Lisa. BASIC-Plus 2.0 Language

File Edit JJIgd)
Find ... : e

Find Same

Find & Paste RIl |

il

vSeparate Identifiers !
All Occurrences | BEGIN SQRT L OQP

vCases Need Not Agree BFOR X1% = 1% TO X%(11%)
Cases Must Agree V3% = X¥(36% + X1%)
X2% = SPACE$(V3Y)
wzz: YoX -,‘33% . ggl(lgx) \ WIK = V3§6 + 4% "
\ V2K = FNVE(W7%, 18040) \ V4% = 509% / W9
\ V2K = PAKCEK, £00ADK, 7%, | \WIK = 468 + (X1%-1%) * 7%
\ V2K = FNUX(7%, 18040, W7%, \U7$ = SPACES (511%-V4%*W9%) : g
IF(VO-385%) \ FIELD #1%, W9% * (W4%-1%) AS X4$, W% AS U
! CALC ADDRESS OF YR
| GET WR BLOCK FOR W4% = 1% TO V4%
E ECSE& TgRNg'\:SMBLE FOR W4% = 7% TO 1% STEP -1%
| ERROR IF OVER LIMIT VWK = XX (W7% + WaR) : j
\ IF Wi% THEN LSET X2% =
MID V8, V2%(W1%), X%(129% + (W1%

| STEP THROUGH FIELD NUMBERS
I IF NOT ZERO THEN ADD APPROPRIATE

BASIC-Plus for the Lisa

Release 2.0 Notes

what's in the BASIC-Plus Release Notes?

These notes describe situations that were brought to our attention after it
was too late to document them in the BASIC-Plus manuals.

Insert these notes In the back of thelr respective manuals, so that you can
refer to them as necessary. Included in these notes are revised versions of
the wkshgp Lsers Guice Appendix B and the BASIC-Plus Lisers Gulop
Appendix E to replace the coples bound in your manuals; take a moment now
to make the substitutions.

If you have a question or a problem that you can't find the answer to, either
in the manuals or in these notes, you should call the Lisa Telephone Support
Line, (800) 553-4000.

029-0488-A Jorniary 1984

Chapter Release Note

workshop To install the Pascal language and Workshop software from

Chapter 1 the set of micro diskettes packaged In your language manual
binder, refer to Installing the Offlce System Software in
Appendix G, Set Up Procedures, In the L/sa 2 Owners Guioe 1f
you plan to use the Office System, you must first install the
Office System 2.0 micro diskettes. You do not need to install
the Office System software If you intend to do only language
development work. Before you Insert the micro diskettes, make
sure you can see the red tabs from the ﬂmtoftnemlcro
diskettes. Start Installing with steps 1, 2, and 3 on page G31.
Then follow this sequence:

4> Tumn the Lisa on by pressing the on-off button once. After
a few seconds, you'll hear a click; immediately press the
spacebar.

5> The Lisa goes through a self-test. when a menu of symbols
appears in the upper left-hand comer of the screen, press
and hold down the Apple key while you type a 2 -- on the
main keyboard, not on. the numeric keypad.

6> when the main menu shown on page G32 appears, click the
rmouse once on the Install box

7> when the alert box with the message “The Lisa is installing
startup software version 2.0 appears, click Don't Erase.
when the first micro diskette is Installed, it will eject.
Continue installation by following the Owners Gulde
fnstructions from step 6, inserting the remalning language
diskettes in order.

workshop After successfully aoding Pascal to a ProFile contalning the

Chapter 1 Offlce System, if the system Is merely allowed to reboot, the
default of the Environments window will cause the wWorkshop
shell to start up. To cause the initialization to pause at the
Environments window In order to examine or change the default,
press the space bar after the machine self-test, while the
hourglass icon is showing.

workshop If you have just printed anything on a daisy wheel prlnter from

Chapter 1 the Offlce System, and you retum to the WOrksmp using the
Environments window, printing to logical device "-printer” will
be garbled untll the printer is switched off and then on again.

Janvary 1984

Release Note

workshop
Chapter 1

workshop
Chapter 1

workshop
~ Chapter 2

Workshop
Chapter 2

workshop
Chapter 2

workshop
Chapter 2

workshop
Chapter 3

Workshop
Chapter 3

Rrary 1984

The print commands of the Editor always use the logical device
“-printer” set in the System Manager. Choosing Dalsy wheel
Printer or Dot Matrix Printer from the Print menu does not
change the system’s configuration, but only adjusts the Editor to
the intended device.

Any program intended to run as a background process
{MakeBackgroundProcess) must include frequent and judicious
calls to the Operating System procedure Yield CPU. Hence,

- system utilities should never be run in the background. Also, a

background process should not have any Interaction with the
console, and it cannot pull events from the hardware event

queue.

Designate user flles with the pathname “SHELL." only if you
want them to appear in the Environments window as an
altemative shell,

You cannot directly rename a file to a name that differs from
the original only in the case of the characters, because the
internal representation of the names Is the same. Instead,
rename the flle to a temporary hame, and then change that
to the name you want.

If you unmount the prefix volume by ejecting the diskette,
Scavenging the volume, or using the Unmount command,
the boot volume automatically becomes the prefix volume.

Assume that a file FOO.TEXT has been damaged and no longer
has the intermal representation of a textfile. If the user enters
the Flle Manager and tries to COPY the file to ~PRINTER, the
system generates a bus error and enters the Debugger.

The Output Redirect function of the System Manager does not
correctly handle screen output that uses GOTOXY, for example,
screen output done by the Flle Manager when listing wildcara
matches. This results In redirected output to the printer being
overwritten on one line.

Use "-printer” instead of “-RS232-B" when redirecting output to
the printer.

Chapter Release Note

workshop If you change the name of a suspended file -- such as the

Chapter 3 Pascal compller —- and attempt to manage the process from the
System Manager, the new name appears in the pathname, but
you must still use the a/gname to kill the process.

workshop The Editor changes the creation date of a text flle to the
Chapter 4 current date each time the flle is modified.

workshop I the initialization of the Editor falls due to lack of disk space

Chapter 4 (error 309), and space on the disk Is then made free, the next
attempt to start the Editor will also fall (error 304). You must
enter the Process Manager of the System Manager, KILL the
Editor process, and then retry.

workshop The language processors, Editor, and other utllities of the

Chapter 4 workshop expect as Input a standard .TEXT flle. The intemal
structure of a text flle in a block-structured device Is
described In the Lisa Pascal Reference Manual:

¢ Each page (two 512-byte blocks) contains some number of
complete lines of text and is padded with null characters
(ASCHI 0) after the last line as necessary to complete the
page.

* Two 512-byte header blocks are also present at the
beginning of the file. These may or may not contain
information.

* A sequence of spaces (ASCII 32 decimal, $20 hexadecimal)
can be compressed into a 2-byte code namely, a DLE
character (ASCII 16 decimal, $10 hexadecimal), followed by a
byte contalning the value 32 decimal plus the number of

spaces represented.

workshop The file name "PAPER.TEXT" is reserved for the default
Chapter 4 statlonery template of the Editor and should not be used for

other purposes.

Jorary 1964

Release Note

workshop
Chapter 4

Workshop
Chapter 4

Workshop
Chapter 4

workshop
Chepter 4

Workshop

Chapters 4
and 10

workshop
and 10

workshop

Chapter 7

workshop
Chapter 7

Workshop
Chapter 7

JArary 1984

Attempting to enter or paste more than about 1000 characters
into one line causes a bus error. If you have a Debugger, type
<g> to recover and exit the workshop shell before running the
Editor again, otherwise no menus appear and you must use NMI
and OSQUIT. ‘

A triple—click will not select the last line in a file unless that
line ends with a carriage return,

If you are working on many files -—- or a few large files —- and
the Editor becomes sluggish, save and put away the files. Then
either exit the workshop shell and run the Workshop shell again,
or use the DeleteResident command of the Manage Process
subsystem of the System Manager to temporarily delete the
Editor from the list of resident processes.

when using the Tear Off Stationery command, type In the
volume name if it differs from yourAboot. volume,

Cursor residue might be left on the screen In the Editor and the
Transfer program, especially after an error message has

The names of files created by the Editor and Transfer will be
%mgedtobeanwpercase,regamlessofmwmeyaretyped

If multiple errors occur auring a link, due an to attempt to link
regular units with Intrinsic units, the Linker will terminate after
reporting only the first error.

when the Linker detects the error of duplicate entry names —-
for example after it reads the same file twice —- the error
message may be difficult to interpret because it is formatted
incorrectly.

It an Intrinsic unit Is linked but not needed (l.e. no units in its
library flle are used), the Linker generates error 24: unexpected
block type in IU file.

Chapter ReleaseNote

workshop For the Debugger, PR 2 is print to SLOT2CHAN2, not
Chapter 8 SLOT2CHANL. Upper and lower are reversed in the manual.

workshop The exec flle preprocessor does not have an easy way to input

Chapter 9 single spaces, even though these are required to respond to
some workshop messages: wWhile waiting for a space input, the
rest of the exec flle IS consumed without effect. Elther set up
your exec flles so they don‘t require space inputs, or eliminate
all spaces except the one you want and use the no-space option
in the preprocessor.

workshop In an exec file, an attempt to pass a literal “%" to a program
Chapter 9 such as CODESIZE will not work.

workshop Display of error message 647 while you are using the Transfer
Chapter 10 utility probably indicates that after a timeout the program has
falled to receive the appropriate hanashake from the host.

workshop If you type any key during “Playback from what file* in the
Chapter 10 Transfer program, the playback will abort. :

workshop If you use the Transfer program to make contact with a host

Chapter 10 computer, and you exit the program without logging off
explicitly, the connection will not be automatically terminated.
‘This Is usually a convenience, but might not meet user
expectations.

workshop cmﬂg;reom workshop shell lls initialized, l;alll serla(u ports are

Chapter 10 by default as If they were printers (e.g., 9600 baud,
DTR handshake, automatic linefeed insertion), whether or not
they are listed as such by Preferences. If you subsequently use
and then exit the Transfer program, the printer configuration is
restored automatically for ONLY those ports listed in
Preferences as printers; others will re the properties set by
the Transfer program. The Editor will not reconfigure ports that
have been changed by PortConfig.

January 1954 .

Release Note

workshop
Chapter 10

Workshop
Chapter 10

Workshop
Chapter 11

workshop
Appendix B

Jvuery 1964

To terminate recording to a flle opened by the Transfer program
during “Record to", open the Control menu and agaln select
“Record to". This terminates recording and closes the flle.
Note that, unlike the Editor, Transfer does not automatically
insert a carriage retumn at the end of the file. If you use this
recording to capture text such as a source program, and the
language processor (such as BASIC-Plus) expects to see a
carriage retum at the end of the file, attempting to run the raw
recorded text might cause the system to hang.

The manual states that the default handshake in the Transfer
program Is XOn/XOff. The correct default is None.

Because most programs do not allow you to eject a disk in
while they are running, plan ahead In large transactions, such
as mass - transfers, to allow a pause for changing disks.

ASCII characters in the range hex 20 through hex 7E are

rted for screen display, for printing on a dot matrix
printer, and for printing on a dalsy wheel printer with the
following print wheels:

¢ Gothic, 15 pitch
* Prestige Elite, 12 pitch
* Courler, 10 pitch
* Boldface/Executive, PS.

Printing ASCII characters to a dalsy wheel printer is not
supported for the three print wheels with Modem type styles.

The character set in the Appendix should show the full Lisa
character set. All of the aaditional characters can be displayed
on the screen. Selected subsets can be printed on dot matrix
and dalsy wheel printers. A new page B-1 is attached; take a
moment now to make the substitution.

Chapter ReleaseNote

workshop It you wish to to position the cursor at coordinates (x.y)

Appendix C on the screen, use the two-character sequence <ESCy= (HEX
1B-3D, decimal 27-61) followed by the screen’s y coordinate and
then the screen's x coordinate -- note the order of the supplied
arguments. The range for the screen's y-axis Is from ASCII
decimal 32 (¢SPACE> on the keyboard), representing a screen
coordinate of 0, through ASCII decimal 63 (? on the keyboard),
representing a screen coordinate of 31. The range for the
screen's x-axis Is from ASCII decimal 32 (<SPACE> on the
keyboard), representing a screen coordinate of 0, through ASCII
gecimal 119 (w on the keyboard), representing a screen
coordinate of 87. If you supply coordinates outside these
ranges, a bus error may result. Refer to the revised Appendix
B, supplied with these release notes, for a complete chart of
character equivalents.

For example, in BASIC, either of the two statements below
would place the cursor at position x=0, y=-1.

PRINT CHR§(27); "="; """ =;
or

PRINT CHR$(27); CHR$(61); CHR¥(33); CHR$(32);

Jarnary 1954

Manual

Chapter Release Note
BASIC-Plus The system error variable ERR is reset to zero after retuming
Chapter 3 to the command line. If you want to preserve the value of
this error retumn, use ON ERROR processing, and store the
value In another variabie.
BASIC-Plus Renumbering sometimes results in a file beginning with BTEMP
Chapter 3 being left on the disk. Ignore or delete the BTEMP file.
BASIC-Plus When you use Apple period to terminate your program, the
Chapter 3 command Is sometimes included in the input stream of the next
line, giving unpredictable results. Also, if you are redirecting
your output to a dot-matrix printer. the character generated will
wmonwideprint. To restore normal prlntwlumwmoffthe
) printer and tumn it back on again.
BASIC-Plus BASIC-Plus attempts to Tun a program even after detecting
Chapter 3 syntax errox(s).
BASIC-Plus If BASIC-Plus is processing a single operation with a long
Chapter 3 computation time (for example, an INV statement), the Lisa
might not respond quickly to Apple period. _
BASIC-Plus while line number zero is a legal number, renumbering starts at
Chapter 3 the first line with a number greater than zero.
BASIC-Plus The manual states that the smallest representable number is
Chapter 4 =+ 4.9E-324. The smallest representable number is really
+ 8.90066E-324. All other representable numbers are integral
multiples of that number.
BASIC-Plus Amlen:mercmbepnnteumwamnmoflzplm
Chapter 5 before going to scientific notatlon.
BASIC-Plus You can use the following t.o terminate Input, in addition to CR.
Chapter 5 - Apple L. FF ASCII 12 decimal, $0C hex)
CLEAR ESC ASCII 27 decimal, $1B hex)
Apple J LF (ASCII 10 decimal, $0A hex)
BASIC-Plus BASIC-Plus doesn't append any further oharacters following a
Chapter 5 line terminator character at the end of a PRINT or INPUT

statement.

Jaary 1284

Manual

Chapter Release Note
BASIC-Plus If you input from a nonzero channel, the prompt will not be
Chapter 5 printed.
BASIC-Plus The BASIC Interpreter doesn't differentiate between vertical and
Chapter 5 horizontal screen control characters. Refer to the workshop
manual, Appendix C, for information on vertical screen control.
BASIC-Plus You can PRINT and INPUT only to text flles (files that end in
Chapter 5 .text) and to the devices: -console, -printer, -keyboard.
BASIC-Plus Spaces between words In DATA statements are thrown away.
Crhapter 5 To preserve spaces, use quoted strings.
The first character in an unquoted string variable in a DATA
statement is not converted to uppercase, although the rest of
the string is. Use CVTSS with a value of 32% to convert
lowercase to uppercase.
BASIC-Plus BASIC-Plus supports six print zones.
Chapter 5
BASIC-Plus Wwhen using a GET or INPUT statement,
Chapters 5 -keyboard doesn't echo input.
and 11 ~console does echo input.
BASIC-Plus To achleve the best performance in FOR 100ps and other
Chapter 7 constructs, use integer variables. For instance:
100 FOR I% = 1% To S000%
110 NEXT I% :
executes approximately ten times faster than
100 FOR I = 1 To 5000
110 NEXT I
BASIC-Plus The use of FOR modifiers in immediate mode will result in
Chapter 8 a fatal error.
BASIC-Plus The system variables NUM and NUM2, which contain the size of
Crapter 9 & two dimensional array, were omitted from the index

Jornary 1964

Marual
Chapter ReleaseNote

BASIC-Plus The syntax diagram for DIM does not provide for multiple array
Chapter 9 dimensioning in a single adimension statement. The written
_example Is correct to show muitiple array definitions.

BASIC-Plus The statements MAT INPUT and MAT READ do not input into
Chapter 9 the zeroth row Or column. Matrix regimensioning causes the
contents of the zeroth row and column to be unpredictable.

BASIC-Plus The “N" integer argument retums the DATE from the base of
Chapter 10 Jauaryli,mau. The formula used to translate between N and
the date is

(aay of year) + [(number of years since 1980) * 1000)

BASIC-Plus VAL (™) retums error code 69, "Tllegal argument to VAL".
Chapter 10

BASIC-Plus VAL("2D4") does not retum an error code. D is accepted as a
Chapter 10 specification in VAL but not in assignment or PRINT statements.

BASIC-Plus TIMES(n), when n>0, gives n minutes before midnight —-
Chapter 10 n<D time gives n minutes after mlmight. ‘

BASIC-Plus The maximum length of a string that NUM1$ can return is 255.
Chapter 10 If you assign the maximum size number (for example, SE300),
you will get the error message “line too long™.

BASIC-Plus Block numbering starts at zero.
Chapter 11

BASIC-Plus On string assignment (LET A$ = B$ storage) a copy of B is
Chapter 11 made. Given the program

- LISTNH

400 B$ - “ABC"

410 AS - BS

420 LSET B4 = "XYZ"
430 PRINT A$

430 END

the result is the string "ABC".

Javary 1964

Manual
Chapter

Release Note

BASIC-Plus
Chapter 11

BASIC-Plus
Chapter 11

BASIC-Plus
Chapter 11

BASIC-Plus
Chapter 13

BASIC-Plus
Chapter 18

BASIC-Plus

Chapter 14

BASIC-Plus
Chapter 14

BASIC-Plus

Chapter 14

BASIC-Plus
Appendix D

Jarary 1984

The maximum recordsize of an argument is 32256.

CLOSE with a negative channel number will not prevent the
writing out of the buffer's last contents to the flle.

A PUT operation is not allowed for a file that has been
OPENed FOR INPUT.

Note that tokenizatlon Is optimized for constants. The
statement

A = 1F400

does not generate a run-time exception. If you want to raise
the exception, write the statement as

A= VN.('iEltUU").

The statement CHAIN requires a full flle name; for example,
PROG2.TEXT".

You cannot write protect a file unless It already exdsts on the
directory. You must CLOSE it first, and then OPEN and
WRITEPROTECT it. You should also explicitly CLOSE any
protected files before the end of your program.

writing to a write-protected flie does not result in a run-time
error. However, the flle is not written to and remains

unchanged.
SLEEP(x)sleepsmtnamarapterlstypeafmntnekeyooam.

The following error messages have been added.
2 Nonzero mode values are not supported.
28 Apple period trap.
31 Maximum recordsize of 32256.
90 Error setting safety.

BASIC-Plus Users Gulde

BASIC-Plus workshapo Flies

Appendix E
BASIC-Plus Workshop Files
This appendix lists the files on the BASIC-Plus 2.0 Sony micro-diskettes.
File Name BASIC-Plus Notes Description
‘ Diskette

BASIC.0b] 4 note 1 Workshop program- BASIC-Plus.
ByteDiff.obj 2 Utility program.
Diff.obj 2 uUtility program.
DumpPatch.ob) 2 utility program.
EDIT.MENUS.TEXT . 2 Editor support file.
Eaitor.ob) 2 note 1 Workshop program- Mouse Editor.
Filediv.ob} 2 utility .
Filejoin.obj 2 utility

- find.ob) 2 utility program.
font .heur 1 Short version for booting.
FONT.HEUR 2 note 3 Data needed to support SYSiLib.
font.11ib 1 : Short version for booting.
font.11b 2 note 3 Data needed to support SYSiLib.
Intrinsic.lib 1 Short version for booting.
Intrinsic.1ib 2 note 3 Library directory- intrinsic units.
JOSFP11b.ob) 2 Library unit w/interface.
I0SPaslib.obj 1 Short version for booting.
I0SPaslib.ob 2 note 3 Library unit w/interface.
LDSPREFERENCES . 08J 3 workshop program.
LDS_RES_PROCS. TEXT 3 workshop data.
HASTERLIB.0BJ 1 note 2 Install program- library support.
HASTERPHRASE 1 note 2 Install program- alert messages.
Objiolib.ob) 4 © Library unit (no interface).
OSERRS.ERR 3 note 3 Workshop data- error messages.
PAPER. TEXT 3 workshop data- Editor stationery.
Portconfig.ob) 3 utility program.

Note 22 These files are used for the installation prooemre but are not installed.

Note 1: These files are software—protecteu.
z
3

Note 3: These flles are the minimum necessary t0 Tun a user program in the
Workshop environment. A user program may require other flles as well.

Note 1
Note 2
Note

BASIC-Plus Lsers Gulde

File Neme

Shell.¥orkshop
Sulib.obj
Sxref.ob)
SXREF .QMIT.TEXT
Sysilib.obj
SYSTEM.BT_HICRO
SYSTEM.BT_PROF
SYSTEN.BT_TWIG
SYSTEH.CO_PRIAM
SYSTEN.CO_RS232A
SYSTEM.CD_RS232B
SYSTEM.IUDIRECTORY
SYSTEM.LLD
SYSTEM.LOG
SYSTEH.0S
System.Shell
System.Shell
SYSTEM.UNPACK
term.menus.text
transfer.ob
{m)wmms
T11}MENUS. TEXT

O T P P W O U PP VPR P VT E S W RV R R W R R

note 3
note 3

note 3
note 3

note 3

"note 3

note 2
note 3
note 3

These flles are software-protected.
These flles are used for the installation procedure but are not installed.
These flles are the minimum necessary to Yun a user program in the

BASIC-Plus workshap Flles

BASIC-Plus Notes Description
Diskette

vorkshop main program.
Library unit w/interface.

Utility program.
pata

Library units (no interface).
System support- 400KB Sony.
System support- hard disk.

System support- 860KB Tloppy.
System support- 7048 Priam.
System support- RS232 port A.
System support- RS232 port B.
System data (dynamic).

System program- losw-level drivers.
System data (dynamic).

System program- Operating System.
Installation program.

System program- Environment Window.
System data. ,

Data for transfer program.

workshop program- Transfer.

" Data- Preferences.

Data- Preferences.

workshop environment. A user program may require other flles as well.

E-2

Appendix B

Workshop Character Set

D= (| n|al¥]|a] i]
B H| v~ 2|ONElE|—m|o|jc|B8|e
w—o Ol |w|e|=QAIO| O] R (O]
@D | D [t |t [|2 NC 1O O[O0 3|3 b |
L (<L | O (W |[Z[OID|w@|m|wm|:m oS | O 0| D
Q T x| 0|3 >3] X| 2N —le~t | &
¢ | 0S| RO(T| O] LS| - o)
QO |D|> S|X|d>|(N|w=—|~|rm

@ <|D(OIQ|W|WL|(T|X|=|" -l |2 (@)
Ol|N|MiT|IIN|O|N|[O|O v o
o | =2 #s%_&- | ~| x 1 ~
d(B|H[B|2|¥|E(E(8|=|8 e|ls|lel|s
g|F|E|E|E[B|8|(d| o] t|s|8|w
Q =W N M 2 0 v N~ O o0 O 0 W

The first 32 characters and DEL are nonprinting control codes.

The shaded area is reserved for future use.

B-1

BASIC-Plus User's Guide
for the Lisa™

0370-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into thelr products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Marlani Avenue
Cupertino, California 95014
(ao8) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Reorder Apple Product #A600103 (Complete BASIC-Plus package)
#A61.0112 (Manuals only)

Customer Satisfaction
If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed, Apple will replace

the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product. You should check periodically
with your authorized Lisa dealer.

Limitation on Warranties and Liability
All implied warranties conceming this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited

in duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Appile nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. As a result, this
software and manual are sold "as is,” and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedles set forth above are exclusive and In lleu of all
others, oral or written, express or implied. No Apple dealer, agent or

employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

1ii

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple’s software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, @ multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

029-0371-A

Contents

Chapter 1

Introduction
1.1 Hardware ReqUITEMENTSccceieiiiiieecscnneienreeccsnsnnssssssisssssassssssesesees 1-1
12 DISKBLLES iiviiiririiiieeniinerassientesennensssesesneenettasensssssensissasssssssansesasssnsnes 1-1
1.3 BOOUNGBASIC ONtHELISA cicveeeiieieinieeciiirereenssssseesrs et e tenesessssenesensns 1-1

Chapter 2

Language Fundamentals
2.1 Interpreted 0 COMPLIEAT ...cuviiiiiciiininiicncr it cessntie s s sssnansssseeanses 2-1
2.2 DBASIC CharaCteY SBL ..u.veviiiiirissiierirnercraneasessassssicansrsssissssessnmasesssssssass 2-1
2.3 SPACES .iiuiirerrianiitaiiiniiiniitittiittstasstssttestetarassasssrettatasnesstensssrseransane 2-1
2.4 Keywords andRESEIVEA WOITDSc.vveierecerssensinisrrreieessarnissrerssassssnssssarans 2-2
25 Statements aNLINES .cciiiiiiiiniciiniiiiciises s csssssia s ssssen s sssasasses 2-2
2.6 EIementsantd SUINGS oo rerisieisrisiiciestinenresssssssssssermnrimassssssecserssssasass 2-3
2.7 LINEBNUMDEYS ...iiiiiieiiineneiariiarnensesasettsscnnstsiannsscesennesnsiasesssnsannsnsseannses 2-4
2.8 Immediate versus Program EXECULIONcciieeicciirenssisiainersssessssssnnsenss 2-4
2.9 ENeriNg COMMENTS .uiiiiieirieieareesssenrernnssarerssnssersernessessiacenssnsssssrnsnssnses 2-4
2.10 IOBNLIFIETS 1ieveuiiiirirnnnnnnisiesinininnsssstiecronsestirnnsssttanensssiaressassnsssenransnses 2-5
2.11 ASSIONMENL ceeeeieerreeesreneesssnsessesessaseeessasssasesassasesessarnsassesssnsassssnnaass 2-5

Chapter 3

BASIC Programming Environment
3.1 Using the BASIC Interpreter to Create BASIC PIOGIams ..uicieeeeerecrecncsnenses 3-1
3.2 Creating BASIC Programs Using the Workshop EAItorcccccvcneeeenrnnennes 3-2
3.3 SyStemM COMMENGS «...vvereererrrrersistaniiieessmietrseessrnnssssssetarssesssarseassessssns 3-2

Chapter 4

Data Types and Data Manipulation A
4.1 Integer and F10ating—PoINt CONSTANLS ...cvvviererissesineimereinininscenerssessssnsns 4-1
4.2 SUINGCONSLANTS iiiiireeceiirenioniiessisrtiosssstssessssissanssssmasesssssassesssnsassss 4-2
4.3 Variables and VariabIe NamMEeScoeviieeereemesiiiasininnernreusineeiesssssssisssnn 4-4
A4 EXPIESSIONS eeuiiiieriiennnncasssenicisesssssiotesenisrosnnssstrssnsssmesssssasnsssssanasasss
45 ArthmMetiC OPEIALOLS .iicveisriririserrerirrmresssessisassrsnsernssssm srssasssnsasssssssnsns
4.6 LOGICAl OPEIBLOIS tiirerrreesressrsrisrnnsosessiosnenesstonssessanssnnssasssssanasnsassrannsss
4.7 Relational Operatorsceoeercersersenes -

4.8 Precedence of Operators

BASIC-Plus Users Guiade contents

Chapter 5
Formatted ASCII Input and Qutput

5.1 Input and QUtpUt ChENNEIS ..iveviiieiiecciensiansiannsnees creeretrreransenenens creeereneanns 5-1
5.2 ReadandData
5.3 RESIOIE..ciiciieeiiennieerternesennsensanssacennnass

T (4| PR
5.5 INPUL LINE cciiieeiiiniicreicitiniiintirniinnereesissstansenestassitasstsssssassssnsssesssscnnens
T = ¢) AR
5.7 PINLUSING civeeiiiiicrtinnersiiteneiteessnestannncstnsssensssssesesessnsessssssesseassnnes

Chapter 6
Branching Statements

6.1 IFTRENEISE ..ucvviiicinicicisiinneteenissasiss st essssssssessssisesnansssensansass 6-1
6.2 IFGOLO cvviiiiiiissinsiiriissiiiisssensinteseereassssssssseraerentnranssesssississsastssennnans 6-2
6.3 ONGOO ... ctsssssesensassseasnssssssenans tesresesasersisanssssasessene 6-3
6.4 DNGOSUD ..ocunniiiiiiciimeiiiini i sssasessiissssesestensansasnasassnsiassossassesans 6-3

7.1 FOINEXU oeceiiiceeterestesererneserecasesssssssassssssssessannsssssasesnessansssssasnnnsonnsns 7-1
7.2 WHIENEXL ..o.iiiiieiieeiiriteestetenttaasaisestesssessesanssessnsensssessnsssasavasasansans 7-2
2 T) @Y, 1) U= 7-4

vi

BASIC-Plus User’s Guide ' Contents

Chapter 9

Matrices
15 SR 1 | O eeterresteteeattenasentannrnraaanann 9-1
9.2 AL ettt st s r s r et et s s s b st naaannnas 9-3
1R T - A = o 9-4
1= R =T (1 oW U 9-5
1= TN - L g 6 {2 L Y 9-6
9.6 MatriXCalculations ..ot ee s 9-7

Chapter 10

Subroutines and Functions
10.1 GOSUBBNOREIUIN ...ovnn et e 10-1
10.2 Nesting SUDTOULINES —..cooiiiiianiiiiecccriettrtcasstsran st s e cesasesssonaas 16-2
10.3 ArthmEtIC FUNCLIONS .cooiiiiii ettt cseeceneseer e se e ce e e e aeasnns 10-2
10.8 StringFunctionscccccoeeeiann. eeeseerreeesresaeananaee 10-6
105 MBLIX FUNCHIONS «...cociiiriiiiiiietnretiteicenneeeriitetseetenisesesratsssssssnnsnsnsses 10-11
10.6 Creating Your OWn FUNCHIONScee.ieeciiimeniimniiiiicteciceeeeceennenanes 10-12
10.7 ChBNGE ...oeeeeeeeeenninnnennrrntnnstrssissssseestensansassssssssssssssmsansssnsensssanees 10-14

Chapter 11

Block 1/0, Open, and Close
B T 1 ¢ - 11-1
D T 0 [« 11-3
113 BIOOK I/D ..oiiiiiriniienneniseeeeiecentntererneccssesenssssssnssssssssssmmninsssssnsnsssassesss 11-4

Chapter 12

Virtual Arrays
12.1 Dim Statement for Virtual Arrays . e 12-1
12.2 VArtual ATTY STOTAOL -......ccooeiemuierniememmcnnnnaesanmssmssssossersrnnsnsesnnsesssssass 12-2
12.3 Virtual Array Access ceeretessietertasensesannsenaessaasanrensase ..12-3
12.8 FUBLENGNccrircrrcrinrcercnettneseeeecteanensensssnssessss e ssmassssasasssssssnnnne 12-a

Chapter 13

Advanced Floating-Point Manipulation ,
13.1 EXCEPUODNSceeieiierccirticieerieemeersratcenaieeeeerosessesssntecsssessesessssssen 13-1
13.2 SetException 13-2
133 Ask Exception . ' . .. 13-3
134 SetHalt.......oe e - ... 13-3
135 AskHalt.......ccceeeeerreeeeeeneenenenee.. teereetcesrenrasnsnionsesnarannrnsarane 13-3
13.6 Rounding Modes for Floating-Point Valuescceeeeememeeeeecreenernnneenennees 13-4
13.7 SetRounding....... B 13-5
13.8 Ask Rounding ... 13-5
13.9 ExceptionHandling and Rounding EXampIesccccccveeeececiecssrcncnenee. 13-5

vii

BASIC-Plus Users Guide contents

Chapter 14
System Statements
141 waltl ...oiviiviiiinene OO 18-1
14.2 Sleepeuu..
14.3 writeprotect.
14.8 WrtealloW...cccieevisinniniensessanissnenssssinnsenes
14,5 Unlock vesennnan resssstsssntrestrestesantastanantatantsataeess cersresanrensense ceens 182
186 ChaIN.. ottt eteneesissenstaererresssassassasasesnsssssnnsrassenneses 14-2
4.7 NBITIB AS...vruiitrereiieniesrsiatessrsstnnsisesssasseresssnsssnssssnssesss cesenssnrane vesvens 14-3
18.8 KllLoooiiiiiirininncnnsiinenisisiesesssnssssmmesssteesmsenssineasssnsssassesssnnnssassasansssannas 14-3
Appendixes
A LANGUAGE SUMIMIBIY .ecernreenesrasnnssnssssssssssseismmmassssssssssssnssssresssssssssssssesnsass A-1
B Floating-PoInt ATthMELICcccvicsiriirorrerinintintniercrssemerssinnesssiasssesnanss B-1
C LINEAr AlGEDIA....cuvuieeereceiarennnerssessesssenesterearessseseansatnsssassnasssssassassasnnssss
D Error Messages
E BASIC Workshop Files
Index
Tables
4-1 Ranges for Integer and F1oating-Point Constantscecereeveniiicicerenaenee 4-1
4-2 Arithmetic Operators......ccceevvsecasenen Cetemnestetanstteratseranntisteateteaanasanstan 4-8
4-3 L OQICAl OPBIALOIS .c.uuvuresrsssssssissaseinesanasnsasssssssesssssssnsnssseseassnsesnsssnane
4-4 Truth Tables for Logical Gperators ...
4-5 Relational Operators........... e .
5-1 Print Statement PUNCLUALION......cc.vrieeeeicitinisssssnnnsesssisssansessssnnesees w5-7
S5-2 Print Using Statement Formatting Characterseeeeeces renrnsennssenesannns 59
12-1 Number of Elements in a Virtual Array BIOCK.....ccuerueescnsiernassssesssnsssnees 12-3
B-1 Resultsof Addition and Subtraction on Infinftiesccereineninciiinnne B-2
B-2 Resuits of Multipllcation and Division on Infinftiesoceciiiinnnnnnnnne. B-2

viii

Preface

The Audience of This Manual
This manual is written for experienced BASIC programmers. It describes
completely the syntax of the language, and provides occasional examples to
clarify points of syntax, but no examples of complete programs. Instructions
for starting up and operating BASIC on the Lisa are in the Wwomkshop Users
Guide for the Lisa We assume that you have read the Workshgp Users Gulde
and the L/sg Owner’s Guice, and are familiar with your Lisa system. For
programming exampiles, we recommend Jstant BAS/C by Jerome Brown
(Dilithium Press, 1975).

Type and Syntax Conventions
Boldface type is used throughout this manual to distinguish BASIC text from
English text. For example, for i = 1 to 10 is part of a BASIC program.

Italics are used when terms are introduced for the first time.
Lisa BASIC syntax is illustrated by syntax diagrams. The following diagram
gives the syntax for constructing legal variable names.

varisble name

—D{ letter }

Start at the upper left comer and follow the letters through the diagram.
Various paths are possible. Every path that begins at the left and ends at the
arrowhead on the right represents a legal construction of a variable name.
Paths through the diagram that do not follow the arrows and curves of the
line are not valid. Thus, the rules for constructing valid variable names are:

* A variable name must begin with a letter since the first arrow goes
directly to a box containing the name letter.

* A variable name may consist of a single letter, since there is a path from
this box to the arrowhead on the left that does not go through any more
boxes. ‘

¢ The required letter may be followed by various combinations of letters,
- digits, and periods (). Loops within paths indicate repetition is legal.

* The symbol % or 8§, instead of a letter, digit, or period, may end a
variable name.

1-0333-A 1x

Symbols are used in the syntax diagrams to distinguish between different types
of input.

* A circle or oval indicates a BASIC keyword or another symbol such as an
operator. Enter text in ovals and circles as shown (you can ignore
capitalization).

* A word enclosed in a box may be a name for a statement element such
as a keyword, or may be a name for some other syntactic construction,
such as “variable”, which is specified by another diagram. For example,
cost% could be entered to replace variable in the example above.

* Arrows indicate the flow of the diagram.

NOTES

1-0039-A

Chapter 1

Introduction
1.1 Hardware Requirements 1-1
1.2 DISKEUES .euieeeceeireneierernnsecssassenesesesssanssnssessassessasssnssssssasasarasssesssssnsasnssasas 1-1
1.3 BOOUNGBASIC ONtNBLISA «..ceeneererresesencsmsesmassnssnsrsessasesesasasssnssssnessssanenss 1-1

Introduction

This manual describes the BASIC language for the Lisa. You should read the
Lisa Owners Guloe and the Workshop Lsers Guide for the Lisa before using
BASIC. We recommend that you have BASIC up and running while you read
this manual, so you can try things as you read about them.

1.1 Hardware Requirements
BASIC runs on any standard Lisa system. The BASIC package includes:

* BASIC Interpreter (distributed on two diskettes).
* BASIC-FPlus Users Guide for the Lisa.
o Workshap (Sers Guloe for e Lisa

1.2 Diskettes
The BASIC Interpreter is distributed on two diskettes. ‘You should make at
least one copy of the diskettes and use the copy instead of the master. Then,
if anything happens to the copy, you can make new coples from the master.
You can make as many copies of your master diskettes as you wish, and you
can use the master diskettes on any Lisa system. However, any copy of the
master runs only on the system you used tc create the first copy. Refer to
trile Workshop User's Guide for information on how to install- and copy
diskettes.

1.3 Booting BASIC on the Lisa
From the Workshop command line type B (BASIC). A Ready prompt is
displayed when BASIC is ready to be used.

NOTES

029-0372-A

21
22

23
24
25
26
27
28
29

2.10 Identiflers
2.11 Assignment

Chapter 2
Language Fundamentals

Interpreted or Compiled?

BASIC Character Set

Spaces
Keywords and Reserved Words

Statements andLines

Elements and Strings
Line Numbers

Immediate versus Program Execution

Entering Comments.

..2-1
.2-1
2.2.1 UsIingUppPercase and LOWEICASE LBLLETS .c.civecveerererssrareersassessaerassnnens

2-1

«2-1

2-2

2-3
2-4
2-4
2-4
2-5
2-5

Lanhguage Fundamentals

This chapter summarizes the fundamentals of the BASIC language for the Lisa.

2.1 Interpreted or
The BASIC that runs on the Lisa is a powerful interpreted BASIC. The
Interpreter scans each line as it is input for syntax errors. If the Interpreter
finds an error on a particular line, it displays an error message.

22 BASIC Character Set

The BASIC character set is comprised of letters, digits, and special characters.
These are described in this section.

A Jetter is one of the following:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

A digit is one of the following:

0123456789

Special charscters include the following:

+=23#8,. . <>()\:& T /-7 %)

22.1 Using Uppercase and Lowercase Letters
Uppercase and lowercase are not significant in BASIC commands or identifiers.
In the following example, the commands are treated eguivalently, but note
that case /s significant for the strings.

Ready
PRINT °CasE sEnsitIve’
CasE sEnsitIve

Ready
AS$='Identifiers’

Ready
pRint a$
Identifiers

23
Spaces are significant in BASIC. Spaces may be used in the following ways:
* To separate elements of the BASIC language.- v
* Within character strings.

BASIC-Plus User's Guide Langquage Fundamentals

At least one space must separate a keyword from the next element in a
statement. However, a space is not allowed anywhere within a keyword or
identifier. In entering expressions, one or more spaces between an identifier
and an operator are optional.

The following are examples of valid and invalid uses of spaces.
print *hi® valid.
pr int “hi" Invalld because spaces are not allowed within keywords.
print "hi® valid.
printsin(x) Invalid because a space is required after a keyword.

Spaces are optional between operators and identifiers in expressions. For
example, all of the following are valld. ,

(a+b-d)/d+2 profit/sales-cost
(a+b-d)/d+2 profit / sales - cost

2.4 Keywords and Reserved words
Reserved words are words that have a special meaning for the operating
system or BASIC. Since they have special meaning, use of reserved words is
restricted; they cannot be used, for example, as variable names or as part of
variable names. A list of reserved words is provided in Appendix A, Language
Summary.

Keywords are Englishlike words that are used in the BASIC language; in other
words, keywords are elements of BASIC. - Keywords may or may not be
reserved. For example, catalog is a BASIC command, yet it can be used as a
variable name.

25 Statements and Lines
A statement is a single BASIC language instruction consisting of one or more
keywords, mandatory clauses, and any optional clauses. For example, in the if
then else statement, if is the keyword, then starts the mandatory clause, and
else begins the optional clause.

200 if x=y then 250 else 300

2-2

BASIC-Plus Users Guide Language Funaamentals

The following is the syntax for the if then else statement:

Ir then else

expression

>
"

A program line {s comprised of one or more statements, ending with
<RETURN>. When more than one statement exists on a program line, you
must separate the statements with a backslash (\) or a colon (;), as shown
below.

10 if x=y goto 20\if x=z then 2S\goto 15
10 if x=y goto 20:1f x=z then 25:goto 15

Most BASIC statements can appear anywhere within a multiple statement line;
restrictions are given in the statement descriptions.

A program line, whether it contains one or more statements, can be longer
than a screen line if an ampersand (& and a <RETURN> are at the end of
each screen line.

26 Elements and Strings
An element is any sequence of characters separated from other such
sequences in a statement by one or more spaces. It is illegal to split an
element between screen lines.

A string 1s a series of characters bounded by quotation marks. For example,
the following is a legal statement:

20 if numberl < maximum then & <RETURN>
print 'within range’ & <RETURN>
else & <RETURN>
print ‘overfloe*

Note that strings are counted as elements when extending program lines so
that it is illegal to split strings between screen lines.

BASIC-Plus User’s Guide Language Fundamentals

The following Is 7ot a legal statement, because the string “within range™ Is
split between two lines:

20 if numberi < maximum then & <RETURN>
print “within & <RETURN>
range' else print ‘overflow’

The & symbol at the end of the second screen line is interpreted as part of
the string ‘within &'; it Is not recognized as the continuation character. The
program line is terminated, and the next line, range’ else print "overflow’
causes a syntax error.

2.7 Line Numbers
A line number identifies the program line and defines the order of execution.
The legal values for a line number are the positive integers from 1 to 32767
inclusive. BASIC stores and executes program lines in ascending order by
line number, which is not necessarily the order you enter them.

Only one program line can have a given line number. If you enter a line with
a duplicate line number, it erases the old line with that line number.

2.8 Immediate versus Program Execution
BASIC supports two modes: program mode and Jmmediate mode when in
program made, program lines are stored for later execution; when in
immediate mode, Instructions are executed as they are recognized by the
Interpreter. The presence or absence of a line number distinguishes between
program and immediate modes. Program lines are stored when preceded by a
line number. The following are examples of stored program lines:

10 rem this is a stored program line
20 for number=1 to 10

Immediate mode allows you to execute a single Hine. Statements used in
immediate mode can refer to established variables in the current program or
to variables defined in previous immediate mode statements. Variables
entered in immediate mode retain their values until the workspace Is cleared.
Refer to Chapter 3, BASIC Programming Environment, for an explanation of
the workspace. The following are examples of immediate mode statements:

a2
Let b6

print a+b

29 Entering Comments
There are two ways to add comments to a program: the rem statement and
the exclamation paint (). The rem statement is used when you wish only a
comment to appear on a particular program line. The exclamation point is
used to insert comments at the end of a program line.

2-4

BASIC-Plus User’s Guloe Language Fundamentals

BASIC does not execute any program line that begins with the keyword rem.
Rem statements must be numbered. If a comment requires more than one
line, you can break it up Into several rem statements, or you can use &
<RETURN> and continue the comment on the next screen line.

Use an exclamation point when you want to add a comment after a BASIC
program statement. You don't have to enter a colon before the exclamation
point. The system ignores any text on that line following the exclamation
polnt. You can also begin a line with an exclamation point instead of the
rem keyword, and the system will not execute that line.

210 Identiflers :
Jaentifiers identify user-defined functions, variable names, and array names.
The following is the syntax for constructing identifier names.

laentifier name

—{ tever |-

()

Identifier names should not exceed 30 characters. (Identifiers longer than 30
characters will generate an “Identifier too long" error and will be truncated to
30 characters.)

Identifiers are associated with functions, variables, and arrays. All identifiers
that start with fn are function names. For example, the following are valid
identifiers that are the names of functions:

fnaddem
fnscratch
fncalc.int

For more information on variable names, refer to Chapter 4, Data Types and
Data Manipuiation. ‘

211 Assignment
One of the most common operations in a program is the assignment of a value
to a variable.The following is the syntax for the assignment statement.

assigriment

| variable |-#(-)-#{ expression |

2-5

BASIC-Plus User’s Gulde Languege Fundamentals

The following examples are valid and assign values to variables.
10 let a%=10

20 let c$="current payment"
20 B=12.5
amount=123.98

Note that the keyword let is optional in the assignment statement, but the
equal sign (=) is always required.

NOTES

Chapter 3
BASIC Programming

Environment

3.1 Using the BASIC Interpreter to Create BASIC PTOQIAIMSccceermemnasesasnncnsnss 3-1
3.2 Creating BASIC Programs Using the Workshop EGILOTcccoceeemecceaniinnennnn. 3-2
33 SYSIEM COMMMIAINGSccoeeeerierrenrreseeecmnreensesssnssnnresenassessnssaaseananasssasnnssssmanans 3-2
3.3.1 Controlling BASIC Programs in PTOgram SPACEceereerieensserereesecirrenns 3-3
3311 DRI coiniiiiiieiiciite i cerecreeeecnrere s snss e e e te e en s nneces s eannans 3-4

3.3.1.2 NBW ciniiiiiitiiiirerieriitinstntncnesessesastosassesseraetsssansassesassasassnsanse 3-4

k25 B T B (s BSOS 3-5

3318 REPIACE .ciieieirciiiiiiiniririiassirsiirsrsrarerssisreraressasssesasesrarsrasasans 3-5

3315 SAVE ceucciiiieeeiiciicireeteaeeeaenetecntaaraanaaasantnreranataranensatrnnnnnn 3-6

3.3.1.6 ..3-6

3317 ..3-7

3.3.1.8 3-8

3.3.2 Informational COMMANGS ...e..cveemeereennseomescuemnmsmnnssormnnceanesesennsenanses 3-8
3.3.2.1 LIStandListnh cceeeiinicirieeriomerenenmiecesmntarasmmeerscsrsssacacansansnes 3-8

3322 LENGIN ciiiieeceeceeeseeesneeeeeseneeesaaeaneesssnease srsnneassaresesaasnnes 3-9

3.3.2.3 Catalogor Catlccveererrresmrcrecerireiissranterensinssssssrisensnsesaes 3-10

3.3.3 Caontrolling Execution of BASIC PYOQIAMS ...ceececreerarereremrenmennsesssisanans 3-10
3331 RUNEBNORUNNN ..cocecieiieiiererreceetesserenresascesssiatsrasassecassasssracs 3-10

3.3.3.2 0Nt .eeeeeeeceecierrenererraneseasnnsecensareesnasennssaesansssesennsassnnsssansense 3-11

3333 K PEHO0..ccciviricrirerierirrinreeeeesesrsrnerre s e s s nrs sesesnnneaeeerseaas 3-11

3.3.4 Debugging COMMENDSc.ccccerereraeeecannsecerasmassseasssasssssssasssssesassasanes 3-12
33841 TYACE ieieiricniieinnraiieienionrasiosessasstessssessocasitessocnssnsossssnncnes 3-12

LI N BBV o b= o) U= 3-13

3.3.5 LeaVINGBASIC.....coiiiiiriiniieiirirtniirrieerutssissesesinsseeni sesesessanressssenae 3-13

029-0373-A

BASIC Programming
Environment

This chapter explains the BASIC system commands, touches on the Workshop
programming environment, and points out those Workshop features most useful
for BASIC programmers. The two ways of creating programs are discussed,
and a discussion of the system commands follows. The BASIC system
commands control the programming environment and are not a part of the

BASIC language.

3.1 Using the BASIC Interpreter to Create BASIC Programs
You can create BASIC programs within the BASIC Interpreter, or within the
workshop editor. When you create a program within the Interpreter, each
program line is scanned for syntax errors when <RETURN> is entered. If
there is a syntax error in the line, an error message is displayed. For
example, the Interpreter displays an error message when the following program
line is entered.

220 far i=1 to 10
220 far i<<<<<
wuuuns |recognizable statement or command

The BASIC editing capabilities consist of a destructive backspace and the
delete command. You can use the destructive backspace on a particular line
until you enter <RETURN>. After you enter <RETURN>, the only way to
change the contents of a particular line is to retype the entire line using the
same line number. For example, to correct the typographical error below, the
entire line must be retyped.

220 print "The number of hours fothis pay period = hours

220 print “The number of hours for this pay period = “hours
BASIC replaces the original line with the corrected version.

Lines and groups of lines can be removed using the delete command. Refer to
Section 3.3.1.1, Delete, for an explanation of this command.

when you invoke BASIC, a program space is created. The BASIC Interpreter
allows one program at a time to occupy program space. All changes and
additions you make to programs in the Interpreter affect the program in
program space. when you first invoke BASIC, and before you load any
programs into this program space, it is empty and new programs can be input.
when you wish to work on a different program, you must clear the program
space, using the old or new commands.

BASIC-Plus Users Guide BASIC Programrming Ervironment

You use these system commands to work with program space:

save Saves the program file.

replace Saves the new version of an existing file.

new Clears the program space.

old Clears the program space and loads the specified program.
These commands are described in Section 3.3.1, Controlling BASIC Programs in
Program Space.
whenever you start BASIC, the following octurs:

1. All the input and output channels are closed.

2. All input statements wait indefinitely for input.

3. All floating-point exceptions and halts are turned off. Refer to
Chapter 13, Advanced Floating-Point Manipulation, for more
information.

3.2 Creating BASIC Programs Using the Workshop Editor
we recommend that you use the Workshop editor to create and edit your
BASIC programs. It provides more editing capabilities than the BASIC
Interpreter. The fundamental editing operations are inserting characters,
cutting a portion of the text, and pasting text to a new location. You can
use the mouse to scroll the text in the window, move the insertion point, and
select text to be cut or copled. For a detailed explanation, refer to the
Workshap Lsers Guice for the Lisa

when you create programs in the Workshop editor, you can’t check the syntax
as you type. However, the Interpreter checks the syntax of programs as they
are loaded into program space (refer to Section 3.3.1.3, Old) Programs created
using the Workshop editor can be run in BASIC using the run or runnh
commands (refer to Section 3.3.3.1, Run and Runnh).

33 Systern Commends
System commands control the BASIC programming environment and are never
part of a stored BASIC program. Rather, the system commands are used at
command level (without line numbers). If you attempt to place a system
command within a program, the following error message is displayed:

waeeenrecognizable statement or command
The BASIC system commands may be put into four functional groups:
* Cormmands that control the program in program space.
* Commands that provide information about programs.
* Commands that control program execution.

* Debugging commands.

3-2

BASIC-Plus Users Guide BASIC Prograrmming Environment

The system commands that control the program in program space are:

save Saves the program file.

unsave Removes the program file from the specified or prefixed
volume.

replace Saves the new version of a program file.

new Clears the program space.

old Clears the program space and loads the specified
program.

append Consolidates two files.

delete Deletes one or more lines.

renumber Renumbers all lines in the resident program.

The informational commands provide information about the current program
and about saved files. These are:

list Lists all or part of the current program, including a
header.

listih Lists all or part of the current program, excluding the
header.

length Prints the amount of memory occupied by the current
program.

catalog Prints a list of all .text files on the specified volume or
the prefixed volume.

cat Same as catalog
The commands that control program execution are:
un Prints a header and starts program execution.
rumh Starts program execution, with no header.
comt Restarts program execution (short for continue).

&-period Halts program execution.

The debugging commands are:
trace Toggles between trace and nontrace modes.
variables Lists all variables, their types and values.

33.1 Controlling BASIC Programs in Program Space
These system commands are used to control BASIC programs in program space.

As was mentioned earlier, only one program may reside in program space at a
time. The commands discussed in this section all control the current program
and are used when BASIC programs are created in the Interpreter.

3-3

BASIC-Plus Users Guide BASIC Programming Environment

Note: Some computational nn-time errors are not reported wnless the set
statement Is used to require reporting. Refer to Cnapter 13 Aavenced
Floating- Point Manjpulation. for more information.

33.1.1 Delete
The delete command removes one or more lines from the current program.
The syntax for delete is:

oelete

—’
(e

s,

where the syntax for line group is:
line groyp

. —P
j

Line group indicates which line, lines, and groups of lines are to be deleted.
You may select any combination of lines and groups of lines in a single delete
command if you separate each element as indicated in the line group syntax

diagram.
Exagples.
delete 210 Deletes line 210.
delete 225-335 - Deletes lines 225 to 335 inclusive.
delete 110,225-335,445 Deletes lines 110, 225 to 335 inclusive, and
line 445.
3.3.1.2 New

The new command clears the program space in memory. Only one program,
the current program, can reside in program space. The syntax is as follows:

new
—»(_new) >
=t

BASIC-Plus User’s Guide BASIC Prograrmning Environment

The program space is cleared; you can begin entering a new program when the
Ready prompt appears. If a filename is entered, the Interpreter uses that
name for the new program. If a fllename is not entered, the system prompts
as follows:

Filename: [.TEXT]

If a filename is now entered, it is used; otherwise NONAME is used. If a
volume name s not included, new assumes the prefixed volume. The default
file name extension Is .text.

3313 O0d
The old command clears the program space in memory and loads the specified
program. The syntax is as follows:

old
—»(od) >

If a filename is not entered, the system prompts as follows:
Filename: [.TEXT]

If a volume name is not included, old assumes the prefixed volume. The
default file name extension is .text

Examples:
old

Filename: [.TEXT] -upper-x The system prompts for the filename since it
was not entered at the command level. You
enter the volume name upper and the
filename x The extension .text is entered
automatically.

old y The y.text program is read into program
space from the prefixed volume.

3314 Replace
The replace command writes the current program to a specified file. The
syntax is as follows:

replace

—»(eplace)—~ >

3-S5

BASIC-Plus Users Guide BASIC Programyning Environment

If a volume name Is not included, replace assumes the prefixed volume. The
default file name extension is .text; you need not enter it

Example:
replace config The program is written to config.text
3315 Sawve

The save command writes the current program to a volume. The .text
extension, if not present, is added automatically. The syntax is as follows:

save
save —
e :

If a volume name is not included, save assumes the prefixed volume.

The save command assumes that no file already exists with the specified file
name. when you want to replace an existing file, use replace. If you use
save when a file with the specified filename already exists, the Interpreter
prompts:

delete old filename?

If you respond y for yes (and <RETURN>), the new version of your file will be

written to disk.
Exawple:
save progress The program is written to
progress.text.
33.16 Unsave

The unsave command removes the specifed filename from a volume. The
syntax is as follows:

uisave

@ >

If you do not enter a filename, the system prompts for it as follows:
Filename: [.TEXT]
If you do not include a volume name, unsave assumes the prefixed volume.

3-6

BASIC-Pls Users Gulde BASIC Programming Environment

The default file name extension is .text; you need not enter it.

Exanples:
unsave config Removes config.text from the prefixed
volume.
unsave
Filename: [.TEXT] config Removes config.text from the prefixed
volume.
3317 Append

The append command consolidates two files by writing the contents of the
specified file over the current flle in the workspace. The syntax is:

aavend

where filename is the name of the program to be appended to the current
program.

If you do not enter a fllename, the system prompts for it as follows:
Filename: [.TEXT]

If you do not include a volume name, append assumes the prefixed volume.
The default file name extension is .text; you need not enter it.

Append adds all unique lines to the current program. Wwhen duplicate line
numbers are encountered, the line from the saved program overwrites the line
in the current program.

Examples:
Assume the following is a saved program:
Program OLD
10 for 1=1 to 3
20 print “write over line 20 in the current program?”
30 next 1
40 end
Assume this is the current program:
05 for n=1 to 3
20 print “this is 1line 20 in the current program™
35 next n
40 end

3-7

BASIC-Plus Users Gulide BASIC Prograrmming Enviranment

To append old.text to the current program, you type append old

The following is the result:
05 for n=1 to 3
10 for i=1 to 3
20 print “write over line 20 in the current program?”
30 next 1
35 next n
40 end

3.3.1.8 Renumber
The renumber command renumbers the program lines in the current program,

from the specified starting line to the end of the program, with the specified
increment. The following is the syntax:

renumber

When you type remumber, the system responds:
renumber starting at ?

Type in the first line to be renumbered. The system then asks:
increment ?

Type in the increment you want.

332 Informational Commands
These systemn commands provide mformation about the current program.

3.3.2.1 List and Listnh
The list and listnh commands display all or part of the current program. The
list command prints a header of the form:

Program fllename
The listnh cornmand (list no header) does not print a header.
The syntax for list is:

st
—b list »

| O—

3-8

BASIC-Plus Lser’s Gulde BASIC Prograrmming Environment

The syntax for listnh is:
Jistrh

—’@\

The syntax for line group is the same for both list and listnh:
line group

(Or+integer |

Line group indicates which line, lines, and groups of lines are listed. You can
request any combination of lines and groups of lines in a single list or listnh
command if you separate each element with a comma as indicated in the line
group syntax diagram.

Exanples. » ‘

1ist 220 Prints a header and then lists line 220.

listnh 220 Lists line 220 (without a header).

list 220-335 Prints a header, lists lines 220 to 335 inclusive.
listnh 220-335 Lists lines 220 to 335 inclusive (without a header).

1ist 10,20,35-75,80-95 Prints a header, lists lines 10, 20, 35 to 75,
inclusive, and 80 to 95, inclusive.

listnh 15,25-50,55, 80-95 Lists lines 15, 25 to 50 inclusive, 55, and 80 to 95
inclusive (without a header).

3322 Length
The length command prints the amount of memory occupled by the current
program, and the maximum program size. The following is the syntax

length

—>ClengnD>—

3-9

BASIC-Plus Users Guide BASIC Programming. Environment

The length command returns Xy of memory used where y is the total
amount of space you can ever have, x is how much space is used, and K
stands for kilobytes. A kilobyte is 1024 bytes.

3323 Catalog or Cat
The catalog (or cat) command prints a list of all text files on the specified
volume (or the prefixed volume, if It is different; refer to the worksiigp Lser’s
Guide for the LJsg for an explanation of prefixed volumes). The following is
the syntax for the catalog command.

catalog

catalog (\ (>
@D

Catalog prints a list of the following form:
catalog for -paraport
1dswdoc . text
documents. text
Jmilfiles text

333 Controlling the Execution of BASIC Programs
333.1 Run and Runnh
The run and runnh commands start program execution. Program execution

always begins at the program line with the lowest number. The run command
prints a header of the form:

Program filename

before starting program execution. The runnh command (run no header) omits
the header. The syntax for run is as follows:

n

If a volume name is not specified, the prefixed volume is assumed. The
syntax for runnh is as follows:

v

3-10

BASIC-Plus User’s Guide BASIC Prograrmming Envirorment

If a volume name is not specified, the prefixed volume is assumed.

If a file name Is not specified, run and runnh execute the current program. If
there Is no program currently in memory and the command doesn't include a
filename, the system displays the error message:

7?Missing END statement in line -1.

Exaples:
TUun Prints a header and starts execution of the current program.
Tunnh Starts execution of current program (without a header).
run taxes Loads taxes.text into memory, prints a header, and starts
execution.
runnh taxes Loads taxes.text into memory and starts execution (without a
header).
3332 Cont

The cont command restarts execution of programs halted by the stop command
or by the #-period interrupt. When a cont command s input, program
execution Is resumed at the statement immediately following-stop (even if the
stop statement is in the middle of a multiple statement line) The cont
command is never part of a stored BASIC program. The syntax is as follows.

cont

Examples:

110 next n:stop:n=0 when a cont Is input, program execution resumes
with the statement n=0.

220 stop

225 gosub 1101 when a cont is encountered, program execution
resumes at the line after line 225.

3333 &-Period

t-period Is the soft interrupt character; it interrupts program execution at
“safe” places, so that no data is lost. To use the %#-period interrupt, hold
down the Apple key (&) while you type a perlod (). When you type s-period,
BASIC will interrupt the program at the next safe place it encounters. The
%-period interrupt will 720¢ get you out of a request for input.

Note: Although you type two keys to use the &-period interryol, 1t Is treated
as only one characler.

3-11

BASIC-Plus Lsery Guide BASIC Progranmyming Environment

3.3.4 Debugging Commands
The debugging commands are used when a program does not work the way you
want it to.

3341 Trace
Trace is a debugging command that switches between trace and non-trace
modes. When the system is in trace mode, program execution is followed and
line numbers are printed as they are executed. The syntax is as follows.

NG

when trace mode is entered, the system prints
Trace flag set to TRUE
and when trace mode is left, it prints
Trace flag set to FALSE
Exanples:
For the following very simpie program:
20 for i=1 to 3
30 print “"hello”
40 next 1
50 end

3-12

BASIC-Plus Users Guide BASIC Programming Envirorvnent

The following is printed on the screen when the trace flag is set to true and
the program is executed:

Line -1
Line 20
Line 30
hello
Line 40
Line 20
Line 30
hello
Line 40
Line 20
Line 30
hello
Line 40
Line 50
3.3.4.2 Variables
The variables command searches the current program for variables, printing a

list by type and vaiue. BASIC supports six types of variables: integer, floating
point, string, floating-point arrays, string arrays, and integer arrays.

The syntax is:

variables

The variables command applies to the current program only.

335 Leaving BASIC
The bye command closes and saves open files and exits to the Workshop
command line. The syntax is as follows.

bye

—C o O

3-13

NOTES

129-0374-A

4.1

E&R

45

4.6
4.7
48

Chapter 4
Data Types and Data

Manipulation
Integer and Floating-Point Constants a-1
4.1.1 NUMEIICNOLALION «..ieciiiiaccrericiiiier e cerrrraneseeeeer s st csssssssnsssssnssns 4-1
4.1.2 Integer and Floating-Point ATIthMELIC . ciiiieiiiinininiciineissieciinsniennenns 4-2
String Constants 84-2
Variables and Variable Names ... 4-4
Expressions 46
Arithmetic Operators 4-8
4.5.1 Results of DIVISIONDY ZBIOccoivinmeeicininnniniiinninssnestsesn 4-8
LOGICEI OPETALOYS ..eeceeeennririreosnssnatosasensssnssensainasssasannanssnnes 4-9
Relational Gperatorscc.cccceeesensas 4-12
Precedence of Operators 4-13

Data Types and Data
Manipulation

BASIC supports integer, floating-point, and string values. This chapter defines
each of these data types and presents the legal BASIC data manipulation
operations.

4.1 Integer and Floating-Point Constants

In BASIC an integer constant is specified as a series of digits ending with a
percent sign (% A floating-point constant is specified as a serles of digits
with an optional decimal point to separate the whole and fractional parts of
the number. In other words, the absence of a percent sign makes a numeric
value a floating-point value. A minus sign (-) preceding the first digit
indicates negative integer and floating-point values. For example, the
following are legal integer constants:

1% -205% 8970%
and the following are legal floating-point constants:
1.275 -354.786 a
Table 4-1 lists the valid ranges for integer and floating-point constants. .
Table 4-1
Ranges for Integer and Floating—Point Constants
Type of Constant Range
Integer -32768 through 32767
Floating-Point +4.9%10"-324 through +1.7%10°308

4.1.1 Numeric Notation
You can enter numeric constants in one of two ways. You can enter the
value as a string of digits such as

105000
or you can use sclentific notatlon and write the value as
105E+3

BASIC-Plus Users Guioe Data Types & Manlpulation

4.12 Integer and Floating-Point Arithmetic
Floating-point values occupy four 16-bit words of storage and use double
precision arithmetic. Using double precision arithmetic you can represent
values up to 15 decimal places accurately.

Integers occupy one 16-bit word of storage. The range of integer values
supported by BASIC Is continuous; the number following +32767 is -32768.
Therefore when you add large positive integer values, negative numbers can
result. For example, the following additions yield negative values:

print 32499% + 31223%
-1814
print 25678% + 31568%
-82%0

The values of integer variables or expressions can be used as logical variables.
0% corresponds to the logical value FALSE; any nonzero integer value
corresponds to the logical value TRUE.

4.2 String Constants
A string constant is data made up of a series of characters, digits, and special
characters. The value of a string constant does not change during program
execution. A string constant can contain up to 32767 characters. However,
to create a string longer than a screen line, you must use the string functions.
Refer to Section 10.4, String Functions, for more information.

BASIC-Plus Users Guice Data Types & Manjpulation

The following Is the syntax for string constants:

string coristant
<+ ~ (O
| | ajpravetic charscters |
N—»l umeric charscters |+ Y
all punctustion —
A except ' A
‘ J

\
‘*Orw—’l ajpnavetic characters

N—»{ umertc crarscters |—
—

all punctuation
4 except
\
<

when you enter a string constant, start and end the string with single or
double quotation marks; the quotation marks distinguish a string constant from
a string variable name. The quotation marks aren't part of the string and
aren't included when you output the string. To print the phrase Please enter
your name, you could type the following:

print ‘Please enter your name®
The system displays
Please enter your name

in response. Note that the resuits would be the same if you began and ended
the string with double quotation marks.

BASIC-Plus User's Gulde Data Types & Manjpuiation

when you want a quotation mark to appear within a string you can:

1. Use the other type of quotation mark (e.g. the type of quotation
mark that doesn't appear in the string) as the string delimiter. For
example, if you type:

print ‘Use the “other” quotation mark’
the system displays:

Use the "other™ quotation mark
or if you type:

print “use the ‘other' quotation mark"”
the system displays:

Use the ‘other’ quotation mark

2. Enter two quotation marks of the same type where you want a
single quotation mark. This distinguishes a delimiter from part of
the string. For example, if you type either of the print statements,

print "Can’t figure profits without more information.”
print 'Can"'t figure profits without more information.*
the system displays the line:
Can‘t figure profits without more information.
Typing:
print "Use "“double”” quotation marks"™
prints:
Use “double™ quotation marks
and typing:
~ print 'Use '‘double’’ quotation marks'
prints:
Use 'double’ quotation marks
4.3 variables and Variable Names
A variable is a value that can change during program execution. The
variable name which does not change, Is associated with the data. Variables

can assume values of any of the three data types. The variable name
determines the type of value that it represents.

4-4

BASIC-Plus User's Guide Data Types & Manijpulation

The following is the syntax for creating variable names.

ke

Note: variable names may not exceeg thirty characters.

A name ending in a percent sign (%) represents an integer value, a name
ending with a dollar sign ($) represents a string value, and a name without
either of the two distinguishing symbols represents a floating-point value.

The following are examples of legal variable names for each data type.

1. Integer
loops%
emp . numk
crates%

2. Floating-point
finaltotal
totalcash
bottom.line

3. Suing
brand .names$
supply . type$
personnels

The system allocates space for a variable in BASIC the first time you use it
in a statement. BASIC initializes numeric variables to zero and initializes

string variables to the zero length string.

variable name

—O‘ letter }

letter

O

4-5

BASIC-Plus User's Guide Dsts Types & Manjpulation

a4 Expressions

An expression Is a group of values (constants, variables, and functions) and
operators that is used to compute a new value. The following is the syntax
for expressions.

expression

—V‘ factor } >
1—b[operator}b[expression J

Note: All impllelt rounding ur floating-point expressions to integers Is to the
nearest Integer; values halfway between two integers are rounked to the even

Integer.
The following is the syntax for factor.
factor
< ® variable

: N -+ constant |
@ b »| array selection
not a »| function call f—

© 0

The syntax for array selection is as follows.
array selection

*’i array variable |->J
-

;

Q expression

4-6

BASIC-Plus Users Guioe Data Types & Manipulation

The syntax for function call is as follows.

function call

—bl identifier I >
0 9

O

The syntax for operator is as follows.
gperator

*Q@QQQ@?@{@QQ@@@?@@@@;

C - X

The type of operator used in expressions is dependent on the element type. If
the elements that the operator separates are string constants or functions that
return string values, the operator must be a relational operator or the string
concatenation operator (+). (Refer to Section 4.7, Relational Operators, for an
explanation and examples.) If the elements in the expression are numeric, the
operator can be mathematlical, logical, or relational. (Refer to Section 4.5,
Arithmetic Operators; Section 4.6, Logical Operators; and Section 4.7,
Relational Operators, for an explanation and examples.)

when evaluating an expression, the system always checks the data type of the
result against the data type of the target varlable. If the result of the
expression is a string and the target varlable is numeric, or vice versa, the

4-7

BASIC-Plus Users Guide Data Types & Manjpulation

system returns an error message. If the result and the variable are both
numeric but of different types, one of the following occurs:

* If the target variable Is an integer and one or more values in the
expression are floating-point values, the system evaluates the
expression using the floating-point values, rounds any fractional portion
of the result, and assigns that value to the integer variable.

* If the target variable Is a floating-point value and one or more of the
values in the expression are integer values, the system treats the
integers as floating-point values.

45 Arithmetic Operators
BASIC recognizes the arithmetic operators defined in Table 4-2.

Table 4-2
Arithmetic Operators

Operator Use Explanation

+ X+Y Adds X to Y

- X-Y Subtracts Y from X

» X *Y Multiplies X by Y

/ X1y Divides X by Y

- XY Raises X to the Y power

bt Xy Raises X to the Y power
remainder X remainder Y Computes remainder

The + and - signs can be used as unary operators. The + is ignored; the ~
changes the sign of the value which follows.

451 Results of Division by Zero
The results of a division by zero depend on the type of operand, that is,
whether the value is floating-point or integer. If the division iIs between
floating-point values, the result is usually positive or negative infinity.

4-8

BASIC-Plus Users Guide Data Types & Manjpuiation

For example:
5.5/0.0

results in positive infinity, while
-5.5/0.0

results in negative infinity. However,
0.0/0.0

results in a NaN ("Not a Number”). Refer to Appendix B, Floating-Point
Arithmetic, for more information.

Division by zero when the values are integers results in a run-time error.

4.6 Logical Operators
A logical operator can separate two integer variables or constants, or two
relational or arithmetic expressions. Floating point variables and constants
are legal within a logical expression only as part of a relational or aritnmetic
expression.

when integer values are used, the value 0% is equivalent to false. All otner
values are true.

4-9

BASIC-Plus Users Guloe Data Types & Marlpulation

BASIC recognizes the logical operators listed in Table 4-3.

Table 4-3
Logical Operators

Operator Rules of Evaluation

and X and Y is true only if X'and ¥ are both true.
X ory iIs true when either Xorr Is true. The

or expression is false only when both X and ¥ are
false.

eqv Xegu Yy is true If X and Y are both true or
both false.
If X Is true, mot X 1s faise, and if X s false,

not not X is true.

imp X Imp Y Is true unless X is true and Y Is false.

X xor Y Is false when both X and)Y are false,
xor or when both X and Y are true.

The expression is true when one value is false
and the other is true.

4-10

BASIC-Plus Users Gulde

The result of a logical operation is either true or false. BASIC considers 0%
to be false and any other value to be true. The truth tables in Table 4-4
define the result of a logical expression for each possible pair of values.

Table 4-4
Truth Tables for Logical Operators

Data Types & Manipulation

Xyl xory Xyl xxory xy| xequy
tt true tt false tt true
tf true tf true tf false
f true ft true ft false
ff false ff false ff true

X not x xy| xandy xy| ximpy
t false tt true tt true
f true tf false tf false
ff false f true
ft false ff true

4-11

BASIC-Plus User’s Guide Data Types & Manijpuiation

4.7 Relational Operators
Relatlonal operators compare two numeric or string expressions that are
composed of constants or variables, or both. The result of the comparison is
either true or false. Table 4-5 lists the BASIC relational operators and the
comparisons they perform.

Table 4-5
Relational Operators
Operator Example Explanation
Determines whether the value of X Is equal to
- xX=Y the value of Y.
< X <Y Determines whether the value of X Is less
than the value of Y.
> X>Y Determines whether the value of X Is greater
than the value of Y.
<= X <= Y Determines whether the value of X {s less
than or equal to the value of Y.
= X >= Y Determines whether the value of X Is greater
than or equal to the value of Y.
< X < Y Determines whether the value of X is not
equal to the value of Y.
- X ==Y Determines whether print X and print Y
would agree.

The system compares strings with the ASCII sequence. When the two strings
are of different length, the system compares the characters of the shorter
string to the corresponding characters in the long string. If the system finds
no differences between the two strings and the remalning characters of the
longer string are blanks, the two strings are equal. If the remaining
characters are not blanks, the longer string is greater than the shorter string.

4-12

BASIC-Plus Users Guide Data Types & Manjpulation

For Instance, suppose Stringi$ contains ‘Graphs’, String2$ contains ‘Graphs °,
and String3$ contains ‘Graphs and Charts’. The system considers Stringi$ and
String2$ equivalent, although String2$ has more characters than Stringl$,
because the additional characters in String2$ are blanks. However, the system

treats String3$ as greater than Stringl$ because the characters in String3$
following the common characters are not all blanks.

4.8 Precedence of Operators
when a calculation involves more than one operator, BASIC performs the
operations in the following order:

1. ©, w» (exponentiation)

2. Unary+, unary-, not

3. = /, remainder (multiplication, division)
4. Binary+ ,binary- (addition, subraction)

5. %, > <=, >, <, ==

6. and

7. or, xor, eqv, imp

within each level of hierarchy, operations are performed from left to right.
However, parentheses change the order of evaluation. BASIC evaluates the
expression within the innermost set of parentheses first, then the expression
within the next higher set of parentheses, and so on. Within parentheses,
BASIC follows the rules given above.

For example,
-2"2=-
(-2)"2-4

If A=2, B=4, and C=5, then
A+B*C=22
(A+BMC=30

when evaluating the expression, the system multiplies B by C and then adds A
to the result, because multiplication is done before addition. But if you
enclose the addition in parentheses, the system adds A and B first and then
muitiplies the result by C, because operations within parentheses are done
before any others.

4-13

NOTES

029-0373-A

5.1
5.2
53
5.4
5.5
5.6
5.7

Chapter 5
Formatted ASCII Input
and Output

INPUL aNd OULPUL CRANNEIS ...eeeveeereenenecsennns ceteteresesetrsassasasaserasnnnes
REAAANODALA «...eoeeeeemeeemreseremesessesessssosssssssessssssssssasssasssemsssessssssasessssass
Restore
Input

INPULLINE «.cceeeeeranrecncerensesanesscsansssssessasssasesssesansensnssenssssassensnassnssavassasasans
Print....

Print Using

Formatted ASCII Input
and Output

Formatted ASCII input and output reads and writes characters in ASCII format
to and from files and devices in the system. ASCII format Is the format used
for the keyboard and screen. ASCII input and output, although simple and
flexible, require the system to convert values from internal forms to ASCH
format and do not allow random file access during output.

5.1 Input and Output Channels
BASIC communicates with flles through cnarels The open statement assigns
a logical input/output channel to a filename. Refer to Section 11.1, Open, for
more information.

BASIC supports thirteen logical input and output channels. These channels are
numbered 0-12. Channel D is always associated with the console. When you
print from BASIC without specifying the channel number, channel 0 is
assumed. Channels 1-12 are not assoclated with a file or device when you
first start up the system. You associate the channels, as you need them, by
using the open statement. The association imposed by the open statement
lasts until you either close the channel with the close statement, clear the
workspace using the new or old commands, or exit BASIC. Refer to Section
11.2, Close, for Information about the close statement, and to Chapter 3,
BASIC Programming Environment, for information about the new and old
commands.

5.2 Read and Data
Data can be defined within a program with the data statement. Data defined
within a program can be read by the read statement. Data are deflned in the
data statement In an ordered list. Likewise, variables are defined in the read
statement In an ordered list. when Lisa BASIC executes a read statement, it
assigns values from a data statement to each of the variables listed in the
read statement. The following is the syntax for the read statement.

read

G
O

’

Variable is any valld variable name.

5-1

BASIC-FPlus User’s Gulde Formatted ASCIll I/0

The following s the syntax for the data statement.

data
e

If a data statement Is included In a multiple-statement line, it must be the
last statement in the line.

BASIC maintains a list of values that it bullds from all the data statements in
a program. The first value in the list is the first value in the first data
statement in the program; the last value in the list is the last value in the
last data statement in the program.

when the system executes the first read statement in a program, it assigns
the first value in the data list to the first variable in the read statement, the
second value in the data list to the second variable in the read statement, and
S0 on. For example,

20 read firsts, middle$, lasts$

90 data John, Henry, HMadlson

Line 20 is the first read statement in the program and line 90 is the first
data statement in the program. BASIC assigns the string Jobn to firsts, the
string Henry to middie$, and the string Madison to lasts$.

The number of read and data statements need not match. You can enter the
data values for several read statements in a single data statement or enter
the data values for one read statement in several data statements. There is,
however, a one to one correspondence between the variable and value pairs.
Note that the read statement determines whether the data objects are
interpreted as integers, floating-point numbers. or strings.

Each value in the list of data can be used only once. If all values have been
used when a read statement attempts to assign a value to a variable, the
system returns an error message.

BASIC-Plus User’s Gulde Formmatteq ASCIl /0

For example,
20 read product$, price, salesX

70 read store$, arearep$, shipped, onorder

900 data pencils, 0.7, 10853
910 data nourney's, adams, 1000

The two read statements require a total of seven data values. However, the
two data statements provide only six. when the read statement at line 70
attempts to assign a value to onorder, there are no data available and the
system displays the following message:

770Ut of data at line 70

when assigning data statement values to variables, the read statement checks
to see if the type of the variable and the type of the data value match. The
system will assign an integer in a data statement to either an integer or
floating-point variable, but will not assign a floating-point value to an integer
variable.

The read statement determines whether the data objects are interpreted as
integers, floating-point numbers, or strings. This means that you don‘t have to
use a % after integer values you enter In a data statment. In fact, If you do
include the %, the system displays the following error message:

?78ad input format in <line #>

within data statements, all strings that contaln significant spaces or a comma
must be delimited by single or double quotation marks. If a string is not
delimited by quotation marks, and it contains a cornma, the system interprets
the comma as a delimiter between elements in the data statement.

5.3 Restore
The restore statement instructs the system to return to the top of the data
list ana assign values to subsequent read statement variables, starting with the
first value in the data list. The syntax for restore is as follows.

restore

BASIC-Pius User'’s Guide Formattea ASCIl /0

The following is an example of the restore statement.
135 read g, b, Cc, d
140 restore
145 read e
150 data 1, 2, 3, 4, 5
160 printa, b, c, d, e
run
1, 2, 3 4,1
If line 140 Is deleted above, the results are:
1, 2, 3,4, 5
54 Input
The input statement assigns values to varlables from a source other then a
data statement. The statement retrieves the values from a designated source

such as the console or a flle. The default device is the console. The
following is the syntax for the input statement.

o

< J
C e

‘-—@*J:

O -
—Cr ’
Channel # is a pound sign followed by an integer expression; variable is any

legal variable name; prompt is a string constant that the system displays as a
prompt when it executes the input command.

BASIC-Plus Users Gulde Formatted ASCH 10

The following example shows how the prompt feature works.
10 input “Please enter your name and number. ";username$, usernusber
20 input “Now pick the topic that you want to research. “; topic$

125 end

Tun

Please enter your name and number. Susan, 122

Now pick the topic that you want to research. stock market

Note that values entered by the user are separated by commas, as are values
in the variable list.

when you use the console (the default device for the input statement) the
system displays a question mark (7) when it is ready to accept input. Values
must be separated with commas, as above.

A response string cannot contain commas unless the string Is enclosed in
quotation marks. A way around this restriction is the input line staterment.

5.5 Input Line
The input line statement requests input of one line from a specified device or
file and assigns the line to the string variable in the statement. The
following is the syntax for the input line statement.

input line

—»_input line) *l string variable }—>
®

The default device is the keyboard. Characters are read into the string
variable up to and including the first <RETURN>.

The followling are examples of the input line statement.
100 1nput line address$ 1Tne keyboard is used as the source of
nput.

150 1input 1line #5, county$ The file associated with data channel #5
is used as the source of input.

56 Print
The print statement is used to display data on the screen or to print to a file.
The print statement outputs data to the console (the default file) or to
another specified flle. The following is the syntax.

BASIC-Plus Users Guide Fomnattea ASCl /0
print

N .
L
9

(e—
Oe

The channel number must be one that is currently in use (associated with a
file by an open statement). The punctuation (, ;) following the channel number
is just a delimiter; it does not affect the print zones (described below).

The system divides each line on the screen Into print zones Each print zone
is 14 characters wide.

The punctuation (, ;) that you use in a print statement determines the format
of the output. Table 5-1 defines how the system formats output for each type
of punctuation.

BASIC-Plus Users Guide Formatted ASCIl /O

Table 5-1
Print Statement Punctuation
il Example Effect on Formatting
, print A, BS Each value begins in the next avallable print
.1 zone. When the current line is full, the next
-12.50 credit | yajue s printed in the first zone of the next
line.
. ; . Each value is printed immediately after the
‘ (print A; Bs_ preceding value. Numeric values are
-12.50 credit formatted with spaces, as described below.

The system does not print a <RETURN> if the last character of a print
statment is a comma () or a semicolon (), and values fram the next print
statement are printed on the same line (if possible) .

Values from the next print statement are printed on the next line if you end a
print statement without punctuation.

The list below gives other numeric formatting rules for the print statement.

* | eading zeroes ana nonsignificant tralling zeroes are suppressed. If a
floating-point value has no fractional part, the decimal point is also
suppressed.

* For integers and floating point numbers, the printed value has a trailing
spiace. llf positive, it has a leading space; if negative, it is preceded by a
minus sign.

* Very large or small values are printed in scientific notation with a leading
and a tralling space.

Nole: Aoditional screen control Is possible using spec/al characters; see the
Workshop User's Guide ror more Information

BASIC-Plus Users Guiloe Fommettea ASCIT /0

5.7 Print Using
The print using statement, like the print statement, outputs data to a specified
file. However, the print using statement uses a string (that you specify) as a
guide for printing the information. In other words, the output is printed

according to a specified format. The following is the syntax for the print
using statement.

print using
[chamel #]+

<

string >
)

e

The channel number must be one that Is currently in use (assoclated with a
file by an open staterment). String is a string constant, variable, or expression
that contalns the format fleld for the statement. The system prints the list of
data in the format specifed by the string.

Table 5-2 defines the print using format field characters. These characters
dictate the format for the output.

BASIC-Plus Users Gulde Formatted ASCIl 10

Table 5-2
Print Using Statement Formatting Characters

Formmnat Character | Effect on Output

Represents a one-character string.

Represents a string field of two or more
characters: \\ Is a two-character fleld,
\<space><space>\ is a four-character field, and
SO on.

A

Defines numeric formats. Each # represents a
digit; the period () marks the decimal point.
#2283 prints up to 999.99. Up to 15 formatting
*. characters are permitted. Leading zeroes are
replaced by spaces. A number that is too large
for the format Is printed unformatted, preceded
by %

when placed at the end of a numeric format,
- prints a trafling minus (-) for all negative
values. For example, ##8.#%-

when preceges a numeric format causes a dollar
$$ sign (%) to be printed before the first digit of
the following numeric field.

If any commas appear within a numeric format
to the left of the decimal point, commas will
appear every three digits in the result. Such
commas in the format also allocate

space in the same way as #.

Precedes a numeric format; prints asterisks (¥)
instead of spaces within numeric output.

Follows a numeric field to indicate positions
~an for scientific notation. At least three (" " ")
are required, up to five ("""
necessary.

NQTES

376-A

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 6

Branching Statements

If ThenkElse

| L€ | { o N

ONGOLO ...ccceeireeninraneneneecsererenacerananenenns

On Gosub eseseteersenansansanenes

OnError Goto .

Resume ..

Branching Statements

Branching statements modify the order of statement execution while a
program is running. BASIC includes both conditional and unconditional
branching statements. A conditional branching statement causes program
execution to branch if a condition is met. Unconditional branching statements
always branch.

6.1 If Then Else
The if then else statement is a conditional branching statement. If a
condition is met (true), then whatever is in the then clause is executed. If a
condition is not met (false), the then clause is not executed. If the expression
is false and the if then else statement does not have an else clause, the
system executes the first statement of the following program line, disregarding
statements in a multiple statement line.

If you use the else clause, if then executes either the statement in the then
clause, or the one in the else clause. If the condition is met, then something
is executed, otherwise something else is executed. The following is the syntax
for the if then else statement

Ir then else

Expression must be an expression or integer variable, the value of which can
be interpreted as either true or false; statement is a valid BASIC statement;
line # is a number of a line within the program.

The following example compares sales to projected sales, setting a variable to
true if sales fall below a certain point.

35 if sales < (projected * .9) then margintoolow¥ = 1 ! l=true

6-1

BASIC-Plts Lsers Gulce Branching

To set margintoolow% to false when sales oot fall below the critical point,
you could use an else clause as follows:

35 1if sales < (projected * .9) then margintoolos® = 1 &
else margintoolow% = 0 ! 0 = false
6.2 If Goto
The if goto statement skips to a different part of the program during

execution if a condition is met. The following is the syntax for the If goto
statement:

if goto

expression

Expression is an expression whose value can be interpreted as true or false;
line # is a valid line number within the program.

Goto can be broken into two words, go to, if you wish.

For example, assume you are writing a program that updates employee
salaries. To recalculate salaries for those employees whe have gotten a raise
or been promoted since the last update, you could use an if goto statement as
follows to direct the program to the salary recalculation and posting routine
for all employees whose salaries need adjustment.

50 if datechanged <> dateupdated goto 1000

The statement checks the date the records were last updated with the date
the employee’s salary was last changed. If the employee's salary was changed
since the last update, the program continues execution at line 1000, the
beginning of the salary recalculation routine.

The example below is a program segment that checks data that the user
enters at the keyboard and skips to line 1000 if the data are not within the
defined limits.

10 input "Enter a number between 1 and 10%; numberX

20 if not(number% >= 1 and number% <= 10) then &
goto 1000 ,

1000 rem Data input error routine starts here.

BASIC-Plus User's Guice Branching

6.3 On Goto
The on goto statement transfers control to one of a list of line numbers. The
following is the syntax for the on goto statement:

expression

on goto

Goto can be broken into two words, go to, if you wish.

After evaluating expression, the on goto statement transfers control to the
line with the position in the list that corresponds to the value of expression.
For example, if the value of the expression iIs 1, the next line executed s the
first line in the list. For example:

45 on howship% goto 100, 200, 300, 400

If the value of howship% is 1, control transfers to line 100; if the value of
is 2, control transfers to line 200, and so on. If, however, howship%
is less than 1 or exceeds 4, the system displays the message:

7?7%n goto range error in line 45
The maximum number of line references in an on goto statement is 255.

6.4 On Gosub
The on gosub statement transfers control to one of a list of subroutines
(subroutines are explained in detail in Chapter 10, Subroutines and Functions).
The following is the syntax for the on gosub statement.

on qosu
'.
@

Expression should be an expression which gives an integer result or an integer
variable. The value of expression is an offset into the list of line numbers.
The line numbers are the subroutine entry points.

Gosub can be broken into two words, go sub, if you wish.

The on gosub statement invokes the subroutine beginning at the line with the
position in the list that corresponds to the value of expression. If the value is
4, for example, control transfers to the fourth line number in the list. Note
that if the value of expression is less than 1 or greater than the number of
lines listed, the system generates a run-time error.

expression

6-3

BASIC-Plus User's Gulde Branching

Use the on gosub statement whenever you program multiple branches to
subroutines. For example, you could use the following on gosub statement to
direct execution of the subroutines:

25 on choice gosub 30, 100, 300, 375, 500

Each line # is the entry point of a subroutine. The maximum number of line
references in an on gosub statement is 255.

65 On Error Goto
The on error goto statement directs program execution to an error-handling
routine when a recoverable run-time error is encountered. The following Is
the syntax for the on error goto statement. ’

on enor goto

Line # represents the entry point into an error-handling routine. Goto can be
broken into two words, go to, if you wish.

Mlg' Lse the resume statement (Oescribed below) to exit the ermr-nandling
1oULne.

BASIC provides two system integer variables for use In error handling; these
may be printed or examined by the program In the error-handling routine:

* err contains the number of the error; a list of error numbers and their
meaning Is found in Appendix D, Error Messages.

* erl contains the line number of the statement that produced the error.

On error goto statements may appear anywhere in a program and must be
executed before they take effect. If an on error goto statement has been
executed, any recoverable error causes the program to branch to the specified
line number. To disable a previously executed on error goto statement,
execute on error goto with no line number or on error goto 0. To specify a
new error-handling routine at line n, execute on error goto n.

BASIC-Plus Users Guide Branching

Here is an example of a program with an error-handling routine:
100 A$ = "current” ‘
110 on error goto 500 ! prompt for valid filename
120 open A$ for input as file #3
130 rem File is open, so turn off error handling.
140 on error goto

500 rem Error handler checks for missing input file.
510 if err = 5% then goto 540 ! 5=file not found
520 on error goto ! turn off error handler

530 resume ! resume at open, line 120

5S40 print "FILE ";AS$;"™ AT LINE “;erl ™ NOT FOUND."
550 input "ENTER INPUT FILENAME..."; A$

560 resume ! resume at open with new filename

6.6 Resume
The resume statement clears the current error and allows program execution
to continue after an error has been handled. It should &/ways be used to exit
from an error-handling routine entered via on error goto. The following is the
syntax for the resume statement.

resume

Resume 0 (which is the same as resume without a line number) causes the
program to continue at the line that caused the error. If there are multiple
statements on the line, resume resumes at the dim, def, fnend, for, or next
statement immediately preceding the statement that caused the error.

Resume n resumes at line n.

6~5

BASIC-Plus Users Guide ' . Branching

6.7 Goto
The goto statement is an unconditional branching statement. In other words,
the goto statement always transfers control to the specified program line.
The following is syntax for the goto statement.

Line # must be a valid line number that exists in the program. For example,
the program line:

125 goto 335
transfers program exection to line 335.
Goto can be broken into two words, go to, if you wish.

6-6

NOTES

9-0377-R

71
7.2
73
7.4
75
7.6

Looping Constructs

Chapter 7

For Next .7-1
whileNext..... terescssssssssesasssetesessesssssasssessssassesEesesssentsaTetsasanan 7-2
o) L) 1) (- O .7-4
Foruntil 7-5
Until Next .7-6
NESTEO LOOPS .. eeeeeerrseersneeraseasssesssasrssssessnserastesssanesasessssassasansesensassanssesanse 7-7

Looping Constructs

Looping constructs allow you to execute blocks of statements a specified
number of times or until some condition is met.

7.1 For Next
The for next construct controls how many times the program executes the
block of code between the two statements. The following is the syntax for
the for next construct.

for next

Cine v JoCior>-+{varianie o (O)-»[tart }+ (2> 505 |

C (*[line # }—D{ statement
G -«

<
.
e[ine # |-Crext >—#{ vartable |

variable, the control variable for the loop, is used to determine the number of
times the block of code bounded by the for and next statements is repeated.
Note that the variable in the for clause must be the same as variable in the
next statement.

Start, stop, and increment are numeric expressions. Start is the initial value
of the control variable, stop is its final value, and increment is the quantity
added to the value of the variable at the completion of each iteration of the
loop. Increment can be either a positive or negative numeric value but
cannot be 0; 1 is the default value.

The for next construct executes the statement or statements bounded by the
for and next statements until the value of the control variable exceeds the
limit specified in the for statement. Once the value of that variable exceeds
the limit, program execution resumes at the statement following the next
statement.

If the initial value of the control variable exceeds stop before the first
iteration of the loop, the system ignores the statements bounded by the for
and next statements and continues execution at the statement following the

BASIC-Plus Users Guloe Logping

next statement. (This situation exists if increment is positive and start is
greater than stop or iIf increment is negative and start is less than stop.) For
statements such as:

10 for iters = 4 to 1

40 for loops = 1 to 4 step -1
cause the system to skip to the statement following the associated next
statement.

The for statement specifies the number of iterations of a loop. The number
of iterations can be set prior to executing a program or can depend upon the
run-time value of a variable. For next constructs such as:

70 for iterations = 1 to 4

90 next iterations

execute the enclosed block of code a specific number of times. For next
constructs such as:

45 for loops¥ = 1X to numberofrecords¥

80 next loopsX

execute the bounded code the number of times that corresponds to the run
time value of an integer variable (In this case, numberofrecords%).

Looping with integer indices is much faster than looping with floating-point
indices.

7.2 while Next
The while next construct executes the enclosed block of code while the
specified condition is true. The following is the syntax for the construct.

while next

expression f—t{ line # M statement
: <

7-2

BASIC-Plus User's Guide Logoing

The while next construct tests whether or not the expression is true before
each iteration of the enclosed code. If the expression in the while statement
Is false before the first iteration of the loop, the system skips to the line
following the next statement. For example, in the loop:

100 while 1 > 2
110 numberofproblemsX = numberofproblemsX + 1%
120 next '
the system never executes line 110 because 1 is never greater than 2.

The next statement of a while next construct is only a delimiter for the loop;
the next clause cannot include a variable name, and does not increment any
variable in the expression in the while statement. Therefore, if you don't
modify the value of the expression in the while statement within the bounds
of the construct, the system cannot exit the loop.

For example,
150 while ordercountX¥ < max%
160 Input ‘Please enter the next order.‘, ordernumber%
170 next

Once the system enters this loop, it never exits, because line 160 doesn't
change the values of ordercount% or max%, the variables that determine the
truth of the expression in the while statement. The only way to interrupt the
loop Is to use the &-period interrupt.

The following is a correct example of a while next construct that inputs 10
values Into the array a

100 i =

110 _mile i>o

120 input “next value®, a(i)
130 i=i-1

140 next 1

150 print “done”

BASIC-Plus User’s Gulde Logping

7.3 For wnile
The for while construct executes a loop while a condition remains true.
Looping ceases when the condition in the while clause becomes false.. The
following is the syntax for the for while construct.

for while

e i} Cior-+ e | +(0)->{ar]
<
L - ~fpmea]
94—

line # !»Lstatement line #

<4

The for while construct tests whether or not the expression is true before
each iteration of the enclosed code. If the initial value of the expression is
false, the system skips the enclosed code and executes the statement following
the next statement.

The following example of a for while construct concatenates the elements of
the string arrays A$ and B$ as long as the elements of A$ are not null.

150 for 1 = 1 while A$(1) > ™"
160 A$(1) = as$(i) + B%(1)

200 next 1

7-4

BASIC-Plus Users Guice Loagoing

7.4 For Until
The for until construct executes a loop until a condition becomes true.
Looping ceases when the condition in the until clause becomes true. The
following is the syntax for the for until construct.

for until
Cfor> O
-
@D
Gtep)
-
line # |-#{ statement line #

<4

The for until construct tests whether or not the expression is true before each
iteration of the enclosed code. If the initial value of the expression is true,
the system skips the enclosed code and executes the statement following the
next statement.

The foliowing is an example of a for until construct.
150 for 1 = 10 until 1 >= 50 or A(1) >= 100
160 A(1) = A(1) + A(1-1)

200 next 1

7-5

BASIC-Plus User's Guide - Logping

75 Until Next
The until next construct executes the bounded code until the condition in the
until clause is true. The following is the syntax for the construct. -

wntil next

expression line # ®{statement |~

<

(e 7 -+

The until next construct tests whether or not the expression is true before
each iteration of the enclosed code. If the initial value of the expression is
true, the system skips the enclosed code and executes the statement following
the next statement.

As with the while next construct, the next statement is only a delimiter of
the loop; the next statement cannot contaln a variable name, and it does not
affect any variable in the until clause expression.

If you don't modify the value of one or more of the varlables in the until
statement expression within the bounds of the construct, the system cannot
exit the loop. -

The following until next construct will continue requesting values until 0.0 is
input. Line 190 guarantees that at least one pass through the loop will be
made.

190 v =-1.0
200 until v = 0.0
210 input “next value?®, v

300 next

7-6

BASIC-Plus User's Guide Logping

7.6 Nested Loops
Any of the looping constructs can appear within the code bounded by another
looping construct. But the two statements of the nested construct must occur
between the beginning and ending statements of the outer construct, as below:

begin auter canstruct

begin Imner canstruct

end Inner construct

et auter constnuet

The following is an example of nesting.
10 for cycle = 1 t0 4
20 print ‘Cycle', cycle

25 print

30 for subcycle = 1 to 10

40 print ‘Subcycle’; subcycle,
S0 next subcycle

55 print

60 next cycle

70 end

The following is an incorrect example of nesting.
10 for cyclel =1 to 3

20 print ‘cyclei‘’; cyclel
30 for cycle2 = 1 to &
40 print ‘cycle2°; cycle 2

50 next cyclel
60 next cycle 2
70 end

The example above is incorrect because the inner construct is not contained
within the outer construct. To make it correct, lines 50 and 60 should be
reversed.

19-0378-A

8.1
8.2
83
8.4
85
8.6

Chapter 8
Statement Modifiers

The If Statement Modifierccceereecnnnearenaes

The For Statement Modifier
The while Statement Modifier

The Until Statement Modifler

The Unless Statement Modifier

......

Multiple Modifiers

Statement Modifiers

Statement modifiers modify statements. You can use the statement modifiers
on many of the statements discussed in Chapters 6 and 7.

when a statement modifier is used in a multiple-statement line, the statement
modifier qualifies only the statement it follows. For example:

235 print "hello”™ : print "goodbye" if greeting$ = ‘g': print &
“Choose an activity” :

The If modifler affects only print “goodbye™; none of the other statements is
modified.

8.1 The If Statement Modifier
The if statement modifier qualifies the execution of the preceding statement.
In other words, the modified statement is executed if a condition is met (true).
The following is the syntax for the if statement modifier.

If statement modifier

statement 0 expression

Statement is any valid BASIC statement; expression is any logical or relational
expression. If the result of the expression is true, the statement is executed.
Otherwise, execution is resumed at the next program line.

The if statement modifier is functionally equivalent to the if then construct.
For example,

25 total% = totalk + 1 if total% < 100
and "
25 |if total% < 100 then total% = total% + 1

do the same thing; the value of total% is incremented if its value is less than
100. '

BASIC-Plus Users Guice Statement Modifiers

8.2 The For Statement Modifier
The for statement modifier executes the preceding statement the number of
times specified in the for clause. The following is the syntax for the for
statement modifier.

ror statement moaifier

—*Iline # Hstatement @ °
4

expression

(

increment

The for statement modifier generates a loop that executes statement until
variable reaches or surpasses the defined limit.

Functionally the for statement modifier is equivalent to a for next construct
which affects one statement. The for statement modifier can be used with
only one statement, unlike the for next construct. For example,

10 boxesk = boxesk + 10 for cratesk = 1 to lastcrate’
It Is equivalent to

10 for cratesk = 1 to lastcrate%

20 boxes% = boxesX + 10

30 next crates¥

In the following example, program execution is transferred to a profit
calculation routine if the status of an item in inventory equals chosen.

50 for monthX = 1 to 12
60 if status$(monthX) = “chaosen™ then gosub 350
70 next month%
You can use a for statement modifier and do the same thing in one line.
60 gosub 350 if status$(month%) = ‘chosen’ for month% = 1 to 12

BASIC-Plus Users Gulce Statement Modiflers

8.3 The while Statement Modifler
The while statement modifier executes the preceding statement until the
condition specified in the while statement is false. The following is the
syntax for the while statement modifier.

while statemernt moadifier
@i

The while statement modifier can control only one statement, which must
modify the control expression, otherwise the loop will never terminate. The
following is an example of a while statement modifier.

100 if profits$ = “"UP" then bonus = bonus * 1.1 &
vhile bonus < amount
8.4 The Until Statement Modifier
The until statement modifier executes the preceding statement until the value
of the until expression is true. In other words, it executes the preceding

statement as long as the until expression is false. The following is the syntax
for the until statement modifier.

wntil statement modifier

s [z} @D —{ogren]

The until statement modifier can control only one statement. Once the
condition in the expression is true, execution passes to the next statement in
the program. For example, the statement:

20 loops = loops + 1 until loops >= limit

fncrements the variable loops by one until the value of loops is greater than
or equal to the value of the variable limit

The until statement modifier creates an endless 100p unless the statement
affects the value of the until expression. For example,

30 loops = loops + 1 until revenues > anticipated

endlessly Increments loops, unless revenues Is Initially greater than
anticipated.

8-3

BASIC-Plus User's Guide Staternent Modiflers

8.5 The Unless Statement Modifier
The unless statement modifier executes the preceding statement unless the
expression in the unless statement Is true. The following is the syntax for the
unless statement modifler.

wnless statement modifier

o] @ » oot >

This statement moodifier is especlally useful when a decision to perform a task
depends upon two conditions, as in the following example.

100 If balance <> onhand then &
print "OUT OF BALANCE' unless flag$ = ‘errorok’
8.6 Multiple Modiflers

You can append more than one statement modifier to a single statement. For
example, the following are legal BASIC statements.

10 length = length + 1 for iters = 1 to limit unless flag$ = 'stop’
20 share = share + .01 while share <= MAX unless flag$ = ‘notelig’
30 print ‘true’ if { < 3 for 1 =1 to 10

NOTES

029-0379-6

Chapter 9

Matrices
9.1 Dim .91
9.2 Mat 9-3
9.3 MatRead 9-4
94 Mat Input 9-5
95 MatPrint 9-6
9.6 Matrix Calculations .97
9.6.1 AAAItION and SUDLIACLION ..c.eeeeereriiiirecrreninintierinsmesasiarresssssesssssssnsnnnes 9-8
9.6.2 MULIPHOAUON ..iverirn e e s as e ees 9-9

Matrices

A matrix is an ordered collection of variables of the same type. Matrices are
also called arrays. Valid variable names are used as matrix names. The last
character of the name determines the type of all the data in the array.

Matrices can have one or two dimensions. A one-dimensional matrix is a
single list of variables. The individual variables (or elements) within a matrix
are numbered, starting with 0. To refer to an individual element within a
one-dimensional matrix, you specify the name of the matrix, followed by the
number of the element enclosed in parentheses. For example,

print projectedcost(3)

prints the contents of element number 3 in the matrix named projectedcost.
The number of the element enclosed in parentheses, for example is called
the matrix subscript Since a one-dimensional matrix is a single list of
variables, only one matrix subscript is needed to identify an element.

In a two-dimensional matrix, two subscripts are needed to specify an
individual element. For example, the following elements are part of a matrix

named cleanup.
cleanupX(0,0) cleanup%(0,1) cleanup%(0,2)
cleanupX(1,0) cleanup%(1,1) cleanupX(1,2)
cleanupX(2,0) cleanup%(2,1) cleanup%(2,2)
Cleanup{0,2) specifies the element in the first row and third column.

This chapter presents the statements that you use to define, fill, and access
matrix elements, and explains the matrix arithmetic operations.

9.1 Dim
whenever you create a matrix, you must tell BASIC the maximum number of
elements and dimensions you want. The dim statement defines, or dimensions,
the matrix; with it you can name one or more matrices and define the data
type and maximum size for each matrix. The dim statement reserves a
certain amount of space for the matrix. You don't necessarily have to use all
the space you reserve, but you can't use more than was specified. The default
dimension for all matrices is 10.

BASIC-Plus User’s Gulde Meatrices

The following is the syntax for the dim statement.
aim

variable name }—bj

~
Cb()——D{ expressionl } >®—9
O

Variable can be an integer, floating-point, or string variable name. Each
matrix can store only one type of value. The variable name determines the
type of value the matrix accommodates. Expressionl and expression2 should
have non-negative integer values.

A single dim statement can define more than one matrix, and these matrices
can be of different types.

The number of rows and columns in a matrix are its dimensions. The values
of expressionl and expression2 are the upper limits of a matrix's dimensions.

Expressionl is the highest row number and expression2 is the highest column
number.

Remember that the list of dimensions for all matrices begins with 0, so the
number of elements in a matrix is always the largest subscript value plus 1.
For example, the dim statement:

50 dim Junk¥ (12, 12)

creates a matrix that has 13 rows and 13 columns. However, unless you
specifically access the zero'th row and column, they are ignored.
£Exanples:

20 dim shoes(2)

66 dim shoes(2), shoes%(2,2), shoes$(15,14)

Several of the matrix operations allow you to redimension a matrix after
defining its size in a dim statement. However, you cannot make a matrix
larger than its original size or change between one-dimensional and
two-dimensional matrices.

Note: The maximum size for a non-virtual arnay Is 32K byles. The maximum
mmber of angy elements (Inclixding the zero'th element) Is 2730 for real
arrays, 16383 for Integer arrays.

BASIC-Pius Lsers Guloe Matrices

9.2 Mat
The mat statement is the matrix initialization statement. The following is the
syntax for the mat statement.

mat
(mat)—+] variante |- -)

<

variable - >
@ { }—O[expressionl} P®f
S Ofoeresion]
(o

The first variable must be the name of an already dimensioned matrix;
expressionl and expression? are its dimensions. You can use this variable to
redimension the matrix, but remember that you cannot make the matrix larger
than its original size. Zer sets all elements of the matrix to zero (the default
value for elements in a newly created matrix); con results in a matrix of all
ones; idn sets the matrix elements to one on the diagonal where row number
equals column number, and all other elements in the array to zero.

Examples.
35 mat junkX¥ = ion (20, 20)
99 mat dentist = zer (12,1)
22 mat pagoda = con

You can also use the mat statement to assign the value of one matrix to
another matrix. For example,

35 mat comp = Jade
assigns the value of comp to jade, redimensioning jade if necessary.

9-3

BASIC-Plus Users Guioe Matrices

9.3 Mat Read ;
The mat read statement loads values from one or more data statements into
one or more matrices (see Section 5.2, Read and Data). The following is the
syntax for the mat read statement.

mat read

S | .

, expression2

variable is the matrix name; expression1l and expression2 are the matrix
dimensions. If you don't specify dimensions, the current dimensions of the
matrix are assumed; if you do include them, the statement redimensions the
matrix to conform. However, the system cannot Increase the number of
elements in the matrix or change between one-dimensional and two-
dimensional matrices. If no dimensions follow the name of a matrix, Lisa
BASIC fills the entire matrix with values from the data statement beginning
with row 1 and proceeding to the next row as each row is fllled.

In a program that loads the values of a two-by-three matrix from within the
program, the dim, mat read, and data statements could be:

20 dim stock (2,3)
30 mat read stock

100 data 25.8, 18.75, 17.25, 56.7, 98.6, 125.9

The dim statement creates a six~value matrix and the mat read statement
instructs the program to read these values from the data statement. The
program fills the matrix row by row (i.e., for each row, the row stays fixed,
the column varies). The following table shows stock after the mat read
statement assigns values to each element.

9-4

BASIC-Pius User’s Guide Matrices

Column_# (row, column)

1 2 3
Row# 1 25.8 18.75 17.25
2 56.7 98.6 125.9

If the data statement doesn't contain enough values to fill the matrix, the
system displays the error message:

?7?7? Out of data in line X
where X is the line number of the mat read statement.

9.4 Mat Input

The mat input statement loads values into one or more matrices from the
keyboard or from a file. The following is the syntax for the mat input
statement.

mat input

g—» variable

i)

expressionl

. O -

variable is the matrix name; expressionl and expression2 are the matrix
dimensions. If you don't specify dimensions, the current matrix dimensions are
assumed; if you do include them, the statement redimensions the matrix to
conform. However, the system cannot increase the number of elements in the
matrix, or change between one-dimensional and two-dimensional matrices.
when you input matrix values from the keyboard, the mat input statement
displays a question mark when the program is ready for the matrix values.
The values you enter must be of the same type as the matrix

There are two system variables, num and num2, that are set during execution
of the mat Input statement to describe the size of the entered array. Num

BASIC-Plus Users Guice Matrices

contains the number of rows for a two-dimensional matrix, or the number of
elements for a one-dimensional matrix. Num2 contains the number of columns
in a two-dimensional matrix.

Unlike the input statement, the mat input statement displays the prompt once
and accepts the values only until the user types <RETURN>. Therefore, be
careful not to press the <RETURN> key before entering the last matrix value.

The mat input statement requires a comma between values. For example, if
you enter the following seven values after the question mark prompt, the mat
input statement Interprets them as one value.

? 10 20 30 40 50 60 70

To enter the values as separate elements in a matrix, you must enter a
comma as a delimiter between values.

? 10, 20, 30, 40, S0, 60, 70
Exanple:

10 dim a(10)

20 mat input a(10)

9.5 Mat Print

The mat print statement prints all or a portion of the named matrix.
However, the zero'th row and column of a matrix are never printed by the
‘mat print statement. The following is the syntax.

mat print

(mat)—+(prin)—#{ variable]
G N .

variable is the variable name associated with a matrix; expressionl and
expression2 are the matrix dimensions. If you don't specify dimensions, the
current dimensions of the matrix are assumed. If you include dimensions, the

‘statement prints only the portion of the matrix that you specify; it does not
redimension the matrix.

9-6

BASIC-Plus User's Guice ' Matrices

The comma and the semicolon determine the print format of a matrix. The
punctuation is the same as for the print statement. Refer to Section 5.6,
Print, for more information.

Example:

dim a(10)

for x =1 to 10
a(x) = x

next x

mat print a;

print

mat print a

end

2E3z8BENE

12345678910
1

O NV WN

[
Q

9.6 Matrix Calculations
‘You can add, subtract, and rnultiply matrices. There are also ﬂve built-in
matrix functions: tm, inv 'det, linsys, and cond; refer to Section 10.S, Matrix
Functions, for more ‘information. ,

9-7

BASIC-Plus User’s Guide Matrices

The following is the general syntax for matrix arithmetic operations: -
general matrix aritiynetic ”

(mat> (2)-» variadle

V

The matrix on the left of the equal sign is redlmensioned to conform to the
dimensions of the resulting matrix. Only one matrix arithmetic operation can
be performed per statement. For example,

30 mat result = effect - cost
is legal, while .
30 mat result = effect - cost + deterioration

is illegal.

9.6.1 Addition and Subtraction
You can add or subtract matrices of the same dimensions (having the same
number of rows and columns). However, the target matrix only needs to be
large enough to accommodate the results. If the target matrix is larger than
necessary, the system redimensions it to conform to the dimensions of the
input matrices.

For example,
10 dim totals (31), storel (7), storez (7)

500 mat totals = storel + store2?

Storel and store2 have seven elements each. When the system adds the two
together and stores the result in totals, it also redimensions totals to seven
elements.

when adding or subtracting matrices, the system adds the values In
corresponding positions and stores the result in the same position in the target
matrix.

BASIC-Plus User’s Guide Matrices

9.6.2 Multiplication

There are two types of matrix multiplication: scalar muitiplication and
multiplication of conforning matrices.

when you multiply a matrix by a scalar value, the system multiplies the value
of each matrix element by that value. For example, the following line
multiplies each element in scaled.total% by 10 and stores the result in the
matrix final.total%

100 mat final.total% = (10) * scaled.total%

Note that the keyword mat is necessary to identify this statement as a matrix
calculation. The parentheses around the scalar value are also required.

Matrices x and y are conforming matrices if the number of columns in X is
equal to the number of rows in y. For instance, the following dim statements
define pairs of conforming matrices.

120 dim jan.graph (10, 30), feb.graph (30, 12)
10 dim ratios (4, 12), inverses (12, 10)

when you multiply conforming matrices, the matrix that receives the
calculated values must have dimensions that can accommodate the number of
rows of the first matrix and the number of columns of the second. The target
matrix is redimensioned if necessary, but it cannot be dimensioned to a larger

size. For example, if you muitiplied ratios by inverses (above), the resulting
matrix would be four by ten.

9-9

NOTES

29-0380-A

Chapter 10
Subroutines and Functions

10.1 Gosub and Retum . 10-1
10.2 Nesting SUDTOULINEScccieeecienciiinnencenenreetasseananecennenssaaress .10-2
10.3 AMhMEtIC FUNCHUONSiciceiemaiaieeersteenssirrassenasssssersesestenessmnmnsrasssssnas 10-2
B L T S« OO 10-2
B L TN o | PP 10-2
10.3.3 Pl ciiirciiiiircrcinrenririernstnnestarasrennteannne s sraaesasennssarssensesansassanannes 10-2
B L0 [TP AP 10-2
1035 C05 ieniiiiciiitniienetoiiietaseetesstersensenscnsssssmnrsanssassnassssssassnssasssnsans 10-2
1036 TAN cieciieiiieiiiecinriecetecenstatnateestessassnsssnsssessassassrasssansessessasssassan 10-3
10.3.7 EXP ciciiimiiimirieiincrrerrerertneteesensanssnnsassnstanssassnssansassesnssassanssnnase 10-3
10.3.8 . AN ciiiiiiiiisiiiiiiresiitiersesinimenssetretisstnsssesrasrass s e ststnssnssansrassnn 10-3
1039 LOQ ceciiniriiniiienitneicinssrersinestsnsssssssenssaessssensessassssessasssnsssnssssnnss 10-3
10.3.10 LOGID iiiviriniiiinirinninmenssesrsssinssisissenestssisenssssssronssssrasssssesnsssnsnns 10-3
LI B R (14 0" o O O N 10-3
10.3.12 RNAANARANGOMIZE ..ccciuienieriniieiieernerterreesenrsenenarensasascnssansaasans 10-4
10.3.13 SONM ciniiiriiriiiirisieeisinstsasiissssssssssstassteasstsesssssserssssassrossrsassansss 10-4
LTS T 1107 P U 10-4
LTI B0 (11071 ¢ & SN 10-5
10.3.16 COMPOUNT ...uiiuecinreieraniisiissnissssiiastieaisssssisasisasssasiastasssssssassennsss 10-5
10.3.17 ANNUILY iireeiiireiirieeccttierennestennsseneessssenessransssars srassennssnsanasses 10-5
10.3.18 TIME cereeeicicecreeccenetreereesenesesnestenseensennssrenssnesernnrnstnssanssersssansrs 10-5
10.3.19 COPOS O POS .eeerrnereerernssrarassessanssessnssacsansssssesssnssnaisasssssesssnssassass 10-6
10.3.20 TAD tiviieercrniiiesieasiosmioncsisciestnsssestensamrassassassssssssinsrasssessansassnns 10-6
10.3.21 SWAPE cceviciniireniiineieinstesitnseinsatsnstrastassstnsssanssonsisstrasesersnssrenses 10-6

108,11 CVLFUNGHONS wovoroovoeerseeerereesesserseseseeseeserseeseeseereesesees
108111 CVESS.omorroreserreserseeseerersesseeseessersssseessersens — 10-9

............ 1D-8

10412 SUMS ...ttt rerncre s esnae e e ee e e e nrsaa s e enesne s s e s e enes 10-9
10.4.13 Dif$ reeasersasaieistesesertaenetttntataanseeat it eb et eans e e e satar e srantin 10-9
DL O o £ O 10-9
B R 1 PO 10-10
DL L o == 10-10
10.4.17
10.4.18
10.4.19
10.4.20
10.4.21
10.4.22
10.4.23
10.4.24

10.5.1
10.5.2
10.5.3
10.5.4
10.5.5

10.7 Change ceaesesaeseerersssasasesaeme s s re R r s s sr b seenreseraes 10-1a

Subroutines and Functions

Subroutines and functions are blocks of code that perform specific tasks.
Subroutines and functions serve different purposes and are used differently.
This chapter explains the differences between the two and presents the
related statements.

A subroutine is a separate block of code within a program that performs
certain actions and then returns control to the main program. To invoke a
subroutine, you use the gosub statement; to return to the main program, you
use the retumn statement.

A function, however, is a block of code that returns.a value. A function
name can appear In a program anywhere a constant or variable of the same
type as the function result can appear. BASIC provides arithmetic, matrix,
and string functions and also allows you to define your own. The functions
provided by BASIC are not part of your programs. Functions you create are a
part of the programs you use them in. This chapter defines each of the
functions provided and explains how to create your own.

10.1 Gosub and Returmn :
The gosub statement requests execution of a subroutine. A subroutine is a
block of code within the program which performs a specific task. The retum
statement is placed at the last line in the subroutine to return program
execution to the program line after the one which contains the gosub
statement. The following is the syntax for the gosub statement.

V]
T e e
Cgo)—»Cun)

Line number is the entry point to a subroutine within the program. Gosub can
be broken into two words, go sub, if you wish.

The following is the syntax for the returmn statement.
retum

when the system executes the retumn statement of a subroutine, control passes
to the statement immediately after the gosub statement.

10-1

BASIC-Plus User’s Guice Suroutines & Furctions

10.2 Nesting Subroutines
A subroutine can call another subroutine which in turn can call a third
subroutine, and so on. The retumn statement of each subroutine returns control
to the statement following the gosub statement that initiated execution of
that subroutine. Therefore, a subroutine can call itself. The rmaximum level

of nesting depends upon the size of the program and the amount of avallable
memory.

A subroutine can have more than one entry point; in fact, you can use any
line number within a subroutine for the line number in the gosub statement.

10.3 Arithmetic Functions

The functions sqr, pl, sin, cos, tan, exp, atn, 1og, log10, compound, and annuity
return approximate values only.

10.3.1 Abs

The abs function returns the absolute value of the argument. The format of
the abs function is as follows.

abs (a)
The argument a is a numeric value.

10.3.2 sqr

The sqgr function retumns the square root of the argument. The format of the
sgr function is as follows.

sqr (a)
The argument a Is a numeric value.

10.3.3 Pi
The pi function returns the constant which approximates the value of
{3.14159...) The value of 1 is the ratio of a circle's circumference to its
diameter. The format of the pl function is as follows.

pi
The pt function requires no arguments.

10.3.4 sin
The sin function returmns the sine of the argument. The format of the sin
function is as follows.

sin (@)
The argument a is a numeric value, in radians.

10.3.5 Cos ‘
The cos function returns the cosine of the argument. The format of the cos
function is as follows.

cos (a)
The argument a Is a numeric value, in radians.

10-2

BASIC-Plus User'’s Guioe Subroutines & Funetions

10.3.6 Tan
The tan function returns the tangent of the argument. The format of the tan
function is as follows.

tan (a)
The argument a is a numeric value, in radians.

1037 Exp
The exp function retums the exponential value of the argument, €8 where
e=2.71828... The format of the exp function is as follows.
exp (a)
The argument a is a numeric value.

10.3.8 Atn
The atn function returns the arctangent of the argument. The format of the
atn function is as follows.

atn (a)
The argument a is a numeric value, in radians.

1039 Log
The log function returns the natural logarithm (loge x) of the argument. The

format of the log function is as follows.
log (a)
where e109(8)=3 or exp(1og(a))=a

10.3.10 Log10
The logl0 function returns the base 10 logarithm (logigx) of the argument.

The format of the logl0 function is as follows.
logio (a)

where 1010910(3)_a or10°10g10(a)-a
10.3.11 Int and Fix
Both the Int and fix functions return the integer part of x as a floating-point
value. The formats of the two functions are: '
int(a)
fix(a)
If the floating-point value is already an integer value, either function retumns
that value. Otherwise, for positive values of a, the functions both return the

largest integer that Is not greater than a. For example int (255) and fix (2.5)
both return the value 2.

10-3

BASIC-Plus Users Guice Subroutines & Functions

Int and fix handle negative values of a differently. Int rounds towards
negative infinity, while fix rounds towards zero. For example, int (-32.355)
ylelds -33, while fix (-32.55) yields -32.

10.3.12 Rnd and Randomize
The md function generates the next number in a sequence of values greater
than O but less than 1. Each time you execute a program md generates the
same sequence of values, until you execute the randomize statement.

The randomize (or random) statement changes the starting point in the
sequence to a random one. The following example generates twenty integer
values between one and ten. A different set is generated each time you run

it:
30 dim r(20)
40 randomize
50 for i=1 to 20
60 r(i) = int(1+10*rnd)
70 next 1
The following is the syntax for the randomize statement.
ranaomize
T:
10.3.13 Sgn

The sgn function determines whether the argument is positive, negative, or
zero. The format is :

son (a)
The sgn function returns the following values.
gifa=0
1'If a has a positive sign
-1 if a has a negative sign
10.3.14 Intpart

The intpart function retums the integer part of x as a floating—pomt value.
The format is:

intpart (x)

Unlike int or fix (described in Section 10.13.11), the current rounding mode is
observed; see Chapter 13, Advanced Floating-Point Manipulation, for more
information on rounding modes.

10-4

BASIC-Plus User’s Guide Subroutines & Functiorns

10.3.15 Intpart%
The intpart% function returns the integer part of X, as an integer value. The
format is:

intpart% (x)
Like intpart, the current rounding mode is observed.

10.3.16
The format of the compound function is:

compound (i.n)

where compound (Ln) = (1+1)". Tnis function is used to determine the effect of
compound interest. For example, given present value of principal pv, and
periodic Interest rate 1, to compute future value of principal fv after n
periods:

100 fv = pv * compound (1,n)

10.3.17 Annuity
The format of the annuity function is:

annuity (i,n)
where annuity (i,n) = (1 -(1+1)™ /i

This function is used to determine the present value of n equal payments at
interest rate i. For example, given amount of 1oan p, and periodic interest
rate i, to compute the amount of n equal periodic payments, pp:

100 pp=prannuity(i, n)

10.3.18 Time
The time function returns a number, in seconds. Time(1) tells you how long
BASIC has been running. Time(2) tells you how long the program has been
running In the workspace. Time(-1) gives you the time BASIC began, in
seconds since midnight. Time(-2) gives you the time the current program
began, in seconds since midnight. The format of the function is:

time(n)
where n is an integer argument. Therefore, if n=1 then time(1) tells how long
BASIC has been running. If BASIC has been running 30 minutes and 45
seconds, then time(1) returns 1845.

If n=0 or n>2 or n<-2, then time(n) returns the current time, in seconds since
midnight.

10-5

BASIC-Plus Users Gulde Subroutines & Functions

10.3.19 Ccpos or pos :
The ccpos or pos function returns the current position of the print head for a

specified input/output channel. The format of the function is:
ccpos (1%)
pos (1%)

where 1% is the channel number.

10.3.20 Tab :
The tab function, when used with a print statement, moves the printing
position to a specified column. The format is:

tab (%)
where i% is an integer expression that results in the column number where you
want the print position.

10.3.21 Swap%
The swap% function swaps the upper and lower bytes of an Integer. The
format is:

swap% (1%)
where 1% is an integer expression.

10.4 String Functions ,
The string functions make handling alphanumeric strings easier. Character
strings are sequences of characters bounded by quotation marks. Numeric
strings are sequences of digits bounded by gquotation marks. A numeric string
can also include a plus (+) or a minus (-) sign, or a decimal point ().
Functions intended to apply to numeric strings produce undefined results if
applied to other strings.

10.4.1 Len
The len function retums the number of characters, including trailing blanks, in
~ the specified string. The format for len is:

len (s$)
The argument s$ is a string variable.

1042 Left
The left function returns a specified number of characters of a string, starting
at the first character in the string. The format for left is:

left (s$, n)
s$ is a string variable; n is the number of ‘characters to be extracted.

If n is equal to O, the result is a null string. If you specify a value larger
than the number of characters in the string, left retums the contents of the
entire string.

10-6

BASIC-Plus Users Guide Swiroutines & Functlons

10.4.3 Right
The right function returns a subset of the string, beginning with the character
in the specified position of the string and ending with the last character in
the string. The format for right is:
right (s$, n)

s$ iis a string variable; a is the position of the character where the extraction
begins.

If n is less than 1, the result is all of the string. If you specify a value larger
than the number of characters in the string, right returmns a null string.

10.4.4 Mid
The mid function extracts a substring of the string, beginning with the
character in the specified position of the string contlnuing for a specified
number of characters. The format for mid is:

mid (s$, m, n)

s$ is a string variable, m is the position of the flrstbcharacter, and n is the
number of characters extracted. (This means that the position of the
character where the extraction ends is m+n+1) For example,

mid (abcdefgh’,35)
results in the string ‘cdefg’.

1045 Instr
The instr function searches for a specified substring within a string The
format for instr is:

instr (n, s¢, a$)

s$ is a string variable; a$ is the substring; n is the position ln the string where
the search is started. If a$ is found, its character position is retumed. If as
is not in s$, O is returned. If a$ is null 1is retumed.

1046 +
The + sign concatenates two strings. The format is:

s$ + a$
The arguments s$ and a$ can be string variables or string constants.

10.4.7 Space$
The space$ funotlon creates a string of spaces of the specified size, The
format of space$ is:

spaces (x%)
The argument X% is an integer value:

10-7

BASIC-Plus Users Guide Sworoutines & Functions

10.4.8 Chr$
The chr$ function returns a single character that is the ASCII equivalent of
the specified numeric value. The format is:
chrs (n)
The argument n is a number from 0 to 127.

10.49 Strings

The string$ function creates a string of the specified length, all elements of
. which are the specified value.- The format is:

string$ (xy)
x is size of the string; y is the ASCII value.

For example, to create a string of ten A's (ASCII value 65)
print string$(10,65)

10.4.10 Xlate . ‘
Xlate is used to transiate the characters in a string. You give two strings:
one to be translated, and one to be used as a “table” for the translation. The
ASCII value of each character in the first string is used to pick out the new
character from the second.

"For example, the first character in the second string is picked if the ASCII
value of the character from the first string is 0. If the ASCII value of the
first string character is 1, it is translated into the second character in the
second string. If the first string character's value is 3, the fourth character
from the second string is used. The format for the xiate function is:

‘ xate (s$.19)
s$ Is the string to be translated; t$ is the "table".

10.4.11 Cvt Functions
The cvt functions map values between numeric and string data. Note that
“mapping” means copying the bit pattem, mo¢ converting the value. Five cvt
functions are provided by BASIC:

s$ = cvtX$ (i%) Maps the value of 1% into s$ (a two-character
S ' string). The result is a two character string.

X = cvitsx (s%) Maps the first two characters of s$ into i% The
S © result is an integer.

s$ = cvtfs (b) Maps a floating-point expressxon b into s$ (an
eight-character string). The result is an eigm-
character string. A

= CVt$f (s$) Maps s$ into a ﬂoating—point value x
X = cvt$$ (s$, n) Edits the string s$ (see below).

10-8

BASIC-Plus User'’s Guide Subroutines & Funections

104111 Cvtss
The cvi$$ function provides string editing. The editing is performed under the
control of the specified argument. The format is:

cvt$s (8, n)

s$ is a character string; n is a control argument, which must be an integer
value. n is a “bit mask”. The control values have the following meanings:

1 Trim the parity bit from each character in the string.
2 Remove all spaces and tabs from the string.
4

Remove all carriage returns, line feeds, form feeds, rubouts, and
null characters from the string.

8 Remove the leading spaces and tabs from the string.
16 Reduce groups of multiple spaces or tabs to a single space.
32 Convert lowercase letters to uppercase letters.
64 Convert[to(and]to). ‘
128 Remove the trailing tabs and spaces from the string.

256 Prevent alteration of character within single () or double ()
quotation marks.

To obtain one control function, set n to that value. To obtain more than one
control function, set n to the sum of the individual functions.

10.4.12 sum$
The sum$ function adds two numeric strings together and returns the result as
a string. The format of the function is:

sum$ (s$, a$)
The arguments s$ and a$ are both numeric strings.

10.4.13 Dif$
The dif$ function subtracts a numeric string from another and retums the
result as a string. The format of the functlon is:

dif$ (s, t$) 7
The arguments s$ and t$ are both numeric strings; t$ is subtracted from s$.

10.4.14 Prod$ N
The prod$ function multiplies two numeric strings, rounding the product to the
specified number of spaces. The format of the func;ion is:

prods$ (s$, t$, p)

s$ and t$ are both numeric strings; p is the number of decimal places the
result is rounded to.

10-9

BASIC-Plus Lsers Guloe Sworautines & Functions

104.15 Quos

- The quo$ function dlvides two numeric strings, rounding the product to the
specified number of spaces. The format of the function is: :

quos (s$, t$, p)

s$ and t$ are both numeric strings; s$ Is divided by t$. p is the number of
decimal places the result is rounded to.

10.4.16 Places$

The place$ function rounds tne value of the specified numerlc string to the
specified number of spaces. The format of the function is:

places$ (s$, p)

s$ Is a numeric string; p is the number of decimal places the result is rounded
to.

10.4.17 Comp%

The comp% function compares two strings, returning a truth value based on
the result. The format of the function is:

comp (s$, t$)

The arguments s$ and t$ are numeric strings. The truth values, and the
conditions under which they are returned, are:

-1ifs$ <18
0ifs$ =18
1ifss>ts
10.4.18 val
The val functlon retums the numeric value of a numerlc string. The format
of the function Is:
val (%)
The argument s$ Is a numerlc string.

10.4.19 Num$
The num$ function returns the string of characters representing the numeric
value x exactly as it would be output by the statement print X, including
spaces, using E-format where necessary. The following is the format:
nums$ (X)
10.4.20 Numi$
The numi$ function returns the string of characters representing the numeric

value x in non-E-format, without spaces, to the maximum decimal precision.

The result may be used as a string function operand. The following is the
format:

numis (x)

10-10

BASIC-Plus User’s Guloe Suvroutines & Functions

10.4.21 Ascii
The ascii function returns the ASCII value of the first character of the
specified string. The format is:

ascil (s$)
The argument s$ is a string variable or constant.

10.4.22 Rad$
The rad$ function converts an integer in Radix-50 format to a string. This
function is provided to maintain compatibility with DEC BASIC-PLUS. The
format is as follows:

rao$ (i%)

10.4.23 Date$ ’
The date$ function returns the date n days from the current date. The format
is as follows:

date$(n)
The argument n is an integer.
- For example, if today is March 16, 1983, then:
date$(0) returns today's date, ‘March 16, 1983’
date$(-1) returns yesterday's date, ‘March 15, 1983’
date$(7) returns the date a week from today, ‘March 23, 1983

10.4.24 Time$
The time$ function returns the current time. Tne format is as follows:

time$(n)
The argument n is an integer.

If the time is 10:46, time$(0)~ '10:46:00". Time$(n) when n<>0 glves the time
n minutes after midnight.

105 Matrix Functions
BASIC provides five matrix-related functions defined in this section. A call
to tm, Inv, or linsys must begin with the keyword ma