{ FilerComm.text, 3-Jan-83, F.Ludolph } { Copyright 1983, Apple Computer Inc. J
ool
e ——

UNIT FilerComm;

INTRINSIC;

INTERFACE

USES {3U obj:8ysCall
{$U obj:PSysCall
{$U obj:UnitStd UnitStd,
{3U obJj:UnitHz UnitHz,

} 8BysCall,
3
)
3
{3U obj:Storage } Storage,
)
3
3
3

PSysCall,

{$U obj:FontMgr FontMgr,

{$U obj:QuickDraw QuickDraw,
{$U obj:WM.Events Events,
{3l obj:WM.folders } Folders;
{$SETC +cDebug = +DbgOK 3
{$SETC fcSymbols = $SymOKk ?

{ This unit contains the record definition used for Filer-Application
communications. It is used in both receiving events from and sending
events to the Filer.

An application is started by the Filer via the 0S5 call ‘Make_Process’.
The application should execute its initialization code and then '
call GetEvent. The initilialization code should first call “Openbm’

(to set up the Filer-Application communication channel) and then declare
& Sys_Terminate exception handler. 14 the exception handler cannot be
declared or if initilization cannot be completed, the application should
‘TellFiter’ that “fclnitFailed” and the reason (see the section on
unsolicited messages in the table below). See the Bouncing Balls
“Initialize’ procedure for an example.

The Filer sends a FilerEvent to an application. The GetAddParams

procedure is used to obtain the additional parameters associated with

this event. Two parameters are passed: a filerOp that defines the

operation to be performed, and an optional pathname; fDocName, which is

used to open, create, and destroy the diskfiles that make up the document.
An application uses fDocName as & prefix for diskfile pathnames. It consists
of a disk volume name and the initial characters of a diskfile name.

There are currently 9 filerOps, those that open a document, those that
close or copy an open document, one that tells an application to close
a diskfile, and one that tells the process to terminate.
Those that open:
fcNone: No doc to open. The user pulled a tool rather than a doc.
fcResume: Open the doc, or create a new doc if no diskfiles exist, and
display contents in window. 1+ the doc was suspended, restore
its state.
Thoze that close:

tcClose: Update and close doc overwriting the old version.

Page 1



fcCopy: Update doc into new diskfiles and ﬁ]ose. The source doc is
unchanged and remains open,

$ePut: Update and close doc to new location (fDocName). Destroy the
old version,

$cShred: Close the doc as in fcSuspend, i+ possible, or just close the
diskfiles, i¥ possible. Filer will delete them later.

4cSuspend: Close doc, Keep edits seperate, save document state.

$cD#Close: Close the diskfile {not document) using the refnum providéd
else app will be terminated. (User is removing a diskette.)

Terminate:

$cTerminates Terminate the process and suspend any open docs {actually
there shouldn’t be any open when this is received),

An fcResume/fcNone is sent when:

1) the user pulle a document onto the deskKtop {(fcResume) or
2) when the user pulls a tool, e.g. the clock or calculator (fcNonel.

The window to be used to dispiy the document is provided by the Filer

via eventRecord.who in the open event. The application should never dispose
of this window, i.e. call WM.DisposeFolder. NOTE! A reply is no longer
expected. The Filer assumes that the document was opened without error..

1¥ errors do occur, the application should send an unsolicited docClose to the
Filer (see below). :

A close type of filerOp is sent if a user puts away a document or its

diskette is unmounted. If a document is being put away any edits to the
document should be made permanent; however, if the diskette is being unmounted,
the document’s current state should be saved and the edits maintained seperately.

For 4irst release applications may put away edits or save state as
they chose. If time permits put away and save state should be
implemented as described above,

A terminate is sent when the application is to terminate, usually because
the diskette that holds the application is being unmounted., After calling
“ImDying”, if the application still has some open documents, they should be
suspended by the application before it terminates.

A NOTE ON “ImDying”: This message should always be sent to the Filer as
“the first thing done by the application’s terminate exception handler,
whether in response to a Filer event or unsolicited. If an application
terminates before maKing this call, it is likely the case that all other
processes, including the Filer, are suspended and so the system will hang.

When an application has completed processing the Filer initiated event,

it sends a response back to the Filer via the “TellFiler’ procedure.

{Eome events do not regquire a response.) Appropriate responses for each event
are listed below. Note that geveral dperations can be aborted by the user.

In general, the appiication is nespons}b1e for informing the user of any

difficulties via the alert box. Be sure that the window is the active window .
before using the alert box. i

Page 2



The ‘TelliFiler’ pfocedure is also used to send pre-defined replies and unsolicited
messages to the Filer. The only unsolicited messages currently defined are
fcDocClosd and ¥clnitFailed, an abnorma! termination during program initialization,

an application is also responsible for maintaining several menu items and
informing the Filer via DoFilingCmd when the user invokes them. The menu
layout is defined in Tesler’s ‘Menu Terminology” memo of May 30, 198Z. The
items of interest are all in the first menu: '

Menu item DoFilinglmd parameter
Close Everything on Desk cmdCloseAll
Close "window title”’ ) cmdClose
Save & Put Back ¢ sge below )

When the user invokes “Save and Put Back’ the application should attempt fo
close the document as if it had received an fcClose Filer event. 14 the

close is sucessful, ‘TellFiler’ docClosd with reason of putBack. If the close
was not successful, tell ‘the user why via alerts - DON’T TELL THE FILER.

The CopyDoc procedure is provided for application use. It copies all document
diskfiles from the source prefix to the destination prefix. The number of an
unbound LDSN must also be provided. The CopyDoc routine temporarily opens a large,
memory-resident data segment for data transfer. The data segment is unbound and
destroyed before CopyDoc returns. '

As an alternative, the application can supply an bound data segment by negating
the LDSN parameter. <{NOTE: until additional 0/S interfaces are available at 5.2,
the application must also set useDsAdrs to the beginning address of the bound
data segment and useDsMemSize to the data seg’s length.)

3

CONST
{ Errors -~ range is 4025 tﬁru 4049 3
fceNoErrors = 0; <Al 0K 4
fcedborted = 4033; { User type “apple .’ 3
fceBadEventType =  4025; ( Event type must be docOpen/Close/Copy/Terminate)
fceBadReason = 4026; { FReason does not match FReply 3
fceCantRead = 40273 { Cannot read from the source document ¥
fceCantlrite = 4028; { Cannot write to the destination document 3
feelnlse = 4029; { File opened privately or being written to 3
fceNoMemory = 40303 { Insufficient space for 10 buffer ' 3
fceOut0fDiskSpace = 40313y { Insufficient space on distination volume 3
fceBadlLDSN = 40323 { 08 error attempting to use the LDSH provided}
{ filing menu commands ~ for filing menu -items in app menus 3
cmdClose = 1001;
cmdClosAll = 1002;

TYPE

" Paoe 3



FilingCmd = LONGINT;

FilerOp = (fcClose, { Update and close doc using same diskfile names 32
fcCopy, { Update doc into new diskfiles, source unchanged }

fcDfClose, { Close the diskFile for the refnum provided 3

fcNone, { No doc to open, i.e. user executed program )

. fcPut, { Update and close doc to new location (fDocName) 3}

fcResume, { Open doc and display coptent in window }

fcShred, { Close the doc and delete the diskfiles ¥

fcSuspend, { Close doc, Keep edits seperate, save state 2

{ Terminate process,; suspend any open docs 3

fcTerminate);

FReply =  (dfClosed, { Reply to fcDfClose 3
dfNotClosed, { Reply,to fcDfClose 3
docClosd, { Reply to fcClose, fcSuspend, #cShred b
docNotClosed, { Reply to fcClose, fcSuspend, fcShred b
docXfered, { Reply to fcCopy, fcPut 3
docNotXfered, { Reply to fcCopy, fcPut 3
InitFailed>y { Unsolicited, app could not initialize 3
{ fcTerminate reply is “ImDying’ call 3
{ fcNone does not require a reply b
FReason = <(all0kK, - { FilerOp completed without error or problem 3
badData, { Unable to display the document ol
cantRead, { Unable to read in the document ' 3
cantlrite, { Unable to write out document, disk problems}
dirtyDoc, { The document was edited an may be inconsistent}
internalError,{ Unexpected program error at any time ¥
newerDoc, { Doc created by newer version of app H
noDiskSpace, { Insufficient disk space to compliete FilerOp)
noMemory , { Insufficient memory for data segments, etc.?
noMoreDocs, { App can’t handle any more documents 3
okButNoMore, { FilerOp completed, but no more docs please }
docPutBack, . { App processed menu ‘Put Back” 3
aUser@ibort)y; { User aborted filerOp 3
FilerExt = RECORD { Returned by ‘GetAddParms’ I
theFirOp: FilerOp; { The requested operation 3}
thePrefix: Pathnamej { Diskfile name prefix 3
theDF: INTEGER; { Diskfile refnum{fcDfClose) I
END;
FCopyOp = (fcDocCopy, { Set diskfile DTC to now, DTM to O 3
fcDacMove, { Duplicate DTC, DTM values ' 3

chocBackup);{ Duplicate DTC, DTM. Set DTB on source diskfile}

{REXREBRRREEE XX ERE LR REZ R R E S AR EF XX EFFRRRER XA FRRR SRR R FEXEREERRRFELRRRRRERERET

(% . 4 #3

{* The following TYPEs are exported only for use by other Filer UNITs. *}

{# They can and should be ignored by all other users. ¥}

{* _ *3
hFiterExt = “pFilerExt; { EventRecord.userData as a handle’
pFilerExt = *FilerExt;

{% ' *)

Page 4



ReplyPtr = "Reply;
Reply = RECORD { Redefines EventRecord.userData 3}
theReply: FReply; -
theReason: FReason;
END; :
{% %3
{**************i****4**********4***§**********§***§§*§********************41*}

PROCEDURE CopyDoc (VAR error: INTEGER; fromPrefix, toPrefix: Pathname; useldsn: INTEGER-
theOp: FCopyOpi UAR docSize: LONGINTY;

{ .This procedure copies all diskfiles in the “fromPrefix” document to the
“toPrefix’ document, The document is tranferred via the dataseg bound to uselDSN,
1§ uselDSN is positive, this procdure will temporarily bind its own data seg
4or the duration of the operation. A negative useLDSN indicates that the caller
has already bound a dataseg to useldsn (it should be of copyDsSize if possible).
TheOp determines how a diskfile’s DTM, DTC, and DTB fields are to be set.
Applications should always pass ‘fcDocCopy’. DocSize returns the number of blockKs,
including file system overhead, occupied by the document’s diskfiles.

Errorgr fceNoErrors, fceébor{ed, fceCantRead, fceCantWrite, fcefutOfDiskSpace,
fceNoMemory 3

PROCEDURE DoFilingCmd CwhichCmd: FilingCmd);

{ This procedure i's used by an application when a filing menu item is selected. 3

PROCEDURE GetAddParms (VAR error: INTEGERy theEvent: EventRecord;

VAR theFilerExt: FilerExt);

{ This procedure is used to access the additional paramters sent with Filer-
related events: docOpen, docClose, docCopy, and docTerminate. “userData’
is the EventRecord.userData field from the received event. 1¥ the event
type ie not one of those four, the badEventType error is returned.
errors: 4ceNoErrors, fceBadEventType 3}

PROCEDURE TelliFilter (VAR error: INTEGERj; what: FReplyj why: FReason;

» myFolder: WindowPtir);

{ This procedure is used by an application to send a message to the Filer.
Usually is it used to reply to an event sent by the Filer {a reply is nearly
always required), but it is also used to send an unsolicited message, such
as abnormal termination, to the Filer.

‘MyFolder” is the primary window used to display the document, i.e. the
one passed in on the docOpen event. It can be NIL if there isn’t an

open document.

‘what’ and ‘why’ constitute the message that your are sending the Filer:

Page 5



IN RESPONSE TO
fcResume, foNone

fcliose

'chhred

feSuspend

fcCopy, fcPut

fcTerminate

fcDfClose

VALID “WHAT’S

docClosd

daocNotClosed

docClosd
docClosd

docNotiicsad

docXfered

docNotXfered

‘response” is a

dClosed
dfNotClosed

VALID “WHY’S

no response required if doc opened oK.

all0K

cantWrite:
cantRead:
dirtyDoc:
noDisKSpace:
noMemory:
internalError:
alserAborts

aJ 10K
all0K

cantWrite:
cantRead:
noDiskSpace:
noMemory :
internalError:
alUserAbort:

all0K

cantrites
cantRead:
dirtyDoc:
noDiskSpace:
internalError:
alserfbort:

disk 1/0 problems

unable %o read doc diskfiles
edited doc may be inconsistent
can’t write new diskfiles
machine is too small
application error, last resort
user abort

disk 1/0 problems

unable to read doc diskfiles
can’t write new diskfiles
machine is too small ’
application error, last resort
user abort

disk 1/0 problems

unable to read doc diskfiles
edited doc may be inconsistent
can’t write out new doc
application error, last resort
user abort

call to ‘ImDying”

allOK
internalError:

for any reason

fot e e

UNSOLICITED MSGS

can’t display doc

VALID “WHAT’S

docClosd

user abort fcResume docClosed

doc¢ “PutBack’ -

prog initizat’n

docClosd

initFailed

VALID “WHY’S

badDatas
newerDoc
noDiskSpace:
noMemory:
noMoreDocs:
internalError:

allserAbort:
docPutBack:

noDiskSpace:
noMemory :

Page 6

doc damaged during operation »
doc version newer than app ver.
can‘t open data segs, etc.
can’t open data segs, etc.
can‘t open another doc. {(fcNone)
application error, last resort.

user pushed “command .”
doc closed as user requested.

can’t open data segs, etc.
can’t open data segs, etc.



internalError: application error, last resort.
alserAbort: user abort
DO NOT NEED TO CALL “ImDying’ after this,

= =

errors: fceNoErrors, fceBadEventType, fceBadReason 2

CHERRERERERERRXEXERRXRRERXRRLEEFERERFRXRRREERREERFRERFRXRBERXERERERFXRRXREFRERR)

{* ‘ %3
{% The following procedures are for use by the Filer only. *}
{% #*3

{RERX XXX RFEREREERRRRRFRRRRAREEEERXERXHRRRRRRERBRBRRRHRERREXR AR RERRERFRRRRERR)

PROCEDURE CopyDiskfile (VAR err: INTEBER; source, destination: Pathname;
bufradrs, bufrSize: LONGINT; theOp: FCopyOp;
VAR osErr: INTEGER);

IMPLEMENTATION

{$1FC FcS{pboIs b
{$D+ 3}

{$ELSEC >

{$D~ 3

{$ENDC 2

{$1FC FcDebug
{$R+ 3

{$ELSEC 2

{$R- )

{$ENDC 3

{$1 1:FCimpl.text)
END.
{
Change Log:
5-0ct-82 A2 Release
20-0ct~-B2 Added FReason “docPutBack’, updated doc for streamlined protocol
28-0ct-82 Deleted FReply ‘diskFreed’, “diskNotFreed’, FilerOp “freeDisk’,
and FilerExt ‘bytesReqgd’.
Added error fceAborted and CopyDoc/CopyDiskFile FCopy param.
{-Noy-82 A3 Release
2-Nov~-82 A3 ReRelease
S-Nov-82 Added “aUserAbort’ reason to several replies.

9-Nov~82 A3 ReRelease
3~-Jan~83 Removed ‘cmdPutBack’, ‘docOpened’,; ‘docNotOpened’ - support for old protocols.

3-Jan-83 A4 pre-release
5-Jan-83 Added “newerDoc’ to fReason

Page 7



