
'- Lisa r, BASIC-Plus 2.0 Language

BEGIN SORT LOOP

Need Not Agree FOR X1% = 1% TO X%(11%)
V3% = X%(36% + X1%)

'----........ - .. X2$ = SPACE$(V3%)
W7" = 110" - 365lii + X"(ffi)
\ V2" = FNI/!I(W7!I, 1804(11)
\ Vi" = INSTR(l", X$, '
\ V2" = FNUll(611. 18040!1, W7!I,
\ V2" = FNUll(7", 18040", W7!I,

IF (VO~385lii)
CA LC ADDRESS Of I<Il
GET IIfl BLDCK
CNECK FOR AVAI LABLE
ERROR IF NONE 1540
ERROR IF OVER LIMIT

\ W9% = V3% + 4%
\ V4% = 509% I W9%
\ W7% = 46% + (X1%-1%) • 7%
\U7$ = SPACE$ (511%-V4%*W9%)
\ FIELD 81%, W9% + (W4%-1%) AS X4$, W9% AS U$

FOR W4% = 1% TO V4% .

- FOR W4% = 7% TO 1% STEP -1%
\ W1% = X% (W7% + W4%)

\ IF W1% THEN LSET X2$ =
MID tV$, V2%(W1%), X%(129% + (W1%

I STEP THROUGH FIELD NUMBERS .
! IF NOT ZERO THEN ADD APPROPRIATE

BASIC-Plus for the Usa
Release 2.0 Notes

What's In the BASlC-PlUS Release Notes?

These notes deSCribe situations that were brOt.qlt to our attention after it
was too late to dOCt.ment them In tile BASIC-PIUS rncruals.
Insert tt.ese notes In tne baCI< of their respective rncnJals, so that you can
refer to tnem as necessary. InCI~ In tJleSe notes are revised versions Of
the WOIkSl1qJ user's GuIde Appendix B end the B4SlC-PJus user's GuIde
Appendix E to repl~ the copies bOUld In your mcn.aals; take a moment now
to make tile St.btltutlons.
If you haVe a question or a problem that you can't find the a'lSwer to, eltner
In Ute mcn.tals or In theSe notes, you shoUld call the Lisa TelephOne ~rt
line, (800) 553-4000.

J/nI8ry 1984

WOrkstlJp
Chapter 1

WOrkstlOp
Olapter 1

WOrkstlJp
Chapter 1

TO Install tne Pasoal·ICllgU8ge tI'ld WOrkShOp software from
tne set Of micro diskettes packaged In your ICllgU8ge rnc:nJal
binder, refer to InstalllrYJ the Office system SOftware In
~Ix G, set Up Proceda'es,ln the LIsa 2 owner's QlJde If
you plcrl to use the Office System, you rrust first Install Ule
Office system 2.0 mIcro diskettes. You do not need to Install
tile Office System SOftware If you Intend to do only ICllgU8ge
deVelopment work. Before you Insert the micro diskettes, make
sure you CCfl see the red tabS from the front of the micro
diskettes. Start lnStalllng with steps 1, 2, crld 3 on page G31.
Then follow tills ~
4> Tum the Usa on by pressing the on-off bUtton once. After

a feW secondS, you'l hear a 01101<.; Inmed1ately press the
spaa!Dar.

5) The Usa goes tflrOUtIl a self-test. When a meru Of symbOls
appears In tne ~r left-hcl'ld comer of tne screen, press
8'ld hOld doWn the ~le key While you type a 2 -- on the
main keyboard, not on the runerlo keypad.

6> When the maln meR.I snown (J'I page G32 8R)ears, cliCk the
mouse once on the Install Dox.

7> When the alert box with the message "TIle Usa Is Installlng
s~ SOftware version 2.11' appears, cllCk Don't Erase.
When the first mIcro diskette Is Installed, It Will eject.
COI'ltll"lJ9 Installation by fOllowing the owner's Qdde
Instrootlons frmI step 6, 1nse~ the remaining l~
diSkettes In Order.

After SOOC8SSfUlly addlrYJ Pascal to a ProFile conta1n1ng the
Office System, If the system Is merely allowed to retJoOt, the
default Of the Environments windOW will cause the WOrkShOp
Shell to start l4l. To cause the Initialization to pause at the
Environments window In order to exsmlne or Cha'lge the default,
press tile spCEe IJar after Ule macnlne self-test, wnUe the
hOUrglass leon Is stowing.

If you nave).1st prlnted crlytnlng on a daIsy Wheel printer frcm
the Office System, tI'ld you return to the WOrkShop uslrYJ the
EnvIronments windOW, printing to logical deVIce "-printer" will
be gamled tIltil the printer Is switched off and then on again.

WOrkShOp
Chapter 1

WOrkShOp
Chapter 1

WOrkshOp
Chapter 2

WOrkst'q)
Chapter 2

WOrksrop
Chapter 2

WOrksrop
Chapter 2

WOrkShOp
Chapter 3

WOrkshOp
Chapter 3

.JtnJsr)' 1984

l1le print COII.ISOS Of the Editor always use the logical deVice
--printer- set In the System Ma'lager. Choosing DaIsy Wheel
Printer or Dot Matrix Printer from the Print merlJ dOeS not
Cha'lge the system's configuration, bUt only adjusts the Editor to
the lnteMed deVice.

MY progrcm Intended to IU'l as a baCkQ1'CUld process
~eBacI<grolflCProcess) roost InclUde frequent ens jOOlclous
calls to the Operating System procewre Yield_CPU. Hence,
system utlllUes SI'lOUld never be IU'l In the baCkQ1'CUld. Also, a
baCkgroull process ShOUld not haVe CIly Interaction wIth the
console, a'ld It CCIYlOt pull events from the hardWare event
(JJeUe. '

Oeslglate user flIes with the patn1crne "St-£LL." only If you
want them to appear In the envIronments window as an
alternaUve shell.

You ccmot directly rencme a flle to a rane tnat Uiffers from
the original only In the case Of the CharaCters, becaUSe the
Internal representation of the names Is the sane. Instead,
rename the fUe to a tet'T1X>rary name .. ana then Change that
to the ncme you WCI'lt.

If you t.mlCUlt the prefIx vol\.llle by ejecting the diskette,
scavenging the VOll.lTle, or using the t...n'nCU\t conrnand,
the bOOt vol\.llle automatically beOOneS the prefix voll.lTle.

AsSl.lTle that a flle FOO. TEXT haS been dalilaged CIld no longer
haS the Internal representation of a textflle. If the user enters
the File Ma'lager CIld tries to copy the flle to -PRINTER., the
system generates a bUS error Cfld enters the DebUgger.

The OJtput Redirect fl.llCtion of the System Ma'lager dOes not
correctly ha1dle screen output tnat uses GOTOXY, for example,
screen output dOne by the File Mal9:J3r When l1stlng wildCard
matches. 1llls results In redirected output to the printer being
oveNrltten on one Une.

USe --printer" Instead of --RS232-B- When redirecting output to
the printer.

WOrkstlOp If you ChCIlge the raTle. Of a suspelided 'lie -- su:tl as the
Chapter 3 Pascal COO1)l1er -- lWld at~t to manage the process from the

System f'1af lager, the new name appears In the pattncme, bUt
you rrust still use the oJdname to k1l1 the process.

WOrkSflOp me Editor cna ~ the creatlon date Of a text ftle to tile
Olapter 4 current date each time the rue Is modlf1ec1

WOrkshOp If the lnltla11zatlon Of the Editor falls ooe to leD< of diSk space
Chapter 4 (error 3(9), Md space on the diSk Is then made free, the next

atter11lt to start the Editor wlll also fall (error 304~ You roost
enter the Process Ma'lager Of the System Ma'lager, KILL the
Editor process, CIld then retry.

WOrkshOp Tne lcrg.l8ge processors, Editor, CIld other ut1lltles of the
Chapter 4 WOrkShOp e)(p8Ct as 1f1)Ut a staldard .TEXT me. lne Internal

stJ'\.lJture of a text rue In a bIOCk-stJ'\.lJtured deVice Is
deSCrlbed In the Lisa PasCal Reference MinIal:

• Each page (two 512-byte blOCkS) contains some runber Of
cor1l)lete lines Of text and Is pa1deCI with 0011 charaCters
(ASCII 0) after the laSt Une as necessary to COfT1)lete the
page.

• Two 512-byte header blocks are also present at the
beglmlng Of the f11e. These mayor may not contain
Information.

• A sequence Of spaces (ASCII 32 decimal, $20 hexadecimal)
can be corTl)ressed Into a 2-byte COde rsnely, a OLE
Ch8racter (ASCII 16 decimal, $10 hexadeCimal), followed by a
byte contalnlngthe value 32 declmal plus the ruroer Of
spaces represented.

WOrkshOp The file ncme -P,opfR. TEXT" Is reserved for the default
Olapter 4 statlonery tefT1>late Of the Editor CI1d snould not be used for

other purposes.

JinIBr}' 1984

WOIkstlOp
Chapter 4

WOIkstKJp
Chapter 4

WOrkShOp
Chapter 4

WOJ1(stq)
Chapter 4

Atter\l)tlng to enter or paste more thCrl aJout 1000 CharaCters
Into one line causes a bus error. If you nave a Debugger, type
<g> to recover Cnl exit tile WOrkShOp Shell before nmlng tile
EdItor again, OtlleNlse no meRJS appear .., you roost use f'I'o1l
Cnl OSQUIT.

A tJ1ple-ollOk wIll not select tile last line In a fUe U'lless U'lat
line ends with a carriage retum.

If you are wor1dng on n&ly files - or a feW large files -- CI'ld
the Editor becaTles Sluggisn., save cn:I put away tile files. Then
either exit the WOrkShOp Shell CI'ld lU'lthe W011<ShOp Shell agal~
or use the OeleteResident corrmnl Of the Manage Process
Stmystem Of the System Menger to ~rarUy delete the
Editor fran tile llst of resident processes.

When USing the Tear Off Statlonery corrrnarId, type In the
volt.me name If It differs from your bOOt volt.me.

WOJ1(ShOp cursor reslC1le mlght be left on the screen In the Editor and tile
Chapters 4 Tnnfer progran, especially after CIl error message has

and 10 appeared.

WOlkShOp The ranes of files created by tile Editor CIld TnrlSfer will be
Chapters 4 eta.gad to be all ~r case, regarUless of IVfI they are typed

WId 10 In.

WOrkShop
Chapter 7

W011<snop
Chapter 7

WOIkstKJp
Olapter 7

.JJn/sr)' 1984

If rrultiple errors occur ClJrlng a llnk, ClJe an to attempt to l1nk
regular U'l1ts with Intrinsic U'l1ts, the Linker will terminate after
reportlng only the first error.

When the Linker detects the error of ~lloate entry rsnes -
for exafl1)le after It reads the sane file twice -- the error
message may be difficult to Interpret becaUSe It Is formatted
lroorrecUy.

If CIl Intrinsic U'llt Is linked bUt not needed (I.e. no U'l1ts In Its
library file are used), the Linker generates error 24: U'l8xpected
blOCk type In IU file.

WOrkSl'lOp
Chapter 8

WOrkShOp
Chapter 9

WOrkShOp
Chapter 9

WOrksrop
Olapter 10

WOrkShOp
Olapter 10

WOrkShOp
Chapter 10

WOrkShOp
Chapter 10

For tne DebUgger, >PR Z .15 print to SLOTZCHANZ, not
SLOTZCHMIL Upper cn:I lower ·are reversed In the mcn.aal.

1lle exec ftle preprocessor dOeS not haVe· an easy way to Input
sll'WJle spaces, even tJ'OJI1l tnese are """,ired to respoi Id to
some WOrkShOp messages: WhIle waltlng for a space 111lUt, the
rest of the exec rue Is constITleCI withOUt effect. Either set l4l
your exec rues so they dOn't require space Inputs, or eliminate
all speas except the ooe you want em use the ro-space optlon
In the preprocessor.

In an exec ftle, an att.en1)t to pass a literal ~. to a program
stDl as CCDESIZE will rot work.

DIsplay Of error n essage 647 wtllle you are using the TlCIlSfer
utility probably Indicates tnat after a tlmeout theprognm haS
,allld. to receive tile appropriate hCnlSnake from tile host.

If you type any key dUrlng "PlaybaCk from What file- In tile
Tnnfer prognm, the playbaCk will abOrt.

If you use the Tnnfer prog.t3Tl to make contact with a hOSt
COf'f1JUter, and you exit the ProgJ8Tl withOUt logging off
e>eplloltiy, the connectlon will not be automatloally tennlnated.
This Is usually a convenleroe, bUt ml~t not meet user
expectatlons.

When the WOrkShOp snen Is lnltlallZed, all serial ports are
confl{JJl9d by default as If they were printers (e.g., 9600 baUd,
OTR twIdStlaI<e, automatlo linefeecJ InserUon), Whether or not
tney are llsted as soon by Preferences •. If you ~Uy use
cn:I tnen exit the TranSfer program, the printer configuration Is
restored automatloally for eN.. Y tnose ports l1sted In
Preferences as printers; others will retain the properties set by
tne TlCIlSfer prognm The EdItor will not reconfl~ ports that
nave been Char M]8d by PortCooflg.

WOrkShOp
Chapter 10

To terminate recordlng to a f1le opened by Ule TnrlSfer progrcm
dUrIng ~rd to-, open the control meru and again select
~ecord to-. Tnls terminates recordlng and closes Ule file.
Note that, U'lllke the Ealtor, TnrlSfer dOeS not artomatlcally
lnsen a carrlage return at the end Of the file. If you use this
recordlng to capture text soon as a source prognm, and tile
lqJ8ge processor (SOOh as BASIC-PIUS) expects to see a
carrlage return at the end Of the rue, at~tlng to lU'l the raw
recon1ed text mlIIlt C&ISe the system to hCrlg.

WOrkstlOp Tne rnarl.I8l states that the defa4t tBldshake In the TriIlSfer
Olapter 10 progrcm Is XorvxOff. The correct default Is ~.

WorkShOp Because most progJal~ do not allow you to eject a alSI< In
Chapter 11 Whlle they are nmlng, plCl'l anead In large ~tlons, SUCh

as mass· tnrlSfers, to allow a pause for Chcrlglng alSkS.

WOrkShOp ASCII Characters In the rwege hex 20 thl'OUf1l hex 7E are
Appen:Ilx B St4)pOrted for screen alsplay, for prlntlng til a dot maU1x

printer, and for printing on a daisy Wheel printer with the
fOllowing print Wheels:

• GoUllc, 15 pitch
• Prestige Elite, 12 pitch
• COUrIer, 10 pitch
• BoldfacelExecut1ve, PS.

Prlntlng ~n Chn'acters to' a daisy Wheel printer Is not
~rted for the three print Wheels with Modem type styles.
Tne Character set In the ~x SI'O.Ild ShoW the fUll Lisa
CharaCter set. All Of the aadltlonal Characters cal be alsplayed
on the screen. selected st.flSets cen be prlnted on dot matrlx
and dalsy Wheel prlnters. A new page 8-1 Is attacned; take a
moment now to make the stbstltutlon.

WOrksnop
Appendix C

If you wiSh to to posItion the cursor at coorOlnates (x,y)
on the screen, use the two-Character sequence <ESC>- (I-EX
18-31), declmal 27-61) followed by Ule screen's y coordinate cnl
then Ule screen's x coordinate -- note the Order of the St4lPlled
artJITBlts. The nrge fOr the screen's y-axis Is from ASCII
decimal 32 «SPACE> on tne keyDoard), representing a screen
COOrdinate Of 0, thrOUr1l ASCII deClmal 63 (1 on the keyboard),
representing a screen coon:J1nateOf 31. The rwge for the
screen's x..;,ax1s Is fnm ASCII declmal 32 «SPACE> on the
keyDoard), represenUng a screen coordlnate Of 0, t.tlrOU;1l ASCII
decimal 119 (w on the keytlOanj), represenUng a screen
coordlnate Of 87. If you ~ly coornlnates outside tnese
la'lgeS, a bUS error may result. Refer to the revised Appendix
8, St4)plled with theSe release notes, for a corT'C3lete Chart of
CflaI'CI)ter 8CJ.Ilvalents.
For exafC)le" In ~IC, either Of the two statements below
would place the cursor at posltlon x-o, y-L

or
PRINT Cl-RS(27); Cl-RS(61); CI-R~3); CI-R~2);

BASIC-Plus The System error variable ERR Is reset to zero after retum1ng
Chapter 3 to tile OOII.uaud line. If you Wa"It to preserve tne value of

this error return, use ~ ERROR processing, and store tile
value In a'lOtner variable.

BASIC-Plus
Olapter 3

BASIC-Plus
Olapter3

ReruTmering sometimes results In a ftle beQlmlng with BTEfwP
being left on tile disk. l(JlOre or delete the BTE~ file.

When you use ~le period to termlnate your program, the
001111 ald Is sometimes lrolUded In tile 1f1,)Ut strecm Of the next
Une,. giving U1)redlOtable results. Also, If you are redirecting
your output to a dOt-matrtx prtnter, the cnaracter generated will
tum on wide print. To restore normal print wlcM, tum Off the
printer cn2 tum It baCk on again.

BASIC-Plus BASIC-PIUS attefT1)ts to IU'l a progran even after detecung
Olapter 3 syntax error(s~

BASIC-Plus If BASIC-Plus Is processing a single operaUon with a lOng
Chapter 3 COfl1)UtaUon tlme (for eXClJ1)le, a"I INV statement), tile Lisa

m1~t not respor Id (J,dCl<ly to ~le period.

BASIC-PlUS Whlle line runber zero Is a legal runber, rerunberlng starts at
Chapter 3 tile first line wltJl a ruooer greater tIWl zero.

BASIC-Plus me mcnJal states tnat tile. smallest representable runber Is
Chapter 4 :!: 4.9E-324. The smallest representable runber Is really

:!: 4.94D66E-324. All otller representable rurIlers are Integral
rrulUples of tnat rumer.

BASIC-Plus
Chapters

BASIC-Plus
Chapters

A WhOlemer cal be printed out to a maxlrrun of 12 places
before IJ)lng to sclentlf1cnotatlon.

You can use the fOllowlng to teJmlnate irpJt, In aadltlon to a:t
Apple L! FF . (ASCII 12 deClmal, $DC hex)
CLEM ESC (ASCII 27 deCImaL $1B hex)
Apple J LF (ASCII 10 decimal, $OA hex)

BASIC-Plus BASIC-Plus ctoesn1t append Sly fUrther CharaOters fOllowing 8
Chapter S line termlnator Char~ter at the end of a PRINT or ~

statement.

.J/ntJ8Iy 1984

BASIC-Plus If you 1flxJt from a nonzero cts'flel, the prorJ1)t will not be
Olapter 5 printed.

BASIC-Plus The BASIC Interpreter doesn't differentiate between vertical cn:J
cnapter 5 hOrizontal screen control cnaracters. Refer to the WOrkshOp

mcn.tal, ,6fJpendlx C, fOr InformaUon on vertical screen control.

BASIC-Plus You (8l PRINT cn:J 1N'UT only to text flies (flies tnat end In
Chapter 5 .text) and to the deVIces: -console, -printer, -keybOard.

BASIC-Plus Spaces between woras In DATA statements are tnrown away.
CI'lapter 5 To preserve spaces .. use ~ted strings.

The first CharaCter In ... lnJ.Oted strIng variable In a DATA
statement Is not converted to l.CJPercase, altflOUlll tile rest of
tile string Is. use CVT$$ with a value of 32% to convert
lOWercase to l.CJPercase.

BASIC-Plus BASIC-Plus qlpOrts six print ZO'leS.
cnapter5

BASIC-Plus When using a GET or II'FUT statement"
Olapters 5 -keyboard Ck)esn't ecIll 1f1)Ut.

a'ld 11 -console does echO Input.

BASIC-Plus To acI'l1eve tile beSt performance In FOR loops a'ld otller
CI1apter 7 CO"lStructs, use Integer variables. For tnstcllce:

100 FOR 1% - 1% To S[J()()%
110 N:XT 1%

executes approximately ten. times faSter thCIl

100 FOR I - 1 To 5000
110 N:XT I

BASIC-Plus The use of FOR rmd1f1ers In lnmed1ate mode will result In
CI1apter 8 a fatal error.

BASIC-Plus The system variables N..Jo1 and N..M2, WhICh contain tile size Of
Chapter 9 8 two dimensional array, were omitted frOm the Index.

BASIC-Plus The syntax diagnrn fOr DIM dOeS not provide for roolUple array
Cnapter 9 dlmenslon1l'YJ In a single a1mens10'l statemenl Tne written

eX8fll)le Is correct to snow m.Iltlple arrayctef1nltJons.

BASIC-Plus The statements MAT IN'UT lWld MAT RE,4D dO not lf1)Ut Into
Cnapter 9 the zerotn row or coltlTn MaU1x realmenslonlrYJ causes tne

contents Of tne zerotn· row lWld colurn to be tq)redlotable.

BASIC-Plus The ~ Integer ar~t returns the DATE from the base Of
Cnapter 10 JanJary 1, 1980. lne fOnrula used to tnIlSlate between N ald

the date Is
(day Of year) + [(ruQler of years stnce 1980) .. 1000]

BASIC-Plus VPL \) returns error code 69# "Illegal arpent to VPL".
Chapter 10

BASIC-Plus VAL.('204' dOeS not return an error COde. 0 Is accepted as a
Chapter 10 specification In V/iL bUt not In assl(JTflent or PRINT statements.

BASJC-Plus ~$(n), When n>O# gives n mlrutes before mlctll~t --
Chapter 10 n<O time gives n miRJtes after mlc:nlgl'll .

BASIC-Plus Themaxlnun length of a strlng that N...M1$ can return Is 2S5.
Cnapter 10 If you assl~ the maxlnun size fU'Ilber (for eXC!f11)le, 5E300),

you will get the error message IIllne too longll.

BASIC-Plus BlOCk runberlng starts at zero.
Olapter 11

BASIC-Plus 01 string assl~t (LET M - B$ storage) a copy of B Is
Chapter 11 made. Given the progJ'aTl

LISTN-f
400 B$ - II~"
410 ~ - B$
420 lSET 54 - -xYr
430 PRINT M
440 E~

the result Is tne strlng II~.

.Javary 19811

BASIC-Plus The maxinun recon:Jslze Of a'l argl.Illeflt Is 32256.
Chapter 11

BASIC-Plus CLOSE with a negative 0ha1ne1 rumer wlll not prevent the
Chapter 11 writing out Of the bUffer's last contents to the rue.

BASIC-Plus A PUT operatlon Is not allowed fOr 8 file that has been
Chapter 11 CPENecI FCR IN>UT.

BASICoc-Plus Note tnat tokenlzatlon Is optlm1Zed for CCIlSta'lts. The
Chapter 13 statement

A - 1E4DD
dOeS not generate a nn-tlme exception. If you wcrlt to raise
the exceptlon, write the statement as

A - VAL("1E4DOj.

BASIC-Plus The statement CHAIN IeCJIlres a fUll file ncme; fOr eXCW'f1)le,
Chapter 14 'PR0G2.TEXT.

BASIC-Plus You caTIOt write protect a file tIlless It already exists on the
Chapter 14 directory. You I'TlJSt CLOSE It first, aldthen OPEN CIld

WRITEPROTECT It. YOU ShOUld also e)(pllcltly a...OSE any
protected flies before the·end of your prognm

BASIC-Plus Writing to a write-protected file dOeS not result In ann-time
Chapter 14 error. HOwever, the· file Is not written to a'lCJ remains

'-IlCfl8I tged.

BASIC-Plus SLEEp(X) Sleeps U'ltll a cnaracter Is typed from the keyboard.
Cllapter 14

BASIC-Plus The following error messages haVe been a2ded.
AppendIx 0 2 tGlZero mode values are not Sl4)pOrtec1

28 ~le period trap.
31 Maxlnun recorttstze of 32256-
90 Error setting safety.

BASlC~JlI$ user's GuIde BASIc-PllI$ WOJ'kSl1q:J Files

Appendix E
BASIC-Plus Workshop Files

ThIs appendix lists the flies on the BASIC-Plus 2.0 sooy mlcro-dlSkettes.

File NEE BASIC-illUs f«Jtes Description
DiSkette

BASIC.Obj
Byte01ff •. OOj
01ff.Obj
~tcn.OOj
EDIT .tEttJS. TEXT
Ed1tor.OOj
F1led1v.OOj
F1lejo1n.Obj

. find.Obj
font.heUr
Fc*T.t£~
font.11b
font.11b
Intr1ns1c.11b
Intr1ns1c.11b
IOSFPI1b.Obj
IOSPaSlib.Obj
IOSPaSlib.Obj
LDSPREFtREtaS.(BJ
LOSJ~S-'lROOS. TEXT
HASTERLIB • (l3J
t1ASTE~
Obj101ib.obj
OSERRS.ERR
PAPER. TEXT
Portconfig. Obj

4 note 1 WOrkShOp program- BASIC-Plus.
2 Ut1li ty progran.
2 Utility program.
2 Utility progran.
2 Editor support file.
2 note 1 WOrkShOp progran- tbAse Ed1 tor.
2 Utility progran.
2 Ut1lity progran.
2 Ut1l1ty program .
1 Short vers10n for bOOt1ng.
2 note 3 Data needed to St4)POrt SVS1Lib.
1 Short version for bOOt1ng.
2 note 3 Data needed to st4'POrt SYS1Lib.
1 Short version for bOOting.
2 note 3 library d1rectory- intrinsic tI"Ii ts.
2 Library lIl1t .tlnterfCD.
1 Short version for bOoting.
2 note 3 library lIl1t .t1nterface.
3 WOrkShOp program.
:3 WOrkShOp data.
I note 2 Install program- library ~rt.
1 note 2 Install program- alert messages.
4 library U'l1t (no interface).
:3 rote:3 IorkShOp data- error IIBSsageS.
3 WOrkShOp data- Ed1 tor stat1onery.
:3 Ut1lity progran.

Nne 1: Tnese fUes are SOftware-protectea. .
~te 2: These flies are used for the installation procec:tare bUt are not Installed.
Mlte 3: 1lleSe flies are the m1n1rnm necessary· to nil a user progrwn in the

Workshop· envlronment. A user progran. may require other flies as well.

E-l

BASlC-PJus US:er~ GuIde BASlC-PJus WOd<SIIq:J Files

File NEE MSIC-Plus
DiSkette

M:Jtes Description

Shell. WOrkShop 3 note 3 IOrkShOp main progran.
SUlib.obj 3 note' Library unit ./interface.
SXl'ef.Obj 3 Utility program.
SXREf .000T. TEXT , Data.
Sysllib.obj 3 note 3 Library units (no interface).
SYSTEM.BT MICRO 3 System Sl4)pOrt- 4000l sony.
SYSTEt1.BT-PRCF 1 note 3 System stg)Ort- hard diSk.
SYSTEM .BT-TWIG 3 System ~rt- 86(1<8 fl~y.
SYSTEM • CO-PRIAM :5 System stg)Ort- 7M3 Prian.
SYSTEM.CO-RS232A 3 System Sl4lPQrt- RS232 port A.
SYSTEM.CO-RS232B 3 System St4)pOrt- RS232 port B.
SYSTEM.luDIRECTORY 1 System data (dynamiO).
SYSTEM. LLO 1 note 3 System progr__ low-level drivers.
SYSTEM.LOG 1 System data (dynamiO).
SYSTEt1.OS 1 note 3 System progran- ~rating system.
System. Shell 1 note 2 Installation program.
System.Shell 3 note 3 System progr __ Environment WindOw.
SYSTEM .t.WACK 1 note 3 System data.
term .IIIn.IS. text 3 oata for trcJ'\sfer program.
tICl'lsfer.Obj 3 IOrkShOp program- TrcI"Isfer.
tTl1}~ 4 . oata- Preferences.
Tl1}t£NJS.TEXT 4 Data- Preferences.

NJte1: TheSe tlles are sottware-protected.
Note 2: These flIes are used fOr the Installation proceo.are bUt. are rot Installed.
NJte 3: 1Tlese flIes are tile mtntnun necessary to I\.Il a user prognm In U'le

WOrkshop env1rc:nnent. A user prognrn may recpre other fUes as well.

E-2

o

1

2

3

4

5

6

7

8

9

A

8

C

o

E

F

Appendix B
Workshop Character Set

o 1 2 3 456 7 8 9 ABC 0 E F

0 1\ P
,

p A ,. f L ... aE • 00 f{(
lilt ICl I 1 A Q a q A i 0 :I: i ~~~~l~j~~I ·
me IC2 H 2 B R b r C; f ¢ 1 ~

me Ie) # 3 C S c s E 1 £ 2 ..f
Em IC4 $ 4 0 T d t A I § ¥ f --% 5 E U e u t) i • IJ. = -.. & 6 F V f v U ii ,r a 4
lEI. m • 7 G W 9 w a 6 a I «
IS - (8 H X h x a 0 ., Tr »
NT 81) 9 I Y • a 6 1 Y @ w ...

M J Z j a 0 ... J If - · z ·
K [k { - - ,

II ::;: " ESC + · a 0 I :.:.

\ I A
, ..

Q fF F$ (L I u , .. IS M]) Q U *' 0 - - m -
N

... - it
A

If. Ie t:: 10 ..) n u •

I ? 0 e ij tzJ e :t~j: $I • 0 DEl · -
The ftrst 32 CharaCters a'ld DEL are t'lOf1)rlntlng control codes.

The Shaded area is reserved for fUtUre use.

8-1

?!tI~

:::;:::;:::::;

:·:~tr
:::::::::

mrm :.;.

Imm
~tIt~
.:.:.:.:.:.:.:
::::::::::::::
{{:}~

~ft?
lIj~~~j~j
IIIl~
:Iff~

:::::::::

:jIlI~lj
:mmmr

[jtIt

f:: ::.~ . '.~.:.

t::::::: :.:.:.

Wm: :.:.:

t·:·:·:·:·:
~::::.::: ::

f::::::::::::: ~:r:
:::::::::::::: lfj: :::::::: :::::: ~:::::

~~j~jtI~ t~!j
;:;:;:;
{;~:

1Ifll trrr:
~:.: .:.;.:.;.:

~~~j ~III~ 

!~III :.: t~~: 

!IlII 
[Itt: :.: 

:::. 
t:::::::::::: 

t\}~ 
fIJ 
t::::::::::.: 
r:':::~::: 
t·:·:·:·:· ~:.: 
f:·:·: 

l:;:::; ~';' :::: 
~.: 
,;.; 





BASIC-Plus User IS Guide 
for the Lisa 1M 



UCBlSlng Re(J.Ilrements fOr SOftware Develqlen 

Apple has a low-cost l1censing program, whiCh permits developers of software 
for the Lisa to incorporate Apple-developed l1braries and object code fUes 
into their prodUcts. Both in-hoUSe and external distribution require a llcense. 
Before distributing any prodUCts that incorporate .A4Jple software, please 
contact Software Licensing at the address below for· botJ'l licensing and 
tecmlcal information. 

01983 by Apple computer, Inc. 
20525 MarIani Avenue 
CUpertino, california 95014 
(408) 996-1010 

~le, Lisa and the ~le logo are traoemarks of Apple computer ... Inc. 

Slrrultaneously publiShed in the USA and canada. 

Reorder Apple PrOdUCt :tA6D0103 (complete BASIC-Plus package) 
#A6L.0112 (ManualS only) 



CUstaner Satisff£tion 

If you discover physical defects in the manuals distributed with a Lisa product 
or in the media on which a software product is distributed, Apple will replace 
the documentation or media at no charge to you during the 9o-day period 
after you purchased the pnxt.ICt. 

Proc1I::t Revisions 

Unless you have purchased the product update service available through your 
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of 
a revision to the software described in this manual, even if you have returned 
a registration card received with the product You should check periodically 
with your authorized Lisa dealer. 

Limitatim m WBrnIlties 8ld Liability 

All implied warranties concerning this manual and media, includIng Implied 
warranties of mercha1tability and fitness for a particular purpose, are limited 
in duration to ninety (90) days from the date of original retail purchase of this 
product 

Even though Apple has tested the software described in this manual and 
reviewed its contents, neither Apple nor its software suppliers make any 
warranty or representation, eIther express or Implled, wIth respect to this 
manual or to the software described in this manual, their quality, performance, 
merchantability, or fitness for any particular purpose. As a result, this 
software and manual are sold "as is: and you the purchaser are ssSllTling the 
entire risk as to their quality and performance. 

In no event will Apple or its software suppliers be liable for direct, indirect, 
speCial, incidental, or consequential damages resulting from any defect in the 
software or manual, even if they have been advised of the possibility of such 
damages. In particular, they shall have no liability for any programs or data 
stored in or used with Apple products, including the costs of recovering or 
reproducing these programs or data 

The warranty and remedles set forth abOve are exclusIve and In lleu of all 
others, oral or written, express or Implied. No Apple dealer, agent or 
employee is authorized to make any modIfIcation, extension or addition to this 
warranty. 

Some states do not allow the exclusion or limitation of implied warranties or 
liability for incidental or consequential cJamages, so the above limitation or 
exclusion may not apply to you. This warranty gives you specific legal rights, 
and you may also have other rights that vary from state to state. 

111 



Ucense ald Cq>yri~t 

This manual and the software (computer programs) described in it are copy
righted by Apple or by Apple's software suppliers, with all rights reserved, and 
they are covered by the Lisa Software License Agreement signed by each Lisa 
owner. Under the copyright laws and the License· Agreement, this manual or 
the programs may not be copied, in whole or in part, without the written 
consent of Apple, except in the normal use of the software or to make a 
backup copy. This exception does not allow copies to be made for others, 
whether or not sold, but all of the material purchased (with all backup copies) 
may be sold, given, or loaned to other persons if they agree to be bound by 
the provisions of the License Agreement. Copying includes translating into 
another language or formal 

You may use the software on any computer owned by you, but extra copies 
cannot be made for this purpose. For some products, a multiuse license may 
be purchased to allow the software to be used on more than one computer 
owned by the purchaser, including a shared-disk system. (Contact your 
authorized Lisa dealer for more information on multiuse licenses.) 

iv 



Contents 

Chapter 1 
lnt.roOJctlon 

1.1 Hardware Requirements ................................................................... 1-1 
1.2 Diskettes ........................................................................................ 1-1 
1.3 Booting BASIC on the Lisa .................................................................. 1-1 

~2 
L~ FU'ldcmeI,tals 

2.1 Interpreted or Compiled? ................................................................... 2-1 
2.2 BASIC Character Set ........................................................................ 2-1 
2.3 Spaces ............................................................................................ 2-1 
2.4 Keywords and Reserved Words ............................................................ 2-2 
2.5 Statements and Lines ........................................................................ 2-2 
2.6 Elements and Strings ......................................................................... 2-3 
2.7 Line NUmbers .................................................................................. 2-4 
2.8 Immediate versus Program Execution .................................................. 2-4 
2.9 Entering Comments ........................................................................... 2-4 
2.10 IdentIfiers ....................................................................................... 2-5 
2.11 Assignment ...................................................................................... 2-5 

Olapter 3 
BASIC prognmnlng Envlrorment 

3.1 using the BASIC Interpreter to Create BASIC Programs .......................... 3-1 
3.2 Creating BASIC Programs using the Workshop Editor ............................. 3-2 
3.3 System Commands ............................................................................ 3-2 

Olapter4 
oata Types CI1t1 oata Mc:I'lIpJlatlon 

4.1 Integer and Floating-Point Constants .................................................. 4-1 
4.2 String Constants .............................................................................. 4-2 
4.3 Variables and Variable Names ............................................................. 4-4 
4.4 Expressions ..................................................................................... 4-6 
4.5 ArithmetIc ~erators ........................................................................ 4-8 
4.6 Logical q>erators ............................................................. ~ ............... 4-9 
4.7 RelatIonal ~erators ....................................................................... 4-12 
4.8 Precedence of q>erators ...........................................•...................... 4-13 

v 



BASIC-Plus User's Guide contents 

~ter·5 
Fonnatted ASCII IrpJt crd rutpJt 

5.1 Input and OJtput Channels .................................................................. 5-1 
5.2 Read and Data ............................................................................... 0.5-1 
5.3 Restore 0 ................................. 0 ••••••• 0 •••••••••••••••••• 0 0 .. 0 ......... 0 ......... 0 0 •• 0.5-3 
5.4 Input .... 0.' •••••••••••••••••••••••••••••• 0 •••••••••••••••• 0 •••••••••••• 0 •• 00 ••• 0 •••••••••• 00 ••••••• 5-4 
5.5 Input Line .... o. 0 ....... 0 ........................................................................ 5-5 
5.6 Print .... o ••••••• o .............. 0 ................................................................... 5-5 
5.7 Print us1ng .........•......•.•..........•................•.....•...•....•.......•..•....••....... 5-8 

~ter6 
Brcrnh1ng statements 

6.1 If Then Else ..................................................................................... 6-1 
6.2 IfGoto ............................................................................................ 6-2 
6.3 01 Goto ........................................................................................... 6-3 
6.4 01 Gosuo ......................................................................................... 6-3 
6.5 01 Error Goto ............................................. , ..................................... 6-4 
6.6 Resume .. 0 ........................................................................................ 6-5 
6.7 Goto .............................................................................................. 6-6 

Olapter 7 
lcqllng const.n.cts 

7.1 ForNext ......................................................................................... 7-1 
7.2 While Next ...................................................................................... 7-2 
7.3 For While ......................................................................................... 7-4 
7.4 For until ......................................................................................... 7-5 
7.5 Until Next ....................................................................................... 7-6 
7.6 Nested Loops ................................................................................... 7-7 

Olapter 8 
statement ModIfien 

8.1 The If Statement Modifier .................................................................. 8-1 
8.2 The For Statement Moc11fler ............................................................... 8-2 
8.3 The While Statement Modifier ............................................................ 8-3 
8.4 The until Statement MOdifier .............................................................. 8-3 
8.5 The unless Statement Modifier ........................................................... 8-4 
8.6 Multiple Moc1lflers ............................................................................ 8-4 

vi 



BASIC-Plus User's Glide 

~ter9 
Matrtces 

Contents 

9.1 Dim ............................................................................................... 9-1 
9.2 IVIat ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••.••••••••••••• 9-3 
9.3 Mat Read ....................................................................................... 9-4 
9.4 Mat Input ................................ ~ .................................•.................... 9-5 
9.5 Mat Print ........•......•.••.....•..•.•.•..........•.....................•..•................... 9-6 
9.6 Matrix Calculations .......................................................................... 9-7 

Chapter 10 
Stmoutines 1Di Ft.netims 

10.1 Gosub and Return ........................................................•.................. 10-1 
10.2 I\Iesting SUbroutines ....................................................................... 10-2 
10.3 Arithmetic Functions ...................................................................... 10-2 
10.4 String Functions ............................................................................. 10-6 
10.5 Matrix Functions ........................................................................... 10-11 
10.6 Creating Your 0Nn Functions ............ ..........••..............•.•.. .............. 10-12 
1n 7 Charlge .•••..•............ .........•..•. ...................•. ••......... ... •.•.....•.•...••.•. 10-14 

Chapter 11 
Block 110, ~, and Close 

11.1 ~ ............................................................................................. 11-1 
11.2 Close ............................•.........................................•.................... 11-3 
11.3 Block I/O •.•••••.•••••..••••.•.•......•...•.•.•...••..•...••.••.•..•.••••..•.••.•.•..•.•...•.••• 11-4 

~12 
VIrtual Arrays 

12.1 Dim Statement for Virtual Arrays ...................................................... 12-1 
12.2 Virtual May Storage ........................................................•............. 12-2 
12.3 Virtual Array ~s .......................•............................•.................. 12-3 
12.4 File Length ., .................................................................................. 12-4 

Chapter 13 
Advalced Floating-Point MEIllpulatim 

13.1 Exceptions ..••........•.•...•.•...•.•.•..•.•..••..••••....••.•...•..•••••••.•....••.•......•••• 13-1 
13.2 set Exception ..•.........•.•.•••...•.••.........•.•..••.••..•.•....•...•••.•.••••............. 13-2 
13.3 Ask Exception .•...........•.•.•.•.•..•.•.••.........••.......•.•..........•....•........•.... 13-3 
13.4 Set Halt ....••..•.•..•..•••.•.•.•...•.•.••••••.•••.•.•••..•..•.•••••.•...••••.••••.•..•.........• 13-3 
13.5 Ask Halt ....••...•.•.•...•.•...•.•.•.••••••••••••.•.••....•.•.•••.•.•..••..•.••••••...•••.•..••• 13-3 
13.6 ROlIldlng rv10des for Floating-PoInt Values ..........•.•..••......•....•....•.•...... 13-4 
13.7 Set Rot.rlding .........•.......•.•.•..........•.•...............•.•..........•.•..•...........•• 13-5 
13.8 Ask ROlIldlrlQ ................................................................................. 13-5 
13.9 Exception Handling and Rounding Examples ..•.........•.•....•.•..•.•........... eo 13-5 

vii 



BASIC-Plus User~ Guide CtKItents 

OQ)ter 14 
System statements 

14.1 Walt •..................•......•.........•..........................................•...••..•.•... 14-1 
14.2 Sleep .....................................................•...................................... 14-1 
14.3 Writeprotect ....•........•...........•.........•.......•.•......................••............ 14-1 
14.4 Writeallow ..............................................•...................................... 14-1 
14.5 lJnlOCk ......•................•..•..••....•.....•.......•.•....................•.•.....•.•..••... 14-2 
14.6 Chain ............................................................................................ 14-2 
14.7 Name ~ •.•••••••••••.•••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••.•••••••••• 14-3 
14.8 Kill ............................................................................................... 14-3 

AWerldbces 

A Language surnrnary ...•.•.•.•.....•............••.......•................•...........•.....•.... A-1 
B Floating-Point ArIthmetic .......................................................•.......... B-1 
C Linear Algebra ................................................................................... C-1 
o Error f'1essages .................................................................................. 0-1 
E B.t\SIC WorkShop Files .........•...•...•..••................................................... E-1 

Index 

Tables 

4-1 Ranges for Integer and Floating-point constants .....•........•.........•...•.... 4-1 
4-2 Arithmetic ~rators .......•.....................•.....................•.........•......... 4-8 
4-3 Logical ~rators .•.•.•..•........•.....•......•...................................•..•.... 4-10 
4-4 Truth Tables for Logical (l)erators ................................................... 4-11 
4-5 Relational ~rators ...........•.....•....•..............•............•...•.......•....... 4-12 
5-1 Print Statement Punctuation ......................................................•...•.. 5-7 
5-2 Print Using Statement Formatting Characters ....•.•...•....••.•....•...••.•...••. 5-9 
12-1 NJmber of Elements In a Virtual Array BlOCk ••••••••••••.••••.•••••••••••••••••••• 12-3 
B-1 Results of Addition and SUbtraction on Infinities ................................. B-2 . 
B-2 Results Of MJltipl1cation and Division on Infinities .............................. B-2 

viii 



Preface 

The AudIence of ThIs McnJal 
This manual is written for experienced BASIC programmers. It describes 
completely the syntax of the language, and provides occasional examples to 
clarify points of syntax, but no examples of complete programs. Instructions 
for starting up and operating BASIC on the Usa are in the Wod<stJop USer's 
GlIide ror tile Lisa We assume that you have read the Wod<SIlOp User's GlIide 
and the Lisa OWner's GlIide., and are familiar with your Lisa system. For 
programming examples, we recommend Instant BASIC by Jerome Brown 
(Dllithium Press, 1975~ 

Type CI1d Syntax conventions 

~-0333-A 

Boldface type is used throughout this manual to distinguISh BASIC text from 
English text. For example, for 1 - 1 to 10 Is part of a BASIC program. 

Italics are used when terms are introduced for the first time. 

Lisa BASIC syntax is illustrated by syntax diagrams. The following diagram 
gives the syntax for constructing legal variable names. 

variable name 

Start at the upper left comer and follow the letters through the dIagram. 
Various paths are pOSSible. Every path that begins at the left and ends at the 
arrowhead on the right represents a legal construction of a variable name. 
Paths through the diagram that do not follow the arrows and curves of the 
line are not valid. Thus, the rules for constructing valid variable names are: 

• A variable name must begin with a letter since the fIrst arrow goes 
direct! y to a box containing the name letter. 

• A variable name may consist of a single letter, since there is a path from 
this box to the arrowhead on the left that does not go through any more 
boxes. 

• The required letter may be followed by various combinations of letters, 
digits, and periods (.,. Loops within paths indicate repetition Is legal. 

• The symbol % or $, instead of a letter, digit, or perIod, may. end a 
variable name. 

lx 



Symbols are used in the syntax diagrams to distinguish between different types 
of input 

• A circle or oval indicates a BASIC keyword or another symbol such as an 
operator. Enter text in ovals and circles as shown (you can ignore 
capt talization~ 

• A word enclosed in a box may be a name for a statement element such 
as a keyword, or may be a name for some other syntactic construction, 
such as "variable", which is specified by another diagram. For example, 
cost% could be entered to replace variable in the example above. 

• Arrows indicate the flow of the diagram. 

x 



NOTES 





Chapter 1 
Introduction 

1.1 I-tardWare Re(J,IIrerTlerlts ......................................................................... 1-1 

1.2 Dlsk.ettes •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-1 

1.3 Bootlng BASIC 00 tile Lisa ........................................................ 00. 00 0.0 ........ 1-1 





Introduction 

ThIs manual descrIbes the BASIC language for the Usa. You should read the 
LIsa owner~ GlIfde and the WOJ1<s/JqJ User~ GUIde for tile LIsa before using 
BASIC. We recommend that you have BASIC up and rumIng whlle you read 
this manual, so you can try things as you read about them. 

1.1 t-tamware Re(JJlrements 
BASIC runs on any standard Lisa system. The BASIC pacKage includes: 

• BASIC Interpreter (distributed on two d1sKettes~ 

• BASIC-Pllls User's Guide for tile Lisa. 

• WOJ1<SlJt.p USOI:r Gtt.Ide ft.JI l/Jt? LIsa. 

1.2 Diskettes 
The BASIC Interpreter is distributed on two diskettes. You should make at 
least one copy of the diskettes and use the copy instead of the master. Then, 
if anything happens to the copy, you can make new copies from the master. 
You can make as many copies of your master diskettes as you wish, and you 
can use the master diskettes on any Lisa system. However, any copy of the 
master runs only on the system you used to create the first copy. Refer to 
the WorkSllop User's Guide for information on how to install and copy 
diskettes. 

1.3 Booting BASIC on Ule Usa 
From the WOrkshop command l1ne type B (BASIC~ A Ready prompt Is 
displayed when BASIC is ready to be used. 

1-1 





NOTES 





029-0:572-A 

Chapter 2 
Language Fundamentals 

2.1 Intelpret,e(j or COI"flll18(f? •••••••••••••••••••••••••••••••••••••••.•.•••••••••••••.••••••••••••••••• 2-1 

2.2 BASIC ~ter set .............................................................................. 2-1 

2.2.1 USing Uppercase ana Lowercase Letters .•••.• 0.0.0 ••• 0.0.00.00.0.0.00.0 0 •• 0.00.000.2-1 

2.3 spaces ..................................•............................................................... 2-1 

2.4 Keyworm arld Reserved Words •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2-2 

25 staternerlts arld Lifl8S •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2-2 

2.6 Elernet'lu arld strlflgS ............................................................................... 2-3 

2.7 Llrle I'lIT1leIS ........................................................................................ 2-4 

2.8 Irnrnec:Ilate velSlJS ~ ExectJtioo •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2-4 

2.9 Enterirlg OlIn I lei Its ................................................................................. 2-4 

2.10 IderlUften .......•............•............•..........................•.............•.................. 2-5 

2.11 AsslgrlTSlt •.•••.••••••••••••••.•••••••.•.•••••••••••••••••••••••••..•.•.•••.•••••••.•.•••.•.••••••••• 2-5 





Language Fundamentals 

ThIs chapter summarizes the fundamentals of the BASIC language for the Lisa 
2.1 Interpreted or Cml1liled? 

The BASIC that runs on the Lisa is a powerful interpreted BASIC. The 
Interpreter scans each line as it is input for syntax erroIS. If the Interpreter 
finds an error on a particular line, it displays an error message. 

2.2 BASIC Chara:ter Set 
The BASIC character set is comprised of letters, digits, and special characters. 
These are described in this sectim 
A letter is one of the following: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 

A digit is one of the following: 
0123456789 

Special cI18rBcters include the following: 

+=*.,.<>()\:& "I*-;-'~! 

2.2.1 Using ~rcase m lowercase letten 
Uppercase and lowercase are not significant in BASIC commands or identifiers. 
In the following example, the commartds are treated equivalently, but note 
that case is significant for the strings. 

2.3 Spaces 

Ready 

PRINT -casE sEnsitIve

casE sEnsiUve 

Ready 

A$='Identifiers ' 
Ready 
~int as 
Identifiers 

Spaces are Significant. in BASIC. Spaces may be used in the following ways: 
• To separate elements of the BASIC language.· 
• Within character strings. 

2-1 



BASIC-Plt.lS USer's GuJde 

At least one space must separate a keyword from the next element i~1 a 
statement However, a space is not allowed anyWhere within a keyword or 
identifier. In entering expressions, one or more spaces between an identifier 
and an operator are opUonal. 
The following are examples of valid and invalid uses of spaces. 

print -hi- Valid. 
pr int -hi- Invalid because spaces are not allowed within keywords. 
print -hi- Valid. 
printsln(x) Invalid because a space is required after a keyword. 

Spaces are optional between operators and identifiers in expressions. For 
example, all of the following are val1d. 

(a+b-d)/d+2 proflt/sales~st 

(a + b - d ) / d + 2 profit / sales - cost 

2.4 Keywords and Reserved Words 
Reservet1 woRts are words that have a special meaning for the operating 
system or BASIC. Since they have special meaning, use of reserved words is 
restricted; they cannot be used, for example, as variable names or as part of 
variable names. A list of reserved words is provided in Appendix A, Language 
Summary. 
Keywords are Engl1shl1ke words that are used in the BASIC language; in other 
words, keywords are elements of BASIC. Keywords mayor may not be 
reserved. For example, catalog is a BASIC command, yet it can be used as a 
variable name. 

2.5 statements and Lines 
A statement is a single BASIC language instruction consisting of one or more 
keywords, mandatory clauses, and any optional clauses. For example, in the if 
then else statement, If is the keyword, then starts the mandatory clause, and 
else begins the optional clause. 

200 1 f x=Y then 250 else 300 

2-2 



BASIC-Plus USer's GlIlde Language FU7daIT1entals 

The following is the syntax for the if then else statement: 

if tIlen else 

expression 

A program line is compriSed of one or more statements, ending with 
<RETURN>. When more than one statement exists on a program 11ne, you 
must separate the statements with a backslash (\ ) or a colon (:), as shOwn 
below. 

10 if x=Y goto 20\if X=Z then 25\goto 15 

10 1f x=Y goto 20:1f X=Z then 25:goto 15 
Most BASIC statements can appear anywhere wIthIn a multiple statement llne; 
restrictions are gIven in the statement descriptions. 
A program line, whether 1t conta!ns one or more statements, can be longer 
than a screen line If an crnpersand (&) and a <RETURN> are at the end of 
each screen line. 

Z6 Elements CI1d Strings 
M element Is any sequence of characters separated from other such 
sequences In a statement by one or more spaces. It Is Illegal to spllt an 
element between screen lines. 
A string Is a series of characters bounded by quotation marks. F or example, 
the following Is a legal statement: 

20 1 f I'UItler1 < III8XiIuA then & <REl\JW> 

print '.1 th1n rcIYJe' a <REl1.RP 

else a <REl\JW> 

print 'overflOw' 
Note that strings are counted as elements when extending program lines so 
that it Is Illegal to spUt strings between screen 11nes. 

2-3 



BASiC-Pius User's Guide Language Fundamentals 

The following Is not a. legal statement, because the strIng "w1tnln l8)Je" Is 
spIlt between two Hnes: 

20 If rumer1 < IIIOO.RJR then & <RETIflN> 

prlnt -wi thin & <RElmN> 

ICnJe" else print • overflow' 

The & symbol at the end of the second screen Une Is Interpreted as part of 
the strIng "within &-; It Is not recogniZed as the continuation character. The 
program l1ne is terminated, and the next Une, I3lQe" else print 'overflow' 
causes a syntax error. 

2.7 Une I\Unbers 
A line number Identifies the program Une and defines the order of execution. 
The legal values for a line number are the positive integers from 1 to 32767 
inclusive. BASIC stores and executes program lines in ascending order by 
line number, whiCh Is not necessarlly the oraer you enter tnem. 

())ly one program line can have a given Une number. If you enter a line with 
a dupl1cate Une number, It erases the old Une with that Une number. 

2.8 Inmediate venus Progrcm Executlon 
BASIC supports two modes: program mOde and immediate mOde. When in 
program mode, program Unes are stored for later execution; when 1n 
immediate mode, Instructions are executed as they are recognized by the 
Interpreter. The presence or absence of a Une number distinguiShes between 
program and immediate modes. Program Unes are stored When prececJed by a 
Une number. The following are examples of stored program I1nes: 

10 rem this is a stored program line 

20 for 1'Utler=1 to 10 

ImmedIate mode allows you to execute a sIngle Une. Statements used In 
immediate mOde can refer to" eStabliShed variables in the current progrcm or 
to varIables defIned In prevIous ImmedIate moae statements. Variables 
entered in immediate mode retain their values until the WOrkspace is cleared. 
Refer to Chapter 3, BASIC programming Environment, for an explanation of 
the workspace. The followIng are examples Of immediate moae statements: 

a-2 

Let b-6 

print a+b 

2.9 EntenrlJ COnments 
There are two ways to add comments to a program: the rem statement and 
the exclamation point (!~ The rem statement is used When you wish only a 
comment to appear on a partiCUlar program line.. The exclamation point is 
used to insert comments at the end of a program Une.. 

2-4 



BASIC-PlllS User's Guide 

BASIC does not execute any program line that begIns wit!' the keyword rem 
Rem statements must be numbered. If a comment requires more than one 
line, you can break it up Into several rem statements, or you can use & 
<REllflN> and continue the comment on the next screen 11ne. 
Use an exclamation point when you want to add a comment after a BASIC 
program statement. You don't have to enter a colon before the exclamation 
point. The system ignores any text on that line following the exclamation 
point. You can also begin a line with an exclamation point instead of the 
rem keyword, and the system will not execute that line. 

2.10 Identifiers 
Identifiers identify user-defined functions, variable names, and array names. 
The following is the syntax for constructing identifier names. 

Identifier name 

Identifier names should not exceed 30 characters. (Identifiers longer than 30 
characters will generate an "Identifier too long" error and will be truncated to 
30 characters.) 
Identifiers are associated with functions, varIables, and arrays. All identifiers 
that start with fn are function names. For example, the following are valid 
identi fiers that are the names of functions: 

fnscratch 

fnCalc.1nt 

For more information on variable names, refer to Chapter 4, Data Types and 
Data Manipulation. 

2.11 Asslgment 
O1e of the most common operations in a program is the assignment of a value 
to a variable. The followIng is the syntax for the assignment statement. 

assignment 

') _ (.1 variable f-+0+I 
~ 

expression 

2-5 



BASIC-Plus User-S Guide L8I1fJiI8!le Fundamentals 

The following examples are valid and assign values to variables. 
10 let ~=10 

20 let c$="current payaent" 

20 8=12.5 

CIID.Ilt=123.98 

Note that the Keyword let is optional in the assignment statement, but the 
equal sIgn (-) 1$ always requIred. 

2-6 



NOTES 





Chapter 3 
BASIC Programming 

Environment 

3.1 USlrlJ me BASIC Interpreter to create BASIC PrOgrcmS ................................ 3-1 

32 creatlrYJ BASIC Progrcms US1ng the Workstql Editor ................................... 3-2 

3.3 Systefn COI'TV1laI m .................................................................................. 3-2 

3.3.1 Controlling BASIC Programs in Program Space ................................... 3-3 
3.3.1.1 Delete ............................................................................. 3-4 
3.3.1.2 New ................................................................................. 3-4 
3.3.1.3 Old ................................................................................... 3-5 
3.3.1.4 Replace ........................................................................... 3-5 
3.3.1.5 Save ................................................................................ 3-6 
3.3.1.6 Unsave ............................................................................. 3-6 
3.3.1.7 Append ............................................................................ 3-7 
3.3.1.8 Renumber ......................................................................... 3-8 

3.3.2 Informational Commands ................................................................ 3-8 
3.3.2.1 List and Listnn ................................................................... 3-8 
3.3.2.2 Length ............................................................................. 3-9 
3.3.2.3 Catalog or Cat ................................................................. 3-10 

3.3.3 Controll1ng Execution of BASIC Programs ........................................ 3-10 
3.3.3.1 Run and Runnh ................................................................. 3-10 
3.3.3.2 Cont ............................................................................... 3-11 
3.3.3.3 .-period ......................................................................... 3-11 

3.3.4 Debugging Commands ................................................................... 3-12 
3.3.4.1 Trace ............................................................................. 3-12 
3.3.4.2 Variatlles ......................................................................... 3-13 

3.3.5 Leaving BASIC ............................................................................. 3-13 





BASIC Programming 
Environment 

This chapter explains the BASIC system conmaIlds, touches on the Workshop 
progranming environment, CI1d points out those Workshop features most useful 
for BASIC programmers. The two ways of creating programs are discussed, 
and a discussion of the system COIlIT18Ilds follows. The BASIC system 
commands control the programming environment and are not a part of the 
BASIC language. 

3.1 Using the BASIC Interpreter to Create BASIC ProgIB'11S 
You can create BASIC programs within the BASIC Interpreter, or within the 
Workshop editor. When you create a program within the Interpreter, each 
program line is scamed for syntax erron when <RETURN> is entered. If 
there is a syntax error In the line, an error message is displayed. For 
example, the Interpreter displays an error message when the following program 
line is entered. 

220 far 1=1 to 10 

220 far i««< 

****** ~ dectylizable sta1:eIIent or WIii& id 

The BASIC editing capabilities consist of a destructive backspace and the 
delete corrrnand. You can use the destructive backspace on a particular line 
until you enter <RETURN>. After you enter <RETURN>, the only way to 
change the contents of a particular line is to retype the entire line using the 
same lIne number. For example" to correct the typographIcal error below, the 
entire line rrust be retyped. 

220 print. "'The rI.I1tJer of toJn fothis pay period = -;tom 

220 print Il1e rurtJer of t'Jrun for this pay period = -J'D.In 
BASIC replaces the origInal line wIth the corrected version 
Lines and groups of lines can be removed using the delete corrvnand. Refer to 
Section 3.3.1.1, Delete, for an explanation of this corrma Id. 

When you invoke BASIC" a pmgmm space Is created. The BASIC Interpreter 
allows one program at a time to occupy program space. All changes and 
additions you make to prognms In the Interpreter affect the program In 
prognm space. When you first invoke BASIC, and before you load any 
programs Into this program space" it is empty and new programs can be input 
When you wish to work on a different program, you must clear the program 
space, using the old or new commandS. 

3-1 



BASIC-Plus User's Guide BASIC Programming Environment 

You use these system conmands to work with program space: 
save saves the program file. 
replace saves the new version of an existing file. 
new Clears the progrcm space. 
old Clears the progrcm space ald loads the specified program. 

These commands are described In section 3.3.1, ControllIng BASIC Programs In 
prognm Space. 

Whenever you start BASIC, the following occurs: 
1. All the input alCI output ctB1nels are closed. 

2. All irp.It statements walt Indefinitely for Input 

3. All floating-point exceptions 5ld halts are turned off. Refer to 
Chapter 13, AdvCl1Ced Floating-Point Ma'llpulation, for more 
informatim 

3.2 CreatlBJ BASIC ProgJall.s l.IsIr¥J the WoJkstq) Edltor 
We recommend that you use the Workshop editor to create end edit your 
BASIC programs. It provIdes more edItlng capabIlIties than the BASIC 
Interpreter. The flJ'ldamental editing operations are inserting characters, 
cutting a portion of the text, and pasting text to a new location. You can 
use the mouse to scroll the text in the window, move the insertion point, and 
select text to be cut or copied. For a detailed explanation, refer to the 
Itt1tksIItp Llser-S Gu/~ IlJr /he Lisa 

When you create progrBllS In the Workshop editor, you canOt check the syntax 
as you type. However, the Interpreter checks the syntax of programs as they 
are loaded into progrcm space (refer to Section 3.3.1.3, Old~ Programs created 
using the WOrkshlp editor can be nil in BASIC using the IU1 or n.rril 
commands (refer to Section 3.3.3.1, RlFI CJ1d RlR'tI~ 

3.3 System CoII,am 
System commands control the BASIC programming envirorment and are never 
part of a stored BASIC prognm. Rather, the system commaIlds are used at 
commend level (without line runben). If you atterll>t to place a system 
commat Id within a program, the follOWIng error message Is dIsplayed: 
~le statement or COI'TI1l8IO 

The B~IC system commands may be put into four fll1Ctional groups: 
• Commands that control the program in program space. 
• Commands that provide information about programs. 
• Commands that control prognrn execution 

• Debugging COfTIr1'8'lds. 

3-2 



BASIC-PIllS User's Guide BASIC Programming Environment 

The system COIllfll8'ldS that control the progran in program space are: 
save Saves the program fUe. 

UlS8W Removes the program file from the specified or prefixed 
volume. 

replace Saves the new venion of a program file. 
new Clears the program space. 
old Clears the program space and loads the specified 

program. 
apperd COnsolidates two files. 
delete Deletes one or more lines. 

ret'UTtJer Ren..rnbers all llnes In the resident progrcrn. 
The informational conmands provide information abrut the CWTent program 
and about saved files. These are: 

list Lists all or part of the current program, includIng a 
header. 

listrtl 

catalog 

cat 

Lists all or part of the current program, exclu::ftng the 
header. 
Prints the amount of memory ocCt.4lied by the current 
program. 
Prints a list of all _text files on the specified volume or 
the prefixed volLl1le. 

Same as catalog. 

The COIllfll8'ldS that control program execution are: 
nil Prints a header ~ starts program execution. 
nntI Starts program execution, with no header. 

coot Restarts pragran execution (shOrt for contlrKJe). 
.-period Halts program execution. 

The debugging COIllfll8'ldS are: 
t.n£e Toggles between trace and nontrace modes. 

variables Lists all variables, their types and values. 

33_1 Controlling BASIC ProgJans in Prognm SpIEe 
These system COIllfll8'ldS are used to control BASIC prognms in prognm space. 
As was mentioned earlier, only one program may reside in prognm space at a 
time. The COI'fI'T8lds discussed in this section all control the current progrsn 
and are used when BASIC programs are created in the Interpreter. 

3-3 



BASIC-Plus User's Guide BASIC Programming Environment 

Able sane ctmptItationaJ .IU7-time eoon are not reported Ulless tile set 
statement is used to retplre reporting. Refer to Chlpter 13., Advanced 
FJoating- Point f\1anipuJatiOlt for mom informaticn 

33.1.1 Delete 
The delete command removes one or more lines from the current program. 
The syntax for delete is: 

delete 

---.~ ·1 line group • ( J 0 
where the syntax for line QlOl4) is: 

Jjne group 

~~i-nt-eg-e~rll--~-------------~-'. 

'l.cH integer ,J 
Line QI'Ot4lindicates whiCh line, lines, and groups of lines are to be deleted. 
You may select any combination of lines and groups of llnes in a sIngle delete 
command if you separate each element as indicated in the line Qm4) syntax 
diagram. 
EXBIIples. 

delete 210 Deletes 11ne 210. 

delete 225-335 Deletes llnes 225 to 335 inclusive. 
delete 110,225-335,445 Deletes lines 110, 225 to 335 InclusIve, and 

l1ne 445. 

3.3.1.2 New 
The new corrmand clears the program space In memory. 011y one program, 
the current program, can reside 1n program space. The syntax Is as follows: 

new 

-G0, J. 
~ filename ~ 

3-4 



BASIC-Plus User's Guide BASIC Programming Environment 

The program space is cleared; you can begin entering a new program when the 
Ready prompt appears. If a filename is entered, the Interpreter uses that 
name for the new program. If a fllerane Is not entered, the system prompts 
as follows: 

filerlClE: [. TEXT] 

If a filename Is now entered, It Is used; otherwise I\lNAt'1: is used. If a 
volume name Is not included, new assumes the prefixed volume. The default 
file name extension Is .text 

33.13 ad 
The old command clears the program space in memory and loads the specified 
program. The syntax is as follows: 

old 

~~. 

~m~e~ 
If a filenme is not entered, the system prompts as follows: 

fi let1Cllle: [. TEXT] 

I f a volume name is not included, old assumes the prefixed volume. The 
default file name extension is .text 
ExmpI~ 

old 
fil.erlalE: [. TEXT] --l4JPer-x The system prompts for the filename since it 

was not entered at the command level. You 
enter the volt..rne name ~r and the 
filename x. The extension .text is entered 
automatically. 

old Y 

3.3.1.4 Replace 

The y.text program is read into program 
space from the prefixed volume. 

The repla::e command writes the current program to a specified file. The 
syntax is as foll~ 

replace 

~\ r· Y filename r' 

3-5 



BASIC-Plus User's Guide BASIC Progmrnming Environment 

If a volt.me name Is not included, replace asst.meS the prefixed volllTle. The 
default fIle t'lMle extension is .text; you need not enter it 
EXB1p.le: 

replace aIlflg The program is written to cmflg.texl 

33.15 save 
The save corTV'TlEI1d writes the current program to a volt.rne. The .text 
extension, if not present, is added automatically. The syntax is as follows: 

save 

---csave) \ ( .. 
~ fllename jJ 

If a volume name is not included, save assumes the prefixed volLme.. 
The save corTV'TlEI1d asstmes that no file already exists with the specified file 
name. When you want to replace an existing file, use repl~ If you use 
save when a file with the specified filename already exists, the Interpreter 
prcmpts: 

delete old fi~? 

If you respond y for yes (and <REl1...RN», the new version of your file will be 
written to disk. 

EXBIIple: 

save progress 

33.1.6 Ulsave 

The program is written to 
progress. text. 

The tJ'lS8Ve commfl"ld removes the specifed filename from a volt.rne. The 
syntax is as foHows: 

unsave 

~\ 1" Y fllename f.l 
(f you do not enter a filerane, the system pr~ts for it as follows: 

FilenEllle: [.TEXT] 

If you do not inclUde a voll.llle name, U1S8Ve assumes the prefixed volt.me. 

3-6 



BASIC-Plus user~ Guide BASIC Pmgranmlng Envl.rament 

The default file name extension is .text; you need not enter it 
Exalples: 

tnsave config 

tnsave 
FilEnlE: [. TEXT] config 

3.3.1.7 Append 

Removes conftg.text from the prefixed 
volume. 

Removes confIg.text from the prefixed 
volume. 

The appen:1 command consol1dates two flIes by writing the contents of the 
specified fHe over the current file In the WOrKSpace. The syntax Is: 

append 

--+C appen€)----1·~1 filename r-. 
Where filename Is the name of the program to be appended to the current 
program. 
If you do not enter a ftlencme, the system prompts for it as follows: 

Fllencne: [. TEXT] 

If you do not include a volume name, appen:1 assumes the prefixed volume. 
The default flIe name extension is .text; you need not enter it. 
Append adds all unique llnes to the current program. When dupllcate llne 
numbers are encountered, the l1ne from the saved program overwrites the l1ne 
in the current program. 
ExwTpJes: 

Assume the fOllowing is a saved program: 
Progran (L[) 

10 for 1=1 to 3 
20 print -write over line 20 in the current progmlir 
30 next i 

40 em 
AssllT'le this Is the current program: 

05 for n=l to 3 
20 print -this 1s line 20 in the current progI8R-

35 next n 
40 em 

3-7 



BASIC-Plus USer's GlIlde BASIC Progranmlng Envlrorment 

To append olc1text to the current program, you type awend old 
The following Is the result: 

05 for n=l to 3 

10 for 1=1 to 3 

20 print -.r1te over line 20 in the current progran'r 
30 next 1 

35 next n 
40 end 

3.3.1JB ~~r 
The reruTlber command renumbers the program Hnes In the current program, 
from the specified starting line to the end of the program, with the specified 
increment. The fallowing is the syntax: 

renumber 

~enurnbe~ 

When you type renumber, the system responds: 
rerult)er starting at ? 

Type In the first Hne to be renumbered. The system then asks: 

increment? 

Type In the increment you want. 
3.3.2 Informatimal COl. maids 

These system commands provide information about the current program. 
3.3.2.1 Ust cred Llstm 

The list and l1stm commands display all or part of the current program. The 
llst command prints a header of the form: 

Prognm fllerane 

The llstm command (llst no header) does not prlnt a header. 
The syntax for l1st is: 

ljst 

line group 

3-8 



BASIC-Plus USer's Guide BASIC Programming Envlrmment 

The syntax for llstm Is: 

Jjstnll 

The syntax for line ~ is the same for both list and llstm: 

line grOllp 

~~i-nt-eg-er~II--~\----------~.-J--?-.~ 

~-integer 

Line grot4) indicates which line, l1nes, and groups of lines are listed. You can 
request any combination of Unes and groups of lines In a single Ust or llstrtl 
corrmand if you separate each element with a comma as indicated in the line 
QI'Ol4l syntax diagram. 

Exattples:. 

list .220 
listrh 220 
list 220-335 
listrh·220-335 

Prints a header and then llsts line 220. 

Lists line 220 (withoUt a header~ 

Prints a header, lists lines 220 to 335 Inclusive. 

Lists Unes 220 to 335 inclusive (without a header~ 

list 10,20,35-75,80-95 Prints a header, lists Unes 10, 20, 35 to 75, 
Inclusive, ana 80 to 95, inclusive. 

listrtl 15,25-50,55,80-95 Lists llnes 15, 25 to 50 inclusive, 55, and 80 to 95 
inclusive (without a header~ 

3.3.2.2 Length 
The 1et'YJlh corrmand prints the amount of memory occupied by the current 
program, and the maximum program size. The fOllowing Is the syntax. 

length 

--+C-le-n-gth-u-. 

3-9 



BASIC-Plus user's Guide BASIC Programming EnvIronment 

The length command returns >(y)< of memory used Where y is the total 
amount of space you can ever haVe, x Is how much space Is uSed, and K 
stands for Kllobytes. A Kilobyte Is 1024 bytes. 

3.32.3 catalog or cat 
The catalog (or cat) conmand prInts a Ust of all .text fUes on the specified 
volume (or the prefIxed volume, If It Is dIfferent; refer to the WOJ1<SIJop user's 
Guide for the LIsa for an explanation of prefixed volumes~ The fOllowing is 
the syntax for the catalog command. 

catalog 

-r(Catalog) ( \ ( • 
~ Y device name r' 

catalog prInts a Ust of the following form: 
catalog for -paraport 
IdsQlc.text 

OOCUIe1ts. text 
jmlfiles _ text 

3.3.3 COOtrolllrYJ the Executlm Of BASIC Programs 
3.3.3.1 Ru1 am RlI'ltl 

The IUl and nrm commands start program execution. Program execution 
always begins at the program line with the lowest number. The nil command 
prInts a header of the form: 

Program f1lencJE 

before starting program execution. The NYlh command (run no. header) omits 
the header. The syntax for IUl is as follows: 

IU7 

--G:)"'\ ( • 
l.j flJenarre r' 

If a volume name Is not speCified, the prefixed volume 'is assumed. The 
syntax for n.rm is as follows: 

runnI1 

--Cnrm)~ 7-
41 filename ~ 

3-10 



BASIC-PJus user~ Guide BASIC Progn1l1Y11lng Envirument 

If a volt.me name is not specified, the prefixed volume is assumed. 
If a file name is not specified, RI'l and nnlh execute the current program. If 
there is no program currently in memory and the command doesn't inclUde a 
fllename, the system displays the error message: 

???Hissing EN) statement in line -1. 

~.les:. 

I'tIl Prtnts a header and starts execution of the current program. 
rtntl Starts execution of current program (without a heacter~ 
I'tIl taxes Loads taxes.text into memory, prints a header, and starts 

execution. 
rtntl taxes Loads taxes.text into memory and starts execution (without a 

header). 

3.3.3.2 Coot 
The cont command restarts execution of programs halted by the stql corrmcvld 
or by the .-pertod interrupt. When a cont command is input, program 
execution is resumed at the statement immediately following·stql (even if the 
stop statement is in the middle of a multiple statement Une). The cont 
command is never part of a stored BASIC program. The syntax Is as follows. 
cont --< cant )-+ 
~.les: 

110 next n:stop:n=O 

220 stq) 

225 gou 1101 

3.3.3.3 .-Period 

When a cont is input, program execution resumes 
wi th the statement n-n 

When a cont is encountered, program execution 
resumes at the Une after Une 225. 

.-period is the soft interrupt character; it inte~ts program execution at 
"safe" places, so that no data is lost. To use the .-pertod interrupt, hold 
doWn the Apple key (ti) Whlle you type a pertOd (.). When you type ti-pertod, 
BASIC will interrupt the program at the next safe place it encounters. The 
ti-period interrupt will not get you out of a request for input. 
NJIe AJtI7OIJfjt1)'Ot1 type two keys to use the li-pedOd intempt, it is treated 
as only one Character. 

3-11 



BASIC-PJus User~ Guid!! BASIC Progranmity Envi.nnnent 

3.3.4 DebIQQi~ COI ••• B OS 
The debugging commands are used when a program does not work the way you 
want It to. 

33..4..1 Trace 
Trace is a debugging cornrnald that switches between trace CIld non-trace 
modes. When the system is in trace mode, program execution is followed and 
line runbers are printed as they are executed. The syntax is as follows. 

lr8ce 

--+( trace )--. 

When trace mode is entered, the system prints 
Trace flag set to TII£ 

and when trace mode is left, it prints 
Trace flag set to FM..SE 

ExaIples: 

For the foHowing very sIfTl)le program: 
20 for 1=1 to 3 

30 print ~llo· 
40 next 1 

50 em 

3-12 



BASIC-Plus User's Guide BASIC Programming Envirorment 

The following Is prlnted on the screen when the trace flag is set to true crld 
the program is executed: 

line -1 

line 20 
line 30 
hello 

line 40 

line 20 
line 30 

hello 
line 40 

line 20 

Line 30 
hello 
Line 40 

Line 50 

33.4.2 varIables 
The vart~les COl'TYTlCYld searches the current program for variables, printing a 
list by type and value. BASIC supports six types of variables: integer, floating 
point, string, floating-point arrays, string arrays, m integer arrays. 
The syntax is: 

variables 

-+Garlables)---. 

The variables cornrnand applies to the current program only. 
3.35 Leaving BASIC 

The bye commaIld closes n:S saves open files and exits to the Workshop 
corrmand line. The syntax is as follows.. 

bye 

-+( bye )--+ 

3-13 





NOTES 





'29-0J74-A 

Chapter 4 
Data Types and Data 

Manipulation 

4.1 Integer CIld Floatl~lnt OlrlstcIlts ......................................................... 4-1 

4.1.1 Numeric Notation ..........•............................................................... 4-1 
4.1.2 Integer and Floating-Point Arithmetic .............................................. 4-2 

Il2 StrIng OlrlstcIlts •••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••.•••••••••••••••••••••• 4-2 

4.3 variables CIld variable I'ICITleS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •• 4-4 

4..4 EXJ)resslorlS ••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-6 

4..5 All thrnetic ~rators ••••.••••••••••••.•.•..••.••••••••••••••••••••••••.•••..••••.•.•••.••••••••••• 4-8 

4.5.1 Results of Division by Zero .............................................................. 4-8 

4.6 Logical ~rators •••••••••..••••..•••••••.••••••••••••••••••.••..•.•••••.•.•..••••.•.•••••••••••••.• 4-9 

4.7 Relatlot'lal (llerators .•.••.••••••••.•.•.•.•.•••••••••••.•••••••••••••••••..••.•..•••••.••••••••••. 4-12 

4.8 Precec:B ICe of (llerators ........................................................................ 4-13 





Data Types and Data 
Manipulation 

BASIC supports integer, floating-poInt, and string values. This chapter defines 
each of these data types and presents the legal BASIC data manipulation 
operatlons. 

4.1 Integer em Float1rY:t"POlnt constalts 
In BASIC an integer constant Is specified as a series of digits ending with a 
percent sign (%~ A floating-point constant is specified as a series of digits 
with an optional decimal point to separate the whOle and fractional parts of 
the number. In other words, the absence of a percent sign makes a numeric 
value a floating-point value. A minus sign (-) preceding the first digit 
indicates negative integer and floating-point values. For example, the 
following are legal integer constants: 

1% -245% 897~ 

and the following are legal floating-point constants: 

1.275 -354..786 4 

Table 4-1 lists the valid ranges for integer and floating-point constants.-

Tcmle 4-1 

Rmges fOr Integer a'ld Float1rY:t"POlnt constalts 

Type of Constant RB1Q8 

Integer -32768 througn 32767 

Floating-Point ±4.9*10" -324 through ±1.7*10 A 308 

IlL1 tunerlc I'btation 
You can enter numeric constants in one of two ways. You can enter the 
value as a string of digits suCh as 

105000 

or you can use scientific notation and write the value as 

1OSE+3 

4-1 



BASIC-PJI.IS User's Guide Data 7)'pes & ManJpuJaUon 

4..1.2 Integer Em FloatIng-Point Arlthmetlc 
Floating-point values occupy four 16-blt words of storage and use double 
precisIon arithmetic. USing doUble precIsion arithmetic you can represent 
values up to 15 decimal places accurately. 
Integers occupy one 16-bl t word of storage. The range of Integer values 
supported by BASIC is continuous; the number following +32767 Is -32768. 
Therefore When you aQd large pos1t1ve integer Values, negative numbers can 
result For example, the followIng additions yield negative values: 

print 324~ + 31223% 

-1814 
print 2567~ + 31~ 

-8290 

The values of integer variables or expressions can be used as logical variables. 
0% corresponds to the logical value FALSE; any nonzero integer value 
corresponds to the logical value TRUE. 

4.2 StrIng Constants 
A string constant Is data made up of a series of characters, diglts, and special 
Characters. The value of a string constant does not change durIng program 
execution. A string constant can contain up to 32767 characters. However, 
to create a string longer than a screen 11ne, you must use the string functions. 
Refer to Section 10.4, String Functions, for more information. 

4-2 



BASIC-Plus user's GuIde 

The following Is the syntax for string constalts: 

string constant 

aJpl7aDet/c cl1aracteIY 

ntll77eric clJaracteIY 

all ptnCtualilKl 
except' 

numedc clJaracteIY 

811 pu7Ctualion 
except II 

Data 7)lpes & Manl(!MatJOII 

When you enter a string constant, start and end the string wltn single or 
double quotation marks; the quotation marks distinguish a string constant from 
a string variable name. The quotation marks aren't part of the string and 
aren't included when you output the string. To print the phrase PleaSe enter 
your r&ne, you could type the following: 

pr1nt 'Please enter your naE' 

The system displays 
Please enter your name 

In response. Note that the results would be the same If you· began and· ended 
the string with double quotation marks. 

4-3 



BAS1C-PIIIS user's GuIde Data 7)pes & Manipulation 

When you want a quotation mark to appear wIthIn a string you can: 
1. USe the other type of quotation mark (e.g. the type of quotation 

mark that doesn't appear In the strIng) as the strIng delimiter. For 
example, If you type: 

print • Use the -other- (JJOtation mark' 

the system displays: 
Use the -other- CJ.IOtation mark 

or if you type: 
print -use the • other , (JJOtation mark

the system dIsplays: 
Use the • other • CJ.IOtatlon mark 

2. Enter two quotation marks of the same type where you want a 
single quotation mark. This distinguishes a del1miter from part of 
the string. For example, if you type either of the print statements, 

print -can' t fi~ profits wi ttnJt DDre infol'llBtion.

pr1nt • can' 't figure profi ts without oore information.' 
the system displays the 11ne: 

can't figure profits wittwt IOOre information. 
Typing: 

pr1nt -Use --double-- (JJOtatlon marks

prints: 
Use -dot.tJle- CJ.IOtation marks 

and typing: 
print • Use ., double" CJ.IOtatlon marks' 

prints: 
Use • dot.tJle· quotatIon marks 

4.3 V8r1ables CI'ld vartable Nemes 
A varIable is a value that can Change during program execution. The 
vadable name, whiCh does not Change, Is associated with the data Variables 
can assume values of any of the three data types. The variable name . 
determines the type of value that it represents. 

4-4 



BASIC-Plus User's Guide Data Types & ManIpulation 

The following is the syntax for creating variable names. 

varlalJle name 

Able variable names may not exceed tI1.Irty ch8nJCters. 

A name ending in a percent sIgn (%) represents Cfl integer value, a name 
ending with a dOllar sign ($) represents a string value, and a name without 
either of the two distinguishing symbolS represents a floating-point value. 
The following are examples of legal variable names for each data type. 

1. Integer 
lOOP~ 

enp.run% 

crate~ 

2. Floating-poInt 
final. total 
totalcash 

bOttom. line 

3. String 
brand .11CIES 

~ly.type$ 

persomel$ 
The system allocates space for a variable In BASIC the first time you use It 
in a statement BASIC Inlt1aUzes numeric variables to zero and initializes 
string variables to the zero length string. 

4-5 



BASIC-Plus User's GuIde Data Types & M8niptl1atlon 

4.4 Expressions 
M expression is a group of values (constants, variables, and functions) and 
operators that Is used to compute a new value. The following Is the syntax 
for expressions. 
expmsslon 

expression 

N1te All Implicit rotI1d/ng of floating-poInt expn:sslons to Integers Is to tile 
ne8l'est Integer,- values tJalfWa'y between two Integers cue J'OU1ded to the even 
Integer. 
The following Is the syntax for factor. 

factor 

1----4.1 array selection t----I 

function call 

expression 

The syntax for array selection is as follows. 

array selection 

~ array variable 1-+) 
( .. 
~ expression 

~-exp-re-ss-io-n--,;r Q)+ 

4-6 



BASIC-PillS User's Guide 

The syntax for ft.I'lctim call is as follows. 

funclion caJ1 

identifier 

The syntax for operator is as follows. 

operator 

Data 7ypeS & ManJpuiatim 

The type of operator used in expressions is dependent on the element type. If 
the elements that the operator separates are string constants or functions that 
return string values, the operator must be a relational operator or the string 
concatenation operator (+~ (Refer to Section 4.7, Relational Qlerators, for an 
explanation and examples.) If the elements In the expression are numeric, the 
operator can be mathematical, logical, or relational. (Refer to SecUon 4.5, 
Arithmetic ~erators; Section 4.6, Logical q>erators; and secUon 4.7, 
Relational Q:lerators, for an explanation and examples.) 
When evaluating an expressIon, the system always checks the data type of the 
result against the data type of the target variable. If the result of the 
expressIon is a string and the target variable is numeric, or vice versa, the 

4-7 



BASIC-P1I.Is User's GI.Iide Data 7)peS & HanipulatJon 

system returns an error message. If the result and the variable are both 
numeric but of different types, one of the followIng occurs: 

• If the target varIable Is an Integer and one or more values In the 
expressIon are floating-poInt values, the system evaluates the 
expressIon usIng the floating-poInt values, rounds any fractional portion 
of the result, and assIgns that value to the integer variable. 

• If the target variable is a floating-poInt value and one or more of the 
values in the expression are integer values, the system treats the 
Integers as floating-point values. 

45 AIittmetlc qlerators 
BASIC recognizes the arithmetic operators defined In Table 4-2. 

~rator 

+ 

-

* 

I 

... 

** 

remainder 

TaDle 4-2 

Arithmetic £llerators 

Use Explfl18tim 

X+Y Adds X to Y 

X-V Subtracts Y from X 

X*Y Multiplies X by Y 

XIY Divides X by Y 

X"'Y Raises X to the Y power 

X**Y Raises X to the Y power 

XremainderY Computes remainder 

The + and - signs can be used as unary operators. The + Is Ignored; the -
changes the sIgn of the value whICh follows. 

4.5.1 Results of Division by zero 
The results of a division by zero depend on the type of operand, that is, 
whether the value is floating-point or integer. If the division Is between 
floating-point values, the result Is usually positive or negative infinity. 

4-8 



BASIC-Plus User's Guide 

F or example: 
5.510.0 

results in positive infinity, While 
-5510.0 

results in negative infinity. However, 
0.010.0 

Data Types & ManiplJlatiOl7 

results in a NaN C'Not a Number"~ Refer to Appendix B, Floating-point 
Arithmetic, for more information. 
Division by zero when the values are integers results in a run-time error. 

4.6 Logical qJerators 
A logical operator can separate two integer variables or constants, or two 
relational or arithmetic expressions. Floating point variables and constants 
are legal within a logical expression only as part of a relational or arithmetic 
expreSSion. 
When integer values are used, the value 0% is equivalent to false. All other 
values are true. 

4-9 



BASIC-Pllls User's Guide Data Types & HaniptJlatJon 

BASIC recognizes the logical operators listed In Table 4-3. 

qJerator 

CI"ld 

or 

eqv 

not 

IJlll 

xor 

Table 4-3 

Logical £llerators 

Rules of Evaluatloo 

X lIJd Y is true only if Xand Yare both true. 

X or Y Is true When eltner xor Y Is true. The 
expression is false only when both X and Yare 
false. 

X eqv Y is true If X and Yare ooth true or 
Ooth false. 

If X Is true .. not X Is false, and if X is false, 
not X is true. 

X Jnp Y Is true unless X is true and Y is false. 

X xor Y is false when Ooth X and Yare false, 
or when both X and Yare true. 
The expression Is true when one value Is false 
and the other is true. 

4-10 



BASIC-Plus User's Guide Data rypes & Manipulation 

The result of a logical operation is either true or false. BASIC considers 0% 
to be false and any other value to be true. The truth tables In Table 4-4 
define the result of a logIcal expression for each possible pair of values. 

Table 4-4 

Trutn Tables for Logical ~rators 

xy x or y xy x xor y xy x eqv y 

t t true t t false t t true 
t f true t f true t f false 

f t true f t true f t false 

f f false f f false f f true 

x not x xy x tnj y xy x lfl1) Y 
t false t t true t t true 

f true t f false t f false 

f f false f t true 
f t false f f true 

4-11 



BASIC-Plus USer's Guide Data Types & Manipulation 

4.7 Relatiooal qlerators 
Relational operators compare two numeric or string expressIons that are 
composed of constants or variables, or both. The result of the comparison is 
either true or false. Table 4-5 lists the BASIC relational operators and the 
comparisons they perform. 

~rator EX8'f1Jle 

- X-y 

< X<Y 

> X>Y 

<= X <= Y 

>= X >= Y 

<> X <> Y 

-- X=Y 

Table 4-5 
RelatiooaJ. qJerators 

ExplCRition 

Determines whether the value of X Is equal to 
the value of Y. 

Determines whether the value of X Is less 
than the value of Y. 

Determines whether tne value of X 1s greater 
than the value of Y. 

Determines whether the value of X is less 
than or equal to the value of Y. 

Determines whether tne value of X Is greater 
than or equal to the value of Y. 

Determines whether the valUe of X is not 
equal to the value of Y. 

Determines whether print X and print Y 
would agree. 

The system compares strings with the ASCII sequence. When the two strings 
are of different length, the system compares the characters of the shorter 
stl1ng to the corresponding characters In the long string. If the system finds 
no dlfferences between the two strings and the remaining characters of the 
longer strlng are blanks, the two strings are equal. If the remainIng 
characters are not blanks, the longer strtng is greater than the shorter string. 

4-12 



BAS/C-PIlIS USer's Guide Data Types & HanJpulatJon 

For Instance, suppose StI1ngl$ contaIns '~', str1ng2$ contaIns ·Gr~ ., 
and Strlng3S contaIns "GraJ1lS cnj Olarts·. The system consIders Strtngl$ and 
str1ng2$ equIvalent, althOugh str1ng2$ has more characters than StI1ngl$, 
because the addItional characters in strtng2S are blanks. However, the system 
treats Strtrg3$ as greater than StI1nglS because the characters In Str1ng3S 
fOllowIng the common characters are not all blanks. 

4.8 PrecedelICe Of ~raton 
When a calculation involves more than one operator, BASIC performs the 
operations in the following order: 

1." ** (exponentiation) 
2. ltlary+, t.nary-, not 

3. *, /, remainder (muIUpUcation, divIsIon) 
4. Binary+ , blnary- (addition, subractlon) 
5. <, >, <=, >=" <>, --

6. and 

7. or, xor, eqv, iql 
Within each level of hierarchy, operations are performed from left to right 
However, parentheses Change the order of evaluation. BASIC evaluates the 
expression within the innermost set of parentheses first, then the expression 
within the next higher set of parentheses, and so on. Within parentheses, 
BASIC follows the rules given above. 
For example, 

-2"2--4 

(-2)"2-4 

If A-2, 6-4" and C-S" then 
A+B*c-22 
(A+B)-C-30 

When evaluating the expression, the system multiplies B by C and then adds A 
to the result" because multiplication is done before addition. But if you 
enclose the addition in parentheses, the system aCIds A and B first and then 
multiplies the result by C" because operations withIn parentheses are done 
before any others. 

4-13 





NOTES 





Chapter 5 
Formatted ASCII Input 

and Output 

5.1 Il'1)Ut and OJtput Olannels ........................................................................ 5-1 

52 Read and IJata ....................................................................................... 5-1 

53 Restore ••••••••••••• 0 ••••• 0.000000.0.00 •• 00 0.00000.0000.000.00000 000000 •• 0 0 0 0 ••••• 0 •• 00.0.0 ••• 0.0. 0 0 •• 0 5-3 

5.4 Irp.rt. ....• 0 0.0.0 ••••••••••• 0 ••••• 00 •••••• 00 •••• 00000.00.000. 0.00000000. o. 0000 00 •••• 0.000.0 ••••••••• 00. 0 0 •• 5-4 

5.5 II'1)Ut Line .• 0 ••• 0 •••••• 0 •••••••••• 0.0 ••• 0 ••••• 0 ••••••• 0.0.0 0 0 0 0 0 0 0 0.' ••••••••••••••••••••••••••••••••••• 5-5 

5.6 Prtnt ........•...•...........•...•.•... 0.0 ••••••••• 00 ••••••••• 0 •••••••••••• 0 ••••• 0 •••••••••••••••••••••••• 5-S 

5.7 Prtnt LJs1flg ••••••• 0.0 ••••••• 0 ••• 0 •• 00 •••••••• 0 •• 00.0 •• 00.0 ••••••• 0 ••••••••••••••••••••••••••••••••••••• 5-8 





Formatted ASCII Input 
and Output 

Formatted ASCIl Input and output reads and writes characters In ASCII format 
to and from fHes and devices in the system. ASCII format is the format used 
for the keyboard and screen. ASCII input and output, althoUgh simple and 
flexible, require the system to convert values from internal forms to ASCII 
format and dO not allO'N random fHe access dUring output 

5.1 If1JUt and 0Jtput a&Ylels 
BASIC communicates with flIes through ClJ8fnels The ~ statement assigns 
a logical InpuVoutput Channel to a filename. Refer to section 11.1, Qlen, for 
more Informat1on. 
BASIC supports thirteen logical input and output channels. These channels are 
numbered 0-12. Channel 0 is always associated with the console. When you 
print from BPSIC without specifying the channel number, Channel 0 is 
assumed. Channels 1-12 are not associated with a file or device When you 
first start up the system. You associate the Channels, as you need them, by 
using the qleI1 statement. The association impoSed by the ~ statement 
lasts until you either close the cnannel with the close statement, clear the 
workspace using the new or old commands, or exit BASIC. Refer to section 
11.2, Close, for information abOUt the close statement, and to Chapter 3, 
BASIC Programming Environment, for information abOUt the new and old 
commands. 

5.2 Read and Data 
Data can be defIned within a program with the data statement Data defined 
wi thin a program can be read by the read statement Data are defined In the 
data statement In an ordered llsl LIkewise, variables are defined In the reai 
statement In an ordered l1st. When Usa BASIC executes a read statement, It 
assigns values from a data statement to eacn of the variables lIsted In the 
read statement The following Is the syntax for the read statement 

read 

-+~>--C-"""·"IL-_Va_r_ia_b:le=::~"t'"'J"""." 
0-

vartable is any valid variable name. 

5-1 



BASIC-Plus user's Guide Formatted ASCII I/O 

The following Is the syntax for the data statement. 

data 

---~ C ·1 my dlanEteIS ex:ept 0 ~ 
--------~~~-------

If a data statement Is InclUded In a multiple-statement Une, It must be the 
last statement In the line. 
BASIC maintains a list of values that it builds from all the data statements in 
a program. The first value in the list Is the first value in the first data 
statement in the progrcm; the last value in the list is the last value in the 
last data statement in the program. 
When the system executes the first read statement in a program, It assigns 
the first value In the data l1st to the first variable In the read statement, the 
second value in the data list to theseconcl variable in the read statement, and 
so on. For example, 

20 read firstS, llliouet, lastS 

90 data ~ Henry, t1adlsm 

Line 20 Is the first lead statement in the program and line 90 Is the first 
data statement In the program. BASIC assigns the string ~ to tintS, the 
string Henry to mldet, and the string MadIson to lastS . 

The number of read and data statements need not match. You can enter the 
data values for several read statements In a single data statement or enter 
the data values for one read statement in several data statements. There Is, 
however, a one to one correspondenCe between the varIable and value pairs. 
Note that the read statement determines Whether the data objects are 
Interpreteo as Integers .. floating-point nt.rnbers .. or strIngs. 
Each value In the list of data can be used only once. If all Values have been 
used When a read statement attempts to assign a Value to a variable, the 
system returns an error message. 

5-2 



BASIC-Plus user's Guide 

For excmple, 
20 read proO.ctt, price, sale~ 

70 read storeS, arearep$, shipped, ororder 

900 data perells, 0.7, 10853 

910 data rourney's, adaIRs, 1000 

Fonnatted ASCII I/O 

The two reoo statements require a total of seven data values. However, the 
two data statements provide only six. When the read statement at line 70 
attempts to assign a value to (I rudel, there are no data available and the 
system displays the fOllowing message: 

???rut Of data at line 10 

When assigning data statement values to variables, the read statement cheCks 
to see if the type of the variable and the type of the data value matCh. llle 
system w111 assign an integer in a C1ata statement to eIther an integer or 
floating-point variable, bUt will not aSSign a floating-point value to an integer 
variable. 
The reoo statement determines Whether the data objects are Interpreted as 
integers, float1ng-point rumers, or strings. This means that you don't have to 
use a ~ after Integer values you enter In a data statmenl In fact, If you dO 
InclUde the ~ the system displays the fallowing error message: 

7n8ad iflJut fonat in <line I> 

WithIn data statements, all strings that contain sIgnificant spaces or a conma 
must be delimited by single or dOUble quotation marks. If a string is not 
deUmlted by quotation marks, and It contains a comm~ the system interprets 
the comma as a delimiter between elements In the data statement. 

5.3 Restore 
The restore statement instructs the system to return to the top of the data 
list and amgn values to sub3eqUent rea2 statement variable~, starting with U1e 
first value in the data llst. The syntax for restore is as follows. 

restore 

~ 

5-3 



BASiC-Plus User's Guide 

The followIng Is an example of the restore statement. 
135 real a, b, c, d 

140 restore 
145 rea2 e 
150 uata 1, ~ 3, 4" 5 

160 print a, b" c, d, e 
IUl 

1, 2, 3, 4, 1 

If llne 140 Is deleted above .. the results are: 
1, 2, 3, 4, 5 

SA IfllUt 

Formatted ASCii //0 

The tf1lUt, statement assigns values to varIableS from a source other than a 
data statement. The statement retrieves the values from a designated source 
such as the console or a file. The default device is the console. The 
following is the syntax for the If1)Ut statement 

llPllt ---
channel # 

Chnlel # is a pound sIgn followed by an integer expression; variable Is any 
legal variable name; pl1l'f1Jt is a string constant that the system displays as a 
prompt When it executes the input command. 

5-4 



BASIC-Plus USer's Guide Formatted ASCIIIIf] 

The following example ShOws hOw the Prorf1lt feature works. 
10 ifl)Ut -Please enter your naIE cni rutler. .; userraES, useI1'Ultler 

20 ir1Jut -Now piCk the topic that yru walt to research. .; topicS 

125 erd 

1'tfl 

Please enter yrur I'lCIE cnl rutJer. SUsan, 122 

Now piCk the tq)1c that you walt to research. stock marKet 
Note that values entered by the user are separated by corMlas, as are values 
in the variable list. 
When you use the console (the default device for the Ifl)Ut statement) the 
system displays a question mark (?) when it is ready to accept input. Values 
must be separated with commas .. as abOVe. 

A response string cannot contain commas unless the string is enclosed in 
quotation marks. A way around this restriction Is the If1M. line statement. 

55 If1)Ut Line 
The IrpJt. line statement requests Input of one Une from a specIfied devIce or 
fUe and assigns the Une to the string variable In the statement. The 
followIng Is the syntax for the IJl)Ut line statement. 

input line 

~-lnpu-t -llne-) I. ~ ·1 
'-+i channel 1t l--()-' 

strIng variable 

The defaul t device is the keyboard. Characters are read into the string 
variable up to and InclUding the flnt <RETURN>. 
The following are example~ of the input Une statement. 

5.6 PrInt 

100 1r1)Ut l1ne cDttesSS The keyboard Is used as the source of 
input. 

150 irp.lt line IS, CWltyS The fUe associated with data cnannel :IS 
is used as the source of Input. 

The print statement Is used to display data on the screen or to print to a fUe. 
Ttle print statement outputs data to the console (the default fUel or to 
another specIf1ed file. The following Is the syntax. 

5-5 



BASIC-Plus user's Guide Fonnatted ASCII I/O 

print 

The channel number must be one that is currently in use (associated with a 
fUe by an ~ statement). The punctuation (,;) following the Channel number 
Is just a dellmlter; it dOes not affect the prInt zones (described below). 
The system divides each llne on tne screen Into pdnt zones. EaCh prInt zone 
Is 14 characters wide. 
The punctuation (,;) that you use In a print statement determines the format 
of the output. Table 5-1 defines hOw the system formats output for each type 
of punctuation. 

5-6 



BASIC-Plus User's Gu/de Fonnatted ASCII I/O 

Table 5-1 
Print statement PtI1ctuatloo 

Pu1ctu-
E~ Effect 00 Formatting atlm 

, print A, as Each value begins In the next available print 
zone. When the current line is full, the next 

-12.50 credit value Is printed in the first zone of the next 
line. 

; print A; BS Each value is printed Immediately after the 
precedIng value. Numer1c values are 

-12.50 credit formatted with spaces, as described below. 

The system doeS not print a <RETURN> if the last character of a print 
statment is a comma (,) or a semicolon (;), and values from the next print 
statement are printed on the same Une (if possible) . 
Values from the next print statement are printed on tne next Une if you encJ a 
print statement withoUt punctuation. 
The llst below gives other runerlc formatting rules for the print statement. 

• Leacl1ng zeroes ana nonsIgnlflcant tralling zeroes are suppreSSed. If a 
floating-point value has no fractional part, the decimal point is also 
suppreSSed. 

• For integers and floating point n.rnbers, the printed value has a traiUng 
space. If positive, it has a leading space; if negative, it Is preceded by a 
minus sign. 

• Very large or small values are printed In scientifiC notation wlt11 a leading 
and a trailing space. 

NJte Additional screen control Is possible lJSlng special Cllaracters.: see the 
Workshop user's Guide ror more InFormation. 

5-7 



BAS/C-Plus USer~ Guide Fonnetted ASCII //0 

5.7 PrInt UsIIYJ 
The print using statement, like the print statement, outputs data to a specified 
fHe. However, the print uslfYJ statement uses a string (that you specify) as a 
guide for prInting the Information. In other words, the output Is printed 
according to a specified format. The fOllowing Is the syntax for the print 
using statement. 

print using 

~~ ~:Or~ channel t~ , 

The channel numoer must be one that Is currently In use (associated with a 
fUe by an qJen statement~ StrlIYJ is a string constant, variable, or expression 
that contaIns the format field for the statement. The system prints the Ust of 
data In the format speclfed by the strlf'VJ. 

Table 5-2 defines the print usllYJ format field Characters. These characters 
dictate the format for the output. 

5-8 



BASIC-Plus USer's Guide FOIT118tted ASCII I/O 

Table 5-2 
Print l.JslrVJ Statement formatting Characten 

format~ter EffeCt 00 rutp.It. 

! Represents a one-ooaracter string. 

Represents a string field of two or more 

\\ 
cnaracters: \\ Is a two-cnaracter fiela, 
\<space><space>\ is a four-character field, and 
so on. 

Defines runeric formats. Each -# represents a 
algI t; the period (.) marks the decImal point 
### ••• prints up to 999.99. Up to 15 formatting 

•• characters are permitted. Leading zeroes are 
replaced by spaces. A runber that Is too large 
for the format Is printed lIlformatted, preceded 
by ~ 

When placed at the end of a I'll.Illeric format, 
- prints a tra1l1ng minus (-) for all negative 

values. For example, ## •. #.-

When precedes a runeric format causes a dollar 
$I sign ($) to be printed before the first digIt of 

the following numeric field. 

If any commas appear within a numeric format 
to the left of the decimal poInt, commas wIll 

, appear every three digits in the result. SUch 
commas In the format also allocate 
space In the same way as #. 

** 
Precedes a I1t.ITleric format; prints asterisks (*) 
Instead Of spaces wI thin runerlc output 

Follows a runeric field to indicate positions 
A A A for scientific notation. At least three C ,. ,.) 

are TeCJ.lired, ~ to five (A A A A A) may be 

necessary. 

5-9 





NOTES 





Chapter 6 
Branching Statements 

6.1 If lllerl Else ..•.••.....•.......•.•...•....•.....••......•.•.•.••••....•••....•.••.•....•.•••.•....•.... 6-1 

6.2 If (3oto •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-2 

6.3 (}l (3oto ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-3 

6.4 01 (3()stJb ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-3 

6.5 (}l ElIOr (3oto ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-4 

6.6 RestJTle ••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••.•••••••••••••.••••••.••••••.••••••• 6-5 

6.7 (3oto •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-6 





BranchingStat~ts 

Branching statements modify the order of statement execution while a 
program is IUTling. BASIC includes both conditional CI1d lIlCaldltional 
branching statements. A conditional branching statement causes program 
execution to branch if a condition is met. l.klcornitional branching statements 
always branch. 

6.1 If Then Else 
The if then else statement is a conditional branchIng statement. If a 
condition is met (true), then whatever is in the then clause is executed. If a 
condition Is not met (false), the then clause is not executed. If the expression 
is false and the if then else statement does not have m1 else clause, the 
system executes the fIrst statement of the following program line, disregardIng 
statements in a rrul tiple statement line. 

If you use the else clause, if then executes either the statement in the then 
clause, or the one in the else clause. If the condItion Is met, then something 
is executed, otherwise scmething else is executed. The following is the syntax 
for the If then else statement. 

jf then else 

expressi(J1 

Expression fruSt be 81 expression or integer variable, the value of which can 
be interpreted as either true or false; statement is a valid BASIC statement; 
line :t is a number of a line within the program. 

The following example compares sales to projected sales, setting a variable to 
true if sales fall below a certain point. 

35 if sales < (projected * .9) then DBrgintoola.t = 1 ! l=true 

6-1 



BASIC-Plus user~ GlIlde BranclJing 

To set marglntoolow% to false when sales don't fall below the critical point.. 
you could use an else clause as follows: 

35 if sales < (projected * .9) then nmgintoolow% = 1 8: 

else marglntoolOW% - 0 ! 0 - false 

6.2 If Goto 
The if gato statement Skips to a different part of the program during 
execution if a condition is met. The following is the syntax for the If goto 
statement: 

jf gotD 

~ expression 1~~~lline 1t 1--. 
~ 

Expression is an expression whose value can be interpreted as true or false; 
line # is a valid line number wi thin the program. 

Goto can be broken into two words, go to, if you wish. 

F or example, assume you are writing a program that updates employee 
salaries. To recalculate salaries for those employees who have gotten a raise 
or been promoted since the last update, you could use an if gato statement as 
follows to direct the program to the salary recalculation and· posting routine 
for all employees whose salaries need adjustment. 

50 if datechanged <> datet.pjated gato 1000 

The statement checks the date the records were last updated with the date 
the employee's salary was last changed. If the employee's salary was changed 
since the last update, the program continues execution at line 1000, the 
beginning of the salary recalculation routine. 

The example below is a program segment that checks data that the user 
enters at the keyboard and SkIps to l1ne 1000 if the data are not within the 
defined limits. 

10 i~ -Enter a rult)er bet.een 1 CI1d 10-; rumer' 
20 if not(rud:le~ >= 1 CIId rumer% <= 10) then 8: 

goto 1000 

1000 rem oata 1f1)Ut error root1ne starts here. 

6-2 



BASIC-PllJS User's Guide BrancI1.Ing 

6.3 Dl Goto 
The on gato statement transfers control to one of a list of line numbers. The 
following is the syntax for the 00 goto statement: 

on gato 

--G)-l expreSSiCK1l~ J~~ 
~~ L--Q+-J 

Goto can be broken into two words, go to, if you wish. 
After evaluating e)(Jlressloo, the on goto statement transfers control to the 
l1ne wIth the posItion in the l1st that corresponds to the value of expression. 
For example, If the value of the expression is 1, the next line executed is the 
first lIne in the l1sL For example: 

45 on ho.sh~ goto 100, 200, 300, 400 
If the value of hOWsh1p% is 1, control transfers to line 100; if the value of 
hoWshlp% is 2, control transfers to line 200, and so on. If, however, 1'mrIShlp% 
Is less than 1 or exceeds 4, the system displays the message: 

moo goto range error in line 45 

The maximum number of line references In an 00 goto statement is 255. 
6.4 Dl GosW 

The on gost.tl statement transfers control to one of a list of sUbroutines 
(subroutines are explained in detail in Chapter 10, Subroutines and Funct1ons~ 
The following Is the syntax for the on gost.b statement 

on goSt./lJ 

--G)-l expreSSion I ~ 

~L--Q+-J 
Expression should be an expression which gives an integer result or an integer 
variable. The value of expression is an offset Into the list of line numbers. 
The line numbers are the sUbroutine entry poInts. 
GostJ) can be broken Into two words, (J) $W, if you wish. 
The m gost.tl statement Invokes the sUbroutine beginning at the line with the 
pOSition in the l1st that corresponds to the value of expression. If the value Is 
4, for example, control transfers to the fourth line number In the list. Note 
that If the value of e)(Jlression is less than 1 or greater than the number of 
Unes listed, the system generates a run-time error. 

6-3 



BASIC-PIlls USer's GuIde Branching 

USe the 00 gost.b statement WheneVer you program multiple branches to 
sUbroutines. For example, you could use the fallowing on gost1) statement to 
direct execution of the SUbroutines: 

25 on croice ~stJ) 30, 100, 300, 375, 500 

Each line • Is the entry point of a sUbroutine. The maximum number of Une 
references In an 00 gost.b statement Is 255. 

65 0\ Error Gato 
The 00 error ~to statement directs program execution to an error-hand11ng 
routine when a recoverable run-time error is encountered. The following is 
the syntax for the on error ~ statemenL 

on 81TO[ ~7t't.a 

Line • represents the entry point Into an error-handling routine. Goto can be 
broken into two words, go to, If you wish. 
NJle use the.ll!Stlm staten'JeIJt (descfilJed belOw) to exit tIJe effOf-/J8lJdllng 
routine. 
BPSIC provides two system Integer variables for use In error handling; these 
may be printed or examined by the program in the error-handling routine: 

• err contains the number of the error; a Ust of error numbers and their 
mean1ng 1s found In ,Append1x 0 .. Error Messages. 

• erl contains the Une number of the statement that prodUced the error. 
01 enor goto statements may appear anYWhere in a program and must be 
executed before they taKe effect. If an 00 error gato statement has been 
executed, any recoverable error causes the program to branch to the specified 
line number. To disable a prev10usly executed 00 error gato statement, 
execute 00 enor gato with no Une number or on error gato 0. To specify a 
new error-handling routine at line n, execute on error gato n 

6-4 



BASIC-Plus User's Guide 

Here is an example of a program with an error-handling routine: 
100 A$ = -current-

6.6 Rest.me 

110 on error goto 500 ! PI'OIIpt for valId fllenEIE 

120 c:p:Jl At for iflJut· as file .3 

130 I'M file is~, so tum off error haOOling. 

140 m error 9Oto 

500 rem Error hErldler checks for missing iflJut file. 
510 if err = 5% then 9Oto S40 ! 5=f11e not found 

520 on error 9Oto ! tum off error tBldler 

530 reSllE ! reSUE at qJen, line 120 

540 print -fILE -;A$; - AT LItE -;erl; - MlT f(UI). • 

550 iflJut -ENTER ItflUT fILENAtE .•• ·; A$ 

560 reSUE ! reSllE at open with new filerae 

Branching 

The reune statement clears the current error and allows program execution 
to continue after an error has been handled. It shOuld always be used to exit 
from an error-handling routine entered via m error goto. The following is the 
syntax for the reune statement. 

resume 

~r l'. 
~ line tt r' 

Resune 0 (which is the same as reune without a line number) causes the 
program to continue at the line that caused the error. If there are multiple 
statements on the line, resune resumes at the dim, def, fnend, for, or next 
statement immediately preceding the statement that caused the error. 

Resune n resunes at line n 

6-5 



BASlC-PJus User's Guim 

6.7 Geto 
The goto statement is an l.IlCOI1ditional branching statement. In other words, 
the ~to statement always transfers control to the specified program line. 
The following is syntax for the goto statement. 

gala 

~~Iline#f-. 
go to 

Line :I must be a valid line number that exists in the program. For example, 
the program line: 

125 ~to 335 

transfers program exection to line 335. 
Goto can be broken into two words, ~ to, if you wish. 

6-6 



NOTES 





Chapter 7 
Looping Constructs 

7.1 For I'Iext •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-1 

7.2 wtlile ....ext ..•...••..•.•.....•...•••.••...•...••••.....••..•...••••.•..••...•.......•....•••.....••....• 7-2 

7.3 For While ....•...•.....•....................................•.......•.•................•.•.....•.•...•.. 7-4 

7.4 For lkltll ............................................................................................... 7-5 

75 lJrltil i'lext •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••• 7-6 

7.6 I\Ieste(j Loops .•••.•...•.•...••.•••••••• 00 ••••• 0 ••••• 0 •••••••••••••••••••••••••••• 00 •••••••••••••••••••• 7-7 





Looping Constructs 

Looping constructs allow you to execute blocks of statements a specified 
number of times or until some condition is met 

7.1 For Next 
The for next construct controls how many times the program executes the 
block of code between the two statements. The following is the syntax for 
the for next construct 

For next 

'*1 line ~~ ~ variable ~ 

vartable, the control variable for the loop, is used to determine the number of 
times the block of code bOunded by the for and next statements is repeated. 
Note that the variable in the for clause must be the same as variable in the 
next statement 

Start, stop, and increment are numeric expressions. Start is the initial value 
of the control variable, stop is its final value, and increment is the . quantity 
added to the value of the variable at the completion of each iteration of the 
loop. Increment can be either a positive or negative numeric value but 
cannot be 0; 1 is the default value. 

The for next construct executes the statement or statements bounded by the 
for and next statements until the value of the control variable exceeds the 
llmit specified in the for statement O1ce the value of that variable exceeds 
the limit, program execution resumes at the statement following the next 
statement 

If the initial value of the control variable exceeds stop before the first 
iteration of the loop, the system ignores the statements bounded by the for 
and next statements and continues execution at the statement following the 

7-1 



BASIC-Plus user~ GlIJde Looping 

next statement (This situation exists 1f Increment is positive and start is 
greater than stop or If Increment Is negative and start Is less than stop.) For 
statements such as: 

10 for iters = 4 to 1 
40 for loops = 1 to 4 step -1 

cause the system to SkIp to the statement fallowing the associated next 
statement 

The for statement specifies the number of iterations of a loop. The number 
of iterations can be set prior to executing a program or can depend upon the 
run-time value of a variable. For next constructs such as: 

70 for i teratims = 1 to 4 

90 next iterations 

execute the enclosed block of code a specific number of times. For next 
constructs such as: 

45 for loops% = l' to I'UItlerofreoords% 

., 

80 next loops% 

execute the boUnded code the number of times that corresponds to the run 
time value of an integer variable (in this case, rumerofrecords%~ 
Looping with integer indices is much faster than looping with floating-paint 
indices. 

72 WhIle Next 
The While next construct executes' the enclosed block of COde while the 
specified condition is true. The following is the syntax for the construct. 

WfJ/le next 

7-2 



BASIC-Pills User's Guide Looping· 

The While next construct tests whether or not the expression is true before 
each iteration of the enclosed cOde. If the expression in the Whlle statement 
is false before the first Iteratlon of the loOP, the system SKips to the line 
following the next statement For example, in the loop: 

100 While 1 > 2 
110 rumerofprool~ = I'UItlerofprool~ + l' 

120 next 
the system never executes line 110 because 1 is never greater than 2. 
The next statement of a WhIle next construct Is only a delimiter for the loop; 
the next clause cannot include a variable name, and does not increment any 
variable In the expression in the WhIle statement. Therefore, if you dOn't 
modify the value of the expression in the While statement within the bounds 
of the construct, the system cannot exit the loop. 
For example, 

150 WhIle ordercotllt' < ~ 

160 fIllut· Please enter the next order.·, ordel't'Ultler' 
170 next 

O1ce the system enters thIs loop, It never exits, because llne 160 doesn't 
change the values of ordeICOU'lt% or max%, the variables that determine the 
truth of the expression in the While.statement The only way to interrupt the 
loop is to use the .c-period interrupt 
The following is a correct example of a Whlle next construct that inputs 10 
values into the array a 

100 1 = 10 
110 .1h11e 1 > 0 
120 1~ -next value-, a(1) 

130 1 = i - 1 

140 next i 

150 print -done-

7-3 



BASIC-Plus User's Gu/de Looping 

7.3 For WhIle 
The for While construct executes a loop While a condition remains true. 
Looping ceases when the condition in the While clause becomes false. The 
following Is the syntax for the for While construct. 

ror wnjJe 

The for WhIle construct tests whether or not the expression Is true before 
each iteration of the enclosed code. If the initial value of the· expression Is 
false, the system Skips the enclosed code and executes the statement fOllowIng 
the next statement. 
The following example of a for While construct concatenates the elements of 
the string arrays ~ and B$ as long as the elements of ~ are not null. 

150 for i = 1 ~ile A$(i) > •• 

160 A$(i) = A$(i) + 8$(1) 

200 next i 

7-4 



BASIC-PIllS User's Guide Looping 

7.4 For UlW 
The for t.Iltll construct executes a loop t.Iltll a condition becomes true. 
Looping ceases when the condition in the lIlW clause becomes true. The 
following is the syntax for the for t.Iltll construct. 

for lI7lil 

statement 

The for lIltll construct tests whether or not the expression Is true before each 
iteration of the enclosed code. If the initial value of the expression Is true, 
the system Skips the enclosed code and executes the statement following the 
next statement. 
The followIng is an example of a for lIlW construct. 

150 for 1 = 10 lIlt11 1 >= 50 or A(1) >= 100 
160 A(1) = A(1) + A(1-1) 

200 next 1 

7-5 



BASIC-Plus User's Guide Looplng 

75 Ultll Next 
The l.Iltll next construct executes the bounded code until the condition in the 
lIltll clause is true. The following Is the syntax for the construct. 

until next 

The lIltll next construct tests Whether or not the expression is true before 
each iteration of the enclosed code. If the Initial value of the expressIon Is 
true, the system Skips the enclosed code and executes the statement following 
the next statement 
As wIth the Whlle next construct, the next statement Is only a del1mlter of 
the loop; the next statement cannot contain a var1able name, and it does not 
affect any variable in the lIltll clause expressIon. 
If you dOn't modIfy the value of one or more of the variables In the lIlW 
statement expressIon w1th1n the bOunds of the construct, the system cannot 
eXit the loop. 
The followIng lIltll next construct will continue requesting values until 0.0 1s 
input Une 190 guarantees that at least one pass through the loop wUI be 
made. 

190 v = -1.0 

200 lIlt1l v = 0.0 

210 1F1XJt -next value?-, v 

300 next 

7-6 



BASIC-Plus User's Guide Looping 

7.iJ Nested Loops 
My of the looping constructs can appear wi thin the code bounded by another 
looping construct But the two statements of the nested construct must occur 
between the beginning and ending statements of the outer construct, as below: 

IJegJn outer ctTIStJu;t 

begin Jmer CUlStJu;t 

end /mer cmstJu;t 

The following is an example of nesting. 
10 for cycle = 1 to 4 

20 print' CYCle', cycle 

25 print 

30 for SUbcycle = 1 to 10 

40 print • Stmycle'; stJlcycle, 

50 next stJlcYCle 

55 print 

60 next cycle 

70 end 

The fOllowing is an incorrect example of nesting. 
10 for cycle1 = 1 to 3 

20 print • cycle1'; cycle1 

30 for cycle2 = 1 to 4 

40 print • cycle2'; cycle 2 
50 next cycle1 

60 next cycle 2 

70 end 
The example above is Incorrect because the inner construct is not contained 
within the outer construct To make It correct, llnes SO and 60 should be 
reversed. 

7-7 





Chapter 8 
Statement Modifiers 

8.1 1lle If Statement rvtodlfler ........................................................................ 8-1 

8.2 1lle For statement to1ocIlfler ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-2 

8.3 1lle WhIle Statement t-1OdIfler .................................................................. 8-3 

8.4 1lle lkltll statenlent I'1OdI fler ••••••••.••••••••••.•••••.•••••••••••••.••••.•.•••••••••••••••••••. 8-3 

8.5 TIle Ulless Statement tvIodlfler ................................................................. 8-4 

8.6 MoIltiple IVIodlflers •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-4 





Statement Modifiers 

Statement mOdifiers modify statements. You can use the statement modifiers 
on many Of the statements discussed in Chapters 6 and 7. 
When a statement modifier is used in a multiple-statement line, the statement 
modifier qual1f1es only the statement it follows. For example: . 

235 print -hello- : print .goocIlye- if greeting$ = 'g': print a 
-Choose an activity· 

The If moClifler affects only prtnt IOgoocIlyelO; none of the other statements is 
modified. 

8.1 The If statement Modifier 
The if statement mOdifier qualifies the execution of the preceding statement. 
In other words, the modified statement is executed if a condition is met (true~ 
The fOllowing is the syntax for the if statement modifier. 

if statement modifier 

--.f statement ~ expression ~ 

statement is any valid BASIC statement; expression is any logical or relational 
expression. If the result of the expression is true, the statement Is executed. 
Otherwise, execution is resumed at the next program line. 
The If statement modifier is functionally equivalent to the if then construct. 
For example, 

25 total% = total% + 1 If total% < 100 

and 
25 If total% < 100 then total% = total% + 1 

do the same thing; the value Of total% is incremented if Its value is less than 
100. 

8-1 



BASIC-Pllls User's Gl/jde Statement Modifiers 

82 The For statement rv10difler 
The for statement modifier executes the preceding statement the number of 
times specified in the for clause. The following is the syntax for the for 
statement modifier. 

ror statement modjrjer 

~xpressionl.~ ~ 
step increment 

The for statement modifier generates a loop that executes statement until 
variable reaches or surpasses the defined llmlt. 
Functionally the for statement modifier is equivalent to a for next construct 
which affects one statement The for statement modifier can be used with 
only one statement, unlike the for next construct For example, 

10 bOxes% = bOxes% + 10 for crates% = 1 to lastcrate% 
It is equivalent to 

10 for crates% = 1 to lastcrate% 
20 bOxes% = boxes% + 10 

30 next crates% 
In the fOllowing example, program execution is transferred to a profIt 
calculation routine If the status of an Item in inventory equals chosen.. 

50 for mon~ = 1 to 12 
60 If status$(nm~} = -Chosen- then gostb 350 

70 next month% 
You can use a for statement modifier and dO the same thing in one line. 

60 goU) 350 If status$(roonth%) = • Chosen' for IIDlth' = 1 to 12 

8-2 



BASIC-Plus user~ Guide Statement fvIodiHers 

8.3 The While Statement rvIodlfler 
The While statement modifier executes the preceding statement until the 
condition specified in the While statement is false. The following is the 
syntax for the While statement modifier. 

W/J.I)e statement modi l1er 

-----1statement~ expression ~ 

The While statement modifier can control only one statement, which must 
modify the control expression, otherwise the loop will never terminate. The 
following is an example of a WhIle statement modifier. 

100 if profitsS = ·UP· then bonus = bonus * 1.1 a 
.hile bonus < amount 

8.4 The UlW Statement rvIodlfler 
The lI'ltil statement modifier executes the preceding statement until the value 
of the lI'ltil expression is true. In other words, it executes the preceding 
statement as long as the lI'ltil expression is false. The following Is the syntax 
for the unW statement modifier. 

una) statement modjfjer 

---+1 statement ~~ expression ~ 

The until statement modifier can control only one statement O1ce the 
condition in the expression is true, execution passes to the next statement In 
the program. For example, the statement: 

20 loops = loops + 1 until loops >= llmlt 

Increments the variable loops by one until the value of loops Is greater than 
or equal to the value of the variable llmll 

The until statement modifier creates an endless loop unless the statement 
affects the value of the until expression. For example, 

30 loops = loops + 1 until reverues > altlc1pated 

endlessly increments loops, unless reveooes is InItially greater than 
altlclpated. 

8-3 



BASIC-PJl.Is User'sGlJlde Statement ModIfiers 

8.5 The lklless statement ModIfier 
The tRess statement modifier executes the preCeding statement unless the 
expression in the l.Illess statement Is true. The following is the syntax for the 
tRess statement modifier. 

mJess statement modifier 

-+lstatement~1 expression ~ 

This statement modIfier Is especially useful When a decision to perform a task 
depends upon two COnditions, as in the fOllowing example. 

100 If balMCe <> ortlcnj ttel a 
print 'OOT (F BAI..ND:' t.Illess flag$ = 'errorok ' 

8.6 M.Iltlple Modifiers 
You can append more than one statement modifier to a single statement For 
example, the following are legal BASIC statements. 

10 length = lerYJUl ... 1 for 1 ters = 1 to llmlt tRess flagS = 'stop' 
20 share = share ... ~ 01 while share <= tlAX l.Illess flagS = 'notellg' 
30 print 'true' If 1 <> 3 for 1 = 1 to 10 

8-4 



NOTES 





Chapter 9 
Matrices 

9.1 Dim •••••••••••••••.•.••••.•••••••••••••.•.•.•••••••••••.••••••••••••...•.•.•.•..•.••.•••••••.•.•..•.•.•• 9-1 

9.2 t1at ...................................................................................................... 9-3 

9.3 I'1at Read .............................................................................................. 9-4 

9.4 t-1at fr1XJt .............................................................................................. 9-5 

95 I'1at Print ••••••.••••••.•••••••••••.•••••.•.•••••••••••••••••••••••••••..••••••.•••••••••..•...•••••••.. 9-6 

9.6 t-1atrix caIculatiOl'lS ................................................................................ 9-7 

9.6.1 
9.6.2 

ACldltlon and Subtraction ..•.....•............••.................•....................... 9-8 
Multiplication •....•........•.•........•..•.......••.......•........•....................... 9-9 





Matrices 

A matrix is an ordered collection of variables of the same type. Matrices are 
also called arrays. Valid variable names are used as matrix names. The last 
character of the name determines the type of all the data in the array. 

Matrices can have one or two dImensIons. A one-dImensional matrix is a 
single list of variables. The individual variables (or elements) within a matrix 
are numbered, starting with O. To refer to an individual element within a 
one-dimensional matrix, you specify the name of the matrix, followed by the 
number of the element enclosed in parentheses. For example, 

print projectedcost(3) 
prints the contents of element number 3 in the matrix named projectedcost. 
The number of the element enclosed in parentheses, for example (3), is called 
the matrix subscript Since a one-dimensional matrix is a single list of 
variables, only one matrix subscript is needed to identify an element. 

In a two-dimensional matrix, two subscripts are needed to specify an 
individual element For example, the following elements are part of a matrix 
named clearqJ%. 

cl~(O,O) 

cl~'(1,0) 

cle~(2,O) 

cl~(O,l) 

cl~(1,1) 

Cl~(2,1) 

cl~(O,2) 

cl~(1,2) 

Cl~(2,2) 

Cl~O~) specifies the element in the first row and third column. 

This chapter presents the statements that you use to define, fill, and access 
matrix elements, and explains the matrix arithmetic operations. 

9.1 Dim 
Whenever you create a matrix, you must tell BASIC the maximum number of 
elements and dimensions you want The dim statement defines, or dimensions, 
the matrix; with it you can name one or more matrices and define the data 
type and maximum size for each matrix. The dim statement reserves a 
certain amount of space for the matrix. You don't necessarily have to use all 
the space you reserve, but you can't use more than was specified. The default 
dimension for all matrices is 10. 

9-1 



BASIC-Pllls USer's Guide 

The following is the syntax for the dim statement 

dim 

variable name 

Matrices 

CD-! expressIon! I ~ . f"CD--+ 
, expresslon2 

variable can be an integer, floating-point, or string variable name. Each 
matrix can store only one type of value. The variable name determInes the 
type of value the matrix accommodates. Expression1 and expressi0n2 should 
have non-negative integer values. 
A single dim statement can define more than one matrix, and these matrices 
can be of different types. 
The number of rows and columns in a matrix are its dimensions. The values 
of expresslon1 and expresslal2 are the upper limits of a matrix's dimensions. 
Expression1 is the highest row number and express10n2 is the highest column 
number. 
Remember that the llst of dimensions for all matrices begins with 0, so the 
number of elements in a matrix is always the largest subscript value plus 1. 
For example, the dim statement: 

50 dim Jtn<' (12, 12) 

creates a matrix that has 13 rows and 13 columns. However, unless you 
specifically access the zero'th row and column, they are ignored. 

EXlJIfJ.les: 

20 dim shoes(2) 
66 dim Shoes(2), ShoeS%(2,2), Shoes$(15,14) 

Several of the matrix operations allow you to redimension a matrlx after 
defInIng Its size in a dim statement However, you cannot make a matrix 
larger than its origlnal size or change between one-dlmensional and 
two-dimensional matrices. 
NJte 7!Je maxinun size for a non-virtual array is 321< byteS. The maxlrnun 
f1tI1'lber of array elements (lncll.ldJng the zero'th element) is 2730 for.real 
ana~ 16383 for integer arrays. 

9-2 



BASIC-PIllS user's Guide HlJtrlces 

92 Mat 
The mat statement is the matrix ini Ual1zaUon statement The following is the 
syntax for the mat statement. 

mat 

expressionl k--------~ 

The first varicmle must be the name of an already dimensioned matrix; 
expressionl and expressl0n2 are its dimensions. You can use this varlcmle to 
redimension the matrix, but remember that you cannot make the matrix larger 
than its original size. Zer sets all elements of the matrix to zero (the default 
value for elements in a newly created matrix); con results In a matrix of all 
ones; len sets the matrix elements to one on the diagonal where row number 
equals column number, and all other elements in the array to zero. 
Exanples: 

35 mat jll1<' = ien (20, 20) 

99 mat dentist = zer (12,,1) 

22 mat pagoda = con 
You can also use the mat statement to assign the value of one matrix to 
another matrix. For example, 

35 mat ~ = jade 

assigns the value of COO1l to )me, redimensioning jade If necessary. 

9-3 



BASIC-Plus User's Guide Matrices 

9.3 Mat Read 
The mat read statement loads values from one or more data statements into 
one or more matrices (see Section 5.2, Read and Data~ The following is the 
syntax for the mat read statement. 

mat read 

~I variable ~ 

expressionl ~-------~~ 

variable is the matrix name; expresslon1 and expressl0n2 are the matrix 
dImensions. If you don't specify dimensions, the current dimensions of the 
matrix are assumed; if you do include them, the statement redimensions the 
matrix to conform. However, the system cannot increase the number of 
elements in the matrix or change between one-dimensional and two
dImensional matrices. If no dimensIons fOllOW the name of a matrix, Usa 
BASIC fills the enUre matrix with values from the data statement beginning 
wIth row l. and proceedIng to the next row· as each row Is fmeet 
In a program that loads ttle values of a two-by-three matrix from within the 
program, the dim, mat read, and data statements could be: 

20 O1m stock (2, 3) 

30 mat rea1 stock 

100 data 25.8, 18.75, 17.25, 56.7, 98.6, 125.9 

The dim statement creates a six-value matrix and the mat read statement 
instructs the program to read these values from the data statement. The 
program fills the matrix row by row (i.e., for each row, the row stays fixed, 
the column varies~ The following table shows stock after the mat read 
statement assigns values to each element. 

9-4 



BASIC-Plus User's Guide Matrices 

COIUll'l , {row" COllllll} 

1 2 3 

Rowtl 1 25.8 18.75 17.25 

2 56.7 98.6 125.9 

If the data statement doesn't contain enough values to fill the matrix, the 
system displays the error message: 

??? llJt of data In nne x 
where X is the Une number of the mat read statement 

9.4 Mat IfllUt 
The mat ifllUt statement loads values into one or more matrices from the 
keyboard or from a flIe. The following is the syntax for the mat If1lUt. 
statement. 

mat input 

expressionll.---------..: 

V8riable Is the matrix name; expresslonl and expressl0n2 are the matrix 
dimensions. If you don"t specify dimensions, the current matrix dimensions are 
assumed; If you do inclUde them, the statement redimensions the matrix to 
conform. However, the system cannot Increase the runber of elements In the 
matrix, or change between one-dimensional and two-dimensional matrices. 
When you Input matrix values from the keyboard, the mat 1f1Jut statement 
displays a question mark when the program is ready for the matrix values. 
The values you enter must be of the same type as the matrix. 
There are two system variables, run and run2, that are set dUring execution 
of the mat if1lUt. statement to describe the size of the entered array. JIUn 

9-5 



BASIC-Plus USer's Guide Matrices 

contains the number of rows for a two-dimensional matrix, or the number of 
elements for a one-dimensional matrix. ~ contains the number of columns 
in a two-dimensional matrix. 
UnliKe the llllUt statement, the mat lIlXJt statement displays the prompt once 
and accepts the values only until the user types <RETURN>. Therefore, be 
careful not to press the <RETURN> key before entering the last matrix value. 
The mat Input statement requires a comma between values. For example, if 
you enter the following seven values after the question mark prompt, the mat 
If1)Ut statement interprets them as one value. 

? 10 20 30 40 50 60 70 

To enter the values as separate elements in a matrix, you must enter a 
comma as a cJel1miter between values. 

? 10, 20, 30, 40, 50, 60, 70 

Exa!ple:. 

10 dim a(10) 

20 mat input a(10) 

9.5 Mat PrInt 
The mat print statement prints all or a portion of the named matrix. 
However, the zero"th row and column of a matrix are never printed by the 
mat print statement The following is the syntax. 

mat print 

expressionl k--------~ 

variable is the variable name associated with a matrix; expresslml and 
e)(J)ressl0n2 are the matrix dimensions. If you don't specify dimenSions, the 
current dimensions of the matrix are assumed. If you include dimensions, the 
statement prints only the portion of the matrix that you specify; it does not 
redImension the mattlx. 

9-6 



BASIC-Plus User's Guide M6trices 

The comma and the semicolon determine the print format of a matrix. The 
pu1Ctuation Is the sane as for the print statement Refer to Section 5.6, 
Print, for more Information. 
ExaIple: 

10 dill a(10) 
20 for x = 1 to 10 

30 a(x) = x 
40 next x 
50 mt print 8; 

60 print 
70 IBt print a 
80 EDt 

IU'l 

12345678910 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

9.6 Matrix C81cu1ations 
You can add, stJrtract, and rrult1ply matrices. There are also five built-in 
matrix fl.retions: tm, Inv, del, lInsys, and Cond; refer to section IllS, Matrix 
FUlCUons, for more· information. 

9-7 



BASlC-Pllls User's Guide 

The following is the general ·syntax· for matrIx arithmetic· operations: 

general mat.dx arithmetic 

Matrices 

The matrix on the left of the equal Sign is redimensioned to conform to the 
dImensions of the resulting matrix. O'lly one matrix arithmetic operation can 
be performed per statement For example, 

30 mat result = effect - cost 
Is legal, 'lihUe 

30 mat result = effect - cost + deterioration 
is illegal. 

9.6.1 AddItlon and SUltractlon 
You can add or subtract matrices of the same dimensions (having the same 
number of rows and cOlumns~ However, the target matrix only needs to be 
large enough to accommodate the results. If the target matrix Is larger than 
necessary, the system redimensions It to conform to the dimensions of the 
input matrices. 
For example, 

10 dUn totals ( 31 ), store1 ( 7 ), store2 ( 7 ) 

500 mat totals = store1 + store2 
stole1 and store2 have seven. elements each. When the system. adds the two 
together and stores the result in totals, It also redimensions totals to seven 
elements. 
When adding or SUbtracting matrices, the system adds the values In 
correSponding pOSitions and stores the result In the same position In the target 
matrix. 

9-8 



BASIC-Plus User's Guide Matrices 

9.6.2 MJItiplicatlon 
There are two types of matrix multiplication: sc81ar multiplication and 
multiplication of confonnlng matrices. 
When you multiply a matrix by a scalar value, the system multiplies the value 
of each matrix element by that value. For example, the following line 
multiplies each element tn scaled.total% by 10 and stores the result In the 
matrix fInal.total%. 

100 mat final. total' = (10) * scaled. total' 

Note that the keyword mat is necessary to identify this statement as a matrix 
calculation. The parentheses around the scalar value are also required. 
Matrices x and y are conforming matrices if the number of columns in x is 
equal to the number of rows in y. For instance, the following dim statements 
define pairs of conforming matrices. 

120 dim jan. graph ( 10, 30 ), feb. graph ( 30, 12 ) 

10 dim ratios ( 4, 12 ), inverses ( 12, 10 ) 

When you multiply conforming matrices, the matrix that receives the 
calculated values must have dimensions that can accommodate the number of 
rows of the first matrix and the number of columns of the second. The target 
matrix is redimensioned if necessary, but it cannot be dimensioned to a larger 
size. For example, if you multipl1ed ratios by Inverses (aoove1 the resulting 
matrix would be four by ten. 

9-9 





NOTES 





Chapter 10 
Subroutines and Functions 

10.1 (3()S\.t) arld RetlJrn ••• •••••••• •••••••••• •••• •• .• .••• •• •• •• . • ••••••••• •• •••••• • .• •••••• •••• ••• •••• •• 10-1 

10.2 f\estlng SttJroutlnes ..•••..••.•.•.•.•.•.•••...•.•.•...•.•.•.•....••.....•.•.••.•••...........••• 10-2 

10.3 ArIttvretlc FlflCtiorlS ••••.•...•.•••.•.•.•.•.•.•••••.•..••••.••.••••••••••••.••.•••.....•••••.•.• 10-2 

10.3.1 ,Al)s ....................................................................................... 10-2 
10.3.2 Sqr ........................................................................................ 10-2 
10.3.3 Pi .......................................................................................... 10-2 
10.3.4 Sin ........................................................................................ 10-2 
10.3.5 Cos ....................................................................................... 10-2 
10.3.6 Tan ....................................................................................... 10-3 
10.3.7 Exp ....................................................................................... 10-3 
10.3.8 Atn ....................................................................................... 10-3 
10.3.9 Log ....................................................................................... 10-3 
10.3.10 Log10 .................................................................................... 10-3 
10.3.11 IntandFix .............................................................................. 10-3 
10.3.12 Rnd and Randomize ................................................................. 10-4 
10.3.13 Sgn ........................................................................................ 10-4 
10.3.14 Intpart ................................................................................... 10-4 
10.3.15 Intpart% ................................................................................. 10-5 
10.3.16 Compound .............................................................................. 10-5 
10.3.17 Annuity .................................................................................. 10-5 
10.3.18 Time ...................................................................................... 10-5 
10.3.19 Ccpos or pos ............................................................................ 10-6 
10.3.20 Tab ....................................................................................... 10-6 
10.3.21 Swap% .................................................................................... 10-6 

10.4 string Ft.rlCtiorlS ...... .............................................. •••••.•. ................ ••••.. 10-6 

10.4.1 Len ....................................................................................... 10-6 
10.4.2 Left ....................................................................................... 10-6 
10.4.3 Right ..................................................................................... 10-7 
10.4.4 MId ....................................................................................... 10-7 
10.4.5 Instr ......•.........•......•...•.•.....•.....•.......................•.••.............•.... 10-7 
10.4.6 ............................................................................................... 10-7 
10.4.7 Space$ ................................................................................... 10-7 
10.4.8 Chr$ ..........•...................•.•.....•.......•...........•........................... 10-8 
10.4.9 String$ ................................................................................... 10-8 
10.4.10 Xlate ..................................................................................... 10-8 
10.4.11 Cvt Functions .......................................................................... 10-8 

10.4.11.1 Cvt$$ ....................................................................... 10-9 



10.4.12 Sum$ ...................................................................................... 10-9 
10.4.13 Dif$ .............................................................•......................... 10-9 
10.4.14 PrOCl$ ........•.... , .........................•............................................. 10-9 
10.4.15 Quo$ .................................................................................... 10-10 
10.4.16 PlaCe$ .................................................................................. 10-10 
10.4.17 Comp% ................................................................................. 10-10 
10.4.18 Yal ....................................................................................... 10-10 
10.4.19 Num$ .................................................................................... 10-10 
10.4.20 Num1$ .................................................................................. 10-10 
10.4.21 Ascii .................................................................................... 10-11 
10.4.22 RaCl$ .................................................................................... 10-11 
10.4.23 Date$ ................................................................................... 10-11 
10.4.24 Tlme$ ................................................................................... 10-11 

10.5 I'1atrlx FLIlCtlons ............................................................................... 10-11 

10.5.1 Trn ...................................................................................... 10-11 
10.5.2 Inv ....................................................................................... 10-12 
10.5.3 Det ...................................................................................... 10-12 
10.5.4 Linsys............... .•.••.• ........ .............. .......... .............. ......... ...... 10-12 
10.5.5 Cond .. .... .......... .......... ........ ........... .............. ............... .......... 10-12 

10..6 Creatll'lg Yrur (M'l Ft.I1CtiOl'lS ......................... .... .... .............. .... ... ........ 10-12 

10.6.1 Def* .................................................................................... 10-13 
10.6.2 FnenCl ................................................................................... 10-13 

10..7 Olarlge ............................................................................................ 10-14 



Subroutines and Functions 

Subroutines and functions are blocks of code that perform specifIc tasks. 
SUbroutines and functions serve different purposes and are used dl fferentl y. 
This Chapter explains the dlfferences between the two and presents the 
related statements. 
A subroutine is a separate block of code within a program that performs 
certain actions and then returns control to the main program. To invoke a 
subroutine, you use the goSlJJ statement; to return to the main program, you 
use the return statement. 
A function, however, is a block of code that returns· a value. A function 
name can appear in a program anYWhere a constant or variable of the same 
type as the function result can appear. BASIC provides arithmetic, matrix, 
and string functions and also allows you to define your own. The functions 
provided by BASIC are not part of your programs. Functions you create are a 
part of the programs you use them In. This chapter defines each of the 
functions provided and explains how to create your own. 

10.1 Gostil cnj Return 
The gosti> statement requests execution of a SUbroutine. A subroutine is a 
block of code wi thin the program which performs a specific task. The return 
statement is placed at the last line in the subroutine to return program 
execution to the program line after the one which contains the goSlJJ 
statement. The following is the syntax for the gost1) statement. 

gOSl/lJ .1 line tt 1-+ 

Line runber is the entry point to a subroutine within the program. Gostil can 
be broken into two words, go m, if you wish. 
The following is the syntax for the return statement. 
retllm 

~ 
When the system executes the return statement of a SUbroutine, control passes 
to the statement immediately after the gostJl state:-nent. 

10-1 



BASIC-Plus user's GuIde SUbroutines & Fl.II1Ctions 

102 Nestlng Slbrrutlnes 
A subroutine can call another subroutine which in tum can call a third 
subroutine, and so on. The return statement of each subroutine returns control 
to the statement following the gostJJ statement that initiated execution of 
that sUbroutine. Therefore, a subroutine can call itself. The maximum level 
of nesting depends upon the size of the program and the amount of available 
memory. 
A sUbroutine can have more than one entry point; in fact, you can use any 
line number within a subroutine for the line number in the ~ statement. 

1n3Art~ticF~tiau 
The functions sqr, pi, sin, cos, tan, exp, atn, log, log10, COI"f1JOlIld, and sndty 
return approximate values only. 

1n3.1 Abs 
The ails function returns the absolute value of the argument The format of 
the ails function is as follows. 

ems (a) 

The argument a is a numeric value. 
1n3.2 Sqr 

The sqr function returns the square root of the argument. The format of the 
sqr function is as follows. 

sqr (a) 

The argument a is a numeric value. 
1n3.3 PI 

The pi function returns the constant whiCh approximates the value of 1f 
(3.14159 ... ~ The value of n is the ratio Of a circle's circumference to its 
diameter. The format of the pi function is as follows. 

pi 
The pi function requires no arguments. 

1n3.4 SIn 
The sin function returns the sine of the argument. The format of the sin 
function is as follows. 

sin (a) 

The argument a is a numeric value, in radians. 
1D.3.5 COs 

The cos function returns the cosine of the argument The format of the cos 
function is as follows. 

cos (a) 

The argument a Is a numeric value, In radians. 

10-2 



BASIC-Plus User's Guide sutJroutJnes & Fl/I1CtJons 

103.6 TCI'l 
The tan function returns the tangent of the argument The format of the tan 
function is as follows. 

tan (a) 

The argument a Is a numeric value, in radians. 

10.3.7 Exp 

The exp function returns the exponential value of the argument, ea, where 
e-2.71828_ The format of the exp function is as follows. 

exp (a) 

The argument a is a numeric value. 

103.8 Atn 
The atn function returns the arctangent of the argument The format of the 
atn function is as follows. 

atn (a) 

The argument a is a numeric value, in radians. 

10.3.9 Log 
The log function returns the natural logarithm (10Qe x) of the argument The 
format of the log function Is as follows. 

log (a) 

where e1og(a)=a or exp(log(a»=a 

10.3.10 LogI0 
The log10 function returns the base 10 logarithm (logIOX) of the argument 
The format of the log10 function is as follows. 

log10 (a) 

where 101og10(a)~ orl0A 1og10(a)=a 

10.3.11 Int Bld Fix 
Both the lnt and fix functions return the integer part of x as a floating-point 
value. The formats of the two functions are: 

lnt ( a) 

fix ( a) 

If the floating-point value is already an integer value, either function returns 
that value. otherwise, for positive values of a... the functions both return the 
largest integer that Is not greater than a For example, int (25) and fix (25) 
both return the value 2. 

10-3 



BASIC-Plus User's Guide SUbrot/tJnes & FtII7ctJons 

Int and fix handle negative values of a differently. lOt rounds towards 
negative infinity, whUe fix rounds towards zero. For example, tnt (-32.355) 
yIelds -33, while fix (-32.55) yields -32. 

103.12 Rnd and RCI'ldomlze 
The md function generates the next number in a sequence of values greater 
than 0 but less than 1. Each time you execute a program md generates the 
same sequence of values, until you execute the rarDJrnize statement. 
The rarDJrnize (or rcnnn). statement changes the start1ng point in the 
sequence to a random one. The following example generates twenty integer 
values between one and ten. A dIfferent set Is generated eaCh time you run 
it: 

30 dim r(20) 

40 rcnbnize 

50 for 1=1 to 20 
60 r(l) = int(1+10*rnd) 

70 next 1 

The following is the syntax for the rarDJrnize statement. 
JCJf7dOmize 

~ randomize 

~ random 

10.3.13 ~ 
The S91 function determines whether the argument Is posItive, negative, or 
zero. The format is : 

~(a) 

The S91 function returns the following values. 
o if a - 0 

1 'If a has a positive sign 
-1 If a has a negative sign 

10.3.14 Intpart 
The tntpart function returns the integer part of x as a floating-point value. 
The format is: 

lntpart (x) 

Unlike tnt or fix (described in Section 10.13.111 the current rounding mode Is 
observed; see Chapter 13, Advanced Floating-Point Manipulation, for more 
information on rounding modes. 

10-4 



BASIC-Plus USer's Guide SlIbroutines & Functions 

10.3.15 Intpart% 
The Intpart% function returns the integer part Of X, as an integer value. The 
format is: 

lntpart% (x) 

Like intpart, the current rounding mode is observed. 
10.3.16 COO1Jot.n:1 

The format of the COrTlJOlI1d function Is: 

COrTlJOlI1d (tn) 

where COrTlJOlI1d (lJl) = (1 +1'f. ThIs function Is used to determIne the effect of 
compound interest. For example, given present value of principal pv, and 
periOdIc interest rate 1, to compute future value of prIncipal tv after n 
periods: 

100 tv - pv * COrTlJOlI1d (lJl) 

10.3.17 ArnJity 
The format of the arndty function is: 

anJ1ty (i, n) 

where annuity (1,n) ~ (1 -(1+i)-0 )/i 
This function is used to determine the present value of n equal payments at 
interest rate i. For example, given amount of loan p, and periodic interest 
rate i, to compute the amount of n equal periodic payments, pp: 

100 pp=p/annuity(i,n) 

10.3.18 Time 
The time function returns a number, in seconds. Tlme(1) tells you how long 
BASIC has been ruming. Tlme(2) tells you how long the program has been 
running in the workspace. TIme(-l) gives you the time BASIC began, in 
seconds since midnight. Time(-2) gives you the time the current program 
began, in seconds since midnight. The format of the function is: 

time(o) 

where 0 is an integer argument. Therefore, if n=1 then time(1) tells how long 
BASIC has been running. I f BASIC has been running 30 minutes and 45 
seconds, then time(1) returns 1845. 

If 0=0 or n>2 or 0<-2, then t1me(n) returns the current time, in seconds since 
midnight. 

10-5 



BASIC-Plus LlSer's Guide SUlJrout/nes & Functions 

10.3.19 CCpos or pas 
The .ccp:lSor pas function returns the current position of the print head for a 
specified inpuUoutput channel. The format of the function is: 

ccpos (1%) 

pas (1%) 

where 1% is the channel number. 
10.3.20 Tcm 

The tal function, when used with a print statement, moves the printing 
position to a specified column. The format is: 

tab· (1%) 

where i% is an integer expression that results in the column number where you 
want the print position. 

103.21 ~ 
The ~ function swaps the upper and lower bytes of an integer. The 
format 1s: 

swap% (1%) 

where 1% is an integer expression. 
10.4 StrIng Fl.flCtioos 

The string functions make handling alphanumeriC strings easier. Character 
strings are sequences of characters bounded by quotation marl<s. Numeric 
strings are sequences of digits bOunded by quotation marks. A numeric string 
can also include a plus (+) or a minus (-) sign, or a decimal point (.~ 
Functions intended to apply to numeric strings produce undefined results if 
appl1ed to other strings. 

10.4.1 Len 
The len function returns the number. of characters, inclUding trailing blanKS, In 
the specified string. The format for len is: 

len (sS) 

The argument sS Is a string variable. 
10.4.2 Left 

The left function returns a specified number of characters of a string, starting 
at. the first character in the string. The format for left Is: 

left (sS, n) 

s$ Is a string variable; n Is the number of characters to be extracted. 
If n is equal to 0, the result Is a null string. If you specify a value larger 
than the number of characters in the string, left returns the contents of the 
entire string. 

10-6 



BASIC-PlllS user's Guide SlDmutines 6 rU7CtiOflS 

10.4.3 R1{tlt 
The rl{tlt function returns a sUbset of the strlng, beglmtng with the character 
in the specified position of the string and ending with the last character In 
the strIng. The format for rl~t 1s: 

rl{tlt Cs$, n) 
s$ is a strIng variable; A is the posItion Of the character where the extraction 
begins. 
If n Is less than 1, the result is all of the string. If you specify a value larger 
than the number of characters in the string, rl{tlt returns a null st11ng. 

10.4.4 Mid 
The mid function extracts a sUbstring of the string, begimlng with t:he 
character In the specified position of the strIng continuIng for a specIfIed 
number of Characters. The format for mid Is: 

mid Cs$, m, n) 
s$ is a string variable, m is the position of the first character, and A Is the 
number of characters extracted. (This means that the position of the 
character where the extraction ends Is m+fl+1.) For example, 

mid rabcde~",3,s) 
resul ts in the strIng "cdefg". 

10.4.5 Instr 
The Instr function searcheS for a specified SUbstring within a strlng~ The 
format for Instr is: 

lnstr Cn, s$, as) 

s$ Is a string variable; 8$ is the SUbstring; n Is the posltlon In the string where 
the search Is started. If 8$ Is found, its character poSition is returned. If at 
is not In s$, 0 Is returned. If as is null, 1 Is returned. 

10.4.6 + 
The + sign concatenates two strings. The format is: 

s$+a$ 

The arguments s$ and as .can be ·str1ng variables ·or string constants. 
10.4.7 Space$ 

The spaceS function creates a string of spaces of the specIfied size. The 
format of spaceS Is: 

spaceS (x%) 

The argument x% is an integer value. 

10-7 



BASIC~JtIS User~ GI.Iide SUbroutines & Functions 

10.4.8 ChI$ 
The chrS function returns a single character that is the ASCII equivalent of 
the specified numeric value. The format is: 

ChI$ (n) 

The argument n is a number from 0 to 127. 

10.4.9 stringS 
The stringS function creates a string of the speCified length, all elements of 
which are the speCified value.·· The format is: 

stringS (~y) 

x Is size of the string; y is the ASCII value. 

For example, to create a string of ten A's (ASCII value 65~ 

print stringS(10,65) 

10.4.10 Xlate . 
XIate Is used to translate the characters in a string. You give two strings: 
one to be tranSlated, and one to be used asa "table" for the translation. The 
ASCII value of each character in the first string is used to piCk out the new 
character from the second . 

. For example, the first character in the second string is picked if the ASCII 
value of the Character from the first string Is o. If the ASCII value of the 
first string character is 1, it is translated into the second character in the 
second string. If the first string Character's value Is 3, the fourth character 
from the second string is used. The format for the xlate function is: 

xlate (S$,t$) 

s$ is the string to be translated;. t$ is the "table". 

10.4.11 cvt Ft.rotla'lS 
The cvt functions map values between numeric and string data Note that 
"mapping" means copying the bit pattern, not converting the value. Five cvt 
functions are provided by BASIC: 

s$ = cvU$ (1') Maps the value of 1% into s$ (a two-character 
strtng~ The result Is a two character string. 

1% = ~ (5$) Maps the first two characters of s$ into I%. The 
result is an integer. 

5$ = cvtfS (b) Maps a floating-point expression b into $I (an 
eight-character str1ng~ The result is an eight
character string. 

x = cvt$f (5$) Maps S$ into a floating-point value x. 
x = cvtSS (5$, n) Edits the string $I (see below~ 

10-8 



BAS1C-Plus User's Gu/de 

10.4.11.1 CVt$S 
The cvt$$ function provides string editing. The editing Is performed under the 
control of the specified argument. The format is: 

cvt$$ (s$, n) 

s$ Is a character string; n is a control argument, which must be an integer 
value. n Is a "bit mask". The control values have the following meanings: 

1 Trim the parity bit from each character in the string. 
2 Remove all spaces and tabs from the string. 
4 Remove all carriage returns, Une feeds, form feeds, rubouts, and 

0011. characters from the string. 
8 Remove the leading spaces and tabs from the string. 
16 Reduce groups of mul Uple spaces or tabs to a single space. 
32 convert lowercase letters to uppercase letters. 
64 Convert [ to ( and ] to ~ 

128 Remove the trailing tabs and spaces from the string. 
256 Prevent alteration of character within single (') or dOuble ('1 

quotation marks. 
To obtain one control function, set n to that value. To obtain more than one 
control function, set n to the sum of the individual functions. 

10.4.12 St.m$ 
The sunS function adds two numeric strings together and returns the result as 
a string. The format of the function is: 

st.m$ (s$, 8$) 

The arguments s$ and a$ are both numeric strIngs. 
10.4.13 Dift 

The dlf$ function sUbtracts a numeric string from another and returns the 
result as a string. The format of the function 1s: 

dlf$ (S$, tS) 

The arguments s$ and tS are both numeric strings; t$ is subtracted from s$. 

10.4.14 Prod$ 
The prodS function multiplies two numeric. strtngs, rounding the prOduCt to the 
specified number of spaces. The format of the function Is: 

procl$ (S$, t$, p) 

s$ and t$ are both numeric strings; p is the number of decimal places the 
result Is rounded to. 

10-9 



BAS/C-PJus user's GJlde SUJJ'lJtItlnes &- FUJCtltnS 

10.4.15 Q.I)S 
The. tJIO$ fUnction divides two numeric strings, rounding the prodUCt to the 
specified number of spaces. The format of the function Is: 

(J.K)$ (s$, tI, p) 

$I and t$ are both numeric strings; s$ Is divided by t$. p Is the number of 
deCimal places the result Is rount1ed to. 

10A..16 Plooe$ ; 
The placeS function rounds. the value of the specified numeric string to the 
specified number Of spaces. The format of the function Is: 

placet (st, p) 

$$ Is a numeric string; p Is the I'UTlber of decimal places the result Is rounded 
to. 

10.4.17 COIT1)~ 
The ~ function compares two strings, returnIng a truth value baSed on 
the result. The format of the function Is: 

~(s$,t$) 

The arguments $I and. tS are numerIc strIngs. The truth Values, and tile 
cond1tIons under .\tIt)1Ch they are returned, are: 

-11f s$ < t$ 

o If $I - tS 

llf s$ > tI 
10.4.18 V81 

The val ftrotlon returns tile numeric value of a nt.rnerlc strIng. The format 
Of the function Is: 

vales$) 
The argument $I Is a nt..merlc StrIng. 

10.4.191'l.m$ 
The runS function returns the string of cnaracters representing the numeric 
value x exactly as it would be output by the statement print X, inclUding 
spaces, using E-format Where necessary. The following Is the format: 

runS (x) 

10A.20~1t 
The run1S function returns the string Of characters representing the numeric 
value x In non-E -format, withOUt spaces, to the maxlnun decimal precision. 
The result may be used as a string function operand. The following is the 
format: 

runl. (x) 

10-10 



BASIC-Plus USer's Guide Sl//J.rout/nes & Fl/I7Ct/onS 

10.4.21 Ascll 
The ascU function returns the ASCII value of the first character of the 
specified string. The format is: 

ascU (s$) 

The argument s$ is a string variable or constant. 

10.4..22 Rad$ 
The rad$ function converts an integer in Radix-50 format to a string. This 
function Is provided to maintain compatlb1l1ty wlth DEC BASIC-PLUS. The 
format Is as follows: 

Iad$ (1%) 

10.4.23 DateS 
The date$ function returns the date n days from the current date. The format 
Is as follows: 

dateS(n) 

The argument n is an integer . 

. For example, if tOday is March 16, 1983, then: 

date$(O) returns tOday's date, 'March 16, 1983' 

date$(-1) returns yesterday's date, 'March 15, 1983' 

dat.e$(7) returns the date a week from today, 'Marett 23, 1983' 

10.4.24 Tlme$ 
The timeS function returns the current time. The format is as follows: 

timeS(n) 

The argument n Is an integer. 

If the time is 10:46, tlmeS(O)- '10:46:00'. TlmeS(n) When noD gives the time 
n minutes after midnight 

105 tw'Iatrtx FlIlCtioos 
BASIC provides five matrix-related functions defined in this section. A call 
to tin, tnv, or llnsys must begin with the keyword mal Except for tin, these 
functions are approximations. 

10.5.1 Tm 
The tin function transposes a matrix, placing the value in a specified target 
matrix. When a matrix is transposed, the. rows and columns are interchanged. 
If the target matrix is not the correct dimension, tin redimensions It. The 
format of the function is: 

mat a .. tn(b) 

where a is the target matrix and b is the matrix to be transposed. 

10-11 



BASIC-Plus User's Guide SlIlJrout/nes & Funct/ons 

105.2 Inv 
The Inv function finds the pseudo-inverse of any matrix. The format is: 

mat y - Inv(a) 
Use of lnv is not recommended. See Appendix C, Linear Algebra, for more 
information. 

105.3 Det 
The det function returns the determinant of the matrix, the name of which 
appeared in the most recently executed Inv function. The format 1s: 

d - det 

Use of det is not recommended. See Appendix C, Linear Algebra, for more 
information. 

10.5.4 Llnsys 
The linsys function finds a matrix x such that 

x = a+b 
where the relevant dimensions are: 

a(n, p), x(p, m), ben, m) 

a+ is a pseUdo-inverse, which equals the inverse when a is square and 
non-singular. In that case, ax-b. 
The format Is as follows: 

IIBt x = linsys (a, b) 

10.5.5 COI1d 
The conct function computes an estimate of the inverse of the condition 
number of the last matrix to be an argument to Inv or lInsys. If 1 + cond - 1 
then the result is completely unreliable, and you may need to reformulate 
your prOblem. See Appendix C, Linear Algebra, for more information. The 
format Is as follows: 

C = cond 

1D.6 Creating Your OWn Ft.nctions 
You can add functions of your own creation to the ones that BASIC provideS. 
The def* statement defines the name of the function and the tasks to be 
performed bY the function. 
Function names must always begin wlth fn, so that a function name Is: 

fn varJlDltntme 

vartablencme Is a floating-point, integer, or string variable. 

10-12 



BASIC-Plus user's Guide Sl..tJroutJnes & Ftl7CtJoos 

10.6.1 Def* 
The def* statement is used to define functions. Functions may be defined as 
single-line functions. The syntax for a single-line function definition is: 

def* 

I expression ~ 

Able: You may specHy as many as five parameters. 

The expressioo following the equal sign (-) specifies the operations to be 
performed and returned as the value of the function. 
The statements up to the fnend statement comprise the operations to be 
performed and returned as the value of the function. During execution of 
multiple-line functions, the function is assigned expressions that comprise the 
operations to be performed. The value of the function Is the result of the 
execution of the last expression. 
It is illegal to nest function definitions. 

10.6.2 Fnend 
The fnend statement Is used In a multiple-line function definition to signify 
the end of the function definition. The syntax for the fnend statement Is: 

fnend 

~e1~1 .~ .. 
The following are the definitions of two simple functions. 

10 def* fntenx (a) = 10 * a 
100 print fntenx (10) 

10-13 



BASlC-Plus user~ GuIde SUbroutines & FlIlCtions 

10.7 0lcDJe 

3000 def* fnfactorial (n) 
3010 1 f 0<= 1 then fnfactor1al = 1 else a 

fnfactorial=fnfactorial (n-l) * n 

3020 fnend 

The ctalge statement allows you to change a string into an array of numeric 
values, or change an array of numeric values into a string. In other words, 
you can Change each character in a string to its ASCII value, and you can 
change an ASCII value to its corresponding character. The following Is the 
syntax for the ctalge statement. 
cl7ange 

The following example converts the Characters in the string B$ to their ASCII 
values (in the· atray A%), then converts them back to a string (C$~ 

10 dim A' (5) 

20 read B$ 

30 data' ctlcde' 

40 ctalge B$ to 1\% 

40 for i=O toA%(O) 
50 print 1\%(1) 

60 next 1 

70 ctalge M to C$ 

80 print C$ 

90 end 

convert str1ng to array 
M(O) hOlds length of string 

convert back to a str1ng 

10-14 



NOTES 





Chapter 11 
Block 1/0, Open, and Close 

11.1 ~ .....•...•....••.•.......•...••.•....•..••••.•••....•.•.......•...•.•.•.•..•.•.................... 11-1 

11.1.1 How the ~en Statement Works ................................................... 11-2 
11.1.2 ~en for ASCII 110 and Virtual Arrays ........................................... 11-2 
11.1.3 ~enforBlock .......................................................................... 11-3 

11.2 Close ................................................................................................ 11-3 

11.3 BlOCk I/() ............................................................................................ 11-4 

11.3.1 Get and Put ............................................................................... 11-4 
11.3.2 Buffer Management .................................................................... 11-5 

11.3.2.1 Field ........................................................................... 11-5 
11.3.2.2 Lset and Rset ................................................................ 11-6 

11.3.3 BlOCk 110 Sample Program ............................................................ 11-7 

029-0}81-A 





Block I/O, Open, and Close 

Before you can read or write to a fHe or device, the fHe or device must be 
open. The conSOle, Which you have accessed using If1XJt ana print statements, 
is always open; other fUes and devices must be opened and closed explicitly. 
The ~ and close statements are described below. This Chapter also 
describes blOCk l/CJ an advanced programming tecmlque for readIng and 
writing fUes. 

11.1 Qlen 
The open statement assigns a logical input and output channel to a fUe or 
devIce. The dev1ce can be a blOCl<-strwtured devIce suctl as a dIsk or a 
cf18racter device such as the console or a printer. The syntax of the open 
statement is shOWn below; the extended options apply only to block 110. 

· ....... . · ........ . · ....... . · ....... . · ....... . · ....... . · ....... . 

Extended 
features of 
~ 

· ................................. . . ................................ . · ................................. . . ................................. . · ................................ . 

.................. . . . . . . . . . . . . . . . .. . ................ . 

11-1 



BASfC-Plvs USer's Guide Block fAt Q:Jen., end Close 

11.1.1 How the ~ Statement WOIks 
You open a fUe or device by giving it a name and a logical Channel number 
In tne open statement In the following example, a fUe named "payron" Is 
associated with Channel 4: 

25 ~ 'payroll' as fl1e IU 

The valid Channel numDers are 1 through 12; Channel 0 Is reserved for the 
console and is always open. Up to 12 flIes can be open at any one time. 
Wl7etller you open I!J t1le for Input or for output., you C817 perForm both read 
and write operations In It. However, there are some important differences 
between these options; there is also a third option in WhiCh you do not specify 
input or output. The options work as follows: 

• t:pen fOr JIptIt lOOl<.s for an existing file with the name you specified In 
the open statement If the flIe Is not found, an error message Is (llsplayet1 
on the console When the program Is run; for example, 

50 q:Jen 'o1dfl1e' for 1rpJt as fl1e n 
777Cal't f100 fIle WflLE in l1ne 50 

Here are some· examples of open for Input statements for a Character 
device, a formatted ASCII flle, and a virtual array: 

70 ~ '-keyboal'U' for 1f1lJt as fIle II 

80 open • '"'"'4JP8r-ledger . text ' for If1lJt as flle m 
90 open 'tax. array , for if1lut as fl1e Ifll.1'1.M 

• t:pt;rI fOr output creates a new fUe with the name you specified In the 
open statement If a fUe with that name already exists, it Is deleted 
before the new fUe is created. Here are some examples Of open for 
output statements: 

40 open • -printer' for rutpJt as flle 13 

50 open '~-EID. text' for rutpJt as file. ~ 

60 ~ 'enployment • data , for ootput as fIle M 

• U1speCJ1/ed qJe1'1 tries to dO a'l open for qu. If the file is not fOtlld, a 
new 'file is created. Here are some examples of unspecified open 
statements: 

70 open '-t4lP9r--fElm. text • as file 15% 
80 ~ 'tax.array· as flle M 

11.1.2 qJen for ~II 110 CI1d Vlrtua1 Arrays 
If you are dOing formatted ASCII I/O, as described In Chapter 5, or If you are 
using virtual arrays, as deScribed 1n Chapter 12, use the simple forms of the 
qJen statement ShoWn above; the extended features apply only to blOCk lID. 

11-2 



BASIC-Plus USer's Guide Block I/O., t:pen., and Close 

11.1.3 ~ for BlOCk 110 
There are four extended options shown in the syntax diagram for the ~ 
statement: reoordSlZe, clustemze, flles1ze, and nme. The clustemze and 
mode options are nonoperative; they have been kept to maintain compatibUity 
wIth DEC BASIC-PLUS. 

Recordsize determines the size of the bUffer the system reserves when the 
fUe is opened. RecordSlze must be a multiple of 512; if not, the value you 
specify Is rounded up to the next multiple of 512. All fUes ana devices 
available for BASIC on the Usa have a default and minim.m record size of 
512 bytes. 
Clustenize specifies the number of contiguous blocks to be allocated. In Usa 
BASIC, clustemze Is always 1. If you specIfy another value, It Is Ignored. 
Fllesize is an integer value that pre-extends the fUe to a designated number 
of blocks. The default fUes1ze is 0. The system automatically extends the 
file block by block as you write records to it. You can also extend a fHe by 
several blocks at once, as in the following example. 

50 ~ °newflleo for wtput as f1le 12 

60 pJt rl, blOCk 200 

Mlde sets device-dependent propert1es. In Lisa BASIC, mode must be zero; if 
not, a run-time error Is generated. 
BUfsiz and status return information about an open fHe at run time.· BufSlz is 
an integer function that returns the bUffer size of an open inpuVoutput 
channel. For instance, 

9S print txJfsize(4") 

prints the buffer size for the fIle associated with channel 4. status is a 
variable that contains information abOUt the last channel that was opened. In 
Usa BASIC, status is always 0; it exists to maintain compatibility with DEC 
BASIC-PLUS. . 

11.2 Close 
The close statement closes the speclfled fUe, ends the association between a 
fUe or deVice and its InpuVoutput Channel, 8'ld returns the bUffer to the 
system. The following Is the syntax for the close statement 
close 

~ch02J 
Channel • is any expression that results in the channel number (integer) 
associated with the fUe you want to close. 

11-3 



BASIC-PIllS User's GuIde BlOCk I/t!, Q:Jen, and Close 

If your program leaves a fHe open, BASIC wIll close It when the workspace Is 
cleared or When BASIC is exited. However, It is good programmIng practice 
to close all flIes In the program with a posItive ChameII1l.lTtJer. The system 
transfers the final information In the buffer to the output fUe only if you 
close It wIth a posItive Channel rn.moer. 
When a negative channel I7tIfnlJer Is used to close a fUe, the close statement 
returns the assigned bUffer space but doesn't write the last buffer of 
Information to the output fUe. The optlon of using a negative channel numDer 
Is provided as an adVanced technique for use with block 110. 

11.3 BlOCk lID 
BlOCk input and output is the reading and writing of file records, or blocks. 
Each record of a partiCUlar fUe Is stored In a contiguous space on a disk. The 
space allotted to each record is the same length (usually 512 bytes~ Block 
Input and output permits bOth sequentlal ancl randOm fUe access. 

11.3.1 Get CIld Put 
The get statement reads blOCks from a fUe into a bUffer; the put statement 
writes blOCks to a fUe from a bUffer. The following is the syntax for bOth get 
andp.lt: 

get and put 

11-4 



BASIC-Plus User's GlIlde Block //0, QJen, and Close 

M example of a put statement tJ"tat writes the second half Of a 512-byte 
bUffer onto the first half Of a 512"'byte block on dISk Is 

70 J1It 11, reoord 5, ro.nt 256, us1t'YJ 256 

Before you use either the get or the put statement, the fHe or device you 
refer to In the statement must be open. The channel number you assign to 
the devIce In the ~ statement must De the same as the channel number 
you use In the get or put statement. 
The record and block options specify a particular logIcal DIOCk of the fUe. 
tuTtler is a runerlc expression. Block dOesn't restrict the value of ....mer; 
record restricts the value to 32767. If the record or block options are not 
USed, the next sequential blOCk Is written to or read from. If you attempt to 
access a block past the end of the fUe, a rtI"l-Ume error results. 
The cn.nt option allows you to specIfy the number of bytes read from or 
written to the fne or devIce. Bytes Is an expression that represents the 
number of bytes read or written; It must have a posItive Integer value that 
dOes not exceed the size of the OUffer. In a J1Il, CCUlt specifies how many 
bytes are written; If COlIlt Is omItted, put wrItes the enUre bUffer. In a get., 
COlIlt specIfies the maxlrrun rumber of characters to be read, Ignoring the 
bUffer size. If COlIlt Is omitted, get fIlls the entire bUffer. A get from a 
blOCk device quits after reading the specified count This means that 
succeeding data In the blOCK, If any, wIll be lost; the next get will read from 
the next blOCk. A ~t from a Otlaracter dev1ce, hOwever, terminates When the 
first <RETURN> Is encountered, even If the count has not been eXhausted. 
use the recoUlt variable with a Character deVice; it tells how much Of the 
buffer was read by the device. 
Offset In the uslrYJ clause is a runeric expression that specifies Where the 
input and output operation starts. If offSet is 10 In a get statement, for 
example, the system Skips the first nine bytes of the bUffer and begins reading 
into the bUffer at the tenth byte. If offset Is 10 In a put statement, the 
system Skips the first nine bytes of the bUffer and begins ~rit1ng data to the 
fUe begimlng wIth the tenth byte of the buffer. 

11.32 Buffer Mar aagement 
The field, lset, and net statements manage the bUffer that the system creates 
~nen a flIe Is opened. The fteld statement aSSOCiates strlng variables with 
specific bytes In the InpuVoutput· bUffer. The lset and net statements assign 
values to these variables wlUloUt moving them from the bUffeT. 

11.3.2.1 Field 
The field statement associates a section of an Input and output bUffer with a 
string variable. 

11-5 



BASIC-Plus user's. Guide BlOCk 1/4 qJen, and Close 

The fOllowing Is the syntax for the fleld statement: 

08Te1 • must be the number of a Channel already associated with a f11e. 
Length Is a runerlc expression specifying the number of bytes necessary for 
the varlcmle In the as clause. The field statement allocates the first length 
bytes of the buffer to the first variable named, the second length bytes of the 
bUffer to the second varIable named, and so on. 

11.3.2.2 Lset am Rset 
The lset and net statements assIgn values to the strIng variables associated 
with a DUffer In a fleld- statement. 
NJle: Always use the lset and net statements to asslfTl values to bUffer 
varl8lJles . When using blOCk lltl Ir tile Jet statement Is used to assign 8 value 
to a bUffer varlabJe., the variable Is no longer associated with the bUffer. 

The following Is the syntax for bothlset and net 

lselWld net 

~. .. lset .• 1 variable I ) .8-+1 
.~~ ·O·~ __ r 

string 

For lset and net variable Is any strIng variable assIgned to a buffer In a field 
statement; string Is any legal string value. -

If the string value you put Into the bUffer Is longer than the ntmber of bytes 
allocated to the varlable,lset andrset trtrlCatethe value--the length of the 
variable within the buffer Is not enlarged. If the string value Is ShOrter than 
the runber of bytes allocated, the value In the buffer Is padCJed with spaces. 
The lset statement left-justifies the string wIthin the buffer; the net 
statement right-justifies the string within the buffer. 

11-6 



BASIC-Plus user's GlJde Block 1/4 cpen., and Close 

11.3.3 BlOCk 110 ~Ie PrognIle 
The fOllo~lng program demOnstrates the use of block. 110. 

100 open 'strange.data' for output as file 10 

120 f1eld '10, 350 as AS, 150 as., 12 as CS 

130 lset At = 'left-justified string in the first 350' + 8: 
, Characters of the Mfer' 

140 rset as = "r1(flt-Just1f1ed str1ng 1n the next 150" + a 
• Characters of the Mfer' 

150 lset C$ = 'l2CharaCters' ! at enl of bUffer 
160 put '10 
170 close 10 

180 end 

11-7 





NOTES 





Chapter 12 
Virtual Arrays 

12.1 DIm StatefTlerlt for Virtual P\crays ........................................................... 12-1 

12.2 VirttJal P\rray storage .....•.....•.................••.......................•.....•.•...........• 12-2 

12.3 Virtual May ~ ............................................................................ 12-3 

12.4 File LerlgUl • ••••••.••..• ••••• .••• ••.••• •••••••• ••••• ••••••.•• .••.•..•••••.••.•..•.•..•.• ••••.•.....• 12-4 





Virtual Arrays 

Virtual arrays allow you to store one or more matrices In a disk fUe and 
retrieve any element of any matrix In. the fUe at randOm. You can define 
virtual arrays for floating-point, Integer, or string variables. It Is legal to 
have more tnan one type of array in a virtual array fUe. As with regular 
matrices, virtual array matrices allocate space for a zero'th element 
M array in a virtual array fUe can be larger than system memory. The part 
of t.tle 'array that is not In use and dOes not fit Into memory Is kept on diSk. 
~nlng and· closing virtual array files is l1ke opening and closing fonnatted 
ASCII fUes. If you dOn't expl1cltly close a virtual array fUe or if you close It 
with a negative Channel number, any recoms remaining in the bUffer are lost. 
O1ly when you close a virtual array fUe with a positive channel number dOes 
the close statement transfer any data remaining in the bUffer to the fUe (see 
section 11.2, Close~ 

12.1 Dim statement fOr VIrtual Arrays 
A dim statement names the array or arrays contained in one virtual array fUe 
and, optionally, defInes the size Of each array element. The fOllowIng Is the 
syntax for the dim statment when it is used with virtual arrays. 

dim (for vjrtlJai arrays) 

'---__ ~---,--.... I variable ~ ( expressionl 

expressIon 

The dim statement for a virtual array inclUdes a mandatory inpuUoutput 
thnlel • and an optional record size specIfication for string arrays. 
otherwise, It Is the same as tne dim statement for matrices that exlst In 

12-1 



BASIC-Plus User's Gujde Vjr!ual Anays 

memory only during the execution of a program. The dim statement 
associates the channel number; then identifies the file in any subsequent input 
and output statements. 

The optional clause '. expression' in the dim statement applies only to virtual 
string arrays. Unlike memory string array elements" there are restrictions on 
the size of string virtual array elements. All elements in a string virtual 
array have the same maximum length. This length" set by the program" must 
be a power of 2 in the range 2 to 512; the default is 16 characters. If you 
specify a number of characters that is not an acceptable power of 2" the 
system allocates the next highest power of 2 as the maximum size of the 
array elements. 

Note that the dim statement allocates space in the file equal to the maximum 
length for each element in a string array even though any element can be 
shorter. For example" the statement 

75 dim 11" prices (1000)" iterns$ (1000) = 32% 
allocates space for an array of 1000 floating-point values and an array of 
1000 string values that are each no more than 32 characters long. 

12.2 Virtual Array Storage 
Lisa BASIC stores arrays in a virtual file in the order named in the dim 
statement. The lowest address in the file corresponds to the first element in 
the first array. For example" the arrays defined in the dim statement below 
are stored as shown. 

25 dim A% (1,2), B% (2) 

Virtual Array Storage Olart 

A" (OJ» 

A% (O.J.) 

~ (0,2) 

A% (1,0) 

A% (1.J.) 

M (1,2) 

8% (0) 

Bf(. (1) 

8% (2) 

.---

+--

lowest 
address 

hlgnest 
address 

12-2 



BASIC-Pllls USer's GlIide Virtllal Arrays 

In the illustration on the previous page, the numbers in parentheses are the 
dimensions for a particular element, not its value. 
There can be a gap in a virtual fUe that contains more than one array 
because no virtual array element can cross a disk block boundary. If one 
virtual array takes up more than one block, the blocks are not necessarily 
contiguous. The number of elements In one block of a virtual array file 
depends on the type of the array. Table 12-1 defines the number of array 
elements per block for each of the three data types. 

Table 12-1 
tumer of Elements In a V1rtual Array Blrek 

Type of Element I'UTtler 

Integer 256 

Floating-Point 64 

String 512/x 
(whem x is the 

max/mum element lengtll) 

No virtual array element can be longer than one block or extend over a block 
boundary. This imposes no further restrictions on numeric values. However, 
this does llmit virtual strings to 512 bytes. 
~ stated above, the system assigns each element in an array of virtual strings 
the same amount of storage space. The amount of storage is equal to some 
power of two bytes that results in an integer from 2 to 512 inclusive; 16 bytes 
is the default. 
When the system assIgns a value to a virtual string element, It is stored 
left-justified in its position within the fUe blocK. If the string is shorter than 
the maximum length, the system padS the rest of the space wIth null 
characters. When a program retrieves a padded string, the system strips the 
added null Characters before returning the strIng. 

12.3 Virtual Array Access 
When a program asKs for a virtual array element, the system first checks the 
buffer to see if the needed element is there. If it's there, the system passes 
it to the program. If it isn't there, the system updates records currently in 
the buffer and reads in successive pieces of the array until it finds the needed 
element. 

12-3 



BASIC-Plus User's Guide Virtll8l Arrays 

To determine if a certain array element is currently in the buffer, the system 
must first convert the array SUbscript into a fUe address. This conversion 
requIres two steps. FIrst, the system computes the relative distance from the 
needed element to the first element in the array. This value depends on the 
array subscript and the number of array elements per blOCk. Then, the system 
computes the distance from the first element of the array to the first element 
in tl1e fUe. This value is a constant defined by . the parameters in the dim 
statement that defined the file. 
Because the dim statement in the program defines the structure of a virtual 
array file, It is possIble to access arrays in a virtual file dIfferently from 
di fferent programs. 

12.4 FUe Length 
As with block input and output files, virtual array files are created with 0 
length. ~ you . add records to the file, the system automatically extends the 
length of the fUe to accommodate them. 
We recommend that you extend the file to the maximum number of blocks you 
expect to use. The system overhead is the same whether you extend a fUe by 
one block or by many bloCks. Therefore, we suggest the fOllowing technique 
to extend a new fUe in one operation: 

10 dim #7, 8(200) 
20 for 1 = 200 to 0 

30 a(1) = 1 

40 next i 

12-4 



NOTES 





029-0:58:S-A 

Chapter 13 
Advanced Floating-Point 

Manipulation 

13.1 ExcepUons •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••• 13-1 

13.1.1 Inval1d ..................................................................................... 13-1 
13.1.2 Dlvldebyzero ............................................................................ 13-1 
13.1.3 OVerflow ................................................................................... 13-2 
13.1.4 Cvtoverflow ............................................................................. 13-2 
13.1.S Underflow ................................................................................ 13-2 
13.1.6 Inexact .................................................................................... 13-2 

13.2 set ExcepUm ...................................................................................... 13-2 

13.3 ASk ExcepUoo ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-3 

13A set I-talt .............................................................................................. 13-3 

13.5 Ask l-Ial t ............................................................................................. 13-3 

13.6 Rot.r1CIirlg rvtodeS for Floating-PoInt values •.•••••••• ••••• •••.•••••••••••••.•••• .......... 13-4 

13.7 set ROlJldII'lg ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-5 

13.8 AsI< ROlIldlI'lg •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-5 

13.9 ExcepUon HcIldllng CIld ROlIldlng EXCI'fllles ............................................. 13-5 





Advanced Floating-Point 
Manipulation 

This Chapter discusses advanced floating-point manipulation: floating-pOint 
exception handling and floating-poInt rounding. 

13.1 Exceptloos 
Certain arithmetic occurrences signal floating-poInt exceptions. The response 
of the system to these exceptions can be controlled with the halt flags. If 
the halt flag is set for an exception, the system will cause a run-time error if 
that exception occurs. Run-time errors halt program execution, unless an on 
error statement has been executed. If you don't want run-time errors to 
occur but are curious about the accuracy of your computation, you can test 
the exception flags at appropriate stages in the computation. 
BASIC supports six exceptions: invalid, divtdebyzero, overflow, cvtoverflow, 
tn:ieJf1ow, and ine~t The set exception, set halt, ask exception, and ask 
halt statements allow you to set the halt and exception flags In different 
ways, causing different responses if any of these exceptions occur. 
The following syntax diagram lists all the legal exception names. These 
exceptions are described later in this section. 

exception name 

13.1.1 Invalld 
The Invalid exception is signaled if an operand is invalid for the specified 
operation. The result is a NaN C"Not a Numberlt

). 

13.1.2 Dividebyzero 
The divtdebyzero exception occurs when the divisor is zero and the dividend is 
a finite non-zero number. The result is positive or negative infinity. 

13-1 



BASIC-Plus user's Glide Advanced Floating-Point Manipulation 

13.1.3 CM!rflow 
The overflow exception Is signaled when the result of an operation is too 
large to represent. 

13.1.4 CVtoverflow 
The conversion overflow exception, cvtoverflow, is signalled when a 
floating-paint value is converted to an integer variable and the resulting 
integer Is too large to represent. 

13.1.5 U1derflow 
The U'lderflow exception is signalled when the result of an operation Is too 
small to represent accurately. 

13.1.6 Inexact 
The inexact exception Is signalled If the result of an operation Is not exact. 

13.2 Set Exception 
The set exception statement is used to set the exception flag to true or false. 
The following is the syntax for the statement: 

set exception 

--+0-< exception )-t1 exception name H expression ~ 

Set exception, true or false, never causes a run-time error. When you set the 
exception flag to false, you can then test the flag after an operation is 
completed to see if the exception occurred. If the flag is true, the exception 
occurred and affected the result of the operation. If the exception flag is 
false, the operation proceeded normally. The following Is an example which 
uses the exception flag, testing to see If the operation proceeded normal} y. 

100 set exception cvtoverflow ~ set flag false (O=false) 
120 ~ = b perform conp.rtation 
130 aSk exception cvtoverflow ~ 
140 i f ~ then print & 

rotain flag stutus in ~ 

-cvtoverflow exception occurred- ! test flag 

13-2 



BASIC-Plus User's Guide Advanced Floating-Point ManiplllatJon 

133 Ask Exception 
The ask exception statement interrogates an exception's flag. The following is 
the syntax for the ask exceptioo statement. 

ask excepaon 

~( exception)-.I exception name ~ variable ~ 

vartable Is set true (non-zero) or false (zero) accorCllng to the status of the 
exception flag. Each flag is set false by the nil command, and may be set 
true during numeric computations. M exception flag may also be set true or 
false by set exception. 

13.4 set Halt 
The set halt statement is used to set the halt flag. If you set the halt flag 
for an exception to true, then the system will generate a run-time error if 
the exception occurs. The following is the syntax for the statement: 

set halt 

--+@-+@--+1 exception name ~I expression ~ 

13.5 Ask Halt 
The ask halt statement interrogates an exception's halt flag. The followIng is 
the syntax for the ask halt statement 

ask !JaJt 

~I exception name ~I variable ~ 

Variable is set true (non-zero) or false (zero) according to the status of the 
exception's halt flag. Each flag Is set false by the nil command. M 
exception's halt flag may be set true or false by the set halt statement. 

13-3 



BASIC-Pll.lS USer's Guide Advanced Floating-PoInt Manipulation 

13.6 RotndIng I"1Odes for Floating-Point Values 
BASIC provides four rounding modes for floating-point values. These are 
illustrated for the intpart function, but they apply to all floating-point 
operations: 

mear Rounds to the nearest. If halfway, rounds to even. 
intpart(2.7) 1s 3.0 
1ntpart(3.5) is 4.0 
intpart%(2.5) is 2 

rpos Rounds toward positive infinity 
intpart(3.5) 1s 4.0 
intpart(-3.5) is -3.0 

meg Rounds toward negative infinity 
intpart(3.5) 1s 3.0 
Intpart(-3.5) 1s -4.0 

rzero Rounds toward zero 
intpart(3.5) 1s 3.0 
intpart(-3.5) 1s -3.0 

The nil· command sets the default rounding mode to mear. 
The rounding modes are set and tested using the set rOU1d1ng and ask rot.I'ldlng 
statements. 

13-4 



BASIC-Plus USer's Guide Advanced Floating-point Manipulation 

13.1 Set RCUlding 
The set rtUlding statement sets the rounding mode to be used in all 
computations following execution of the statement. This rounding mode is in 
effect until another is specified. The following is the syntax: 
set rOtJl7djng 

Variable is an integer variable. 
The IUl command sets the rounding mode to mear. 

13.8 Ask RotndIng 
The ask fOlIlding statement discloses the current rounding mode. The 
following is the syntax. 

ask .rounding 

~C rounding )-,1 variable ~ 

13.9 Exception Henning cnl. Rtxntlng E~les 
The following example converts floating-point values to integer values with 
the rounding mode set to positive: 

300 aSk l'OlI1dlng oldr% ! save old rotnd1ng IOOde 

310 set rotnding rpos 

320 X% = intpart%(x) 

330 set rOllldlng old!" 

13-5 

! set desired rWlding II[)de 

! perform OOIpJtation 

! restore old rounding mode 



BASIC-Plus usel"~ GuJde Advanced Floating-Point Maniptllation 

The following example tests for a cvtoverflow exception: 
100 ask rounding oldr' 
120 set rounding rpos 

130 ask exceptioo cvtoverf1ow oldX% !save old excep flag 
140 set exception cvtoverflow 0% ! set flag false 
150 x% = intpart%(x) ! perform conprtation 

160 ask exceptioo cvtoverf1ow neM ! obtain flag status 

170 if newx% goto 900 ! test flag 

180 set exception cvtoverflow oldX% ! restore old flag 
190 set rounding oldr' 

The following example tests for a cvtoverflow exception using halt: 

200 on error goto 1000 set ~ error handling 

210 ask rounding,oldr' 
220 ask halt cvtoverf1ow ol~ save old halt flag 
230 set -halt cvtoverf1ow l' ! set halt flag true 
240 set mming rpos 

250 x% = intpart%{x) ! cvtoverf1ow excep goes to 1000 

260 set rounding oldr' 
270 set halt cvtoverf1ow ol(1l% ! restore old halt flag 

1000 print -cvtoverf1ow- ! error handling 

13-6 



NOTES 





029-0J84-A 

Chapter 14 
System Statements 

14.1 Walt ..•.•.......••....••......•......•....•........•........•......••..•...•.........•.•......•....•.• 14-1 

14.2 Sleep ....•..•.........•.•.......•.•..•....•.....•....••......•.•.....•.....•.•.....•.........•....•... 14-1 

14.3 wrtteprotect ....................................................................................... 14-1 

14..4 Writeallow ..........•.....•...........•.•............................•...............•.............. 14-1 

14.5 l.ll10Ck ••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••.••••••••••••••.••••••••••••• 14-2 

14.6 Olaln ...•....•........•.•.•.•.•.•...•...•.•.....•..............•.....•.......•...•••...•......•..•.•.. 14-2 

14.7 NaTle As ............................................................................................. 14-3 

14.8 Kill ..........................•.................................••........•.•.........•..•...•.•........ 14-3 





System Statements 

Thh chapter describes the system statements. The system statements affect 
the BASIC progranming envirorment from within a program. 

14.1 Walt 
The wait statement instructs the system to wait a specified number of seconds 
for iIlJut from the console before issuing a run-time error. Walt 0 sets the 
system so that it will wait indefinitely for if1XJl The syntax is as follows: 

walt 

~ expression \--. 

14.2 Sleep 
The sleep statement instructs the system to pause for a specified runber of 
seconds. The following is the syntax. 

sleep 

~ expression ~ 

14.3 Writeprotect 
The wrtteprotect statement sets file safety so that all files associated with 
the chcn1el specified by expressioo camet be overwritten The following is 
the syntax. 

wdtepmtect 

~riteprotec~ expression r... 
14.4 Writeallow 

The writeaJ.low statement removes fUe safety so that all files associated with 
the channel specified by mcpressloo can be overwritten. The following is the 
syntax. 

wrlteallow 

--+Cwriteallow:>-+l expression ~ 

14-1 



BASIC-PJlJS User's Guide System Statements 

14..5 U'llock 
The lI'llock statement is the same as the wrlteallow statement; it removes fHe 
safety so that all files associated with the channel specified by expressloo can 
be overwritten. This statement is provided to maintain compatibility with 
DEC BASIC-PLUS. The fallowing is the syntax. 
unlock 

-.c: unlock )-t1 -expressIon ~ 

14.6 ChaIn 
The ChaIn statement allows you to "Chain" more than one program together 
""hen a program is too large to fIt in the workspace. By splitting the large 
program into small independent programs and using the chain statement to 
start execution Of the next program, you can achieve the effect of a very 
large program. The syntax for the Chain statement is as follOWS: 
cf78in 

string expression i--------~------___,. 

E>epressioo is an entry point (line number) in the program where you wish 
execution to begin. If no entry point is specified, execution begIns at the 
lowest line number. 
When the chain statement is executed, BASIC loads the program specified by 
sUing expression into the workspace and begins execution. This means that 
the program specifIed in the chain command completely replaces the original 
program in the workspace. ChaIn closes all open flles upon execution. We 
recommend, however, that you expllcity close all open flIes wIth the close 
statement before the chain statement is executed. Information in buffers may 
be lost--make sure that the program you chain to Is complete. If the new 
program uses the same files, you must explicitly open these files. All 
variables are re-initial1zed in the new program (numeric values set to zero, 
strings set to the null string). 

14-2 



BASIC-Plus User's GukJe 

The following is a very sImple example of chaIning. 
old 8ecOrd>art 

Ready 
list 

10 rem This is the secmd half Of the program 

20 print -This is line 20 Of 8ecOrd>art-

30 em 

ReOOy 
new FirstPart 

Ready 
10 rem This is the first half of the progran 

20 print -This is line 20 Of FirstPart-

30 chain • seconcJ>art· line 10 

nrrt1 

This is line 20 Of FirstPart 

This is line 20 Of 8ecOrd>art 

14.7 Ncme As 

System Statements 

The ncme as statement renames a file to another specIfIed filename. The 
following Is the syntax. 
name as 

~I string expression ~ string expressIon ~ 

14.8 Kill 
The kill statement removes the specified file from the directory. The 
followIng Is the syntax. 
kjJl 

~ 

14-3 





NOTES 





029-0'S5-A 

Appendixes 

A LaJlQUCiQe 8UrTVTlary ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A-I 

6 Floatlrll;;t"Polnt AIlthrnetic ...•.••.•..••.••.....••.•..•...•.•.•...•.•.•..•...••.•..•....•......•.. 6-1 

C LInear Algebra ....................................................................................... C-l 

o Error 1'1essages.. •••• •• ••• ••••• .• .•.••. •.. •••••••. .. .. •••... .• .• ..•••• • .•.• .• •.• . .•. •.• .••••••. •••• . .. 0-1 

E BASIC WoIksttop FlIes ...••.•••.•..•......•.•••••.••...••••...••.•.••••.••.••...•.•.......•.•..... E-l 





Appendix A 
Language Summary 

A.l TIle BASIC CharaCter set ........................................................................ A-l 

A.2 qJerators. .... . .... ... .. . ... ... . .. ...... ... . .... . . .... . . ... ... . . .... .. . .. .... ... . . .. . ...... . .. . . . ... . .. A -2 

A.3 Syntax Diagrams ......•.....•.•....................................•.............................•.. A-3 

A.4 Reserved WOrds................................................................................... A-22 





Language Summary 

This appendix summarizes the BASIC language for the Lisa for quick 
reference. Included are the BASIC character set, operator tables, all syntax 
diagrams for all commands (listed alphabetiCally), and a list of reserved words. 

A.i The BA')IC Character Set 
A letteI is one of the following: 

letteI I L .: 0 tIJrougIJ 0, G) thrOUf/1 (0 I 

A djgjt is one of the following: 

~ ~ @tIJrougIJ® 

A specjal clJaJocteI is one of the following: 
specjal c178IacteI 

A-l 



BASIC-Plus User's Guide Language SummaJY 

A.2 ~rators 

AritJTnetic Operators Relational Operators 

+ addition = equal to 

- subtraction < less than 

* mul tiplicatlon (= less than or equal to 

I division > greater than 
.. 

exponentiation )= greater than or equal to 

** exponentiation <> not equal to 

remainder remainder == approximately equal to 

Logical Operators 

a1d conjunction 

or disjunction 

eqv equi valence 

not negation 

imp implication 
-

xor exclusive or 

A-2 



BASIC-PlllS user's Gldde 

A.3 syntax Dlagnms 

append 

~~~.~I filename ~ 

array selection

array variable

Language Summ8IY

expressIon

l __ ,.0-
0-+1 expression ~

ask exceplion

~(exception)-.I exception name ~ variable ~

ask tJalt

~I exception name ~I variable t-+-

ask n:x.rxting

~(rounding)+1 variable ~

assIgnment

"I _ (~I variable ~ expression ~

~
bye

--+(bye r

A-3

BASIC-PIllS user's Gujde Language Sl/mmary

catalog

~ cat

\ (.
l+j device name fJ

strIng expressIon

ClJange

cl78nnel #

~ expression ~

cont

-+C cant r
data

--~ (.. I iHlY dl8nK:ten t=ept 0 ~
--------~~w-------

A-4

BASIC-Plus User's Guide Language Summary

def*

I expression ~

delete

~~---"(_-_~.~I_lin_e group

o

dI~ fn\o I \.V tIlrouglJ

dim

variable name

(D--.j expression! I ~ . J .. cv--.
, expresslOn2

A-5

BASIC-Plus User's Guide Language Summary

dim (for virtual arrays)

expression

e.xceptJon natJ7e

express/on

expression

A-6

BASIC-Pllls User's Guide L angllage SlImmary

factor

1'-------1~1 array selection 1----1

function call

expression

field

~ channel tI ~Ilength ~ variable j
fnend

for next

'-+1 line 4~ ~ variable t-+

~xpressionl"~. ~
step Increment

..

A-7

BASIC-Plus User's Guide

ror I.I1til

ror while

f'lInction call

identifier

statement

Language SummalY

line 1~ ~ variable ~

A-8

BASlC-Plus User's Guide Language SummaIY

general matrjx arHlmetic

get

goSt./lJ

~.I
go SUD

line 1~

gal.o

~.IJine#f-
go to

A-9

BASIC-Plus USer's Gu/de Language Summary

Jdentlf1e.r name

if' galo

~ expression 1~~.Uire}iJ-+

if .~tatement mt.7dif1er

--.f statement ~ expression ~

Jf then else

expression

A-10

BASIC-Plus User's Guide Language SummalY

Jrplt

--.c-l-npu-t-)\-~~--:=c=nanne===l #==-k;J--, -.,.......~

Input line

---.Q-inpu-t-l-1ne-)}--I.-----~---~.1 string variable ~

'-+I channel t I-()--J

kill

~

length

---+~

letter ... 1 (';\A L
~: \C) tI1rtJt.t¢ 0, 0 tI1rtJt.t¢ 0_ I""

line gfap

~~i-nt-eg-er~1 ~\-------J~-'.

~integer

A-11

BASIC-Pills User's Guide

list

Ilne group

----0 J

line group

Jset

-@(.1L...._V_a_Tia_b:le== __) .~
'--------40

Language slImma.ry

string

expressionll---------........

A-12

BASIC-Plus User's Gujde Language Summary

expressionl ~-------_af

mat pJint

expressionl ~----------..,

mat read

~I variable t-+

expressIonl i---------_..,

A-l3

BASIC-PIlls User's GlIide Langllage SUmmary

name as

~I string expression ~ string expression r-..
new

-+~

~
• \

L.I filename

old

-+~ l+f- filename ~
..

on error golO

ongoSlllJ

~expressionl~~
go sub ,

on golo

~expresslonl~~
go to ,

A-14

BASIC-Plus User's Guide Language Summary

expression

expression

expression

operator

A-1S

BASIC-Plus User's Guide Language Stmma.ry

print

pIlnt lISing

-Giiil=>~ k)J ~C using >-
channel ~t ,

A-16

BASIC-Plus User's Gujde

randomjze

~ .--ra_n_do_m_i_z_e_

l-. random

read

~~~C--'.I~ __ va_r_ia_O_le~~~J-•• 
o:~ 

renumber 

--<!enumoey..-. 

replace 

~\ J. 
l..J filename r' 

restore 

-+~ 

resume 

~I:: 1'. 
~ line 1t tJ 

retum 

-+~ 

A-17 

Language SummalY 



BASIC-Plus USer's Guide Language Summary 

string 

.IlI7 

~\ (~ 
~ 

save 

--C save) 'i ( ~ 

~ filename ~ 
set excepllon 

~ exceptIon)-+l exception name H expression ~ 

set !Jalt 

~ exception name ~I expression ~ 

A-18 



BASIC-Plus User's Gujde 

Sleep 

~ expression r--. 
speClal cl7aracter 

st.dng constant 

alplJabelic cIJaracters 

nllmerjc cIJaracters 

all punctuation 
except · 

J.-....----~ alplJabetfc cIJaracters I------,..--.{ 

numerjc cIJaracters 

all punctlJ8tion 
except .. 

A-19 

Language SummalY 



BAS/C-Plus User's Guide 

trace 

-+( trace r 
unless statement modjfier 

-+\statement~1 expression ~ 

unlock 

-+C unlock )-+\ expressIon t-+ 
unsave 

~\ (~ 
l.j fllename tJ 

{)nt.ii next 

until statement modjfier 

~ statement ~ expression ~ 

variable name 

A-20 

Language SummalY 



BASIC-Plus User's Gujde 

varjabJes 

~varlable0-+ 

waH 

~ expression 1-. 

wfJile next 

Language SummalY 

-Jline # ~ expression ~ line # 1-+ statement 

- . 

wfJile statement modifJer 

--+lstatement~ expression ~ 

wrlteaJJow 

~rltea1l0W~ expression ~ 

wdt.eprotect 

~rlteproteci:>-+l expression ~ 

A-21 

~ line *T:GV-



BASIC-Plus User's Guide Language Stll7JmalY 

A.4 Reserved Words 

BASIC Reserved Words 

abs close dif$ find* intpart% nochcr'lges* 

access* clustersize* dim fix inv ~Ucates* 

allow* COffi* dimensIon* fixed* invalid rnectn* 

altemate* corrmorl* dividebyzem fnend ker none* 

(I1d COl'T1l% ruplicates* fnexit* kill norewind* 

arruity cot"f1XUld echo* for left nosparl* 

~ con edit$* format$* left$* not 

as cond else frOffi* len nul$* 

ascii COI'l1eCt* end fsp$* let run 

ask contiguous* eq* fss$tt If* num$ 

am cos eqv ge* line runlS 

back*' 
COt.I1t* erl get l~t* run2 

bel* 
Cf* em$* QO* Unsys on 

block 
ctrlc* err goslt) IOC* onech1'* 

blocksize* 
cvt$$ error goto log onerror 

bs* 
cvt$% ert$* gt* loglO open 

cvt$f esc* halt lset or 
bUcketsize* 

cvt%S exception ht* magtape* organization*' 
buffer* 

cvtfS exp idn map* ~t 
bufsize 

cvtoverflow ext,eoj* if mat overflow 
bY*' aata ff* imp mid peek* 
call*' dateS field indexed* mid$* pi 
ccpos def file* inexact mode* placeS 
dlain delete 'fllesize* input modifY*' pos 
change densitY*' fill* instr move* primarY*' 

Cf1angeS* deSC* fill$* tnt rare print 
chr$ det fi11%*' Intpart next prodS 

* Nonoperative reserved words. 

A-22 



BASIC-Plus User's Gujde Language Summal)' 

BASIC Reserved Words, cootirued 

put reset* seg%* stop then vaI%* 
(J.IO$ restore sequential* st.r$t' time vaIue* 

radS rest.rne set strecm* timeS variable* 

random return s90 string$ to vi rtual * 

randomize ri~t si* sUb t.rm$* vt* 

rctrlc* ri~~ sin swencl* tm wait 

rctrlo* md sleep Sl.bexit* Lrldefined* while 

read mear SO* strn$ lI1derflow windowsize* 

record* meg SP* swap% lI'lless write* 

recordsize rCUlding spaceS sys* unlock writeallow 

recot.l1t rout* spa1* tab tIltil writeprotect 

ref* rpos spec* tm t.plate* wIk~* 

relative* rset sqr tape* useropen* Xlate 
rem rzero status task* using xor 
remainder scratch* step temporary'" val zer 

* Nonoperatl ve reserved words. 

A-23 





Appendix B 
Floating-Point Arithmetic 

a1 IntroclJCtion ......•.•...........•.............................•........................•.............. B-1 

6.2 RW1dlng of Floating-Point Results..................... ..........•.•...................•...• B-1 

6.3 I\ccUracy Of Arlthmetlc ~ratlorlS ...........••.....•.....•...•...•....•..•.•.•..•.•.•.•••... B-1 

6.4 overflow cn1 Division by zero: Infinite values ............................................. 6-1 

6.5 Invalid (l)erations aJ1Ij ~ values ............................................................ B-3 

6.6 Integer-conversioo overflow ................................................................... B-3 

B.7 Text -orIented IJ(l GonverstorlS .....•...........••..•........•.•...•.•.•..•..••..•.•.•.••....•.. B-3 

6.8 Bibliography. .... ...... ..•......... ....•.•........ ..•.... ..... ..............•..•......•.....•......•• 6-4 





Floating-Point Arithmetic 

B.l Introdt.£tloo 
BASIC floating-point arithmetic (all arithmetic involving floatlrg-point values) 
conforms to the IEEE's Proposed Standard for BinalY Floating-Point Arittmetic 
(Draft 10.0 of IEEE Task P754), except that the only supported precision for 
floating-point values is double. 
IEEE Standard ari thmetic provides better accuracy than many other floating
point implementations. It also reduces the problems of overflow, underflow, 
limited precision, and invalid operations by providing useful ways of dealing 
with them. 
As a general rule, you can wrIte BASIC programs that use float1ng-polnt 
arithmetic without worrying about the differences between IEEE Standard 
ari thmetic and other floating-poInt implementations. 
The following points apply if your program writes out floating-poInt numbers 
as textual representations (via print or print using): 

• My thing in the output that looks like a number will be correct (and 
possibly more accurate than under other Implementations~ 

• If your output contains a string of two or more pluses or minuses, this 
indicates a value of 00, resulting from division by zero or an operation that 
caused a floating-paint overflow. 

• If your output contains the string NaN ("Not a Number"), it indicates the 
result of an invalid operation that would probably have caused a program 
halt or a wrong output under other implementations. 

B.2 ROlIldlng of Float1ng-Point Results 
When a floatlrg-polnt result must be rounded, it Is rounded by default to the 
nearest representable floatlrg-polnt value. If the unrounded result is exactly 
halfway between two representable floatlrg-polnt values, it is rounded to the 
value that has a zero in the least significant digit of its binary fraction (the 
"even" value). 

B.3 Accur~y of AIittmetlc qJeratloos 
The arithmetic operations +, -, *, /, and sqr suffer at most one rounding error. 
Remainder Is computed exactly. 

6.4 overflow cn:.I Division by zero: Infinite Values 
The result of floating-point overflow is either +00 or -00. These are floating
point values that can be used In further calculations and are mathematically 
well-behaved: for example, a finite number divided by 00 yieldS zero. 
The default treatment for dividing a finite non-zero value by zero Is to yield 
+00 or -00 without a run-time error. 

8-1 



BASIC-Plus User's Guide Floaang-Point MtlJmeac 

Infini te values nave textual representations that can be read by read or 
wri tten out by print or print using, and input by lrp.lt as where a - vaJ(as~ 

Tables B-1 and B-2 below snow the results of arithmetic operations on 
infinities. Note that any operat1on involving a NaN as an operand prOduces a 
NaN as the result 

Table B-1 
Results of AddItion CIld SlmtractIon on Infinities 

Left 
Operand -co finite +co 

-co -co -co NaN 
finite + -co finite' +co 

+co NaN +co +co 

-co NaN -co -co 

finite - +co finite' -co 

+co +co +co NaN 

~ Result may be an infinity if the operation overflows, depending 
on the roUnding moae. 

Tcmle B-2 
Results of MJItlpUcatlon and Division on InfinlUes 

Lef't 
OpeJ'Bl7d 

:to 
finite * 

:!:co 

:to 
finite I 

:too 

:!:O 

:to 
:to 

NaN 

NaN 
~oo 

:too 

RigIJt 
cpe.ra?d 

finite 

:to 
flnltef 

:!:co 

:to 
finite' 

:too 

:!:oo 

NaI\I 
:too 
:tco 

:to 
~O 

NaN 

~ Result may be an infinIty If the operation overflows, dependIng 
on the rounding moae. . 

Note: Sign of result is determined by the usual mathematical rules. 

B-2 



BASIC-Plus USer's Guide Floating-Point Arftllmetic 

B.5 Invalid qlerations and NaN Values 
The following operations are considered to be invalid: 

• oo-co or co+( -co) 

• 0 * !co 

• % or !co/!CO 

• x rema1ncJer y, where y is zero or x is infinite. 
• square root Of an operand less than zero. 
• , conversion of a NaN to an integer variable. 
• f comparisons other than - and <> involving NaNs. 

The default treatment for such an operation is the following: 
1. Set the invalid floating-point exception flag to true. 
2. Provide a result: if the operation would provide a floating-point result for 

valld operands, tnen the floating-point result for invalid operands is a NaN. 
In the two operations marked f, the result is unspecified and false, 
respectively. 

3. Continue execution. 
A NaN resul tlng from an invaUd operation propogates: if used as an operand 
in another operatlon, the result will be the same NaN. NaNS can be written 
out via print or print using, and read in via read: the textual representation is 
"NaN", Which may be followed by a quoted string. 

6.6 Integer-conversion OVerflow 
Integer-conversion overflow can occur if too large a floating-pOint value Is 
assigned to an integer variable. The result returned is unspecified. 

B.7 Text-Oriented I/O COnversims 
The if1lllt., print, and print using statements convert numbers from decimal to 
binary on input and from binary to decimal on output. The error in these 
conversions is less than 1 unit of the result's least significant digit. 
Floating-point values appear as character strings in two different contexts: 
within BASIC statements, and as data in fUes. The signed-number syntax of 
Chapter 4 applies In both cases. 
The output textual representation of a floating-point value is rounded to the 
nearest pOSSible decimal representation. If the unrounded value is exactly 
halfway between two pOSSible representations, me representation whose least 
significant digit is even is written out 
For read, print and print using, +00 Is represented by a string of at least two 
plus signs, and -co by a string of at least two mInus sIgns. NaNs are 

B-3 



BASIC-Plus user's Guide Floatfng-Point AritlJmetfc 

represented by the characters "NaN", wIth an optional leading sign, and an 
optional trailing quoted string of characters, as follows: 

-NaN'4' 

The character string provides diagnostic data. 

B.8 Blbllography 
The following articles contain detailed information and discussion of the 
proposed IEEE floating-point standard. (Articles are listed in order of 
importance.) 

• "A Proposed Standard for Binary Floating-Point Arithmetic", IEEE 
computer, Vol. 14, No.3, March 1981. 

• Coonen, J.: "An Implementation Guide to a Proposed Standard for Floating
Point Arithmetic", IEEE computer, Vol. 13, No.1, January 1980. 

• ACM SIGNUM Newsletter, special issue devoted to the proposed IEEE 
floating-point standard, CCtober 1979. In particular, see article by Kahan 
and Palmer. 

• Coonen, J.: "Underflow and the Denormalized Numbers", IEEE Computer, 
Vol. 14, No.3, March 1981. 

8-4 



Appendix C 
Linear Algebra 

C.l vectors and Linear TransfoITTlations ....................................................... C-l 

C.2 Singular and f'.DlSlngular Linear Tnmformatlons .................................... C-l 

C.3 Inverses of LInear Tr~ormat1(JlS ........................................................ C-2 

C.4 Trcmformatlons between Spaces of Different Dlmensloo .•....................... C-2 

C.S Arrays and Matrices ...........•...•........•.•.•.......•.......•........•..•..••...••...••.•.•.• C-2 

C.6 ~lng the Results of Trcmformations ............................................. C-4 

C.7 Inverse TranSformations ........................................................................ C-5 

C.B SOlving Linear Equations ...................................................................... C-S 

C.9 ~y ............................................................................................. C-7 

C.9.l Condition Numbers ..................................................................... C-7 
C.9.2 Ill-Conditioned Problems ............................................................ C-8 

C.10 [)eterrninants ....................................................................................... C-9 

C.ll Linear Least-SquareS Problems ............................................................. C-9 

C.l2 Expert's COrner ................................................................................. C-I0 





Linear Algebra 

This appendix describes the matrix algebra facilities in BASIC. Matrix algebra 
includes the operations of matrix multiplication, solving linear equations, and 
solving linear least-squares problems. BASIC provides the mat keywords *, 
linsys, an:1, inv, cn:1 det that perform these operations. 

Because BASIC for the Lisa provides more general and powerful matrix 
operations than most other BASICS, it is helpful to review the theoretical 
setting that lI1derHes matrix algebra 

C.l Vectors ~ Linear TImSfonnations 
Linear algebra is concerned with elements in vector spaces and the class of 
linear transformations upon them. Does this sound too abstract? Then think of 
this concrete example: the vector space is the set of points in a window on 
the screen, forming a picture. Ole point, the origin, is special; often it is the 
lower left comer. Certain collections of these points make lines, and by lines 
we mean straight lines. Linear transformations are transformations of the 
points in the window that preserve linear relationships; that is, they map lines 
into lines. Typical linear transformations include the identity transformation, 
which does nothing; scaling transformations, which act like a zoom lens to 
magnify or reduce the picture; and rotations, which rotate the picture about 
the origin by a fixed CIlQle. It is possible to contJine linear trBlSformatiom 
by doing one after another to create new ones. 
The sirT4llest way to lIlderstand the effect of a linear transformation in two 
dimensions Is to consIder what it does to the lrdt Circle, which is a Circle of 
radius one arOUld the origin. The identity transformation leaves the circle 
l.I'lCha'lged; scaling trcrnformations make the circle bigger or smaller; rotations 
leave the tI'lit circle seemingly l.flChanged, altnoug'l circles centered elsewhere 
are rotated as a whole. Another eXarlllle is turning the vertical gain of the 
video screen to zero; that is, projecting all the points onto a horizontal line 
thrcu;1l the ongin. In this case the uni t circle gets trcmformed into a line 
segnent centered at the origin. In three dimensions, replace the 1Il1 t circle 
with the unIt sphere. 

c.2 S1rgJlar CI'ld ~lar Linear Tnnformatioos 
It turns out that a two-dimensional linear transformation CCI1 only map the 
lI1it circle in one of three special ways; it can map it onto an ellipse or 
circle Which is centered at the origin; or it can map the Ulit circle onto a 
segnent of a line passing through the origin; or it maps all the points in the 
vector space onto the origin. This last linear trfmformation is a special one 
called the zero trcnsfonnation. Trcnsformations that map the lI1it circle onto 
a circle or an ellipse are called ncnslnguJBT. Singular transformations are 
those that map the LI1it circle into a line segment or poinl There are no 
other possibilities. A singular linear transformation that maps the Ulit circle 
to a line segment is not one-to-one; it maps more than ore point in the LI1it 

C-1 



BASIC-Plus User's G/.Jide Linear AlgebrB 

circle into the same point on the line segment SUCh a transfonnation canl 
be undone by a linear transformation because a point on the line segment may 
have come from more than one poInt on the unit circle, and there's no way to 
tell for certain which one. f\Jonsingular transformations are always one-to
one. 

C.3 Inverses of Linear Tramfomlations 
My nonslngular linear transfonnation can be undone or inverted. For 
instance, a scallng transformation that magnifies by two can be undone by a 
scaling tramfonnation that reduces by two. A 45-degree clockwise rotation 
can be inverted by a rotation of 45 degrees counterclockwise. M inverse to 
a transformation is another tranformation such that when it is applied after 
the original transformation is applied, the net msult is that all the elements 
In the vector space are left lI1Changed. 

For transformations that map a vector space into itself, having an inverse is 
equivalent to being nonsingular. Transformations that have inverses are 
nonsingular; transformations without inverses are singular. To understand 
singularity, consider the cases of ordinary multiplication and division of 
numbers. The transformation "multiply by x", as in z = x * y, is nonsingular 
unless x - O. An inverse transformation "divide by x", as in y - z I ~ exists 
as Jong as x <> O. When x = 0, "multiply by x" is singular and does not have 
an inverse transformation. We could define a Ilpseudo-inverse" transformation: 

if x = 0 then Y = 0 else y = z/x 

whiCh exists for any x" but we would not always expect to recover the 
original value of y. ?seudo-inverses that make 'SOI'TleWhat arbitrary choices 
can be defined for any linear transformation. Inverses, when they exist, are 
lI1ique. Pseudo-inverses are never lI1ique. 

C.1l TrrrlSfollil8tic:ns between Spaces of Different Oimensioo 
Transformations may be defined that map elements of one vector space into 
elements of another. For instance, a painting of a three-dimensional scene is 
based on the artistic perspective convention for mapping three dimensions into 
two. 

Linear transformations that map vectors from two dimensions to three can at 
best map the l.Ilit circle into a two-dimensional object in the three
dlmensimal space. Transformations from three dImensions to two map the 
lIlit sphere into at ~t a two-dimensional object. Generally speaking, a 
transformation that maps the lIlit circle or sphere into an object of the 
maximum possible dimensionality is said to be of full rank. otherwise it is 
said to be rank-defiCient When the two spaces are the same, then "full rank" 
means nonsingular and "tank-deficient" means singular. 

c.s Arrays am t-1atrices 
The BASIC language deals with arrays of numbers, rather than elements of a 
vector space and transformations upon them. Arrays of nurntJers can have any 
meaning that the prograrnner wishes to assign, but conventionally vectors are 
represented by an array with one dimension. Thus an element, U, of a 

C-2 



BASIC-Plus User's Guide Linear Algebra 

two-dimensional vector space might be declared dim L.(2), while an element, V, 
of a three-dimensional vector space might be declared dim \{3} 

Conventionally, for a point in a two-dimensional space, L.(l) is the first 
coordinate, along the x axis, and L(2) is the second coordinate, along the y 
axis. 
The size of a vector is measured by its Euclidean length, which is the square 
root of the sum of the squares of its elements: 

100 lengthU = sqr( U(1)A2 + U(2)A2 ) 
A linear transformation can also be represented by an array of numbers. 
Linear transformations mapping n-dimensional spaces to m-dimensional spaces 
are conventionally declared as dim A(mJl} The following discussion uses the 
term "matrix" to refer to an array representing a linear transformation. The 
individual components of a matrix A depend on the linear transformation that 
A represents. 
The components of an array A representing a two-dimensional linear 
transformation can be determined by examining the effect of the transformation 
on the standard unit vectors El and E2; where El and E2 are a pair of 
perpendicular vectors that have coordinates (1,0) and (0,1) respectively. The 
elements of the first column of A are the coordinates of the result of applying 
the transformation to E1. Similarly, the second column is the result of applying 
the transformation to E2. 

For example, lers suppose the transformation is a counterclockwise rotation of 90 
degrees. Then El gets mapped into E2 and E2 gets mapped into -El, where -El 
has coordinates (-1..0). The matrix A representing this transformation would be 
declared and its coordinates assigned as follows: 

100 dim P(2;1.) 

110 rem 90 degree rotatioo of E1 gives the result (D'!) 

120 A(1,1) = 0 : A(2,1) .. 1 : rem the first colum of A 

130 rem 90 degree rotation of E2 gives the result (-1.,0) 

140 ,4'(1;1.) = -1 : ,4'(2;1.) = 0 : rem the sean:t colUTll of A 

In two dImensIons .. to represent the identity transformation, wrIte: 
100 dill 1{2,2) 

110 Mat I = idn(2,2} 

To represent a three times magnifIcation, write: 

100 dill "(2,2) 
110 .at " = idn(2,2} 

120 I6t " = (3) • " 

C-3 



BASIC-PJus User-S Guire 

and to represent a counterclOCkwise rotation through angle T: 
100 dill R(2,2) 

110 C = cos(T) 

120 S = s1o(1) 

130 R(l,l) = C 

140 R(2,1) = S 

150 R(l,2) = -s 
160 R(2,2) = C 

Linear Alge/Jm 

The above transfonnations are all nonsingular. 01e singular transformation is 
the zero transformation, which maps everything to the origin: 

100 dill Z(2,2) 

110 mat Z = zer(2,2) 
Another singular transformation maps any vector onto the x-axis: 

100 dill P(2,2) 

110 IIIJt P = zer(2,2) 

120 P{l,l) = 1 
This maps the unit circle into a line segment on the x-axis.. 

C.6 ~ the Results of Tnnfonnations 
With the conventions for vectors and transformations outlined above, the 
BASIC language provides operations for applying transformations to vectors 
and combining transformations. 
To apply a transformation to a vector, you multiply the vector on its left side 
by the matrix representation of the transformation. For a two-dimensional 
vector U, its result V and the transformation A defined above; we have: 

90 dim 1.(2,1), ~2,1) 

210 1.(1,1) = 1 : L(2,1) = 1 

220matV-A*U 

Then the result V would have coordinates (-1,1} 

To combIne two transformations, mul tiply their matrices together. To 
represent a transformation C which first performs A and then performs 8, 
write: 

100 DBt C = 8 • A 

C-4 



BASIC-Pills User's Guide Ljnear Algebra 

If you ever wondered why the textbook definition of matrix multiplication is 
so complicated, it is to insure that transformations can be combined by 
multiplying their matrices in this way. Matrix multiplication works only when 
the second dimension of B is the same as the first dimension of A, because it 
only makes sense to combIne two such transformations When the result space 
of A is the same as the operand space of B. 

C.7 Invene TliliSfolluaUons 
We mentioned earlier that nonsingular matrices have inverses.. To get the 
inverse transformation Y of a nonsingular matrix A, write: 

100 IIIBt Y = irw(A} 

lnv always returns a result, Y, which is the inverse if A is square and 
nonsingular; Y is a pseudo-inverse otherwise. 

Jnv Is provided becaUSe It is traditional in BASIC systems. It Is rarely needed 
for most BASIC programs. As you w11l see in the next section, there Is a 
faster and more accurate way of getting the results that inv Is capable of 
providing. 

C.8 Solvi~ Unear E[JJ8tims 
The BASIC larguage for the Lisa also provides operatioos for solving matrix 
equations 51d for CCJI11)Ut.ing inverse 51d pseudo-inverse transformatioos. 
We have seen that applying a transformation A to a vector X is simply 
multiplying them together to get the transformed vector B: 

100 IIIBt B = A • X 

We can also go the other way; given B and nonsingular square A, we can find 
the vector X: 

90 dim )«3,1), £(3,1), 1'(3,3) 

100 IBt X = linsys(A, B) 

The traditiooal ncme for this problem is "solving a system of n linear 
equations in n lI1krlowns... In terms of transformatioos, finding the X that 
maps into B is equivalent to inverting or undoing the tramformation and 
applying the inverse transformation to B to get the result X. 

If you want to invert the same transformation for p vectors at a time, where 
A is CI1 nxn singular matrix, then declare dim ~n~), p(rl)l), X(n~) and ifl)Ut 
the P vectors as the coltSmS of B. Then each colUl111 of X will represent the 
inverse of the transformation A applied to the corresponding coltmn of B. 

In the foregoing we assumed that A was nonsingular and square. In general, 
one CCI1 still inquire whether the matrix equatioo B = A .. X has any solutions 
even when A is not S(JJ8re or is singular. Declare dim ~n,1), A(rvnJ, X(m,l) 
and Linsys will attempt to return a vector X such that the transformation A 
maps X close to B. Alternatively, you can think of linsys as attempting to 

C-5 



BASIC-Plus User's Guide Linear Algebra 

find a pseudo-inverse of A that maps 6 close to X. In this nonsquare case we 
would write something like 

90 dim X(4;1), ~;1), 1(3,4) 

100 mt X '" linsys(A, B) 

I f we view the matrix equation A * X = 6 as a system of linear equations, 
then the following may be a more familiar representation of "a system of n 
linear equations in m unknowns": 

A1,1*X1 .. A1,2*X2 .. A1,3*X3 

A2,1*X1 + A2,2*X2 + A2,3*X3 

.. A1JTl*Xm - 61 

+ A2)ll*Xm - B2 

.. ~JTl*Xm - Bn 

When A is singular or not square, linsys will still compute X Sometimes 
there will be more than one possible solution X that makes B - A*X zero. 
However, only one solution is fOl.l1d by linsys. At other times there are no 
solutions X When this is the case, an X is returned that minimizes the length 
of the residual B - A*X, but may not necessarily be able to make it zero. 
Ole way to determine the acceptability ofa solution is to compute the 
residual and compare it using a tolerance tol: 

100 dim A(3, 4), 8(3,1), X(4, 1), R(3, 1) 

200 tol = If-14 

210 IIBt X = 1 insys (A, 8) 

220 mat R = A * X 

230 IIIBt R = B - R 

240 nol'llR = 0 

25000nfJ = 0 

260 for I' = 1 to 3 

270 ronA - nonA + R(I',1)"2 

280 none = non8 + 8(1',1)"2 

290 next I' 
300 if sqr(noraR) > tol * sqr(noI'll8) then print a 

"ResiclJal exceeds tolenn::e-

If A is square, another way to find X is· to find the inverse transformation 
itself, and apply it to B: 

C-6 



BASIC-Pllls User's Guide 

100 dim Y(3,l), ~,l), P(3,3) 

200 IIBt Y = inv( A) 

210 mat X = y * 8 

Linear Algebm 

This is much less desirable because it is slower and less accurate to COfTlJUte 
the Whole inverse matrix than to use linsys. 

Although it is easier to use inv, the multiple solution vector feature of Unsys 
may be used to find the inverse of A 

100 dim Y(3,3), ~,3), $,3) 

200 arat B = im(3,3) 

210 IIBt Y = linsys(A, 8) 

e.g lV:D.Jracy 
A considerable amount of computation is involved in the calculation of linsys 
and inv. Even though B~IC uses high-precision arithmetic and sophisticated 
algorittms that minimize numeric errors, rounding errors sometimes do 
accumulate. However" the reliability of the answers to the equation A*X = B 
depends on more than just runerical accuracy. There are some systems of 
linear equations where small char ges in the data (the elements of A and B) 
cause the answers (the elements of X) to differ greatly. This reliability 
question is an inherent property of linear algebra and exists even when the 
numeric precision is exact. 

C.9.1 Cmdtion turtJers 
A set of linear equations is said to be ill-conditioned if the solutions are 
very sensitive to small changes in the coefficients" that is" the elements of 
the arrays A or B in the matrix equation A*X = B. The following system has 
a solution X = (11,1} 

Xl - X2 - 10 

Xl - 1.000001 * X2 _ 9.999999 

01 the other hand, making small changes to the coefficients produces a 
solution X = (-1,-11} 

Xl -

1.000001 * Xl -

X2 - 10 

X2 ... 9.999999 

The inverses of the versions of the matrix A shown above are considerably 
different also. The problem is that both versions of the matrix are "nearly 
singular"; that is" they are very close to being the singular matrix: 

100 mat A = cor(2~ 
BASIC provides a way of finding out when a solution vector or an inverse 
matrix is unreliable by calculating a condition value for the matrix A 

C-7 



BASIC-Plus User's Guide Linear Algebra 

whenever linsys or inv is called. After an attempt has been made to solve a 
system of linear equations, there will be evidence you may examine by calling 
the cood function: 
Cond will be zero for singular and rank-deficient matrices A and greater than 
zero for nonsingular and full rank matrices A The largest possible value of 
cond is 1, which is attained by the ideiltity and rotation matrices, among 
others. 

100 mat X = linsys(A, B) 

110 C = cond 

120 if (l~C) = 1 then print MA is singular-

If 1 +C rOlllds to 1 then you know that C is smaller than the level of rounding 
error. Cond is actually an estimate of the relative change in A to make A 
into the nearest singular matrix. Matrices with small C(I"Kj are badly 
conditioned and often cause trouble because they are close to singular. The 
corresponding transformations map the unit circle into very skimy ellipses, 
which from a distance look rruch like the line segments generated. by singular 
transformations. Two points on opposite sides of such a skimy ellipse may be 
very close together, perhaps within a rounding error, but the corresponding 
points on the unit circle that they were mapped from may be much further 
apart. Small errors like rounding errors can thus cause big errors when 
solving for the inverse transformation. 

C.92 Ill-conctitiooed PrOOlems 
All the operations we have discussed are subject to rounding errors after each 
floating-point operation. This has important implications because rOlllding 
errors blur the distinction between singular and nonsingular problems. A 
matrix may be nonsingular, but if it is close enough to a singular matrix, the 
result X may not be satisfactory; it may be far from the correct solution X, 
and the residual R might not be small compared to B. Cond supplies an 
estimate of the effect of rounding. Generally, you cannot count on more than 
15 + logl~coOO) significant digits being correct in the largest component of X, 
with fewer reliable digits in smaller components: 

100 1IBt. X = linsys( A, 8) 

110 C = cond 

120 if C = 0 then print -A is singular-

130 if C = 0 then tI) = 0 else tI) = 15 ~ log10(C) 

140 if It) > 0 then print fix(N», - digits of X are reliiSJle-

150 if (l.c) = 1 then print -X is completely unreliable-
Again, we have checked to see if 1 +C rOll'lds to 1. 

C-8 



BAS1C-Plus User's GuifE Linear Algebra 

C.10 Determlrmts 
BASIC provides the det function to obtain the determinant of the last matrix 
supplied to inv. Det is traditionally used in BASIC to determine whether A is 
singular or nonsingular, since the determinant of a singular square matrix is 
zero and the determinant of a nonsingular square matrix is not zero: 

100 mat X = 1nv(A) 

110 if det = 0 then print -A is singular-
The value of £Jet is not related to the condition (anj) of tte problem. For 
Instance, the statements 

100 mat A = idn{2,2} 

110 .at A = (k) • A 

prOduCe a matrix A with perfect condition number 1 bUt with determinant k" 2 
which could be large or small, while the statements 

100 nat A = idn(2,2) 
110 A{1,1) = k 

120 A(2,2} = 11k 

produce, for k >- 1, a matrix A with condition 11k A2 which could be very 
small, bUt with determinant 1. Since det can be used only to distinguish 
singular from nonsingular, and rounding errors blur this distinction, the use of 
det is not recommended. USe cond Instead. 
f\bte: Det is computed only when peIfonning inv, not when peIfonning linsys. 
Det is 8 NBN if tile matIix is not sqLI8n!. 

G.11 Linear Least-Squares Problems 
Linear least-squares problems are a generalization of linear equation problems. 
The dimensions are typically dim ,A(nJll X(p;nl B(n)Tl~ In both cases the 
solution X minimizes the length of the residual B - A • X; for linear 
equations with square nonsingular A" the residual would be exactly zero in the 
absence of rOUlding errors. In overdetermined least -squares problems where 
there are more equations than unknoWns, R is not zero. In LI1derdetermined 
least-squares problems where there are more I..I1knowns than equations, R is 
zero, and alt.hol.ql there Is more ttal one solutlon X, only one Is returned. 
To obtain a single least-squares solution of a problem with 100 Observations 
and 3 t..rIknowns: 

100 dill A(100, 3), X(3, 1),8(100,1) 

110 mt iJ1l.tt A 

120 lEt iJ1l.tt 8 

130 _ X = linsys( A, 8 ) 

140 mt print X 

C-9 



BASIC-Plus User's Guide Linear Algebra 

C'Dld is usually zero if A is rank-deficient and greater than zero If A is of 
full rank. 

C.12 Expert"s Comer 
Linsys and Uw use colurm pivoting to factor the matrix A into a product of 
CI1 orthogonal matrix Q and CI1 ~r triangular matrix R; A = Qt'R. This 
factorization Is then used to solve for X, the lI'lknown vectors or pseudo
inverse matrix. Cmd is an estimate of the inverse of the conventional 
condition IUTlber. When A(rw) is not square, cond is not zero 1Il1ess A is 
rn-deficient 

C-10 



Appendix D 
Error Messages 

0.1 Recoverable Errors ..••..•.....................................•...•...•.....•.......•...........•. 0-1 

0.2 Fatal Errors ...........••......•.......••...•..••••.•....••..•............•...•.•..•...••....•........ 0-4 





Error Messages 

This appendix lists all the BASIC error messages, recoverable and fatal. 
Recoverable errors are just that; if the error occurs, you can recover from it 
if you provide appropriate error-handling routines. Fatal errors cause a 
nonrecoverable run-time error. 

0.1 Recovermle Errors 
You can use the on error goto statement to direct program execution to 
error-handling code when these errors occur. The error number that precedes 
each message may be inspected through the err variable . 
• can1t write to file 

A write operation failed while transferring output characters or the 
contents of a file buffer to the file system. 

4 Ga'll t write values of virtual array to cIKnlel 
A failure occurred while a fHe buffer or output character was being 
written . 

• Error in writing file 
An error occurred while a file buffer or output character was being 
written . 

• No space for virtual array 
No space is available for the virtual array . 

• Error writing virtual array element to channel 
An error occurred while a virtual array element was being written to a 
channel. 

S No file -stringl- to NAME AS -string2-
Stringl does not exist, or strirYJ2 is an invalid name. 

S can I t open f1le <nCIDB> 
The file specIfIed in an open statement cannot be opened. 

5 can I t find file <raE> 
The file speCified in an open statement cannot be found. 

9 Att~t to reference CI"l t.IlOJ)eI1ed chCn1el 
The channel must be opened before it may be referred to in an input 
or output operation. 

9 Cha'Yle1 not open 
M InpuVoutput operation was requested to a channel Which has not 
been opened by the open statement 

0-1 



BASIC-Pllls User's Guide Error Messages 

9 FIELD Chcmel not open 
A reference to an unopened channel has been made In a field 
statement. 

11 End of file on deVice 
An attempt was made to read beyond the end of the fUe. 

15 KeybOard wait eXhaJsted 
A maximum was set on how long the program will wait for input from 
the keyboard. This error message appears when the time Is. up. 

31 &lffer sizes smaller thcrl default not ~rted 
A recordsize option in an open statement requested a buffer smaller 
than· the default (512 bytes~ 

31 can· t have using value larger than recordsize 
A get or p.It statement contains a using value larger than the size of 
the buffer. 

38 Heap eXhaJsted 
There is no more space available in the heap (allocatable memory~ 

43 Virtual array IIlJst be on diSk file 
A request to open a virtual array lists a device which is not a disk 
(SUCh as the console~ 

45 Virtual array not yet open 
The file associated with a virtual array must be opened before the first 
statement referring to the array Is executed. 

46 Dlamel rumer out of ralge 
The channel number (data channel) listed inan 110 statement Is out of 
the legal range. Channel numbers must be between 1% and 12%. (0% Is 
always associated with the console.) 

46 Chcnlel rumer in open out of I'a'lge 
The channel number (data Channel) listed in an open statement Is out of 
the legal range. Channel numbers must be between 1% and 12%. (0% Is 
always associated with the console.) 

46 Chcn1el rumer in close out of range 
The channel number (data Channel) in a close statement is out of the 
legal range. Channel numbers must be between 1% and 12%. (0% is 
always aSSOCiated with the console.) 

50 Bad if1)Ut format 
The system is trying to read a value from an lrpJt or read statement 
and the data are in an incorrect format, e.g., alphabetic data in a 
numeric variable. 

52 Integer too big 
Integers must be within the range -32768 to +32767. 

0-2 



BASIC-Plus User's GlI/de Error Messages 

55 current matrix dimension smaller than specified 
A dimension of the matrix specified in a mat print statement is greater 
than the actual size of the matrix. 

55 Negative bcUlds not allo.ad 
The dimension statement for a matrix contains a negative value; only 
non-negative integers (0 to +32767) are allowed. 

55 Slbscript out of range 
A reference to an array contains a subscript which is outside its 
predefined range. 

55 Matrix d1nEnsion error 
The operands to a matrix operator do not match. In other words, the 
matrices involved in the operation are not of the appropriate 
dimensions. 

55 D1ne1sions or maxinun size prevents redimensioning 
This error occurs when an attempt is made to redimension a matrix 
from one to two dimensions or vice-versa, or to redimension an array, 
making it larger than was defined in the dim statement. 

55 FIELD overflow buffer 
The amount of space requested in a field statement exceeds the 
amount available in the buffer. 

57 out of data 
A read statement ran out of data 

69 VAl if1XJ1: string too long 
The input string for val was too long. 

70 N.I11S result string too long 
The string exceeds 255 characters. 

72 INV or LINSYS aI1J.IIBlt dimensions i~roper 
In inv(A) or UnsYS(AJ3) one of the dimensions of A or B is less than 1, 
or in llnsys(J\B) the number of rows of A is not equal to the number of 
rows of B. 

73 It.Ist not use $$ format with exponential notation 
You may not specify exponential notation C' .... ") and dollar sign fill 
characters ($$) in the same print using format. 

73 It.Ist not use * fill with exponential notation 
You may not specify exponential notation C A " A) and asterisk f111 
characters (*) in the same statement. 

73 Gal't use * fill with leading mirus sigl 
When the asterisk (*) is used to replace leading zeroes in a print using 
statement, negative amounts must be indicated with a trailing minus 
sign. 

0-3 



BASiC-Plus User's Gujde Error Messages 

73 cm l t use $$ format w1 th leooing m1rlJs Si!Jl 
When the dollar sign ($$) is used to replace leading zeroes in a print 
using statement, negative amounts must be indicated with a trailing 
minus sign. 

80 Invalid Operation 
M invalid operation was encountered. This error is signaled only if its 
set halt flag is on. 

81 tUoorical conversion overflow 
A floating-point value was too large to convert to an integer variable. 
This error is signaled only if its set halt flag is on. 

82 Floating point overflow 
A floating-point value was either too large or too small. This error is 
signaled only if its set halt flag is on. 

83 Floating point lI1derflow 
A floating-point value suffered excessive roundoff because it was too 
close to zero. This error is signaled only if its set halt flag is on. 

M Inexact calculation 
The result of a calculation was too inexact to be represented. This 
error is signaled only if its set halt flag is on. 

85 Division by zero 
M operation resulted in an illegal floating-point division by zero. This 
error is signaled only if its set halt flag is on. 

0.2 Fatal Errors 
The errors IJelow are fatal. When one of these errors occurs, it causes a 
run-time error. 

Virtual array rust not be both source cnt dest 
In a matrix operation where the result is a virtual array, the same 
matrix may not appear on both sides of the equation. If X is a virtual 
array .. the following statements are not legal: 

matX=X*V 

mat X= tm(X) 

Resul t of string ari ttvretic too long 
The result of a strlng arithmetic operation contains more than 56 
characters. 

Attempt to divide by zero in string arittvretic 
Division by zero is an illegal operation in string arithmetic. 

Ga'll t redimension virtual array 
RedimensionIng a virtual array is an illegal operation. 

0-4 



BASIC-PIllS user's G1./ide Error f'o1essages 

t'kJst not use file as virtual array CIld for I/O 
()')ce a file has been opened for virtual array storage, it may not be 
accessed for ASCII liD or block liD. 

t'kJst not get or put virtual array or 1/0 file 
Get and put are illegal operations on a file that has been opened for 
ASCII I/O or virtual array storage. 

String operand has incorrect format 
A character string used in a strIng arithmetic statement may not 
contain any characters other than plus (+), minus (-), decimal poInt (.), 
and digits (0 through 9~ 

Invalid label ruDer in CHAIN 
An invalid line number was speCified in a chain statement. 

CHAIN file not found 
The file name entered in a chain statement cannot be found. 

only blanks allowed between \ in USING string 
Characters other than blanks appear between backslashes (\) in a print 
using statement. 

Missing matChing \ in USltfi string 
An odd number of backslashes (\) appear in a print using string. 

Incorrect USING format to print string 
The using string contains information which is not in the correct 
format for the data to be prInted. 

Missing END statement 
The program does not contain an end statement. 

Syntax error 
Incorrect syntax is found by the interpreter. 

RETmN .i thoUt GOSlE 
A return statement Is encountered, but no ~ statement has been 
executed. 

RElmN from OEF FNX 
A return statement was encountered In a function. 

GOIO target does not exist 
The Hne number spec1 fled In a gato statement Is not valid. 

GOSlJ3 target does not exist 
The Une number specified In a goslJl statement Is not val1d. 

Galtt LSET or RSET Virtual Arrays 
The lset and net cannot be used with virtual arrays. 

0-5 



BAS/C.-PillS user's Guide Error f\1essages 

C3l" t RESltE 
A rest.me command was executed, but no on error gato routine had 
been entered. 

Ccvl" t wm:N.E 
You can only use a cant command after a stop command has been 
entered. 

call of t.I1defined flrntion 
A reference was made in the program to an undefined function. 

can"t use Virtual arrays in FIElD statement 
The field statement cannot be used with virtual arrays. 

Negative FIELD .idth 
The field statement requires positive field values. 

0-6 



Appendix E 
BASIC Workshop Files 





Appendix E 
BASIC Workshop Files 

This appendix l1sts the fUes on the BASIC 1.0 diSkettes. 

file Halle BASIC ftJtes Description 
DiSkette 

BASIC.obj 2 Workshop program. 
BYE. TEXT 1 WOrkshOp installation exec file. 
ByteDiff.obj 2 Utility program. 
Cistart.text 1 WorkshOp installation exec file. 
Diff.Obj 2 Utility program. 
DtIJl)PatCh.Obj 2 Utility program. 
EOIT.t1ENUS.TEXT 2 Editor support file. 
Ed1tor.Obj 2 WOrkShOp program. 
Filediv.Obj 2 Utility program. 
Filejoin.Obj 2 Ut1l1ty program. 
find.Obj 2 Utility program. 
Ft10ATA 1 1,2 Data segnent. 
font.heUr 1 1,2,3 Data needed to support SYSILib. 
FONT.HEUR 2 second copy of sane f1le. 
font. lib 1 1,2,3 Data needed to support SYSILib. 
GETPROFILELOC.TEXT 1 WorkShOp installation exec file. 
GETYESNO. TEXT 1 WOrkShop installation exec file. 
INSERTDISK.TEXT 1 WorkshOp installation exec file. 
Intrinsic. lib 1 2,3 Library directory. 
IOSFplib.Obj 2 Library unit w/interface. 
IOSPaslib.obj 1 2,3 Library unit w/interface. 
LDSPREFERENCES.OBJ 2 WOrkShOp program. 
LOS RES PROCS.TEXT 2 Workshop data. 
OSERRS.ERR 1 3 WorkShOp data. 
PAPER. TEXT 2 Workshop elata. 
Portconf1g.ObJ 2 Ut1l1ty program. 
resident_channel 1 1,2,3 System data. 

Nlte1: These fUes are loentlcal to Office system Release 1.0 flIes. 
I\k)te 2: These fUes are Identical to Office System Release 1.2 files. Office System 

1.2 is functionally Identical to Office System 1.0, bUt is released to ensure 
compatlbUlty with Pascal 1.0, BASIC-Plus 1.0, and CCBCL 1.0. 

I\k)te 3: These fUes are the mlnlmtrn necessary to run a user program In the 
Won<stlOp environment A user program may require otner flIes as well. 

E-1 



BASIC-Plus User's GuIde BASIC Wo.lkshop Files 

FIle Halle BASIC Notes DescriptIon 
Diskette 

Shell.WorkShop 1 3 Workshop main program. 
SUlib.Obj 1 3 Library unit w/interface. 
Sxref .Obj 2 Utility program. 
SXREF.Dt1IT.TEXT 2 Data. 
Sys1lib.Obj 1 1,2,3 Library units (no interface). 
SYS2LIB.OBJ 2 1,2,3 Library units (no interface). 
SYSTEM. BT PROF 1 1,2,3 System support. 
SYSTEM.BT-TWIG 1 1,2,3 System support. 
SYSTEM.luOIRECTORY 1 1,2,3 System ctata. 
SYSTEM.LLD 1 1,2,3 System program. 
SYSTEM.LOG 1 1,2,3 System data. 
SYSTEM.OS 1 2,3 System program. 
System. Shell 1 1,2,3 System program. 
SYSTEM.STACK1 1 1,2,3 System data. 
SYSTEM.STACK2 1 1,2,3 System data. 
SYSTEM.STACK3 1 1,2,3 System data. 
SYSTEM. STACK4 1 1,2,3 System ctata. 
SYSTEM. SYSLOC1 1 1,2,3 System data. 
SYSTEM.SYSLOC2 1 1,2,3 System data. 
SYSTEM. SYSLOC3 1 1,2,3 System data. 
SYSTEM.SYSlOC4 1 1,2,3 System data. 
SYSTEM. TIMER PIPE 1 1,2,3 System data. 
SYSTEM.UNPAcK 1 1,2,3 System data. 
term. nenus. text 2 Data for transfer program. 
transfer.Obj 2 Workshop program. 
W10ATA 1 1,2 Data segment. 
{T11}BUTTONS 2 2 Data. 
{Tl1}HENUS.TEXT 2 2 Data. 

I\k)te1: These fUes are identical to Office System Release 1.0 fUes. 
I\k)te 2: These fUes are identical to Office System Release 1.2 files. Office System 

1.2 is functionally identical to Office System 1.0, but is released to ensure 
compatibility with Pascal 1.0, BASIC-Plus 1.0, and a:ECL 1.0. 

~ 3: These files are the minimum necessary to run a user program in the 
WOrkStlOp environment A user program may require other files as well. 

E-2 



NOTES 





Index 

Please note that the topic references in this Index are by sect/on ntmlJer. 

----------A----------
abs 10.3.1 
access, virtual arrays 12.3 
~rSand (8c) see Special 

Characters at end O~ index. 
and 4.6 
annuity 10.3.17 
append 3.3, 3.3.1.7 
Apple-period interrupt 3.3, 3.3.3.3 
arithmetic functions 10.3 
arithmetic operators 4.5 
ascii function 10.4.21 
ASCII input and output 5 
ask exception 13.3 
aSk halt 13.5 
ask rounding 13.8 
assignment statement 2.11 
asteriSk (* or **) see Special 

Characters at end O~ index. 
atn 10.3.8 

---------~----------
bacl<slash (\) see Special 

Characters at end O~ index. 
block input and output 11.3 
branching 6 
buffer management 11.3 
bUfsiz 11.1.3 
bye 3.3.5 

----------c----------
caret (") See SpeCial Characters 

at end Or index. 
case of letters 2.2.1 
catalog and cat 3.3, 3.3.2.3 

029-0430-A 

Index-l 

ccpos 10.3.19 
chain 14.6 
Change 10.7 
Channel 11.1.1, 11.2, 11. 3.2.1 
channels, input and output 5.1 
character set 2.2 
chr$ 10.4.8 
Clearing program space 3.3.1.2, 

3.3.1.3 
close 11.2 
clustersize 11.1.3 
conma (,) see special Characters 

at end o~ index. 
commands, system 3.3 

debugging 3.3.4 
informational 3.3.2 
leaving BASIC 3.3.5 
program execution 3.3.3 
program space 3.3.1 

conments 2.9 
communication with files 5.1 
~ 10.4.17 
comparing expressions 4.7 
compound 10.3.16 
con 9.2 
concatenation 10.4.6 
cond 10.5.5 
conditional branching 6 
constant 

floating-point 4.1 
integer 4.1 
string 4.2 

cont 3.3, 3.3.3.2 
conversion overflo~ 13.1.4 
copying BASIC interpreter disk 1.2 
cos 10.3.5 
creating functions 10.6 



BASIC-Plus USer's Guide 

cvt funct10ns 10.4.11 
cvtoverflow exception 13.1.4 

---------,0----------
data S.2 

manipulation 4 
types 4 

dateS 10.4.23 
debUgging commands 3.3.4 
def* 10.6.1 
delete 3.3, 3.3.1.1 
destructive baCkSpace 3.1 
(Jet 10.5.3 
dif$ 10.4.13 
digits 2.2 
dim 

matrices 9.1 
virtual arrays 12.1 

dimenSioning matrices 9.1 
dimensIoning virtual arrays 12.1 
divioebyzero 13.1.2 
division oy zero 4.5.1 
division by zero exception 1~.1.2 
dollar sign ($) see Spec1al 

Characters at end of' index. 

---------~----------
editing 

in BASIC 3.1 
in WOrkshOp Editor ~.2 

elements 2.6 
equal sign (= or ==) see Special 

Characters at end of' index. 
eqv 4.6 
err and erl 6.5. 0 
error 6.5, 0 
exceptions. float1ng-polnt 13.1 

checking for 13.3 
setting 13.2 

exclamation point (!) see Special 
Characters at end of' intkJx. 

execution modes 2.8 
exp 10.3.7 

1ndex-2 

express10ns 4.4 

----------F----------
factor 4.4 
field 11.3.2.1 

Index 

file length, v1rtual arrays 12.4 
fileslze 11.1.3 
fix 10.3.11 
floating-point 

aritnmetic 4.1.2 
constants 4.1 
exceptions 13.1 
rounding roodes 13.6 

fnero 10.6.2 
for next 7.1 
for statement modifier 8.2 
for until 7.4 
for While 7.3 
formatting output 5.7 
functions 10 
functions, creating your own 10.6 

----------G----------
get 11.3.1 
gosuo 6.4, 10.1 
goto 6.2, 6.3, 6.5, 6.7 
greater than (» see Special 

Characters at end of' index. 
greater than or equal (>=) see 

Special Characters at end of' 
index. 

----------1----------
identifiers 2.10 
ion 9.2 
If goto 6.2 
if statement modifier 8.1 
if then else 6.1 
immediate mode 2.8 
i~ 4.6 
inexact exception 13.1.6 
informational commands 3.3.2 



BASIC-PIIJS User's Guide 

1nltla11zatlon of varlables 4.3 
input 

ASCII 5 
block 11.3.1 
Channels 5.1 
matrices 9.4 

input line 5.5 
instr 10.4.5 
lnt 10.3.11 
integer 

arithmetiC 4.1.2 
constants 4.1 
range 4.1.2 

Interpreter 2.1, 3.1 
interrupt character (.-per1Od) 3.3, 

3.3.3.3 
intpart 10.3.14 
1ntpart% 10.3.15 
inv 10.5.2 
invalid operation exception 13.1.1 
1/0 

block 11.3.1 
channels 5.1 
formattea ASCII S 

----------K----------
keywords 2.4 
kill 14.8 

----------l----------
leaving BASIC 3.3.5 
left 10.4.2 
len 10.4.1 
length 3.3, 3.3.2.2 
less than «) see Spec1al 

Characters at end of' index. 
less than or equal «:) see 

Speoiel Characters at end of' 
index. 

let 2.11 
letter 2.2 
line 2.5, 5.5 
line number 2.7 

Index-3 

Index 

l1nsys 10.5.4 
list and listnh 3.3, 3.3.2.1 
log 10.3.9 
log10 10.3.10 
loglcal operators 4.6 
looping 7 
lowercase letters 2.2.1 
lset 11.3.2.2 

---------~----------
mat 9.2 
mat input 9.4 
mat print 9.5 
mat read 9.3 
matrices 9 

addlt10n 9.6.1 
calculations 9.6 
functions 10.5 
initialization 9.2 
input 9.4 
multiplication 9.6.2 
printing 9.S 
subscripts <) 

subtraction 9.6.1 
mid 10.4.4 
mirus sign (-) See Special 

Characters at end of' index. 
mode 2.8, 11.1.3 
multiple statement modifiers 8.6 

----------N----------
nane as 14.7 
nested loops 7 .6 
nesting sUbroutines 10.2 
new 3.3~ 3.3.1.2 
not 4.6 
not equal «» see special 

Characters at end of' index. 
num$ 10.4.19 
num1$ 10.4.20 
numeric notation 4.1.1 



BASIC-Plus User's Guide 

---------~----------
offset 11.3.1 
old 3.3J 3.3.1.3 
on error goto 6.5J 0 
on gosUb 6.4 
on goto 6.3 
open 11.1 
operators 

log1cal 4.6 
precedence of 4.8 
relational 4.7 

or 4.6 
output 

ASCII 5 
blOCk 11.3.1 
channels 5.1 
formatting 5.7 

overflow exception 13.1.3 

---------P,O---------
percent sign (%) see Special 

cnaracters at end of index. 
pi 10.3.3 
placeS 10.4.16 
plus sign (+) 4.5, 9.6, 

10.4.6 
pos 10.3.19 
pound sign (II) see Special 

Characters at end of index. 
precedence of operators 4.8 
print S.6 
print using 5.7 
print zones S.6 
printing matrices 9.5 
proo$ 10.4.14 
program line 2.5 
program mode 2.8 
program space 3.1 
pronpt 5.4 
put 11.3.1 
quoS 10.4.15 
quotation marks (' or II) see 

Special Characters at end of 
index. 

Index-4 

----------R----------
rad$ 10.4.22 
randOmize 10.3.12 
read 5.2 
record 11.3.1 
record size 11.1.3 
recount 11. 3.1 
recursion 10.2 
relational operators 4.7 
rem 2.9 
renumber 3.3, 3.3.1.8 
replace 3.3, 3.3.1.4 
reserved words 2.4J A.4 
restore 5.3 
resume 6.6 
return 10.1 
right 10.4.3 
roo 10.3.12 
rnear 13.6 
rneg 13.6 
rounding IOOdes 13.6 
rpos 13.6 
rset 11.3.2.2 
run and runnh 3.3, 3.3.3.1 
rzero 13.6 

----------8----------
save 3.3, 3.3.1.5 
scientific notation 4.1.1 
semicolon (;) see Spec1al 

Index 

Characters at end of index. 
set exception 13.2 
set halt 13.4 
set rounding 13.7 
sgn 10.3.13 
s1n 10.3.4 
slaSh (I) See SpeCial Characters 

at end of index. 
sleep 14.2 
spaceS 10.4.7 
spaces 2.3 



BASIC-Plus USer's Guide 

special characters 2.2; see a1 so 
end of index. 

sqr 10.3.2 
statement 2.5 
statement modifiers 8 
status 11.1.3 
storage, virtual arrays 12.2 
string 2.6 
string constant 4.2 
string functions 10.4 
stringS 10.4.9 
subroutines 10 
SUbroutines, branching to 6.4, 10.1 
sll11$ 10.4.12 
swap% 10.3.21 
system commands 3.3 
system statements 14 

----------T----------
tab 10.3.20 
tan 10.3.6 
time 10.3.18 
time$ 10.4.24 
trace 3.3, 3.3.4.1 
translating string characters 

10.4.10 
trn 10.5.1 

---------~----------
unconditional branching 6.7 
underflow exception 13.1.5 
unless statement modifier 8.5 
unlock 14.5 
unsave 3.3, 3.3.1.6 
until next 7.5 
until statement modifier 8.4 
uppercase letters 2.2.1 
using 11.3.1, see print using. 

----------v----------
val 10.4.18 
variable 4.3 

IncJex-5 

Index 

variables command 3.3, 3.3.4.2 
virtual arrays 12 

access 12.3 
dim 12.1 
file length 12.4 
storage 12.2 

----------1----------
wait 14.1 
while next 7.2 
while statement modifier 8.3 
WOrkshOp editor 3.2 
writeallolJl 14.4 
writeprotect 14.3 

---------)(, z---------
xlate 10.4.10 
xor4.6 
zer 9.2 

--------Speclal O'laraCters-------
.-periOd 3.3, 3.3.3.3 
! 2.9, 5.7 
tt 4.2 
, 5.7 
S 2.10 .. 4.3, 5.2 .. 5.7 
, 2.10, 4.1, 4.3, 5.2 
Be 2.5 
• 4.2 
* 4.5 .. 9.6 
** 4.5, 5.7 
+ 4.5, 9.6, 10.4.6 
, 5.6, 5.7 
- 4.5 .. 5.7 .. 9.6 
I 4.5 
; 5.6 
< 4.7 
<= 4.7 
<> 4.7 
= 2.11, 4.7 
== 4.7 
> 4.7 



BASIC-Plus User's GuIde 

>= 4.7 
\ 2.5" 5.7 
" 5.7 

Index 

Index-6 



Tms MANUAL was produced using 
LisaWrite, LisaD raW" , and 

LisaList. 

k PRINTING was done with an 
Apple Dot Matrix Printer. 

the Lisa" 
... we use it ourselves. 





BASIC-Plus User's Guide /'1ailBack 

Apple pUbllcatlons would llKe to learn about readers ana wnat you tninK about tnis 
manual In order to make better manuals In the future. Please fill out tnls form, or 
wri te all over It, and send It to us. We promIse to read It 
How are you using this manual? 
[ ] learning to use the prodUct [] reference [] both reference and learning 
[]otner __________________________________________________ _ 

Is it quiCk ana easy to find the informatlon you need In this manual? 
[ ] always [] often [] sometimes [] seldom [] never 
C~~u __________________________________________________ ___ 

What makes this manual easy to use? _________________________ _ 

What makes this manual hard to use? _________________________ _ 

What dO you like most about the manual? ________________________ _ 

What do you like least about the manual? __________________ _ 

Please comment on, for example, accuracy, level of detaU, number and usefulness of 
examples, length or brevity of explanation, style, use Of graphiCS, usefulness of the index, 
organlzatlon, sultabllity to your particular needs, readab111ty. 

What languages dO you use on your Usa? (check each) 
{ J Pascal [] BASIC {] CCBa... {] OtheI _____________ _ 

How long have you been programming? 
[ ] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer 
WhatlsyourJootltle? _____________________________________ __ 

Have you completed: 

[ ] high school [] some college [] BA/BS [] MAIMS [] more 
What magazInes do you read? ______________________________ _ 

Other comments (please attaCh more sheets If necessary) _________________ __ 

029-0:5~O-A 



....................................................................................................................................................... FaO ...... · .... · ........................ · .. · ........ ··· .... ···· .... · .............. · .. ···· ............................................. .. 

...................................................................................................................................................... FaO .. ······ .......... ······ ...... · .. ·· .... ······ .. · .. ······ .... ·· .. ···· ................................................................. . 

t 
.apple! computczr 

POS Publications Department 
20525 Mariani Avenue 
Cupertino, California 95014 

TAPE tR STAPLE 


