United States Patent [
Chase, Jr. et al.

Patent Number:
Date of Patent:

4,951,192
Aug. 21, 1990

(1]
[45]

[54] DEVICE FOR MANAGING SOFTWARE
CONFIGURATIONS IN PARALLEL IN A

NETWORK
[75] Inventors: Robert P, Chase, Jr., Newton;
Howard Spilke, Shrewsbury, both of
Mass.
[73] Assignee: Apollo Computer, Inc., Chelmsford,
Mass.
[21] Appl. No.: 58,330
[22] Filed: Jun. 4, 1987
[51] Int, CLS e GO6F 9/44
[52] US.ClL e 364/200; 364/281.3;
364/281.8
[58] Field of Search 364/200 MS Files, 900 MS
Files,
364/300, 200, 900
[56] References Cited

U.S. PATENT DOCUMENTS

4,558,413 12/1985 Schmidt
4,590,557 5/1986 Lillien..
4,809,170 2/1989 Leblang et al.oeevrucueeene 364/200

OTHER PUBLICATIONS

“The DOMAIN Software Engineering Environment
for Large Scale Software Development Efforts”, by

David B. Leblang, Robert P. Chase, Jr. and Gordon D.
McLean, Jr., Proceedings of the IEEE Conference on
Workstations, San Jose, California, Nov. 1985, pp. 1-19.

Primary Examiner—Allen MacDonald

Assistant Examiner—Debra A. Chun

Attorney, Agent, or Firm—Hamilton, Brook, Smith,
Reynolds, P.C.

[57] ABSTRACT

A software configuration management system that uses
a network computing environment to build large soft-
ware systems in parallel. A configuration manager as-
signs the compilation of buildable components of a
software system to different processors in the network.
Buildable components are assigned in order, according
to dependencies between components, independent
components taking precedence. Processors are chosen
according to the amount of idle time during a sampled
time segment. A display provides processor compilation
status messages for each compilation discrete from sta-
tus messages of other compilations. A continuously
updated overall status report of the system being built is
simultaneously displayed with, but segregated from, the
compilation status messages.

31 Claims, 5 Drawing Sheets

Derived Object A~20
Pools

|

workstation
B

Builder

26
[
Source
Libraries

workstation
B

Aug. 21, 1990 Sheet 1 of 5 4,951,192

U.S. Patent

| by

uo1}d140sa(UOISIBA PaJIsaQ

(4onndwoo)
J0JD|SUDI]
jo0d 55
1001q0 PaALIaQ oe
0¢
[Bg] uA
[2] ux
28 [61] ouexey [g~esDajai]
ve
31gn] ,pngap- suoydo-

UOISI3A sysixa~uaym- [pjeq]

panJasai-

ol 7 poasy | uoypinbiyuod

£apigiT 82in0g

8l
2 9A J3{1dwod
bngep-
[8g] uA
2] ux

(6] ouaxa

@2inos-spuadap
=048s40d juawald

92.n0s~spuadap

= 0°J9X3| Juawa|d
=wp1b0id ~Auws j]apows
y
21~

|3PON WaysAS

Yk -
-+ yx

\

9l

14

Aug. 21, 1990 Sheet 2 of 5 4,951,192

U.S. Patent

18%01q 904n0S8.
Elp

A
1anJ1as 9|14

o Z

g

7 by

=,

[-]]

sa1DIqIT)

32.n0g

o2/

Z Jonias ayndwo?

i3p|ing

N
Ay
A~

UO!}DJSHIOM

g

UOID}SHAOM

UO14D}SH 40M

CGRE

X 49A49s ajndwoo

Vel

Japjing

g\%//&

8¢

g
UOI{D{SYIOM

il PO

INRE

M
19AJ3S 3]}

Jspjing

6¢

s s

o
el

021

+ 1991q0 paaraq

$]00d

U.S. Patent

Aug. 21, 1990

My _ program

Sheet 3 of 5 4,951,192

\

x-h y-h lexer-C parser-C My_program
Jf']. 3b
(For ea. build)
! -
(Top)
Processor
list ;
(Bottom)
\
Decrease
% of idle to
60,30 or 0%

Allocate
to a build

Exit-- No build

slot avail.

Aug. 21, 1990 Sheet 4 of 5 4,951,192

U.S. Patent

¢ by

9¢

d008g uo 2-ajoudead
Y3AVATHLYVYQ uo J-8ziwndo

S319NvVE uo 9-powlqo
JOHdVZ uo jop-s8|qo}
ayig~oig uo 2-usbpod
SN3z uo 9-19%3)|

'ss34604d u1 840 Sp|INq Q

pajInj 2 *A)jnyssaoons pea|dwod g
buipuady, ‘pasinbes spiing 02

be
SN3z uo o-43xa| buip|ing
S3719Nv8g uo o-powlgo, buip|ing
sBUIUIDM OU ‘10149 OU :00
SN3Z uo 9-sosdpus,, PaId|dwod
ayig~oig uo 0-usbpod, buip|ing
‘PajIny uolbDjIdwod 440D | 120
xpjuhs poq ‘gg| au| :99
HL1380VW o, 0-sesiod paya|dwoo

S.10449 OU 10004
S319NV8 uo Aupwwosb pajsidwod

)11 Y

7

4

Aug. 21, 1990 Sheet 5 of 5 4,951,192

U.S. Patent

pIing ysiui 4

1104
ON

+1IDM

¢

1 4%

101s asDa|3Yy

\

Buiynoaxe
sp|ing ou pup

D,
painpayos piing HOM

yso)

pPiing {10iS

J9|npayas ||p)

Huipnoaxs
spiing

3 9)qD
-{IDAD J0]S

¢
PIINg O}
piing

apoN

"9|QDI!DAD 18A43S p|ING
pup ApD8J SI 3pou D jI
PItNG D }4Djs 0} jdwidj}y

pIIng ystutg

¢

¢
jouwriouqy pajejdwod

auoQ

¢
buignoaxa
auou
puD WasAs jo
pIng
SD|

|ood o} sp|inq
‘sbssaw yndinQ

aja|dwod
O} pling :}ID
40} }1DM HoM

dooj|

Auy

dnjiogg ~] UIbW

4,951,192

1

DEVICE FOR MANAGING SOFTWARE
CONFIGURATIONS IN PARALLEL IN A
NETWORK

BACKGROUND OF THE INVENTION

Developments in computer hardware have steadily
increased the share of computing resources available to
an individual user. In the beginning, computers were
single user resources. Batch systems were then devel-
oped to take better advantage of the central processing
unit (CPU). Next came time-sharing systems, which
allowed large numbers of users to interact with a single
CPU. More recently, systems in which each worksta-
tion has its own CPU have evolved from time-sharing
systems to let users continue to share files without shar-
ing a single CPU. Current workstations have overcome
the problems of distributed file systems with transparent
network file systems that allow users to access both
local and remote files in a uniform way.

Further development brought high performance
workstations, with bit map graphic displays, and high
speed local area networks. Initially, most workstations
were used for computer aided design applications (i.e.

20

CAD/CAM, MCAD, etc.). However, as the price of 25

workstations fell and the amount of software increased,
a new market was created called Computer Aided Soft-
ware Engineering (CASE). Various CASE tools have
various software control and management capabilities.
In one kind of CASE tool, components of a software
system are individually designed and the software sys-
tem is constructed from its components. The larger the
constructed system is, however, the longer is the
amount of time required to build the system. Thus, the
required build time greatly impairs productivity since
the user must wait for the CASE tool, and for some
systems he must wait overnight.

SUMMARY OF THE INVENTION

In the present invention, a collection of loosely con-
nected CPU’s form a network computing environment.
The network makes it easy to develop software systems
by utilizing the computing resources throughout the
network in parallel. Individual components within a
system are distributed to processors best suited for the
task and processed there in parallel, thereby accom-
plishing more in a given amount of time.

In one embodiment of the invention, a software con-
figuration manager determines which components of a
system are to be compiled, and assigns each such build-
able component to a different processor to compile such
that independent components are compiled in parallel
by different processors. In accordance with one aspect
of the present invention, the configuration manager
determines which components of a system need yet to
be built by reviewing a common pool of previously
compiled or derived components.

In accordance with another aspect of the invention,
the configuration manager defines a user specified pro-
cessor as a reference node for all processors compiling
components of one system. Likewise the configuration
manager defines a user-specified file system within the
network as a reference file system for the processors in
the network. Further, a compiler stored in a filed sys-
tem of one processor may be invoked by other proces-
sors of the network to compile a component.

In one feature of the present invention, the configura-
tion manager includes a build scheduler. For each sys-

30

35

40

45

50

55

60

65

2
tem being built, the build scheduler orders the buildable
components according to their dependencies on each
other, starting with the most independent components.
The build scheduler then chooses and assigns available
processors to compile the buildable components in the
order of more independent to less independent.

In another feature of the present invention, a user
specifies an ordered list, from most powerful to least
powerful, of a subset of the processors. The build sched-
uler chooses from the list the most powerful processor
with sufficient idle time to compile the next buildable
component. The build scheduler computes the idle time
of each listed processor as the ratio of the difference
between current idle time and a base idle time to the
difference between current real time and a base real
time. Further, the build scheduler computes an initial
base real time and an initial base idle time before any
buildable component of the system is compiled. There-
after, the build scheduler obtains a current real time and
a current idle time for each listed processor prior to
choosing the processor to compile a component. Prefer-
ably, the build scheduler obtains current real times and
current idle times for each processor one at a time in
decreasing processor list order.

In another feature of the present invention, a display
of compilation status messages for each compilation is
generated only upon termination of the compilation and
is shown as a separate set of messages from that of other
compilations. In a preferred embodiment, each compila-
tion has a separate output file associated with it. Fur-
ther, the display provides, separate from the compila-
tion status messages, an indication of the current overall
status of the system being built. The current overall
status is continuously updated by the completion and
commencement of compilations by the various proces-
sors. The indications of the current overall status in-
clude the number of compilations which are pending,
successful, unsuccessful, and in progress, and the total
number of compilations required to build the system.

In another feature of the present invention, the com-
piler used for a compilation may be in a file system of a
processor which is not performing the compilation.
Hence, processors of the network access remote files
systems to perform the compilations necessary to build
a system.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advan-
tages of the invention will be apparent from the follow-
ing more particular description of a preferred embodi-
ment of the invention, as illustrated in the accompany-
ing drawings. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the prin-
ciples of the invention.

FIG. 1 is a schematic of a CASE tool employed by
the present invention

FIG. 2 is a schematic of a network of computers
embodying the present invention.

FIGS. 3a and 3b are schematics of the tree and linear
structure used to order buildable components of a sys-
tem compiled by the present invention.

FIG. 4 is a flow chart of the allocation of a processor
of the network in the present invention.

FIG. 5 is an illustration of a screen of compilation
status messages and overall system status displayed by
the present invention.

4,951,192

3

FIG. 6 is a flow chart of the major program module
used to implement the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In a typical CASE tool of the source code control
and configuration management type, an automated con-
figuration manager builds a software system from its
components. In order to correctly build a system, the
configuration manager must understand the dependen-
cies between components of the system and the transla-
tion rules needed to translate a source component into
an object module or executable image. An incremental
configuration manager has knowledge of previously
built components (compiled or derived objects) and
only rebuilds those components for which there is no
suitable derived object.

Some existing tools are the UNIX ® tool MAKE
with source code provided by SCCS or RSC;
MMS/CMS on VAX/VMS ®); and ALS, the ADA ®
Language System. These tools fail to satisfy some im-
portant requirements when used for programming or
building in the large. They do not allow many users to
build different versions of the same system at the same
time, sharing common derived objects whenever possi-
ble. They also do not allow a single user to build a
system using many CPU’s concurrently.

The present invention employs a CASE tool which
overcomes these problems of prior art devices building
in the large. The CASE tool employed in the present
invention is described and disclosed in

“The DOMAIN Software Engineering Environment
for Large Scale Software Development Efforts”, by D.
B. Leblang, R. P. Chase, Jr., and G. D. McLean, Jr.,
Proceedings of the IEEE Conference on Workstations,
San Jose, Calif., November 1985; and

U.S. patent application Ser. No. 725,700 filed on Apr.
22, 1985, issued as U.S. Pat. No. 4,809,170 one Feb. 28,
1989, and assigned to the assignee of the present applica-
tion. Both the article and application are herein incor-
porated by reference. An overview of that CASE tool
follows and is illustrated in FIG. 1.

A user selects a system model 12 and configuration
thread 10 to describe the system he desires to build.
System model 12 serves as a blueprint for the construc-
tion of the new system. The system model 12 describes
the components 14 of the system, their dependencies on
each other, and describes any files used by the compo-
nents 14. The system model 12 contains enough infor-
mation for CASE tool 16, as utilized in the present
invention, to decide which components 14 can be built
in parallel (i.e. at the same time on different processors).

The configuration thread 10 specifies which version
of each of the components 14 should be used to build
the system. The configuration thread 10 also specifies
the options that should be used during translation of
each component 14. The combination of the system
model 12 and configuration thread 10 provides a desired
version description 18 of the particular system being
built.

After a user selects a system model 12 and configura-
tion thread 10 a Configuration Manager (CM) module
of the CASE tool 16 uses the desired version descrip-
tion 18 to search a derived object pool 20 which con-
tains components previously compiled for other system
builds by translator or compiler 22. Each derived object
(compiled component) in the derived object pool 20 is
tagged with the version description, translator version

20

25

30

35

40

45

55

60

4

and options that were used to produce it. The CM
searches derived object pool 20 for objects matching
any component of the desired version description 18.
When a match is found, the associated derived objects
are re-used in the building of the current system. When
a match is not found for the component of the current
system, then the component is generated (built) accord-
ing to the desired version description 18.

The generation of components of a system is accom-
plished through the translator or compiler 22 in a step
called a process. For each process, a version mapping
table 24 corresponding to the desired version descrip-
tion 18 is created for the translator 22 because the trans-
lator does not communicate with, nor have access to the
desired version description 18. The translator 22 may
also access other files or a source library 26, while refer-
ring to the version mapping table 24, to build or compile
the described version of a component. The resulting
derived objects, also known as binaries or compiled
components, are tagged as previously mentioned and
placed in derived object pool 20.

The derived object pool 20 may simultaneously con-
tain several derived objects for the same buildable com-
ponent. The version description distinguishes the de-
rived objects from each other. The CM deletes objects
from the pool 20 as they fall into disuse according to a
user-specified limit on the number of derived objects
per component. Pool objects are deleted on a least-
recently-used basis as new objects are created. If a de-
leted derived object is subsequently needed, the CM
re-derives it from its constituent element versions re-
corded by a history manager (HM) module.

HM provides source code contro! within the CASE
tool 16. Using HM commands, users create source ele-
ments with unique names. Users create a new version of
a source element by having the HM reserve the element
during the desired modification and then subsequently
replace the new version of the element. When a new
version of a source element is made, the HM records
only the changes made to the preceding version. Thus,
HM creates a chain of changes made between sequential
versions of the source element. This enables the HM to
store more versions of source elements in an allotted
space. The HM also supports multiple lines of develop-
ment or variant branches within an element. Further,
any version of a source element is directly readable
from the HM source library, as will be discussed.

As shown in FIG. 2, CASE tool 16 is utilized in the
present invention within a network of loosely con-
nected CPU’s or workstations 28 and 29. Various work-
stations can utilize the CASE tool to concurrently build
different systems or different versions of the same sys-
tem. The derived object pool 20 of the CASE tool
Configuration Manager 42, CM, is shared by all CPU’s
within the network. Thus, processors working on dif-
ferent components of the system use the same derived
object pool and share common derived objects. Fur-
ther, the CM 42 manages the derived object pool 20 in
a way which allows multiple concurrent writers. Thus,
many processors may write to pool 20 at the same time
without creating inconsistent views of the pool.

The source libraries 26, which are controlled by the
HM, are also shared among processors 28 and 29 of the
network. Network-wide, transparent access to arbitrary
versions of source elements in the source libraries 26 is
provided by the underlying file system. This, in turn,
enables software applications, such as compilers and
test formatters, to read any version of a source element

4,951,192

5

directly from the source library. By default, the latest
version of an element is read. However, the per-process
version map 24 of FIG. 1, generated by the CASE tool
16, can indicate an alternate version of the desired
source element. The per-process nature of the version
maps 24 enables simultaneous building of different ver-
sions of a system from the single set of sources. This
ability to simultaneously access different versions of
source elements is critical to the ability to build different
configurations or system components in parallel.

For purposes of illustration in FIG. 2, the CASE tool
16 is invoked on one workstation 28. After the user of
workstation 28 defines a system model and configura-
tion thread, a desired version description is formed as
previously mentioned. The CM 42 determines which
system components need to be currently built (com-
piled) by looking in the derived object pool 20 for bina-
ries which match the desired version description of
each component. Once the CM 42 has determined
which components of the system need to be built, the
CM forms a translation script for each buildable compo-
nent from translation rules in the system model. The
translation script aids in the building of the component
and provides directions for placing translator/compiler
results in the derived object pool.

The CM 42 then utilizes a parallel build scheduler 30
within CASE tool 16 which commits builds to remote
processors from workstation 28, as illustrated by the
arrows extending from tool 16. Build scheduler 30
chooses a component from the buildable set, chooses a
processor from an available set of processors, and as-
signs the building of the chosen component to the
chosen processor. To accomplish this, the build sched-
uler 30 initially reads the dependency information of the
components from a tree structure of the system model
which defines a partial-ordering for building compo-
nents in the model. The build scheduler 30 then creates
from the system model tree an optimized ordering of
only the buildable components and records the ordering
in a linear scheduling structure. The linear scheduling
structure is a condensed and flattened version of the
system model tree structure, and employs a ready list of
the buildable components with back pointers from each
sub-component to its parent components. The tree
structure of the system model is illustrated in FIG. 3a
and an illugtration of a corresponding linear scheduling
structure of buildable components is provided in FIG.
3b.

In FIG. 3a, components x.h and y.h are shown as
subcomponents to the lexer.c component. Subcompo-
nents x.h and y.h are shown as the bottom leaves of one
branch of the whole system model tree and are indepen-
dent from each other. Thus, x.h and y.h may be built in
parallel without affecting the overall outcome of the
system my._program. However, lexer.c depends on
both x.h and y.h and thus cannot be built in parallel with
either subcomponent. Similarly, 2.h is a sub-component
of parser.c..

Assume for example that all of the illustrated compo-
nents, except the 2.h component, are to be built. The
build scheduler 30 would then create the linear schedul-
ing structure illustrated in FIG. 3b.

The build scheduler 30 also initially creates an or-
dered list of user specified processors (i.e., worksta-
tions), the names and ordering of which the user pro-
vides the CASE tool 16 in a file within the network. In
a preferred embodiment, the list is as long as the user
desires, but only twenty processors are concurrently

20

25

40

45

55

60

6

used to build any one system. Preferably the list is or-
dered in a preference of more powerful to least based on
the number of million instructions per second the pro-
cessor executes. For the compilation of each compo-
nent, the build scheduler 30 chooses the most powerful
listed processor available with a sufficient amount of
idle time, as will be defined. This maximizes perfor-
mance of the network and parallel building scheme, and
minimizes the amount of interference with other users
of the network on their workstations.

As illustrated by the flow chart of FIG. 4, for each
buildable component, the build scheduler 30 starts at the
beginning of the list of processors and determines if the
first named processor is available and 90% or more idle.
If it is, then the build scheduler assigns that processor
the task of compiling the next component on the or-
dered list of buildable components. The processor is
then marked as unavailable, and the build scheduler
continues in the same manner beginning at the top of the
list of processors for the next buildable component. By
starting at the top of the list each time, the build sched-
uler 30 will grab the most powerful processor as it be-
comes available. If the processor is not 90% or more
idle, then the build scheduler 30 determines if the next
available processor on the list is 90% or more idle, and
so on. If the build scheduler exhausts the list of proces-
sors, then the build scheduler starts at the top of the list
and determines if any processor is available and 60% or
more idle, then 30% and so on after each exhaustion of
the list.

Idle time, I, is defined by: s

Idle time, I, is defined by:

N - N,
'=%®—x,
where N is current null process time of a processor and
N, is a base null process time of the processor, R is the
current real time, and R, is the real time at which the
base null process time was obtained. During the initial-
ization stage of the build scheduler, the build scheduler
samples each of the listed processors for a null process-
ing time which is the amount of time that no process
was using the CPU during a certain time segment. The
real times of the sampling of each listed processor is also
obtained and recorded with the respective null process
times. When the build scheduler subsequently deter-
mines which processor is best suited for compiling a
component, a current null process time and a current
real time is obtained for each processor as the scheduler
proceeds down the processor list. The last obtained null
process time and real time becomes the base null pro-
cess time and base real time during a subsequent evalua-
tion for idle time of a processor. This ensures that the
next sampling of idle time is over a most recent time
period of activity instead of over a time period of activ-
ity which was already sampled and has a known idle
time. In the preferred embodiment, the samplings of idle
time are minimally about 10 seconds apart from each
other.

After assigning the “best” processor to compile one
component, the next buildable component is similarly
assigned to the next determined “best” available proces-
sor and so forth such that components are compiled in
parallel on different processors of the network. In order
for each duly chosen processor to compile the respec-
tively assigned component, the CM creates a new pro-

4,951,192

7

cess or task on each chosen processor. This includes
providing the translation script and a version map of
each component to the respective processor. The ver-
sion map specifies to the processor the desired versions
of source elements for that component. Each processor
is capable of accessing a file system or compiler of an-
other processor in order to compile the desired version
of the assigned component.

Further, a common root is established for all proces-
sors. Otherwise, various inconsistencies would arise
where the buildable components depend on local files
and the various processors have different local file sys-
tems. The present invention solves this problem by
extending the UNIX ® chroot(2) facility to allow the
root of a local file system to resolve to the root of a
remote file system. The common root is specified by the
user in a separate command at the time of the initializa-
tion of the build scheduler 30. Any one file system or
workstation in the network may be designated as a
reference for the compiling of all the various compo-
nents on the several different processors.

An additional complication results from the fact that
CASE tool 16 records the version of all sources and
tools that are used in a translation of a component. Since
the sources and tools used are from the reference work-
station, CASE tool 16 sets its own root to the reference
workstation prior to determining the versions of the
source elements.

Once a chosen remote processor begins executing the
respective translation script in the specially prepared
process environment, the CM similarly starts additional
processes on other processors. OQutput compilation sta-
tus messages from each processor are directed to differ-
ent respective temporary files. The CM services these
messages and records the completion status of the pro-
cessor after determining if the build failed or succeeded.
Once a process has terminated, the CM copies the out-
put messages from the respective temporary file,
changes the indication of the availability of the proces-
sor, and displays the output messages locally to the
workstation 28 which invoked the CASE tool. The
completion status is also displayed. Further, a continu-
ously updated graphics display of the current status of
the overall parallel build of the system is provided sepa-
rate from the display of output messages.

An illustration of these displays is provided in FIG. 5.
On the left hand section 34 of the screen 32, the user
reads output compilation status messages of each pro-
cessor, one set of messages from one processor at a time.
On the right hand section 36 of the screen 32, the user
reads an overall status report of the parallel building of
the requested system. The overall status report includes,
the total number of builds (compilations) required to
build the system, the number of builds pending, the
number of builds successfully and unsuccessfully com-
pleted, and the number of builds in progress.

If the various output messages were directly dis-
played at workstation 28 as the processors compiled
components in parallel, the screen would display the
output messages in a tangled, mixed-up order. That is,
the messages of one processor would be intermixed
with that of the other processors. Further, the overall
status report is totally separated from the other mes-
sages for ease in reading by the user.

Further, the CM periodically polls each remote pro-
cessor to determine that it has not abnormally termi-
nated. In a case of abnormal termination of the remote
build process or compilation, the CM recovers with an

20

25

40

45

60

65

8

error message indicating that the build was lost and
frees the processor for another assignment. This ensures
a more efficient use of the processors in the network
instead of waiting indefinitely for the remote process to
send a completion message.

The following describes the computer subroutine 44
used to implement the above discussed concurrent
building of system components for one system. A block
diagram of the subroutine 44 is provided in FIG. 6.

Upon entry to the subroutine 44, the build scheduler
initializes the list of buildable components and the or-
dered list of user-specified processors. The buildable
components are ordered in a linear scheduling structure
according to dependency as previously described in
FIGS. 3a and 3b. Initial samples of a base null process
time and a base real time are obtained for the listed
processors as previously described. Also, upon entry to
the subroutine, a vser-specified reference file system is
established.

A main loop 38 comprises a startup loop 40, which
starts as many builds (compilations) as possible under
the constraints of:

(1) the implementation maximum number of concur-

rent builds;

(2) the number of available processors;

(3) the user-defined limit on the number of concurrent

builds; and

(4) the dependency of some builds on the successful

completion of other builds.

Before starting a new build, startup loop 40 checks
executing builds for completion. If the build was abnor-
mally terminated, then the rest of the builds not yet
completed are aborted and a fail message is displayed. If
the build terminated normally, then subroutine “finish
build” is invoked as will be described.

If no builds are completed, then the starting of an-
other new build is attempted. An examination is made
for any buildable component remaining from a previous
call to the “build scheduler,” a routine which schedules
the builds in order of dependency. If there is no out-
standing buildable component, then the build schedul-
ing routine is invoked to obtain the next buildable com-
ponent.

If there are no more buildable components that can be
obtained by the build scheduling routine and all builds
have been completed (i.e. the last build was scheduled
and no builds are executing), then finalization is accom-
plished by the subroutine “Done” as will be discussed.
If no other builds can be assigned right now due to
dependencies of the builds, then startup loop 40 is exited
to main loop 38 where main subroutine 44 waits for a
build to complete.

Once a buildable component has been obtained, the
subroutine described in FIG. 4 is invoked to allocate the
best processor or build slot available. If no slot is avail-
able, then an error check is made. If no builds are being
executed, then the finding of no build slot available is an
error which is handled by the “Fail” subroutine. Other-
wise, the finding of no build slot available right now is
legitimate and startup loop 40 is exited to main loop 38
to wait for a build to complete.

If a build slot is found, then a new build is started. If
the build was started without error and is presently
executing, then the startup loop is begun again to at-

tempt to start a new build. However, if the build that

was started without error has no translation script, then
it may be completed immediately. Thus, subroutine
“finish build” is invoked.

4,951,192

9

If a build could not be started due to an error, then
the build slot is released and the build scheduler is up-
dated. If this was the last build of the system, then sub-
routine “Fail” is invoked. Otherwise, startup loop 40 is
repeated to try to start another build.

An alternative in the case of a build not being able to
be started, is to exit the startup loop and see if a build
has finished. This would perhaps avoid another false
start if the problem with starting the build involved the
unavailability of resources due to builds which have
been completed but not yet “cleaned up” (i.e., final-
ized). However, in the previously described embodi-
ment of FIG. 2, such a problem should not arise.

The startup loop 40 is repeated continually as de-
scribed above until either a build with no translation
script is started (which means that the build can be
finished immediately), or the last build that can cur-
rently be executed is started. That build is the last possi-
ble build to execute due to either all processors being in
use or no other component of the system being “inde-
pendent” enough to currently be built. If the build has
no translation rule, then the build is completed via the
“finish build” subroutine. If the build has a translation
script, then the main subroutine 44 waits for a build to
complete in main loop 38. Once a build has completed,
error checking is provided for abnormal termination of
the build. If the build was abnormally terminated, then
the subroutine “Fail” is invoked. If the build was nor-
mally terminated, then subroutine “finish build” is in-
voked. “Finish build” finalizes output messages con-
cerning the success or failure of the build and updates
the build scheduler. If the compilation was successful,
then “finish build” places the completed build in the
common derived objects pool along with the version
description used in the build. If the compilation was
unsuccessful, then “finish build” withholds the build
from the pool.

If that build was the last build for the system and all
other builds have come to completion, then the “Done”
subroutine is invoked. Otherwise, the main loop 38 of
subroutine 44 is begun again and retraced along with
inner startup loop 40.

Subroutine “Done” first tests the status of the listed
last component to be built. If the status indicates that the
component must still be built, then the build command
invoking this main subroutine 44 failed. Significant
error statistics are outputted to a display and the build
scheduler is terminated. This ends subroutine 44.

Subroutine “Fail” similarly ends the main subroutine
44 by outputting any significant error statistics to a
display and terminating the build scheduler. However,
before ending the subroutine 44, “Fail” terminates all
builds which may be executing and clears their respec-
tive files of status messages.

While the invention has been particularly shown and
described with reference to a preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details may be made
therein without departing from the spirit and scope of
the invention as defined by the appended claims.

We claim:

1. Apparatus for managing computer software com-
prising:

a plurality of processors loosely connected in a net-

work; and

configuration management means, executable on at

least one of the processors, for building from a
configuration model a desired software system

20

25

30

40

45

60

65

10

having a multiplicity of components including in-
dependent components, the configuration manage-
ment means determining which components are to
be compiled and assigning each such to-be-com-
piled component to a processor to compile the
component, the configuration management means
assigning the independent components to different
processors such that components in the desired
software system which are independent of each
other are automatically compiled in parallel by
different processors to minimize total compilation
time of the desired software system;

the components of the desired software system being

of user designated versions.

2. Apparatus as claimed in claim 1 further comprising
a common pool of compiled components, the configura-
tion management means determining which compo-
nents of the system have corresponding compiled com-
ponents in the common pool such that components of
the system without corresponding compiled compo-
nents in the common pool are determined to be com-
piled by processors of the network.

3. Apparatus as claimed in claim 1 wherein:

each processor has a local file system; and

the configuration management means comprises

means for establishing the file system of a user
specified processor within the network as a refer-
ence file system to be resolved to by the other
processors for compiling respective assigned com-
ponents.

4. Apparatus as claimed in claim 1 wherein the con-
figuration management means builds from different
configuration models different software systems and
includes a build scheduler which for each system:

orders the to-be-compiled components according to

their dependencies on each other, independent
components taking precedence over dependent
components; and

chooses and assigns available processors to compile,

in order, the to-be-compileﬂd components.

5. Apparatus as claimed in claim 4 further comprising
a user specified list of a subset of the processors, the list
ordered from most powerful to least powerful proces-
sor, the build scheduler choosing from the list the most
powerful available processor with sufficient idle time
and assigning that processor to compile a component.

6. Apparatus as claimed in claim 5 wherein the build
scheduler computes the idle time of each listed proces-
sor as a ratio of the difference between current idle time
and a base idle time to the difference between current
real time and a base real time.

7. Apparatus as claimed in claim 6 wherein for each
listed processor the build scheduler computes an initial
base real time and an initial base idle time before any
to-be-compiled component of the system is compiled
and thereafter obtains a sample of a current real time
and current idle time of each listed processor when
choosing a processor to compile a component.

8. Apparatus as claimed in claim 6 wherein the build
scheduler obtains an initial base real time and an initial
base idle time for all the listed processors at one time
and obtains subsequent samples of current real time and
current idle time for the processors, one processor at a
time in decreasing list order.

9. Apparatus as claimed in claim 1 further compris-
ing:

a user specified list of a subset of the processors; and

4,951,192

11

a build scheduler which chooses from the list the
most powerful processor with sufficient idle time
and assigning that processor to compile a compo-
nent.

10. Apparatus as claimed in claim 1 further compris-
ing display means which separates compilation status
messages relative to each of the compilations carried
out by different processors and only displays status
messages from a particular compilation on termination
of the compilation.

11. Apparatus as claimed in claim 10 wherein the
display means includes a separate output file associated
with each compilation.

12. Apparatus as claimed in claim 10 wherein said
display means further displays an indication of a current
overall status of the system being built, said current
status indication being displayed separately from the
compilation status messages and continuously being
updated by the completion and commencement of com-
pilations by the processors.

13. Apparatus as claimed in claim 12 wherein the
indication of the current overall status includes indica-
tions of a number of pending compilations, a number of
unsuccessful compilations, a number of successfully
completed compilations, a number of compilations in
progress and a total number of compilations required to
build the system

14. Apparatus as claimed in claim 1 wherein a com-
piler stored in a file system of one processor is invoked
by other processors of the network.

15. Apparatus for managing computer software com-
prising:

a plurality of processors capable of processing compi-
lations of software components, one of said proces-
sors having a compiler within a certain local file
system, the one processor being defined as a refer-
ence processor for the other processors, such that
each of the other processors makes reference to the
certain local file system of the one processor to
compile a respective component, the processors
compiling respective components in parallel while
making reference to the certain local file system of
the reference processor.

16. Apparatus as claimed in claim 15 wherein said
processors compile in parallel different components of a
system such that total compilation time for the system is
minimized.

17. Apparatus for managing computer software com-
prising:

a plurality of processors, each processor having ac-

cess to files of the other processors;

configuration management means for automatically
compiling components of a software system in
parallel utilizing the processors, the compiling in
parallel minimizing total compilation time of the
components of the software system, said means
having:

means for evaluating idle status of the processors, the
evaluating means providing an idle status evalua-
tion;

a scheduler for selecting a processor for a compila-
tion based on the idle status evaluation; and

means for specifying to the selected processor a
processor from whose files a compiler is to be
used for the compilation.

18. Apparatus as claimed in claim 17 wherein said
means for evaluating idle status includes a computing
member which determines idle status from a ratio of the

10

20

25

30

40

45

55

60

65

12

difference between current idle time and a base idle time
to the difference between current real time and a base
real time.

19. Apparatus as claimed in claim 17 wherein the
scheduler of the configuration management means se-
lects a processor further based on power of the proces-
sors.”

20. Apparatus as claimed in claim 17 wherein the
scheduler of the configuration management means se-
lects a processor in such a manner that the most power-
ful processor recently made available is selected.

21. Apparatus as claimed in claim 17 further compris-
ing display means which separates compilation status
messages relative to each of the compilations carried
out by different processors and only displays status
messages from a particular compilation on termination
of the compilation.

22. A computer display comprising:

a first screen section displaying compilation status
messages from different processors compiling in
parallel different modules of a desired software
system for parallel building of the system, compila-
tion status messages of each compilation by each
processor being displayed independently of mes-
sages of other compilations; and

a second screen section displaying a summary of a
current overall status of the parallel building of the
system including status of compilations associated
with the processors, the first and second screen
sections being displayed simultaneously.

23. A computer display as claimed in claim 22
wherein the first screen section only displays compila-
tion status messages of a particular compilation upon
termination of that compilation. .

24. A computer display as claimed in claim 22
wherein the second screen section is continuously up-
dated.

25. Method of building a software system using com-
puter means comprising the steps of:

providing a plurality of processors loosely connected
in a network; and

executing configuration management means on one
of the processors, the configuration management
means building from a configuration model a soft-
ware system having a multiplicity of components
including independent components, the configura-
tion management means determining which com-
ponents of the software system are to be currently
compiled and assigning each to-be-compiled com-
ponent to a processor for compiling, the configura-
tion management means assigning independent
components to different processors such that com-
ponents of the software system are automatically
compiled in parallel by different processors to min-
imize total compilation time for the software sys-
tem, version of each component being user speci-
fied in the configuration model.

26. A method as claimed in claim 25 wherein the
configuration management means determining which
components are to be compiled includes:

matching compiled components from a common poot
of previously derived components with compo-
nents of the system, unmatched components of the
system being established as the components to be
currently compiled.

27. A method as claimed in claim 25 wherein the

configuration management means determining and as-
signing includes:

4,951,192

13

ordering the to-be-compiled components according
to their dependencies on each other, independent
components taking precedence; and

choosing and assigning available processors to com-

pile, in order, the to-be-compiled components.

28. A method as claimed in claim 27 wherein the step
of choosing and assigning an available processor in-
cludes:

ordering a list of a subset of the processors, the list

ordered from most powerful to least powerful pro-
cessor; and

choosing from the list the most powerful available

processor with sufficient idle time; and

assigning the chosen processor to compile the next

to-be-compiled component.

29. A method as claimed in claim 25 further compris-
ing the step of defining one processor as a reference
processor for the other processors.

30. In a digital processing system, a method of build-
ing a software system having a multiplicity of compo-
nents, the steps comprising:

providing a plurality of processors coupled to form a

network;

20

25

30

35

45

50

55

65

14
providing a compiler in local memory of one of the
processors, the other processors having access to
the compiler; and

executing configuration management means on one

of the processors, the configuration management
means assigning different components of the soft-
ware system to different processors of the network
to compile the components referring to the com-
piler of the one processor, the processors compil-
ing respectively assigned components in parallel to
minimize total compilation time of the software
system.

31. In a network of computer processors, a method of
displaying through one processor a multiplicity of com-
pilation status messages from different processors in the
network comprising the steps of:

using computer means, collecting the messages of

each compilation of each processor separately
from that of other compilations, the processors
compiling, in parallel, modules of a software sys-
tem to minimize total compilation time of the sys-
tem; and

using a display driver of the one processor, displaying

the messages of a compilation only on termination

of that compilation.
* * * * *

Crs
or.

£~

(¢)

~

[}
]
R R

-

S

(99

(o)

AJ 232 X
ok 4,951,162

United States Patent 9
Chase, Jr. et al.

| of &

(11}
[45]

4,951,192
Aug. 21, 1990

Patent Number:
Date of Patent:

[54] DEVICE FOR MANAGING SOFTWARE
CONFIGURATIONS IN PARALLEL IN A
NETWORK
[75] Inventors: Reobert P. Chase, Jr., Newton;
Howard Spilke, Shrewsbury, both of
Mass.

[73] Assignee: Apollo Computer, Inc., Chelmsford,
Mass.

[211 Appl. No.: 58,330

[22] Filed: Jun. 4, 1987

[51] Imt. CLS .. . GOG6F 9/44

[52] US. Cl onreeeeeiecerecinenne 364/200; 364/281.3;

364/281.8

[58] Field of Search 364/200 MS Files, 900 MS

Files,

364/300, 200, 900

[56] References Cited

U.S. PATENT DOCUMENTS

4,558,413 12/1985 Schmidt
4,590,557 5/1986 Lillie
4,809,170 2/1989 Leblang et al. ..ccovevevennenae

OTHER PUBLICATIONS

“The DOMAIN Software Engineering Environment
for Large Scale Software Development Efforts”, by

David B. Leblang, Robert P. Chase, Jr. and Gordon D.
McLean, Jr., Proceedings of the IEEE Conference on
Workstations, San Jose, California, Nov. 1985, pp. 1-19.

Primary Examiner—Allen MacDonald

Assistant Examiner—Debra A. Chun

Attorney, Agent, or Firm—Hamilton, Brook, Smith,
Reynolds, P.C.

[57] ABSTRACT

a network computing environment to build large soft-
ware systems in parallel. A configuration manager as-
signs the compilation of buildable components of a
software system to different processors in the network.
Buildable components are assigned in order, according
to dependencies between components, independent
components taking precedence. Processors are chosen
according to the amount of idle time during a sampled
time segment. A display provides processor compilation
status messages for each compilation discrete from sta-
tus messages of other compilations. A continuously
updated overall status report of the system being built is
simultaneously displayed with, but segregated from, the
compilation status messages.

31 Claims, 5 Drawing Sheets

Derived Object 420 I3 /%8
ools . == Source
= Builder Ltbruc:ries
=" compute server X @
e
file server
w » file server
Y|/ Y
N | o
ELs] Builder <3 s\ o0
N =
workstotion QO)CS‘ \éq resource broker
/28 l
S
N 1 Buider | | (B
5
workstation compute server Z
A 2 S N
A —
=) [l
workg?oﬁon workséa\‘ion

—S;\'\b. >

A software configuration management system that uses8

o4

{0
360

Aug. 21, 1990 Sheet 1 of 5 4,951,192

U.S. Patent

| by

u014d1I0Sa(] UOISIaA PaNsa(

\

L

[Bg] y4
(2] ux
[61] ouexs|

£a0aq1T) 904n0g

algnl
UOISJaA

(49)1dwo2)

JOJD|SUDA |

22

O_\

[¢-aspejau]

,pngap- suoydo-
SISIXa~Uaym-— _”Eon_

panIasal-

poaiy | uonbinbiyuo)

21~

8l
2 '9A 13)1dwiod
bnqep-

[Be] u4

(2] w

[Bl] ouaxay

Y2
804nos~spuadap
=2148s4Dd jusuig|d

VS -

‘yx

32.nos~spuadap
=9'JOX9| juswWa|d
=wpiboad ~Aw japows

i

jopo WalsAg

9l

\\

Ang. 21, 1990 Sheet 2 of 5 4,951,192

U.S. Patent

by

18)/01q 824N0Sa1
o

A
FETVELETIN

= 4

[we)}
&

Z JanJ8s 9ihdwod

4

UOI}D}SHIOM

[-]]

$21104qQ17]
32.n0g

o2/

sapjing

N
>
v
O

g

UOI1}DISHIOM

el Y

S

N\

v
UO1}D}SH JOM

GRE

X 49A498 ndw 09

s ju |

s9p|ing

3i \%
82

a
UOND}SHIOM

=

sapjing J N m

62
M

JEVYELE-TTT

s 2z

o
[l

021

$|00d
- 193[q0 paasQ

1

DEVICE FOR MANAGING SOFTWARE
CONFIGURATIONS IN PARALLEL IN A
NETWORK

BACKGROUND OF THE INVENTION

Developments in computer hardware have steadily
increased the share of computing resources available to

¢

4,951,192

an individual user. In the beginning, computers were 10

single user resources. Batch systems were then devel-
oped to take better advantage of the central processing
unit (CPU). Next came time-sharing systems, which
allowed large numbers of users to interact with a single
CPU. More recently, systems in which each worksta-
tion has its own CPU have evolved from time-sharing
systems to let users continue to share files without shar-
ing a single CPU. Current workstations have overcome
the problems of distributed file systems with transparent
network file systems that allow users to access both
local and remote files in a uniform way.

Further development brought high performance
workstations, with bit map graphic displays, and high
speed local area networks. Initially, most workstations
were used for computer aided design applications (i.e.
CAD/CAM, MCAD, etc.). However, as the price of
workstations fell and the amount of software increased,
a new market was created called Computer Aided Sofi-
ware Engineering (CASE). Various CASE tools have
various software control and management capabilities.
In one kind of CASE tool, components of a software
system are individually designed and the software sys-
tem is constructed from its components. The larger the
constructed system is, however, the longer is the
amount of time required to build the system. Thus, the
required build time greatly impairs productivity since
the user must wait for the CASE tool, and for some
systems he must wait overnight.

SUMMARY OF THE INVENTION

In the present invention, a collection of loosely con-
nected CPU’s form a network computing environment.
The network makes it easy to develop software systems
by utilizing the computing resources throughout the
network in parallel. Individual components within a
system are distributed to processors best suited for the
task and processed there in parallel, thereby accom-
plishing more in a given amount of time.

In one embodiment of the invention, a software con-
figuration manager determines which components of a
system are to be compiled, and assigns each such build-
able component to a different processor to compile such
that independent components are compiled in parallel
by different processors. In accordance with one aspect
of the present invention, the configuration manager
determines which components of a system need yet to
be built by reviewing a common pool of previously
compiled or derived components.

In accordance with another aspect of the invention,
the configuration manager defines a user specified pro-
cessor as a reference node for all processors compiling
components of one system. Likewise the configuration
manager defines a user-specified file system within the
network as a reference file system for the processors in
the network. Further, a compiler stored in a filed sys-
tem of one processor may be invoked by other proces-
sors of the network to compile a component.

In one feature of the present invention, the configura-
tion manager includes a build scheduler. For each sys-

20

25

30

35

45

55

65

2
tem being built, the build scheduler orders the buildable
components according to their dependencies on each
other, starting with the most independent components.
The build scheduler then chooses and assigns available
processors to compile the buildable components in the
order of more independent to less independent.

In another feature of the present invention, a user
specifies an ordered list, from most powerful to least
powerful, of a subset of the processors. The build sched-
uler chooses from the list the most powerful processor
with sufficient idle time to compile the next buildable
component. The build scheduler computes the idle time
of each listed processor as the ratio of the difference
between current idle time and a base idle time to the
difference between current real time and a base real
time. Further, the build scheduler computes an initial
base real time and an initial base idle time before any
buildable component of the system is compiled. There-
after, the build scheduler obtains a current real time and
a current idle time for each listed processor prior to
choosing the processor to compile a component. Prefer-
ably, the build scheduler obtains current real times and
current idle times for each processor one at a time in
decreasing processor list order.

In another feature of the present invention, a display
of compilation status messages for each compilation is
generated only upon termination of the compilation and
is shown as a separate set of messages from that of other
compilations. In a preferred embodiment, each compila-
tion has a separate output file associated with it. Fur-
ther, the display provides, separate from the compila-
tion status messages, an indication of the current overall
status of the system being built. The current overall
status is continuously updated by the completion and
commencement of compilations by the various proces-
sors. The indications of the current overall status in-
clude the number of compilations which are pending,
successful, unsuccessful, and in progress, and the total
number of compilations required to build the system.

In another feature of the present invention, the com-
piler used for a compilation may be in a file system of a
processor which is not performing the compilation.
Hence, processors of the network access remote files
systems to perform the compilations necessary to build
a system.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advan-
tages of the invention will be apparent from the follow-
ing more particular description of a preferred embodi-
ment of the invention, as illustrated in the accompany-
ing drawings. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the prin-
ciples of the invention.

FIG. 1 is a schematic of a CASE tool employed by
the present invention

FIG. 2 is a schematic of a network of computers
embodying the present invention.

FIGS. 3a and 36 are schematics of the tree and linear
structure used to order buildable components of a sys-
tem compiled by the present invention.

FIG. 4 is a flow chart of the allocation of a processor
of the network in the present invention.

FIG. § is an illustration of a screen of compilation
status messages and overall system status displayed by
the present invention.

9

If a build could not be started due to an error, then
the build slot is released and the build scheduler is up-
dated. If this was the last build of the system, then sub-
routine “Fail” is invoked. Otherwise, startup loop 40 is
repeated to try to start another build.

An alternative in the case of a build not being able to
be started, is to exit the startup loop and see if a build
has finished. This would perhaps avoid another false
start if the problem with starting the build involved the
unavailability of resources due to builds which have
been completed but not yet “cleaned up” (i.e., final-
ized). However, in the previously described embodi-
ment of FIG. 2, such a problem should not arise.

The startup loop 40 is repeated continually as de-
scribed above until either a build with no translation
script is started (which means that the build can be
finished immediately), or the last build that can cur-
rently be executed is started. That build is the last possi-
ble build to execute due to either all processors being in
use or no other component of the system being “inde-
pendent” enough to currently be built. If the build has
no translation rule, then the build is completed via the
“finish build” subroutine. If the build has a translation
script, then the main subroutine 44 waits for a build to
complete in main loop 38. Once a build has completed,
error checking is provided for abnormal termination of
the build. If the build was abnormally terminated, then
the subroutine “Fail” is invoked. If the build was nor-
mally terminated, then subroutine “finish build” is in-
voked. “Finish build” finalizes output messages con-
cerning the success or failure of the build and updates
the build scheduler. If the compilation was successful,
then “finish build” places the completed build in the
common derived objects pool along with the version
description used in the build. If the compilation was
unsuccessful, then “finish build” withholds the build
from the pool.

If that build was the last build for the system and all
other builds have come to completion, then the “Done”
subroutine is invoked. Otherwise, the main loop 38 of
subroutine 44 is begun again and retraced along with
inner startup loop 40.

Subroutine “Done” first tests the status of the listed
last component to be built. If the status indicates that the
component must still be built, then the build command
invoking this main subroutine 44 failed. Significant
error statistics are outputted to a display and the build
scheduler is terminated. This ends subroutine 44.

Subroutine “Fail” similarly ends the main subroutine
44 by outputting any significant error statistics to a
display and terminating the build scheduler. However,
before ending the subroutine 44, “Fail” terminates all
builds which may be executing and clears their respec-
tive files of status messages.

While the invention has been particularly shown and
described with reference to a preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details may be made
therein without departing from the spirit and scope of
the invention as defined by the appended claims.

We claim:

1. Apparatus for managing computer software com-
prising:

a plurality of processors loosely connected in a net-

work; and

configuration management means, executable on at

least one of the processors, for building from a
configuration model a desired software system

S

4,951,192

20

30

40

65

10

having a multiplicity of components including in-
dependent components, the configuration manage-
ment means determining which components are to
be compiled and assigning each such to-be-com-
piled component to a processor to compile the
component, the configuration management means
assigning the independent components to different
processors such that components in the desired
software system which are independent of each
other are automatically compiled in parallel by
different processors to minimize total compilation
time of the desired software system;

the components of the desired software system being

of user designated versions.

2. Apparatus as claimed in claim 1 further comprising
a common pool of compiled components, the configura-
tion management means determining which compo-
nents of the system have corresponding compiled com-
ponents in tlzé common pool such that components of
the system without corresponding compiled compo-
nents in the' common pool are determined to be com-
piled by processors of the network.

3. Apparatus as claimed in claim 1 wherein:

each processor has a local file system; and

the configuration management means comprises

means for establishing the file system of a user
specified processor within the network as a refer-
ence file system to be resolved to by the other
processors for compiling respective assigned com-
ponents.

4. Apparatus as claimed in claim 1 wherein the con-
figuration , management means builds from different
configuration models different software systems and
includes a build scheduler which for each system:

orders the to-be-compiled components according to

their dependencies on each other, independent
components taking precedence over dependent
components; and

chooses and assigns available processors to compile,

in order, the to-be-compiled components.

5. Apparatus as claimed in claim 4 further comprising
a user specified list of a subset of the processors, the list
ordered from most powerful to least powerful proces-
sor, the build scheduler choosing from the list the most
powerful available processor with sufficient idle time
and assigning that processor to compile a component.

6. Apparatus as claimed in claim 5 wherein the build
scheduler computes the idle time of each listed proces-
sor as a ratio of the difference between current idle time
and a base idle time to the difference between current
real time and a base real time.

7. Apparatus as claimed in claim 6 wherein for each
listed processor the build scheduler computes an initial
base real time and an initial base idle time before any
to-be-compiled component of the system is compiled
and thereafter obtains a sample of a current real time
and current idle time of each listed processor when
choosing a processor to compile a component.

8. Apparatus as claimed in claim 6 wherein the build
scheduler obtains an initial base real time and an initial
base idle time for all the listed processors at one time
and obtains subsequent samples of current real time and
current idle time for the processors, one processor at a
time in decreasing list order.

9. Apparatus as claimed in claim 1 further compris-
ing:

a user specified list of a subset of the processors; and

