
Using Your
Aegis
Environment
Ol1021-AOO

apollo .

Using Your
Aegis Environment

Apollo Computer Inc.
330 Billerica Road

Chelmsford. MA 01824

Order No. 011021-AOO

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc.,
Chelmsford, Massachusetts. Unpublished -- rights reserved under the
Copyright Laws of the United States. All Rights Reserved.

First Printing: July, 1988

This document was produced using the Interleaf Technical Publishing Software (TPS)
and the InterCAP Illustrator I Technical illustrating System, a product of InterCAP
Graphics Systems Corporation. Interleaf and TPS are trademarks of Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

ETHERNET is a registered trademark of Xerox Corporation.

Personal Computer AT and Personal Computer XT are registered trademarks of Inter
national Business Machines Corporation.

UNIX is a registered trademark of AT&T in the USA and other countries.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Do
main/C, Domain/ComController, Domain/CommonLlSP, Domain/CORE, DomainlDe
bug, Domaln/DFL, DomainlDlalogue, Domain/DQC, Domain/IX, Domain/Laser-26,
Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain X.2S,
DPSS, DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel,
Network Computing System, Network License Server, Open Dialogue, Open Network
Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super Workstation,
Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trade
marks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other
information contained in this publication without prior notice, and the reader should in
all cases consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC.
SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REP
RESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICA
TION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE , SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING
BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATING TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COM
PUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POS
SIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR
ITS LICENSORS.

Preface

Using Your Aegis Environment provides detailed information about
the Aegis ™ environment. This manual describes how to use the sys
tem to perform various computing tasks. You should already have
read Getting Started with Domain/OS (002348), the beginner's
guide to using Aegis software on an Apollo@ node. If so, you know
how to use the keyboard and di~play, read and edit text, create and
execute programs, and request system services using interactive
commands. A working knowledge of these tasks is necessary to un
derstand the concepts presented in this more advanced user's
guide.

The manual is organized as follows:

Chapter 1

Chapter 2

Provides an overview of Domain@/OS.
Describes how the system organizes ob
jects in the system naming tree, and
how to use pathnames to identify these
objects.

Describes how the system functions at
startup and login. Describes how to
create, modify, and organize the vari
ous scripts that set up your node's par
ticular operating environment. The
chapter also describes procedures for
changing your password and log-in
home directory.

Preface iii

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

iv Preface

Explains the functions of the default
window manager, the Display Manager
(DM). Describes how to use DM com
mands, and shows how to define keys
to perform DM functions.

Describes how to use the DM to control
your node's display. Each section de
scribes a set of related display manage
ment tasks and the DM commands you
use to perform these tasks.

Describes how to use the DM to control
the characteristics of edit pads and how
to edit text. Each section in this chap
ter describes a set of editing tasks and
the DM commands you use to perform
these tasks.

Describes the command shell environ
ment that processes Aegis shell com
mands. The chapter includes informa
tion on shell commands, and on con
trolling command input and output.
This chapter also describes the com
mand line parser, and how to use path
name wildcards.

Describes how to use shell commands
to manage files on the system.

Describes how to use shell commands
to manage directories on the system.

Describes how to use shell commands
to manage links on the system.

Describes Access Control Lists (ACLs)
and how to use them to control access
to files and directories.

Describes how to write shell scripts us
ing Aegis shell commands, operators,
and expressions.

Related Manuals

If you are a new user, read Getting Started With Domain/OS
(002348). This tutorial manual explains how to log in and out,
manage windows and pads, and execute simple commands. The
manual presents user-oriented examples and includes a glossary of
important terms.

The Aegis Command Reference (002547) contains detailed descrip
tions of all Aegis commands and utilities. The Domain/OS Calls
Reference (007196) describes the system calls available to Aegis us
ers. The Domain Display Manager Command Reference (011418)
contains information about the use of the default Display Manage
ment software. Each description in these reference manuals is ar
ranged for quick and easy access, and most provide examples.

For greater detail on using Aegis system calls to do programming
tasks, refer to Programming with Domain/OS System Calls
(005506).

The Domain/OS Programming Environment Reference (011010)
describes the support tools and utilities available to Aegis users.
You may also need to consult the Domain Distributed Debugging
Environment Reference (011024) if you plan to use Domain/OS de
bugging tools for your programming tasks.

For information on how to create the network environment, protect
the network software, create servers, and maintain and
troubleshoot the network, see Managing Aegis System Software
(010852), Planning Domain Networks and Internets (009916), and
Managing Domain/OS and Domain Routing in an Internet
(005694).

As a aid to locating on-line information using Domain/Delphi, you
should read Retrieving Information with DomainlDeJphi (011270).
To learn more about other Apollo manuals, consult the Domain
Documentation Master Index (011242) and the Domain Documen
tation Quick Reference (002685).

The /sys/help file named manuals lists current reVISions of all
manuals for this software release. To access this file, see the "Get
ting Help" section on the following page.

Preface v

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To
make it easy for you to communicate with us, we provide the
Apollo Product Reporting (APR) system for comments related to
hardware, software, and documentation. By using this formal
channel, you make it easy for us to respond to your comments.

You can get more information about how to submit an APR by
consulting the Aegis Command Reference. Refer to the mkapr
(make apollo product report) shell command description. You can
view the same description online by typing:

$ help mkapr

Alternatively, you may use the Reader's Response Form at the back
of this manual to submit comments about the manual.

Getting Help

For information about available commands, system calls, and func
tions, press <HELP>. Then, at the prompt, type the name of the
command, system call, or function, for which you need more infor
mation, as shown in the example below:

Help on: name

This reads the appropriate file in the Isys/help directory, displaying
on-line versions of reference material from the Aegis Command
Reference, the Aegis Programmer's Reference, and Managing Aegis
System Software. A read window containing a formatted version of
the manual page(s) on the specified name is opened and remains
open until you close it by pressing <EXIT>. While the manual page
is displayed, you may continue to execute shell commands.

vi Preface

Documentation Conventions

Unless otherwise noted, this manual uses these symbolic conven
tions:

literal values

user-supplied values

example user input

output

{ }

< >

CTRLI

Bold words or characters in formats and
command descriptions represent com
mands or keywords that you must use
literally. Pathnames are also in bold.
Bold words in text indicate the first use
of a new term.

Italic words or characters in formats
and command descriptions represent
values that you must supply.

In examples, information that the user
enters appears in color.

Information that the system displays ap
pears in this typeface.

Square brackets enclose optional items
in formats and command descriptions.

Braces enclose a list from which you
must choose an item in formats and
command descriptions.

A vertical bar separates items in a list of
choices.

Angle brackets enclose the name of a
key on the keyboard.

The notation CTRLI followed by the
name of a key indicates a control char
acter sequence. Hold down <CTRL>
while you press the indicated key.

Horizontal ellipsis points indicate that
you can repeat the preceding item one
or more times.

Preface vii

---88---

viii Preface

Vertical ellipsis points mean that irrele
vant parts of a figure or examples have
been omitted.

This symbol indicates the end of a
chapter.

Content:

Chapter 1 Introducing Domain/OS

Overview 1-2
The Naming Tree 1-4
Using Pathnames " 1-6

The Working Directory 1-9
The Naming Directory " 1-10
The Parent Directory .. 1-12
Pathname Summary. .. 1-13

Chapter 2 Understanding Startup and Logir

Understanding the System at Startup. 2-2
Disked Node Startup. .. 2-2
Diskless Node Startup 2-8

Understanding the System at Login 2-14
Logging In 2-19

Logging In to a Default Account 2-19
Changing Your Password. 2-20
Changing Your Home Directory 2-21
Logging In to a Domain Server Processor (DSP) . 2-21

Contents ix

Chapter 3 Using the Display Manager

Using DM Commands 3-1
DM Command Conventions 3-3
Using DM Special Characters 3-4
Defining Points and Regions 3-5
Specifying Points on the Display , 3-5

Using Keys to Perform DM Functions. 3-9
Keyboard Types and Key Definitions 3-10
Key Naming Conventions 3-13
Defining Keys 3-15
Deleting Key Definitions 3-18
Displaying Key Definitions 3-19
Controlling Keys from Within a Program 3-19

Using DM Command Scripts 3-20

Chapter 4 Controlling the Display

Controlling Cursor Movement 4-2
Creating Processes .. 4-4

Creating a Process with Pads and Windows. 4-5
Creating a Process without Pads and Windows ... 4-7
Creating a Server Process 4-7

Controlling a Process. .. 4-8
Stopping a Program or Process 4-9
Suspending and Resuming a Process. 4-9

Creating Pads and Windows .. 4-9
DM Rules for Defining Window Boundaries 4-10
Creating an Edit Pad and Window 4-12
Creating a Read-Only Pad and Window 4-13
Copying a Pad and Window 4-14

Closing Pads and Windows .. 4-15
Managing Windows .. 4-16

Changing Window Size 4-17
Moving a Window 4-19

x Contents

Pushing and Popping Windows 4-20
Changing Process Window Modes. 4-21
Defining Default Window Positions. 4-24
Responding to DM Alarms 4-25

Moving Pads Under Windows 4-26
Moving to the Top or Bottom of a Pad. 4-27
Scrolling a Pad Vertically 4-27
Scrolling a Pad Horizontally 4-29
Saving a Transcript Pad in a File 4-29

U sing Window Groups and Window Icons 4-30
Creating and Adding to Window Groups. 4-30
Removing Entries from Window Groups. 4-31
Making Windows Invisible. 4-32
Using Icons. .. 4-32
Setting Icon Default Position and Offset 4-35
Displaying the Members of a Window Group 4-36

Chapter 5 Editing a Pad

Setting Edit Pad Modes 5-2
Setting Read/Write Mode 5-3
Setting Insert/Overstrike Mode 5-3

Inserting Characters 5-4
Inserting a Text String. .. 5-5
Inserting a Newline Character. 5-5
Inserting a New Line. .. 5-5
Inserting an End-of-File Mark. 5-6

Deleting Text. .. 5-6
Deleting Characters 5-7
Deleting Words. .. 5-7
Deleting Lines 5-8

Defining a Range of Text .. 5-8
Copying. Cutting. and Pasting Text 5-10

Using Paste Buffers 5-10
Copying Text 5-11
Copying a Display Image .. 5-13
Cutting Text. .. 5-13

Contents xi

Pasting Text 5-14
Using Regular Expressions ;..... 5-15

ASCII Characters. .. 5-16
Beginning of Line (%) • 5-16
End of Line ($) 5-16
Single Character Wildcard (1) 5-17
Expression Wildcard (*) 5-17
Strings and Character Classes 5-17
Escape (@) .. 5-19
Text Pattern Matching with {expr} 5-20

Searching for Text 5-20
Repeating a Search Operation. 5-22
Canceling a Search Operation. 5-23
Setting Case Comparison. 5-23

Substituting Text 5-23
Substituting All Occurrences of a String. 5-24
Substituting the First Occurrence of a String. 5-25
Changing the Case of Letters 5-26

Undoing Previous Commands 5-26
Updating an Edit File 5-27

Chapter 6 Using the Aegis Shell

Shell Commands 6-1
Command Line Format 6-2
Standard Command Options 6-4
Command Search Rules 6-5
Special Characters 6-7

Creating and Invoking Shells 6-7
Setting Up the Initial Shell Environment 6-7

Controlling Input and Output 6-8
Reading Input from a File 6-10
Writing Output to a File 6-11
Appending Output to a File 6-11
Redirecting Output to Other Commands 6-12

The Command Line Parser 6-13
Using Query Options 6-14

xii Contents

Reading Data from Standard Input 6-15
Reading Pathnames from Standard Input 6-16
Using Pathname Wildcards 6-17
Running Programs in a Background Process 6-20

Chapter 7 Managing Files

Moving Around the Naming Tree 7-2
Setting the Working Directory. 7-2
Setting the Naming Directory 7-3

Creating Files. .. 7-5
Renaming Files 7-6
Copying Files. .. 7-7
Moving Files 7-9
Appending Files 7-10
Printing Files 7 -11

Using the prf Command 7-11
Using the Print Menu Interface 7-13

Displaying File Attributes 7-15
Deleting Files .. 7 -16
Copying the Display to a File. 7-17
Comparing ASCII Files. .. 7-18

Chapter 8 Managing Directories

Creating Directories. .. 8-2
Renaming Directories 8-2
Copying Directory Trees , 8-3
Replacing Directory Trees. .. 8-5
Merging Directory Trees .. 8-7
Comparing Directory Trees .. 8-8
Displaying Directory Information 8-9
Deleting Directory Trees .. 8-10

Contents xiii

Chapter 9 Managing Links

Creating Links. .. 9-2
Displaying Link Resolution Names. 9-3
Redefining Links 9-3
Renaming Links. .. 9-4
Copying Links 9-5
Deleting Links. .. 9-6

Chapter 10 Controlling Access to Files and
Directories

ACL Structure. .. 10-2
The Subject Identifier (SID) 10-2
Access Rights 10-4
Searching Directories and Deleting Objects 10-6

Managing ACLs .. 10-7
Displaying ACLs 10-7
Editing ACLs .. 10-8

Rules to Specify ACL Entries. 10-10
Adding ACL Entries 10-14
Changing Entry Rights. .. 10-14
Adding Entry Rights .. 10-15
Deleting Entry Rights .. 10-16
Deleting ACL Entries. .. 10-16
Setting Required Entries 10-17

Copying ACLs .. 10-17
Initial ACLs .. 10-18

Editing Initial ACLs .. 10-20
Copying Initial ACLs 10-21

Protected Subsystems 10-22
How Protected Subsystems Work 10-22
Creating a Protected Subsystem 10-24
Assigning Protected Subsystem Status. 10-25

xiv Contents

Chapter 11 Writing Shell Scripts

Creating Your Own Commands 11-1
Creating Scripts 11-2
Passing Arguments to Scripts 11-4
U sing Quoted Strings 11-7
Using In-Line Data 11-8
Executing DM Commands from Shell Scripts 11-9
Debugging Shell Scripts..................... 11-10

Using Expressions 11-11
Operands in Expressions 11-12
Mathematical Operators .. 11-14
String Operators. .. 11-14
Comparison Operators .. 11-16
Logical Operators .. 11-16

Shell Variables .. 11-17
Defining Variables 11-17
Using Shell Variables. .. 11-19
Variable Commands , 11-20
Defining Variables Interactively 11-21
Using Active Functions 11-23

Controlling Script Execution. 11-25
Using the If Statement. .. 11-27
Using the While Statement 11-28
Using the For Statement 11-30
Using the Select Statement 11-32

Contents xv

Appendix A: Initial Directory and File Structure

Appendix B: Summary of Predefined Standard
Key Definitions

Operating Considerations for Multinational Keyboards B-8
Arrangement of Multinational Keyboard Keys B-9
Key Interpretation During Service Mode B-9

Appendix C: Sample Shell Scripts

Script 1: Prompting For and Checking a Target Node
Name " ... C-2

Script 2: Generic Routine Prompting for a Yes or
No Answer C-3

Script 3: Disk Cleanup Utility C-4
Script 4: Printing a Directory's Most Recent Backup

Activity C-6
Script 5: Resolving Links to Find an Ultimate

Pathname C-9

Appendix D: Composing European Characters

The Compose Function .. D-1
Composing European Characters D-1
Typing European Characters D-3
Printing Latin-l Characters D-3
Restrictions on Using Latin-l Characters D-4
Character Compose Sequences D-4

xvi Contents

Figures

1-1 A Simple Domain/OS Network. 1-2
1-2 A Sample Naming Tree. 1-4
1-3 A Sample Path through the Naming Tree ... 1-7
1-4 A Sample Path Beginning at the Node Entry

Directory " 1-8
1-5 A Sample Path Beginning at the Current

Working Directory " 1-10
1-6 A Sample Path Beginning at the Current

Naming Directory. .. 1-11
1-7 A Sample Path Beginning at the Parent

Directory .. 1-12

2-1 The Start-Up Sequence for Disked Nodes. .. 2-3
2-2 A Sample Start-Up Script " 2-7
2-3 The Start-Up Sequence for a Diskless Node. 2-9
2-4 The Start-Up Script Search Sequence 2-14
2-5 The Log-In Sequence 2-15
2-6 A Sample OM Log-In Start-Up Script 2-17
2-7 A Sample OM Start-Up Script " 2-19

3-1 Invoking a OM Command Interactively 3-3
3-2 Defining a Display Region 3-8
3-3 Key Names for the Low-Profile Keyboards .. 3-11

4-1 A Process Running the Aegis Shell " 4-6
4-2 Creating an Edit Pad and Window 4-13
4-3 Copying a Pad and Window 4-14
4-4 Growing a Window Using Rubberbanding ... 4-18
4-5 Pushing and Popping Windows 4-20
4-6 Process Window Legend 4-22
4-7 Location of Pad Scroll Keys 4-28
4-8 Default Icon for Shell Process Windows. 4-33

Contents xvii

5-1 The Edit Pad Window Legend 5-2
5-2 Defining a Range of Text with <MARK> 5-9
5-3 Copying Text with the xc -r Command 5-12

6-1 The Aegis Shell Process. 6-2
6-2 Shell Command Line Components 6-3
6-3 Sample Shell Start-Up Script 6-8

7-1 The Print Menu. .. 7-13
7-2 Specifying a Filename on the Print Menu ... 7-14
7-3 Comparing Two ASCII Files. 7-18

8-1 Sample Directory Tree 8-4
8-2 Copying a Directory Tree 8-5
8-3 Replacing a Directory Tree 8-6
8-4 Two Sanple Directories 8-8
8-5 Comparing Directory Trees 8-9
8-6 Deleting a Directory Tree 8-11

10-1 Structure of an ACL Entry 10-2
10-2 Sample ACL Entries 10-3
10-3 Sample Extended ACL Entries. 10-4
10-4 Sample ACL Display 10-8
10-5 Initial ACLs for Files and Directories. 10-19
10-6 Controlling Access to Protected Subsystem

Files 10-23
10-7 Sample of a Protected Subsystem Transcript. 10-27

11-1 Flow of Execution in a Simple Script. 11-25
11-2 Flow of Execution with a Conditional

Statement 11-26

A-1 The Node Entry Directory (I) and
Subdirectories. .. A-2

A-2 The System Software Directory (/sys) A-3
A-3 The Display Manager Directory (/sys/dm) . .. A-4
A-4 The Network Management Directory (/sys/net) A-5

B-1 Multinational Keyboard Numeric Keypad B-9

xviii Contents

Tables

1-1 Pathname Symbols " 1-9

2-1 Node DM Start-up Script Files 2-7
2-2 Node Log-In Start-Up Script Files '" 2-17

3-1 Ranges for Coordinate Values. 3-7
3-2 Default Mouse Key Functions. 3-10
3-3 Key Definition Filenames. 3-12
3-4 Key Naming Conventions. 3-14

4-1 Cursor Control Commands 4-3
4-2 Commands for Creating Processes 4-5
4-3 Commands for Controlling a Process 4-8
4-4 Commands for Creating Pads and Windows.. 4-10
4-5 Commands for Closing Pads and Windows .. 4-15
4-6 Commands for Managing Windows 4-17
4-7 Process Window Modes 4-22
4-8 Commands for Moving Pads. 4-26
4-9 Commands for Controlling Window Groups

and Icons 4-30
4-10 Window Paste Buffers 4-37

5-1 Commands for Setting Edit Modes. 5-2
5-2 Commands for Inserting Characters 5-4
5-3 Commands for Deleting Text 5-7
5-4 Commands for Copying, Cutting, and Pasting

Text 5-10
5-5 Commands for Searching for Text 5-21
5-6 Commands for Substituting Text. 5-24

6-1 Standard Aegis Shell Command Options 6-4
6-2 110 Control Characters 6-10
6-3 Command Line Parser Options " 6-14
6-4 Command Query Responses 6-15
6-5 Summary of Pathname Wildcards 6-17

Contents xix

7-1 Commands for Setting the Working and Naming
Directory 7-2

7-2 Commands for Managing Files 7-4
7-3 Shell Commands Submenu Items 7-14

8-1 Commands for Managing Directories 8-1

9-1 Commands for Managing Links 9-1

10-1
10-2
10-3
10-4

10-5

11-1
11-2
11-3
11-4
11-5

Access Rights for Files and Directories
Summary of Commands for Editing ACLs .. .
Class Names for Commonly Assigned Rights
Summary of Commands for Editing and
Copying Initial ACLs
Options for Copying Initial ACLs

Shell Parsing Operators
Script Verification Options
Summary of Expression Operators
Rules for Assigning Variable Types
Variable Commands

10-6
10-10
10-13

10-19
10-21

11-3
11-10
11-13
11-18
11-21

B-1 Controlling the Cursor B-2
B-2 Creating Processes B-3
B-3 Controlling Processes B-3
B-4 Creating Pads and Windows B-3
B-5 Closing Pads and Windows B-4
B-6 Managing Windows B-4
B-7 Moving Pads. .. B-5
B-8 Controlling Window Groups and Icons B-6
B-9 Setting Edit Pad Modes B-6
B-10 Inserting Characters B-6
B-11 Deleting Text B-7
B-12 Copying, Cutting, and Pasting Text. B-7
B-13 Commands for Searching for Text B-8
B-14 Commands for Substituting Text. B-8

D-1 Compose Sequences for Latin-1 Characters D-4

xx Contents

Chapter 1

Introducing Domain/OS

Domain/OS is an operating system that supports a high-speed com
munications network connecting two or more of our computers,
called nodes. Each node loads programs into its own memory and
uses the computing functions of its own central processing unit
(CPU). Because Domain/OS enables nodes to share information,
you can log into any node and access information stored anywhere
in the network.

Many of the operations you'll perform on the system involve the
use of objects (files, directories, and links) that store information
such as programs, data, or text. Before you can work with these ob
jects, you must understand how the system organizes and identifies
them.

This chapter describes Domain/OS, how it organizes objects in the
system naming tree, and how to use pathnames to identify these ob
jects.

Introducing Domain/OS 1-1

Overview

Domain/OS runs on a physical network in which member nodes can
load data from the network into memory just as they would from
their own disks. Let's take a look at how nodes use the system to
share information. Figure 1-1 shows a simple network composed of
three nodes and two disks.

node_a
(Diskless)

Figure 1-1. A Simple Domain/OS Network

Domain/OS makes the information on all disks available to any
node in the network. For example, in Figure 1-1, node_c can ac
cess information stored on its own disk, as well as information
stored on the disk connected to node_b. Although node_a doesn't
have its own disk, it can, via the network, access information stored
on the disks connected to node_b or node_c.

1-2 Introducing Domain/OS

Each node in the network requires the use of at least one disk,
called a boot volume, that contains the operating system and other
system software it needs to run. Some nodes, called disked nodes,
are physically connected to the disk that they use as the boot vol
ume. Other nodes, called diskless nodes, share the boot volume of
some other disked node in the network, called a network partner.
In Figure 1-1, node_b and node_c are disked nodes. Because
node_a is a diskless node, it must use either node_b or node_c as
its partner.

To run in the network, a diskless node must have a network part
ner. The network partner's disk provides all of the necessary oper
ating system and support software for the diskless node. Because a
diskless node relies on its partner for system software, it can oper
ate only when the partner node is operating. If the partner node is
removed from the network while the diskless node is running, the
diskless node will crash.

The user interface on each node, whether disked or diskless, is
made up of two main programs: the Display Manager (DM) and
the shell.

The DM is the system program that controls your node's display
and enables you to create processes. The DM responds to DM
commands that you type in the DM command input pad of your
display. Later in this manual, we'll describe your node's display en
vironment and explain how to use the DM to control this environ
ment.

The shell is the program that you use to perform more traditional
computing operations such as managing files and compiling pro
grams. The Aegis environment uses the Aegis shell, which responds
to commands that you type in the shell process's command input
pad. Each command invokes a different utility program that per
forms a specific computing operation. This manual describes the
shell program and the shell commands you use to perform standard
computing operations.

Introducing Domain/OS 1-3

The Naming Tree

To make information available to all the nodes in the network, Do
main/OS organizes objects in a hierarchical structure called a nam
ing tree. The naming tree serves as a type of map that the system
uses to keep track of where objects reside in the network. To access
an object, you refer to its location in the naming tree. Figure 1-2
shows a sample naming tree.

Figure 1-2. A Sample Naming Tree

The double slashes (II) in Figure 1-2 represent the top level of the
naming tree, the network root directory. Each node maintains its
own copy of the network root directory, which contains the name of
each node entry directory the node can access. Figure 1-2 shows
a network root directory containing the names of two node entry di
rectories: node_b and node_c.

1-4 Introducing DomainlOS

Each disked node in the network has a node entry directory name
associated with it. This name refers to the branch of the naming
tree that resides on its disk. Since diskless nodes don't have disks,
they use the node entry directory of their partner. In Figure 1-2, all
objects under the node entry directory node_b reside on the disk
node_b, while all objects under the node entry directory node_c
reside on the disk node c.

Entry directories contain one or more upper-level directories. An
upper-level directory is one level below the entry directory and
normally serves as the main directory for a branch of related ob
jects. For example, the /sys directory that we supply is an upper
level directory that contains many of the system objects that make
up the operating system. (Appendix A illustrates how the system or
ganizes the software we supply with your node.) An upper-level di
rectory can also serve as a user's main directory for storing files.

In Figure 1-2, the directories owner and user_l are upper-level
directories, one level below the entry directory node_b. The direc
tory owner serves as the main directory for all objects that belong
to the owner of the node. The upper-level directory user_l is the
main directory for the user of a diskless node (node_a) that uses
node_b as its entry directory. The directory user serves as the main
directory for the user on node_c.

In summary, the network root directory contains the names of node
entry directories in the network. The system uses your node's net
work root directory to determine which node entry directories in
the network it can access. Each node entry directory contains one
or more upper-level directories. An upper-level directory serves as
the main directory for a group of related objects.

Your node can access only the node entry directories whose names
appear in the local copy of the network root directory. To keep
your local copy of the network root directory up to date, you should
catalog new disked nodes as they're added to the network. To
catalog new nodes, use the shell command ctnode (catalog node)
described in the Aegis Command Reference.

Some network sites use ns_helper (naming server helper) to main
tain a current network root directory. If this applies to your site,
you needn't use ctnode to catalog nodes; ns_helper does it for you.
Ask your system administrator for more information. Managing
Aegis System Software describes ns_helper and explains how to
catalog nodes to update the network root directory.

Introducing Domain/OS 1-5

Using Pathnames

The system identifies each object in the naming tree by its unique
location. Whenever you specify a command to create or access an
object, you also specify a path name that points to the object's loca
tion in the naming tree. The pathname tells the system what path to
follow when searching for an object.

The commands you use to create and manage objects require you
to specify a pathname as a command argument. When you invoke a
command, the command specifies the operation, and the pathname
tells the system where in the naming tree to perform it.

For example, the following shell command deletes the file memo in
the naming tree shown in Figure 1-3:

$ dlf IInode_b/user_lImemo

'T
command

I
pathname

The shell command dlf (delete file) tells the system to delete the
file at the location specified by the pathname. Figure 1-3 shows the
path the system follows to the file.

The pathname directs the system to:

1. Start at the network root directory (1/).

2. Follow the path through the entry directory, node_b, and
the subdirectory user_I.

3. Stop at the file named memo.

1-6 Introducing Domain/OS

Figure 1-3. A Sample Path through the Naming Tree

When the system searches for a location in the naming tree, it be
gins its search at some point in the tree and follows a path to the lo
cation. The pathname in the previous examples explicitly specified
the network root directory as the starting point for the system's
search through the naming tree. (The double slashes (II) at the be
ginning of the pathname specify the network root directory.) This
type of pathname, called an absolute pathname, tells the system
the full path from the network root directory to the final location.

You don't have to begin pathnames with the network root directory
specification. For example, the single slash (I) symbol directs the
system to begin its search at your node's entry directory. Here is an
example using the single slash to start a search at your node's entry
directory:

$ dlf luser_lImemo

Introducing Domain/OS 1-7

Figure 1-4. A Sample Path Beginning at the
Node Entry Directory

For this example, let's assume that your node's entry directory is
node_b. As shown in Figure 1-4, the pathname directs the system
to:

1. Start at your node's entry directory, node_b.

2. Follow the path through the upper-level directory, user_1.

3. Stop at the file named memo.

You can specify other starting points in the naming tree by begin
ning a pathname with any of the symbols in Table 1-1.

1-8 Introducing Domain/OS

Table 1-1. Pathname Symbols

Symbol System starts search at:

/I Network root directory

/ Node entry directory

No symbol Working directory

"'-I Naming directory

.. Parent directory

The Working Directory

If you specify a pathname. without a symbol preceding it, the system
starts its search at a default location in the naming tree called the
working directory. Think of the working directory as the directory
location in which you are currently working. Each process that you
create uses one of the directories in the naming tree as its working
directory.

When you log into a node, the system creates a process running the
shell program and sets that process's working directory to the home
directory name designated in your user account. (Chapter 2 de
scribes your home directory and how to change it.) The system uses
this directory as your working directory unless you change it to an
other directory. (Chapter 7 describes how to change your working
directory.)

The following command deletes the file memo in the current work
ing directory:

$ dlf memo

In this example, let's assume that the current working directory is
the directory reports. As shown in Figure 1-5, the system begins its
search at reports and deletes the file memo.

Introducing Domain/OS 1-9

Figure 1-5. A Sample Path Beginning at the
Current Working Directory

You'll notice in Figure 1-5 that another file named memo exists at
another location in the naming tree (in the directory user_I). If the
current working directory was user_l instead of reports, the com
mand in our example would delete this file instead. A pathname
that starts at the working directory functions differently depending
on the directory currently being used as the working directory.

The Naming Directory

If you precede a pathname with the tilde and slash symbols in com
bination (rooJ/), the system starts its search at a location in the nam
ing tree called the naming directory. Like the working directory,
each process has a naming directory that points to some directory in
the naming tree.

1-10 Introducing Domain/OS

When you log into a node, the system creates a process running the
shell program and sets the naming directory of that process to the
home directory name designated in your user account. The system
uses this directory as your naming directory unless you change it to
another directory.

The following command deletes the file memo in the directory re
ports, in the current naming directory:

$ dlf /reports/memo

Let's assume that the current naming directory is the upper-level
directory owner. As shown in Figure 1-6, the pathname directs the
system to:

1. Start at your node's naming directory, owner.

2. Follow the path through the directory reports.

3. Stop at the file, memo.

Figure 1-6. A Sample Path Beginning at the
Current Naming Directory

Introducing Domain/OS 1-11

Like pathnames that use the current working directory, pathnames
starting at the naming directory work differently depending on the
directory currently being used as the naming directory.

The Parent Directory

If you precede the pathname with two dots (..), the system starts its
search at a location called the parent directory. A parent direc
tory is the directory one level above the current working directory.
For example, the following command uses the double dot symbol to
delete the file memo in the directory user _1:

$ dlf . .Imemo

In this example, let's assume that the current working directory is
the directory plans. As shown in Figure 1-7, the system begins its
search at the directory user_l (the parent directory of the current
working directory plans) and deletes the file memo.

Figure /-7. A Sample Path Beginning at the Parent Directory

1-12 Introducing Domain/OS

Pathname Summary

You now know how to use pathnames to point to objects in the sys
tem naming tree. The examples in this section showed you how to
use pathnames with commands to tell the system the naming tree
location where you want a particular operation performed.

Pathnames also serve to identify objects. As you read through this
manual, you'll find that many of the objects that make up the oper
ating system are referred to by their pathnames. For example,
Chapter 2 describes many of the objects the system uses at startup
and login. Appendix A illustrates how the system organizes the sys
tem software supplied with your node; system objects are refer
enced by their pathnames. By understanding which objects the sys
tem uses and where they're located, you'll better understand how
these objects work together to make up a functioning system.

----88----

Introducing Domain/OS 1-13

Chapter 2

Understanding Startup
and Login

Each time you start up a node and log in to it, the system executes
several programs that set up the node's operating environment. You
can tailor the operating environment on your node by modifying the
scripts the system uses at startup and login. For example, you may
want to start specific server processes when you start up your node.
Or, you may want your own specific key definitions, default window
positions, and tabs defined each time you log in.

This chapter describes how the system functions at startup and
login, and describes the steps you can take to tailor your operating
environment. It also describes procedures for changing your pass
word and log-in home directory after you log in.

Understanding Startup and Login 2-1

Understanding the System at Startup

The operating guide for your node describes the proper procedure
for starting it up. When you initiate the node's startup by turning on
the power, the node performs a series of operations to boot the op
erating system (load the operating system from disk into memory)
and begin executing it. The operating system then executes a series
of start-up files to set up the operating environment on your node.

This section explains the sequence of events occurring at startup for
both disked and diskless nodes.

Disked Node Startup

If your node is a disked node, it reads the programs it needs for
startup from its own disk. The flowchart in Figure 2-1 shows the
start-up sequence on a disked node.

2-2 Understanding Startup and Login

Figure 2-1. The Start-Up Sequence for Disked Nodes

Understanding Startup and Login 2-3

The descriptions that follow explain each step in the start-up se
quence shown in Figure 2-1.

1. When you power on your node in normal mode (follow
the instructions in your operating guide), a program called
the Mnemonic Debugger (MD) begins executing. The
MD resides in the node's boot PROM (Programmable
Read-Only Memory).

2. The MD reads a program called sysboot from your node's
disk and loads it into the CPU's memory. The MD then
transfers control to sysboot. The sysboot program is re
sponsible for booting the operating system.

3. The sysboot program loads the operating system into the
CPU's memory. Once loaded, the operating system begins
executing and takes control.

4. The operating system reads the file /etc/sys.conf to load
global libraries.

5. The operating system starts the init process by running the
program /etc/init.

The /etc/init program reads the file /etc/environ. The
/etc/environ file contains two lines, one for specifying the
environment (e.g., Aegis), and one for specifying the SYS
TYPE variable (bsd4.3, sys5.3). If SYSTYPE is not set,
the Aegis environment is assumed, and the the default
log-in shell is /com/sh (Aegis shell).

6. The init process runs the /etc/rc script to start the server
programs. The /etclrc file, which is normally a link to
'node data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke server pro
grams that must be invoked by the system administrator.
Any programs started by /etc/rc inherit the SYSTYPE
value specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts,
rc.local and rc. user (run as "user"). The rc scripts con
tain commands that start various server programs. These
server programs run regardless of log-in and log-out activ
ity and provide various system services to the node. For
example, the netman program makes the node available
as a host for diskless partners, and the print server

2-4 Understanding Startup and Login

(prsvr) program runs peripheral printers. For a descrip
tion of these and all of the Domain/OS server programs,
see Managing Aegis System Software.

If you want your node to automatically start any server
programs, there are two methods you can use. The one
you use depends on the types of servers you wish to run.

• To start Aegis servers such as netman, prsvr, or
mbx_helper, you can edit the /etc/rc.user file and
remove the pound sign (#) from the command line
that invokes the server.

• To start up other server programs, such as the Net
work Computing System (NCS) servers llbd and
glbd (the location brokers), create a file in the di
rectory /etc/daemons that has the same name as
the server you wish to start. That is, if you wish to
run the lIbd server, create a /etc/daemons/llbd file
(it doesn't matter what's in the file, as rc only looks
at the file name). See Managing the NCS Location
Broker for more information about NCS servers.

Note, however, that the system will not start any of these
servers until the next time you shut down and restart your
node. (See your node's operating guide for node startup
and shutdown procedures.)

6. The /etc/init program reads the file /etc/ttys (which is
normally a link to the file 'node_data/etc/ttys) and starts
the /etc/dm_or_spm program associated with the display
and listed in the file. Any programs started by /etc/ttys in
herit the SYSTYPE value specified in the /etc/environ
file. (If no SYSTYPE is specified, Aegis is assumed to be
the correct environment.) Other lines in the etc/ttys file
contain directives that start getty on the tty lines for the
node; see the /etc/ttys file for further information.

7. The /etc/dm_or_spm program starts either:

• Display Manager (DM) on nodes with displays.

• Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network (see Managing Aegis System Software.)

Understanding Startup and Login 2-5

8. The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 2-1
lists the different files used at startup. As shown in Table
2-1, the system chooses which file to execute according to
the type of node.

All of the DM start-up script files listed in Table 2-1 re
side in the directory 'node_data. The tick character (')
that precedes the directory name is a special symbol that
returns a value for node_data.

NOTE: On Apollo nodes, the tick character is lo
cated on the same key as the tilde (,..,)
character. It is not to be confused with
the quote character (,), which is on the
same key as the double quotes (").

For example, on disked nodes, 'node_data points to the
Isys/node_data directory on the node's disk. On diskless
nodes, 'node_data points to the Isys/node_data.node_id
directory on the partner node's disk. The node_id suffix
refers to the diskless node's hexadecimal node ID. (Refer
to the "Diskless Node Startup" section for more informa
tion on diskless node startup.)

2-6 Understanding Startup and Login

Table 2-1. Node DM Start-up Script Files

Node Type Start-Up Scripts

l024x800 (Landscape) startup. 191

DN3xx, DN460, DN550, DN560,
DN570, DN3000 (Color),
DN3000 (15-inch Black & White)
DN4000 (Color)

1280xl024 (Color Landscape) startup.1280color

DN580

1280xl024 (Black & White Landscape) startup.1280bw

DN3000 (19-inch Black & White),
DN4000 (19-inch Black & White)

Displayless startup.spm

Domain Server Processors (DSPs)

Figure 2-2 shows a sample DM start-up script similar to
the one we provide with DN3000 nodes. The DM start-up
scripts for other nodes are similar.

startup, Isys/dm, default system startup command file for 1280x1024

Window positions for the OM's input and output windows.
Do not comment these out.

(608,744)dr; (1023,799)cv Isys/dm/output
(556,744)dr; (608,799)cv Isys/dm/output;pb
(O,744)dr; (556,799)cv Isys/dm/input

The default Apollo compose key is F5. it is normally NOT enabled.
To enable it, uncomment the following line.

cps lusr/apollo/bin/kbm -c f5

To change it to a different key, edit the previous line as appropriate.

Figure 2-2. A Sample Start-Up Script

Understanding Startup and Login 2-7

The DM start-up scripts that run on nodes that have dis
plays contain a set of commands that instruct the Display
Manager to draw the initial display windows on the screen.
One of the windows contains the "login:" prompt.

These DM start-up scripts also let you enable a default
Apollo compose key, or to change it to another key. For
more information about this function, see Appendix F.

The startup.spm script used by DSPs is similar to the
other start-up scripts. However, since DSPs don't have
displays, startup.spm does not contain commands for cre
ating windows.

9. Once the DM start-up script finishes executing, the node
startup completes, and the system prompts you to log in.

Diskless Node Startup

The start-up sequence for diskless nodes is somewhat different
than the start-up sequence for disked nodes. A diskless node does
not have its own disk to store the operating system and other soft
ware files it needs to run. Therefore, each time it starts up, the
diskless node must load parts of the operating system across the
network from its partner node. The diskless node also relies on its
partner for any utility programs and libraries it needs.

From your perspective as a user, starting up a diskless node is the
same as starting up a dis ked node; you turn the power on in normal
mode and wait for the log-in prompt to appear. However, the
start-up sequence that goes on internally is slightly different.

Figure 2-3 presents a flowchart showing the start-up sequence for a
diskless node. The descriptions that follow explain each step in the
diskless node start-up sequence shown in Figure 2-3. Once you've
read the descriptions, go back and compare each step with the
disked node start-up sequence described in the "Disked Node
Startup" section.

2-8 Understanding Startup and Login

Figure 2-3. The Start-Up Sequence for a Diskless Node

Understanding Startup and Login 2-9

1. When you power on your node in normal mode (by fol
lowing the instructions in your operating guide), a program
called the Mnemonic Debugger (MD) begins executing.
The MD resides in the node's boot PROM (Programmable
Read-Only Memory).

2. Because a diskless node does not have a disk, the MD
cannot load sysboot and transfer control to it. Instead, the
MD must boot the system from another disked node in the
network. The MD then broadcasts a message across the
network asking for a partner node to volunteer the use of
its boot volume.

3. All nodes running the netman program receive these re
quest messages (netman's purpose is to respond to them).
In response to the diskless node's request, netman on a
disked node checks the file Isys/net/diskless list. This
file on the disked node contains a list of hexadecimal node
IDs for all nodes the disked node may offer partnership.

If the diskless list contains the ID of the diskless node re
questing partnership, netman volunteers the node as a
partner. The first disked node to volunteer becomes the
partner of the diskless node. (It remains the diskless
node's partner until the next time the diskless node
boots.) At this point, the diskless node displays the part
ner node's node ID for your information.

You can take a look at a sample diskless list by reading the
file Isys/net/sample_diskless_list. For a complete de
scription of how to create a diskless list and set up partners
for diskless nodes, see Managing Aegis System Software.

4. Once the diskless node finds a partner, the MD copies the
netboot program from Isys/net/netboot on the partner
node into the diskless node's memory. The netboot pro
gram is a special version of sysboot that diskless nodes use
to boot the operating system across the network. The MD,
when finished loading netboot, transfers control to it.

5. The netboot program, running on the diskless node, loads
the operating system from the partner node's boot volume
into memory.

6. The operating system reads the file letc/sys.conf to load
global libraries.

2-10 Understanding Startup and Login

7. The operating system runs /etc/init to start the init proc
ess; /etclinit reads the file /etc/environ. The /etc/environ
file establishes the default log-in shell and default SYS
TYPE for the node.

The /etc/environ file contains two lines, one for specifying
the environment (Aegis, SysV, BSD), and one for specify
ing the SYSTYPE variable (note that only bsd4.3 and
sys5.3 are valid here; if no SYSTYPE is set, the system as
sumes that you are an Aegis user). If the environment is
Aegis, the default log-in shell is /com/sh (Aegis shell).

8. The init process runs the /etc/rc script to start the neces
sary daemons. The /etc/rc file, which is normally a link to
'node data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke server pro
grams that must be invoked by the system administrator.
Any programs started by /etc/rc inherit the SYSTYPE
value specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts
named /etc/rc. user (run as "user") and /etc/rc.locaI. The
rc scripts contain commands that start various server pro
grams. These server programs run regardless of log-in and
log-out activity and provide various system services to the
node. For example, the netman program makes the node
available as a host for diskless partners. For a description
of these and all of the Domain server programs, see Man
aging Aegis System Software.

If you want your node to automatically start any server
programs (daemons), two methods are available. The
method you use depends on the types of servers you wish
to run.

• To start Aegis servers such as netman, prsvr, or
mbx_helper, you can edit the /etc/rc.user file and
remove the pound sign (#) from the command line
that invokes the server.

• To start up other server programs, such as the Net
work Computing System (NCS) servers Ilbd and
glbd (the location brokers), create a file in the di
rectory /etc/daemons that has the same name as
the server you wish to start. That is, if you wish to
run the Ilbd server, create a /etc/daemons/Ilbd file

Understanding Startup and Login 2-11

(it doesn't matter what's in the file, as rc only looks
at the file name). See Managing the NCS Location
Broker for more information about NCS servers.

Note, however, that the system will not start any of t~se
servers until the next time the rc script is run. To do this,
you should shut down and restart your node. (See your
node's operating guide for node startup and shutdown pro
cedures.)

9. The letc/init program reads the file letclttys (which is
normally a link to the file 'node_data/etc/ttys) and starts
the letc/dm_or_spm program associated with the display
and listed in the file. Any programs started by letc/ttys in
herit the SYSTYPE value specified in the letc/environ
file. Other lines in the etclttys file contain directives that
start getty on the tty lines for the node; see the letc/ttys
file for further information.

10. The letc/dm_or_spm program starts either:

• The Display Manager (DM) on nodes with dis
plays.

• The Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network. (For more information about the
SPM, see Managing Aegis System Software.)

11. The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 2-1
lists the different files used at startup. As shown in Table
2-1, the system chooses which file to execute according to
the type of node.

Since diskless nodes don't have files of their own, the DM
or SPM must look to the partner node to find its start-up
script file. Just as on a dis ked node, the DM or SPM on a
diskless node searches for the script file in the directory
'node data. Unlike a disked node, however, 'node data
for the diskless node points to a directory by the name of
Isys/node_data.node_id on the partner's disk. (The
node_id suffix is the hexadecimal node ID of your diskless
node.)

2-12 Understanding Startup and Login

NOTE: The tick character (') that precedes the
directory name is a special symbol that
returns a value for node data. On
Apollo nodes, the tick character is lo
cated on the same key as the tilde ("')
character. It is not to be confused with
the quote character (,), which is on the
same key as the double quotes (").

12. Once the DM or SPM finds the diskless node's DM start
up script, the script executes, the node startup completes,
and the system prompts you to log in.

Figure 2-2 shows a sample DM start-up script similar to the one we
provide with DN3000 nodes. For information about this script, re
fer to the "Understanding the System at Login" section.

A single disked node can serve as the partner for several diskless
nodes. Each diskless node may need to use a "node-specific" boot
script to set up its own unique operating environment. Therefore,
the system uses the node_id suffix to denote a unique DM start-up
script location for each diskless node assigned to the partner.

At startup, if the partner does not have a 'node_data directory set
up for the diskless node, netman creates one, copying it from a
template stored in the partner's 'node_data directory. The netman
program then copies the partner node's DM start-up script file into
the diskless node's 'node_data directory. If you want the newly
created script to perform different operations at startup than its
partner, edit the script.

A major difference between the disked node and diskless node
start-up sequence is the step where the DM or SPM searches for
the node's DM start-up script. Figure 2-4 summarizes this search.

Understanding Startup and Login 2-13

Netman creates
node data. node id
copies the script to it.

1i!iII'~~+'+~*,,~ then instructs the DM
or SPM to execute the
start-up script

Figure 2-4. The Start-Up Script Search Sequence

Understanding the System at Login

Once a node is up and running. you are ready to log in. At login.
the system executes a series of scripts that set up the working envi
ronment for your log-in session. This section describes the se
quence of steps the system performs at login. This section also ex
plains how to create and modify scripts to tailor your log-in envi
ronment. Figure 2-5 shows the log-in sequence for a node.

2-14 Understanding Startup and Login

Figure 2-5. The Log-In Sequence

The descriptions that follow explain each step in the log-in se
quence shown in Figure 2-5.

Understanding Startup and Login 2-15

1. After you enter your username and password, the operat
ing system verifies your account.

The system verifies your account by checking the site reg
istry. If the username and password match a valid account
in the registry, the system executes the next step. If the
system cannot verify the account, the log-in attempt fails,
and the system displays a log-in error message in the DM
output window. For more information about user accounts
and registries, see Managing Aegis System Software.

2. The DM sets your home directory from your account entry
in the registry and looks there for a .environ file. If found,
the DM sets the environment and then the SYSTYPE vari
able (if there is no SYSTYPE specified, the Aegis environ
ment is assumed); otherwise, the node defaults are used.
The DM then sets the variables SHELL, HOME, USER,
LOGNAME, PROJECT, ORGANIZATION, and TERM.
If no SHELL variable is specified in the registry entry, the
node default is used. Based on the environment, the DM
loads base key definitions. If your environment is Aegis,
the DM loads both std_keys.basic and std_keys.

3. The DM reads the file key_defs_8bit3 (for nodes with
Low-Profile Model II keyboards), and key_defs_8bit2
(for Low-Profile Model I keyboards). These files, located
in the user_data directory of your log-in home directory,
contain a record of any key definitions that you made the
last time you were logged in. By reading these files, the
DM carries over key definitions to the new log-in session.
These files are non-ASCII files; therefore, you cannot edit
them. Chapter 3 describes key definition files further.

4. The DM (on nodes with displays) executes the node's
log-in start-up script, which resides in one of the files
listed in Table 2-2. The system chooses the log-in start-up
file according to the type of node you are using. On DSPs,
the SPM does not execute a log-in start-up script.

The DM looks for log-in start-up scripts in two different
locations. First, it looks in 'node data, which refers to the
node's specific Isys/node_data directory. (By default, no
log-in start-up script exists in 'node_data; you must put
one there.) If the DM doesn't find the log-in start-up
script in 'node_data, it executes one of the default log-in
start-up scripts that we supply in the directory Isys/dm.

2-16 Understanding Startup and Login

Table 2-2. Node Log-In Start-Up Script Files

Node Type Log-In Start-Up Scripts

1024x800 (Landscape) startup_login. 191
03xx, ON460, ONSSO, ONS60,
ONS70, ON3000 (Color),
ON3000 (1S-inch Black &
White), ON4000 (Color)

1280xl024 (Color Landscape) startup_login. 1280color
ONS80

1280xl024 (B & W Landscape) startup_login. 1280bw
ON3000 (19-inch Black &
White), DN4000 (19-inch Black
& White)

5. As shown in Figure 2-6, the command that creates the
log-in shell process is not commented out in the script.
You may leave it in, comment it out by adding a pound
sign (#), or change it to draw the process's windows in a
different location. The OM executes the login_sh com
mand. The login_sh command executes your log-in shell
based on the current value of SHELL, as set by the OM.

startupJogln (the perJogln startup file In 'node_data or Isys/dm

main shell whose shape Is generally agreeable to users of this node

(O,300)dr: (700,700)cp Isys/dm/logln_sh

and the user's private dm command file from his home

directory's user_data sub-directory. Personal key_defs file Is also

kept In user_data by OM.

cmdf user_data/startup_dm.1280bw

Figure 2-6. A Sample DM Log-In Start-Up Script

This log-in shell looks for a shell log-in script in your
home directory. If this script exists, the shell executes it to
set up your initial shell environment. The Aegis shell looks
for a script named ,..../user_data/sh/login.

6. At this point, the log-in sequence is complete.

Understanding Startup and Login 2-17

You may want to create a DM log-in start-up script in 'node_data
in cases where you don't want the DM to execute the default ver
sion. For example, a diskless node, by default, uses one of the log
in start-up scripts located in its partner's Isys/dm directory. If you
want the diskless node to execute its own unique DM log-in start
up script, you can create a copy in the diskless node's 'node_data
directory. For more information about 'node_data for diskless
nodes, refer to the "Diskless Node Startup" section.

The system uses log-in start-up scripts to start processes that you'll
need while you are logged in to your node. The log-in start-up
scripts contain commands to execute a log-in shell, and to run
your personal DM start-up script. For example, the log-in start-up
scripts that we supply for nodes with displays create a process run
ning the shell program. When you log out, the DM stops the shell
process and deletes its pads and windows from the display.

If you wish to execute certain commands or processes once, when
you log in, then you should create a ----/user_data/sh/login file con
taining the commands. Note that this file is only executed upon
login (by a log-in shell). If you have commands that you wish to
execute every time you start a new Aegis shell, create a file named
----/user_data/sh/startup. For more information about shell start
up files, see Chapter 6.

The last line in the sample script shown in Figure 2-6 contains the
DM command emdf (command file). This command invokes an
other script, startup _ dm.1280bw. The DM attempts to execute
this additional script as part of the log-in sequence.

If no pound sign precedes the emdf command line, the DM looks
in the user_data subdirectory of your log-in home directory for the
specified file. If the DM finds the file, it executes the script; other
wise, it displays an error message in the DM output window when
the log-in sequence completes.

This script, called the DM start-up script, is an optional script that
you create to execute additional DM commands during login. For
example, you may want to include commands that make specific
key definitions or run specific programs. Figure 2-7 shows a sample
DM start-up script.

2-18 Understanding Startup and Login

user_data/startup_dm (in login home directory)
Some personal preference keys:

Define < F4 > and < F5 > for easy Pascal Indenting and undenting:

kd F4 t1 ; s/% 1/ ke
kd F5 t1 ;s/%1 I ke

Set tab every 5 spaces:

ts 5 -r

Set window default location
(0. nO)dr; (600.110) wdf1

Build an Aegis shell window

(0.500)dr; (799.955) cp Icomlsh

Figure 2-7. A Sample DM Start-Up Script

Remember, we don't supply a DM start-up script or a shell log-in
script as part of the system; if you want to use a DM start-up script
or a shell log-in script, you must create one. If you do create a DM
start-up script, remember to create a file that has the same file
name as the file specified with the cmdf command. For example,
in Figure 2-6, the cmdf command specifies the filename
startup_dm.1280bw. The suffix 1280bw is the suffix for files used
by nodes with 19-inch monochromatic landscape displays, like the
DN3000.

Logging In

This section describes the various log-in procedures you can use to
log in as user, change your password and log-in home directory,
and log in to a Domain Server Processor (DSP).

Logging In to a Default Account

The registry file account, described earlier in the "Understanding
the System at Login" section, contains a default account named
user. none. none, or simply user. This default account allows any
user anywhere in the network to log in to an Apollo node.

Understanding Startup and Login 2-19

To use the default account, log in with the username user as shown
on the following command line:

login: user

Your system administrator may have added a password to this ac
count. In this case, ask him or her about it.

Changing Your Password

You can change your password by using the chpass (change pass
word) or the edrgy (edit registry) commands. Use the chpass
command as follows:

$ chpass new yassword

After you 'specify your new password and press <RETURN>,the sys
tem prompts you to verify your new password (to ensure that you
entered it correctly). At the prompt, type the new password again
and press <RETURN>.

Use the edrgy command as follows:

$ /etc/edrgy
edrgy => change username -p new yassword
edrgy => quit

When you invoke edrgy, it enters interactive mode. For more in
formation about the interactive command options for edrgy, see
the Aegis Command Reference.

Use the new password the next time you log in. If you want to
maintain a secure account, avoid using obvious passwords such as
your username or your initials. If security is not a high priority, you
can use a blank password. (Note, however, that blank passwords
violate system security.) To change your password to a blank, spec
ifya space in quotation marks.To enter a blank password when you
log in, just press <RETURN>.

2-20 Understanding Startup and Login

Changing Your Home Directory

Each system account has a directory associated with it, called the
home directory. Anytime you log in, the system sets your initial
working and naming directories to your home directory. You can
change your home directory by using the chhdir (change home di
rectory) or the edrgy commands. Use the chhdir command as fol
lows:

$ chhdir new yathname

Use the edrgy command as follows:

$ /etc/edrgy
edrgy => change username -h new yathname
edrgy => quit

When you enter the pathname of your new home directory, the sys
tem attempts to update the file account in your site registry direc
tory. This file contains information about your account, such as
your username, password, and home directory. By updating the ac
count file, the system stores your new home directory for logging in
later.

See Managing Aegis System Software for more information about
the account file and system registries; see the Aegis Command Ref
erence for more information about the chhdir and edrgy com
mands.

Logging In to a Domain Server Processor (DSP)

Unlike user nodes, a Domain Server Processor (DSP) doesn't have
a keyboard or display. Therefore, you must log in to it from a user
node in the network.

As described earlier in the "Disked Node Startup" section, when
you start up a DSP, the system starts a program called the Server
Process Manager (SPM). The SPM makes it possible for you to
create a process on the DSP, log into the process, and execute pro
grams and commands while you sit at a user node in the network.

Understanding Startup and Login 2-21

For a complete description of the procedure for logging into a DSP.
see the operating guide for your particular node model.

-------88-------

2-22 Understanding Startup and Login

Chapter 3

Using the Display Manager

By default, the Display Manager (DM) is the window manager pro
gram that controls your node's display. Using DM commands, you
can instruct the DM to perform specific display management opera
tions, such as: moving the cursor around the display, creating and
controlling processes, creating and manipulating pads and windows,
and modifying display characteristics.

This chapter explains the functions of the OM and describes how to
specify DM commands. It also describes how to define keys to per
form OM operations. Chapter 4 describes how to use the OM to
perform specific display-management tasks.

Using DM Commands

OM commands enable you to control your node's display by in
structing the OM to perform specific display management opera
tions. To use a OM command, you normally perform two basic
steps:

1. Move the cursor to the spot on the display where you want
the OM operation performed.

2. Specify a OM command to execute the operation.

Using the Display Manager 3-1

You indicate a spot on the display either by moving the cursor to
the desired spot, or by explicitly defining a point on the screen as a
command argument. If you don't specify a position using either
method. the DM executes the command at the current cursor posi
tion.

Some DM commands require you to define an area, or region, on
the screen instead of a single point. You define the size of a region
by defining two points on the screen; one point specifies the upper
left corner, and the other specifies the lower right corner. The re
gion is simply the area between the two points. The "Defining
Points and Regions" section describes how to define points and re
gions.

To specify a DM command interactively:

1. Press <CMD> to move the cursor next to the "Com
mand:" prompt in the DM input pad. (The DM remem
bers where the cursor came from so it can apply the next
command to that point.)

2. Type the command along with any arguments or options.

3. Press <RETURN> to invoke the command.

Use this procedure to specify commands interactively from your
keyboard. You can also specify commands in special DM programs,
called scripts. When you invoke a DM script, the DM reads and
executes DM commands in the order they appear in the script. The
"Using DM Command Scripts" section describes how to use DM
scripts.

The method you use to define a point depends on the DM com
mand you use, and how you use it. When you specify a command
interactively, you usually move the cursor to the desired point; in
scripts, you specify a point explicitly as a command argument. Fig
ure 3-1 illustrates the interactive procedure for invoking the wc
command to delete a window.

3-2 Using the Display Manager

Figure 3-1. Invoking a DM Command Interactively

You can also invoke DM commands interactively using DM func
tion keys and control key sequences. The "Using Keys to Perform
DM Functions" section describes how to use these keys to perform
DM functions.

DM Command Conventions

DM commands have the following general format:

[region] command [arguments ...] [options ...]

Separate the components of a command with the proper command
line delimiters, as follows:

• Separate an argument from a command and any addi
tional arguments or options with at least one blank space.

• Precede each option with a hyphen (-). Separate each op
tion from commands, arguments, or any additional options
with at least one blank space.

Using the Display Manager 3-3

• If you precede the command with a region, make sure you
use the correct syntax to define each point (see the section
"Specifying Points on the Display"). You can place multi
ple blanks before and after the region, although they are
not required.

• You can string multiple commands together on the same
line by separating each command with a semicolon (;) as
shown below:

pt;tt;t1

This command sequenc~ executes three separate com
mands to move the cursor to the first character in a pad.

Using DM Special Characters

When you use commands in scripts and key definitions, you can
use several special characters that control how the DM interprets
commands. The following describes the rules for using these spe
cial characters:

@ The at-sign character (@) always nullifies the meaning of
any special character (e.g., &, the input request character)
it precedes. When the DM reads a command line contain
ing the escape character, it strips off the @ character, and
any special meaning of the character following it.

If you can't remember whether a character has some spe
cial meaning, it is safe to precede the character with an @.
If the character is not special, the DM still removes the @,
so the character appears as it should. Character escaping
is generally confined to search and substitute operations
(see Chapter 4), commands requiring quoted strings, and
key definitions.

When the DM reads the pound sign (#) in a DM script, it
ignores the information on the remainder of the line. Use
this character to add comments to your DM script or to
prevent the execution of a line in the script.

Use the semicolon (;) to separate commands that you
specify on the same line.

3-4 Using the Display Manager

& The input request character (&) enables you to supply
keyboard input from the OM input pad to a command in a
key definition or script. When the OM reads the &, it
stops reading commands and moves the cursor to the OM
input pad. When you enter input (usually a command ar
gument), the OM replaces the & character with the speci
fied input and continues reading commands. You can also
specify a prompt in the form

& 'prompt'

to display a prompt in the OM input pad that requests the
proper input.

Like the & character, the kd, es, cp, cpo, and cps commands ac
cept strings surrounded by single quotes. When you use single
quotes, the only characters in the quoted string that retain their spe
cial meaning are @ and &; all other characters revert to their literal
values. Note, however, that the kd command does not recognize
single quotes within the definition string.

Defining Points and Regions

As noted earlier, you may specify the location for a OM operation
by using either the cursor or an explicit coordinate list.

If you use the cursor, remember that it actually occupies many indi
vidual screen points. When you use the cursor to point to a spot on
the screen, the lower left-hand corner of the block cursor desig
nates the exact point. (When you point to the upper edge or right
edge of a window, the OM adjusts the point position to account for
the size of the cursor. See the "Creating Pads and Windows" sec
tion in Chapter 4 for more information on how the OM defines win
dow boundaries.)

Specifying Points on the Display

If you choose not to indicate a point with the cursor, you can ex
plicitly define a point or pair of points (a region) using any of the
point formats described below. Note that some formats define
points in pads, and others define points on the display as a whole.
You normally define points in pads when performing the pad edit
ing operations described in Chapter 5.

Using the Display Manager 3-5

line-number

Specifies a line location in a pad. Line numbers begin at 1
and increase moving toward the last line in the pad. To re
fer to the last line in a pad, you may specify a dollar sign
($). The edit pad window legend displays the line number
of the top line in a window. You can also display the line
number (plus the column number, and x- and y-coordi
nates) of the current cursor position by using the DM com
mand =.

+/- n

Specifies a line location in a pad that is n lines before (-)
or after (+) the current cursor position.

[line-number] [,column-number]]

Specifies a point in a pad by line and column number.
The outer pair of brackets are part of the format. The in
ner pairs of brackets indicate line and column numbers are
optional (i.e., either one can be omitted). The DM as
sumes the current line if you omit line-number; it assumes
column 1 if you omit column-number. Line numbers
range from 1 to the last line in the pad. Column numbers
range from 1 to 256. Some examples are:

[127,14]

[53]

[,12]

Line 127, column 14.

Line 53, column 1.

Column 12 of the current line.

Note that you must use the outer set of square brackets;
however, when you specify line-number only, the brackets
are optional. When using this format, you cannot use the
dollar sign ($) to specify the last line in a pad; you must
specify the number of the last line.

/regular-expression/ or \regular-expression\

Specifies a string in a pad that begins or ends a specific re
gion. Chapter 5 describes regular expressions.

3-6 Using the Display Manager

([x-coordinate] [,y-coordinate])

Specifies a point on the display by screen coordinates.
Screen coordinates indicate bit positions on the display.
The origin 0,0 is at the extreme upper-left corner of the
screen. Table 3-1 shows the ranges for the coordinate val
ues.

Table 3-1. Ranges for Coordinate Values

Display Type x-coordinate y-coordinate

1024x800 o to 1023 o to 799

1280x1024 (landscape) o to 1279 o to 1023

800x1024 (portrait) o to 799 o to 1023

1024x1024 (square) o to 1023 o to 1023

If you omit either coordinate from the specification, the
DM uses the coordinates of the cursor. Note that you
must enclose the coordinates in parentheses. Some exam
ples are:

(200,450)

(135)

(, 730)

Bit position with an x-coordinate of
200 and a y-coordinate of 450.

Bit position with an x-coordinate of 135
and the same y-coordinate as the cur
rent cursor position.

Bit position with same x-coordinate as
the current cursor position, and a
y-coordinate of 730.

When you specify any of the formats described above in
the DM input pad, the DM moves the cursor to the speci
fied position. Thus, to move the cursor to line 75, column
5 in an edit pad, specify this in the DM input pad:

Command: [75,5]

Using the Display Manager 3-7

You can also use any of the formats for defining points to
define a region on the display. To define a region, you
must define two points as follows:

(point] dr; [point]

The first point defines the beginning of the region and the
dr command marks it. The second command defines the
end of the region. When defining a two-dimensional re
gion, the first point defines one corner, and the second
point defines the opposite corner as shown in Figure 3-2.

Figure 3-2. Defining a Display Region

When you define a region, if you don't specify a second
position, the DM uses the current cursor position.

Like defining a single point, an easy way to define a region
is to indicate a point with the cursor. Press <MARK> to in
voke the dr command, which marks the first point. To de
fine a region using the cursor, perform the following tasks:

3-8 Using the Display Manager

1. Move the cursor to the first point.

2. Press <MARK>.

3. Move the cursor to the second point.

4. Specify the DM command.

For a complete description of the DM commands used to control
marks, see the Domain Display Manager Command Reference.

For commands that require a region in which to operate, you have
the option of specifying the region as part of the command. The cv
(create view) command, shown below, creates a read-only pad and
window. It uses a region to define the size and location of the win
dow it creates.

Command: (350,200) dr; (700,600)

I
region

cv report_file

'T
command

Using Keys to Perform DM Functions

You can also perform display management operations using keys,
called function keys, that we've defined as specific DM commands.
When you press a function key, it invokes its assigned DM com
mand or command sequence.

By default, many keys perform DM operations when pressed simul
taneously with <CTRL>. Like function keys, these key combina
tions, called control key sequences, provide you with a "short
hand" method of specifying commands.

Domain/OS predefined function keys and control key sequences
enable you to execute commonly performed operations. For exam
ple, the directional keys described earlier are predefined keys that
you'll use routinely to move the cursor.

Using the Display Manager 3-9

We've also defined the mouse's function keys to perform three use
ful DM operations. Table 3-2 describes the default mouse key
functions.

Table 3-2. Default Mouse Key Functions

Mouse Key Function

Left Key (M 1) Performs a GROW/MARK operation to
change the size of windows. See
Chapter 5 for details on using the left
mouse key to change the size of a
window.

Center Key (M2) Works just like <POP>. To use it,
move the cursor inside the window you
want to pop, then press the key. See
Chapter 5 for more information.

Right Key (M3) Lets you read files whose names ap-
pear in the pad (any full or relative
pathname also works). This key exe-
cutes the cv command with the name
of the file you indicate with the cur-
sor. To use this key, position the
cursor over any part of the name of
the file you want to read, and then
press the key.

Keyboard Types and Key Definitions

Domain/OS supports two basic types of keyboards:

• Low-Profile keyboards

• Multinational keyboards

Low-Profile type keyboards (shown in Figure 3-3) include
theLow-Profile Model I keyboard and the Low-Profile Model II
keyboard. Notice that the key layout for both of these keyboards is
the same except that the Model II keyboard has a numeric keypad
and two additional function keys, FO and F9.

3-10 Using the Display Manager

Figure 3-3. Key Names for the Low-Profile Keyboards

Using the Display Manager 3-11

The Multinational keyboard is a Low-Profile Model II keyboard
adapted to international standards. The Multinational keyboard has
seven additional keys that impose a slightly different overall ar
rangement, as well as some different key labels. Each national ver
sion of the Multinational keyboard has the same physical layout.
See Appendix B for information on the predefined keys of the Mul
tinational keyboard.

European characters do not appear on the standard North Ameri
can keyboards, and only a subset appear on the various models of
the Multinational keyboards. You can create and display European
characters in the Latin-l character set that do not appear on your
keyboard, by using the Domain/OS compose function. See Appen
dix D for information about the compose function.

The system stores the definitions for its predefined keys in a key
board-specific definition file. Table 3-3 lists the names of the defi
nition file for each keyboard.

Table 3-3. Key Definition Filenames

Keyboard Key Definition File

Low-Profile Model I / sys/ dm/ std _ keys2

Low-Profile Model II /sys/dm/std_keys3

Multinational Keyboard /sys/dm/std_keys3x

(x is a letter from a-g)

The assigned key definitions for the Multinational keyboard are
stored in a keyboard-specific definition file, /sys/dm/std_keys3x,
where x represents the following:

a
b
c
d
e
f
g

3-12 Using the Display Manager

Germany
France
Norway/Denmark
Sweden/Finland
United Kingdom
(Reserved for future use)
Switzerland

All command files listed in Table 3-3 contain a line invoking the
standard Domain/OS key definition file, /sys/dm/std_keys.basic.
(In addition, the Multinational keyboard key definitions invoke the
file /sys/dm/std_keys.mn).

After you log in, if you find that the predefined keys do not work as
described in this manual, you can execute the appropriate
std_keysn file to set up the proper default key definitions for your
keyboard. For example, to set up the predefined key definitions for
the Model II keyboard, specify the following in the DM input pad:

Command: cmdf /sys/dm/std_keys3

You can also define your own function keys and control key se
quences by assigning commands to specific key names. But, before
you can define keys, you must understand how they are named.
The next two sections describe key naming conventions and de
scribe how to define keys.

Key Naming Conventions

The DM identifies each key on your keyboard (and mouse) by a
unique name. The names of the ordinary character keys (letters
and numbers) have the same name as the characters they repre
sent. For example, the A key has the name" A". Other keys. like
the DM function keys, have special names that are different than
the names written on them. <READ>, for example, has the name
"R2". Figure 3-3 shows the names and locations of the keys on
both the Low-Profile type keyboards.

NOTE: The Multinational numeric keypad keys
do not have the same names as the stan
dard Low-Profile Model II keypad keys.
Figure B-1 in Appendix B shows· the
names and locations of the of the nu
meric keypad keys on the Multinational
keyboard.

For example, the CUT/COPY function key (whose special name is
L1A) performs a different function when you use it with <SHIFT>.
The name L1A identifies the key's normal function (when you
press the key down). The name L1AS, referred to as the key's
shifted name, identifies the key's function when pressed along with

Using the Display Manager 3-13

<SHIFT>. The key's up-transition name L1AU identifies the func
tion the key performs when released. The name L1AC, referred to
as the key's control key sequence name, identifies the function
when pressed along with <CTRL>. Table 3-4 describes the key
naming conventions you should use when defining keys.

When defining a key as a command or sequence of commands, you
use the same name that the DM uses to identify the key. Some
keys, like the DM and program function keys, function differently
depending on how you use them. Therefore, each of these keys has
a set of additional names that identify the manner in which the key
is used.

Table 3-4. Key Naming Conventions

Key Type Description

Ordinary Have the same name as the numbers and let-
Characters ters they represent. You can assign functions to

lowercase letters and numbers, capital letters,
and special characters. When specifying ordi-
nary characters, enclose in single quotes (' ').

ASCII Standard line control keys named:
Control

CR Carriage Return
BS Back Space
TAB Tab
TABS Shifted Tab
ATAB Control Shifted Tab
ESC Escape (Low-Profile)
DEL Delete (Low-Profile)

Control Ordinary character or program function keys
Key used with <CTRL>. Specify a control key

name as AX (where x is an ordinary character
or program function key name). For example,
use Ay for CTRLlY or AF4 for CTRLlF4 or
F4C.

(Continued)

3-14 Using the Display Manager

Table 3-4. Key Naming Conventions (Cont.)

Key Type Description

Program Reserved for user program control. They ap-
Function pear at the top of the keyboard and are

named FI-F8 as labeled. (For Low-Profile
Model II keyboards, these keys are named
FO-F9.) Their up-transition names are FOU-
F9U; their shifted names are FOS-F9S; and
their control key names are AFO_ AF9.

Numeric Only available on Low-Profile Model II key-
Keypad board and the Multinational keyboard. The

keypad's numeric keys are named NPO-NP9.
The ENTER key is named NPE. Low-Profile
Model II keypad symbols are named NP+,
NP-, and NP respectively. Keys 0-9, plus (+),
and minus (-) can have shifted names (e.g.,
NP+S), up-transition names, and control key
names.

Mouse Located on the optional mouse. Named M1,
M2, and M3; up-transition names are M1U,
M2U, M3U.

Defining Keys

As we described earlier, Domain/OS provides a set of default func
tion keys and control key sequences defined as DM commands.
You can override these definitions or create new ones in either of
the following ways:

• Specify the kd (key definition) command from the key
board or in a script.

• Call the system routine pad_$deCpfk from a program.

If you wish to redefine your keys, we suggest you look in the direc
tory /domain_examples/keydefs. This directory contains some
sample key definitions which you may find useful.

Using the Display Manager 3-15

When you define keys with the kd command during a session on
your node, the DM writes the new definitions to one of the follow
ing files:

• key_defs_Sbit2 for the Low-Profile Model I keyboard

• key_defs_Sbit3 for the Low-Profile Model II keyboard

• key_defs_Sbit3 for the Multinational keyboard

These files reside in the user_data subdirectory of your log-in
home directory (see Chapter 2); they apply only to you, not to
other node users. The DM checks these files whenever you log in,
and sets your personal definitions to reset any of the standard key
definitions set up by Isys/dm/std_keysn (see Table 3-3).

Definitions made from within a program override those made by kd
commands; however, they work only within the program's process
window. Therefore, keys defined from a program may function dif
ferently in different windows. The "Controlling Keys from Within a
Program" section describes how programs control key functions.

To define a key from the keyboard or from a script, specify the kd
command in the following format:

kd key_name definition ke

In the kd command format, key_name specifies the unique name of
the key you want to define. The previous section describes key
naming conventions, and Figure 3-3 shows the location and names
of keys. Remember, always enclose ordinary character and special
character names in single quotes. For example, to define the Z key,
specify 'Z'.

The definition argument specifies either a single DM command or a
sequence of DM commands that the desired key will perform. (The
Domain Display Manager Command Reference describes all of the
DM commands you can use in key definitions.) When you specify
a sequence of commands, either specify each command on a new
line (in scripts) or separate each command with a semicolon (;).
Always follow the definition argument with the ke argument, which
signals the end of the kd command.

3-16 Using the Display Manager

The following command defines the program function key, FI, to
move the cursor to the end of the previous line in a window:

kd F1 au;tr ke

~ L..l..~k d ,F,' •• command ey_name eJlnltlOn

The definition argument in the example above specifies a command
sequence composed of two commands: au, which moves the cursor
up to the previous line, and tr, which moves the cursor to the end
of the line. You can specify any number of commands, but you
cannot exceed 256 characters in the entire kd command.

You can embed key definitions inside other key definitions, and
thereby define keys that define other keys. The embedded key
definition follows the same rules as any other key definition; how
ever, you must precede the semicolon (;) with an escape character
(@) to separate the embedded kd command from the next com
mand. The following example shows an embedded key definition:

kd F3 kd AX
I

es 'This is a test' ke@; pv ke
I

I
embedded key definition

This command defines the F3 key to perform the following opera
tions when pressed:

• Define CTRLlX to print out the string, "This is a test."
(The embedded key definition specifies this function.)

• Invoke the pv command to scroll the current pad one line.
(Chapter 4 describes the pv command.)

The DM scans embedded key definitions three times when:

1. It makes the outer key definition.

2. It executes the outer key definition and makes the inner
key definition.

3. It executes the inner key definition.

Using the Display Manager 3-17

To define a key that prompts you for input, specify as part of the
definition argument, the input request character (&) as follows:

&'prompt'

The prompt argument specifies the prompt string. The input request
character and prompt cause the DM to prompt for part of the defi
nition argument you specified in the key definition. For example,
the READ key (R3) has the following default key definition:

kd R3 cv &' read file:' ke

Whenever you press <READ>, the DM displays the prompt "read
file: " in the DM input pad and moves the cursor next to it. When
you respond to the prompt by typing the name of a file and pressing
<RETURN>, the DM replaces &'read file: from the key definition
with your response. In this way, the cv command opens the file you
specify. (Chapter 4 describes the cv command.)

NOTE: When you define keys in scripts, you
must precede the input request character
(&) with the escape character (@).

When you enter a response to a prompt, the DM remembers the re
sponse you typed. So, the next time you press the key, the DM
automatically displays the previous response next to the prompt.
(This is why <READ> and <EDIT> offer the names of the last files
used.) You can either move the cursor to the right of the previous
response and press <RETURN> to enter the response, or delete the
previous response and enter a new one.

Deleting Key Dermitions

To delete a key definition. specify the kd command without a defi
nition argument. For example:

kd Fl ke

deletes the current definition for the key named Fl. For keys with
ordinary character names. the key reverts to its normal graphic
value.

3-18 Using the Display Manager

Displaying Key Definitions

To display a key's current definition, specify the kd command with
out the definition or ke arguments. The current key definition is
displayed in the DM output window. The command in the follow
ing example displays the definition for the READ key (R3):

kd R3

Controlling Keys from Within a Program

Domain/OS enables application programs to assume control of vari
ous display and keyboard functions. For example, the character
font editor, edfont (edit font), displays several different menus on
your screen that you control with your mouse keys (M 1 through
M3). When you use edfont, the edfont program defines how these
keys function; the keys do not maintain their normal DM defini
tions. The DM restores the mouse keys to their normal DM defini
tions when you end your edfont session. The Domain Display Man
ager Command Reference describes the edfont character font edi
tor.

For your own applications, you can control key definitions through
program calls to the pad_$def_pfk and pad_$dm_cmd routines.
For more information on these system routines, refer to the pad
routines section of the Domain/OS Calls Reference.

You may find the normal functions of the DM keys useful even
when using an application program that has redefined them. With
<HOLD>, you can temporarily override the application program'1
key definitions and use the normal DM definitions.

To override an application program's key definitions, pres~
<HOLD>. By pressing <HOLD> again, you restore the applicatior
program's key definitions. Note that this function of <HOLD> h
different from the normal DM function of switching a window ir
and out of hold mode (see Chapter 4).

Using the Display Manager 3-1~

Using DM Command Scripts

A OM script is a file that contains one or several OM commands.
You can use OM scripts to perform any of the OM operations de
scribed in this manual. such as creating and controlling processes,
manipulating pads and windows, editing files, and defining keys.

You execute scripts by specifying the pathname of the script file
with the OM command emdf (command file) as follows:

emdf pathname

The start-up scripts discussed in Chapter 2 are examples of OM
command scripts that the system uses to set up your node's operat
ing environment. In fact, your node's log-in start-up script uses the
emdf command to invoke the OM start-up script that you create.
See the Aegis Command Reference for further information about
the emdf command.

-------88-------

3-20 Using the Display Manager

Chapter 4
Controlling the Display

This chapter describes how to use the OM to control your node's
display. Each section describes a set of related screen-management
tasks and the OM commands you use to perform them.

You can execute a OM command either from a OM script or by en·
tering the command in the OM input window. In some cases, YOll

can also execute a OM command by typing a function key or con·
trol key sequence.

The command summary tables, at the beginning of each section, liS1
the OM commands, and related function keys and control key se·
quences, used to perform a specific set of tasks.

Chapter 3 explains how to specify OM commands from the key·
board and from scripts, and how to use function keys and contro
key sequences. For a complete description of all the OM com
mands described in this chapter, refer to the Domain Display Man·
ager Command Reference.

Controlling the Display 4-:

Controlling Cursor Movement

Moving the cursor is the most basic of all display management op
erations; it's also the one you'll perform most frequently. You use
the cursor to move to a location on the display where you want to
perform a specific operation. For example, you can move the cur
sor to indicate the location where you want a OM command to op
erate, or you can move the cursor into the OM input window and
then type the name of a command.

This section summarizes the OM commands and control key se
quences used to control cursor movement. Table 4-1 lists the com
mands used to control the cursor. It also shows the predefined di
rectional keys on low-profile keyboards.

NOTE: In this command summary table, the
symbols enclosed in parentheses are the
unique OM keynames. Refer to Chapter
3 for more information on key names
and defining keys. This note applies to all
command summary tables in this chapter.

4-2 Controlling the Display

Table 4-1. Cursor Control Commands

Task DM Command Predefined Key

Move left one character al - (LA)

Move right one character ar -+ (LC)

Move up one line au t (L8)

Move down one line ad l (LE)

Set arrow key scale as x y None
factors

Move to the beginning tl I- (L4)
of line

Move to end of line tr --+I (L6)

Move to top line in tt <SHIFT> m
window

(LDS)

Move to bottom line in
window tb <SHIFT> m

(LFS)

Tab to window borders twb [1, r, t, b] None

Move to the beginning ad; tl CTRLlK
of next line

Tab left thl CTRLI<TAB>

Tab right th <TAB>

Set tabs ts [nl n2 ...] None

Move to DM input pad tdm <CMD> (LS)

Move to next window on tn <NEXT WNDW>
screen (LB)

Move to next window in ti None
which input is enabled

Move to previous window t1w CTRLlL

Controlling the Display 4-3

Crea ting Processes

When you execute a program on an Apollo node, you run it in a
computing environment called a process. Each process that you
create is unique, providing a separate computing environment.
Since Domain/OS enables you to create multiple processes on your
node, you can run several programs simultaneously. You can create
and run up to 56 simultaneous processes.

The system associates each process that you create with a subject
identifier (SID). The SID identifies the owner of a process and
consists of the user's name, group, and organization. SIDs enable
the system to control user access to processes and other objects on
the system. Chapter 10 describes how the system uses SIDs and Ac
cess Control Lists (ACLs) to control access to system objects. By
default, the system assigns the same SID to each process that you
create.

You can create processes that have pads and windows that let you
enter data and view program output. You can also create processes
that run without the use of the display. The type of process you cre
ate depends on the program and its application.

To run an interactive program, for example, you create a process
with pads and windows. The shell programs that we supply with
your system are interactive programs. Each shell that you invoke
prompts you for input (shell commands) and displays output.

We also supply a set of special programs called server programs
that provide you, or a program, with access to some service, such as
the use of a peripheral device. Server programs run in processes
called servers that you can create using any of the process creation
commands described in this chapter. Many of these servers run as
background processes without pads or windows.

Table 4-2 summarizes the commands used to create processes.

4-4 Controlling the Display

Table 4-2. Commands for Creating Processes

Task DM Command Predefined Key

Create new process, pads, cp pathname None
and windows

Create new process with- cpo pathname None
out pads and windows

Create a server process cps pathname None

Creating a Process with Pads and Windows

To create a process with input and output pads and windows to view
these pads, use the cp (create process) command in the following
format:

[region] cp [options] pathname [arguments]

The region argument specifies the coordinates of the process win
dow and pathname specifies the pathname of the program you want
the process to execute. The process pads and windows that the cp
command creates enable you to supply input to programs and view
program output.

The command in the following example creates a process that exe
cutes an interactive program called counter. bin. The program
prompts for program input and displays its output to the process's
transcript pad.

cp -n counter ihoraceiprogsicounter.bin

The -n option assigns the process the name counter. When
counter. bin completes (or if you stop the program or process), the
input and transcript pads close. To delete the remaining process
window, press <EXIT>. Note that in this example, since no region
is specified, the DM uses its default window coordinates to create
the window. (See the "Defining Default Window Positions" section
later in this chapter.)

Controlling the Display 4-5

One process that you'll create frequently is a process that runs a
shell program that we supply. You can create a process running the
default shell by pressing <SHELL>. You can also run a specific
shell by typing the cp command with the appropriate pathname at
the DM prompt. For example, to run an Aegis shell, type the fol
lowing:

Command: cp Icomlsh

This command creates an input pad and a transcript pad, and
opens the input pad as standard input. (Standard input is where,
by default, a program gets user input.) Figure 4-1 shows a process
running the Aegis shell.

Figure 4-1. A Process Running the Aegis Shell

To stop both the Aegis shell program and its process, press CTRLlZ
(signaling the end of input) in the shell's process input pad. Then,
to close all the windows associated with the shell's process, press
<EXIT>. The "Controlling A Process" section describes how to
stop programs and processes. The "Closing Pads and Windows"
section describes how to close windows.

4-6 Controlling the Display

Creating a Process without Pads and Windows

To create a background process without associated pads and win
dows, specify the cpo (create process only) command in the follow
ing format:

cpo pathname [options]

The pathname argument specifies the pathname of the file that you
want the process to execute.

When you invoke the cpo command, the system assigns the created
process the SID of the process that invoked the cpo command. The
created process runs until the owner of the process logs out.

Suppose you wanted to create a process running the alarm server
program to monitor your disk usage, and to warn you when your
disk becomes 90% full. To create the process and start the alarm
server, specify the following command:

cpo Isys/alarm/alarm_server -disk 90

In this example, the alarm server runs as a background process on
your node. When you log off, the process stops. Managing Aegis
System Software provides detailed information about the alarm
server and other servers.

If you include the cpo command in the DM start-up script,
'node_data/startup, the system assigns the created process the
SID, user. server. none. In this case, the created process continues
to run regardless of who logs in or out. You can perform this same
function by executing cps from the DM input window.

Creating a Server Process

You can create a server process without pads and windows that runs
continually on your node by specifying the cps (create process
server) command in the following format:

cps pathname [options]

Controlling the Display 4-7

The pathname argument specifies the pathname of the program you
want the process to execute.

Use the cps command when you want to create a server that runs
regardless of whether anyone is logged in. For example, the follow
ing command starts the mailbox server mbx_helper:

cps Isys/mbx/mbx_helper -n mbx_helper

In the example above, the -n option assigns the process the name
mbx_helper.

You can invoke cps commands from your node's DM start-up
script (startup) during start-up. (Chapter 2 describes the start-up
script files the system uses when you start your node.) You can also
invoke the cps command from the DM input window.

Controlling a Process

Once you create a process, you can use the DM's process control
commands to either stop it, suspend it, or restart it. Table 4-3 sum
marizes the DM commands used to control processes.

Table 4-3. Commands for Controlling a Process

Task DM Command Predefined Key

Quit, stop, or blast dq [-bl-sl-c n] CTRLlQ
a process

Suspend execution of ds None
a process

Resume execution of a dc None
suspended process

4-8 Controlling the Display

Stopping a Program or Process

To stop a program or an entire process, use the dq (debug quit)
command in the following format:

dq [options]

To stop a program, position the cursor inside the window of the
process and either press CTRLlQ or specify the dq command with
out any options. Either operation will generate a normal quit fault,
which interrupts the execution of the current program and returns
the process to the calling program (usually the shell).

To stop an entire process, position the cursor inside the window of
the process. Then, specify the following DM command:

dq -s

This command stops the current process and closes any open
streams, files, and pads. To delete the remaining window, move the
cursor inside the window and press <EXIT>.

Suspending and Resuming a Process

You can temporarily interrupt a process and then restart it using the
ds (debug suspend) and dc (debug continue) commands.

To interrupt a process, position the cursor inside the process win
dow; then specify the ds command. Later, to restart the process,
position the cursor inside the process window and specify the dc
command.

Creating Pads and Windows

In order to read or edit a file, you must create a pad to hold it and
a window to view it. Table 4-5 summarizes the OM commands used
to create pads and windows for editing and reading files.

Controlling the Display 4-9

Table 4-4. Commands for Creating Pads and Windows

Task DM Command Predefined Key

Create an edit pad and ee pathname <EDIT> (R4)
window

Create a read-only
window

ev pathname <READ> (R3)

Create a copy of an cc None
existing pad and window

Before you can use the commands that create pads and windows,
you should understand just how the DM determines what bounda
ries to assign to a new window.

When a window's size or position on the screen is changed in any
way, the DM calculates the new boundaries of the window based on
a pair of points on the screen called a point pair. (Usually, you de
fine the first point in the pair with the dr command, and the second
point by the current cursor position. You may also provide absolute
point coordinates as described in the "Defining Points and Regions"
section in Chapter 3.)

Each point in a point pair may specify either a new or existing edge
of a window, or a new or existing corner of a window. The DM cre
ates a new window based on the relationship between the x- and y
coordinates of the two points.

DM Rules for DerIDing Window Boundaries

The relationship between the two points in the point pair affects the
actions of the DM window-creation commands, cp, ce, ev, ce, and
the window-movement commands, wm, wme, wg, and wge (see
the "Managing Windows" section for more information). The fol
lowing list shows how the DM defines window boundaries according
to the points given for window-creation and window-movement
commands.

4-10 Controlling the Display

For points that differ in both x- and y-coordinates:

Create

Move

Each set of coordinates form opposing corners of
the window.

The first point selects the nearest unobscured cor
ner (this corner must be visible) and the DM
repositions the corner at the second point.

For points that are equal:

Create

Move

Create a 512 by 512 window centered as closely as
possible to the given cursor position.

Select the unobscured corner nearest the given
point, and move the corner to that point.

For points that have equal y-coordinates:

Create

Move

Create a window bounded by the given x-coordi
nates, the top of the display, and the DM com
mand window. In other words, create a full
vertical window.

Select the unobscured vertical edge nearest to the
first point and change the x-coordinate of that
edge to that of the second point.

For points that have equal x-coordinates:

Create

Move

Create a window bounded by the given y-coordi
nates and each side of the display. In other words,
create a full horizontal window.

Select the unobscured horizontal edge nearest to
the first point, and change the y-coordinate of
that edge to that of the second point.

When only one point is given (no dr is specified):

Create The DM uses one of its five default window re
gions (see the "Defining Default Window Posi
tions" section), or it determines the position by
the last window creation or deletion command as
follows:

Controlling the Display 4-11

Move

• If the last command was window deletion
(we), the default region is the same as that
for the deleted window.

• If the last command was a successful win
dow-creation command, the default region
is the next third of the screen

• If the last command was an unsuccessful win
dow-creation command, the default region
is the same as that specified in the unsuc
cessful command.

Grow is illegal; move acts as if both points are
equal.

Creating an Edit Pad and Window

To create an edit pad and window, specify the ee (create edit) com
mand in the following format:

[region] ee pathname

The pathname argument specifies the pathname of the file you want
to edit. If the file you specify exists, the ee command opens the file
for editing. If the file does not exist, the ee command creates a new
file, assigns it the pathname you specified, and opens it for editing.
Note that the ee command does not create a process; it opens a file
for editing within the current DM process.

Once you create an edit pad, you can use the DM edit commands
to manipulate the text that appears on the pad. Chapter 5 describes
how to use the DM edit commands to edit pads.

You can also create an edit pad and window using <EDIT>. When
you press <EDIT>, an "edit file: .. prompt appears in the DM input
window, and the DM moves the cursor next to the prompt. To edit
a specific file, type the file's pathname next to the prompt, and
press <RETURN> as shown in Figure 4-2.

4-12 Controlling the Display

Figure 4-2. Creating an Edit Pad and Window

Creating a Read-Only Pad and Window

A read-only pad and window is identical to an edit pad and window
with one exception: you cannot make changes to a read-only pad;
you can only read it. (Note, however, that you can copy text from a
read-only pad.)

To create a read-only pad and window, specify the cv (create view)
command in the following format:

[region] cv pathname

The pathname argument specifies the pathname of the file you want
to read. If the file you specify exists, the cv command opens the file
and displays its contents. If the file does not exist, the DM displays
the following error message:

(cv) filename - Name not found

Note that the cv command does not create a process; it opens a file
for reading within the current DM process.

Controlling the Display 4-13

If the file you want to read is currently active in another window,
you can create another new pad and window to read it. You can
not, however, edit a file while anyone else on the network has it
open for editing.

On occasion, you may create a read-only pad and window and de
cide that you would like to make changes to the file. Instead of cre
ating a new edit pad and window for the file, you can either press
CTRLiM or specify the OM command ro (set read/write mode) to
change the read-only pad to an edit pad. Chapter 5 describes how
to use the ro command to set a pad's read/write mode.

You can also create a read-only pad and window using <READ>,
which works in a manner similar to <EDIT>.

Copying a Pad and Window

With the cc (create copy) command, you can create a copy of an
existing pad and window and display it at a specific area on the
screen. Figure 4-3 illustrates how to use the cc command to copy a
pad and window.

Figure 4-3. Copying a Pad and Window

4-14 Controlling the Display

The numbers in Figure 4-3 correspond to the following steps:

1. Mark opposite corners of the new window. To mark each
corner: first move the cursor to the point on the screen
where you want the corner to appear, then either press
<MARK> or specify the dr command. (Chapter 3 de
scribes how to use dr and <MARK> to mark regions on
the display.)

2. Move the cursor inside the window you want to copy.

3. Specify the ce command.

This procedure creates a copy of the pad and window and displays
it at the location on the screen that you marked. If you issue the ec
command without marking the display region, the DM determines
the location according to the rules described earlier in the "Creat
ing Pads and Windows" section.

Closing Pads and Windows

When you finish reading or editing a pad, you can close the pad
and window using any of the commands listed in Table 4-5.

Table 4-5. Commands for Closing Pads and Windows

Task DM Command Predefined Key

Close window and pad; pw: we-q <EXIT> (R5)
update file

Close window and pad; we -q <ABORT> (R5S)
no update

Close (delete) window we [-qJ-f] None

Controlling the Display 4-15

To delete (quit) a read-only or edit pad and associated windows,
position the cursor inside the window and either press <ABORT>
(on low-profile keyboards only), press CTRLlN, or specify the fol
lowing command:

wc -q

The -q option causes wc to delete the pad and window without sav
ing the contents of the pad. If you modified the edit pad, you'll re
ceive the following message in the DM input window asking you to
confirm your request to quit:

File modified. OK to quit?

If you respond by typing "y" or "yes" followed by <RETURN>, the
we command deletes the pad and window without saving the con
tents of the pad. If you respond with "n" or "no", the system ig
nores the quit request and returns the cursor to the edit pad.

If you modify an edit pad and want to save its contents (write its
contents to a file), press <EXIT> (for low-profile keyboards only),
press CTRLlY, or specify the pw command without any arguments.

The pw (pad write) command copies the edited pad to a file that
has the same name as the original file. The system saves the con
tents of the original pad in a file with the same name and the added
suffix .bak. Once you've saved the pad, use wc to close the edit
window.

Managing Windows

Window control commands enable you to change the size, position,
and characteristics of windows on the screen. You can use window
control commands to manage edit pad windows, or process win
dows. Table 4-6 summarizes the window control commands.

4-16 Controlling the Display

Table 4-6. Commands for Managing Windows

Task DM Command Predefined Key

Change window size wg CTRLlG

Change window size wge <GROW> (LA3)
with rubberbanding

Move a window wm None

Move a window with wme <MOVE> (LA3S)
rubberbanding

Set scroll mode ws [-on I-off] CTRLlS

Set autohold mode wa [-on I-off] None

Scroll and autohold wa; ws CTRLlA
mode

Set hold mode wh [-on I-off] <HOLD> (R6)

Define position of wdf [n] None
default window n

Acknowledge alarm aa None

Acknowledge alarm ap None
and pop window

Changing Window Size

Once you create a window on your screen, you can enlarge or
shrink it with the wge (window grow echo) command.

As shown in Figure 4-4, the wge command displays a flexible bor
der, or rubberband, that changes as you move the cursor to enlarge
or shrink the window. The position of the rubberband shows you
the size and shape the window will become when you complete the
operation.

Controlling the Display 4-17

Command: wge

Figure 4-4. Growing a Window Using Rubberbanding

Use the following procedure to change the size of a window:

1. Move the cursor to the window corner or edge you want to
move.

2. Press <GROW> or specify the wge command. A rubber
band border appears.

3. Move the cursor to stretch or shrink the rubberband until
the rubberband matches the new size you want for the
window.

4. Either press <MARK> or enter the dr command to com
plete the operation.

To cancel the procedure at any time, press CTRLlX or specify the
abrt command.

4-18 Controlling the Display

If you have a mouse, you can change the size of a window by using
the left mouse key. To use the mouse to change the size of a win
dow, perform the following procedure:

1. Move the cursor to the window corner or edge you want to
move.

2. Press and hold the left mouse key. A rubberband border
appears.

3. Holding the left key down, move the cursor to grow or
shrink the window.

4. When the rubberband matches the new size you want for
the window, release the left mouse key.

Moving a Window

To move a window to another location on the display, use the wme
(window move echo) command. The wme command, like the wge
command, uses a rubberband border to show you the exact position
the new window will occupy.

Use the following procedure to move a window:

1. Move the cursor to any corner of the window you want to
move.

2. Press <MOVE> or specify the wme command. A rubber
band border appears.

3. Move the cursor until the rubberband is at the new win
dow position.

4. Either press <MARK> or specify the dr;echo command
sequence to complete the operation.

To cancel the procedure at any time, press CTRLlX or specify the
abrt command.

Controlling the Display 4-19

Pushing and Popping Windows

As you create multiple windows on your screen, you may begin to
stack windows one on top of another. Some windows will partially
obscure or completely hide others. To view hidden windows, use
the wp (window pop) command in the following format:

wp [options] [window_name]

The wp command pops a window to the top of the stack or pushes
a window to the bottom of the stack, depending on where you posi
tion the cursor. Figure 4-5 shows how to push and pop windows.

Command: wp OJ

Figure 4-5. Pushing and Popping Windows

If you position the cursor in a partially obscured window, the wp
command pops the window to the top of the stack. If you position
the cursor in a completely visible window (the window on top), wp
pushes the window to the bottom of the stack.

4-20 Controlling the Display

Use the following procedure to push or pop windows:

1. Position the cursor inside the window you want to push or
pop.

2. Pop or push the window by either pressing <POP> (on
low-profile type keyboards only), typing CTRLlP, or
specifying the wp command.

You can also refer to a window you want to push or pop by specify
ing the name of the window. To specify a window name, either en
ter it as an argument to the wp command, or point to window name
as follows:

1. Use the cursor to point to a text string that contains the
name of the window you want to push or pop.

2. Press <MARK>, or specify dr to mark the window name.

3. Specify the wp command.

This method is useful when you're displaying a list of all windows
that you currently have open (see the description of the cpb com
mand in the "Displaying the Members of a Window Group" section
later in this chapter).

Changing Process Window Modes

The DM provides several modes that control how the DM inserts
text into process input windows, and how process transcript win
dows display program output. Table 4-7 describes these modes.

You control window modes by positioning the cursor inside the
process window and specifying window mode control commands. If
you specify a command without any options, the command toggles
the mode setting (turns it on or off depending on its current state).

Controlling the Display 4-21

Table 4-7. Process Window Modes

Mode Description

Insert Insert text in the input window rather than
overstrike

Scroll Output scrolls one line at a time.

Hold Content of the window does not change when the
program sends output to the pad.

Autohold Window automatically enters hold mode.

The window legend at the top of the process window displays a let
ter code that indicates which modes are on. Figure 4-6 shows the
mode indicators and other components that make up the process
window legend.

Process Window Legend

Process Name

Figure 4-6. Process Window Legend

By default. the window legend displays the letter "I" indicating that
the process input window is in insert mode. In insert mode. the
DM inserts characters you type at the current cursor position. The
remainder of the line moves to the right to make room for new
characters.

4-22 Controlling the Display

With insert mode turned off, the process input window is in over
strike mode, in which characters you type replace those under the
cursor.

To turn insert mode on or off, specify the ei command in the fol
lowing format:

ei [-on I -off]

If you do not specify an option, ei toggles the current mode.

To turn scroll mode on or off, specify the ws (window scroll) com
mand in the following format:

ws [-on I -off]

With scroll mode turned on, the window displays output one line at
a time as the transcript pad moves beneath the window. With scroll
mode turned off, output does not appear a line at a time. Instead,
when the program finishes sending output to the transcript pad, the
window automatically displays the end of the pad and any new out
put.

Initially, all transcript pad windows have scroll mode turned on.
The window legend at the top of the window displays the letter S
when scroll mode is on. You can also toggle scroll mode on or off
by pressing CTRLlS.

To turn hold mode on or off, specify the wh (window hold) com
mand in the following format:

wh [-on I -off]

When you turn hold mode on, the DM freezes the position of the
transcript pad beneath the window. The window will not display
new program output until you release the pad by turning hold mode
off. When you turn hold mode off again, the window automatically
displays the end of the transcript pad and any new program output.

Controlling the Display 4-23

Initially, all transcript pad windows have hold mode turned off.
With hold mode turned off, the window automatically displays new
output as the pad moves beneath it. The window legend displays the
letter H when hold mode is on. You can also turn hold mode on or
off by pressing <HOLD>.

To turn autohold mode on or off, specify the wa (window
autohold) command in the following format:

wa [-on I -off]

With autohold mode turned on, the window automatically turns
hold mode on under either of the following conditions:

• A full window of output is available and none of it has
been displayed.

• A form feed or create frame operation is output to the
pad. In this case, the window displays the output preceding
the form feed. When the window exits from hold mode,
the output following the form feed or create frame opera
tion starts at the top of the window.

To continue displaying output, turn hold mode off.

Initially, all transcript pad windows have autohold mode turned off.
The window legend contains an "A" when auto hold mode is on.
You can also turn autohold mode on or off by pressing CTRLI A
(which invokes the commands wa;ws).

Defining Default Window Positions

The DM uses default window positions to determine where to dis
play the first five windows you create. To define any of the DM's
five default window positions, specify the wdf (window default)
command in the following format:

[region] wdf [n]

The region argument specifies the position that the window will oc
cupy on the screen (see the "Specifying Points on the Display" sec
tion in Chapter 3), and n specifies the identification number of the

4-24 Controlling the Display

default window you are defining. If you omit n, the wdf command
causes the OM to discard any current window information and be
gin creating windows using its default window boundaries.

The command in the following example defines the window position
for default window four. Note the format of the region definition.

(0,770) dr; (600,110) wdf 4
I I

region

If you want to use your own default positions for each log-in ses
sion, include wdf commands in your OM start-up script
(startup_dm). Once you've defined your default window positions,
you should add the command wdf;cms. This command instructs
the OM to use the first wdf command to set up the default position
for the first window you create. Otherwise, the OM uses the last
wdf command in your script to determine the default position of
the first window you create. For more information on OM start-up
scripts, see "Understanding the System at Login" section in Chap
ter 2.

Responding to DM Alarms

Whenever the OM writes output to a partially obscured or hidden
window, it sounds an alarm and displays a small pair of bells in the
alarm window. If you wish to respond to an alarm, enter either the
aa or ap command.

The aa command acknowledges the OM alarm by turning off the
current alarm and enabling further alarms (which may already be
waiting) .

The ap command acknowledges the OM alarm and pops to the top
of the stack, the window to which the alarm pertains. This com
mand is particularly useful when the window is completely hidden,
and you can't point to it.

Controlling the Display 4-25

Moving Pads Under Windows

The OM pad control commands enable you to move a pad under a
window. Table 4-8 summarizes the pad control commands.

Table 4-8. Commands for Moving Pads

Task DM Command Predefined Key

Move top of pad into pt None
window

Move cursor to first pt;tt;tl CTRLIT
character in pad

Move bottom of pad pb None
into window

Move cursor to last pb;tb;tr CTRLlB character in pad

Move pad n pages pp [-]n []IT]
(LO, LF)

Move pad n lines pv [-] n SHIFT! t
(L8S)

SHIFT! !.
(LES)

Move pad n characters ph1::']n BEl
(L7, L9)

Save transcript pad in pn None
a file

4-26 Controlling the Display

Moving to the Top or Bottom of a Pad

Two DM commands enable you to move from the current position
in a pad to the top or bottom of a pad. The pt (pad top) command
moves the top line of a pad to the top of the current window. The
pb (pad bottom) command moves the bottom line of a pad to the
bottom of the current window. Neither command accepts argu
ments or options.

We also provide two predefined control key sequences that perform
the same functions as the pt and pb commands; they also move the
cursor to either the first or last character in the pad. To move the
cursor to the first character in the pad, press CTRL/T (defined as
the command sequence pb;tt;tl). To move the cursor to the last
character in the pad, press CTRL/B (defined as the command se
quence, pb;tb;tr).

Scrolling a Pad Vertically

You can scroll a pad up or down by a specified number of lines or
pages using the vertical scroll commands or associated function
keys. To scroll a pad by pages, specify the pp (pad page) command
in the following format:

pp [-]n

The n argument specifies the number (or fraction) of pages to
scroll. A positive n scrolls the pad up n pages; a negative n scrolls
the pad down n pages. The DM considers a page the smaller of the
following values:

• The number of lines that fit in a window.

• The number of lines between the bottom of the window
and the next form feed or frame.

The command in the following example scrolls the pad down one
and one-half pages:

pp -1.5

Controlling the Display 4-27

We also provide two predefined keys that scroll a pad either up or
down one-half page at a time. Figure 4-7 shows the location of
these keys.

~ rrnm ~CHAR~
~~ DEL

1[fqffi1TIR@l~
~~~ 

8~B 
~ma 
B~B mmm 

Figure 4-7. Location of Pad Scroll Keys 

To scroll a pad by lines, specify the pv (pad line) command in the 
following format: 

pv [-]n 

The n argument specifies the number of lines to scroll. A positive n 
scrolls the pad up n lines; a negative n scrolls the pad down n lines. 

You can also use the two predefined function keys shown in Figure 
4-7 to scroll a pad either up or down one line at a time. To scroll 
one line at a time, press <SHIFT> and the up-arrow or down
arrow key simultaneously. 

4-28 Controlling the Display 



Scrolling a Pad Horizontally 

To scroll a pad horizontally by a specified number of characters, 
use the ph (pad horizontal) command or its associated function 
keys. The ph command has the following format: 

ph [-]n 

The n argument specifies the number of characters to scroll. A 
positive n scrolls the pad to the left n characters; a negative n scrolls 
the pad to the right n characters. 

You can also use two predefined function keys to scroll a pad either 
right or left 10 characters. Figure 4-7 shows the location of these 
keys. 

Saving a Transcript Pad in a File 

Normally, the OM deletes a transcript pad when you stop the pad's 
process and delete all windows. To keep a log of the current tran
script pad and save the log in a file, specify the pn (pad name) 
command in the following format: 

po pathname 

The pathname argument specifies the pathname of the file where 
the OM saves the contents of the pad. You must specify a path
name cataloged on your node; you can not use a pathname cata
loged on another node. 

The po command stores the current transcript pad in a file that re
mains opened and locked until you stop the process and delete all 
windows. Once you specify the po command, the OM saves all cur
rent and subsequent output written to the pad. 

Controlling the Display 4-29 



Using Window Groups and Window Icons 

The DM provides several commands that enable you to create win
dow groups, make these groups invisible, or use icons to represent 
them. Table 4-9 summarizes the commands used to control window 
groups and icons. 

Table 4-9. Commands for Controlling Window 
Groups and Icons 

Task DM Command Predefined Key 

Create or add to a wgra grp _name None 
window group [entry_name] 

Remove a window wgrr grp_name None 
from a window group [entry_name] 

Make windows invisible wi [entry_name] None 

Change windows to icon SHIFT/<POP> 
icons [entry_name] (RIS) 

[options] 

Set icon positioning 
and offset 

idf None 

Display list of windows cpb grp _name None 
in group 

Creating and Adding to Window Groups 

When you create a window group, you establish a group name and 
assign windows to the group. You can then make the window group 
invisible or represent the group with icons by specifying the group 
name. Groups can contain individual windows, as well as other 
groups of windows. 

4-30 Controlling the Display 



To create a window group or add a window to an existing group, 
specify the wgra (window group add) command in the following 
format: 

wgra group_name [entry_name] 

The group_name argument specifies the name of the group you 
want to create or add to, and entry_name specifies the name of the 
window or window group you want to add. For process windows, 
entry_name specifies the process name that appears in the window 
legend; for edit pad windows, entry_name specifies the pathname 
that appears in the window legend. 

You must specify the group_name argument when you use this com
mand. If you omit the entry_name argument, wgra uses the name 
of the window where you last positioned the cursor. 

The commands in the following example create a window group: 

wgra shell_windows pad01 
wgra shell windows pad02 
wgra shell-windows pad03 

The first command creates a window group named shell_windows 
and adds the window named pad01 to the group. The remaining 
commands add additional windows (pad02 and pad03) to the 
shell_windows group. 

Removing Entries from Window Groups 

To remove an entry (window or window group) from a window 
group, specify the wgrr (window group remove) command in the 
following format: 

wgrr group_name [entry_name] 

The group_name argument specifies the name of the group that 
contains the entry you want to remove, and entry_name specifies 
the window name or window group name you want to remove. You 
must specify the group_name argument when you use this com-

Controlling the Display 4-31 



mand. If you omit the entry_name argument, wgrr uses the name 
of the window where you last positioned the cursor. 

The command in the following example removes a window named 
padOl from the group named shell_windows: 

wgrr shell_windows padOl 

Making Windows Invisible 

To control whether a window or window group is visible or invisible, 
specify the wi (window invisible) command in the following format: 

wi [entry_name] [-w] [-i] 

The entry_name argument specifies the name of the window or win
dow group you want to make visible or invisible. If you omit the en
try_name argument, wi uses the name of the window where you last 
positioned the cursor. 

The -w option forces the window or group to appear as a window; 
the -i option forces the window or group to become invisible. If you 
specify the wi command without either of these options, wi toggles 
the setting (makes the window or group visible or invisible, which
ever is the opposite of its current state). 

The command in the next example makes the window group 
shell_windows invisible: 

wi shell windows -i 

Using Icons 

You use icons to represent a window or group of windows on your 
display. Because icons are small, they enable you to keep windows 
and window groups accessible without having them open on the dis
play. 

4-32 Controlling the Display 



Icons are very similar to the windows they represent. For example, 
you can move icons with the wme command (see the "Moving a 
Window" section discussed earlier in this chapter), or you can set 
the position on the screen where icons will appear by default. You 
cannot, however, change the size of an icon on the display. 

The DM displays an icon as a small window containing a specific 
icon symbol. The icon symbol describes the type of information the 
related window or group contains. Figure 4-8 shows the default 
icon for shell process windows. 

$ 

$ 

$ 

$ wd Isys/d 

$ 

SHELL 

Figure 4-8. Default Icon for Shell Process Windows 

To either change a window or window group into an icon, or to 
change an icon into the window or group it represents, you can use 
the predefined keys SHIFT/<POP> or specify the icon command 
in the following format: 

icon [entry_name] [-i] [-w] [-c 'char'] 

Controlling the Display 4-33 



The entry_name argument specifies the name of the window or win
dow group you want to change into an icon, or change back into a 
window. If you specify the name of a window group as the entry 
name, the icon command changes each window in the group. If you 
omit the entry_name argument, icon uses the window where you 
last positioned the cursor. 

The -w option forces the specified window or window group to ap
pear as a window; the -i option forces the specified window or 
group to change to an icon. If you specify the icon command with
out either of these options, icon toggles the setting (changes the 
window or group to the opposite of its current state). The easiest 
way to change individual windows and icons is to position the cursor 
inside the window or icon and specify the icon command. 

The icon command also accepts the -c option for specifying a 
partcular icon. Before we look at an example, let's look at how the 
system uses icons, and where it stores them. 

The system uses certain default icons that we supply to represent 
specific types of windows. For example, whenever you change a 
shell process window into an icon, the system, by default, uses the 
icon shown in Figure 4-8. Similarly, the system uses a special edit 
icon to represent read/edit windows. Many application programs 
that we supply also represent their specific process windows with 
their own specific default icons. 

The system stores default icons in a font file, /sys/dm/fonts/icons. 
(Note that this file is not an ASCII file; you cannot read it.) You 
can examine this file by using the edfont (edit font) program de
scribed in the Domain Display Manager Command Reference. You 
can also use edfont to create your own icons or change those the 
system uses by default. 

Each icon in the font file icons is associated with a specific key
board character. For example, the default Shell icon is associated 
with the lowercase "s" character. When you create an icon, you 
first choose a character, and then use edfont to transform the char
acter into an icon symbol. (This is how we created the default icons 
that the system and various application programs use.) To use your 
own icon once you've created it, specify its associated character 
name with the -c option. 

4-34 Controlling the Display 



The -c option allows you to specify the character associated with 
the icon you want to use. Por example, suppose you used edfont to 
create your own icon associated with the uppercase lip" character 
in the icons file. To use this icon to represent the read/edit window 
june_report, use the following command: 

icon june_report -i -c 'F' 

In this example, the icon command directs the DM to change the 
read/edit window june_report into an icon. The -c option directs 
the DM to use the icon associated with the character uP" in the file 
/sys/dm/fonts/icons instead of the default read/edit icon. 

Setting Icon Default Position and Offset 

The DM allows you to set the position of an icon on your screen 
and specify an offset that the DM uses to determine the positions 
of the next icons you create. The offset value specifies the position 
of new windows relative to the position of the previous icon. 

By default, the DM displays icons in a horizontal line across the top 
of portrait displays, and in a vertical line along the right side of 
landscape displays. The default offset (horizontally for portrait dis
plays, vertically for landscape displays) is the width of one icon (60 
pixels) . 

With the idf (icon default) command, you can change the default 
positioning and offset of an icon, or to establish the position of an 
icon you create in a script. You can use the idf command in any of 
the following ways: 

• Move the cursor to the desired default icon position. 
Press <MARK> or specify the dr command to mark the 
position. Specify the idf command to set the new position. 
Since you did not specify an offset value, the DM places 
any new icons that you create at this one position. 

• Move the cursor to the desired default icon position. 
Press <MARK> or specify the dr command to mark the 
position. Move the cursor to indicate the offset vector for 
the next icon. Specify the idf command to set the new po
sition and offset. 

Controlling the Display 4-35 



• Specify the icon position and offset explicitly in the follow
ing command line format: 

(position) dr; (offset) idf 

The position argument specifies the x- and y-coordinates 
of the icon position and offset specifies the coordinates of 
the offset vector. For example, the following command 
line sets an icon position and offset: 

(800,10) dr; (850,60) idf 

This command sets the position for the first icon at bit po
sition (800,10). The next icon will appear at bit position 
(850,60), an offset of (50,50) from the original position. 
Refer to the "Defining Points and Regions" section in 
Chapter 3 for more information. 

Displaying the Members of a Window Group 

To display a list of windows in a specific group, use the cpb (create 
paste buffer) command in the following format: 

cpb group_name 

The group _name argument specifies the name of the window group 
you want to list. The group_name refers to a paste buffer that con
tains the names of the windows in the group. The cpb command 
creates a window to the paste buffer you specify as the group_name 
and displays the paste buffer's contents. For example: 

cpb group1 

This command displays the names of all the windows in the window 
group groupl. A paste buffer named group1 contains these names. 

The DM automatically creates three special paste buffers to help 
you manage your windows and icons. Table 4-10 describes these 
paste buffers. To list the contents of one of these special paste buff
ers, enter the cpb command with the special group_name as fol
lows: 

4-36 Controlling the Display 



cpb invis_group 

This command opens the paste buffer invis_group that contains 
the names of all the windows you've made invisible. 

Table 4-10. Window Paste Buffers 

Mode Description 

invis_group Contains the pathnames of all the windows that 
you've made invisible. 

icon_group Contains the pathnames of all the windows 
represented by icons. 

all_group Contains the pathname of every window open 
on your node, including: shell process windows, 
DM windows, visible and invisible windows. and 
windows represented by icons. 

-------88-------

Controlling the Display 4-37 





Chapter 5 

Editing a Pad 

Chapter 4 describes how to create pads and windows to read and 
edit files. This chapter describes how to use the DM to control the 
characteristics of edit pads, and how to edit text. 

Each section in this chapter describes a set of editing tasks and the 
DM commands you use to perform them. You can execute a DM 
command either from a DM script or interactively by specifying the 
command in the DM input window. In many cases, you can exe
cute a DM editing command by typing a function key or control key 
sequence. 

The command summary tables at the beginning of each section list 
the DM commands, related function keys, and control key se
quences used to perform a specific set of editing tasks. Note that 
the predefined keys listed in these tables apply only to low-profile 
keyboards. 

Chapter 3 explains how to specify DM commands from the key
board and from scripts, and how to use function keys and control 
key sequences. For a complete description of all the DM editing 
commands described in this chapter, refer to the Domain Display 
Manager Command Reference. 

Editing A Pad 5-1 



Setting Edit Pad Modes 

All edit pads are controlled by the current DM mode, which deter
mines whether you can make changes to the material in the pad, 
and whether the DM either inserts or overstrikes characters that 
you type. Table 5-1 summarizes the DM commands used to change 
edit pad modes. 

Table 5-1. Commands for Setting Edit Modes 

Task DM Command Predefined Key 

Set read/write mode ro [-on I-off] CTRLlM 

Set insert/overstrike mode ei [-on I-off] <INS> (LlS) 

Figure 5-1 shows the window legend for edit pads. The edit pad 
window legend provides information about a window's characteris
tics, such as the pathname of the file and current window modes. 
The edit pad window legend also displays the line number of the 
line at the top of the window and the horizontal offset, which indi
cates the number of columns the window has been scrolled sideways 
over the pad. The horizontal offset number appears only when you 
scroll the window sideways over the pad. 

Edit Pad Window Legend 

Pathname Mode Indicators 
(Insert. readonly) 

Figure 5-1. The Edit Pad Window Legend 

5-2 Editing a Pad 



Setting ReadlWrite Mode 

Edit pads can be in read-only mode or write mode. In read-only 
mode, you cannot write to or make changes to the text in a pad. 
However, you can copy, search for, and scroll the text. In write 
mode, you can write to a pad and change text using all of the edit
ing commands described in this chapter. 

When a pad is in read-only mode, the letter "R" appears in the 
window legend (see Figure 5-1). The "R" disappears in write 
mode. To turn read-only mode either on or off, specify the ro 
command in the following format: 

ro [-on I -off] 

The -on option instructs ro to set the pad to read-only mode. The 
-off option causes ro to set the pad to write mode (that is, it turns 
read-only mode off). If you do not specify an option, the ro com
mand toggles the current mode setting. 

You can also toggle the current setting by typing CTRL/M. The 
CTRL/M sequence invokes the ro command without options. 

If you've modified the text in a pad, you cannot change the pad to 
read-only mode without first writing the changes to a disk file (sav
ing the file). Use the pw command, described in the "Updating an 
Edit File" section, to write your changes to a disk file without clos
ing the pad and window. 

Setting Insert/Overstrike Mode 

The DM has two modes to control how text is added to a pad: in
sert mode or overstrike mode. In insert mode, the DM inserts 
characters you type at the current cursor position. The remainder 
of the line moves right to make room for the new characters. 

In overstrike mode, characters you type replace, or "overstrike," 
those under the cursor. Overstrike mode is useful for entering text 
into a pre formatted file without disrupting the file's format. 

When a pad is in insert mode, the letter "I" appears in the window 
legend as shown in Figure 5-1. The "I" disappears in overstrike 

Editing A Pad 5-3 



mode. All pads are initially in insert mode, although this is irrele
vant if the pad is also read-only. 

To turn insert mode either on or off, specify the ei command in the 
following format: 

ei [-on I -off] 

The -on option instructs ei to set the current pad to insert mode. 
The -off option causes ei to set the pad to overstrike mode (that is, 
it turns insert mode off). If you do not specify an option, the ei 
command toggles the current mode. 

You can also toggle the current mode by pressing <INS>. This key 
invokes the ei command without options. 

Inserting Characters 

Any pad that is in write mode automatically accepts anything that 
you type at the keyboard as input to that pad. The commands listed 
in Table 5-2 perform special insertion functions. 

Table 5-2. Commands for Inserting Characters 

Task DM Command Predefined Key 

Insert string at cursor es 'string' Default DM 
operation 

Insert newline character en <RETURN> 

Insert new line after tr;en;t1 <P1> 
current line 

Insert raw (noecho) er nn None 
character 

Insert end-of-file mark eef CTRLlZ 

5-4 Editing a Pad 



Inserting a Text String 

When a pad is in write mode, the DM inserts any text character you 
type at the current cursor position. This is the default Display Man
ager action. If you try to type text into a read-only pad, the DM 
displays an error message in the DM output window. 

To insert a text string at the current cursor position, specify the es 
command in the following format: 

es 'string' 

The 'string' argument is the text that you want to insert. Enclose 
the text in single quotes ('). 

The es command inserts a string of text at the current cursor posi
tion. Since text insertion is the default action, you'll probably find 
this command most useful in key definition commands where you 
want some text written out when the key is pressed. Chapter 3 de
scribes how to define keys to perform DM functions. 

Inserting a Newline Character 

The newline character marks the end of the line. To insert a 
newline character at the current cursor position, press <RETURN> 
or specify the en command. When you insert a newline character, 
the cursor moves to the beginning of the next line. 

Inserting aNew Line 

To insert a new, blank line following the current line, specify the 
following command sequence: 

tr;en;t1 

The tr command moves the cursor to the end of the line, en inserts 
(or overstrikes) a newline character, and tl moves the cursor to the 
beginning of the next line. 

By default, pressing <P1> invokes the tr;en;t1 command sequence. 

Editing A Pad 5-5 



Inserting an End-or-File Mark 

To insert an end-of-file mark (EOF) in a pad, type CTRLlZ or 
specify the eef command. If the line containing the cursor is empty, 
the DM inserts the end-of-file mark on that line. Otherwise, the 
DM inserts the end-of-file mark following the current line. 

It is a common (although not universal) convention for programs to 
terminate execution and return to the process that called them 
when they receive an end-of-file mark on their standard input 
stream. 

Whether or not the DM also deletes the transcript window depends 
on the setting of its auto-close mode. If auto-close mode is dis
abled (the default setting), then you must manually delete any win
dows associated with the closed transcript pad by using the DM 
command line wc -q, or CTRLlN. The "Closing Pads and Win
dows" section in Chapter 4 describes the wc -q command line and 
CTRLlN. See the wc command description in the Domain Display 
Manager Command Reference for more information about auto
close mode. 

Deleting Text 

The commands listed in Table 5-3 delete characters, words, or 
lines of text. To delete a larger block of text, refer to the "Cutting 
Text" section. 

5-6 Editing a Pad 



Table 5-3. Commands for Deleting Text 

Task DM Command Predefined Key 

Delete character at ed <CHAR DEL> 
cursor (L3) 

Delete character ee <BACK SPACE> 
before cursor (BS) 

Delete "word" of dr;/ [,...."a-zO-9$ _] /xd <P6> 
text 

Delete from cursor es ";ee;dr;tr;xd;tl;tr <P7> 
to end of line 

Delete entire line cms;tl;xd <LINE DEL> 
(L2) 

Deleting Characters 

To delete the character under the cursor, press <CHAR DEL> or 
specify the ed command. If the character under the cursor is a 
newline, ed joins the current line and the following line. 

To delete the character to the left of the cursor, either press 
<BACK SPACE> or specify the ee command. If the pad is in over
strike mode, the ee command replaces the character with a blank. 

Both <CHAR DEL> and <BACK SPACE> are repeat keys. You 
can repeat the operation by holding down the key. 

Deleting Words 

To delete a word of text at the current cursor position, press the 
predefined function key <P6>. In this case, a "word" consists of a 
string of characters that may include a tilde (,....,,) in the first position 
of the word, and includes upper or lowercase letters, numbers, dol
lar signs ($), or underscores C). The deletion stops at the next 
space, punctuation mark, or special character (other than a dollar 
sign or underscore). Here are some examples of character strings 
that <P6> will delete: $fiIe, myJile3, ,...."report. 

Editing A Pad 5-7 



The <F6> function key invokes the command sequence 

dr;/ [.....,a-zO-9$ _] /xd 

The DM writes the deleted word to its default paste buffer (a tem
porary file). You can reinsert the word elsewhere by moving the 
cursor to the desired location and pressing <PASTE> or specifying 
the xp command. For more about paste buffers and the xp com
mand, see the "Copying, Cutting, and Pasting Text" section. 

Deleting Lines 

To delete text from the current cursor position to the end of the 
line (excluding the newline character), press the predefined func
tion key <F7>. The <F7> key invokes this command sequence: 

es ";ee;dr;tr;xd;tI;tr 

The DM writes the deleted line to its default paste buffer. You can 
reinsert the line elsewhere by either pressing <PASTE> or specify
ing the xp command. For more information about paste buffers 
and the xp command, see the .. Copying, Cutting, and Pasting 
Text" section. 

Defining a Range of Text 

The editing commands that perform cut (delete), copy, and substi
tute functions operate on a range, or block, of text. You mark a 
range of text just as you would mark any other region in a pad (see 
the .. Defining Points and Regions" section in Chapter 4). However, 
you may not declare a range as an argument to an editing com
mand. You must use the dr command or <MARK> before specify
ing the editing command. 

To use the dr command to define a range of text, define two points 
as follows: 

(point] dr; (point] 

5-8 Editing a Pad 



The first point defines the beginning of the range, and the dr com
mand marks it. The second point defines the end of the range. If 
you do not specify literal points, dr places the marks at the current 
cursor position. 

An easy way to define a range of text is to indicate a point with the 
cursor and use <MARK>, which invokes the dr and echo com
mands that in turn mark the first point and begin highlighting the 
text. Figure 5-2 illustrates how the DM highlights the text as you 
move the cursor to the end of the range. To define a range of text 
using the cursor and <MARK>, do the following: 

1. Move the cursor to the first point (the beginning of the 
range of text). 

2. Press <MARK>. 

3. Move the cursor to the second point (the end of the 
range). 

4. Specify the appropriate DM editing command. 

Please note that the character under the cursor at the end of th~ 
range is not included within the range. 

Figure 5-2. Defining a Range of Text with <MARK> 

Editing A Pad 5-



Copying, Cutting, and Pasting Text 

The commands listed in Table 5-4 copy, cut, and paste a range of 
text. They allow you to move blocks of text from one place to an
other in a pad (or between pads). 

Before specifying the commands that copy or cut text, use the dr 
command or <MARK> to define the range of text to be copied or 
cut (see the previous section). If you do not define a range, the OM 
copies or cuts the text from the current cursor position to the end of 
the line. 

Table 5-4. Commands for Copying, Cutting, and Pasting Text 

Task DM Command Predefined Key 

Copy text to a xc [name I -f file] [-r] <COPY> (L1A) paste buffer or 
file 

Cut (delete) xd [name I -f fi/e] [-r] <CUT> (LiAS) 
text and write it " 

to a paste 
buffer or file 

Paste (write) xp [name I -f fi/e] [-r] <PASTE> (L2A) 
text from a 
paste buffer or 
file into a pad 

U sing Paste Buffers 

To perform copy, cut, and paste operations, the DM uses tempo
rary files called paste buffers. Paste buffers hold text you've copied 
or cut so that you can paste it in elsewhere. 

You can create up to 100 paste buffers, each containing different 
blocks of text. To create a paste buffer, you specify a name for the 
paste buffer as an argument to the commands that copy or cut text 

5-10 Editing a Pad 



(xc and xd). To insert the contents of a paste buffer you have cre
ated, specify the name of the paste buffer as an argument to the 
command that pastes text (xp). We describe the xc, xd, and xp 
commands in the following sections. 

When you log off, the DM deletes all paste buffers you have cre
ated during the session. If you want to save the copied or cut text 
for use during another session, you can write it to a permanent file 
(see the xc and xd command descriptions in the following sec
tions) . 

If you do not specify the name of a paste buffer or permanent file 
when you specify the commands that copy or cut text, the DM 
writes the text to its default (unnamed) paste buffer. The DM 
also uses this default paste buffer when you press the predefined 
function keys and control key sequences that copy, delete, and 
paste text. 

Copying Text 

NOTE: In a paste buffer, the DM saves only the 
text copied or deleted during the last DM 
operation. Therefore, do not write any
thing else to the paste buffer until you 
have reinserted its contents. Otherwise, 
you will lose the text that you have put in 
the buffer. 

To copy a defined range of text from any pad into a paste buffer or 
file, specify the xc command in the following format: 

xc [name I -f pathname] [-r] 

The name argument specifies the name of a paste buffer that the 
DM creates to hold the copied text. The -f pathname option speci
fies the name of a permanent file for the text. For example, 

copies a defined range of text into a paste buffer named copy_text. 

Editing A Pad 5-11 



5-12 

The following command line copies a defined range of text into a 
permanent file named copy_text: 

xc -f copy_text 

If you supply the name of an existing paste buffer or file, xc over
writes its contents with the newly copied text. If you omit the name 
of a paste buffer or permanent file, xc writes the copied text to the 
default (unnamed) paste buffer. 

The -r option instructs xc to copy a rectangular block of text that 
you have defined by marking the upper left and lower right corners 
of a text region. To define the region, use the cursor and the dr 
command or <MARK> to specify the left corner, then move the 
cursor to specify the right corner. If you specify a column (the left 
and right corners in the same column), xc copies to the paste buffer 
all characters displayed to the right of the column. 

Figure 5-3 shows the two cursor positions used to mark the column. 
The dotted rectangle shows the block of text that the xc -r com
mand line copies. (The dotted rectangle is only for the purpose of 
illustration; it does not appear on your display.) 

:':'::.. ,:.:.:.:.:.: :: .... : ... : ...... . 

In classrooms and homes throughout the country, 
young children are happily hunting and pecking their way 
across computer keyboards as rapidly as many formally 
trained typists. 

The Impetus for this enthusiasm has nothing to do with 
typing skills; rather It Is due to the phenomenal 
attraction with which computers are grabbing the attention 
of children from age 5 on. To cite a few examples: 

c~p;e~ ha;' -;;r;k~ -;.; ~;-eg-;; Bo;d~~1 For 
the first time in history, high schOOl student will 
be able to take a coll9lle entrance examinat on In 
computer science In 1984. I 

Figure 5-3. Copying Text with the xc -r Command 

Editing a Pad 



By default, <COpy> invokes the xc command using the default 
(unnamed) paste buffer. You must specify the xc command with 
the name argument or the -f pathname option if you want to copy 
text to a named paste buffer or permanent file. 

Once you have copied a range of text, you can use the xp com
mand to paste the text elsewhere in the same pad, or in another 
pad (see the "Pasting Text" section). 

Copying a Display Image 

To copy a display image into a GMF, use the xi command in the 
following format: 

xi [-f pathname] 

The -f pathname option specifies the name of the file where you 
want to store the display image. If you omit the -f option, the image 
is written to the file 'node_data/paste_buffers/default.gmf. Once 
you copy the image to a file, you can print the file using the prf 
command with the -plot option as follows: 

prf my_file.gmf -plot 

To use the xi command, mark the range of the display you want to 
copy. If you do not specify a range, xi copies the entire window in 
which the cursor is positioned. (Note that, on a color node, the xi 
command only copies the text plane, not the full color image.) If 
you want to copy the whole screen, use the shell command cpscr 
(copy screen). Chapter 7 describes the cpscr command. 

Cutting Text 

When you cut text from a pad, the DM copies the text into a paste 
buffer or file and then deletes it from the pad. To cut a defined 
range of text, specify the xd command in the following format: 

xd [name I -f pathname] [-r] 

Editing A Pad 5-13 



The name argument specifies the name of a paste buffer that the 
DM creates to hold the deleted text. The -f pathname option speci
fies the name of a permanent file for the text. You can use this 
command only in pads created with <EDIT> or the ce command. 

If you supply the name of an existing paste buffer or file, xd over
writes its contents with the newly deleted text. If you omit the name 
of a paste buffer or permanent file, xd writes the deleted text to the 
default (unnamed) paste buffer. 

The -r option instructs xd to delete a rectangular block of text that 
you have defined by marking the upper left and lower right corners 
of a text region. To define the region, use the cursor and the dr 
command or <MARK> to specify the left corner, then move the 
cursor to specify the right corner. If you specify a column (the left 
and right corners in the same column), xd deletes all characters to 
the right of the column. 

By default, <CUT> invokes the xd command using the default (un
named) paste buffer. You must specify the xd command with the 
name argument or the -f pathname option to write deleted text to a 
named paste buffer or permanent file, respectively. 

Once you have cut a range of text, you can use the xp command 
(described in the next section) to paste the text in elsewhere. 

Pasting Text 

To insert the contents of a paste buffer or file into a pad at the cur
rent cursor position, specify the xp command in the following for
mat: 

xp [name I -f pathname] [-r] 

The name argument specifies the name of an existing paste buffer 
that contains the text you want to insert. The -f pathname option 
specifies the name of an existing file that contains the text you want 
to insert. If you do not specify the name of a paste buffer or perma
nent file, xp inserts the contents of the default (unnamed) paste 
buffer. 

5-14 Editing a Pad 



You can use this command only in pads created with <EDIT> or 
the ce command. 

The -r option instructs xp to insert a rectangular block of text that 
you have copied or deleted using the xc or xd command and the -r 
option. The xp command uses the current cursor position as the 
origin (upper left corner) of the block. 

By default, pressing <PASTE> invokes the xp command using the 
contents of the default (unnamed) paste buffer. You must specify 
the xp command with the name argument or the -f pathname op
tion to insert the contents of a named paste buffer or permanent 
file, respectively. 

Using Regular Expressions 

The DM search and substitute operations (described in the next 
several sections) allow you to use special notation, called regular 
expressions, to specify patterns for search and substitute text 
strings. You can also use regular expressions with the shell com
mands ed (edit), edstr (edit stream), fpat (find pattern), fpath 
(find pattern block), and cbpat (change pattern). See the Aegis 
Command Reference for descriptions of these commands. 

Regular expressions permit you to concisely describe text patterns 
without necessarily knowing their exact contents or format. You can 
create expressions to describe patterns in particular positions on a 
line, patterns that always contain certain characters and at times 
may include others, or patterns that match text of indefinite length. 

Following is a list of the special characters used to construct regular 
expressions, and a brief description of their functions. Although the 
discussion below only applies to characters used in regular expres
sion operations, some of these characters also have meanings (often 
radically different) in shell commands and other software products. 
If you want to use a regular expression as a part of one of those 
shell commands or products, be sure to enclose the expression in 
quotation marks so that it will not be misinterpreted. 

Editing A Pad 5-15 



ASCII Characters 

Any standard ASCII character (except those listed in this section) 
matches one and only one occurrence of that character. By default, 
the case of the characters is insignificant. Use the sc (set case) 
command to control case significance. The following examples are 
all valid expressions: 

SAM 
fred12 
Joe (a&b) 

Beginning of Line (%) 

A percent sign (%) at the beginning of a regular expression matches 
the empty string at the beginning of a line. If a % is not the first 
character in the expression, it simply matches the percent charac
ter. Use this special feature to mark the beginning of a line in a 
regular expression, e.g., 

%Print matches the string in line a but not line b because, 
in line b, Print is not at the beginning of the line. 

End of Line ($) 

(a) Print this file 
(b) This Print file 

A dollar sign ($) at the end of a regular expression matches the 
end-of-line character (null) at the end of a line. If $ is not the last 
character in the expression, it simply matches the dollar sign char
acter. Use this special feature to mark the end of a line in a regular 
expression, e.g., 

The expression fileS matches the string in line a, but not 
line b because, in line b, file is not followed by an end-of
line marker. 

(a) Print this file 
(b) This file is permanent 

5-16 Editing a Pad 



Single Character Wildcard (?) 

A question mark (?) matches any single character except a newline 
character. The only exception to this is when the? appears inside a 
character class (see the .. Strings and Character Classes" section); 
then, it represents the question mark character itself. For example: 

?OLD??? matches the strings in lines a and b, but not line c 
because, in line c the letters "OLD" are alone on the line: 

(a) HOLDING 
(b) FOLDERS 
(c) OLD 

Expression Wildcard (*) 

An asterisk (*) following a regular expression matches zero or more 
occurrences of that expression. The only exception to this is when 
the * appears inside a character class (see .. Strings and Character 
Classes" below), in which case it represents the asterisk character 
itself. Matching zero or more occurrences of some pattern is called 
a closure. An expression used in a closure will never match a 
newline character. Here are some examples: 

a*b matches the strings b, ab, aab, etc. 

%a?*b matches any string that begins with a and ends with 
b, and that is also the first string in the line. Any number of 
other characters can come between a and b. 

[A-ZJ [A-ZJ [A-ZJ * matches any string containing at least 
two (and possibly more) uppercase characters (see the 
"Strings and Character Classes" section). Strings like Mary 
would not match, since Mary does not begin with two up
percase characters. 

Strings and Character Classes 

A string of characters enclosed in square brackets [string] is called 
a character class. This pattern matches anyone character in the 
string but no others. 

Editing A Pad 5-17 



Note that the other regular expression characters % $ ? * lose their 
special meaning inside square brackets, and simply represent them
selves. For example: 

[sam] matches the single character s, a, or m. (If you want 
to match the word sam, omit the square brackets.) 

A string enclosed in square brackets whose first character is a tilde 
[""",string] matches any single character that does not appear in the 
string. If a tilde (,...,..) is not the first character in the string, it simply 
matches the tilde character itself. For example: 

[""",sam] matches any single character except s, a, or m. 

Within a character class, you can specify anyone of a range of let
ters or digits by indicating thebe ginning and ending characters sepa
rated by a hyphen (-). For example: 

[A-Z] matches any single uppercase letter in the range A 
through Z. 

[a-z] matches any single lowercase letter in the range a 
through z. 

[0-9] matches any single digit in the range 0 through 9. 

The range can be a subset of the letters or digits. However, the first 
and last characters in the range must be of the same type: upper
case letter, lowercase letter, or digit. For example, [a-n] and [3-8] 
are valid expressions. [A-9] is invalid. 

Note that a hyphen (-) has special meaning inside square brackets. 
If you want to include the literal hyphen character in the class, it 
must be either the first or last character in the class (so that it does 
not appear to separate two range-marking characters), or you can 
precede the hyphen with the escape character @ (see the @ de
scription below). 

The right bracket ( ] ) also has special meaning inside a character 
class; it closes the class descriptor list. If you want to include the 
right bracket in the class, precede it with the escape character @ 
(see the @ description below). For example: 

5-18 Editing a Pad 



Escape (@) 

[a-d) matches any single occurrence of a, b, c, or d. 

%[A-Z] matches any uppercase letter that is also the first 
character on the line. 

5-[1-9] [0-9]* matches any of the page numbers in this 
chapter. 

[OA-Z] matches any string containing a zero or an upper
case letter. 

[,...,a-zO-9] matches any uppercase letter or punctuation 
mark (Le., no lowercase letter or digit). 

The "at" sign (@) is an escape character. Characters preceded by 
the @ character have special meaning in regular expressions, as in
dicated in the following list: 

@n matches a newline character. 

@t matches a tab character. Note, however, that the TAB 
key does not insert a tab character. It simply moves the cur
sor to the display's next tab stop. In a regular expression, @t 
matches only tab characters inserted with @t. 

@f matches a form feed character. 

In addition, you can use the escape character inside a character 
class to specify literal occurrences of a hypen (-) or a right bracket 
(]). You may also use the @ character to specify a literal occur
rence of the other special characters used in regular expressions: % 
$ ? * @. For example: 

[A-Z@-@]) matches any uppercase letter, a hyphen, or a 
right bracket. 

@?@* matches a question mark followed by an asterisk, 
rather than zero or more occurrences of any character (? *) . 

Editing A Pad 5-19 



Text Pattern Matching with {expr} 

You can "tag" parts of a regular expression to help rearrange pieces 
of a matched string. The DM remembers a text pattern surrounded 
by braces {expr} so that you can refer to it with @n. where n is a 
single digit referring to the string remembered by the nth pair of 
braces. for example. 

si {???} {?* }/@2@1/ 

The s command is the DM command for substituting strings of text 
(see the "Substituting All Occurrences of a String" section). This 
example of the s command moves a 3-character sequence from the 
beginning of a line to the end of the line. The characters ??? match 
the first three characters of the line. and ?* matches the rest of the 
line. The @2 expression refers to the string ?* inside the second 
pair of braces. and @1 refers to the string ??? inside the first pair of 
braces. For example: 

sol {?} {?}/@2@1/ 

The so command is also a command for substituting strings of text. 
but it only substitutes the first occurrence of the first pattern on a 
line (see the "Substituting the First Occurrence of a String" sec
tion). This example of the so command transposes two characters 
beginning with the one under the cursor. This can be a handy key 
definition if you often type Hie" for "ei". etc. 

Searching for Text 

The search operations shown in Table 5-5 locate strings of charac
ters in a pad. You describe the string pattern using regular expres
sions (see the previous section). 

5-20 Editing a Pad 



Table 5-5. Commands for Searching for Text 

Task DM Command Predefined Key 

Search forward for string Istringl None 

Search backward for \string\ None 
string 

Repeat last forward II CTRLlR 
search 

Repeat last backward \\ CTRLlU 
search 

Cancel search or any abrt CTRLlX 
action involving the 
echo command 

Set case comparison for sc [-on] [-off] None 
search 

To search forward from the current cursor pOSItiOn, enclose the 
regular expression in slashes as follows: 

Istringl 

To search backward from the current cursor position, enclose the 
regular expression in backslashes as follows: 

\string\ 

A search operation moves the cursor to the first character in the 
pattern specified by string. If necessary, the pad moves under the 
window to display the matching string. If the search fails, the cursor 
position does not change, and the DM displays the message "No 
match" in its output window. 

Searches do not wrap around the end or beginning of the file. 
Therefore, to search an entire pad, position the cursor at the begin
ning of the pad. 

Editing A Pad 5-21 



By default, searches are not case-sensitive. This means, for exam
ple, that /mary/ will locate mary, MARY, and even maRy. To per
form a case-sensitive search, use the sc (set case) command (see 
the Aegis Command Reference). 

Actually, a search is not syntactically a command; it is a positioning 
operation. One way to specify a point in a pad is by matching a 
regular expression. This means that the search operation is really a 
positioning action followed by a null command. Consequently, you 
should not think of search operations as operating on a text range, 
but rather searching from the initial cursor position to the end (or 
beginning) of the file in order to properly position the cursor. 

If the OM scans more than 100 lines in a search operation, it dis
plays a "Searching for /string/ ... " message in its output window. 
Then it polls for keystrokes every 10 lines it processes. At this 
point, you may: 

• Wait for the OM to complete the operation. 

• Cancel the search by typing CTRLlX, or by pressing a key 
that has been defined to invoke the abrt or sq command 
(see the "Cancelling a Search Operation" section). 

• Use the keyboard; it works as it normally does. You can 
type into any pad except the one being searched. You can 
specify any OM command except another search or substi
tute command. The OM executes these commands when it 
completes the search. You can type input to another shell 
or program (if it was previously waiting for input). The 
process executes these commands when the OM finishes 
the search. 

Repeating a Search Operation 

To repeat the last search forward, specify the / / command or type 
the CTRLlR sequence. 

To repeat the last search backward, specify the \ \ command or 
type the CTRLlU sequence. 

The OM saves the most recent search instruction, so you may re
peat it even if you have specified other (nonsearching) commands 
since then. 

5-22 Editing a Pad 



Canceling a Search Operation 

To cancel the current search operation, type CTRLlX. The 
CTRL/X sequence invokes the abrt command. Since you cannot 
type DM commands for the pad being searched, you must use 
CTRLlX or define a key to invoke the abrt command (see the 
"Defining Keys" section in Chapter 5). 

The DM command sq also cancels a search operation. As with the 
abrt command, you must define a key to invoke sq during a 
search. 

When you type CTRLlX or press a key defined to invoke abrt or 
sq, the DM displays the message "Search aborted" in its output 
window. 

Setting Case Comparison 

As we said earlier, a search operation is not case sensitive by de
fault. In a case-insensitive search, uppercase and lowercase letters 
are equivalent. In a case-sensitive search, the characters must 
match in case (that is, Imaryl will not locate IMARY/). 

To set case comparison for a search, specify the sc (set case) com
mand in the following format: 

sc [-on I -off] 

The -on option specifies a case-sensitive search, and the -off op
tion specifies a case-insensitive search. The sc command without 
options toggles the current case comparison setting. 

Substituting Text 

The commands shown in Table 5-6 allow you to search a pad or 
part of a pad for a text string, and to replace the string with a new 
string. Before specifying a substitute command, use the dr com
mand or <MARK> to define the range of text in which you want the 
substitution to occur (see the "Defining a Range of Text" section 
earlier in this chapter). If you do not define a range, the substitu-

Editing A Pad 5-23 



tion occurs from the current cursor position to the end of the line. 
All substitutions are case-sensitive. You cannot make a substitution 
case-insensitive. 

Table 5-6. Commands for Substituting Text 

Task DM Command Predefined 
Key 

Substitute string2 for slstringllstring2 None 
all occurences of stringl 
in a defined range 

Substitute string2 for the solstringllstring2 None 
first occurence of stringl 
in each line of a defined 
range 

Change case of each case [-s] [-u] [-I] None 
letter in a defined range 

If the DM scans more than 100 lines while processing a substitute 
command, it displays a "Substitute in progress ... " message in its 
output window. Then it polls for keystrokes every 10 lines it proc
esses. At this point, you may: 

• Wait for the DM to complete the substitute operation. 

• You can type into any pad except the one where the sub
stitution is occurring. You can specify any DM command 
except another search or substitute command. The DM 
executes these commands when it completes the substitu
tion. 

Substituting All Occurrences of a String 

To replace all occurrences of a text string with a new text string, 
specify the s (substitute) command in the following format: 

s [[I [ string 1 ]] Istring21] 

5-24 Editing a Pad 



The string1 argument specifies the string to be replaced. Use a 
regular expression to describe string1. If you supply the first delim
iter (I) but omit string1 (that is, sllstring2/) , string1 defaults to the 
string used in the last search operation. If you also omit the delim
iter (that is, slstring2/) , then string1 defaults to the string used in 
the last substitute operation. 

The string2 argument specifies a literal replacement string (not a 
regular expression). If you supply string1, then string2 is required. 

You can use an ampersand (&) to instruct the s command to use 
string1 as part of string2. For example: 

s/Toml & Smithl 

This command replaces all occurrences of Tom with Tom Smith 
over the defined range of text. 

The s command does not move the cursor or the pad, but does up
date the pad when the substitution is complete. 

Substituting the First Occurrence of a String 

The so (substitute once) command is like the s (substitute) com
mand except that so replaces only the first occurrence of a string in 
each line of a defined range of text. Specify the so command in the 
following format: 

so[[/[ string1]]lstring2/] 

The string1 argument specifies the string to be replaced. Use a 
regular expression to describe string1. If you supply the first delim
iter (I) but omit string1 (that is, sollstring2/), string1 defaults to the 
string used in the last search operation. If you also omit the delimit
er (that is, solstring2/), then string1 defaults to the string used in 
the last substitute operation. The string2 argument specifies a literal 
replacement string (not a regular expression). If you supply string1, 
then string2 is required. 

Editing A Pad 5-25 



You can use an ampersand (&) to instruct the so command to use 
string1 as part of string2. For example: 

so!Tom/& Smith! 

This command replaces the first occurrence of Tom with Tom 
Smith in each line of the defined range of text. 

The so command does not move the cursor or the pad, but does 
update the pad when the substitution is complete. 

Changing the Case of Letters 

To change the case of letters in a defined range of text, specify the 
case command in the following format: 

case [-s] [-u] [-1] 

The -s option swaps all uppercase letters for lowercase and all 
lowercase letters for uppercase. The -u option changes all letters in 
the defined range to uppercase, and -I changes all letters to lower
case. The case command without options swaps all uppercase let
ters for lowercase and all lowercase letters for uppercase. 

Undoing Previous Commands 

To undo the most recent DM command you entered, specify the 
undo command. You can also undo the previous command by 
pressing <UNDO>. 

NOTE: The undo command only applies to DM 
operations. You cannot undo shell com
mands. 

The undo command works by compiling a history of DM operations 
in input and edit pads in reverse chronological order. It reverses the 
effect of the most recent DM command you specified. Successive 
undo commands reverse DM commands further back in history. 

5-26 Editing a Pad 



To compile its history of activities, the DM uses undo buffers (one 
per edit pad and one per input pad). The undo buffers are circular 
lists that, when full, eliminate the oldest entries to make room for 
new ones. 

The DM groups entries together in sets. For example, an s (substi
tute) command may change five lines. While the DM considers this 
to be five entries, the five entries are grouped into a single set so 
that one undo will change all five lines back to their original state. 
When a buffer becomes full, the DM erases the oldest set of en
tries. This means that undo will never partially undo an operation; 
it will either completely undo the operation or do nothing. 

An undo buffer for an edit pad can hold up to 1024 entries. An 
undo buffer for an input pad can hold up to 128 entries. 

Updating an Edit File 

To update a file that you are currently editing, specify the pw (pad 
write) command. This command is valid for edit pads only. It re
quires no arguments or options. 

The first time you specify pw during an editing session, the DM 
writes the contents of the edit pad to the file that is being edited, 
without closing the edit pad. The DM writes the previous contents 
of the file to a file with the same name and the added suffix .bak. 
Subsequent pw or we (window close) commands rewrite the new 
file and leave the. bak version unchanged. (For more information 
about the we command, refer to the "Closing Pads and Windows" 
section in Chapter 4.) 

The pw command is similar to we with two exceptions: 

1. The pw command leaves the edit pad open so that you can 
continue editing the file. 

2. The pw command writes the new version of the file even if 
other windows are viewing the edit pad. 

Editing A Pad 5-27 



If, for example, you want to try compiling a program you are edit
ing, pw will prove to be useful. If you decide to make additional 
changes to the program, you can just go back to the edit pad and 
continue editing, since updates made by pw leave the edit pad open 
and active. 

You can also update an edit file by pressing <SAVE> or the 
CTRLlY sequence (see the "Closing Pads and Windows" section in 
Chapter 4). 

-------88-------

5-28 Editing a Pad 



Chapter 6 

Using the Aegis Shell 

Chapter 3 describes the Display Manager (OM), the operating sys
tem program that you use to create processes and control your 
node's display. We supply another operating system program, called 
the command shell, that lets you perform more traditional comput
ing operations. The shell lets you enter commands to perform such 
operations as copying files and directories, compiling and running 
programs, and monitoring system activity. 

This chapter describes the command shell environment that proc
esses shell commands. The chapter includes information on shell 
commands, controlling command input and output, the command 
line parser, and using pathname wildcards. 

Shell Commands 

The command shell runs in a process called a shell process. As 
shown in Figure 6-1, you enter shell commands in the shell's proc
ess input pad, referred to as the shell input pad. To specify a shell 
command, type the name of the command next to the dollar sign 
($) prompt and press <RETURN>. 

Using the Aegis Shell 6-1 



Most shell commands that you specify in the shell input pad are ac
tually the names of command files that the shell looks for and exe
cutes. For example, when you specify the command date, the shell 
looks for a command file named date and executes it. The shell 
looks for command files according to a set of command search 
rules that indicate which directories the shell should search. You'll 
learn more about command search rules later in this chapter. 

Figure 6-1. The Aegis Shell Process 

As part of the Aegis environment, we supply a set of shell com
mands for your use. The Aegis Command Reference provides de
tailed descriptions of all the commands that we supply. You can 
also create your own shell command programs, called shell scripts, 
and execute them in the same way you execute the shell commands 
that we supply. Chapter 11 describes how to write shell scripts. 

Command Line Format 

Aegis shell command lines have the following format: 

command [options ... J [arguments ... J [options ... J 

6-2 Using the Aegis Shell 



The value of command is the name of either a shell command or 
shell script. 

The arguments indicate which objects you want the command to 
operate on. An argument is either the pathname of an object in the 
naming tree, or a literal string that you want the command to ma
nipulate. Always separate an argument from a command and any 
additional arguments or options with at least one blank space. 

The options that you specify direct the command to perform a spe
cial action. As shown in the command line format, you can specify 
options either before or after arguments on the command line. 
Many options require secondary arguments of their own. Thus, to 
properly delimit options, always precede each option with a hyphen 
(-). 

Figure 6-2 shows a sample command line and its components. 

prf file 1 file 2 -cop 2 
L-' ---r---" ''---r---I' 'I..-_.--.J.' .... ' 

1..-___ Secondary argument 
1..----- Option 

'------~-------------------Arguments 

I..----------------Command 

Figure 6-2. Shell Command Line Components 

The command line in Figure 6-2 prints two files: file_l and file_2. 
The -cop 2 option directs prf to print two copies of each file. 

Normally, you specify each command as a separate line. You can 
also place multiple commands together on the same line by separat
ing them with semicolons (;). For example, 

executes two commands: wd sets the working directory to 
IImy_dirlsub, and Id lists the contents of that directory. 

Using the Aegis Shell 6-3 



You may also specify multiple commands on a single line when you 
use pipes and filters. The "Redirecting Ouput to Other Commands" 
section describes how to use pipes and filters. 

The DM limits each shell command line to 1024 characters. You 
can, however, continue a command over several lines by typing an 
at sign (@) character and then pressing <RETURN> at the end of 
each line you want to continue, as follows: 

$ wd Iinode@ 
$_ Idirectory 

The @ character is a special character (see the "Special Charac
ters" section) called an escape character. As shown in the exam
ple above, the @ character "escapes" the normal execution of <RE
TURN>, letting you continue the command line at the continuation 
prompt ($_ ). 

Standard Command Options 

All Aegis shell commands that we supply allow you to specify the 
standard command options listed in Table 6-1. These options allow 
you to display useful information about a command. 

Table 6-1. Standard Aegis Shell Command Options 

Option Description 

-help Displays detailed information on how to use 
the command 

-usage Displays a brief summary on how to use 
the command 

-version Displays the command's software version 
number 

6-4 Using the Aegis Shell 



Command Search Rules 

As mentioned earlier, most commands are the names of files. Since 
you usually specify command names, rather than the full pathnames 
of the files they represent, the shell searches different locations in 
the system naming tree for the file that matches the command 
name you specify. When you specify a command, the shell deter
mines which directories to search according to a set of command 
search rules. 

Some commands, such as inlib (used to initialize a library) are not 
files. They invoke internal shell functions and do not follow com
mand search rules. The Aegis Command Reference identifies which 
commands are internal shell commands. 

The default command search rules direct the shell to search the fol
lowing directories in the order shown: 

1. Your working directory ( . ) 

2. Your personal command directory (,...,/com) 

3. The system command directory (lcom) 

4. The system command extensions directory 
(lusr/apollo/bin) . 

When you specify a command, the shell searches the directories in 
the order specified by the command search rules. As soon as the 
shell finds a file with the name that matches the command you 
specified, it attempts to execute the file. For example, when you 
specify the shell command 

$ Id 

the shell first looks for a file named Id in your current working di
rectory. If the shell does not find the file in the current working di
rectory, it checks the directory ,...,/com, which is a subdirectory of 
your naming directory. The ,...,/com directory is your personal com
mand directory where you store your own frequently used shell 
scripts. (You don't have to create a personal command directory; if 
the shell doesn't find one, it continues its search and no error oc
curs.) 

Using the Aegis Shell 6-5 



The shell then searches the node's main command directory Icom, 
which contains all of the standard commands that we supply. Since 
ld is a system command, the shell finds it in Icom and executes it, 
displaying the contents of the working directory. (The final direc
tory that would have been searched, had the command not been 
found in Icom, is the lusr/apollo/bin directory, which contains all 
of the command extensions that we provide.) 

This example assumes that you have not created an executable file 
or shell script named Id in your working directory or personal com
mand directory. Had you done so, the shell would have executed 
your version of Id before the system's version. 

You can set or show a shell's command search rules using the esr 
(command search rules) command. For example, the esr com
mand in this example displays the shell's command search rules: 

$ csr 
~jcorn jcorn jusrjapollojbin 

You can use the -a option with the csr command to append addi
tional directories to the current list. For example, to add two addi
tional directories (~/prog and Iprog) to the current set, specify: 

$ csr -a ~/prog Iprog 
$ csr 
~jeorn jeorn jusrjapollojbin ~jprog jprog 

To completely change a set of command search rules, specify the 
esr command along with a new set of rules. For example: 

$ csr leom lusr/apollo/bin ",/eom 
$ csr 
jeorn jusrjapollojbin ~jeorn 

If you change a shell's command search rules, any shell script that 
you invoke inherits the new command search rules. If you create a 
new process running the shell, the new shell uses the original de
fault command search rules, not the new rules. Also changing the 
search rules in a shell script will usually change them in the parent 
shell. 

6-6 Using the Aegis Shell 



Special Characters 

The shell recognizes a variety of special characters that allow you to 
direct the action of commands. These characters are divided into 
three basic categories: 

• Input and output (I/O) control characters 

• Pathname wildcards 

• Parsing operators 

The following sections explain how to use I/O control characters 
and pathname wildcards. Since you will use shell command parsing 
operators most frequently in shell scripts, we describe parsing op
erators in detail in Chapter 11. 

Creating and Invoking Shells 

The shell is a command line interpreter that reads command lines 
that you type and interprets them as requests to execute other pro
grams. When you press <SHELL>, you create a process running the 
shell program. Each new shell process that you create provides a 
separate environment in which the shell runs. 

You can invoke additional Aegis shells from within a shell process 
using the shell command sh. When you specify sh, you generate a 
separate subordinate shell, in which you can carry on separate op
erations and execute programs and scripts. Each subordinate shell 
may inherit environment variables from its parent shell. 

Setting Up the Initial Shell Environment 

When you log in using the DM, the /sys/dm/login_sh command 
executes a log-in shell. This shell looks in the directory 
...... /user_data/sh for a file named startup and a file named login. 
If these files exist, the shell executes them to set up the initial envi
ronment for the shell (it executes startup first, then login). Since 
no default startup or login files exist. you must create them if you 
want to use them. 

Using the Aegis Shell 6-7 



The login file is only executed when you start a shell with the 
login_sh command. You can use this file for commands that you 
wish to execute once, when you log in. For example, your login 
file may contain commands to start a clock program or a mail pro
gram. 

The startup file is executed whenever you create a new process to 
run the shell. The startup script helps when you want to define a 
standard set of variables for each shell process, or set up certain 
shell characteristics, such as variable evaluation on (EON), or new 
command search rules. Figure 6-3 shows a sample shell start-up 
script. 

NOTE: The siologin command (which invokes a 
log-in sequence on an sio line) executes 
its own shell start-up file. For more infor
mation about the siologin command, see 
the Aegis Command Reference. 

# Sample shell start-up script ,..."./user_data/sh/startup 
# 
# Set up standard variables 
# 
A := 3 
B := 4 
# Turn on variable evaluation 
eon 
# Add additional directory to command search rules 
csr -a ",/progs 

Figure 6-3. Sample Shell Start-Up Script 

Controlling Input and Output 

Processes pass data to and from programs, such as the shell, 
through open system channels called streams. Every process that 
you create has the following streams open for program input and 
output: 

6-8 Using the Aegis Shell 



• Standard input 

• Standard output 

• Error input 

• Error output 

Standard input and standard output are the streams that channel 
normal input and output between a program and a process. By de
fault, standard input passes program input that you type in the proc
ess input pad; standard output passes program output to the process 
transcript pad. 

Error input and Error output are two streams used for additional 
program input and output. Like the standard streams, they use the 
process input pad and process transcript pad by default. 

The error input stream has nothing to do with errors; it is simply an
other input stream for passing data to a program. For example, 
when a command queries you to verify wildcard names, error input 
passes your response to the command. (The "Using Query Op
tions" section describes how commands query you to verify 
wildcard names.) Error output is the stream that passes program 
error messages to the process transcript pad. (However, if the ob
ject type is corr, you can't redirect error input.) 

Shell commands use input and output streams when processing 
command line data. When you specify a command in the shell in
put pad, standard input passes data from the command line to the 
command program. Standard output passes data from the program 
to the transcript pad. 

In certain instances, you may want the shell to read input from and 
write output to locations other than the input and transcript pads. 
For example, you may want to save the output from a command in 
a file. Using 110 control characters, you can redirect input and 
output streams to pass data to and from other locations, usually 
files. Table 6-2 lists the I/O control characters and a brief summary 
of their functions. 

Using the Aegis Shell 6-9 



Table 6-2. lIO Control Characters 

Character Function 

< Redirect standard input 

<? Redirect error input 

> Redirect standard output 

>? Redirect error output 

» Append standard output 

»? Append error output 

I Pipe standard output 

( ) Group commands for I/O redirection 

« Redirect standard input to read data from scripts. 

« ? Redirect error input to read data from scripts. 

The following sections show how to use I/O control characters. 
Chapter 11 describes the characters used to redirect standard input 
to read data from scripts. 

Reading Input from a File 

To redirect standard input to read data from a file rather than the 
input pad, use a left angle bracket «). For example, the following 
command reads data from a file named file _1: 

$ tic a-z A-z < file_l 

The tic command, used to transliterate characters, normally substi
tutes or deletes characters from text that you type in the shell input 
pad. The tic command in this example redirects standard input to 
read data from a file (file_I) instead of the input pad. The com
mand changes all lowercase characters in file_I to uppercase char
acters, and writes the converted text to the transcript pad. 

6-10 Using the Aegis Shell 



Writing Output to a File 

To redirect standard output to write output to a file rather than to 
the transcript pad. use a right angle bracket (». For example. the 
following command writes output to a file named file_1.fmt: 

The fmt command formats file_l and writes the output (the for
matted file) to file_1.fmt instead of to the transcript pad. 

Shell commands use the error output stream to report any errors 
found in the input file. By default. error output writes output to the 
transcript pad. To redirect error output to write output to a file in
stead of the transcript pad. use a right angle bracket/question mark 
combination (>?). For example. the following command redirects 
both standard output and error output: 

The fmt command writes the formatted file to file 1. fmt. and if it 
discovers any errors. writes error messages to the file file_1.err. 

Appending Output to a File 

To redirect standard output to append output to the end of a file, 
use double right angle brackets (»). For example, the following 
command appends output to a file named book: 

$ catf ch4 chS ch6 » book 

The catf command, used to catenate files, normally reads input 
files in order and writes them to the transcript pad. The catf com
mand in this example reads the files ch4, chS, and ch6 in that or
der and appends them to the existing file book. If the specified out
put file didn't exist, catf would create a new file named book and 
write output to it. 

To redirect error output to append error output to the end of a file, 
use a double right angle bracket/question mark (»?) combination. 
For example, suppose you wanted to keep a record of all fmt er-

Using the Aegis Shell 6-11 



rors. Each time you used the fmt command to format a file, you 
could direct the command to append error output to a file as fol
lows: 

$ fmt file_l »? error_log 

The command in this example formats file_I. If it encounters any 
errors, it appends any error output to the file error_log. 

Redirecting Output to Other Commands 

If you place two commands on one line, and separate them with a 
vertical bar (I), the shell connects the standard output stream of the 
first command to the standard input stream of the next command. 
For example, the srf command here sorts the contents of file_l 
and passes the output to the shell command dldupl, which deletes 
duplicate lines: 

$ srf file_l I dldupl 

The vertical bar between the commands is called a pipe. Com
mands such as srf and dldupl that copy standard input to standard 
output (making some changes along the way) are called filters. A 
command line that uses pipes and filters is called a pipeline. You 
can use either shell commands or scripts as filters in pipelines. 

To use a group of commands as a filter, enclose them in parenthe
ses using the following format: 

The shell passes output from the commands enclosed in parenthe
ses (command_l and command_2) to the command to the right of 
the vertical bar command_3. For example: 

$ (ld my_dirl -c -nhd; Id my-dir2 -c -nhd) 1 srf> list 

This example concatenates the output of the two Id commands and 
then sorts the reported file names, placing the output in the file 
called list. 

6-12 Using the Aegis Shell 



The Command Line Parser 

Many of the shell commands that we supply share a standard com
mand line parsing procedure. This procedure, called the command 
line parser, determines how each command processes command 
line information. The shell command descriptions in the Aegis Com
mand Reference and the online help files identify which commands 
use the command line parser. 

Commands that use the command line parser allow you to: 

• Specify multiple pathnames as pathname arguments. 

• Use pathname wildcards to specify existing pathnames and 
to derive pathnames from other pathnames on the com
mand line. 

Commands that use the command line parser also accept the com
mand parser options listed in Table 6-3. These options let you: 

• Control how a command queries you to verify wildcard 
matches. 

• Direct a command to use standard input to read command 
line input. 

Using the Aegis Shell 6-13 



Table 6-3. Command Line Parser Options 

Option Description 

-ae Causes the command to abort if it cannot 
find a name in a pathname. By default, 
processing continues to the next name. 

-nq Do not issue a query to verify wildcard 
names. This is the default for commands 
that don't delete or modify objects. 

-qw Issue a query to verify wildcard names. 

-qa Issue a query to verify all names. 

- Read additional data from standard input. 

* [pathname] Read the specified file for additional path-
name argument. If a pathname is omitted, 
read the additional pathname argument from 
standard input. 

Using Query Options 

Commands that delete or modify objects query you to verify names 
that you specify using wildcards. You can control how a command 
queries by using any of the query options listed in Table 6-4. 

By default, commands use error output to query you by writing se
lected names to the transcript pad with a question mark (?), 
prompting you for a response. The command uses the error input 
stream to read your response from the shell input pad. 

To respond, type one of the responses listed in Table 6-4 and press 
<RETURN>. 

6-14 Using the Aegis Shell 



Table 6-4. Command Query Responses 

Response Action 

h [elp] Displays help information. 

y[es] Operates on the file with that name. 

n[o] Ignores the file with that name. 

q [uit] Quits immediately. 

g[o] Operates on the file with that name and 
suppresses further name queries. 

d[efault] Resets the default response. 

By default, queries require a response; if you simply type 
<RETURN> without a response, the command queries you again. 
To change the default, use the d response, followed by either yes, 
no, or none. For example, 

? dyes 

sets the default to yes. If you respond to subsequent queries by typ
ing <RETURN>, the command uses the new default and operates 
on the file with that name. A value of none indicates that you must 
specify a response. 

Reading Data from Standard Input 

When you enter a shell command, the command normally reads in
put data from arguments that you give in the command line. For 
example, the prf command reads data from the specified files and 
prints it. To direct the command to read data from standard input 
instead of an input file, use a hyphen character (-) as shown here: 

$ prf -
Print this line on the line printer 
And this one too 
CTRLlZ 

Using the Aegis Shell 6-15 



Standard input uses the shell input pad by default, so prf reads data 
from the input pad. To input data to the prf command, type in data 
as shown in the example. The CTRLlZ control key inserts an end
of-file (EO F) that signals the end of input and causes prf to print 
any data that you typed in the input pad. 

To access a file whose name begins with a hyphen (-), use an es
cape character (@) on the command line as follows: 

$ command @-file 

This eliminates the shell's interpretation of -file as an option. 

Some commands and scripts receive data from both a list of files 
and standard input. For these commands, specify the hyphen char
acter (-) as a pathname argument. For example: 

The fmt command formats file_I, formats data typed in standard 
input, and finally formats file_2. 

Reading Pathnames from Standard Input 

To direct a command to read pathnames rather than data from 
standard input, use the asterisk symbol (*). The prf command in 
the following example reads pathname arguments that you type in 
the shell input pad: 

$ prf * 
file 1 
file 2 
file 3 
CTRLlZ 

Pressing CTRLlZ inserts an end-of-file (EOF) that signals the end 
of input, which causes prf to print the contents of each file. 

You can also use the asterisk symbol and redirect standard input to 
read pathnames from a names file, a file that contains the path
names of other files, as follows: 

6-16 Using the Aegis Shell 



$ prf *jobs 

Here, prf prints the contents of each file in the names file jobs. 

Using Pathname Wildcards 

Most shell commands accept pathnames as arguments. The com
mands that use the command line parser also accept wildcards as 
part of of their pathname arguments. Wildcards are characters or 
text strings that you can use in pathnames to represent one or more 
text strings in a pathname. For example, the wildcards here match 
every file that ends with . ftn in the current working directory: 

$ Id ?*.ftn 
y 

wildcards 

The question mark wildcard (?) matches any single character ex
cept <RETURN>. The asterisk wildcard (*) matches zero or more 
occurrences of the character preceding it. Thus, this wildcard com
bination matches zero or more occurrence" of any character. Table 
6-5 lists pathname wildcards and briefly describes how they work. 

Table 6-5. Summary of Pathname Wildcards 

Character Description 

? Matches any single character but <RETURN>, 
e.g., z? matches any two-character name begin-
ning with the letter z (za and zl) 

% Matches zero or more characters up to, but not 
including, a period. For example, 

%. bak matches any name ending in . bak 
(sales. bak but not sales. bak. bak) 

demo. % matches any name beginning with 
demo, up to and including the period 

(demo.bak and demo. pas) 

demo. %. % matches demo. pas. bak 

(Continued) 

Using the Aegis Shell 6-17 



Table 6-5. Summary of Pathname Wildcards (Cont.) 

Character Description 

* Matches zero or more occurrences of the charac
ter that precedes it. After the ? character, it 
matches zero or more occurrences of any charac
ter except <RETURN>, e.g., 

[ string] 

file9* matches file, file9, and file999. 

de?* matches demo, desk, and department 

demo. *% matches any name that demo. % 
matches (see the % example); also matches 
the period (demo.fmt and demo) 

Matches any single character listed in string, e.g., 

file [0-9] matches any five-character name 
that begins with file and ends in a single digit 
(fiIe4 and file8) 

file [a-d) matches filea but not filem 

file[axy] matches filea, filex, and filey 

[ ......,string] Matches any single character not appearing in 
string, e.g., 

file. [......,a-z] matches file and file.9 but not 
filea or file. p 

Matches zero or more directories subordinate 
to the starting point, e.g., 

Ilmy_node/ ... matches all directories in 
my_node 

lowner/ .. .Idemo matches any object named 
demo in a subdirectory of owner 

.. .Ijan?* matches any object starting with jan 
in subdirectories of the working directory 

(Continued) 

6-18 Using the Aegis Shell 



Table 6-5. Summary of Pathname Wildcards (Cont.) 

Character 

= 

( names )derived-name 

{ expr} 

Description 

Shell commands that let you copy, 
compare, or rename files may 
require two pathnames as argu
ments. Many of these commands 
derive the second name from the 
first name. Thus, we refer to the 
second name as the derived name. 
The shell replaces the equal sign 
wildcard (=) in the second name 
with the first name. For example, 

cpf my_file =.old copies the 
file my file to the file 
my_file. old 

cpf memo my=. bak copies the 
file memo to mymemo. bak 

Enclose the first names in paren
theses to create several derived 
names with one command line, 
e.g., 

cpf (a b c) = .fmt copies the 
files a, b, and c to a. fmt, 
b.fmt, and c.fmt 

Use braces to tag an expression 
(expr) for use in a derived name. 
Refer to tagged expressions in 
arguments as @1 (first expression 
tagged), @2 (second expression 
tagged), etc. For example: 

cpf {prog. ftn}. bak @1 copies 
the file prog. ftn. bak to the file 
prog.ftn 

cpf {fil}e_{a} @1.@2 copies 
file_a to a file named filea 

Using the Aegis Shell 6-19 



Running Programs in a Background Process 

The command shell has another set of special characters, called 
parsing operators, that control how a command parses (interprets 
and categorizes) the individual components on a command line. 
We've already seen how to use some of these parsing operators: the 
semicolon (;) to separate multiple commands on a command line, 
the escape character (@) to continue commands on more than one 
line, and blank spaces to separate command arguments and op
tions. 

Another parsing operator is the ampersand character (&). It in
structs the shell to run a program in a background process (a proc
ess that runs without pads and windows). This use of & is unrelated 
to its use as an input request character in DM scripts. 

To run a command or program in a background process, enter the 
command line or program name in the shell input pad, followed by 
the & character. For example: 

$ bind file_I. bin -map> prog.map & 

This command line runs the binder as a background process to bind 
the file file_I. bin and writes a complete map to the file prog.map. 

By default, the shell directs output to the device Idev/null (which 
discards the output). You can display output from the background 
process by specifying the shell command bon. The bon command 
directs the shell to where the background process was invoked to 
display output in its transcript pad. To turn output off (direct output 
to Idev/null), specify the boff command. 

The remainder of the shell parsing operators are used most fre
quently in scripts. Chapter 11 contains a complete list of parsing op
erators and describes how to use them in writing shell scripts. 

-------88-------

6-20 Using the Aegis Shell 



Chapter 7 

Managing Files 

In Chapter 1, we looked at how the system organizes objects (files, 
directories, and links) in a structure called a naming tree. This 
chapter describes how to use shell commands to manage these ob
jects on your system. Shell commands let you move around the sys
tem naming tree and create, rename, copy, move, print, delete, 
and compare objects. 

Since all of the commands described in this chapter require you to 
specify pathnames, you should understand the rules for pathnames 
described in Chapter 1. Commands that use the shell command line 
parser also let you perform operations on groups of objects, and 
therefore accept one or more path name wildcards. Many of the ex
amples in this chapter show you how to use pathname wildcards in 
specific operations. For a complete description of the pathname 
wildcards you can use with shell commands, see Chapter 6. 

Keep in mind that this chapter describes the basic functions of the 
commands you use to manage objects. For a complete description 
of a particular command and all of its options, refer to the Aegis 
Command Reference. 

Managing Files 7-1 



Moving Around the Naming Tree 

Most of the commands described in this chapter require you to use 
pathnames to specify locations in the naming tree where you want 
particular operations performed. Often, you will specify pathnames 
that use the current working directory or naming directory. To 
move around the naming tree, you need to know how to set your 
working directory and naming directory. Table 7-1 summarizes the 
commands used to move around the naming tree. 

Table 7-1. Commands for Setting the Working and 
Naming Directory 

Task Shell Command 

Set or display working directory wd [pathname] 

Set or display naming directory nd [pathname] 

Setting the Working Directory 

The working directory is where the system begins its search for ob
jects when you omit the object's full pathname. At login, the system 
sets your initial working directory to the home directory designated 
in your user account (see Chapter 2). Each subsequent process that 
you create uses the working directory of the previous process as its 
working directory. 

To display the name of a process's current working directory, type 
the wd (working directory) command without any arguments or op
tions as follows: 

$ wd 

7-2 Managing Files 



To change a process's working directory to another directory, spec
ify the wd command in the following format: 

wd [pathname] 

The pathname argument specifies the pathname of the directory 
you want to use as the working directory. For example: 

$ wd Ilmy_node/owner/forms 

sets the working directory for the current process to forms. Once 
set, anytime you omit the full pathname of an object, the system 
starts its search at the directory forms by default. 

Setting the Naming Directory 

The system searches the naming directory's com directory (,....,Icom) 
as part of the default command search rules (see Chapter 6). As 
described in Chapter 1, the naming directory is also where the sys
tem begins its search for an object when you precede an object's 
pathname with the tilde and slash symbols combined (,....,/). 

At login, the system sets the naming directory to the home directory 
designated in your user account (see Chapter 2). Each subsequent 
process that you create uses the naming directory of the previous 
process as its naming directory. 

To display the name of a process's current naming directory, spec
ify the nd (naming directory) command without any arguments or 
options as follows: 

$ nd 

To change a process's naming directory to another directory, spec
ify the nd command in the following format: 

nd [path name ] 

Managing Files 7-3 



The pathname argument specifies the pathname of the directory 
you want to use as the naming directory. For example: 

$ nd luser_lIreports 

sets the naming directory to the directory reports. Once set, you 
can use a tilde and slash (",I) in place of luser_lIreports at the 
beginning of any pathname. Thus, "'/cal_85 would be identical to 
luser_lIreports/cal_85. 

Table 7-2 summarizes the commands for managing files. 

Table 7-2. Commands for Managing Files 

Task 

Create a file 

Rename a file 

Copy a file 

Move a file 

Append file to another file 

Print a file 

Display file attributes 

Delete a file 

Copy display image to file 

Compare ASCII files 

Compare sorted files 

7-4 Managing Files 

Shell Command 

ce file (DM command), 
or catf > target 

chn old_name [new_name] 

cpf source [target] 

mvf source [target] 

catf source » target 

prf fpathname] 

ld fpathname] 

dlf fpathname] 

cpscr fpathname] 

emf source [target] 

cmsrf [option] source [target] 



Creating Files 

To create normal text files, specify the DM command ce (create 
edit pad) along with the pathname of the file you want to create. By 
default, <EDIT> invokes the ce command. 

The ce command directs the DM to create the file and open an edit 
pad and window for the file on the display. Using the DM editor, 
you can edit the file, then save its contents by typing CTRLlY. 
When you save the file, the system stores it at the location in the 
naming tree specified by the file's pathname. Refer to the "Creating 
Pads and Windows" section in Chapter 4 for a description of how 
to use the ce command to create and edit files. 

The following example creates a file named memo in the directory 
luser, and opens the file for editing: 

Command: ce Iinode/user/memo 

The previous example uses an absolute pathname to specify the 
name of the new file. When you use a pathname that assumes the 
current working directory or naming directory, the system uses the 
working or naming directory of the current process. (The last proc
ess to perform an operation before you specified the ce command is 
the current process.) 

The following example creates a file named memo in the current 
working directory: 

Command: ce memo 

The command in this example specifies the filename memo. Since 
the pathname does not specify an explicit directory location, the 
system uses the current process's working directory to determine 
where to create the new file. If the working directory of the current 
process is Iinode/user, then the system will create the new file with 
the pathname Iinode/user/memo. 

When you run multiple shell processes, you typically move between 
processes, often changing the current working directory. As a re
sult, you may find it difficult to keep track of the current working 

Managing Files 7-5 



directory. In situations where you run multiple processes, you may 
want to specify absolute pathnames to avoid creating files at an un
intended location. 

Whenever you create a file, the system assigns the file a set of initial 
ACLs from the file's parent directory. After you create a file you 
can change its ACLs with the edad (edit ACL) command. Chap
ter 10 explains ACLs and describes how to use this command. 

Renaming Files 

To change the name of a file, use the chn (change name) com
mand in the following format: 

chn old_name [new_name] [options] 

The old_name argument specifies the current pathname of the file 
you want to rename, and new _name specifies the new name of the 
file. For example: 

$ chn lownerljohn paul 

changes the name of the file john to paul. Notice that the 
new _name argument affects only the rightmost component (john) 
of the old_name argument. 

To append a naming suffix to the new filename, specify any of the 
following naming options: 

Option 

-d 

-y 

-u 

7-6 Managing Files 

Description 

Appends the current month and day to the new 
name (new_name.mm.dd). 

Appends the current year, month, and date to the 
new name (new_name.yy.mm.dd). 

Forces the system to create a unique new name by 
appending a sequence of number(s) to the end of 
the name. 



If you omit the new _name argument, you must specify one of the 
options in the previous list; the system creates a new name by copy
ing the old_name and appending the proper suffix as shown below. 

$ chn towner/john -d 

When specified on June 16, this command changes the name of the 
file john to john.06.16. 

Copying Files 

When you copy a file, you create a copy of the file at another loca
tion in the naming tree. To copy a file or group of files, use the cpr 
(copy file) command in the following format: 

cpr source [target] [options] 

The source argument specifies the pathname of the file you want to 
copy, and target specifies the pathname of the naming tree location 
where you want the copy created. The rules for pathnames de
scribed in Chapter 6 apply to both command arguments. 

The cpr command always creates a copy of the source file at the lo
cation specified by the target. For example: 

creates a copy of the source file memo in the directory user_I. In 
this example, since the target specifies the pathname of a file, cpr 
assigns the copy the name specified by the target, which in this ex
ample is new_memo. 

If the target specifies the pathname of a directory, cpr creates a 
copy of the source file in the target directory (the current working 
directory if you omit the target) and assigns the copy the filename 
of the source file. For example: 

$ cpf memo /user_l 

Managing Files 7-7 



copies the file memo from the current working directory to the tar
get directory user_I. Because cpf assigns the copy the name of the 
source file, the new file has the path name fuser_lImemo. 

If you omit the target pathname entirely, cpf creates a copy of the 
source in the current working directory, unless the source file also 
resides there. In the previous example, since the source file memo 
is in the current working directory, cpf can't create another file 
named memo in the same directory. In this case, cpf displays the 
error message, " ... can't copy a file or tree to itself" and does not 
make a copy. 

By default, the system assigns the target file the default file ACLs of 
its parent directory (see Chapter 10). So, in the previous example, 
the system assigns the target file the default file ACLs of the direc
tory user_I. 

To replace an existing file with a copy of another file, use the -r op
tion as follows: 

$ cpf fownerfjune_report latest_report -r 

This command replaces the contents of the file latest_report (in 
the current working directory) with a copy of the contents of 
june_report. As a result, latest_report now contains a copy of 
june_report. 

You can copy or replace several files using a single cpf command by 
either specifying multiple pairs of source and target pathnames 
(each pair separated by a space) or by using pathname wildcards. 
The following command uses pathname wildcards to copy all the 
files ending with plan to the current working directory: 

$ cpf fownerf?*plan -If 

The -If option directs the cpf command to list the name of each 
file it copies. For more information on using pathname wildcards, 
see Chapter 6. 

7-8 Managing Files 



Moving Files 

When you move a file, you literally relocate the file in the naming 
tree. Use the mvf (move file) command the same way you use the 
cpf command described in the previous section. In fact, moving a 
file has the same effect as copying the file to another location and 
then deleting the original. Unlike a copy operation, however, when 
you move a file, it retains its original ACLs. 

To move a file or group of files from one location in the naming 
tree to another, use the mvf command in the format: 

mvf source [target] [options] 

'The source argument specifies the pathname of the file you want to 
move and target specifies the pathname of the file's new location in 
the naming tree. The rules for pathnames described in Chapter 1 
apply to both arguments. 

The following command moves the file floorplan: 

$ mvf Idesignerlfloorplan Ibuilder/plans/cape 

In this example, the target specifies the pathname for a nonexistent 
file named cape. The mvf command moves the file floorplan from 
the directory designer to the directory builder/plans and names 
the file cape. 

If the target pathname specifies a directory, mvf moves the source 
file into the target directory (or current working directory if you 
omit the target pathname). For example, the following command 
moves the file floorplan into the current working directory: 

$ mvf Idesignerlfloorplan 

In this example, since no target filename was specified, the file re
tains the name of the source file (floorplan). 

Managing Files 7-9 



You can move a file to replace an existing file in another directory 
by using the mvf command with the -r option, as follows: 

$ mvf lownerlreport latest_report -r 

This command replaces the contents of the file latest_report (in 
the current working directory) with the contents of the file report 
(in the directory lowner). 

To move several files in one operation, you can specify multiple 
pairs of source and target pathnames or use pathname wildcards. 
Chapter 6 describes how to use pathname wildcards. 

Appending Files 

To append the contents of one or more files to the end of another 
file, use the catf (catenate file) command in the following format: 

catf [source ... J » target 

The source argument specifies the pathname of the file whose con
tents you want to append, and target specifies the pathname of the 
file to which you want to append. When you specify more than one 
source file, separate each file with a space. The system concate
nates the source files and appends them to the target file. 

The catf command reads source files in order and normally writes 
them to standard output, which is, by default, the shell's process 
transcript pad. The double right-angle brackets (»), however, re
direct output from standard output and append the output to the 
target file. For example: 

$ catf memo_l memo_ 4 » plan_memos 

reads the files memo_l and memo_ 4 in that order, and appends 
them to the file plan_memos. 

Chapter 6 provides more information on how to use I/O control 
characters. 

7-10 Managing Files 



Prin ting Files 

In the Aegis environment, there are essentially two methods used to 
print files. You may specify a print command, or you may use a 
special print menu interface to print your files. The following sec
tions describe both of these methods. 

U sing the prf Command 

To print one or more files, use the prf (print file) command in the 
following format: 

prf fpathname ... ] [options] 

The pathname argument specifies the name of the file you want to 
print. You can print multiple files using a single prf command by 
either specifying multiple pathnames (each pathname separated by 
a space) or by using pathname wildcards. The following command 
uses pathname wildcards to print any file in the current working di
rectory that begins with file and ends with a one-digit number: 

This command, for example, prints file_2 and file_8 but not file_a 
or file_b. 

To indicate which printer to print the file(s) on, use the -pr[inter] 
option followed by the name of the printer. The example below 
prints the file sales_plan on the printer named spin: 

$ prf sales_plan -pr spin 

The prf command itself doesn't actually print files; a server process 
called prsvr (print server) does. (The prsvr process runs on the 
node that is physically connected to the printer.) The prf command 
queues a file for printing by copying the file to a directory, where it 
waits for prsvr to get it and print it. 

Managing Files 7-11 



If you normally use a printer connected to your node, the directory 
Isys/print/queue is the name of the queue directory on your node. 
If a remote node controls the printers that you use by default. then 
Isys/print is a link that your system administrator creates to point 
to the Isys/print directory on the remote node. This link causes prf 
to queue files to the Isys/print/queue directory on the remote node 
by default. (Chapter 9 describes links in more detail.) 

You can queue a file to the Isys/print/queue directory on another 
node by specifying the -s[iteJ option along with the name of the 
node's entry directory. For example, 

$ prf sales_plan -s IIboston 

queues sales_plan to the Isys/print/queue directory on the remote 
node boston. 

To find out the names of printers available to you, use the 
-list_printers option in the following manner: 

$ prf -list_printers 

The line above lists the names of all printers located at your local 
print site (Le., the one to which your Isys/print points). To deter
mine the names of printers available at a different site, specify the 
following command line, where site is the name of a known print 
site: 

$ prf -list_printers IIsite 

Options may also be specified in a configuration file. (Creating such 
a file saves you the work of entering the same options each time you 
use prf.) For information on creating a configuration file, or for 
general information on prf and its command options, refer to the 
Aegis Command Reference entry for prf and to Printing in the 
Aegis Environment. 

7-12 Managing Files 



Using the Print Menu Interface 

In addition to the prf command, you can print files using a special 
print menu interface. This menu allows you to specify print argu
ments and select various options without having to type them on the 
command line. The print menu interface is useful when you rou
tinely specify several print options for each file you print. By using 
the menu interface, you can select all of the options once, and print 
several files without respecifying the options for each file you print. 

To print files using the print menu interface, use the -dia option: 

$ prf -dia 

As shown in Figure 7-1, this command creates a special window 
pane at the top of the shell process window. An arrow cursor ap
pears in the upper left corner of the menu. 

I Quit II information II control Iishell commands I BIFiI'lO print: IP;inter: 
I 

Print 
A. 

Job Properties 

g text 
char specs copies 

o bitmap 
columns for whom 

o other 
margins 

spool node 

o filters 
headers 

carriage notify 

word wrap banner 

Figure 7-1. The Print Menu 

Managing Files 7-13 



The triangular cursor below the "File to print:" prompt indicates 
that characters typed at the keyboard will appear in this field. To 
print the file sales_plan in your working directory, first you must 
type its name followed by <RETURN>, as shown in Figure 7-2: 

I File to print: 
[sales_plan .... 

Figure 7-2. Specifying a Filename on the Print Menu 

Note the square brackets which enclose the filename as you type. 
When present, these show that you've not yet pressed <RETURN>. 

If you want to print a file from a directory other than the working 
directory, enter a full pathname like //node/owner/janJeport. 

To select a different field, move the arrow cursor to the menu item 
you want to select and press <Fl>, or the left mouse button (Ml). 
To display help information about an item, position the cursor over 
the item and press <HELP> or the right mouse button. 

Most of the other items in the menu display submenus when you se
lect them. These submenus allow you to select or specify additional 
print information. Table 7-3 describes the submenus for the shell 
commands menu item. 

Table 7-3. Shell Commands Submenu Items 

Item Description 

shell 
Passes control to a temporary shell. 
When you select shell, a shell 
prompt appears in the process input 
window. To return control to the 
print menu, exit the shell. 

set/inq working dir Displays the name of the working 
directory. To change the working 
directory, enter a new directory 
pathname in the field. 

7-14 Managing Files 



Use submenus in the same way you use the main menu: either se
lect an item, or type the requested information. When you finish 
with a submenu, move the arrow cursor out of the submenu box, 
and it will close. The value you entered will remain in effect until 
you change it again, or until you exit the program. 

When you're satisfied with the selections you've made in the print 
menu, you can print the file by selecting Print with <Fl> or the left 
mouse button. A message similar to the following appears on the 
transcript pad: 

jjnodejownerjsales_plan queued for printing at site 
jjprint_site. 

After you print a file, the menu remains on the screen, enabling 
you to print additional files. To print another file using the same se
lections, specify a new filename and select Print; the print menu 
uses the submenu selections you already made. To exit the pro
gram, select Quit. 

Most of the selections in the print menu perform the same print 
functions as options on the command line. For more information 
on a specific menu or submenu item, refer to the description of its 
related prf command option in the Aegis Command Reference. 

Displaying File Attributes 

To display a file's attributes, such as its size, creation date, and ac
cess rights, use the Id (list directory) command as follows: 

Id pathname [options] 

The pathname argument specifies the pathname of the file, and op
tions specifies which attributes you want displayed. 

The Id command in the following example displays attribute infor
mation for the file memo, as shown in the following example. The 
command specifies two attribute options: -r, which displays the 
file's access rights, and -dtc, which displays the file's creation date 
and time. 

Managing Files 7-15 



$ Id !!node!user!memo -r -dtc 

rights 
date/time 
created 

pgndcalr 85/01/04.09:16 

1 entries, 2 blocks used. 

name 

//node/user/memo 

To display an entire set of attributes for a file, use the -a option as 
follows: 

$ Id !!node!user!memo -a 

You can display the attributes of several files by either specifying 
multiple file pathnames, (each pathname separated by a space) or 
by using pathname wildcards. The command in the following exam
ple uses the question mark (?) and asterisk (*) pathname wildcards 
to display attribute information for all files in the current working 
directory that have the suffix, _plan: 

$ Id?* _plan -r -dtc 

You can also display the attributes of all the files in a particular di
rectory by specifying the name of the directory as the pathname ar
gument. The "Displaying Directory Information" section of Chapter 
8 describes how to use Id to list the contents of a directory and dis
play attribute information about its contents. 

Deleting Files 

To delete one or more files, use the dlf (delete file) command in 
the following format: 

dlf [pathname ... ] [options] 

The pathname argument specifies the path name of the file you want 
to delete. If you specify multiple pathnames to delete multiple files, 
separate each pathname with a space. 

7-16 Managing Files 



The following command deletes the files sales_plan and report 
from the current working directory: 

$ dlf sales_plan report 

You can also use pathname wildcards to delete related groups of 
files. For example: 

$ dlf %.bak -1 

The percent sign (%) wildcard character causes dlf to delete all of 
the files in the current working directory that end in . bak. The -I 
option lists each file as dlf deletes it. 

The dlf command is an example of one that queries you to verify 
names that you specify with pathname wildcards. If you enter the 
previous example, the dlf command then asks you to verify the de
letion of each file that matches the pathname %. bak. 

Copying the Display to a File 

You can copy the image of your current display to a file using the 
cpscr (copy screen) command in the following format: 

cpscr pathname [-inv] 

The pathname argument specifies the pathname of the file to which 
you want to copy the display image. The -inv option directs cpscr 
to store the file in reverse video (black on white or white on black 
depending on the current display setting). 

To create a GPR bitmap file, use the cpscr command as follows: 

cpscr pathname -gpr 

The -gpr option directs cpscr to create a GPR bitmap file (color 
screens are copied into a GPR bitmap file by default). To print a 
file that contains a screen image, use the prf command with the 
-plot option. 

Managing Files 7-17 



Comparing ASCII Files 

To identify differences between ASCII text files. use the emf (com
pare file) command in the following format: 

emf source [target ... ] [options] 

The source argument specifies the pathname of the file to which 
emf compares one or more target files; emf reports all differences 
in relation to the source file. If you specify multiple target path
names. separate them with spaces. If you omit a target pathname. 
emf compares the source with text from standard input. 

The emf command in Figure 7-3 compares the contents of the file 
speech to the contents of speech. bak. 

Figure 7-3. Comparing Two ASCII Files 

---88---

7-18 Managing Files 



Chapter 8 

Managing Directories 

Directories are the naming tree components that contain other 
objects. Table 8-1 summarizes the commands for managing 
directories. 

Table 8-1. Commands for Managing Directories 

Task Shell Command 

Create a directory crd pathname 

Rename a directory chn old name [new_name] 

Copy a directory tree cpt source [target] 

Replace a directory tree cpt source [target] -r 

Merge directory trees cpt source [target] -ms 

Compare directory trees cmt source target 

Display contents of a directory Id [pathname] 

Delete a directory tree dlt pathname 

Managing Directories 8-1 



Creating Directories 

Each directory that you create is actually a subdirectory of its par
ent directory (the directory above it in the naming tree). To create 
a directory, specify the crd (create directory) command in the fol
lowing format: 

crd pathname ... 

The pathname argument specifies the pathname of the directory 
you want to create. If you specify multiple pathnames to create mul
tiple directories, separate each pathname with a space. The follow
ing command creates a directory named reports: 

$ crd /owner/reports 

The crd command creates the directory reports as a subdirectory 
of the parent directory /owner. The new directory, (reports) also 
receives an initial set of ACLs from the initial directory ACLs of the 
parent directory (lowner). You can change the initial ACLs with 
the edacI (edit ACL) command. Chapter 10 explains ACLs and 
describes how to use this command. 

Renaming Directories 

To change the name of a directory, use the chn (change name) 
command in the following format: 

chn old_name [new_name] [options] 

The old_name argument specifies the pathname of the directory 
you want to rename, and new _name specifies the new name of the 
directory. For example, this command line changes the name of the 
directory reports to progress: 

$ chn /owner/reports progress 

8-2 Managing Directories 



Notice that the new name argument applies to the rightmost com
ponent (reports) of the old_name argument. You cannot use chn 
to change the name of a directory embedded in a pathname. 

To append a naming suffix to the new directory name, specify any 
of the following naming options: 

Option 

-d 

-y 

-u 

Description 

Appends the current month and day to the new 
name (new_name.mm.dd). 

Appends the current year, month, and date to the 
new name (new_name.yy.mm.dd). 

Forces the system to create a unique new name by 
appending a sequence of number(s) to the end of 
the name. 

If you omit the new name argument, you must specify one of the 
options in the previous list; the system creates a new name-by-copy
ing the old_name and appending the proper suffix as shown here: 

$ chn /owner/reports -d 

When specified on June 16, this command changes the name of the 
directory reports to reports.06.16. 

Copying Directory Trees 

A directory and all of the objects it contains is called a directory 
tree. A directory tree represents the part of a naming tree that ex
tends from a specific directory through all its files, subdirectories, 
and links as shown in Figure 8-1. 

Managing Directories 8-3 



Figure 8-1. Sample Directory Tree 

To copy a directory tree to another location, use the cpt (copy 
tree) command in the following format: 

cpt source target 

The source argument specifies the pathname of the directory you 
want to copy and target specifies the pathname of the naming tree 
location where you want the copy created. The rules for pathnames 
described in Chapter 1 apply to both command arguments. 

Figure 8-2 illustrates how the cpt command in the following exam
ple copies a directory tree: 

$ cpt reports //boston/user_lIprog -1 

8-4 Managing Directories 



Figure 8-2. Copying a Directory Tree 

The cpt command creates a copy of the directory tree reports and 
names the copy prog. The copy is placed in the directory user_l. 
The -I option lists the name of each object as it is copied. 

Replacing Directory Trees 

To replace one directory tree with another directory tree, specify 
the -r option with the cpt (copy tree) command described in the 
previous section. The -r option directs cpt to delete the directory 

Managing Directories 8-5 



tree specified by the target pathname and to create a copy of the 
source tree in its place. Figure 8-3 illustrates how the following 
command replaces a directory tree. 

$ cpt reports /lboston/user_l -r 

Figure 8-3. Replacing a Directory Tree 

The cpt command in Figure 8-3 deletes the target tree starting at 
the pathname Ilboston/user_l. It then replaces the target tree with 
a copy of the entire reports directory tree. 

8-6 Managing Directories 



Merging Directory Trees 

You can merge directory trees using either the -ms or -md option 
with the cpt (copy tree) command described in the "Copying Direc
tory Trees" section discussed earlier. When merging directory trees, 
cpt first compares the source and target directories object by ob
ject. It then merges the directories according to the option you 
specified. 

When you specify the -ms option, cpt uses the following process to 
merge the source directory with the target directory: 

• Objects that exist in the source but not in the target are 
created in the target. 

• Objects that exist in the target but not in the source remain 
unchanged. 

• Files and links with the same name in both the source and 
target are deleted from the target and replaced by the 
source version. 

• Directories with the same name in both source and target 
are merged. 

The cpt command continues this process until it reaches the end of 
the source tree. 

The following command merges the source directory progress with 
the target directory reports. 

$ cpt Ilboston/user_lIprogress reports @ 
$_ -md -I 

The -I option directs cpt to list all objects that it creates in the tar
get directory. 

If you specify the -md option, the merging process is similar to that 
of -ms; however, files and links with the same name in the source 
and target are left unchanged in the target. 

Managing Directories 8-7 



Comparing Directory Trees 

To compare the contents of one directory tree to another, use the 
cmt (compare tree) command in the following format: 

cmt source target [options] 

The cmt command compares all of the object.s in the source direc
tory tree against all the objects in the target directory tree. It re
ports the following: 

• Any objects that appear in both the source and target but 
whose contents are different. 

• Any objects that appear in the source but not in the target. 
If the target contains objects that do not appear in the 
source, cmt ignores the differences. 

For example, let's assume that. directories dir_l and dir_2 contain 
the files shown in Figure 8-4. 

file_8 

I file_b I 
file_c 

file_d 

Contain 
--+- different text 

file_8 

I file_b I 

Figure 8-4. Two Sample Directories 

Let's also assume that the contents of all the files in dir 1 and 
dir_2 are identical, except for file_b which contains different text. 
Figure 8-4 illustrates how the cmt command compares the files in 
dir_l against those in dir_2. 

8-8 Managing Directories 



Figure 8-5. Comparing Directory Trees 

Notice in Figure 8-5 that the first message reports a difference be
tween the contents of each directory's file_b. The second message 
reports that file_d in dir_l did not appear in dir_2. 

Displaying Directory Information 

To list the contents of a directory and report information about the 
objects the directory contains, specify the ld (list directory) com
mand in the following format: 

ld [pathname ... ] [options] 

The pathname argument specifies the pathname of the directory, 
and options specifies the types of information you want ld to report 
about the objects it lists. If you omit the pathname argument, ld 
lists the contents of the current working directory. 

The command in the following example lists the contents of the di
rectory reports; the options direct Id to report each object's crea
tion date and time, system object type, and rights (ACLs). Below is 
a sample display produced by the following ld command: 

Managing Directories 8-9 



$ Id fownerfreports -dtc -st -r 

Directory "/owner/reports": 

sys date/time 
type rights created name 

dir pgndcalr 85/01/04.09:16 april 
dir pgndcalr 85/01/04.09:16 july 
dir pgndcalr 85/01/04.09:16 june 
dir pgndcalr 85/01/04.09:16 may 
file pgndwrx 85/01/04.09:18 procedure 
link progress 
file pgndwrx 85/01/04.09:16 sample 
file pgndwrx 85/01/04.09:18 template 

8 entries, 7 blocks used. 

To list the contents of an entire directory tree, specify the ellipsis 
wildcard ( ... ) as part of the pathname argument. For example: 

$ ld fownerl ... 

This command lists the contents of the directory owner, as well as 
the contents of all its subdirectories. 

You can also use Id to report information about specific files by 
specifying the pathname of the file as an argument. The "Displaying 
File Attributes" section discussed in Chapter 7 describes how to use 
Id to report file information. 

Deleting Directory Trees 

To delete a directory tree, use the dlt (delete tree) command in the 
following format: 

dlt pathname ... 

The pathname argument specifies the pathname of the directory 
you want to delete. 

8-10 Managing Directories 



NOTE: The pathname you specify does not have 
to be a directory. If you specify the path
name of a file or link, dlt will delete the 
object with no warning message. To de
lete files, we recommend that you use the 
dlf (delete file) command; to delete 
links, use the dll (delete link) command. 

The dlt command deletes the specified directory and all of the ob
jects it contains. For example, the following command deletes the 
directory tree shown in Figure 8-6: 

$ dlt reports -I 

Figure 8-6. Deleting a Directory Tree 

The command in the previous example deletes the directory tree 
starting at the directory reports in the current working directory. 
The -I option directs dlt to list each object it deletes. 

-------88-------

Managing Directories 8-11 





Chapter 9 

Managing Links 

As you use the system, you may find that many of the files and di
rectories that you access frequently have unusually long pathnames. 
You can eliminate the inconvenience of typing a lengthy pathname 
by creating a shorthand name for the object, called a link. 

A link is a special object that contains the name of another object. 
When you specify a link as a pathname or part of a pathname, the 
system substitutes the pathname that the link contains (the resolu
tion name) for the name of the link. This section describes how to 
manage links on your system. Table 9-1 summarizes the commands 
used to manage links. 

Table 9-1. Commands for Managing Links 

Task Shell Command 

Create a link crl link_name object_name 

Display link resolution names Id (pathname] -II -It 

Redefine a link crl link_name object_name -r 

Rename a link chn old_name [old_name] 

Copy a link cpl source [target] 

Delete a link dll link name 

Managing Links 9-1 



Cr-eating Links 

To create a link, specify the crl (create link) command in the fol
lowing format: 

The link_name argument specifies the pathname of the link, and 
object_name specifies the pathname of the object to which the link 
points. The rules for pathnames described in Chapter 1 apply to 
both arguments. 

The following command creates a link: 

$ crl reports /owner/april/progress_reports 

The command in this example creates a link named reports in the 
process's current working directory. The link contains the path
n~me for the subdirectory progress_reports. As shown in the fol
lowing example, when you specify reports as a pathname or part of 
a pathname, the pathname /owner/april/project_reports is substi
tuted. For example, instead of specifying 

$ dlf /owner/april/progress_reports/mr.Jones 

to delete the file mr.Jones, you could specify the following com
mand line: 

$ dlf reports/mr .Jones 

You can also use the crl command to create more than one link by 
specifying link name/object name pairs as shown below: 

$ crl bugs /maintenance/reports starts /sys/dm 

I 
pair 

I 
I 

pair 

This command creates two links: bugs and starts. 

9-2 Managing Links 



Displaying Link Resolution Names 

To display the resolution names for all the links listed in a particular 
directory, use the Id (list directory) command in this format: 

Id pathname -It [-II] 

The pathname argument specifies the pathname of the directory 
that contains the link, and -It directs Id to display the resolution 
name of each link. Normally, Id lists all the objects in the direc
tory, including files and subdirectories. The -II option directs Id to 
list only the links. 

The command in the following example displays the link resolution 
names for all links in the node entry directory, as shown below: 

$ Id / -It -II 

"/maintenance/reports" bugs 
starts 
news 

"/sys/dm" 
"//my_boss/owner/project/status" 

30 entries, 3 listed. 

Redefining Links 

You can redefine an existing link by changing its link resolution 
name. To redefine a link, use the -r option with the crl (create 
link) command as follows: 

$ crl reports /owner/may/progress_reports -r 

This command replaces the object name for the existing link re
ports that we created in the "Creating Links" section earlier. The 
new link name points to the subdirectory may instead of april. 

Managing Links 9-3 



Renaming Links 

To change the name of a link, use the chn (change name) com
mand in the following format: 

chn old_name [new_name] [options] 

The old_name argument specifies the pathname of the link you 
want to rename, and new_name specifies the new name of the link. 
For example, the following command changes the name of the link 
reports, in the current working directory, to progress: 

$ chn reports progress 

You can specify these naming options with the chn command: 

Option 

-d 

-y 

-u 

Description 

Appends the current month and day to the new 
name (new_name.mm.dd). 

Appends the current year, month, and date to the 
new name (new_name.yy.mm.dd). 

Forces the system to create a unique new name by 
appending a sequence of number(s) to the end of 
the name. 

If you omit the new _name argument, you must specify one of the 
options in the previous list; the system creates a new name by copy
ing the old_name and appending the proper suffix as shown here: 

$ chn reports -u 

This command changes the name of the link reports to reports. I. 

9-4 Managing Links 



Copying Links 

Copying links is basically the same as copying files; when you copy a 
link, you create a copy of the link in another location in the naming 
tree. To copy a link, use the cpl (copy link) command in the fol
lowing format: 

cpt source [target ... ] [option] 

The source argument specifies the pathname of the link you want to 
copy, and target specifies the naming tree location where you want 
the copy created. The rules for pathnames described in Chapter 1 
apply to both command arguments. 

The cpt command always creates a copy of the source link at the 
location specified by the target. For example: 

$ cpl reports luser_lIstatus 

creates a copy of the source link reports in the directory user_I. 
And, since the target specifies the pathname of a link, cpl assigns 
the copy the name specified by the target, which in this example is 
status. 

If the target specifies the pathname of a directory, cpl creates a 
copy of the source link in the target directory (the current working 
directory if you omit the target) and assigns the copy the name of 
the source link. For example: 

$ cpl reports luser_1 

copies the link reports from the current directory to the target di
rectory user_I. Because cpl assigns the copy the name of the 
source link, the new link has the pathname luser_lIreports. 

To replace an existing link with a copy of another link, use the -r 
option as follows: 

$ cpl reports luser_2/progress -r 

Managing Links 9-5 



This command replaces the link progress with a copy of the link 
reports (from the current working directory). 

You can copy or replace several links using a single cpl command 
by either specifying multiple pairs of source and target pathnames 
(each pair separated by a space) or by using pathname wildcards. 
The following command copies all of the links in the current work
ing directory to the directory luser_2. 

$ cpl?* luser_2/my= 

The wildcards (?*) that make up the source pathname direct cpl to 
copy all links in the current working directory. The wildcard (=) in 
the target pathname directs cpl to derive the name of each new link 
from the source link names. For example, the link reports be
comes myreports in the target directory. 

Deleting Links 

To delete one or more links, use the dll (delete link) command in 
the following format: 

dll [link_name ... ] [options] 

The link_name argument specifies the pathname of the link you 
want to delete. If you specify multiple pathnames to delete multiple 
links, separate each pathname with a space. 

The following command deletes the link reports from the current 
working directory: 

$ dll reports 

You can also use pathname wildcards to delete related groups of 
links. For example: 

$ dll I .. .Istatus 

9-6 Managing Links 



The ellipsis wildcard ( ... ) directs the dll command to delete every 
link named status in all directories subordinate to the node entry 
directory. 

Managing Links 9-7 





Chapter 10 

Controlling Access to Files 
and Directories 

You can protect your files and directories from unauthorized use 
with a system protection mechanism called an access control list 
(ACL). Every file and directory in the system has an access control 
list that defines: 

• Who can use the object 

• What operations these users can perform on the object 

An ACL for a file, for example, can authorize some users to read 
the file, and permit others to edit it. 

This chapter describes the following ACL topics: 

• The structure of an ACL and its component parts 

• How the system assigns initial ACLs to objects 

• How you can use shell commands to display, change, and 
copy ACLs 

• Protected subsystems and the commands you use to create 
and use them 

Controlling Access to Files and Directories 10-1 



ACL Structure 

The ACL for each file and directory contains one or more ACL en
tries. An entry describes the operations a user or set of users can 
perform on the object. For a file, the ACL can also contain an indi
cator that it belongs to a protected subsystem. 

Each ACL entry consists of two elements: a subject identifier 
(SID) specification and a set of access rights. Figure 10-1 shows 
the elements that make up an ACL entry. 

SID Specification 

I 

person. group. organization 

Access Rights 

I 
I I 

right1 right2 right3 ... 

Figure 10-1. Structure of an ACL Entry 

The SID specification identifies a specific user or group of users. 
The access rights define what operations that user or group can per
form on the object. Let's take a closer look at these two elements 
to see how the system uses them to control access to an object. 

The Subject Identifier (SID) 

As described earlier, the system associates each user process with a 
SID that identifies the owner of the process. Like the SID specifica
tion in an ACL entry, the SID assigned to a user process has the 
following format: 

person.group.organization 

10-2 Controlling Access to Files and Directories 



The SID consists of three fields: person, group, and organization 
(abbreviated pgo). When you log in, the system gathers SID infor
mation for your account. Then, each time you create a process, the 
system assigns the same SID to it to identify you as the owner. 

When a user requests access to a file or directory, the system 
checks the object's ACL. Specifically, the system searches for an 
ACL entry whose SID matches the SID of the user's process. If the 
system doesn't find a match, it denies the user access to the object. 
If the system does find a match, it grants the user the set of rights 
specified by the ACL entry. (The" Access Rights" section describes 
the meaning of the various access rights.) 

Figure 10-2 shows a set of two ACL entries for a file. 

SID Specification 

I 

joe.%.eng 

%.%.eng 

Access Rights 

I 

prwxk 

-r---

Figure 10-2. Sample ACL Entries 

The percent signs (%) that appear in the different fields of the SID 
specification are wildcards. Wildcards match any name in the net
work within a specific SID field. For example, the SID for the sec
ond ACL entry in Figure 10-2 (%.%.eng) contains wildcards in the 
person and group fields. These wildcards match any name in the 
corresponding fields of a user's process SID. As a result, the ACL 
entry for %.%.eng matches any process SID with the organization 
name eng. 

When a user process requests access to an object, the system starts 
its search for a matching SID, checking the specific required entry 
before extended entries of the same type. As soon as the system 
finds a specification that matches the process's SID, it stops the 
search and grants the rights listed in that ACL entry. 

Controlling Access to Files and Directories 10-3 



For example, the SID specification for the first ACL entry in Figure 
10-2 (joe. %.eng) is more specific than that of the second entry 
(joe is a specific user in the organization eng). Suppose a process 
with the SID joe. bridge. eng tries to access the object. In this case, 
the SIDs for both ACL entries match the process SID. However, 
since the system matched the more specific SID (joe. %.eng) first, it 
grants the process the associated rights (prwxk). 

As described above, when you create a process, the system assigns 
an SID consisting of a username (owner), a group and an organiza
tion. The ACL entries for the owner, group and organization are 
called the required ACL entries. Each object in the system has a 
set of required ACL entries specifying rights for an owner, a group, 
an organization, and all others (world). You can also create ex
tended ACL entries for an object. An extended ACL entry allows 
you to extend access rights to other users, groups, and organiza
tions. Figure 10-3 shows an object with required and extended 
ACLs. 

SID Specification Access Rights 

I I 
joe.%.eng prwx-

Required ACL { %.bridge.% -r-x-
Entries %.%.eng [ignored] 

%.%.% 

Extended ACL { jill.%.% prwx-

Entries %.backup.% -r---

Figure 10-3. Sample Extended ACL Entries 

Access Rights 

Access rights specify what operations, such as read, write, and exe
cute, a user process can perform on a particular file or directory. 
Table 10-1 lists the access rights for files and directories. 

10-4 Controlling Access to Files and Directories 



For example, the following ACL entry for a file grants the specified 
set of access rights to all users not mentioned by other entries: 

%.%.% -rwx-

In this example, the rwx specification indicates that the file has 
read (r), write(w), and execute(x) rights. Notice the hyphens that 
surround rwx rights. When you list the ACL entries for an object 
(see the "Displaying ACLs" section) the system displays the hy
phens to represent access rights that are not available for the entry. 
In the previous example, the entry denies p and k rights (repre
sented by hyphens) and grants r, w, and x rights. 

As you'll see later in this chapter, you can also deny certain users 
any access to an object. For example: 

%. bridge. eng 
%.%.eng 

prwxk 

This ACL denies every user in the eng group access to the file, ex
cept those working on the bridge project. 

Table 10-1 describes the types of access for directories as well as 
for files. 

Controlling Access to Files and Directories 10-5 



Table 10-1. Access Rights for Files and Directories 

Access Abbrev. Meaning for Meaning for Files Right Directories 

Protect p Change the object's ACLs. 

Keep k Prevent deletion or changing of name. 

Read r List entries. Read file contents. 

Write w Add, change, or Write to the file. 
delete entries. 

Executel x Allow directory Execute object 
Search to be searched file. 

for subordinate 
objects. 

Inherit SID i Inherit SID for None. 
process (initial 
ACLs only). 

NOTE: To delete a directory tree, you need write rights to 
the containing directory. If objects are protected with 
keep rights, you must have protect rights to the ob-
ject as well. 

Searching Directories and Deleting Objects 

To access an object, in addition to appropriate rights to the object, 
you must have appropriate rights to the object's parent directory. 
To access an object, its parent must grant you search(x) rights. To 
delete an object, its parent must grant you write(w) rights. Consider 
the following example: 

$ ld lownerlreports 

In order to list the contents of reports, you must have search rights 
to its parent directory lowner, as well as read rights to reports. 
Similarly, to delete the subdirectory reports, you need write rights 
to lowner. 

10-6 Controlling Access to Files and Directories 



If reports contains additional objects, you need write rights to re
ports to delete them. Therefore, to delete a directory tree, you 
must have write rights to the parent directory and all of its subdirec
tories except the subdirectories at the very bottom of the tree. 

Managing ACLs 

By default, the system assigns an ACL to every file or directory that 
you create. (The "Initial ACLs" section describes how the system 
assigns ACLs to objects.) You can display, edit, and copy an ob
ject's ACL using the following shell commands: 

• ad (displays and copies ACLs) 

• edad (displays and edits ACLs) 

Displaying ACLs 

To display an object's ACL, use the shell command ad (access 
control list) in the following format: 

ad pathname ... 

The pathname argument specifies the pathname of the object 
whose ACL you want to list. For example: 

$ ad towner/report 

This command lists the ACL entries for the file report. Figure 10-4 
shows a sample display produced by this command. 

Controlling Access to Files and Directories 10-7 



Acl for lowner/report: 
Required entries 

jill. %. % 
%.bridge.% 
%.%.eng 
%.%.% 

Extended entry rights mask: 
Extended entries 

user.%.% 
%.netdev.% 
%.backup.% 

prwx
prw-
-rw--

-rwx-

---x-
-rw--
-r---

Figure 10-4. Sample ACL Display 

By using pathname wildcards, you can list the ACLs for a specific 
group of objects. For example, the following command lists the 
ACLs for all the files in the current working directory that have the 
suffix .bin: 

$ acl ?*.bin 

You can also display the ACL for an object using the edacl (edit 
access control list) command as follows: 

$ edacI lowner/report -1 

The next section, "Editing ACLs," provides more information on 
how to use the edacl command to display and edit ACLs. 

Editing ACLs 

You can edit an object's ACL using the shell command edacl (edit 
access control list) . The edacl command allows you to display, add, 
change, and delete ACL entries. 

10-8 Controlling Access to Files and Directories 



You can also use the edad command to edit a directory's initial 
ACLs. (The "Editing Initial ACLs" section describes how to use the 
edad command to edit initial ACLs). 

Like most shell commands, you can direct edad to perform specific 
operations by specifying options on the command line. In addition 
to its command options, the edad command also accepts a special 
set of ACL editing commands. The way you specify these editing 
commands depends on the mode in which edad operates. 

The edad command operates in two modes: command line mode 
and interactive mode. In command line mode, you specify editing 
commands as options on the command line. For example, edad in 
the following example uses the editing command -1 to display the 
ACL for the file report: 

$ edad report -1 

If you specify the edad command without any editing commands 
on the command line, edad enters interactive mode and prompts 
you for editing commands. When you specify editing commands in 
interactive mode, do not precede the command with a hyphen (-). 
For example: 

$ edad report 
report 
* 1 

In this example, since no editing commands appear on the edad 
command line, edad enters interactive mode. Specifying the 1 com
mand (without a hyphen) at the asterisk (*) prompt directs edad to 
list the ACL entries for report. 

Once you enter interactive mode, you can continue to specify edad 
editing commands to perform a series of edit operations. To exit in
teractive mode and save the changes you've made, type an End
of-File (EOF), normally CTRLlZ. The q command quits interac
tive mode without saving your changes. 

You can edit the ACLs of several objects either by specifying multi
ple pathnames (separating each pathname with a space) or by using 
pathname wildcards. 

Controlling Access to Files and Directories 10-9 



This section describes how to use the edael command to list and 
edit ACLs. The examples presented in this section show how to use 
edael commands in command line mode. For a complete descrip
tion of edael, see the Aegis Command Reference. Table 10-2 sum
marizes the commands used to edit ACLs. 

Table 10-2. Summary of Commands for Editing ACLs 

Task Command 

Display an object's ACL edael pathname -I 

Add an ACL entry edael pathname -a pgo rights 

Add rights to an ACL entry edael pathname -ar pgo rights 

Change access rights for an ACL edael pathname -c pgo rights 
entry 

Delete rights from an ACL entry edael pathname -dr pgo rights 

Delete an ACL entry edael pathname -d pgo rights 

Set the required entry for 
person (p) 

edael pathname -p [P] rights 

Set the required entry for 
group (g) 

edael pathname -g [g] rights 

Set the required entry for 
organization (0) 

edael pathname -0 [0] rights 

Set the required entry for world edael pathname -w rights 

Rules to Specify ACL Entries 

Most of the edael commands described in this section require you 
to specify SID and access right information. For example, to add an 
ACL entry, you must specify an SID and a set of access rights. 
Before you attempt to use edael commands, you should understand 
the rules for specifying SIDs and access rights. 

10-10 Controlling Access to Files and Directories 



When you specify an SID, you can use the percent sign (%) 
wildcard character in each field to match any name in the corre
sponding field of a process SID. For example, the following SID 
matches any process SID in the system with the username joe: 

joe.%.% 

When you specify a SID that uses % wildcards, you may omit trail
ing % wildcards and the periods that separate them. For example, 
the following SID specifications are the same: 

joe.%.% 
joe.% 
joe 

Table 10-1 lists the access rights that you can specify for files and 
directories. To specify access rights individually, use the one-letter 
abbreviations listed therein. For example: 

$ edacl report -a joe rw 
y 

access rights 

The command in this example specifies the reader) and write(w) 
access rights for the file report. 

To deny rights (grant no rights) for an entry, specify a hyphen char
acter (-) as follows: 

$ edacl report -a joe -
y 

no access rights 

You can also use any of the special class names in Table 10-3 to 
specify a set of commonly used rights. For example: 

$ edacl report -a joe -user 
y 

class name 

Controlling Access to Files and Directories 10-11 



The -user class name in this example specifies ta set of rights that 
you commonly grant to other users of the system. For both files and 
directories, -user grants all rights to the object except the ability to 
change the object's ACL. Since the object in this example is a file, 
-user grants read (r), write (w), and execute (x) access. 

NOTE: The edacl command will not allow you to 
perform an operation that restricts every
one from changing an ACL. At least one 
user must have the protect (p) rights to 
change the ACL. 

System users with the project name backup may create backup 
copies of files and directories on magnetic tape. Users with the pro
ject name backup need read (r) access to files, and read (r) and 
execute/search (x) access to directories. (Check with your system 
administrator to determine whether it is necessary to add backup 
rights to your ACLs.) If the object does require backup rights, edit 
the ACL again and add an entry that grants the backup project 
(%. backup. %. %) read (r) access. The next section, "Adding ACL 
Entries," describes how to add an ACL entry. 

10-12 Controlling Access to Files and Directories 



Table 10-3. Class Names for Commonly Assigned Rights 

Name Meaning Directories Files 

-owner All rights. pwrx pwrx 

-user All rights except wrx wrx 
ability to change 
ACL. 

-read File read access. Not allowed. r 

-exec File read access. Not allowed. rx 
Execute access to 
object files. 

-ldir List directories. rx Not allowed. 

-adir List directories wrx Not allowed. 
and add entries. 

-none Grant no rights. None. None. 

-ignore Ignore a required See Note 1. See Note 1. 
entry for rights. 

-inhJights Inherit rights from See Note 2. Not allowed. 
current process. 

-inh_all Inherit ~go data See Note 2. Not allowed. 
and rig ts from 
current process. 

Note 1: Each object must have the required entries of pgo. 
However, it is sometimes useful to have these speci
fied by not used for rights checking. This may be 
done by using the -ignore abbreviation (only valid 
for pgo entries). 

Note 2: Initial ACLs may be either specified in the directory 
or may inherit information from the process that is 
creating the object. Either the SID information or 
the rights information (or both) may be inherited. 
The -inh rights and inh all allow this inheritance 
to be speCified. These are only valid for initial 
ACLs. 

Controlling Access to Filei and Directories 10-13 



Adding ACL Entries 

To add an entry (SID and rights) to an ACL. use the -a option to 
the edacl command as follows: 

edacl pathname ... -a pgo rights 

The pgo argument specifies specifies the SID for the new entry and 
rights specifies the set of access rights. The -a option directs edacl 
to add the specified SID and access rights to the ACL. For exam
ple: 

$ edacl report -a %. %.man -owner 

The command in this example adds a new ACL entry to the ACL 
for the file report. The -owner rights class name (see Table 10-3) 
specifies a full set of rights for the entry. The new entry grants full 
access (prwx) to anyone in the organization named man. 

Changing Entry Rights 

To change the access rights for an SID. use the -c option to the 
edacl command as follows: 

edacl pathname ... -c pgo rights 

The pgo argument specifies the SID for the entry you want to 
change. and rights specifies the new set of access rights. The -c op
tion directs edacl to change the access rights for the specified SID. 

For example. suppose the file report has the following ACL entry 
granting full rights: 

%.%.man prwx 

The following command changes the access rights for %. %.man to 
read (r) access: 

$ edacl report -c %. %.man r 

10-14 Controlling Access to Files and Directories 



As a result, the new ACL entry now looks like this: 

%.%.man.% -r---

If you try to change the access rights for an entry that doesn't exist, 
you will receive an error message. 

Adding Entry Rights 

To add access rights to an existing ACL entry, use the -ar option to 
the edacl command in the following format: 

edacl pathname ... -ar pgo rights 

The pgo argument specifies the SID for the entry you want to 
change, and rights specifies the new set of access rights. The -ar 
option directs edacI to add rights to the existing list of access rights 
for the specified SID. 

For example, suppose the file report has the following ACL entry: 

%.%.man -r---

The following command adds write(w) and execute(x) rights to the 
current access rights for %. %. man. 

$ edacl report -ar %. %. man wx 

As a result, the ACL entry now looks like this: 

%.%.man -rwx-

If you try to add rights to an entry that doesn't exist, you will re
ceive an error message. 

Controlling Access to Files and Directories 10-15 



Deleting Entry Rights 

To delete the set of rights from a particular ACL entry, use the -dr 
option to the edacl command in the following format: 

edacl pathname ... -dr pgo rights 

The pgo argument specifies the SID for the entry you want to 
change, and rights specifies the access rights you want to delete. 
The -dr option directs edacl to delete the access rights for the 
specified SID. 

For example, suppose the file report has the following ACL entry: 

%.%.man -rwx-

The following command deletes write (w) access from the current 
access rights for %. %.man: 

$ edacl report -dr %. %.man w 

As a result, the ACL entry now looks like this: 

%.%.man -r-x-

If you try to delete rights from an entry that doesn't exist, you will 
receive an error message. 

Deleting ACL Entries 

To delete an entry (SID and rights) from an ACL, use the -d op
tion to the edacl command in the following format: 

edacl pathname ... -d pgo 

The pgo argument specifies the SID for the entry you want to de
lete. For example: 

10-16 Controlling Access to Files and Directories 



$ edacl report -p %. %.man. % 

This command deletes the entry %.%.man from the ACL for the 
file report. 

NOTE: You may not delete a required entry. You 
should either set the rights to "ignore" or 
specify a new required entry, using the p, 
g, 0, or w commands. 

Setting Required Entries 

To set a required entry (SID and rights) for a specified person, use 
the -p option to the edacl command in the following format: 

edacl pathname ... -p person rights 

The person argument specifies the name of the user for whom you 
want to specify rights. For example: 

$ edacl report -p mary. %. % -owner 

This command assigns mary owner rights for the file report. 

To set a required entry for a specified group, use the -g option to 
the edacl command; to set a required entry for a particular organi
zation, use the -0 option. 

Copying ACLs 

To copy an ACL from one object to another, use the acl (access 
control list) command in the following format: 

acl target source 

The target argument specifies the pathname of the object to which 
you want the ACL copied. The source argument specifies the path
name of the object whose ACL you want to copy. 

Controlling Access to Files and Directories 10-17 



The following command copies the ACLs from the directory 
fowner to the directory fuser_l: 

$ ad fuser_1 fowner 

Initial ACLs 

Whenever you create a new file or directory, the system assigns it a 
default ACL by copying a special ACL, called an initial ACL, from 
the parent directory. Each directory, in addition to its own ACL, 
has two initial ACLs: an initial file ACL for new files, and an in
itial directory ACL for new directories. 

For example, if you create a file named report in the directory 
owner, the system assigns report the initial file ACL of the direc
tory owner. If you create a subdirectory in owner, the system as
signs the new subdirectory owner's initial directory ACL. New sub
directories also receive a set of initial ACLs that match the parent 
directory's initial ACLs. In this example, the new subdirectory also 
receives owner's initial ACLs. 

Figure 10-5 shows how the system assigns initial ACLs to files and 
directories. 

10-18 Controlling Access to Files and Directories 



Parent Directory 

Subdirectory Fife 

Figure 10-5. Initial ACLs for Files and Directories 

Table 10-4 summarizes the commands used to change and copy in
itial ACLs. 

Table 10-4. Summary of Commands for Editing 
and Copying Initial ACLs 

Task Command 

Edit initial directory ACL edad pathname -id command 

Edit initial file ACL edad pathname -if command 

Copy both initial ACLs ad target source -I 

Copy initial directory ACL ad target source -id 

Copy initial file ACL ad target source -if 

Controlling Access to Files and Directories 10-19 



Editing Initial ACLs 

To edit a directory's initial ACL, use edacl with the -id option in 
the following format: 

edacl pathname -id -command 

The -id option directs edacl to edit initial directory ACLs, and 
-command specifies one of the ACL editing commands described 
in the "Editing ACLs" section discussed earlier. For example: 

$ edacl/owner -id -I 

The command in this example displays the initial directory ACL for 
the directory lowner. 

To add an entry to the initial directory ACL for lowner, use the -a 
option as follows: 

$ edacl lowner -id -a %.%.eng rwx 

The following example uses the -dr option to take away write (w) 
rights from the entry we added in the previous example: 

$ edacl lowner -id -dr %.%.eng w 

To edit the initial file ACL, use the edacl command with the -if 
option in the following format: 

edacl pathname -if -command 

The -if option directs edacl to edit initial file ACLs, and -com
mand specifies one of the ACL editing commands described in the 
"Editing ACLs" section discussed earlier. For example: 

$ edacl report -if -I 

The command in this example displays the initial file ACL for the 
file report. 

10-20 Controlling Access to Files and Directories 



Copying Initial ACLs 

You can copy a directory's initial ACLs using the acl command in 
the following format: 

acl target source option 

The option argument specifies one of the options listed in Table 
10-5. The target argument specifies the pathname of the object to 
which you want the initial ACL copied. The source argument speci
fies the pathname of the object whose initial ACL you want to copy. 

Table 10-5. Options for Copying Initial ACLs 

Option Description 

-i Copies both the initial file and initial directory ACLs 
from the source to the target. 

-id Copies the initial directory ACL from the source to 
the target. 

-if Copies the initial file ACL from the source to the 
target. 

The command in the following example uses the -i option to copy 
the inital file and directory ACLs from the directory lowner to the 
directory luser_1. 

$ acl luser_l lowner-i 

To copy only the initial file ACL, use the -if option as shown in the 
following example: 

$ acl luser_l lowner -if 

For a complete description of how to use the acl command to copy 
initial ACLs, see the Aegis Command Reference. 

Controlling Access to Files and Directories 10-21 



Protected Subsystems 

Another method of controlling access to files is through a protec
tion mechanism called a protected subsystem. Protected subsys
tems allow you to designate a collection of data (a protected group 
of files) for use solely by specific programs. 

A protected subsystem is composed of one or more programs and a 
set of data files. The programs are called the managers of the pro
tected subsystem; the data files, called data objects (or protected 
objects), are owned by the subsystem. Thus, files in a protected 
subsystem have either manager or data object status. 

Protected subsystems permit broad groups of users to access data 
objects through the programs, or managers, of the subsystem. You 
typically create a protected subsystem when you want only specific 
programs to act on data files, regardless of the SIDs of the proc
esses in which the programs run. 

For example, you might have a group of data files produced and 
used by a specific program. If you want to prevent these files from 
being used for any other purpose, you can assign protected subsys
tem status to both the program and the data files. As a result, only 
those users authorized· to run the subsystem manager program can 
use the files protected by the subsystem. 

This section explains how to create a protected subsystem and how 
to assign subsystem status to files. 

How Protected Subsystems Work 

In order to understand how to assign subsystem status to files, you 
must first understand how the system handles protected subsystems. 
Figure 10-6 presents a flowchart that shows how the system con
trols access to protected subsystem files. 

10-22 Controlling Access to Files and Directories 



Program tries to 
access the file. 

Figure 10-6. Controlling Access to Protected Subsystem Files 

Controlling Access to Files and Directories 10-23 



The following descriptions explain the sequence of events shown in 
Figure 10-6: 

1. When a program in a protected subsystem requests access 
to a file, the system first checks whether the file belongs to 
a protected subsystem. If the file does not belong to a pro
tected subsystem, the system uses the file's ACL informa
tion to control access. 

2. If the file does belong to a protected subsystem, the system 
determines whether the requesting program owns the file 
(whether the program is a manager in that subsystem). If 
the program is not a manager in that subsystem, the system 
treats it like any other program and uses ACL information 
to control access. 

3. If the program is a manager in that subsystem, the system 
verifies that the program has executed a command or sys
tem call that raises the manager program's privilege level. 
If a manager program hasn't raised its privilege level, the 
system treats it like a non-manager program and uses ACL 
information to control access. 

The system allows you to raise a program's privilege level 
by using either the shell command subs (subsystem) or a 
set of programming calls. For more information, see the 
subs command in the Aegis Command Reference or the 
aclm call descriptions in the Domain/OS Call Reference. 

4. If the manager program has raised its privilege level, the 
system allows it to operate on the file. 

To use a protected subsystem, you must first create it, and then en
ter it to add files. The following sections describe how to create and 
enter a protected subsystem. 

Creating a Protected Subsystem 

To create a protected subsystem, use the crsubs (create subsystem) 
command in the following format: 

crsubs SUbsystem_name 

10-24 Controlling Access to Files and Directories 



The subsystem_name argument specifies the name you want to as
sign to the subsystem. For example, the following command creates 
a protected subsystem named protector: 

$ crsubs protector 

When you create a protected subsystem, the system assigns it the 
subsystem name that you specify. The system also assigns the sub
system name to a subsystem shell in the node's Isys/subsys direc
tory. The subsystem shell is actually a copy of the shell program. 
This shell program is the first manager program in your newly-cre
ated subsystem. 

The operating system uses the managers in the Isys/subsys direc
tory when it checks for the names of protected subsystems. Internal 
to the ACL for each of these managers, and to the ACL for any 
file, is a field for protected subsystem status. Only the operating sys
tem can see this field. If the file belongs to a protected subsystem, 
the field contains an internal identifier for that subsystem. All files 
in a particular subsystem, including the files in Isys/subsys, have 
the same internal identifier. 

When you display an object's ACL (see the "Displaying ACLs" sec
tion discussed earlier), the system looks at the ACLs subsystem 
field. If the field contains a subsystem identifier, the system looks in 
Isys/subsys for a file with the same internal identifier. The system 
then displays the name of that file as the name of the subsystem. 

To use crsubs to create a protected subsystem, you must have write 
rights to the Isys!subsys directory. The initial file ACL for this di
rectory must also grant read and execute rights to any file created in 
/sys/subsys. You should normally limit these rights to the creator of 
the subsystem or to the system administrator. 

Assigning Protected Subsystem Status 

Before you can assign subsystem status to files, you must first enter 
the subsystem using the ensubs (enter subsystem) command in the 
following format: 

ensubs SUbsystem_name 

Controlling Access to Files and Directories 10-25 



The subsystem_name argument specifies the name of the subsystem 
you want to enter. (To use en subs to enter a subsystem, you must 
have read and execute access to the subsystem file in /sys/subsys.) 
For example, the following command lets you enter the subsystem 
named protector: 

$ ensubs protector 

When the dollar sign prompt appears after you specify ensubs, you 
are "inside" the subsystem. Once inside, you can assign manager or 
data object status to files using the subs (subsystem) command in 
the following format: 

subs pathname SUbsystem_name option 

The pathname argument specifies the name of the file, and subsys
tem_name specifies the name of the current subsystem. The option 
specifies either -mgr for manager status or -data for data object 
status. For example: 

$ subs prog_259 protector -mgr 
$ subs data 1 protector -data 
$ subs data -2 protector -data 

The commands in this example assign subsystem status to files of 
the subsystem protector. The first command assigns manager status 
to the program file prog_259. (You can assign manager status to 
either a binary program or a script.) The remaining commands as
sign data object status to the files data_l and data_2. 

When you're finished assigning status to files, you can leave the 
protected subsystem by typing an End-of-File (normally CTRLlZ). 
You've exited the protected subsystem when the EOF marker ap
pears and the dollar sign prompt returns. 

10-26 Controlling Access to Files and Directories 



# Create the subsystem. 
$ crsubs protector 

# Change ACL entries for the subsystem. 
$ edacl /sys/subsys/protector -p fran 
$ edacl /sys/subsys/protector -cf %.sys admin 
$ edacl /sys/subsys/protector -cf %.%.% 

# Check to make sure entries are right. 

$ acl /sys/subsys/protector 
Acl for /sys/subsys/protector: 
Subsystem protector manager 
Required entries 
fran.%.% 
%.sys admin.% 
%.%.r-d 
%.%.% 
Extended entry rights mask: 

# Enter the subsystem. 

$ ensubs protector 

pr-x
pr-x
[ignored] 

# Assign subsystem status to two files. 
# The files must already exist. 

$ subs towner/my _prog protector -mgr 
$ subs lowner/data_1 protector -data 

-owner 
-owner 
-none 

# List the subsystem status to check for mistakes. 
$ subs towner/my prog 
.. /owner/my_prog" Is a protector subsystem manager 
II /owner/my_prog" is a file subsystem data object 

$ subs towner/data 1 
II /owner/data_1" is a-nil subsystem manager 
II /owner/data_1" is a protector subsystem data object 

# Type an End-of-File (normally CTRLlZ to exit 
# the subsystem. 

$ * * *EOF* * * 

$ 

Figure 10-7. Sample of a Protected Subsystem Transcript 

Controlling Access to Files and Directories 10-27 



Figure 10-7 contains a transcript that shows how a user created a 
protected subsystem, entered it, created a subsystem manager and 
data object, and exited the subsystem. 

----88----

10-28 Controlling Access to Files and Directories 



Chapter 11 

Writing Shell Scripts 

Most of the shell command examples that you've seen so far show 
you how to use commands interactively by specifying them in the 
shell input pad. You can also use shell commands in shell scripts. 
Shell scripts are essentially programs made up of shell commands 
and other valid shell characters, operators, and expressions. Think 
of scripts as programs written in the "shell language". 

This chapter desctibes how to write shell scripts using shell com
mands, operators, and expressions. Although you can use many of 
the commands and conventions presented in this chapter when you 
use the shell interactively, they have their most practical applica
tions in scripts. 

Creating Your Own Commands 

In its simplest form, a script is a file containing shell commands that 
you create to perform some customized operation. For example, a 
shell script can contain a sequence of commands that you specify 
frequently, such as wd to set the working directory, and Id to list 
the directory's contents. Or the script could contain a single com
mand with a long list of options. By including commands such as 
these in a script, you can execute them at any time by specifying a 
single command name. 

Writing Shell Scripts 11-1 



For example, when you use the ld command to list the contents of 
a directory, it displays only the name of each object by default. 
Suppose, however, that you want to display each objects' access 
rights, creation date, and object type. Normally, each time you type 
the Id command you have to specify the same list of options. In
stead, you can create a shell script named list that contains this 
command line: 

ld -r -dtc -st 

Whenever you specify the command name list, the shell lists the 
access rights, creation date, and object type of each object in the 
current working directory. 

Of course, you can write much more complicated scripts that per
form more sophisticated tasks. This section describes some of the 
basic components for writing scripts. Refer to Appendix C for ex
amples of more complex shell scripts. 

Creating Scripts 

To create a script, create a file and insert shell command lines. 
Command lines in scripts use the same command line format de
scribed in Chapter 6. 

Like commands that you enter in the shell input pad, you can use 
parsing operators such as the semicolon (;) to separate commands 
on a command line, and the escape character (@) to continue a 
command on more than one line. Other operators, like the pound 
sign character (#), have functions more suited for use in scripts. 
The # character lets you include comments in your scripts, since it 
directs the shell to ignore anything that follows it on the command 
line. Table 11-1 lists the shell parsing operators you'll use when 
writing scripts. 

11-2 Writing Shell Scripts 



Character 

# 

& 

!n 

!* 

'string' 

"string" 

@ 

Table 11-1. Shell Parsing Operators 

Function 

Direct the shell to ignore anything that follows 
it on the command line. 

Separate commands on a line. 

Run a command or program in thebackground 
without pads and windows. 

Substitute nth parameter (n is a number). 

Substitute all parameters (not including the 
command itself). 

Substitute parameter for n (a number) and 
rescan it. 

Substitute and rescan all parameters (not 
including command name itself). 

Quoted string, no parameters inserted. 

Quoted string, parameter may be inserted. 

Escape character 

Space (separates arguments). 

An important consideration when creating scripts is where to create 
them. Remember, when you specify a command name, the shell 
searches for the corresponding file according to a set of command 
search rules. By default, the second directory the shell searches is 
your personal command directory ...... /com. Therefore, you should 
normally create your own personal scripts there. In fact, all of the 
examples in this chapter assume that the scripts reside in your 
...... /com directory. For more information on command search rules, 
refer to Chapter 6. 

Writing Shell Scripts 11-3 



Passing Arguments to Scripts 

Let's take a look at a slightly more sophisticated script. This script 
is in a file called compile and contains the following lines: 

# compile 
# 
# This file compiles and binds prog 
# 
pas prog -1 -map -opt 
bind prog.bin -map >prog.map 
args "prog compiled and bound." 

When you specify compile in the shell input pad, the shell executes 
the script. The script compiles and binds the program in file prog 
and produces various output files (listings and maps), all in the cur
rent working directory. When finished the script uses the args com
mand to display the message "prog compiled and bound" in the 
transcript pad. 

The args command uses standard output to write its arguments 
(one per line) to the shell transcript pad. You can use the args 
command in scripts to display the results of expressions (see the 
"Using Expressions" section) or to display messages and diagnostics 
(as in the previous example). In fact, many of the examples in this 
chapter use the args command to show how the shell evaluates vari
ous strings and expressions. You can also use the args command 
with the -err [out] option to write arguments to error output. 

The shell script compile isn't very useful, since it only operates on a 
single file named prog and performs fixed compilation and binding 
operations. A script is more versatile if you can pass arguments to it 
when you specify the command to invoke it. Consider the following 
script named compile2: 

11-4 Writing Shell Scripts 



# 
# compile2 
# 
# This file compiles and binds a program whose name 
# you pass to it as (Al). 
# 
pas Al -1 -map -opt 
bind Al.bin -map >Al. map 
args "Al compiled and bound." 

Specifying the following command in the shell input pad causes the 
shell to find and execute the script compile2: 

The shell substitutes testyrog, which is the first argument on the 
command line, for every occurrence of the C 1) in the script. As a 
result, the script compiles test_prog, binds testyrog. bin, writes a 
map to testyrog.map, and when complete, writes the message: 

test-prog compiled and bound. 

Arguments that you type on the command line correspond to sym
bols in the script, called substitution parameters. Each substitu
tion parameter is composed of a caret character C) and a number. 
The caret character (A) instructs the shell to substitute an argument 
for the parameter; the number refers to the position the argument 
occupies on the command line that invoked the script. 

In the previous example, A 1 refers to test prog, which is the first 
argument after the command name compile. You can use any 
number of substitution parameters in shell scripts (beginning with AO 
which refers to the command name itself). 

Our compile2 script is still very specific, since the compile and bind 
operations are still fixed. To make those operations variable, simply 
pass in more parameters. Consider the following script named 
compile3: 

Writing Shell Scripts 11-5 



# 
# compile3 
# 
# ************(This example is wrong)********** 
# 
# This file compiles and binds a program whose name 
# you pass to it as Al, and whose options you pass 
# to it as A2. 
# 
pas Al A2 
bind Al.bin -map >Al. map 
args "Al compiled and bound." 

How do we pass the multiple parameters if we want compile3 to be
have like compile2? The following examples show different ap
proaches to doing this, with the final example showing the correct 
approach. 

Let's take a look at what happens if we type the following com
mand: 

$ compile3 my _prog -1 -map -opt 
I I yyy 

1 2 3 4 

As shown in this example, the shell tries to substitute -1 for parame
ter 2, -map for 3, and -opt for 4. This command won't work, how
ever, because compile3 doesn't contain substitution parameters A3 
and A4. As a result, the shell ignores the -map and -opt options. 

Normally, we can group the arguments and pass them as a single ar
gument by enclosing them in single quotation marks as follows: 

$ compile3 my _prog '-I -map -opt' 
I I I 

1 2 

The single quotation marks tell the command shell to treat the 
characters inside them as a single string, even if there are interven
ing spaces. When you specify the command, the shell substitutes 
the string '-1 -map -opt' for substitution parameter 2 in com-

11-6 Writing Shell Scripts 



pile3. However, this still won't work, because the shell tries to in
terpret the entire string as a single argument, instead of the three 
separate options the string represents. 

Let's look at a fourth and final compile script to see how to solve 
our problem. 

# 
# compile4 
# 
# **********(This example is correct)********* 
# 
# This file compiles and binds a program whose name 
# you pass to it as AI, and whose options you pass 
# to it as !2 
# 
pas Al !2 
bind AI.bin -map >AI.map 
args "AI compiled and bound." 

Now, typing the following command will work: 

$ compile3 my _prog '-I -map -opt' 

1 2 

Like the caret n, the exclamation point (I) parsing operator 
causes the shell to substitute the string in quotation marks for the 
second parameter. However, the exclamation point directs the shell 
to rescan the command line before executing it. When the shell 
scans the line a second time it breaks apart the three options in the 
string. As a result, the shell interprets the options correctly. 

U sing Quoted Strings 

The proper use of quotation marks can make a big difference in the 
way the shell interprets quoted strings. To use quoted strings cor
rectly in scripts, you must understand the subtle differences in the 
shell's interpretation of single and double quotation marks. 

When you want the shell to interpret a string literally, you can use 
either single or double quotation marks as follows: 

Writing Shell Scripts 11-7 



args 'compiled and bound' 

or 

args "compiled and bound" 

Both commands use standard output to write the message, "com
piled and bound" to the shell's transcript pad. But suppose you 
wanted to substitute arguments inside the quoted string. 

To substitute arguments inside a quoted string, you must use double 
quotation marks. For example, let's use a line from the script, 
compile4 that we created in the "Passing Arguments to Scripts" 
section. 

args "AI compiled and bound" 

When you use double quotes, the shell performs substitutions in the 
quoted string. In this example, if the argument passed to the script 
is test_prog, the shell outputs the string: 

test-prog compiled and bound. 

On the other hand, if you enclose the string in single quotation 
marks: 

args 'AI compiled and bound.' 

the shell will not perform the substitution. Instead, it displays the 
message: 

A1 compiled and bound. 

Using In-Line Data 

Certain shell commands use standard input to read data from the 
shell input pad. When you use these commands in scripts, you can 
redirect standard input to read data from within the script itself. 

For example, the ed command normally uses standard input to 
read special editing commands that you enter in the shell input pad. 

11-8 Writing Shell Scripts 



Using the I/O redirection character «<), you can redirect standard 
input to read commands from inside the script instead. Following is 
a script in which the ed command reads in-line data. 

# 
# This is a sample script that uses in-line data 
# 
ed my_file «~I 

editing commands 

/ 

In the example above, the list of editing commands between the 
two slash characters (I) is called a here document. The I/O redi
rection character «<) redirects standard input to read the data (in 
this case commands) contained in the here document. 

The sample script above uses a slash character (I) as a delimiter to 
indicate both the beginning and end of the here document. You 
can use any character as a delimiter, as long as the beginning and 
ending characters are the same. Also, in order for the shell to rec
ognize the end of the here document, you must specify the ending 
delimiter as the first and only character on the line. 

Executing DM Commands from Shell Scripts 

You can invoke DM commands from the command shell or from 
within a shell script using the shell command xdmc as follows: 

xdmc dm_command 

The dm_command argument specifies the name of the DM com
mand you want to execute. For example: 

xdmc cv news 

This command executes the DM command cv to open a read-only 
pad and window for the file news. 

Writing Shell Scripts 11-9 



Debugging Shell Scripts 

Normally, when a script runs, it doesn't display commands as it 
executes them. As a result, when a script doesn't work, it is difficult 
to locate which command or commands cause the errors. 

To debug a shell script, invoke the script using the sh command in 
the following format: 

sh option script 

The script argument specifies the name of the script, and option 
specifies one of the options in Table 11-2. Each option activates a 
specific function. 

The following command executes the script compile and writes 
each command line to standard output immediately before execu
tion: 

$ sh -x compile 

Table 11-2. Script Verification Options 

Option Function 

-x \\Tites each command line in the script to standard 
output immediately before execution. Provides the 
complete pathname for each command and evaluates 
all expressions. 

-v Writes each command line in the script to standard 
output. Each variable is expanded, but expressions 
are not evaluated and command pathnames are not 
expanded. 

-n Interprets commands without actually executing 
them. 

11-10 Writing Shell Scripts 



If you want to turn either of these features on or off without using 
the sh command options, you may specify the shell commands von, 
voff, xon, or xoff and then run your script directly using the cur
rent shell. For example, the following are equivalent: 

$ sh -x compile 

or 

$ xon 
$ compile 
$ xoff 

You can also include these commands within the script itself to en
able or disable verification. For example, to debug part of a script, 
you can place xon and xoff commands around the segment of the 
script you want to debug. Or, to debug an entire script, include the 
xon command as the first line in the script. When the script com
pletes, control of verification returns to the shell. 

Using Expressions 

Like programs written in a high-level programming language such 
as FORTRAN or Pascal, scripts allow you to use expressions to per
form mathematical, string, and Boolean operations. Table 11-3 
provides a summary of the operators you can use in expressions. 

To evaluate an expression, you must enclose the expression within 
expression delimiters (a set of double parentheses) as follows: 

args « 4 + 2 )) 

The only exception to this rule is the case where you use the assign
ment operator ( := ) to assign an expression to a variable: 

total:= 4 + 2 

In this example, the shell evaluates the expression and assigns the 
resulting value to the variable total. While the assignment operator 
doesn't require you to use expression delimiters, you can use them 

Writing Shell Scripts 11-11 



if you prefer; no error will occur if you do use them. The .. Defining 
Variables" section describes how to use the assignment operator to 
assign values to variables. 

Operands in Expressions 

You can use any of the following as operands in expressions: 

• Single integer, string, or Boolean values 

• Operations that result in integer, string, or Boolean values 

• Variables assigned integer, string, or Boolean values (the 
.. Shell Variables" section describes variables). 

Certain types of operations in expressions take precedence over 
others. For example, the shell will perform a mathematical opera
tion in an expression before a comparison operation. As shown in 
Table 11-3, the shell performs operations according to a specific 
order of precedence where 1 is the lowest (last performed) and 9 is 
the highest (first performed). 

The last operation performed in an expression (the operation with 
the lowest precedence) determines the type of value, either integer, 
string, or Boolean, returned by the expression. 

When you create expressions, refer to Table 11-3 to check the 
precedence of the operators you use. Understanding the order in 
which the shell performs operations will reduce the possibility of an 
expression resulting in an unexpected answer. Many of the exam
ples that we'll see in this chapter demonstrate operator precedence. 

11-12 Writing Shell Scripts 



Table 11-3. Summary of Expression Operators 

Type Char. Function Legal Operands P 

Grouping ( ) Group operations Any value 8 Operators 

+ Positive value Integer 7 

- Negative value Integer 7 

-- Op1 to the Op2 Integers 6 

Math Mod Mod Op 1 by Op2 Integers 5 
Operators 

* Multiply Integers 4 

I Divide Integers 4 

+ Add Integers 3 

- Subtract Integers 3 

String + Concatenate Strings 3 
Operators - Subtract last Strings 3 

occurrence of Op2 

= Compare for equality Integer or string 2 

< Less than Integer or string 2 

Math or > Greater than Integer or string 2 
String <= Less than or equal to Integer or string 2 Comparison 
Operators >= Greater than or Integer or string 2 

equal to 

<> Not equal Integer or string 2 

or Logical or Boolean 1 
Logical 

and Logical and Boolean 1 Operators 
not Logical negate Boolean 9 

I 

Writing Shell Scripts 11-13 



Mathematical Operators 

Use mathematical operators in expressions to perform calculations 
on integers. The result of a mathematical operation is always an in
teger. For example: 

args (( 5 + 4 * 3 - 2 » 
returns the value 15. If you're wondering why the answer isn't 9 (9 
times 1), the reason is that the shell performs multiplication opera
tions in this expression before it performs addition and subtraction 
operations. In our example, the shell multiplied 4 by 3 before it 
added 5 and subtracted 2. 

To perform the addition and subtraction first, you could use the 
grouping operators (parentheses) to group the addition and sub
traction operations within the expression as follows: 

args ( ( (5 + 4 ) • ( 3 - 2 ) » 
The shell always performs operations inside parentheses first, from 
left to right. In this example, the shell first adds 5 and 4 and sub
tracts 2 from 3, and then multiplies the resulting values. Table 11-3 
lists the order of precedence for all operators where 1 is the lowest 
and 9 is the highest precedence. 

Since all mathematical operators perform integer arithmetic, ex
pressions always result in whole numbers; the shell truncates frac
tional values. 

String Operators 

Use string operators to either concatenate or reduce strings. For ex
ample: 

args (( "file" + ".pas" » 
uses the plus sign (+) operator to concatenate two strings and form 
the string file. pas. 

11-14 Writing Shell Scripts 



Using the minus sign (-) operator to reduce a string is a little trick
ier. Let's look at a simple example first: 

args « "file.pas" - ".pas" » 
This operation subtracts the second operand from the first operand 
to return the string file. The behavior of the minus sign operator 
gets more complicated when the first operand contains more than 
one occurrence of the second operand. In this case, the shell string 
you are subtracting matches the last occurrence in the first operand. 
For example: 

args « "prog.pas and file. pas" -" .pas" 
T:' ::.r » 

This expression subtracts the last occurrence of the second operand 
(.pas) from the first operand. The result of this example is 
prog. pas and file. To subtract both occurrences of the string. pas 
in the first operand, use the following expression: 

args « "prog.y and fileyL..s_"_-_·_·Lr....lpas" - ".pas" » 
~ 

This expression performs two operations, each subtracting the last 
occurrence of the string. pas in the first operand. The result is the 
string prog and file. 

When you use string operators, the shell treats all operands as 
strings. If an operand in a string operation is an integer, the shell 
converts the integer to a string. For example: 

args « SO + "shares at $" + 30 + "a share is $" @ 
+ (SO * 30) » 

returns the string 

50 shares at $30 a share is $1500 

Writing Shell Scripts 11-15· 



Notice that the shell performs the mathematical operation inside 
the grouping operators first. The result of this operation (50 • 30) is 
the integer 1500. Since this integer is part of a string concatenation 
operation, the shell converts it to a string. Even if you omitted the 
grouping operators, the shell would still multiply the two integers 
first, since multiplication operations have a higher precedence than 
string concatenation operations (see Table 11-3). 

Comparison Operators 

Use comparison operators to compare either integer or string val
ues. The result of a comparison operation is always a Boolean value 
(true or false). The following expression compares two integers: 

args « 5 > 2 )) 

This expression results in the Boolean value true, because the inte
ger 5 is greater than the integer 2. 

When you compare strings, the shell compares them according to 
the sequential position they hold in the ASCII character set. For 
example: 

args « a < b )) 

results in the value true because a holds a lower position than b in 
the character set. Also, the shell is case-sensitive when comparing 
strings. For example, the following expression results in the value 
false: 

args « A = a )) 

Logical Operators 

Use logical operators to perform logical operations with Boolean 
values. The result of a logical operation is always a Boolean value. 
For example: 

args « 5 > 2 or 5 > 6 )) 

11-16 Writing Shell Scripts 



results in the value true. In this example, the first operand (the re
sult of the integer comparison) is true, while the second operand is 
false (5 is not greater than 6). With the or operator, if either one of 
the operands results in the value true, then the result of the opera
tion is true. 

When you use the and operator, both operands must be true for 
the operation to result in a true value. For example: 

args (( 5 > 2 and 5 > 6» 

This expression results in the value false because both operands are 
not true; the second operand is false. 

Shell Variables 

You use variables in shell scripts as symbolic names for specific in
teger, string, or Boolean values. Once you assign a value to a vari
able name, you can refer to that value in the script by its variable 
name rather than its actual value. 

The shell allows you to use variables in any Of the following: 

• Command lines as commands, arguments, or options 

• Here documents 

• Strings enclosed in double quotation marks 

• Expressions 

Denning Variables 

To define a variable, use the assignment character (:=) in the fol
lowing format: 

variable_name .- value 

Writing Shell Scripts 11-17 



The variable_name field specifies the name of the variable, and 
value specifies the value you want to assign to the variable. Variable 
names can contain alphanumeric characters, as well as the under
score (_) and dollar sign ($). Names can be up to 1023 characters 
in length. You must, however, begin all variable names with a letter. 
(Variables are not case-sensitive.) The following statement assigns 
the integer value 30 to the variable name work_days: 

work_days := 30 

Unlike many programming languages that require you to declare 
variable types, the shell automatically assigns the variable a type 
based on the assigned value. In the previous example, since the 
value 30 is an integer, the shell assigns the variable work_days the 
type integer. Table 11-4 lists the rules the shell uses to assign vari
able types. 

Table 11-4. Rules for Assigning Variable Types 

Type Assignment Rule 

Integer When the assigned value is an integer, constant, 
an integer expression, or another integer 
variable, e.g., 

int :=7 
or 

int :=5 + (4-2) 

String When the assigned value is a quoted string, a 
string constant, a string expression, or another 
string variable, e.g., 

str := "april" + Avar2 

Boolean When the assigned value is a Boolean constant 
(true or false), a Boolean expression, or 
another Boolean variable, e.g., 

bool := Avarl = var2 

11-18 Writing Shell Scripts 



When you define a variable at the current shell level, you define it 
for all levels below the current shell level. For example, suppose 
you define the variable d:= 25 in the shell input pad, and then exe
cute a shell script. Since scripts run at a lower shell level, the value 
assigned to variable d remains 25, unless the script redefines the 
variable by changing its value. If the script does change the value 
for variable d, the value returns to 25 when the script completes 
execution. 

Using Shell Variables 

To use a shell variable, precede the variable name with the substitu
tion character C). When the shell encounters the substitution char
acter in a command line, it substitutes the value of the variable for 
the variable name. Variable names are not case-sensitive. Let's 
look at an example. 

Suppose we assign the variable cities a string value: 

cities := "Boston and NY" 

To use the variable cities, simply precede it with the substitution 
character as follows: 

args ((" Cities with early flights are" + ~cities» 

The args command uses standard output to display the result of the 
expression to the transcript pad. In this example, the shell substi
tutes the string value "Boston and NY" for the variable name cities. 
The expression concatenates the first string and the second string to 
form the following output string: 

Cities with early flights are Boston and NY 

The shell automatically substitutes values for (evaluates) shell vari
ables when you use them as operands in expressions (as shown in 
the previous example). However, you may want to evaluate a vari
able that isn't part of an expression. Consider the following exam
ple: 

args "Cities with early flights are ~cities" 

Writing Shell Scripts 11-19 



By default, the shell won't evaluate the variable cities since the 
variable is not used in an expression. In order for the shell to evalu
ate variables outside of expressions, you must turn on evaluation us
ing the eon command. 

You can either specify the eon command before you run a script to 
turn on evaluation for the current shell, or include the eon com
mand in the script itself. The eon command, when used in a script, 
turns on evaluation for the script only, not for the current shell. To 
turn evaluation off, use the eoff command. 

With variable evaluation turned on, the command in the previous 
example evaluates the variable cities and displays the following 
string: 

Cities with early flights are Boston and NY 

You can also turn evaluation on when you create a shell by specify
ing the -e option with the sh command. By default, when you cre
ate a shell, evaluation is off. 

Variable Commands 

The shell provides three commands that let you verify or delete 
variables. Table 11-5 lists these commands. 

The existvar and Ivar commands verify variables defined at the 
current script level and every script level above. For example, when 
you specify the Ivar command from within a nested script, the com
mand lists variables defined in this script, as well as variables de
fined at higher levels between the .current level and the shell level 
(one level above). When you specify Ivar at the shell level, the 
command lists only variables defined at the shell level. 

The dlvar command deletes only the variables defined at the cur
rent level. For example, suppose you defined the variable d := 25 at 
the shell level. If you executed a script that used the dlvar com
mand to delete the variable d (assuming that you didn't redefine d 
in the script), you'd receive an error. In this example, if the script 
redefined d by assigning it a new value, the command would delete 
the new value, and d would return to the value defined at the shell 
level. 

11-20 Writing Shell Scripts 



Table 11-5. Variable Commands 

Command Description 

existvar Verifies whether the variable(s) you specify as 
arguments exist. If all of the variables speci-
fied exist, the command returns the value 
true. If anyone of the variables does not 
exist, the command returns the value false. 

Ivar Lists the type, name, and assigned value of the 
variable(s) you specify as arguments. If you 
don't specify any variables, Ivar lists informa-
tion about currently assigned variables. 

dlvar Deletes all variables that you specify as argu-
ments. 

export Changes all specified variable names into envi-
ronment variables. If the specified variable does 
not exist, export creates it. 

Use the export command to create environment variables or 
change variables into environment variables. Environment variables 
store global state information about the system. We supply a set of 
default environment variables that you can list using the lvar com
mand. 

Defining Variables Interactively 

So far, we've looked at variables that you either define at the shell 
level or from within scripts. When you define variables in a script, 
you assign them initial values. These initial values are used every 
time you execute the script, unless you edit the script to change the 
values prior to each execution. 

Instead of including values for variables directly in scripts. you can 
direct the script to read values supplied by the user of the script. To 
read user input into variables. use the read command as follows: 

read [option] variable_list 

Writing Shell Scripts 11-21 



The variable_list argument specifies one or more variables that re
ceive the input values. The example below shows a sample script 
that shows how to use the read command to read user input. 

# stocks 
# 

# This script calculates the value of stock holdings. 
# It reads in both the number of shares held by the user, and 
# the current market price per share. 
# 

# Read in number of shares 
# 

read -prompt "Number of shares: " shares 
# 

# Read in current market price 
# 

read -prompt "Current market value: " price 
# 

# Calculate value of holdings and display value. 
# 

args «" 'shares shares at $ 'price per share $ " + @ 

( 'shares * 'price ) » 

By default, the shell uses standard input to read values that the user 
of the script types in the shell input pad. Our sample script above 
uses two read commands: one reads in the number of shares and 
assigns the value to the variable shares, the other reads in the cur
rent price of each share and assigns the value to the variable price. 
Notice that each read command uses the -prompt option to 
prompt the user for the proper input. To see just how this script 
works, create your own copy and execute it. 

The sample script expects the user to supply integer values. But 
what if the user entered a string or Boolean value? The script 
would use the value, and as a result, the final calculation rshares • 
'price) would result in an error. To keep a user from entering the 
wrong variable type, use the -type option with the read command 
as follows: 

read -prompt "Number of shares: " -type integer @ 
shares 

11-22 Writing Shell Scripts 



The -type option in this example directs the read command to ac
cept only integer values as input. If the user specifies any other type 
of value, the shell will display an error and prompt the user again to 
enter the proper value. 

Other read commands, like readc and readln also enable you to 
read user input into scripts. For more information on these com
mands, refer to the Aegis Command Reference. 

Using Active Functions 

You can use active functions in scripts to include string output from 
a command, program, or other script. When you use an active 
function, the system replaces it with a string containing standard 
output from the command, program, or script used in the function. 
Active functions have the following format: 

A "command" 

The command argument specifies the name of a command, pro
gram, or script whose output you want to use. You can use either 
single or double quotes according to the rules described in the "Us
ing Quoted Strings" section discussed earlier. Note that output from 
an active function cannot exceed 1024 characters. If output does 
exceed this limit, the system displays an error. 

You can use active functions in the same way you use variables. For 
example, suppose you want to use a string that shows the current 
date and time. (The shell command date displays the current date 
and time.) By using date in an active function, you can substitute 
the standard output string in the script as follows: 

eon 
args "The date is A'date' " 

In this example, the system substitutes the standard output string 
from the active function 'date' to display the following line: 

The date is Monday, May 1, 1989 10:59:28 (EDT) 

Writing Shell Scripts 11-23 



Note that the system deletes the trailing carriage return from the 
output string; however, any internal carriage returns remain. 

By assigning active functions to variables, you can define your own 
"shell functions." For example, suppose you wrote a program 
called get.J>rocess_name that displays the current process name. 
To make use of this program in a script, you can refer to the pro
gram in an active function. For example: 

eon 
# 
# Assign active function to variable 
# 
procname := Allget_process_name ll 
# 
# Execute OM command to make process window 
# invisible 
# 
xdmc wi -w Aprocname 
# 
# Go off and do something else 

# Make process window visible again 
# 
xdmc wi -i Aprocname 

The script in this example assigns the active function to the vari
able procname. It uses procname with the DM command wi to 
make the current process window invisible and then visible again. 
The system substitutes the output string generated by the active 
function for the variable procname. 

11-24 Writing Shell Scripts 



Controlling Script Execution 

In all of the scripts we've seen in this chapter, the shell executes 
each command in sequence, following an unaltered path from the 
beginning of the script to the end as shown in Figure 11-1. Thus, 
these scripts perform the same basic operations each time you exe
cute them. 

Figure 11-1. Flow of Execution in a Simple Script 

You can also create scripts in which the flow of execution varies ac
cording to the results of tests performed in the script. To perform 
these tests in a script, you use conditional statements. 

Conditional statements test to see if the results of a command or ex
pression are true or false. Then, based on the result of the test, 
they execute a particular command or sequence of commands. 
Figure 11-2 shows an example of a conditional statement called an 
if statement. The if statement in Figure 11-2 controls the flow of 
execution by executing step 2 only if the result of the conditional 
statement is true. In this way, the script executes different com
mands depending on different conditions in the script. 

Writing Shell Scripts 11-25 



Conditional 
Statement 

TRUE 
Step 2 

Figure 11-2. Flow of Execution with a Conditional Statement 

Figure 11-2 shows a very basic example of how to use an if state
ment to control execution. As you'll see later in this section, you 
can use one or more conditional statements to create more sophisti
cated flow patterns in scripts. 

The shell supports four different types of conditional statements: 

• if statement 

• while statement 

• for statement 

• select statement 

The sections that follow describe these conditional statements and 
the commands that execute them. 

11-26 Writing Shell Scripts 



Using the If Statement 

The if command and all its arguments make up an if statement that 
executes one or more commands depending on the result of a 
Boolean test. The if command has the following format: 

if com _1 then com _2 ... [ else com _3 ... ] endif 

The com_1 argument specifies a command, program, expression, 
or Boolean variable to be tested for "truth." A test of a command 
or program is true, if the command or program executes success
fully (returns an abort severity level of zero). A test of an expres
sion or Boolean variable is true if they result in a true value. 

The com _2 argument specifies one or more commands or expres
sions to execute if the result of the test on com_1 is true. The endif 
command signifies the end of an if statement. For example: 

eon 
if « Aa < 100 » 
then args "Aa is less than 100 " 
endif 

The if statement in this example tests whether the value for variable 
a is less than 100. If the value for a is 55, then the result of the test 
is true (the expression results in a true value), and the args com
mand executes displaying the message: 

55 is less than 100 

In this example, if the result of the test is false, the next command 
in the script (following endif) executes. 

The com _3 argument, which is optional, specifies one or more 
commands to execute if the test on com_1 is false. For example: 

eon 
if « AA < 
then args 
else args 
endif 

100 » 
" Aa is less than 100 " 
" Aa is greater than or equal to 100" 

Writing Shell Scripts 11-27 



In this example, if the value of a is 900, then the test results in the 
value false (900 is not less than 100). As a result, the args com
mand following the else statement executes displaying the message: 

900 is greater than 100 

When the if statement completes, execution of the script continues 
sequentially with the next command following end if. 

Using the While Statement 

The while command and all its arguments make up a while state
ment that executes one or more commands as long as the result of 
a Boolean test is true. The while command has the following for
mat: 

while com_l ... do com_2 ... enddo 

The com_l argument specifies a command, program, expression, 
or Boolean variable to be tested for "truth." A test of a command 
or program is true, if the command or program executes success
fully (returns an abort severity level of zero). A test of an expres
sion or Boolean variable is true if it results in a true value. 

The com_2 argument specifies one or more commands or expres
sions to execute as long as the result of the test on com_l is true. 
For example: 

i := 0 
while « Ai < 5 » 
do 

args « Ai » 
i : = ( Ai) +1 

enddo 

The while statement in this example tests whether the value for the 
variable i is less than 5. As long as i is less than 5, the args com
mand displays the value of i and the next command adds 1 to its 
value. Thus, the while statement executes the args command 5 
times and produces the following display: 

11-28 Writing Shell Scripts 



o 
1 
2 
3 
4 

On the sixth pass, the test results in a false value (5 is not less than 
5). As a result, the script leaves the while "loop" and continues 
execution at the next command in sequence. 

You can also use two special commands with the while statement: 

• next 

• exit 

The next command returns to the top of the while loop. You nor
mally use the next command to return prematurely to the top of the 
loop before executing additional commands. For example, consider 
the following section from a shell script: 

while «true» 
do read -prompt "Enter number: " -type integer a 

if « ~a < 50 » then next endif 
args « ~a » 

enddo 

This while loop executes three commands: 

• A read command to read in an integer value. 

• An if command to test whether the value is less than 50. 

• An args command to display the value. 

If the integer value is greater than 50, the if statement is false and 
the command args executes. If the value is less than 50, however, 
the if statement is true and the next command executes, returning 
execution to the top of the while loop. As a result, this section of 
the script displays any value that is greater than or equal to 50. 

The exit command exits the while loop. You normally use the exit 
command to exit a while loop prematurely before executing addi
tional commands. For example: 

Writing Shell Scripts 11-29 



while «true» 
do read -prompt "Enter number: " -type integer a 

if « Aa < 50 » then exit endif 
args « Aa » 

enddo 
args "Finished" 

The while loop in this example is very similar to the loop in the pre
vious example, except that the if statement uses the exit command 
instead of next. If the integer value is greater than or equal to 50, 
the if statement is false, and the command (args) executes. If the 
value is less than 50, however, the if statement is true, and the exit 
command executes. 

The exit command causes execution to exit the while loop and skip 
to the next command outside the loop (after enddo). As a result, 
this section of the script displays any value that is greater than 50, 
but exits the loop if you enter a value less than 50. 

U sing the For Statement 

The for command and all its arguments make up a for statement 
that executes commands as long as the result of a Boolean test is 
true. The for command has two formats: one for using integer ex
pressions, and one for using string expressions. 

The for command used with integer expressions has this format: 

for variable := exp_1 [to exp_2] [by exp_3 ] 
command ... 

endfor 

Here exp _1, exp _2, and exp _3 are all expressions that result in in
teger values. The exp _1 argument specifies the initial integer value 
assigned to variable. 

The command argument specifies one or more commands to exe
cute as long as the test on variable results in a true value. Before 
each iteration, the for statement tests to see if the current variable 
value is less than the value specified by exp_2. As long as the vari
able value is less than the value for exp_2, the result is true, and 
command executes. 

11-30 Writing Shell Scripts 



Like the while statement, you can use the for statement to execute 
commands repetitively in a loop. The for statement is different, 
however, because it increments its variable automatically after each 
iteration. For example, the while and for statements in the follow
ing example perform the same operation: 

#Example using while statement 
# 
a := 0 
while « a < = 10» do 

args Aa 

enddo 
# 
# 

a.- Aa + 2 

#Example using the for statement 
# 
for a := 0 to 10 by 2 

endfor 

In this example, both the while loop and the for loop execute the 
args command six times. By default, the for statement increments 
the value of the variable by one after each iteration. Notice, how
ever, that this example uses by 2 to increment the variable by two 
after each iteration. Instead of the for loop counting from 0 to 10 
by 1, it counts to 10 by 2. The result is: 

o 
2 
4 
6 
8 
10 

The for command used with string expressions has this format, 
where exp specifies a string expression: 

for variable in exp [by [char] [word] [line] ] 
command ... 

endfor 

Writing Shell Scripts 11-31 



By default, during each iteration, for reads a word from the string 
exp and assigns it to variable. You can also direct for to read the 
string exp by character or line by specifying by with the appropriate 
option. 

The command argument specifies one or more commands to exe
cute as long as the test on variable results in a true value. Before 
each iteration, the for statement tests to see if any more characters, 
words, or lines exist (depending on the by argument specified). As 
long as a value exists to assign to the variable, the result is true, as 
in this example: 

eon 
for file in "tom dick harry" by word 

args "The current file is -file" 
endfor 

In this example, with each pass through the for loop, for assigns the 
variable file a word from the string. When for runs out of words, it 
exits. As a result, the for statement in this example displays the fol
lowing lines, and then exits: 

The current file is tom 
The current file is dick 
The current file is harry 

Using the Select Statement 

The select command and all its arguments make up a select state
ment that executes commands according to the results of one or 
more Boolean tests. The select command has the format 

select arL 1 [oneofl allofJ 
case arg [to arg] 

commands 
[ case ... 

commands 
[otherwise 

commands ... ] 
endselect 

11-32 Writing Shell Scripts 



The arg_l argument specifies the argument that select compares to 
the case argument, arg. All arguments are either integers, strings, 
variables, or expressions. 

The shell uses each case statement to perform a separate Boolean 
test on the initial select argument. If the case argument is equal to 
the select argument, the result of the test is true, and the command 
following the case statement executes. Let's look at a simple exam
ple: 

eon 
select Aa allof 

case 1 
args "First case will execute if Aa - 1 

case « 2 + 4 » 
args "Second case will execute if Aa 6" 

case 6 
args "Third case will execute if Aa 6" 

endselect 

In this example, the first case tests to see if the variable a equals 1, 
and the second and third cases test to see if a equals 6. The allof 
statement directs select to execute the commands associated with 
all cases that result in true. If a is 6, the select statement in this ex
ample executes the commands for the second and third case to dis
play the following: 

Second case will execute if 6 - 6 
Third case will execute if 6 - 6 

If you specify oneof (the default), select executes only the first case 
that results in a true value. In the previous example, where a equals 
6, select executes only the second case to display the following: 

Second case will execute if 6 - 6 

You can also use the next and exit commands to control execution 
within the select statement. For example, when using oneof you 
can use the next statement to direct select to execute another case 
as shown in the following example: 

Writing Shell Scripts 11-33 



eon 
select Aa oneof 

case 1 
args "First case will execute if Aa 1" 
next 

case « 2 + 4 » 
args "Second case will execute if Aa 6" 
next 

case 6 
args "Third case will execute if Aa 6" 

endselect 

In this example, if variable a equals 6, the second case executes. 
Although this script uses oneof, the next command following the 
second case directs select to execute the next case that's true. 
Since the third case is true, the script in this example executes the 
third case. 

Using the to statement, you can specify a range for a case argu
ment. The case in the following script tests for a value in the range 
of 1 to 10: 

eon 
select a allof 

case 1 to 10 
args "Variable a is the number Aa" 

endselect 

You can also use the to statement to test for a range of string char
acters. For example: 

eon 
select Aa allof 

case a to z 
args "Variable a is the letter -a" 

endselect 

The case in this example tests for a string value between a and z. 
Note that this range is case-sensitive, so the case is true for exam
ple, if a equals r but not R. 

11-34 Writing Shell Scripts 



Use the otherwise statement when you want to perform an opera
tion if the test on a case is false. For example: 

eon 
select Aa 

case 0 to 10 
args "Value for a is a number from 0 to 10" 

otherwise 
args "Value for a is greater than 10" 
endselect 

In this example, if the value for a is a number between ° and 10, 
the case is true. As a result, select displays the following: 

Value for a is a number from 0 to 10 

If the value is a number greater than 10, the case is false, and the 
command following otherwise executes, displaying this: 

Value for a is greater than 10 

If you include several cases on the same line, select separates each 
case with an implied or operator (see the "Logical Operators" sec
tion discussed earlier). You can also use the @ character to escape 
newline characters and continue an "ored" case on more than one 
line. For example: 

eon 
select Aa 

case 1 case 3 case 5 
args "Variable a matches 1, 3, or 5" 

case 2 @ 
case 4 @ 
case 6 

args "Variable a matches 2, 4, or 6" 
endselect 

-------88-------

Writing Shell Scripts 11-35 





Appendix A 

Initial Directory and File Structure 

The following illustrations show how the system organizes the soft
ware that we supply with your node: 

• Figure A-l shows the contents of the node entry directory 
(/) 

• Figure A-2 shows the files and directories in the system 
software directory (/sys) 

• Figure A-3 shows the files and directories in the Display 
Manager directory (/sys/dm) 

• Figure A-4 shows the network management directory 
(/sys/net) 

Inital Directory and File Structure A-I 



bscom Boot shell commands 

com Shell commands 

dey Peripheral device 
1/0 descriptions 

doc Release notes 
and update 
procedures 

etc Administrative commands 

Install Installation scripts 

lib System libraries 

sau?* Stand-alone utilities 

sys Miscellaneous 
system software 

systest On-line system tests 

tmp Temporary flies 

usr Additional commands 

sys5.3 System V stub (provided 
for solution supplier only) 

Figure A-I. The Node Entry Directory ( / ) and Subdirectories 

A-2 Initial Directory and File Structure 



help 

Ins 

node_data [.xx) 

print 

sysdev 

System 
help files 

User Insert 
files 

Per node 
read/write 
data files 

Files In 
printer 
queue 

Serial I/O 
files 

color_microcode 

peb _microcode 

env 

board micro
code 

Shell 
environment 
bootstrap 

Figure A-2. The System Software Directory (/sys) 

Inital Directory and File Structure A-3 



The Display 
Manager 

std_keys Standard keys 
std_keys. basic 
std_keys. unix 

:::::llllllllli::I··lllli .. II.IIIIII·I·IIII·:·II[:I~:::1:[:11 std _keys. mn ::::l std_keys2 
std_keys3 
std_keys3 [a-g] 

Login start
up files 

Figure A-3. The Display Manager Directory (/sys/dm) 

A-4 Initial Directory and File Structure 



netboot 

net man 

List of the diskless nodes that can 
use this node as a partner. 

Diskless node bootstrap program 
(used by netman) 

Diskless node management program 

Figure A-4. The Network Management Directory (/syslnet) 

Inital Directory and File Structure A-5 





Appendix B 

Summary of 
Predefined Standard 

Key Definitions 

This appendix summarizes the predefined standard key definitions 
read during DM startup for all keyboards. These are found in the 
file /sys/dm/std_keys. basic. This appendix also includes special 
operating considerations for the Multinational keyboard. Figure 
B-1 shows the key names for the Multinational keyboard keypad. 

Summary of Predefined Standard Key Definitions B-1 



Table B-1. Controlling the Cursor 

Task DM Command Predefined Key 

Move left one character al +- (LA) 

Move right one character ar -+ (LC) 

II 
Move up one line au t (LS) 

Move down one line ad ! (LE) 

Set arrow key scale factors as xy None 

Move to the beginning of line tl I+- (U) 

Move to end of line tr ~ (L6) 

Move to top line in window 
tt <SHIFT> [I] 

(LOS) 

Move to bottom line in window tb <SHIFT>m 

(LFS) 

Move to window borders twb [ I, r, t, b 1 None 

Move to the beginning of ad; tl CTRLlK 
next line 

Tab left thl CTRLI<TAB> 

Tab right th <TAB> 

Set tabs ts [nl. n2 ... ] None 

Move to OM input pad tdm <CMO>(L5) 

Move to next window on screen tn <NEXT WNOW> 
(LB) 

Move to previous window t1w CTRLlL 

Move to next window in which tl None 
input is enabled 

B-2 Summary of Predefined Standard Key Definitions 



Table B-2. Creating Processes 

Task DM Command Predefined Key 

Create new process, pads, cp pathname None 
and windows 

Create new process without 
pads or windows 

cpo pathname 
None 

Create a server process cps pathname None 

Table B-3. Controlling Processes 

Task DM Command Predefined Key 

Quit, stop, or blast process dq [-bl-sl-c nn] CTRLlQ 

Suspend execution of process ds None 

Resume execution of a de None 
suspended process 

Table B-4. Creating Pads and Windows 

Task DM Command Predefined Key 

Create an edit pad and ce pathname <EDIT> 
window (R4) 

Create a read-only window cv pathname 
<READ> 

(R3) 

Create a cOJY of an cc None 
existing pa and window 

Summary of Predefined Standard Key Definitions B-3 



Table B-S. Closing Pads and Windows 

Task DM Command Predefined Key 

Close window and pad; pw; we-q <EXIT> 
update file (RS) 

Close window and pad; we -q <ABORT> no update 
(RSS) 

Close (delete) a window we !-ql-f] None 

Table B-6. Managing Windows 

Task DM Command Predefined Key 

Changing window size wg CTRLlG 

Changing window size with wge <GROW> 
rubberbanding (LA3) 

Move a window wm None 

Move a window with wme <MOVE> 
rubberbanding (LA3S) 

Set scroll mode ws [-onl-off] None 

Set auto hold mode ws [-onl-off] None 

Scroll and autohold mode ws; ws CTRLlA 

Set hold mode wh [-onl-off] <HOLD> (R6) 

B-4 Summary of Predefined Standard Key Definitions 



Table B-7. Moving Pads 

Task DM Command Predefined Key 

Move top of pad into window pt None 

Move cursor to first pt; tt; tI CTRLlT 
character in pad 

Move bottom of pad into pb None 
window 

Move cursor to last pb; tb; tr CTRLlB 
character in pad 

Move pad n pages pp [-]n rum 
(LD, LF) 

Move pad n lines pv [-]n SHIFT/ t 
(LBS) 

SHIFT/ ! 
(LES) 

Move pad n characters ph [-]n 813 
(L7, L9) 

Save transcript pad in a file pn None 

Summary of Predefined Standard Key Definitions B-5 



Table B-8. Controlling Window Groups and Icons 

Task DM Command Predefined Key 

Create or add to a wgra grp_name [entry_name] None 
window group 

Remove a window wgrr grp_name [entry_name] None 
from window group 

Make windows wi entry_name None 
invisible 

~hange windows to icon [entry_name] [character] SHIFT/<POP> 
Icons 

Set icon positioning idf None 
and offset 

Display list of win- cpb group_name None 
dows in group 

Table B-9. Setting Edit Modes 

Task DM Command Predefined Key 

Set read/write mode ro [-onl-off] CTRLlM 

Set insert/ overstrike mode el [-on I-off] <INS> 
(LlS) 

Table B-lO. Inserting Characters 

Task DM Command Predefined Key 

Insert string at cursor es 'string' Default DM operation 

Insert newline character en <RETURN> 

Insert a new line after tr; en; t1 <Fl> 
current line 

Insert end-of-file mark eef CTRL/Z 

B-6 Summary of Predefined Standard Key Definitions 



Table B-11. Deleting Text 

Task DM Command Predefined Key 

Delete character at cursor ed <CHAR DEI.> 
(L3) 

Delete character before ee <BACK SPACE> 
cursor (BS) 

Delete "word" of text dr; I [-A=Z-9$_1 Ixd <F6> 

Delete from cursor to es ";ee;dr;tr <F7> 
end of line xd;t1;tr (L3A) 

Delete entire line cms;t1;xd <LINE DEI.> 
(L2) 

Table B-12. Copying, Cutting, and Pasting Text 

Task DM Command Predefined Key 

Copy text to a xc [name I -f pathname] [ -r] <COpy> 
paste buffer (LlA) 
or file 

Cut (delete) text xd [name I -f pathname] [-r] <CUT> 
and write it to (LlAS) 
a paste buffer or 
file 

Paste (write) text xp [name I -f pathname] [-r] <PASTE> 
from a paste (L2A) 
buffer or file 
into a pad 

Summary of Predefined Standard Key Definitions B-7 



Table B-13. Commands for Searching for Text 

Task DM Command Predefined Key 

Search forward for string Istringl None 

Search backward for string \string\ None 

Repeat last forward search /I CTRL/R 

Repeat last backward search \\ CTRLlU 

Cancel search or any action abrt CTRL/X 
involving the echo command 

Set case comparison for 
search 

sc [-on) [-off) None 

Table B-14. Commands for Substituting Text 

Task DM Command Predefined Key 

Substitute string2 for all 
occurrences of stringJ 

s/stringJlstring21 None 

in a defined range 

Substitute string2 for sol stringll string21 None 
the first occurrence of 
stringJ in each line of 
a defined range 

Change case of each 
letter in a defined 

case [-5] [-u] [-I] None 

range 

Operating Considerations for Multinational Keyboards 

The Domain Multinational keyboard is a Low-Profile Model II 
keyboard adapted to international standards. Because of the differ
ences between the North American keyboard and the International 
keyboard, there are certain operating considerations that you 
should note. These operating considerations are described in the 
following sections. 

B-8 Summary of Predefined Standard Key Definitions 



Arrangement of Multinational Keyboard Keys 

The Multinational keyboard has seven additional keys that impose 
a slightly different overall arrangement, as well as some different 
key labels. 

The Multinational keyboard keypad has more keys than the Low
Profile Model II keypad. Figure B-1 shows the names and loca
tions of the numeric keypad keys on the Multinational keyboard. 

Figure B-1. Multinational Keyboard Numeric Keypad 

Key Interpretation During Service Mode 

The Mnemonic Debugger (MD) begins executing as soon as you 
power on your node. The MD reads the program responsible for 
booting your node, loads it, and transfers control to it. Ordinarily, 
this is the only function of the MD (aside from performing the auto
matic fix from a power failure). However, if a node needs to be 
serviced, the MD is used instead of the normal operating mode. 

System administrators must be aware that the MD expects the stan
dard Domain keyboard shown in Figure 3-3. National characters, 
therefore, may not be valid. This discrepancy currently affects the 
French keyboard where the Q key and the A key positions are 

Summary of Predefined Standard Key Definitions B-9 



transposed in comparison to the Domain North American key
board. Because of the difference in these key positions, typing ex 
domain_os on a French keyboard in Service Mode (which calls the 
Mnemonic Debugger) sends ex domqin_os to the system. To cor
rect this, you must press the Q key instead of the A key when start
ing the DM on such a node. 

B-IO Summary of Predefined Standard Key Definitions 



Appendix C 

Sample Shell Scripts 

This appendix contains sample shell scripts to supplement those 
provided in Chapter 11 of this manual. 

Sample Shell Scripts C-l 



Script 1: Prompting For and Checking a Target 
Node Name 

The following script prompts for and checks the target node name. 
Include this script in others scripts (via the source command) that 
need to query the user for a node name. 

#1 Icomlsh 
# Prompt for and check target node name 
# Usage: ask_target [node_name] 
# 
# Return node name as "Anode" 
eon 
if not eqs Al "" then 

args Al I tic [A-Z] [a-z] I read -type string node 
else 

node := It " 

endif 
valid node : = false 
while-«not Avalid_node» do 

select Anode oneof 
case It " 

# Prompt for node 
args "" 

readln -p "Target node (llnode or «RETURN> for this node)? " node 
if (Cnode = ""» then 

lusr -me I chpat {?*}{//?*} @2 I read -type string node 
endif 

otherwise 
# Test node name 
if existf Anode then 

valid node : = true 
else -
args "" " Anode is unavailable. Check the name and try again later." 

return -M 
endif 

endselect 
enddo 

C-2 Sample Shell Scripts 



Script 2: Generic Routine Prompting for a 
Yes or No Answer 

The following script provides for generic routine prompting for a 
"yes" or "no" answer. Include this script in other scripts (via the 
source command) that need to query the user for a Boolean re
sponse. 

#! Icomlsh 
# Generic routine prompting for YES or NO answer. 
# Usage: ask_yn "prompt_string" 
# 
# Return user response as "~response": value 'y' or 'n' 
eon 
valid answer : = false 
read -:'p " ~* " answer 
args "~answer" I tIc A-Z a-z I read answer 
while «not ~valid_answer» do 

select ~answer oneof 
case 'y' case 'yes' 

response := 'y' 
valid answer : = true 

case 'n' case 'no' 
response := 'n' 
valid answer : = true 

otherwise 
args "" " Please answer 'yes' or 'no'." 
read -p " ~* " answer 
args "~answer" I tIc A-Z a-z I read answer 

endselect 
enddo 

Sample Shell Scripts C-3 



Script 3: Disk Cleanup Utility 

The following script deletes files with a . bak extension, as well as 
Interleaf desktop files with a _1 (Interleaf backup files) extension. 
It asks you to confirm each deletion. Typing" gOO at the prompt lets 
you do all files with no further prompting. Note that tip and joe 
are only supplied in the script as examples; to use the script, you 
must specify your user id and the node on which the disk cleanup is 
to take place. 

C-4 Sample Shell Scripts 



#I/com/sh 
eon 
# Don't let it abort if objects are in use, etc 
abtsev -P 
args " 
args ,********** Cleanup Utility **********' 
args "Starting cleanup ... " 
args un 

args 'Your current disk space is ... ' 
Ivolfs 
Ivolfs / readln blank header initial_space 
args " 
args "First we'll look for files in your Interleaf clipboard. Generally, files are placed" 
args 'there for deletion, but one may forget to open the clipboard to delete them.' 
args " 
args 'Looking for Interleaf clipboard files ... ' 
args 'At the prompt, type "g" if you do not want further prompting' 
args " 
dlf -/desktop/clipboard.clp/?* -a -I 
Ivolfs / readln blank header after_clipboardargs " 
args "Now we'll look for files with a _n extension. These are the backup files that" 
args 'Interleaf makes automatically. ' 
args " 
args 'Looking for Interleaf backup files ... ' 
args 'At the prompt, type "g" if you do not want further prompting' 
args " 
dlf -/desktop/ ... /?* 1 -a-I 
Ivolfs / readln blank-header after_interleaf 
args " 
args "Now we'll look for .bak files." 
args "It can take a few seconds to find them ... " 
args 'At the prompt, type "g" if you do not want further prompting' 
args " 
dlf -/ ... /?*.bak -a-l 
Ivolfs,! readln blank header after_dbak 
args 
args' ************ 
args " 
args " 
args un 

Cleanup Results 

~header" 

****************' 

args" Initial space ............... ~initial_space" 
args" Cleaned out clipboard ....... ~after clipboard" 
args" Removed Interleaf backups ... ~after_interleaf" 
args" Removed .bak files .......... ~after dbak" 
args" ==========================;;,==================================== 
args" Final Results ............... ~after_dbak" 
args " 
date /readln when 
args "~user ~when" »/ /tip/joe/user data/usage cleanup 
args" Initial space ......... ~initial_space" »/ /tlp/joe/user_data/usage_cleanup 
args " Cleaned out clipboard ... ~after_ clipboard" »/ /tip/joe/user_ data/usage_cleanup 
args"Removed Interleaf backups. ~after_interIeaf"»/ /tip/joe/user_data/usage_cleanup 
args" Removed .bak files ... ~after_dbak" »//tip/joe/user_data/usage_cleanup 
args" =====================" »/ /tip/joe/user_data/usage_ cleanup 
args" Final Results ......... ~after_ dbak" »/ /tip/joe/user _data/usage_cleanup 

Sample Shell Scripts C-5 



Script 4: Printing a Directory's Most Recent 
Backup Activity 

This script lists the last time each directory in a designated list of di
rectories was backed up. It uses the backup_history file in each 
directory to report the last full backup and each incremental 
backup since that time. 

If an argument is given, it is first assumed to be a wildcard matching 
one or more directories containing a file called backup_list. If at 
least one match is found, the script opens and parses each matched 
backup_list file; for each entry in each list, it finds a backup_his
tory file and prints its report. 

If a backup_error_history file exists, the last entry in it is also 
printed. If no matching backup_list is found, the script tries again, 
assuming the argument is a wildcard matching one or more directo
ries directly containing backup_history files. If any of these are 
found, it prints its report for each one. If neither sort of match is 
found, the script complains and exits. 

If no argument is given, this node's entry directory (" I") is used in 
the above matching process. Searching a long backup_history file 
is time consuming, so you will do well to remove any unneccesary 
information from the file. 

C-6 Sample Shell Scripts 



#!lcom/sh 
eon 
# Set the abort severity high to handle acl or other unusual problems 
abtsev -0 

warn : = false 
found match := false 
# Generate the pattern for the backup list(s) 

backup~attern := "AI" + "/backup_list" 
# Loop on wildcard matches for the backup list 
ld Abackup~attern -c -nwarn >?/dev/null I @ 
while readln backup_list 
do 

found match : = true 
args , .. , "For Abackup _list:" 

# Type out last entry in error history file, if any 
backup_error_history := Abackup_list - "list" + "error_history" 
if existf Abackup_error_history 
then 

args "" "Last entry in Abackup_error_history:" 
# Put the last error entry in a temp file 

while readln error line 
do -

if « Cerror_line - "?(wbak)") <> Aerror_line )) 
then 

args "Aerror_line" >/tmp/backup _temp 
else 

args "Aerror_line" »/tmp/backup_temp 
endif 

enddo <Abackup_error_history # error history file line loop 
# Run catf on the temp file to print last error, then delete it 

catf Itmp/backup_temp 
dlf /tmp/backup temp -f >? Idev/null 

endif # backup error history exists 
# Parse through the backup list file and check each entry: 
# Skip comment lines, blank lines, and the backup list itself 
fpat <Abackup_list -x -i "% *#" "% *$" "backup_list$" I @ 
while readln list entry 
do -
# Generate the full path name for the backup history file 
backup history : = Alist entry + "/backup history" 
# Print out the latest backup times for the entry if it exists 

if existf Abackup_history 
then 
args "" "Backups of Alist_entry since last full backup:" 

# Put the last full backup line and all incrementals since then in a temp file 
args "--No full backup found.--" >/tmp/backup_temp 
fpat <Abackup_history "full" "incremental" I @ 
while readln backup_line 
do 

if « Cbackup_line - "full") <> Abackup_line )) 
then 

args "Abackup_line" >/tmp/backup_temp 
else 

args "Abackup_line" »/tmp/backup_temp 
endif 

Sample Shell Scripts C-7 



enddo # backup history line loop 

# Run catf on the temp file to print times, then delete it 
catf Itmp/backup_temp 
dlf Itmp/backup_temp -f >7/dev/null 

else 
# No backup history found, issue warning 

args .... "?CO) ~backup_history not found." 
warn := true 

endif # backup history exists 
enddo # list_entry loop 

enddo # wildcard loop 
# If backup_list wildcard failed, try backup_history 
if «not ~found_match)) 
then 
# Generate the pattern for the backup history(s) 
backuPJlattern := "~1" + "/backup_history" 
# Loop on wildcard matches for the backup history 
ld ~backup Jlattern -c -nwarn >? I dev Inull I @ 
while readln backup_history 
do 

found match := true 
list_entry := ~backup_history - "/backup_history" 
args .... "Backups of ~list_ entry since last full backup:" 

# Put the last full backup line and all incrementals since then in a temp file 
args "--No full backup found.--" >/tmp/backup_temp 
fpat <~backup_history "full" "incremental" I @ 
while readln backup_line 
do 

if « Cbackup_line - "full") <> ~backup_line )) 
then 

args "~backup_line" >Itmp/backup_temp 
else 

args "~backup_line" »/tmp/backup_temp 
endif 

enddo # backup history line loop 
# Run catf on the temp file to print times, then delete it 

catf Itmp/backup _temp 
dlf Itmp/backup_temp -f >?/dev/null 

enddo # wildcard loop 
endif 
# If still no matches for backup pattern, return error 
if «not ~found_match)) 
then 

args .... "?CO) ~lIbackup_list not found." "?CO) ~lIbackup_history not 
found ... 

return -e 
endif # no matches 
# Return warning severity if some backup history was not found 
if (Cwarn)) then return -w endif 

C-8 Sample Shell Scripts 



Script 5: Resolving Links to Find an Ultimate 
Pathname 

The following script progressively resolves links, displays the link 
text, and finishes by showing the true pathname. Note that it does 
not handle wildcards. When you invoke this script, you need to 
supply, as an argument, the link name that you want resolved. 

#1 /corn/sh 
link := true 
print : = true 
target : = "AI" 
cwd := A"wd" 
eon 
if eqs Al " then 

args "Use: AO pathnarne" 
return -err 

endif 
while (Clink)) do 

if (args Atarget I fpat '%[a-zA-Z$,_]' > /dev/null) then 
args "Acwdrtarget" I read target endif 
if existf Atarget then 

if (Jd Atarget -en -11 -c I fpat ? » /dev/null) then 
link := true 

Id Atarget -en -11 -It -c I read link_ob link_tx 
link_tx := (Clink_tx - @" - @")) 

args "Atarget is a link to Alink tx" 
# Find out if a given link is ',' relative, iCso, prep end pathnarne 

if (args Alink_tx I fpat '%[a-zA-Z$,_'], > /dev/null) 
then 

args Atarget I chpat '%{?}/{?}$' "@1I" I read target 
link_tx := (Ctarget + Alink_tx)) 

else 

endif 
target : = Alink tx 

else link : = false -
endif 

link : = false 
print : = false 

args "Atarget doesn't exist" 
endif 

enddo 
if (Cprint)) then args "Atarget is the real thing" endif 

Sample Shell Scripts C-9 





Appendix D 

Composing European 
Characters 

This appendix describes how to create and display European 
characters that don't ordinarily appear on Apollo keyboards, and 
how to switch between European and ASCII characters on Multina
tional keyboards. 

The Compose Function 

The default Apollo character set is the ISO 8-bit character set (In
ternational Standards Organization 8859/1), commonly known as 
Latin-l. This set includes the characters necessary to support Wes
tern European languages. 

European characters do not appear on the standard North 
American keyboard, and only a subset appear on the various 
models of the Multinational keyboards. However, you can use the 
compose function to enter and display any character in the Latin-1 
set that does not appear on your keyboard. 

Composing European Characters D-l 



To enable the compose function, you must either run the kbm 
command or edit your workstation's start-up file. (See Chapter 2 to 
determine which start-up file goes with your node type.) If you 
decide to edit your start-up file, you'll see the following line in that 
file: 

#cps lusrlapollo/bin/kbm -c f5 

To turn on the compose function, simply delete the comment 
character (#) from the line. By default, the command sets <FS> to 
be the compose key, but you can substitute another keyname on 
the line if you prefer. 

To compose, press <FS> (or your user-defined compose key), fol
lowed by the two characters that make up your chosen character. 
For example, if you want to create an e with a circumflex accent, 
type the following: 

<F5> e ~ 

The character appears after you have pressed all three keys. See 
the section "Character Compose Sequences" for a list of the se
quences you must type to compose each Latin-l character. 

The compose function only works if you have a Latin-l based font 
loaded on your node. We supply each node with a large group of 
fonts that are based on Latin-l. Those fonts include: 

• Courier family 

• din f7xU 

• f5x9 

• f7x13, f7x13.b 

• Helvetica family 

• Legend family 

• Std family 

• Times family 

You should be aware, however, that many software packages use 
their own fonts, and those fonts mayor may not include the 
European Latin-l characters. 

D-2 Composing European Characters 



If you enter a valid key sequence, but the font currently loaded 
doesn't include the Latin-l character, the system displays a blank. 
If you later load a font that does have the Latin-l character and 
open the file again, the correct character appears. 

European Characters and the Multinational Keyboard 

You can always use the <FS> method to compose national charac
ters on Multinational keyboards. However, those keyboards also 
include keys that have both national characters and regular ASCII 
characters engraved on them. By default, the ASCII characters ap
pear on the screen when you press keys with double engravings. 
You can use ALT mode, however, to tell the system that you want 
the national characters to appear. 

If you hold <AL T> while pressing any key which is marked with 
both ASCII and national characters, you will toggle that individual 
key between the ASCII and national character. For example, if you 
are typing ASCII and then press <AL T> and a double-engraved 
key, the keyboard will produce the national character on that key. 

The SHIFT/<ALT> key combination toggles the entire keyboard 
between producing ASCII characters and national characters. That 
is, if you are typing ASCII and then press SHIFT/<AL T>, the 
keyboard will only produce national characters until you press 
SHIFT/<AL T> again. 

Printing Latin-l Characters 

The print server can process Latin-l characters correctly, so in 
most cases, what you see on the screen will match the output from 
your printer. However, if you have a printer that uses a daisy wheel 
or other mechanical impact device, you might have to replace the 
current printer font with one that indluces the Latin-l characters. 
Similarly, you might have to load a language-specific PROM for a 
dot-matrix printer in order to generate the same characters on 
paper that you see on-screen. 

If your printer font does not include a Latin-l character that is in 
your file, the system simply prints a space. 

For more information on printing Latin-l characters, see Printing 
in the Aegis Environment. 

Composing European Characters D-3 



Restrictions on Using Latin-l Characters 

You may use Latin-l characters in any edit pad or DM input 
window. Likewise, they are acceptable in SysV Bourne and Korn 
shells, and in the Aegis Icom shell. However, Latin-l characters 
are not legal in all parts of the system. For example, the BSD shells 
do not support them for input or output. 

For more details on the conditions under which you can and cannot 
use Latin-l characters, see the system Software Release Notes. 

Character Compose Sequences 

The following chart shows what two characters you must type to 
compose each individual Latin-l character. 

Table D-l. Compose Sequences for Latin-l Characters 

Keystrokes 

<sp><sp> 
!! 
cl 
L-
XO 
Y-
II 
SO 
"" 
co 
a 
« 

RO 

Character 

i 
¢ 

£ 

¥ 

§ 

« 

., 

o 

± 

Name 

No break space (NBSP) 
Inverted exclamation mark 
Cent sign 
Pound sign 
Currency sign 
Yen sign 
Broken bar 
Section sign 
Diaeresis 
Copyright sign 
Feminine ordinal indicator 
Left angle quotation mark 
NOT sign 
Soft hyphen 
Registered trade mark sign 
Macron 

Ring above, degree sign 
Plus-minus sign 

D-4 Composing European Characters 



r 2 Superscript two 
3A 3 Superscript three 
" Acute accent 
lu J.L Micro sign 
PI , Paragraph sign, pilgrow sign 

Middle dot 

" 
Cedilla 

1A Superscript one 
0_ 

Q Masculine ordinal indicator 
» » Right angle quotation mark 
14 1,4 Vulgar fraction one quarter 
12 1f2 Vulgar fraction one half 
34 3,4 Vulgar fraction three quarters 
?? l Inverted question mark 

A' A Capital letter A with grave accent 
A' A Capital letter A with acute accent 
AA A Capital letter A with circumflex 
A- A Capital letter A with tilde 
A" A Capital letter A with diaeresis 
A* A Capital letter A with a ring above 
AE .IE Capital diphthong AE 
C, C Capital letter C with cedilla 
E' E Capital letter E with grave accent 
E' E Capital letter E with acute accent 
EA E Capital letter E with circumflex 
E" E Capital letter E with diaeresis 
I' 1 Capital letter I with grave accent 
I' i Capital letter I with acute accent 
IA i Capital letter I with circumflex accent 
I" l Capital letter I with diaeresis 

D- E) Capital icelandic letter ETH 
N- N Capital letter N with tilde 
0' 0 Capitol letter 0 with grave accent 
0' 0 Capital letter 0 with acute accent 
OA () Capital letter 0 with circumflex 
0- 0 Capital letter 0 with tilde 
0" 6 Capital letter 0 with diaeresis 
xx X Multiplication sign 

Composing European Characters D-5 



01 
V' 
V' 
VA 
V" 
Y' 
TH 
ss 

a~ 

a" 
a* 
ae 
c, 
e' 
e' 
e A 

e" 
i ' 
i' 
iA 

i" 

0" 

01 
u' 
u' 
u A 

u" 
y' 

o 
U 
(] 

D 
D 
y 
I> 
B 

a 
a 
a 
a 
a 
A 

re 
~ 

e 
e 
e 
e 

'i 

6 
Ii 

<'> 

6 
6 
6 
o 

o 
U 
11 
11 
ii 

Y 

Capital letter 0 with oblique stroke 
Capital letter V wigh grave accent 
Capital letter V with acute accent 
Capital letter V with circumflex 
Capital letter V with diaeresis 
Capital letter Y with acute accent 
Capital icelandic letter THORN 
Small German letter sharp s 

Small letter A with grave accent 
Small letter A with acute accent 
Small letter A with circumflex accent 
Small letter A with tilde 
Small letter A with diaeresis 
Small letter A with a ring above 
Small diphthong AE 
Small letter C with cedilla 
Small letter E with a grave accent 
Small letter E with acute accent 
Small letter E with circumflex accent 
Small letter E with diaeresis 
Small letter I with grave accent 
Small letter I with acute accent 
Small letter I with circumflex accent 
Small letter I with diaeresis 

Small icelandic letter ETH 
Small letter N with tilde 
Small letter 0 with grave accent 
Small letter 0 with acute accent 
Small letter 0 with circumflex accent 
Small letter 0 with tilde 
Small letter 0 witth diaeresis 
Division sign 
Small letter 0 with oblique stroke 
Small letter V with grave accent 
Small letter V with acute accent 
Small letter V with circumflex accent 
Small letter V with diaeresis 
Small letter Y with acute accent 

D-6 Composing European Characters 



th 
y" 

p 
y 

Small icelandic letter THORN 
Small letter Y with diaeresis 

When creating symbols composed of two alphabetic characters, you 
can type those characters in uppercase or lowercase, but not both. 
For example, either of the following: 

<F5> 
x 
o 

<F5> 
X 
o 

generates the currency symbol (Il), but if you mix the case of the 
letters, the symbol does not appear. 

You must press <FS> (or your user-defined compose key) every 
time you want to create a character that does not appear on your 
keyboard. 

Composing European Characters D-7 





Glossary 

Access rights 

These rights list the users who have access to objects in the net
work, and specify permissions (Le., read, write, and execute) that 
each individual user has for accessing specific objects. 

Alarm window 

The Display Manager alarm window appears near the bottom of 
your screen. It displays a small pair of bells when a process displays 
a message in an output window hidden by an overlapping window. 

Argument 

See Command argument. 

Background process 

A noninteractive process that runs immune to quit and interrupt 
signals issued from your node. In this mode, a shell doesn't wait for 
a command to terminate before it prompts you for another com
mand. This lets you start a task and then go on to another task 
while the system continues with the initial one. (See also Process.) 

Command 

An instruction that you give a program; the name of an executable 
file that is a compiled program. 

GL-l 



Command argument 
A command option or the name of the object upon which the com
mand acts. Command arguments follow commands on the same 
line, although not all commands require an argument. (See also 
Command option.) 

Command list 
A sequence of one or more simple commands separated or termi
nated by a newline or a semicolon. 

Command option 

Information you provide on a command line to indicate the type of 
action you want the command to take. (See also Default.) 

Command procedure 

See Shell procedure. 

Command search path 
The route that a shell takes in searching through various directories 
for command files. A default search path exists for the Aegis shell. 
You may add other directories of executable files which a shell then 
looks through on its way to finding a particular command name. 

Control character 
A special invisible character that controls some portion of the input 
and output of the programs run on a node. (See also Control key 
sequence.) 

Control key sequence 

Cursor 

Default 

GL-2 

A keystroke combination «CTRL> followed by another key) used 
as a shorthand way of specifying commands. To enter a control key 
sequence, hold <CTRL> down while pressing another key. 

The small, blinking box initially displayed in the screen's lower left 
corner. The cursor marks your current typing position on the screen 
and indicates which pad receives your input. 

Most programs give you a choice of one or more options. If you 
don't specify an option, the program automatically assigns one. This 
automatic option is called the default. (See also Command option.) 



Directory 

Disk 

A special type of object that contains information about the objects 
beneath it in the naming tree. Basically, it is a file that stores names 
and links to files. (See also File.) 

A thin, record-shaped magnetic plate, or a collection of such 
plates, used for storing data. The system uses heads (similar to 
heads in tape recorders) to read and write data on concentric disk 
tracks. The disk spins rapidly, and the heads can read or write data 
on any disk track during one disk revolution. 

Diskless node 

A node that has no disk for storage, and therefore uses the disk of 
another node. (See also Node and Disk.) 

Display Manager (D M) 

The program that executes commands that start and stop processes, 
and commands that open, close, move, or modify windows and 
pads. 

DM alarm window 

See Alarm window. 

DM environment variables 

Values set by either the system or the user to determine how the 
Display Manager handles processes started at login or during com
mand execution. 

DM function keys 

Single keys that invoke DM commands. 

DM input window 

The window where you type DM commands (contains the "Com
mand: " prompt). 

DM output window 

The window that displays output messages from DM commands. 

GL-3 



Domain/OS 

EOF 

File 

Filter 

The operating system that resides on a high-speed communications 
network connecting two or more Apollo nodes. Each node can use 
the data, programs, and devices of other network nodes. Each 
node contains main memory, and may have its own disk, or share 
one with another node. 

The End-Of-File character is used to terminate a shell and close 
the pad in which the shell was running. It is generated by pressing 
CTRLlD. 

The basic named unit of data stored on disk. A file can contain a 
memo, manual, program, or picture. (See also Directory.) 

A command that reads its input, performs a user-specified task, 
and prints the result as output. 

Foreground 

A mode of program execution when a shell waits for a command to 
terminate before prompting for another. 

Full path name 

The pathname of a specific file starting from the network root di
rectory. (See also Network root directory and Pathname.) 

Function keys 

See DM function keys. 

Group Identification Number (GID) 

A unique number assigned to one or more logins that is used to 
identify groups of related users. 

Here document 

GL-4 

A command procedure of the form command « eo/string which 
causes a shell to read subsequent lines as standard input to the 
command until a line is read consisting of only the eo/string. Any 
arbitrary string can be used for the eo/string. 



Home directory 

Your initial working directory. Your user account specifies the 
name of your home directory. 

Initial working directory 

The working directory of the first user process created after you log 
in. 

Input pad 

A pad that accepts commands typed at your keyboard. 

Input window 

The window that displays a program's prompt and any commands 
typed. 

Insert mode 

Kernel 

This mode lets you change text displayed in windows by reposi
tioning the cursor and inserting characters. The rest of the line 
moves right as you insert additional characters. 

The resident operating system that controls your node's resources 
and assigns them to active processes. 

Keyword parameter 

Link 

An argument to a command procedure which has the form 
name=value command argJ arg2 . .. and lets shell variables be as
signed values when a shell procedure is called. (See also Shell pro
cedure.) 

A special type of object that points from one place in the naming 
tree to another. 

Logging in 

Initially signing on to the system so that you may begin to use it. 
This creates your first user process. 

Main memory 

The node's primary storage area. It stores the instruction that the 
node is executing, as well as the data it is manipulating. 

GL-S 



Memory 

Any device that can store information. 

Metacharacter 

Name 

See Shell metacharacter. 

A character string associated with a file, directory, or link. A name 
can include various alphanumeric characters, but never a slash (I) 
or null character. Remember that certain characters may have spe
cial meaning to a shell and must be escaped if they are used. 

Naming directory 

Each process uses a naming directory. Like the working directory, 
the naming directory points to a certain destination directory. The 
system uses your home directory as the initial naming directory. 

Naming tree 

A hierarchical tree structure that organizes network objects. 

Network 

Two or more nodes sharing information. 

Network root directory 

Node 

The top directory in the network. Each node has a copy of the 
network root directory. 

A network computer. Each node in the Aegis system can use the 
data, programs, and devices of other network nodes. Each node 
contains main memory, and has its own disk, or shares one with 
another node. (See also Diskless node.) We frequently use "termi
nal" interchangeably with node (or, usually, "the node's key
board"). 

Node entry directory 

GL-6 

A subdirectory of the network root directory. The top directory on 
each node. Diskless nodes share the node entry directory of their 
disked partner node. (See also Network root directory.) 



Object 

Any file, directory, or link in the network. 

Operating system 

Option 

A program that supervises the execution of other programs on your 
node. 

See Command option. 

Output window 

Pad 

The window that displays a process's response to your command. 

A temporary, unnamed file that holds the information displayed in 
a window. A window can display an entire pad, or show only part of 
the pad. (See also Window.) 

Parent directory 

The directory one level above your current working directory. 

Partial path name 

The pathname between the current working directory and a specific 
file. (See also Pathname.) 

Partner node 

A node that shares its disk with a diskless node. (See also Diskless 
node.) 

Password 

The string you enter at the "Password:" prompt upon logging in. As 
you type your password, the system displays dots ( ... ) instead of 
the letters in your password. (See also User account.) 

Pathname 

A series of names separated by slashes that describe the path of the 
operating system in getting from some starting point in the network 
to a destination object. Pathnames begin with the starting point's 
name, and include every directory name between the starting point 
and the destination object. A pathname ends with the destination 
object's name. (See also Full pathname and Partial pathname.) 

GL-7 



Pipe 

Pipeline 

A simple way to connect the output of one program to the input of 
another program, so that each program runs as a sequence of proc
esses. 

A series of filters separated by a pipe (I) character. The output of 
each filter becomes the input of the next filter in the line. The last 
filter in the line writes to its standard input. (See also Filter.) 

Print server 

Process 

A process that oversees the printing of files submitted to the print 
queue. It need only run from the node connected to the print de
vice(s). 

A program that is in some state of execution; the execution of a 
computing environment including contents of memory, register val
ues, name of the current directory, status of open files, information 
recorded at login time, and other such data. 

Program 

Software that can be executed by a user. 

Process input window 

Window in which you type commands after being prompted. 

Process output window 

Prompt 

The large window immediately above the process input window. 
This window displays commands, along with a shell's response to 
them. 

A message or symbol displayed by the system to let you know that it 
is ready for your input. 

Regular expression 

GL-S 

A string specifier that can help you find occurrences of variables, 
expressions, or terms in programs and documents. Shell regular ex
pressions are specified by allowing certain characters special mean
ing to a shell. 



Root directory 

Screen 

Script 

Shell 

See Network root directory. 

See Transcript pad. 

A file that you create that contains one or more shell commands. A 
script lets you execute a sequence of commands by entering a single 
command (the script name). (See also Shell command.) 

A command-line interpreter program used to invoke operating sys
tem utility programs. 

Shell command 

An instruction you give the system to execute a utility program. 
(See also Script.) 

Shell metacharacter 

Any character that has special meaning to a shell. Asterisks, ques
tion marks, and ampersands are a few examples. 

Shell procedure 

An executable file that is not a compiled program. It is a call to a 
shell to read and execute commands contained in a file. A se
quence of commands may thus be preserved for repeated use by 
saving it in a file which can also be called a command procedure. 

Software 

Programs, such as shells and the DM, that allow you to perform 
various tasks. 

Standard input 

The standard input of a command is sent to an open file which is 
normally connected to the keyboard. An argument to a shell of the 
form < file opens the specified file as the standard input, thus redi
recting input to come from the file named instead of the keyboard. 

GL-9 



Standard output 

Output produced by most commands is sent to an open file which is 
normally connected to the printer or screen. This output may be 
redirected by an argument to a shell of the form > file to open the 
specified file as the standard output. 

Start-up script 

A file that sets up the initial operating environment on your node. 
This file is also known as a "boot script". (See also Script.) 

System administrator 

The person responsible for system maintenance at your site. 

Transcript pad 

A transcript pad contains a record of your interaction with a proc
ess. The process output window provides a view of its transcript 
pad. The term "screen" found in some of our documentation also 
refers to the transcript pad of the window in which a shell is run
ning. 

User account 

User ID 

Utilities 

The system administrator defines a user account for every person 
authorized to use the system. Each user account contains the name 
the computer uses to identify the person (user ID), and the per
son's password. User accounts also contain project and organization 
names, helping the system determine who can use the system, and 
what resources they can use. (See also User ID and Password.) 

The name the computer uses to identify you. Your system adminis
trator assigns you your user ID. Enter your user ID during the log
in procedure when the system displays the log-in prompt. (See also 
User account.) 

Programs provided with the operating system to perform frequently 
required tasks, such as printing a file or displaying the contents of a 
directory. (See also Command.) 

Variable 

GL-IO 

A name that represents a string value. Variables normally set only 
on a command line are called parameters. Other variables are sim
ply names to which the user or a shell may assign string values. 



Wildcards 

Window 

Special characters that you may use to represent one or more path
names. (See also Shell metacharacter.) 

Openings on the screen for viewing information stored in the sys
tem. Display management software lets you create several different 
windows on the screen. Each window is a separate computing envi
ronment in which you may execute programs, edit text, or read 
text. Move the windows on your screen, change their size and 
shape, and overlap or shuffle them as you might papers on your 
desk. (See also Pads.) 

Window legend 

The area of a window that displays window status information. For 
example, the window legend of an edit window contains such infor
mation as the pathname of the file you're editing, the letter I if the 
window is in insert mode, and the number of the line at the top of 
the window. (See also Insert mode.) 

Working directory 

The default directory in which a process creates or searches for 
objects. 

GL-ll 





Index 

S mbols are listed at the beginning of the index. Entries in color indicate 
y . d' f . task-onente ill ormatlOn. 

Symbols 

... (ellipsis), 6-18, 8-10 

I (exclamation point), 11-7 

? (question mark), 6-17 

; (semicolon), 11-2 

.. (double quotation marks), 11-7 
to 11-8 

, (tick character), 2-6, 2-14 

, (single quote), 11-6, 11-7 to 
11-8 

( ) (parentheses), 6-19, 11.,..14 

[ ] (brackets), 5-18, 6-18 

] (right bracket), 5-18 

{ } (braces), 6-19 

& (ampersand), 6-20 

# (pound sign), 11-2 

$ (dollar sign), 5-16, 11-18 

% (percent), 6-17, 10-3 

@ (at sign), 5-18, 5-19, 6-4, 
11-2 

+ (plus), 11-14 

- (hyphen), 5-18 

- (minus), 11-15 

• (asterisk), 5-17, 6-17, 6-18 

/ (slash), 1-7, 5-21, 11-9 

/I (double slashes), 1-7 

A (caret), 11-5, 11-19 

I (vertical bar), 6-12 

= (equal), 6-19 

> (left angle bracket), 6-10 

> (right angle bracket), 6-11 

>? (right angle bracket/question 
mark), 6-11 

» (double right angle brackets), 
6-11, 7-10 

»7 (double right angle brackets/ 
question mark), 6-11 

- (tilde), 1-10, 5-18 

_ (underscore), 11-18 

A 
aa (acknowledge alarm) com

mand,4-25 

ABORT key, 4-16 

abrt (abort) command, 4-18, 
5-22 

Index 1 



absolute pathname, 1-7 

access rights, 10-4 

ACL (access control list), 10-1, 
10-25 
acl (access control list) com-

mand, 10-7, 10-21 
adding entry rights to, 10-15 
changing, 7-6, 10-14 
copying, 10-17 
deleting entries from, 10-16 
deleting entry rights from, 

10-16 
displaying, 10-7 
editing, 10-8 
entries 

extended, 10-4 
required, 10-4 

initial, 10-18 
rules for specifying entries, 

10-tO 
setting entries, 10-14 
structure of, 10-2 

aclm (access control list manager) 
call, 10-24 

active functions, 11-23 

Aegis shell, 1-3 

alarms, OM, 4-25 

ap (alarm pop) command, 4-25 

appending output, 6-11 

args (arguments) command, 
11-4, 11-19 

arguments, 6-3, 11-4 

ASCII 
characters, 5-16 
files, comparing, 7-18 

assignment character (:=), 11-17 

2 Index 

B 
background processes, 6-20 

backslash character (\), 5-21 

BACKSPACE key, 5-7 

.bak files, 5-27 

boff (background off) command, 
6-20 

bon (background on) command, 
6-20 

Boolean values, 11-18 
in expressions, 11-12 

booting, 2-2 

boot volume, 1-3 

c 
case command, 5-26 

case comparisons, 5-23 

case statements, 11-33 

catf (catenate file) command, 
6-11, 7-10 

cc (create copy) command, 4-10 

ce (create edit pad) command, 
4-10, 7-5 

changing passwords, 2-21 

character class, 5-17 

Character Compose Sequences, 
0-4 

CHAR DEL key, 5-7 

chn (change name) command, 
7-6, 8-2, 9-4 

chpat (change pattern) command, 
5-15 

class names, 10-11, 10-13 



cmdf (command file) command, 
2-20 

cmf (compare file) command, 
7-18 

cmt (compare tree) command, 
8-8 

command 
arguments, 6-3 
creaung your own, 11-1 
iormat, b-:l 

mode, for editing ACLs, 10-9 
options, 6-3, 6-4 
parser, 6-13 
search rules, 6-5, 11-3 

default, 6-5 
shell, 6-1 

comparison operators, 11-16 

compose function, 3-12, D-1 

conditional statements, 11-25 

control key sequences, 3-9 

controlling I/O, 6-8 

COpy key, 5-13 

copying 
display images, 5-13 
text. 5-10, 5-11 

cp (create process) command, 
4-6 

cpb (create paste buffer) com-
mand, 4-21, 4-36 

cpf (copy file) command, 7-7 

cpl (copy link) command. 9-5 

cpo (create process only) com-
mand, 4-7 

cps (create process server) com
mand.4-7 

cpscr (copy screen) command. 
7-17 

cpt (copy tree) command, 8-4 

crd (create directory) command, 
8-2 

crl (create link) command, 9-2, 
9-3 

crsubs (create subsystem) com
mand, 10-24 to 10-25 

csr (command search rules) com-
mand. 6-6 

ctnode. catalog node. 1-5 

cursor control, 4-2 to 4-4 

CUT key, 5-14 

cutting text, 5-10, 5-13 

cv (create view) command, 3-9, 
4-10 

D 

daemons. 2-5, 2-12 

data objects, 10-22 

date (display date) command. 
6-2, 11-23 

debugging shell scripts, 11-10 

default 
file ACLs. 7-8 
paste buffer. 5-11 

defining 
keys, 3-15 
points and regions, 3-5 
ranges of text, 5-8 

deleting 
characters, 5-7 
lines, 5-8 
text, 5-6 
words, 5-7 

directories 
commands for managing, 8-1 

Index 3 



comparing. 8-8 
copying. 8-3 
creating. 8-2 
deleting. 8-10 
displaying contents. 8-9 
home. 1-9 
merging. 8-7 
naming. 1-10 
network root. 1-4 
node entry. 1-4 
parent. 1-12 
renaming. 8-2 
replacing. 8-5 
working. 1-9 

directory trees. 8-3 

diskless node. 1-3. 2-4. 2-12 

Display Manager (DM). 1-3. 2-5. 
2-13. 3-1 
alarms. 4-25 
command scripts. 3-20 
commands 

format of. 3-3 
invoking interactively. 3-2 

special characters. 3-4 
start-up script. 2-20 

dldupl (delete duplicate lines) 
command. 6-12 

dlf (delete file) command. 7-16 

dll (delete link) command. 9-6 

dlt (delete tree) command. 8-10 

Domain Server Processor (DSP). 
2-23 

dlvar (delete variable) command. 
11-20 

dr (define region) command. 
4-15. 5-8 

DSP (Domain Server Processor). 
2-23 

4 Index 

E 
echo (text echo) command. 5-9 

ed (edit) command. 5-7. 5-15 

edacl (edit ACL) command. 7-6. 
8-2. 10-7. 10-8. 10-20 

edfont (edit font) command. 
4-34 to 4-35 

EDIT key. 4-12. 7-5 

edit modes. 5-2 

edit pad and window. creating. 
4-12 

edit pad modes. 5-2 

edstr (edit stream) command. 
5-15 

eef (edit end-of-file) command. 
5-6 

ei (edit insert) command. 4-23. 
5-4 

en (edit newline) command. 5-5 

ensubs (enter subsystem) com-
mand. 10-25 to 10-26 

environment variables. 11-21 

EOF (end-of-file) mark. 5-6 

eoff (execution tracing off) com-
mand. 11-20 

eon (execution tracing on) com-
mand. 11-20 

error input. 6-9 

error output. 6-9 

es (edit string) command. 5-5 

escape character (@). 5-18. 6-4 

/etc/daemons. 2-13 

/etc/daemons/llbd. 2-13 

/etc/dm_or_spm. 2-13 



lete/environ, 2-4, 2-12 

lete/init, 2-4, 2-12 

letclre, 2-4, 2-12 

lete/sys.eonf, 2-12 

lete/ttys, 2-5, 2-13 

European Characters 
creating and displaying, D-1 
defining, 3-12 

existvar (exist variable) com
mand, 11-20 

EXIT key, 4-6, 4-16 

export (export variable) com-
mand, 11-21 

expression delimiters, 11-11 

expression operators, 11-13 

expressions, 11-11 to 11-12, 
11-17 
operands in, 11-12 

extended ACL entries, 10-4 

F 
F6 function key, 5-7 

F7 function key, 5-8 

for statements, 11-30 

files 
appending, 7-10 
commands for managing, 7-4 
comparing ASCII, 7-18 
copying, 7-7 
copying displays to, 7-17 
creating, 7-5 
deleting, 7-16 
displaying attributes of, 7-15 
moving, 7-9 
printing, 7-11 
renaming, 7-6 

filters, 6-12 

fmt (format file) command, 6-11 

fpat (find pattern) command, 
5-15 

fpatb (find pattern block) com
mand, 5-15 

G 
getty, 2-5, 2-13 

glbd server (NCS), 2-5, 2-12 

GMF,5-13 

GROW key, 4-18 

H 
here documents, 11-9, 11-17 

HOLD key, 4-24 

home directory, 1-9 
changing, 2-22 

horizontal offset, in windows, 5-2 

I 
icon command, 4-34 

icons, 4-30, 4-32 to 4-33 

idf (icon default) command, 4-35 

if statements, 11-25, 11-27 

in-line data, in shell scripts, 11-8 

init process, 2-4 

initial ACLs, 7-6, 8-2 
copying, 10-21 
editing, 10-20 
for new directories, 10-18 
for new files, 10-18 

initial shell environment, 6-7 

Index 5 



inlib (initialize library) command, 
6-5 

insert mode, 4-22, 5-3 

inserting 
EOF marks, 5-6 
new lines following the current 

line, 5-5 
newline characters, 5-5 
raw (iloecho) characters, 5-4 
text strings, 5-5 

INS key, 5-4 

integers, 11-18 

interactive mode, for editing 
ACLs, 10-9 

110 control characters, 6-7, 6-9 

K 

key definitions, 2-17 
deleting, 3-18 
displaying, 3-19 
examples, 3-15 

key naming, 3-13 to 3-14 

keyboards, 
defining, 3-10, 3-15 to 3-16 
definition files, 3-12 
low-profile 

international, B-8 
key definitions, 3-10 
Model I, 3-10 
Model II, 3-10 

Multinational, 3-10, 3-12 
types, 3-10 

L 
Latin-1 character set, creating 

and displaying, 3-12 

6 Index 

Id (list directory) command, 6-3, 
7-15, 8-9, 9-3 

line numbers, in window legends, 
5-2 

link resolution names, 9-3 

. links 
copying, 9-5 
creating, 9-2 
definition of, 9-1 
deleting, 9-6 
displaying, 9-3 
redefining, 9-3 
renaming, 9-4 
replacing existing, 9-5 

IIbd server (NCS), 2-5, 2-12 

log-in shell, 2-19 to 2-20 

log-in start-up script, 2-17 to 
2-18 

logging in, 2-17, 2-21 

logical operators, 11-16 

lvar (list variable) command, 
11-20 

M 

MARK key, 4-15, 4-18, 5-8, 
5-9 

mathematical operators, in expres
sions, 11-14 

mbx_helper, 4-8 

Mnemonic Debugger (MD) , 2-4, 
2-11 

mouse keys, 3-7, 3-10 

MOVE key, 4-19 

Multinational Keyboards, D-1 
key definitions, 3-10 
operating considerations, B-8 



multiple pathnames, 6-13 

mvf (move file) command, 7-9 

N 
names file, 6-16 

naming directory, 1-10 
setting, 7-2, 7-3 

naming server helper (ns_helper), 
1-5 

naming tree, 1-4, 7-2 

nd (naming directory) command, 
7-3 

netboot program, 2-11 

nelman program, 2-4, 2-11, 
2-12, 2-14 

network, 1-2 

network partner, 1-3 

network root directory, 1-4 

node, 1-1 
cataloging, 1-5 
diskless, 1-3, 2-4, 2-8, 2-12 

node entry directory, 1-4 

ns_helper (naming server helper), 
1-5 

o 
offset specification, 4-35 

operators 
comparison, 11-16 
logical, 11-16 
mathematical, 11-14 
string, 11-14 

options, command, 6-3, 6-4 

otherwise statements, 11-35 

overstrike mode, 5-3 

p 

pads 
closing, 4-15 
copying, 4-14 to 4-15 
creating, 4-9 
deleting, 4-16 
moving under windows, 4-26 
scrolling horizontally, 4-29 
scrolling vertically, 4-27 to 

4-28 

parent directory, 1-12 
parsing operators, 6-7, 6-20, 

11-2 

password, changing, 2-21 

paste buffers, 5-8, 5-10 

PASTE key, 5-8, 5-15 
pasting text, 5-10, 5-14 

pathname, absolute, 1-7 

pathname wildcards, 6-7, 6-13, 
6-17 

pathnames, using, 1-6 

pb (pad bottom) command, 4-27 

percent sign (%), 5-16 

pipe, 6-12 

pn (pad name) command, 4-29 

point pairs, 4-10 
points, defining, 3-5 

POP key, 4-21 

pp (pad page) command, 4-27 

prf (print file) command, 5-13, 
7-11 

print menu interface, 7-13 

print server, 2-4, 7-11 

Index 7 



printers, 2-4 

process window 
legend, 4-22 
modes, changing, 4-21 

processes 
controlling, 4-8 
creating, 4-4 
stopping, 4-9 
suspending/resuming, 4-9 

programs, stopping, 4-9 

PROM, 2-4, 2-11 

protected subsystems, 10-2, 
10-22, 10-24, 10-25 
controlling access to, 10-23 
managers of, 10-22 

prsvr (print server) command, 
2-4, 7-11 

pt (pad top) command, 4-27 

pv (pad line) command, 4-28 

pw (pad write) command, 4-16, 
5-3, 5-27 

Q 
query options, 6-14 

question mark (?), 5 -17 

queuing a file for printing, 7-12 

quoted strings, 11-7 

R 

READ key, 4-14 

required ACL entries, 10-4 

ranges of letters or digits, 5-17 

rc scripts, 2-4, 2-12 

8 Index 

read (read user input into vari
ables) command, 11-21 to 
11-22 

read-only mode, 5-3 

read-only pad and window, creat
ing, 4-13 

reading 
from standard input, 6-15 
of input from a file, 6-10 
of input into shell scripts, 

11-23 
of input into variables, 11-22 

redirecting output, 6-10, 6-11, 
6-12, 7-10 

regions, defining, 3-2, 3-5, 4-15, 
4-25 

regular expressions, 5-15 

responding to queries, 6-15 

ro (read-only) command, 5-3 

s 
s (substitute) command, 5-20 

SAVE key, 5-28 

sc (set case) command, 5-16 

script execution, controlling, 
11-25 

search operations 
canceling, 5-23 
repeating, 5-22 

searching for text, 5-20 

select statements, 11-32 

server processes, 2-5, 2-12 

Server Process Manager (SPM) , 
2-5, 2-13 

server programs, 4-4 



sh (create Aegis shell) command, 
6-7 

shell 
definition of, 1-3 
defining functions for, 11-24 
entering commands in, 6-1 
input pad, 6-1 
log-in, 6-7 
log-in script, 2-18 
process, 6-1 
scripts, 6-2, 11-1, C-2-C-9 

controlling execution, 
11-25 

creating, 11-2 
debugging, 11-10 
executing DM commands 

from, 11-9 
using variables in, 11-17 
verification options for, 

11-10 
start-up files for, 6-7 to 6-8 
stopping, 4-6 
variables, 11-19 

SHIFT key, 4-28 
rules for specifying, 10-10 

SID (subject identifier), 4-4, 
10-2 

single integers, in expressions, 
11-12 

siologin (log-in on an sio line) 
command, 6-8 

so (substitute once) command, 
5-20 

special characters, 6-7 

sq (search quit) command, 5-22 

srf (sort file) command, 6-12 

standard input, 6-9, 6-15, 6-16 

standard output, 6-9 

start-up procedure 

for disked nodes, 2-2 
for diskless nodes, 2-8 to 

2-12 

std_keys, 2-17 

std _keys. basic, 2-17 

std_keys(n) files, 3-13 

strings, 5-17 to 5-18, 5-23, 
5-24, 5-25, 6-18, 11-18 
in expressions, 11-12 
operators for, 11-14 

subject identifier (SID), 4-4, 
10-2 

subs (subsystem) command, 
10-24, 10-26 

substituting text, 5-23 to 5-26 

substitution parameters, 11-5 

sysboot program, 2-4 

Isys/dm/login_sh, 6-7 

Isys/net/diskless_list, 2-11 

Isys/node_data, 2-6 

Isys/print, 7-12 

Isys/subsys directory, 10-25 

T 
tl (to left) command, 5-5 

tic (transliterate character) com
mand, 6-10 

to statements, 11-34 

u 
UNDO key, 5-26 

undo command, 5-26 

updating edit files, 5-27 

user_data subdirectory, 3-16 

Index 9 



v 
variable commands. 11-20 

variables 
defining. 11-17 
defining interactively. 11-21 
deleting. 11-20 
verifying, 11-20 

voff (verification off) command. 
11-11 

von (verification on) command. 
11-11 

w 
wa (windowautohold) command. 

4-24 

wc (window close) command. 
4-16. 5-27 

wd (working directory) command. 
6-3. 7-2 

wdf (window default) command. 
4-24 

wg (window grow) command. 
4-10 

wge (window grow echo) com
mand. 4-17 

wgra (window group add) com
mand. 4-31 

wgrr (window group remove) 
command. 4-31 to 4-32 

wh (window hold) command. 
4-23 

while statements. 11-28 

wi (window invisible) command. 
4-32 

wildcards. 6-17 

10 Index 

window groups. 4-30 

window-movement commands. 
4-10. 4-19 

windows 
changing size, 4-17 to 4-18 
closing. 4-15 
controlling process modes for. 

4-21 
copying, 4-14 
creating, 4-9 to 4-10 
defining boundaries for. 4-10 
deleting. 4-16 
managing. 4-16 to 4-17 
moving. 4-19 
paste buffers for. 4-37 
pushing/popping. 4-20 

wm (window move) command. 
4-10 

wme (window move echo) com
mand. 4-19 

working directory. 1-9 
changing. 7-3 
setting. 7-2 

wp (window pop) command. 4-20 
to 4-21 

write mode. 5-3 

writing output to a file, 6-11 

ws (window scroll) command. 
4-23 

x 
xc (copy text) command. 5-11 

xd (cut text) command. 5-11. 
5-13 

xdmc (execute DM command) 
command. 11-9 

xi (copy image) command. 5-13 



xoff (execution tracing off) com
mand. 11-11 

xon (execution tracing on) com-

mand. 11-11 

xp (paste) command. 5-8. 5-11. 
5-14 

-------88-------

Index 11 





Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your Aegis Environment 
Order No.: 011021-AOO 
Date of Publication: July. 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ___________ _ 
__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ___________ _ 

What additional information would you like the manual to include? __ 

Please list any errors. omissions. or problem areas in the manual by page. 
section. figure. etc. ____________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



FOLD 

I 
I 
I 
I 
I 
I 

Cl I 
!;I 

~ 
0' a: 
I» 
0' 
j 

IQ 

C. 
!a 
iii 
c. 
:i" 
CD 

-------------------------------------------------------------------------4 

IIIIII 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your Aegis Environment 
Order No.: 011021-AOO 
Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ___________ _ 

__ System maintenance person 
__ System Administrator 

__ Manager/Professional 
Technical Professional 

Student 

Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ 

Please list any errors, omissions. or problem areas in the manual by page. 
section. figure. etc. _____________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



n 
S-
o ... 
0' 
ii 
I» 
0" 
:J 
ID 

Co 
~ 
i 
Co 

5· 
Il) 

FOLD *-----------------------------------------------------------------------, 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

~ 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your Aegis Environment 
Order No.: 011021-AOO 
Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ___________ _ 

__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ 

Please list any errors, omissions, or problem areas in the manual by page, 
section, figure, etc. _____________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



FOLD 

o 
~ 
Q 
0' 
a: 
S» 
0" 
::J 
III 
a. 
~ 
iii 
a. 

::J 
III 

._-----------------------------------------------------------------------, 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



o 
u o 
o 

fi1 
~"~ 

(1'frW/NG 
""[M IIIIIIIIIIIIIIIIIIII .~ 1111~~I~ 111111I1111 

+[111[1<-: 1 - HUU+ 


