Using Your
SysV Environment
011022-A00

apollo

Using Your SysV
Environment

Order No. 011022-A00

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc.,
Chelmsford, Massachusetts. Unpublished —- rights reserved under the
Copyright Laws of the United States. All Rights Reserved.

First Printing: July, 1988

This document was produced using the Interleaf Technical Publishing Software (TPS)
and the InterCAP lllustrator | Technical lilustrating System, a product of interCAP
Graphics Systems Corporation. Interleaf and TPS are trademarks of Interleaf, Inc.

Copyright 1979, 1980, 1983, 1986 Regents of the University of California and 1979,
AT&T Bell Laboratories, Incorporated.

UNIX is a registered trademark of AT&T in the USA and other countries.
Apollo and Domain are registered trademarks of Apolio Computer Inc.
ETHERNET is a registered trademark of Xerox Corporation.

Personal Computer AT and Personal Computer XT are registered trademarks of Inter-
national Business Machines Corporation.

3DGMR, Aegis, D3M. DGR, Domain/Access, Domain/Ada, Domain/Bridge, Do-
main/C, Domain/ComController, Domain/CommonLISP, Domain/CORE, Domain/De-
bug, Domain/DFL, Domain/Dialogue, Domain/DQC, Domain/IX, Domain/Laser-26,
Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCl, Domain/SNA, Domain X.25,
DPSS, DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel,
Network Computing System, Network License Server, Open Dialogue, Open Network
Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super Workstation,
Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trade-
marks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other
information contained in this publication without prior notice, and the reader should in
all cases consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC.
SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REP-
RESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICA-
TION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING
BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATING TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COM-
PUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POS-
SIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR
ITS LICENSORS.

Preface

Using Your SysV Environment details the SysV environment, one of
the operating environments supported by the Domain®/OS operat-
ing system. This manual is for users who are acquainted with both
UNIX* software and Apollo® networks. If you're not familiar with
the UNIX system, these tutorial references may be helpful:

® Bourne, Stephen W. The UNIX System. Reading: Ad-
dison-Wesley, 1982.

e Kernighan, Brian W. and Rob Pike. The UNIX Program-
ming Environment, Englewood Cliffs, N.J.: Prentice-Hall,
1984.

® Thomas, Rebecca and Jean Yates. A User’s Guide to the
UNIX System. Berkeley: Osborne/McGraw-Hill, 1982.

By now, you also should have read Getting Started with Domain/OS
(002348), the beginner’s guide to using SysV software on an Apollo
node. Thus, you know how to use the keyboard and display, read
and edit text, create and execute programs, and request system
services using interactive commands. You’ll need a working knowl-
edge of these tasks to fully understand the concepts presented in
this more advanced user’s guide.

* UNIX is a registered trademark of AT&T in the U.S.A. and
other countries.

Preface iii

iv

The manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8
Chapter 9
Chapter 10

Chapter 11

Preface

Introduces the Domain/OS operating
system, describing how objects are or-
ganized in the system naming tree, and
how to identify these objects.

Describes the features of the SysV envi-
ronment under Domain/OS.

Discusses how the system functions at
startup and login. Describes how to cre-
ate, modify, and organize the various
scripts that set up your node’s particular
operating environment. Also tells how
to change your password, log-in shell,
user information, and home directory.

Explains the function of the Display
Manager (DM), the default window
management tool. Also describes how
to use DM commands, and how to de-
fine keys to perform DM functions.

Describes how to use the DM, the de-
fault window manager, to control your

node’s display.

Describes how to use the DM to control
the characteristics of edit pads and to
edit text.

Briefly introduces the shells available in
the SysV environment.

Explains how to use the Bourne shell.
Describes how to use the Korn shell.
Explains how to use the C shell.
Describes file management, including
procedures for creating, renaming,

copying, comparing, removing, display-
ing, and printing files.

Chapter 12 Describes directory management, in-
cluding procedures for creating, renam-
ing, copying, comparing, removing, and
displaying directories.

Chapter 13 Describes link management, including
procedures for creating, displaying, re-
defining, renaming, copying, and re-
moving links.

Chapter 14 Explains how to control access to files
and directories on the system by using
both standard UNIX file protection
mechanisms and Domain/OS Access
Control Lists (ACLs).

Related Manuals

The following file lists current titles and revisions for all available
manuals:

/install/doc/apollo/os.v.latest software release number_manuals

At SR10.0, e.g., refer to /install/doc/apollo/os.v.10.0_manuals
to ensure that you are using the correct version of manuals. You
may also want to use this file to ensure that you have ordered all of
the manuals that you need. The Domain Documentation Quick Ref-
erence (002685) and the Domain Documentation Master Index
(011242) provide a complete list of related documents. For more
information on using the SysV environment, refer to the following
documents:

If you are a new user, read Getting Started with Domain/OS
(002348). This tutorial manual explains how to log in and out,
manage windows and pads, and execute simple commands. It gives
user—oriented examples and includes a glossary of important terms.

The Domain Display Manager Command Reference (011418) con-
tains information about the use of the default Display Management
software. This manual is arranged for quick and easy access, and
provides examples where necessary.

Preface v

The SysV Command Reference (005798) describes all the UNIX
shell commands supported in the SysV environment. This manual
documents various general purpose, communications, and graphics
commands and application programs. It also describes games avail-
able to the SysV user.

The SysV Programmer’s Reference (005799) describes all UNIX
system calls; C, standard I/O, mathematical, internet network, and
compatibility library subroutines; special files; file formats and con-
ventions; and language conventions supported in the SysV environ-
ment.

Domain/OS Programming Environment Reference (011010) de-
scribes the support tools and utilities available to SysV users. You
may also need to consult the Domain Distributed Debugging Envi-
ronment Reference (011024) if you plan to use Domain/OS debug-
ging tools for your programming tasks.

UNIX Text Processing (011018) contains material on the text edi-
tors supported by the SysV environment. It also describes the avail-
able SysV text formatters, standard macro packages, and supported
preprocessors.

Managing SysV System Software (010851) tells how to configure
and maintain SysV system software services such as TCP/IP, line
printer spoolers, and UNIX communications processing. Also ex-
plains how to maintain file system security, create user accounts,
and manage servers and daemons. You may also wish to consult
Planning Domain Networks and Internets (009916) and Managing
Domain/OS and Domain Routing in an Internet (005694) to learn
more about creating and managing networks.

The DOMAIN C Language Reference (002093) describes C pro-
gram development on Domain/OS. It lists the features of C, de-
scribes the C library, and gives information about compiling, bind-
ing, and executing C programs.

Problems, Questions, and Suggestions

vi

We appreciate comments from the people who use our system. To
make it easy for you to communicate with us, we provide the
Apollo Product Reporting (APR) system for comments related to

Preface

hardware, software, and documentation. By using this formal chan-
nel, you make it easy for us to respond to your comments.

See the mkapr (make apollo product report) command description
in the SysV Command Reference for information about how to sub-
mit an APR. (You may also view the description online by following
the procedure described in the next section of this preface.) Alter-
natively, you may use the Reader’s Response Form at the back of
this manual to submit comments about the manual.

Getting Help

For information about available UNIX commands, system calls,
and functions, press <KHELP>. Then, at the prompt, type the name
of the relevant command, system call, or function as follows:

Help on: name

This invokes the man (manual information) command, which lets
you select and display online versions of reference material from
the SysV Command Reference, the SysV Programmer’s Reference,
and Managing SysV System Software. A read window containing a
formatted version of the manual page(s) on the specified name is
opened and remains open until you close it by pressing <EXIT>.
While the manual page is displayed, you may continue to execute
shell commands (including other man commands).

NOTE: The man command uses the symbolic
links in effect for the SYSTYPE of the
shell in which it is executed. See Chapter
2 for more on the SYSTYPE environ-
ment variable.

Documentation Conventions

Unless otherwise noted, this manual uses these symbolic conven-
tions:

Preface vii

literal values

user-supplied values

example user input

output

CTRL/

og

viii

oo

Preface

Bold words or characters in formats and
command descriptions represent com-
mands or keywords that you must use
literally. Pathnames are also in bold.
Bold words in text indicate the first use
of a new term.

Italic words or characters in formats
and command descriptions represent
values that you must supply.

In examples, information that the user
enters appears in color.

Information that the system displays ap-
pears in this typeface.

Square brackets enclose optional items
in formats and command descriptions.

Braces enclose a list from which you
must choose an item in formats and
command descriptions.

Angle brackets enclose the name of a
key on the keyboard.

The notation CTRL/ followed by the
name of a key indicates a control char-
acter sequence. Hold down <CTRL>
while you press the indicated key.

Horizontal ellipsis points indicate that
you can repeat the preceding item one
or more times.

Vertical ellipsis points mean that irrele—
vant parts of a figure or examples have
been omitted.

This symbol indicates the end of a
chapter.

Contents

Thapter 1 Introducing Domain/OS
OVEIVIEW . . o ettt e e e e e 1-2
The Naming Tree it 1-4
Using Pathnames o i, 1-6
The Working Directory, 1-9
The Home Directory, 1-10
The Parent Directory, 1-12
Pathname Summary 1-13
“hapter 2 Using Domain/OS Features in

the SysV Environment

Domain/OS Architecture, 2-1
The User Interfaceo, 2-2
Software Extensions in /usr/apollo...................... 2-2
The Display and the Display Manager 2-3
Keyboard Mappingot viii i 2-3
UNIX Key Definitionsc.covviiiniinn.. 2-4
Environment Variableso, 2-6

Contents ix

Name Space Supportcovuiiiiiiiiiiiiiiinn. 2-9

Environment Switching 2-10
Password and User Identification 2-12
File Protection, Permissions, and Ownership 2-12
Chapter 3 Understanding Startup and Login
Understanding the System at Startup 3-2
Disked Node Startup, 3-2
Diskless Node Startup 3-8
Understanding the System at Login 3-14
Logging In i 3-20
Logging In to a Default Account 3-20
Changing Your Password PP 3-20
Changing Your Home Directory 3-21
Changing Your Default Log-In Shell 3-21
Changing Your User Information 3-22
Logging In to a Domain/OS Server Processor (DSP) ... 3-22
Logging In Over a Dialup Line 3-22
Chapter 4 Using The Display Manager
Using DM Commandsttiinirnnennnnnn 4-1
DM Command Conventionscooveun... 4-3
Using DM Special Characters 4-4
Defining Points and Regions 4-5
Specifying Points on the Display 4-5
Using Keys to Perform DM Functions 4-9
Keyboard Types and Key Definitions 4-10
Key Naming Conventions 4-13
Defining Keys i 4-15
Deleting Key Definitions 4-18
Displaying Key Definitions 4-19
Controlling Keys from Within a Program 4-19
Using DM Command Scriptsooiviii .. 4-20

X Contents

Chapter 5 Controlling the Display

Controlling Cursor Movementc.c.ocvuuunn.. 5-2
Creating Processesc.oiiiiiiiieninneeeenns 5-4
Creating a Process with Pads and Windows 5-5
Creating a Process without Pads and Windows 5-7
Creating a Daemon (Server Process) 5-8
Controlling a Processo, 5-8
Interrupting and Stopping a Process 5-9
Suspending and Resuming a Process 5-10
Creating Pads and Windows 5-10
DM Rules for Defining Window Boundaries 5-11
Creating an Edit Pad and Window 5-13
Creating a Read-Only Pad and Window 5-14
Copying a Pad and Window 5-15
Closing Pads and Windows, 5-16
Managing Windowso it 5-17
Changing Window Size 5-18
Moving a Window 5-20
Pushing and Popping Windows 5-21
Changing Process Window Modes 5-22
Defining Default Window Positions 5-25
Responding to DM Alarms 5-26
Moving Pads Under Windows 5-26
Moving to the Top or Bottom of a Pad 5-27
Scrolling a Pad Vertically 5-28
Scrolling a Pad Horizontally 5-29
Saving a Transcript Padina File................... 5-30
Using Window Groups and Window Icons 5-30
Creating and Adding to Window Groups 5-31
Removing Entries from Window Groups 5-32
Making Windows Invisible 5-33
Using Iconsttt 5-33
Setting Icon Default Position and Offset 5-3§
Displaying the Members of a Window Group 5-36

Contents xi

Chapter 6 Editing a Pad

Setting Edit Pad Modes 6-2
Setting Read/Write Mode 6-3
Setting Insert/Overstrike Mode 6-3

Inserting Characters, 6-4
Inserting a Text String 6-5
Inserting a Newline Character 6-5
Insertinga New Line oot 6-5
Inserting an End-of-File Mark 6-6

Deleting Textot 6-6
Deleting Characters, 6-7
Deleting Words i i 6-7
Deleting Linesccoiiniiniininnnnenn.. 6-8

Defining a Range of Text, 6-8

Copying, Cutting, and Pasting Text 6-10
Using Paste Buffers 6-10
Copying Textttt e 6-11
Copying a Display Imagec.cuvuuiuunnnnnn. 6-13
Cutting Text . . oo ottt e 6-13
Pasting Text ...t 6-14

Using Regular EXpressionscooviiuvenne.... 6-15
ASCII Charactersovuininiinnnennnan.. 6-16
Beginning of Line (%) 6-16
End of Line (8)c.vviniiniiiian. 6-16
Single Character Wildcard (?) 6-17
Expression Wildcard (*), 6-17
Strings and Character Classesc..vu.. 6-17
Escape (@) .. v vvviiiii i 6-19
Text Pattern Matching with {expr} 6-19

Searching for Textottt 6-20
Repeating a Search Operation 6-22
Canceling a Search Operation 6-23
Setting Case Comparisonc..covuue.... 6-23

Substituting TeXtcviiiiir .. 6-23
Substituting All Occurrences of a String 6-25
Substituting the First Occurrence of a String 6-25

xii Contents

Changing the Case of Letters 6-26

Undoing Previous Commands 6-26
Updating an Edit File, 6-27
Chapter 7 Introduction to Shell Usage
Opening a Default UNIX Shell 7-1
Opening Additional UNIX Shells 7-2
Shell Start-Up Files i, 7-3
Usinga Terminal i, 7-4
Search Path i 7-6
Shell Program Execution 7-6
Wildeards ooiii i e 7-7
Chapter 8 Using the Bourne Shell
Simple Commands i 8-2
Background Commands 8-2
Input/Output Redirection 8-3
Pipelines and Filters 8-4
Generating Filenames 8-5
(5T} -1 4 (o) o WA 8-6
Promptingo 8-8
Starting the Bourne Shell 8-8
Shell Scripts . ..o vt 8-9
Control Flow Using for Statements 8-10
Control Flow Using case Statements 8-12
Here Documentsoiiiiiiiiiinnnnn. 8-14
Shell Variables i, 8-16
The test Command 8-19
Control Flow Using while Statements 8-20
Control Flow Using if Statements 8-21
Command Groupingiiiinnnnnee... 8-24
Debugging Shell Scripts, 8-24
Keyword Parameterscc it 8-25

Contents xiii

Parameter Transmissioncoeuvien..n “.. 8-26

Parameter Substitution [P 8-26
Command Substitution, 8-28
Evaluation and Quoting i 8-29
Error Handling i, 8-33
Fault Handling o .. 8-34
Command Execution i 8-36
Chapter 9 Using the Korn Shell
Starting the Korn Shell it 9-1
Opening a Korn Shell When You LogIn 9-2
Shell Variablest ... 9-3
Arithmetic Evaluation i, 9-5
Functions and Command Aliasing 9-7
Input and Outputoovvivnnnn .. e 9-11
Re-entering Commands, 9-12
In-line Editing o 9-14
Job Control 9-15
Miscellaneoust 9-16
Tilde Substitution e e 9-16
Built-in I/O Redirection 9-16
Added Optionsooiiiiiii i 9-17
Previous Directoryt 9-17
Additional Variables and Parameters 9-17
Modified Variables L. 9-19
Timing Commandscviiiiiiiia.. 9-19
Command Substitution 9-19
Whence 9-20
Added Trapscoviiiiii i 9-20
Additional Test Operatorsoovevvnn.. 9-20
No Special Meaning for Circumflex (*) 9-20
Performanceo 9-21
Sample Korn Shell Script 9-21

Xiv

Contents

“hapter 10 Using the C Shell

Starting the Shell 10-2
The Basic Notion of Commands 10-2
Flag Arguments i, 10-3
Outputto Files 10-4
Input From Files Using ‘Pipelines 10-5
Metacharacters in The C Shell 10-6
Filenamesoiiiiiniiint ittt 10-7
QUOLALION . .t ittt e e 10-11
Terminating Commandsoo v, .. 10-12
Starting, Exiting, and Modifying the C Shell 10-13
Opening a C Shell When You LogIn 10-13
Log-In and Log-Out Scripts 10-14
Shell Variables 10-16
History 10-17
AlIASES .« v it e 10-20
More Redirection Using > and >& 10-21
Background, Foreground, and Suspended Jobs 10-22
Working Directoriesccoiuiuiieeinnn.. 10-28
Useful Built-In Commands 10-31
Shell Control Structures and Shell Scripts 10-32
Invocation and the argv Variable 10-33
Variable Substitution, 10-34
EXpressionst 10-36
A Sample Shell Script e 10-37
Other Control Structures 10-40
Supplying Input to Commands 10-41
Catching Interrupts 10-42
Additional Optionso i, 10-42
Other Shell Featuresc ... 10-42
Loops at the Terminal and Variables as Yectors 10-43
Braces { ... } in Argument Expansion 10-44
Command Substitution 10-45

Contents xv

Chapter 11 Managing Files

Moving Around the Naming Tree 11-2
Creating Files 11-2
Copying Filest i 11-4
Moving or Renaming Files 11-5
Printing Files 11-6

Using the prf Commando0. 11-7

Using the Print Menu Interface 11-8
Displaying File Attributes, 11-11
Removing Files it 11-12
Copying the Display toa File 11-12
Comparing ASCII Fileso, 11-13

Chapter 12 Managing Directories
Creating Directoriesoouiutiiiiiinnn.. 12-2
Renaming Directories o i i 12-2
Copying Directory Treesccooiiiiiuueeennnn. 12-3
Comparing Directory Trees, 12-4
Displaying Directory Information 12-5
Removing Directory Trees, 12-6
Chapter 13 Managing Links

Creating Links i 13-2
Displaying Link Resolution Names 13-2
Renaming Links i 13-3
Copying Soft Linkso 13-3
Removing Linkst 13-4

xvi

Contents

Chapter 14 Controlling Access to Files and

Directories

Using Standard UNIX Object Protections 14-1
Listing File Permissions 14-2
Changing Access Rights 14-3
Using Access Control Lists (ACLs) 14-4
The Subject Identifier (SID) 14-4
Access Rights 14-7
Searching Directories and Removing Objects 14-8
Managing ACLsov v 14-9
Displaying ACLS oo i 14-9
Changing ACLSttt 14-10
Rules to Specify ACL Entries 14-12
Setting ACL Entries 14-13
Changing Entry Rights 14-14
Adding Entry Rights 14-15
Removing ACL Entries, 14-15
Copying ACLS ...t e e 14-16
Initial ACLS ... 14-16
Displaying Initial ACLs, 14-18
Changing Initial ACLs 14-18
Copying Initial ACLs 14-19

Appendix A Initial Directory and File
Structure

Appendix B Summary of Predefined Standard
and UNIX Key Definitions

Operating Considerations for Multinational Keyboards B-9
Arrangement of Multinational Keyboard Keys B-9
Key Interpretation During Service Mode B-10

Contents xvii

Appendix C Summary of Bourne Shell
Grammar

Appendix D Summary of Bourne Shell Meta-
characters and Reserved Words

Appendix E Summary of C Shell

Metacharacters
Appendix F Composing European Characters
The Compose Functioncoviiiiinnnenn... F-1
European Characters and the Multinational Keyboard ... F-3
Printing Latin-1 Characters F-3
Restrictions on Using Latin-1 Characters F-4
Character Compose Sequencesc.ouvuuununnnn F-4

Glossary

Index

xviii Contents

1-7

0 3N Lt B W -

-D-llk-b
W N =

N L L Lhh L b L Wn
|
00 3 N KW -

A Simple Domain/OS Network
A Sample Naming Tree
A Sample Path Through the Naming Tree . ..
A Sample Path Beginning at the Node

Entry Directory
A Sample Path Beginning at the Current
Working Directory
A Sample Path Beginning at the User’s
Home Directory,
A Sample Path Beginning at the Parent
Directoryo i i i i

The Start-Up Sequence for Disked Nodes . . .
A Sample DM Start-Up Script
The Start-Up Sequence for a Diskless Node .
The Start-Up Script Search Sequence
The Log-In Sequence
A Sample DM Log-In Start-Up Script
A Sample DM Start-Up Script
Login Over a Dialup Line

Invoking a DM Command Interactively
Defining a Display Region
Key Names for the Low-Profile Keyboards . .

A Process Running the Bourne Shell
Creating an Edit Pad and Window
Copying a Pad and Window
Growing a Window Using Rubberbanding

Pushing and Popping Windows
Process Window Legend
Location of Pad Scroll Keys
Default Icon for Shell Process Windows

Contents xix

XX

0\O|\O\
W N =

11-1
11-2
11-3

14-1
14-2
14-3

B-1

Contents

The Edit Pad Window Legend
Defining a Range of Text with <MARK>
Copying Text with the xc -r Command

The Print Menut
Specifying a Filename on the Print Menu . ..
Comparing Two ASCII Files

Sample Directory Tree
Copying a Directory Tree
Removing a Directory Tree

Structure of an ACL Entry
Sample ACL Entries
Sample Extended ACL Entries
Sample ACL Display
Initial ACLs for Files and Directories

The Node Entry Directory (/) and

Subdirectories e
The System Software Directory (/sys)
The Display Manager Directory (/sys/dm) ...

The Network Management Directory

(Isys/met) ...

Multinational Keyboard Numeric Keypad

Cables

1-1 Pathname Symbols 1-9
2-1 Keys Remapped to std_keys.unix 2-5
2-2 Environment Variables Used by the SysV
Bourne Shell L. 2-8
2-3 Top-Level SysV Directory Organization 2-9
3-1 Node DM Start-Up Script Files 3-2
3-2 Node Log-In Start-Up Script Files 3-17
4-1 Ranges for Coordinate Values 4-7
4-2 Default Mouse Key Functions 4-10
4-3 Key Definition File Names 4-12
4-4 Key Naming Conventions 4-14
- Cursor Control Commands 5-3
- Commands for Creating Processes 5-5
- Commands for Controlling a Process 5-9

Commands for Creating Pads and Windows .. 5-10
Commands for Closing Pads and Windows .. 5-16

QIIU\UI(J\(‘JI(JIU\U\LII
O 00 9 O L W IN =

- Commands for Managing Windows 5-18
- Process Window Modes 5-23
- Commands for Moving Pads 5-27
- Commands for Controlling Window Groups
and Icons i 5-31
5-10 Window Paste Buffers 5-37
6-1 Commands for Setting Edit Modes 6-2
6-2 Commands for Inserting Characters 6-4
6-3 Commands for Deleting Text 6-7
6-4 Commands for Copying, Cutting, and
Pasting Text 6-10
6-5 Commands for Searching for Text 6-21
6-6 Commands for Substituting Text 6-24

Contents xxi

xxii

Tl\]
N =

11-1

12-1

13-1

wwwwwﬁowwwww
HS\OOO\)CJ\MAL»NP-‘

i
— e
H W N =

7
N

Contents

Shell Start-Up Files 7-3
Control Characters Defined in a UNIX Shell 7-5

Some Common Bourne Shell Metacharacters 8-7
Evaluation of Bourne Shell Metacharacters by

Quoting Mechanisms 8-31
UNIX Signals Commonly Used by SysV

Software i, 8-34
Shell Commands Submenu Items 11-10
Commands for Managing Directories 12-1
Commands for Managing Links 13-1
Access Rights for Files and Directories 14-8
Summary of Commands for Changing ACLs . 14-11
Abbreviations for Required Rights 14-13
Summary of Commands for Changing and

Copying Initial ACLs 14-17
Options for Copying Initial ACLs 14-20
Controlling the Cursor B-2
Creating Processes B-3
Controlling Processes B-3
Creating Pads and Windows B-3
Closing Pads and Windows B-4
Managing Windows B-4
Moving Pads oo L. B-5§
Controlling Window Groups and Icons B-6
Setting Edit Modes B-6
Inserting Characters B-7
Deleting Text i, B-7
Copying, Cutting, and Pasting Text B-8
Commands for Searching for Text B-8
Commands for Substituting Text B-9

Compose Sequences for Latin-1 Characters . F-4

Chapter 1

Introducing Domain/OS

Domain/OS is an operating system which supports a high-speed
communications network connecting two or more of our computers,
called nodes. Each node loads programs into its own memory, and
uses the computing functions of its own central processing unit
(CPU). Because Domain/OS enables nodes to share information,
you can log into any node and access information stored anywhere
in the network.

Many of the operations you’ll perform on the system involve the
use of objects (files, directories, devices, and links) that store in-
formation such as programs, data, or text. Before you can work
with these objects, you must understand how the system organizes
and identifies them.

This chapter describes Domain/OS, how it organizes objects in the
system naming tree, and how to use pathnames to identify these
objects.

Introducing Domain/OS 1-1

Overview

Domain/OS uses a physical network, in which member nodes can
load data from the network into memory just as they would load
data from their own disk. Let’s take a look at how nodes use the
system to share information. Figure 1-1 shows a simple network
composed of three nodes and two disks.

node_a
(Diskless)

Figure 1-1. A Simple Domain/OS Network

Domain/OS makes the information on all disks available to any
node in the network. For example, in Figure 1-1, node_c can ac-
cess information stored on its own disk, as well as information
stored on the disk connected to node_b. Although node_a doesn’t
have its own disk, it can, via the network, access information stored
on the disks connected to node_b or node_c.

Introducing Domain/OS

Each node in the network requires the use of at least one disk,
called a boot volume, that contains the operating system and other
system software it needs to run. Some nodes, called disked nodes,
are physically connected to the disk that they use as the boot vol-
ume. Other nodes, called diskless nodes, share the boot volume of
some other disked node in the network, called a network partner.
In Figure 1-1, node_b and node_c are disked nodes. Because
node_a is a diskless node, it must use either node_b or node_c as
its partner.

To run in the network, a diskless node must have a network part-
ner. The network partner’s disk provides all of the necessary oper-
ating system and support software for the diskless node. Because a
diskless node relies on its partner for system software, it can oper-
ate only when the partner node is operating. If the partner node is
removed from the network while the diskless node is running, the
diskless node will crash.

The user interface on each node, whether disked or diskless, is
made up of two main programs: the Display Manager (DM) and
the shell.

The DM is the system program that controls your node’s display
and enables you to create processes. The DM responds to DM
commands that you type in the DM command input pad of your
display. Later in this manual, we’ll describe your node’s display
environment and explain how to use the DM to control this envi-
ronment.

The shell is the program that you use to perform more traditional
computing operations such as managing files, and compiling pro-
grams. Three shells are available to the SysV user: the Bourne
shell, the C shell, and the Korn shell. Each shell responds to com-
mands that you type in the shell process’s command input pad.
Each command invokes a different utility program that performs a
specific computing operation. This manual describes these shell
programs and the shell commands you use to perform standard
computing operations.

Introducing Domain/OS 1-3

The Naming Tree

1-4

To make information available to all the nodes in the network, Do-
main/OS organizes objects in a hierarchical structure called a nam-
ing tree. The naming tree serves as a type of map that the system
uses to keep track of where objects reside in the network. To access
an object, you refer to its location in the naming tree. Figure 1-2
shows a sample naming tree.

: '('h;e’f\mrk root directory)

(node entry directories)

(e d

memo report

O Directories
3 Files

memo floor_1

Figure 1-2. A Sample Naming Tree

The double slashes (//) in Figure 1-2 represent the top level of the
naming tree, the network root directory. Each node maintains its
own copy of the network root directory, which contains the name of
each node entry directory the node can access. Figure 1-2 shows
a network root directory containing the names of two node entry
directories: node_b and node_c.

Each disked node in the network has a node entry directory name
associated with it. This name refers to the branch of the naming
tree that resides on its disk. (Since diskless nodes don’t have disks,
they use the node entry directory of their partner.) In Figure 1-2,

Introducing Domain/OS

all of the objects under the node entry directory, node_b, reside on
the disk node_b, while all of the objects under the node entry di-
rectory node_c reside on the disk node_c.

Entry directories contain one or more upper-level, or root-level,
directories. A root-level directory is one level below the entry di-
rectory and normally serves as the main directory for a branch of
logically related objects. For example, the /sys directory that we
supply is a root-level directory that contains many of the system
objects that make up the operating system. (Appendix A contains a
set of figures that illustrate how the system organizes the software
we supply with your node.) A’root-level directory can also serve as
a user’s main directory for storing files.

In Figure 1-2, the directories owner and user_1 are root-level di-
rectories, one level below the entry directory node_b. The direc-
tory owner serves as the main directory for all objects that belong
to the owner of the node. The root-level directory user_1 is the
main directory for the user of a diskless node (node_a) that uses
node_b as its entry directory. The directory user serves as the main
directory for the user on node_c. (This is a custom only.)

In summary, the network root directory contains the names of node
entry directories in the network. The system uses your node’s net-
work root directory to determine which node entry directories in
the network it can access. Each node entry directory contains one
or more root-level directories. A root-level directory serves as the
main directory for a group of objects.

Your node can access only the node entry directories whose names
appear in the local copy of the network root directory. To keep
your local copy of the network root directory up to date, you should
catalog new disked nodes as they are added to the network. To
catalog new nodes, use the shell command ctnode (catalog node)
described in the SysV Command Reference.

Some network sites use the ns_helper (naming server helper) to
maintain an up-to-date network root directory. If your site uses
ns_helper, you don’t need to use ctnode to catalog nodes;
ns_helper does it for you. To find out if your network site uses the
ns_helper, ask your system administrator. Managing SysV System
Software describes ns_helper and explains how to catalog nodes to
update the network root directory.

Introducing Domain/OS 1-5

Using Pathnames

1-6

The system identifies each object in the naming tree by its unique
location. Whenever you specify a command to create or access an
object, you also specify a pathname that points to the object’s loca-
tion in the naming tree. The pathname tells the system what path to
follow when searching for an object.

The commands you use to create and manage objects require you
to specify a pathname as a command argument. When you invoke a
command, the command specifies the operation, and the pathname
tells the system where in the naming tree to perform it.

For example, the following shell command removes the file memo
in the naming tree shown in Figure 1-3:

$ rm //node_b/user_1/memo
L]

|
command pathname
The shell command rm (remove file) tells the system to remove the

file at the location specified by the pathname. Figure 1-3 shows the
path the system follows to the file.

The pathname directs the system to:

1. Start at the network root directory (//).

2. Follow the path through the entry directory, node_b, and
the subdirectory, user_1.

3. Stop at the file, memo.

Introducing Domain/OS

Figure 1-3. A Sample Path Through the Naming Tree

When the system searches for a location in the naming tree, it be-
gins its search at some point in the tree and follows a path to the
location. The pathname in the previous examples explicitly speci-
fied the network root directory as the starting point for the system’s
search through the naming tree. The double slashes (//) at the be-
ginning of the pathname specify the network root directory. This
type of pathname, called an absolute pathname, tells the system
the full path, from the network root directory to the final location.

You don’t have to begin pathnames with the network root directory
specification. For example, the single slash (/) symbol directs the
system to begin its search at your node’s entry directory. Here is an
example using the single slash to start a search at your node’s entry
directory:

$ rm /user_l/memo

Introducing Domain/OS 1-7

1-8

(/) Begin search here

node b

memo

Figure 1-4. A Sample Path Beginning at the Node
Entry Directory

For this example, let’s assume that your node’s entry directory is
node_b. As shown in Figure 1-4, the pathname directs the system

to:
1. Start at your node’s entry directory, node_b.
2. Follow the path through the root-level directory, user_1.
3. Stop at the file, memo.

You can specify other starting points in the naming tree by begin-
ning a pathname with any of the symbols in Table 1-1.

Introducing Domain/OS

Table 1-1. Pathname Symbols

Symbol System starts search at:
/1l Network root directory
/ Node entry directory
No symbol or . Working directory
~ Home directory
Parent directory

The Working Directory

If you specify a pathname without a symbol preceding it, or precede
it with a dot, the system starts its search at a default location in the
naming tree called the working directory. Think of the working
directory as the directory location in which you are currently work-
ing (thus, it may also be known as your current directory). Each
process that you create uses one of the directories in the naming
tree as its working directory.

When you log into a node, the system creates a process running the
shell program and sets that process’s working directory to the home
directory name designated in your user account. The system uses
this directory as your working directory unless you change it to an-
other directory. (Chapter 12 describes how to change your working
directory.)

The following command removes the file memo in the current
working directory:

$ rm memo
In this example, let’s assume that the current working directory is

the directory reports. As shown in Figure 1-5, the system begins its
search at reports and removes the file memo.

Introducing Domain/OS 1-9

Begin search
at current
working
directo

Figure 1-5. A Sample Path Beginning at the
Current Working Directory

You’ll notice in Figure 1-5 that another file named memo exists at
another location in the naming tree (in the directory user_1). If the
current working directory was user_1 instead of reports, the com-
mand in our example would remove this file instead. Thus, a path-
name beginning at the working directory functions differently de-
pending on the directory currently being used as working directory.

The Home Directory

1-10

If you precede a pathname with the tilde symbol (~), the system
starts its search at a location in the naming tree called the home
directory. Like the working directory, each process has a home
directory that points to some directory in the naming tree.

When you log into a node, the system creates a process running the
shell program and sets it to the home directory name designated in
your user account. The system uses this directory as your home
directory unless you change it to another directory. (Chapter 3 de-
scribes how to change your home directory.)

Introducing Domain/OS

The following command removes the file memo in the directory
reports found in the home directory:
$ rm ~/reports/memo
In this example, let’s assume that the home directory is the root-
level directory owner. As shown in Figure 1-6, the pathname di-
rects the system to:

1. Start at your home directory, owner.

2. Follow the path through the directory, reports.

3. Stop at the file, memo.
Like pathnames that use the current working directory, pathnames

starting at the home directory work differently depending on the
directory currently being used as your home directory.

Note that a tilde with no pathname given as an argument defaults to
the current user’s home directory.

?’Begm search at
wcurrent workmg
vdnrectory

(~)

Figure 1-6. A Sample Path Beginning at the User’s
Home Directory

Introducing Domain/OS 1-11

The Parent Directory

1-12

If you precede the pathname with two dots (..), the system starts its
search at a location called the parent directory. A parent direc-
tory is the directory one level above the current working directory.
For example, the following command uses the double dot symbol to

remove the file memo in the directory user_1:

$ rm ../memo

In this example, let’s assume that the current working directory is
the directory plans. As shown in Figure 1-7, the system begins its
search at the directory user_1 (the parent directory of the current
working directory plans) and removes the file memo. It is impor-
tant to note that these double dots can be strung together with
slashes (e.g., ../../filename) to search the parent’s parent directory
and so on.

Begin search
at parent
directory (.:.)

memo

Current working directory

Figure 1-7. A Sample Path Beginning at the Parent Directory

Introducing Domain/OS

Pathname Summary

In this section, you learned how to use pathnames to point to ob-
jects in the system naming tree. The examples showed you how to
use pathnames with commands to tell the system the naming tree
location where you want a particular operation performed.

Pathnames also serve to identify objects. As you read through this
manual, you will find that many of the objects that make up the
operating system are referred to by their pathnames. For example,
Chapter 3 describes many of the objects the system uses at startup
and login. Appendix A illustrates how the system organizes the sys-
tem software that we supply with your node; system objects are re-
ferred to by their pathnames. By understanding which objects the
system uses and where they are located, you’ll better understand
how these objects work together to make up a functioning system.

oo
og

Introducing Domain/OS 1-13

Chapter 2

Using Domain/OS Features in
the SysV Environment

The SysV environment under Domain/OS supports a distributed file
system, and multiple networks using bit-mapped, high-resolution
displays. Besides bringing the benefits of a networked architecture
and a true single-level store to a UNIX system, Domain/OS offers
many features seldom found on either time-sharing or workstation
implementations of software. This chapter highlights those features.

Domain/OS Architecture

Domain/OS architecture comprises two or more nodes connected
by a high-speed local area network. Each node is a functional
workstation, with its own central processor, memory, and memory
management hardware. Programs and data required by processes
running on a node may be demand-paged across the network.

This remote paging ability means, for example, that a process run-
ning on one node can invoke a program that resides on the disk of
another node to manipulate data that reside on a third node. You
may even create remote processes (processes that run on other
nodes in the network) that you can manipulate through a window
on your node, thus distributing the computational workload over
multiple processors.

Using Domain/OS Features in the SysV Environment 2-1

Those nodes that have their own mass storage devices may be oper-
ated as standalone computers, and can support additional users (in-
cluding those connected via serial communications ports). To take
advantage of this networked architecture, all Domain/OS software
supports a distributed file system. Data and programs on all
mounted volumes in the network are accessible (given the neces-
sary permissions) to any node in the network. The resultant system
is one in which an arbitrary number of users can be serviced with-
out adversely affecting performance. Users have the power of a
dedicated processor, memory-management hardware, and a high-
resolution bitmapped display at their disposal.

The User Interface

We provide for a more varied user interface by supplying features
that significantly differ from those provided in other UNIX imple-
mentations. The most important difference, from the user’s point of
view, is the ability of an Apollo node to display “windows” into
many processes (shells, programs, etc.). These windows have some
unique features not found on the CRT terminals largely used in the
development of UNIX System V software.

Software Extensions in /usr/apollo

2-2

SysV provides a directory called /usr/apollo. The /usr/apollo di-
rectory contains the subdirectories bin, lib, and include, which
supply software extensions beyond the standard set normally found
on the SysV Release 3 distribution tape. The /usr/apollo/bin di-
rectory contains commands, /usr/apollo/lib contains object librar-
ies and needed files, and /usr/apollo/include contains .h files.

NOTE: Normally, users do not refer to the path-
name /usr/apollo/include directly, but
rather use /usr/include/apollo, which is
a soft link to /usr/apollo/include. This
specific feature allows use of the notation
include <apollo/ev.n>.

Using Domain/OS Features in the SysV Environment

The commands, libraries, and include files in these subdirectories
handle functions that specifically apply to Domain/OS. (Note, how-
ever, that some additional related files can be found in the /etc
directory.) For example, there are special network commands,
commands for manipulating windows and displays, and commands
for doing disk volume maintenance.

In most cases, the commands found in /usr/apollo/bin follow the
conventions of other standard UNIX commands. However, there
may be some exceptions when it comes to command line options or
arguments. Be sure to check the appropriate manual page in the
SysV Command Reference for complete information before using
these software extensions.

The Display and the Display Manager

Your node’s display is your “window” into Domain/OS. Unlike
most terminals that dedicate their entire display to a single program
or process, Apollo nodes let you divide the display screen into mul-
tiple environments for running programs, and reading or editing
files. With each new environment you create, a set of display com-
ponents through which you can enter input and view output is also
generated.

What you see through a window is either a “frame” containing
graphics or a “pad” containing text. Refer to the Domain Display
Manager Command Reference for more information about frame
mode and graphics.

Keyboard Mapping

On Apollo nodes, nearly all key binding is programmable. The DM
normally binds the keys to a default function map when you log in.
Although you can change these key bindings any time, it is usually
best to begin with the default bindings, and then customize your key
definitions as needed. For more information on the DM and key-
board mapping, see the Domain Display Manager Command Refer-
ence.

Using Domain/OS Features in the SysV Environment 2-3

Domain/OS supports three types of keyboards: the Low-Profile
Model I keyboard, the Low-Profile Model II keyboard, and the
Multinational keyboard.

The directory /sys/dm contains the command files that define each
type of keyboard;

® std_keys3 keyboard definitions for the Low-Profile Model
IT keyboard

® std_keys2 keyboard definitions for the Low-Profile Model
I keyboard

® std_keys3[a-g] keyboard definitions for the Multinational
keyboard

All of these files contain a line invoking the command file
std_keys.basic. The Multinational keyboard command files also
invoke the std_keys.mn file.

UNIX Key Definitions

2

4

A key definitions file that provides necessary UNIX functions re-
sides in the /sys/dm directory. This file is named std_keys.unix. If
your systype is set to one of the UNIX systypes, this key definitions
file is automatically invoked when you log in.

The std_keys.unix definition file includes commands that bind
various keys to certain version-specific (or shell-specific) features.
They are described in detail later in this manual, in the Bourne
shell and the C shell chapters. If your environment is set to one of
the UNIX environments, these key definitions files are automati-
cally invoked.

To put any key definition file into effect, execute the cmdf (com-
mand file) command at the Display Manager prompt, where the
filename argument is one of the key definitions files mentioned ear-
lier. For example, to invoke the UNIX key definitions on a key-
board, use the following command line:

Command: cmdf /sys/dm/std_keys.unix

Using Domain/OS Features in the SysV Environment

Table 2-1 shows which keys are redefined when the keyboard is
remapped to std_keys.unix in this manner.

Table 2—-1. Keys Remapped in std_keys.unix

Key Definition

<DELETE> Deletes a character.

<HELP> Gets a specified UNIX manual page.
<SHELL> Executes the DM command cp $(shell)

which creates a SysV shell as specified by
the $SSHELL environment variable.

<TAB> Inserts a literal ASCII tab character.

CTRL/C Generates an interrupt signal.

CTRL/D Produces an end-of-file (EOF) condition
in the input pad.

CTRL/H Deletes a character.

CTRL/1 Generates a literal ASCII tab character.

CTRL/J Performs a carriage return.

CTRL/L Redraws the screen.

CTRL/M Performs a carriage return.

CTRL/N Searches for next occurrence of pattern.

CTRL/O Flushes output (not implemented).

CTRL/P Searches for previous occurrence of pattern.

CTRL/Q Turns off hold mode in the window.

CTRL/R Does nothing. (The standard UNIX func-

tionality is irrelevant in a pad.)

(Continued)

Using Domain/OS Features in the SysV Environment 2-5

Table 2-1. Keys Remapped in std_keys.unix (Cont.)

Key Definition

CTRL/S Turns on hold signal.

CTRL/U Deletes a line of input text from the cursor
to the start of the line.

CTRL/Y Suspends when read (not implemented).

CTRL/Z Produces a suspend process signal normally

used by shells that support job control
(i.e., /bin/ksh, /bin/csh.

CTRL/N Generates a quit signal.

CTRL/~ Moves to previous window.

Environment Variables

2-6

UNIX users should be familiar with the concept of environment
variables, process—wide ASCII strings that assume the general form

name = value

Environment variables are maintained by the kernel’s process man-
ager and are made available to UNIX programs. Typically, you in-
itialize these variables in one of the command files that the window
manager reads when the node is booted, and later when you log in.

When a new process is created, all environment variables of the
creating process are inherited by the new process. All process crea-
tion mechanisms (e.g., pgm_$invoke, fork, vfork) provide for this
inheritance.

When a new process is created by the Display Manager, that proc-
ess inherits all environment variables from the current context proc-
ess. The DM also inherits environment variables when cv (read
file) and ce (edit file) are used.

Using Domain/OS Features in the SysV Environment

Environment variables defined in the DM startup file are inherited
by all server processes created during DM startup, and by the first
process you create at login.

NOTE: After the first user process is created, the
DM inherits environment variables from
the current context process (and passes
them to new processes) as described
above.

A program interface for environment variable usage is defined in
the /usr/include/apollo/ev.h files. C language programs may ma-
nipulate environment variables through these interfaces. Alterna-
tively, C programs may use the UNIX calls getenv and putenv or
access the external environ variable.

Certain environment variables are well-known. Some are
predefined by the system at login; others have special significance
to system software or other special attributes.

One such environment variable determined at login is the SYS-
TYPE environment variable, which specifies the default UNIX ver-
sion running on a node. The UNIX version acts as a modifier of the
environment in which programs execute on the node. Valid SYS-
TYPES are sys5.3 (System V, Release 3) and bsd4.3 (4.3 Berkeley
Software Distribution).

The /etc/environ file contains a line that specifies the SYSTYPE
for a node; this, in turn, helps determine the default log-in shell for
the user. (See Chapter 3 for further information on this.) To dis-
play or change the SYSTYPE used to execute programs from a
UNIX shell, use the ver (version) command as shown in the “Envi-
ronment Switching” section later in this chapter.

Table 2-2 shows the entire set of environment variables used by the
SysV Bourne shell.

Using Domain/OS Features in the SysV Environment 2-7

Table 2-2. Environment Variables Used by the SysV Bourne Shell

Variable Name | Description

USER User’s login name.

LOGNAME Synonomous with USER. The synonyms are
provided to support both the SysV and BSD
environments.

PROJECT Project (group) ID under which the user logged in.

ORGANIZATION The current Apollo organization ID for the user.

NODEID The unique node identifier for the node on which
the process is running; expressed in hexadecimal.

NODETYPE The type of node on which the process is running.

HOME The user’s home directory pathname, established
at login.

TERM The device name of the “terminal” in use;

predefined for the sake of C or UNIX programs.
Values for Apollo displays are of the form
apollo_xxx where xxx is three or more characters.
The directory /usr/lib/terminfo lists valid
terminal types.

SHELL The pathname of the shell in which the process
is running (in this case, /bin/sh).

TZ The timezone string. Like TERM, this variable
is predefined for the sake of C or UNIX pro-
grams. The valid format is SSSnDDD, where
SSS is the standard timezone name (e.g.,
EST), n is the difference between the standard
timezone and UTC, and DDD is the daylight
timezone name.

SYSTYPE UNIX system version in use (i.e., sys5.3).

ENV If ENV is part of the environment at shell
startup or is set on the sh command line
(-DENV=~/.shrc), the value is used as a path-
name to a shell startup script. This is the same
as the Korn shell ENYV variable.

2-8 Using Domain/OS Features in the SysV Environment

Name Space Support

The UNIX file system has traditionally contained a small number of
system directories with well-known names (/usr, /bin, /etc, /dev,
and /tmp). The structure and content of these directories differ
between versions of UNIX software. To support identically-named
AT&T and Berkeley versions of these directories on the same Do-
main/OS file system, we use “variant” links. These links allow a
portion of the link text to be replaced by an environment variable.

Symbolic links placed in your node’s root directory during the in-
stallation procedure let programs use either the sys5.3 or bsd4.3
versions of the /bin, and /usr directories (/tmp, /etc, and /dev are
common to both). Normally, the links are created by the installa-
tion script; if, at some time, you need to re-create them, use the In
(make links) command. For example, to create a SYSTYPE-de-
pendent link for /bin, type the following command line:

$ In -s ’/$(SYSTYPE)/bin’ /bin

NOTE: Single quotes around the link text are re-
quired, to keep the dollar sign from being
interpreted as a shell metacharacter.

The SYSTYPE environment variable is used to select the UNIX file
system variant, and therefore, commands, libraries, spool directo-
ries, etc. Table 2-3 shows top-level SysV directory organization.

Table 2-3. Top-Level SysV Directory Organization

Name Object Type Contents

/usr directory bin, lib, include, apollo,
apollo/bin, catman

/bin variant link -

/etc directory SYSTYPE-specific links and files

/dev ordinary link -

/sys5.3 directory usr, bin, etc

/tmp ordinary link -

Using Domain/OS Features in the SysV Environment 2-9

NOTE: In Table 2-3, ordinary links are those
that don’t contain the name of an envi-
ronment variable. In the case of /dev and
/tmp, these should be links to your
node’s ‘node_data/dev and ‘node_data/
tmp files respectively.

Each node’s /tmp directory is usually a link to ‘node_data/tmp.
One of the less obvious side effects of this can be easily illustrated.
For example, the following two command lines executed on node
//foo both list the contents of //foo’s ‘node_data/tmp directory:

$ Is /tmp
cattoc
ipc.out
tocl43

$ Is //foo/tmp
cattoc
ipc.out
tocl43

$

To list the contents of //bar/tmp, you need to be more explicit:

$ Is //bar/sys/node_data/tmp
dirs

In

$

Environment Switching

The object-module stamping scheme, described earlier, lets you
execute SysV programs from any SysV shell and vice versa, without
any knowledge of the UNIX version for which the program was
targeted.

When you invoke a program stamped with a systype other than
any, the SYSTYPE environment variable for the process in which
the program is running is set to the value found in the object mod-
ule. This ensures that programs of one UNIX version that depend
on certain system files continue to work when executed from a
process running in another version. The /usr/apollo/bin/systype
program displays the version stamp of the specified object files.

2-10 Using Domain/OS Features in the SysV Environment

A shell’s SYSTYPE value defines the version (sys5.3, bsd4.3) of
system directories searched when a command name is given; hence,
it defines the version of the command that is executed.

To simplify the execution of a version x command from a version y
shell, we provide a “set-version” command. See the ver (change
shell command version) command in the SysV Command Refer-
ence. You can use ver in these three ways:

To display the current value of SYSTYPE, execute ver
with no arguments, as shown in the following example.

$ ver
sys5.3

This is equivalent to typing the following:

$ echo $SYSTYPE

To change the value of SYSTYPE, and the version of sub-
sequently executed commands, use the form ver value.

In the following example, the first command line sets the
SYSTYPE to bsd4.3 (this would be equivalent to specify-
ing SYSTYPE=bsd4.3 on the command line). The second
command line executes a bsd4.3 version of Is (SYSTYPE
remains the same until it is reset):

$ ver bsd4.3
$ Is

prog.c prog.o testfile
$

To execute the value version of command without chang-
ing SYSTYPE, use the form ver value command. For ex-
ample, the first command executes the bsd4.3 version of
the man (print manual page) command, searching for the
manual page on the s (list directory) command:

$ ver bsd4.3 man lIs

Using Domain/OS Features in the SysV Environment 2-11

This is equivalent to typing the following two consecutive
command lines:

$ SYSTYPE=bsd4.3
$ manls

Remember that the value of SYSTYPE remains the same
as it was before the man command was executed.

Password and User Identification

The process of login verification and home-directory setting are
always handled by the Domain/OS login mechanism, but we pro-
vide a way to generate an /etc/passwd file so that UNIX programs
that need to access it can do so.

Users cannot edit the /etc/passwd file directly, although they can
read it. The registry server program rgyd generates the /etc/passwd
file from the registry database, and updates /etc/passwd when the
registry is updated. We provide the edrgy (edit registry) command
so you can edit your registry information. Chapter 3 describes how
to use edrgy to change your home directory.

All Domain/OS network registry information must be case correct.
Otherwise, case sensitive programs will report that your home direc-
tory cannot be found.

File Protection, Permissions, and Ownership

The SysV environment supports the standard UNIX protection
mechanisms. We also provide an additional protection mechanism,
the access control list (ACL). Every object (file, directory, etc.)
has an ACL associated with it, although this is not noticeable if you
only use standard UNIX permissions.

In addition to its own ACL, each directory contains two ACLs
called initial ACLs. You can use the initial ACLs to control the
way files and directories created in a directory inherit their protec-
tions. When you create a new file or directory, or copy one to a
new location in the file hierarchy, the system assigns an ACL to it

2-12 Using Domain/OS Features in the SysV Environment

by copying the appropriate initial ACL stored in the parent direc-
tory.

The /usr/apollo/bin commands chacl (change ACL), cpacl (copy
ACL), Isacl (list ACL), and dbacl (Domain/Dialogue-based ACL
editor) allow you to view and control ACL values. For further
information about these commands, see the SysV Command Refer-
ence. A general description of ACLs is also located on the manual
page for the acl (access control list) command.

oo
oo

Using Domain/OS Features in the SysV Environment 2-13

Chapter 3

Understanding Startup
and Login

Each time you start up a node and log in to it, the system executes
various programs that set up the node’s operating environment.
You can tailor the operating environment on your node by modify-
ing the scripts the system uses at startup and login. For example,
you may want to start specific daemons (server processes) when
you start up your node. Or, you may want your own specific key
definitions, default window positions, and tabs defined each time
you log in.

This chapter describes how the system functions at startup and
login, and describes the steps you can take to tailor your operating
environment. It also describes procedures for changing your pass-
word, log-in shell, user information, and home directory after you
log in. ’

Understanding Startup and Login 3-1

Understanding the System at Startup

The operating guide for your node describes the proper procedure
for starting it up. When you initiate the node’s startup by turning on
the power, the node performs a series of operations to boot the
operating system (load the operating system from disk into mem-
ory) and begin executing it. The operating system then executes a
series of start-up files to set up the operating environment on your
node.

This section explains the sequence of events occurring at startup for
both disked and diskless nodes.

Disked Node Startup

3-2

If your node is a disked node, it reads the programs it needs for
startup from its own disk. The flowchart in Figure 3-1 shows the
start-up sequence on a disked node.

Understanding Startup and Login

MD starts

Transfers control to
sysboot

sysboot loads operating
system

Operating system loads
global libraries from
/etc/sys.conf

Operating system starts
init process

init runs /etc/rc to start
servers

init starts
/letc/dm_or_spm

letc/dm_or_spm starts
DM or SPM

DM or SPM invoke DM
start-up script

. Start-up sequence
complete

Figure 3-1. The Start-Up Sequence for Disked Nodes

Understanding Startup and Login 3-3

3-4

The descriptions that follow explain each step in the start—up se-
quence shown in Figure 3-1.

1.

When you power on your node in normal mode (follow
the instructions in your node’s operating guide), a program
called the Mnemonic Debugger (MD) begins executing.
The MD resides in the node’s boot PROM (Programma-
ble Read-Only Memory).

The MD reads a program called sysboot from your node’s
disk and loads it into the CPU’s memory. The MD then
transfers control to sysboot. The sysboot program is re-
sponsible for booting the operating system.

The sysboot program loads the operating system into the
CPU’s memory. Once loaded, the operating system begins
executing and takes control.

The operating system reads the file /etc/sys.conf to load
global libraries.

The operating system starts the init process by running the
program /etc/init.

The /etc/init program reads the file /etc/environ. The
/etc/environ file contains two lines, one for specifying the
environment (SysV, BSD, Aegis™), and one for specifying
the SYSTYPE variable (sys5.3, bsd4.3). If the environ-
ment is SysV or BSD, the default log-in shell for the node
is /bin/sh (Bourne shell). If the environment is Aegis, the
default log-in shell is /com/sh (Aegis shell).

The init process runs the /etc/rc script to start the neces-
sary daemons. The /etc/rc file, which is normally a link to
‘node_data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke daemons
that must be invoked by the super-user (“root”). Any
programs started by /etc/rc inherit the SYSTYPE value
specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts
named /etc/rc.user (not run as “root”, but as “user”) and
/etc/rc.local. The rc scripts contain commands that start
various daemons. These server programs run regardless of
log-in and log-out activity and provide various system
services to the node.

Understanding Startup and Login

For example, the netman program makes the node avail-
able as a host for diskless partners. For a description of
these and all of the Domain server programs, see Manag-
ing SysV System Software.

If you want your node to automatically start any daemons,
there are two methods you can use. The method you use
depends on the types of servers you wish to run.

® To start servers such as netman or mbx_helper,
that do not have to run (and will not be run) with a
user ID of “root”, edit the /etc/rc.user file and re-
move the pound sign (#) from the command line
that invokes the server.

® To start up UNIX daemons such as cron, inetd,
and lpd, or the Network Computing System (NCS)
servers llbd and glbd (the location brokers), create
a file in the directory /etc/daemons that has the
same name as the server you wish to start. That is,
if you wish to run the llbd server, create the file
/etc/daemons/llbd (it doesn’t matter what’s in the
file, /etc/rc only looks at the file name). See Man-
aging the NCS Location Broker for more informa-
tion about NCS servers.

Note, however, that the system will not start any of these
servers until the next time the rc script is run. To do this,
you should shut down and restart your node. (See your
node’s operating guide for node startup and shutdown pro-
cedures.)

The /etc/init program reads the file /etc/ttys (normally,
this file is a link to the file ‘node_data/etc/ttys) and starts
the /etc/dm_or_spm program associated in the display
and listed in the file. Any programs started by /etc/ttys in-
herit the SYSTYPE value specified in the /etc/environ
file. Other lines in the etc/ttys file contain directives that
start getty on the tty lines for the node; see the /etc/ttys
file for further information.

Understanding Startup and Login 3-5

3-6

8. The /etc/dm_or_spm program starts either:

® The Display Manager (DM) on nodes with dis-
plays.

® The Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network. (For more information about the
SPM, see Managing SysV System Software.)

The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 3-1
lists the different files used at startup. As shown in Table
3-1, the system chooses which file to execute according to
the type of node.

All of the DM start-up script files listed in Table 3-1 re-
side in the directory ‘node_data. The tick character (),
that precedes the directory name is a special symbol that
returns a value for node_data.

NOTE: On Apollo nodes, the tick character is lo-
cated on the same key as the tilde (~)
character. It is not to be confused with
the quote character (’), which is on the
same key as the double quotes (”).

For example, on disked nodes, ‘node_data points to the
/sys/node_data directory on the node’s disk. On diskless
nodes, the directory ‘node_data points to the directory
/sys/node_data.node_id on the partner node’s disk. The
node_id suffix refers to the diskless node’s hexadecimal
node ID. (Refer to the “Diskless Node Startup” section
for more information on diskless node startup.)

Understanding Startup and Login

Table 3-1. Node DM Start-Up Script Files

Node Type Start-Up Scripts

1024x800 (Landscape) startup. 191

DN3xx, DN460, DN550, DNS560,
DN570, DN3000 (Color),
DN3000 (15-inch Black & White)
DN4000 (Color)

1280x1024 (Color Landscape) startup. 1280color

DNS80

1280x1024 (Black & White Landscape) | startup.1280bw

DN3000 (19-inch Black & White),
DN4000 (19-inch Black & White)

Displayless startup.spm
Domain Server Processors (DSPs)

Figure 3-2 shows a sample DM start-up script similar to
the one we provide with DN3000 nodes. The DM start—up
scripts for other nodes are similar.

startup, /sys/dm, default system startup command file for 1280x1024

Window positions for the DM’s input and output windows.
Do not comment these out.

(608,744)dr; (1023,799)cv /sys/dm/output
(556,744)dr; (608,799)cv /sys/dm/output;pb
(0,744)dr; (556,799)cv /sys/dm/input

The default Apollo compose key is F5. It is normally NOT enabled.
z To enable it, uncomment the following line.

;; cps /usr/apollo/bin/kbm -c f5

To change it to a different key, edit the previous line as appropriate.

Figure 3-2. A Sample DM Start-Up Script

Understanding Startup and Login 3-7

The DM start-up scripts that run on nodes that have dis-
plays contain a set of commands that instruct the Display
Manager to draw the initial display windows on the screen.
One of the windows contains the “login:” prompt.

These DM start—up scripts also let you enable a default
Apollo compose key, or to change it to another key. For
more information about this function, see Appendix F.

The startup.spm script used by DSPs is similar to the
other start-up scripts. However, since DSPs don’t have
displays, startup.spm does not contain commands for cre-
ating windows.

10. Once the DM start-up script finishes executing, the node
startup completes, and the system prompts you to log in.

Diskless Node Startup

3-8

The start-up sequence for diskless nodes is somewhat different
than the start-up sequence for disked nodes. A diskless node does
not have its own disk to store the operating system and other soft-
ware files it needs to run. Therefore, each time it starts up, the
diskless node must load parts of the operating system across the
network from its partner node. The diskless node also relies on its
partner for any utility programs and libraries it needs. Figure 3-3
presents a flowchart showing the start-up sequence for a diskless
node.

From your perspective as a user, starting up a diskless node is the
same as starting up a disked node; you turn the power on in normal
mode and wait for the log—in prompt to appear. However, the start—
up sequence that goes on internally is somewhat different. The de-
scriptions that follow explain each step in the diskless node start-up
sequence shown in Figure 3-3. Once you’ve read the descriptions,
go back and compare each step with the disked node start-up se-
quence described in the “Disked Node Startup” section.

Understanding Startup and Login

”1. MD starts

MD requests a partner

netman responds to request

MD loads netboot from partner

netboot loads operating system

. Operating system loads global librar-
ies from /etc/sys.conf

. Operating system starts init process

. init runs /etc/rc to start servers

init starts /etc/dm_or_spm

. /lete/dm_or_spm starts DM or SPM

. DM or SPM invoke start-up script

12. Start-up sequence complete

Figure 3-3. The Start-Up Sequence for a Diskless Node

Understanding Startup and Login 3-9

3-10

When you power on your node in normal mode (by fol-
lowing the instructions in your node’s operating guide), a
program called the Mnemonic Debugger (MD) begins exe-
cuting. The MD resides in the node’s boot PROM (Pro-
grammable Read-Only Memory).

Because a diskless node does not have a disk, the MD
cannot load sysboot and transfer control to it. Instead, the
MD must boot the system from another disked node in the
network. The MD then broadcasts a message across the
network asking for a partner node to volunteer the use of
its boot volume.

All nodes running the netman program receive these re-
quest messages (netman’s purpose is to respond to them).
In response to the diskless node’s request, netman on a
disked node checks the file /sys/met/diskless_list. This
file on the disked node contains a list of hexadecimal node
IDs for all nodes the disked node may offer partnership.

If the diskless list contains the ID of the diskless node re-
questing partnership, netman volunteers the node as a
partner. The first disked node to volunteer becomes the
partner of the diskless node. (It remains the diskless
node’s partner until the next time the diskless node
boots.) At this point, the diskless node displays the part-
ner node’s node ID for your information.

You can take a look at a sample diskless list by reading the
file /sys/net/sample_diskless_list. For a complete de-
scription of how to create a diskless list and set up partners
for diskless nodes, see Managing SysV System Software.

Once the diskless node finds a partner, the MD copies the
netboot program from the file /sys/net/netboot on the
partner node into the diskless node’s memory. The net-
boot program is a special version of sysboot that diskless
nodes use to boot the operating system across the network.
The MD, when finished loading netboot, transfers control
to it.

The netboot program, running on the diskless node, loads
the operating system from the partner node’s boot volume
into memory.

Understanding Startup and Login

The operating system reads the file /etc/sys.conf to load
global libraries.

The operating system runs /etc/init to start the init proc-
ess; /etc/init reads the file /etc/environ. The /etc/environ
file establishes the default log-in shell and default SYS-
TYPE for the node.

The /etc/environ file contains two lines, one for specifying
the environment (SysV, BSD, Aegis), and one for specify-
ing the SYSTYPE variable (sys5.3, bsd4.3). If the environ-
ment is SysV or BSD, the default log-in shell for the node
is /bin/sh (Bourne shell). If the environment is Aegis, the
default log-in shell is /com/sh (Aegis shell).

The init process runs the /etc/rc script to start the neces-
sary daemons. The /etc/rc file, which is normally a link to
‘node_data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke daemons
that must be invoked by the super-user (“root”). Any
programs started by /etc/rc inherit the SYSTYPE value
specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts
named /etc/rc.user (not run as “root”, but as “user”) and
/etc/rc.local. The rc scripts contain commands that start
various daemons. These server programs run regardless of
log-in and log-out activity and provide various system
services to the node. For example, the netman program
makes the node available as a host for diskless partners.
For a description of these and all of the Domain server
programs, see Managing SysV System Software.

If you want your node to automatically start any daemons,
there are two methods you can use. The method you use
depends on the types of servers you wish to run.

® To start servers such as netman or mbx_helper,
that do not have to run (and will not be run) with a
user ID of “root”, edit the /etc/rc.user file and re-
move the pound sign (#) from the command line
that invokes the server.

Understanding Startup and Login 3-11

3-12

10.

11.

® To start up UNIX daemons such as cron, inetd,
and Ipd, or the Network Computing System (NCS)
servers llbd and glbd (the location brokers), create
a file in the directory /etc/daemons that has the
same name as the server you wish to start. That is,
if you wish to run the llbd server, create the file
/etc/daemons/llbd (it doesn’t matter what’s in the
file, /etc/rc only looks at the file name). See Man-
aging the NCS Location Broker for more informa-
tion about NCS servers.

Note, however, that the system will not start any of these
servers until the next time the rc script is run. To do this,
you should shut down and restart your node. (See your
node’s operating guide for node startup and shutdown pro-
cedures.)

The /etc/init program reads the file /etc/ttys (this is nor-
mally a link to the file ‘node_data/etc/ttys) and starts the
/etc/dm_or_spm program associated with the display and
listed in the file. Any programs started by /etc/ttys inherit
the SYSTYPE value specified in the /etc/environ file.
Other lines in the etc/ttys file contain directives that start
getty on the tty lines for the node; see the /etc/ttys file for
further information.

The /etc/dm_or_spm program starts either:

® The Display Manager (DM) on nodes with dis-
plays.

® The Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network. (For more information about the
SPM, see Managing SysV System Software.)

The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 3-1
lists the different files used at startup. As shown in Table
3-1, the system chooses which file to execute according to
the type of node.

Since diskless nodes don’t have files of their own, the DM
or SPM must look to the partner node to find its start-up
script file. Just as on a disked node, the DM or SPM on a

Understanding Startup and Login

diskless node searches for the script file in the directory
‘node_data. Unlike a disked node, however, ‘node_data
for the diskless node points to /sys/node_data.node_id
directory on the partner’s disk. (The node_id suffix is the
hexadecimal node ID of your diskless node.)

NOTE: The tick character (‘) that precedes the
directory name is a special symbol that
returns a value for node_data. On
Apollo nodes, the tick character is lo-
cated on the same key as the tilde (-)
character. It is not to be confused with
the quote character (’), which is on the
same key as the double quotes (”).

12. Once the DM or SPM finds the diskless node’s DM start—
up script, the script executes, the node startup completes,
and the system prompts you to log in.

Figure 3-2 shows a sample DM start-up script similar to the one
we provide with DN3000 nodes. For information about this script
refer to the “Understanding the System at Login” section.

A single disked node can serve as the partner for several diskless
nodes. Each diskless node may need to use a “node-specific” boot
script to set up its own unique operating environment. Therefore,
the system uses the node_id suffix to denote a unique DM start-up
script location for each diskless node assigned to the partner.

At startup, if the partner does not have a ‘node_data directory set
up for the diskless node, netman creates one, copying it from a
template stored in the partner’s ‘node_data directory. The netman
program then copies the partner node’s DM start—up script file into
the diskless node’s ‘node_data directory. If you want the newly
created script to perform different operations at startup than its
partner, edit the script.

A major difference between the disked node and diskless node
start-up sequence is the step where the DM or SPM searches for
the node’s DM start-up script. Figure 3-4 summarizes this search.

Understanding Startup and Login 3-13

DM or SPM searches for
DM start-up script in
‘node_data

Search for the DM start-up
Is this script in the /sys/
a disked node? node_data.node_id
2 directory

Search for the DM
script in the directory,
/sys/node_data

Netman creates
node_data.node_id
The DM or SPM copies the script to it,
executes the script 1 then instructs the DM

or SPM to execute the
start-up script

Figure 3-4. The Start-Up Script Search Sequence

Understanding the System at Login

Once a node is up and running, you are ready to log in. At login,
the system executes a series of scripts that set up the working envi-
ronment for your log-in session. This section describes the se-
quence of steps the system performs at login. This section also ex-
plains how to create and modify scripts to tailor your log-in envi-
ronment. Figure 3-5 shows the log-in sequence for a node.

3-14 Understanding Startup and Login

. Operating system
verifies your account

Valid
ID and Display error message
password?

DM sets user-specific information
and initializes keyboard

. DM reads key definitions
from ~/user_data/key_defs.xxx

. DM executeslog-in start-up
script

. Start-up script executes
login_sh and startup_dm

6. Log-in sequence complete

Figure 3-5. The Log-In Sequence

The descriptions that follow explain each step in the log-in se-
quence shown in Figure 3-5.

Understanding Startup and Login 3-15

3-16

After you enter your username and password, the operat-
ing system verifies your account.

The system verifies your account by checking the site reg-
istry. If the username and password match a valid account
in the registry, the system executes the next step. If the
system cannot verify the account, the log-in attempt fails,
and the system displays a log—in error message in the DM
output window. For more information about user accounts
and registries, see Managing SysV System Software.

The DM sets your home directory from your account entry
in the registry and looks there for a .environ file. If found,
the DM sets the environment and then the SYSTYPE vari-
able; otherwise, the node defaults are used. The DM then
sets the variables SHELL, HOME, USER, LOGNAME,
PROJECT, ORGANIZATION, and TERM. If no SHELL
variable is specified in the registry entry, the node default
is used. Based on the environment, the DM loads base key
definitions, both std_keys.basic and either std_keys or
std_keys.unix.

The DM reads the file key_defs_8bit3 (for nodes with
Low-Profile Model II keyboards), and key_defs_8bit2
(for Low-Profile Model I keyboards). These files, located
in the user_data directory of your log-in home directory,
contain a record of any key definitions that you made the
last time you were logged in. By reading these files, the
DM carries over key definitions to the new log-in session.
These files are non-ASCII files; therefore, you cannot edit
them. The “Defining Keys” section in Chapter 4 describes
the key definition files in more detail.

The DM (on nodes with displays) executes the node’s
log—-in start-up script, which resides in one of the files
listed in Table 3-2. As shown in Table 3-2, the system
chooses which log-in start-up file to execute according to
the type of node you are using. Note that on DSPs, the
SPM does not execute a log-in start—up script.

The DM looks for log-in start-up scripts in two different
locations. First, it looks in ‘node_data, which refers to the
node’s specific /sys/node_data directory. (By default, no
log-in start-up script exists in ‘node_data; you must put
one there.) If the DM doesn’t find the log—in start-up

Understanding Startup and Login

script in ‘node_data, it executes one of the default log-in
start—up scripts that we supply in the directory /sys/dm.

Table 3-2. Node Log-In Start-Up Script Files

Node Type

Log-In Start-Up Scripts

1024x800 (Landscape)

D3xx, DN460, DN550, DN560,
DN570, DN3000 (Color),
DN3000 (15-inch Black &
White), DN4000 (Color)

1280x1024 (Color Landscape)
DN580

1280x1024 (B & W Landscape)

DN3000 (19-inch Black &
White), DN4000 (19-inch Black
& White)

startup_login. 191

startup_login.1280color

startup_login.1280bw

5. As shown in Figure 3-6, the command that creates the
log—in shell process is not commented out in the script.
You may leave it in, comment it out by preceding it with a
pound sign (#), or change it to draw the process’s windows
in a different location. The DM executes the login_sh
command. The login_sh command executes your log-in
shell based on the current value of SHELL, as set by the

DM.

startup_login (the per_login startup file in ‘node_data or /sys/dm

main shell whose shape is generally agreeable to users of this node
(0,300)dr: (700,700)cp /sys/dm/login_sh

and the user’'s private dm command file from his home

directory’s user_data sub-directory. Personal key_defs file is also

kept in user_data by DM.
cmdf user_data/startup_dm.1280bw

Figure 3-6. A Sample DM Log-In Start-Up Script

Understanding Startup and Login 3-17

3-18

This log-in shell looks for a shell log-in script in your
home directory. If this script exists, the shell executes it to
set up your initial shell environment. The Bourne shell and
the Korn shell look for a script named ~/.profile (see
Chapters 8 and 9). The C shell looks for a script named,
~/.login (the C shell also executes a script named
~/.cshrc; see Chapter 10 for more information about this
script).

6. At this point, the log-in sequence is complete.

You may want to create a DM log-in start-up script in ‘node_data
in cases where you don’t want the DM to execute the default ver-
sion. For example, a diskless node, by default, uses one of the
log-in start—up scripts located in its partner’s /sys/dm directory. If
you want the diskless node to execute its own unique DM log-in
start-up script, you can create a copy in the diskless node’s
‘node_data directory. For more information about ‘node_data for
diskless nodes, refer back to the “Diskless Node Startup” section.

The system uses log—in start—up scripts to start processes that you’ll
need while you are logged in to your node. The log-in start-up
scripts contain commands to execute a log-in shell, and to run
your personal DM start-up script. For example, the log-in start—
up scripts that we supply for nodes with displays create a process
running the shell program. When you log out, the DM stops the
shell process and deletes its pads and windows from the display.

If you wish to execute certain commands or processes once, when
you log in, then you should create a ~/.profile or ~/.login file
containing the commands. This file is only executed by a log-in
shell. If you have commands that you wish to execute every time
you start a new SysV shell, you should create an additional shell
start—up file. For more information about shell start-up files, see
Chapters 7, 8, 9, and 10.

The last line in the sample script shown in Figure 3-6 contains the
DM command cmdf (command file). This command invokes an-
other script, startup_dm.1280bw. The DM attempts to execute
this additional script as part of the log—in sequence.

Understanding Startup and Login

If no pound sign precedes the cmdf command line, the DM looks
in the user_data subdirectory of your log-in home directory for the
specified file. If the DM finds the file, it executes the script; other-
wise, it displays an error message in the DM output window when
the log-in sequence completes.

This script, called the DM start—up script, is an optional script that
you create to execute additional DM commands during login. For
example, you may want to include commands that make specific
key definitions or run specific programs. Figure 3-7 shows a sample
DM start-up script.

user_data/startup_dm (in login home directory)

Some personal preference keys:

#

Define < F4 > and < F5 > for easy Pascal indenting and undenting:
#

kd F4 t1;s/% /1 ke
kd F5 t1;s/%/ / ke
Set tab every 8 spaces:
#

ts 8 -r

Set window default location
(0,770)dr;(600,110) wdf1

Build a Korn shell window
#
(0,500)dr; (799,955) cp /bin/ksh ~-DENV=~/.kshrc

Figure 3-7. A Sample DM Start-Up Script

Remember, we don’t supply a DM start—up script or a shell log-in
script as part of the system; if you want to use a DM start-up script
or a shell log—in script, you must create one. If you do create a DM
start-up script, remember to create a file that has the same file-
name as the file specified with the cmdf command. For example,
the cmdf command in Figure 3-6, specifies the filename
startup_dm.1280bw. The suffix 1280bw is the suffix for files used
by nodes with 19-inch monochromatic landscape displays, like the
DN3000.

Understanding Startup and Login 3-19

Logging In

This section describes the various log-in procedures you can use to
log in as user, change your password, home directory, default shell,
and user information. It also explains how to log in to a Domain
Server Processor (DSP) and how to log in over a dialup line.

Logging In to a Default Account

The registry, described earlier in the “Understanding the System at
Login” section, contains a default account named user.none.none,
or simply user. This default account allows any user anywhere in
the network to log in to an Apollo node.

To use the default account, log in with the username user:

login: wuser

NOTE: Your system administrator may have
added a password to this account. In this
case, ask him or her about it.

Changing Your Password

3-20

You can change your password anytime after you log in by using the
passwd (change log-in password) command as follows:

$ passwd username

The passwd command prompts for the old password and then for
the new one. For verification purposes, you are asked to type the
new password twice.

Use the new password the next time you log in. If you want to
maintain a secure account, avoid using obvious passwords such as
anyone’s name or your initials. Also, it is best to select a password
that is at least six characters long. If security is not a high priority,
you can use a blank password. (However, blank passwords destroy
system security.)

Understanding Startup and Login

The passwd command first writes to the registry; then, the system
builds the /etc/passwd file from the information supplied to the
registry. Only the owner of the account or the super-user may
change a password. The super-user does not need to know the
password in order to change it; anyone else does.

Changing Your Home Directory

Each system account has.a directory associated with it, called the
home directory. Anytime you log in, the system sets your initial
working directory to your home directory. You can change your
home directory by using edrgy (edit registry) command as follows:

$ /etc/edrgy
edrgy => change username -h new_pathname
edrgy => quit

When you enter the pathname of your new home directory, the
system attempts to update the account in your site registry direc-
tory. The registry database contains information about your ac-
count, such as your username, password, and home directory. By
updating the registry, the system stores your new home directory for
logging in later. See Managing SysV System Software for more in-
formation about system registries; see Managing SysV System Soft-
ware for more information about the edrgy command.

Changing Your Default Log-In Shell

You can change your default shell after logging in by specifying the
chsh command using the following format:

$ chsh username

Unless you are the super—user, the new log—in shell must be one of
the approved shells listed in the /etc/shells file. If /etc/shells does-
n’t exist on your node, the only shells that may be specified are
/bin/sh, /bin/csh, /bin/ksh, and /com/sh (assuming that you have
a /com directory on your node). The super-user may change any-
one’s log-in shell; other users may only change their own log-in
shell.

Understanding Startup and Login 3-21

Changing Your User Information

Information concerning your username is kept in the /etc/passwd
file. On Domain/OS systems, the /etc/passwd file is a typed file that
is generated by the registry daemon automatically. If user informa-
tion in your registry has not been made read-only, it is possible to
change your full name. To do this, you must execute the chfn
(change password file information) command as follows:

$ chfn username

Unless you are the super-user, you may only change your own user-
name.

Logging In to a Domain Server Processor (DSP)

Unlike user nodes, a Domain Server Processor (DSP) doesn’t have
a keyboard or display. Therefore, you must log in to it from a user
node in the network.

As described earlier in the “Disked Node Startup” section, when
you start up a DSP, the system starts a program called the Server
Process Manager (SPM). The SPM makes it possible for you to
create a process on the DSP, log into the process, and execute pro-
grams and commands while you sit at a user node in the network.
For a complete description of the procedure for logging into a DSP,
see the operating guide for your particular processor.

Logging In Over a Dialup Line

3-22

When logging in over a dialup line, the process is somewhat differ-
ent from that mentioned earlier in this chapter. Figure 3-8 illus-
trates this process.

NOTE: If, after you get carrier, the login prompt
appears scrambled, it is likely that the
baud rate on your terminal is incorrect.
To correct this, try pressing <RETURN>
once or twice. If this fails, send a
“break” from your terminal; this will
force a baud rate change.

Understanding Startup and Login

1. init spawns getty
at node startup

getty waits for carrier
detect and prompts for
login

login program prompts
for a password and a
dialup password

login program execs the
user shell as a log-in
shell

5. Follow log-in sequence
described in Fig. 3-5

6. Upon user logout, init
respawns getty on the
line

Figure 3-8. Login Over a Dialup Line

oo
oa

Understanding Startup and Login 3-23

Chapter 4
Using the Display Manager

By default, the Display Manager (DM) is the window manager
program that controls your node’s display. Using DM commands,
you can instruct the DM to perform specific display management
operations, such as: moving the cursor around the display, creating
and controlling processes, creating and manipulating pads and win-
dows, and modifying display characteristics.

This chapter explains the functions of the DM and describes how to
specify DM commands. It also describes how to define keys to per-
form DM operations. Chapter S describes how to use the DM to
perform specific display-management tasks.

Using DM Commands

DM commands enable you to control your node’s display by in-
structing the DM to perform specific display management opera-
tions. To use a DM command, you normally perform two basic
steps:

1. Move the cursor to the spot on the display where you want
the DM operation performed.

2. Specify a DM command to execute the operation.

Using the Display Manager 4-1

4-2

You indicate a spot on the display either by moving the cursor to
the desired spot, o