
U'nit1lz Specificatio.n - Page l
~10...---ch u, , q 93

r. M~llo~
6pecif icat:1on .for UnitRz ... The Standard Stot:age 'Manager

Overview

UnitBz p?,"ovides a client: with routines .to manage a piece of contiguous mem.ory,.
called a heap zotie (hz).. ·rn the case of 'Lisa, :this is usually but not necessarily
an MMU segment .. UnitB.z will mall&ge an arbitra.ry number Qf such zones-.. The zone.
is: made up of a zone beader (aMJ followed by au arbittary number .Qf storage
blocks (a:bk). The zone may be arbitrar.ily large.

A storage block consists Qf a: header followed by usable memory. Blacks are
;t1ways of even: length within a specif.fed min.am and maximunt. The curren"t
minim.um ts 12 bytelh the length ()f a m.±nimum f.ree block. This could be reduced to
4 bytes if desired by re¢oding portions of Unitiz. 'the aaxim\1111 size of an
allocated block i:s currently J2K bytes. This could be increased to 65K bytes

with mi.nor enhancements or to 231 bf ma.king the appropriate quaittitie.s a full 32
bits"

There al:'e four types of storage. blocltih. They are free, non-relocatahtet
relocatable and nam.ed.

Free blocks are used by the implementation and not '1'isible to the c1ient. They
are kep:t: on a doubly ibked list through fields in tbe free ·1110.ck header.. Free
blocks maf be as large the entire. zone.

Non .. relocatable blocks behave like objects. allocated on a Paeca.l he•P with NEW
and DISPQS:X,. The user references a non-relocatable block through a pointet: to
the first data byte~ ·

Relocatable blocks, as . the name suggests;, lil.ll.Y •be moved aroun.d in mem.ory
(relocated)- when necessary. There are two prineipal advantages to using
relocatabl.e blocks rather than non•relocatable bloclts. First, relocatable
blocks can change size dynamieally. Second,. better utilization of available
memory is possible vitb a zone of reloca.table blocks than non-relocatable bloclti!J
because the storage m.anager 1 ~hen unable to find a free bll)ck l.ar.ge enough to
satisfy an allocation request will move bl.oeks around t.o create a large enough
free block. ln order to achieve this relGeatablility the user ref et:ences a
relocatable bloek tb:tough a l'landle (h) which is a pointer to the pointer tc the
first data byte. There is precisely one pointer to. the actu.al data, called t,he
111.aster pointer.. The handle points to it.. The storage manager remembers its
location ~nd U.pdates it whenever the block is :teloeated. Thi.s uniqul!! po:Lni:er. is
normally located in an array o~ po.inters at the end ol the zone header but the
user may specify, at Z«>ne irtiti&lfaation the, precisely one <>tber block of
menipry in wh:tch he wishes to alloea;te these ~aster po.inters. This atea is <• 32K
bytes long.. .A pointe'l', once allocated in this area, l'IPlSt never move; so a maste;
pointer cannot be allocated inside another ,relocatable object. The Wo;d
Processor uses the Pascal sysglobal area to store master pointers. (Figure l)

Named objects ptovid:e the user a mechanism to imple111ent an LRU caching me.chautsm
Qn the collection of all ttamed objects in the zone. The Wotd Pt()cess<>r -qses this
capability to implement a file page .cache. The font manager uses ft to implenaent

UnitHz Specification - Page 2.

a font cache. A named object is referenced by its 32-bit name (n) which the
storage manager attaches no significance to other than as a unique tag for the
object. Using named objects requires a little more forethought than
non-relocatable or relocatable blocks. The user must supply~ at the time of zone
initialization, several procedure variables which parameterize portions of the
caching function. Through these routines the storage manager communicates to
the user the intent to swap a named object out of the zone, request the user to
copy a named object into the zone and inquire the amount of storage a named object
will require. By parameterizing these three functions the storage manager may
be used to cache different kinds of objects and need know nothing about the
semantics of the objects themselves or where they exist when not cached in the
zone.

Since named objects swap into and out of the zone automatically there is no
primitive Pascal construct which directly references a named object the way a
pointer, .p., references a non-relocatable object and a handle, h, references a
relocatable object. Instead the user must translate the object name, n, into a
TEMPORARY pointer to the data of a named object using the storage manager
routine. PMapN. PMapN will find the named object and return a pointer to it. If
the object is not in the zone it will swap it into the zone with the aid of the
procedure parameters mentioned above. PMapN finds in-zone objects by pro bill$ a
hash table, rgpnob, which contains a pointer to every named object in the zone.

The storage manager maintains two state bits for each named object, fLock and
fDirty, which affect the swapping characteristics of the object. The user may
manipulate these flags through the named object interface. Setting fLock to
TRUE makes the object memory resident. Put another way, when fLock is TRUE the
named object will never be swapped out: of the zone. Bewax-e - fLock d~ not: make
the object non-relocatable!! When a named object is about to be swapped out of
the zone the storage manager checks the "dirty bitu, fDirty. tf fDirty is TRUE
then the user-supplied swapout routine is called before the, object is
deallocated. It is expected the user will take what ever action is necessary to
guarantee the long term ,integrity of the object. IF fDirty is FALSE it is
deallocated without the user being notified in any way.

Although not currently enforced by the storage manager it is a universally
observed convention that non-relocatable objects not be mixed into a zone with
relocatable and named objects. If this convention is not obeyed the user will
sometimes find that the storage manager cannot satisfy an allocation request
which would have been possible in an equivalent "pure relocatable11 zone.

Interface Abstractions

hz pointer to an area of memory managed as a storage zone

p

h

(TYPE THz = rTAhz). The thing that hz points to, ahz, is in the
interface but considered private. It is included in the interface
because of the lack of "opaque types".

pointer to a non-relocatable storage object (TYPE TP • rINTEGER).

handle to a relocatable storage object (TYPE TH"' rTP). Such a handle
is a pointer to a pointer to the data you allocated. So, if a .u.i:u:n·
allocates a record of type TFoo in a relocatable storage object s~e
would save the handle in a variable hfoo (say) of 'type rrTFoo. Access
to a field baz in a record of type !Foo is hfoorr. baz.

UnitHz Specification - Page 3

n 132 bit· name of a. named (i.e. cached) object (TYPE TN= LONGINT).

Operations

Zone Initialization

Hzinit(pFst: TP; pLim: TP; pBase: TP;· ipPoolMac: TC; logipnLim: TProc;
procCbMore: TProc; procCbOfN: TProc; procFSwaplnN: TProc;
procSwapOutN: TProc)

Initializes the interval of memory in [pFst •• pLim) to be a storage zone
and returns a pointer to·1t as a result. pBase is a pointer to the
beginning of the 32K byte area in which the user may want to allocate
master pointers. If pBase = pNil then the zone has no alternative master
pointer area; all relocatable objects must me allocated with master
pointers in the zone's mast.er pointer pool with RAllocate .. ipPoolMac is
the number of initial master pointers for relocatable objects allocated
in the internal area of 111,aster pointers. This number is automatically
increased when needed. The initial hash table used for named objects has

2loglpnLim entries. procCbMore is the procedure called when the st;.orage
manager fails to satisfy an allocation request because of insufficient
memory. This procedure ha.s the interface of the generic procedure:

FUNCTION CbMore(hz: THz; cbNeed: TC) : TC;

The storage manager must be able to add at least cbNeed bytes of memory
to the end. of the zone, hz, in order to successfully satisfy the
allocation re.quest. The return value is the amount the client has
allocated immediately after the end of the zone to be added to the
zone. If cbNeed > return parameter then the storage manager returns
without success. A default routine will be provided if procNil is
passed as the parameter but experience has shown that clients almost
always need there own to handle boundary conditions in application
specific ways.

procCbOfN, procFSwapinN and proeSwapOutN are procedure parameters which
must be supplied if named obj.ects are to be used in this z;one. procCbOfN
is a procedure variable which, given a named object n, returns the size
(in bytes) of that object. The generic interface. is:

FUNCTION CbOfN(n: TN) : TC;

The procedure variable procFSwapinN is called l<.fhenever the storage
manager fails to find a named object in the cache (see PMapN). The user is.
expected to get the object into the zone at the location specified. The
generic interface is:

FUNCTION FSwaplnN(n: TN; pDst: TP) : TF;

n is the name of the object; pDst is the destination to 11 swap" the
object to; return value indicates success (TRUE) ~r failure (FALSE) ·

The procedure variable procSwapOutN is called immediately be.fore the

Unit:Hz Specification - Page 4

storage manager tosses a named object. out of the ~one (i.e .• reclaims its
memory). It is called only if the dirty bit, fDirty, is set in the nmaecl
object header. The user is expected to get the obj:ect into the z.one at the
location specif fed. The generic interface ls:

PROctDUR.E SwapOutN(n: TN; pSrc: TP);

n is the name of the obJec.t; pS.rc is the location of the cached object

Implementation Note:

The pDst and pSrc parameters have proved awkward for the font manager
since in the implementation of FSwapinN and .Swap(>utN: othet allocation
requests ar.e made which can relocate the new named object and hence

· iavalidate the pointers.. In the fu:ture. you might want to eliminate
these parameters and fotce the routine.s t<> •a.p from name to po~:tnter
with PMapN .01:' export the hashing function IpnMapN (see below).

Qperations on Non-relo.catable obj ect.s

PAllocate(hz: TBz; cb: TC) : ~;

.Allocates a non-relocatable storage object in zo~, hz.. Tne ac:tual
allocated data area in the object is at least cb bytes long and may he
slightly larger. Returns a potnte't tQ the ftrs.t data byte in the object ..
This pointer is guaranteed to be on_ an e'lfen byte so that a:c:ce$.s t.o 16 bit·
fields in records will work correctly,. Returns pNil if unable to satisfy
the alloc;a;t.ton request • .
FreeP(hz: TRz; p: TP);

Deallocates the non-relocatable storage object. pointed at l>Y p in :zone
hz. The pointer it.self .is npt enough info to find the containing zone
which ts why the user m.ust pass it in as a parameter.

Operations on Relocatable Objects

B:Allocate{hz: TI1z; cb: TC) : TH;

Allocates a relocatable storage object in zone, hz. The actual al1oeated
da~a .arl!a in the object is at least cb bytes long and may be slightly
larger. Recur11s a handle to the fiJ;"st dat~ byte in the object. This
pointer is guaranteed to be on an even byte so that access toJ6 bit fields.
in records will work correctly. Returns hNil H unable to sat:i.sfy the
allocation request.

FreeB(hz: THz; h: TB);

Deallocates the non-relocatable storage object refe.rred to by h in zone~
hz.

CbangeSizeH(hz: THz; h: TH; cbNew: TC); .
One of the unique .advantages of a telocatable .object 1$ that the user may
change its size after it has been cl:'eat.ed.. This is the routine to
accomnlish it. The relocatable object. h. in zone, hz, is alt,e:i::ad to hava

OnitRz Specification - Page .S

CbDataOfH(hz: TBz; h:: TH) : TC;

lteturns the si:re, in bytes, of the data area of object.,, h. :f.n zone hz. Npte
that CbDataOfH(hz., BAllocate(hz, cb)) >• cb. That is, the actual. size :of
the data uea may be greater t~ 11hat you asked for.

HzFrQlldl{h: TH) : raZ;
If a relocable obje.ct is a.llocated ~:tth HAllocate then it is poas.ible to
alge>ritmically derive the containing zone. When this .is of interest to
the user he may find it by calH.ng tllis function.

Operations on Named Objects

PMapN(hz: THz; n: TN) : TP;

Locates the object named by n in the zone, hz, swapping it into the zone if
necessary. Reeurns a pointer to t1:'1,e first data byte of th,t! o})ject. TRIS
POINTER IS ONLY VALID UNTIL THE NEXT CALL ON TB.! STQlA.GE MANAGER! I
Returns pNU if the named object cannot be found or. swapped in W'ith
FSwapinN ..

:PCreateNob(hz~: THz; n: TN; cbData: TC) : TP;

Creates a new named object in the zone,. hz. Used ins.tead of. PMapNwhen the
named object does not yet exist outside the cache. For instance, when the
Word Processor creates a new file it allocates the pages of the file in the
storage zone with PCreateNob.

SetFD:irty(hz: THz; n: TN; fDirty: TF);

Sets the s.tateof the "dirty bit" of the namedobjeet~ n, totheparam.eter,
fDirty.

HLockN(hz:. THz; n: TN; fNeedH.: TP') : TH;

Maltas the na.J11ed object memory resident; i.e~ s.ets tLock to TlUE. fNeedH
and the return. parameter are unimplemented hooks .. The intent is that when
locking·a .naml!:d object the client ma.y also request a handle be allocated
t<> efficiently access the locked obJect.

VnlockN(hz: THz; n: TN) ;

Makes the object, n. swappable; i.e. sets f'Lock to FA.LS~.

Miscellaneous Zone Operations

CbOfHz(hz: TH1t) : TL;

R.eturns the total number of bytes of memory in the zone, hz.

FCheckHzOk(hz: THz; VAl cBkStd: TC) : TF;

A check routine to test the inrer:nal consistency of a :zone, hz. Returns
TRUE if the zone appears to be OK, FALSE otherwise. The return parameter

UnitRz Specification - Page 6

I ,
cBkStd is set to the number of relocatable blocks in the zone.

PxHz(hz:. THz);

A print routine to dump a description of the storage zone to the Console.

EnlargeHz(hz: THz; cbMore: TL);

A cl:l.ent will sometimes want to give more space to a zone. This space must
immediately follow the zone since zones themselves are not reloca.table.
EnlargeHz will add to the zone cbMore bytes of memory immediately
following the zone. This routine simply reconfigures the zone to include
the extra space.

CbShrinkHz(hz: THz; cbLess: TL) : TL;

It MAY be possible for a client to reclaim some of the memory managed by
the storage manager for some other use. Using CbShtink:Rz the user
requests that the last cbLess bytes of memory in the zone, hz, be removed
from the zone. The function result is the number of bytes the s.t.orage
manager successfully stripped from the zone.

AllocBk(hz: THz; hDst: TH; cb: TC; tybk: rtybk);

AllocBk is the lower level routine to which all allo,cation requests
(PAllocate, HAllocate, PCreateNob, etc.) are eventually reduced. It is
included for the knowledgable user who wishes, for instance, to allocate
a relocatable block with the handle allocated in the interval [pBase ••
pBase + 32K). A block of size cb bytes and type tybk is allocated and the
pointer to it in hDstr. tybk is one of tybkNrel (non-;-elocatable.),
tybkStd·(relocatble) or tybkN (named).

FreeBk(hz: THz; h: TH; tybk: TTybk); .

Like All_ocBk, a lower level routine for FreeP, FreeH and FreeN.. The
object of type, tybk, pointed at by hr is deallocated.

Ounsels (i.e. accumulated useless trash)

PLstFree (hz: THz) : TP;

Rel easeBkNrel (hz: THz; pFstR.elease: TP) ;

These routines were. added to support Pascal heaps with MARK and RELEASE.
The Pascal system has never adopted this memoryma:nager.

UnitHz Specification - Page 1

Note: The. reader should not venture further without a listiug of UuitRz

Private Abstractions

ahz header of a storage I.one. This record contaitis al.l of the struc.tural
infonna:tion for the storage zone. The record is considered private
even though it ls included in the interface. It is; included in the
interface because of the lack C)f "opaque types" •.
bkFst pointer to .the fj,J;st storage block in the zone (in memory

address order).

bkLst pointer tQ the last storage block in the . .zone (in memory
address order). This blo:ck is always a 11 dUD1my" fr" block at
the end of the :one 1iiltich :ts 11ever a,l.located. Its sia:e 1$
i:l:>MinFree. Its e.xistence simplif ieS:,. ever so slightly, the
managemeJ1t of the free list.

b.kfFst pointer to the free bloclt whiclt is at th.e bead of the doubl:t
linked free chain.

pBase pointer to the ~er •aster poil\ter allocat::ton u;ea (see
discusf:lion of relocatable obje:Ct$). ·

atgpPool The array of internal .mast.er pointers used by BAllocate.
This is at the end of the header and of variable le'.ftgth.

ipPoolMac Size of s:tgpPool .. argpPool has vaU.d ell.tries allc:u:ated from:
· argpPool [0 J to argpPool [ipPoolMa¢-1 J.

hFstFru All, unallocated master pointers !n arJPPool are, linked
together on a free list. This is the head of that list.

rgpnob ·Hash table fot locating naml!d objects in the zone. Pointer
to an a.rray of pointers to. named objects, (nob). This array
is al.located as a relocatable object in this zone~

mskipnLst Size of rgpnobr. rgpnob has valid entries allocated in
[rgpnobr[Ol •• rgpnobr[m.skipnLstJI ..

ipnCur, ubt:Cur

Variables used to implement LRU caching.

procCbMore, procCbOfN, procFSwapinN • procSwapOutN

Procedure variables; see Hzinit for discussion.

abk header of a storage block-. The format of the biock is variant.
dependent on the 2..,bit type fie1d, tybk, found at the beginning of the
block. · ·

If tybk"" tybkFree then the header has three four...;byte fields.: cwFree,
the size of the block in words; bkfNxt, a pointer t.o t.he next free. block
on t.he linked list .of free blocks; and bkfPrv, .a pointer to the
previous free block on the list. Note that.cwFree can be accessed as a
long integer even though its top t:wo bits are t.he t:ybk, field because
tybkFree ... o.

UnitRz Specification - Page 8

If tybk <> tybk.Free then the first word of a block is always
interpreted as a 2-bit. type field, tybk~ followed by a 14-bit size
field (in words)• cw. If tybk • tybkNrel (non-relocatable object)
these two fields represent the entire header ,and •the data portion
begins at byte 2.

If tybk '"' tybkStd (relocatable object) then th!! second word of the
header is a 16-bit reference to the single pointer to the block (oh).
If abk. oh)• 0 then the pointer is found by adding oh to the pointer to
the zone, hz (i.e. h := hz +oh). If oh< 0 then the pointer is found by
subtracting oh from pBase (i.e. h := hzr.pBase - oh). Client data
begins at byte 4. ~

If tybk"" tybkN (named object) then the second word of the header is a
6-byte record describing the object. The first field is the n8llle of
the object. n. Following the name is a status word, stn, which
contains the flags, £Dirty and fLock as well as an 8-bit LRU time, ubt.
Client data begins at byte 6.

Private Operations

MakeBkf(hz: TRz; bk.: ?Bk; cb: TL);

Changes the block~ bk. into a free block of size cb. Chains the block onto
the head of the doubly-linked free list.

Delete:Skf (hz: Ta:z; bkf t TBk);

Removes a free block, bkf, from the free list.

Bkl"'indCb(hz: TRz; cb: TL) : TBk;

Searches the· free list for a block whose size is at least cb bytes.
Returns a pointer to it as a result or bkNil if it fails.

BkfLow(hz: THz; bk.Min: TBk) : TBk;

Returns a pointer to the first free block (in memory address order) which
is greater or equal to the bkMin parameter. Used, for instance by the
compactor to find where to begin compaction. Implemented by chasing the
links of the free list, NOT by scanning in address order from bk.Min.

BkCom.pactCb(hz: THz; ch: TL; bkLst e TBk) ~· TBk;

This procedure is the main compaction routine. It is an incremental
compactor in the sense that it has very little overhead (a single call on
BkfLow dominates the overhead) and it will terminate any time either of
two parameterized conditions is met: when it creates a contiguous free
block, of cb bytes or when it reaches bkLst. The procedure simply iterates
the blocks in address order from Bk.fLow(hz~ •••) rll!moving free blocks and
pushing allocated blocks towards the front. R,eferences to the allocated
data are updated on the fly and a single free block is created at the
completion of the iteration. A pointer to this free block is returned as
the result.

CbMakeBkfBefore(hz: THz; bkAfter: TBk; cbNeed: TL) : TL;

BkCom:pactCb always moves blocks toward the front of the zone.

UnitHz Specification - P.age 9

Occasionally it is neces•sary to push blocks towards tbe end of the block.
GrowHinPlace and BMakeMoreMasters are examples.. This routine
accomplishes that "reversei' compaction. It tries to areate a free block
of at· least cbNeed bytes at locati<:>n, ~kAfter, pu.sld.pg ~kAftel:' and
subsequent blocks towards the end of the zone to inak.e t'o01il. The actual
size is returned as the result. If the r~sult is 0 nothing was moved.

HMakeMoreMaster-s (hz: THz) : TH;

If there are not free master poit:t.ters in aJ:gpPool for B4llocate t..o use it
calls this routine to create some more •. It "reversen compaets all blocks
iti the zott,e tp make. some room at the_ and of the master pointer table. tt
then increments hzr. ipPoolMac and links the po.inters on the list headed
by hzr. h'FstFree. Returns bNil if it fails to make any more masters.

GrowRlnPlace(hz: Tllz;. ch: TL; bkl.st: TBk) : l'Bk;

Growlllll.Place is a subroutine .for the use of ChangeSizeH. ChangeSizelt
employs a mixed· strategy to achieve its ends. lf the block is t.o be ·shrunk
by at least cbMinFree bytes then it si111ply creates a free block in the
reclaimed S·pa~e .. If it is to grow and there is room in the· zone to create a
new block of the appropriate size and• copy the content:s then it tries this
ne-xt. lf all ~se fails ChangeSizeH calls GrowHlnPlace to grow the object
without moving it. This involves "reverse" compacting following 'blocks
to make room for size of the new block. ·

IpnMapN(hz: Tllz; n: 'rN) : TC;

IpnMapN is t~e assembly language hashing function used in probing the
named obj·ec1; hash table, rgpnob. Secondary probes are linear to allow for
ef£icient deletio~: of entries. . There is some ind,icat:,iott that. the
function does not "scramble" the bits of n very well which may be
resulting in an unnecessarily high average number of pro~s per call.
Returns -an index illtc:> rgl)tfob which contains a pointer to the object named
by n. 'If the object :J.s not found then rgpnobr [IpnMapN(•••) J =NIL.

IpnChoose (hz: THz) : TC;

IpnChoose implements the named object replacement algorithm. !t
iterates over a fixed number of named objects (not neces,sarily all of
them) looking for' the oldest as measured by its ubt field. Retu-rns an
index t.o this ob-ject.

Freeipn(hz: THz; i pn: TC);

Removes the named object at rgpnobr[ipnJ from the zone. If·the dirty bit
is set the user's swapout rout:ine (hzr.procSwapOutN) is called prior to
deallocating the object. · . .

-SetCbFree(hz: TBz; cbFree: TL; fEnlargeHz: TF);

SetCbr'ree tries to guarantee that the·zone,, hz, has at least cbFree bytes
of free space.. If fEnla:rgeaz is TRUE it will atteinpt t~ expand the zo'lte,
if necessary. First; however, it will try to achieve its goal by choosing
old named objects and freeing them.. ·

Storage zone

pease
l i. i. ·~- ..

-
....

Relacatable block.

Relocatable blCICk

abkFst

F.lgure 2 - Storage Zone with two free bloeks

bkLSt
bkfFst

______________ _,.

r-------------·--------·--i
_, ______ ipPoolMac

--··---·-,......,...----t
hFstFree

------·"---·--··-·~,,,_ ___ . __ ~--...--
-·-· __ , _____ !~~ __ ,_, ___ _,_,.---··-------

---------··-,--·--··-·····-·-·---·-··--·--· .. -·-···-···-
argpPool[D .. lpPoolMacJ

Allocated block

Hash table for named Objects (argpnab)

tyt>kFree
abkfFSt ·······-··--··-·

!--·-· --. __ , ____ ,,.., -~·-·- ... - - - ·-·--··· ... -·-··

bkfNxt

bkt'Prv -
~t-yb-k-Fr_ee ____________________ ~---------1+

abklst ·--..................... . cwFree
... -·--···--·--··--··----~"···-·~---·~-~·-· ----· .. ----------"'~-·---··~

bkfNxt

Figure 3 - Black Formats

(a) Free black (D) Non-relocatable DlOOk

cwFree
tybkNrel . CW _ __.........._ ____ ______ __

bkfNxt
........ __ , __ . --.......... __ _

Us.er·oata

(c) Relocata01e block (d) Named block

t--~~~~~_" ~--------·-- ·-tytlk~---·--··--·---~"--· ·-----·
on !'----··---------·· ___ ,. __ notlJl

f--•--w----•~irn••-~ •• noi•n

User Data User Data

