March :' |, 1493

UnitHz Specification = Page 1
e 8 T. Mal lod

Specification for UnitHz -~ The Standard Storage Manager

Overview

UnitHz provides a client with routines to manage a piece of contiguous memory,
called a heap zone (hz). In the case of Lisa, this is usually but not necessarily
an MMU segment. UnitHz will manage an arbitrary number of such zones. The zone
is made up of a zone header (ahz) followed by an arbitrary number of storage
blocks (abk). The zone may be arbitrarily large.

A storage block consists of a header followed by usable memory. Blocks are
always of even length within a specified minimum and maximum. The current
minimum is 12 bytes, the length of aminimum free block. This could be reduced to
4 bytes if desired by recoding portions of UnitHz. The maximum size of an
allocated block is currently 32K bytes. This could be increased to 65K bytes

with minor enhancements or to 231 by making the appropriate quantities a full 32
bits.

There are four types of storage blocks. They are free, non-relodatab‘le,
relocatable and named. '

Free blocks are used by the implementation and not visible to the client. They
are kept on a doubly linked list through fields in the free block header. Free
blocks may be as large the entire zone.

Non~relocatable blocks behave like objects allocated on a Pascal heap with NEW
and DISPOSE. The user references a non-relocatable block through a pointer to
the first data byte.

Relocatable blocks, as the name suggests, may be moved around in memory
(relocated) when necessary. There are two principal advantages to using
relocatablé blocks rather than non-relocatable blocks. First, relocatable
blocks can change size dynamically., Second, better utilization of available
memory is possible with a zone of relocatable blocks than non-relocatable blocks
because the storage manager, when unable to find a free block large enough to
satisfy an allocation request will move blocks around to create a large enough
free block. In order to achieve this relocatablility the user references a
relocatable block through a handle (h) which is a pointer to the pointer to the
first data byte. There is precisely one pointer to the actual data, called the
master pointer. The handle points to it. The storage manager remembers its
location and updates it whenever the block is relocated. This unique pointer is
normally located in an array of pointers at the end of the zone header but the
user may specify, at zone initialization time, precisely one other block of
memory in which he wishes to allocate these master pointers. This area is <= 32K
bytes long. A pointer, once allocated in this area, must never move; so a master
pointer cannot be allocated inside another .relocatable object. The Word
Processor uses the Pascal sysglobal area to store master pointers. (Figure 1)

Named objects provide the user a mechanism to implement an LRU caching mechanism
on the collection of all named objects in the zone. The Word Processor uses this
capability to implement a file page cache. The font manager uses it to implement

UnitHz Specification - Page 2

a font cache. A named object is referenced by its 32-bit name (n) which the
storage manager attaches no significance to other than as a unique tag for the
object. Using named objects requires a 1little more forethought than
non-relocatable or relocatable blocks. The user must supply, at the time of zone
initialization, several procedure variables which parameterize portions of the
caching function. Through these routines the storage manager communicates to
the user the intent to swap a named object out of the zone, request the user to
copy a named object into the zone and inquire the amount of storage a named object
will require, By parameterizing these three functions the storage manager may
be used to cache different kinds of objects and need know nothing about the
semantics of the objects themselves or where they exist when not cached in the
zone.,

Since named objects swap into and out of the zone automatically there is no
primitive Pascal construct which directly references a named object the way a
pointer, p, references a non-relocatable object and a handle, h, references a
relocatable object. Instead the user must translate the object name, n, intoa
TEMPORARY pointer to the data of a named object using the storage manager
routine, PMapN. PMapN will find the named object and return a pointer to it. If
the object is not in the zone it will swap it into the zone with the aid of the
procedure parameters mentioned above. PMapN finds in-zone objects by probing a
hash table, rgpnob, which contains a pointer to every named object in the zone. ‘

The storage manager maintains two state bits for each named object, fLock and
fDirty, which affect the swapping characteristics of the object. The user may
manipulate these flags through the named object interface. Setting fLock to
TRUE makes the object memory resident. Put another way, when fLock is TRUE the
named object will never be swapped out of the zone. Beware - fLock does not make
the object non~relocatable!! When a named object is about to be swapped out of
the zone the storage manager checks the "dirty bit", £Dirty. If fDirty is TRUE
then the user—-supplied swapout routine 1s called before the object is
deallocated. It is expected the user will take what ever action is necessary to
guarantee the long term integrity of the object. IF fDirty is FALSE it is
deallocated without the user being notified in any way.

Although not currently enforced by the storage manager it is a universally
observed convention that non-relocatable objects not be mixed into a zone with
relocatable and named objects. If this convention is not obeyed the user will
sometimes find that the storage manager cannot satisfy an allocation request
which would have been possible in an equivalent "pure relocatable" zone.

Interface Abstractions

hz pointer to an area of memory managed as a storage zone
(TYPE THz = rTAhz). The thing that hz points to, ahz, is in the
interface but considered private. It is included in the interface
because of the lack of "opaque types”. ’

P pointer to a non-relocatable storage object (TYPE TP = rINTEGER).

h handle to a relocatable storage object (TYPE TH = rTP). Such a handle
is a pointer to a pointer to the data you allocated. So, 1f a user
allocates a record of type TFoo in a relocatable storage object she
would save the handle in a variable hfoo (say) of ‘type rrTFoo. Access
toa field baz in a record of type TFoo is hfoorr.baz.

UnitHz Specification — Page 3
n 32 bit name of a named (i.e. cached) object (TYPE TN = LONGINT).

Operations

Zone Initialization

HzInit(pFst: TP; pLim: TP; pBase: TP; ipPoolMac: TC; logIpnLim: TProc;
procChMore: TProc; procCbOfN: TProc; procFSwapInN: TProc;
procSwapOutN: TProc)

Initializes the interval of memory in [pFst .. pLim) to be a storage zone
and returns a pointer to-it as a result, pBase is a pointer to the
beginning of the 32K byte area in which the user may want to allocate
master pointers. If pBase = pNil then the zone has no alternative master
pointer area; all relocatable objects must me allocated with master
pointers in the zone's master pointer pool with HAllocate. ipPoolMacis
the number of initial master pointers for relocatable objects allocated
in the internal area of master pointers. This number is automatically
increased when needed. The initial hash table used for named objects has

2longnLim entries. procCbMore is the procedure called when the storage
manager fails to satisfy an allocation request because of insufficient
memory. This procedure has the interface of the generic procedure:

FUNCTION CtMore(hz: THz; cbNeed: TC) : TC;

The storage manager must be able to add at least cbNeed bytes of memory
to the end of the zone, hz, in order to successfully satisfy the
allocation request. The return value is the amount the client has
allocated immediately after the end of the zone to be added to the
zone. If cbNeed > return parameter then the storage manager returns
without success. A default routine will be provided if procWNil is
passed as the parameter but experience has shown that clients almost
always need there own to handle boundary conditions in application
specific ways.

procChOfN, procFSwapInN and procSwapOutN are procedure parameters which
must be supplied if named objects are to be used in this zone. procCbOfN
is a procedure variable which, given a named object n, returns the size -
(in bytes) of that object. The generic interface is:

FUNCTION CbOfN(n: TN) : TC;
The procedure variable procFSwapInN is called whenever the storage
manager fails to find a named object in the cache (see PMapN). The user is
expected to get the object into the zone at the location specified. The
generic interface is:

FUNCTION FSwapInN(n: TN; pDst: TP) : TF;

n is the name of the object; pDst is the destination to "swap" the
object to; return value indicates success (TRUE) or failure (FALSE)

The procedure variable procSwapOutN is called immediately before the

UnitHz Specification - Page 4

storage manager tosses a named object out of the zone (i.e. reclaims its
memory). It is called only if the dirty bit, fDirty, is set in the named
object header. The user is expected to get the object into the zone at the
location specified. The generic interface is:

PROCEDURE SwapQutN(n: TN; pSrc: TP);

n is the name of the object; pSrc is the location of the cached object
Implement ation Note:

The pDst and pSrc parameters have proved awkward far the font manager

since in the implementation of FSwapInN and SwapOutN other allocation

requests are made which can relocate the new named object and hence

invalidate the pointers. In the future you might want to eliminate

these parameters and force the routines to map from name to pointer

with PMapN or export the hashing function IpnMapN (see below).

Operations on Non-relocatable objects

uPAllocate(hz: THz; cb: TC) : TP;

Allocates a non-relocatable storage object in zone, hz. The actual
allocated data area in the object is at least cb bytes long and may be
slightly larger. Returns a pointer to the first data byte in the object.
This pointer is guaranteed to be on an even byte so that access to 16 bit
fields in records will work correctly. Returns pNil if unable to satisfy
the allocation request.

\FreeP.(hz: THz; p: TP);

Deallocates the non-relocatable storage object pointed at by p in zone
hz. The pointer itself is not enough info to find the containing zone
which is why the user must pass it in as a parameter.

Operations on Relocatable Objects

HAllocate(hz: THz; cb: TC) : TH;

Allocates a relocatable storage object in zone, hz. The actual allocated
data area in the object is at least c¢b bytes long and may be slightly
larger. Returns a handle to the first data byte in the object. This
pointer is guaranteed to be on an even byte so that access to 16 bit fields
in records will work correctly. Returns hNil if unable to satisfy the
allocation request. :

FreeH(hz: THz: h: TH);

Deallocates the non-relocatable storage object referred to by h in zone,
hz.

ChangeSizeH(hz: THz; h: TH; cbNew: TC);

One of the unique advantages of a relocatable object is that the user may
change its size after it has been created. This is the routine to
accomplish it. The relocatable object, h, in zone, hz, is altered to have

UnitHz Specification - Page 5

cbNew'data bytes. This may require moving it.

CbDataOfH(hz: THz; h: TH) : IC; -

Returns the size, in bytes, of the data area of object,, h, in zone hz. Note
that CbDataOfH(hz, HAllocate(hz, cb)) >=cb. That is, the actual size of
the data area may be greater than what you asked for.

HzFromH(h: TH) : THz;

If a relocable object is allocated with HAllocate then it is possible to
algorithmically derive the containing zone. When this is of interest to
the user he may £ind it by calling this function.

Operations on Named Objects

PMapN(hz: THz; n: TN) ¢ TP;

Locates the object named by n in the zone, hz, swapping it into the zone if
necessary. Returns a pointer to the first data byte of the object. THIS
POINTER IS ONLY VALID UNTIL THE NEXT CALL ON THE STORAGE MANAGER!!
Returns pNil if the named object cannot be found or. swapped in with
FSwapInN. ’

PCreateNob(hz: THz; n: TN; cbData: TC) : TE’

Creates a new named object in the zone, hz. Used instead of PMapN when the
named object does not yet exist outside the cache. For instance, when the -
Word Processor creates a new file it allocates the pages of the file in the
storage zone with PCreateNob,

SetFDirty(hz: THz; n: TN; fDirty: TF);

Sets the state of the "dirty bit" of the named object, n, to the parameter,
fDirty.

HLockN(hz: THz; n: TN; fNeedH: TF) : TH;

Makes the named object memory resident; i.e. sets fLock to TRUE. fNeedH
and the return parameter are unimplemented hooks. The intent is that when
locking a named object the client may also request a handle be allocated
to efficiently access the locked object.

UnlockN(hz: THz; n: TN);

Makes the object, n, swappable; i.e. sets fLock to FALSE.

Miscellaneous Zone Operations

CbOofHz(hz: THz) : TL;

Returns the total number of bytes of memory in the zone, hz.

FCheckHzOk(hz: THz; VAR cBkStd: TC) : TF;

A check routine to test the internal consistency of a zone, hz. Returns
TRUE if the zone appears to be OK, FALSE otherwise. The réturn parameter

UnitHz Specification = Page 6

¢BkStd'is set to the number of relocatable blocks in the zone.

PxHz(hz: THz);
A print routine to dump a description of the storage zone to the Console.

EnlargeHz(hz: THz; cbMore: TL);

A client will sometimes want to give more space to a zone. This space must
immediately follow the zone since zones themselves are not relocatable.
EnlargeHz will add to the zone cbMore bytes of memory immediately
following the zone. This routine simply reconfigures the zone to include
the extra space. :

CbShrinkHz(hz: THz; cbLess: TL) : TL;

It MAY be possible for a client to reclaim some of the memory managed by
the storage manager for some other use. Using CbShrinkHz the user
requests that the last cbLess bytes of memory in the zone, hz, be removed
from the zone. The function result is the number of bytes the storage
manager successfully stripped from the zone.

AllocBk(hz: THz; hDst: TH; cb: TC; tybk: TTybk);

AllocBk is the lower level routine to which all allocation requests
(PAllocate, HAllocate, PCreateNob, etc.) are eventually reduced. It is
included for the knowledgable user who wishes, for instance, to allocate
a relocatable block with the handle allocated in the interval [pBase ..
pBase + 32K). A block of size cb bytes and type tybk is allocated and the
pointer to it in hDstr. tybk is one of tybkNrel (non~relocatable),
tybkStd-(relocatble) or tybkN (named).

FreeBk(hz: THz; h: TH; tybk: TTybk);

Like AllocBk, a lower level routine for FreeP, FreeH and FreeN. The
object of type, tybk, pointed at by hr is deallocated. '

Dunsels (i.e. accumulated useless trash)

PLstFree(hz: THz) : TP;
ReleaseBkNrel(hz: THz; pFstRelease: TP);

These routines were added to support Pascal heaps with MARK and RELEASE.
The Pascal system has never adopted this memory manager.

UnitHz Specification = Page 7

Note: The reader should not venture further without a list ing of UnitHz

Private Abstractions

ahz

abk

header of a storage zone. This record contains all of the structural
information for the storage zone. The record is considered private
even though it is included in the interface. It is included in the
interface because of the lack of "opaque types”.

bkFst pointer to the fipst storage block in the zone (in memory
address order).

bkLst pointer to the last storage block in the zone (in memory
address order). This block is always a "dummy" free block at
the end of the zone which is never allocated. Its size is
cbMinFree. Its existence simplifies, ever so slightly, the
management of the free list.

bkfFst pointer to the free block which is at the head of the doubly
linked free chain. ‘

pBase pointer to the user master pointer allocation area (See
discussion of relocatable cbjects).

argpPool The array of internal master pointers used by HAllocate.
This is at the end of the header and of variable length.

.ipPoolMac Size of argpPool. argpPool has valid entries allocated from

argpPool[0] to argpPool[ipPoolMac~1].

hFstFree All- unallocated master pointers in argpPool are linked
together on a free 1ist. This is the head of that list.

rgpnob ‘Hash table for locating named objects in the zone., Pointer
to an array of pointers to named objects, (nob). This array
is allocated as a relocatable object in this zone.

mskipnLst Size of rgpnobr. rgpnob has valid entries allocated in
[rgpnobr[0] .. rgpnobr[mskIpnLst]].

ipnCur, ubtCur)
Variables used to implement LRU caching.
procCbMore, procChOfN, procFSwapInlN, procSwapOutN
Procedure variables; see HzInit for discussion.

header of a storage block. The format of the 'ﬁl'ock is wvariant,
dependent on the 2-bit type field, tybk found at the beginning of the
blOCk.

If tybk = tybkFree then the header has three four-byte fields: cwFree,
the size of the block inwords; bkfNxt, a pointer to the next free block
on the linked list of free blocks; and bkfPrv, a pointer to the
previous free block on the list. Note that cwFree can be accessed as a
long integer even though its top two bits are the tybk field because
tybkFree = 0.

UnitHz Specification - Page 8

If tybk <> tybkFree then the first word of a block is always
interpreted as a 2-bit type field, tybk, followed by a l4-bit size
field (in words), cw. If tybk = tybkNrel (non-relocatable object) .
these two fields represent the entire header and «the data portion
begins at byte 2.

If tybk = tybkStd (relocatable object) then the second word of the
header is a 16-bit reference to the single pointer to the block (oh).
If abk.oh >= 0 then the pointer is found by adding ch to the pointer to
the zone, hz (i.e. h := hz + oh). If oh <0 then the pointer is found by
subtracting oh from pBase (i.e. h := hzr.pBase - oh). Client data
begins at byte 4. 7

1f tybk = tybkN (named object) then the second word of the header is a
6~byte record describing the object. The first field is the name of
the object, n. Following the name is a status word, stn, which
contains the flags, fDirty and fLock as well as an 8-bit LRU time, ubt.
Client data begins at byte 6.

Private Operations

MakeBkf (hz: THz; bk: TBk; c¢b: TL):

Changes the block, bk, into a free block of size cb. Chains the block onto
the head of the doubly=1linked free list.

DeleteBkf(hz: THz; bkf: TBk);

Removes a free block, bkf, from the free list.

BkFindCb(hz: THz; cb: TL) : TBk;

Searches the free list for a block whose size is at least cb vbytes.
Returns a pointer to it as a result or bkNil if it fails.

BkfLow(hz: THz; bkMin: TBK) : TBk:

Returns a pointer to the first free block (in memory address order) which
is greater or equal to the bkMin parameter. Used, for instance by the
compactor to find where to begin compaction. Implemented by chasing the
links of the free list, NOT by scanning in address order from bkMin.

BkCompactCb(hz: THz: c¢b: TL; bkLst: TBk) : TBk;

This procedure is the main compaction routine. It is an incremental
compactor in the sense that it has very little overhead (a single call on
BkfLow dominates the overhead) and it will terminate any time either of
two parameterized conditions is met: when it creates a contiguous free
block of cb bytes or when it reaches bkLst. The procedure simply iterates
the blocks in address order from BkfLow(hz, ...) removing free blocks and
pushing allocated blocks towards the front. References to the allocated
data are updated on the fly and a single free block is created at the
completion of the iteration. A pointer to this free block is returned as
the result.

CbMakeBkfBefore(hz: THz; bkAfter: TBk; cbNeed: TL)‘: TL:

BkCompactCb always moves blocks toward the front of the zone.

UnitHz Specification - Page 9

Occasionally it is necessary to push blocks towards the end of the block.
GrowHInPlace and HMakeMoreMasters are examples. This routine
accomplishes that "reverse" compaction. It tries to create a free block
of at least cbNeed bytes at location, bkAfter, pushipg bkAfter and
subsequent blocks towards the end of the zome to make room. The actual
size is returned as the result. If the result is Onothing was moved.

HMakeMoreMasters(hz: Tﬁz) + TH;

If there are not free master pointers in argpPool for HAllocate to use it
calls this routine to create some more. It "reverse" compacts all blocks
in the zone to make some room at the and of the master pointer table. It
then increments hzr.ipPoolMac and links the pointers on the list headed
by hzr.hFstFree. Returns hNil if it fails tomake any more masters.

GrowHInPlace(hz: THz; ¢b: TL; bkLst: TBk) : TBk:

GrowHInPlace is a subroutine for the use of ChangeSizeH. ChangeSizeH
employs a mixed strategy to achieve its ends. If the block is to be shrunk
by at least cbMinFree bytes then it simply creates a free block in the
reclaimed space. If it is to grow and there is room in the zone to create a
new block of the appropriate size and copy the contents then it tries this
next. If all else fails ChangeSizeH calls GrowHInPlace to grow the object
without moving it. This involves "reverse" compacting following blocks
tomake room for size of the new block. .

IpnMapN(hz: THz; n: TN) : TC;

IpnMapN is the assembly language hashing function used in probing the
named object hash table, rgpnob. Secondary probes are linear to allow for
efficient deletion of entries. .There is some indication that the
function does not "scramble” the bits of n very well which may be
resulting in an unnecessarily high average number of probes per call.
Returns an index into rgpnob which contains a pointer to the object named
by n. If the object is not found then rgpnobr[IpnMapN(...)] =NIL.

IpnChoose(hz: THz) : TC;

IpnChoose implements the named object replacement algoritim. It
iterates over a fixed number of named objects (not necessarily all of
them) looking for the oldest as measured by its ubt field. Returns an
index to this object.

FreeIpn(hz: THz; ipn: TC);

Removes the name.d object at rgpnobr[ipn] from the zone. If'the dirty bit
is set the user's swapout routine (hzr.procSwapOutN) is called prior to
deallocating the object.

SetCbFree(hz: THz; cbFree: TL; fEnlargeHz: TF); .

SetCbFree tries to guarantee that the zone, hz, has at least cbFree bytes
of free space. If fEnlargeHz is TRUE it will attempt to expand the zone,
if necessary. First, however, it will try to achieve its goal by choosing
old named objects and freeing them.

Handle

Figure 1 - Storage zone and associated structures

Storage zone

pBase

Master pointer

argpPool[0 .. ipPoaiMac)

Handle

Relocatable block

Relocatable block

Figure 2 - Storage Zone with two free blocks

bkFst

bkLst

bkfFst

ipPoolMac

hFstFree

rgpnab

sse

abkFst

© abkfFst

abkLst

argpPool{0 .. ipPooiMac)

Allocated block

Relocatable block header

Hash table for named abjects (argpnob)

| tybkFree

cwFree

bKfNxt

bkfPrv

IJI

L

Figure 3 - Block Formats

(a) Free block - (b} Non-relocatable block

tybkFree tybkNrel cw
T owFree ,
bk fNxt
bkfPrv
User Data
(c) Relocatable block ' : (d) Named block
tyoksStd cw tybkN oW
oh
nob.n
" nob.stn

User Data User Data

