt of a word.

The newt options indicate if case ~s significant in finding a match:

Cases Need Not Agree
When this item is selected, any i string with the same characters will be a
match, regardless of whether the¥ are in upper or lower ca.se.

Cases Must Agree-
When this item i5> selected, the s:tring must exactly match the search string,
including ca.se, tc1 be selected.

4.8 The Type Style Functions ;
The Type Style menu allows you :to change the display font. The Type Style
menu is shown in lfiigure 4-5. A checK appears in front of the font that the file
is currently displayed. in. You m~y change the font by selecting another font
from the menu. '

The font selected will affect hoW many characters may be displayed on a line,
and whether or not the display\ is proportionally spaced. When a file is
printed, it will be printed in the same type style it is displayed in.

f ontsmenu

Figure 4-S. : The Type Style Menu

4.9 The Print Functions ,
The Print menu provides function~ for printing a. document. You can print a.11
or part of a. document. choose what form of footers a.re to be printed, specify
if Pascal Keyworcls are to be entipha.siied, and tell what type o~ printer is

Alpha draft 4-11 27 January 1983

WorKshop User's Guide for the Lisa

being used. The Print menu is shown in Figure 4-6.

printmenu

Figure 4-6. The Print Menu1

The Print functions are as follows:

Print All of Document
This command prints the entire document.

Print Selection
This command prints only the currently selected portion of the document.

Both of the print commands will wait if the printer i5i not ready.

The Editor

The remaining options in the Print menu chose how the print is to be
performed. They are organized into a sets of 2 options. The currently
selected option in each set is indicated by a checK marK. You can select any
combination of op1:ions you want.

The first options control what type of ~:ooters will be printed at the bottom
of the page.

Full Footers
When Full Footers is selected, E:ach page printed will have a footer
consisting of the file name, the page number, and the date.

Page Number Only
Selecting Page Number Only results in only a page number on the bottom of
each printed page.

The next options are used for printing Pascal programs.

Plain Keywords
Selecting Plain Keywords ma.Kes Pascal l<eywords prilni: with normal te>~t.

Differentiated Keywords
Selecting E: mphasized Keywords maKes the printe·d output emphasize all
Pascal Keywords by underlining them.

The next options select the type of printer to print on. Select the type of

A 1 pha draft 4-12 27 January 1983

Wor~shop User's Guide~ for the Lisa

printer you have attached to your Lisa:

Dot Ma. trix Prin1:er

Daisy Wheel Printer

Alpha draft 4-13

The Editor

27 January 1983

'WorKshop User's Guide for the Lisa Pascal Compiler

Cha.pte~rs

THS: PASCAL<=OMPIL.E:R

5.1 The Pa.sca.1 Compiler ••••••••••••••••••••••••••• " 5-2
The Pascal compiler translates Pascal s>ource statements into object code.
This trtlnslation is done in two steps. The sourc,e statements are first
translated into intermediate code <I-codE~>t then the I-code is translated into
object code.

5.2 Using th• Pasca.1 Compiler ••••••••••••••••••••• , ••••••••••••••••••• 5-2
The compiler expects a text file containing a Pascal program as input. The
compiler is executed by pressing P in re!;.ponse to th,e command prompt. The
code genera.tor, which translates I-code into objed code, is executed by
pressing G.

5.3 The Pasca.1 Compiler Commands ••••••••••• , •••••••••••••••••••••••• 5-3
The compiler commands desired are entered into the Pascal source file. They
provide for symbolic debugging informa:t:iorn and condi'tional compilation.

5.4 Further Information •••••••••••••••..••••••••••••••••••••••••••••••• 5-3
More information on using the Pascal language car1 be found in the Pascal
Reference Manual for the Lisa.

Alpha Draft 5-1 29 Jarauarr 1983

WorKshop User's Guide for the Lisa Pascal Compiler

Alpha Draft 5-2 29 January 1983

WorKshop User's Guide for the Lisa Pa.seal Compiler

5.1

THE PASCAL COMPILER

The Pascal Compiler
The compiler translates Pascal source statements in1:o object code.
translation is done in two steps. The first step <parsing> converts
program into seman1:ica.lly equivalent t1'ee structures called I-code,,
second step translates the resulting I-code into machine language.

This
the

The

A complete definition of Lisa Pascal is found in 1:he Pia.seal Reference Manual
for the Lisa.

The Pa.seal run-time support routines a1re in 1:he library IOSPASLIB. After
generating the object code, it is nec·essary to linK the program with
IOSPASLIB before you can run it. Fc'r informa.1:icm on how to linK the
program, see chapter 7 in this manual.

S.2 Using the Pascal Compiler
The compiler expects a text file containing a Pascal !Source progrtlm as input.
You can create this text file using the Edl.tor.

When you have prepared a source progra!m, use the Compiler to translate it
into object code. Start the compiler by pressing1 P in response to the
worKshop command prompt. The compiler first asKs f1Jr the

Input file C.textl -

Type the name of the file that contains the source program. You do not need
to add the .TEXT extension. The compiler then asKs you for the

List file -

Type the name of the file that you want the listing to go to, or press RETURN
if you don't want a listing. You can displilY the lis1:in1~ on the console by using
the -console pathname. The compiler next asKs you where to store the I-code
form of the program:

I-code file [(input name>JC~Il -

If you want the I-code to be. stored in a file with the same name as the source
file, but with a .I extension instead of 1:h1~ .TEXT, j.J!:>t press RETURN. H you
want another name, type the name and pre1ss return.

After the last input, the compiler tram:>la.tes the program into I-code and
stores it in the I-code file. If there were any errors, they will be displayed 011

the console.

5.2.1 Using 1:he Code Generator
To translate the I-code into object codi:~, press G in response to the shell
command prompt. The code generator fir~st asKs you for the

Input file C.Il -

Type the name of the I-code file. You do 1not need to c~dd the .I extension. The
generator then asKs you for the

Alpha Draft 5-3 29 Jal'luary 1983

WorKshop User's Guide for the Lisa. Pascal Compiler

Output File £<input ~ame>JC.OBJJ -

To accept the default na.met pre~s RETURN. If you want a different name for
the output file, type the name and press RETURN. The .OBJ extension will be
added to the namE! for you.

The output file from the cod• generator is object code, but it is not
executable because it does not c(Jntain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB. These routines
must be added tel the object file by using the LinKer. See chapter 7 in this
manual for more j,nformation on the linker.

S .2.2 Compiling with a Different I111trinsic library
The Compiler a.nd the code Generator both access INTRINSIC.LIB, the library
of intrinsic units1. It contains information about the intrinsic units used by
the program. H you want the: program to be compiled with a different
intrinsic library, you ~an enter ~?11 to the request for an input file in both the
Compiler and the Generator. Thh will ask you for the name of the intrinsic
library you want to use. After e~tering the name of the intrinsic library, the
compilation pl"oce:eds in the usual! way.

5.3 The Pascal Compilier Commands
Compiler commands allow contrpl of code generation, input file control,
listing control, and conditional c~mpilation. The commands all start with a$,
and are placed as comments in the source program where you want the
command to taKe effect. A com~le1:e list of the compiler commands is found
in the Pascal Refe~rence Manual for the Lisa •

5 .4 Further Informa1:i1on
For further information on the Pascal language, refer to the Pa.sea.I
Reference Manual for the Lisa. A Pascal progra.m can call assembly language
routines. More information on. assembly Language is in chapter 6 of this
manual.

;

The Debugger, described in Chapter e:, can be used for run time debugging of
Pascal programs. More informat~on on the run time environment of a. Pascal
program is found in Chapter 6.

The Opera.ting System provides a. number of routines that can be called from a
Pascal program to perform various system functions. These routines are in
the SYSCALL unit, which is described in the Operating System Reference
Manual for the li!sa.

Alpha Draft 5-4 29 January 1983

. WorKshop Reference M anua.l for the Lisa. The Assembler

Cha.pter6

THS: ASSS: M ELS:~~

6.1 The Assembler • 6-2
The assembler translates 68000 assembly language in1:o machine language.

6.2 Using the Assembler • 6-4
The assembler is started by pressing A in response to the command prompt. It
accepts a text file as input, and produce!> a machine language <.OBJ> file as
output.

6.3 The Assembler Opcodes •••••••••••••••••••••••••••••••••••••• " • • • • • 6-5
The assembler opcodes are the standard 1S8000 opcode!s, with a few alternate
forms for some instructions.

6.4 Assembler Syntax !' ••••••••••• , ••••• , • 6-7
An assembler statement consists of an optional label, the opcode, and one or
two operands. The operands can contain e·xpressions.

6.5 Assembler Directives •••••••••••••••••••••••••• ., ••••••••••••••••••• 6-9
The assembler directives provide for procedure and function definition,
macros, label and constant declaration, listing control, storage allocation,
and conditional assembly.

6.6 Communication with Pa.seal ••••••••••••••••••••••••••••••••••••••• 6-11

Alpha draft 6-1 7 January 1983

WorKshop Reference Ma.nua.l for the 4.isa. The Assembler

Alpha draft 6-2 7 January 1983

WorKshop Reference Manual for the Lisa The Assembler

THE ASSEl"1BLEJ:;~

6a1 The Assembler.
The assembler is a program that translates assembl)' language source code
into object code. The assembler accepts. a text filE~ containing the source
code as input, a.nd produces an object file ilS output.

The object file produced must be linKed with a. Pascal main program before it
can be executed.

Assembly language routines are used to implement lo1w level or time critical
functions. This chapter describes how ttJ use the as 1sembler, and the synta>:
of assembly language programs. lnform.ation on the machine instructions
available on the 68000 processor is found :in the Motorc>la manual.

6.2 Using the Assembler.
The assembler is started by pressing A in response to the shell command
prompt. 11: a.sl<es you for the name of the input file, ·the listing file, and the
output file.

The input file must be a text file containing assembly language source
statements. You can maKe this file with the editor. The output file produced
is an object file <.OBJ>, that must be linKE~d with a Pascal main program to be
run.

By pressing "?" in response to the reques1: for an input file, you can enter the
options entering mode. The assembler will prompt)'OU to input the options
you want. There are two options availabl1~. The curre·nt value of the options
is displayed when the assembler starts.

When the assembler begins running, it displays th1! current value of the
assembler options. These options can be changed by typing the desired value
in response to the request for options. The current settings of the options
can be displayed by pressing 11 ? 11 in response to this request.

The two options are s, and P. They can be set to + or· -. A value of +, or true,
means that action will happen. A - value1• or falset means it will not happen.
The two options are as follows:

P Pretty Listing.

S Print information about ava.ilable space.

After setting any options desired, press return, and the assembler asKs you
for the name of the input file. The assembler then a~sKs you for the name of
the listing, and the output files. The input fill! should be a text file
containing assembly language source statements. The output file will be an
object file which must be linKed with a Pascal main program before it can be
executed. The listing file can be a text file on the disK, or a device such as
the -PRINTER or -CONSOLE.

After you enter the name of the object file, the Assembler processes your
input file. The listing file, if any, contains a list o·f the assembly language
statements, as well as the numeric v1!rsion of the instruction. If the

Alpha draft 6-3 7 January 1983

WorKshop Reference Manual for the J_isa The Assembler

assembler finds any errors. it '(Jill display an error message. A list of all
assembler error messages is foun~ in the Appendix.

6.3 Assembler Opcodes• ,
The 68000 opcode~s are described! in the Motorola MC68000 Microprocessor
User's Manual. ~rhe assembler h~s two variant mnemonics for branches (BHS
for BCC and BLO for BCS>. The ~ariant names are more indicative of how the
instruction is be1ing used after unsigned comparisons. The default radi>: is
decimal.

The size of an operation <byte, ~ord, or long> is specified by appending either
.B, .w, or .L to the instruction. iThe default operation size is word. To cause
a short forward branch, append ia .S to the instruction. The default branch
size is Long.

6.3.1 Optimization
It should be no1.ed that the A$sembler accepts generic instructions and
assembles the correct form. Th• instruction ADD, for example, is assembled
into ADD, ADDA, ADDGt or ADDli depending on the context.

ADD D3,A5 becomes ADDA D3,AS~

MOVE, CMP, and SUB are handle~ in a similar manner.

6.4 Assembler Syntax
This section. desc:ribes the form i in which the assembler expects an assembly
language program. We describ~ the structure of an assembly language
program in section 6.4.1. W~ then describe the form of constants,

I

identifierst labels, expressionst ~nd how to specify addressing modes.

6.4.1 Structure of a.n Assembly language Program
An assembly language program Cfntains one or more procedures or functions.
The structure o~: an assembly l•ngua.ge source file lool<es lil<e Figure 6-1.
First it contains an <optional> section of non code generating operations.
This is usually wlher-e any constants or macros a.re defined. Next it c:onains
one or more proce~dures <.PRQC) : or functions <.FUNC>. These each contain a
sequence of codt~ generating o~era.tions and directives. A procedure or
function is ended when the assembler enclunters the next .PROC or .FUNC.
A .END directive is the la.st stat!ement in the program. Any text beyond the
.END is ignored. ·

non1 code generating! operations

.PROC <or .FUNC> ,
code generating op,rations and any directives needed

.PROC

etc.

Alpha draft 6-4 7 January 1983

WorKshop Reference M anua.l for the Lisa

.END

Figure 6-1, Structure o.f an As•a.embly Lulgt~ge Program

The non code generating directives are:

.EGU

.REF
.DEF

6.4.2 Consbnts

.MACRO
.ENDM

.IF

.ELSE

.ENDC

.LI:ST

.NOLIST

.P~1GE

.TITLE

.MACROLlST
.. NOMACROLIST
.PATCHLIST
.. NOPATCHLIST

Constants in the Assembler can be either numeric or !l~tring constants.

6.4.2.1 Numeric Constants

The Assembler

Numeric constants in the assembler can be ~~xpressed in decimal,
hexadecimal, octal, or binary. The default radix is decimd • The other three
bases are expressed as follows:

Hexadecimal
Hex numbers can be expressed in two ways:

1. Preceed the number with a."$". Examples of this: are:

$FF13
$127

2. Follow the number with an "H". Usi11g this form., the number must start
with a. digit <0-9). Examples:

0FF13H
195H

Octal
Octal numbers a.re followed by the character 11 0 11

• Note that this is the letter
o, not the character zero <e>. Examples:

Binary

770
1040

Binary numbe~ are followed by the character "B". E~:amples:

1011B
111000B

6.4.2.2 String Constants
String constants are delimited by matchirag pairs of single or double quotes.
Examples of string constants are:

11 this is a string constant"
'using single quotes as delimiters lets you use 11 double 11 quotes'

6.4.3 Identifiers
Only the first eight ct;aracters of identifier names are meaningful to the
assembler. The first character must be alphabetic; the rest must be

Alpha draft 6-5 7 January 1983

WorKshop Reference Manual for the Lisa.

alphanumeric. per'iod, underbar, cj)r percent sign.

Examples of iden1:ifiers are:

LOOP
EXIT_PRC:
NUM

6.4.4 Labels and Local (abels

The Assembler

Labels begin in c:olumn one. Th~y can be followed by a colon, if you lil<e.
Local labels can be used to avoid using up the storage space required by
regular labels. The local label istacK can handle 21 labels at a time. It is

I '

cleared every ti.me a regular ~a.bel is encountered. Local labels in this
assembler start with the charader 'il. A local label is an 'il followed by a
string of decimal digits (0-9}. E>~fmples of local labels are:

'iJ123
'GJ79

6.4.5 Exprnsions and operators
All quantities ar'e 32 bits in sbe unless constrained by the instruction.
E>:pressions a.re evaluated from ! left to right with no operator precedence •
Angle brac~ei:s ca.n be used to cdntrol expression evaluation. The following
opera.tors are available: I

+ unary or binary add~tion
unary minus or subt~action
ones complement <uhary operator>
e>: clusi ve or

* multiplication
I divtsion <DIV>
\ MOl)
I logj,cal OR
& logi.cal AND
= equal <used only by ~IF>
<> not equal <used only! by .IF>

There is no operator precedence in expressions. For example, in the
expression 2 + 9 * 4, 1:he ad~ition is performed firs1:. To maKe the
multiplication be1 performed fi~st. the e>:pression can be rewritten with
bracKets to show precedence: 2 rt <9 * 4>, or the operands can be reordered
as: 9 * 4 + 2.

6.4.6 Addressing Modes i

The following is a summary of 1he addressing mode syntax for the 68000.
Refer to the Motc>rola ~8000 man:ual for information on the addressing modes
supported by the 68000. Table 61-1 gives a summary of the addressing modes
including their sys tax.

Ti~ble 4-1. Sum~ary of Addressing Modes

Mode Syntax Extra. Words

Alpha draft 6-6 7 Januar·y 1 983

WorKshop Reference Manual for the Lisa The Assembler

e e .. 7 Di Da. ta. clirec:t e
1 e .. 7 Ai Addre~;s. direct e
2 e •. 7 <Ai> Indired e
3 0 .. 7 <Ai>+ Postinicre ment e
4 e .. 7 -<Ai> Predec:re ment e
5 0 .. 7 e<Ai> lndexe!d 1
6 e .. 7 e<Ai,Ri> Offset indexed 1
7 e e Absolute short address 1
7 1 e Absolute long addr·ess 2
7 2 e PC Relative 1
7 3 e<Ri> PC Relative indexed 1
7 4 #e Immediate 1 or 2

Notes:

1> The inde>:ed and PC relative indexed mc:x:ies are det1!rmined by the opcode.

2> The absolute address and PC relative address modtes a.re determined by the
type of the label (absolute or relative>.

3> The absolute short and long address inodes are d,~termined by the size of
the operand. Long mode is used only for l1~ng constants.

4) The number of extra. words for immedia·te mode is cletermined by the opcode
size modifier <.W or .U.

6.4.7 Miscellaneous Syntax
Comments
A semicolon begins a comment in a.n assembly language program. All
characters on a. line after a. semicolon a.re ignored.. This is a.n example of
comments:

This is a comment on a 1 i ne by i tse H
CLR.L 00 ; this is a comment after a statement

C~nt Pr-ogra.m Location
The current program location is indicated in a.ssembl1' language by the symbol
"*". E:xa.mples of its use a.re:

JMP * ; Loop inf in i t 1 y
JMP *-4 ; Jump back 4 bytes

Move Multiple
To specify which registers are affected by Move Multiple <HOVEM>, specify
ranges of registers with "-", and specify separate registers with "/". For
example, to push registers De through 02:, D4, and A0 through A4 onto the top
of the stacl<:

MOVEH IL D0-D2/D4/A0-A4 ,-(Ai')

6.5 Assembler Directives.
The Assembler directives (pseudo-ops> ar·e:

.PROC <identifier> [,E:xpr J begin procedure with E>:pr args

.FUNC <identifier> C,E>:pr J begin function with Ex pr a.rgs

Alpha draft 6-7 7 Ja.nua.ry 1983

Workshop Reference Manual for the Lisa

.DEF
.REF
.SEG
.END

.ASCII

.BYTE

.BLOCK

.WORD
.LONG
.ALIGN

.ORG

.RORG

.EQU

.MACRO

.ENDM

.IF

.ELSE

.ENDC

.LIST

.NOLI ST

.PAGE

<identifier-list>
<identifier-list>
'<name>'

'<character-string>'
<vatlue-list>
<length)(tvalueJ
<vallue-list>
<vcLlue-list>
<E}<pr>

<vc:Llue>
<va.lue>

<vc:Llue>

<identifier>

<ex pr>

.TITLE '<title>' '

.MACROLIST

.NOMACROLIST

.PATCHLIST

.NOPATCHLIS'T'

.INCLUDE <filename>

6.5 .2 Space Allocation Directives.

The Assembler

maKe identifiers externally available
declare external identifiers
put following code in segment 'name'
end of entire assembly

place ASCII string in code
allocate a byte in code for each value
alloca:t:e length bytes of value
allocate a word for ea.ch value
allocate a long word for each value
allign next code on multiple of E>:pr

place next byte at <value>
same as .ORG

set label equal to <value>

begin macro definition
end macro definition

begin conditional assembly
optional alternate to .IF blocK
end conditional assembly

turn on assembly listing
turn off assembly listing
issue a page feed in listing
title of each page in listing
turn on macro expansion listing
turn off expansion listing
turn on patchlist
turn off patchlist

insert <filename> into assembly

The space allocation directives are .ASCII, .BYTE, .WORD, .LONG, and
.BLOCK •

• ASCII 'string'
converts 'string' into the equiv.lent ASCil byte constants and places the
bytes in the code stream. The string delimiters must be matching single or
double quotes. To insert a single quote into the code use double quotes as
delimiters. SimilaLrly for double quotes:

.ASCII 11 AB 1 CD 11

.ASCII 1 A8 11 CD 1

.BYTE <values>

; string containing a single quote
. ; st r i n g ·cont a i n i n g a dou bl e quote

allocates a byte of space in the code stream for each of the values given.

A1 pha draft 6-8 7 January 1983

WorKshop Reference M anua.1 for the Lisa

Ea.ch value must be between -128 and 255 •

• BLOCK <length> C ,value J

The As-sembler

allocates <length> bytes for each value listed. If no value is given, a blocK of
zeros is allocated •

• WORD <nlues>
allocates a word of space in the code str·eam for eac:h of the values listed.
The values must be between -32768 and 65~535.

For example,

TEMP .WORD 0, 65535,-2,17

creates the assembled output:

0000
FFFF
FFFE
0011

.LONG <values>
allocates two words of space for each value in the list. For example,

STUFF I LONG 0 '65535' -2' 17

creates the output:

00000000
0000FFFF
FFFFFFFE
00000011

<label> .EQU <value>
assigns <value> to <label>. <value> can be an expre·ssion containing other
labels •

• ORG <value>
puts the next byte of code at <value> relative t1:> the beginning of the
assembly file. Bytes of zero are inser·ted from the current location to
<value> •

• RORG
is similar to .ORG. It indicates that the code is relocatable. Because the
loader does not support absolute loading, .ORG and .RORG accomplish the
same function. All addressing must be PC relative.

RORG <without the leading period> is th1~ same as .F!ORG. Similarly, E:ND =
.E:ND, E:QU = .E:QU, PAGE = .PAGE, LIST = .LIST, NOL = .NOLIST, and TTL =
.TITLE:.

6.5.3 Macro Directives.
A macr-o consists of a macro name, optii:>nal argume,nts, and a macro body.
When the assembler encounters the macro name, it substitutes the macro
body for the macro name in the assembly· text. Wherever Y.n occurs in the
macro body <where n is a single decimal dilgit>, the text of the n-1:h parameter

Alpha draft 6-9 7 Januar)' 1983

WorKshop Reference Manual for the !Lisa The Assembler

is substituted. Ii para.meters a~e omitted, a null string is used in the macro
expansion. A mcLcro can invoke ! other macros up to five levels deep. In the
assembly listing, the listing of t:he expanded macro code is controlled by the
options .MACROL.IST and .NOMACROLIST. These options are described in
Section 6.5 .5

.MACRO <identifier>

.ENDM

defines the macro named <iderytifier>. The macros HEAD and TAIL are
defined above. A.s a further exa.niple, consider:

.MACRO H~:r 1 p
MOVE ~{1, 00
ADD 00 ,~{2
.ENDM

H 'Help' is called in an assembly ·with 1:he para.meters 'Alpha' and 'Beta', the
listing created would be:

Help Alpha,Beta
tt MOVE Alpha ,00
ti ADD oa 'Be ta

6.5.4 Conditional Assembly Directiv;es.
The conditional assembly directives .IF; .ELSE, and .ENDC are used to
include or exclude sections of qode at assembly time based on the value of
some expression •

• IF <expression>
identifies the be9inning of a conditional block. <expression> is considered to
be false if it evaluates to zero. iAny non-zero value is considered true. The
expression can also involve a te~t for equality <using < > or =>. Strings and
arithmetic expre!ssions can be! compared. If <expression> is false, the
Assembler ignores code until a .~LSE or .ENDC is found. The code between
the optional .ELSE and .E NDct is assembled if <expression> is false.
Otherwise it is ignored. Conditiqna.ls can be nested. The macros HEAD and
TAIL given above~ provide examples of the use of conditionals. The general
form is:

.IF <e):pression>
; assemb 1 ed on l >' if <expression> is true

!

C.ELSEJ ;optional,
;assembled on~y if <expression> is false

.ENDC
6.5.S External Refer1ence Direc1:ives.

Separate routine!s can share d~ta structures a.nd subroutines by linKage
between assembly rout'ines using\ .DEF and .REF. These directives cause the
Assembler to generate linK infprmation that allows separately compiled

Alpha draft 6-10 7 January 1983

Wor·Kshop Reference Manual for the Lisa The Assembler

assembly routines to be linl<ed together. .DEF and .REF associate labels
between assembly routines, not between assembly r·outines and Pascal.The
only way to communicate data between Pascal and assembly routines is by
using the stacK. This is doen by passing 1:hem as parameters in the procedure
or function call. The Linker resolves the references •

• DEF <identifier-list>
identifies labels defined in the current routine as ava:ilable to other assembly
routines through matching .REFs. The .PROC and .FUNC directives also
generates code similar to that generated by a .DEF with the same name, so
assembly routines can call external .PROCs and .FUNCs with .REFs •

• PROC S imp 1 e , l
.DEF Alpha, Beta

BNE Beta

Alpha MO'JE

RTS
Be ta MOVE

RTS
.END

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF •

. REF <identiiier-list>
identifies the labels in <identifier-list> used in ·the current routine as
available from some other assembly routines which used .DE Fs •

• PROC Si mp 1 e
.REF Alpha

JSR Alpha

.END
uses the label 'Alpha' declared in the .DEF. example.

When a .REF is encountered, the asse1mbler generates a short absolute
addressing mode for the instruction <the opcode followed by a word of i's>
and a short external reference with an address pointer to the word of 0's
following the opcode. If the referenced label and the reference are in the
sa.me segment module, the LinKer changE!S the addr1~ssing mode from short
absolute to single word PC relative. If, however, the referenced procedure
is in a different segment, the LinKer converts the reference to an indexed
addressing mode <off AS> and the word oi: zeros is co1werted into the proper
entry offset in the jump table. If the ref;irenced procedure is in an intrinsic

Alpha draft 6-11 ·7 January 1983

..
WorKshop Reference M 1a.nual for the Usa The Assembler

unit <and therefor·e in a diHeren~ segment), the IUJSR, IULEA, IUJMP, and
IUPEA instructions are used <se~ page ##). The LinKer blindly assumes that
the word immediaitely before the: word of zeros is an opcode in which the low
order 6 bits are the effective address. Thus, a .REF label cannot be used
with any arbitrar}' instruction. The .REF labels are intended for JSR, JMP,
PE A, and LEA ins:tructions •

• SEG

defaul1 segment name is" " <8 !blanks). .SEG "segment name" puts the code
in segment called "segment name".

6.5.6 Listing Control Directives.
The directives that control the: Assembler's listing file output are .LIST,
.NOLIST, .PAGE:, .TITLE, .MACROLIST, .NOMACROLIST, .PATCHLIST,
and .NOPATCHLIST. If you do· not specify a name for the listing file in
response to the Assemb~er's prompt:

Listing Tile «er> for none> -

the listing directives are ignored.

The default for the assembler i~ for .LIST, .MACROLIST, and .PATCHLIST
to be in effect when the assembler starts. .TITLE defaults to blanK.

need exa.mple asnmbly lis.ting

.LIST and .NOLISi'
can be used to sellect portions of, the source to be listed. The listing goes to
the specified output file when .t,i.IST is encountered. .NOLIST turns off the
listing. .LIST a.nd .NOLI,ST can octur any number of times during an assembly •

• PAGE
inserts a page feed into the lis1:ing file •

• TITLE '<title>'
specifies a title for the listing p~ge. <title> can contain up to 80 characters,
and can be enclosed in either single or double quotes •

• TITLE 'Interpreter'
places 1:he word, Interpreter, at t~e head of each page of the listing •

• PATCHLIST

must be on if you ~I/ant pretty listing •

• NOPATCHLIST

.MACROLIST

.NOH ACROLIST

6 .5. 7 File Directives.
The pseudo-op

.INCLUDE <filtmame)
causes the contents of <filename> to be assembled at the point of the
.INCLUDE. <filename> need ~ot specify the .TE:XT suffix. The last

Alpha draft 6-12 7 January 1983

WorKshop Reference M anua.l for the Lisa The Assembler

cha.ra.cter of the filename must be thE~ la.st non-s•pace character on the
line--do not put a comment on this line. A.n included file cannot itself contain
a .INCLUDE statement.

6.6 Communication with Pascal.
Pascal programs can call assembly language proceduN~s. The Pascal program
declares the assembly language procedur1e or func1:ic1n to be EXTERNAL. If
the assembly routine does not return a value, use .P:ROC. H .FUNC is used,
space for the returned value is inserted c:in the stacK ,,i.Jst before the function
parameters, if any. The amount of space inserted depends on the type of the
function. A Longint or Real function result taKe5> two words, a Boolean
result taJ<es one word with the result in ·the high ordt~r byte, and other types
taKe one word. In the following examplth we linK a. bit-twiddling assembly
language routine into a Pascal program. 1~he Pa.seal host file is:

PROGRAM BITTEST;
VAR I , J: INTEGER;
FUNCTION I and< i , j : INTEGER) : INTEGER;

EXTERNAL; < * ex hr-na 1 = Assemb 1 y 1 anguage *)

BEGIN
i := 255;
j := 33;
WRITELN <I ,1.T,-' AND= ... ,land <I, J)):i

END.

TheAssemblerfile is:

I FUNC IAND' 2
RORG 0
MOVE.L <A7)+,A0
MOVE .W <A7> +, 00
MO'JE .W <A7) +, 01
AND.W 01 ,00
MOVE .W D0, <A7)
JMP <A0)
.END

two arguments

; return addres~;.
; J
; I
; I AND J
; put function result on stacK

In 1:he example given above we have made li1:tle attempt to maJ<e the assembly
language procedure m1m1c the structure of a procE!dure generated by the
Pascal Compiler. A complete description of this 5~1:ructure requires. some
preliminary discourse.

6.6.1 The Run Time St&cK
Automatic s'tacK expansion code mc~Kes procediure entries a little
complicated. To ensure that the stacK segment is large enough before the
procedure is en1:ered, the compiler emits code to 'touch' the lowest point
that will be needed by the procedure. If w·e 'touch' an illegal location (outside
the current stacK bounds), the M MU hilrdwa.re signals cl bus error which
causes the 68000 to g~nerate a hardwar1! exception and pass control to an
e>:ception handler. This code, provided by the operating system, must be able
to restore the state of the world at the time of ·the exception, and then

Alpha draft 6-13 7 January 1983

_WorKshop _Reference_MaouaL_for __ thuisa~ The Assembler

allocate enough 1!xtra memory t6 the stack that the original instruction can
be re-executed without problem.; To be able to back up. the instruction that
caused the excep·tion must not change the registers, so a TST .W instruction
with indirect add1ressing is used. :

In the normal cas·e, the proceduref s LINK instruction should be preceded by a
TST.W e<A7> whic:h attempts to r~ach the stacK location that can accomodate
the static and dynamic stacK requirements of the procedure. H the static and
dynamic stack rE?quirements of :your assembly language procedure are less
than 256 bytes, you can assume that the compiler's fudge factor will protect
the assembly language procedur:e, so the TST.W can be omitted. If the
requirements art~ greater than: 32K bytes, e<A7> may not be sufficient
because only 16 bits of address~bility are available <the 68000 does call a
16-bit processor>. In this case, the compiler currently emits code something
like:

MOVE. L A7 ,A0
SUB.L #Size,A0
TST .W (f\0)

;tts1ize=d>'na.mic +static requirements

If the compiler option D+ is in eHect <the default>, the first eight bytes of
the data area fc1llowing the fin~l RTS or JMP <A0> contain the procedure

'i name. Lisa.Bug giets the procedu~e name from this blocK, ma.King debugging
much more pleasant. The following example is provided to show how an
assembly languagE? programmer can provide Lisa.Bug with all the information
it needs to perform fully symbolic! low level debugging.

Alpha draft

;
; ASSEMBLY LANGUAGE EXAMPLE
DEBUGF • EQU 1 ; true=~ a 11 ow debugging with proc names

HEAD-·- This MACRO ca~ be used to s i gna 1 the
beg i nr1 i ng of an asse~b 1 y 1 anguage procedure. HEAD
should be used when ypu do not want to build a stack
frame based on A6, bu 1!t do want debugging information.

No ar· gume r1 ts

.MACRO HEAD
I IF DES:UGF
LINK A6, tt0
.ENDC
.ENDM

; fa.ndy NOP jus.t for debugging purposes

TAIL -·-This MACRO c ah be used as a oenera 1 i zed exit
seq u enc e • There are :two cases • F i ; st , i f you bu i 1 d

I .

a. s tac I< f ,.. am e , TA I L c fl n be u s e d t C• u n do t h e s tac K
fr am e , de l e t e the pan am e t er s (i f an Y) and re turn •
Sec on d , i f you do not jw an t t o bu i 1 d a s tac I< f r- am e
based on A6, this MACRO can be used to s i gna 1 the
end of an assembly 1 anguage procedure. 1 n either
case i of DEBUGF is true, the Procedure_name

6-14 7 January 1983

WorKshop Reference Manual for the Lisa

is dropped by the MACRO as. an 8 character name.

Two arguments:
1) Number of bytes of parameters to delete
2> Procedure_Name as string exact 1)' B characters

;
.t'l.t\CRO TAJ L
UNLK A6
.IF :%1=0
RTS
.ELSE
.IF :%1=4

; 6 bytes of par·ameters

MOVE.L <A7)+,<A7)
RTS

; 4 bytes of parameters

.ELSE
MQIJE. L <A7) + ,A0 ; put next clddress intoA0
ADD .W tC~1 ,A?
JMP <A0)
.ENDC
.ENDC
• IF DEBUGF
.ASCI l :%2
.ENDC
.ENDM

; g e t r i d of p a r am e t er !~ on s tac I<
; re tu r· n t o c a 1 1 E~ r

The fol 1 owing ex amp 1 e demon~; tr· ates the use of the
TAIL macro for the purpose o•F debugging. The ex amp 1 e
assumes that you want to bui l.d a stacK frame based
onA6. In a real assembly language procedure the
zeroes belowwould be replaced by the local size and
parameter size •

-The Assembler

• PRor Gji"\PLE '0
LlNK A6, #0 ; zero here indicates zer·o bytes of locals

; body of procedure NOP
TAIL 0,'SlMPLE ; zero here indicates zero bytes of

parameters

.END
These macros are sufficient for the programmer writing small assembly
language routines 1:0 be called from Pascal.

Upon entry to the assembly routine, the s·tacK is:

User StacK I <previous stacK data> g1~t more detail here

+-------------------+
I Function result I

+-------------------+

Alpha draft 6-15 7 January 1983

-- _ worKshop Reference _ Ma.nual for the Lisa The Assembler

I Parameters
+---------------··---+
I Sta. 'tic LinK I
+--------------··---+
I Return Address I
+---------------··---+< -- SP

The function result is present only if the Pascal declaration is for a function.
It is either one or· two words. If the result fits in a single byte (a boolean. for
example>. the most significant ha~f <the lower addressed half> gets the result
value.

Parameters are p1resent only if tt'~ere are parameters. They are pushed on the
stacl< in the order of declaration.

1

All reference parameters are represented
as 32 bit addresses. Value para.m~ters less than 16 bits in size always occupy
a full word. All non-set value parameters larger than 4 bytes are passed by

I

reference. It is the procedure's ! responsibility to copy them. All large set
value parameters are pushed ontoj the stacK by the calling routine.

The static linK is present on)y if the external procedure's level of
declaration is not global. The linK is a 4 byte pointer to the enclosing static
scope. ,

Ii is the responsibility of the ass.mbly language procedure to deallocate the
return address, t!he static linK <i·~ any>, and the parameters (if any>. The SP
must point to the· function r-esul~ or to the previous top of the stacK upon
return. Registers D4 through D7 ! and A3 through A7 must be preserved. It is
recommended that you also preserye D3 and A2.

6.6.2 Register Conventions
The following are the register coriwentions used in the Lisa system. 11 is the
responsibility of the programmer to preserve these registers.

D0-D2/A0-Al:
D3,A2:
04-07 /A3 ,A4:
A5:
A6:
SP:

Scratch re~isters (can be clobber-ed)
Scratch re<l)isters, but should be preserved
Used for cotie opt imi zat ion
Pointer to:user globals <must be preserved)
Point er to base of s tac K (must be preserved)
Top of stacK

Registers D3 and A2 may be usedi at some time in the future by the compiler
for code optimization. so the ass,mbly language programmer should preserve
them also. ;

6.6.3 Assembly Language Examples
The following exa1mples show how to use certain features of the assembly
language.

The first example illustrates the ~se of .RgF' and .DgF'. These two directives
allow a.n assembly language routine to reference another assembly routine.

The Pascal host file is:

program WasteTime;

Alpha draft 6-16 7 January 1983

---WorJ<shop Reference Manual for the Lisa -The ... Assembler

procedure Wait <time integer>;
external;

begin

end.

writeln <'Going to waste some time"');
wait <50);
writeln crFinished wasting tim~');

The assembly language file is:

cycle

i1

Alpha draft

.proc

.ref

.ref
mov. 1
mov .1

jsr
jsr
jmp

wait
cycle

more_t ime
(a7)+ ,a0
< a7) +, d0

cycle
more_tirne
(a0)

ne~d to use a piece of code whose
entry point is cycle and it is
defined outside of procedure wait
another outsijde procedure
return address in ae
need to wait this many cycles
a parameter for cycle

1,1Ja~;te more t i:me
re ~turn

the subroutine used by wait is defined in the body of the
following code. this proc can do other things besides the

; cycle routine
.proc def_cycle
.def cycle cycle made v~sible to other procs

code can go her·e
;
nop

subq
bne
rts

example of a 1 ine of code
beginning of the cycle procedure

; parameter was in d0
IU ,d0
cycle

more code can go here

.proc
clr
addq
bne 'd1
rts

.end

more_t ime
d0
*12,d0

wa~s.te mor·e time
us1? d0 as t irner

6-17 7 January J 983

WorKshop User's Guide for the Lisa

Cha.pter7

THIS: LINKER

The linKer

7 .1 The Linker 8 11 e • I e I 8 e I I I I I I I a! I I I 8 e I I I I • I I I I e I a I I a I I 8 I a I a I I I I I I a I I I I I 7-2
The LinKer is a program that cotnbines object files to create an e>:ecutable
file.

7 .2 Using 'the Lirll<er ••••••••••• •:. • 7-3
The LinKer is started by pressin:g 11 L11 in response to the Wor'<shop command
prompt. Inputs tc> the LinKer are lobjeci files, command files, or options.

7 .3 The Linl<er Options •••••••• -: • 7-3
The LinKer options coh'trol how· a linK is performed. A list of the current
option settings i~~ displayed when you enter a "?" to the input file prompt.

7 .4 How do I LinJ< a Main Program?i ••••• •. • 7-4
A main program :is linKed by givihg the LinKer the object file from a Pascal
program, along with all assembly language routines, compiled units, and
libraries that the program uses. ·

7 .5 Regular a.nd Intrinsic Units •
1

• 7-5
Regular and intrinsic units are bpth are Pascal units, separately compiled. A
regular unit is linKed with a · main program, and becomes part of the
executable file. An intrinsic unit is shared among all programs that use it,
both on disK and iin memory.

7.6 The LinKer Listing •••••••••
1

••••••••••••••••••••••••••••••••••••••• 7-6
The LinKer listing provides a summary of the linKing process and resources
used. Optionally you can request ! lists of all symbols used.

7.7 Resolving EX'ternal Names •• i ••••••••••••••••••••••••••••••••••••••• 7-7
E:>:ternal names are symbolic ref~rences to separatly compiled modules. The
LinKer maps them to real addresses.

7 .8 Module lllClusion •••••••••• •:• 7-7
The Linl<er only includes modules ! that are actually referenced.

7 .9 Segmentation ••••• , ••••• , , .; ••••••••••••••••••••••••••••••••••••••• 7-7
Segmenting a pro~~ram allows poriions of it to be swapped out of memory when
they are not being used. Segm,ni:ation is controled by a combination of
compiler commands and LinKer op~ions.

7.18 Error Messages •••••••• •••:• •••••••••••••••••••••••••••••••••••••• 7-8
There a.re three 1types of error m!essages: warnings. errors. and fatal errors.
They are listed in Appendix A.

Alpha draft 7-1 29 January 1983

Workshop User's Guide for 'the Lisa The LinKer

Alpha draft 7-2 29 January 1983

WorKshop User's Guide ~-for the Lisa The LinKer

THE LINKER

7.1 The linker.
The LinKer combines, object files~ Its input consists of commands and object
files. Its output consists of obaect files, linK-map information. and error
messages. The oLJtput of the Pas~al compiler must be linKed with IOSF'ASLIB
before it can b1~ executed. Other object files, including intrinsic unit
libraries, and objt?ct files produced by the Assembler, can also be linked into
the output object file.

What the LinKer does is as follows. When a program is compiled into an object
I

file, it contains the following sor~s of things:

o Object code, !S.imilar to machin:e language, that expresses the algorithm of
the program. 1

o Symbolic <named> addresses of all code whose location was unKnown to the
compiler. The·se include exte~nally compiled routines <units and intrinsic
units> and the Pascal library s'.upport routines <PASLIB>.

I •

o Other informcttion to be used !by the Linker.
I

The purpose of the linker is to ~onnect up all the necessary things UinJ<ing
them together>. and output an ob~ct file that can be executed.

The Linker does this by going through the main program, and, each time it
finds a symbolic cLddress. it looKs! up tha.t address in all the units and libraries
it was given as input. and conver~s the symbolic address into a real address
that will be correc:t when the pro~ram is loaded to be executed.

i

If the linker can"t find something that is addressed symbolically, this is an
error. An error message will be printed. indicating the missing module. This
process of finding 'the real ad:dresses 'that correspond to the symbolic
addresses is called resolving the external references.

!

The Linker expec·ts to find the f~le INTRINSIC.LIB even if you are not using
a.ny intrinsic units. INTRINSIC.qB is a directory of libraries a.nd intrinsic
units, and includes information !for the use of the LinKer. INTRINSIC.LIB
defines a.11 the intrinsic units sup~lied with the WorKshop system.

7 .1.1 Cr-ea.ting an Execut1ble File.
To create an executable file. the LinKer must have the following inputs:

o the object file1 from a main Pa~ca.1 program.

o object files fcJr all external ~rocedures referenced by the main program.
These may be as Pascal units, assembly language routines, or intrinsic
units defined :in INTRINSIC.LIB!.

o All units used by the units the i ma.in program uses.

o IOSPASLIB to1 provide the sta.hda.rd Pascal procedures a.nd functions.

The linKer combines these files ~nd creates an executable object file. If it is

A1 pha draft 7-3 29 January 1983

WorKshop User's Guide for the Lisa. The LinKer

unable to linK these files correctly to c:reate a leg:itimate output file. the
Linker will display an error message. H there is a11 error. the object file
produced is not executable.

When linKing a ma.in program, all referEmces to e>:ternal objects must be
resolved. Partial linKs are not allowed.

While it is linKing the program, the LinK,!r does a "dead code analysis" and
does not include any routines that are not referenced., Unnecessary routines
are eliminated fl"om the main program, and from the units and libraries given
as inputs to the linK.

7 .2 Using the LinKer.
The LinKer is started by pressing "L" in response to the WorKshop command
prompt. The LinKer prompts you for the1 input files. the listing file and the
output file. Options may be entered as a response 1to the input file prompt.
After all file names and options a.re entered, the linK begins. This means that
the set of options in effect are the same throught::.iut the linK. It is not
possible· to change options part way through the linK. When entering an input
file name, it is not necessary to enter ·the .OBJ extension, the LinKer will
provide that for all inputs.

The LinKer will accept option commands 1md input file names from a command
file. A command file is a te>:t file containing the filu names and options, one
per line. If there is a blanK line in the file, the L:inKer treats this as the
RETURN that signals the end of the inp1Jt files. Yc1u use a command file by
typing 11 <11 followed by the name of the te»:t -file the commands are in. Crute
the text file by using the E:ditor.

The default listing file is the -CONSOLE. You may !>end the listing to a te>:t
file by entering its name in response to the listing file1 prompt.

After entering the ouput file name, the linK begins. H no error-s occur during
the linK and all external references are resolvt~d, the output file is
executable. A message is printed at the end of the linl< to tell you if the
output is e>:ecutable.

7 .3 The LinV.er Options.
LinKer options can be entered at any time in response to the prompt for an
input file name. The order in which options are 1entered is unimportant,
because they have no effect until the linlK begins. The last value entered for
an option is the value used when the linK i~; performed.

Options are represented by a single c:hara.cter. A 11 +11 in front of the
character maKes that option taKe effect. A 11

-" sets 1the LinKer so that option
will not happen. In addition to being set on or off, some options have
additional parameters. Numeric parameters can loe in either decimal or
hexadecimal. He>:adecimal numbers a.re indicated with a leading 11 $ 11

• The
current setting of a.11 options can be disiplayed by er1tering a 11 ? 11 in response
to the request for an input file.

The Linl<er options are as follows:

Alpha draft 7-4 29 January 1983

Workshop User's Guide for the Lisa The Linker

+A

+D

+H num

-Hnum

+I

+L

Alphabetical listing of symbols. The default is -A.

Debug information. The default is -D.

+H sets the maximum amount of heap space the Operating
Sy~>tem can give a jprogram before terminating it. Here, as in
the other options, fnum' can be either decimal or hexadecimal.

-H sets the minimum amount of heap space needed by a program.

Copy interface information into intrinsic library files. The
default is -I.

Loc:ation ordered ~isting of symbols. The default is -L. The
loc,ation is the segment name plus offset.

+H fromName toName
+ H maps all occur~ences of the segment 'from Name' to the
se~1 m ent · 'toNa.me '.: This allows you to map several small
seg1ments into a $ingle larger segment. You can thereby

I

po5ftpone the segmentation decision until link time by using
many segment nameis in the source code.

NOTE

Because opticms have an effect only when the link begins, it is not
possible to m,a.p a segment na~e to several different names using this
option.

+P

+S num

+T num

+W

Production linl<. Tpe default is -P. +P produces a 'production'
.OEIJ file. A production object file does not contain
information used by the debugger and the Linker, and intrinsic
unit files do not cc)ntain a jump table. The production object
file· can be executedi, but cannot be handled by 1:he Linl<er or the
debugger. ·

!

+S !sets the starting dynamic stacksi2e to 'num'. The default is
10000. '

+T sets the maximum allowed Ioca.1:ion of the top of the stacl< to
'num'. The default !is 128K.

+ W tells the Linl<er \ to aet intrinsic unit information from a file
oth1er than INTRINS~C.LIB.

? Pri1nts the options available and their current values.

7 .4 How do I Lin&< a Main Program?
A main program consists of a, Pascal program linked with all routines
necessary for it 1:o run. A main program is the only type of executable object
file produced by the pnker. r:o linK a main program you must have the
following:

o A compiled pascal PROGRAM , object file.

Alpha draft 7-S 29 Ja.nuary 1983

WorKshop User's Guide for the Lisa The LinKer

o Object files for all the units the prc:>gra.m uses. This includes files for
regular units and assembly language rou1:ines.)~ny intrinsic units used
must be defined in INTRINSIC.LIE.

o IOSPASLIB.

When you have all the above files, proceed as follows:

1. Execute the Lin~er by pressing 11L11 when the Wor·Kshop command prompt
is displayed. The LinKer will display a header and asK you for an input
file.

2. Enter any desired options. See sedion 7.3 in this chapter for more
informa:tion. Press RE:TURN after each option e•ntered.

3. Enter the file names for all the object files, pressing RETURN after
each one. The file names can be entered in any order. Do not enter the
.OBJ extension, t~e LinKer automatically a.ppendis it.

4. Press RETURN to indicate the end of the input files.

S. 7he LinKer prompts you for a listin1; file. Enter the file name desired,
or press RETURN to accept the default of displaying the listing on the
-CONSOLE.

6. The LinKer prompts you for the output file. Enter the name of the
e>:ecutable file you want produced. Do not en·ter the .OBJ extension,
that will be supplied automatically.

The linKing process begins when you press• RETURN after entering the output
file name. If the linK is successful, the message 11 0utpu1: is executable" will
be displayed. If the linK is not successful, error mess•tges will be displayed.

7 .5 Regular and Intrinsic Units.
The two types of units are regular units and intrinsic units. Both of them a.re
separatly compiled code modules that may be used by a main program or
another unit.

The syntax of a Pascal unit is explained in the Pascal Reference Manual for
the Lisa.

A regular unit is combined with a main pr·ogram by the LinKer and included in
the resulting object file. An intrinsic unit, on the other handt is stored
separately on the disK, and loaded at r1Jn time. Thus only one copy of an
intrinsic unit is Kept on the disl<, no ~~a ter how many main programs use
routines in it. In addition to being shared on 1:he disJ<:, an intrinsic unit is also
shared in memory.

N~)TE

In the current implementation, ther·e is no pr1ov1s1on for creating
intrinsic units. Only intrinsic units supplied by Apple can be used.

7 .S.1 How do I use a Regular Unit?

Alpha draft 7-6 29 \,lanuar·)' 1983

WorKshop User's Guide for the Lisa The linKer

A regular unit is a separately ~ompiled segment of code. It is written in
Pa.scalt compiled, and code genefated. See the Pa.seal Reference Manual for
the Lisa for info:rmation on how 1 to write a unit. See Chapter 5 in this manual
for information <::>n compiling 1:he 1unit.

After you have 1:reated a unit, ~he routines in it may be accessed from any
other program or· regular unit yoµ write. The Linl<er is used to combine a main
program with all units it usesi, The result is an executable object file
containing all thE? needed routine?.

To use regular units with a main program, follow the procedure in section 7 .4.
As input, you mu5>t give the Linl<er:

o The object file of 1:he main prpgram.

o The object files of all units u~ed by the. main program.

o The object files of all uni ts u~ed by other units.

o IOSPASLIB.

The Linker will c:ombine all thes~ object files into an executable object file.
It will also do a "dead code analysis" to eliminate any routines that are not
used, thus preve·nting the objett file from becoming any larger than is
necessary.

When regular units a.re used by n)ol"e than one main program, a separate copy
of each routine used is stored in:each executable object file. This "waste" of
disk space and me·mory can be prevented by using intrinsic units instead.

I

7 .6 The linKel" listi~J·
A listing is produi:ed each time a IPl"ogra.m is linKed. This listing can be sent to
a file, or displayt~d on 1:he console <the default>. The +A option will give you
an alphabetictll list of 'the symbols <procedure names> used in the link. The +L
option gives you a list of the narties in order of their location. The listing is
produced in stages, as follows: ·

1. The input files are read, and a summary of the resources used is printed.

2. The linKing process begins.: Information about the size of each segment
is printed. ·

3. E:rrors a.re r·eported, and yotµ are told H the output is executable or not.

If you requested optional listing~, they will also be printed. An e>:ample of a
Lin~er listing with no options req)Jested is ~hown in Figure 7-1.

1 inkerl isting

Alpha draft 7-7 29 January 1983

Wori<shop User's Guide for the Lisa. The LinKer

·Figure 7-1. A Linl<er Listing.

7.7 Resolving External Names.
An external name is a symbolic entry point into an c>b..iect module. All such
names are visible at all times--there is 110 notion of the nesting level of an
external name. External names can be either global or local. A local na.me
begins with a $ followed by 1 to 7 digits. No other ch1:a.racters are allowed. A
global name is any name which is not a local name.

The scope of a global name is the entire program bt~ing linKed. Unsatisfied
references to global names are allowed. Only one deHnition of a given global
name may occur in a given linK. <The one exception t<J this is that the LinKer
will accep1: duplicate names where one instance i!~ in a ma.in program or
regular uni1:, and the other is in an intrinsic library file. In this case, a
warning is issued, and the entry in the main program or· regular unit is used.>

The scope of the local name is limited to the file in which it resides. When a
linK is done, global names are passed thr1ough to the output file unmodified,
but local names are renamed so that no conflicts occ1ur between local names
defined in different files. All references. to a given local name must occur
within the same input file.

7 a8 Module Inclusion.
There are two different cases of what modules the· LinKer includes in the
output file. When linKing an intrinsic unit, a.11 code modules in the unit are
included. When linKing a main program with regular units, the linKer does a
dead code analysis and does not include an:y modules that are not used.

7 .9 Segmentation.
Segmenting a program maKes it possible ior portions of the program that are
not being used to be swapped out to disK, thus maKin~1 better use of memory.
The way a program is segmented will have important effects on its
performance.

Segmentation is controlled by two things:

o The SS Compiler command, that assilgns segment names to source code
modules.

o The +M LinKer option, that allows you to remap 1:ompiler segment names
into new segment names.

The usual strategy for segmenting a program is to use the $S compiler
command to divide the code into many small segments, then to map these
segments into a -few larger physical se~Jments with the +M LinKer option.
This will allow you to change the segmentation 1:>f the program by i,Jst
relinKing it. The segmentation can then easily be 1~djusted to produce the

Alpha draft 7-8 29 January 1983

WorKshop User's Guide for the Lisa The LinKer

best swapping ch1a.ra.cteristics.

Assembly langua~!e routines are py defaul1: placed in the blanK segment. You
can use the .se:G directive to specify another segment, or change the
segment with tht~ ChangeSeg utility. See the Chapters 6 and 10 for more
inform a. tion.

7.10 Error MesHges..
The LinKer produices three different types of error messages, depending on
the severity of the error it encou~tered.
The first, and least severe type\ of message, is called a warning. A warning
message is giver:1 when the Lin~er detects a condition that is potentially
dangerous, but ncit definitly an error. A warning message always begins with:

***Warning

H the warning message occurs while entering a command or file name, you
may simply reenter the command correctly, and the Linl<er will proceed as
though nothing hi:1d happened. '

The second type of message is\ called an error. An error means that the
LinKer has discovered a conditioh that maKes it impossible to complete the
linK successfully. The linK proc*ss is continued, so that any further errors
can be discovered.. An error message begins:

***Error

A fatal error i5~ a condition tmat maKes it impossible for the linKer to
continue the linK. The linK is terminated immediatlyt and a message is
displayed beginnirig:

*** Fa. tal Error

A complete list o~F all linKer messages is given in Appendix A.

A1 pha draft 7-9 29 January 1983

WorKshop User's Guide for the Lisa

Chapte•rS

THE DE ElJGGE R

The Debugger

8.1 The Debugger •••••••••••••••••••••••••••••••••. , ••••••••••••••••••• 8-2
The Debugger allows you to examine and modify me·mory, set breaKpoints,
assemble and disassemble instructions, and other func:tions for run-time
debugging.

8.2 Using the Debugger •. • • • • • • • • • • • • • • • • • • • 8-2
E:nter the debugger by pressing D in response to the command prompt, or by
pressing the NMI key. The debugger prompt <» indic:a.tes that it is ready to
accept commands.

8.3 The Debugger Comma.nets •. • • • • • • • • • • • • • • • • • • • 8-3
Commands are available for assembly and disass.embly of instructions,
displaying memory a.nd registers, setting breai<poin~ts and traces, memory
management, and base conversions.

8.4 Summary of Debugger Commands ••••••••••••••••.•••••••••••• I ••••• s-1e

Alpha draft 8-1 27 January 1983

WorKshop User's Guide for the Lisa The Debugger

Alpha draft 8-2 27 January 1983

WorKshop User's Guide for 1:he Lisa The Debugger

THE DEBUGGER

8.1 The Debugger.
The Debugger allows you to examine ar\d modify m1~mory, set breaKpoints,
assemble and disassemble instructions, and perform other functions for
run-time debugging.

Procedure names a.re available to the de~bugger for program units compiled
with the D option on. The debugger 1uses the symbolic names wherever
appropria 1:e.

The debugger's symbol table combines the user symbol table and the
distributed procedure names. The user symbol table contains symbols the
user defines while using the debugger and the predefined symbols for
registers. E:ach entry contains twelve bytes. The ~First eight bytes are the
symbol name, and the last four bytes a.rn the symboll's value. Section 6.4 in
this manual contains more information about the run-time environment of
programs.

8.2 Using the Debugger.
Type D to the command prompt to invoKe the debugger.. It a.sKs:

Debug wha. t OS file?

E:nter the name of the object file you w1mt to debug. It will be Run with a
brea.Kpoint at the first instruction that will drop you into the debugger
immediately. The debugger command prompt is ')'. The default radix is
hex a.decimal.

Another way of getting into the debu1;ger is by pressing the NMI <non
ma.sKable interrupt> key which is the 11

-
11 Key in the top row of the numeric

Keypad.

When you get the command prompt, 'the debugger is ready to accept commands
'that allow you to:

o Display and set memory loca'tions

o Set and display registers

o Assemble and disassemble instruction!:.

o Set breaKpoints, patchpoints, and traces

o Manipulate the memory management hardware

o Set up timing bucKets for execution timing

o Perform utility functions including:

o symbol and base conversion

o move the debugger window

8.2.1 Examples of Using the Debugger.
This section gives examples of how to use the debugger. An explanation. of all

Alpha draft 8-3 27 January 1983

Workshop User's Guide for the Lisa The Debugger

debugger commands is given belQw in Section 8.3. A summary of all debugger
commands is givein in Section 8.4.i

If you type a file name to the prCilmpt from the Debug command, the debugger
starts up with the program couni

1

ter at the start of the program. To see one
instruction disassembled <say at ·32F96), type

>ID 32F9cS

ID stands for Immediate Disassemble. Each subsequent ID command, if given
without any addr1eSSt disassembl~s the next instruction found. In addition to
printing the value of each byte, 1the debugger prints the ASCII equivalent of
that value, if a printable one exi$ts. If none exists, it prints a period.

i,

To disassemble 2'~ consecutive addresses, type

>IL

IL <Immediate Disassemble Lides> can also be followed by an &ddress.
Subsequent IL c1Jmmands disas~emble successive blocKs of 20 consecutive
locations in memory.

If the object file being examined: was compiled with the D+ compiler option,
the procedure names are availa~le in the debugger and can be used in any
expressior1s. For example,

>IL Foo 5

disassembles the first 5 lines of Rrocedure 'Foo'.

>BR F'oo+40

sets a breaK point 40 bytes into p~ocedure 'Foo'.

You can also use labels in immedia:te assemblies:

>sy Ken ~;000

>A Ken NOP

assembles a NOP instruction at the address 'Ken', which in this case is 6000.

>A 6000

>Rich: JMP $100

> <RE:TUR'N>

enters the immediate assembler at 6000, defines the label 'Rich', and
assembles a JMP instruction.

8.3 The Debugger Commands.
This section gives the definition of each debugger command. The commands
are grouped together according to function.

8.3.1 Definitions.
Constant A constant in the default base.
$Constant A hex constan"t!.
&Constant A decimal con$1:ant.

Alpha draft 8-4 27 January 1983

WorKshop User's Guide for the Lisa The Debugger

'ASCII String' An ASCII string.
Na.me A symbol in the symbol table.
E:xpr An expression. E:xpre5~sions can contain names, regnames.

strings, and constants. Legal c~pera.tors a.re + - * I.
Expressions are evaluated left to right. * and I taKe
precedence over + and -. < and > can be used to indicate
indirection. < and > c:an be used to nest expressions. In
those cases where an odd value is probably a mista.Ke, the
debugger warns you that you a.re trying to use an odd
address. If you decide to go ahead, it subtracts one from
the address given. If the comp:iler option D+ is used,
procedure names are legal in expressions.

Exprlist A list of expressions separated by blanKs.
Register The name for any ctl: the 68000 registers, as follows:

D0 .. D7 are the data registers, .A0 •• A7 are the address
registers, the program counter f'C, the status registers
SR, US, or SS. Note th,:t.t A7 is SP <the sta.cK pointer> ..

Reg Name RD0 •• RD7, RA0 •• RA 7, PC, US, or SS. A predefined symbol
in the symbol table w:lth a value 5te1: by the debugger. The
value is equal to the vdue of the register in question. The
debugger automatically updates the values of these
symbols. The 'R' is appended to distinguish the register
names from hexadecimcll numbers.

8.3.2 Display and set memory locations.
The following commands a.re used to display a.nd set m1r?mory locations.

SM expri exprlist
Se1: memory with exprlist starting at expr-1. SM assumes that each element of
exprlist is 32 bits long. To loa.d different length quantities, use SB or SW
described below. If the expression given is longer tha.n 32 bits, SM taKes just
1:he upper 32. For example, if we asK the clebugger to:

SM 1000 'ABCDE:'

it deposi1:s the ASCII equivalent of 'ABCD·' starting at 1000.

SB expr1 exprlist
Set memory in bytes with exprlist starting! at e>:pri

SW expri exprlist
Set memory in words with exprlist startin!~ at expri

SL expri exprlist
Set memory in long words with exprlist starting at expri. For example,

SL 100 1

is equivalent to

SM 1 ee eeee eee 1

DM expr
Display memory. Display 16 bytes of memory sta.rtin1g at e>:pr. DM RA3+10,
for example, displays the contents of memory frc1m 10 bytes . beyond the

Alpha draft 8-5 27 January 1983

lJorKshop User's Guide for the Lisa The Debugger

address pointed to by A3. DM <110> displays the contents of the memory
location addressed by the content$ of location 110.

DM expr1 expr2
Display memory. If expr1 < expr2, then display memory from e>:pri to e>:pr2.
Otherwise. display memory for expr2 bytes starting at expr1.

DB expr
Display memory a1s bytes.

DW expr
Display memory a.1s. words.

DL expr
Display memory a!s long words.

FE starting_addr count data
Find Byte. Find 1:he byte or byte$ 'data' in memory between 'starting_a.ddr'
and 'starting_Addr'+'count'.

FM sta.rting_a.ddr count da.ta.
Find Memory.

FW sta.rting_a.ddr count data
Find Word.

Fl starting_a.ddr count data
Find Long word.

8.3.3 Set and display registers.
TD
Display the Trace Display at the wrrent PC. An e>:ample of the trace display
is shown in Figure 8-1. It show~ the instruction executing at the time the
program was inte,rrupted, the current value of all the registers, and the
current domain anid process.

trace di sp hy

FigUl"e 8-~. The Trace Displiy.

register
Display the current value of the register. D0, for e>:ample, is a command to
the debugger to display the curr·ent value in the register De. RDe. on the
other hand, is a name automatic:a.l)y placed in the symbol table to give you a
handle on the contents· of D0 in an expression. Thust to display the current

Alpha draft 8-6 27 1.lanuar)' 1983

WorKshop User's Guide for the Lisa. The Debugger

value in the D0 data register, type the command D0. To display the
instruction pointed to by the A0 address register, type the command ID RA0
<Immediate dissassemble at the address RA0, which is predefined to be the
contents of the A0 register>

register expr
Set the register to expr. For example, to set register D3 to zero, type D3 e.

8.3.4 Assemble and disassemble instructions.
These commands are used to display code in assembly language format, and to
enter code in the form of assembly langua~ie statements.

A expr statement
Assemble one or more assembly language statements <instructions> starting
at e>:pr. You can continue assembling instructilons into consecutive
locations, pressing RETURN after each statement. Type j.Jst RETURN to
e>:it the immediate assembler. Note that the immediate assembler cannot
assemble any intrinsic unit instructicins, but they will be corr-ectly
disassembled. Code segments may be write-protect1~d, which will prevent
you from assembling instructions into thum. This can be overridden with the
WP 0 command to disable write protection •.

A expr
If you use the form A expr, the debugger prompts yoL;1 for the statement to be
assembled.
ID
Disassemble one line a:t the next address

ID expr
Disassemble one line at' expr

IL
Disassemble 20 lines a.1: the next address

IL expr
Disassemble 20 lines starting at expr

IL expri expr2
Disassemble expr2 lines starting at expr1

IX statement
Immediate execution of a single instructicm. The usE?rs PC is not changed by
this operation.

8.3.S Set breaKpoints and traces.
These commands are used to trace program e>:ecution.

BR
Display the breaKpoints currently set. You can set LIP to 16 brea.Kpoints wi1:h
the debugger. BreaK points are displayed both as addresses and as symbols.
An as1:erisK marKs the point of the breaKpcrint in the disassembly.

BR exprlist
Set each breaKpoint in exprlist. Symbols .a.re legal, of course, so we can:

Alpha draft 8-7 27 January 1983

WorKshop User's Guide for the Lisa

BR Ralph+4

if Ralph is a Known symbol.

Expressions can be of the form:

pp:aaa.a.a

-The Debugger

where pp is the process numberi,, and aaaaa is the address in that process
where you want ~the breaJ<point s;et. If the process number is e, the breaKpoint
is set in system code in domain e.! If no process is given, the current process is
assumed. The current process i~ shown in the TD display described above.

BreaKpoints canr1ot be set on int~insic unit instructions.

CL
Clear all breaKpo:ints

CL exprlist
Clear ea.ch breaKpoint in exprlist:

G
Start running at the current PC

G expr
S1:arting running at e>:pr

T
Trace one instruc:tion at the current PC

Texpr
Trace one instruc:tion at expr

SC expr
StacK Crawl. Di!spla.y the user call chain. Ex pr sets the depth of the display.
It can be omitted.

RB
Reboot. This command should nqt be used while you are in the WorKshop. The
Lisa is reset.

procedure name
This calls a user procedure or function. It is the users responsibility to save
and restore registers and push any necessary parameters. If you want
execution to stop upon return, y:ou must set a breaKpoint on the current PC.
For example:

BR PC
IX MOVEM.L D0-A6t-<A7i>

; set bre aK poin1: on PC.
; save registers.

; push pa.rams if needed.
FOO ; call procedure FOO.
IX MOVE: M .L <A 7>+,D0-A~ ; restore regis1:ers.
CL PC . ; remove breaK point.

A func1:ion can b1e- called in a simHar manner. Remember to allocate space for
the function result before pushi~g any para.meters. Use either CLR.W -<A7>
ro CLR.L -<A 7>. .

Alpha draft 8-8 27 Jariuary 1983

WorJ<shop · - User's Guide for the Lisa The Debugger

A procedure that may need to be called i 1s OSQUIT. It exits from the OS. We
reccomended that you avoid this whenever possible.

8.3.6 M&nipuli.te the Memory Management H&rdware.
These commands change the memory mana.gement hardware of the Lisa. More
information on the memory ma.nagment hardware can be found in the Lisa
hardware manual. CHECK NAME.

LP expr
Convert logical address to physical a.ddre1;s.

DO expr
Set the SEG1/SEG2 bits. These bits dete•rmine the hardware domain number.
If the Status Register shows that you are in sup1ervisor state, then the
effective domain is zero, and the domain number returned by the debugger is
the domain that would be active if the SR were changed to user state.

WP e or 1
Dia.ble <0> or e:nable <1 > Write Protection. The default is 1.

MM start [end_or _countJ
MM with one or two arguments displays information a.bout the MMU
registers. The second argument defaults to 1. If the starting address is
greater than the second argument, the second argument is a count of the
number of MMU registers to be displayed. If the starting address is less than
the second argument, the second argumen1t is the last register displayed.

MM 70

displays

Segmen'H70 J Originr000 J Limi1:(00 J ControHCJ

These values are the Segment Origin, Li.mit, and Coin1:rol bits stored by the
hardware for ea.ch MM U register. As cim be seen from a careful perusal of
1:he hardwar:-e documentation, a. Control value of C means the segment in
question is unused <invalid). If the Contrc1l value is valid <7, for example>, the
debugger also displays the Physical Start and Stop addresses of the segment.

MM &100 8

displays the MMU register information for the S registers starting at
register 64 (decimal 100>.

MM num org lim cntrl tend_or _counil
The MM command followed by four arguments sets the MMU information for
segment 'num'. The Origin, Limit, and control bits can be changed.

MM 70 100 ff 7

sets the Origin of segment 70 to 100 a.nd the control bits to 7 <a. regular
segment>. The segment limit of -1 maKes the segment 512 bytes long.

8.3.7 Timing Functions.
The- debugger allows you to create up ·to 10 timing bucKets for measuring
execution times~ Using the microse·cond timetr in Drivers, time is

Alpha. draft 8-9 27 Januar>' 1983

WorKshop User's Guide for the Lisa The Debugger

accumulated in efach bucket and saved along with a count of the number of
times the bucKet was entered.

Typically, this wc>uld be done as follows:

1. Enter the debugger for a g~ven process and create one or more timing
bucKets with the TB comman~.

2. Set a breaK point to stop e>:~cution at·some point.

3. Go.

4. When the br•eaKpoint is reached, print the timing summary with the PT
command.

5. Use the End Timing <ET> command to remove all timing bucKets.

The timing commands are a.s follows:

BT expr
Begin timing. E><pr specifies th• process number. If the BT command is not
given, the current process is a.sswmed. A process number of 0 can be used to
indicate domain e.
TB addri addr2
A timing bucKet i·s created from iddri to addr2.

PT
Print timing summary. There are ifive columns printed:

ET

1.
2.
3.
4.
s.

BucKet number
Total time in this bucKet.
Number c1f times this bucKet was entered.
Starting address for this:bud<et.
Ending address for this bucKet.

End timing. Thi5> command prints the timing summary and removes all the
timing bucKets.

KB expr
Kill BucKet. This. can be used to 'remove a single bucKet. Expr is the number
of the bucKet to remove.

RT
Reset timers. 'I'his resets the timing and count tables while leaving the
bucKet definition:f intact.

Note that all addresses are in the same process. The process number is
defined by either the BT command or the first TB, PT~ KB, or RT command. If
the process number is not given in the BT command the current process is
assumed.

8.3.8 Utility functions.
including:

o symbc•l and ba~se conversion

Alpha draft E:-10 27 January 1983

-Workshop User's Guide for the Lisa

o moving the debugger window

o Setting the NMI Key

8.3.S.1 Symbols and Base Conversion
SY
Display the values of all symbols

SY name
Display the value of the symbol name

SY name expr
Assign e>:pr to the symbol name

CV exprlist
Display the value of each expression in he:~ and decimal.

SH
Set the default radix to hex

SD
Set the def a ult radix to decimal

8.3.8.2 Moving the Debugger Window:
P expr
Set port number to expr. Valid port numbers are:

0 Lisa Keyboard and screen (de·Fault>

1 UART Port A <farthest from Power Supply>

2 UART Port B

-The Debugger

If you move the port to a UART, you must have a mode·m eliminator connected
to that port.

RS
Display the patch Return address StacK

8.3.S.3 Setting the NMI l<ey:
NH
Displays the Key code for the NMI Key.

NM expr
Sets the NMI Key to be Key code expr. A v.:t.lue of zero disables the NHI Key.

For e>:ample:

>NM $21

Sets the NMI Key to be he>: 21, which is the 11
-

11 Key in the top row of the
numeric Keypad.

8.4 Summary of the Debugger Commands.
procedure name Call the procedure.
register Display the current va.lue of the register.
register expr Set the register to e>:pr
A expr statement

Alpha draft 8-11 27 January 1983

-'WorKshop User's Gui'de for the· Lisa.

A e>:pr

BR
BR exprlist
BT e>:pr
CL
CL exprlist
CV exprlist

DB expr
DL expr
DM expr1 expr2
DO expr
DR
DW e>:pr
ET

FB starting_addr count data
FL starting_addr count data
FM starting_addr count data
FW starting_addr count data
G
G expr
ID
ID expr
IL
IL e>:pr
IL expr1 expr2
IX statement
l\'B e>:pr
LP expr
MM expr1 expr2
MM num org lim c1:rl
MR

NM
NM expr
P expr
PT
RE
RS
RT
SB e>:pri exprlist

SC e>:pr
SD
SH
SL e>:pri e>:prlist

Alpha draft

The Debugger

A~semble one statement <instruction> at
e~:pr.

Display the breaKpoints currently set.
S~t each breaKpoint in exprlist.
Begin timing process expr
C~ear all breaKpoints
qear each breaKpoint in exprlist
D~splay the value of each expression in hex
aihd decimal.
Display memory as bytes.
D~spla y memory as long words.
Dl.spla.y memory.
Set the SE:G1 /SEG2 bits.
D~splay index or ranges of dump RAM.
Display memory as words.
End Timing - print summary and remove
btiJcKets
F~nd Byte.
Find Long
Find Memory
Find Word
S~art running at the current PC
Starting running at expr
Disassemble one line at the next address
D~sassemble one line at expr
D~sassemble 20 lines at the next address
Disassemble 20 lines starting at e>:pr
Disassemble expr2 lines starting at expr1
Immediate execution of one instruction
Km Bud<et expr
C¢nvert logical address to physical address.
Display MMU information
S~t MMU information
Set a value level #5 interrupt on a word
c~ange.
D~splays the Keycode of the NMI Key
Sets NMI Keycode to expr
S~t port number to expr.
P~int timing summary
Reboot.
Display the patch Return address Stack
R•set timers
Set memory in bytes with exprlist starting at
expri
S1acK Crawl.
Set the default radi>: to decimal
Set the default radix to hex
S~t memory in long words with exprlist
s"tlarting at expri.

8-12 27 January 19B3

-worl<shop --- User1s Guide for the Lisa

SM expr1 exprlist
SW expr1 exprlist

SY
SY name
SY name expr
T
T expr
TB addr 1 addr2
TD
WP 0 or 1

Alpha draft

-The Debugger

Set memory with ex pr list starting at expr1.
Set memory in words with exprlist starting at
expri
Display the values of ci.ll symbols
Display the value of the symbol name
Assign expr to the symbol name
Trace one instruction at the current PC
Trace one1 instruction at expr
Create Ti1ming BucKet from addr1 to addr2
Display the Trace Display at the current PC
Diable <0> or Enable (1) Write Protection.

8-13 27 January 1983

Wor-Kshop Reference M imua.l for the Lisa

Ch~pter9

USING$!:xe:c FILE:S

Using Exec Files

9.1 Exec Files •••••••••••••••••••••~••• 9-1
Exec files a.re scenarios of commarlds to be automatically performed by the
WorKshop system. They ca.n use parameters, and conditional execution.

9 .2 Exec File Statt?meni:s •••••••• •:• ••• 9-1
Exec file statements are of two types: normal lines, that contain WorKshop
commands, and exec command lines, that tell how to process the exec file.
E>:ec command lines include line~ to: set parameter values, perform input
and output, and to control conditiomal execution.

9.3 Using Exec Files ••11!••••••••••·~··••••••••••••••••••••••••••••••••••••••• 9-1
Exec files are inv1:>Ked using the WorKshop Run command. This invoKation
line ca.n set the values of para.meters, as well as select exec options.

9.3 Example Exec Files ••••••••••• ; •• 9-1
This section contains examples of ~xec files.

Alpha draft 9-1 7 February 1983

'WorKshop Reference Manual for the Lisa Using Exec Files

Usi ngExecFi l es

9.1 exec files.
Exec files are scenarios of commands to the worl<sh1:>p system. They are
contained in a text file, created with the l~ditor, a.nd cLre executed with the
Run command. They consist of the actual characters you would type to the
WorJ<shop to perform the function you war1t, intersper!;ed with special exec
file commands that allow you to use pa.rame~ters and conditions to vary some
portions of the scenario.

In its simplest form, an exec file contains the characters you would press to
perform the desired operation. For example, to compile a Pa.seal program,
the exec file would contain:

Pmyprog

The P invoKes the Pasc~l compiler, myprog is the name of the source file.
This could be followed by further lines to Generate, LinK, and Run the
program.

Special exec file commands allow you to use parametetrs and conditionally
perform the WorKshop commands. This Y11ould allow you to set up an e}:ec
file to compile, Generate, and optionally LinK any Pas.cal program. Such an
exec file is shown in Figure 9-1

$EXEC
$ { Th i s ex e c f i l e c om p i l e s and Bene r a t e s a Pas c a 1 pr o gr am •)
$ {If the second para.meter is L <or 1) the program is Linked)
$ I F ~~ 0 = / 1 TH EN { n o p a r am e t e r e n t e r e d }

$WRITE / Comp i l e what f i l e? /

$READLN /.0
$ENDIF
P/.O
{no 1 isting file}

· { def au 1 t I-code f i 1 e }
G/.O
{de fau 1 t object f i 1 e}

$1 F UPPERCASECl.1) = IL I THEN
L /.0
I OSPASLI B
{ end of 1 in Ker input }
{no list file)
/. 0 { o u t p u t f i 1 e n am e)

$ENDIF
·$ENDEXEC

Figure 9-1. Exampl1~ exec file

9a2 exec file statements
E:>:ec file statements are contained on one line. There are two types of exec
file lines, e>:ec command lines, and normal lines. !Normal lines contain

Alpha draft 9-2 7 Februar)' 1983

--- ---~---Workshop Reference Manual for the Lisa Using Exec Files

commands to be p1"ocessed by the !worKshop system. exec command lines
handle the other fE?atures of exec filest such as parameters and conditional
statements.

You may use up to :10 para.meters in an exec file, numbered as %0 through %9.
These receive their values from the invocation of the exec filet or they are
assigned values during the exec fi~e execution. When a parameter appears
in a normal linet it is replaced by the string value of that parameter. These
parameters can be used both as inputs to the exec file and as temporary
variables within it.

gxec command lines start with a. $; they control the operation of the rest of
the exec file. Exec: command lines are free formatt as long as the order of
thier elements is preserved. Any number of blanKs can occur before any
element of a command line.

Normal command lines contain commands for the WorKshop system. These
lines are sent to thie Workshop exac~ly as they appear. Any extra blanks will
be sent 1:o the Wor~<shop and will be treated exactly as if you had typed in
those blanks.

Comments are delimited by curly braces ({and }). They can appear in either
a normal or an exjec command lime. Comments are completely removed
from normal lines.

The tilde ('" ..) is used as a literalizing character in normal lines. It passes the
following character through without processing it. This allows you to pass $t
%t and {to the 'WorKshop system w1thout having them be interpreted as an
exec commandt a parameter, or a comment. Tilde can be passed as'"'"'

The following isa. description of ea.Ith exec command line type.

9 .2.1 Beginning and e1nding Exec Files
$gXEC and SENDEXEC

9 .2.2 Setting Parameter Values
$SET, $DEFAULT, $REQUEST

9 .2.3 Input and Output:
$WRITE, $\.JRITELN!, $READLN, $READCH

9 .2.4 Conditional statements
$IF, $ELSEIF, $ELSla:, fENDIF, and boolean operations AND, OR, NOT

9.2.S Siring Expressions
CONCAT, UPPERCASg

9 .2.6 Nesting exec Files
$SUBMIT

9 .3 Using S:xec File
This section explains exec file invocation, including parameter list and exec
options.

9.4 example exec files

Alpha draft 9-3 7 February 1983

Wor~sh_QP Reference M~nual ___ f_or the __ Lisa ___________________ _ Usil)g_ E:xec Files __

This section contains commented and annotated exec files.

Alpha draft 9-4 7 February 1983

WorKshop Reference Manual for the Lisa The Utilities

Cha.;pteriO

THE: t.lTILITIE:S

10 .1 Introduction ••••••••••••••• •: •••••••••••••• , ••••••••••••••••••••••••• 10-2
Utilities are Executed by the Rllln command from the WorKshop. This
section explains the method for running a utilityt and the common user
interface.

10.2 ByteDiff ••••••••••i•••••••••••;••10-3
EyteDiff compares two files, byte by bytet and shows where they are
different.

10.3 ChangeSeg •••••• •••••••••• ••.•••••••••••.••••••••••••••••••••••••••••• 10-4
ChangeSeg allows :you to change the segment name of an object.

10.4 CodeSize •••••••••••••••••••• · •••••••••••.••••••••••••••••••••••••••••• 10-5
CodeSize gives youi a. summary of the contents of an object file

10.5 DiH I I I a I a I a 8 a I I I a• a 8 I I I a a a;I •I I I a I I e e 8.1 I a I I I a a I I a 8 I I ea I I a I I I a a I I a I t 10-6
Diff compares two text files and shows their differences.

10.6 DumpObj •••••••••••••••••••• : •• 10-7
DumpObj displays the contents of an object file.

10.7 DumpPatch •••••••••••••••• •'•• •••••••••••••••••••••••••••••••••••••• 10-7
DumpPatch display·s and ,edits the c:ontents of any file.

10.8 FileDiv and FileJoin ... 10-8
FileDiv divides large files into smaller ones. File Join rejoins the resulting
small files bacl< into the original large file.

10.9 Grep •••10-9
Searches for Id's.

10.10 GxRef a I e e I I e e.I a ea et I e e I a e I 1,a e e I a• I I I a I I a a I I I 8 •I I• I I I 8 I I I I 8 I I I 8 I I a I I 10-9
GxRef provides a global cross reference.

10.11 Pa.d<Seg I I a I I a a I I I a I a I 8 a I 8 a a 1.8 I I I a a I I 8 8 I ·1 a e I I I 8 I I •I I I e I I I I I a I I a I I I I 10-10
Pacl<Seg pacKs object code files.

10.12 SegMap I• a e I I a I I I a I I I a I I• e I I ·a I I I I a I I I at I I 8 I I I 8 I I I 8 I I I a a I I a I I I a 8 I I I 10-11
SegMap produces a segment map fcir one or more object files.

10.13 SxRe1 I I I a I I I I I I I 8 I I 8 I 8 I a a I l=I I I I a a 8 I I a I I I a I I I I I I I 8 8 t I a I I I I I I I 8 8 I I I 10-12
SxRef produces a cross reference.

Alpha draft 10-1 7 February 1983

_ WorKsbop _ Reference _M a.nua.l for the Lisa. _Ibe~Utili tie~

AJ pha draft 10-2 7 February 1983

WorKshop Reference Manual for the Li~a The Utilities

THE UTILITIES

10.1 In1roduc1ion
how to run utilitie5~

10.2 ByteDiff ,
BYTE:DIFF compare~s any binary files, but once it finds a difference between
the two files, it doe~s not a.lwa.ys fin~ where the differences end.

10 .3 ChangeSeg
CHANGESEG chalilges the segmen~ name in the modules in an object file.
The first prompt as;Ks for the object! file you want to change:·

!

File to change:

Changes are made in place <the fil~ itself is changed). You are next asKed:

Map all Names <YIN>

If you want to change segment narhes in all modules, respond Y. If you want
to be prompted fior the new seg~ent name for each modulet type N. A
response of <er> ac:cepts the defaul!t name.

10.4 CodeSize
10.5 DiH.

DIFF is a program for comparing 11 .TE:XT" files, in the LISA Pascal
development environment. DIFF is strongly oriented toward use with
Pascal or Assembler source files.

DIFF is not sensitive to upper/low~r case differences. All input' is shifted to
a uniform case before comparison !, is done. This is in conformance with the
language processor·s, which ignore ~ase differences.

i

DIF'F is not sensitive to blanKs. All blanKs a.re sKipped during comparison.
This is a potential source of und~tected changest since some blanKs are
significant <in string constants, for instance>. However, DIF'F is insensitive
to 11 trivial11 chang,es, such as indentation adjustments, or insertion and
deletion of spaces around operators.

DIFF does not acce!pt a matching ~ontext which is "too small". The current
threshold for accepting a match ~s 3 consecutive matches. The M option
allows you to chang:e this number. ~his has two effects:

Areas of the source where almost I 11every other line" has been changed will
be reported as a s:ingle change blob<, rather than being broKen into several
small change bloc:Ks.

Areas of the sour"ce which a.re '!entirely different" are not broKen in1:o
different change bloc:Ks because df trivial similarities <such as blanK lines,
lines with only 11 be~~in11 or 11 end 11 , e1:c!->

DIFF maKes a second pass through the input files, to report the changes
detected, and to verify that matching hash codes actually represent
matching lines. Any spurious match found during verification is reported as

Alpha draft 7 February 1983

Workshop Reference Manual for the Lisa The Utilities

a. 11 JACk'POT". The proba.bility of a. JA.Ck'POT is very low, since two
different lines must ha.sh to the same code a.t a loc:atic>n in each file which
extends the longest common subsequence, and in a ma1:ching context which
is large enough to exceed the threshold for acceptance.

DIFF can handle files with up to 2000 lines.

DIFF firstprompts you for two input file names: the 11 m!w11 file, and the "old"
file. DIFF a.ppends 11 .TEXT" to these file 11a.mes, if it is not present. DlFF
then prompts you for a filename for the listing file. Type carriage-return to
send the listing to the console.

DIFF does not <currently> Know about INCLUDE files. However, DIFF does
allow the processing of severa.l pairs of files to be sent to the sa.me listing
file. Thus, when DIFF is finished with om! pair of filE~s, it prompts you for
another pa.ir of input files. To terminate DIFF, simply type ca.rriage-return
in response to the prompt for an input file name.

The output produced by DIFF consists of blocKs of 11 c:hanged11 lines. Each
blocK of changes is surrounded by a few lines of 11 cont1e>:t11 to aid in finding
the lines in a hard-copy listing of the files.

There are three Kinds of change blocKs:

INSE:RTION -- a. blod< of lines in the "new" file which does not appear in the
"old" file.

DELETION -- a blocK of lines in the "old" file which does not appear in the
"new" file.

REPLACEMENT -- a blocK of lines in "the "new" file which replaces a
corresponding blocK of different lines in th1e old file.

Large blocKs of changes a.re printed in summary fa.shicm: a few lines a.t the
beginning of the changes and a few lines a.t the end of the changes, with an
indication of how many lines were sKipped.

DIFF has three options which allow you 1:o change the number of context
lines displayed <+C), the number of lines required to con1stitute a match <+M>,
and the number of lines displayed at the beginning of a long blocK of
differences (+D>. To set one of these 1iumbers, type the option name
followed by the new number to the prompt for the firs,t input file name. +D
100, for example, causes DIF'F to print out up to 100 lines of a blocK of
differences before using an ellipsis. The ma>dmum number of contewt lines
you can get is 8.

10 .6 DumpObj.
DUMPOBJ is a. disassembler for 6E:OOO code. It can disassemble either an
entire file, or specific modules (procedur·es> within the file. DUMPOBJ
repla.ces DUMPMCODE.

DUMPOBJ first asKs for the input file which should be a.n unlinKed object
file. The output <listing> file defaults to C(JNSOLE:. YDu are asKed whether
you wa.nt to dump

Alpha draft 10-7 7 February 1983

'WorKshop Reference M anua.l for the Li$a The Utilities

A<ll, S<ome, or P<ari:icular modules. :

If you respond S<ome, DUMPOBJ a.~Ks you for confirmation before dumping
ea.ch module. A r1~sponse of <Esc> gets you bacK to the top level. If you
respond P(articular, DUMPOBJ a.sKs you for the particular module<s> you
want dumped. '

The next question :is: 'Dump file pd,sitions rNJ?'The file position isa number
of the form co,ooo:Jwhere the first digit is the blocl< number <decimal> within
the file and the second number is 1he byte number <hexadecimal> within the
blocK at which t:he module starts. This inform a. tion can be used in
conjunction with the PATCH prog~a.m. Finally, DUMPOBJ asKs if you want
the object code disassembled.

10.7 DumpPatch ,
DumpPatch is a combination of DumpHex and Patch.

DumpHex provides a. textual representation of the contents of any file. The
file dump isblocK-c>riented with tHe hexadecimal representation on the left
and the correspondjLng ASCII representation on the right. If a byte cannot be
converted to a printable character, \a dot is substituted.

When DumpHex is Run, it asKs you! for the name of the output file. A .TEXT
extension is added if necessary. To direct the output to the console, type
carriage return. After getting a v!alid output file name, DumpHex a.sKs for
the input file to bt~ dumped. No ~xtensions a.re appended, so give the full
filename. Once a. Hle has been co~pletely dumped, DumpHex asKs you for
the next file to dump. Type carriag~ return to exit the program.

After opening the input file, DumpHex asl<s you which blocK to dump. The
default <carriage r·eturn> is blocK Q. If the output is going to a file, you a.re
a.sKed which blocK is the last you ~ant dumped. The default here <carriage
return> is the la.st blocK in the file. ·

The format of the c:onsole output d~pends on the number of lines your screen
has. If fewer than 33 lines a.re a.va.~lable, the output is displayed only a half
blocK at a time. Between blocKs or iblocK halves you have the option to

Type <space> to continue, <escape>\ to exit.

Escape returns to tlhe prompt for a.ni input file.

Patch allows you to examine an~ change the contents of any file. Tho
display of the file''s contents is exactly liKe that of DumpHex. With Patch,
however, you can iuse the cursor cpntrol Keys to move around in the blocl<
and change the value of any: byte using either the hexadecimal
representation on 1:he left or the A~CII representation on the right.

After Running Patch you ai:-e asKe~ for the full name of the file to patch.
Carriage return exiits Patch. No ex~ension is appended to the file name. You
are then asl<ed for the number of ~he blocK you want to mess around with.
Carriage return here returns you to! the file name prompt.

The blocK is displa.yed with the cu~sor in the upper left corner a.t word 0 of
the blocK. The arr·ow Keys can be :used to move around in the blocK. If you

Alpha draft 10-8 7 February 1983

WorK_s_l)op Reference· Mariual _for the Lisa The __ U'tilities

move the cursor up from the top line, you get the, bottom line of the
preceding blocK. Similarly, if you move down from the bottom line, you
move into the top line of the next blocK.

When the cursor is on the hexadecimal side of the dis~pla.y, you can change
any byte by typing the new hexadecimal Vc~lue. Any nciin-hex characters are
ignored. You ca.n impress your friends b1f pointing out that the change is
reflected automatically in the ASCII portion of the, display. When the
cursor is on the ASCII side, type any char.acter to replace the value of the
byte.

Until you move out of the blocK you c:a.n undo any changes by typing
<escape>.

10.8 FileDiv a.nd FileJoin.
l't is often necessary to distribute files tha't are too large to fit onto a single
floppy disKette. FILEDIV can be used t1J breaK a la'.rge file into several
disKette-sized pieces. FILEDIV can then be used to rejoin these pieces at
the file's destination. These two programs replace the TRANSFER program.

To divide a large text or object file, Run FILEDIV.

Input file: <give the name of the file to be divided>

Output file: <give the name to be used for the output files>

Do not include the suffix in the file name. If, for example, you want to
divide TEMP.TEXT, give TEMP as the input file, and TEMP <or whatever) as
the output file. FILEDIV will create a grc>up of files named TEMP.1.TEXT,
TEMP.2.TEXT, and so on, until TEMP.TEXT is completely divided up. 'H you
use the drive number (#9:, for example>, rather than 1:he volume name, the
new files can be written to multiple disKe'ttes. When space on a disKette is
exhausted, FILEDIV asKs you to insert another disKette.

To rejoin the pieces of the file, Run FILl~JOIN. Using the example given
above, we can rejoin TEMP.1.TEXT arid friends :into TEMP.TEXT by
re spending:

Input file: TEMP

Output file: TEMP

<will read TEMP.1.TEXT, etc>

<will create TEMP.TEXT>

FILE DIV and FILE JOIN use regular directories, so a spurious sex change
cannot destroy your file. Files are verified in both dire1:1:ions.

10.9 Grep
10.10 GxRef.

GXRE F' lists all the modules which call a given procedure, and all the
modules which that procedure calls. It pmvides a global cross reference of
subroutines and modules.

10.11 Pad<seg
10.12 SegHap

SEGMAP produces a segment map of one~ or more object files. The first
prompt:

Alpha.draft 10-9 7 February 1983

WorKshop Reference Manual for the Lisa The Utilities

Files to Map 't

accepts either an c:ibject file name or a command file name. A command
file must be preceded with a <. SEGMAP adds the .TEXT suffix to the
command file name. The next prom'pt:

Listing File ?

directs the map information to ~he file given. A response of # 1: or
CONSOLE::, for example, send the J'.nap information to the screen. The map
information includE~s the object file name, the name of the unit in the file,
the names of the s;egments used iri that unit (if any>, and the new segment
names.

10.13 SxRef

Alpha draft 10-10 7 February 1983

	00-00
	00-01
	00-02
	00-03
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-06
	10-07
	10-08
	10-09
	10-10

