To: Nellie Conners, Difrk van Nouhuys, Bill Libby, Sheila Mulligan,
Barry Hayrnes, Rom Johnston, Fred Forsman, Pete Cressman,
Ken Doyle, Dick Young, Steve Luckau

From: Larry Roth
Subject: Review of the Workshop Manual
Date: 25 February, {943

Attached you will find 2 copy of the Workshop manual in its
current state for your review. Please return comments +to
me as soon as possible, by March 7.

1 think this manual wouéld be much more useful with more
examples. Please looK for places that could use examples,
then supply the example needed, or tell me where to find it.

Because of the short notice involved in getting this review
out, the chapters are rot all in the best of states. Please
note the following:

o I have received comments for chapters & and & (The
Assembler and The Debugger) that I have not yet
incorporated.

o Chapter 9 (Uéing Exec: Files) is not complete, but the
outline of all I plan to cover is there.

o Chapter 10 (The Utilities) is not complete. The format is
not correct either. Each utility write up will contain three
sections, as follows: '

Purpose : A two to four line statement of the function and
capabilities of the utility.

Dialog: A print out of a typical dialog with the user,
showing p;rompts and responses.

Explanation : This section explains all the things you might
need to Know about the utility and using it. This is
similar ini scope and function to the current werite ups
we have én the utilities.

ThanK you for your attention to this matter.



WOaORK SHOR USsSER" " SGUI DE

CForthelli =sa

Larry Roth
29 January 1983
Alpha Draft



1@.

COrdTENTS

INTRODUCTION

The Workshop provides tocls for program development., It provides
facilities for editing, language processing, and debugging, aswell as
commands for managing files and configuring the system, The system
also includesmany otherutilities.

THE FILE MANAGER
The File Manager allows you tomanage andmanipulate files and volumes.

THE SYSTEM MANAGER
The System Manager allows you to set default and configuration
parameters for the Lisa, andmanage processes.

THE EDITOR
The Editor allows vou to create and modify text files. These text files
are used as input to the Compiler and the Assembler,

THE PASCAL COMPILER

The Compiler tranclates Pascal source code into object code.
Translation requires two steps: first the compiler translates Pascal
into I-code; then the code Generator translates the I-code intoobject
code.

THE ASSEMBLER
The Ascembler translates assembly language programs into object code.

THE LINKER
The LinKker combines object code files intoexecutable programs.

THE DEBUGGER
The Debugger allows you to examine memory, set breakpoints, and perform
other run-time debugging functions.

USING EXEC FILES
Exec files allow you to execute a series of commands and programs
automatically,

THE UTILITIES
Utility programs are provided for debuaging, configuring the system,
andmanipulating files. :



AaPFFENDI CES
A. ERROR MESSAGES



Workshop User’s Guide for the Lisa Introduction

Chapter1i
INTRODUCTION

1.1 The workshup S 2SS0 S0P SUSSPRUNORET PO SO RPIEDESSPEPE RPN OIRNORS 1-1
The Workshop provides the functions necessary to develop and run programs
on the Lisa. The Workshop can be booted from either adiskette or a Profile.

1.2 Stapting thﬁ WDPuSth P 6B S AN O ORO PR ARBABNEREPONBUDOROERBOIREBOEOSIEIDPOEESDS 1-1
The Workshop is started by booting the Lisa from a disk containing the
Workshop software. You can use the Environments window to select one of
several available environments.

1.3 The workshop Userlnteﬁace S0P SR O PD R ROC PO RRRNRUDO RO NI BANIBEEOOPRNORD 1-3
The Workshop user interface consists of three command lines: the Workshop
command line, the File Manager, and the System Manager.

1.4 File System Organization and Naming eeeseessssrsccecensscncscasnss i=4
Files are stored on disk volumes and are accessed by specifying the volume
name and the file name.

1.5 Using Utility Programs .eeeescossecssscascsncossnsseonsesnosrsassases =7
Utility programs provide additional functions for the Workshop. A utility
program is started by choosing the HRUN command from the Workshop
command line.

1.6 How do IWrite and Run a Pascal Program? ..ecocvesoesssssncssonsass 1-8
A Pascal program is written with the Editor. The source file must be
compiled and linked before it can be run.

1.7 How do Iwrite and Run an Assembly Language Program? ...eeeesecss 1-8
An assembly language program is written with the Editor. It must be
assembled and linked with a Pascal main program before it can be run.

1.8 How do 1Use the BASIC Interpreter? ..evisesessvsoscscsnsssrsansses §=8
A BASIC program can be written using either the Editor or the BASIC
interpreter 1o create the source file. The BASIC interpreter will run the
program.

1.9 How dolwrite aCOBOL Pr‘ogl‘am? SeBsEBIBTEIEP IV SRR ORISR TOOOPERD AR 1-8
A COBOL program is written with the Editor. After writing the program,
enter the COBOL language system to compile and run the program. The
COBOL system isinvoked by pressing C in response to the Workshop command
prompt.

1.8 The Operating System ...eevecescvssescssscsrsnronsessnssescsncsnss -8
The Workshop runs under the Operating System for the Lisa computer. You
can access operating system routines through the SYSCALL interface. More
information about this interface can be found in the Operating System
Reference Manual for the Lisa.

alpha draft i-1 27 January 1983



alpha draft 1-2 27 January 1983

Workshop  User’s Guide for the lisa Introduction _



Workshop User’s Guide for the Lisa Introduction

INTRODUCT I O

i.{ The Workshop Manager.
The Workshop allows you to develop and run programs on the Lisa. It provides
tools necessary to write, debug, and run programs in Pascal, BASIC, and
COBOL. This manual explains how to use the Workshop and all of its tools.

Access to all Workshop functions is provided by command lines. The main
command line, WORKSHOP allows you to edit programs, run utilities or user
programs, and use the various languages available on the system. It also
provides access to two subsystems; the File Manager, and the System
Manager.

The File Manager allows you to copy, delete, rename, and list digk files. It
includes a backup function, and functions for manipulating volumes. These
functions are listed in the FILE- MGR command line, which is similar to the
main command line. (See Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command line.
(See Chapter 3.

All command lines are displayed at the top of the Lisa screen. If there are
more commands than will fit on one line, a "?" is at the end of the line.
Pressing "7?" will display the remaining commands. To access any command,
press the first character of the command name. To redisplay the first
command line, press RETURN.

Most commands will ask for additional information. Type in the information
using the Lisa Keyboard. Some questions have a default value, displayed in
square brackets ([defaultd). To accept the default value, press RETURN. If
you don‘t want the default value, type in the value you want.

The Lisa system can display one of two screens, called the main screen and
the alternate screen. The Workshop system normally displays on the main
screen. The alternate screen is used by the system debugger. You can
change to the other screen display by pressing the right hand OPTION and
ENTER keys. The System Manager contains the Console command, which can
be used to specify where the Workshop should display.

The Workshop can be used to write programs in Pascaly, COBOL, and BASIC.
To use these languages,; refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:
o Pascal Reference Manual for the Lisa

o MCé800@0 16 Bit Microprocessor User’s Manual (for assembly language
programming)

o Operating System Reference Manual for the Lisa (for information on
system calls)

alpha draft 1-3 27 January 1983



Workshop User’s Guide for the Lisa Introduction

For BASIC Programming:
0 BASIC User’s Guide for the Lisa
For COBOL Programming: |
o COBOL User's Guide for the Lisa
o COBOL Reference Manual for the Lisa

If vou have only a BASIC or COBOL system, you will not have all the software
described in this manual, The portions of this manual that will be most useful
to BASIC and COBOL programmers are:

o The Introduction, which describes how to use the Workshop.
o The File Manager, which describes files and how to manipulate them.

o The ©System Manager, which describes setting up the system
configuration parameters.

o The Editor, which describes how to create and modify text files that are
used as source files,

You may alsc use some of the utilities if they are included in your software.

$.2 Starting the Workshop
The Workshop can be booted from a diskette or a Profile. It will most
commonly be used with a Profile,

To start the system, boot from a disk that contains the Workshop software.
If your disk contains only the Workshop environment, the Workshop command
line will appear at the top of the screen. If you have more than one
environment (for example, the Workshop and the desktop) you can use the
Environments window to start up the environment vyou want, and switch
between them.

The Environments Window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically when vou boot the system. To access the environments window
while booting the system, press any Key while the Lisa is starting up. The
environments window will be displayed.

The Environments window is shown in Figure 1i-i. Itdisplays five buttons:
Power Off Turn off the Lisa

Restart Reboot or reset the Lisa

Start Start the selected environment

Set Default  Set the default to the selected environment

No Default The Environments window will always be displayed on
startup.

To select an environment, move the pointer to the checkbox of that
environment and click the mouse button. Then move the pointer to the start
button and click. The selected environment will start.

To access the Environments window from the Workshop, and select another

alpha draft i-4 27 January 1983



Workehop User’s Guide for the Llisa Introduction

enviranment, use the Quit command from the Workshop command line, or
press the on-off button. To access the Environments window from the
Desktopy press the on-off button while holding down the (apple) Key.

theenvironmentswindow

Figure 1-i{. The Environments Window

1.3 The Workshop User Interface.

When the workshop environment is selected, the system will come up with the
Workshop command line at the top of the screen. This command line lists all
the actions you can currently request of the system. The Workshop line
displayed contains only some of the commands available. The rest of the
commands can be displayed by pressing "?", the last symbol on the line. The
original command line can be redisplayed by pressing RETURN. A command is
executed by pressing the first letter of the command name.

There are two other ;subsystems that have separate command lines; the

alpha draft , i-S 27 January 1983



‘Workshop User’s Guide for the Lisa Introduction

File-Manager, and the System-Manager. Their command lines can be
accessed from the Workshop command line, and are used the same way.

You can terminate the operation of most commands by pressing (apple)
period. You can turn off the Lisa by pressing the on-off button at any time.
The system will shut.down in an orderly manner. A diskette can be inserted at
any time. It will automatically 'be mounted and accessible. Diskettes are
ejected by pressing the diskette button.

The main, or Workshop, command line is as follows:
WORKSHOP: FILE-MGR, SYSTEM-MGR, Edit, Run, Pascal, Basic, Cobol, Quit, ?
The additional portion, displayed iby pressing "?", is:
Assemble, Debug, Link, MakeBaEkground, Generate
All the main command line commands are described below.

FILE-MGR (F)

This command puts you into the File Manager subsystem, which is used to
manipulate the files and volumes .on the system. For more information on the
file manager, see Chapter 2 in this manual.

SYSTEM-MGR (5 _ .

This command puts you into the System Manager subsystem. This subsystem
provides various configuration and utility - functions. See Chapter 3 in this
manual for more information. '

Edit (E) .

The Edit command puts you intc the text editory, which is used to create and
modify text files. The Editor is used to create source files for BASIC,
COBOL, and Pascal. Itisalso used for assembly language programming and to
create exec files. The Editor is described in Chapter 4 in this manual.

Run (R) ‘

The Run command causes a compiled and linked program to execute. This
command isused for user-written Pascal programs, utility programs, and any
other software that runs under the Workshop. The Run command asks you for
the file to run. This file must be an executable object file or anexec file. (An
exec file name must be preceded by & <" ) 1f you do not give it a complete
pathname, the Run command will search through up to three default volumes
for the file. These defaults can be set by the File-Manager’s Prefix
command. See the Prefix command in Chapter 2 for more information.

The Run command will also accept an "exec file" as input. An exec file isa
scenario of commands for the Workshop system to carry out. An exec file
name must be preceded by a "<" to be processed correctly. For more
information on exec files, see Chapter 9 in this manual.

Pascal (P)

This command starts the Pascal compiler. The compiler asks for the input
file, which must be a text file; the listing file; and the output file, which will
contain the object file. The Pascal compiler is described in Chapter 5.
Further information on the Pascal language can be found in the Pascal

alpha draft 1-6 ) 27 January 1983



. Workshop User‘’s Guide - for the Lisa Introduction

Reference Manual for the Lisa.

The compilation is done in two steps. The first step, done by the Pascal
command, produces an intermediate code file. After this, you must use the
Generate command, (press G) to generate an object file from the
intermediate code file.

Basic (B)
This command puts you into the BASIC interpreter. More information on
BASIC programming can be found in the BASIC User’s Guide for the Lisa.

Cobol (C)

This command puts vou into the COBOL language system. More information
on COBOL programming can be found in the COBOL User’s Guide for the Lisa
and the COBOL Reference Manual for the Lisa.

Quit (@
The Quit command ends the Workshop environment. You can access the
Environments window to start another environment.

Assemble (A)

The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MC &é8000 Microprocessor User's
Manual .

Debug (D)

The Debug command causes your program to run with a breakpoint inserted at
the first instruction in the program, so you can use the debugger on the
program. More information onthe Debugger can be found in Chapter & of this
manual.

Link (L)

The Link command executes the Linker, The Linker is used to prepare
compiled Pascal programs and assembled routines for execution, and to link
together separately compiled pieces of a program. The LinKer isdescribed in
Chapter 7,

MakeBackground (M)

The MakeBackground command allows you to start up a background process,
then continue using the Workshop for other functions. Itisassumed that the
backgrond process will not try to display on the console.

Generate (G)

The Generate command converts intermediate code files produced by the
Pascal compiler into object code. It isused with the Pascal compiler and is
described in Chapter 8.

1.4 File system organization and naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains, A file is specified by giving the
name of the volume and the name of the file:

-volumename-filename

alpha draft 1-7 . 27 Janvary 1983



-Workshop User's Guide for the Lisa Introduction -

The Workshop maintaing a working directory; you can access files in it
without specifying a volume nam(‘g. The working directory can be changed by
using the File Manager’s Prefix dommand. Files on the working directory can
be specified by just the file name, with no leading "-":

filename

Further information on the filei system can be found in Chapter 2 of this
manual and in the Operating System Reference Manual for the Lisa.

1.5 Utility Programs.
There are various utility programs provided with the Workshop. These are
used for functions not as commonly used as the commands.

The utilities are described in Cha;::ater ie.

You must Run utilities, Select tl{)e Run command {rom the main command line
by pressing R when the main command line is displayed. The system will ask
you for the name of the file to run, Type in the name of the utility you want to
run.

1.6 How do 1 Write and Run a Pascal Program?
To write and run a Pascal program; proceed as follows:

i, Use the Editor to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See
the Pascal Reference Manual for the Llsa for information on the
language. ’

2. Compile the program using the Pascal command (press P while the
Workshop command line is displayed) from the main command line. The
output from the compiler is &nintermediate file.

3.  The output from the Pascal command isan I-code file. Use the Generate
command to convert the I-code file into an object file. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more informatipn on compiling Pascal programs.

4, Link the program using the Link command. In order to be executable,
the program must be linked with the Pascal support routines contained
in IOSPASLIB. For other applications you may also use other libraries
and units, or assembly lamguage routines. More information on the
Linker can be found in Chapter 7.

5. The linker produces an exécutable object file. Press R to run the
program. :

Information on making system calls from Pascal can be found in the Operating
System Reference Manual for the Lisa,

1.7 How do ! Write and Run an Assembly Language Program?
Assembly language programs must be called as procedures of functions from a
Pascal main program. To write .an assembly language routine, proceed as
follows:

1. Use the Editor to create an assembly language source program. See

alpha draft 1-8 27 January 1983



Workshop User’s Guide for the Lisa Introduction

Chapter 6 of this manual for information on assembly language.
Chapter 4 describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text file
you created and produces an object file.

3. Declare the routines you wrote in assembly language as EXTERNAL in
the main Pascal program that calls them.

4, Use the Pascal and Generate commands to create an object file from the
Pascal program. See Section 1.6 for more information.

S. Use the LinK command to link the Pascal object file, the assembly object
file, IOSPASLIB, and any other needed units or libraries.

6. Use the Run command to run the resulting object file.

1.8 How do I use the BASIC Interpreter?
To use the BASIC interpreter, proceed as follows:

i. Use the Basict command by pressing B when the main command line is
displaved. You will enter the BASIC interpreter.

2. Enter the BASIC language statements and commands necesary to write
and execute your program. The BASIC interpreter can execute
statements immediatly or save them to run later. You can return to the
main command line by using the BASIC command BYE.

You may also use the Editor to prepare or modify the BASIC source program,
then use the BASIC interpreter to run it. See Chapter 4 in this manual for
more information on the Editor.

See the BASIC User’s Guide for the Lisa for more information on the
language.

19 How do I Write a COBOL Program?
To write a COBOL program, proceed as follows:

f.  Create a text file containing the source program by using the Editor.
See Chapter 4in this manual for more information on the editor.

2. Press C to enter the COBOL language system. More information on

COBOL programming can be found in the COBOL User’s Guide for the
Lisa and the COBOL Reference Manual for the lLisa.

1.1 The Operating System.
The Workshop runs under the Operating System of the Lisa computer. You
can use some operating system routines from a Pascal program to perform
special system functions for you. These system calls are defined in the
intrinsic unit SYSCALL. More information on the syscall interface and
routines can be found in the Lisa Operating System documentation.

alpha draft 1-9 27 January 1983



Workshop User’s Guide for the Lisa The File Manager

Chapter2

THE FILEMANAGER

2.1 The File Mana‘-ger‘ '...'..ll.';'-O.Il...".l.l.l'll.'..l'.-l.’.l'..... 2-1
The File Manager allows you to manipulate files, volumes, and devices.

2.2 Using the File! Mamger l..l.il..l..ll..l...l...l.l.'.‘l.....'.ll..'l 2-1
Press F at the workshop command line to display the File Manager commands.
The first letter of each File Manager command makes it work.

2.3 The File Mam‘\ger Commams .:Cl.l.'I.llllI.lll.ll'..lll.'l.llllllll' 2-1
This section lists and defines all File Manager operations.

2.4 Disk Storage Organization an;d File Naming .eveeseecescesavesscrnnss 2-6
Each disk can contain a volume which has a directory of files. File extensions

(.TEXT, .OBJ, etc.) are added to some files with special uses.

2.5 Using Wild Ca»rd Characters [FE RN N ERNNNEREE NN ERENNENENNERENNNENNRENRNRNNNNENNH:] 2_7
Wild card characters allow you to name groups of files by giving filename
patterns to be be matched. The wild card characters are =,$%,7?.

2.6 HDW dDICOpY a FiIE? 000 0E0 0020080000088 00000000 RRIRNBRBABREIRIRDNY 2-8
To copy a file, use the File Manager Copy command. If you want the old file
deleted after the copy is succesésful, use: the Transfer command. You can
copy multiple files by using wild cards.

2!7 HOWdOIDelete aFi]E? OIIIDEDICIl.l.ll_..ll.ltlIOCIIII.!."I.!!I.I.. 2-9
To delete a file, use the File Manager Delete command. You can delete more
than one file by using wild cards,

2‘8 How dolcpeat' am USEavolume? ll.'l..l..ll‘l'l..llll...ll..lll‘. 2-9
Use the Initialize command to create a volume. The volume must be mounted
before you can use it,

2.9 How do IChange the Name of a2 File or Volume? ...ecsvescscnsnnnasss 2=10
To change the name of a file or volume, use the Rename command.

2!10 HOW dOIlistExisting Files? l‘l.ll..!.l.l.lll.lllll.ll.ll'l.'.ll. 2-i0
To list all the files on a volume, use the List command or the Names command.
You can use wild cards to list subsets of the files on the volume.

Alpha draft 2-1 27 January 1983



Workshop User’s Guide for the Lisa _The_File Manager

Alpha draft 2-2 27 January 1983



Workshop User’s Guide for the Lisa The File Manmager

THE FILEMANAGER

2.4 The File Manager

The File Manager is a2 subsystem of the Workshop that provides file and
device manipulation facilities. It handles most of the tasks of transferring
information from one place to another, Using the file manager, you can do
such things as makKe copies of -Fil;es. list directories, rename or delete files,
find out what volumes are on line, initialize new disks or diskettes, print
files, and so on. See the Operating System Reference Manual for the Lisa for
more information on the file systém and supported devices.

A file specifier can be an OS5 pathname (representing a file on a disK or
diskette)y an OS volume name (for example, -MYDISK), the name of a physical
device (for example -RS5232A), or the name of a logical device (for exampel
-PRINTER), File specifiers may contain wildcards (see section 2.5) allowing
them to specify a collection of files.

2.2 Using the File Marager :
To use the File Manager, press F in response to the Workshop command
prompt. The File Manager begins executing, and displays the File Manager
prompt line.

The File Manager prompt line is: _
FILE-MGR: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?

To display the additional cumm;ahds, press "?". The line of additicnal
commands is:

Equal, FileAttributes, Initialize, Mount, Names, Online, Scavenge, Unmount
To redisplay the original command% line, press RETURN.

To execute any command, press the first character of that command when the
File Manager command line is displayed. Most commands will ask for file
names, or other input parameters. . If there isa default value for a parameter,
it is displayed in square brackets ([default)). To accept the default, ,just
press RETURN. 1fvyou do not want: the default, type in the response you want.

2.3 The File Manager Commands _
The File Manager commands are listed in the File Manager prompt line. They
are: Backup, Copy, Delete, List, Prefix, Rename; Transfer, Quit, Equal,
FileAttributes, Initialize, Mount, Names, Online, Scavenge, and Unmount.

Some of these operations can be ﬂperformed either on a single file, or on a list
of files specified by wild card characters.

Each of these operations is described below. Information on wild card
characters can be found in section 2.5 below.

2.3.1 Backup

Alpha draft

ro
]
w

27 January 1983



- Workshop User’s Guide for the Lisa The File Manager —-

This command executes a simple backup utility, similar to Copy. It asks for
source and destination file specifiers, which will most likely contain wild
cards, f(see Section 2.5) and compares the source files to the destination
files. Whenever the contents of the two files are not equal, the file is copied.
1f a source file is missing from the destination, it is copied.

2.3.2 Copy (© ,
The Copy command copies files. It asks for a source file specifier and a
destination file specifier. You may use wild cards if you want to copy more
than one file. The source file(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. Ifyou change the default,
the source file will be compared to the destination file after the copy
operation to insure that they are the same., The Validate command is
described in Chapter 3.

You can copy files to the -PRINTER or the ~CONSOLE logical devices. Text
files (ending in ".text") will be displayed as a text file. All other files will be
sent byte by byte.

2.3.3 Delete (D)
The Delete command isused to delete a file or a number of files specified by a
wild card expression. Itasks you to specify the files to be deleted.

2,34 List (L)
The List command lists information about the files matching the given file
specification. If all you need is the names of the files, use the Names
command described below.

o If the file specifier is a file name (for example ~-MYDISK-example.text)
that file is listed.

o I the files specifier is a volume name (for example -MYDISK),
information about all files on the volume is listed.

o If the file specifier includes a wildcard character (for example,
-MYDISK-=,text) information about all matching files is listed,

The list command displays the following information:

Filename The name of the file.
Size The logical file lengih in bytes.
Psize The physical length of the file in blocks.

Last-Mod-Date  Date and time the file was last changed.
Creation-Date Date and time the file was created.

Attr File attributes, a combination of the following:

File was closed by the OS

File is locked (cannot be deleted)

File was left open when the system crashed
File is Protected

File has been Scavenged.

oo rn

Alpha draft 2-4 27 January 1983



Workshop User’s Guide for the Lisa The File Manager

An example of the list display is shown in figure 2-{.

thelistdisplay

Figure 2-i. The List Display

2.3.5 Prefix (P)

This command allows you to set up default volume names to search when you
specify a file name without a vo}ume name. You can set a sequence of up to
three volume names that will be searched in order when you try to run a
program until the file is found. The first prefix is the name of the working
directory. It will be searched anytime you specify a filename without a
volume name. Boot defaults for prefixes can be set using this command. The
second and third prefixes will be searched when you try to Run a program
without specifying the volume it ison.

This command asKs you for the three prefixes. If you want to accept the
default, (if any), press RETURN, If you want to set a prefix, type in the
volume name. If you want to have no prefix, press CLEAR as the prefix for
that level.

2.3.6 Rename (R)
The Rename command allows you;to change the name of a file. It asks for the
filename to change and the name to change it to. You can also use the Rename
command to change the name of & volume. The Rename command can change
the name of a number of files by using wild cards. See Sections 2.5 and 2.9 for
more information.

2.3.7 Transfer (T) ,
The Transfer command asks for an input file specification and a destination
file specification. It copies thefinput file(s) to the destination and then, if
the copy was successful, deletes the input file(s). If vyou Transfer to the
-console or the -printer, the input file will not be deleted.

2.3.8 Quit (@ :
This command exits from the File Manager subsystem to the Workshop
command line.

2.3.9 Equal (E)
The Equal command compares the contents of two files to determine whether
they are exactly the same. Itasks for the names of the files to compare, then
compares them byte by byte and tells you if they are equal or umequal.

2.3.10  FileAttributes (F)

Alpha draft 2-5 27 January 1983



Workshop _User’s Guide _for_the Lisa The_File Manager _

This command is used to set file attributes. You can set the safety attribute,

which makes the file so you cannot accidentally delete it. Inorder to delete a
file with the sasfety attribute set, use the FileAttributes command to unset
the attribute on the file. You can also male a file into a protected master.

Use the FileAttributes command by pressing F in response to the File
Manager command prompt. Itdisplays a command line:

FileAttributes: ClearAttributes, Safety, Protect, Quit.

These commands are accessed by pressing the first character of the
command. They perform the following functions:

ClearAttributes (0)

The clear attributes command clears the C, O, and S attributes on the
specified volume. These attrubutes are set by the system, and have the
following meanings: :

c File was closed by the Operating System
0 File was left open when the system crashed.
S File has been scavenged.

The clear attributes command should be used before scavenging a volume so
that you can tell if any files were changed. ©See the Scavenge command in
Section 2.3.15 below for more information.

Safety (5)

The Safety command allows you to set or remove the safety attribute on any
file. When the safety attribute isset, the file cannot be deleted. To delete a
file with safety on, use this command to remove the attribute, then delete
the file.

Protect (P)

The Protect command isused to make a file into a protected master., This isa
form of copy protection for object files. Once a file is made into a protected
master, this protection cannot be removed. A protected master has the
following characteristics:

o Itcan be run on any Lisa machine
o It can be copied on any one Lisa machine.
o Copies made will run only on the machine that made the copies.

o After the file is copied the first time, further copies of the master
can be made only on the same machine.

Alpha draft 2-6 27 January 1983



Workshop User’s Guide for the Lisa The File Manager

NOTE

Once & file is made into a ;protected master, there is no way to
unprotect it, Be sure you understand the characteristics of a
protected master before you create one.

This protection - scheme is for executable object files. Note that
protecting a file does not prevent you from deleting it.

Quit (@
The quit command exits you from the file attributes subsystem to the File
Manager.

2.3.41 Initialize (D)

The Initialize command is used to set up an OS device. It is used to format
and initialize the file system on a diskette or ProFile. It asks you for the
device name to initialize, the number of blocks to initialize, the volume name,
and password. If you want the entire device to be initialized, enter RETURN
(accepting the default) for the number of blocks. If the device isa diskette,
it is formatted (ProFiles are factory formatted). Boot tracks are
automatically written to any device that is initialized. An initialized device
is automatically mounted.

The initialize command will warn you if you attempt to initialize a disk that
already contains a volume. A volume isinitialized to allow a certain maximum
number of files. You can make this number larger or smaller (if you know you
will have a large number of small files, for example) when initializing it.

2.3.12 Mount (M)
This command is used to make an OS device accessible. It requests a device
name. Itshould be used whenever you connect a new device, such as a Profile.
The Unmount command, described below, is used to remove a device. All
configured devices are mounted at boot time. The configuration can be
changed with the Preferences tool, which isdescribed in Section 3.3

2.3.13 Names (N) ;
The names commandis & faster vension of the List command. Itagives you a list
of file names only. It asks for a file specifier, and displays the names of all
files matching the given file specifier,

2.3.14 Online (0) :
The Online command produces a: list of all the devices that are currently
mounted and available. It tells you the devices mounted, the names of the
volumes contained on them, the number of files on each volume, the size of
the volume, and the amount of free space on it. The online display gives the
following information:

VolumeName The name of the volume.

VolSize The number of blocks on the volume.
OpenCount The number of files open.

FreeCount The number of blocks still available.

Alpha draft 2-7 27 January 1983



Workshop User’s Guide for the Lisa : The File Manaaer

FileCount The number of files stored on the volume.
VolAt The attributes of the volume:

B the boot volume.

P the prefix volume.

M volume iscurrently mounted.

The Online display isshown in Figure 2-2.

TheOnlineDisplay

Figure 2-2. The Online Display

2.3.15 Scavenge (8
This command runs the OS Scavenger which restores damaged files. Files can
be damaged any time the system terminates abnormally. The Scavenger
searches through & disk and restores its directories, files, and allocation
tables to a consistent state. :

A disk must be unmounted before it can be scavenged. Use the unmount
command to unmount the disk, scavenge it; then mount it again to continue
uvsing it., The boot volume cannot be unmounted; therefore it cannot be
scavenged. If the ProFile is normally your boot volume and you need to
scavenge it, it is necessary to boot from a diskette and run the Scavenger
from it.

1f a file is changed inany way by the Scavenger, the file attributes will be set
to S, for scavenged. This attribute is displayed by the List command. The
thanges made to the file may or may not affect the datz in the file, depending
on what state the file was in when it was scavenged. Check any file with the
Scavenged attribute before relying on its contents. After the file has been
checked, the Scavenged attribute can be removed with the FileAttributes
command.

Alpha draft 2-8 27 January 1983



Workshop User’s Guide for the Lisa ‘ The File Manager

NOTE

The file system can get into an inconsistent state because the
directories and allocation tables are Kept in memory and only written

out to disk periodically., If there isan abnormal termination, such asa.
power failure, the changes to the state of the file system since these

tables were written to disk will be lost. Information can also be lost if
you disconnect a ProFile from the Lisa without first unmounting it. If
the disk is used after such an event, more data can be lost if the
system allocates the same blocks to more than one file.

The Scavenger will always return the disk to a consistent state, but it
is possible to lose data when the system crashed. This damage can
become even worse if the disk isused while in an inconsistent state.

All Scavenged files should be checked before you depend on their
contents. ‘

2.3.46 Unmount (W) : :
This command makes a device inadcessible. It asks for a device name. Always
unmount a device before disconnecting it.

2.4 Disk Storage Organization and Naming
Each disk contains a volume. The volume name is the name of the disk.
Volumes are created with the Initialize command, which sets up the disk and
puts an empty directory on it. As files are entered on the disk, their names
are entered in the directory. A complete path name consists of a volume name
followed by the file name in the fgllowing format:

-volname-filename

A working directory is maintained by the Workshop allowing you to access
files on it without using the volume name. This working directory defaults to
the boot device. The working  directory can be changed by the Prefix
command. The working directory is the first prefix specified in the Prefix
command., Files on the working directory are specified by just the file name,
with no leading "-": '

filename

A volume must be mounted before it can be accessed. Volumes are mounted
with the Mount command in the File Manager. To mount a volume, you specify
the device on which it resides. Device names that can be used for disks are as

follows: ‘
-UPPER The upper diskette. Drive 1.
-LOWER The lower diskette. Drive 2.
-PARAPORT ProFile attathed to the parallel port.
-SLOT2CHAN2 ProFile attached to the N-port card in slot 2, channel 2,

etc.
There are also two serial devices, -RS232A and -RS232B . These provide

Alpha draft 2-9 27 January 1983



Workshop User’s Guide for the Lisa The File Manager

access to external RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

-CONSOLE Used for output to the screen and input from the
. keyboard. The actual device which is used as the
console can be changed by the Console command in the
System Manager. See Section 3.2.

-PRINTER Used to output to the printer. The physical port that
the printer is connected to is set by the Preferences
tool, described in Section 3.3.3.

-KEYBOARD Used as a non-echoing input device from the keyboard.
This is the Keyboard on the console device.

Certain types of files in the system have standard file extensions. These
extensions make it easier to Keep track of the different types of files. These
file extesions are:

.TEXT  This indicates a text file in the format created by the Editor.

.0BJ This indicates an object code file. Object files are created
by the code generater, the Assembler, and the Linker. Object
files created by the Linker are executable.

J . This indicates an intermediate (I-CODE)file produced by the
Pascal compiler. The Generate command will convert an
intermediate file into an object code file,

.LIB This inqica'tes a library file.

SHELL This indicates a shell file that can be started by the
environments window.

2,5 Using Wild Card Characters
Wild card characters allow you to specity a set of files to operate on. The
command is performed on all files whose pathname matches the set specified.
Wild card characters are "=", "?", and "$". These characters are used as
follows:

stringi=string2

The "=" character stands for any sequence of characters that can be ignored.
The surrounding strings (string! and string2) must be matched exactly,
ignoring case. Either or both strings cam be null. Here are some examples of
using the "=" wild card character asa source file name:

ds=.text all files beginning with ds and ending in .text.
=.0bj all files ending with .obj.
= all files.

When “=" js used in a destination file name, it isreplaced with the characters
that were matched by a wild card in the source file. This allows you to do
operations like change the name of a list of files as they are copied. Here are

Alpha draft 2-10 27 January 1983



Workshop User’s Guide for the Lisa The File Manager

examples of using "=" asa destinajtion file name:

ds=.text to  bu/ds=.text Change all files starting with ds and
. ending with .text so they are prefixed
with bu/ ‘

=.0bj to  x/=.0bj i Put x/in front of the file name.
stringi ?string2

The "7?" character is the same as;the "=", except that the system asks you to
confirm each file name before pérforming @ the operation. The "?" wild card
can be used only as a source stringi.

When you use a "?" in a source specifier, you are presented with a list of files
that match it. You can move backwards and forwards through the list by
using the up and down arrowes on fthe numeric Keypad. Press "Y" beside every
file that you want to be processed. When you have selected all the files you
want, press RETURN, The operaftion will then be performed on the files you
selected. ‘

stringi$string2

The "$" character isused only as;‘n destination file name. Itisreplaced by the
entire source file name, For example, if you have the source files matching
ds=.text: ‘

-dsfmgr.text
dssmgr.text

1 the destination expression isbK$, the output files will be:

bkdsfmgr.text
bKdssmgr.text

Contrast this with the output expﬁession bk=, which results in:

bKkfmgr.text
bksmgr.text

2.6 How do I Copy a File? :
You can either Copy a file and!leave the original file intact, or you can
Transfer the file, which will copy the file, then delete the original file. To
copy a file, proceed as follows:

1. If you are not in the File hiianager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press C to start the Copy cémmand. (Press T, for transfer, if you want
the original file to be deleted after the copy operation.)

|
3. Enter the pathname of the file you want copied. Press RETURN,
4, Enter the pathname you wanfc the file to be copied to. Press RETURN.
The file will be copied or transferrged as you specified.

1f you want to copy a number of files with similar names, or all the files on a
|

Alpha draft 2-11 27 January 1983



Workshop

User’s Guide for the Lisa ‘ The File Manager

volume, you can use wild card characters. See section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all the
copies of the selected files.

You can use a shorthand methed of entering the file names by entering both
the source and destination file names, separated by z comma {,) inresponse to
the request for the source file.

See Figure 2-3 for examples of copy and transfer operations.

2.7 How
To

i'

Copy fromwhat existing file(s)?myprog
Copy towhat new file? -backup-%

(This copies the file myprog on the working directory to the volume
-backup with the same name, myprog.)

Copy fromwhat existing file(s)? ds=

Copy towhat new file? -backup-%
(This copies all files beginning with ds on the working directory to the
volume backup with the same file name.)

Transfer fromwhat existing file(s)? -osback-osg=

Transfer towhat new file? —oswork-$

(This copies all files beginning with osg on the volume -osback to the
volume -oswork using the same file name. When the files have been
copied successfully, the original files are deleted.)

Transfer fromwhat existing file(s)? —osback-osg=,-oswork-%

(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? ds=,~backup-backds=
(This copies all files beginning with ds in the working directory to the
volume -backup with back inserted as the beginning of each file name.)

Figure 2-3. Copy and Transfer operations

do I Delete a File?
delete a file, proceed as follows:

If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

Select the Delete command by pressing D.
Enter the pathname of the file you want to delete.

The system asks you to confirm that you want to delete the file. Reply
Y to delete the file or N to keep it.

1f you want to delete more than one file, you can use wild cards. See the

Alpha draft

2-12 27 January 1983



Workshop "User’s Guide for the Lisa The File Manager

section "Using Wild Card Characters" in this chapter for more information.

2.8 How do I Create and Use a Volume?
A volume can be created on either a diskette or a ProFile disk. Each disk can
contain one volume. Creating a volume on a disk gives it a name and sets up a
directory for files. :

i, 1f you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press 1to invoke the Initialize command. This command asks for:

o The device name {(upper or lower for adiskette, slot2chan2 for a ProFile,
etc.) '

© The number of pages to initialize. The default is to initialize the whole
device.

o The volume name.
o The volume password (optional).

o The maximum number of files on the device. The default isa good value
unless you are using a large number of very small files or a few very large
files. _ .

The volume isinitialized, with an empty directory. (14 the device is a diskette
it is first formatted) The system will warn you if you are initializing a
device that has an existing volume on it, and give you a chance to change your
mind before destroying the existing volume.

After initialization, the device isiau’(omatically mounted so it can be used.

2.9 How do I Change the Name of a :File or Volume?
The Rename command allows you to change the name of any file,

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Execute the Rename command by pressing R.

3. Enter the pathname of the file or volume you want to rename.
4, Enter the new name,

The name of the file or volume ischanged.

You can use the Rename command to change the name of a group of files by
using wild card expressions.

2.6 How do I List Existing Files?
You can use either the List command, or the Names command to list existing

files. The Names command executes much faster than the List command, but
it gives you only the file names.

i. 1f you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Execute the List command by pressing L, or the Names command by

Alpha draft 2-13 27 January 1983



~Workshop User’s Guide for the Lisa The File Manager

pressing N.

3. 1¥ vou want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed.

The listing produced by the list command isexplained in Section 2.3.4.

For more information on wild card characters, see Section 2.5 in this
chapter.

Alpha draft 2-14 27 January 1963



Workshop User’s Guide for the Lisa The System Manager

Chapter3
THE SYSTEMMANAGER

3.1Thesysteml‘1anagep ® ® &8 8 § 8 P 5 5 2 B O F & ST N F PSS 0B O B E SN 3-2
The System Manager allows you to set certain system defaults and set up the

Lisa configuration, including external device connections and the startup
device.

3.2 The System Manager Functions «.esvsaesseccsccscosassenssossoanese 32
The System Manager is activated by pressing § in response to the Workshop
command line. It allows you to set system defaults and access the
Preferences tool that allows you to set the configuration of the system.

3.3 The Preferenctes TOOl seeesscecocronconassoncsssssscsnsrssansscsnass 3=3

The Preferences tool allows you to set up system details and to specify what
external devices are connected.

3.4 ProcessManagement o v esvssscav et ssossssssenssssars 36
The process management subsystem allows you tomake seliected processes
resident, display the status of all currently existing processes, and
remove processes.

Alpha draft 3-1 3 February 1983



Workshop User’s Guide for the Lisa The System Manager

Alpha draft 3-2 3 February 1983



Workshop User’s Guide for the Lisa The System Manager

THE SYSTEM MaAaRaGER

3.{ The System Manager.
The System Manmager allows you to set system defaults and configuration. It
allows you to:

o Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating Keys.

o Set the configuration of external devices such as disks and printers.
o Set the default start up device.

o Set processes to be resident or non resident, to allow you to performance
tune your Workshop system.

o Set what device isto be the cansole.
o Redirect output from the console to a file or external device.

o Monitor all currently exis‘tingj processes, and remove pProcesses.

3.2 The System Manager Functions.,
By pressing S in the main comand line, you can enter the System Manager
subsystem. The System Manager command line works the same as the main
Workshop command line. Pressing "7" shows you the additional line of
commands.

The System Manager command line is:

SYSTEM-MGR: ManageProcess, butputRedirect, Preferences, Time, Quit, ?
Press "7" to see the additional commands:

Console, FilesPrivate, Validate

Each System Manager command is described below.

ManageProcess (M) ;

This command puts you into a process management subsystem, which allows
you to select which processes should be resident for performance reasons. It
also allows you to display the status of all currently existing processes, and
remove processes. This subsystem isdescribed insection 3.4 below.

OutputRedirect (O) :

The OutputRedirect command allows you to send a copy of all output that is
displayed on the console to another device (such as the -printer) or to a file
on & disk. The command asks you for the pathname to send the copy to. In
order to return to displaying only on the console, use the command again and
redirect the output to the -console device (the default).

Preferences (P) :
The Preferences tool is used to set up the configuration of the Lisa system
and the Workshop. Itisdescribed insection: 3.3 below.

Time (T)

Alpha draft 3-3 3 February 1983



Workshop  User’s Guide for the Lisa The_ System Manager

The Time command allows vou to set the date and time. The date and time will
be maintained automatically by the Lisa system.

Quit (Q
The Quit command exits from the System Manager back to the main Workshop
command line.

Console (C)

This command allows you to change where the Workshop console is displayed.
It may be displayed on the main screen (the default) or on the alternate
screen (where LisaBug displays), or on anexternal terminal connected to the
RS232A or B port.

FilesPrivate (F)

The FilesPrivate command selects whether or not the private system files
should be displayed by the List command. The default is to not display the
private files. Private f{iles are any files with a name beginning with "{".
These file names are used by the system for files you should not normally need
access to.

Validate (V)

The validate command is used to set up defaults for verifying operations.
Currently the only default of this type tells if the system will verify file
copies or not. The system verifies a copy by comparing the original file with
the copy to be sure they are the same. The boot default is to never verify.
You should have no reason to verify unless you something is wrong with your
disk.

3.3 The Preferences Tool
The Preferences tool is started by pressing P in response to the System
Manager command line. After you are finished with it, you can exit back to
the System Manager by selecting Quit from the Tools menu.

The Preferences tool allows you to set up your Workshop system the way you
want it. Itcontains four sections:

o Convenience settings that allow you to set up the screen contrast, the
speaker volume, and repeat delays.

o Device connections that tell the Lisa system what external devices are
connected.

o Startup that tells the Lisa what device to use as a startup device.
o Workshop defaults that set up things the Workshop needs to know.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 10 hours when the Lisa is unplugged. If your Liss is without
power for longer than this, the preference settings will be restored from
information on the startup disk.

Any changes made with the Preferences tool change Parameter Memory
immediately, but some of them, such as device connections and startup

Alpha draft 3=-4 3 February 1983



Workshop User‘s Guide for the Lisa The System Manager

options have no effect until the system is booted again.

The preferences tool displays a%window containing a number of buttons and
checkboxes.  You set the values you want by using the mouse to move the
pointer to the desired options and clicking.

These four areas are described briefly below. More information on the first
three areas can be found in the Lisa Owners Guide Section D. Select the
area you want to view or change by moving the pointer with the mouse to the
checkbox in front of the section name and clicking.

3.3.4 Convenience Settings. . -
The Convenience Settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa. These
characteristics are divided into three sections: Screen Contrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-i.

conveniencesettings

Figure 3-1. iConvenience Settings.

Screen Contrast A
The contrast portion contains three sections. The first allows you to select
the normal screen contrast level. Check in a contrast box until the contrast

Alpha draft 3-5 3 February 1983



Workshop User’s Guide for the Lisa The System Manager

level is comfortable. Checking abox immediately changes the contrast.

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place isset with the Fade Delay section.

The third section allows you to set the dim contrast level. Checking abox in
the Dim Level section makes the screen dim to that level until you move the
mouse.

Speaker Volume ,
The speaker volume section allows you to set how loud the Lisa’s audible
alerts will be. Checking a box causes two beeps at the level you selected.

Rates

There are three rates that can be set, two for the keyboard and one for the
mouse. The first is the initial keyboard repeat delay. This is the length of
time a Key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how qguickly a Key repeats after it has
started repeating. The third rate is the mouse double click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click, These three values should be set for your most comfortable use.

3.3.2 Start Up.
The Start Up display allows you to specify the boot device, and the type of
memory test to be performed on startup. The Start Up display is shown in
Figure 3-2.

StartUp Display

Figure 3-2, The Start Up Display.

The Start Up display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you want.

The Start Up display also allows you to select a long or short memory test.
The brief test takes about 30 seconds, the long test takes about a minute.

Changes made to the Start Up display are put into Parameter Memory
immediately, but have no effect until the system isbooted again.

3.3.3 Device Connections. '
The Device Connections display allows you to specify what devices are
connected to the Lisa. When it is selected, it displays all ports that

Alpha draft 3-6 3 February 1983



Workshop User’s Guide for the Lisa The System Manager -

currently exist, along with the dévices that are currently connected. To add,
delete, or change the device connected to a port, select the port. All devices
that may be connected to that port are displayed; you may also choose to have
no device connected. When you iselect the device to connect, any additional
configuration options for that type of device are displayed.

Any changes made to the deviice connections are made immediately +to
Parameter Memory, but they do r'po’t take effect until the next time the Lisa is
booted. A typical device connections display is shown in Figure 3-3.

deviceconnectionsdisplay

Figure 3-3. A Device Connections Display.
3.3.4 Workshop :

The Workshop display allows youi to set parameters of the WOEKshop system.
The Workshop display is shown in' Figure 3-4.

TheWorkshopDisplay

Figure 3-4. The Workshop Display.
3.3.5 The Tools Menu :

The tools menu provides you with functions to access Parameter Memory.
There are three functions provided: Set PM to defaults; Quit; and Print PM.
Set PM 1o defaults sets parameter memory to the standard Lisa defaults.
Quit exits you from the Preferences tool, and puts a copy of the current

settings of parameter memory on the disk. Print PM displays all the values in
parameter memory on the console.

Alpha draft 37 3 February 1983



Workshop User’s Guide for the Lisa The System Manager

3.4 Process Management

The Process Management subsystem is started by pressingM in responce
to the System Manager command line. This subsystem displays the
following command line:

ManageProcess: AddResident, DeleteResident, KillProcessy ProcessStatus, Quit ?

This subsystem is used to control which processes will be resident.
Making a process resident means that after it has run tocompletion, it
will be suspended and retained in memory rather than terminated and
removed from memory. This allows it torectart faster, because it does
not have to be reloaded fromdisk., For exampie, if you are often using
the Pascal compiler &and the Editor, you can improve the performance of
your Workshop system for these applications by making the compiler and
the Editor recident. Thiswill allowmuch more rapid shifting between
the two,

See the Operating Syetem Reference Manual for the Lisa for more
information on processes

AddResident (A)

The AddResident command adds a process to the 1ist of procecsses that are
resident. You supply the file name of the object file that you want to
be made resident the next time it is executed.

DeleteResident (D)
The DeleteRecident removes a process from the list of resident
procecses,

KillProcess (K
This command terminates a currently existingprocess.,

ProcessStatus (P)
The ProcessStatus command gives you information about all currently
existing processes, It provides the following information:

Pathname The name of the object file in the process.

ProcessID The unique identifier assigned to the process.

State The current state of the process: Active,
‘Suspended, or Waiting.

Resident Tells vyou if this is aresident process.,

Quit
Exit from the processmanagement subsystem back to the System Manager
command line,

Alpha draft 3-¢ 3 February 1983



Workshop User’s Guide for the Lisa The Editor

Chaptera4a
THE EDITOR

4.1 The Editop ..Il‘.l.l.'l'lll.‘l...ll'lll.lI.!'lll.D.l...l'll.'.‘l.... 4-2
The Editor isused to create and modify text files.

4!2 Usingthegditof‘ .IlIl.l.lll;.l...l...ll.ll."llll.l'.l.l".ll'.l..l 4-2
Start editing by pressing E in response to the command prompt. The Editor
will create & new file or edit an existing one. Operations are provided in five
menus: File, Edit, Search, Type Style, and Print, The mouse isused to select
menu items., :

4'3 Selecting T@xt l'l'.ll'lll'Q.l.lllll.'ll."ll.ll.'ll...l'lltl.ll.ll 4-4
The mouse isused to sglect text gnd to move the insertion point.

4.4 Scrolling and Moving the DispPlay eeeseesscessaserascracssssccassenss 45
The display can be scrolled by using the scroll bar on the right side of the
window. The window can be moved by clicking in the title bar. The size of the
window can be changed by using the size control box.

4!5 The File chﬁons 'l...lll.il.ll.llllll..lllll..llllll....lllllllll 4-5
The File functions are used for retrieving and saving text files. You can also
save or revert to a previous version and exit the Editor.

4.6 The Edit Fun(:tions l.‘lIl..‘il.lltlll'..."ll...lllll.lll.ll.l.ll.l. 4-6
The three basic Edit functions are cut, paste, and copy. The Edit menu also
gives you functions to adjust left and right, and to set tabs.

4.7 The SearCh Fwtims ...lll.:lll..l'.'Dlll.l..l.‘.'.l'.l.l.l.ll‘llll A-e
Search gives you functions to find text strings in the file, and optionally
replace them.

4.8 The Type Sty]le Functims .l.él.lll.lll.l'll.l..l..lll..lll.ll....l.. 4-9
The Type Style menu allows you 'to change the font that the file is displayed
and printed in.

4!9 The Print Fwtims ‘Illl.."l..llll.l...lIll..llll.l..ll..l.lll..l 4-10
The Print menu allows you to print the file, and to specify the format it
should be printed in. '

Alpha draft - 27 January 1983



Workshop User‘s Guide for the Lisa The Editor

Alpha draft 4-2 27 January 1983



Workshop User’s Guide for the Lisa The Editor -

THE EDITOR

4.4 The Editor
The Editor is used to create and modify text files. These files may be used
for many purposes including input to the language processors and as exec
files,

1f the file you are editing is too big to fit on the screen, a portion of the file is
displayed. This "window" into the file can be moved to display any part of the
file you want. An example of the Editor display window is shown in Figure
4_10 ‘

The basic editing operations are inserting characters, cutting a portion of
the text, and pasting text into a new location. Items that are cut go into a
special window called The Clipbpard. Text on the Clipboard can be pasted
into any place in the file, or into another file.

All editing action takes place at the insertion point. The insertion point is
marked by a blinking vertical line where the next character will be placed.
Any characters typed, or pasted! from the Clipboard will be inserted at this
point. This is true even if the insertion point is not currently displayed inthe
window. The window will automatically be scrolled to show the insertion
point.

NOTE

The editor is memory based. This means that there isa practical limit
on the size of the file that cap be edited. I1f a file is too big to edit, it
should be split into more than one file of manageable size. The Filediv
and Filejoin wtilities can be used for this. They are described in
Chapter 190.

The mouse is used to scroll the text in the windowy move the insertion point,
and select text to be cut or copied. Other operations, provided in five menus,
are selected using the mouse.

displaywindow

Alpha draft 4-3 27 January 1983



Workshop User‘s Guide for the Lisa The  Editor.

Figure 4-{, The Editor Display Window

4.2 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor will prompt you for a document name. If you want to edit an
existing file, enter its name. If you want to create a new file, select Tear
Off Stationery from the filing menu. The Editor will prompt you for the
stationery name. Press RETURN for the default, which is blanK paper. For
more information on stationery, see below.

The file that you are working on is called the active document. You may have
several documents open and accessible at any one time, but only the active
document may be edited. The active window isindicated by a darkened title
bar.

4.2.f Editing Operations

The basic editing operations are Cut, Paste, and Copy. To cut or copy text,
you must first select the text to be cut or copied. Select text by moving the
mouse while holding down the button. Hee section 4.3 below for complete
information on selecting text. Text that is selected and cut isremoved from
the active document and placed in a special window called The Clipboard.
Text that is copied is placed on The Clipboard and also left in place in the
active document, ‘

The contents of The Clipboard may be inserted at any point in the active
document by moving the insertion point to where vou want the text inserted
and selecting Paste from the edit menu.

4.2,2 The Menus
Operations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access things outside the Editor, such as
documents andg stationery. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls
printing. Each of these menus isdescribed in more detail below.

You select an operation from & menu by moving the arrow pointer to the menu
name on the menu bar and holding down the button. The menu is displayed.
Select the menu item by moving the mouse up or down until the right item
appears inreverse video. Releasing the button starts the operation.

4.2.3 Creating and Using Stationery
Stationery for a special purpose (such as a letterhead) can be created with
the Editor. Statiomery is just a regular document containing the desired
text. To use any stationery other than the default blank paper, select Tear
Otf Stationery from the File menu, and type the name of the document
containing the stationery when it asks you for the stationery name.

To create stationery, make a document containing the standard text you
want on the stationery. Save this document on the disk. To use this
stationery, select Tear Off Stationery from the Edit menu, and give it the
file name of the stationery vou created.

Alpha draft 4-4 27 January 1983



Workshop User’s Gﬁide for the Lisa The Editor

4,2.4 Editing Multiple Files

More than one file may be open at one time, but only one document is the
active document. To read in a document when you already have an active
document, select Open from the File menu. It will ask you for the document
name. The new gdocument will be read in to a window on the screen and will
become the active document. ' To make another document the active
document, use the mouse to move the pointer into a portion of that document
and click.

This capability may be used to cofpy text from one file to another by using the
following sequence of operations:;

o Open the document containing; the text you want to copy.

o Select the text you want to copy and select Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if vou
want the text to be removed from its original file.

0 Open the document vou want the text to be copied to. It becomes the
active document.

o Move the insertion point to the place you want the text to be inserted.

o Select Paste, which will copy the text from the Clipboard to the active
document.

Further information on each of tﬁese operations may be found below.

4.3 Selecting Text
The basic editing functions are Cu’t. Copy, and Paste. Before you can Cut or
Copy text, vou must select the text to be cut or copied. Before you Paste,
move the insertion point to where you want the text to be placed. You select
text and move the insertion point by using the mouse to move the pointer on
the screen.

When there isan active doctument, the pointer will have one of two shapes:
Text pointer in a document
Arrow pointer for menus and scroll bars

Use the mouse to move the pointér on the screen. The shape of the pointer
will change when you move inand out of the document display window.

Within the display window, the texnt pointer is used to move the insertion
point and to select text. . ‘

In selecting text, you may select characters, words, or lines. You may also
select any number of characters, | words, or lines. Selected text is displayed
inreverse video, '

4.3.4 How do I Move the Insertion Point?
The insertion peoint is indicated :by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion point, move the text pointer to where you want it to be

Alpha draft 4-5 27 January 1983



“Workshop  User‘s Guide for the Llisa ThHe Editor

and click. Note that the insertion point is also moved when you select text.

4.3.2 How do I Select Characters?
To select characters, move the text pointer to the beginning of the
characters you want selected, press and hold the button while moving to the
last character you want selected.

An alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
beginning of the text you want selected and click. Then move the pointer to
the end of the text you want selected and shift click (hold down the shift key
on the Keyboard and click the mouse button). You may use the scrolling
controls to display the end of the text you want selected if itis too big to fit
in the window.

4.3.3 How do I Select Words and Lines?
To select a word, move the text pointer into the word and click twice. To
select a line, move the pointer into the line and click three times.

To select multiple words or lines, click the required number of times, and
hold. Move the pointer to the last word or line vou want selected and release.

An alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the regquired number of
times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item you
want selected, shift click, and the entire block of text will be selected.

4,34 How do I Adjust the Amount of Text Selected?
To change the amount of text selected, move the pointer to the position that
vou want the selection to extend to and shift click. This can be used to either
expand or contract the selection.

4.4 Scrolling and Moving the Display
When a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part isdisplayed
by "scrolling” through the display. The vertical bar on the right side of the
active window is the scroll bar. An example of a text window showing the
scroll bar isin Figure 4-1.

The display window can be changed in size and moved on the screen. This
allows vou to have multiple files displayed on the screen. These operations
are done using the title bar and size control box.

4.4.{ Scrolling the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the "elevator shaft" (the grey portion of the bar)
indicates the relative position of the currently displayd text window in the
document. If the elevator isnear the top, you are near the beginning of the
document. Ifitisnear the middle, the text displayed on the screen isnear the
middle of the document, and soon. To change the position of the text window,
vou can use the mouse to move the arrow pointer into the elevator; click and

Alpha draft 4-4 27 January 1983



Workshop User’s Guide for the Lisa The Editor

hold the button down while youg move the elevator to the position in the
document you want to display. When you release the button, the display will
be updated to the new position.

The second way of moving the window makes use of the view buttons. The
view buttons are the boxes at eath end of the elevator shaft. 14 you move the
arrow pointer to a view button| and click, the display will move one text
window toward the beaginning or end of the document, depending on which
button you clicked,

The third way of moving the window uses the scroll arrowsy which are just
above and below the view buttonhs., If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document. If you hold the button down, the window will
continue to move a line at a time until vou release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document. ) !

4.4,2 Moving the Display
You can move the display window on the screen and change its size. Thic lets
vou display multiple files on the $cr~een. You can make any visible window be
the active window by moving the pointer into it and clicking.

To move a window, move the poin‘:cer to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window will be redisplayed at the new location.

To change the size or shape of the active window, move the pointer to the
size control box, press the buttoh, and move the pointer until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. Only the active window can be resized.

4,5 The File Functions !
The file menu provides functions | for communicating with the outside world.
Functions are provided for reading in and writing out documents, and for
exiting the Editor. The Filing menu is shown in Figure 4-2. Each function is
explained below.

filingmenu

Figure 4-2. The Filing Menu

Alpha draft =~ 4-7 27 January 1983



Workshop User‘s Guide for the Lisa The Editor

Save & Put Away
This writes out the active document and closes it.

Save a Copy in..
This writes out a copy of the active document to another file name. You are
prompted for the name of the file to write to.

Save & Continue
This saves all changes made so far by weiting cut the document to disk,
without closing the document.

Revert to Previous Version
This returns the document to the way it was before vou started editing it, or
when you last saved it. This isdone by reading in the file from the disk.

Open ...

This tells the Editor to get a new document. Itprompis vou for the document
name, then reads it in and makes it the active document. The Editor will
supply the .TEXT extension on the file name.

Duplicate ...
This allows you to read in a copy of an existing document to edit into & new
file. Itisread in with the default name "untitled"

Tear Off Stationery ...

This gets a new piece of stationery and makes it the active document. See
section 4.2.3 above for more information. The stationery isgiven the default
name “untitled".

Exit Editor
This first asks vou if you want to put away any modified documents. If you
answer yes, they are written out to disk. Then it exits the Editor.

4.6 The Edit Functions
The Edit menu provides the editing functions and tab setting. It is shown in
Figure 4-3.

The three basic edit functions are Cut; Paste, and Copy. These maKe use of
the special window called The Clipboard. The Clipboard can hold one piece of
text. Text is put into The Clipboard by selecting it in the active document,
and either cutting it or copying it. Texi is copied from the Clipboard and
inserted at the insertion point with the paste operation.

edit menu

Alpha draft 4-& : 27 January 1983



Workshop User’s Guide for the Lisa The Editor

Figure 4-3. The Edit Menu

For example, to move ablock of text from one place in a document to another,
follow these steps:

i. Select the block of text to be moved.

2. Select Cut from the Edit menu., The text is removed from the active
document and placed on the C}lipboard.

3. Move the insertion point to vizhere you want the text to be.

4, Select Paste from the Edit menu. The text on The Clipboard isinserted
at the insertion point.

The edit menu also allows vyou to adjust selected text left or right by
inserting or deleting spaces. It also allows vou to set tabs,

Some edit functions may also beidone by holding down (apple) and pressing
another Kkey. The Key that corresponds to each function is shown in the edit
menu. See figure 4-3.

Undo Last Change

This command puts the document ‘back to the way it was before the previous
operation if possible. The system will tell you if the last operation cannot be
undone.

Cut .
Cut places a copy of the currently selected text into The Clipboard and

removes the text from the active document. You may also Cut by pressing
(appie) X.

Copy
Copy places & copy of the currently selected text onto The Clipboard, but

does not remove it from the active document. You can also Copy by pressing
{apple) C.

Paste

Paste inserts a copy of the text on The Clipboard at the insertion point in the
active document. You can also Paé’te by pressing (apple) V.

Shift Left

Shift Left moves selected text Ieft by deleting a single space from the left of
each line. It will not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing (apple) L. :

Shift Right

Shift Right is similar to Shift Left. except that it moves the selected text to
the right by inserting spaces at the beginning of each line. This can also be
done by pressing (apple) R.

Set Tabs ...

Set Tabs allows you to set the spacxng of the tab stops.

Select All of Document

Alpha draft 4-9 27 January 1983



Workshop User’s Guide for the Lisa The Editor

This command selects the entire document. You can select the entire
document by pressing (apple) A.

4,7 The Search Functions.
The Search menu gives you the ability to search for a text string in the active
document. The basic operation is Find, which locates the next occurrence of
the string and selects it. Find & Paste All will replace each occurrence of the
string with the contents of The Clipboard. Several options are provided to
specify how the match isto be found. The Search menu is shown in Figure 4-4.

searchmenu

Figure 4-4., The Search Menu
All searches start at the insertion point, and go to the end of the file.
There are three search operations inthe Search menu, as follows:

Find ...

Find prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it will be selected and displayed. The Find
command can also be executed by pressing {(apple) F.

Find Same
Find Same repeate a previously specified Find, and selects the next
occurence of the string. You mav do a Find Same by pressing (apple) S.

Find & Paste All

This finds all occurrences of the specified string from the current insertion
point 1o the end of the file, and replaces each of them with the contents of
the Clipboard.

The other four items in the search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and
whether or not case must be matched. The options currently ineffect have a
check mark in front of them. To change the option, use the mouse to select
the one vou want.

The first set of options tells whether to search for tokens or to search
literally: ‘

Alpha draft ' 4-10 27 January 15€3



Workshop User’s Guide for the Lisa The Editor

Separate ldentifiers

When Separate Ildentifiers is selﬁected, the search operation will look for a
“token" or word to match the search string. Only the first & characters are
significant in a this type of search.

All Occurrences 5
When All Occurrences is selected, the search operation will match any string
containing the same characters, even if itisonly part of a word.

The next options indicate if case is significant in finding a match:

Cases Need Not Agree |
When this item is selected, anyistring with the same characters will be a
match, regardless of whether ’they are inupper or lower case.

Cases Must Agree
When this item is selected, the stmng must exactly match the search string,
including case; to be selected.

4.8 The Type Style Functions ’
The Type Style menu allows you, ‘to change the display font. The Type Style
menu is shown in Figure 4-5. A checK appears in front of the font that the file
is currently displayed in. You may change the font by selecting another font
from the menu.

The font selected will affect haw§ many characters may be displayed on a line,
and whether or not the display is proportionally spaced. When a file is
printed, it will be printed in the same type style it is displayed in.

fontsmenu

Figure 4-5. The Type Style Menu

4.9 The Print Functions
The Print menu provides funchong for printing a document. You can print all
or part of a document, choose what form of footers are to be printed, specify
if Pascal keywords are to be emphasized, and tell what type of printer is

Alpha draft 4-114 27 January 1983



Workshop User’s Guide for the Lisa The Editor

being used. The Print menu is shown in Figure 4-6.

printmenu

Figure 4-6. The Print Menu
The Print functions are as follows:

Print All of Document
This command prints the entire document.

Print Selection
This command prints only the currently selected portion of the document.

Both of the print commands will wait if the printer isnot ready.

The remaining options in the Print menu chose how the print is to be
performed. They are organized into 3 sets of 2 options. The currently
selected option in each set is indicated by a check mark. You can select any
combination of options you want.

The first options control what type of footers will be printed at the bottom
of the page.

Full Footers
When Full Footers is selected, Each page printed will have & footer
consisting of the file name, the page number, and the date.

Page Number Only
Selecting Page Number Only results in only a page number on the bottom of
each printed page.

The next options are used for printing Pascal programs.

Plain Keywords
Selecting Plain Keywords makes Pascal Keywords print with normal text.

Differentiated Keywords
Selecting Emphasized Keywords makes the printed output emphasize all
Pascal kKeywords by underlining them.

The next options select the type of printer to print on. Select the type of

Alpha draft 4-12 27 January 1983



Workshop User’s Guide for the Lisa The Editor
printer vyou have attached to your Lisa:

Dot Matrix Printer
Daisy Wheel Printer

Alpha draft 4-13 27 January 1983



Workshop User’s Guide for the Lisa Pascal Compiler

ChapterS
THE PASCALCOMPILER

5.1 The Pascal Compﬂﬂ" 0600080000 ET I INE SRR ONLECIBOEOORRORREBEOROREAY 5-2
The Pascal compiler translates Pascal source statements into object code.
This translation is done in two steps. The source statements are first
translated into intermediate code (I-code);, then the I-code is translated into
object code.

5.2 Using the Pascal COMPiler svevcrcesrsrscssonnssosscnrsassnsnssnsnsnse =2
The compiler expects a text file containing a Pascal program as input. The
compiler is executed by pressing P in response to the command prompt, The
code generator, which translates I-code into object code, is executed by
pressing G.

S.3 The Pascal Compiler COmmands ..vecescssssssensesssscsnassssssanss 9-3
The compiler commands desired are entered into the Pascal source file. They
provide for symbolic debugging information and conditional compilation.

5'4 Fur‘ther Information LE N R R N NN NN NN NN NN FENNENNENNNNNNRERNNINENNN NN NN NN 5-3
More information on using the Pascal language can be found in the Pascal
Reference Manual for the Lisa.

s

#ipha Draft 5-1 29 January 1983



Workshop User’s Guide for the Lisa

Alpha Draft

5-2

Pascal Compiler

29 January 1983



Workshop User‘s Guide for the Lisa Pascal Compiler

THE PAaSCal COMPILER

9.4 The Pascal Compiler
The compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step (parsing) converts the
program into semantically equivalent +tree structures called l-code. The
second step translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the Pascal Reference Manual
for the Lisa.

The Pascal run-time support routines are in the library IOSPASLIB. After
generating the object code, it is necessary to link the program with
IOSPASLIB before you can run it. For information on how to link the
program, see chapter 7 in this manual.

5.2 Using the Pascal Compiler
The compiler expects a text file containing a Pascal source program as input.
You can create this text file using the Editor,

When you have prepared a source program, use the Compiler to translate it
into object code. Start the compiler by pressing P in response to the
workshop command prompt. The compiler first asks for the

Input file [.textl -

Type the name of the file that contzins the source program. You do not need
to add the .TEXT extension. The compiler then asks you for the

List file -

Type the name of the file that you want the listing to go to) or press RETURN
if you don’t want a listing. You can display the listing on the console by using
the -console pathname., The compiler next asks you where to store the l-code
form of the program:

I-code file [<input name>l[.1] -

If you want the I-code to be.stored in a file with the same name as the source
file, but with a .] extension instead of the .TEXT, just press RETURN. 14 you
want another name, type the name and press return.

After the last input, the compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they will be displayed o
the console.

3.2. Using the Code Generator
To translate the I-code into object code, press G in response to the shell
command prompt. The code generator first asks you for the

Input file [.1] -

Type the name of the I-code file. You do not need to add the .lextension. The
generator then asks you for the

Alpha Draft 5-3 29 January 1983



Workshep User’s Guide for the Lisa Pascal Compiler

Output File [<input pame))[.UBJJ -

To accept the default name, pres‘;.s RETURN. 1fvou want adifferent name for
the output file, type the name and press RETURN. The .OBJ extension will be
added to the name for you. '

The output file from the code generator is object code, but it is not
executable because it does not contain the Pascal run—-time support routines.
The run-time support routines are contained in IOSPASLIB. These routines
must be added to the object file by using the Linker. GSee chapter 7 in this
manual for more information on the Linker,

5.2.2 Compiling with a Different Intrinsic Library

The Compiler and the code Generdtor both access INTRINSIC.LIB, the library
of intrinsic units. It contains information about the intrinsic units used by
the program. If you want the program to be compiled with a different
intrinsic library, you can enter “?" to the request for an input file in both the
Compiler and the Genmerator. They will ask you for the name of the intrinsic
library you want to use. After entering the name of the intrinsic library, the
compilation proceeds in the usual way.

5.3 The Pascal Compiler Commands
Compiler commands allow control of code generation, input file control,
listing control, and conditional cpmpilation. The commands all start with a $,
and are placed as comments in the source program where you want the
command to take effect. A complete list of the compiler commands is found
in the Pascal Reference Manual for the Lisa.

54 Further Information
For further information on the Pascal language, refer to the Pascal
Reference Manual for the Lisa. A Pascal program can call assembly language
routines. More information on assembly language is in chapter 6 of this
manual. ‘

The Debugger, described in Chapfer g, can be used for run time debugging of
Pascal programs. More information on the run time environment of a Pascal
program is found in Chapter é.

The Operating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in
the SYSCALL unit, which is described in the Operating System Reference
Manual {for the Lisa. :

Alpha Draft 5-4 29 January 1983



. Workshop Reference Manual for the Lisa The Assembler

Chapterd

THE ASSEMBLER

6.1 The Assembler I EE R RN RN NN NN NN NN NN NN NN NN NN NERNNNNNENNNENNEENNNNNN] 6-2
The assembler translates 68000 assembly language into machine language.

6.2 UsimtheAssembler EX BN BN O BN BN B BN BN BN BN BN BN BN B BN BN BN BN BN B DN BN BN N BN BN BN BN BN BN BN BN N BN BN BV BN BN B NI BN N 6-4
The assembler isstarted by pressing A inresponse to the command prompt. It
accepts a text file as input, and produces & machine language (.OBJ) file as
output.

6.3 The Assemblep Dmodes 480 20 CREPODA PN ENCSIOANBRNCEESORROAINSANBEBESEOSVIOIBEANDEEDS 6-5
The assembler opcodes are the standard (8098 opcodes, with a few alternate
forme for some instructions.

6.4 Assembler s‘/ntax ..'llIOIlQlI.ll.ll'l.lllll.l.l.l..ll.l.lll'l’.'l‘. 6-7
An assembler statement consists of an optional label, the opcode, and one or
two operands. The operands can contain eypressions.

6.5 Assembler Directives .cecvcesescrscccsscssscsescnscnnsssassssavssecs =9
The assembler directives provide for procedure and function definition,
macros, label and constant declaration, listing control, storage allocation,
and conditional assembly.

6.6 Communication with Pastal .cecevecerasecosescnscacessessesenaness 6-44

Alpha draft 6-1 7 January 1983



Workshop Reference Manual for the lisa The Assembler

Alpha draft 6-2 i 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

THE /AaSSEMBLER

6.4 The Assembler,
The assembler ic a program that translates assembly language source code
into object code. The assembler accepts a text file containing the source
code as input, and produces an object file as output.

The object file produced must be linked with a Pascal main program before it
tan be executed.

Assembly language routines are used to implement low level or time critical
functions. This chapter describes how to use the assembler, and the syntax
of assembly language programs. Information on the machine instructions
available on the 63009 processor isfound inthe Motorola manual.

6.2 Using the Assembler.
The assembler is started by pressing A in response to the shell command
prompt. It askes you for the name of the input file, the listing file, and the
output file.

The input file must be a text file containing assembly language source
statements. You can make this file with the editor. The output file produced
is an object file (.OBJ), that must be linked with a Pascal main program to be
run.

By pressing "?" in response to the request for an input file, you can enter the
options entering mode. The assembler will prompt you to input the options
you want., There are two options available. The current value of the options
is displayed when the assembler starts.

When the assembler begins running, it displays the current value of the
assembler options. These options can be changed by typing the desired value
in response to the request for options. The current settings of the options
can be displayed by pressing "?" inresponse to this request.

The two options are S, and P. They can be set to + or -, A value of +, or true,
means that action will happen. A -value, or false, means it will not happen.
The two options are as follows:

P Pretty Listing.
8 Print information about available space.

After setting any options desired, press return, and the assembler asks vou
for the name of the input file. The assembler then aske you for the name of
the listing, and the output files. The input file should be a text file
containing assembly language source statements. The output file will be an
object file which must be linked with a Pascal main program before it can be
executed. The listing file can be a text file on the disk, or a device such as
the -PRINTER or -CONSOLE.

After you enter the name of the object file, the Assembler processes your
input file. The listing file, if any, contains a list of the assembly language
statements, as well as the numeric version of the instruction. If the

Alpha draft é6-3 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

assembler finds any errors, it will display an error message. A list of all
assembler error messages is found in the Appendix.

6.3 Assembler Opcodes
The 68000 opcodes are descmbed in the Motorola MCé800@ Microprocessor
User’s Manual. The assembler has two variant mnemonics for branches (BHS
for BCC and BLO for BCS). The variant names are more indicative of how the
instruction is being used after unsigned comparisons. The default radix is
decimal,

The size of an operation (byte, word, or long) is specified by appending either
.B, .W, or .L to the instruction. The default operation size isword. To cause
a short forward branch, append %a .8 to the instruction. The default branch
size is Long. ,

6.3.4 Optimization
It should be noted that the Assembler accepts generic instructions and
assembles the correct form. Thé instruction ADD, for example, isassembled
into ADD, ADDA, ADDQ, or ADDI, depending on the context.

ADD D3,A5 becomes ADDA DS.AS,
MOVE, CMP, and SUB are handled in a similar manner.

6.4 Assembler Syntax
This section. describes the form in which the assembler expects an assembly
language program. We describe the structure of an assembly language
program in section 6.4.1. er then describe the form of constants,
identifiers, labels, expressions, and how to specify addressing modes.

6.4.4 Structure of an Aséembly language Program

An assembly language program contains one or more procedures or functions.
The structure of an assembly li,nguage source file lookes like Figure é-1.
First it contains an (optional) section of non code generating operations.
This is usually where any constants or macros are defined. Next it comains
one or more procedures (,PROC) §or functions (.FUNC). These each contain a
sequence of code generating nperatmns and directives. A procedure or
function is ended when the assembler enclunters the next .PROC or .FUNC.
A .END directive is the last statement in the program. Any text beyond the
END isignored.

non code generating operations

PROC (or .FUNC)
code generating operations and any directives needed

.PROC

etc.

Alpha draft _ 6-4 ) 7 January 1983



Workshop Reference Manual for the Llisa The Assembler

END

Figure é-1, Structure of an Assembly Language Program

The non code generating directives are:

£EQU MACRO JF £LIST MACROLIST
ENDM LLSE NOLIST JNOMACROLIST

REF HENDC JPAGE FPATCHLIST

DEF .TITLE JNOPATCHLIST

6.4.2 Constants
Constants in the Assembler can be either numeric or string constants.

6.4.2.4 Numeric Constants
Numeric constants in the assembler can be expressed in decimal,
hexadecimal, octal, or binary. The default radix is decimal . The other three
bases are expressed as follows:

Hexadecimal
Hex numbers can be expressed intwo ways:

if. Preceed the number with a"$". Examples of this are:

$FFI3
$127

2. Follow the number with an "H". Using this form; the number must start
with a digit (8-9). Examples:

8FF{3H
195H

Octal
Octal numbers are followed by the character "O". Note that this is the letter
O, not the character zero (@), Examples:

770
1040
Binary
Binary numbers are followed by the character "B". Examples:
1041B
ii1e00B

6.4.2.2 String Constants
String constants are delimited by matching pairs of single or double quotes.
Examples of string constants are:

“this is a string constant”
‘using single quotes as delimiters lets you use "double" quotes’

6.4.3 Ildentifiers : '
Only the first eight characters of identifier names are meaningful to the
assembler, The first character must be alphabetic; the rest must be

Alpha draft 6-5 7 January 1983



Workshop Reference Manual for the Lisa ‘ The Assembler

alphanumeric, period, underbar, or percent sign.
Examples of identifiers are:

LOOP
EXIT_PRC
NUM

6.4.4 Labels and Local Labels
Labels begin in column one. They can be followed by a colon, if you like.
Local labels can be used to avoid using up the storage space required by
regular labels. The local label stack can handle 2{ labels at a time. Itis
cleared every time a regular label is encountered.  Local labels in this
assembler start with the character @. A local label is an @ followed by a
string of decimal digits (0-9). Eyﬁmples of local labels are:

@123
Q79

6.4.5 Expressions and operators \
All quantities are 32 bits in saze unless constrained by the instruction.
Expressions are evaluated from |left to right with no operator precedence .
Angle brackets can be used to control expression evaluation. The following
operators are available:

+ unary or binary addition

- unary minus or subtraction

~ ones complement (unary operator)
exclusive or i

a

* multiplication

/ division (DIV)

\ MOD ‘

l logical OR

& logical AND |

= equal {used only by .IF)

<> not equal (used only by JF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 # 4, the addition is performed first. To make the
multiplication be performed fir«;sh the expression can be rewritten with
brackets to show precedence: 2 # <9 % 4>, or the operands can be reordered
as: 9 #4+2, :

é.4.6 Addressing Modes ‘
The 4ollowing is a summary of {he addressing mode syntax for the &%&06e.
Refer to the Motorola 68000 manual for information on the addressing modes
supported by the 46060, Table 6‘ i gives a summary of the addressing modes

including their systax.

Table 6-1. Sumrﬁary of Addressing Modes

Mode Register Syntax ?Meaning Extra Words

Alpha draft 66 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

1 0..7 Di Data direct ¢
i 0..7 Al Address direct ¢
2 0.7 {Al) Indirect 0
3 9..7 {AD+ Postincrement e
4 9..7 -{Al) Predecrement o
) 0..7 e{Ai) Indexed i
8 0.7 e(Ai;Ri) Offset indexed i
7 ] e Absolute short address
7 i e Absolute long address 2
7 2 e PC Relative {
7 3 e(Ri) PC Relative indexed i
7 4 #e Immediate for2
Notes:

1) The indexed and PC relative indexed modes are determined by the opcode.

2) The absolute address and PC relative address modes are determined by the
type of the label (absolute or relative).

3) The absolute short ‘and long address modes are determined by the size of
the operand. Long mode isused only for long constants.

4) The number of extra words for immediate mode isdetermined by the opcode
size modifier (W or .L),

6.4.7 Miscellaneous Syntax
Comments .
A csemicolon begins & comment in an assembly language program. All

characters on a line after a semicolon are ignored. This is an example of
comments: ’

1 Thisisacommentonaline by itself
; CLR.L DB ; thisis acomment after a statement

Current Program Location

The current program location isindicated inassembly language by the symbol
“#", Examples of its use are:

JHMP * 3y Loop infinitly
JMP %¥-4 ; Jump back 4 bytes

Move Multiple
To specify which registers are affected by Move Multiple (MOVEM), specity
ranges of registers with "-", and specify separate registers with “/". For

example, to push registers Do through DZ, D4, and A% through A4 ontoc the top
of the stack:

MOVEM.L De-D2/D4/AB-A4,-{A7)

4.5 Assembler Directives.
The Assembler directives (pseudo-ops) are:

PROC <identiﬁér>[;€xpr] begin procedure with Expr args
FUNC {identifier:[,Expr] begin function with Expr args

Alpha draft 6-7 7 January 1983



Workshop Reference Manual for the Lisa The Assembler
LDEF {identifier-list> make identifiers externally available
REF {identifier-list> declare external identifiers
SEG {name>’ put following code insegment ‘name’
.END end of entire assembly
ASCII ‘tharacter-string>’ place ASCII string in code
BYTE {value-list> allocate abyte incode for each value
.BLOCK <length>[,valuel allocate length bytes of value
.WORD <{value-list> allocate a word for each value
.LONG <{value-list> allocate along word for each value
LALIGN {Expr> allign next code on multiple of Expr
ORG {value> place next byte at {value>
RORG {value> same as .ORG
£QU {value> | set label equal to <{value>
MACRO  <identifier> begin macro definition
ENDM : end macro definition
JF {expr> begin conditional assembly
ELSE optional alternate to .IF block
ENDC end conditional assembly
.LIST turn on assembly listing
«NOLIST turn, off assembly listing
PAGE issue a page feed in listing
TITLE Ctitle»! title of each page inlisting
MACROLIST turn on macro expansion listing
NOMACROLIST turn: off expansion listing
LPATCHLIST turn on patchlist
:NOPATCHLIST turn off patchlist
JNCLUDE <filename? insert <filename> into assembly

6.5.2 Space Allocation Directives.

The space allocation directives are .ASCII,

.BLOCK.

ASCIl ‘string’

.BYTE, .WORD, .LONG, and

Alpha draft

converts ‘string’ into the equivajdent ASCI1 byte constants and places the
bytes in the code stream. The string delimiters must be matching single or
double quotes. To insert 2 single quote into the code use double gquotes as
delimiters. Similarly for double quotes:

.ASCI1 *“aB/CD" ystringcontainingasingle quote
LASCIT ‘AB"CD’ ~jstringcontaining a double quote

BYTE <values? _
allocates a byte of space in the code stream for each of the values given.

7 January 1983



Workshop Reference Manual for the Lisa The Assembler

Each value must be between -{28 and 235.

.BLOCK <length>[,valuel
allocates <length> bytes for each value listed. Ifno value isgiven, a block of
zeros is allocated.

WORD <values>
allocates a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65%535.

For example,
TEMP .WORD 8,45335,-2,17
creates the assembled output:

6eee
FFFF
FFFE
8011

JLONG <values> .
allocates two words of space for each value inthe list, For example,

STUFF .LONG @,63535,-2,17
creates the output:

80808080
6BBAFFFF
FFFFFFFE
0B6EE1]

{label> .EQU <value>
assigns <value> to <label>. <value> can be an expression containing other
labels.

LORG <value>

puts the next byte of code at <{value> relative to the beginning of the
assembly file. DBytes of zero are inserted from the current location +to
<valued.

.RORG

is similar to .ORG. It indicates that the code is relocatable. Because the
loader does not support absolute loading, .ORG and .RORG accomphsh the
same function. All addressing must be PC relative.

RORG (without the leading period) is the same as .FORG. Similarly, END
END, EQU = .EQU, PAGE = .PAGE, LIST =.LIST, NOL = .NOLIST, and TTL
JTITLE,

6.5.3 Macro Directives.
A macro consists of a macro name, optional arguments, and a macro body.
When the assembler encounters the macro name, it substitutes the macro
body for the macro name in the assembly text. Wherever %n occurs in the
macro body (where nis a single decimal digit), the text of the n-th parameter

Alpha draft 6-9 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

is substituted. If parameters a%e omitted, a null string is used in the macro
expansion. A macro can invoke | other macros up to five levels deep. In the
assembly listing, the listing of the expanded macro code is controlled by the
options .MACROLIST and .NOMACROLIST. These options are described in
Section 6.5.5

MACRO <identifier>

- ENDM

defines the macre named <iderirtifier>. The macros HEAD and TAIL are
defined above. As a further example, consider:

\MACRO He 1p
MOVE 41,08
ADD DB ,}2
.ENDM

14 ‘Help’ is called in an assembly :with the parame‘ters ‘Alpha’ and '‘Beta’y the
listing created would be:

Help Alpha,Beta
# MOVE Alpha,DB
] ADD DB ,Beta
6.5.4 Conditional Assembly Directives.
The conditional assembly directives .IF, .ELSE, and .ENDC are used to
include or exclude sections of q‘ode at assembly time based on the value of
some expression.

JF  <expression> '

identifies the beginning of aconditional block. <expression> isconsidered to
be false if it evaluates to zero. 'Any non-zero value is considered true. The
expression can also involve a test for equality (using <> or =). Btrings and
arithmetic expressions can be compared. I+ <expression> is false, the
Assembler ignores code until a .[ELSE or .ENDC is found. The code between
the optional .ELSE and .ENDC is assembled if <expression> is false.
Otherwise it is ignored. Conditionals can be nested. The macros HEAD and
TAIL given above provide eramples of the use of conditionals. The general

form is:
JIF  <(expression? _
. jassembled onl_y if {expression) is true
[ .ELSE] jopticnal
. ;assembled on])' it {expression’ is false
(ENDC '

4.5.5 External Reference Dxrectxves.
Separate routines can share da*ta structures and subroutines by linkage
between assembly routines usmg‘.DEF and .REF. These directives cause the
Assembler to generate link information that allows separately compiled

Alpha draft 6-10 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

assembly routines to be linked together. .DEF and .REF associate labels
between assembly routines, not between assembly routines and Pascal.The
only way to communicate data between Pascal and assembly routines is by
using the stack. This is doen by passing them as parameters in the procedure
or function call. The Linker resolves the references.

JLDEF <identifier-list>

identifies labels defined in the current routine as available to other assembly
routines through matching .REFs. The .PROC and .FUNC directives also
generates code similar to that generated by & .DEF with the same name, so
assembly routines can call external ,PROCs and .FUNCs with .REFs.

.PROC Simple,l
.DEF Alpha, Beta

BNE Beta

Alpha MOVE

RTS8

Beta MOVE
RTS

+END

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF.

.REF <(identifier-list>
identifies the labels in <identifier-list> used in the current routine as
available from some other assembly routires which used .DEFs.

.PROC Simple
.REF Alpha

JSR Alphs

JEND

uses the label ‘Alpha’ declared in the .DEF example. ‘

When a .REF is encountered, the assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of @‘s)
and a short external reference with an address pointer to the word of @'s
following the opcode. If the referenced label and the reference are in the
same segment module, the Linker changes the addressing mode from short
absolute to single word PC relative. If, however, the referenced procedure
is in a different segment, the Linker converts the reference to an indexed
addressing mode (off AS5) and the word of zeros isconverted into the proper
entry offset in the jump table. If the referenced procedure isinan intrinsic

Alpha draft 6-11 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

unit (and therefore in a different segment), the IUJSR, IULEA, IUJMP, and
IUPEA instructions are used (see page ##). The Linker blindly assumes that
the word immediately before the word of zeros is an opcode in which the low
order 6 bits are the effective address. Thus, a .REF label cannot be used
with any arbitrary instruction. The .REF labels are intended for JSR, JMP,
PEA, and LEA instructions.

SEG

default segment name is* " (& éblanks). SEG "segment name" puts the code
in segment called “segment name",

6.5.6 Listing Control Directives.
The directives that control the; Assembler’s listing file output are .LIST,
.NOLIST, .PAGE, .TITLE, .MACROLIST, . .NOMACROLIST, LPATCHLIST,
and .NOPATCHLIST. I¥ you do, not specify & name for the listing file in
response to the Assembler’s prompt:

Listing file (Kcr> for none) -
the listing directives are ignored.

The default for the assembler ig for .LIST; .MACROLIST, and .PATCHLIST
to be in effect when the assembler starts. .TITLE defaults to blank.

need example assembly listing

.LIST and .NOLIST

tan be used to select portions of the source to be listed. The listing goes to
the specified output file when .LIST is encountered. .NOLIST turns off the
listing. .LIST and .NOLIST can octur any number of times during an assembly.

LPAGE
inserts a page feed into the listing file.

TITLE Ktitle’
specifies & title for the listing page. <(title> can contain up to &0 characters,
and can be enclosed in either single or double gquotes.

LTITLE “Interpreter”
places the word, Interpreter, at the head of each page of the listing.

JPATCHLIST

must be on if you want pretty listing.
~NOPATCHLIST

MACROLIST

NOMACROLIST

6.5.7 File Directives.
The pseudo-op

JINCLUDE  <filename> |
causes the contents of <(filename> to be assembled at the point of the
JINCLUDE, {filename> need not specify the .TEXT suffix. The last

Alpha draft é6-12 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

character of the filename must be the last non-space character on the
line--do not put a comment on this line. An included file cannot itself contain
a JNCLUDE statement.

6.6 Communication with Pascal.

Pascal programs can call assembly language procedures. The Pascal program
declares the assembly language procedure or function to be EXTERNAL. If
the assembly routine does not return a value, use .PROC. 1f .,FUNC is used,
space for the returned value isinserted on the stack jst before the function
parameters, if any., The amount of space inserted depends on the type of the
function. A LongInt or Real function result takes two words, a Boolean
result takes one word with the result in the high order byte, and other types
take one word. In the following example, we linK a bit-twiddling assembly
language routine into a Pascal program. The Pascal host file is:

PROGRAM BITTEST ;
VAR 1,J: INTEGER} .
FUNCTION Iand¢ i, J 3 INTEGER ) : INTEGER;

EXTERNAL ; (% external =Assembly language ¥)
BEGIN
i 1= 283
J 1= 333
WRITELN (1,J, AND="“,land (1, J))
END.,
The Assembler file is:
FUNC 1AND,2 s two arquments
RORG 8 ’
MOVE.L (A7)+,A8 ; return address
MOVE.W (A7)+,D0 R
MOVE.W (A7)+,D1 3 1
AND.W D1,0D8 s 1AND J
MOVE .W D8 ,(A7) s put functionresult on stack
JMP (A8
.END

In the example given above we have made little attempt to make the assembly
language procedure mimic the structure of a procedure generated by the
Pascal Compiler. A complete description of this structure requires some
preliminary discourse.

6.6.4 The Run Time Stack
Automatic  stack expansion code makes procedure entries a little
complicated. To ensure that the stack segment is large enough before the
procedure is entered, the compiler emits code to ‘touch’ the lowest point
that will be needed by the procedure. Ifwe ‘touch’ an illegal location {(outside
the current stack bounds), the MMU hardware signals a bus error which
causes the 68068 to generate a hardware exception and pass control to an
exception handler. This code, provided by the operating system, must be able
to restore the state of the world at the time of the exception, and then

Alpha draft 6-13 7 January 1983



_Workshop _Reference  Manual for the Lisa The Assembler

allocate enough extra memory to the stack that the original instruction can
be re-executed without problem.. To be able to back up, the instruction that
caused the exception must not change the registers, soa TST.W instruction
with indirect addressing isused. |

In the normal case, the procedure’s LINK instruction should be preceded by a
TST.W e(A7) which attempts to reach the stack location that can accomodate
the static and dynamic stack requirements of the procedure. If the static and
dynamic stack requirements of your assembly language procedure are less
than 254 bytes, you can assume that the compiler’s fudge factor will protect
the assembly language procedurfe, so the TST.W can be omitted. If the
requirements are greater than 32K bytes, e(A7) may not be sufficient
because only 1é bits of addressability are available (the 48000 does call a
16-bit processor). In this case, the compxler currently emits code something
like:

MOVE.L A7,AB

SuUB.L #Size,AB ;ﬁsiize=dvnamic + static requirements

TST.W (AB)
1f the compiler option D+ is in e-Ffect (the default), the first eight bytes of
the data area following the hn;l RTS or JMP (A®) contain the procedure

% name. LisaBug gets the procedure name from this block, making debugging

much more pleasant. The following example is provided to show how an
assembly language programmer can provide LisaBug with all the information
it needs to perform fully symbolic low level debugging.

3

i ASSEMBLY LANGUAGE EXAMPLE

DEBUGF EQU1I ; true= ) allow debuggingwith proc names
; HEAD -- ThisMACRD cah be used to signal the

;} beginning of an asser{wbly language procedure. HEAD

; shouldbe usedwhen you donotwant tobuild a stack

; frame based on Aé, bu';t dowant:debugging information.
]
H

No arquments

MACRO HEAD

.1F  DEBRUGF :

LINK Aé,HB ; fandy NOP just for debugging purposes
ENDC

. ENDM

TAIL -- ThisMACRO can be used as a generalized exit
sequence., There are two cases. First, if youbuild
a stack frame, TAIL clan be used to undo the stack
frame, delete the parameters (if any) and return.
Second, if you do notiwant tobuild a stack frame
based on Aé, this MACRO can be used to signal the
end of an assembly 1ahguage procedure., Ineither

case i f DEBUGF is true, the Procedure_name

- WP ae WE e WwE e e

Alpha draft 6-14 7 January 1983



Workshop Reference Manual for the Lisa The Assembler

is dropped by the MACRO as an 8 character name,

§
H
3+ Two arguments:

s 1) Number of bytes of parameters todelete

H 2) Procedure_Name as string exactly 8 characters
; N

1

MACRO TAIL

UNLK Aé

JF Y1=8

RTS $ 6 bytes of parameters

.ELSE

JAF %1=4

MOVE.L (A7)+,(A7) $ 4 bytes of parameters
RTS

.ELSE

MOVE.L (A7)+,A6 1 put next address intoAG
ADD.W #¥41,47 jgetrid of parameters on stack
JMP (AB) ; return tocaller

.ENDC

.ENDC

.IF  DEBUGF

LASCIT X2

.ENDC

. ENDM

The following example demonstrates the use of the
TAIL macro for the purpose of debugging. The example
assumes that youwant tobuild a stack frame based
onAé. Inareal assembly language procedure the
zeroes belowwould be replaced by the local size and
parameter size,

e We e WE am wE me

.PROC SIMPLE,B

LINK Ré,H8 ; zero here indicates zerobytes of locals

NOP ; body of procedure

TAIL 8,/SIMPLE 7, 1 zero here indicates zero bytes of
parameters

.END

These macros are sufficient for the programmer writing small assembly
language routines to be called from Pascal.

Upon entry to the assembly routine, the stack is:

| |
I User Stack | (previous stack data) get more detail here

" e
-+ *

| Function result |

-
+ T

Alpha draft 6-15 7 January 1983



-Workshop  Reference Manual for the Lisa The Assembler

| Parameters ]

+

| Static Link |
| Return Address |
+ +({-- 5P

The function result ispresent only if the Pascal declaration is for a function.
1t is either one or two words. If ';che result fits in a single byte (a boolean, for
example), the most significant half (the lower addressed half) gets the result
value.

Farameters are present only if there are parameters. They are pushed on the
stack in the order of declaration.i All reference parameters are represented
as 32 bit addresses. Value parameters less than {4 bits in size always occupy
a full word. All non-set value pairameters larger than 4 bytes are passed by
reference. It is the procedure’s | responsibility to copy them. All large set

value parameters are pushed onto‘the stack by the calling routine.

The static 1linK is present on;y if the external procedure’s level of
declaration isnot global. The link is a 4 byte pointer to the enclosing static
scope. |

It is the responsibility of the assembly language procedure to deallocate the
return address, the static link (i any), and the parameters (if any). The SP
must point to the function result or to the previous top of the stack upon
return. Registers D4 through D7 and A3 through A7 must be preserved. It is
recommended that you also preserve D3 and A2.

6.6.2 Register Conventions
The following are the register conventmns used in the Lisa system. Itis the
responsibility of the programmer to preserve these registers.

D8-D2/AG-A1 ¢ Scratch registers (can be clobbered)

D3,A2: Scratch registers, but should be preserved
D4-D7/A3,A4: Used for code optimization

AD: Pointer touser globals (must be preserved)
Aé: Pointer to base of stack {must be preserved)
SP: Top of stack

Registers D3 and A2 may be used at some time in the future by the compiler
for code optimization, so the assgmbly language programmer should preserve
them also.

6.6.3 Assembly Language Examples

The following examples show how to use certain features of the assembly
language.

The first example illustrates the Uee of .-REF and .DEF. These two directives
allow an assembly language routine to reference another assembly routine.

The Pascal host file is:

program WasteTime;

Alpha draft é6-16 7 January 1983



-—Workshop Reference Manual for the Lisa The.- Assembler

procedure Wait {(time ¢ integer)i
external;

begin
writeln (“Going to waste some time’);
wait (50);
writeln (“Finished wasting time )}
end.

The assembly language file is:

mov .1 (a’Z)+,de need to wait this many cycles

a parameter for cycle

.proc wait
ref cycle ; need to use a piece of code whose
; entry point is crycle and it is
s defined outside of procedure wait
ref more_time s another outside procedure
mov . | (a7)+,a6 y return address in ab
i
H

Jsr cycle
Jsr more_time 3 waste more time
Jmp (aB) ; return

3 the subroutine used by wait is defined in the body of the

; following code. this proc can do other things besides the
; cycle routine

.proc def_cycle
def crycle 1 c¥cle made visible to other procs

code can go here

D e e s

op y example of a line of code
cvcle 3+ beginning of the «<ycle procedure
{ parameter was in d8
subg #1,do
bne cycle
rts

y more code can go here
3

proc more_time s waste more time

clr de ; use d@ as timer
31 addq #2,da

bne ai

rts

.end

Alpha draft 6=47 7 January 1983



Workshop User’'s Guide for the Lisa The Linker

Chapter?
THE LINKER

7.1 The ijer l‘llOl‘.l.‘..l'lllé..'...'ll‘l.l".l.'.l.lll.l.l‘.!.lllcll 7-2
The Linker is a program that combines object files to create an executable
file. '

7.2 Usingthe Lir“er l.ll‘l.l.'.l;ll...ltl‘tlll.l.l..l'..l-l'tllllllil.l. 7-8
The Linker is started by pressing "L" in response to the Workshop command
prompt. Inputs to the Linker are bbject files, command files, or options.

7.3 The Linker Optims ....l'llli..l.llll-..'l.l'.tll'l.l.lll..llll...li 7—3
The Linker options control howi a linKk is performed., A list of the current
option settings is displayed when you enter a"?" to the input file prompt.

7.4 How do ILinK a Main Program? ...eeceseescacsnssssssssoansssansasss 7-4
A main program is linked by giving the Linker the object file from a Pascal
program, along with all assembly language routines, compiled wunits, and
libraries that the program uses.

7.5 Regular and Intrinsic Units eecosecscivocsssovcossnsonecsssssassres 7=
Regular and intrinsic units are bpth are Pascal units, separately compiled. A
regular wnit is linked with a!main program, and becomes part of the
executable file. An intrinsic unit is shared among all programs that use it,
both on disk and in memory.

7.6 The Limer Listingv'.0l.l.l.il.l...i'."'.'l..l‘ll.lllllll..l."l..l 7-6
The Linker listing provides a summary of the linking process and resources
used. Optionally vou can request Elists of all symbols used.

7.7 Resolving Ex‘ternaluames .lillll.l-'l.l...llllll'.l.l....'ll......l 7-7
External names are symbolic references to separatly compiled modules. The
Linker maps them to real addresses.

7'8 Module lmlusion_.l...l‘llll'lIl0.lll.lllll‘lll.'.l’l"!.llll'.ll.ll 7-7
The Linker only includes modules that are actually referenced.

709 Segmentatlon a.cllo.c.ll..'?t.lil.lu-l.llooll.'olllnlol-ollllln.o.l 7-7
Segmenting a program allows porﬁons of it to be swapped out of memory when
they are not being used. Segmentation is controled by a combination of
compiler commands and Linker options.

7.10 Er‘ror Messa‘ges llt.'.".I.:.ll.l.I‘l.'lll.lll.l-l...l..'l.‘l..l'lll 7-8
There are three types of error messages: warnings, errors, and fatal errors.
They are listed in Appendix A.

Alpha draft 7-1 29 January 1983



Workshop User’s Guide for the Lisa The Linker

Alpha draft 7-2 2% January 1983



Workshop User’s Guide for the Lisa The Linker

THE LINKER

7.4 The Linker. .
The Linker combines. object files, Its input consists of commands and object
files. Its output consists of object files, link-map information, and error
messages. The output of the Pasgal compiler must be linked with IOSPASLIB
before it can be executed. Other object files, including intrinsic unit
libraries, and object files produced by the Assembler, can also be linked into
the output object file.

What the Linker does isas fonows. When & program iscompiled into an object
file, it contains the following snrts of things:

o Object code, similar to machme language, that expresses the algorithm of
the program.

o0 Symbolic (named) addresses of all code whose location was unknown to the
compiler, These include eytemany compiled routines (units and intrinsic
units) and the Pascal library support routines (PASLIB).

o Other information to be usedéby the Linker.

The purpose of the Linker is to @:onnect up all the necessary things (linking
them together), and output an object file that can be executed.

The Linker does this by going tﬁ’nrough the main program, and, each time it
finds a symbolic address, it looks up that address in all the units and libraries
it was given as input, and converts the symbolic address into a real address
that will be correct when the prog:ram is loaded to be executed.

1 the Linker can‘t find some‘thinb that is addressed symbolically, this is an
error. An error message will be printed, indicating the missing module. This
process of finding the real ad‘;’:resses that correspond +to the symbolic
addresses is called resolving the external references.

The Linker expects to find the file INTRINSIC.LIB even if you are not using
any intrinsic units. INTRINSIC.LIB is a directory of libraries and intrinsic
units, and includes information #$or the use of the Linker, INTRINSIC.LIB
defines all the intrinsic units supélied with ‘the Workshop system.

7.4.4 Creating an Executable File,
To create an executable file, the Linker must have the following inputs:

o the object file from 2 main Pas}cal program.

o object files for all external ﬁrocedures referenced by the main program,
These may be as Pascal umts, assembly language routines, or intrinsic
units defined in INTRINSIC.LIB.

o All units used by the units the [main program uses.
o IOSPASLIB to provide the stahdard Pascal procedures and functions.

The Linker combines these files and creates an executable object file. If it is

Alpha draft 7-3 29 January 1983



Workshop User’s Guide for the Lisa The Linker

unable to link these files correctly +to create a legitimate output file, the
Linker will display an error message. If there is am error; the object file
produced isnot executable.

When 1linking & main program, all references +to external objects must be
resolved. Partial links are not allowed.

While it is linking the program, the Linker does a "dead code analysis" and
.does not include any routines that are not referenced. Unnecessary routines
are eliminated from the main program, and from the units and libraries given
as inputs to the link,

7.2 Using the Linker.

The Linker is started by pressing "L" inresponse to the Workshop command
prompt. The Linker prompts vou for the input files, the listing file and the
output file. Options may be entered as z response to the input file prompt.
After all file names and options are entered, the link begins. This means that
the set of options in effect are the same throughout the link, It is not
possible  to change options part way through the link., When entering an input
file name, it is not necessary to enter the .0BJ extension, the LinKer will
provide that for all inputs.

The Linker will accept option commands and input file names from a command
file. A command file is a text file containing the file names and options, one
per line. If there is a blank line in the file, the Linker treats this as the
RETURN that signals the end of the input files. You use a command file by
typing "<" followed by the name of the text file the commands are in. Create
the text file by using the Editor.

The default listing file is the ~-CONSOLE. You may send the listing to a text
file by entering its mame inresponse to the listing file prompt.

After entering the ouput file name, the link begins. I[f no errors occur during
the link and all external references are resolved, the output file is
executable. A message is printed at the end of the link to tell you if the
output is executable.

7.3 The Linker Options.
Linker options can be entered at any time in response to the prompt for an
input file name. The order in which options are entered is unimportant,
because they have ro effect until the link begins. The last value entered for
an option is the value used when the link is performed.

Options are represented by a single character. A "+ in front of the
character makes that option take effect. A “"-" sets the Linker so that option
will not happen. In addition to being set on or off, some options have
additional parameters. Numeric parameters can be in either decimal or
hexadecimal. Hexadecimal numbers are indicated with a leading "$". The
current setting of all options can be displayed by entering a "?" in response
to the request for an input file,

The Linker options are as follows:

Alpha draft 7-4 ] 29 January 1983



Workshop User’s Guide for the Lisa

+A
+D

+H num

-H num

+]

+L

Alphabetical listing of symbols. The default is-A.
Debug informa’cion.é The default is-~D.

+H sets the maxinjum amount of heap space the Operating
System can give agprogram before terminating it. Here, as in
the other options, {num’ can be either decimal or hexadecimal.

-H sets the minimurﬁ amount of heap space needed by a program.

Copy interface information into intrinsic library files. The
default is-I.

Location ordered Elisting of symbols. The default is -L. The
location is the segment name plus offset.

+M fromName toName

+M maps all occum‘ences of the segment ‘fromName’ +to the
segment - ‘toName’., This allows you to map several small
segments into a smgle larger segment. You can thereby
postpone the segmen’ta‘cmn .decision until link time by using
many segment names in the source code,

NOTE

Because options have an efféct only when the link begins, it is not
possible to map a segment natne to several different names using this

option,

+P

+8 num

+T num

+ W

?

Production link. The default is -P. +P produces a ‘production’
OBJ file. A production  object file does not contain
information used by the debugger and the LinkKer, and intrinsic
unit files do not contain a jump table. The production object
file can be executed, but cannot be handled by the Linker or the
debugger.

+S sets the star’cmg dynamic stacksize to ‘num’. The default is
ieea0.

+T sets the maximuﬁ) allowed location of the top of the stack to
‘num’. The default is 128K.

+ W tells the Linker | to get intrinsic unit information from a file
other than INTRINSIC.LIE.

Prints the options available and their current values.

7.4 How do I Link a Main Program?
A main program consists of a Pascal program linked with all routines
necessary for it to run. A main p:rogram is the only type of executable object
file produced by the Linker. To link a main program you must have the

following:

o A compiled pascal PROGRAM 'object file.

Alpha draft

7-5 29 January 1983

The Linker



Workehop User’s Guide for the Lisa The Linker

o Object files for all the units the program uses. This includes files for
regular units and assembly language routines. Any intrinsic units used
must be defined in INTRINSIC.LIB.

o I0SPASLIE.
When you have all the above files, proceed as follows:

{. Execute the Linker by pressing "L" when the Workshop command prompt
is displayed. The Linker will display a header amnd asK you for an input
file.

2. Enter any decired options. See section 7.3 in this chapter for more
information. Press RETURN after each option entered.

3. Enter the file names for all the object filesy, pressing RETURN after
each one. The file names can be entered in any order. Do not enter the
.OBJ extension, the Lirker automatically appends it.

4, Press RETURN +to indicate the end of the input files.

5. The Linker prompts vyou for a listing file. Enter the file name desired,
or press RETURN - to accept the default of displaying the listing on the
-CONSOLE.

6. The Linker prompts you for the output file. Enter the name of the
executable file you want produced. Do not enter the .OBJ extension,
that will be supplied automatically.

The linking process begins when you press RETURN after entering the output
file name. If the link is successful, the message "Output is executable” will
be displayed. If the linK isnot successful, error messages will be displayed.

7.5 Regular and Intrinsic Units,
The two types of units are regular units and intrinsic units. Both of them are

separatly compiled code modules that may be used by a main program or
ancther unit.

The syntax of a Pascal unit is explained in the Pascal Reference Manual for
the Lisa.

A regular unit iscombined with a main program by the Linker and included in
the resulting object file. An intrinsic unit, on the other hand, is stored
separately on the disk, and loaded at run time. Thus only one copy of an
intrinsic unit is Kept on the disk, no mater how many main programs use
routines init. Inaddition to being shared on the disk, anintrinsic unit isalso
shared in memory.

NOTE
In the current implementation, there is no provision for creating

intrineic units. Only intrinsic units supplied by Apple can be used.

7.5.4 How do I use a Regular Unit?

Alpha draft v 7-6 29 January 1983



Workshop User’s Guide for the Lisa The Linker

A regular unit is a separately tompiled segment of code. It is written in
Pascal, compiled, and code generated. See the Pascal Reference Manual for
the Lisa for information on how ito write & unit. See Chapter 5in this manual
for information on compiling the unit.

After you have created a unit, the routines in it may be accessed from any
other program or regular unit you write. The Linker isused to combine a main
program with all units it uses. The result is an executable object file
containing all the needed routines.

To use regular units with a main program, follow the procedure insection 7.4.
As input, you must give the Linker:

o0 The object file of the main program.

o The object files of all units uEed by the main program.
o The object files of all units used by other units,

o I0SPASLIB. '

The Linker will combine all these object files into an executable object file.
It will also do a "dead code analysis® to eliminate any routines that are not
used, thus preventing the objert file from becoming any larger than is
necessary. ;

When regular units are used by more than one main program, a separate copy
of each routine used is stored inieach executable object file. This "waste" of
disk space and memory can be preivented by using intrinsic units instead.

7.6 The Linker Listing.
A listing isproduced each time aprogram islinked., This listing can be sent to
a file, or displayed on the console (the default). The +A option will give you
an alphabetical list of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced instages, as follows:

i. The input files are read, and a summary of the resources used is printed.

2.  The linking process begins.: Information about the size of each segment
is printed.

3. Errors are reported, and you are told if the output isexecutable or not.

If you requested optional Iisting'is, they will also be printed. An example of a
Linker listing with no options requested isshown in Figure 7-1.

linkerlisting

Alpha draft 7-7 B 29 January 1983



Workshop User’s Guide for the Lisa The Linker

‘Figure 7-i. A Linker Listing.

7.7 Resolving External Names.
An external name is a symbolic entry point into an object module. All such
names are visible at all times——there is no notion of the nesting level of an
external name., External names can be either global or local. A local name
begins with a $ followed by 1 to 7 digits. No other characters are allowed. A
global name is any name which isnot a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global names are allowed. Only one definition of a given global
name may occur in a given link, {The one exception to this is that the Linker
will accept duplicate names where one instance is in a2 main program or
regular unit, and the other is in an intrinsic library file. In this case, a
warning isissued, and the entry in the main program or regular unit is used.)

The scope of the local name is limited to the file in which it resides. When a
link is done, global names are passed through to the output file unmodified,
but local names are renamed so that no conflicts occur between local names
defined in different files. All references to a given local name must occur
within the same input file.

7.8 Module Inclusion,
There are two different cases of what modules the Linker includes in the
output file. When linking an intrinsic unit, all code modules in the unit are
included. When linking 2 main program with regular units, the Linker does a
dead code analysis and does not include any modules that are not used.

7.9 Segmentation.
Segmenting a program maKes it possible for portions of the program that are
not being used to be swapped out to disk, thus making better use of memory.

The way a program is segmented will have important effects on its
performance.

Segmentation iscontrolled by two things:

o The $S Compiler command, that assigns segment names to source code
modules.

o The +M Linker option, that allows you to remap compiler segment names
into new segment names.

The usual strategy for segmenting a program is to use the $5 compiler
command to divide the code into many small segments, then to map these
segments into 2 few larger physical segments with the +M Linker option.
This will allow you to change the segmentation of the program by just
relinking it. The segmentation can then easily be adjusted to produce the

Alpha draft 7-8 B 29 January 1983



Workshop User‘s Guide for the Lisa The Linker

best swapping characteristics.

Assembly language routines are by default placed in the blank segment. You
can use the .SEG directive to specify another segment, or change the
segment with the ChangeSeg utm‘cy. See the Chapters é and 18 for more
information.

7.6 Error Messages.
The LinkKer produces three d1ffe ent types of error messages, depending on
the severity of the error it encountered.

The firsty, and least severe type;2 of message, is called & warning. A warning
message is given when the LinKer detects a condition that is potentially
dangerouss but not definitly an efror. A warning message always begins with:

#%# Warning

I the warning message occurs @hile entering a command or file name, you
may simply reenter the command correctly, and the Linker will proceed as
though nothing had happened. ‘

The second type of message zs called an error. An error means that the
Linker has discovered a condrtmn that makes it impossible to complete the
link successfully. The linK process is continued, so that any further errors
can be discovered. An error message begins:

### Error

A fatal error is a condition ’dg'xat makes it impossible for the Linker to
continue the link. The linK ig terminated immediatly, and a message is
displayed beginning:

#+% Fatal Error

A complete list of all Linker messages is given in Appendix A.

Alpha draft 7-9 _ 29 January 1983



Workshop User’s Guide for the Lisa The Debugger

Chapters
THE DEBUGGER

8.1 The Debugger seeececssessssssnssescorvessssassnsssssssessessssasee 8=2
The Debugger allows you to examine and modify memory, set breakpoints,

assemble and disassemble instructions, and other functions for run-time
debugging.

8.2 Using the DebuUgQer «.icseseesascsssnscasnsssssssencnssssnsnsessasss 82
Enter the debugger by pressing D in response to the command prompt, or by
pressing the NMI key. The debugger prompt () indicates that it is ready to
accept commands.

€.3 The Debugger CommanNdS .ueeescesasoscsssassssssnssosnssnesacrassssse 8-3
Commands are available for assembly and disassembly of instructions,
displaying memory and registers, setting breakpoints and traces, memory
management, and base conversions.

8!4 S\Jmmaf‘y O‘f DebUgQEP Commands AN NN NN N NN NNNNNENNNNE RN NN NN NN 8-10

Alpha draft -1 ) 27 January 1983



Workshop  User’s Guide for the Lisa The Debugger

filpha draft 8-2 . 27 January 1983



Workshop User’s Guide for the Lisa The Debugger

THE DEBUGGER

8.1 The Debugger.
The Debugger allows you to examine and modify memory, set breaKpoints,
assemble and disassemble instructions, and perform other functions for
run-time debugging.

Protedure names are available to the debugger for program units compiled
with the D option on. The debugger wses the symbolic names wherever
appropriate.

The debugger's symbol table combines the user symbol table and the
distributed procedure names. The user symbol table contains symbols the
user defines while using the debugger and the predefined symbols for
registers. Each entry contains twelve bytes. The #irst eight bytes are the
symbol name, and the last four bytes are the symbol’s value. Section 6.4 in
this manual contains more information about the run-time environment of
programs.

8.2 Using the Debugger.
Type D to the command prompt to invoke the debugger. It asks:

Debug what OS file?

Enter the name of the object file you want to debug. It will be Run with &
breakpoint at the first instruction that will drop you into the debugger
immediately. The debugger command prompt is ‘»‘. The default radix is

hexadecimal.

Another way of getting into the debugger is by pressing the NMI (non
maskable interrupt) key which is the "=" Key in the top row of the numeric
Kevpad.

When you get the command prompt, the debugger isready to accept commands
that allow you to:

o Display and set memory locations
o Set and display registers
o Assemble and disassemble instructions
o Set breaKpoints, patchpoints, and traces
o Manipulate the memory management hardware
o Set up timing buckets for execution timing
o Perform utility functions including:
o0 symbol and base conversion
o move the debugger window

8.2.4 Examples of Using the Debugger.
This section gives examples of how to use the debugger. An explanation of all

Alpha draft 8-3 27 January 1983



Workshiop User’s Guide for the Lisa The Debugger

debugger commands is given below in Section 8.3. A summary of all debugger
commands is given in Section &.4.;

1f vou type a file name to the prc}mpt from the Debug command, the debugger
starts up with the program coun‘iter at the start of the program. To see one
instruction disassembled (say at 32F98); type

>1D 32F96

ID stands for Immediate Disassemble. Each subsequent ID command, if given
without any address, disassemblafs the next instruction found. In addition to
printing the value of each byte, |the debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period.

To disassemble 20 consecutive addresses. type
>IL

IL (Immediate Disassemble Linfes) can also be followed by an address.
Subsequent IL commands disassemble successive blocks of 2@ consecutive
locations in memory.

1+ the object file being examinedf was compiled with the D+ compiler option,
the procedure names are available in the debugger and can be used in any
expressions. For example,

»IL Foo § :
disassembles the first 5 lines of procedure ‘Foo’.
>BR Foo+4¢
sets a break point 40 bytes into procedure ‘Foo’.
You can also use labels in immedia.‘te assemblies:
>sy Ken 6090
>A Ken NOP
assembles a NOP instruction at the address ‘Ken’, which in this case is 6000,
>A 6000
>Rich: JMP $160
> <RETURN>

enters the immediate assembler at 6000, defines the label ‘Rich’, and
assembles a JMP instruction.

8.3 The Debugger Commands.
This section gives the definition of each debugger command. The commands
are grouped together according to function.

.3.4 Definitions.

Constant A constant in the default base.
¢Constant A heyx constant.
&Constant A decimal constant.

Alpha draft 8-4 27 January 1983



Workshop User’s Guide for the Lisa The Debugger

‘ASCII String’ An ASCII string.

Name A symbol in the symbol table.

Expr An expression. Expressions can contain names, regnames,
strings, and constants. Legal operators are + - % /.
Expressions are evaluated left to right. # and / take
precedence over + and -, ( and ) can be used to indicate
indirection. < and > can be used to nest expressions. In
those cases where an odd value is probably & mistake, the
debugger warns vou that you are trying to use an odd
address. If you decide to go ahead, it subtracts one from
the address given. If the compiler option D+ is used,
procedure names are legal in expressions.

Exprlist A list of expressions separated by blanks.

Register The name for any of the §5000 registers, as follows:
DO..D7 are the data registers, A®8..A7 are the address
registers, the program counter FC, the status registers
SR, US, or 55. Note that A7 is GP (the stack pointer).

RegName RD9..RD7, RAQ..RA7, PC, US, or S5. A predefined symbol
in the symbol table with a value set by the debugger. The
value isequal to the value of the register in question. The
debugger automatically updates the values of these
symbols., The ‘R’ is appended to distinguish the register
names from hexadecimal numbers.

8.3.2 Display and set memory locations.
The following commands are used to displiy and set memory locations.

SM expri exprlist

Set memory with exprlist starting at expri. SM assumes that each element of
exprlist is 32 bits long. To load different length gquantities, use SB or SW
described below. 1f the expression given is longer than 32 bits, SM takes jst
the upper 32. For example, if we ask the debugger to:

SM 1000 ‘ABCDE’
it deposits the ASCII equivalent of '‘ABCD’ starting at 1604.

SB expri exprlist
Set memory inbytes with exprlist starting at expri

SW expri exprlist
Set memory in words with exprlist starting at exprd

SL expr{ exprlist
Set memory inlong words with exprlist starting at expri. For example,

5L {00 ¢
is equivalent to
SM 100 0000 0001

DM expr .
Display memory. Display 14 bytes of memory starting at expr. DM RA3+18,
for example, displays the contents of memory from 10 bytes beyond the

Alpha draft &=5 27 January 1983



Workshop User‘s Guide for the Lisa The Debugger

address pointed to by A3. DM ({1@) displays the contents of the memory
location addressed by the contents of location 1ie.

DM expr!l expr2 :
Display memory. Ifexpr!l < expr2, then display memory from expri to expr2.
Otherwise, display memory for expr2 bytes starting at expri.

DB expr
Display memory ags bytes.

DW expr
Display memory as words.

DL expr
Display memory as long words.

FB starting_addr count data .
Find Byte, Find the byte or bytes ‘data’ in memory between ‘starting_addr’
and ‘starting_Addr‘+‘count’. :

FM starting_addr count data
Find Memory.

FW starting_addr count data
Find Word.

FL starting_addr count data
Find Long word,

8.3.3 Set and display registers.
TD
Digplay the Trace Display at the current PC. An example of the trace display
is shown in Figure 8-i. It shows the instruction executing at the time the
program wag interrupted, the current value of all the registers, and the
turrent domain and process.

tracedisplay

Figure 8-4. The Trace Display.

register

Display the current value of the register. D@, for example, iz a command to
the debugger to display the current value in the register De. RD®, on the
other hand, is a name automatically placed in the symbol table to give you a
handle on the contents: of D@ in.an expression. Thus, to display the current

Lral
]
o~

Alpha draft 27 January 1983



Workshop User’s Guide for the Lisa The Debugger

value in the D@ data register, type the command D6. To display the
instruction pointed to by the A® address register, type the command ID RA®Q
(Immediate dissassemble at the address RA®, which is predefined +to be the
contents of the A@ register)

register expr .
Set the register to expr. For example, to set register D3 to zero, type D3 @.

8.3.4 Assemble and disassemble instructions.
These commands are used to display code inassembly language format, and to
enter code in the form of assembly language statements.

A expr statement

Acsemble one or more assembly language statements (instructions) starting
at expr. You can continue assembling instructions into consecutive
locations,; pressing RETURN after each statement. Type just RETURN +to
exit the immediate assembler. Note that the immediate assembler cannot
assemble any intrinsic wunit instructicns, but they will be correctly
disassembled. Code segments may be write-protected, which will prevent
vou from assembling instructions into them. This can be overridden with the
WP @ command to disable write protection.

A expr

1 you use the form A expr, the debugger prompts vyou for the statement to be
assembled.

1D

Disassemble one line at the next address

1D expr
Disassemble one line at expr

IL
Disassemble 290 lines at the next address

IL expr
Disassemble 20 lines starting at expr

IL expri expr2
Disassemble expr2 lines starting at exprd

IX statement
Immediate execution of a single instruction. The users PC is not changed by
this operation.

€.3.5 Set breakpoints and traces.
These commands are used to trace program execution.

BR

Display the breakpoints currently set. You can set up to 16 breakpoints with
the debugger. Break points are displayed both as addresses and as symbols.
An asterisk marks the point of the breakpoint in the disassembly,

BR exprlist
Set each breakpoint inexprlist. Symbols are legal, of course, sowe cam:

Alpha draft 8-7 27 January 1983



Workshop User’s Guide for the Lisa “The Debugger

BR Ralph+4
if Ralph is a known symbol.
Expressions can be of the form: |
pp:aaaaa

where pp is the process number, and aaaaa is the address in that process
where you want the breakpoint set. 1f the process number is @, the breakpoint

is set in system code in domain ©. 1f no process isgiven, the current process is
assumed. The current process is shown in the TD display described above.

Breakpoints cannot be set on intrinsic unit instructions.

CL
Clear all breakpoints

CL exprlist
Clear each breaKpoint in exprlist

G
Start running at the current PC

G expr
Starting running at expr

T '
. Trace one instruction at the curr_ent PC

T expr
Trace one instruction at expr

SC expr
Stack Crawl. Display the user cé.ll chain, Expr sets the depth of the display.
It can be omitted.

RB
Reboot. This command should not be used while you are in the Workshop. The
Lisa isreset.

procedure name .

This calls a user procedure or function. Itis the users responsibility to save
and restore registers and push any necessary parameters. If you want
execution to stop upon return, you must set a breakKpoint on the current PC.
For example:

BR FC f ; set break point on PC.
IX MOVEM.L DO-Aé,~(A7) ; save registers.

; push params if needed.
FOO : ; call procedure FOO.
IX MOVEM.L (A7)+,Do-Aé ; restore registers.
CL PC : ; remove break point.

A function can be called ina sxmllar manner. Remember to allocate space for
the function result before pushmg any parameters, Use either CLR.W =(A7)
roc CLR.L -(AD),

Alpha draft a-4 27 January 19832



Workshop ~ User’s Gux:de for the Lisa The Debugger

A procedure that may need to be called is OSQUIT. Itexits from the 05. We
reccomended that vou avoid this whenever possible.

8.3.4 Manipulate the Memory Management Hardware.
These commands change the memory management hardware of the Lisa. More
information on the memory managment hardware can be found in the Lisa
hardware manual. CHECK NAME. ‘

LP expr
Convert logical address to physical address.

DO expr

Set the SEG1/SEG2 bits. These bits determine the hardware domain number.
If the Status Register shows that you are in supervisor state, then the
effective domain is zero, and the domain number returned by the debugger is
the domain that would be active if the SR were changed to user state.

WP éori
Diable (8) or Enable (i) Write Protection. The default is{.

MM start [end_or_countl

MM with one or two arguments displays information about the MMU
registers. The second argument defaults to 1. If the starting address is
greater than the second argument, the second argument is & count of the
number of MMU registers to be displayed. If the starting address isless than
the second argument, the second argument isthe last register displayed.

MM 70
displays
Segment[76] Origin[@00 Limit[00] ControllCJ

These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU register. As can be seen from a careful perusal of
the hardware documentation, a Control value of C means the segment in
gquestion is unused (invalid). If the Control value isvalid (7, for example), the
debugger also displays the Physical Start and Stop addresses of the segment.

MM &109 &

displays the MMU ‘register information for the & registers starting at
register 64 (decimal 109).

MM num org lim cntrl Cend_or_count)
The MM command followed by four arguments sets the MMU information for
segment ‘num’. The Origin, Limit, and control bits can be changed.

MM 70 100 £f7

sets the Origin of segment 79 to 100 and the control bits to 7 (a regular
segment). The segment limit of -1 makes the segment 512 bytes long.

8.3.7 Timing Functions.
The debugger allows vou to create up to 16 timing buckets for measuring
execution times. Using the microsecond timer 1in Drivers, time is

Alpha draft €-9 27 January 1983



Workshop User’s Guide for the Lisa The Debugger

accumulated in each bucket and saved along with a count of the number of
times the bucket was entered.

Typically, this would be done as follows:

1. Enter the debugger for a given process and create one or more timing
buckets with the TB command.

2,  Set abreak point to stop exscution at-some point.

3. Go.
4, When the breaKpoint is reached, print the timing summary with the PT
command.

3. Use the End Timing (ET) comhand to remove all timing buckets.
The timing commands are as follows:

BT expr

Begin timing. Expr specifies the process number. If the BT command is not
given, the current process is assumed. A process number of @ can be used to
indicate domain 9.

TB addri addr2
A timing bucket iscreated from addri to addr2.

PT [
Print timing summary. There are five columns printed:

{. Bucket number

2. Total time in this bucket.

3. Number of times this bucket was entered.
4. Starting address for thisibucket.

9. Ending address for this blcket.

ET :
End timing. This command prints the timing summary and removes all the
timing buckets.

KB expr ‘
Kill Bucket. This can be used to remove a single bucket. Expr is the number
of the bucket to remove.

RT
Reset timers. This resets the timing anmd count tables while leaving the
bucket definitions intact.

Note that all addresses are in the same process. The process number is
defined by either the BT command: or the first TB, PT, KBy or RT command. If
the process number is not given in the BT command the current process is
assumed. ;

£.3.8 Utility functions.
including:

o symbcl and base conversion

Alpha draft &-10 ; 27 January 1983



“Workshop ~User’s Guide for the Lisa “The Debugger

o moving the debugger window
o Setting the NMI key

8.3.8.4 Symbols and Base Conversion
sY
Display the values of all symbols

SY name
Display the value of the symbol name

SY name expr
Assign expr to the symbol name

CV exprlist
Display the value of each expression inhex and decimal.

SH
Set the default radix to hex

SD
Set the default radix to decimal

8.3.8.2 Moving the Debugger Window:
P expr
Set port number to expr. Valid port numbers are:

® Lisa Kevyboard and screen (default)
1 UART Port A (farthest from Power Supply)
2 UART Port B

1§ you move the port to a UART, you must have a modem eliminator connected
to that port,

RS
Display the patch Return address Stack

8.3.8.3 Setting the NMI Key:
NM
Displays the key code for the NMI key.

NM expr
Sets the NMI key to be key code expr. A value of zero disables the NMI key,

For example:
>NM $24

Sete the NMI Key to be hex 21, which is the "-" kKey in the top row of the
numeric Keypad.

&4 Summary of the Debugger Commands.

procedure name Call the procedure.
register Display the current value of the register.
register expr Set the register to expr

A expr statement

Alpha draft a-11 27 Janvary 1983



—Workshop - User’s - Guide - for the Lisa

A expr

BR

BR exprlist
BT expr

CL

CL expriist
CV exprlist

DB expr

DL expr

DM expri expr2

DO expr

DR

DW expr

ET

FB starting__addr count data
FL starting_addr count dats
FM starting_addr count data
FW starting_addr count data
G

G expr

iD

ID expr

IL

IL expr

IL expri expr2

IX statement

KB expr

LP expr

MM expri expr2

MM num org lim ctrl

MR

NM

NM expr

P expr

PT

RB

RS

RT

SB expri exprlist

&C expr

sD

SH

SL expr{ exprlist

Alpha draft

The Debugger

Assemble one statement (instruction) at
expr. ,

Display the breakpoints currently set.

Set each breakpoint in exprlist.

Begin timing process expr

C;iear all breakpoints

Clear each breakpoint inexprlist

Djisplay the value of each expression in hex
and decimal.

Display memory as bytes.

Display memory as long words.

Display memory.

Set the SEG1/SEG2 bits.

Display index or ranges of dump RAM.

Display memory as words.

End Timing - print summary
buckets

Find Byte.

Find Long

Find Memory

Find Word

Start running at the current PC
Starting running at expr
Disassemble one line at the next address
Disassemble one line at expr

Disassemble 20 lines at the next address
Disassemble 20 lines starting at expr
Disassemble expr2 lines starting at expri
Immediate execution of one instruction

Kill Bucket expr

Convert logical address to physical address.
Display MMU information

Set MMU information
Set a value level #5

and remove

interrupt on a word

change.
Dlsplays the Keycode of the NMI Key
Sets NMI keycode to expr

Set port number to expr.

Print timing summary

Reboot.

Display the patch Return address Stack

Reset timers

Set memory in bytes with exprlist starting at
expri

Stack Crawl.

Set the default radix to decimal

Set the default radix to hex

Set memory in long words with exprlist
starting at expri.

27 January 1983



“Workshop " User’s Guide for the Lisa “The Debugger

SM expr!{ exprlist Set memory with exprlist starting at expri.

SW expri exprlist Set memory in words with exprlist starting at
expri

sY Display the values of all symbols

SY name Display the value of the symbol name

SY name expr Assign expr to the symbol name

T Trace one instruction at the current PC

T expr Trace one instruction at expr

TB addr{ addr2 Create Timing Bucket from addri to addr2

TD Display the Trace Display at the current PC

WP éori Diable (@) or Enable (1) Write Protection.

Alpha draft 8-13 27 January 1983



Workshop Reference Manual for the Lisa ' Using Exec Files

Chfap-tery‘?
USINGEXECFILES

9.1 Exec Files .l.l.ll'.ll...'.'ll.‘!ﬂ.l'...Il'lll'll.ll.l.lll..ll.l.ll..ll!l.l 9-1
Exec files are stenarios of commands to be automatically performed by the
Workshop system. They can use parameters, and conditional execution.

" 9.2 Exec File Statements ..ieveversonsrenssenncasscaninirascnssnsisssarnane 9=14
Exec file statements are of two types: normal lines, that contain Workshop
commands, and exec command . lines, that tell how to process the exec file.
Exec command lines include lines to: set parameter values, perform input
and output, and to control conditional execution.

9.3 USing EXQC Files l.._...'lll...lE‘.l.l.ll.ll..l.'....ll.l....ll.".llll.l.. 9-1

Exec files are invoked using the \}Jorkshop Run command. This invokation
line can setthe values of parameters, aswell asselect exec options.

9!3 Example Exec Fixes:IOO..ll"..;ll.l..ll..l,ltlll'.'ll..ll‘il.ll.ll.'ll.ll 9-1
This section contains examples of exec files,

e

Alpha draft 9-1 7 February 1983



Workshop Reference Manual for the Lisa Using Exec Files

UsingExecFiles

9.1 exec files. .
Exec files are scenarios of commands to the workshop system. They are
contained in a text file, created with the Editor, and are executed with the
Run command. They consist of the actual characters you would type to the
Workshop to perform the function you want, interspersed with special exec
file commands that allow you to use parameters and conditions to vary some
portions of the scenario.

Inits simplest form, an exec file contains the characters vou would pressto
perform the desired operation. For example, to compile a Pascal program,
the exec file would contain:

Pmyprog

The P invokes the Pascal compiler, myprog is the name of the source file,
This could be followed by further lines to Generate, Link, and Run the
program,

Special exec file commands allow you to use parameters and conditionally
perform the Workshop commands. This would allow you to setup an exec
file to compile, Generate, and optionally LinK any Pascal program. Such an
exec file isshown in Figure 9-1

3EXEC
$ {Thisexec file compiles and Generates a Pascal program. }
% { If the second parameter isL (or 1) the program is Linked 2
$1F X0 =" THEN {noparameter entered?
$WRITE “Compile what file?’
$READLN %0
$ENDIF
A
{nolistingfile}
-{ default I-code file }
040
{default object file}
$I1F UPPERCASE(X1) = 7L THEN
L0
10SPASLIE
{endof linker input }
{nolist file)
Z0{ output file name 3
$ENDIF :
$ENDEXEC

Fig_ure 9-1. Example exec file

9.2 exec file statements
Exec file statements are contained on one line. There are two types of exec
file lines, exec command lines, and normal lines. Normal lines contain

Alpha draft 9-2 7 February 1983



—————Workshop Reference Manual for the Lisa Using Exec Files -

commands to be processed by the %WOr‘kshop system. exec command lines
handle the other features of exec files, such as parameters and conditional
statements.

You may use up to 10 parameters in an exec file, numbered as %0 through %9.
These receive their values from the invocation of the exec file, or they are
assigned values during the exec file execution. When a parameter appears
in a normal line, it isreplaced by the string value of that parameter. These
parameters can be used both as inputs to the exec file and as temporary
variables within it.

Exec command lines start with a $} they control the operation of the restof
the exec file. Exec command lines are free format, aslong as the order of
thier elements is preserved. Any number of blanks can occur before any
element of a command line.

Normal command lines contain commands for the Workshop system. These
lines are sent to the Workshop exactly asthey appear. Any extra blanks will
be sent to the Workshop and will be treated exactly as if you had typed in
those blanks. ’

Comments are delimited by curly braces {{and }). They can appear ineither
a normal or an exec command line. Comments are completely removed
from normal lines.

The tilde () isused as a literalizing character innormal lines. Itpassesthe
following character through without processing it. This allows you to pass$,
%, and { to the Workshop system without having them be interpreted as an
exec command, a parameter, or a comment. Tilde can be passed as™"

The following isa description of eath exec command line type.

9.2.4 Beginning and ending Exec Files
$EXEC and $ENDEXEC

9.2.2 Setting Parameter Values
$SET, sSDEFAULT, $REQUEST

9.2.3 Input and Output
$WRITE, $WRITELN, $READLN, $READCH

9.2.4 Conditional statements
$1F,$ELSEIF, $ELSE, $ENDIF, and boolean operations AND, OR, NOT

9.2.5 String Expressions
CONCAT, UPPERCASE

9.2.6 Nesting exec Files
$SUBMIT

9.3 Using Exec File
This section explains exec file invocation, including parameter listand exec
options.

9.4 example exec files

Alpha draft 9-3 7 February 1983



__Workshop Reference Manual for the Lisa Using Exec Files

This section contains commented and annotated exec files.

Alpha draft 9-4 7 February 1983



Workshop Re-ierencei Manual for the Lisa The Utilities

Chapter 10

THE UTILITIES

10-1 Intmductinn --u-u-nv-anbtt-tinuu--u-o--on--oncoa-nacc-------nn.o---u-10-2
Utilities are Executed by the Run command from the Workshop. This
section explains the method for running a utility, and the common wuser
interface. '

10.2 BY'tEDif‘F llll0...llil‘lllllIl.!;Illll.lll.lIlll!.Dll.ll.llllllll.lll.l.'10-3
ByteDiff compares two files, byte by byte, and shows where they are
different.

10.3 Changeseg Ql..llil..lll..ll‘gl'lll.lllll'lllll'.lll.ll..'lll..ll!lllll10-4
ChangeSeg allows you to thange the segment name of an object.

10‘4 Codesjze ll'l'.ll..lIllllllll.lll.l.lD.lIl".l.l'l‘.l..l..llllll.llll10-5
CodeSize gives you a summary of the con‘ten‘ts of an object file

1005 Diff 'llll..lll'..tl....l.Ilj..l.ll..0..ll.....ll..'.i....l..l..'l.l'10-6

Diff compares two text files and shows their differences.

i°I6 Dumpobj l..lll.l.lllllllll.l'l'llll.ll..lll.lDl.ll.l.l.lll.'l.lllllll10-7
DumpOb; displays the contents of an abject file.

10.7 Dumppatch 'l..‘..l.l.ll’.lih.‘llll‘...lll.l.IIO.I".I.IIIIII..I...I10-7
DumpPatch displays and edits the contents of any file.

10.3 FileDiV and Fi]eJDin lll.llll.l.'ll‘....lllll.ltllll...llll.lll.'lll10-8
FileDiv divides large files into smaller ones. FileJoin rejoins the resulting
small files back into the original large file.

10.9 GT‘ED .l.lll..llll...llllIllI.l.l.ll'.l!Il'.......'I.lllll'llll.l.l.l10-9

Searches for Id’s.

10.10 GXRE{ l.llll.l;llll.bll.lllll_llll.llll.Oolll'tiltitlll.lll.ll.lllll‘.10_?

GxRef provides a global cross reference.

10-11 PaCkSeg S e NN AS R ONSET NSRS 0RNRNRN0PEE0BNERAINNAIEERENOTNORDANDYS 10‘10
PackSeg packs object code files.

10-12 SE’QMap OIIIIIIOQOODIIIIIIl..!l.lllllll.'ll..‘.IO'IIO..!O...I....‘CI !0-11
SegMap produces a segment map for one or more object files.

‘0‘13 SXRE{ llll.lllllllll..lll.i.fll..l.ll.Illl...ll.'.lll..l.bl‘ll'llll 10-12
SxRef produces a cross reference.

Alpha draft ' 10-4 7 February 1983



_Workshop _ Reference _Manual for the Lisa _The Utilities

Alpha draft 10-2 7 February 1983



Workshop Reference  Manual for the Lisa The Utilities

THE UTILITIES

10.{ Introduction
how to run utilities

10.2 ByteDiff
BYTEDIFF compares any binary hles, but once it finds a difference between
the two files, it does not always hnd where the differences end.

10,3 ChangeSeg ;
CHANGESEG changes the segment name in the modules in an object file.
The firstprompt asks for the object% file you want to change:

File to change:
Changes are made in place (the ﬁle itself ischanged). You are next asked:
Map all Names (Y/N)

1 you want to change segment names in all modules, respond Y. If you want
to be prompted for the new segrri»ent name for each module, type N. A
response of <cr accepts the default name.
10.4 CodeSize
10.5 Diff, :
DIFF is a program for comparing ".TEXT" files, in the LISA Pascal
development environment.  DIFF is strongly oriented toward use with
Pascal or Assembler source files. !

DIFF isnot sensitive to Supper/lowefr case differences. All input isshifted to
a uniform case before comparison| isdone. This isin conformance with the
language processors, which ignore case differences.

|

DIFF is not sensitive to blanks. All blanks are skipped during comparison.
This is a potential source of undetected changes, since some blanks are
significant (in string constants, for instance). However, DIFF isinsensitive
to "trivial" changes, such as indentation adjustments, or insertion and
deletion of spaces around operators.

DIFF does not accept a matching context which is"too small". The current
threshold for accepting a match is 3 consecutive matches. The M option
allows you to change thisnumber. This has two effects:

Areas of the source where almost‘”every other line" has been changed will
be reported as a single change block, rather than being broKen into several
small change blocks,

Areas of the source which are "en'txrely different" are not broken into
different change blocks because qf trivial similarities (such as blank lines,
lines with only "begin" or “end", etc@.)

DIFF maKes a second bass through the input files, to report the changes
detected, and to verify that matching hash codes actually represent
matching lines. Any spurious match found during verification is reportedv as

Alpha draft 106", 7 February 1983



Workshop Reference’ Manual for the Lisa The Utilities

& "JACKPOT". The probability of a JACKPOT is very low, since two
different lines must hash to the same code at a location in each file which
extends the longest common subsequence, and in a matching context which
islarge enough to exceed the threshold for acceptance.

DIFF can handle files with up t0 2000 lines.

DIFF firstprompts you for two input file names: the "new” file, and the "old"
file. DIFF appends ".TEXT" to these file names, if it is not present. DIFF
then prompts you for a filename for the listing file. Type carriage-return to
send the listing to the console.

DIFF does not (currently) know about INCL.UDE files. However, DIFF does
allow the processing of several pairs of files to be sent to the same listing
file. Thus, when DIFF is finished with one pair of files, it prompts you for
another pair of input files. To terminate DIFF, simply type carrizge-return
in response to the prompt for an input file name.

The output produced b\) DIFF consists of blocks of "changed" lines. Each
block of changes is surrounded by a few lines of "context" to aid in finding
the lines in a hard-copy listing of the files.

There are three Kinds of change blocks:

INSERTION -- a block of lines in the "new" file which does not appear in the

"old" file.
DELETION -- a block of lines in the "old" file which does not appear in the
"new" file.
REPLACEMENT -- a block of lines in the "new" file which replaces a

corresponding block of different lines in the old file,

Large blocks of changes are printed in summary fashion: a few lines at the
beginning of the changes and a few lines at the end of the changes, with an
indication of how many lines were sKipped.

DIFF has three options which allow you to change the number of context
lines displayed (+C), the number of lines required to constitute a match (+M),
and the number of lines displayed at the beginning of a long block of
differences (+D). To set one of these numbers, type the option name
followed by the new nmumber to the prompt for the firstinput file name. +D
100, for example, causes DIFF to print out up to 100 lines of a block of
differences before using an ellipsis. The maximum number of context lines
you can get is &,

10.6 DumpOb,.
DUMPOBJ is a disassembler for 68000 code., It can disassemble either an

entire file, or specific modules (procedures) within the file. DUMPOBJ
replaces DUMPMCODE,

DUMPOEJ first asks for the input file which should be am unlinked object
file. The output (listing} file defaults to CONSOLE:. You are asked whether
you want to dump )

Alpha draft 10-7 7 February 1983



Workshop Reference Manual for the Lisa — The Utilities

A(ll, S(ome, or P(articular modules.

If you respond S{ome, DUMPOBJ aéks you for confirmation before dumping
each module. A response of <ESC} gets you back to the top level. Ifyou
respond Pfarticular, DUMPOBJ asks you for the particular module(s) you
want dumped. '

The next question is: ‘Dump file pasitions [N1?’'The file position isa number
of the form [0,000Jwhere the firstdigit isthe block number (decimal) within
the file and the second number is the byte number (hexadecimal) within the
block at which the module starts. This information can be used in
conjunction with the PATCH program. Finally, DUMPOBJ asks if you want
the object code disassembled. '

10.7 DumpPatch i
DumpPatch isacombination of DumpHex and Patch.

DumpHex provides a textual repr‘e«jsenta‘tion of the contents of any file. The
file dump isblock-oriented with the hexadecimal representation on the left
and the corresponding ASCII representation on the right. Ifa byte cannot be
converted to & printable character, a dot is substituted.

When DumpHex isRun, it asks you: for the name of the output file. A .TEXT
extension is added if necessary. To direct the output to the console, type
carriage return. After getting a v!alid output file name, DumpHex asks for
the input file to be dumped. No extensions are appended, so give the full
filename. Once a file has been conﬁpletely dumped, DumpHex asks you for
the next file to dump. Type carriag? return to exit the program.

After opening the input file, DumpHex asks you which block to dump. The
default (carriage return) isblock 0. If the output isgoing to a file, you are
asked which block isthe last you want dumped. The default here (carriage
return) is the last block in the file. .

The format of the console output dtiapends on the number of lines your screen
has. If fewer than 33 lines are available, the output isdisplayed only a half
block at a time. Between blocks or block halves you have the option to

Type <{space> to continue, <escape>i to exit.
Escape returns to the prompt for ani input file,

Patch allows you to examine and change the contents of any file. The
display of the file‘s contents isexdctly like that of DumpHex. With Patch,
however, you can use the cursor control Keys to move around in the block
and change the value of any, byte using either the hexadecimal

representation on the left or the ASCII representation on the right.

After Running Patch you are asked for the full name of the file to patch.
Carriage return exits Patch, No extension isappended to the file name. You
are then asKed for the number of the block ‘you want to mess around with.
Carriage return here returns you to/the file name prompt.

The blockK is displayed with the cursor in the upper left corner at word 0 of
the block. The arrow Keys can be used to move around in the block. 14 you

Alpha draft {0-8 7 February 1983



Workshop Reference: Manual for the Lisa The _Utilities

move the cursor up from the top line; you get the bottom line of the
preceding block. Similarly, if you move down from the bottom line, you
move into the top line of the next block.

When the cursor is on the hexadecimal side of the display, you can change
any byte by typing the new hexadecimal value. Any non-hex characters are
ignored. You can impress your friends by peinting out that the change is
reflected automatically in the ASCII portion of the display. When the
cursor is on the ASCII side, type any character to replace the value of the
byte.

Until you move out of the block you can undo any changes by typing
{escape’.

10.& FileDiv and Filedoin.
1t is often necessary to distribute files that are too large to fit onto a single
floppy diskette. FILEDIV can be used to break a large file into several
diskette-sized pieces. FILEDIV can then be used to rejoin these pieces at
the file‘s destination. These two programs replace the TRANSFER program.

To divide a large text or object file, Run FILEDIV.
Input file: <give the name of the file to be divided>
Output file: <give the name tobe used for the output files>

Do not include the suffix in the file mame. If, for example, you want to
divide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever) as
the output file. FILEDIV will create a group of files named TEMP.{.TEXT,
TEMP.2,TEXT, and soon, until TEMP.TEXT iscompletely divided up. If you
use the drive number (#9:, for example), rather than the volume name, the
new files can be written to multiple diskettes. When space on a diskette is
exhausted, FILEDIV asks you to insert another diskette.

To rejoin the pieces of the file, Run FILEJOIN. Using the example given
above, we can rejoin TEMP.I.TEXT and friends into TEMP.TEXT by

responding:
Input file: TEMP {will read TEMP.{.TEXT, etc>
Output file: TEMP {will create TEMP,TEXT>

FILEDIV and FILEJOIN use regular directories, so a spurious sex change
cannot destroy your file, Files are verified in both directions.

10.9 Grep
10.10 GxRef.
GXREF lists all the modules which call a given procedure, and all the

modules which that procedure calls, It provides a global cross reference of
subroutines and modules.

{0.11 Packseg
10.12 SegMap

SEGMAP produces a segment map of one or more object files. The first
prompt:

Alpha draft 10-9 7 February 1983



WDrksﬁop Reference Manual for the Llisa The Utilities

Files to Map 7

accepts either an object file name| or a command file name. A command
file must be preceded with a <.  SEGMAF adds the .TEXT suffix to the
command file name. The next prompt:

Listing File ?

directs the map information to the file given. A response of #i: or
CONSOLE:, for example, send the map information to the screen. The map
information includes the object file name, the name of the unit in the file,
the names of the segments used i that unit (if any), and the new segment
names.,

10.13 SxRef

Alpha draft 10-10 7 February 1983



	00-00
	00-01
	00-02
	00-03
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-06
	10-07
	10-08
	10-09
	10-10

