
Domain C
Language
Reference
002093-AOO

apollo

Domain C Language Reference

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 002093-AOO

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc., Chelmsford, Massachusetts.
Unpublished -- rights reserved under the Copyright Laws of the United States. All Rights Reserved.

First Printing:
Latest Printing:

October 1982
July 1988

This document was produced using the Interleaf Technical Publishing Software (TPS) and the InterCAP Illustrator I
Technical Illustrating System, a product of InterCAP Graphics Systems Corporation. Interleaf and TPS are trademarks of
Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

ETHERNET is a registered trademark of Xerox Corporation.

Personal Computer AT and Personal Computer XT are registered trademarks of International Business Machines
Corporation.

Copyright 1979, 1980, 1983, 1986 Regents of the University of California and 1979, AT&T Bell Laboratories, Incorporated.

UNIX is a registered trademark of AT&T in the USA and other countries.

3DGMR, Aegis, D3M, DGR, Domain/ Access, Domain/ Ada, Domain/Bridge, Domain/C, Domain/ComController,
Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL, Domain/Dialogue, Domain/DQC, Domain/IX,
Domain/Laser-26, Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain X.25, DPSS,
DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel, Network Computing System, Network
License Server, Open Dialogue, Open Network Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super
Workstation, Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this publication
without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

The Domain C Language Reference manual describes the Domain C programming language
and the Domain programming environment relevant to C programmers.

We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Presents an overview of the Domain C compiler.

Describes the lexical components of a C program (such as identifi­
ers, comments, and keywords), and describes the general organiza­
tion of C programs.

Describes data types and storage classes, and the syntax and se­
mantics of declaring variables.

Provides encyclopedic descriptions of all C language statements
and operators, as well as descriptions of general C programming
concepts.

Provides details about declaring and invoking functions.

Describes compiler options and the compilationllinking process.

Describes how to call FORTRAN and Pascal routines from a C
program, and how to share global data with routines written in
other languages.

Provides an overview of input and output operations that can be
performed with the standard C run-time library and the UNIX
system library.

Describes the types of diagnostic messages that the compiler issues,
and lists each message along with its probable cause.

Lists the ISO Latin-l code values.

Lists Domain extensions to the C programming language.

Preface iii

Appendix C Describes the BSD version of the lint utility.

Appendix D Describes the SysV version of the lint utility.

Appendix E Describes the std_Scall keyword, which is now obsolete.

Revision History

Because this manual has been extensively revised, we have not used marginal change bars
to indicate each modification. See the C Compiler Release Document for a list of func­
tional changes to the C compiler.

Related Manuals

For more information about the standard C run-time library and UNIX system calls, see
the BSD Programmer's Reference manual (005801) and the SysV Programmer's Reference
manual (005799).

For more information about system calls see the Domain/OS Call Reference manual
(007196) and Programming with Domain/OS Calls '(005506).

For more information about the programming environment and software tools, see the Do­
main lOS Programming Environment Reference manual (011010).

For more information about the Domain Pascal programming language, see the Domain
Pascal Programming Language Reference manual (000792).

For information about the Domain FORTRAN programming language, see the Domain
FORTRAN Programming Language Reference manual (000530).

For more information about the binder (bind), link editor (ld), librarian (lbr), and ar­
chiver (ar), see the Domain/OS Programming Environment Reference manual (0011010).

For more information about the Domain high-level debugger, see the Domain Distributed
Debugging Environment Reference manual (011 024) .

For more information about DSEE, see the Domain Software Engineering Environment
(DSEE) Reference manual (003016).

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make it easy for you to
communicate with us, we provide the Apollo Product Reporting (APR) system for com­
ments related to hardware, software, and documentation. By using this formal channel,
you make it easy for us to respond to your comments.

iv Preface

You can get more information about how to submit an APR by consulting the appropriate
Command Reference manual for your environment (Aegis, BSD, or SysV). Refer to the
mkapr (make apollo product report) shell command description. You can view the same
description online by typing:

$ man mkapr (in the SysV environment)

% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader's Response Form at the back of this manual to sub­
mit comments about the manual.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

literal values

user-supplied values

Domain extensions

sample user input

output

[]

{ }

< >

CTRL/

Bold words or characters in formats and command descriptions
represent commands or keywords that you must use literally.
Pathnames are also in bold. Bold words in text indicate the first
use of a new term.

Italic words or characters in formats and command descriptions
represent values that you must supply.

Domain-specific features of C appear in color.

In samples, information that the user enters appears in color.

Information that the system displays appears in this
typeface.

Square brackets enclose optional items in formats and command

descriptions.

Braces enclose a list from which you must choose an item in for­
mats and command descriptions. In sample Pascal statements,
braces assume their Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a
control character sequence. Hold down <CTRL> while you press
the key.

Preface v

I
----88----

vi Preface

Horizontal ellipsis points indicate that you can repeat the preced­
ing item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or ex­
ample have been omitted.

Because this manual has been extensively revised, we have not
used marginal change bars to indicate each modification.

This symbol indicates the end of a chapter.

Chapter 1

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.5
1.5.1
1.5.2

Chapter 2

Contents

Overview of Domain C

History of C .. .
C Standards .. .
Two Ways to Call C .. .

Two Preprocessors
Two Styles of Object Code
Two Command Line Syntaxes

A Sample Program
Compiling and Executing

Online Sample Programs
Accessing Sample Programs with getcc
Accessing Sample Programs with Domain/Delphi

Program Organization

1-1
1-2
1-3
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-7

2.1 Lexical Elements ... 2-1
2.1.1 White Space and Newlines , 2-2
2.1.2 Comments .. 2-2
2.1.3 Spreading Source Code Across Multiple Lines. 2-3
2.1.4 Identifiers .. 2-4
2.1.5 Case Sensitivity .. 2-5
2.1.6 Keywords. .. 2-5
2.2 Constants. .. 2-6
2.2.1 Integer Constants. .. 2-6
2.2.2 Floating-Point Constants. .. 2-7
2.2.3 Character Constants .. 2-8
2.2.4 String Constants. .. 2-10
2.3 Program Organization. .. 2-11

Contents vii

2.3.1 Functions....... 2-12
2.3.2 The Begin and End Symbols: {}............................. 2-13
2.3.3 Statements. .. 2-13
2.3.4 Preprocessor Directives. .. 2-13
2.4 Declarations. .. 2-13
2.4.1 Typedef Declarations 2-14
2.4.2 Name Spaces. .. 2-16

Chapter 3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.6
3.7
3.7.1
3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.9
3.9.1
3.9.2
3.9.3

viii Contents

Data Types and Storage Classes

Data Type Overview .. .
Scalar Types
Aggregate Types .. .

Overview of Variable Initialization
Old-Style Initialization

Integer Data Types
32-Bit Integers
16-Bit Integers
8-Bit Integers (Character Data Type)
Initializing Integer Variables
Integer Overflow .. .

Floating-Point Data Types
Single-Precision Floating-Point
Double-Precision Floating-Point
Initializing Floating-Point Variables

Enumerated Data Types
The Values of Enumerated Constants
Initializing Enumerated Variables
Sized enums - Domain Extension

The void Data Type .. .
Pointer Data Types

Internal Representation of Pointers
Initializing Pointers .. .
Generic Pointers .. .

Structure and Union Data Types
Declaring a Structure or Union
Internal Representation of Structures
Internal Representation of Unions
Bit Fields in Structures and Unions
struct and union Name Spaces
Initializing Structures
Initializing Unions

Arrays
Omitting the Array Size
Initializing Arrays .. .
Multidimensional Arrays

3-1
3-2
3-4
3-4
3-5
3-6
3-6
3-7
3-8
3-9
3-10
3-11
3-11
3-12
3-13
3-14
3-15
3-17
3-17
3-18
3-19
3-20
3-20
3-21
3-22
3-23
3-24
3-29
3-31
3-32
3-33
3-33
3-35
3-36
3-36
3-37

3.9.4
3.9.5
3.10
3.11
3.11.1
3.11.2
3.12
3.12.1
3.12.2
3.12.3
3.12.4
3.12.5
3.13
3.13.1
3.13.2
3.13.3
3.13.4
3.14
3.14.1
3.14.2
3.15
3.15.1
3.16
3.16.1
3.16.2
3.16.3
3.16.4
3.16.5
3.16.6

Chapter 4

Storage of Arrays
Strings .. .

Abstract Declarators .. .
Complex Declarations

Deciphering Complex Declarations
Composing Complex Declarations

Storage Classes .. .
Declaration Position
Scope of a Variable Declaration
Duration of a Variable
Storage Class Specifiers
The register Specifier

Global Variables
Definitions and Allusions
Defining Global Variables
Portability Considerations Regarding Global Variables
Sections

Storage Class of Functions
Function Definitions
Function Allusions

Reference Variables - Domain Extension '"
Declaring Reference Variables

The #attribute Modifier - Domain Extension
Inheritance of Declaration Modifiers
#attribute and Pointer Types
The volatile Specifier
The device Specifier
The address Specifier
The section Specifier

Code

3-39
3-40
3-41
3-42
3-43
3-44
3-46
3-46
3-48
3-52
3-55
3-56
3-57
3-57
3-57
3-60
3-60
3-60
3-61
3-61
3-62
3-63
3-63
3-64
3-64
3-64
3-66
3-68
3-69

4.1 Statements .. 4-1
4.1.1 Null Statement .. 4-2
4.1.2 Simple Statement. .. 4-2
4.1.3 Compound Statement or Block 4-2
4.1.4 Branching Statements 4-3
4.1.5 Looping Statements. .. 4-3
4.2 Overview: Operators. .. 4-3
4.2.1 Pointer Operators .. 4-4
4.2.2 Increment and Decrement Operators. .. 4-5
4.2.3 Cast. Operator ... 4-5
4.2.4 sizeof Operator .. 4-5
4.2.5 Arithmetic Operators. .. 4-6
4.2.6 Comparison (Relational) Operators 4-6
4.2.7 Bit Operators .. : 4-7

Contents ix

4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.3

Logical Operators
Conditional Expression Operator
Comma Operator .. .
Assignment Operators
Precedence and Associativity of Operators
Parentheses .. .
Order of Evaluation

Type Conversions .. .

4-7
4-8
4-8
4-8
4-9
4-9
4-10
4-12

4.4 Overview: Preprocessor Directives " 4-15
4.5 Encyclopedia of Domain C Code 4-17
arithmetic operators .. 4-19
array operations .. 4-22
assignment operators .. 4-34

BFMT COFF ... 4-41 - -
bit operators ... 4-42
break .. 4-46
cast operations ... 4-49
comma operator .. 4-54
conditional expression operator ... 4-55
continue. .. 4-57
DATE and _TIME_ (predefined symbols) 4-60
#debug (preprocessor directive) ... 4-61
default .. 4-63
#define and #undef (preprocessor directives) 4-64
do/while .. 4-72
#eject (preprocessor directive) 4-74
else .. 4-75
#else ... 4-76
#endif .. 4-77
enum operations... 4-78
expressions .. 4-79

FILE .. 4-82
for .. 4-83
goto ... 4-88
if .. 4-91
#if, #ifdef, #ifndef, #elif, #else, #endif (preprocessor directives) 4-96
#ifdef .. 4-101
#ifndef -... 4-102
#include (preprocessor directive) .. 4-103
increment and decrement operators 4-106
LINE and _FILE_ (predefined symbols) 4-111
#line (preprocessor directive) .. 4-112
#list and #nolist (preprocessor directives) 4-114
logical operators .. 4-115
#module (preprocessor directive) .. 4-119
#nolist ... 4-121
pointer operations .. 4-122
predefined macros .. 4-131

x Contents

relational operators ... 4-132
return ... 4-137
#section (preprocessor directive) .. 4-140
sizeof .. 4-143
STDC and _BFMT_COFF (predefined names) 4-145
structure and union operations .. 4-146
switch .. 4-154
#systype (preprocessor directive) and the systypeO macro 4-160
TIME (predefined symbol) .. 4-163
while .. 4-164

Chapter 5

5.1
5.1.1
5.1.2
5.2
5.2.1
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.8

Chapter 6

Functions

Function Definitions .. .
Function Preamble .. .
The Body of the Function

Function Allusions
Forward References and Backward References

Function Calls
Call by Value
Passing Arguments By Reference

Function Prototypes
Function Definitions
Prototyping a Variable Number of Arguments
Backwards Compatibility
Using Prototypes to Write More Efficient Functions

Returning a Value Back to the Caller
Returning Values By Reference
The #options Specifier - Domain Extension

Recursive Functions .. .
Pointers to Functions

Assigning a Value to a Function Pointer
Return Type Agreement
Calling a Function Using Pointers
Passing a Pointer to a Function as an Argument

The mainO Function

Program Development

5-1
5-2
5-4
5-5
5-6
5-7
5-7
5-11
5-12
5-14
5-15
5-16
5-17
5-17
5-18
5-19
5-20
5-20
5-21
5-22
5-23
5-24
5-25

6.1 Program Development in a Domain/OS Environment. 6-1
6.2 Compiling. .. 6-3
6.2.1 Compiling with /bin/cc 6-3
6.2.2 Compiling with /com/cc 6-13
6.2.3 /com/cc Compiler Errors 6-14

Contents xi

6.3
6.3.1
6.3.2
6.3.3

6.3.4

6.3.5
6.3.6
6.3.7
6.3.8

6.3.9

6.3.10

6.3.11

6.3.12

6.3.13
6.3.14
6.3.15
6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21

6.3.22
6.3.23

6.3.24
6.3.25
6.3.26

6.3.27
6.3.28

xii Contents

Domain Compiler Options
Absolute Code in User Space: -ac (Icom/cc)
Longword Alignment: -align and -nalign (Icom/cc)
Displaying Messages about Alignment:
-alnchk and -nalnchk (Icom/cc)
Binary Output:
-bl-nb (/com/cc)

-0 (/bin/cc) .. .
Global Variables in .bss Section: -bssl-nbss (/com/cc)
Comment Checking: -comchkl-ncomchk (Icom/cc)
Conditional Compilation: -condl-ncond (/com/cc)
Target Node Selection:
-cpu cpu (lcom/cc)
-M cpu (/bin/cc)
Debugger Output:
-db I-ndb I-dbs I-dba (I coml cc)
-g (/bin/cc) .. .
Name Definition:
-def name [= value] (/com/cc)
-Dname[=value] (/bin/cc)
Preprocessor Options:
-esl-esf (/com/cc)
-EI-P (/bin/cc)
Expanded Code Listing:
-expl-nexp (/com/cc)
-S (/bin/cc) .. .
Floating-Point Accuracy: -frnd (/com/cc only)
Include Directories: -idir (Icom/cc)
Array Reference Index: -indexil-nindexi (Icom/cc)
Informational Messages: -info I -ninfo (Icom/cc)
Installed Libraries: -inlib (/com/cc)
Listing File: -ll-nl (/com/cc)
Symbol Map: -mapl-nmap (/com/cc)
Error and Warning Summary: -msgsl-nmsgs (/com/cc)
Optimization Levels:
-opt [n] (/com/cc)
-0 [n] (/bin/cc) .. .
Position-Independent Code: -pic (/com/cc)
Profiling:
-prof (/com/cc)
-p (/bin Icc) .. .
Nonportable References: -stdl-nstd (/com/cc) ','
Run-Time UNIX Version Selection: -runtype systype (/com/cc)
UNIX Version Selection:
-systype systype (/com/cc)
- T systype (/bin/cc)
Function Prototypes: -typel-ntype (/com/cc)
Line Numbers: -ulinel-nuIine (/com/cc)

6-19
6-20
6-20

6-20

6-20
6-21
6-21
6-22

6-22

6-23

6-24

6-26

6-27
6-27
6-28
6-29
6-29
6-30
6-30
6-31
6-33

6-33
6-39

6-39
6-40
6-40

6-40
6-42
6-42

6.3.29
6.3.30

6.4
6.4.1
6.4.2
6.5
6.6
6.6.1
6.6.2
6.7
6.7.1
6.7.2
6.8
6.8.1
6.8.2
6.9
6.9.1

Chapter 7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.7
7.7.1
7.7.2
7.7.3

Version Number: -version (/com/cc)
Warning Messages:
-warnl-nwarn (/com/cc)
-w (/bin/cc) .. .

Linking in a Domain Environment
The /bin/ld Utility
The bind Command

Archiving in a Domain Environment
System Libraries

The Standard C Library
Built-in Routines .. .

Executing Programs in a Domain/OS Environment
Executing in a UNIX Environment
Executing in an Aegis Environment

Debugging Programs in a Domain Environment
The dde Utility
The dbx Utility

Program Development Tools
tb (Traceback)

Cross-Language Communication

Suppressing Automatic Type Promotions of Arguments
Data Type Agreement in C, Pascal and FORTRAN

Non-C Data Types .. .
Non-FORTRAN Data Types

Data Type Agreement of Return Value
Functions Returning Pointers

Argument Passing Conventions
Pascal Examples

Passing Integers and Floating-Point Numbers
Passing Character Arrays
Passing Pointers
Simulating the BOOLEAN Type

FORTRAN Examples
Names of FORTRAN Routines
Passing Integers and Floating-Point Data
Passing Character Data
Passing Arrays .. .
Passing Pointers
Simulating the LOGICAL Types
Simulating the COMPLEX Types

Data Sharing .. .
Global Variable Declarations Using /com/cc
Global Variable Declarations Using /bin/cc :
Case Sensitivity and Global Names

6-42

6-43
6-43
6-43
6-44
6-44
6-44
6-45
6-47
6-48
6-48
6-48
6-49
6-49
6-50
6-50
6-51

7-2
7-3
7-3
7-3
7-4
7-5
7-5
7-7
7-8
7-9
7-11
7-12
7-14
7-14
7-15
7-16
7-17
7-22
7-23
7-25
7-26
7-26
7-27
7-27

Contents xiii

7.7.4
7.7.5
7.8
7.8.1
7.8.2
7.8.3

Chapter 8

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.3
8.3.1

Chapter 9

Data Sharing Between C and Pascal
Data Sharing Between FORTRAN and C

System Service Routines
Insert Files .
Returned Status Code
Linking and Execution

Input and Output

General Remarks .. .
File Types
Streams and File Descriptors

The Standard I/O Library
Buffering .. .
The <stdio.h> Header File
Macros and Functions
Error Handling
File Position Indicators
I/O to Standard Devices
1/0 to Files .. .
Opening and Closing a File
Reading and Writing Data

UNIX Unbuffered 110 Functions
UNIX I/O Error-Handling

Diagnostic Messages

7-27
7-32
7-35
7-35
7-36
7-36

8-2
8-3
8-3
8-4
8-4
8-6
8-7
8-7
8-8
8-8
8-10
8-12
8-16
8-25
8-27

9.1 Common C Programming Mistakes. .. 9-2
9.2 Domain C Compiler Messages. .. 9-2

Appendix A ISO Latin-l Codes

ISO Latin-1 Code '.' .. A-l

Appendix B Domain C Extensions

Domain C Extensions .. B-1

xiv Contents

Appendix C

C.l
C.2
C.2.l
C.2.2
C.2.3
C.2.4
C.2.S
C.2.6
C.2.7
C.2.8
C.2.9
C.2.l0
C.2.11
C.2.l2
C.2.l3
C.3
C.3.l
C.3.2
C.3.3

Appendix D

D.l
D.2
D.2.1
D.2.2
D.2.3
D.2.4
D.2.S
D.2.6
D.2.7
D.2.8
D.2.9
D.2.l0
D.2.11
D.2.12

The lint Utility (BSD)

Introduction .. .
Summary of lint Options

Usage
Unused Variables and Functions
Set/Used Information
Flow of Control
Function Values .. .
Type Checking .. .
Type Casts
Nonportable Character Use
Assignments of "longs" to "ints"
Unorthodox Constructions
Antiquated Syntax
Pointer Alignment
Multiple Uses and Side Effects

Implementation Details .. .
Portability .. .
Suppressing Unwanted Output
Library Declaration Files

The lint Utility (SysV)

Usage .. .
lint Message Types

Unused Variables and Functions
Set/U sed Information
Flow of Control
Function Values .. .
Type Checking .. .
Type Casts
Nonportable Character Use
Assignments of longs to ints
Strange Constructions
Old Syntax
Pointer Alignment
Multiple Subexpressions and Side Effects

C-l
C-l
C-2
C-3
C-3
C-4
C-4
C-S
C-6
C-6
C-6
C-7
C-7
C-8
C-8
C-9
C-9
C-ll
C-12

D-l
D-3
D-3
D-4
D-4
D-S
D-6
D-7
D-7
D-8
D-8
D-9
D-l0
D-10

Contents xv

Appendix E

Figures

E.l
E.2
E.2.1
E.2.2
E.2.3
E.2.4
E.3
E.3.1
E.3.2
E.4
E.4.1
E.4.2
E.4.3
E.4.4
E.4.S
E.4.6
E.S
E.S.l
E.S.2
E.S.3
E.S.4
E.S.S
E.S.6
E.S.7

2-1
2-2

3-1
3-2
3-3
3-4
3-S
3-6
3-7
3-8
3-9
3-10
3-11
3-12

xvi Contents

Using std$_call

Data Type Agreement of Arguments
Data Types of Constant Arguments

Integer Constants .. .
Floating-Point Constants
Character Constants
String Constants .

Data Type Agreement of Function Declarations
Functions Returning Pointers
Using std_$call

Pascal Examples
Passing Integers
Passing Floating-Point Numbers
Passing Character Data
Passing Character Arrays
Passing Pointers .
Simulating the BOOLEAN Type

FORTRAN Examples
Passing Integers
Passing Floating-Point Numbers
Passing Character Data
Passing Arrays .. .
Passing Pointers .
Simulating the LOGICAL Types
Simulating the COMPLEX Type

Domain C Keywords .. .
Organization of a File of C Source Code

Hierarchy of C Data Types
Scalar Type Keywords
32-Bit Integer Format
16-Bit Integer Format :
Internal Representation of Character Variables
Single-Precision Floating-Point Format
Internal Representation of +100.5
Double-Precision Floating-Point Format
Pointer Variable Format
Default Layout of Structure S 1
Layout of Structure S2
Naturally Aligned Structure S3 with 1-byte Padding

E-l
E-2
E-2
E-2
E-2
E-3
E-3
E-3
E-4
E-S
E-6
E-7
E-9
E-l0
E-12
E-14
E-1S
E-16
E-17
E-19
E-21
E-24
E-2S
E-27

2-S
2-11

3-2
3-2
3-7
3-8
3-9
3-11
3-12
3-13
3-20
3-26
3-26
3-27

Tables

3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1
5-2
5-3

6-1

8-1
8-2

Layout of S2 Using Word Alignment Rules
Array of S 1 Structures, Not Naturally Aligned
Example of Union Memory Storage
Storage in Union example After Assignment
Syntax of Bit Field Declarations
Sample Bit-Field Alignment in a Structure
Syntax of an Array Declaration
Magic Square .. .
Storage of a Multidimensional Array
ierarchy of Active Regions (Scopes)
Two Declarations and One Definition with No Initialization
The Effect of Initializing a Global Variable
The Effect of Linking Order on Variable Initialization

Hierarchy of C Scalar Data Types
Keyword Listings in Encyclopedia
Preprocessor Directive Listings in Encyclopedia
Other Listings in Encyclopedia
Bitwise Operators
Syntax of a Function-Like Macro
How a for Loop Is Executed

Syntax of a Function Allusion
Syntax of a Function Call
Pass by Reference vs. Pass by Value

Program Development in a Domain/OS System

Hierarchy of I/O Libraries
C Programs Access Data on Files Through Streams

3-28
3-29
3-30
3-30
3-31
3-32
3-35
3-37
3-40
3-48
3-58
3-58
3-59

4-14
4-17
4-17
4-18
4-44
4-65
4-84

5-6
5-7
5-8

6-2

8-1
8-3

1-1 Compiling and Executing a Simple Program 1-6

2-1 Legal and Illegal Identifiers. .. 2-4
2-2 Floating-Point Constants .. 2-8
2-3 Character Escape Codes 2-8

3-1 Domain C's Arithmetic Data Types 3-3
3-2 Legal and Illegal Declarations in Domain C 3-45
3-3 Storage Class Summary 3-56

4-1 Binding and Precedence of Operators 4-11
4-2 Predefined Macros and Names. .. 4-15
4-3 Preprocessor Directives 4-16

Contents xvii

4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13

6-1
6-2
6-3
6-4
6-5
6-6
6-7

7-1
7-2

8-1
8-2
8-3

A-lI

B-1
B-2

E-1

Bug Alerts

The Bitwise AND Operator
Examples Using the Bitwise Inclusive OR Operator ;
Example Using the XOR Operator
Example Using the Bitwise Complement Operator
Integer Conversions
Truth for C's Logical Operators
Examples of Expressions Using the Logical Operators
Examples of Expressions Using the Relational Operators·
Relational Expressions
Example of #section Directive

!binI cc Command Options
C Compiler Options
Arguments to the -cpu and -M Options
DEBUG Compilation Options
The Effect of -def .. .
The Effect of -D
Header Files

C Function Argument Conversions without Prototypes
Domain C, Pascal, and FORTRAN Data Types

fopenO Text Modes .. .
File and Stream Properties of fopenO Modes
UNIX I/O Functions .. .

ISO Latin-I Codes .. .

ANSI C and C++ Extensions Supported by Domain C
Domain Extensions to the C Language

C Function Argument Conversions without Prototype

Using typedefs for Arrays
The Dual Meanings of "static" .. .
Integer Division and Remainder
Walking Off the End of an Array
Referencing Elements in a Multidimensional Array
The Dangling else .. .
Side Effects
Side Effects in Relational Expressions
Confusing = with == .. .
Comparing Floating-Point Values
Passing Structures vs Passing Arrays
Opening a File

xviii Contents

4-44
4-45
4-45
4-45
4-50
4-115
4-116
4-133
4-133
4-142

6-6
6-15
6-23
6-24
6-25
6-25
6-46

7-3
7-4

8-13
8-14
8-26

A-2

B-1
B-2

E-1

2-16
3-54
4-21
4-23
4-31
4-93
4-109
4-117
4-132
4-135
4-150
8-15

Chapter 1

An Overview of Domain C

This manual describes Domain® C, which is our implementation of the C programming
language. In this chapter, we provide an overview of the C language, list some of the key
Domain extensions, and show how to compile and execute a simple C program.

1.1 History of C

The C language was first developed in 1972 by Dennis M. Ritchie at AT&T Bell Labs as a
systems programming language-that is, a language to write operating systems and system
utilities. Ritchie's intent in designing C was to give programmers a convenient means of ac­
cessing a machine's instruction set. This meant creating a language that was high-level
enough to make programs readable and portable, but simple enough to map easily onto the
underlying machine architecture.

C was so flexible, and enabled compilers to produce such efficient machine code, that in
1973 Ritchie and Ken Thompson rewrote most of the UNIX* operating system in C. Since
then, C and the UNIX system have had a close association, although in recent years C has
become more popular as a general-purpose programming language.

Although the power and flexibility of C is undisputed, C has also acquired the reputation
for being a mysterious and messy language that promotes bad programming habits. Part of
the problem is that C gives special meanings to many punctuation characters, such as aster­
isks, plus signs, braces, and angle brackets. Once a programmer has learned the C lan­
guage, these symbols look quite commonplace, but there is no denying that a typical C
program can be intimidating to the uninitiated.

The other, more serious, complaint concerns the relative dearth of rules. Other program­
ming languages, such as Pascal, have relatively strict rules to protect programmers from

·UNIX is a registered trademark of AT&T in the USA and other countries.

An Overview of Domain C 1-1

making accidental blunders. It is assumed in Pascal, for instance, that if a programmer at­
tempts to assign a floating-point number to a variable that is supposed to hold an integer,
it is a mistake, and the compiler issues an error message. In C, the compiler quietly con­
verts the floating-point value to an integer.

The C language was designed for experienced programmers. The compiler, therefore, as­
sumes little about what the programmer does or does not intend to do. This can be
summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual code. In many in­
stances, this freedom allows programmers to write useful programs that would be difficult to
write in other languages. However, the freedom can be abused by inexperienced program­
mers who delight in writing needlessly tricky code. C is a powerful language. but it re­
quires self-restraint and discipline.

You should be somewhat familiar with C before attempting to use this manual. If you are
not. please consult a good C tutorial. If you are familiar with C, you should be able to
write programs in Domain C after reading this manual.

1.2 C Standards

Until recently. the only formal specification for the C language was a document written by
Dennis Ritchie entitled The C Reference Manual. In 1977. Ritchie and Brian Kernighan
expanded this document into a full-length book called The C Programming Language
(sometimes called "the white book" because of its white cover). For years, The C Pro­
gramming Language was the only C text and so acquired the status of a de facto standard.
We refer to this book, and the language it defines, as the K&R standard.

In the early days of C, the language was used primarily on UNIX systems. Even though
there were different versions of UNIX systems available, each used the same C compiler.
The version of C running under a UNIX operating system is known as PCC (Portable C
Compiler) . Like the K&R standard. PCC became a de facto standard. In fact. PCC can
be viewed as an implementation of the K&R standard. There are a few points about the C
language, however, that the K&R standard does not define. In these cases, the PCC im­
plementation has become the standard.

In February 1983, James Brodie of Motorola Corporation applied to the X3 Committee of
the American National Standards Institute (ANSI) to draft a C standard. ANSI approved
the application, and in March the X3J11 Technical Committee of ANSI was formed.
X3Jll is composed of representatives from all the major C compiler developers (including
Apollo), as well as representatives from several companies that program their applications
in C. In the summer of 1983. the committee met for the first time, and they have been
meeting four times a year since then. The final version of the C standard is expected to
be approved by ANSI in 1988.

1-2 An Overview of Domain C

In addition to the K&R standard, the PCC implementation, and the ANSI standard, there
is a new language based on C called C++. C++ was developed by Bjarne Stroustrup at
AT&T. It includes many of the features in the ANSI standard, as well as further exten­
sions to make the language object-oriented.

Except for a few rare cases, Domain C is fully compatible with the K&R standard and with
PCC. Therefore, programs compiled in a UNIX environment can be ported to Apollo ma­
chines without altering the source text, and vice versa. At the same time, Domain C sup­
ports many of the newer features introduced by ANSI and C++. In particular, Domain C
supports the following:

• enum data type

• Function prototypes

• Reference variables

• Generic pointers

Finally, Domain C includes some features that are not available in any of the existing stan­
dards. These features enable you to take full advantage of the Domain/OS environment,
though use of special Domain syntaxes will make your programs less portable.

Throughout this manual, we highlight all Domain-specific features in colored text. Every­
thing printed in black is consistent with either the K&R standard or the ANSI standard.
Where the two standards differ, we explicitly state the difference in the text. Appendix D
contains a detailed list of ANSI and C++ features that Domain C supports.

1.3 Two Ways to Call C

Although there is only one Domain C compiler, there are two command line interfaces to
it. By default, typing ee in a UNIX shell gives you the Ibin/ce interface. Typing cc in an
Aegis shell gives you the Icom/ec interface.

The Ieom/ce interface is always available regardless of what shell you are running and
which environments are installed on your node. If you are in a UNIX shell and have
Aegis installed on your node, you can access the Icom/cc interface by typing Icom/cc on
the command line. If Aegis is not installed on your node, the leo mice interface will reside
in lusr/apollo/lib/cc. Note, however, that you can also access the Icom/cc interface by
using the -YO option with the Ibin/cc command. See Chapter 6 for more information
about this compiler option.

The Ibin/ee interface is available only if a UNIX environment is installed on your node. If
a UNIX environment is installed but you are running an Aegis shell, you can access the
Ibin/ee interface by typing Ibin/cc on the command line.

An Overview of Domain C 1-3

The Ibin/cc command first calls the UNIX preprocessor (cpp); then it invokes the Domain
C compiler; after compilation, it invokes the UNIX link editor (ld).

The Icom/cc command only invokes the Domain C compiler (which includes the Aegis
preprocessor). Unlike the Ibin/cc command, Icorn/cc does not automatically invoke a link
editor. See Chapter 6 for more information about the differences between Icom/cc and
Ibin/cc.

1.3.1 Two Preprocessors

The C product supports two preprocessors-a UNIX preprocessor called cpp and an Aegis
preprocessor that is bundled with the Domain C compiler. The UNIX preprocessor is
automatically invoked whenever you execute the Ibin/cc command. You can also invoke it
as a stand-alone utility by executing the lusr/lib/cpp command. The Aegis preprocessor
executes whenever you invoke the Domain C compiler. Note that when you compile in a
UNIX environment, your source text is passed through both preprocessors-cpp first and
then the Aegis preprocessor.

In general, the two preprocessors behave identically. The key differences are:

• The two preprocessors use different methods for resolving relative pathnames in
#include directives. See the description of the #include directive in Chapter 4 for
more information about this difference.

• The two preprocessors support different sets of command options. See Chapter 6
for details about all command options.

• The UNIX preprocessor supports the #elif directive; the Aegis preprocessor does
not.

• The Aegis preprocessor supports many Domain-specific directives and predefined
macros that cpp does not support.

1.3.2 Two Styles of Object Code

Both Ibin/cc and Icom/cc produce COFF (Common Object File Format) object files.
However, the two commands produce slightly different styles of COFF. The notable differ­
ences are:

• Object files produced by Ibin/cc have a .0 suffix. Object files produced by Icornl
cc have a . bin suffix.

• If you compile with Ibin/cc, the resulting code will not be optimized by default.
If you compile with Icorn/cc, your code will be optimized at optimization level 3.
You can override both of these defaults with compiler options. See Chapter 6 for
more information about optimization levels.

1-4 An Overview of Domain C

• If you compile with Ibin/cc, all uninitialized global variables will be placed in the
.bss section of the object file. If you compile with Icom/cc, all global variables
will be placed in named overlay sections. This becomes an issue in cross-language
communication, as explained in Chapter 7.

• Object files compiled by Icom/cc are executable if they contain a mainO function
and do not reference externally defined objects. All object files produced by
Ibin/cc must be processed by a binder before they can be executed. Note that
since Ibin/cc automatically invokes the link editor (Id), this difference is usually
invisible.

1.3.3 Two Command Line Syntaxes

The Ibin/cc and Icom/cc commands have separate syntaxes and recognize entirely different
sets of command line options (although the functionality overlaps to a large extent). Chap­
ter 6 describes these differences in detail. Here, we briefly list some of the principal dif­
ferences.

• The Ibin/cc command accepts multiple source filenames on the command line.
The Icom/cc command accepts only one filename.

• With Ibin/cc, you can specify the names of object files, which are passed to the
link editor. The Icom/cc command accepts only source files.

• When you compile with Ibin/ee, all source filenames must have a .c suffix and all
object filenames must have a .0 suffix. There are no suffix requirements with the
Icom/cc command.

• With the Ibin/cc command, you must place compiler options before filenames.
With Icom/cc, compiler options are placed after the filename.

• The compiler options supported by Ibin/cc are case-sensitive. The /com/cc com­
piler options are not case-sensitive.

1.4 A Sample Program

The best way to get started with Domain C is to write, compile, and execute a simple pro­
gram. Here is a simple program to get you started:

/* Program name is "getting_started" */
#include <stdio.h>

int maine void
{

int x, y;
printf("enter an integer -- ");
scanf ("%d", &x);
y = x * 2;
printf("\n%d is twice %d\n" , y, x);

An Overview of Domain C 1-5

1.4.1 Compiling and Executing

Suppose that you store this program in a file named getting_started.c. (If you use Ibinl
cc, you must enter the full name of the source file, including the .c suffix; with Icom/cc,
you may omit the .c suffix.) Compiling with Icorn/cc produces an executable object file
named getting_started. bin; compiling with Ibin/cc produces an executable binary file
named a.out. To run these objects, just enter the name of the file. Table 1-1 summa­
rizes the whole process.

Table 1-1. Compiling and Executing a Simple Program

With Icom/cc With Ibin/cc

$ /corn/cc getting_started $ Ibin/cc getting_started.c
No errors, No warnings. No errors, No warnings.
$ gettinLstarted. bin $ a.out
Enter an integer -- 15 Enter an integer -- 15

30 is twice 15 30 is twice 15

1.5 Online Sample Programs

Many of the programs from this manual are stored online, along with sample programs
from other Apollo manuals. These programs illustrate features of the C language, and
demonstrate programming with Domain/OS graphics calls and system calls. There are two
ways to access these online programs-with the getcc utility or with the Delphi system.

1.5.1 Accessing Sample Programs with getcc

The getcc utility enables you to extract a program from a master file that contains all sam­
ple programs. The getcc utility prompts you for the name of the sample program and the
pathname of the file to which you want it copied.

If the online examples are stored on your node, you can access getcc directly or through a
link. To access them directly, you must change your working directory before invoking
getcc:

In an Aegis shell
$ wd Idornain_exarnples/cc_exarnples
$ getcc

In a UNIX shell
$ cd Idomain_examples/cc_examples
$ getcc

To access the examples through a link, you need to create the following link before invok­
ing getcc:

1-6 An Overview of Domain C

In an Aegis shell
$ crl -/com/getcc /domain_examples/cc_examples/getcc
$ getcc

In a UNIX shell
$ In -s /domain_examples/cc_examples/getcc path_dir/getcc
$ getcc
where "path_dir" is a name of a directory on your list of search
pathnames.

If the online examples are stored on a remote node, you need to create the following two
links to invoke getcc:

In an Aegis shell
$ crl /domain_examples/cc_examples IInode/domain_examples/cc_examples
$ crl -/com/getcc //node_name/domain_examples/cc_examples/getcc
$ getcc

In a UNIX shell
$ In -s IInode/domain_examples/cc_examples /domain_examples/cc_examples
$ In -s IInode/domain_examples/cc_examples/getcc path_dir/getcc
$ getcc
where "node" is the name of the node where the examples are
stored, and "path_dir" is a name of a directory on your list of
search pathnames.

1.5.2 Accessing Sample Programs with Domain/Delphi

All of the sample programs are available through the Delphi online documentation system.
To compile and run an example, enter the name of the program in the Domain/Delphi
subject field. When the source for the program appears, cut it and paste it into another
file. You can then compile and execute this file as you would any other source file. See
the Retrieving Information With Domain/Delphi manual for more information.

-------88-------

An Overview of Domain C 1-7

Chapter 2

Program Organization

This chapter describes the following subjects:

• Lexical elements of a C program

• Organization of a C program

• Constants

• Declarations

2.1 Lexical Elements

The lexical elements of the C language include the characters that may appear in a C
source file, and how these characters are grouped into meaningful tokens by the Domain C
compiler. In particular, we describe the following syntactic objects:

• White space and newlines

• Comments

• Identifiers

• Keywords

• Constants

Program Organization 2-1

2.1.1 White Space and Newlines

In C source files, blanks, newlines, vertical tabs, horizontal tabs, and formfeeds are all
considered to be white space characters. The main purpose of white space characters is
to format source files so that they are more readable to humans. In general, the compiler
ignores white space characters, except when they are used to separate tokens or when they
appear within string literals. The newline character also serves the special function of termi­
nating preprocessor directives. See the "Preprocessor Directives" section in Chapter 4 for
more information about preprocessor directives.

2.1.2 Comments

A comment is any series of characters beginning with 1* and ending with * I. The compiler
ignores all comments. In the following example, a comment follows an assignment state­
ment:

average = total / number_of_components; /* Find mean value. */

Comments may also span multiple lines, as in:

/* This is a
multi-line comment.

*/

Domain C allows comments to appear anywhere in the source file. Since the compiler in­
terprets comments as nulls, this can result in unusual concatenations if you are not careful.
For instance, the statement,

int x/* This is an example */z;

becomes:

int xz;

NOTE: Domain C's implementation of comments conforms to the
PCC implementation. The ANSI standard, however, states
that comments must be replaced by a single space character.

The C language does not support nested comments. The following, for example, will pro­
duce a compile-time error:

/* This is an outer comment
* /* This is an attempted inner comment -- WRONG */

*
* This will be interpreted as code.
*/

2-2 Program Organization

C identifies the beginning of a comment by the character sequence 1*. It then strips all
characters up to, and including, the end comment sequence *1. What's left gets passed to
the compiler to be further processed. In the example above, therefore, the preprocessor
will delete everything up to the first *1 sequence, but pass the rest to the compiler. So the
compiler will attempt to process:

*
* This will be interpreted as code.
*/

Not recognizing these lines as valid C statements, the compiler will issue an error message.
You can check for nested comments by compiling with the -comchk option (available with
Icomlcc only).

2.1.3 Spreading Source Code Across Multiple Lines

In C, you can start a statement or declaration at any column and spread it over as many
lines as you want. In older versions of C, including the K&R standard, you cannot split a
keyword or identifier across a line. Domain C, in conformance with the ANSI standard,
defines the continuation character more generally, allowing you to use it to split identifiers
and tokens as well as strings. For example, the compiler views the following two lines as
the keyword switch:

swit\
ch

You can split a string or preprocessor directive across one or more lines. (See Chapter 3
for a definition of strings.) To split a string or preprocessor directive, however, you must
use the continuation character (\) at the end of the line to be split; for example:

#define foo_macro(x,y,z) «x) + (y»\
* «z) - (x»

printf("This is an very, very, very lengthy and very, very \
uninteresting string.");

Program Organization 2-3

2.1.4 Identifiers

Identifiers, also called names, can consist of the following:

• Letters (ASCII decimal values 65-90 and 97-122)

• Digits

o Dollar sign ($)

• Underscore U

The first character must be a letter or an underscore. Identifiers that begin with an under­
score are generally reserved for system use. In fact, the ANSI standard has reserved all
names that begin with two underscores or an underscore followed by an uppercase letter.
Note that the dollar sign is a Domain extension.

In addition, identifiers may not conflict with reserved keywords, which are listed in Figure
2-1. Table 2-1 lists some legal and illegal identifiers:

Table 2-1. Legal and Illegal Identifiers

Identifier Legal or Illegal

meters Legal.
green_eggs_and_ham Legal.
system_name Legal.
UPPER_AND _lower_case Legal.
20 meters Illegal, because it starts with a digit.
$name Illegal, because it starts with a dollar sign.
nameS Legal in Domain C, but nonstandard.
int Illegal. because iut is a reserved keyword.
uo%#@good Illegal, because it contains illegal

characters.

Identifiers are unique up to 4096 characters. Because Domain C exceeds the limits re­
quired by the K&R and ANSI standards, long names may not be portable. The ANSI
standard requires compilers to support names of up to 32 characters for local variables and
6 characters for global variables.

2-4 Program Organization

2.1.5 Case Sensitivity

In C, identifier names are always case-sensitive; that is, an identifier written in uppercase
letters is considered different from the same identifier written in lowercase. For example,
the following three identifiers are all considered unique:

kilograms
KILOGRAMS
Kilograms

Some Domain/OS programming languages (such as Pascal and FORTRAN) are case-insen­
sitive. When writing a Domain C program that calls routines from these other languages,
you must be aware of this difference in sensitivity. (See Chapter 7 for details on cross-lan­
guage communication.)

Note that strings (discussed in Chapter 3) are also case-sensitive. That is, the system rec­
ognizes the following two strings as distinct:

"THE RAIN IN SPAIN"
"the rain in spain"

2.1.6 Keywords

Domain C supports the list of keywords shown in Figure 2-1. You cannot use keywords as
identifiers; if you do, the compiler will report an error. You cannot abbreviate a keyword
and you must enter keywords in lowercase letters only.

auto extern size of

break float static

case for std_$call

char goto struct

continue if switch

default int typedef

do long union

double register unsigned

else return void

enum short while

Figure 2-1. Domain C Keywords

Program Organization 2-5

2.2 Constants

There are four types of constants in C:

• Integer constants

• Floating-point constants

• Character constants

• String constants

Every constant has two properties: value and type. For example, the constant 15 has
value 15 and type int.

2.2.1 Integer Constants

An integer constant is a simple number like 12 as opposed to an integer variable (like x or
y) or an integer expression. Whenever you use an integer constant in your source code,
Domain C represents it as an int (32 bits). You cannot change this default. However,
you can append an I or L to any constant to specify that you want it long. For example,
55L is a constant with a decimal value of 55 and the storage size of a long int. Since long
and int have the same meaning in Domain C, the I or L is redundant. You may still
want to use'it, though, if you are planning to port your programs to a non-Apollo ma­
chine.

If the constant value cannot fit in a long int, the results are unpredictable. However, the
compiler will not report an error.

Domain C supports three forms of integer constants: decimal, octal, and hexadecimal.
Decimal constants consist of one or more digits from 0-9 (but not starting with 0). Octal
constants are formed by preceding the constant with a zero (0) ; hexadecimal constants are
formed by preceding the constant with Ox or OX. Hexadecimal constants consist of the
digits 0-9 and the letters a-f (or A-F).

Integer constants may not contain any punctuation such as commas or periods. The follow­
ing examples show some legal constants in all three forms.

2-6 Program Organization

Decimal Octal Hexadecimal

3 003 Ox3
8 010 Ox8

15 017 OxF
16 020 Oxl0
21 025 Ox15

-87 -0127 -Ox57
187 0273 OxBB
255 0377 Oxff

Strictly speaking, constants are always positive values. A negative constant is interpreted as
a positive constant preceded by the unary negation operator. In practice, this distinction is
moot.

Technically, an octal constant cannot contain the digits 8 and 9 since they are not part of
the octal number set. The Domain C compiler accepts 8 and 9 in octal numbers but is­
sues a warning message. For example, the statement

x = 098;

compiles successfully, but a warning message appears. The compiler interprets this value to
mean 9 eights plus 8 ones, so that 098 has a decimal value of 80. (The ANSI Standard
does not support this feature.)

2.2.2 Floating-Point Constants

A floating-point constant is any number that contains a decimal point and/or exponent sign
for scientific notation. All floating-point constants are of type double even if they can be
accurately represented in four bytes. If the magnitude of a floating-point constant is too
great or too small to be represented in a double, the C compiler will substitute a value that
can be represented. This substitute value is not always predictable. See Chapter 3 for a
description of the representable ranges of floating-point types.

2.2.2.1 Scientific Notation

Scientific notation is a useful shorthand for writing lengthy floating-point values. In scien­
tific notation, a value consists of two parts: a number called the mantissa followed by a
power of 10 called the characteristic (or exponent). The letter e or E, standing for ex­
ponent, is used to separate the two parts. The floating-point constant 3e2, for instance,
is interpreted as 3*102 , or 300. Likewise, the value -2.5e-4 is interpreted as -2.5*10-4 ,

or -0.00025. Table 2-2 shows some legal and illegal floating-point constants.

Program Organization 2-7

Table 2-2. Floating-Point Constants

Constant Legal or Illegal

3. Legal.
35 Legal - Interpreted as art integer.
3.141 Legal.
3,500.45 Illegal - commas are illegal.
.3333333333 Legal.
4E Illegal - the exponent sign must be followed by a

number.
0.3 Legal.
3e2 Legal.
4e3.6 Illegal - the exponent must be an integer.
3.0E5 Legal.
+3.6 Illegal - Domain C doesn't support a unary plus sign.
0.4E-5 Legal.

2.2.3 Character Constants

A character constant is any printable character or legal escape sequence enclosed in single
quotes. The value of a character constant is the integer ASCII (or ISO) value of the char­
acter. For example, the value of the constant 'x' is 120.

2.2.3.1 Escape Characters

Domain C supports several predefined character constants known as escape characters.
They are listed in Table 2-3.

Table 2-3. Character Escape Codes

Escape
Code Character What It does

\b backspace Moves the cursor back one space.
\f formfeed Moves the cursor to the next logical page.
\n newline Prints a newline.
\r carriage return Prints a carriage return.
\t horizontal tab Prints a horizontal tab.
\v vertical tab Prints a vertical tab.
\' single quote Prints a single quote.
\11 double quote Prints a double quote.

2-8 Program Organization

In addition to the escape sequences listed in Table 2-3, C also supports escape character
sequences of the form:

\octal-number

and

\xhex-number

which translates into the character represented by the octal or hexadecimal number. For
example, if ASCII representations are being used, the letter 'a' may be written as '\141'
or '\x61' and 'Z' as '\132' or '\x5A'. This syntax is most frequently used to represent
the null character as '\0'. This is exactly equivalent to the numeric constant zero (0).
When you use the octal format, you do not need to include the zero prefix as you would
for a normal octal constant.

2.2.3.2 Multi-Character Constants

Each character in a character constant takes up one byte of storage; therefore, you can
store up to a four-byte character constant in a 32-bit integer and up to a two-byte charac­
ter constant in a 16-bit integer. For example, the following assignments are quite legal
(though not recommended and probably not portable):

{

}

char x;
short int si;
long int li;

x
si
Ii

, j , ;

'ef';
'abed' ;

/* one-byte integer */
/* two-byte integer */
/* four-byte integer */

/* one-byte character constant */
/* two-byte character constant */
/* four-byte character constant */

The variable si is assigned the value of 'e' and 'f', where each character takes up 8 bits
of the 16-bit value. The Domain C compiler places the last character in the rightmost
(least significant) byte. Therefore, the constant 'ef' will have a hexadecimal value of 6566.
Since the order in which bytes are assigned is machine dependent, other machines may re­
verse the order, assigning f to the more significant byte. In that case, the resulting value
would be 6665. For maximum portability, we recommend that you do not use multi-char­
acter constants.

Program Organization 2-9

2.2.4 String Constants

A string constant is any series of printable characters or escape characters enclosed in dou­
ble quotes. The compiler automatically appends a null character ('\0') to the end of the
string so that the size of the array is one greater than the number of characters in the
string. For example,

"A short string"

becomes an array with 15 elements:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A s h 0 r t s t r i n 9 \0

To span a string constant over more than one line, use the backslash character (\), also
called the continuation character. The following, for instance, is legal:

string = "This is a very long string that requires more \
than one line";

Note that if you indent the second line, the spaces will be part of the string.

In Domain C, the length of a string constant is limited to 4095 characters including the
trailing null character. This limit may differ on other implementations.

The type of a string is array of char, and strings obey the same conversion rules as other
arrays. Except when a string appears as the operand of sizeof or as an initializer, it is
converted to a pointer to the first element of the string. Note also that the null string,

1111

is legal, and contains a single trailing null character.

2-10 Program Organization

2.3 Program Organization

When you write a Domain C .program, you can put all your source code into one file or
spread it across many files. Figure 2-2 shows a simplified scheme for organizing C source
files. The C language permits other file organizations that are not depicted in the figure.
For example, most preprocessor directives may appear anywhere in a source file, and
global declarations may appear between functions. The figure, however, depicts a general
organization that reflects many C programs.

Source File Preprocessor Directives

#define
preprocessor ... #include
directives ...

#line

· Global Declarations
•
· typedef declarations

global definitions of variables with file scope ...
declarations ... definitions of variables with program scope

allusions to variables and functions
defined in another source file

Function Definitions Function Signatures

function ...
I function signature I

..
I old-style signatures I

{

I I
Ilocal declarations I I prototypes I function I statements I

· }

· •

Figure 2-2. Organization of a File of C Source Code

Program Organization 2-11

To help illustrate this organization, we provide the following commented program:

/* Program name is "file_org_example
#include <stdio.h>
#define WEIGHTING_FACTOR 0.6
typedef float THIRTY_TWO_BIT_REAL;
THIRTY_TWO_BIT_REAL correction_factor

*/
/* preprocessor directive
/* preprocessor directive
/* global typedef declo

= 1.15; /* global variable
* decl. */

*/
*/
*/

float average(float arg1, THIRTY_TWO_BIT_REAL arg2) /* prototype */
{ /* start of function body */

float mean; /* local variable declo */
mean = (argl * WEIGHTING_FACTOR) +

(arg2 * (1.0 - WEIGHTING_FACTOR»; /* assignment stmnt */
return (mean * correction_factor); /* return statement */

}
int main(void)

/* end of function body */
/* prototype for main */

{
float value 1 , value2, result; /* local variable declarations */

printf("Enter two values -- "); /* statement */
scanf("%f%f", &valuel, &value2); /* statement */
result = average(value1, value2); /* statement */
printf("The weighted average adjusted by a correction factor \

of %4.2f is %5.2f\n", correction_factor, result); /* statement */
} /* end of function */

In the following sections, we describe the various components of a C program.

2.3.1 Functions

As shown in both the figure and the example, functions are the primary organizational unit
of C. A C program must contain one or more functions.

The function called main has a special meaning. The C run-time system uses the first
executable statement in main as the starting address of the entire program. Consequently,
if you do not name one of the functions main, the program will have no starting address.
Conversely, naming more than one function main will cause a compile-time or link-time
error.

Unlike some other languages (such as Pascal), which support both procedures and func­
tions, C supports only functions. However, a C function can emulate a Pascal procedure
or a Pascal function. In other words, you can declare a C function that either returns or
does not return a value to the calling program. See the description of the void type in
Section 3.6 for more information about functions that behave like procedures.

Every function (main or not) adheres to the same rules of organization, and we detail
these rules in Chapter 5. For now, we provide an overview.

2-12 Program Organization

2.3.2 The Begin and End Symbols: {}

In all structured programming languages it is necessary to mark where a block starts and
finishes. A block is any logically distinct section of source code. In some languages, mark­
ing blocks is accomplished through keywords like begin and end. In C, you mark the be­
ginning of a block of C code with the { symbol and the end with the } symbol. Because
every function must contain at least one block, you need to specify { and } to denote the
start and finish of a function.

In addition to delimiting a function, the { and } symbols serve to demarcate blocks in a
variety of declarations and statements.

2.3.3 Statements

A function can contain zero or more statements. Chapter 4 describes all the statements
that Domain C supports. Note that you cannot put a statement outside of a function.

2.3.4 Preprocessor Directives

Domain C supports a wide variety of preprocessor directives that serve purposes such as
controlling conditional compilation, including header files, and defining program constants.
Preprocessor directives begin with the # character. Although some preprocessor directives
can be placed anywhere in a file, others can only be placed at specific junctures. For
complete information on preprocessor directives, see the "Preprocessor Directives" listing in
Chapter 4.

2.4 Declarations

With a few rare exceptions, every variable must be declared before it is referenced. A
declaration serves to identify the data type and storage class of a variable, and may option­
ally give the variable an initial value. As Figure 2-2 shows, C supports declarations made
both within a block and outside of a block. The position of the declaration affects the
storage class of the variable, as explained later in this chapter.

Program Organization 2-13

In general, a variable declaration takes the following format:

[storage_claSSJPecifier] [data_type] variable name [= initial_Value] ;

where:

storage _class_specifier

variable_name

initial value

is an optional keyword that we describe later in Section
3.12.

is one of the data types described in Chapter 3.

is a legal identifier.

is an optional initializer for the variable. (We describe
variable initialization in Chapter 3.)

For example, here are a few sample variable declarations without storage class identifiers or
initial values:

int
float
char
int
enum

age; /* an integer variable named age */
ph; /* a floating-point variable named ph */
a_letter; /* a character variable named a_letter */
values [10] ; /* an array of 10 integers named values */
days {man, wed, fri}; /* an enumerated variable named

* days */

It is legal to omit the data type in certain instances, although it is considered bad practice.
You may omit the data type in global declarations and in local declarations that include a
storage class specifier. In all of these cases, the data type defaults to int. (The proposed
ANSI Standard does not support omitting the data type.)

2.4.1 Typedef Declarations

The C language allows you to create your own names for data types with the typedef key­
word. Syntactically, a typedef is exactly like a variable declaration except that the declara­
tion is preceded by the typedef keyword. Semantically, the variable name becomes a
synonym for the data type rather than a variable that has memory allocated for it. For ex­
ample, the statement,

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTE_INT synonymous with long int. The following two decla­
rations are now identical:

long int j;
FOUR_BYTE_INT j;

2-14 Program Organization

A typedef declaration may appear anywhere a variable declaration may appear and obeys
the same scoping rules as a normal declaration. You may not, however, include an in­
itializer with a typedef. Once declared, a typedef name may be used anywhere that the
type is allowed (such as in a declaration, cast operation, or sizeof operation). By conven­
tion, typedef names are written in all uppercase so that they are not confused with variable
names.

There are a number of uses for typedefs. They are especially useful for abstracting global
types that can be used throughout a program, as shown in the following structure and array
declaration:

typedef struct {char
int

month [4] ;
day;

int year;
} BIRTHDAY;

typedef char A_LINE [80] ; /* A_LINE is an array of 80
* characters */

Another use of typedefs is to compensate for differences in C compilers. For example:

#if SMALL COMPUTER
typedef int SHORTINT;
typedef long LONGINT;

#else
#if BIG_COMPUTER

typedef int LONGINT;
typdef short SHORTINT;

#endif
#endif

The idea here is that you may be writing code to run on two computers, a small computer
where an int is two bytes, and a large computer where an int is four bytes. Instead of us­
ing short, long, and int, you can use SHORTINT and LONGINT and be assured that
SHORTINT is two bytes and LONGINT is four bytes regardless of the machine.

You can also use typedefs to simplify complex declarations. Consider the following exam­
ple:

typedef float *PTRF, ARRAYF[], FUNCF();

This declares three new types called PTRF (a pointer to a float), ARRAYF (an array of
floats), and FUNCF (a function returning a float). These typedefs could then be used in
declarations such as:

PTRF x[5]; /* a 5-element array of pointers to floats */
FUNCF z; /* A function returning a float */

Program Organization 2-15

2.4.2 Name Spaces

All identifiers (names) in a program fall into one of three name spaces. The three name
spaces are:

Structure, Union, and
Enumeration Tags

Member Names

All Oth~r Names

Tag names that immediately follow these type specifiers:
struct, union, and enum. These types are described in
Chapter 3.

Names of members of a structure or union.

Any names that are not members of the preceding two
classes.

Names in different name spaces never interfere with each other. That is, you can use the
same name for an object in each of the three classes without these names affecting one an­
other.

2-16 Program Organization

The following example uses the same name, overuse, in all three ways (this is an example
of name spaces, not of good programming style):

int maine void)
{

}

int overuse;
struct overuse

{ float overuse;
char *p;

}

/* normal identifier */
/* tag name */
/* member name */

Note that each struct, union, or enum defines its own name space, so that different types
can have the same member names without conflict. The following, for example, is legal:

struct A {

} ;
struct B {

} ;

int x;
float y;

int x;
float y;

The members in struct A are distinct from the members in struct B. Note that this is con­
sistent with the ANSI standard, although it is an extension to the K&R standard.

Macro names do interfere with the other three name spaces. Therefore, when you specify
a macro name, do not use this name in one of the other three name spaces. For exam­
ple, the following program fragment is incorrect because it contains a macro named square
and a label named square:

#define square(arg) arg * arg

int maine void)
{

square:

}

-------88-------

Program Organization 2-17

Chapter 3

Data Types and Storage Classes

Every variable and expression has a data type and every function has a return data type.
The type determines how the bits are to be interpreted by the computer. This chapter de­
scribes all Domain C data types in the following order:

• Integer types (int, char, short, long, unsigned)

• Floating-point types (float, double)

• Enumerated types (enum)

• void

• Pointers

• Structures and unions (struct, union)

• Arrays

In addition to data type, every variable has a storage class, which defines its scope and du­
ration. The latter half of this chapter describes storage classes.

3.1 Data Type Overview

The C language offers a moderately sized and useful set of data types. There are six dif­
ferent types of integers and two types of floating-point objects. These types-integers and
floating-points-are called arithmetic types. Together with pointers and enumerated types,
they are known as scalar types because all of the values lie along a linear scale. That is,
any scalar value is less than, equal to, or greater than another scalar value of the same
type.

Data Types and Storage Classes 3-1

In addition to scalar types, there are aggregate types, which are built by combining one or
more scalar types. Aggregate types, which include arrays, structures, and unions, are use­
ful for organizing logically related variables into physically-adjacent groups. There is also
one type-void-that is neither scalar nor aggregate. Figure 3-1 shows the logical hierarchy
of C data types.

Figure 3-1. Hierarchy of C Data Types

3.1.1 Scalar Types

There are nine reserved words for scalar data types, as shown in Figure 3-2.

char

short

int

long

float

double

Figure 3-2. Scalar Type Keywords

unsigned

enum

The types char, int, float, double, and enum are basic types. The others-long, short,
and unsigned-are qualifiers that modify a basic type in some way. You can think of
the basic types as nouns and the qualifiers as adjectives.

An enumerated variable consists of an ordered group of identifiers. The only value you
can assign to an enumerated variable is one of those identifiers. By default, the size of an

3-2 Data Types and Storage Classes

enumeration variable is four bytes, but you can explicitly make it two bytes by using the
short modifier. You can also use long to explicitly specify 4-byte enums. Applying short
and long to enums is a Domain extension.

Table 3-1 shows the scalar data types supported by Domain C, their size, and their range
of values. Types listed together in a group are synonymous.

Table 3-1. Domain C's Arithmetic Data Types

Data Type Size Lowest Highest
(in bytes) Possible Possible

Value Value

int
long 4 -2147483648 +2147483647
long int

unsigned int
unsigned long 4 0 4295967295
unsigned long int

short 2 -32768 +32767
short int

unsigned short 2 0 +65535
unsigned short int

char 1 -128 +127

unsigned char 1 0 +255

float 4 -0.29 • 1038 +1.7 • 1038

double 8 -1.0 * 10308 +1.0 • 10308

long float

short enum 2 -32768 +32767

enum

long enum 4 -2147483648 +2147483647

void none NiA N/A

pointers 4 NiA N/A

Data Types and Storage Classes 3-3

3.1.2 Aggregate Types

The following briefly describes the supported aggregate data types:

arrays

structures

union

An array variable consists of a fixed number of elements of
the same data type. The size of an array equals the num­
ber of elements times the size of each element.

A structure variable consists of one or more members, each
having its own data type. For instance, a structure variable
could be composed of two integers and one float. (A
structure in C is similar to a fixed record in Pascal.) The
size of a structure is the sum of the sizes of all the mem­
bers, plus possible padding due to alignment rules.

A union variable consists of one or more members, each
having its own data type. The difference between a struc­
ture and a union is that all the members of a structure oc­
cupy separate (unique) addresses, but all the members of a
union share the same address. (A union in C is similar to
a variant record in Pascal.) The size of a union is equal to
the size of its largest member.

3.2 Overview of Variable Initialization

C permits you to initialize certain variables when you declare them. Throughout this chap­
ter, we detail variable initialization for specific data types. Here in this section we provide
some general guidelines about initialization.

The following variables may not be initialized:

• Automatic structures, unions, and arrays

• Variables declared with the extern keyword

If you do not explicitly initialize a fixed variable, the run-time system initializes it to zero
for you. Members of fixed aggregate types not explicitly assigned an initalization value are
automatically initialized to zero. Automatic variables do not receive a default initialization.
If you do not explicitly initialize them, they will start with unpredictable values.

3-4 Data Types and Storage Classes

Fixed variables may be intialized only with constant expressions (defined in the "expres­
sions" listing of Chapter 4). Automatic scalar variables may be initialized with either con­
stant or non-constant expressions. If the data type of the initialization expression does not
match the data type of the variable, the expression is converted as if a normal assignment
were being made. For instance:

int global_int
int maine void
{

}

float f = 1;
char char int

1· , /* Fixed duration integer initalized to 1 */

/* Initialization value is converted to 1.0 */
global_int/2; /* Automatic integer initialized

* to 0 (after conversion).
*/

Scalar initializations may optionally include surrounding braces. That is,

int ;X = 1;

is the same as:

int x = {I};

In practice, however, braces are generally reserved for initialization of aggregate types.

3.2.1 Old-Style Initialization

Some older compilers permit initialization without the equal sign. For example.

int x 1;

is equivalent to the current:

int x = 1;

To support programs written for these early C compilers, the Domain C compiler accepts
the old-style initialization but issues a warning message. Do not use the old-style syntax for
programs you are writing now.

Data Types and Storage Classes 3-5

3.3 Integer Data Types

Integers come in three different sizes and can be either signed (the default) or unsigned.
With one exception, an integer declaration must include at least one of the type keywords:
unsigned, long, short, int, or char. (The one exception is that a global declaration that
does not contain a data type defaults to an int.) An integer declaration may also include
combinations of these keywords.

To declare an integer variable, simply specify the name of one of the integer data types
followed by the variable name. The following examples show all of the possible combina­
tions of integer variables:

int a' ,
long int b;
long c;

unsigned int d;
unsigned e' ,
unsigned long int f· ,
unsigned long g;

short h' ,
short int i;

unsigned short j;
unsigned short int k' ,

char m;
unsigned char n' ,

/* signed 32-bit integer */
/* same as int in Domain C */
/* same as int in Domain C*/

/* unsigned 32-bit integer
/* same as unsigned int */
/* same as unsigned int in
/* same as unsigned int in

/* signed 16-bit integer */
/* same as short */

*/

Domain
Domain

/* unsigned 16-bit integer */
/* same as unsigned short */

C */
C */

/* signed 8-bit integer in Domain C */
/* unsigned 8-bit integer */

The sizes of integer types are implementation-dependent. The K&R and ANSI standards
only require that a short be no larger than an int, and an int be no larger than a long.
Programs that depend on ints being 32 bits long, for example, may not be portable.

3.3.1 32-Bit Integers

You declare a signed 32-bit integer by specifying one of the following three data types:

• int

• long int

• long

Such variables can hold any integral value from -2147483648 (-Ox80000000) through
214748367 (Ox7FFFFFFF) inclusive.

3-6 Data Types and Storage Classes

You declare an unsigned 32-bit integer with any of the following data types:

• unsigned int

• unsigned

• unsigned long int

• unsigned long

Unsigned 32-bit variables hold values from 0 through 4295967295.

The Domain system stores 32-bit integers in four contiguous bytes as illustrated in Figure
3-3. The most significant bit in the integer is bit 31; the least significant bit is bit O. For
signed 32-bit integers, bit 31 holds the sign bit. Negative signed integers are stored in
two's-complement form.

31 (MSB) 16

Byte 0 Byte 1

Byte 2 Byte 3

15 o (LSB)
Figure 3-3. 32-Bit Integer Format

3.3.2 16-Bit Integers

You declare a signed 16-bit integer by specifying either of the following two data types:

• short

• short int

16-bit signed integer variables can hold any integral value from -32768 through +32767 in­
clusive.

Data Types and Storage Classes 3-7

You declare an unsigned 16-bit integer by specifying either of these two data types:

• unsigned short

• unsigned short int

Unsigned 16-bit variables can hold any value from 0 through 65535.

The Domain/OS system stores 16-bit integers in two contiguous bytes as illustrated in Fig­
ure 3-4. The most significant bit is bit 15; the least significant bit is bit O. Negative signed
integers are stored in two's-complement form. For signed 16-bit integers, bit 15 holds the
sign bit.

15 (MSB) a (LSB)
r--------B-yt-e-O--------~--------B-Y-te-1---------,1

Figure 3-4. 16-Bit Integer Format

3.3.3 8-Bit Integers (Character Data Type)

In C, the distinction between characters and numbers is blurred. There is a data type
called char, but it is really just a 1-byte integer value that can be used to hold either char­
acters or numbers.

Domain C supports two kinds of character data types-char and unsigned char. The char
data type holds signed 8-bit quantities ranging from -127 through +128. The unsigned
char data type holds unsigned 8-bit quantities ranging from 0 through 255. Since the AS­
CII values of characters range from 0 to 127, you can use either data type to hold key­
board characters.

Here are two sample character variable definitions:

char c1;
unsigned char c2;

After declaring cl as a char, you can make either of the following assignments:

c1 'A' ;
c1 65;

In both cases, the decimal value 65 is loaded into the variable c1 since 65 is the ASCII
code for the letter' A'. Note that character constants are enclosed in single quotes. The

3-8 Data Types and Storage Classes

quotes tell the compiler to get the numeric code value of the character. For instance, in
the following example, a gets the value 5, whereas b gets the value 53 since that is the AS­
CII code for the character '5'.

char a , b;
a = 5;
b = ~5~;

Figure 3-5 shows how the Domain/OS system stores character variables. If the variable is
an unsigned char, then bit 7 contains the most significant bit (MSB), and bit 0 contains
the least significant bit (LSB). If the variable is a char, then bit 7 contains the sign bit,
and bit 0 contains the least significant bit. char variables with a negative value are stored
in two's-complement form.

7 (MSB) 0 (LSB)

1"------I
Figure 3-5. Internal Representation of

Character Variables

3.3.4 Initializing Integer Variables

You may initialize integer variables with integer or floating-point values. If the initializa­
tion expression is a floating-point value, it is converted to an integer before being assigned.
If the variable has fixed duration, the initializer must be a constant expression. Here are a
few sample initializations:

{
int x 50000;
short int y x/2;
unsigned long int z x*y;
static int xx l. 5; /* converted to 1 */
char yy -20;
unsigned char zz 200;

See Section 3.2 for details on how storage class affects initialization. See Section 4.3 for
information about assignment conversions.

You can initialize character variables with integer or floating-point expressions. All of the
following, for example, are legal:

char zebra 'g'; /* a character enclosed in single quotes. */
char zebra 103; /* a small integer */
char zebra 0147;/* an octal integer */
char zebra '\147' /* a small integer preceded by a backs lash

* and enclosed in single quotes
*/

Data Types and Storage Classes 3-9

Interestingly, all four formats produce the same results. The character constant 'g' causes
the compiler to initialize zebra with the ASCII value of the letter g, which happens to be
103. By specifying the decimal integer value 103, we accomplish the same thing. The oc­
tal value 147 is also equal to 103. Finally, by preceding 147 with a backslash and enclos­
ing it in single quotes, we tell the compiler to treat it as an octal number.

3.3.5 Integer Overflow

An overflow condition occurs whenever a value is too large to be represented in the bits
allocated for it. Overflow for expressions containing unsigned objects is explicitly defined by
the K&R and ANSI standards. Overflow for signed expressions, however, is implementa­
tion-dependent. Domain C handles both cases identically.

When the Domain/OS system identifies an overflow condition, it truncates the most signifi­
cant bits (including the sign bit). When performing an operation on signed integers, an
overflow condition may cause an unexpected change of sign in the answer. When per­
forming an operation on unsigned integers, you can spot an overflow by recognizing an an­
swer that is much smaller than anticipated.

Consider the following example:

/* Program name is "int_overflow_example" */
#include <stdio.h>

int main(void)

{
short x OxFFFO;

unsigned short y OxFFFO;

printi("X %hd\n" , x) ;
printf("y %hd\n" , y) ;

}

The results are:

x -16
y 65520

In both cases, the same bit pattern results:

11111111 11110000

However, x is interpreted as a negative number whereas y is interpreted as a positive
value.

3-10 Data Types and Storage Classes

3.4 Floating-Point Data Types

Domain C supports three types, float, long float and double, for representing floating­
point values. The float type is a single-precision floating-point type and the double type
is double-precision. The long float type is a synonym for double (long float is an exten­
sion to the ANSI and K&R standards). You may not use the unsigned qualifier in a float­
ing-point declaration. Here are a few sample declarations:

float
double

long float

tiger;
giraffe;
elephant;

3.4.1 Single-Precision Floating-Point

Single-precision floating-point numbers (type float) occupy four contiguous bytes, as
shown in Figure 3-6. The range of a float is approximately -.29*1038 through 1.7*1038 .

It is accurate to approximately seven digits.

31 23 22 16

s Exponent + 127 Mantissa

Mantissa (continued)

15 o (LSB)
Figure 3-6. Single-Precision Floating-Point Format

The first bit (bit 31) is the sign bit. The sign bit is set (S=l) to denote a negative number,
and clear (S=O) to denote a positive number. The next eight bits contain the exponent plus
127. The following 23 bits contain the mantissa of the number without the leading 1. (The
mantissa is stored in magnitude, not two's-complement, form.)

The following example shows how Domain/OS stores the floating-point value +100.5. The
four bytes contain the bit pattern shown in Figure 3-7.

Data Types and Storage Classes 3-11

31 23 22 16

0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 o
Figure 3-7. Internal Representation of +100.5

Breaking up the number into sign, exponent, and mantissa gives us the following informa­
tion:

sign
exponent
significant part of mantissa

o (positive)
10000101 (133 in decimal)
1001001

The exponent is 133, and 133 is equal to 127 plus 6. Therefore, we view the mantissa bits
as follows:

bit 22 represents 25 * 1
bit 21 represents 24 * 0
bit 20 represents 23 * 0
bit 19 represents 22 * 1
bit 18 represents 21 * 0
bit 17 represents 20 * 0
bit 16 represents 2_1 * 1

The quantity 100.5 is equal to (26+ 25 + 22 + 2_1)

3.4.2 Double-Precision Floa ting-Point

Double-precision floating-point numbers (type double and long float) are represented in
eight bytes (64 bits). Figure 3-8 illustrates the format. A double has a range of approxi­
mately -10308 to 10308 and is accurate to approximately 16 decimal digits.

3-12 Data Types and Storage Classes

63 (MSB) 52 51 48

Sigr Exponent + 1023 Mantissa

Mantissa

Mantissa

Mantissa

o (LSB)
Figure 3-8. Double-Precision Floating-Point Format

The first bit of the first word is the sign bit. The next 11 bits contain the exponent plus
1023. The remaining 52 bits hold the mantissa without the leading 1. (The mantissa is
stored in magnitude form, not in two's-complement form.)

3.4.3 Initializing Floating-Point Variables

You may initialize floating-point variables with either integer or floating-point data. The
data is converted to the variable's type as if a normal assignment were being made. For
example:

float
double
float

guava
pi
z

3.2;
3.1415926535;
5;

Data Types and Storage Classes 3-13

3.5 Enumerated Data Types

An enumerated data type consists of an ordered group of identifiers. Enumeration types
are particularly useful when you want to create a unique set of values that may be associ­
ated with a variable. The compiler reports a warning if you attempt to assign a value that's
not part of the declared set of legal values to an enum variable. The possible formats of
enumerated declarations are as follows:

enum

enum [taLname] {idl [=val] [{, idN [=val]}]} variable_namel

[{, variable_nameN}]

That is, to declare an enumerated variable, you must specify the keyword enum followed
by an optional tag_name. The tag_name is not the name of the variable; rather it is the
name of the enumerated type that you are declaring. After the optional tag_name, you
optionally specify a list of identifiers separated by commas. This list of identifiers must be
enclosed in braces. Each identifier may be followed by an optional constant expression
that assigns a value to the enumeration constant. If no value is specified, the enumeration
constant is assigned a value one greater than the value assigned to the previous enumera­
tion constant in the list. If no values are specified for the entire list, the numbering begins
at zero. Following the optional list of identifiers, you can optionally specify one or more
variable_names. A tag name cannot be used by itself; it must be preceded by the keyword
enum; for example, compare the right and wrong ways to use the tag name forest:

enum forest {maple, pine, fir} nordic;
forest southern; /* wrong */

enum forest alpine; /* right */

Here are five sample enumerated declarations:

/* These two declarations have a tag name and a variable name. */
enum citrus {lemon, lime, orange, carambola, grapefruit} c_fruits;
enum beatles {John, Paul, George, Ringo} beatles_members;

/* This declaration has a tag name and two variable names. */
enum color { red , blue , yellow} used, not_used;

/* This declaration has a variable name, but no tag name. */
enum {one, two, three} cardinal_numbers;

/* This declaration has a tag name, but no variable name. */
enum ordinal_numbers {first, second, third};

3-14 Data Types and Storage Classes

Consider the third declaration. It declares an enumerated type called color with possible
values of red, blue, and yellow. Two variables, used and not_used, are defined to
have thi~ type. Therefore, variables used and not_used can have the values red, blue,
or yellow. For example, you can make these assignments

used = red;
not_used = yellow;
used = not_used;

but you cannot make this assignment:

used = orange; /* ILLEGAL: orange is not a value of color */

Because enumeration types are stored as integers, it is possible to assign integer values to
an enumeration variable. However, the Domain C compiler will issue a warning message
when it encounters such usages. For example, the assignment,

would produce the following warning message:

******** Line 6: [Warning #205] Enumeration type clash [not_used,
5] to the = operator.

You can avoid this warning by casting the integer expression to the enumeration type:

not_used = (enum color) 5;

For details on how you can use enumerated variables within statements, see the "enumer­
ated operations" listing in Chapter 4.

3.5.1 The Values of Enumerated Constants

Enumerated constants are the list of possible identifiers that an identifier can have. For
example, the enumerated constants for variables used and not_used are red, blue, and
yellow. The Domain C compiler automatically associates an integer value with each enu­
merated constant. By default, the integer values of enumerated constants start at zero and
increment by one with each constant. For example, in the declaration of tag name color,
the compiler assigns red=O, blue=1 and yellow=2. Therefore:

(yellow > red)
(yellow == red)

/* evaluates to 1 (true) */
/* evaluates to 0 (false) */

Data Types and Storage Classes 3-15

You can override this numbering scheme by explicitly assigning a number to one or more
enumerated constants. For instance, the following initializations

enum fruits {apple=3, pear=1, orange, banana, melon=(-l)};

result in the following integer representations:

apple 3
pear 1
orange 2
banana 3
melon -1

You can specify the values in any order and you do not have to supply consecutive integer
values. If you do not explicitly assign an integer value, the system assigns a value by add­
ing one to the previous constant's value. In our example, this means that both apple and
banana have a value of 3. This is perfectly legal and means, in effect, that apple and ba­
nana are synonyms.

Some compilers allow previously defined enum constants to be used in the initializing ex­
pression, as in:

enum vegetables {carrots=1, celery=carrots+2};

However, the Domain C compiler does not allow this syntax.

Since enumerated constants have an explicit or implicit value, you can use an enumerated
constant in place of an integer to subscript an array. For example:

{

}

enum {part_number=O, order_number, quantity} num;
int part [1000] [2] ;

part [0] [part_number] = 1357;
part[O] [order_number] = 22567;
part [0] [quantity] = 370;

/* assign part [0] [0] */
/* assign part [0] [1] */
/* assign part [0] [2] */

3-16 Data Types and Storage Classes

3.5.2 Initializing Enumerated Variables

You can initialize an enumerated variable when you define it; for example:

enum citrus { lemon, lime, orange, carambola, grapefruit}
c_fruits = lime;

enum beatles {John, Paul, George, Ringo} beatles_members John;
enum eurofrancophones {France, Suisse, Belgique} la_langue

Belgique;
enum color { red , blue , yellow} used = red, not_used = yellow;

If the enumerated type has dynamic duration, it may also be initialized by a previously de­
clared variable with the same enumerated type. The following lines, for instance, initialize
color to blue, hue to red, and shade to red:

{
static enum rainbow {red, blue, green} color = blue, hue = red;
enum rainbow shade = hue; /* Automatic variable initialized

}

Sized enums - Domain Extension 3.5.3

* with previously declared
* variable.
*/

By default, the Domain C compiler allocates four bytes for all enumeration variables.
However, if you know that the range values being assigned to an enum variable is small,
you can direct the compiler to allocate only two bytes by using the short type specifier.
You can also use the long type specifier to indicate four-byte enums even though this is
the default. For example:

enum default_enum { ERR1, ERR2, ERR3, ERR4 }; /* four-byte enum
* type */

long big_enum { STO, ST1, ST2, ST3 }; /* four-byte enum type */
short enum small_enum { cats, dogs }; /* two-byte enum type */

When mixed in expressions, enums behave exactly like their similarly sized integer counter­
parts. That is, an enum behaves like an int, a long enum acts like a long int, and a
short enum acts like a short into Note, however, that you will receive a warning message
when you mix enum variables or constants with integer or floating-point types, or with dif­
ferently typed enums.

Data Types and Storage Classes 3-17

3.6 The void Data Type

Domain C supports the void data type, which has become a common feature of modern C
compilers. The void type is not a data type in the traditional sense. You cannot declare
a simple variable as being void; for instance, a declaration like the following will cause an
error:

void x' ,

The void data type has three important purposes. The first is to indicate that a function
does not return a value. For instance, you can write a function definition such as:

void func(a, b
int a, b;
{

}

This indicates that the function does not return any useful value. Likewise, on the calling
side, you would declare funcO as:

extern void func();

This informs the compiler that any attempt to use the returned value from funeO is a mis­
take and should be flagged as an error. For example, you could invoke funeO as follows:

func(x, y);

But you cannot assign the returned value to a variable:

num = func(x, y); /* This should produce an
* error
*/

In situations where the function returns an actual value that you want to ignore, you c'an
use void in a cast operation. In the following example, for instance, function
print_line_rtn returns an integer error code, but we explicitly discard the returned value
through a cast:

3-18 Data Types and Storage Classes

/* Program name is "void_example2" */
#include <stdio.h>
#include <string.h>

int print_line(char *string
{

}

if (strlen(string) > 80)

return -1;
else
{

}

printf("%s\n",string);
return 1;

int main(void
{

/* If line is too long, return
* error */

char *string "This is an example of a void function";

(void) print_line (string);
}

In the preceding example, the void cast is not required since the context makes it clear
that the value returned by the function should be discarded. Nevertheless, the void cast
enables you to make this explicit. You cannot use in any wayan object that has been cast
to void. That is, you cannot cast it to another type, you cannot pass it as an argument,
and you cannot assign it to a variable.

Another purpose of void is to declare a function that takes no arguments. This is de­
scribed in Section 5.4, which discusses prototypes.

Finally, the void type allows you to create generic pointers, as described in Section 3.7.3.

3.7 Pointer Data Types

The C language allows you to create a pointer to an object of any type. To declare a
pointer variable, precede the pointer variable name with an asterisk (*). The following
statements show some examples of pointer declarations.

Data Types and Storage Classes 3-19

/* ip is a pointer to an into */
/* chp is a pointer to a char. */

int *ip;
char *chp;
char *cp[];
float *fp () ;

/* cp is an array of pointers to chars. */
/* fp is a function that returns a pointer

* to a float.
*/

float (*pfp)();/* pfp is a pointer to a funtion that returns a
* float.
*/

short **cpp; /* cpp is a pointer to a pointer to a short. */

In the fifth declaration, we need to use parentheses to achieve correct binding. The rules
for composing complex declarations such as this one are described in Section 3.11.

For details on using pointers in the action part of your program, see the "pointer opera­
tions" listing of Chapter 4.

3.7.1 Internal Representation of Pointers

Domain C stores pointers in the 32-bit structure shown in Figure 3-9.

31 16

Address (most significant part)

Address (least significant part)

15 o
Figure 3-9. Pointer Variable Format

3.7.2 Initializing Pointers

You can initialize pointer variables with pointer expressions or with the constant zero (0).
If the pointer variable has automatic duration, any pointer expression is legal. If the vari­
able has fixed duration, the expression must be a pointer constant. Initialization with zero
produces a null pointer. Due to dynamic conversions, it is possible to initialize a pointer
with a function name, array name, string constant, or address of an object. The following
examples show a variety of ways to initialize pointers.

3-20 Data Types and Storage Classes

float *null_point = 0;
int i, *pi = &i;

/* Null Pointer */
/* Address of i */

static char *string="string";
float array[5] , *pa = array;

/* Pointer to "string" */
/* Pointer to beginning of array

*/
float *pal = array+2; /* Pointer to third element of array */

extern void f();
void (*pf) () = f;
int *p_absolute

3.7.3 Generic Pointers

/* Define a function named f */
/* Initialize pf to point to f */

(int *) OxFFAABB12; /* Pointer to absolute
* address
*/

In accordance with the ANSI standard, the Domain C compiler now allows you to create a
generic pointer variable by declaring a pointer to void:

void *genp; /* genp is a generic pointer */

A generic pointer can be cast to any other pointer type. Moreover, a generic pointer is
implicitly converted to the destination type when it is assigned a pointer value or is as­
signed to a pointer variable. When a generic pointer is compared to a pointer of another
type, it is implicitly converted to the other pointer type. For example:

char *cp;
float *fp;
void * genp;

genp cp; /* genp is implicitly converted to pointer to char.
*/

fp = genp; /* genp is implicitly converted to pointer to
* float.

if (cp
*/

genp) /* genp is implicitly converted to pointer to
* char.
*/

It is illegal to dereference a generic pointer without first casting it to a valid pointer type.

float f = 2.0;
void *genp;

genp = &f; /* ok */
f *genp; /* ILLEGAL * /
f = *(float *)genp; /* ok */

Generic pointers are particularly useful for functions that can return pointers to different
types of objects. The classic example is mallocO, which dynamically allocates memory for

Data Types and Storage Classes 3-21

different types of objects. Traditionally, mallocO returns a pointer to char, which must
then be cast to the appropriate pointer type. For example:

struct S {

}

char str [10] ;
int val;

int main(void
{

extern char *malloc();
struct S *ps;

/* cast returned value to pointer to struct s. */
ps = (struct S *) malloc(sizeof(struct S));

}

By redefining mallocO to return a pointer to void rather than a pointer to char, you can
avoid casting the returned value because it will be implicitly converted:

struct S {

}

char str[lO];
int val;

int main(void
{

extern void *malloc();
struct S *ps;

/* returned value is implicitly converted to type of ps. */
ps = malloc(sizeof(struct S));

}

3.8 Structure and Union Data Types

Because structures and unions obey most of the same syntactic rules, we describe them to­
gether.

A structure is an object that contains other objects. It is similar to a fixed record in Pas­
cal. The objects within a structure, called members or components, are usually named
and can be of any data type, including other structures, unions, or arrays. For instance, a
structure might contain an int, a float, and a char as members. A bit field is a special
member that takes up from 1 to 32 bits of memory.

A union is similar to a structure, but instead of holding all of the members at once, it can
hold only one at a time because each member has its storage allocated at the same ad­
dress. It is similar to a variant record in Pascal. The compiler makes sure that enough
space is allocated to hold the largest member.

3-22 Data Types and Storage Classes

For details on using structures and unions in statements, see the "structure and union op­
erations" listing in Chapter 4.

3.8.1 Declaring a Structure or Union

The only difference between declaring a structure and a union is in the keywords struct
and union.

There are four basic types of structure and union declarations:

1. No tag name-If you do not specify a tag name, you should declare at least one
variable. For instance, the following declares a structure variable called struct_ex­
ample, which is a structure with three members:

struct { int member_one;
float member_two;
char member_three;

} struct_example;

2. Tag name and member declaration(s), but no variable name(s)-This defines a
name that can be used in place of the full structure specification in future declara­
tions. For instance, after declaring

struct 81 {int i; float f;};

you can declare:

struct 81 X,Y;

which declares x and y to be structures containing an int member named i and a
float member named f.

3. Tag name, member declaration(s), and variable name(s)-This type of declaration
serves two purposes: it defines a tag name that can be used in subsequent declara­
tions, and it declares specific variables. For example,

union U char ch[8];
int i;
u1, u2, u3;

defines a type called U, and three variables-ul, u2, and u3-that have this
type.

4. Tag name and variable name(s), but no member declarations-This form of decla­
ration may only be used if you have already defined the tag name. For example,
after making the preceding declaration, we could write:

union U u4;

Data Types and Storage Classes 3-23

This would define another variable, u4, with type U. Note that you cannot use
the tag name by itself; it must be preceded by the keyword union or struct.

Tag names and member names are distinct from each other and from variable names so
that a tag and a variable and a member may all have the same name without a conflict
arising. The following, for example, is a legal declaration:

struct x { int x;};
char x;

The compiler will not confuse the three x's: their usage in the code makes it clear which
one is being referenced.

A structure or union may not contain instances of itself, but it may contain pointers to it­
self. For example:

struct S { int a,b;
float c;

/* struct S d; THIS IS ILLEGAL! */
struct S *d; /* This is legal */

} ;

It is possible to create structures and unions that reference each other as shown in the fol­
lowing example:

union VI { int a;
union V2 *b;

} ;

union V2 { int a;
union Ul *b;

} ;

Each union contains an integer as the first component and a pointer to the other union as
the second component. Note that it is possible to declare a pointer to U2 before U2 is
ever declared. This is one of the few situations in the C language where you may use an
identifier before it has been declared.

3.8.2 Internal Representation of Structures

Each member of a structure takes up the same amount of space that it would require if it
were an unattached variable rather than a member of a structure. For instance, an int re­
quires 32 bits whether it is used as a scalar variable or used as a member of a structure.
The boundary alignment rules are somewhat different, however, as explained in the next
section.

3.B.2.1 Alignment of Structure Members

The alignment of an object identifies the set of legal addresses at which that object can be
allocated. Objects that are byte-aligned can be allocated anywhere; objects that are

3-24 Data Types and Storage Classes

word-aligned can only be allocated at even addresses; objects that are longword-aligned
can only be allocated at addresses that are evenly divisible by four.

Natural alignment means that an object's address is evenly divisible by its size. For ex­
ample, a naturally aligned 4-byte object begins at an address that is evenly divisible by 4,
and a naturally aligned 8-byte object begins at an address that is evenly divisible by 8. In
general, natural alignment produces faster executable code, although the efficiency savings
vary a great deal from one processor to another. Code for the 68000 family of processors
runs slightly faster if objects are naturally aligned.

By default, all scalar objects are naturally aligned. The rules for structures and unions,
and for structure and union members, however, are somewhat different. This section de­
scribes the default rules.

NOTE: The rules described in this section do not apply to bit fields.
See Section 3.8.4 for information about the alignment of bit
fields.

Alignment rules affect two properties of structures:

• How members are laid out in the record (that is, whether padding is inserted be­
tween members).

• How memory for the entire record is allocated.

3.8.2.2 Layout of Structure Members

The compiler lays out structure members based on word alignment rules. According to
word alignment rules, all objects longer than a byte must be aligned on shortword
boundaries (even addresses). chars may be aligned on odd or even addresses.

As illustrated in the following examples, the default alignment rules can produce padding
(also called "holes" or "gaps") in a structure, but the padding is never larger than one
byte. Consider the following structure:

typedef struct { long int a;
char b;
short c;

} S1;

Figure 3-10 shows how the members are laid out. Note that there is a byte of padding in­
serted after b to ensure that c is aligned on a word boundary.

Data Types and Storage Classes 3-25

... 1 word

a

b

c

Figure 3-10. Default Layout of Structure S1

The total size of a structure must be an even multiple of two bytes. This rule can result in
padding at the end of a structure. (This rule also means that the smallest possible struc­
ture is 16 bits.) Figure 3-11 shows the layout of a structure that contains a gap in the
middle and a gap at the end as a result of the default alignment rules.

typedef struct { char c1;
short sl;
char c2;

} S2;

...
c1

c2
s1

Figure 3-11. Layout of Structure S2

3-26 Data Types and Storage Classes

3.8.2.3 Memory Allocation of Structures

Structures are always allocated on even addresses (word boundaries). In addition, they
may be allocated on even larger boundaries if that allocation will produce natural alignment
for some of the structure's members. The actual algorithm used by the compiler to decide
how to allocate structures is somewhat complex. The general steps are as follows:

1. As the compiler lays out members, it assumes that the starting address of the
structure is zero.

2. The compiler then notes which members are naturally aligned.

3. After all the members have been laid out, the compiler looks for the largest mem­
ber that is naturally aligned. The compiler then allocates the entire structure on a
boundary that matches the natural alignment for this member.

These rules will be clearer if we show how they work for a couple of examples. Consider
the following structure type:

typede£ struct { float a;
char b;
short c;
S3;

The layout for this structure is shown in Figure 3-12.

1 word
o

2 a

4 b
6 c

Figure 3-12. Naturally Aligned Structure S3 with 1-byte Padding

The compiler lays out the members according to word alignment rules, and assumes that
the structure begins at address zero. For this structure, the alignment rules produce a lay­
out in which all elements are naturally aligned. (Any member that starts at address zero is
naturally aligned.) The compiler then searches for the largest member that is naturally
aligned, which is a. The natural alignment of a is longword; therefore, structures of type
S3 will be allocated on longword boundaries.

Data Types and Storage Classes 3-27

Consider a second example:

typedef struct { short a;
float b;

} 84;

The layout is shown in Figure 3-13. In this case, a is naturally aligned, but b is not natu­
rally aligned (because the address 2 is not evenly divisible by b's size, which is 4). There­
fore, the compiler uses the natural alignment of a (word alignment) to allocate structures
of type S4.

1 word
a

2

4 b

Figure 3-13. Layout of S2 Using Word Alignment Rules

You can usually guarantee that all members of a structure will be naturally aligned by ar­
ranging the members in descending order of size. This technique will always work if all
the members are scalar objects. This technique may not work if one or more of the struc­
ture members is an aggregate. Arranging members in decreasing order of size also guaran­
tees that there will be no padding between structure members. (There might still be a byte
of padding at the end of the structure to make it an even number of bytes.)

In some instances, a structure that would normally be allocated on a longword or quad­
word boundary receives a different allocation because the structure is part of a larger ag­
gregate type (such as a structure or array). For example, consider the declaration of Sl:

typedef struct long int x;
short y;
81;

The compiler can guarantee that an individual structure of type Sl will be allocated on a
longword boundary (so that x and y will be naturally aligned), but if you declare an array
of Sl structures, only half of them will be aligned on longword boundaries

Figure 3-14 shows the layout of an array of three S1 structures. Note that the second ele­
ment is aligned on a shortword boundary, not a longword boundary.

3-28 Data Types and Storage Classes

longword __ ~ 1 word
boundary

shortwor<L-
boundary a
longword __
boundary

shortwor<L-
boundary

longword __
boundary

shortwor<L-
boundary

longword __
boundary

shortwor<L-
boundary

longword __
boundary

shortwor<L-
boundary

Figure 3-14. Array of S1 Structures, Not Naturally Aligned

To ensure that all elements of a_oCSl [] are naturally aligned, you would need to insert
an additional word of padding at the end of 81. You could do this explicitly, as shown in
the following declaration:

typedef struct { long int x;
short y;
short padding;

} 81;

3.8.3 Internal Representation of Unions

Unions are similar to structures except that the members are overlaid one on top of an­
other, so members share the same memory. For example, the following declaration results
in the storage shown in Figure 3-15.

Data Types and Storage Classes 3-29

typedef union
{

struct
{

char cl, c2;
} s;
long j;
float X' ,

} U;

U example;

1000 1001 1002

Figure 3-15. Example of Union Memory Storage

The compiler always allocates enough memory to hold the largest member and all members
begin at the same address. The union is aligned so that the largest member is naturally
aligned. The data stored in a union depends on which union member you use. For ex­
ample, the assignments,

example.s.cl 'a';
example.s.c2 'b';

would result in the storage shown in Figure 3-16.

1000 1001 1002 1003

'a' 'b'

Figure 3-16. Storage in Union example After Assignment

But if you make the assignment,

example.j = 5;

it would overwrite the two characters, using all four bytes to store the integer value 5.

3-30 Data Types and Storage Classes

3.8.4 Bit Fields in Structures and Unions

Structures and unions can contain members known as bit fields that consist of a specified
number of bits. Bit fields allow you to name groups of 1 to 32 bits. Bit fields are a useful
construct when space is at a premium, or when you need to map an object onto a
predefined structure, such as a device register.

The syntax for declaring a bit field is shown in Figure 3-17.

---1· .. 1 ~;;: 1----.L-~~~b-_i~-_a-f_i~-_I-~~~~~p---.,-----I 0-1L-...-b-it-'9_n_9_th_-lr

Figure 3-17. Syntax of Bit Field Declarations

Bit fields are always of type unsigned int. If you declare them as int, the compiler auto­
matically converts them to unsigned int.

Bit fields may be named or unnamed. Unnamed fields cannot be accessed and are used
only as padding. As a special case, an unnamed bit field with a width of zero causes the
next structure member to be aligned on the next shortword boundary.

The bit length is an integer constant expression that may not exceed the length of an int
(32 bits with Domain C).

The compiler assigns bit fields from left to right. The first field starts on a word boundary.
After the first field, if the exact number of bits required for the next field crosses only one
or zero shortword boundaries, the field starts in the next free bit.· If the field would have
to cross two shortword boundaries, it starts at the next shortword boundary.

You cannot declare an array of bit fields, and you may not take the address of a bit field
(even if it starts on a byte).

For example, given the following declaration of structure s1,

struct { char a' ,
int b : 3,

5; /* unnamed 5-bit field padding. */
unsigned int c : 2,

d : 11,

0;
float e;

} sl;

Data Types and Storage Classes 3-31

Figure 3-18 shows how Domain C represents 51:

15 14 13 8 7 5 4 o

a b

c d

e

e

Figure 3-18. Sample Bit-Field Alignment in a Structure

3.8.5 struct and union Name Spaces

Domain C, like most recent C compilers, creates a separate overloading class for each
structure and union, so that two or more structures or unions can have components with
the same name. (This is consistent with the ANSI standard although it is an extension to
the K&R standard.) The following declarations. for example, are legal in Domain C.

{
struct first { i' , int

float x;
} first_struct;

/* struct second has its own overloading class so it may also
* contain the member names x and i.
*/
struct second x' . char

double i;
} second_struct;

Some older compilers may require that all names be unique. The only restriction that Do­
main C imposes on member names is that two members of the same structure or union
cannot have the same name.

3-32 Data Types and Storage Classes

3.8.6 Initializing Structures

You can only initialize structures that have fixed duration; structures with automatic dura­
tion cannot be initialized. (This is consistent with the K&R standard but not with the ANSI
standard.) To initialize a structure, put the values of the members inside braces; for exam­
ple:

static struct st2 { char c;
int i;

} two = {'f', 4};

The preceding initialization sets member two.c to 'f' and two.i to 4.

There may not be more initialization values than there are members in the structure. If
there are fewer initialization values than members, the remaining members are initialized to
zero (0).

If a structure contains another structure nested within it, the innermost members may be
initialized by enclosing them in nested braces. For instance,

static struct { char a,b,c,d;
struct {float f;

double df;
} inner;

} outer = {'x', 'y', 'm', 'a', { 1.0 , 100.0 } };

results in the following initializations:

outer.a ' x'
outer.b 'y"

outer.c 'm'
outer.d ' a'
outer.inner.f = 1.0
outer.inner.df = 100.0

Note that the inner braces help program readability; however, if we had not used inner
braces in the example, we still would have obtained the same results.

3.8.7 Initializing Unions

The Domain C compiler allows unions with fixed duration to be initialized by assigning the
initialization value to the first union component. (This is consistent with the ANSI stan­
dard but is an extension to the K&R standard.) For example:

{

}

union init_example { int i;
float f;

}; static union init_example test {1};
/* Assigns 1 to test.i */

Data Types and Storage Classes 3-33

If you supply more than one initial value, then the last value is the only one that matters.
For example, the compiler ignores the values 5 and 'a' in the following declaration:

union { int i;
char a;
float f;

} weird = { 5, 'a', 2.3 };

If the first component of a union is a structure, the entire structure may be initialized as
in:

union U { struct { int i;
float f;

} S;
char ch[6];

} ;
static union U test2 = { 1 , 1.0 };
/* Assigns 1 to test2.S.i and 1.0 to test2.S.f */

Note, however, that if a union contains inner unions, the last inner union is the one that
gets directly initialized. For instance, in the following example, outer.inner2.a2 is directly
initialized, not outer.inner1.al. Note, however, that outer.inner1.al is indirectly (and
probably incorrectly) initialized.

union { union { int aI;
int bI;

} innerI;

union { char a2;
int b2;
inner2;

} outer {' b'} ;

See the beginning of this chapter for details on how storage class affects initialization.

3-34 Data Types and Storage Classes

3.9 Arrays

An array is a collection of identically typed variables stored contiguously in virtual memory.
Each element of an array is accessed individually. The syntax for declaring an array is
shown in Figure 3-19.

type
specifier

initializer

Figure 3-19. Syntax of an Array Declaration

The type specifier is any previously declared Domain C data type except void and "func­
tion returning ... ". The array name is any identifier. The array size is an optional ele­
ment, but if you do include it, it must be a positive integral expression. Here are some
sample array declarations:

int x [5] ; /* A 5-element array of ints. */
float farray[7] ; /* A 7-element array of floats. */
char st [50] ; /* A 50-element array of chars. */
short *y [10] ; /* A 10-element array of pointers to

* shorts. */
float (*pf[100])();/* A 100-element array of pointers to

* functions that return floats. */

In the final example we needed to use parentheses to achieve correct binding. The compo­
sition of complex declarations such as this one is discussed in Section 3.11.

In C, arrays start at element 0, so the highest subscript is one less than the array's size.
For example, an array declared as

char x [3] ;

contains three elements that can be referenced by x[O], x[l], and x[2].

Data Types and Storage Classes 3-35

3.9.1 Omitting the Array Size

It is optional to specify explicitly the array size under any of the following conditions:

• When you specify initial values for the array. (This is described in Section 3.9.2)

• When you declare an array with the extern storage class specifier. If you do omit
the array size, then the size of the array is determined by a global declaration of
this array (in another file).

• When the array is a function parameter.

3.9.2 Initializing Arrays

Only arrays with fixed duration may be initialized. To initialize an array when you declare
it, enter the initialization values separated by commas and enclosed in braces; for example:

static float quatre[4] = {-1.2, 3.8, -6.3, 10.3 };

If the initialization values do not match the data type of the array, the values are con­
verted. For instance, the following line initializes all elements of a to 1.

static int a[4] = { 1, 3/2, 7-6, 1 };

If an initializer does not contain enough values to initialize all the elements of an array, C
initializes the remaining elements to zero. For instance, in the following example, elements
a[O], a[l], and a[2] are initalized to 1, 2, and 3, and elements a[3] and a[4] are initial­
ized to 0:

static int a[5] = { I, 2, 3 };

If an initializer contains too many initalization values, an error occurs.

Note that you can also use array initialization to establish the size of the array. In such a
case, the compiler sets the size of the array so that it is just large enough to hold all the
initial values. This technique is frequently used for declaring arrays of type char initialized
with a string constant. For instance, the following three declarations are equivalent:

static char string[] = "Example";
static char string[8] = "Example";
static char string[] = {'E','x','a','m','p','l','e','\O'};

Similarly, arrays of pointers may be initialized with string constants. For instance:

static char *str[3] = {"first string" , "second string" ,
"third string"};

3-36 Data Types and Storage Classes

3.9.3 Multidimensional Arrays

An array of arrays is a multidimensional array and is declared with consecutive pairs of
brackets. For instance:

/* In the following, x is a 3-element array of
* 5-element arrays.
*/

int x[3] [5] ;

/* In the following, x is a 3-element array of
* 4-element arrays of 5-element arrays.
*/

char x [3] [4] [5] ;

Although a multidimensional array is stored as a 1-dimensional sequence of elements, you
can treat it as an array of arrays. For example, consider the following 5x5 "magic
square." It is called magic because the rows, columns, and diagonals all have the same
sum.

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

Figure 3-20. Magic Square

To store this square in an array, we could make the following declaration:

static int magic[5] [5] = { {17 24 1
,

8 15 } , , , ,
{23 , 5 , 7 , 14 , 16 },
{ 4 , 6 13 , 20 , 22 } ,
{10 , 12 19 , 21 , 3 } ,
{ll , 18 , 25 , 2 9 }

} ;

Data Types and Storage Classes 3-37

3.9.3.1 Initializing Multidimensional Arrays

When initializing a multidimensional array, you may enclose each row in braces. If there
are too few initializers, the extra elements in the row are initialized to zero. Consider the
following example:

static int examp[5] [3] { {
{
{

} ;

1,2 3},
4 },
5 , 6 , 7

This example declares an array with five rows and three columns, but only the first three
rows are initialized, and only the first element of the second row is initialized. Pictorially,
this declaration produces the following array:

1 2 3
4 0 0
5 6 7
0 0 0
0 0 0

If we do not include the inner brackets, as in:

static int examp[5] [3] = { 1 2 3

the result is:

123
456
700
000
000

} ;

4
5 , 6 , 7

Obviously, the initializer in this example is very misleading. To enhance readability and
clarity, you should always enclose each row of initializers in its own set of braces, as we
did in the first example.

As with a single-dimension array, if you omit the size specification of a multidimensional
array, the compiler automatically determines the size based on the number of initializers
present. In the case of multidimensional arrays, however, it is important to remember that
you are really declaring an array of arrays. That is, you are declaring an array where each
element is itself an array. While you may omit the number of elements in the array you
are declaring, you must tell the compiler the size of each element. From a syntactic point
of view, this means that you may omit only the first size specification, but you must specify
the other sizes. For example,

static int a_ar [] [2] [2]

3-38 Data Types and Storage Classes

{{{l, I},
{l, I}},

{{I, I},
{I, I}}};

results in a 2-by-2-by-2 cubic array because there are eight initializers. Each element in
the array a_ar is itself a 2-by-2 array. If we added another initializer, the compiler would
allocate space for a 3-by-2-by-2 array, initializing the extra elements to zero. The follow­
ing declaration is illegal because the compiler has no way of knowing what shape the array
should be:

/* ILLEGAL */
static int b_ar[] [] = { 1, 2, 3, 4, 5, 6 };

Should the compiler create a 2-by-3 array or a 3-by-2 array? There's no way to tell.
However, if you specify the size of each element, the declaration becomes unambiguous.

You can initialize arrays of structures and unions in the same manner as multidimensional
arrays. For instance:

static struct { int i;
float f;

} S[3] = { {1 , 1.0},
{2 , 2.0},
{3 , 3.0}

} ;

Please see the beginning of this chapter for details on how storage class restricts initializa­
tion.

3.9.4 Storage of Arrays

The base type of the array establishes its storage allocation. Every element occupies the
same amount of space. Each element of a 16-bit (short) integer array occupies two bytes;
each element of a character (char) array occupies one byte; and so forth. The total
amount of space that an array uses is equal to the size of the base type multiplied by the
number of elements in the array.

For an array of structures or unions, each element is aligned on word boundaries. If it is
an array of scalar types, the alignment of elements is the same as the alignment of the sca­
lar type.

An array of arrays is a multidimensional array. Multidimensional arrays are stored in
row-major order, which means that the last subscript varies fastest. For example, the ar­
ray declared as

int ar[2] [3]={ { 0, 1, 2 },
{ 3, 4, 5 }

} ;

is stored as shown in Figure 3-21.

Data Types and Storage Classes 3-39

Memory

Element Address Contents
(in hex)

arlO] [0] 1000

arlO] [1] 1004

arlO] [2] 1008

ar[1] [0] 100C

ar[1] [1] 1010

ar[1] [2] 1014

1018

Figure 3-21. Storage of a Multidimensional Array

3.9.5 Strings

A string is an array of characters terminated by a null character. A null character is a
character with a numeric value of zero. It is represented in C by the escape sequence:
'\0'. String literals may not be longer than 4095 characters.

To store a string in memory, you need to declare an array of type char. You may initialize
an array of chars with a string constant. For example:

static char str[] = "some text";

The array is one element longer than the number of characters in the string to accommo­
date the trailing null character. str [], therefore, is ten characters in length. If you specify
an array size, you must allocate enough characters to hold the string. In the following ex­
ample, for instance, the first four elements are initialized with the characters 'y', 'e', 's',
and '\0'. The remaining six elements receive the default initial value of zero:

static char str[lO] = "yes";

The following statement, however, is illegal:

static char str[3] = "four"; /* illegal */

3-40 Data Types and Storage Classes

Note also that you should allocate enough space for the trailing null character, so the fol­
lowing, though legal, is probably not incorrect and will result in a compiler warning:

static char str[4] = "four"; /* illegal */

You may also initialize a char pointer with a string constant. The declaration,

char *ptr = "more text";

also creates an array of characters initialized with "more text", but it is subtly different
from the preceding declaration. Both declarations allocate the same amount of storage for
the string and initialize the memory locations with the same values, but the pointer declara­
tion creates an additional 4-byte variable for the pointer.

3.10 Abstract Declarators

A declarator is the part of a declaration that does not include a storage class or initializer.
An abstract declarator is the part of the declarator that does not include the variable
name. For instance, in the declaration,

static char *p="test";

the declarator is:

char *p

and the abstract declarator is:

char *

There are two situations where a declarator is used without a variable name: in a cast op­
eration and in a sizeof operation. The declarator in these cases obeys all the rules dis­
cussed in the previous section, except that the variable name is absent. For example,

x = (int *[]) y;

casts y to be an array of pointers to ints. Since the pointer operator always appears to the
left of the variable name and the array and function operators appear to the right, there is
never any ambiguity about where the variable name would be placed if it were a true dec­
laration. To compose or decompose an abstract declarator, follow the rules discussed in
Section 3.11.

Data Types and Storage Classes 3-41

3.11 Complex Declarations

Declarations in C have a tendency to become complex, making it difficult to determine ex­
actly what is being declared. The following declaration, for instance, declares x to be a
pointer to a function returning a pointer to a 5-element array of pointers to iots:

int * (* (*x) (» [5] ;

One way to avoid complex declarations such as this one is to create intermediate typedefs,
as shown below:

typedef int *AP[5]; /* 5-element array of pointers
* to ints.
*/

typedef AP *FP(); /* Function returning pointer to
* 5-element array of pointers
* to ints.
*/

FP *x /* Pointer to function returning
* pointer to 5-element array of
* pointers to ints.
*/

The main reason that complex declarations look so forbidding in C is that the pointer op­
erator is a prefix operator, whereas the array and function operators are postfix opera­
tors. As a result, the variable becomes sandwiched between operators. To compose and
decipher complex declarations, you must proceed inside-out, adding asterisks to the left of
the variable name, and parentheses and brackets to the right of the variable name. It is
also important to remember the following three binding and precedence rules:

1. The array operator [] and function operator 0 have a higher precedence than
the pointer operator (*).

2. The array and function operators group from left to right, whereas the pointer op­
erator groups from right to left.

3. Parentheses that are not used to denote a function can alter the grouping rules of
de clara tors as they do for expressions.

See Section 4.2.12 for more information about precedence.

3-42 Data Types and Storage Classes

3.11.1 Deciphering Complex Declarations

The best strategy for deciphering a declaration is to start with the variable name by itself
and then add each part of the declaration, starting with the operators that are closest to
the variable name. In the absence of parentheses to affect binding, you would add all of
the function and array operators on the right side of the variable name first (since they
have higher precedence), and then add the pointer operators on the left side. The decla­
ration.

char *x[];

would be deciphered through the following steps:

1. x[] is an array.

2. ·x[] is an array of pointers.

3. char *x[] is an array of pointers to chars.

Parentheses can be used to change the precedence order. For example.

int (*x[])();

would be broken down as follows:

1. x[] is an array.

2. C*x[]) is an array of pointers.

3. C*x[]) 0 is an array of pointers to functions.

4. int C*x[]) () is an array of pointers to functions returning ints.

If this declaration had been written without the parentheses as:

int *x[] ();

it would have been translated as:

an array of functions returning pointers to ints

which is an illegal declaration since arrays of functions are invalid.

Data Types and Storage Classes 3-43

3.11.2 Composing Complex Declarations

To compose a declaration, you perform the same process. For example, to declare a
pointer to an array of pointers to functions that return pointers to arrays of structures
with tag name S, you could use the following steps:

1. (*x) is a pointer.

2. (*x) [] is a pointer to an array.

3. (* (*x) []) is a pointer to an array of pointers.

4. (* (*x) []) () is a pointer to an array of pointers to functions.

5. (* (* (*x) []) (») is a pointer to an array of pointers to functions returning point­
ers.

6. (* (* (*x) []) ())[] is a pointer to an array of pointers to functions returning
pointers to arrays.

7. struct S (* (* (Ox) []) ())[] is a pointer to an array of pointers to functions re­
turning pointers to arrays of structures with tag name S.

Note that we add parentheses for binding each time we add a new pointer operator.

Table 3-2 shows a number of legal and illegal declarations. Note that it is illegal to de­
clare the following:

• Arrays of functions

• Functions returning functions

• Functions returning arrays

3-44 Data Types and Storage Classes

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int

int
int
int
int
int
int

int

Table 3-2. Legal and Illegal Declarations in Domain C

i· ,
*p;
a [] ;
f();
**pp;
(*pa)[];
(*pf) 0 ;
*ap [] ;
aa [] [] ;
af [] 0 ;
*fp 0 ;
faO [] ;
ff 0 0 ;
***ppp;
(* *ppa) [] ;
(**ppf) () ;
* (*pap) [] ;
(*paa) [] [] ;
(*paf) [] 0;
*(*pfp)O;
(*pfa) () [];
(*pff) () () ;

**app[];
(* apa []) [] ;
(*apf []) () ;
*aap [] [] ;
aaa [] [] [] ;
aaf [] [] () ;
*afp[] 0;
afar] 0 [] ;
aff [] 0 0 ;

**fpp () ;
(* fpa 0) [] ;
(*fpfO)O;
*fapO[];
faaO [] [] ;
fafO [] ();

*ffp 0 () ;

An int
A pointer to an int
An array of ints
A function returning an int
A pointer to a pointer to an int
A pointer to an array of iots
A pointer to a function returning an iot
An array of pointers to ints
An array of arrays of ints
An array of functions returning iots (ILLEGAL)
A function returning a pointer to an iot
A function returning an array of ints (ILLEGAL)
A function returning a function returning an iot (ILLEGAL)
A pointer to a pointer to a pointer to an iot
A pointer to a pointer to an array of iots
A pointer to a pointer to a function returning an iot
A pointer to an array of pointers to iots
A pointer to an array of arrays of iots
A pointer to an array of functions returning iots (ILLEGAL)
A pointer to a function returning a pointer to an iot
A pointer to a function returning an array of iots (ILLEGAL)
A pointer to a function returning a function returning an
int (ILLEGAL)
An array of pointers to pointers to iots
An array of pointers to arrays of ints
An array of pointers to functions returning iots
An array of arrays of pointers to iots
An array of arrays of arrays of iots
An array of arrays of functions returning iots (ILLEGAL)
An array of functions returning pointers to iots
An array of functions returning arrays of ints (ILLEGAL)
An array of functions returning functions returning
ints (ILLEGAL)
A function returning a pointer to a pointer to an int
A function returning a pointer to an array of ints
A function returning a pointer to a function returning an int
A function returning an array of pointers to ints (ILLEGAL)
A function returning an array of arrays of ints (ILLEGAL)
A function returning an array of functions returning
ints (ILLEGAL)
A function returning a function returning a pointer to an
int (ILLEGAL)

Data Types and Storage Classes 3-45

3.12 Storage Classes

Every variable has several characteristics. One of those characteristics is its data type
(which is detailed in Chapter 3). Another characteristic is its storage class, which we de­
scribe in this section. Storage classes describe two properties of variables-duration and
scope. Duration represents the period over which memory is allocated for a variable.
Scope refers to the region in the source code over which a variable's name has meaning.

You control a variable's storage class through both of the following:

• position Where in the file you declare the variable.

• storage class specifier An optional keyword in a declaration.

In the example below, variable x has fixed duration and global scope because it appears
outside of a function; variable y has fixed duration because it is preceded by the static
storage class specifier, and block scope because it is declared within a block:

int x = 1;

int main(void
{

static int y;

}

3.12.1 Declaration Position

Variable declarations fall into three categories, based on their position in a source file:

top-level declaration

head-of-block declaration

function parameter
declaration

3-46 Data Types and Storage Classes

A declaration that occurs outside of a function.

A declaration that occurs at the beginning of a block. A
block is any series of statements enclosed in braces. Note
that the body of a function is itself a block.

A declaration of a function parameter.

The comments in the following program fragment illustrate these three types of declara­
tions:

int a [5] ; /* top-level declaration */
float value; /* top-level declaration */

int f(int argl, char arg2) /* top-level declaration */
{

unsigned char count; /* head-of-block declaration */
int q; /* head-of-block declaration */

for (count = 0; count <= 200; count += 5)
{

int so; /* head-of-block declaration */

}

}

mainO /* top-level declaration */
{

int *p, m; /* head-of-block declaration */

}

Data Types and Storage Classes 3-47

3.12.2 Scope of a Variable Declaration

The scope of a variable is the region in the source code over which a name's declaration is
active. If a variable is active, it means that it is accessible.

There are four types of scope: program, file, function, and block.

• Program scope signifies that the variable is active among different source files that
make up the entire executable program. Variables with program scope are usually
referred to as global variables.

• File scope signifies that the variable is active from its declaration point to the end
of the source file.

• Function scope signifies that the name is active from the beginning to the end of
the function.

• Block scope signifies that the variable is active from its declaration point to the
end of the block in which it is declared. A block is any series of statements en­
closed in braces. This includes compound statements as well as function bodies.

In general, the scope of a variable is determined by the location of its declaration. Vari­
ables declared within a block have block scope; variables declared outside of a block have
file scope if the static keyword is present, or program scope if static is not present; only
goto labels have function scope.

The four scopes are arranged hierarchically as shown in Figure 3-22. A variable with pro­
gram scope is also active within all files, functions, and blocks that make up the program.
Likewise, a variable with file scope is also active within all functions and blocks in the file
that follow its declaration, but is not active in other parts of the program. At the bottom
of the hierarchy is block scope, the most limiting case.

Program Scope

Figure 3-22. Hierarchy of Active Regions (Scopes)

3-48 Data Types and Storage Classes

The program fragment below shows variables with all four types of scope:

int i; /* Program scope */
static int j; /* File scope * /

func(k /* Program scope */
int k; /* Block scope */
{

int m; /* Block scope */

start: /* Function scope */

Note that function parameters have block scope. They are treated as if they are the first
declarations in the top-level block of the function.

The C language allows you to give two variables the same name, provided they have differ­
ent scopes. For example. the two functions below both use a variable called j, but be­
cause they are declared in different blocks. they do not conflict.

funcl()
{

int j;

}

func2()
{

int j;

}

Data Types and Storage Classes 3-49

3.12.2.1 Visibility

The visibility of a variable determines whether or not the variable can be accessed in a
specific region of the source file. A variable can become invisible throughout a region if
another variable with the same name and name space is declared within the region in a
new block. For instance:

/* Program name is "scope_example" */
#include <stdio.h>

int j = 10; /* Program scope */

int main(void
{

}

int j; /* Block scope -- hides global j */

for (j=O; j < 5; ++j)
printf("j: %d\n", j);

There are two j's, one with program scope and the other with block scope. Although they
have the same name, they are distinct variables. The j with block scope temporarily hides
the other j, so the result of running the program is:

j: 0
j: 1
j: 2
j: 3
j: 4

The j with program scope retains its value of 10.

3.12.2.2 Block Scope

A variable with block scope cannot be accessed outside of its block. Block scoping allows
you to write sections of code without worrying about whether your variable names conflict
with names used in other parts of the program.

It is also possible to declare a variable within a nested block. This temporarily hides any
variables of the same name declared in outer blocks. This feature can be useful when you
want to add some debugging code into a function. By creating a new block and declaring
variables within it, you eliminate the possibility of naming conflicts. In addition, if you de­
lete the debugging code at a later date, you need not look at the top of the function to
find variable declarations that also need to be deleted.

In the following example, we add some debugging code that prints the values of the first
ten elements of an array.

3-50 Data Types and Storage Classes

foo()
{

int ar[20];
int j;

/* Begin debug code */
{

/* This j does not conflict with other j's.*/
int j;

}

for (j=O; j <= 10; ++j)
printf("%d\t", ar[j]);

/* End debug code */

3.12.2.3 Function Scope

The only names that have function scope are goto labels. Labels are active from the be­
ginning to the end of a function. This means that labels must be unique within a function.
Different functions, however, may use the same label names without creating conflicts.

3.12.2.4 File and Program Scope

Giving a variable file scope makes the variable active throughout the rest of the file. So if
a file contains more than one function, all of the functions following the declaration are
able to use the variable. To give a variable file scope, declare it outside of a function with
the static keyword.

Variables with program scope, called global variables, are visible to routines in other files
as well as their own file. To create a global variable, declare it outside of a function with­
out the static keyword. In the following program segment, j has program scope and k has
file scope. Both variables can be accessed by routines in the same file, but only j can be
accessed by routines in other files.

int j;
static int k;

main ()
{

Variables with file scope are particularly useful when you have a number of functions that
operate on a shared data structure, but you don't want to make the data visible to other
functions.

Data Types and Storage Classes 3-51

3.12.3 Duration of a Variable

The duration of a variable describes the lifetime of a variable's memory storage. There
are two categories of duration: automatic and fixed. As the names imply, a fixed variable
is one that is stationary, whereas an automatic variable is one whose memory storage is
automatically allocated when its scope is entered during program execution. This means
that a fixed variable has memory allocated for it at program start-up time, and the variable
is associated with a single memory location until the end of the program. An automatic
variable has memory allocated for it whenever its scope is entered. The automatic variable
refers to that memory address only as long as code within the scope is being executed.
Once the scope of the automatic variable is exited, the compiler is free to assign that mem­
ory location to the next automatic variable it sees. If the scope is re-entered, a new ad­
dress is allocated for the variable. There is no way to ensure that an automatic variable
will retain its value from one scope entry to another.

The difference between fixed and automatic variables is especially important for initialized
variables. Fixed variables are initialized only once whereas automatic variables are initial­
ized each time their block is re-entered. Consider the following program:

/* Program name is "example_of_static" */
#include <stdio.h>

void increment(void
{

}

int j = 1;
static int k

j++;
k++;

l' ,

printf("j: %d\tk: %d\n", j, k);

int maine void
{

}

increment();
increment() ;
increment() ;

The incrementO function increments two variables, j and k, both initialized to 1. j has
automatic duration by default, while k has fixed duration because of the static keyword.
The result of running the program is:

j: 2 k: 2
j: 2 k: 3
j: 2 k: 4

When incrementO is called the second time, memory for j is reallocated and j is reinitial­
ized to 1. k, on the other hand, has still maintained its memory address and is not reini-

3-52 Data Types and Storage Classes

tialized, so its value of 2 from the first function call is still present. No matter how many
times we call incrementO, the value of j will always be 2, while k will increase by 1 every
time we call it.

We can summarize this observation with the following rule: an automatic variable, when
declared with an initializer, is re-initialized every time its block is re-entered; a fixed vari­
able is initialized only once, at program startup-time.

Another important difference between automatic and fixed variables is that automatic vari­
ables are not initialized by default, whereas fixed variables get a default initial value of
zero. If we rewrite the previous program without initializing the variables, we get:

/* Program name is "init_example" */
#include <stdio.h>

void increment(void
{

int j;
static int k;

j++;
k++;
printf("j: %d\tk: %d\n", j, k);

int main(void
{

}

increment();
increment();
increment();

Executing the program on our machine results in:

j: 52517483 k: 1
j: 52517483 k: 2
j: 52517483 k: 3

The values of j are random because the variable is never initialized. With each invocation
of incrementO, j receives a new memory allocation and acquires whatever "garbage" value
happens to be at the new location. Because Domain C uses a stack-frame implementa­
tion, the garbage values are, in this simple example, the same each time. The C language,
however, does not guarantee this. If you use a more complicated calling sequence, the re­
sults will be different. The Domain C compiler issues the following warning if you attempt
to use an uninitialized automatic variable before you have made an assignment to it:

******** Line 15: Warning: Variable "aut02" was not
initialized before this use.
No errors, 1 warning, C Compiler, Rev 4.82

Data Types and Storage Classes 3-53

Another difference between initializing variables with fixed and automatic duration is the
kinds of expressions that may be used as an initializer. For scalar variables with automatic
duration, the initializer may be any expression, so long as all of the variables in the expres­
sion have been previously declared. For example, all of the following declarations are le­
gal:

{
extern double f();
int x la, Y = x*x;
float z = x + f(x);

For variables with fixed duration, on the other hand, the initilization expressions must be
constant expressions.

We can summarize the differences between fixed and automatic variables as follows:

• Fixed variables maintain their values from one block invocation to another, but
automatic variables lose their value each time the block is deactivated.

• Fixed variables get a default initialization value of zero if you do not explicitly in­
itialize them. If you do not explicitly initialize an automatic variable, the compiler
will not initialize it for you.

• The run-time system initializes fixed variables only once, whereas automatic vari­
ables, if they are declared with an intializer, are re-initialized each time their
block is entered.

Bug Alert: The Dual Meanings of" static"

One of the most confusing aspects aboutstorage-'classdeclarations in C is that the
static keyword seems to have two effects depending oTlwhere it appears. Ina declara~
tionwithin a block, static gives a variable fixed duration instead of automatic dura­
tion. Outside of a function, on the other hand, static has nothing to do with duration.
Rather, it controls the scope of a variable, giving it file scope instead of program scope.

One way of reconciling these dual meanings is to think of static as signifying both file
scopingandfixed duration. Within a block, the stricter block scoping rules override
static's file scoping, s6 fixed duration is the only manifest result. Outside of afunc­
tion, duration is already fixed, so file scopingis the only manifest result.

3-54 Data Types and Storage Classes

3.12.4 Storage Class Specifiers

As mentioned earlier, you can supply an optional storage class specifier when you declare
a variable. There are four storage-class specifiers (auto, static, extern, and register).
Any of the storage class keywords may appear before or after the type name in a declara­
tion, but by convention they come before the type name. (The ANSI standard requires
that storage class specifiers appear before type specifiers.) The semantics of each keyword
depends to some extent on the location of the declaration. Omitting a storage class
specifier also has a meaning, as described below. Table 3-3 summarizes the scope and du­
ration semantics of each storage class specifier.

auto

static

extern

register

omitted

The auto keyword, which makes a variable automatic, is le­
gal only for variables with block scope. Since this is the
default anyway, auto is somewhat superfluous and is rarely
used.

The static keyword may be applied to declarations both
within and outside of a function (except for function argu­
ments), but the meaning differs in the two cases. In decla­
rations within a function, static causes the variable to have
fixed duration instead of the default automatic duration.
For variables declared outside of a function, the static key­
word gives the variable file scope instead of program scope.

The extern specifier may be used for declarations both
within and outside of a function (except for function argu­
ments). In both cases, it signifies a global allusion, dis­
cussed in Section 3.13.

The register keyword may be used only for variables de­
clared within a function. It makes the variable automatic,
but also passes a hint to the compiler to store the variable
in a register whenever possible. You should use the regis­
ter keyword for automatic variables that are accessed fre­
quently. Compilers support this feature at various levels.
Some don't support it at all, while others support as many
as 20 concurrent register assignments. Note that it is illegal
to apply the address-of operator (&) to any variable de­
clared with register.

For variables with block scope, omitting a storage class
specifier is the same as specifying auto. For variables de­
clared outside of a function, omitting the storage class
specifier is the same as specifying extern. It causes the
compiler to produce a global definition.

Data Types and Storage Classes 3-55

Here are some sample declarations that contain storage class specifiers:

auto int i' ,
register short quart;
static char dog [] "Fenster" ;
extern float f· ,

Table 3-3. Storage Class Summary

~
Declared

Outside of Within a Function
Storage a Function Function Arguments
Class (top-level) (head-of-block) Specifier .

auto or scope: block scope: block

register NOT ALLOWED
duration: automatic duration: automatic

scope: file scope: block
static NOT ALLOWED

duration: fixed duration: fixed

scope: program scope: block
extern duration: fixed duration: fixed NOT ALLOWED

No storage scope: program scope: block scope: block
class specifier

duration: fixed duration: automatic duration: automatic present

3.12.5 The register Specifier

The register keyword enables you to help the compiler by giving it suggestions about which
variables should be kept in registers. However, register is only a hint, not a directive­
the compiler is free to ignore it. In fact, the Domain compiler is so efficient in allocating
variables to registers that using the register keyword has little or no effect on most pro­
grams.

Since a variable declared with register might never be assigned a memory address, it is il­
legal to take the address of a register variable (registers are not addressable). This is true
regardless of whether the variable is actually assigned to a register. You will get a compile­
time error if you ever try to take the address of a variable declared with register.

3-56 Data Types and Storage Classes

3.13 Global Variables

A global variable (also called an external variable) is one that can be accessed by mod­
ules in different source files; that is, a global variable has program scope. There are two
types of declarations for global variables: allusions and definitions, as described in the
next section.

3.13.1 Definitions and Allusions

The difference between an allusion and a definition in C is subtle but important. An al­
lusion associates a data type with an identifier, but does not actually allocate any storage
for it. A definition, on the other hand, actually allocates memory. For example, consider
the following allusions and definitions:

int x' , /* This is a definition */
static int y; /* This is a definition */
extern int z· , /* This is an allusion */

If you use the storage class specifier extern, you generate an allusion. If you use a storage
class specifier other than extern, or if you omit a storage class specifier, then you generate
a variable definition.

The distinction between allusions and definitions is particularly important when creating
global variables.

NOTE: At some points during this manual, the distinction between an
allusion and a definition is unimportant For these instances,
we use the more general word "declaration."

Typically, you put all allusions in a header file, which can be included in other source
files. This ensures that all source files use consistent allusions. Any change to a declara­
tion in a header file is automatically propagated to all source files that include that header
file.

3.13.2 Defining Global Variables

In Domain C, every global variable can be alluded to zero or more times (in different
files), but must be defined at least once. It may be defined more than once in different
files. You cannot, however, define a global variable more than once in the same file. If
you explicitly initialize a global variable in more than one file, the last initializer read by
the linker is the variable's initial value at run time. Therefore, the order in which you list
files in the bind or Id command determines the initial values of external variables. If you
do not initialize a global definition, its initial value defaults to O. To demonstrate these
rules, consider Figures 3-23, 3-24, and 3-25.

Data Types and Storage Classes 3-57

t1.c

extern int x;/*all*/

maine)
{

}

printf("%5d", x);
fO;
gO;

$ cc t1; cc t2; cc t3

t2.c
extern int x;/*all*/

fO
{

printf("%5d", x);

$ bind t1. bin t2. bin t3. bin -b t
$ t

o o o

t3.c

int x;/*def*/

g()
{

printf("%5d\n", x);

$ cc t1.c t2.c t3.c

$ a.out
000

Figure 3-23. Two Declarations and One Definition with No Initialization

tl.c
extern int x;/*all*/

main 0
{

}

printf("%5d", x);
fO;
gO;

$ cc 11; cc t2; cc t3

t2.c
extern int x;/*all*/

fO
{

printf("%5d", x);
}

$ bind t1. bin t2. bin t3. bin -b t
$ t

5 5 5

int x

g()
{

t3.c

5;/*def*/

printf ("%5d\n", x);
}

$ cc t1.c t2.c t3.c

$ a.out
555

Figure 3-24. The Effect of Initializing a Global Variable

3-58 Data Types and Storage Classes

t1.c t2.c t3.c
extern int x;/*all*/ int x 7;/*def*/ int x 5;/*def*/

maine) fO
{

gO
{ {

}

printf("%5d", x);
fO;
gO;

printf("%5d", x); printf(I%5d\n", x);
}

$ cc t1; cc t2; cc t3 $ cc tl.c t2.c t3.c
$ bind t1. bin t2. bin t3. bin -b t
$ t $ a.out

5 5 5 5 5 5

$ bind t1. bin t2. bin t3. bin -b t
$ t

$
$

cc tl.c t2.c t3.c
a.out

7 7 7 7 7 7

Figure 3-25. The Effect of Linking Order on Variable Initialization

For further clarification on global variables, we provide the following program fragments:

Here is FILE 1:

int dl; /* This is a definition of a global variable. */
int d2=1; /* This is a definition of a global variable with an

* initializer.
*/

extern int d3; /* This is an allusion to a global variable defined
* in FILE2.
*/

/* extern int d4=5; THIS IS ILLEGAL! You cannot initialize an

* allusion.
*/

int maine void)
{

int local; /* This is a definition of a local variable. It is
* not exported by the binder.
*/

extern int d5; /* This is an allusion to a global variable
* defined in FILE 2.
*/

Data Types and Storage Classes 3-59

Here is FILE 2:

int d3 = 0;
char d5;

/* This is a definition of a global variable. */
/* This is a definition of a global variable. */

void some_function(void
{

extern int dl;

}

/* This is an allusion to the variable defined on
* line #1 of FILE 1.
*/

3.13.3 Portability Considerations Regarding Global Variables

If you are planning to port your Domain C programs to a different machine, take into ac­
count that not all compilers use the same strategy for external definitions and declarations.
For maximum portability, follow these guidelines:

• Do not define the same global variable more than once in the same program. Do­
main C permits you to define a global variable multiple times, but other C compil­
ers may be stricter.

• For each routine that refers to a global variable, declare the variable with the key­
word extern, and without an initializer.

3.13.4 Sections

The Domain C compiler creates a named section for each globally defined variable. Sec­
tions are detailed in the Domain/OS Programming Environment Reference manual. When
the object files are bound together, the linker makes sure that all global variables with the
same name refer to the same named section.

3.14 Storage Class of Functions

Just like variables, functions also have a scope, although the rules are somewhat different.
When discussing storage class of functions it is important to distinguish between function
definitions and function allusions.

3-60 Data Types and Storage Classes

3.14.1 Function Definitions

A function definition is a complete function-that is, a data type that the function returns,
the name of the function, optional parameters, parameter declarations, and the function
body. For example, here is the function definition of a function named fun:

#include <stdio.h>

int func int x, int y)

{

}

printf ("%d %d", x, y);

return (x + y);

By default, function definitions have global scope. In other words, you can call these rou­
tines from any place in the program (including some other file). If you want the function
definition to have file scope instead, then use the storage class specifier static. For exam­
ple:

#include <stdio.h>

static int fun(int x, int y)

{
printf C "%d %d" , x, y) ;
return (x + y) ;

By using static, you limit the scope function fun to the file in which it is defined. Note
that static is the only legal storage class specifier for a function definition.

3.14.2 Function Allusions

A function allusion identifies a function that is defined elsewhere, either in the same
source file or in another source file. A function allusion can begin with the extern storage
class specifier. It optionally contains the data type that the function can return, and con­
cludes with the name of the function followed by an empty pair of parentheses. (This is
the old-style type of function allusion; the new style uses prototypes, as described below.)
For example:

extern int fun();
extern fun();
int funO;

Note that you can omit either the type specifier or extern, but not both. If you omit
both, the declaration will be interpreted as a function invocation.

Data Types and Storage Classes 3-61

Domain C supports a new syntax for function allusions called prototypes. A prototype en­
ables you to specify the types and number of arguments that the function accepts. For ex­
ample:

extern int fun(int, char *, float);

Prototypes are described in detail in Chapter S.

You can specify a function allusion either within a block or outside of a block. When de­
clared within a block, it means that you can invoke that function within the block. When
declared outside of a block, you can invoke the function anywhere from the declaration
point to the end of the source file. Technically, you do not need to declare functions that
return an int since this is the default. However, it is good programming practice to declare
all functions since it makes your programs easier to understand.

For more information on function allusions and definitions, see Chapter S.

3.15 Reference Variables - Domain Extension

The Domain C compiler supports reference variables as implemented in the C++ lan­
guage. This discussion describes the most common usages of reference variables. For a
more complete discussion, we recommend that you read The C++ Programming Language
by Bjarne Stroustrup. (Reference variable features will not be activated if you compile with
the -ntype option.)

A reference variable is a variable that refers to another object (an Ivalue or an rvalue).
Whenever a reference variable appears in an expression, the object it denotes is accessed.
Reference variables have three main applications:

• Reference variables allow you to create aliases for a variable so that two or more
names refer to the same object.

• Reference variables allow you to give names to constants, and, more importantly,
to use the constants as lvalues. In effect, reference variables turn constants into
variables.

• Reference variables provide a clean syntax for passing function arguments by refer­
ence.

These applications of reference variables are discussed in Chapter S. The following section
describes how to declare reference variables.

3-62 Data Types and Storage Classes

3.15.1 Declaring R.eference Variables

To declare a reference variable, precede the variable name with the address-of operator
(&) and include an initializer:

int j;
int &rj j; /* rj refers to j */
float &rf = 3.141; /* rf refers to the constant 3.141 */

The initializer is required because it specifies the object that the reference variable denotes.
Having made these declarations, you can write:

rj = 1; /* assigns 1 to j */
rj++; /* increments j */
rf *= rf /* squares 3.141 */

The last example is the most interesting because it uses a reference variable denoting a
constant as an lvalue. This is legal because the compiler generates a temporary variable
for all reference variables initialized with a constant value. For example, the declaration,

int &r = 0;

causes the compiler to generate a hidden temporary variable initialized to zero. Whenever
r appears in an expression, this hidden variable is accessed.

3.16 The #aUribute Modifier - Domain Extension

The Domain C compiler supports a declaration modifier called #attribute that enables you
to access special features of the Domain C compiler. One of the purposes of #attribute is
to turn off certain kinds of compiler optimizations. This feature is particularly useful for
writing device drivers or other programs that access fixed memory locations.

Although it begins with the # character, #attribute is a reserved word, not a preprocessor
statement. You use it when you declare or define a variable, tag name, or typedef. The
#attribute modifier always takes one of the following arguments (called attribute
specifiers) enclosed in brackets:

address

device

section

volatile

Binds a variable to a specific virtual address.

Informs the compiler that the variable is a device register.
The device specifier is similar to volatile, but restricts op­
timizations even further.

Specifies a named section in which to overlay the variable.

Informs the compiler that the variable may change in ways
that it cannot predict. Consequently, the compiler refrains
from executing certain optimizations.

Data Types and Storage Classes 3-63

Each of these specifiers is described in detail in later sections. First, however, we provide
some general information about the #attribute modifier.

3.16.1 Inheritance of Declaration Modifiers

The device, volatile, and section modifiers are inheritable in the type declaration hierar­
chy. That is, if you define a type in terms of some more primitive type that was declared
with one or more of these modifiers, then the new type inherits those modifiers. For exam­
ple, the following declaration defines a type called SEMAPHORE and an array called re­
source:

typedef int SEMAPHORE #attribute[volatile];
SEMAPHORE resource [10] ;

The resource array inherits the volatile storage class from the definition of the SEMA­
PHORE typedef. Note that this rule does not apply to the address specifier because this
specifier is valid only in variable definitions, not in tag name or typedef declarations.

3.16.2 #attribute and Pointer Types

It is usually incorrect to associate the device and volatile specifiers with a pointer type.
For example, declaring a pointer to a device register by means of the following declaration
is almost certainly incorrect:

int *iodata #attribute[device] ;

The correct specification is:

typedef int DEVINT #attribute[device];
DEVINT *iodata;

which declares a pointer to an int with the #attribute modifier, rather than assigning the
modifier to the pointer itself.

3.16.3 The volatile Specifier

The syntax of the volatile specifier is:

[specifier] data _type variable_name #attribute [volatile] [initializer]

where specifier can be extern, auto, static, register, or typedef.

3-64 Data Types and Storage Classes

The volatile specifier informs the compiler that memory contents may change in a way that
the compiler cannot predict. There are two situations, in particular, where this might occur:

• The variable is in a shared memory location accessed by two or more processes.

• The variable can be accessed by two different access paths. (That is, multiple
pointers with different base types refer to the same memory locations.)

In both of these situations, it is crucial that you tell the compiler not to perform certain
optimizations as it normally would. For example, the following code causes optimizations
leading to erroneous code.

/* Program name is "volatile_example" */
#include <stdio.h>
#ifdef ATTR
define VOL #attribute[volatile]
#else
define VOL
#endif
typedef int VINT VOL;

void killer(int a, VINT b)
{

}

int j;
int *p = &a + 1;
j = b* (b+1) ;
*p = 0;
j =j +b*(b+1);
printf("b = %d\n", b*(b+1));

int main(void
{

killer(1,2);

In the preceding program, the compiler sees that the calculation

b * (b+1)

is done three times without any change to b. Since it appears to the compiler that it is
wasteful to do the same calculation needlessly, it will make the calculation only once, then
store the result in a register. Then, instead of calculating it a second or third time, the
value will simply be fetched from the register. The problem with this optimization is that
b's value is indirectly changed between the first and second calculations. Therefore, you
must use #attribute [volatile] to tell the compiler to avoid the optimization. Notice that
#attribute is defined in a conditional compilation directive. Therefore, if we compile with
the following compilation option:

Data Types and Storage Classes 3-65

-def ATTR

and run the resulting program, we get the following results:

b = 0

However, if we compile without the -def ATTR option, and we run the program, we get
the following results:

b = 6

3.16.41 The device Specifier

The syntax for the device specifier is:

[speCifier] data_type variable_name #attribute[device [([read,] [write])]]

[initializer]

where specifier can be extern, auto, static, register, or typedef.

The device specifier informs the compiler that a device register (control or data) is
mapped as a specific virtual address. The device specifier prevents the same optimizations
that volatile prevents, and prevents two other optimizations as well.

The first optimization that device prevents concerns adjacent references. By default, the
compiler optimizes certain adjacent references by merging them into large reference. The
device specifier prevents this optimization. For example, consider the following fragment:

short int a,b;

a=O;
b=O;

By default, the compiler optimizes the two 16-bit assignments by merging them into one
32-bit assignment. (That is, at run time, the system assigns a 32-bit zero instead of as­
signing two 16-bit zeros.) By specifying the device specifier, you suppress this optimiza­
tion.

The device specifier also prevents the compiler from generating gratuitous read-modify­
write references for device registers. That is, specifying a variable as #device causes the
compiler to avoid using instructions that do unnecessary reads.

3-66 Data Types and Storage Classes

Now let's demonstrate device through some examples. Suppose kb in the following frag­
ment is a device register that accepts characters from the keyboard:

char c, c1, *kb;

c *kb;
c1 *kb;

The purpose of the program is to read a character from the keyboard and store it in c,
then read the next character and store it in cl. However, the C compiler, unaware that
the value of kb can be changed outside of the block, optimizes the code as follows: It
stores the value of kb in a register, and thus assigns both c and cl identical values. Ob­
viously, this is not what the programmer intended, since Domain C assigns the same char­
acter to both c and cl. To ensure that Domain C reads kb twice, declare it as:

char *kb #attribute[device] ;

Another situation where normal optimization techniques can change the meaning of a pro­
gram is in loop-invariant expressions. For instance, using kb again, suppose we have the
program segment:

int x;
char c, *kb;

{
while (x < 10)
{

}

c = *kb;
foo(c) ;
++x;

The purpose of the block is to read 10 successive characters from the keyboard and pass
each to a function called foo. However, to the compiler, it looks like an inefficient pro­
gram since c will be assigned the same value 10 times. To optimize the program, the com­
piler may translate it as if it had been written:

int x;
char c, *kb;

{
c = *kb;
while (x < 10)
{

}

foo (c) ;
++x;

Data Types and Storage Classes 3-67

To ensure that the compiler does not optimize your program in that manner, declare kb as
follows:

char c Hat tribute [device] ;

In addition to suppressing optimizations, you can also use device to specify that a device is
either exclusively read from or exclusively written to. You achieve this by using the read
and write options:

device (read)

device (write)

device (read, write)

device (write ,read)

This attribute specifies read-only access for this variable or
type. That is, if you attempt to write to this variable, the
compiler flags the attempt as invalid and issues an error
message. Although the syntax is available, the read and
write options currently have no effect.

This attribute specifies write-only access for this variable or
type. That is, if you attempt to read from this variable, the
compiler flags the attempt as invalid and issues an error
message. Although the syntax is available, the read and
write options currently have no effect. It will be imple­
mented in a future release of Domain C.

This attribute specifies both read and write access for this
variable. Using it is identical to using device by itself
(without any options).

Same as device(read,write).

For example, here are some sample declarations using device:

typedef int a[10] Hattribute[device(read)]; /* read access */
char c Hattribute[device(write); /* write access */
char c2 Hattribute[device(read,write)]; /* read and

* write
* access */

3.16.5 The address Specifier

The syntax for the address specifier is:

[specifier] data_type variable_name #attribute [address] [initializer]

where specifier can be auto, static, or register.

The address specifier binds a variable to the specified virtual address, specified by a con­
stant. You can use address for a variable definition only; therefore, you cannot use it
with typedef or extern. The address specifier is useful for referencing objects at fixed 10-

3-68 Data Types and Storage Classes

cations in the address space (such as device registers, the PEB page, or certain system data
structures). Typically, the compiler generates absolute addressing modes when accessing
such an operand.

Using address by itself (without device or volatile) does not suppress any compiler op­
timizations. You should use it in conjunction with device or volatile. The example below
associates the variable peb_page with the hexadecimal virtual address FF7000.

char peb_page Hattribute[device, address(OxFF7000)];

3.16.6 The section Specifier

The syntax for the section specifier is:

[extern] data_type variable_name #attribute[section(name)] [initializer]

where name is the named section in which to place the variable. Note that the #attrib­
ute [section] modifier is legal only for global declarations. You will receive an error if you
attempt to use it with local declarations.

When you compile with Ibin/cc, the compiler places all uninitialized global declarations in
a section of the object file called . bss. All initialized global variables are placed in a sec­
tion called .data. This is the standard format for UNIX object files. The Icomlcc com­
piler, on the other hand, creates a special named section for each global variable, whether
it is initialized or not. By default, the name of the section is the same as the global vari­
able. (You can obtain the Ibin/cc object file format by compiling with the -bss option.)

The section specifier enables you to mimic Icomlcc behavior when you compile with Ibinl
cc. This is particularly useful for interacting with FORTRAN programs that use common
blocks. For example, suppose a FORTRAN program contains the following common block
definition:

integer*4 first
real*8 second
char*20 third

common /com_block/ first, second, third

These declarations produce a named section called com_block in the object file that con­
tains the three variables named first, second, and third. If you want to access these vari­
ables from a C program compiled with Ibin/cc, you need to use the section specifier:

typedef struct {
int first;
double second;
char third[20];

} COM_BLOCK;
COM_BLOCK com_block Hattribute[section(com_block)];

Data Types and Storage Classes 3-69

If you are compiling with Icomlcc, the section #attribute[section] modifier is unnecessary
because leo mice automatically creates a named section for each global variable. The
binder then overlays sections that have the same name. See Chapter 7 for more informa­
tion about sharing global data with Pascal and FORTRAN programs.

-------88-------

3-70 Data Types and Storage Classes

Chapter 4

Code

This chapter describes the statements and operators that make up the action part of a Do­
main C function.

We provide an overview at the beginning of this chapter. The remainder of the chapter is
a Domain C encyclopedia. If you are just beginning to learn C, we suggest you read a good
C tutorial textbook before trying to use this chapter.

This overview of Domain C code is divided into the following categories:

• Statements

• Operators

• Type Conversions

• Preprocessor Directives

4.1 Statements

There are many type of C statements-null statements, simple statements, compound state­
ments, branching statements, and looping statements. The following sections briefly de­
scribe each of these types.

Code 4-1

4.1.1 Null Statement

A null statement is simply a semicolon by itself. The null statement is sometimes used as
the block of a for or while loop, when the action is specified in the loop. The following
loop, for instance, reads characters from stdin until an EOF character is encountered:

while«c = getchar(» != EOF)
/* null statement */

4.1.2 Simple Statement

A simple statement consists of an expression followed by a semicolon. Here are a few
examples of simple statements:

x = 5;
x++;
f(x);

/* a variable assignment */
/* a variable increment */
/* a function call (see Chapter 5 for details) */

4.1.3 Compound Statement or Block

A compound statement or block has the following format:

{
declarationl

declarationN

statementl

statementN
}

That is, a compound statement consists of one or more optional declarations followed by
one or more optional statements. A declaration can be any variable or typedef declara­
tion. (Note that such a declaration has block scope.) A statement can be any null state­
ment, simple statement, or compound statement. The body of a function is itself a block.

C programmers commonly use compound statements as the body of a loop. In the follow­
ing example, two statements (an assignment statement and a function call) make up the
compound statement:

4-2 Code

for (x = 1; x < 11; x++)
{

}

running total = running total + x; /* assignment statement */
printf("running_total is %d\n ll , running total); /* function

- call */

A right brace } marks the end of a compound statement; do not put a semicolon after this
right brace.

4.1.4 Branching Statements

C supports two conditional branching statements-if(and if/else) and switch. The if and
if/else statements test expressions and execute statements depending on the results of the
test. The switch statement selects among several statements based on constant values.
The case, default, and break keywords are optional elements of a switch statement.

C supports two unconditional branching statements-goto and return. The go to statement
causes a jump to a label (or more specifically, a jump to the first statement following that
label). All statements may be preceded by a label. The return statement causes an un­
conditional return to the calling routine. You can optionally use return to pass data back
to the caller.

4.1.5 Looping Statements

Domain C supports three looping statements-for, while, and do/while. These statements
enable you to iterate through a block of code. Within a loop, you can use the continue
and break statements. The continue statement causes a jump to the next iteration of the
loop, while break transfers control to the first statement following the end of the loop.

4.2 Overview: Operators

Operators are the verbs of the C language that let you calculate values. C's rich set of
operators is one of its distinguishing characteristics. The operator symbols are composed of
one or more special characters. If an operator consists of more than one character, you
should enter the characters without any intervening spaces:

x <= Y
x < = y

/* legal expression */
/* illegal expression */

Each operator takes one or more operands. If you think of operators as verbs', then the
operands are the subject and object of those verbs.

Code 4-3

Domain C supports the following kinds of operators:

• Pointer operators

• Increment and decrement operators

• Cast operators

• sizeof operator

• Arithmetic operators

• Comparison (relational) operators

• Bit operators

• Logical operators

• Conditional expression operators

• Comma operator

• Assignment operator

We summarize these operators in this section. For many of the operators. one or more of
the operands must be an Ivalue. An Ivalue is an expression that refers to a region of stor­
age that can be manipulated. In other words. an lvalue is any expression that you can use
on the left side of an assignment operation. For example. all simple variables. like ints
and floats. are lvalues. An element of an array is also an lvalue; however. an entire array
is not. A member of a structure or union is an lvalue; an entire structure or union is not.

4.2.1 Pointer Operators

We begin this overview with a look at the pointer operators:

ptr->member

&lvalue

Dereferences a pointer. That is. it finds the contents
stored at the virtual address that ptr _exp holds.

Dereferences a ptr to a structure or union where member is
a member of that structure or union.

Finds the virtual address where the lvalue is stored.

See the "pointer operations" listing later in this chapter for details.

4-4 Code

4.2.2 Increment and Decrement Operators

C supports the increment and decrement unary operators listed below.

++lvalue

lvalue++

--lvalue

lvalue--

Increments the current value of lvalue before lvalue is ref­
erenced.

Increments the current value of lvalue after lvalue has been
referenced.

Decrements the current value of lvalue before lvalue is ref­
erenced.

Decrements the current value of lvalue after lvalue has
been referenced.

For details, see the "increment and decrement operators" listing later in this chapter.

4.2.3 Cast Operator

C supports the cast operator which takes the following form:

(data_type)exp . Casts the value of exp to a new data type.

For details, see the "cast operator" listing later in this chapter.

4.2.4 sizeof Operator

The following list provides an overview of the sizeof operator:

sizeof exp Calculates the size (in bytes) of expo

sizeof (data _type) Calculates the size (in bytes) that a variable of this
data_type takes up in memory.

For details, see the "sizeof" listing later in this chapter.

Code 4-5

4.2.5 Arithmetic Operators

The following list summarizes all the binary arithmetic operators:

expJ + exp2

expJ - exp2

expl * exp2

expJ I exp2

expJ % exp2

-exp

Adds expJ and exp2. An exp can be any integer expres­
sion or floating-point expression.

Subtracts exp2 from expl. An exp can be any integer ex­
pression or floating-point expression.

Multiplies expJ by exp2. An exp can be any integer ex­
pression or floating-point expression.

Divides expl by exp2. (Can perform integer or real divi­
sion. If integer division. I operator performs division and
truncates result to an integer.)

Finds modulo of expJ divided by exp2. (That is. finds the
remainder of an integer division.) An exp can be any inte­
ger expression.

Negates the value of expo (That is. it multiplies exp by
-1.) exp can be any integer expression or floating-point
expression.

For full details on these operators. see the "arithmetic operators" listing later in this chap­
ter.

4.2.6 Comparison (Relational) Operators

Use the following operators to compare two expressions:

expl < exp2

expl > exp2

expl <= exp2

expl >= exp2

expl == exp2

4-6 Code

Evaluates to 1 (true) if expl is less than exp2; otherwise.
evaluates to 0 (false).

Evaluates to 1 if expJ is greater than exp2; otherwise.
evaluates to O.

Evaluates to 1 if expl is less than or equal to exp2; other­
wise. evaluates to O.

Evaluates to 1 if expl is greater than or equal to exp2; oth­
erwise. evaluates to O.

Evaluates to 1 if expl is equal to exp2; otherwise. evaluates
to O.

expJ != exp2 Evaluates to 1 if expJ is not equal to exp2; otherwise.
evaluates to O.

For details. see the "relational operators" listing later in this chapter.

4.2.7 Bit Operators

Use operators from the following list to perform bit operations. Note that all operands in
this list must be integers.

expJ « exp2 Left shifts the bits in expJ by exp2 positions.

expJ » exp2 Right shifts the bits in expJ by exp2 positions.

expJ & exp2 Performs a bitwise AND operation.

expJ A exp2 Performs a bitwise exclusive OR operation.

expJ I exp2 Performs a bitwise inclusive OR operation.

-exp Calculates the one's-complement of expo

For details. see the "bit operators" listing later in this chapter.

4.2.8 Logical Operators

The following list summarizes the three logical operators:

expJ && exp2

expJ II exp2

!exp

Performs a logical AND on the values of expJ and exp2.
In C. the value 0 is equivalent to false, and any nonzero
value is equivalent to true.

Performs a logical OR on the values of expJ and exp2.

Calculates the logical negation of exp.

For details. see the "logical operators" listing later in this chapter.

Code 4-7

4.2.9 Conditional Expression Operator

C supports the following conditional expression operator:

expJ ? exp2 : exp3 C shorthand for an iflelse statement. If expJ is true (non­
zero), then the result is exp2. If expJ is false (zero), then
the result is exp3. Note that the conditional operator has
the advantage that it can be used in some places that an if 1
else statement cannot.

For details, see the "conditional expression operator" listing later in this chapter.

4.2.10 Comma Operator

C supports the comma operator as follows:

expJ, exp2 Separates two expressions. Note that all expressions return
values. The value of a comma operation is equal to the
value of exp2.

For details, see the "comma operator" listing later in this chapter.

4.2.11 Assignment Operators

Finally, C supports all of the following assignment operators:

lvalue = exp Sets lvalue (a variable name) to the value of expo

lvalue += exp Sets lvalue equal to lvalue + expo

lvalue -= exp Sets lvalue equal to lvalue - expo

lvalue *= exp Sets lvalue equal to lvalue * expo

lvalue 1= exp Sets lvalue equal to lvalue 1 expo

lvalue %= exp Sets lvalue equal to lvalue % expo

lvalue »= exp Sets lvalue equal to lvalue » expo

lvalue «= exp Sets lvalue equal to lvalue « expo

lvalue &= exp Sets lvalue equal to lvalue & expo

lvalue '= exp Sets lvalue equal to lvalue ' expo

4-8 Code

[value 1= exp Sets lvalue equal to [value 1 expo

See the "assignment operators" listing later in this chapter.

4.2.12 Precedence and Associativity of Operators

All operators have two important properties associated with them called precedence and
associativity. Both properties affect how operands are attached to operators. Operators
with higher precedence have their operands bound, or grouped, to them before operators
of lower precedence, regardless of the order in which they appear. For example, the mul­
tiplication operator has higher precedence than the addition operator, so the two expres­
sions,

2 + 3 * 4
3 * 4 + 2

both evaluate to 14-the operands 3 and 4 are grouped with the multiplication operator
rather than the addition operator because the multiplication operator has higher prece­
dence. If there were no precedence rules, and the compiler grouped operands to opera­
tors in left-to-right order, the first expression,

2 + 3 * 4

would evaluate to 20. Table 4-1 lists every C operator in order of precedence.

In cases where operators have the same precedence, associativity (sometimes called bind­
ing) is used to determine the order in which operands are grouped with operators. Group­
ing occurs in either right-to-Ieft or left-to-right order, depending on the operator.
Right-to-Ieft associativity means that the compiler starts on the right of the expression and
works left. Left-to-right associativity means that the compiler starts on the left of the ex­
pression and works right. For example, the plus and minus operators have the same
precedence and are both left-to-right associative:

a + b - c; /* add a to b, then subtract c */

The assignment operator, on the other hand, is right-associative:

a = b = c; /* assign c to b, then assign b to a */

4.2.13 Parentheses

The compiler groups operands and operators that appear within parentheses first, so you
can use parentheses to specify a particular grouping order. For example:

/* subtract 3 from 2, then multiply that by 4 -­
* result is -4
*/

(2 - 3) * 4

/* multiply 3 and 4, then subtract from 2 -­
* result is -10
*/

2 - (3 * 4)

Code 4-9

In the second case, the parentheses are unnecessary since multiplication has a. higher
precedence than addition. Nevertheless, parentheses serve a valuable stylistic function by
making an expression more readable, even though they may be redundant from a semantic
viewpoint.

In the event of nested parentheses, the compiler groups the expression enclosed by the in­
nermost parentheses first.

4.2.14 Order of Evaluation

An important point to understand is that precedence and associativity have little to do with
order of evaluation, another important property of expressions. The order of evaluation
refers to the actual order in which the compiler evaluates operators. This is independent
of the order in which the compiler groups operands to operators. For most operators, the
compiler is free to evaluate subexpressions in any order it pleases. It may even reorganize
the expression, so long as the reorganization does not affect the final result. For example,
given the expression,

(2 + 3) * 4

the" compiler might first add 2 and 3, and then multiply by 4. On the other hand, a com­
piler is free to reorganize the expression into:

(2 * 4) + (3 * 4)

since this gives the same result.

The order of evaluation can have a critical impact on expressions that contain side effects.
Moreover, reorganization of expressions can sometimes cause overflow conditions.

4-10 Code

Table 4-1. Binding and Precedence of Operators

class of operator operators in that class binding precedence

primary () [] -> Left-to-Right HIGHEST

unary cast operator
size of
& (address of) Right-to-Left
* (dereference)
- (reverse sign)

- 1

++ --

multiplicative * I % Left-to-Right

additive + - Left-to-Right

shift « » Left -to-Right

relational < <= > >= Left-to-Right

equality -- 1= Left-to-Right

bitwise AND & Left-to-Right

A Left-to-Right
bitwise exclusive OR

bitwise inclusive OR I Left-to-Right

logical AND && Left -to-Right

logical OR II Left-to-Right

conditional ? : Right-to-Left

assignment = += -= *= Right-to-Left

1= %= »= «=

&= A

= !=

comma . Left-to-Right LOWEST

Code 4-11

4.3 Type Conversions

The C language allows you to mix arithmetic types in expressions with few restrictions. For
example, you can write:

num = 3 * 2.1;

even though the expression on the right-hand side of the assignment is a mixture of two
types, an int and a double. Also, the data type of num could be any scalar data type ex­
cept a pointer.

To make sense out of an expression with mixed types, C performs conversions automati­
cally. These implicit conversions make the programmer's job easier, but it puts a greater
burden on the compiler since it is responsible for reconciling mixed types. This can be
dangerous since the compiler may make conversions that you don't expect. For example,
the expression,

3.0 + 1/2

does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0 because the
value .5 (result of 1/2) is converted to an integer (the fractional part is truncated, leaving
a value of zero).

Implicit conversions, sometimes called quiet conversions or automatic conversions, occur
under four circumstances:

1. In assignment statements, the value on the right side of the assignment is con­
verted to the data type of the variable on the left side. These are called assign­
ment conversions and are described in the "assignment operators" section of this
chapter.

2. Whenever a char or short int appears in an expression, it is converted to an into
An unsigned char or unsigned short is converted to an unsigned int. These are
called integral widening conversions.

3.. In an arithmetic expression, objects are converted to conform to the conversion
rules of the operator. These arithmetic conversions are described later in this
section.

4. In certain situations, arguments to functions are converted. This type of conver­
sion is described in Chapter 5.

As an example of the first type of conversion, suppose j is an int in the following state­
ment:

j = 2.6;

Before assigning the double constant to j, the compiler converts it to an int, giving it an
integral value of 2. Note that the compiler truncates the fractional part rather than round­
ing to the closest integer.

4-12 Code

The second type of implicit conversion, called integral widening or integral promotion, is
almost always invisible.

To understand the third type of implicit conversion, we first need to briefly describe how
the compiler processes expressions. When the compiler encounters an expression, it di­
vides it into subexpressions, where each subexpression consists of one operator and one
or more objects, called operands, that are bound to the operator. For example, the ex­
pression,

-3 / 4 + 2.5

contains three operators: -, I, and +. The operand to - is 3; there are two operands to I,
-3 and 4; and there are two operands to +, -3/4 and 2.5.

The minus operator is said to be a unary operator because it takes just one operand,
whereas the division and addition operators are binary operators. Each operator has its
own rules for operand type agreement, but most binary operators require both operands to
have the same type. If the types differ, the compiler converts one of the operands to
agree with the other one. To decide which operand to convert, the compiler resorts to the
hierarchy of data types shown in Figure 4-1, and converts the "lower" type to the
"higher" type. For example:

1 + 2.5

involves two types, an int and a double. Before evaluating it, the compiler converts the
int into a double because double is higher than int in the type hierarchy. The conversion
from an int to a double does not usually affect the result in any way. It is as if the ex­
pression were written:

1.0 + 2.5

Code 4-13

long double

double

float

unsigned
long int

Figure 4-1. Hierarchy of C Scalar Data Types

The rules for implicit conversions in expressions can be summarized as follows. Note that
these conversions occur after all integral widening conversions have taken place.

• If a pair of operands contains a long dquble, the other value is converted to long
double.

• Otherwise, if one of the operands is a double, the other is converted to double.

• Otherwise, if one of the operands is a float, the other is converted to float.

• Otherwise, if one of the operands is an unsigned long int, the other is converted
to unsigned long into

• Otherwise, if one of the operands is a long int, then the other is converted to
long int.

• Otherwise, if one of the operands is an unsigned int, then the other is converted
to unsigned into

In general, most implicit conversions are invisible. They occur without any obvious effect.

4-14 Code

4.4 Overview: Preprocessor Directives

The compiler analyzes preprocessor directives before analyzing any statements or declara­
tions. The preprocessor directives provide information to the compiler on how the code
should be compiled. There is no limit to the number of preprocessor directives that a pro­
gram can contain. Preprocessor directives (with the exception of #module. #section. and
#systype) can appear on any line in a program.

Domain C supports the preprocessor directives shown in Table 4-3. Preprocessor direc­
tives always begin with the # character.

In addition to these directives. Domain C supports the predefined macros and names
shown in Table 4-2.

Table 4-2. Predefined Macros and Names

Name or Macro What It Does

. defined A macro that returns 1 if the argument is defined; o if the
argument is not defined.

systype A macro that sets the systype environment variable.

- DATE - A name that expands to the date at compilation time.

- FILE - A name that expands to the current source filename.

LINE A name that expands to the current line number in the -
source file.

TIME A name that expands to the time of compilation.

- STDC - A name that expands to 1 if prototyping is turned on;
otherwise it expands to zero.

Code 4-15

Table 4-3. Preprocessor Directives

Preprocessor
Directive What It Does

#debug * Marks source code for conditional compilation.

#define,#undef Defines and undefines constants and macros.

#eject * Inserts a page break into the listing file.

#elif * Same as an #else directive followed by an #if
directive. (The #elif directive is support by the
UNIX preprocessor (cpp) but not by the
preprocessor in the Domain C compiler.
Therefore, use #elif only if you are compiling in
a UNIX environment or explicitly specify the
Ibin/cc command.

#if, #ifdef, #ifndef,
#else, #endif Controls conditional compilation.

#include Loads an include file.

#line Resets the compiler's knowledge of the current
source line number and filename.

#list, #nolist Enables and disables the listing of source code
in the listing file. -

#module' * Changes the internally stored name of the
object module.

#section * Directs the binder to place instructions and data
into named sections rather than the default
sections.

#systype * Defines the target system on which the
program will run.

• Preprocessor directives marked with an asterisk can begin on any column; how-
ever, the other preprocessor directives must begin in the very first column of a line.

4-16 Code

4.5 Encyclopedia of Domain C Code

The remainder of this chapter contains an alphabetical listing of all the elements that can
make up the action part of a function. Figure 4-2 shows all the listings of C keywords in
this encyclopedia, Figure 4-3 provides all the preprocessor directive listings, and Figure
4-4 gives all the other listings.

break if

continue return

do/while sizeof

for switch

goto while

Figure 4-2. Keyword Listings in Encyclopedia

DATE

#debug

#define, #undef

#eject

#if, #ifdef, #ifndef, #else, #endif

#include

#line

#list

#module

#section

STDC and _BFMT_COFF

#systype

Figure 4-3. Preprocessor Directive Listings in Encyclopedia

Code 4-17

4-18 Code

arithmetic operators

array operations

assignment operators

bit operators

cast operations

comma operator

conditional expression operator

enum operations

expressions

increment and decrement operators

logical operators

pointer operations

predefined macros

relational operators

structure and union operations

Figure 4-4. Other Listings in Encyclopedia

arithmetic operators

arithmetic operators Operators used to perform arithmetic calculations.

FORMAT

expJ + exp2
expJ - exp2
expJ * exp2
expJ I exp2
expJ % exp2
-exp

Addition
Subtraction
Multiplication
Division
Modulo division
Sign reversal

ARGUMENTS

exp Any constant or variable expression.

DESCRIPTION

The addition, subtraction, and multiplication (+, -, and *) operators perform the usual
arithmetic operations in C programs. All of the arithmetic operators (except the unary sign
reversal operator) bind from left to right. The operands may be any integral or floating­
point value (except for the modulo operator, which accepts only integer operands). The
addition and subtraction operators also accept pointer types as operands. Pointer arithme­
tic is described in the "pointer operations" section of this chapter.

C's modulo operator (o/D) produces the remainder of integer division and so equals zero if
the two numbers divide each other exactly. This can be useful for something like determin­
ing whether or not it's a U.S. presidential election year. For example:

if (year % 4 == 0)
printf("This is a u.s. presidential election year.\n");

else
printf("There will not be a u.s. presidential election this\

year. \n");

As required by the ANSI standard, Domain C supports the following relationship between
the remainder and division operators:

a equals a%b + (alb) * b for any integer values of a and b

As with division expressions, the result of a remainder expression is undefined if the right
operand is zero.

The additive inverse operator (-) multiplies its sole operand by -1. For example, if x is
an integer with the value -8, then -x evaluates to 8.

Code 4-19

arithmetic operators

Refer to the precedence rules at the beginning of this chapter for information about how
these and other operators evaluate with respect to each other.

4-20 Code

arithmetic operators

Bug Alert: Integer Division and Remainder

When both operands of the division operator (I) are integers, the result is an integer. If both op­
erands are positive, and the division is inexact, the fractional part is truncated:

5/2
7/2
1/3

evaluates to
evaluates to
evaluates to

2
3
o

If either operand is negative, however, the compiler is free to round the result either up or down.
In accord with the PCC implementation of C, the Domain C compiler always rounds up:

-5/2
71-2

-1/-3

evaluates to
evaluates to
evaluates to

-2 (on Apollo maChines) but -3 (on some machines)
-3 (on Apollo maChines) but -4 (on some machines)
o (on Apollo machines) but -1 (on some maChines)

By the same token, the sign of the result of a remainder operation is undefined by the K&R and
ANSI standards:

-5 % 2
7 % -4

evaluates to
evaluates to

1 or -1
3 or -3

Domain C makes the sign of the result agree with the sign of the left-hand operand:

-5 % 2
7 % -4

evaluates to
evaluates to

-1 (on Apollo maChines)
3 (on Apollo maChines)

This· is consistent with the PCC implementation.

For portability reasons,youshould avoid division and remainder operations with negative num­
bers since the results can vary from one compiler to another .. One way to avoid the sign problem
during division is to always cast the operands to float or double. Even if the result is assigned to
aninteger, you are guaranteed that the compiler will convert to an integer by truncating the frac­
tional part. For example:

/* If j is an integer, it will be assigned the value-2. */
j= (float) 5 / -2;

Although this is a portable solution, it is expensive, since it requires the CPU to perform floating-:­
point· arithmetic.

The sign of the remainder is a more difficult problem to circumvent because the operands must be
integer-'-you cannot cast them to float or double. If you always want the sign to be positive, you
can use the run-time library absO function, which returns the absolute value of its argument:

. /* Ensures that the. value assigned to j is positive. */
j= abs (k%m) ;

If the sign of the remainder is important to your program's operations, you should use the. run­
time library divO function,whichcomputes the quotient and the remainder of its two arguments;
The sign of both results isdetermined in a guaranteed and portable manner. (Seethe description
ofdiyOin theSysV Programmer.~sReference manual or the BSD Programmer's Re!erence man-
u~) . .

Code 4-21

array operations

array operations Operations that may be performed with arrays.

DESCRIPTION

Chapter 3 explains how to declare array variables. Here we explain how to use array vari­
ables in statements.

You assign a value to an element of an array by specifying an assignment statement of the
following form:

array_name[component_number] = value;

For example, given the following array declaration

float r_array[lOOO] ;

you can assign the value 5.29 to element 3 with the following statement:

r_array[3] = 5.29;

Note that the component_number must always be an integral value. Consider the following
legal and illegal declarations:

r_array[3]
r_array['B']
r_arraY[143.5]

5.29;
5.29;
5.29;

/* legal */
/* legal */
/* illegal * /

The following program fragment assigns values to an integer array and shows the use of a
simple index expression:

int i, num[5];

for (i 0; i < 5; i++)
num [i] i;

The array num can hold five integers, and those five are assigned with a simple for loop.
Notice that the loop begins its assignments with the zeroth element of the array. All C ar­
ray subscripts, or indexes, begin at zero (array[O]). Some programming languages always
begin at 1 (array [1]), while others allow the programmer to determine the initial subscript
value, but C always starts counting at zero. This is important because it means if you create
an array of size n, no nth element is defined. In the example above, Dum has these five
elements:

num[O] /* first element */
num(l] /* second */
num[2] /* third */
num[3] /* fourth */
num[4] /* fifth */

4-22 Code

array operations

Even though there is no num[5] element, the compiler does not complain if you assign
something to it (or num[6], or num[12], or whatever), and that fact can create hard-to­
find errors. When storing an array value, C looks at the array name and then uses the sub­
script value to determine the memory offset. No bounds checking occurs, as explained in
the "Bug Alert: Walking Off the End of an Array."

Subscripting with enums

Domain C allows you to use an enumerated value as an array index. In the following code
fragment, the value 3.14159 is assigned to array[2]:

{

}

enum subscripts { zero, one, two, three, four};
float array [10] ;

array [two] = 3.14159;

Bug Alert: Walking Off the End·ofan Array

Unlike some programming languages,C does not require compilers to check array
bounds. This means that you can attempt to access elements for which no memory has
been allocated. The results are unpredictable. Sometimes you will access memory
that has been allocated for other variables. Sometimes you will attempt to access spe­
cial protected areas of memory and your program will abort. Usually this type of error
occurs because you are off by one in testing for theendof the array. For example,
consider the following program which attempts to initialize every element of an array
to zero:

main()
{

}

int ar [10], j;

for (j =0 ; j <= 10; j++)
ar[j] = 0;

Since we have declaredarUto hold ten elements, we can validly refer to elements 0
through 9 .. Our for loop, however, has an off-by-one bug in it. The loop runs from
o through 10, .so element 10 also gets assigned zero. Since there is no element 10, the
compiler overwrites a portion of memory, very likely the portion of memory reserved
for j. This will produce an infinite loop because j will be reset to zero.

Code 4-23

array operations

Accessing Array Elements Through Pointers

One way to access array elements is to enter the array name followed by a subscript. An­
other way is through pointers. The declarations,

short ar[4] ;
short *p;

create an array of four variables of type short, called ar[O], ar[l], ar[2], and ar[3], and
a variable named p that is a pointer to a short. Using the address-of operator (&), you
can now make the assignment,

p = &ar [0] ;

which assigns the address of array element 0 to p. If we dereference p,

*p

we get the value of element ar[O].

Until the value of p is changed, the expressions ar[O] and *p refer to the same memory
location. Due to the scaled nature of pointer arithmetic, the expression,

* (p+3)

refers to the same memory contents as:

ar[3]

In fact, for any integer expression e,

*(p+e)

is the same as:

ar[e]

This brings us to the first important relationship between arrays and pointers: Adding an in­
teger to a pointer that points to the beginning of an array, and then dereferencing that ex­
pression, is the same as using the integer as a subscript value to the array.

The second important relationship is that an array name that is not followed by a subscript
is interpreted as a pointer to the initial element of the array (except when an array name
appears as the operand of the sizeof operator). That is, the expressions,

ar

and

&ar[O]

4-24 Code

array operations

are exactly the same. Combining these two relationships, we arrive at the following impor­
tant equivalence:

ar[n] is the same as * (ar + n)

This relationship is unique to the C language and is one of C's most important features.
When the C compiler sees an array name, it translates it into a pointer to the initial ele­
ment of the array. Then the compiler interprets the subscript as an offset from the base
address position. For example, the compiler interprets the expression ar[2] as a pointer
to the first element of ar, plus an offset of 2 elements. Due to scaling, the offset deter­
mines how many elements to skip, so an offset of 2 means skip two elements. The two
expressions

ar[2]
*(ar+2)

are equivalent. In both cases, ar is a pointer to the initial element of the array, and 2 is
an offset that tells the compiler to add 2 to the pointer value.

Because of this interrelationship, pointer variables and array names can be used inter­
changeably to reference array elements. It is important to remember, however, that the
values of pointer variables can be changed whereas array names cannot be changed. This
is because an array name by itself is not a variable-it refers to the address of the array
variable. You cannot change the address of variables. This means that a naked array
name (one without a subscript or indirection operator) cannot appear on the left-hand side
of an assignment statement. For instance:

float ar[5], *p;

p = ar; /* legal -- same as p= &ar[O] */
ar p; /* illegal you may not assign */

/* to an array address */
&p ar; /* illegal you may not assign */

/* to a pointer address */
ar++; /* illegal -- you may not */

/* increment an array address */
ar[l] *(p+3); /* legal ar[l] is a variable */
p++; /* legal you may increment a */

/* pointer variable */
++ar[2] /* legal increment element 2 or array */

In the above examples, note that scaling allows you to use the increment and decrement
operators to point to the next or previous element of an array.

Code 4-25

array operations

Passing Arrays as Function Arguments

In C, an array name that appears as a function argument is interpreted as the address of
the first element of the array. For instance:

int maine void
{

extern float func(float []);
float x, farray[5];

x func(farray); /* Same as func(&farray[O]) */

On the receiving side, you need to declare the argument as a pointer to the initial element
of an array. There are two ways to do this:

func(float *ar)
{

or

func(float ar[])
{

}

The second example declares ar to be an array of indeterminate size. You may omit the
size specification because no storage is being allocated for the array. (You may include a
size for documentation purposes.) The array has already been created in the calling rou­
tine, and what is being passed is really a pointer to the first element of the array. Since
the compiler knows that array expressions result in pointers to the first element of the ar­
ray, it converts ar into a pointer to a float, just like the first declaration. Functionally,
therefore, the two versions are equivalent.

The choice of declaring a function argument as an array or a pointer has no effect on the
compiler's operation-it is purely for human readability. To the compiler, ar simply points
to a float-it is not an array. Because of the pointer-array equivalence, however, you can
still access ar as if it were an array. But you cannot find out the size of the array in the
calling function by using the sizeof operator on the argument. For example:

4-26 Code

/* Program name is "print_size" */
#include <stdio.h>

void print_size(float arg[])
{

printf("The size of arg is: %d\n" , sizeof(arg));
}

int main(void)
{

float f_array[lO];

array operations

printf("The size of f_array is: %d\n" , sizeof(f_array));
print_size(f_array);

}

The results of running this program are:

The size of f_array is: 40
The size of arg is: 4

The variable Carray is an array of ten 4-byte floats, so the value 40 is its correct size in
bytes. The variable arg, on the other hand, is converted to a pointer to a float. Pointers
are four bytes long, so the size of arg is 4. Because it is impossible for the called function
to deduce the size of the passed array, it is often a good idea to pass the size of the array
along with the base address. This enables the receiving function to check array bounda­
ries:

#define MAX_SIZE 1000

void foo(f_array, f_array_size);
float f_array[];
int f_array_size;
{

if (f_array_size > MAX_SIZE)
{

}

printf("Array too large.\n");
exit (1);

You can obtain the number of elements in an array by dividing the size of the array by the
size of each element. On the calling side, you would write:

foo(f_array, sizeof(f_array)/sizeof(f_array[O]));

Note that this expression works regardless of the type of element in Carray[].

Code 4-27

array operations

Returning Arrays from Functions

The return statement can pass only one value back to the caller. It may therefore seem
impossible to pass an array back to the caller, but it can be done. The trick is to define
the called function so that it returns a pointer to the base type of the array. The following
example demonstrates this method. In it, we pass in an array of lowercase letters to the
function fO, and it returns an array of uppercase letters.

/* Program name is "returning_arrays". It demonstrates how a
* function can return an array to the caller.
*/

#include <stdio.h>
#include <ctype.h>
#include <string.h>

/* Define a function that returns a pointer to a character */
char *toupper_string(char *arg)
{

}

static char result [100] ;
int i=O;
while (*arg)

result[i++]
return result;

toupper(*arg++);
/* pass back the address of the first element

* of array 'result'.
*/

int main(void
{

}

char x[lOO] , *px;
strcpy(x, "hi there");
px = toupper_string(x); /* upon return from the function,

* px points to the first element
* of array result
*/

printf("%s => %s\n", x, px);

NOTE: In the preceding example, we declare array result as a static
so that it will not disappear after function invocation. Note
though that any dereference of pointer px may inadvertently
alter the contents of the array, so be careful.

Multidimensional Arrays

An array of arrays is a multidimensional array and is declared with consecutive pairs of
brackets. To access an element in a multidimensional array, you specify as many sub­
scripts as are necessary.

4-28 Code

Consider the following array of arrays:

int ar[2] [3] = { { 0, 1, 2 },
{ 3, 4, 5 }

} ;

The array reference,

ar [1] [2]

is interpreted as

*(ar[l] + 2)

which is further expanded to:

((ar+1)+2)

array operations

Recall that ar is an array of arrays. When * (ar+ 1) is evaluated, therefore, the 1 is scaled
to the size of the object, which in this case is a 3-element array of ints (which we assume
are four bytes long), and the 2 is scaled to the size of an int:

*«int *) «char *)ar + (1*3*4» + (2*4»

We put in the (char *) cast to turn off scaling because we have already made the scaling
explicit. The (int *) cast ensures that we get all four bytes of the integer when we
dereference the address. After doing the arithmetic, the expression becomes:

*(int *) «char *)ar + 20)

The value 20 has already been scaled so it represents the number of bytes to skip. If ar
starts at address 1000 ar[1] [2] refers to the int that begins at address 1014 (in hex),
which is S.

If you specify fewer subscripts than there are dimensions, the result is a pointer to the base
type of the array. For example, given the 2-dimensional array declared above, you could
make the reference,

ar[l]

which is the same as:

&ar [1] [0]

The result is a pointer to an into

Passing Multidimensional Arrays as Arguments

To pass a multidimensional array as an argument, you pass the array name as you would a
single-dimension array. The value passed is a pointer to the initial element of the array,

Code 4-29

array operations

but in this case the initial element is itself an array. On the receiving side, you must de­
clare the argument appropriately, as shown in the following example.

flO
{

int ar [5] [6] [7] ;

f2(ar);

}

f2(received_arg)
int received_arg[] [6] [7] ;

{

}

Again, you may omit the size of the array being passed, but you must specify the size of
each element in the array. Most compilers don't check bounds, so it doesn't really matter
whether you specify the first size. For example, the compiler would interpret the declara­
tion of received_arg as if it had been written:

int (*received_arg) [6] [7];

Another way to pass multidimensional arrays is to explicitly pass a pointer to the first ele­
ment, and pass the dimensions of the array as additional arguments. In our example, what
gets passed is actually a pointer to a pointer to a pointer to an into

4-30 Code

flO
{

int ar [5] [6] [7] ;

f2(ar, 5, 6, 7);

f2(received_arg, diml, dim2, dim3)
int ***received_arg;
int diml, dim2, dim3;
{

array operations

The advantage of this approach is that you need not know ahead of time the shape of the
multidimensional array. The disadvantage is that you need to manually perform the index­
ing arithmetic to access an element. For example, to access ar[x] [y] [z] in f20, you
would need to write:

*((int *)received_arg + x*dim3*dim2 + y*dim2 + z)

Note that we need to cast received_arg to a pointer to an int because we are performing
our own scaling. Although this method requires considerably more work on the program­
mer's part, it gives more flexibility to f20 since it can accept 3-dimensional arrays of any
size and shape. Moreover, it is possible to define a macro that simplifies the indexing ex­
pression.

Bug Alert: Referencing Elements in a Multidimensional Array

One of the most common mistakes made by beginning C programmers-especially
those familiar with another programming language-is to use a comma to separate sub­
scripts,

ar[1,2] 0; /* Legal, but probably wrong */

instead of:

ar[l] [2] = 0; /* Correct */

The comma notation is used in some other languages, such as FORTRAN and Pascal.
In C, however, this notation has a very different meaning because the comma is a C
operator in its own right. The first statement above causes the compiler to evaluate the
expression 1 and discard the result; then evaluate the expression 2. The result of a
comma expression is the value of the rightmost operand, so the value 2 becomes the
subscript to ar. As a result, the array reference accesses element 2 of ar.

If ar is a 2-dimensional array of ints, the type of ar[2] i&a pointer to an int, so this
mistake will produce a type incompatibility error. This can be misleading since the
real mistake is using a comma instead of brackets.

Code 4-31

array operations

EXAMPLE

/* Program name is "bubble_sort". It sorts an array of
* ints in ascending order using the bubble sort algorithm.
*/

#define FALSE 0
#define TRUE 1
#include <stdio.h>

void bubble_sort(int list[], int list_size
{

int j, k, temp, sorted = FALSE;
while (sorted)
{

sorted = TRUE; /* assume list is sorted */
/* Print loop -- not part of bubble sort algorithm */

for (k = 0; k < list_size; k++)
printf("%d\t", list[k]);

printf ("\n");
/* End of print loop */

for (j = 0; j < list_size -1; j++)
{

if (list [j] > list [j+l])
{

temp = list [j] ;
list [j] = list [j+l] ;
list[j+l] = temp;

/* At least 1 element is out of order
*/

}

sorted = FALSE;
}

} /* end of for loop */
} /* end of while loop */

int maine void)
{

}

int i;
static int list[] = { 13, 56, 23, 1, 89, 58,

20, 125, 86, 3};
bubble_sort (list, sizeof(list)/sizeof(list[O]»;
exit (0);

The function accepts two parameters, a pointer to the first element of an array of ints and
an int representing the size of the array.

The following program calls bubble_sortO with a 10-element array.

4-32 Code

int main(void)
{

int i;
static int list[) { 13, 56, 23, 1, 89, 58,

20, 125, 86, 3};

bubble_sort (list, sizeof(list)/sizeof(list[O));
exi t(0);

}

USING THIS EXAMPLE

Program execution results in the following output:

13 56 23 1 89 58 20 125
13 23 1 56 58 20 89 86
13 1 23 56 20 58 86 3
1 13 23 20 56 58 3 86
1 13 20 23 56 3 58 86
1 13 20 23 3 56 58 86
1 13 20 3 23 56 58 86
1 13 3 20 23 56 58 86
1 3 13 20 23 56 58 86

array operations

86 3
3 125
89 125
89 125
89 125
89 125
89 125
89 125
89 125

The bubble sort is not very efficient, but it's a simple algorithm that illustrates array ma­
nipulation. The standard run-time library contains a much more efficient sorting function
called qsortO, which is described in the SysV Programmer's Reference manual and the
BSD Programmer's Reference manual.

Code 4-33

assignment operations

assignment operators Assign new values to variables.

FORMAT

lvalue = exp
lvalue += exp
lvalue -= exp
lvalue *= exp
lvalue 1= exp
lvalue %= exp
lvalue «= exp
lvalue »= exp
lvalue &= exp
lvalue "'= exp
lvalue 1= exp

ARGUMENTS

lvalue

exp

DESCRIPTION

Simple assignment
Addition and assignment
Subtraction and assignment
Multiplication and assignment
Division and assignment
Modulo division and assignment
Left shift and assignment
Right shift and assignment
Bitwise AND and assignment
Bitwise XOR and assignment
Bitwise OR and assignment

Any lvalue.

Any legal expression.

The = is the fundamental assignment operator in C. The other assignment operators pro­
vide shorthand ways to represent common variable assignments. We begin with a discus­
sion of =.

The Assignment (=) Operator

When C sees an equal sign, it processes the statement on the right side of the sign and as­
signs the result to the variable on the left side. For example:

x 3 ; /* assigns the value 3 to variable x */

x = y; /* assigns the value of y to x */

x (y*z) ; /* performs the multiplication and assigns
* the result to x
*/

An assignment expression itself has a value, which is the same value that is assigned to the
left-hand operand.

4-34 Code

assignment operations

The assign operator has right-to-Ieft associativity, so the expression,

a = b = c = d = 1;

is interpreted as:

(a = (b = (c = (d = 1»»;

First 1 is assigned to d, then d is assigned to c, then c is assigned to b, and finally, b is
assigned to a. The value of the entire expression is 1. This is a convenient syntax for as­
signing the same value to more than one variable. Note, however, that each assignment
may cause quiet conversions, so,

int j;
double f;
f = j = 3.5;

assigns the truncated value 3 to both f and j. On the other hand,

j = f = 3.5;

assigns 3.5 to f and 3 to j.

The Other Assignment Operators

C's assignment operators provide a handy way to avoid some keystrokes. Any statement in
which the left-hand side of the equation is repeated on the right is a candidate for an as­
signment operator. If you have a statement like this:

i = i + 10;

you can use the assignment operator format to shorten the statement to:

i += 10;

In other words, any statement of the form

var = var op exp; /* traditional form */

can be represented in the following shorthand form:

var op= exp; /* shorthand form */

The only internal difference between the two forms is that var is evaluated only once in
the shorthand form. Most of the time this is not important; however, it is important when
the left-hand operand contains side effects, as in the following example:

int *ip;

*ip++
*ip++

+= 1;
*ip++ + 1;

/* These two statements produce */
/* different results. */

Code 4-35

assignment operations

The second statement is ambiguous because C does not specify which assignment operand
is evaluated first. See Section 4.2.14 for more information concerning order of evaluation.

Assignment Operators in Older C Compilers

Some older C compilers accept assignment operators written with the equal sign first (for
example, =+ instead of +=). When the Domain C compiler encounters such an old-style
operator, it processes it as if the two signs were reversed, and issues a warning message.

Also, some compilers accept a space between the two signs. In those compilers, something
like

+

is interpreted as

+=

Since this can lead to ambiguous expressions, the Domain C compiler forbids the space be­
tween the operator and the equal sign.

Assignment Type Conversions

Whenever you assign a value to a variable, the value is converted to the variable's data
type if possible. In the example below, for instance, the floating-point constant 3.5 is con­
verted to an int so that i gets the integer value 3.

mainO
{

int i;
i = 3.5;

}

Unlike arithmetic conversions, which always expand the datum, assignment conversions can
shorten the datum and therefore affect its value. For example, suppose c is a char, and
you make the assignment:

c = 882;

The binary representation of 882 is:

00000011 01110010

4-36 Code

assignment operations

It requires two bytes of storage, but the variable c has only one byte allocated for it, so the
two upper bits don't get assigned to c. This is known as overflow and the result is not de­
fined by the ANSI and K&R standards for signed types. Domain C simply ignores the extra
byte, so c would be assigned the right-most byte:

01110010

This would erroneously give c the value of 114. The principle illustrated for chars also
applies to shorts, in~s, and long ints. For unsigned types, however, C has well-defined'
rules for dealing with overflow conditions. When an integer value x is converted to a
smaller unsigned integer type, the result is the non-negative remainder of

x / (U_MAX+1)

where U_MAX is the largest number that can be represented in the shorter unsigned type.
For example, if j is an unsigned short, which is two bytes, then the assignment

j = 71124;

assigns to j the remainder of:

71124 / (65535+1)

The remainder is 5588. Note that for non-negative numbers, and for negative numbers
represented in two's complement notation, this is the same result that you would obtain by
ignoring the extra bytes.

It is perfectly legal to assign an integer value to a floating-point variable. In this case, the
integer value is implicitly converted to a floating-point type. If the floating-point type is
capable of representing the integer, there is no change in value. If f is a double, the as­
signment

f = 10;

is executed as if it had been written:

f = 10.0;

This conversion is invisible. There are cases, however, where a floating-point type is not
capable of exactly representing all integer values. Even though the range of floating-point
values is generally greater than the range of integer values, the precision may not be as
good for large numbers. In these instances, conversion of an integer to a floating-point
value may result in a loss of precision. Consider the following example:

#include <stdio.h>

main()
{

}

long int j
float x;

x = j;

2147483600;

printf("j is %d\nx is %10f\n" , j, x);
exit (0);

Code 4-37

assignment operations

If you compile this program with the -nopt switch to ensure that x is not stored in a regis­
ter, and then execute it, you get:

j is 2147483600
x is 2147483648.000000

The most risky mixture of integer and floating-point values is the case where a floating­
point value is assigned to an integer variable. First, the fractional part is discarded. Then,
if the resulting integer can fit in the integer variable, the assignment is made. In the fol­
lowing statement, assuming j is an int, the double value 2.5 is converted to the int value 2
before it is assigned.

j = 2.5;

This causes a loss of precision which could have a dramatic impact on your program. The
same truncation process occurs for negative values. After the assignment,

j = -5.8;

the value of j is -5.

An equally serious situation occurs when the floating-point value cannot fit in an integer.
For example:

j = 999999999999.0

This causes an overflow condition whiCh will produce unpredictable results if it is not
caught by the compiler. As a general rule, it is a good idea to keep floating-point and in­
teger values separate unless you have a good reason for mixing them.

As is the case with assigning floating-point values to integer variables, there are also poten­
tial problems when assigning double values to float variables There are two potential
problems: loss of precision and an overflow condition. In Domain C a double can repre­
sent approximately 16 decimal places, and a float can only represent 7 decimal places. If

f is a float variable, and you make the assignment,

f = 1.0123456789

the computer rounds the double constant value before assigning it to f. The value actually
assigned to f, therefore, will be 1.012346 (Domain C always rounds toward zero). The
following example shows rounding due to conversions.

4-38 Code

1* Program name is "float_rounding".
* can be rounded when assigned to a
*1

#include <stdio.h>

int main(void
{

float f32;
double f64;
int i;
for (i=l, f64=0; i < 1000; ++i)

f64 += 1. O/i;

f32 = f64;

assignment operations

It show how double values
float.

printf("Value of f64: %1.7f\n". f64);
printf("Value of f32: %1.7f\n". f32);

}

The output is:

Value of f64: 7.4844709
Value of f32: 7.4844708

A more serious problem occurs when the value being assigned is too large to be repre­
sented in the variable. For example. the largest positive number that can be represented
by a float is approximately 2e38. What happens if you try to execute the following assign­
ment?

f = 2e40;

The behavior is not defined by the K&R or ANSI standards. In this simple case, the com­
piler will recognize the problem and report a compile-time error. In other instances. how­
ever, a run-time error could result.

Code 4-39

assignment operations

EXAMPLE

/* Following are examples of each assignment operator. In each
* case, x = 5 and y = 2 before the statement is executed.
*/

x y; ..,. x= 2
x += Y + 1; ..,. x 8
x y * 3; ..,. x -1
x *= y + 1; ..,. x 15
x /= y; ..,. x 2
x %= y; ..,. x = 1
x <:= y; ..,. x 20
x >= y; ..,. x 1
x &= y; ..,. x 0
x y; ..,. x 7
x 1= y; ..,. x 7
x = y = 1 ..,. x = 1, y 1

4-40 Code

BFMT COFF Refer to the _STDC_ listing later in this chapter.

Code 4-41

bit operators

bit operators

FORMAT

expJ « exp2
expJ » exp2

expJ & exp2
expJ A exp2
expJ I exp2
-expJ

ARGUMENTS

expJ

exp2

DESCRIPTION

Access specific bits in an object.

Left shifts Oogical shift) the bits in expJ by exp2 positions
Right shifts (logical or arithmetic shift) the bits in expJ by exp2
positions
Performs a bitwise AND operation
Performs a bitwise OR operation
Performs a bitwise inclusive OR operation
Performs a bitwise negation (one's complement) operation

Any integer expression.

Any integer expression.

Domain C supports the usual six bit operators, which we group for descriptive purposes
into shift operators and logical operators.

Bit Shift Operators

The « and » operators shift an integer left or right respectively. The operands must
have integer type, and all automatic promotions are performed for each operand. For ex­
ample, the following program fragment

short int
short int

to the left = 53, to_the_right= 53;
left_shifted_result, right_shifted_result;

left_shifted_result = to_the_left « 2;
right_shifted_result = to_the_right » 2;

sets left_shiftedJesult to 212 and right_shiftedJesult to 13. The results are clearer in
binary:

4-42 Code

base 2
0000000000110101
0000000011010100
0000000000001101

base 10
53

212 /* 53 shifted left 2 bits */
13 /* 53 shifted right 2 bits */

bit operators

Shifting to the left is equivalent to mUltiplying by powers of two.

x« y is equivalent to x • 2 Y

Shifting non-negative integers to the right is equivalent to dividing by powers of two:

x» y is equivalent to x / 2 Y

The « operator always fills the vacated rightmost bits with zeros. If expJ is unsigned, the
» operator fills the vacated leftmost bits with zeros. If expJ is signed, then » fills the
leftmost bits with ones (if the sign bit is 1) and zeros (if the sign bit is 0). In other words,
if expJ is signed, the two bit shift operators preserve its sign.

NOTE: Not all compilers preserve the sign bit when doing bit shift op­
erations on signed integers. The K&R and ANSI standards
make this behavior implementation-defined. Domain C is
consistent with the PCC implementation of C.

Make sure that the right operand is not larger than the size of the object being shifted.
For example, the following produces unpredictable arid nonportable results because ints
have fewer than 50 bits:

10 » 50

You will also get nonportable results if the shift count (the second operand) is a negative
value.

Bit Logical Operators

The logical bitwise operators are similar to the Boolean operators, except that they operate
on every bit in the operand(s). For instance, the bitwise AND operator (&) compares
each bit of the left operand to the corresponding bit in the right operand. If both bits are
one, a one is placed at that bit position in the result. Otherwise, a zero is placed at that
bit position.

Code 4-43

bit operators

The four logical operators perform logical operations on a bit-by-bit level using the follow­
ing truth tables:

& AND I Inlusive OR

bit x bit x bit x of bit x bit x bit x of
of opl of op2 result of opl of op2 result

0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

- Bitwise
"- Exclusive OR Complement

bit x bit x bit x of
of opl of op2 result bit x bit x of

of op2 result

0 0 0
0 1 1 0 0 1 0 1
1 1 0 0 1

Figure 4-5. Bitwise Operators

Table 4-4 shows some examples of the bitwise AND operator.

Table 4-4. The Bitwise AND Operator

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110

5722 Ox165A 00010110 01011010

9430 & 5722 Ox0452 00000100 01010010

The bitwise inclusive OR operator CI) places a 1 in the resulting value's bit position if
either operand has a bit set at the position (see Table 4-5).

4-44 Code

bit operators

Table 4-5. Examples Using the Bitwise Inclusive OR Operator

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110

5722 Ox165A 00010110 01011010

9430 I 5722 Ox36DE 00110110 11011110

The bitwise exclusive OR (XOR) operator (A) sets a bit in the resulting value's bit position
if either operand (but not both) has a bit set at the position (see Table 4-6).

Table 4-6. Example Using the XOR Operator

Expression . Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110

5722 Ox165A 00010110 01011010

9430 A 5722 Ox328C 00110010 10001100

The bitwise complement operator (-) reverses each bit in the operand (see Table
4-7).

Table 4-7. Example Using the Bitwise Complement Operator

Expression Hexadecimal Binary Representation

Value

9430 Ox24d6 00100100 11010110

-9430 Oxdb29 11011011 00101001

Code 4-45

break

break Provides an early exit from for, while, and do/while loops and from switch statements.

FORMAT

break;

DESCRIPTION

There are times when it is convenient to be able to exit from a loop without testing a con­
dition at the top or bottom. The break statement allows you to exit immediately from the
for, while, or do/while loop that encloses it. Execution resumes at the first statement af­
ter the end of the loop.

The break statement is also used to exit from switch statements. For more information on
that use of break, see switch later in this encyclopedia.

4-46 Code

EXAMPLE

/* Program name is "break_example". This program finds what
* number day (out of 365) a user-supplied date is in a year.
* Leap years are ignored.
*/

#include <stdio.h>

int maine void
{

int i, month_num, day, tot_days;
static int m[13] = {O, 31, 28, 31, 30, 31, 30, 31, 31, 30,

31, 30, 31};
char answer = 'y';
printf ("\n");

/* The program asks for a month and day and then checks to see
* if they are valid. If not, the break statement terminates

}

* the do/while loop. otherwise, the number day is computed
* and printed.
*/
while «answer != 'n') && (answer != 'N'»
{

printf("Enter the month and day separated by a space: ");
scanf ("%d %d", &month_num, &day);
fflush(stdin);
if (month_num> 12 I I day> m[month_num])
{

printf ("You entered an invalid date\n");
break;

} /* end if */
tot_days = 0;
for .(i = 1; i < month_num; i++)

tot_days += m[i] ;
tot_days += day;
printf("The date you entered is number %d of the year.\n",

tot_days);
printf ("Again? ");
scanf ("%c", &answer);
fflush(stdin);

/* end while */

break

Code 4-47

break

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter the month and day separated by a space: 7 13
The date you entered is number 194 of the year.
Again? y
Enter the month and day separated by a space: 19 24
You entered an invalid date

4-48 Code

cast operations

cast operations Convert a value to another data type.

FORMAT

(data_type) exp

ARGUMENTS

exp

Any scalar data type including a scalar data type created through a
typede! statement. data_type cannot be an aggregate type, but it can
be a pointer to an aggregate type.

Any scalar expression.

DESCRIPTION

To cast a value means to explicitly convert it to another data type. For example, given
the following two definitions:

int
float

y = 5;
x;

the following cast operation casts the value of y to float:

x = (float) y; /* x now equals 5.0 */

Here are four more casts (assume that j is a scalar variable):

i (float) j; /* Cast j's value to float */
i (char *) j ; /* Cast j's value to a pointer

i ((int *)(»j;/* Cast j's value to a pointer
* returning an int
*/

to a char */
to a function

i (float) (double) j; /* Cast j' s value first to a double
* and then to a float
*/

It is important to note that if exp is a variable, a cast does not change this variable's data
type; it only changes the type of the variable's value for that one expression. For instance,
in the preceding casting examples, the cast does not produce any permanent effect on vari­
able j.

There are no restrictions on casting from one scalar type to another, except that you may
not cast a void object to any other type. You should be careful when casting integers to

Code 4-49

cast operations

pointers. If the integer value does not represent a valid address, the results are unpredict­
able.

The type specifier that makes up the cast expression is called an abstract declarator. The
rules for composing abstract declarators are described in Chapter 3.

Casting Integers to Other Integers

It is possible. to cast one integer into an integer of a different size and to convert a float­
ing-point value, enumeration value or pointer to an integer. Conversions from one type of
integer to another fall into five cases (A-E) as shown in Table 4-8. Each of these conver­
sions is described in the following sections.

Table 4-8. Integer Conversions

Converted Type

unsigned unsigned unsigned

Original Type char short int char short int

char A B B D E E

short C A B C D E

int (long) C C A C C D

unsigned char D B B A B B

unsigned short C D B C A B

unsigned int C C D C C A

CASE A: Trivial Conversions

It is legal to "convert" a value to its current type by casting it, but this conversion has no
effect.

CASE B: Integer Widening

Casting an integer to a larger size is fairly straightforward. The value remains the same but
the storage area is widened. The compiler preserves the sign of the original value by filling
the new leftmost bits with ones if the value is negative or with zeros if the value is positive.
When converting to an unsigned integer, the value is always positive so the new bits are al­
ways filled with zeros. The following table illustrates this principle.

4-50 Code

cast operations

hex dec
char i = 37 55
(short) i => 0037 55
(int) i => 00000037 55

char j = c3 -61
(short) j => ffc3 -61
(int) j => ffffffc3 -61

unsigned char k = 37 55
(short) k => 0037 55
(int) k => 00000037 55

CASE C: Casting Integers to a Smaller Type

When an int value is cast to a narrower type (short or char), the excess bits on the left
are discarded. The same is true when a short is cast to a char. For instance, if an int is
cast to a short, the 16 leftmost bits are truncated. The following table of values illustrates
these conversions.

signed long int i
hex

cf34bfl

(signed short int)i => 4bf1
(signed char)i => f1
(unsigned char)i => f1

dec
217271281

19441
-15
241

Note that if, after casting to a signed type, the leftmost bit is 1, then the number is nega­
tive. However, if you cast to an unsigned type and after the shortening the leftmost bit is
1, then that 1 is part of the value (not the sign bit).

CASE D: Casting from Signed to Unsigned, and Vice Versa

When the orginal type and the converted type are the same size, a representation change
is necessary. That is, the internal representation of the value remains the same, but the
sign bit is interpreted differently by the compiler. For instance:

signed int i
hex

fffffca9
dec
-855

(unsigned int)i => fffffca9 4294966441

hex
0000f2a1

0000f2a1

dec
62113

62113

The hexadecimal notation shows that the numbers are the same internally, but the decimal
notation shows that the compiler interprets them differently.

CASE E: Casting Signed to Unsigned and Widening

This case is equivalent to performing two conversions in succession. First, the value is con­
verted to the signed widened type as described in case B, and then it is converted to

Code 4-51

cast operations

signed as described in case D. In the table below, note that the new leftmost bits are
filled with ones to preserve negativeness even though the final value is unsigned.

signed short int i
hex

ff55
dec

-171

(unsigned long int)i => fffff55 4294967125

Casting Floating-Point Values to Integers

Casting floating-point values to integers may produce useless values if an overflow condition
occurs. The conversion is made simply by truncating the fractional part of the number. For
example, the floating-point value 3.712 is converted to the integer 3 and the floating-point
value -504.2 is converted to -504.

Here are some more examples:

float f = 3.700, f2 -502.2, f3 7.35e9;

(int)f => 3
(unsigned int)f => 3
(char)f => 3

(int)f2 => -502 in decimal fffffeOa in hex
(unsigned int)f2 => 4294966794 in decimal or fffffeOa in hex
(char)f2 => 10 in decimal Oa in hex

(int)f3 => run-time error
(unsigned int)f3 => run-time error
(char)f3 => run-time error

Note that converting a large float to a char produces unpredictable results if the rounded
value cannot fit in one byte. If the value cannot fit in four bytes, the run-time system is­
sues an overflow error.

Casting Pointers to Integers

Pointers are treated like unsigned ints and obey the same conversion rules.

Casting Enumerated Values to Integers

When you cast an enumerated expression, the conversion goes through two steps. First, the
enumerated value is converted to an int and then the int is converted to the final target
data type. Note that the sign is preserved during these conversions.

4-52 Code

cast operations

Casting Double to Float and Vice Versa

When you cast a float up to a double, the system extends the number's precision without
changing its true value. However, when you cast a double down to a float, the system
shrinks the number's precision and this shrinking may change the number's value due to
rounding. The rounding generally occurs on the sixth or seventh decimal digit. Also,
when you cast down from double to float, you run the risk of causing a run-time overflow
error caused by a double that is too big or too small to fit within the confines of a float.

Casting Pointers to Pointers

You may cast a pointer of one type to a pointer to any other type. For example:

int *int_p;
float *float_p;
struct S *str_p;
extern foo(struct T *);

int_p = (int *) float_p;
float_p = (float *) str_p;
foo((struct T *) str_p);

The cast is required whenever you assign a pointer value to a pointer variable that has a
different base type, and when you pass a pointer value as a parameter to a function that
has been prototyped with a different pointer type. The only exception to this rule con­
cerns generic pointers (pointers to void). You may assign any pointer value to a generic
pointer without casting. See Chapter 3 for more information about generic pointers.

Code 4-53

comma operator

comma operator Separates two expressions and returns the value of the latter.

FORMAT

expJ, exp2

ARGUMENTS

expJ Any expression.

exp2 Any expression.

DESCRIPTION

Use the comma operator to separate two expressions that are to be evaluated one right af­
ter the other. The comma operator is popular within for loops, as demonstrated by the fol­
lowing example:

for (i = 10, j = 4; (i * j) < n; i++, j++);

In the preceding example, the comma operator allows you to initialize both i and j at the
beginning of the loop. The comma operator also allows you to increment i and j to­
gether.

Note that all expressions return values. (See the "expressions" listing in this chapter for
details.) When using a comma operator, the expression returns the value of the rightmost
expression. For example, the following statement sets variable j to 2:

j = (x = 1, y = 2);

Note, however, that assignments such as these are considered poor programming style.
You should confine use of the comma operator to for loops.

4-54 Code

conditional expression operator

conditional expression operator Alternative to jf ... else statement constructions.

FORMAT

expl ? exp2 exp3

ARGUMENTS

expl Any expression.

exp2 Any expression.

exp3 Any expression.

DESCRIPTION

The conditional expression construction provides a shorthand way of coding an if ... else
condition. The syntax described above is equivalent to:

if (expl)
exp2;

else
exp3;

When a conditional expression is executed, expl is evaluated first. If it is true (that is,
nonzero) exp2 is evaluated and its result is the value of the conditional expression. If expl
is false, exp3 is evaluated and its result is the value of the conditional expression.

There is no requirement that you put parentheses around the expl portion of the condi­
tional expression, but doing so will improve your code's readability.

Both exp2 and exp3 must be assignment-compatible. If exp2 and exp3 are pointers to dif­
ferent types, then the compiler issues a warning. The value of a conditional expression is
either expr2 or expr3, whichever is selected. Note that the other expression is not evalu­
ated. The type of the result is the type that would be produced if exp2 and exp3 were
mixed in an expression. For instance, if exp2 is a char and exp3 is a double, the result
type will be double regardless of whether exp2 or exp3 is selected.

Code 4-55

conditional expression operator

EXAMPLE

/* Program name is "conditional_exp_op_example"
* This program reads four user-input numbers, adds
* them together and prints the total. It then uses
* the conditional expression to determine whether
* the user wants to continue. If the string answer
* is 'y' or 'Y', a value of 1 (true) is assigned to
* again. If the answer is anything else, a value of
* 0 (false) is assigned.
*/

#include <stdio.h>

int main(void
{

int a, b, c, d, again, total;
char answer;

printf ("\n");
again = 1;
while (again)
{

total = 0;
printf ("Enter four numbers -- separated by spaces -- that\

you want added together: ");

}

scanf ("%d %d %d %d", &a, &b, &c, &d);
fflush (stdin);
total = a + b + c + d;
printf ("\nThe total is: %d\n", total);
printf ("Do you want to continue? ");
scanf ("%c", &answer);
again = (answer == 'y' I I answer == 'Y') ? 1

} /* end while */

USING THIS EXAMPLE

If we execute this program, we get the following output:

o· ,

Enter four numbers -- separated by spaces -- that you
want added together: 20 30 40 SO

The total is: 140
Do you want to continue? y
Enter four numbers -- separated by spaces -- that you
want added together: 1 2 3 4

The total is:
Do you want to continue ? n

4-56 Code

continue Causes the next iteration of the enclosing for, while, or do/while loop to begin
immediately.

FORMAT

continue;

DESCRIPTION

continue

Continue halts execution of its enclosing for, while, or do/while loop and skips to the
next iteration of the loop. In the while and do/while, this means the expression is tested
immediately, and in the for loop, the third expression (if present) is evaluated.

Code 4-57

continue

EXAMPLE

/* Program name is "continue_example". This program
* reads a file of student names and test scores and
* computes each student's average grade. However,
* the instructor has decided to drop the score from
* the third test because she discovered someone had
* found and distributed the answer sheet. So the for
* loop includes a continue statement that tells it to
* read over this test's score, excluding it from the
* averaging calculations.
*/

#include <stdio.h>

int maine void)
{

}

4-58 Code

int test _score, tot _score, i' ,
float average;
FILE *fp;
char fname[lO] , lname[15] ;

fp = fopen("grades_data", "r");
printf ("\n\n");
while (!feof(fp » /* while not end of file */
{

tot_score = 0;
f scanf (fp, "%s %s", fname, lname);
printf("\nStudent's name: %s %s\nGrades: "

for (i = 0; i < 5; i++)
{

fscanf(fp, "%d", &test_score);
printf("%d" test_score);

fname,
lname);

if (i == 2) /* leave out this test score */
continue;

tot_score += test_score;
} /* end for i */
fscanf(fp, "\n"); /* read end-of-line at end of */

/* each student's data */
average = tot_score/4.0;
printf("\nAverage test score: %4.1f\n", average);

} /* end while */
fclose (fp);

USING THIS EXAMPLE

If we execute this program, we get the following output:

student's name: Barry Quigley
Grades: 85 91 88 100 75
Average test score: 87.8

student's name: Pepper Rosenberg
Grades: 91 76 88 92 88
Average test score: 86.8

Student's name: Sue Connell
Grades: 95 93 91 92 89
Average test score: 92.3

continue

Code 4-59

DATE and _TIME _

_ DATE_ and _TIME_ (predefined symbols) Expands to the date and time of
compilation.

FORMAT

DATE
TIME - -

Note that there are two underscores before and two underscores after
each of these preprocessor symbols

DESCRIPTION

The preprocessor recognizes these special predefined symbols and replaces their occur­
rences with the following:

DATE - - Expands to a string representing the date of program compilation.

TIME - - Expands to a string representing the time of program compilation.

EXAMPLE

The _DATE_ and _TIME_ macros are useful for recording the date and time a file
was last compiled. For instance:

/* Program name is "date_and_time_example". */

void print_version(void)
{

}

printf("This utility last compiled on %s at %s\n".
DATE. _TIME_);

int main(void)
{

print_version 0 ;
}

USING THIS EXAMPLE

If we execute this program. we get the following output:

$ date_and_time_example.bin
This utility last compiled on Nov 16 1987 at 17:34:12

4-60 Code

#debug

#debug (preprocessor directive) Marks source code for conditional compilation.
(Domain Extension)

FORMAT

ARGUMENT

Any line of source code.

DESCRIPTION

Domain C provides the #debug preprocessor control line, which marks source code for
conditional compilation. If you compile with the -cond compiler option (explained in
Chapter 6), lines prefixed with #debug are compiled. If you compile with the -ncond
switch (which is the default), then lines prefixed by #debug are ignored. (Note that
-cond and -ncond are Icom/cc options; they are not available with Ibin/cc.)

In general, you should use the conditional compilation preprocessor directives rather than
#debug, since the former are portable and the latter is not. (See the "#if" listing of this
encyclopedia for information on the conditional compilation directives.)

EXAMPLE

/* Program name is "debug_preprocessor_cmd". Use this
* program to experiment with the -cond and -ncond
* compiler options
*/

#include <stdio.h>

int maine void)
{

char a_letter;
printf("Enter a letter -- ");
scanf("%c", &a_letter);

#debug printf("Echo the input -- %c\t%d\n" ,a_letter, a_letter);
}

Code 4-61

#debug

USING THIS EXAMPLE

If we compile with the -ncond switch (or without the -cond switch). we get the following
results:

Enter a letter -- r

If we compile with the -cond switch. we get these results instead:

Enter a letter r
Echo the input -- r

4-62 Code

114

default

default Refer to switch later in this encyclopedia.

Code 4-63

#define and #undef

#define and #undef (preprocessor directives) Defines and undefines program constants and macros.

FORMAT

#define macro_name macro_body Define constants

#define macro_name(arg [{,arg}]) macro_body Define macros

#undef macro_name

ARGUMENTS

macro_name

arg

macro_body

DESCRIPTION

Undefine constants and macros

An identifier.

An identifier.

Any group of tokens. If the macro_body is to span
more than one line, you must place a backslash \ at the
end of the line (just as you would for a long string).

A macro is a name that has an associated text string, called the macro body. By conven­
tion, macro names that represent constants consist of uppercase letters only. This makes it
easy to distinguish macro names from variable names, which are generally composed of
lowercase characters. In the following example, BIG_BUFF is the macro name and 512 is
the macro body.

#define BIG_BUFF 512

When a macro name appears outside of its definition (referred to as an invocation), it is
replaced with its macro body. The act of text replacement is referred to as macro expan­
sion. For example, having defined BIG_BUFF, you might write:

char buf[BIG_BUFF] ;

During the preprocessing stage, this line of code would be translated into:

char buf[512];

The simplest and most common use of macros is to represent numeric constant values, as
in the case of BIG_BUFF. There is another form of macros that is similar to a C func­
tion in that it takes arguments that can be used in the macro body. The syntax for this
type of macro is shown in Figure 4-6.

4-64 Code

#define and #undef

For example, you could write:

#define MUL_BY_TWO(a) «a) + (a»

Then you can use MUL_BY_TWO in your program just as you would use a function. For
example, the macro invocation,

is translated by the preprocessor into:

j = «5) + (5»;

The actual argument 5 is substituted for the formal argument a wherever it appears in the
macro body. The parentheses around a and around the macro body are necessary to en­
sure correct binding when the macro is expanded.

Note that macro arguments are not variables-they have no type, and no storage is allo­
cated for them. Consequently, macro arguments do not conflict with variables that have
the same name. The following, for example, is perfectly legal:

which, after expansion, becomes:

j = «a-I) + (a-I»;

[.Cdenne~ ':::~~

cD-1 ~OadC;° I

macro
argument II L---"""':"" ___ -'P

Figure 4-6. Syntax of a Function-Like Macro

Code 4-65

#define and #undef

4-66 Code

,', ."

,Thispmgrammingerror will actually gotmnoticed by the c()mpih~r, which will inter­
pret the second semicolon as a null statement. The following, however, will cause a
compile:....time parsing error:

int array [SIZE1;

• WhatJllak~,s, tllis bug so, difficUlt to fhid' is, that the l!neon whith the error, is reported
, looks perfectly legal; The,mostpernicious"exampl~ '()fthis typ~ 'ofbugoccllrs when
the. r~sUlting syntaX"after, replacement;' is', legal but ,is semantically. different from
whatwasmtended,Forexample: " ,,' "

, 'The.semi~OJ6riafter'. (var== '1) is interPrJt~d 'as ,a' null, statement, • and more 'iInpor~ :
tcmtly,all thebbdyofthewhile loop. , j\sa:;result, the call to fooOls not part of the
while, body, IfvarequaIs one, you will~e~,~n infinit~~oop.;

pomainC,suPP()tts' th~-es option (withZC?~(cc}and the,;"E optiO,n (with/binlcc)
thatJetyou::~xectite,just,the preprocess06::Thismakesit.much easier to find this'

,:' type; ,ofbitg,.b¢~atise'Youcaninspect ,th~.ispurcecode afteran:6f ,the:fi1acros h'ave
"b~enexp~nded: " ',' ','

;":, ,;'" .. ',".:'"' " . ''"-.~t;\: .. ;~\
":;::~:';:~/~':;~ ;::~,~,:;~,;y .. , . .;\<~.;'"

#define and #undef

Bug Alert: Binding of Macro Arguments

A potential problem with macros is that argument expressions that are not carefully
parenthesized can produce erroneous results due to operator precedence and bind­
ing. Consider the following macro:

#define square(a) a * a

square has the advantage that it will work regardless of the argument data types.
However, watch what happens when we pass it an arithmetic expression:

j = 2 * square(3 + 4);

expands to:

j = 2 * 3 + 4 * 3 + 4;

Because of operator precedence, the compiler interprets this expression as:

j = (2 * 3) + (4 * 3) + 4;

which assigns the value of 22 to j, instead of 98. To avoid this problem, you should
always enclose the macro body and macro arguments in parentheses:

#define square(a) «a) * (a))

Now, the macro invocation expands to:

j = 2 *«3 + 4) * (3 + 4»;

which produces the correct result.

No Type Checking for Macro Arguments

;

From an operational point of view, the macro MUL_BY_TWO may seem identical to the
following function:

int mul_by_two(a)
int a;
{

return a+a;
}

However, there is one significant difference-there is no type checking for macros. In the
function version of mul_by_two, you must pass an integral value, and the function must
return an into In the macro version, you can substitute any type of value for a.

Code 4-67

#define and #undef

Suppose, for example, that f is a float variable. If you write,

the preprocessor translates it into:

f = «2.5) + (2.5»;

which assigns the value 5.0 to f. In contrast, if you write,

the compiler takes one of two actions, depending on whether function prototypes are being
used. In the presence of prototyping, the compiler converts 2.5 into an int, giving it a
value of 2; adds two and two together, and returns 4 instead of 5.0. Without function
prototypes, the compiler passes a double-precision 2.5 to the function, which interprets it
as an into This produces unpredictable results.

The lack of type checking for macro arguments can be a powerful feature if used with
care. Consider the following macro, which returns the lesser of two arguments:

#define MIN(a, b) «a) < (b) ? (a) : (b»

Note that this works regardless of whether a and b are integers or floating-point values. It
is extremely difficult to write an equivalent function that works for all data types.

Another difference between macros and functions is that the preprocessor checks to make
sure that the number of arguments in the definition is the same as the number of argu­
ments in the invocation. The C compiler only does this type of checking for functions if
you use the ANSI prototyping syntax in the function declaration. For example, the state­
ment,

would produce a compile-time error. The analogous statement

would produce a compile-time error only if the function is declared with the ANSI
prototyping syntax. Otherwise, this statement would compile without errors, but would pro­
duce unpredictable results when executed.

4-68 Code

#define and #undef

Bug Alert: Using = to Define a Macro

A common mistake made in defining macros is to use the assignment operator as if
you were initializing a variable. Instead of writing,

#define MAX 100

you write:

#define MAX = 100

This type of mistake can lead to obscure bugs. For example, the expression,

for (j=MAX; j > 0; j--)

would expand to:

for (j== 100; j > 0; j--)

Suddenly, the assignment is turned into a relational expression. The expression is le­
gal, so the compiler will not complain, making the error difficult to track down.

Bug1\lert: Space Between Left Parenthesis and Macro Name

Note in Figure 4-6 that the left parenthesis must.coine immediately after the macro
name, without any intervening spaces; Jnsertion of a space usually results in a com­
pile-time error, but occasionally obscure bugs can result. Consider the following
macro:

The expression,

j=neg_a_pll.ls_f (x) ;

expands to:

j>=-(x) + f;

Butwatch what happens if we accidentally insert a space between the left parenthesis
and the macro name in the definition:

Now, the expression expands to:

J=(a) -a) +i(x);

Ifais a variable>name and f is a function name, this will look like a perfectly legal ex­
pression.to the compiler.

Code 4-69

#define and #undef

Macros vs. Functions

Macros and functions are similar in that they both enable a set of operations to be repre­
sented by a single name. Sometimes it is difficult to decide whether to implement an op­
eration as a macro or as a function.

In general, macros execute more quickly than functions because there is none of the func­
tion overhead involved in copying arguments and maintaining stack frames. When trying
to speed up slow programs, therefore, you should be on the lookout for small, heavily used
functions that can be implemented as macros. Converting functions to macros, however,
will have a noticeable impact on execution speed only if the function is called frequently.
Using macros can also have a significant impact on code size. The resulting executable ob­
ject will probably be larger if you use macros, unless the equivalent function requires a lot
of overhead.

The following lists summarize the advantages and disadvantages of macros compared to
functions.

4-70 Code

Advantages of Macros

• Macros are usually faster than functions since they avoid the function call over­
head.

• The number of macro arguments is checked to match the definition. (Domain C
compiler also does this for functions if you use the new ANSI prototyping syntax.)

• No type restriction is placed on arguments so that one macro may serve for sev­
eral data types.

Disadvantages of Macros

• Macro arguments are re-evaluated at each mention in the macro body, which can
lead to unexpected behavior if an argument contains side effects.

• Function bodies are compiled once so that mUltiple calls to the same function can
share the same code without repeating it each time. Macros, on the other hand,
are expanded each time they appear in a program. As a result, a program with
many large macros may be longer than a program that uses functions in place of
the macros.

• Though macros check the number of arguments, they don't check the argument
types. ANSI function prototypes check both the number of arguments and the ar­
gument types.

• It is more difficult to debug programs that contain macros because the source
code goes through an additional layer of translation, making the object code even
further removed from the source code.

#define and #undef

Bug Alert: Side Effects in Macro Arguments

A potential hazard of macros involves side effect operators in argument expressions.
Suppose, for instance that we invoke the MIN macro as follows:

a = MIN(b++, c);

The preprocessor translates this into:

a = «b++) < (c) ? (b++) : c);

If b is less than c, it gets incremented twice, obviously not what is intended. To be
on the safe side, you should never use a side effect operator in a macro invocation.
Side effect operators include the increment and decrement operators, the assignment
operators, and function invocations.

Removing a Macro Definition

Once defined, a macro name retains its meaning until the end of the source file, or until it
is explicitly removed with an #undef directive. The most typical use of #undef is to re­
move a definition so you can redefine it.

According to the ANSI standard and most existing C compilers, it is illegal to redefine a
macro without an intervening #undef statement, unless the two definitions are the same.
This is a useful rule because it enables you to define the same macro in different header
files. If you include mUltiple header files (and hence, mUltiple definitions of the same
macro), your compiler will complain only if the definitions conflict.

Code 4-71

do/while

do/while Executes the statements within a loop until a specified condition is satisfied.

FORMAT

do
statement;

while (exp);

ARGUMENTS

statement A null statement, simple statement, or compound statement.

exp Any expression.

DESCRIPTION

This is one of the three looping constructions available in C. Unlike the for and while
loops, however, the do/while performs statement first and then tests expo If exp evaluates
to nonzero (true), statement is executed again, but when exp evaluates to zero (false),
execution of the loop stops. This type of loop is always executed at least once.

Two ways to jump out of a do/while loop prematurely (that is, before exp becomes false)
are the following:

• Use break to transfer control to the first statement following the do/while loop.

• Use goto to transfer control to some labeled statement outside the loop.

4-72 Code

EXAMPLE

/* Program name is "do.while_example". This program finds the
* summation of an integer that a user supplies, and the
* summation of the squares of that integer. The use of the
* do/while means that the code inside the loop is always
* executed at least once.
*/

#include <stdio.h>

int main(void)
{

}

int num, sum, square_sum;
char answer;

printf("\n");
do
{

printf("Enter an integer: ");
scanf ("%d", &num);
sum = (num*(num+1»/2;
square_sum = (num*(num+1)*(2*num+1»/6;
printf("The summation of %d is: %d\n", num, sum);
printf("The summation of its squares is: %d\n",

square_sum);
printf ("\nAgain? ");
fflush(stdin);
scanf ("%c", &answer);

} while «answer != ~n~) && (answer != ~N~»;

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter an integer: 10
The summation of 10 is: 55
The summation of its squares is: 385

Again? y
Enter an integer: 25
The summation of 25 is: 325
The summation of its squares is: 5525

Again? n

do/while

Code 4-73

#eject

#eject (preprocessor directive) Inserts a page break into the listing file. (Domain Extension)

FORMAT

#eject

DESCRIPTION

Domain C supports the #eject directive. which inserts a page break (formfeed) into the
listing file .. The statement that follows the #eject command is output at the top of a new
page. The #eject directive does not affect the object file in any way.

4-74 Code

else

else Refer to if later in this encyclopedia.

Code 4-75

#else

#else Refer to #if later in this encyclopedia.

4-76 Code

#endif

#endif Refer to #if later in this encyclopedia.

Code 4-77

enum operations

enum operations Operations that can be performed on enums.

DESCRIPTION

Chapter 3 explains how to define enumerated variables. Here, we explain how to use enu­
merated variables in the action part of your program. In conformance with the ANSI stan­
dard. Domain C allows you to use enums where integers may be used. However, we rec­
ommend that you use enums only in the following situations:

• Assign an enumerated value to an enumerated variable.

• Compare an enumerated value or variable to another enumerated value or vari­
able.

• Use an enumerated variable as an array subscript.

• Use an enumerated variable in switch control expressions, and use enumerated
values in switch case labels.

• Pass an enumerated variable to a function or return an enumerated value from a
function.

For example, here is a program fragment that shows some of the possible uses of enumer­
ated variables:

4-78 Code

enum fruits {mango, apple, lemon, orange} tasty_fruits;

tasty_fruits = mango; /* assign enum value to an enum var. */

if (tasty_fruits> apple) /* compare enum var to enum value */
printf("A tart fruit.\n");

switch (tasty_fruits) /* use enum var in a switch statement */
{

case apple

case mango
case lemon
case orange

\regions.\n");

}

printf("Grown in temperate climates. \n");
break;

printf("Grown in tropical or semi-tropical

break;

expressions

expressions Combinations of operators and operands that evaluate to a single value.

DESCRIPTION

An expression consists of one or more operands and zero or more operators linked to­
gether to compute a value. For instance,

a + 2

is a legal expression that results in the sum of a and 2. The variable a all by itself is also
an expression, as is the constant 2, since they both represent a value. There are four im­
portant types of expressions:

• Constant Expressions contain only constant values. For example, the following
are all constant expressions:

5
5 + 6 * 13 / 3.0
, a'

• Integral Expressions are expressions that, after all automatic and explicit type
conversions, produce a result that has one of the integer types. If j and k are in­
tegers, the following are all integral expressions:

j
j * k
j / k + 3
k - ' a'
3 + (int) 5.0

• Float expressions are expressions that, after all automatic and explicit type con­
versions, produce a result that has one of the floating-point types. If x is a float
or double, the following are floating-point expressions:

x
x + 3
x / y * 5
3.0
3.0 - 2
3 + (float) 4

• Pointer expressions are expressions that evaluate to an address value. These in­
clude expressions containing pointer variables, the address-of operator (&), string
literals, and array names. If p is a pointer and j is an int, the following are
pointer expressions:

P
&j
P + 1
"abc"
(char *) OxOOOfffff

Code 4-79

expressions

All Expressions Have Values

One of the interesting features of C is that all expressions produce a value, called a
byproduct value, as they are evaluated at run time. For many expressions, you won't
know or care what this byproduct is. In some expressions, though, you can exploit this
feature to write more compact code. Let us now look at a few examples.

Example 1

First, consider the following simple expression statement:

x = 6;

The byproduct value of all assignment expressions is the value that gets assigned, which in
this case is 6. However, we do not use this byproduct value in any way.

The following example does use this byproduct value:

y = x = 6;

The equals operator binds from right to left; therefore, C first evaluates the expression x =
6. The byproduct of this operation is 6, so C sees the second operation as

y = 6

Example 2

Now, let us consider the following relational operator expression:

(10 < j < 20)

It is certainly tempting to use an expression like the preceding to find out whether j is be­
tween 10 and 20. However, it won't work. Since the relational operators bind from left
to right, C first evaluates

10 < j

Note that the byproduct of a relational operation is 0 if the comparison is false and 1 if
the comparison is true. Pretend that j equals 5. Therefore, the expression 10 < j is false,
and the byproduct is o. Thus, the next expression that C evaluates is

o < 20

which evaluates to true (or 1), which is the wrong answer.

Example 3

Finally, consider the following fragment:

4-80 Code

expressions

static char a_char, c[20] {"Valerie"}, *pc c;

while (a_char = *pc++)
{

This while statement uses C's ability to both assign and test a value. Every iteration of
while assigns a new value to variable a_char. The byproduct of an assignment is equal to
the value that gets assigned. The byproduct value will remain nonzero until the end of the
string is reached. When that happens, the byproduct value will become zero (false), and
the while loop will end.

Code 4-81

FILE - - Refer to _LINE_ listing later in this encyclopedia.

4-82 Code

for

for Executes the statement(s) within a loop as long as exp2 is true.

FORMAT

for ([expJ]: [exP2]: [eXP3])
statement;

ARGUMENTS

expJ

exp2

exp3

An .optional element of the command. It can be any expression, al­
though it usually is some sort of assignment statement. exp J is evalu­
ated only once-at the beginning of the loop iteration.

An optional element of the command. It can be any expression, but
is usually a relational expression. If omitted, exp2 is taken as being
permanently true.

An optional element of the command. It can be any expression, but
it usually serves as the iteration instructions for the loop. It is evalu­
ated each time after statement has been executed.

statement Can be a null statement, simple statement, or compound statement.

DESCRIPTION

This is one of the three looping constructions available in C. The other two are while and
do/while. The for statement operates as follows:

1. First, expJ is evaluated. This is usually an assignment expression that initializes
one or more variables.

2. Then exp2 is evaluated. This is the conditional part of the statement.

3. If exp2 is false, program control exits the for statement and flows to the next
statement in the program. If exp2 is true, statement is executed.

4. After statement is executed, exp3 is evaluated. Then the statement loops back to
test exp2 again.

Note that expJ is evaluated only once, whereas exp2 and exp3 are evaluated on each itera­
tion. The operation of a for loop is shown pictorially in Figure 4-7.

Code 4-83

for

ENTER FOR LOOP

NO

EXIT FOR LOOP

Figure 4-7. How a for Loop Is Executed

Note that for loops can be written as while loops, and vice versa. For example, the for
loop

for (j = 0; j < 10; j++)
{

do_something();
}

is the same as the following while loop:

j = 0;
while (j < 10)
{

do_something 0 ;
j++;

}

The for loop is used most commonly in situations when a variable has to be initialized and
reinitialized. Most loops have this kind of construction:

for (initialize_loop_variable; finished?; change_loop_variable)
instructions;

where change_loop_variable can increment or decrement the loop variable, depending on
what you want. And unlike some programming languages, which restrict you to changing
the loop variable by + 1 or -1 only, C lets you change the loop variable by any amount. If,
for example, you want to make some change to just the even-numbered members of an
arra y, you can write:

4-84 Code

for (i 0; i < ARRAY_SIZE;
/* instructions

i += 2)
*/;

for

Any of the three expressions, or even the statement, can be omitted from a for loop, but
the semicolons must appear. It is permissible, for example, to do all the work in the exp
part of the loop and just have a semicolon appear in the statement section. This is conven­
ient if you are scanning a fixed-length array to determine the length of the string stored in
it. The following for loop scans backward from the array's maximum size, reading over any
blanks, end-of-line characters, or nulls, until it finds an alphanumeric character:

for (i = ARRAY_SIZE-1; a[i] ==' , II a[i] == '\n' II
a [i] == '\ 0'; i --)

; /* null statement */

C also provides a way to combine several for loops into one. You can use the comma op­
erator (,) to string together expressions. If you want to process two indexes in parallel op­
erations, separate them with commas. For example:

for (i = 0, j = 10; i < j; i++, j--)
/* statement */;

The above loop initializes i to zero and j to 10 and loops through, incrementing i and
decrementing j, until i equals j.

The following describes two ways to jump out of a for loop prematurely (that is, before
exp2 becomes false):

• Use break to transfer control to the first statement following the for loop.

• Use go to to transfer control to some labeled statement outside the loop.

EXAMPLE

/* Program name is "for_example". The following computes a
* permutation -- that is, P(n,m) = n!/(n-m)! -- using for
* loops to compute n! and (n-m)!)
*/

#include <stdio.h>
#define SIZE 10

int main(void)
{

int n, m, n_total, m_total, perm, i, j, mid, count;

printf("Enter the numbers for the permutation (n things");
printf("taken m at a time)\nseparated by a space: ");
scanf ("%d %d", &n, &m);

n_total = m_total = 1;
for (i = n; i > 0; i--)

n total *= i;
/* compute n! */

Code 4-85

for

for (i = n - m; i > 0; i--)
m_total *= i;

perm = n_total/m_total;

/* compute (n-m)! */

printf("P(%d,%d) = %d\n\n", n, m, perm);

/* This series of for loops prints a pattern of "Z's" and shows
* how loops can be nested and how you can either increment or
* decrement your loop variable. The loops also show the proper
* placement of curly braces to indicate that the outer loops
* have multiple statements.
*/
printf("Now, print the pattern three times:\n\n");
mid = SIZE/2;

/* controls how many times pattern is printed */
for (count = 0; count < 3; count++)
{

for (j = 0; j < mid; j++)
{

/* loop for printing an individual line */

}
}

}

for (i = 0; i < SIZE; i++)
if (i < mid - j I Ii> mid + j)

printf(" ");
else

printf ("Z");
printf("\n");

for (j = mid; j >= 0; j--)
{

}

for (i = 0;· i <= SIZE; i++)
if (i < mid j I Ii> mid + j)

printf (" ");
else

printf ("Z");
printf ("\n");

4-86 Code

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter the numbers for the permutation (n things taken m at a
time) separated by a space: 4 3
P(4,3) = 24

Now, print the pattern three times:

z
zzz

zzzzz
zzzzzzz

zzzzzzzzz
zzzzzzzzzzz
zzzzzzzzz
zzzzzzz
zzzzz
zzz
z
z

zzz
zzzzz

zzzzzzz
zzzzzzzzz

zzzzzzzzzzz
zzzzzzzzz
zzzzzzz
zzzzz
zzz
z
z

zzz
zzzzz

zzzzzzz
zzzzzzzzz

zzzzzzzzzzz
zzzzzzzzz
zzzzzzz
zzzzz
zzz
z

for

Code 4-87

goto

go to Unconditionally jumps to a specified label.

FORMAT

go to label;

ARGUMENTS

label This is the label to which you want the goto to jump.

DESCRIPTION

Few programming statements have produced as much debate as the goto statement. The
goto statement is necessary in more rudimentary languages, but its use in high-level lan­
guages is generally frowned upon. Nevertheless, most high-level programming languages,
including C, contain a goto statement for those rare situations where it can't be avoided.

The purpose of the go to statement is to enable program control to jump to some other
spot. The destination spot is identified by a statement label, which is just a name fol­
lowed by a colon. The label must be in the same function as the goto statement that ref­
erences it.

With deeply nested logic there are times when it is cleaner and simpler to bail out with one
goto rather than backing out of the nested statements. The most common and accepted
use for a goto is to handle an extraordinary error condition. The following sample pro­
gram shows a goto that easily could be avoided through the use of a while loop, and also
shows what an illegal goto looks like.

4-88 Code

EXAMPLE

/* Program name is "goto_example". This program finds the
* circumference and area of a circle when the user gives
* the circle's radius.
*/

#include <stdio.h>
#define PI 3.14159

int maine void)
{

float cir, radius, area;
char answer;
extern void something_different(void);

circles:
printf("Enter the circle's radius: II);

scanf ("%f", &radius);
cir = 2 * PI * radius;
area = PI * (radius * radius);
printf(liThe circle's circumference is: %6.3f\n", cir);
printf(lilts area is: %6.3f\n", area);
printf("\nAgain? y or n: II);

fflush (stdin);
scanf ("%c ", &answer);
if (answer == 'y' I I answer 'Y')

goto circles;
else
{

printf(liDo you want to try something different? II);

fflush(stdin);
scanf ("%C ", &answer);
if (answer == 'y' I I answer == 'Y')

/* go to different; WRONG! This label is in */
/* another block. */

something_different();
} /* end else */

}

void something_different(void)
{
different:

printf("Hello. This is something different.\n");

goto

Code 4-89

goto

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter the circle's radius: 3.5
The circle's circumference is: 21.991
Its area is: 38.484

Again? y or n: y
Enter the circle's radius: 6.1
The circle's circumference is: 38.327
Its area is: 116.899

Again? y or n: n
Do you want to try something different? y
Hello. This is something different.

4-90 Code

if

if Tests one or more conditions and executes one or more statements according to the outcome
of the tests.

FORMAT

if (exp)
statement

'* format 1 *'

if (exp) '* format 2 *'
statementl

else
statement2

ARGUMENTS

exp Any expression.

statement Any null, simple, or compound statement. Note that a statement can
itself be another if statement. Remember, a statement ends with a
semicolon.

DESCRIPTION

The if and switch statements are the two conditional branching statements in C. The if
statement can take either of the two forms shown in the Format section.

In the first form, if exp evaluates to true (any nonzero value), C executes statement, while
if exp is false (evaluates to zero), C simply falls through to the next line in the program.

In the second form, if exp evaluates to true, C executes statementl, but if exp is false,
statement2 is performed.

Note that a statement can itself be an if or if/else statement. Therefore, you can test mul­
tiple conditions with a command that looks like this:

if (expl) /* multiple conditions */
statementl

else if (exp2)
statement2

else if (exp3)
statement3

else
statementN

Code 4-91

if

The important thing to remember is that C executes at most only one statement in the
if ... else and if ... else/if ... else constructions. Several expressions may indeed be true, but
only the statement associated with the first true expression is executed. The system does
not even look at subsequent expressions. For example:

/* determine reason the South lost the Civil War */
if (leSs_money)

printf(·"It had less money than the North. \n");
else if (fewer_supplies)

printf("It had fewer supplies than the North.\n");
else if (fewer_soldiers)

printf("It had fewer soldiers.\n");
else
{

}

printf("Its agrarian society couldn't compete with the");
printf("North's industrial one. \n");

All the expressions in the above code fragment could be evaluated to true, but the run­
time system would only get as far as the first line and never even test the remaining ex­
pressions.

If you use a compound statement in one of the if constructions, remember to use the curly
braces to indicate where the statement begins and ends. For example:

if (x > y)

{

}

temp = x;
x y;
y = temp;

else
/* make next comparison */

Braces also are important when you nest if statements. Since the else portion of the state­
ment is optional, you may not have one for an inner if. However, C associates an else
with the closest previous if unless you use braces to show that isn't what you want. For ex­
ample:

if (month 12)
{

if (day 25) /* month = November */
printf("Today is Christmas.\n");

}
else

printf("It's not even December.\n");

Without the braces, the else would be associated with the inner if statement, and so the
no-December message would be printed for any day in December except December 24.
Nothing would be printed if month did not equal 12.

4-92 Code

.. '

Bug Alert: The Dangling else

Nested if statements create the problem of matching each else phrase to the right if
statement. This is often called the dangling else problem. The general rule is:

An else is always associated with the nearest previous if.

Each if statement, however, can have only one else phrase. It is important to format
nested ifs correctly to avoid confusion. An else phrase should always be at the same
indentation level as its associated if. However, don't be misled by indentations that
look right even though the syntax is incorrect.

if

Code 4-93

if

EXAMPLE

/* Program name is "if.else_example". */
#include <stdio.h>

int main(void)
{

int age, of_age;
char answer;

/* This if statement is an example of the second form (see
* "Description" section).
*/
printf("\nEnter an age: ");
scanf ("%d", &age);
if (age> 17)

printf("You're an adult.\n");
else
{

of_age = 18 - age;
printf("You have %d years before you're an adult.\n",

of_age) ;
} /* end else */
printf("\n");
printf("This part will help you decide whether to jog \

today.\n");
printf("What is the weather like?\n");
printf(raining = r\n");
printf(cold = c\n");
printf (muggy = m\n");
printf(hot = h\n");
printf(nice = n\n");
printf(Enter one of the choices: ");
fflush(stdin);
scanf ("\n%c", &answer);

/* This illustrates the common "else if" idiom */
if (answer == 'r')

printf("It's too wet to jog today. Don't bother.\n");
else if (answer == 'c')

printf("You'll freeze if you jog today. stay indoors.\n");
else if (answer == 'm')

printf (" It's no fun to run in high humidity. Skip it. \n");
else if (answer == 'h')

printf("You'll sweat to death if you try to jog today. So\
don't.\n");

}

4-94 Code

else if (answer == 'n')
printf("You don't have any excuses. You'd better go run.\n");

else
printf ("You didn' t give a valid answer. \n");

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter an age: 15
You have 3 years before you're an adult.

This part will help you decide whether to jog today.
What is the weather like?

raining = r
cold = c
muggy = m
hot = h
nice = n

Enter one of the choices: r
It's too wet to jog today. Don't bother.

if

Code 4-95

#if, #ifdef, #ifndef, #elif, #else, #endif

#if, #ifdef, #ifndef, #elif, #else, #endif (preprocessor directives) and defined (predefined macros)
Control conditional compilation.

FORMAT

#if const_exp
#else
#elif (Supported only by the UNIX preprocessor)
#endif
#ifdef identifier
#ifndef identifier
defined (identifier)
defined identifer

Predefined macro
Predefined macro

ARGUMENTS

Any constant expression.

identifier Any identifier.

DESCRIPTION

These preprocessor directives and predefined macros work together, so we explain them to­
gether in this one listing.

The #if, #else, and #endif Preprocessor Directives

Use these preprocessor directives to conditionally compile sections of your source code.
For example, suppose you are writing a program that is to run on either a color or mono­
chromatic node. Further suppose that although most of the program is independent of the
target, a fraction of the program does depend on the target. In other words, the code for
the color target is different from the code for the monochromatic target. To solve this
problem you could just write two different programs. However, this makes program debug­
ging and maintenance much more expensive since a change in one program would have to
be duplicated in the other. A better solution is to use the conditional compilation pre­
processor directives as follows:

4-96 Code

#if, #ifdef, #ifndef, #elif, #else, #endif

/* code applying to both color and monochromatic nodes */

Hif color

/* code for color nodes only */

HeIse

/* code for monochromatic nodes only */

Hendif

/* code applying to both color and monochromatic nodes */

The #if directive takes a constant expression as its sole argument. If this constant expres­
sion evaluates to nonzero, then all the code up until an #else or #eDdif is compiled. If
the constant expression evalutes to zero, then no code is compiled until the next #else or
#endif directive.

There are a number of differences between the preprocessor conditional statements and
the C language conditional statements:

• The conditional expression in an #if directive need not be enclosed in parenthe­
ses. (Parentheses may optionally be included.)

• Blocks of statements under the control of a conditional preprocessor directive are
not enclosed in braces. Instead, they are bounded by an #else, or #eDdif state­
ment.

• Every #if block may contain only one #else block.

• Every #if block must end with an #eDdif directive.

• Any macros in the conditional expression are expanded before the expression is
evaluated.

• If a conditional expression contains a name that has not been defined, it is re­
placed by the constant zero. For example, the sequence,

Hundef x
Hif x

expands to:

Hif 0

Code 4-97

#if, #ifdef, #ifndef, #elif, #else, #endif

Conditional compilation is particularly useful during the debugging stage of program devel­
opment since you can turn sections of code on or off by changing the value of a macro.
Consider the following snippet:

#if DEBUG
if (exp_debug)
{

}
#endif

printf("lhs = ");
print_value (result);
printf(" rhs = ");
print_value (&rvalue);
printf ("\n");

If the macro DEBUG is a nonzero value, the if statement and printfO calls will be com­
piled. If DEBUG is zero, these statements will be ignored as if they were a comment. If
DEBUG is not defined, it is the same as if it were defined to expand to zero.

Domain C has a command line option that lets you define macros before compilation be­
gins. If you compile under the UNIX system, use the -D option to define macros. Under
Aegis, use the -def option. To receive debug information, you would define the macro
DEBUG to be some nonzero value:

cc -DDEBUG=1 test (under the UNIX system)
cc -def DEBUG=1 test (under the Aegis system)

Note that the #if and #endif directives control whether the enclosed C statements are
compiled, not necessarily whether they are executed. In the above example, the printfO
calls are only executed if the exp_debug variable has a nonzero value. This double-layer
approach enables you to include the diagnostic statements in the executable program, but
still decide each time you run the program whether you want them executed. If, for the
final version, you need to reduce the size of the executable program, you can compile it
with DEBUG set to zero.

Another common use of the conditional compilation mechanism is to choose between the
old function declaration syntax and the new ANSI prototyping syntax:

#if (__ STDC __ == 1)
extern int foo(char a, float b);
extern *char goo(char *string);

#else
extern int foo();
extern *char goo();

#endif

By default, the compiler sets __ STDC __ to 1 and uses the prototyping syntax to declare
the types of each argument. If you compile with -ntype, the compiler uses the old func­
tion declaration syntax.

4-98 Code

#if, #ifdef, #ifndef, #elif, #else, #endif

The #elif Directive

The #elif directive is supported by the UNIX preprocessor (cpp), but not by the Aegis
preprocessor. Therefore, use #elif only if you are compiling in a UNIX environment or if
you explicitly use the Ibin/cc command. The #elif directive is a shorthand for the combi­
nation of an #else directive followed by an #if directive. For example, the following se­
quence is written without #elifs.

Hif (TEST == 0)
printf("No test\n") ;

HeIse
Hif (test == 1)

printf("Test H1\n") ;
HeIse
Hif (test == 2)

printf("Test #3\n") ;
Hendif

Using #eHfs, you could rewrite this:

#if (TEST == 0)
printf("No test\n");

Helif (test == 1)
printf("Test #l\n");

#elif (test == 2)
printf("Test #3\n");

Hendif

The #ifdef and #ifndef Preprocessor Directives

Use the #ifdef command to determine if an identifier is currently defined. In this context
"defined" means that the identifier was used in a #define preprocessor directive or used in
the -D (/bin/cc) or -def (Icom/cc) compiler option. #ifndef checks whether an identifier
is not currently defined.

For example:

Hifdef TEST
printf ("This is a test. \n");

HeIse
printf("This is not a test.\n");

Hendif

If the macro TEST is defined, the first printfO call will be compiled. If TEST is not a
defined macro, the second printfO call is compiled. Note that it doesn't matter what
TEST expands to, only whether it exists or not. As with #if, an #ifdef and #ifndef block
must be terminated by an #endif statement.

Code 4-99

#if, #ifdef, #ifndef, #elif, #else, #endif

Another way to write the previous example is to use the preprocessor defined operator (an
ANSI feature):

#if defined TEST

or

#if defined(TEST)

The parentheses around the macro name are optional. By definition,

#if defined macro_name

is equivalent to:

#ifdef macro name

and the directive,

#if ! defined macro name

is equivalent to:

#ifndef macro_name

The defined macro is particularly useful for performing logical operations. For example:

#if defined(Domain) && !defined(Aegis) && DEBUG

In most instances, you can use #if instead of #ifdef and #ifndef, since the macro name
expands to zero if it is not defined. The one exception where you need to use #ifdef or
#ifndef is when the macro is defined to zero. For example, you may want to define the
macro FALSE to expand to zero. If you use an #if directive to test whether FALSE is
defined, FALSE will be redefined even if it is already defined to expand to zero. More
important, it won't be redefined if it is defined to something other than zero.

#if !FALSE
define FALSE 0
#endif

You can avoid both of these problems by using #ifndef.

#ifndef FALSE
define FALSE 0
#elif FALSE
undef FALSE
define FALSE 0
#endif

4-100 Code

#ifdef

#ifdef Ref~r to the #if listing earlier in this chapter.

Code 4-101

#ifndef

#ifndef Refer to the #if listing earlier in this chapter.

4-102 Code

#include

#include (preprocessor directive) Inserts an include file into the source code.

FORMAT

#include <pathname>
#include "pathname"

ARGUMENTS

pathname The pathname of the file that is to be included into the source code.

DESCRIPTION

The #include preprocessor directive inserts the contents of the specified file into the source
file prior to compilation. For example, if you put the following #include into your source
code

f (x) ;

#include "//lucas/eleven/rings.ins.c"
g(x) ;

then the C precompiler inserts the entire contents of the file into your source code be­
tween rex) and g(x). After this insertion, the C compiler compiles the inserted lines just
as it would compile any other lines of source code.

The #include command enables you to create common definition files, called header files,
to be shared by several source files. Header files traditionally have a .h suffix and contain
data structure definitions, macro definitions, and any global data necessary for modules to
communicate with each other.

The Domain preprocessors support up to 12 levels of nested header files.

The Domain/OS operating system supplies many header files (sometimes called "include
files") that describe structures internal to the operating system. The C run-time library
also includes a number of header files that must be included in order to invoke associated
functions. See the SysV Programmer's Reference manual and the BSD Programmer's Ref­
erence manual for more information about run-time library header files.

By default, the C compiler automatically tries to include the following file at the beginning
of each source file you compile:

/usr/include/apollo_$std.h

This file sets up predefined, system-wide definitions. Because it is automatically included,
you do not need to explicitly include this file in your code.

If the compiler cannot locate lusr/include/apollo_$std.h, no action is taken and no error
is reported. If the compiler does locate the file, it processes the file like any other include
file.

Code 4-103

#include

In Domain/OS pathname strings, the backslash character (\) represents the parent direc­
tory. Consequently, when the compiler detects a backslash character in an include file
string, it does not interpret it as a normal escape character. This special interpretation of
backslash applies only to include files.

How the C Preprocessor Searches for Include Files

The #include command has two forms:

#include <filename>

or

#include "filename"

If the filename is surrounded by angle brackets, the preprocessor looks in a list of imple­
mentation-defined places for the file. On Domain/OS systems, the compiler looks in the
directory /usr/include unless alternative directories are specified with the -idir option
(leom/ee) or the -I option (lbin/ee). (See the description of -idir and -I in Chapter 6
for more information about specifying search directories.)

If the filename is surrounded by double quotes, the preprocessor looks for the file accord­
ing to the file specification rules of the operating system (described below). If the
preprocessor can't find the file there, it searches for the file as if it had been enclosed in
angle brackets.

For header files enclosed in double quotes. the Domain/OS operating system distinguishes
between two kinds of pathnames: relative pathnames and absolute pathnames. An abso­
lute pathname begins with a slash (/), double slash (II), backslash (\), tilde (-), or period
(.); for example, the following include files are all absolute pathnames:

'include "//rastelli/six/plates.ins.c"
'include "/ignatov/seven/clubs"
'include "-/brunn/spinning.ins.c"
'include "./noakes/passing/tricks.ins.c"

When pathname is an absolute file, the C preprocessor searches this pathname only. If
the preprocessor does not find this pathname. it issues an error.

Relative pathnames begin with an identifier; for example, here are two relative pathnames:

'include "jensby/jensen.ins.h"
'include "my_include_file.h"

The search method for relative pathnames depends on whether you use the UNIX Ibin/ce
interface or the Aegis Icom/ee interface. This difference is due to the fact that Ibin/ee in­
vokes the UNIX preprocessor (epp) whereas Icom/cc uses the Aegis preprocessor. With
Ibin/ee, relative pathnames are relative to the directory of the including source file. With
leom/ee, relative pathnames are always relative to the working directory. These differences
are described in more detail below.

4-104 Code

#include

Compiling with Icom/cc

For relative pathnames delimited by double quotation marks ("pathname"), the compiler
first searches for pathname in the working directory. If it is not there, the compiler
searches any directories you specified with -idir. If it is not in any of them, the compiler
searches directory lusr/include. If it is not there, the compiler issues an error.

Compiling with Ibin/cc

For relative pathnames delimited by double quotation marks ("pathname"), the compiler
searches for pathname in the following order:

1. The preprocessor searches in the directory of the including source file.

2. If it is not there, the preprocessor searches in the working directory.

3. If it is not there, the preprocessor searches in any directories you specified with
-I.

4. If it is not in any of them, the preprocessor searches in directory lusr/include.

5. If it is not there, the preprocessor issues an error.

Code 4-105

increment and decrement operators

increment and decrement operators Operators that you can use to increment or decrement
variables.

FORMAT

lvalue++
++lvalue
lvalue-­
--lvalue

Increment, postfix form
Increment, prefix form
Decrement, postfix form
Decrement, prefix form

ARGUMENTS

lvalue

DESCRIPTION

Any previously declared integer or pointer lvalue. (See Section 4.2
for a definition of lvalue.) Note that although lvalue can be a pointer
variable, it cannot be a pointer to a function.

C's increment (++) and decrement (--) operators are good examples of the language's ten­
dency toward compactness. The increment operator adds 1 to its operand, and the decre­
ment operator subtracts 1 from its operand. So while in many languages statements must
look something like these

i i + 1;
j j - 1;

to increment the variable i and decrement j, in C you can just type

i++;
j--;

The increment and decrement operators are unary. The operand must be a scalar lvalue­
it is illegal to increment or decrement a constant, structure, or union. It is legal to incre­
ment or decrement pointer variables, but the meaning of adding 1 to a pointer is different
from adding 1 to an arithmetic value. This is described in the "pointer arithmetic" section
of this chapter.

There are two forms for each of the operators: postfix and prefix. Both forms increment
or decrement the appropriate variable, but they do so at different times. The statement ++i
(prefix form) increments i before using its value, while i++ (postfix form) increments it af­
ter its value has been used. This difference can be important to your program.

4-106 Code

increment and decrement operators

The postfix increment and decrement operators fetch the current value of the variable and
store a copy of it in a temporary location. The compiler then increments or decrements
the variable. The temporary copy, which has the variable's value before it was modified, is
used in the expression. For example:

/* Program name is "inc.dec_examplel" */

#include <stdio.h>

int maine void
{

}

int j = 5, k 5;
printf("j: %d\t k: %d\n", j++, k--);
printf("J: %d\t k: %d\n", j, k);

The result is:

j: 5
j: 6

k: 5
k: 4

In the first printfO call, the initial values of j and k are used, but once they have been
used they are incremented and decremented, respectively.

In contrast, the prefix increment and decrement operators modify their operands before
they fetch the values:

/* Program name is "inc.dec_example2" */

#include <stdio.h>

int maine void
{

}

int j = 5, k 5;
printf("j: %d\t k: %d\n", ++j, --k);
printf("J: %d\t k: %d\n", j, k);

The result of this version is:

j: 6
j: 6

k: 4
k: 4

Code 4-107

increment and decrement operators

In many cases, you are interested only in the side effect, not in the result of the expres­
sion. In these instances, it doesn't matter which operator you use. For example, as a
stand-alone assignment, or as the third expression in a for loop, the side effect is the
same whether you use the prefix or postfix versions:

x++;

is equivalent to:

++x;

and the statement

for (j = 0; j <= 10; j++)

is equivalent to:

for (j = 0; j <= 10; ++j)

You need to be careful, however, when you use the increment and decrement operators
within an expression. Consider the following function that inserts newlines into a text
string at regular intervals.

#inelude <stdio.h>

void break_line(int interval)
{

int e, j=O;

while «e = geteharO) != '\n')
{

if «j++ % interval) 0)
printf ("\n");

putehar(e);
}

}

This works because we use the postfix increment operator. If we were to use the prefix in­
crement operator, the function would break the first line one character early.

Precedence of Increment and Decrement Operators

Note in Table 4-1 that the increment and decrement operators have the same precedence,
but bind from right to left. So the expression,

--j++

is evaluated as:

--(j++)

This expression is illegal because j++ is not an lvalue as required by the -- operator. In
general, you should avoid using multiple increment or decrement operators together.

4-108 Code

increment and decrement operators

Bug Alert: Side Effects

The increment and decrement operators and the assignment operators cause side ef­
fects. That is, they not only result in a value, but they change the value of a variable
as well. A problem with side effect operators is that it is not always possible to predict
the order in which the side effects occur. Consider the following statement:

x = j * j++;

The C language does not specify which multiplication operand is to be evaluated first.
One compiler may evaluate the left-hand operand first, while another evaluates the
right-hand operand first. The results are different in the two cases. If j equals 5, and
the left-hand operand is evaluated first, the expression will be interpreted as:

x = 5 * 5; /* x is assigned 25 */

If the right-hand operand is evaluated first, the expression becomes:

x = 6 * 5; /* x is assigned 30 */

Statements such as this one are not portable and should be avoided. The side effect
problem also crops up in function calls because the Clahguage'does not guarantee the
order in which argumehtsare evaluated. F()r examplt{,'tllefuhction call;

\':.:. ,.". "" .-' "

f(a, a++)"

is not portable because compilers are free to evaluate th.e~rgi.lments in any order they
choose. '

To prevent side effect bugs; follow this rule:l/you use,asidee//ect operator in an ex­
pression,do not use the a//ectedvariableanywhere else inihe expression. The am-

, biguousexpression, above;.for,instance, canbemad~Upambiguousby breaking it into
twoassigIlmeri~s: ' ' .,((:;'.> ",:

,,; ..

" ., .• ;:~,;.:\;~):;.:;:.,

Code 4-109

increment and decrement operators

EXAMPLE

/* Program name is "inc.dec_example3". */

#include <stdio.h>

int maine void)
{

int n, m, n_total, m_total, perm, i, num;

/* The following computes a permutation -- that is,
* P(n,m) = n!/(n-m)! -- using decrement operators
* to compute n! and (n-m)!)
*/
printf("Enter the numbers for the permutation (n");
printf(" things taken m at a time)\nseparated by a");
printf(" space: ");
scanf ("%d %d", &n, &m)

n_total = m_total = 1;

for (i = n; i > 0; i--)
n_total *= i;

for (i = n - m; i > 0; i--)
m_total *= i;

perm = n_total/m_total;

/* compute n! */

/* compute (n-m)! */

printf("P(%d,%d) = %d\n\n" , n, m, perm);

/* This part shows the increment operator */
printf ("\nAnd now, the squares of 1 to 5:\n");
for (n = 1; n <= 5; n++)
{

num = n*n;
printf("%d\n", num);

}
}

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter the numbers for the permutation (n things taken m at a
time) separated by a space: 4 3
P(4,3) = 24

And now, the squares of 1 to 5:
1
4
9
16
25

4-110 Code

LINE and _FILE_ (predefined symbols) Predefined symbols that expand to the current line
number and source filename.

FORMAT

LINE Note that there are two underscores before and two underscores after
each of these preprocessor symbols

- -
FILE

DESCRIPTION

The preprocessor recognizes these special predefined symbols and replaces their occur­
rences with the following:

LINE Expands to the source file line number on which it is invoked.

Expands to the name of the file in which it is invoked.

The _LINE_ and _FILE_ macros are valuable diagnostic tools. Suppose, for exam­
ple, that you want a check facility that compares two expressions for equality and, if they
are unequal, calls an error reporting function with the source filename and the line number
of the check failure.

#include <stdio.h>
#define CHECK(a, b) \

if «a) != (b» \
fail (a, b, FILE - - LINE

void fail(int a, int b, char *p, int line
{

printf("Check failed in file %s at line %d:\
received %d, expected %d\n", p, line, a, b);

At various points in a program, you can check to make sure that a variable x equals zero
by including the following diagnostic:

CHECK(x, 0);

Note that blank lines are included in the line count. Comment lines also are included. The
symbol substitutions are performed before any other preprocessor commands. Conse­
quently, _FILE_ and _LINE_ get defined before any #include statements that might
change their values. Note that _LINE_ and _FILE_ are affected by the #line direc­
tive.

Code 4-111

#line

#line (preprocessor directive) Lets you set the current source line number.

FORMAT

#line integer ["filename"]

#integer ["filename"]

/* first form * /

/ * second form * /

ARGUMENTS

integer An integer constant.

"filename" A filename enclosed in double quotes.

DESCRIPTION

The #line preprocessor directive allows you to set the compiler's knowledge of the current
source line number and (optionally) current source file. The compiler reports errors in
terms of the line numbers set by this option. In addition, the debugger line number table
is built with these line numbers. The debugger source file option is given the last "file­
name" in the source, as long as that file truly exists. (The compiler verifies the existence
of the source file before it creates the debug entry.)

The word line may be omitted, as shown in the second form, but this feature is not port­
able. The optional filename must be enclosed in double quotes. The filename may be any
legal pathname.

EXAMPLE

The following example illustrates the behavior of #line.

4-112 Code

/* Program name is "line_example". Example of #line
* preprocessor directive.
*/

#include <stdio.h>

int main(void)

{
printf("Current line %d\nFilename: %s\n\n", LINE

#line 100
printf("Current line %d\nFilename: %s\n\n" , LINE

#line 200 "new_name"

-

printf ("Current line %d\nFilename: %s\n\n" , LINE -

FILE) ;

FILE) ;

- FILE -) ;

#line

USING THIS EXAMPLE

Assuming that the source file for this program is called line_example.c, execution pro­
duces:

Current line: 7
Filename: line_example.c

Current line: 101
Filename: line_example.c

Current line: 201
Filename: new_name

The #line feature is particularly useful for programs that produce C source text. For in­
stance, yacc (which stands for Yet Another Compiler Compiler) is a UNIX utility that fa­
cilitates building compilers. The yacc utility reads files written in the yacc language and
produces a file written in the C language, which can then be compiled by a C compiler. A
problem arises, however, if the C compiler encounters an error in the yacc-produced C
file. You want to know which line in the original yacc file is causing the error, but the C
compiler will report the error-producing line in the C text file. To solve this problem,
yacc writes #line directives in the C source file so that the compiler is fooled into reporting
errors based on the yacc line numbers rather than the C line numbers.

Code 4-113

#list and #nolist

#list and #nolist (preprocessor directives) Enables and disables the listing of source code in the
listing file. (Domain Extension)

FORMAT

#list
#nolist

DESCRIPTION

The #list preprocessor directive enables the listing of source code in the listing file. while
#nolist inhibits the listing of source code. For example. this sequence of preprocessor di­
rectives

#nolist
#include "/my_insert_files/beth.ins.c"
#list

excludes the contents of /my_insert_files/beth.ins.c from the source listing. Note that
#list and #nolist have no effect on the compilation; they only affect the source listing file.

The default is #list.

4-114 Code

logical operators

logical operators Logical AND, OR, and NOT operators.

FORMAT

expl && exp2
expJ II exp2
!expl

Logical AND
Logical OR
Logical NOT

ARGUMENTS

expl Any expression.

exp2 Any expression.

DESCRIPTION

The logical AND operator (&&) and the logical OR operator (Ii) evaluate the truth or
falseness of pairs of expressions. The AND operator evaluates to 1 if and only if both ex­
pressions are true. The OR operator evaluates to 1 if either expression is true. To test
whether y is greater than x and less than z, you would write:

(x < y) && (y < z)

The logical negation operator (!) takes only one operand. If the operand is true, the re­
sult is false; if the operand is false, the result is true.

Recall that in C, true is equivalent to any nonzero value, and false is equivalent to zero.
Table 4-9 shows the logical tables for each operator, along with the numerical equivalent.
Note that all of the operators return 1 for true and 0 for false.

Table 4-9. Truth Table for C's Logical Operators

Operand Operator Operand Result

zero && zero 0

nonzero && zero 0

zero && nonzero 0

nonzero && nonzero 1

zero II zero 0

nonzero II zero 1

zero II nonzero 1

nonzero II nonzero 1

I zero 1
not applicable I nonzero 0

Code 4-115

logical operators

The operands to the logical operators may be integers or floating-point objects. The ex­
pression

1 && -5

results in 1 because both operands are nonzero. The same is true of the expression

0.5 && -5

Logical operators (and the comma and conditional operators) are the only operators for
which the order of evaluation of the operands is defined. The compiler must evaluate op­
erands from left to right. Moreover, the compiler is guaranteed not to evaluate an oper­
and if it's unnecessary. For example, in the expression

if «a != 0) && (bja == 6.0»

if a equals zero, the expression (b/a == 6) will not be evaluated. This rule can have unex­
pected consequences when one of the expressions contains side effects (See the Bug Alert
in this section.)

Table 4-10 shows a number of examples that use relational and logical operators. Note
that the logical NOT operator has a higher precedence than the others. The AND opera­
tor has higher precedence than the OR operator. Both the logical AND and OR operators
have lower precedence than the relational and arithmetic operators.

Table 4-10. Examples of Expressions Using the Logical Operators

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;

Expression Equivalent Expression Result

j && m U) && (m) 0
j<m&&n<m o < m) && (n < m) 1
m + n II I j (m + n) II (Ij) 1

x *S&&Sllm/n «x· 5) && 5) II (m I n) 1
j <= 10 && x >= 1 && m (0 <= 10) && (x >= 1» && m 1
Ix II In II m + n «Ix) II (!n» II (m + n) 0
x*y<j+mlln «x • y) < 0 + m» II n 1
(x > y) + !j II n++ «x>y) + (!j) II (n++) 1
(j II m) + (x II ++n) 011 m) + (x II (++n» 2

4-116 Code

EXAMPLE

logical operators

Bug Alert: Side Effects in Relational Expressions

Relational operators (and the conditional and comma operators) are the only opera­
tors for which the order of evaluation of the operands is defined. For these operators,
operands must be evaluated from left to right. However, the system evaluates only as
much of a relational expression as itneeds to determine the result. In many cases, this
means that the system does not need to evaluate the entire expression. For instance,
consider the following expression:

if «a < b) && (c == d»

The system begins by evaluating (a < b). If a is not less than b, the system knows that
the entire expression is false, so it will not evaluate (c == dJ. This can cause problems
if some of the expressions contain side effects:

if «a < b) && (c == d++»

In this case, d is only incremented when ais less thanb, This mayor may not be what
the programmer intended. In generaI,you should avoid using side effect operators in
relational· expressions.

/* Program name is "logical_ops_example". This program
* shows how logical operators are used. Notice that
* several logical expressions can be strung together
* to create multiple conditions. Also notice how the
* NOT operator (!) is used. In the program itself,
* the integer variables are initialized to zero,
* which C evaluates as being false. Then, if a
* question is answered "yes", the appropriate
* variable is reset to 1. C considers a nonzero
* value to be true.
*/

#include <stdio.h>

int maine void)
{

int won_lottery, enough_vacation, money_saved;
char answer;

won_lottery = enough_vacation = money_saved = 0;

printf("\nThis program determines whether you can");
printf("take your next vacation in Europe.\n");
printf("Have you won the lottery? y or n: ");
fflush (stdin);
scanf ("%c", &answer);
if (answer == 'y')

Code 4-117

logical operators

won_lottery = 1;

printf("00 you have enough vacation days saved? \
y or n: II);

fflush(stdin);
scanf ("%C ", &answer);
if (answer == 'y')

enough_vacation = 1;

printf("Have you saved enough money for the trip? \
y or n: II);

fflush (stdin);
scanf ("%C ", &answer);
if (answer == 'y')

money_saved = 1;

printf ("\n");
if (won_lottery)
{

printf("Why do you need a program to decide if you");
printf(II can afford a trip to Europe?\n");

} /* end if */
if (won_lottery I I (enough_vacation && money_saved»

printf("Look out Paris!\n");
else if (enough_vacation && (!money_saved»

printf("You've got the time, but you haven't got \
the dollars.\n");

}

else if (!enough_vacation II (!money_saved»
{

printf("Tough luck. Try saving your money and II);

printf("vacation days next year.\n")~

} /* end else/if */

USING THIS EXAMPLE

If we execute this program, we get the following output:

This program determines whether you can take your next vacation
in Europe.
Have you won the lottery? y or n: y
Do you have enough vacation days saved? y or n: n
Have you saved enough money for the trip? y or n: n

Why do you need a program to decide if you can afford a trip to
Europe?
Look out Paris!

4-118 Code

Umodule

#module (preprocessor directive) Changes the name of the object module for debugging purposes,
and, optionally, lets you define procedure and data section
names. (Domain Extension)

FORMAT

#module module_name [, psect_name [, dsect_name]]

ARGUMENTS

An identifier that serves as the new name of the module.

An optional identifier. This is the name of the procedure section that
the code will go into.

An optional identifier. This is the name of the data section that the
data will go into.

DESCRIPTION

The Umodule directive serves two purposes. First, it enables you to change the name of
the object module for debugging purposes. Second, it allows you to define a procedure and
data section for the code in the file. By defining sections, you can have some control over
how the linker groups data and instructions in memory. This is described in more detail in
the description of #section later in this chapter.

There may be at most one #module statement per source file and it must appear before
any other tokens, with the exception of the #systype directive. The module_name is re­
quired, but both psect_name and dsect_name are optional. If you include a psect_name or
dsect_name, the specified section names are active until the end of the file or until a Usec­
tion statement redefines one or both of the names. The following examples illustrate the
legal syntaxes of #module.

#module example /* defines "example" as the module name */

#module example, proc_a /* defines "proc_a" as the procedure
* section
*/

#module example, proc_a, data a /* defines "proc_a" as the

#module example, ,data_a

* procedure section and "data a"
* as the data section
*/

/* defines "data a" as the data section,
* but uses the default name for the
* procedure section
*/

Code 4-119

#module

The dde and dbx utilities-the Domain/OS language-level debuggers-use the module name
as the starting point when they search for functions and static variable names. If you do
not use #module, the compiler uses the source filename in uppercase, with underscores re­
placing any periods. For example, the default module name for test.1.e is test_I_c.

See the Domain Distributed Debugging Environment (DomainIDDE) Reference manual for
more information on accessing identifiers while debugging.

4-120 Code

#nolist

#nolist Refer to the #Iist entry earlier in this chapter. (Domain Extension)

Code 4-121

pointer operations

pointer operations Operations performed with pointers.

DESCRIPTION

A pointer variable is a variable that can hold the address of an object. Chapter 3 describes
how to declare pointer variables. Here, we describe how to use pointer variables in the
code portion of your program. We discuss pointers to functions in Chapter 5.

We start with a discussion of the two principal pointer operations-finding an address and
de referencing a pointer.

Assigning an Address Value to a Pointer

To declare a pointer variable, you precede the variable name with an asterisk. The fol­
lowing declaration, for example, makes ptr a variable that can hold addresses of long int
variables.

long *ptr;

The data type, long in this case, refers to the type of variable that ptr can point to. To
assign a pointer variable with the virtual address of a variable, you can use the address-of
operator &. For instance, the following is legal:

long *ptr;
long long_var;
ptr = &long_var; /* Assign the address of long_var to ptr.

*/

But this is illegal:

long *ptr;
float float_var;
ptr = &float_var; /* ILLEGAL - because ptr can only store the

* address of a long into
*/

The following program illustrates the difference between a pointer variable and an integer
variable:

4-122 Code

/* Program name is "ptr_example1". */

#include <stdio.h>

int main(void
{

}

int j = 1;
int *pj;

pj = &j; /* Assign the address of j to pj */
printf ("The value of j is: %d\n" , j);
printf ("The address of j is: %d\n" , pj);

pointer operations

The result is:

The value of j is: 1
The address of j is: 5219405

Dereferencing a Pointer

To dereference a pointer (get the value stored at the pointer address), use the * operator.
The following program shows how dereferencing works.

/* Program name is "ptr_example2". */

#include <stdio.h>

int main(void
{

}

char *p_ch;
char ch1 = 'A', ch2;

printf ("The address of p_ch is %d\n", &p_ch);

p_ch = &ch1;
printf("The value of p_ch is %d\n". p_ch);
printf("The dereferenced value of p_ch is %c\n" ,

*p_ch);

The output from running this program is:

The address of p_ch is 52194052
The value of p_ch is 52194050
The dereferenced value of p_ch is A

This is a roundabout and somewhat contrived example that assigns the character 'A' to
both chi and ch2. It does, however, illustrate the effect of the dereference (*) operator.
The variable chi is initialized to 'A'. The first printfO call displays the address of the
pointer variable p_ch. In the next step, p_ch is assigned the address of chi, which is also
displayed. Finally, we display the dereferenced value of p_ch and assign it to ch2.

The expression *p_ch is interpreted as: "take the address value stored in p_ch and get the
value stored at that address." This gives us a new way to look at the declaration. The
data type in the pointer declaration indicates what type of value results when the pointer is
dereferenced. For instance, the declaration

float *fp;

means that when *fp appears as an expression, the result will be a float value.

The expression *fp can also appear on the left side of an expression:

*fp = 3.15;

Code 4-123

pointer operations

In this case, we are storing a value (3.15) at the location designated by the pointer fp.
Note that this is different from

fp = 3.15;

which attempts to store the address 3.15 in Cp. This, by the way, is illegal since addresses
are not the same as integers or floating-point values.

When assigning a value through a dereferenced pointer, it is important to make sure that
the data types agree. Consider the following case:

/* Program name is "ptr_example3". */

#include <stdio.h>

int main(void)
{

}

float f
int *ip;

ip = &f;
g = *ip;

1.17e3, g;

printf("The value of f is: %f\n", f);
printf("The value of g is %f\n", g);

The result is:

The value of f is: 1170.000000
The value of g is: 1150435328.000000

In the preceding example, instead of getting the value of C, g gets an erroneous value be­
cause ip is a pointer to an int, not a float. The Domain C compiler issues a warning mes­
sage when a pointer type is unmatched. If you compile the preceding program, for in­
stance, you receive the message:

(0005) ip = &f;
******** Line 5: Warning: Illegal pointer combination:

incompatible types.
No errors, 1 warning, C Compiler, Rev X.yy

Pointer Arithmetic

The following arithmetic operations with pointers are legal:

• You may add an integer to a pointer or subtract an integer from a pointer.

• You may use a pointer as an operand to the ++ and -- operators.

• You may subtract one pointer from another pointer.

All other arithmetic operations with pointers are illegal.

4-124 Code

pointer operations

When you add or subtract an integer to a pointer, the compiler automatically scales the in­
teger to the pointer's type. In this way, the integer always represents the number of ob­
jects to jump, not the number of bytes. For example, consider the following program frag­
ment:

int x[10], *p1x x, *p2x;

p2x = p1x + 3;

Since pointer pIx points to a variable (x) that is 4 bytes long, then the expression pIx + 3
actually increments p Ix by 12 (4 * 3), rather than by 3.

It is legal to subtract one pointer value from another, provided that the pointers point to
the same type of object. This operation yields an integer value that represents the number
of objects between the two pointers. If the first pointer represents a lower address than
the second pointer, the result is negative. For example,

&a[3] - &a[O]

evaluates to 3, but,

&a[O] - &a[3]

evaluates to -3.

It is also legal to subtract an integral value from a pointer value. This type of expression
yields a pointer value. The following examples illustrate some legal and illegal pointer ex­
pressions:

long *p1, *p2;
int a[5], j;
char *p3;

p1 = a;
p2 = p1 + 4;
j = p2 - p1;
j = p1 - p2;
p1 = p2 - 2;
p3 = p1 - 1;
j p1 - p3;
j = p1 + p2;

Arrays and Pointers

= &a[O] */ /* Same as p1
/* legal */
/* legal j is assigned 4 */

j is assigned -4 */
p2 points to a[2] */

/* legal
/* legal
/* ILLEGAL
/* ILLEGAL
/* ILLEGAL

different pointer types*/
different pointer types*/
can't add pointers */

Arrays and pointers have a close relationship in the C language. You can exploit this rela­
tionship in order to write more efficient code. See the discussion of "array operations" in
this chapter for more information.

Casting a Pointer's Type

A pointer to one type may be cast to a pointer to any other type. For example, in the
following statements, a pointer to an iot is cast to a pointer to a char. Presumably, the
function funcO expects a pointer to a char, not a pointer to an into

Code 4-125

pointer operations

int i, *p = &i;

func ((char *) p);

As a second example, a pointer to a char is cast to a pointer to struct H:

struct H {int qi} Xi
char *genp = &x;

(struct H*)genp->q

See the "casting operations" listing of this encyclopedia for more information about the
cast operator.

It is always legal to assign any pointer type to a generic pointer, and vice versa, without a
cast. For example:

float x, *fp = &x;
int j, *pj &j;
void *pv;

pv fp; /* legal */
pj pv; /* legal */

In both these cases, the pointers are implicitly cast to the target type before being assigned.
See Section 3.7.3 for more information about generic pointers.

Assigning an Integer Value to a Pointer

You may assign an integer value to a pointer, but programs that use this feature are not
portable. The following statements assign absolute address OXFFF13000 to a pointer called
abs_address.

char *abs_address;
abs_address = (char *) OXFFF130000;

This feature is generally used to map variables to hardware registers whose addresses are
fixed.

Null Pointers

The C language supports the notion of a null pointer-that is, a pointer that is guaranteed
not to point to a valid object. A null pointer is any pointer assigned the integral value
zero. For example:

char *p;

p = 0; /* make p a null pointer */

In this one case-assignment of zero-you do not need to cast the integral expression to
the pointer type.

4-126 Code

pointer operations

Null pointers are particularly useful in control-flow statements since the zero-valued point­
er evaluates to false, whereas all other pointer values evaluate to true. For example, the
following while loop continues iterating until p is a null pointer:

char *p;

while (p)
{

/* iter~te until p is a null pointer */

}

This use of null pointers is particularly prevalent in applications that use arrays of pointers,
as described later in this chapter.

The compiler does not prevent you from attempting to dereference a null pointer; however,
doing so may trigger a run-time access violation. Therefore, if it is possible that a pointer
variable is a null pointer, you should make some sort of test like the following when
dereferencing it:

if (px && *px) /* if px = 0, expression will short-circuit
before dereferencing occurs*/

Null pointers are a portable feature.

Code 4-127

pointer operations

EXAMPLE 1

/* Program name is "pointer_examplel". This program shows how
* to access a one-dim. array through pointers. Function
* count_chars returns the number of characters in the
* string passed to it.
* Note that *arg is equivalent to a_word [0] ;
* *arg + 1 is equivalent to a_word[l] ...
*/

#include <stdio.h>

int count_chars(char *arg)
{

}

int count = 0;

while (*arg++)
count++;

return count;

int main(void)
{

}

4-128 Code

char a_word [30] ;
int number_of_characters;

printf ("Enter a word -- ");
scanf ("%s", a_word);
number_of_characters = count_chars(a_word);
printf("%s contains %d characters.\n", a_word,

number of characters);

pointer operations

EXAMPLE 2

/* Program name is "pointer_example2". This program
* demonstrates two ways to access a two-dim. array.
*/

#include <stdio.h>

int maine void)
{

int count = 0, which_name;
char c1, c2;
static char str[5] [10] {"Phil", "Sandi", "Barry",

"David", "Amy"};
static char *pstr[5] {str[O], str[l], str[2],

str[3], str[4]};
/* pstr is an array of pointers. Each element in the array

* points to the beginning of one of the arrays in str.
*/

/* Prompt for information. */
printf("Which name do you want to retrieve?\n");
printf("Enter 0 for the first name,\n");
printf(" 1 for the second name, etc. -- ");
scanf("%d" , &which_name);

/* Print name directly through array. */
while (cl = str[which_name] [count++])

printf("%c", cl);
printf("\n") ;

/* Print same name indirectly through an array of pointers. */
while (c2 = *(pstr[which_name]++»

printf("%c", c2);
/* We could have also used the following statement instead of

* the two previous ones: printf ("%s", pstr [which_name]);
*/
printf ("\n");

}

USING THESE EXAMPLES

If we execute the first program, we get the following output:

Enter a word -- Marilyn
Marilyn contains 7 characters.

If we execute the second program, we get the following output:

Code 4-129

pointer operations

Which name do you want to retrieve?
Enter 0 for the first name,

Sandi
Sandi

4-130 Code

1 for the second name, etc. -- 1

predefined macros

predefined macros Provide information about the compiler or compilation environment.

DESCRIPTION

The Domain compilers support a number of predefined macros that provide information
about the compiler or about the compilation environment. In addition to the macros de­
scribed in this section, Domain C also supports the following predefined macros:

FILE Expands to the source file name.

Expands to the current line number in the source file.

DATE - - Expands to the current date (of compilation).

Expands to the current time (of compilation).

Expands to 1 if ANSI -style function prototyping is in effect.

BFMT COFF - - Expands to 1 if the compiler is producing COFF object code.

For more information about the _FILE_ and _LINE_ macros, see the entry under
FILE in this chapter. For more information about the _DATE_ and _TIME_
macros, see the entry under _DATE_ in this chapter. For more information about
STDC and _BFMT_COFF, see the entry under _STDC_ later in this chapter.

Code 4-131

relational operators

relational operators Compare the values of two expressions.

FORMAT

expJ > exp2
expJ >= exp2
expJ < exp2
expJ <= exp2
expJ == exp2
expJ != exp2

Greater than
Greater than or equal to
Less than
Less than or equal to
Equal to
Not equal to

ARGUMENTS

expJ Any expression.

exp2 Any expression.

DESCRIPTION

The relational operators perform the same way in C as they do in everything from fourth­
grade arithmetic to Advanced Programming II. The two that are slightly unusual are ==
and !=, but even in these cases the differences are a matter of form, not substance.

The equality operator (==) performs the same function as Pascal's = or FORTRAN's .EQ.;
It just looks different. Note that although the equality operator looks similar to the assign­
ment operator (=;,), the two operators serve completely different purposes. Use the assign­
ment operator when you want to assign a value to a variable, but use the equality operator
when you want to test the value of an expression.

4-132 Code

Bug Alert: Confusing = with ==

One of the most common mistakes made by beginners and experts alike is to use the
assignment operator (=) instead of the equality operator (==). For .instance:

while (j= 5)

do_something();

What is intended, clearly, is that the do_somethingO function should. only be invoked
if j equals five. It should been written:

while 0== 5)
do_something 0 ; ...

Note that the first version issyntactically legal since all e~preSSidn& have a valUe .. The
v'alue.of theexptession j= 5 is 5; . Since this is a nonzero value, the while expression

. will always evaluate to. true apd dO:::.,somethil}gOwiII always be invoked.

#section

Note, however, that #section directives do not affect variables with fixed duration. Static
data that has file scope resides in the module's section regardless of any #section direc­
tives. All global variables reside in special sections that cannot be affected by #section di­
rectives. If you are compiling with Ibin/cc, initialized global variables are placed in .data
and uninitialized global variables are put in .bss. If you are compiling with Icarn/cc, the
compiler creates a named section for each global variable. You can override these defaults
by using the #attribute[sectian] modifer, which is described in Chapter 3.

The following example illustrates the #section directive.

#module section_example, psectionl , dsectionl
mainO
{

}

#section(psection2) /* dsectionl is still the active data
section */

void funcl()
{

}

#section(psectionl, dsection2)
void func2()
{

}

#section(, ,dsectionl)
void func3()
{

}

The preceding example creates four named sections that contain the program segments
shown in the following chart.

Code 4-141

#section

Table 4-13. Example of #section Directive

Named Section What It Contains

psectionl program instructions from mainO,
func2(), and func3()

psection2 program instructions from func1 ()

dsectionl data from mainO, func10, and func3()

dsection2 data from func20

4-142 Code

relational operators

Note that all of these operators have lower precedence than the arithmetic operators. The
expression,

a + b * e < d / f

is evaluated as if it had been written:

(a + (b * e» < (d / f)

Among the relational operators, >, >=, <, and <= have the same precedence. The == and
!= operators have lower precedence. All of the relational operators have left-to-right as­
sociativity. Table 4-11 illustrates how the compiler parses complex relational expressions.

Table 4-11. Examples of Expressions Using the Relational Operators

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;

Expression Equivalent Expressions Result

j > m j > m 0
m / n < x (m / n) < x 1
j <= m >= n «j <= m) >=n) 1
j<=x==m (0 <= x) == m) 1
-x+j==y>n>m «-x) + j) == «y > n) >= m) 0
x += (y >= n) x = (x + (y >= n)) 3.5
++j == m 1= y • 2 «++j) == m) != (y * 2) 1

Relational expressions are often called Boolean expressions, in recognition of the nine­
teenth century mathematician and logician, George Boole. Many programming languages,
such as Pascal, have Boolean data types for representing true and false. The C language,
however, represents these values with integers. Zero is equivalent to FALSE, and any
nonzero value is considered true.

The value of a relational expression is an integer, either 1 (indicating the expression is
true) or 0 (indicating the expression is false). The examples in Table 4-12 illustrate how
relational expressions are evaluated.

Table 4-12. Relational Expressions

Expression Value

-1 < 0 1
o > 1 0

5 = 5 1

7 != -3 1

1 >= -1 1
1 >10 0

Code 4-133

relational operators

Because Boolean values are represented as integers, it is perfectly legal to write:

if (j)
statement;

If j is any nonzero value, statement is executed; if j equals zero, statement is skipped.
Likewise, the statement,

if' (isalpha(ch »

is exactly the same as:

if (isalpha(ch) != 0)

The practice of using a function call as a Boolean expression is a common idiom in C. It
is especially effective for functions that return zero if an error occurs, since you can use a
construct such as:

4-134 Code

if (func (»

proceed;
else

error handler;

relational operators

Bug Alert: Comparing Floating-Point Values

It is very dangerous to compare floating-point values for equality because floating­
point representations are inexact for some numbers. For example, the following ex­
pression, though algebraically true, will evaluate to false on most computers:

(1.0/3.0 + 1.0/3.0 + 1.0/3.0) == 1.0

This evaluates to 0 (false) because the fraction 1.0/3.0 contains an infinite number of
decimal places (3.33333 ...). The computer is only capable of holding a limited num­
ber of decimal places, so it rounds each occurrence of 1/3. As a result, the left-hand
side of the expression does not equal 1.0 exactly.

This problem can occur in even more subtle ways. Consider the following code:

double divide(double num, double denom)
{

return num/denom;
}

int maine void)
{

}

double c, a = 1.0, b = 3.0;
c = alb;
if (c != divide(a,b»

printf("Fuzzy doubles\n");

Surprisingly, the value stored in c will not equal the value returned by divideO. This
anomaly occurs due to the fact that the computer can represent more decimal places
for values stored in registers than for values stored in memory. Because the value re­
turned by divideO is never stored in memory, it is not equal to the value c, which has
been rounded for memory storage.

To avoid bugs caused by inexact /loating-point representations, you should refrain
from using strict equality comparisons with floating-point types.

Code 4-135

relational operators

EXAMPLE

/* Program name is "relational_example". This program simply
* does some mathematical calculations and along the way
* shows C's relational operators in action.
*/

#include <stdio.h>

int main(void
{

int num, i;

printf ("\n");
num = 5;
printf ("The number is: %d\n", num);
for (i = 0; i <= 2; i++)
{
if (num < 25)
{

num *= num;
printf("The number squared is: %d\n", num);

}
else if (num 25)
{

num *= 2;
printf("Then, when you double that, you get: %d\n", num);

}
else if (num > 25)
{

num -= 45;
printf("And when you subtract 45, you're back where");
printf("you started at: %d\n", num);

/* end for */

if (num ! = 5)
printf("The programmer made an error in setting up this \

example\n") ;
}

USING THIS EXAMPLE

If we execute this program, we get the following output:

The number is: 5
The number squared is: 25
Then, when you double that, you get: 50
And when you subtract 45, you're back where you started at: 5

4-136 Code

return

return The mechanism for exiting from a called function.

FORMAT

return;
return exp;

/* first form * /
/* second form * /

ARGUMENTS

exp Any valid C expression.

DESCRIPTION

The return statement causes a C program to exit from the function containing the return
and go back to the calling block. It mayor may not have an accompanying exp to evalu­
ate. If there is no exp, the function returns an unpredictable value.

Functions can return only a single value directly via the return statement. The return
value can be any type except an array or function. This means that it is possible to indi­
rectly return more than a single value by passing a pointer to an aggregate type. It is also
possible to return a structure or union directly, though Domain C implements this by re­
turning a pointer to the structure or union.

A function may contain any number of return statements. The first one encountered in
the normal flow of control is executed, and causes program control to be returned to the
calling routine. If there is no return statement, program control returns to the calling rou­
tine when the right brace of the function is reached. In this case, the value returned is
undefined.

The return value must be assignment-compatible with the type of the function. This
means that the compiler uses the same rules for allowable types on either side of an assign­
ment operator to determine allowable return types. For example, if fO is declared as a
function returning an int, it is legal to return any arithmetic type, since they can all be
converted to an int. It would be illegal, however, to return an aggregate type or a pointer,
since these are incompatible types. The following example shows a function that returns a
float, and some legal return values.

float f(void
{

}

float f2;
int a;
char c;

f2 = a;
return a;
f2 = c;
return c;

/* OK, quietly
/* OK, quietly
/* OK, quietly
/* OK, quietly

converts a to float */
converts a to float */
converts c to float */
converts c to float */

Code 4-137

return

The C language is pickier about matching pointers. In the following example. fO is de­
clared as a function returning a pointer to a char. Some legal and illegal return state­
ments are shown.

char *f ()
{

char **cpp, *cpl, *cp2, ca[lO];
int *ipl, *ip2;

cpl = cp2; /* OK, types match
return cp2; /* OK, types match
cpl = *cpp; /* OK, types match
return *cpp; /* OK, types match

*/
*/
*/
*/

/* An array name without a subscript gets converted
* to a pointer to the first element.
*/
cpl = ca;
return ca;

cpl = *cp2;

return *cp2;

cpl = ipl;
return ipl;
return;

/* OK, types match */
/* OK, types match */

/* Error, mismatched types
/* (pointer to char vs. char
/* Error, mismatched types
/* (pointer to char vs. char

*/
*/
*/
*/

/* Error, mismatched pointer types */
/* Error, mismatched pointer types */
/* Produces undefined behavior */
/* should return (char *) */

Note in the last statement that the behavior is undefined if you return nothing. The only
time you can safely use return without an expression is when the function type is void.
Conversely, if you return an expression for a function that is declared as returning void.
you will receive a compile-time error.

4-138 Code

EXAMPLE

/* Program name is "return_example". This program finds the
* length of a word that is entered.
*/

#include <stdio.h>

int find_length (char *string)
{

int i;

for (i = 0; string[i] != '\0'; i++)

return i;
}

int main(void)
{

}

char string[132];
int result;

printf("This program finds the length of any word you ");
printf("enter.\n");
printf("Enter the word: ");
gets(string);
result = find_length (string);
printf("This word contains %d characters.\n", result);

USING THIS EXAMPLE

If we execute this program, we get the following output:

This program finds the length of any string you enter.

Enter the string: Copenhagen
The string is 10 characters.
Again? y

Enter the string: galaxy
The string is 6 characters.
Again? n

return

Code 4-139

#section

#section (preprocessor directive) Directs the binder to place code and data into the specified
sections. (Domain Extension)

FORMAT

#section([psect_name,] dsect name)

#section(psect_name ['dsect_name])

ARGUMENTS

psect_name

DESCRIPTION

Optional, but you must include a psect_name or a dsect_name, or
both. If you do include a psect_name, it must be an identifier. This
identifier is the name of the procedure section that the code will go
into.

Optional, but you must include a psect_name or a dsect_name, or
both. If you do include a dsect_name, it must be an identifier. This
identifier is the name of the data section that the data will go into.

The #section directive instructs the linker to place instructions and data into named sec­
tions rather than the default sections. Every object module is composed of at least three
sections: a procedure section, a data section, and a debug section. By default, the name of
the procedure section is .text, and the names of the data sections are .data and .bss. The
#section directive, as well as the #module directive, allow you to create additional sections.
You can use this capability to group together code or data that is used frequently. This way
the system need not swap extra pages in and out of memory to execute a program. For
more information about sections and the object file format, see the Domain/OS Program­
ming Environment Reference manual.

Note that the following preprocessor directive is illegal:

#sectionO

#section directives may appear anywhere in a file except within a function. Section names
defined in a #section directive are in effect until the end of the file or until another #sec­
tion directive redefines the current section names. By specifying the same section names in
different source files, you can ensure that the resulting object code is grouped 'together in
virtual memory.

4-140 Code

sizeof

sizeof Unary operator that finds the size of an object.

FORMAT

sizeof exp;
sizeof (type_name)

ARGUMENTS

exp This is any expression.

This is the name of a predefined or user-defined data type, or the
name of some variable. An example of a predefined data type is int.
A user-defined data type could be the tag name of a structure.

DESCRIPTION

The sizeof operator accepts two types of operands: an expression or a data type. How­
ever, the expression may not have type function or void, or be a bit field. Moreover, the
expression itself is not evaluated-the compiler only determines what type the result would
be. Any side effects in the expression, therefore, will not have an effect. The result type
of the sizeof operator is unsigned int.

If the operand is an expression, sizeof returns the number of bytes that the result occupies
in memory:

/* Returns the size of an int (4 if ints are four
* bytes long)
*/

sizeof(3 + 5)

/* Returns the size of a double (8 if doubles are
* eight bytes long)
*/

sizeof(3.0 + 5)

For expressions, the parentheses are optional, so the following is legal:

sizeof x

By convention, however, the parentheses are usually included.

The operand can also be a data type, in which case the result is the length in bytes of ob­
jects of that type:

sizeof(char) /* 1 on all machines */
sizeof(short) /* 2 on Domain machines */
sizeof(float) /* 4 on Domain machines */
sizeof(int *) /* 4 on Domain machines */

Code 4-143

sizeof

The parentheses are required if the operand is a data type. Note that the results of most
sizeof expressions are implementation dependent. The only result that is guaranteed is the
size of a char, which is always 1.

In general, the sizeof operator is used to find the size of aggregate data objects such as ar­
rays and structures.

EXAMPLE

You can also use the sizeof operator to obtain information about the sizes of objects in
your C environment. The following, for example, prints the sizes of the basic data types:

/* Program name is "sizeof_example". This program
* demonstrates a few uses of the sizeof operator.
*/

#include <stdio.h>

int main(void)
{

}

printf ("TYPE\ t \ tSIZE\n \n");
printf("char\t\t%d\n", sizeof(char));
printf("short\t\t%d\n", sizeof(short));
printf("int\t\t\t%d\n", sizeof(int));
printf("float\t\t%d\n", sizeof(float));
printf("double\t\t%d\n", sizeof(double));

USING THIS EXAMPLE

If we execute this program, we get the following output:

TYPE SIZE

char 1
short 2

int 4
float 4
double 8

4-144 Code

STDC and BFMT COFF - -

STDC and BlFMT COFF (predefined names)

FORMAT

If equal to 1. indicates that this compiler conforms to the ANSI standard.
(Note that there are two underscores before and two underscores after
this preprocessor symbol.)

BFMT COFF If defined. indicates that this compiler generates COFF

DESCRIPTION

The _STDC_ macro. if it expands to 1. signifies that the compiler conforms to the ANSI
Standard. If it expands to any other value. or if it is not defined. you should assume that
the compiler does not conform to the ANSI standard. A common use of _STDC_ is to
choose between the old function declaration syntax and the new ANSI prototyping syntax:

Hif (_STDC_ == 1)
extern int foo(char a. float b);
extern *char goo(char *string);

HeIse
extern int foo();
extern *char goo();

Hendif

If the compiler conforms to the ANSI standard LSTDC_ equals 1). we use the
prototyping syntax to declare the types of each argument. Otherwise. we use the old func­
tion declaration syntax. By default. _STDC_ is defined unless you compile with the
-ntype option (available with Icom/cc only).

The _BFMT_COFF macro will be defined as 1 for compilers that generate COFF (as op­
posed to obj) code. For compilers that do not produce COFF. the macro will be unde­
fined. Therefore. you can test the compiler with either an #if or an #ifdef directive:

Hifdef BFMT __ COFF /* Use Hat tribute to create overlay
* section */

struct { int a;
float b;

} overlay Hattribute[section(overlay)] ;
HeIse

struct { int a;
float b;

} overlay;
Hendif

Code 4-145

structure and union operations

structure and union operations Operations that can be performed on structures and unions. and
structure and union members

DESCRIPTION

In Chapter 3, we explained how to define structure and union variables. In this section.
we show how to use structure and union variables in the body of a function.

Domain C allows the following uses of structures and unions:

• You can reference a member of a structure or union.

• You can find the address of a structure or union with the address-of operator &.

• You can find the size of a structure or union with the sizeof operator.

• You can assign a structure or union to another structure or union of the same
type.

• You can define a function that returns a structure or union.

• You can pass a structure or union as an argument to a function.

The following sections detail these uses.

Referencing Structure and Union Members

There are two methods for referencing a member of a structure or union. depending on
whether you have the structure itself or a pointer to the structure. Each method uses a
special operator. If you have the structure itself. you can enter the structure name and
field name separated by the dot (.) operator. For instance. suppose you make the follow­
ing declaration:

struct vitalstat
{

char vs_name[19]. vs_ssnum[II];
short vs_month, vs_day, vs_year;

} vs. *pvs = &vs;

To assign the date, March 15, 1987 to vs, you would write:

vs.vs_month = 3;
vs.vs_day = 15;
vs.vs_year = 1987;

The referenced field expression is just like any other variable, so you can use vs. vs_month
anywhere you would normally use a short variable.

4-146 Code

structure and union operations

The following statement, for instance, is perfectly legal:

if (vs.vs_month > 12 I I vs.vs_day > 31)
printf("Illegal Date.\n");

The other way to reference a structure member is indirectly through a pointer to the struc­
ture. To reference a member through a pointer, use the right-arrow operator (-»,
which is formed by entering a dash followed by a right angle bracket. For example:

if (pvs->vs_month > 12 I I pvs->vs_day > 31)
printf("Illegal Date.\n");

The right-arrow operator is actually a shorthand for dereferencing the pointer and using
the dot operator. That is,

pvs->vs_day

is the same as:

(*pvs).vs_day

The pointer to a struct or union is usually a pointer variable, but Domain C also allows it
to be an integer that contains the absolute address of a structure or union. (Using an inte­
ger in this context is not a portable feature; trying it triggers a warning.)

Operations on Structure and Union Members

In general, you can perform any operation on a structure member that you can on a nor­
mal variable of the same type. The only restriction is that you may not take the address of
a bit field.

Structure and Union Assignment

Although it is not supported in the original K&R standard, Domain C and the ANSI Stan­
dard allow you to assign a structure or union to a structure or union variable, provided
they share the same type. The following code extract shows some examples of structure
assignments.

struct {
int a;
float b;

} s1, 52, sf(), *P5;

51 52;
52 5f () ;
p5 &51;
s2 *P5;

Referencing Nested Members

Domain C allows you to access nested members of structures and unions without specifying
the inner structure name. You need only enter the outer structure name and the member
name you want.

Code 4-147

structure and union operations

Consider the following nested structure:

struct {
int a;
struct {

float b,c;
} in;

} out;

Domain C provides two ways to access component b. First, you can use the traditional C
method as shown below:

out.in.b

Second, you can leave out the inner structure name, as in

out.b

If the same name appears more than once in a structure with inner structures and you give
only the component name, the compiler warns you that the reference is ambiguous. For
example, consider the following definition:

struct {
union { int a,b;

} first_union;
union { char a,b;

} second_union;
} outer_struct;

The reference outer_struct.a is ambiguous since it is not clear whether it refers to
outer_struct.first_union.a or outer_struct.second_union.a. If you use outer_struct.a as
a reference, the compiler issues the following warning message:

Warning: Ambiguous reference; more than one member named "a".

NOTE: This feature is not supported by the ANSI standard. Use the
-std compiler option to identify these nonportable usages in
source code.

Passing Structures as Function Arguments

There are two ways to pass structures as arguments: pass the structure itself (called pass
by value) or pass a pointer to the structure (called pass by reference). The two methods
are shown in the following example.

4-148 Code

VITALSTAT vs;

func(vs);

structure and union operations

/* Pass by value -- Passes an entire
* copy of the structure.
*/

func(&vs); /* Pass by reference -- Passes the
* address of a structure.
*/

Passing the address of a structure is usually faster because only a single pointer is copied to
the argument area. Passing by value, on the other hand, requires that the entire structure
be copied. There are only two circumstances when you should pass a structure by value:

o The structure is very small (approximately the same size as a pointer).

o You want to guarantee that the called function does not change the structure be­
ing passed. (When an argument is passed by value, the compiler generates a copy
of the argument for the called function. The called function can only change the
value of the copy, not the value of the argument on the calling side.)

In all other instances, you should pass structures by reference.

NOTE: Passing structures by value, though supported in almost all C
compilers, is not part of the original K&R standard. It is re­
quired by the ANSI Standard.

Depending on which method you choose, you need to declare the argument on the receiv­
ing side as either a structure or a pointer to a structure:

or

func(vs)
VITALSTAT vs; /* Pass by value -- the argument is a

* structure.
*/

func(pvs
VITALSTAT *pvs; /* Pass by reference -- the argument

* is a pointer to a structure.
*/

Note that the argument-passing method you choose determines which operator you should
use in the function body-the dot operator if a structure is passed by value, and the right­
arrow operator if the structure is passed by reference.

Code 4-149

structure and union operations

BllgAIert:"P~~·~in~~il'l1~ture~·'t~!Passirt~;'~ay~
. Passing structtires. isnot~~,~ameaspassing arrays}f.:.Thisjnc:orisist~ncyjn the C ··latl,:< .. ,'
guage-~,can--_:_~Cluse_ conJus~qJ~L" ~ :"--\ ';

pass •• ,.:~ array··in ··c, •.• ~ri& •• sirnplY 'spe2dify.··the· ••. ·arr;~y·nanle •. ·Witnouta··subscript Tne···
compilerinterpretsthenarne as a point~r to the initial element ofthe array soitre­
ally passes the arraybyreference~ ..••. There ·is no way to pass. an .arrayby. value . (except·.
to embed it in a structure and pas~the structure by value).. .

With stnictures, however, the structure name is inteIpreted as the entire structure,
not asapointer to the beginning of the structure. If you use the same syntax that
you use with ~rrays,therefore,you will get different semantics. For example:

intar[lOO];
struct tag st;

func(ar) ; 1* Passes a pointer to the first
element ofar [] *1

func(st); 1* Passes an entire structure *1

The inconsistency follows through to the receiving side. For example, the following
two· array versions are the same:

funer ar)
int ar [] ;

func(ar)
int *ar;

1* ar is converted to a pointer
to an int *1

1* ar is a pointer to an int *1

But the following two structure versions are very different:

func(st)
struct tag st; 1* st is an entire structure *1

func(st)
struct tag *st; 1* st is a pointer to

a struct *1

Returning Structures

Just as it is possible to pass a structure or a pointer to a structure, it is also possible to re­
turn a structure or a pointer to a structure. (Returning a structure is not supported in the
original K&R standard, but is a common extension supported by most C compilers and by
the ANSI standard.) The declaration of the function's return type must agree with the ac­
tual returned value. For example:

4-150 Code

structure and union operations

struct tag f()
{

struct tag st;

return st;
}

/* Define a function that returns */
/* a struct */

/* Return an entire struct */

struct tag *fl() /* Define a function that returns */
/* a pointer to a struct */

{
static struct tag pst;

return &pst; /* Return the address of a struct */
}

As with passing structures, you generally want to return pointers to structures because it is
more efficient. Note, however, that if you return a pointer to a structure, the structure
must have fixed duration. Otherwise, it will cease to be valid once the function returns.

One situation where returning structures is particularly useful is when you want to return
more than one value. The return statement can only send back one expression to the
calling routine, but if that expression is a structure or a pointer to a structure, you can in­
directly return any number of values. The following function, for instance, returns the
sine, cosine, and tangent of its argument. The functions sinO, cosO and tanO are part of
the run-time library. Each accepts an argument measured in radians and returns the cor­
responding trigonometric value. If the argument is too large, however, the results will not
be meaningful.

Code 4-151

structure and union operations

#include <stdio.h>
#include <math.h> /* include file for trig */

/* functions */
#define too_large 100 /* Differs from one machine */

/* to another. */
typedef struct
{

double sine, cosine, tangent;
} TRIG;

TRIG *get_trigvals(radian val
double radian_val;
{

static TRIG result;

/* If radian val is too large, the sine, cosine and
* tangent values will be meaningless.
*/
if (radian_val> TOO_LARGE)
{

printf("Input value too large -- cannot return \
meaningful results\n");

}

}

return NULL; /* return null pointer -- defined in
* stdio.h.
*/

result.sine = sine radian val);
result.cosine = cos(radian_val);
result. tangent = tan(radian val);
return &result;

Referencing a Member Through a Pointer to Another Structure

To be compatible with older of versions of C that did not create separate name spaces for
every structure and union, Domain C allows you to access members through pointers to
other structures and unions. That is, the member name can be a member of any struc­
ture, not just the structure of which it is a member. The following program fragment dem­
onstrates this unusual feature of C:

4-152 Code

struct a {

}

struct b {

}

main()
{

int *i;
i = &y;

int a;
char b;
x = {'ABeD' ,'E'};

char aa;
int bb;
y;

printf ("%c\n" , i->a) ;
}

structure and union operations

Note that pointer variable i holds the address of structure variable y. Further note that a
is a member of structure x, not structure y. Yet, we are able to refer to i->a in the
printfO call. When C encounters i->a, it looks for any structure member whose name is
a. If we execute the preceding program, we get the following output:

A

NOTE: This functionality is not a portable feature since most modem
C compilers do not support it.

Code 4-153

switch

switch A conditional branching statement that selects among several statements based on constant
values.

FORMAT

switch (exp)
{

case const_exp : [statement ...]

[case const_exp : [statement ...]]

[defaUlt : [statement ...]]

}

ARGUMENTS

exp

statement

DESCRIPTION

The integer expression that the switch statement evaluates and then
compares to the values in all the cases.

An integer expression to which exp is compared. If const_exp matches
exp, the accompanying statement is executed.

This is zero or more simple statements. (Note that if there is more
than one simple statements, you do not need to enclose the statements
in braces.)

The expression immediately after the switch keyword must be enclosed in parentheses and
must be an integral expression. That is, it can be char, short, int or long, but not float,
double, or long double.

NOTE: the K&R standard requires the switch expression to be of type
into

The expressions following the case keywords must be integral constant expressions, mean­
ing they may not contain variables.

The semantics of the switch statement are straightforward. The switch expression is evalu­
ated; if it matches one of the case labels, program flow continues with the statement that

4-154 Code

switch

follows the matching case label. If none of the case labels match the switch expression,
program flow continues at the default label, if it exists. (Strictly speaking, the default la­
bel need not be the last label, though it is good style to put it last.) No two case labels
may have the same value.

An important feature of the switch statement is that program flow continues from the se­
lected case label until another control-flow statement is encountered or the end of the
switch statement is reached. That is, the compiler executes any statements following the
selected case label until a break, goto, or return statement appears. The break statement
explicitly exits the switch construct, passing control to the statement following the switch
statement. Since this is usually what you want, you should almost always include a break
statement at the end of the statement list following each case label.

The following print_errorO function, for example, prints an error message based on an er­
ror code passed to it.

/* Prints error message based on error_code.
* Function is declared with void because it doesn't
* return anything.
*/

#include <stdio.h>
#define ERR_INPUT_VAL 1
#define ERR_OPERAND 2
#define ERR_OPERATOR 3
#define ERR_TYPE 4

void print_errore error_code
int error_code;
{

switch (error_code)
{

case ERR_INPUT_VAL:
printf("Error:
break;

case ERR_OPERAND:
printf("Error:
break;

case ERR_OPERATOR:
printf("Error:
break;

case ERR_TYPE:
printf("Error:
break;

Illegal input value.\n");

Illegaloperand.\n");

Unknown operator.\n");

Incompatible data.\n");

default: printf("Error: Unknown error code %d\n",
error_code) ;

break;
}

}

Code 4-155

switch

The break statements are necessary to prevent the function from printing more than one
error message. The last break after the default case isn't really necessary, but it is a good
idea to include it anyway for consistency's sake.

Sometimes you want to associate a group of statements with more than one case value. To
obtain this behavior, you can enter consecutive case labels. The following function, for in­
stance, returns 1 if the argument is a punctuation character, or zero if it is anything else.

/* This function returns 1 if the argument is a
* punctuation character. Otherwise, it returns
* zero.
*/

iSJ)unc(arg
char arg;
{

}

switch (arg)
{

}

case , , .
case , , . ,
case ' . , .
case ' . , . ,
case 'I':
default :

return 1;
return 0;

Domain C allows the use of enum values as the control expressions and case labels of a
switch statement. However, if you use an enum one place, you must use use enums else­
where. That is, if expr is of type enum, then all the case labels must also be of type
enum, while if expr is not an enum, none of the case labels may be enums. For example:

4-156 Code

/* Program name is "enums_in_a_switch". */
#include <stdio.h>

int main(void
{

enum AUTHORS { Hemingway, Steinbeck, Twain };
enum AUTHORS favorite = { Twain };

switch (favorite)
{

case Hemingway: printf("A Farewell To Arms\n"
break;

case Steinbeck: printf("The Grapes of Wrath\n"
break;

) ;

) ;

case Twain: printf("The Adventures of Tom Sawyer\n");
break;

/* case 5 : printf("no author") THIS WOULD BE ILLEGAL SINCE
* 5 IS NOT AN ENUM VALUE.
*/

}
}

switch

Code 4-157

switch

EXAMPLE

/* program name is "switch_example". Read a student~s grade
* from the keyboard. Then the switch statement uses the grade
* to decide which comment should be printed. Notice that the
* cases allow for uppercase and lowercase letters to be
* entered.
*/

#include <stdio.h>

int main(void
{

4-158 Code

char answer, grade;

answer = ~y~;
printf("\n\n");
while (answer == ~y~ I I answer ~y~)

{
printf("Enter student~s grade: ");
fflush (stdin);
scanf ("%c", &grade);
printf("\nComments: ");
switch (grade)
{

}

case
case

case
case

case
case

case
case

case
case

'A' :
'a':
printf("Excellent\n");
break;

'B':
'b':
printf("Good\n");
break;

' C' :
' c' :
printf("Average\n");
break;
'D~:

'd':
printf("Poor\n");
break;

'F':
'f':
printf("Failure\n");
break;

default:
printf("Invalid grade\n");
break;

/* end switch */
printf("\nAgain? ");
fflush(stdin);
scanf ("%s", &answer);

switch

} /* end while */
}

USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter student's grade: B

Comments: Good

Again? y
Enter student's grade: c

Comments: Average

Again? n

Code 4-159

#systype and stsypeO macro

#systype (preprocessor directive) and the systypeO macro Selects the target operating system.
(Domain Extension)

FORMAT

#systype systype_name Preprocessor directive

systype (systype _name)

ARGUMENTS

systype _name

DESCRIPTION

Predefined macro

A string containing the name of an operating system. The string must
be one of the following:

@ bsd4.1 Berkeley 4.1BSD (obsolete)
e bsd4.2 Berkeley 4.2BSD
C!I bsd4.3 Berkeley 4.3BSD
G sys3 AT&T System III (obsolete)
I') sysS AT&T System Y Release 2
e sysS.3 AT&T System Y Release 3
Gl any program is independent of a particular UNIX system

We divide this listing into an explanation of the preprocessor directive and the macro.
First, we describe the preprocessor directive.

The #systype Preprocessor Directive

Because C programs are often written to run in UNIX environments, and because not all
UNIX environments are the same, Domain C supports the #systype preprocessor directive,
which allows you to define the version of the UNIX system for which your program is tar­
geted.

The Domain C library contains two sets of routines. One is compatible with the Bell Labs
versions of the UNIX system (System Y, Release 2 and 3) and the other set is compatible
with Berkeley's versions of the UNIX system (4.2BSD, and 4.3BSD). All of the routines
in both sets work properly in any Domain/OS environment. However, you may encounter
problems if you attempt to mix functions from two sets that interact with each other. In
general, it is best to choose one set and stick with it whenever possible.

4-160 Code

#systype and stsype 0 macro

The two sets of functions overlap to a large extent. It is sometimes the case, however, that
while function x exists in both sets, the semantics of the function (and in some cases its ar­
guments) may be subtly different. As an illustration, consider the function setgrp O. In
the System V version, the function definition is:

int setpgrp ()

It is defined to set the process group ID of the calling process to the process ID of the
calling process and return the new process group ID. In the 4.2BSD version of the UNIX
system, there is an identically named function with similar semantics but a different calling
sequence. The Berkeley function,

setpgrp(pid, pgrp
int pid, pgrp;

sets the process group of the specified pgrp. Zero is returned if successful; -1 is returned
and errno is set on failure.

To avoid unexpected behavior, always know which set of functions you are accessing. The
system chooses one set of functions over another based on a version selector called the
systype. The systype affects both the compilation and the execution of a program. At
compilation time, it determines which include files the compiler uses. At run-time, it deter­
mines which set of functions are called and makes sure that the proper calling conventions
are employed.

The compiler stamps the object module with the systype that was in effect when the mod­
ule was compiled. When the program is executed, the loader checks this stamp and uses
the semantics and calling sequences of the designated systype when invoking library func­
tions.

There are several ways to define the systype, one of which is to place a #systype directive
in the source file. You may define the systype only once per source file. Any subsequent
definitions produce an error. Moreover, the #systype directive must be the first non-com­
ment token in the source file.

For instance, to set the systype to 4.2BSD, enter the following at the top of your source
file:

ffsystype bsd4.2

It is also legal to enclose the systype in double quotes:

ffsystype "bsd4.2"

You also can define the target operating system with the -systype compile option (/com/cc
only), which is described in Chapter 6. If you specify one systype on the command line
and a different one in the file, the compiler reports an error. If you do not explicitly
specify a systype, the compiler inherits the systype from an environment variable called
COMPILESYSTYPE. By default, this variable is set to sysS. If, for some reason, the
COMPILESYSTYPE variable does not exist, the systype is inherited from another environ­
ment variable called SYSTYPE. This variable is always set. These environment variables
are described in more detail in the Using the SysV Environment and Using the BSD Envi­
ronment manuals.

Code 4-161

#systype and stsype 0 macro

NOTE: Be especially careful about using systype any. Most
programs are not independent of a particular version. For ex­
ample, programs running under the Aegis environment are
systype sysS.

The systype Macro

Domain C supports a macro called systype that enables you to find out what the current
UNIX systype is. By ciefault, the systype is "sysS", but you can change it with the #sys­
type preprocessor directive or with the -systype compiler option.

The macro may be used only in an #if preprocessor directive. It evaluates to 1 if the ar­
gument is the same as the systype, and evaluates to zero (0) if the argument differs from
the systype. The quotes around the argument are optional. For example:

4-162 Code

Uif systype("bsd4.2")
Uinclude "comments.4.2"
Uelse
Uif systype(bsd4.3)
Uinclude "comments.4.3"
Uelse
Uinclude "comments. bell"
Uendif
Uendif

TIME - -

TIME (predefined symbol)See the _DATE_ and _TIME_ listing earlier in this chapter.

Code 4-163

while

while Executes the statements within a loop as long as the specified condition is true.

FORMAT

while (exp)
statement

ARGUMENTS

exp Any expression.

statement Any simple or compound statement.

DESCRIPTION

This is one of the three looping constructions available in C. Like the for loop, the while
tests exp and if it is true (nonzero), statement is executed. Once exp becomes false (zero),
execution of the loop stops. Since exp could be false the first time it is tested, statement
may not be performed even once.

The following describes two ways to jump out of a while loop prematurely (that is, before
exp becomes false):

• Use break to transfer control to the first statement following the while loop.

• Use go to to transfer control to some labeled statement outside the loop.

4-164 Code

EXAMPLE

/* program name is "while_example". */
#include <stdio.h>

int maine void)
{

}

int count = 0, count2 = 0;
char a_string [80] , *ptr_to_a_string

printf("Enter a string -- ");
gets(a_string);

while (*ptr_to_a_string++)
count++; /* A simple statement loop */

printf("The string contains %d characters.\n", count);
printf("The first word of the string is ");

while (a_string [count2] != ' ')
{ /* A compound statement loop */

}

printf ("%c", a_string[count2]);
count2++;

printf("\n");

USING THIS EXAMPLE

If we execute this program, we get the following output:

$ while_example. bin
Enter a string -- Four score and seven years ago
The string contains 30 characters.
The first word of the string is Four
$

-------88-------

while

Code 4-165

Chapter 5

Functions

The main organizational unit of C is the function. Functions can appear in a program in
three forms:

Function Definition

Function Allusion

Function Call

A declaration that actually defines what the function does.
as well as the number and type of arguments.

Declares a function that is defined elsewhere. A function
allusion specifies what kind of value the function returns.
(With the new prototyping feature, discussed in Section
5.4. it is also possible to specify the number and types of
arguments in a function allusion.)

Invokes a function. causing program execution to jump to
the invoked function. When the called function returns,
execution resumes at the point just after the call.

This chapter discusses function definitions. allusions. and calls. and other topics associated
with functions. such as recursion and pointers to functions.

5.1 Function Definitions

The syntax of a function definitions is shown below:

[statiC] [return_type] function_name ([arg_name [, arg_name ...]])

[arg_declaration]

[arg_declaration ...]

{
function _body

}

Functions 5-1

You can specify any numbe~ of arguments, including zero. The return type defaults to int
if you leave it blank. However, even if the return type is int, you should specify it explic­
itly to avoid confusion.

We break the discussion of function definitions into two parts-the function's preamble
(everything before the left brace) and the function's body (from the left brace to the right
brace).

5.1.1 Function Preamble

Domain C supports two forms for a function preamble-the old form specified by the K&R
standard and the new form (called prototyping) specfied by the ANSI standard and used in
the C++ programming language. This section describes the K&R method; later sections de­
scribe the new prototyping feature.

The function's preamble must at the very least consist of the name of the function followed
by a pair of parentheses. All other parts of a function are optional. The other parts are:

• The static storage class specifier to give the function file scope.

• The data type of the value that the function intends to return. If you do not
specify a data type, the compiler assumes that the function returns an int.

G The function's argument list, which is a list of identifiers separated by commas.

• One optional parameter declaration for every argument in the argument list. A
parameter declaration takes the same format as a variable declaration. If you
omit a type in the declaration, the type defaults to into If there are no arguments
in the argument list, do not specify any parameter declarations.

NOTE: You must put a semicolon after each parameter declaration,
but never put a semicolon after the argument list.

If the function does not return an int, you must specify the true return type. If the func­
tion does not return any value, you should specify a return type of void. Before void be­
came a common feature of C compilers, it was a convention to leave off the return type
when there was no return value. The return type would default to int, but the context in
which the function was used would usually make it clear that no meaningful value was re­
turned. With modern C compilers such as Domain C, however, there is no excuse for
omitting the return type.

5-2 Functions

5.1.1.1 Argument Declarations

Formal argument declarations obey the same rules as other variable declarations, with the
following exceptions:

• The only legal storage class specifier is register. (The default duration is auto­
matic, but the auto specifier is not legal in this context.)

• chars and shorts are passed as ints; floats are passed as doubles. (With the new
ANSI prototyping feature, you can disable these automatic conversions.)

. III A formal argument declared as an array is converted to a pointer to an object of
the array type.

• A formal argument declared as a function is converted to a pointer to a function.

19 You may not include an initializer in an argument declaration.

It is legal to omit an argument declar~tion, in which case the argument type defaults to int.
This is considered very poor style, however.

Let us now examine several sample function preambles:

Example 1

Our first example shows the preamble of a function named ghost that accepts no argu­
ments and returns no values; therefore, it simply looks like this:

void ghost()

The data type void ensures that no value will be passed back to the calling function. No­
tice that we have to put an empty set of parentheses after the name of the function to re­
mind the compiler that this is indeed a function. The fact that the parentheses are empty
means that the function has no parameters.

Example 2

Our second example is a function named analyze that accepts a single floating-point num­
ber as an argument. Here's how to declare it:

void analyze(x)
float x;

Notice that we declared x's data type immediately after the function definition. Also notice
that we put a semicolon after the parameter declaration but not after the argument list.

Functions 5-3

Example 3

Our third example shows a function that accepts two integer arguments and returns a float­
ing-point result. It looks as follows:

float pythagorean (leg1, leg2)
int leg1;
int leg2;

The keyword float identifies the data type of the returned answer. We declared leg! and
leg2 separately for clarity, though we could have written the function preamble like this in­
stead:

float pythagorean (leg1, leg2)
int leg1, leg2;

Example 4

Our fourth example accepts three arguments and returns a pointer to a character:

char *razzmatazz(high, low, precision)
long int high;
short int low;
double precision;

5.1.2 The Body of the Function

After the function preamble comes the body of the function. The body of the function
takes the following format:

local declarationl

local declarationN

statementl

statementN
}

For example, here is a sample function body:

{
int y, x; /* local declarations */

scanf("%d", &x); /* statement */
y = 10 * x; /* statement */
printf("lO times %d is %d\n", x, y); /* statement */

}

5-4 Functions

You must enclose the function body in braces. Note that a function body can consist of
braces and nothing else; for example, the following function body is perfectly legal:

{ /* a good place holder for code not yet written */

}

Statements within the function body can use the following kinds of variables:

• The function's parameters (that is, the parameters defined in this function's pre­
amble).

• The variables declared within this function (variables having block scope within
this function).

• Variables with global scope or file scope.

(See Chapter 2 for a complete discussion of variable scope.)

5.2 Function Allusions

A function allusion is a declaration of a function that is defined elsewhere, usually in a dif­
ferent source file. The main purpose of the function allusion is to tell the compiler what
type of value the function returns. With the new prototyping feature, it is also possible to
declare the number and types of arguments that the function takes. This feature is dis­
cussed in Section 5.4. The remainder of this section describes the old function allusion
format. Note that Domain C supports both the old and the new formats.

By default, all functions are assumed to return an into You are only strictly required,
therefore, to include function allusions for functions that do not return an into However,
it is good style to include function allusions for all functions that you call.

The syntax for a function allusion is shown in Figure 5-1. If you omit the storage class, it
defaults to extern, signifying that the function definition may appear in the same source
file or in another source module. The only other legal storage class is static, which indi­
cates that the function is defined in the same source file. The data type in the function
allusion should agree with the return type specified in the definition. If you omit the type,
it defaults to into Note that if you omit both the storage class and the data type, the ex­
pression is a function call with no arguments if it appears within a block; if it appears out­
side of a block, it is an allusion:

fl(); /* Function allusion -- default type is int */

mainO
{

f2(); /* Function call */

Functions 5-5

storage
class

~i
~

function
name

Figure 5-1. Syntax of a Function Allusion

Typically, a function allusion appears at the head of a block with other declarations. The
scoping rules for function allusions are the same as for other variables declared with ex­
tern.

Note, however, that the default storage class rules are different for functions than for other
variables. For example, in the following declaration, the storage class of pflt and arr_flt[]
defaults to auto, whereas the storage class of func_fltO defaults to extern.

{
float func_flt();
float *pflt, arr_flt[lO];

If this declaration appeared outside of a block, pflt and arr_flt[] would be global defini­
tions, whereas func_fltO would still be a function allusion.

5.2.1 Forward References and Backward References

When we make a forward reference to a function, we mean that the function call appears
in the source code prior to the function's definition or allusion. A backward reference to
a function means that the function call appears in the source code after the function's defi­
nition or allusion. C unconditionally permits backward references, but restricts forward ref­
erences. You can make a forward reference when either of the following conditions is true:

• The called function returns an int value

• The caller does not use the value returned by the called function

Stylistically, however, it is best to declare prototypes for all functions before they are in­
voked.

5-6 Functions

5.3 Function Cans

A function call, also called a function invocation, passes control to the specified func­
tion. The syntax for a function call is shown in Figure 5-2. A function call is an expres­
sion, and can appear anywhere an expression can appear. Unless they are declared as re­
turning void, functions always return a value that is substituted for the function call. For
example, if fO returns 1, the statement

a = f()/3;

is equivalent to:

a = 113;

It is also possible to call a function without using the return value. The statement

f();

calls the function ro, but does not use the return value. If fO returns 1, the statement is
equivalent to:

1;

which is a legal C statement, although it is a no-op (no operation is performed, assuming
f 0 has no side effects).

-1 function
name

'-------'

5.3.1 Call by Value

argument

Figure 5-2. Syntax of a Function Call

Arguments to a function are a means of passing data to the function. Many programming
languages (notably FORTRAN) pass arguments by reference, which means they pass a
pointer to the argument. As a result, the called function can actually change the value of
the argument. In C, arguments are passed by value, which means that a copy of the argu­
ment is passed to the function. The function can change the value of this copy, but can­
not change the value of the argument in the calling routine. (Domain C supports a C++
extension that enables you to pass arguments by reference. This feature is described in
Section 5.3.2.)

Functions 5-7

Figure 5-3 shows the difference. Note that the arrows in the pass-by-reference picture
point in both directions indicating that the calling and called function can send information
to each other through arguments. In the pass-by-value diagram, the arrows go in only one
direction because only the calling function can send information through arguments. The
argument that is passed is often called an actual argument, while the received copy is
called a formal argument or formal parameter.

Calling Function Called Function

Pass by Reference

Actual ~ ~I address of I~ ~ Formal I Argument argument Argument

Pass by Value

Actual I ~I value of I ~I Formal I Argument argument I Argument

Figure 5-3. Pass by Reference vs. Pass by Value

Because C passes arguments by value, a function can assign values to the formal arguments
without affecting the actual arguments. For example:

/* Program name is "pass_by_val_example". */
#include <stdio.h>

int maine void)
{

}

extern void f(in);
int a = 2;

f (a); /* pass c copy of "a" to "f()" */
printf("Value of \"a\" after return is %d\n" , a);

void f(int received_arg)
{

received_arg = 3; /* Assign 3 to argument copy */
}

In the example above, the printfO function prints 2, not 3, because the formal argument,
received_arg in fO, is just a copy of the actual argument a. The order of the actual argu­
ments matches the order of the formal arguments, regardless of the names used. That is,
the first actual argument is matched to the first formal argument, the second actual argu-

5-8 Functions

ment to the second formal argument, and so on. For correct results, the types of the cor­
responding actual and formal arguments should be the same.

If you do want a function to change the value of an object, you must pass a pointer to the
object, and then make an assignment through the dereferenced pointer. The following, for
example, is a function that swaps the values of two integer variables.

/* Program name is "pass_by_ref_example". */
#include <stdio.h>

void swap (int *x, int *y)
{

register int temp;

temp = *x;
*x *y;
*y = temp;

}

To call this function, you need to pass two addresses:

int main(void
{

}

int a 2, b 3 ;

swap (&a, &b);
printf ("a = %d\ t b

Executing this program yields:

a = 3 b = 2

%d \n", a , b);

5.3.1.1 Automatic Argument Conversions

In the absence of prototyping, all scalar arguments smaller than an int are converted to
int, and all float arguments are converted to double. If the formal argument is declared
as a char or short, the receiving function assumes that it is getting an int, so the receiving
side converts the int to the declared type. If the formal argument is declared as a float,
the receiving function assumes that it is getting a double, so it converts the received argu­
ment to float. This means that every time a char, short, or float is passed, at least one
conversion takes place on the sending side where the argument is converted to int or dou­
ble. In addition, the argument may also be converted again on the receiving side if the
formal argument is declared as a char, short, or float.

Functions 5-9

Consider the following:

{
char a;
short b;
float c;

foo (a, b, c);

foo(x, y, z)

char x; /*

short y; /*

float z· , /*

{

/* a and b are promoted to ints,
* and c is promoted to double.
*/

Received arg is converted from int
to char. */
Received arg is converted from int
to short. */
Received arg is converted from
double to float */

Note that these conversions are invisible. So long as the types of the actual arguments
match the types of the formal arguments, the arguments will be passed correctly. However,
as discussed in Section 5.4, these conversions can affect the efficiency of your program.
Prototyping enables you to turn off automatic argument conversions.

5.3.1. 2 Passing an Array as an Argument

C does not pass arrays by value because this would involve too much value copying at run
time (particularly for a large array). Instead, C passes the address of the first element of
the array. For more information about passing arrays as arguments, see the "array opera­
tions" section of Chapter 4.

5.3.1.3 Passing Structures and Unions as Arguments

The K&R standard permits you to pass a member of a structure or union as a function ar­
gument. In conformance with the new ANSI standard, Domain C also further permits you
to pass an entire structure or union as a function argument. For more information about
passing structures and unions as arguments, see the "structure and union operations" sec­
tion of Chapter 4.

5-10 Functions

5.3.2 Passing Arguments JBy Reference

Domain C supports a feature from the C++ language that allows you to declare reference
variables. One way in which reference variables can be used is to pass arguments by refer­
ence. To pass arguments by reference, all you need to do is declare the formal arguments
as reference variables. For example:

void incr(int &x)
{

x++;
}

The reference variable x becomes an alias for whatever value is passed as an actual argu­
ment. For instance, if you call incrO from mainO, as shown below, the actual argument j
will be incremented.

int main(void
{

}

extern void incr(int &);
int j 5;

incr (j);
printf ("Now, the value of j is: %d\n", j);

Note that this same behavior can be obtained using pointers:

void incr(x)
int *x;
{

(*x)++
}

int main(void)
{

}

extern void incr(int *);
int j;

incr(&j); /* pass the address of j explicitly */
printf ("Now, the value of j is: %d\n", j);

The principal difference between these two methods is that in the pointer version, you
must explicitly pass the address of j. In the reference variable version, the address of j is
obtained implicitly.

Functions 5-11

The actual argument to a reference variable can be an lvalue or an rvalue. If you pass a
constant, however, the called function may not modify the value. Although the compiler
will not report this error, the program will abort with a run-time error when it attempts to
access read-only memory. For example, if you pass a constant to incrO

iner (5);

the program will issue the following run-time error when it attempts to increment the con­
stant:

?(sh) II./iner.bin ll - access violation (OS/fault handler)
In routine lIiner ll •

These semantics differ somewhat from the semantics described in The C++ Programming
Language, which states that the compiler treats reference arguments as if they are normal
reference variables initialized with the values passed as actual arguments. This implies that
if an rvalue is passed, the compiler should produce a temporary variable. This is, in fact,
how Domain C works if you pass an expression rather than a constant. For example, the
following invocation of incrO works because the compiler generates a temporary variable
for the expression 2+3.

iner(2 + 3);

5.4 Function Prototypes

Function prototyping is a feature introduced to the C language by Bjarne Stroustrup, the
designer of the C++ programming language, and adopted by the AN~I X3J11 Technical
Committee. Function prototypes in Domain C behave exactly as documented in the ANSI
standard.

Function prototypes allow function declarations to include data type information about ar­
guments. This has two main benefits:

• Function prototyping enables the compiler to check that the types of the actual ar­
guments in the function call match the types of the formal arguments specified in
the function declaration.

• Function prototyping turns off automatic argument conversions. Floating types are
not converted to double and small integers are not converted to into This can
significantly speed up algorithms that make intensive use of small integer or float­
ing-point data.

5-12 Functions

The format for declaring function prototypes is the same as the old function allusion syntax
except that you enter types for each argument. For example, the function allusion

extern void func(int, float, char *);

declares a function that accepts three arguments-an int, a float, and a pointer to a char.
The argument types may optionally be followed by variable names. For example, the pre­
vious declaration could be written:

extern void func(int a, float b, char *pc);

The variable names have no meaning other than to make the type declarations easier to
read and write. No storage is allocated for them, and the names do not conflict with real
variables that have the same name. You may include the storage class register in a proto­
type but it is has no meaning.

Prototyping ensures that the right number of arguments are passed, and it prohibits you
from passing arguments that cannot be quietly converted to the correct type. On the other
hand, it does quietly convert arguments when it can. As a result, you may actually pass
the wrong type of argument without receiving a compile-time error. However, you will re­
ceive a warning if the types do not match.

If you attempt to call this function with

func (j, x);

the compiler will report an error because the call contains only two arguments whereas the
prototype specifies three arguments. Also, if the argument types cannot be converted to

the types specified in the prototype, a compilation error occurs. The rules for converting
arguments are the same as for assignments. The following, for example, should produce an
error because the compiler cannot automatically convert a float to a pointer.

{
extern void f(int *);
float x;

f(x); /* ILLEGAL -- cannot convert a float
* to a pointer
*/

If the compiler can quietly convert an argument to the type of its prototype, it does so. In
the following example, for instance, j is converted to a float and x is converted to a short
before they are passed.

Functions 5-13

{
extern void f(float, short);
double x;
long j;

f(j,x); /* OK -- long is converted to float,
* and double is converted to
* short.
*/

Without prototyping, this example would produce erroneous results because fO would treat
j as a float and x as a short, even though it is receiving a long and a double.

To declare a function that takes no arguments, use the void type specifier:

extern int f(void) /* This function takes no
* arguments.
*/

5.4.1 Function Definitions

The new protyping feature also includes an alternative syntax for declaring arguments in a
function definition. The old style, which is still supported, requires you to declare argu­
ments after the function header. For example:

int foo(x, y, z)
int x;
float y;
char *z;

}

The new syntax allows you to declare the arguments within the function header:

int foo(int x, float y, char *z)
{

Note that the new syntax makes it easy to create prototype declarations from new-style
function definitions-all you need to do is copy the function definition, optionally precede
it with extern, and end it with a semicolon. A prototype declaration of foo 0, for exam­
ple, would be:

extern int foo(int x, float y, char *z);

Moreover, when you use the new syntax for declaring arguments in a function definition,
the definition also serves as a prototype of the function for the remainder of the source

5-14 Functions

file. That is, the compiler uses the type information specified in the definition to check
the types of the arguments in all invocations of the function throughout the remainder of
the source file. This type-checking does not occur if you use the old syntax. For in­
stance:

int foo(x, y, z)
int x;
float y;
char *z;
{

}

main ()
{

char *a;
float b;

foo(a, b); /* Will NOT produce a compile-time error */

}

On the other hand:

int foo(int x, float y, char *z)
{

mainO
{

}

char *a;
float b;

foo(a, b); /* Will produce a compile-time error */

5.4.2 Prototyping a Variable Number of Arguments

If a function accepts a variable number of arguments (printfO for example), you can use
the ellipsis token" ... " in the prototype declaration. For example, the prototype for
printfO is:

int printf(char *format, ...);

This indicates that the first argument is a character string, and that there are an unspeci­
fied number of additional arguments. The ellipsis token may appear only as the last argu­
ment type in a prototype declaration. See the description of varargs in the Domain Pro-

Functions 5-15

grammer's Reference for SysV or BSD for more information about writing functions that
accept a variable number of arguments.

5.4.3 Backwards Compatibility

The Domain C compiler continues to support the old syntax and semantics for function
declarations and definitions. However, unless the -ntype switch is used (supported with
Icom/cc only), the compiler will issue an informational message whenever it encounters a
function that is not prototyped. (Note, however, that the compiler reports informational
messages only if you compile with -info 1 or a larger value.) The message informs you
that the compiler is using the default prototype:

func_name (....);

The ellipsis notation represents an indeterminate number of arguments with indeterminate
types.

When the compiler encounters a prototype allusion and an old-style definition for the
same function, it expands the formal argument types using the old rules before checking
the types against the prototype. The following example, for instance, produces a compile­
time error because the expanded argument types in the definition are int and double,
whereas the prototype specifies char and float.

mainO
{

extern void foo(char, float);

void foo(x, y)

char x;
float y;

Note the distinction between this example and the following example which uses the new­
style definition.

main ()
{

extern void foo(char, float);

void foo(char x, float y)

5-16 Functions

In this case, no argument expansions take place so the prototype matches the definition.

5.4.4 Using Prototypes to Write More Efficient Functions

The following example shows how prototypes can be used to write more efficient functions
by turning off the automatic conversion of floats to doubles. The sum_of_squaresO func­
tion, shown below, is allowed to pass floats and perform float arithmetic, which can lead
to significant savings in calculation time for large floating-point programs.

#include <stdio.h>

int main(void
{

extern float sum_of_squares(float x, float y, float z);

printf("Enter three floating-point numbers: ");
scanf ("%f%f%f ", &x, &y, &z);
printf("The sum of the squares of x, y, and z\ is: %f",

sum_of_squares(x, y, z);
}

float sum_of_squares(float a, float b, float c)
{
return (a*a)+(b*b)+(c*c);

}

Without prototyping, all three arguments would be converted to double before they were
passed and then converted back to floats on the receiving side, making the function
slower.

5.5 Returning a Value Back to the Caller

Here are C's rules for returning a value from the calling function back to the caller:

1. Use the return statement to pass a value back to the caller.

2. A function can directly return at most one value to the calling function. How­
ever, the value can be a structure, union, or pointer, so it is possible to indirectly
return more than one value.

3. If you specify the function's data type (in the function definition), then return
passes back a value of this data type. However, if you specified the function's
data type as void, then return passes back no value.

4. If you did not specify the function's data type, then return passes back an int
value.

Functions 5-17

For more information about returning from a function, see the "return" section in Chapter
4.

5.5.1 R.eturning Values By Reference

Just as you can pass function arguments by reference, you can also return function values
by reference. To do this, you need to declare the return type as a reference variable, as
shown below:

int &foo(int x, float y)
{

static int j;

return j; /* returns the address of j */
}

When you return from a function by reference, what gets returned is actually the address
of the returned value. This can be a dangerous practice if the returned value is a con­
stant, an expression, or an automatic variable. If the returned value is a constant, auto­
matic variable, or temporary variable, there is no guarantee that its memory location will
will remain unchanged before the calling function accesses it. Constants are stored in
read-only memory, which the compiler can use for other purposes as soon as the constant
has been referenced. Automatic variables live on the stack and can be overwritten as soon
as their defining blocks are exited. There is no guarantee, therefore, that the address re­
turned by a function that returns by reference will point to meaningful data at a later point
in the program. For expressions returned by reference, the compiler creates a temporary
variable to store the expression value. For this reason, you should return only fixed dura­
tion variables by reference.

5-18 Functions

5.5.2 The #options Specifier - Domain Extension

The #options specifier gives you some control over the use of registers within function
calls. The syntax is:

function_declaration #options(option [,option ...])

where function_declaration is an old-style declaration or a function prototype, and option
is one of the following:

abnormal

noreturn

nos ave

Forces the function to place the return value in AO, in ad­
dition to DO. You must specify this option for Pascal rou­
tines that return pointers. See Chapter 6 for more infor­
mation about cross-language communication.

Warns the compiler that the function can produce an ab­
normal transfer of control. The compiler takes this warning
into account when optimizing any routines that invoke this
function. The abnormal option, however, does not affect
the function to which it is applies (unless it calls itself re­
cursively). The abnormal option is particularly useful for
writing cleanup handlers.

Indicates that the program terminates after invocation. The
optimizer may remove any code following a call to a
noreturn function since it is unreachable.

Indicates that the function will not save the contents of any
registers. The nosave option should only be specified when
declaring an assembly language program that does not fol­
low the normal conventions for preserving registers. Rou­
tines written in C or other Domain high-level programming
languages always preserve these registers. Note that assem­
bly-language routines must preserve registers AS and A6,
which contain pointers to the current stack area and stack
frame, respectively.

Functions 5-19

5.6 Recursive Functions

The C language supports recursive functions, which are functions that call themselves.
The following example demonstrates a recursive method for calculating factorials:

/* Program name is "recursive_example". */
#include <stdio.h>

int factorial (int n)
{

}

int result;

if (n

result
else

result

0)
l' - ,

n * factorial(n - 1);

return result;

int maine void)
{

}

int a-positive_integer, answer;

printf("This program finds a factorial.\n");
printf("Enter an integer from 0 to 16 ");
scanf("%d", &a_positive_integer);
answer = factorial(a_positive_integer);
printf("The factorial of %d is %d.\n", a_positive_integer,

answer) ;

5.7 Pointers to Functions

Pointers to functions are a powerful tool because they provide an elegant way to call differ­
ent functions based on the input data. Before discussing pointers to functions, however,
we need to describe more explicitly how the compiler interprets function declarations and
invocations.

The syntax for declaring and invoking functions is very similar to the syntax for declaring
and referencing arrays. In the declaration,

int ar[5] ;

the symbol ar is a pointer to the initial element of the array.

5-20 Functions

When the symbol is followed by a subscript enclosed in brackets, the pointer is indexed
and then dereferenced. An analogous process occurs with functions. In the declaration,

extern int f () ;

the symbol f by itself is a pointer to a function. When a function is followed by a list of
arguments enclosed in parentheses, the pointer is dereferenced (which is another way of
saying the function is called). Note, however, that just as ar in,

int ar[5];

is a constant pointer, so too, fin,

extern int f();

is a constant pointer. Hence, it is illegal to assign a value to f. To declare a variable
pointer to a function, you must precede the pointer name with an asterisk. For example,

int (*pf)(); /* pf is a pointer to a function
* returning an into
*/

declares a pointer variable that is capable of holding a pointer to a function that returns an
into The parentheses around *pf are necessary for correct grouping. Without them, the
declaration,

int *pf()

would make pf a function returning a pointer to an into

5.7.1 Assigning a Value to a Function Pointer

To obtain a pointer to a function, you merely enter a function name, without the argument
list enclosed in parentheses. For example:

{
extern int f1();
int (*pf) () ;

pf = fl; /* assign pointer to fl to variable pf */

If you include the parentheses, then it is a function call. For example, if you write

pf = fl(); /* ILLEGAL -- fl returns a~ int,
* but pf is a pointer */

Functions 5-21

you will get a compiler error because you are attempting to assign the returned value of
flO (an int) to a pointer variable, which is illegal. If you write

pf = &f1(); /* ILLEGAL -- cannot take the address
* of a function result. */

the compiler will attempt to assign the address of the returned value. This, too, is illegal.
Lastly, you could write:

pf = &f1; /* ILLEGAL &f1 is a pointer to
* a pointer, but pI is a pointer to
* an into
*/

On older C compilers, this would also cause a compile error (or warning) because the
compiler would interpret f1 as an address of a function, and the address-of (&) operator
attempts to take the address of an address. C does not permit this. Even if it did, the re­
sult would be a pointer to a pointer to a function which is incompatible with a simple
pointer to a function. Domain C allows this syntax by ignoring the & operator, but the
compiler does issue a warning message.

5.7.2 Return Type Agreement

The other important point to remember about assigning values to function pointers is that
the return types must agree. If you declare a pointer to a function that returns an int, you
must assign the address of a function that returns an int, not the address of a function that
returns a char, a float, or some other type. If the types don't agree, you will receive a
compile-time error. The following example shows some legal and illegal function pointer
assignments.

extern int ifl 0, if20, (*pif) 0 ;
extern float fflO, (*pff)();
extern char cf1(), (*pcf)();

main ()
{

}

5-22 Functions

pif
pif
pff
pcf
ifl

ifl;
cfl;
if2;
cft;
if2;

/* Legal -- types match */
/* ILLEGAL -- type mismatch */
/* ILLEGAL -- type mismatch */
/* Legal -- types match */
/* ILLEGAL -- Assignment to a constant
*/

5.7.3 Calling a Function Using Pointers

To dereference a function pointer, thereby calling a function, you use the same syntax you
use to declare the function pointer, except this time you include parentheses, and possibly
arguments. For example:

{
extern int £1();
int (*pf) () ;
int answer;

pf = £1;
answer = (*pf)(a); /* Calls the function fI() with

* argument a
*/

As with the declaration, the parentheses around *pf in the function call are essential to
override default precedence rules. Without them, pf would be a function returning a
pointer to an int, rather than a pointer to a function. Note that the value of a
dereferenced function pointer is whatever it was declared to be. In our case, we declared
pf with the statement,

int (*pf) () ;

signifying that when it is dereferenced, it will evaluate to an into

One peculiarity about dereferencing pointers to functions is that it does not matter how
many asterisks you include: For example,

(*pf) (a)

is the same as:

(****pf) (a)

This odd behavior stems from two rules: first, that a function name by itself is converted to
a pointer to the function; and second, that parentheses change the order of evaluation.
The parentheses cause the expression,

****pf

to be evaluated before the argument list. Each time pf is dereferenced, it is converted
back to a pointer because the argument list is still not present. Only after the compiler has
exhausted all of the indirection operators does it move on to the argument list. The pres­
ence of the argument list makes the expression a function call.

Functions 5-23

It follows from this logic that you can dereference a pointer to a function without the indi­
rection operator. That is,

pf(a)

should be the same as:

(*pf) (a)

This is, in fact, the case according to the ANSI standard. Older compilers, however, may
not support this syntax. We recommend the second version because it is more portable,
and reminds us that pf is a pointer variable.

5.7.4 Passing a Pointer to a Function as an Argument

You will sometimes want to pass a function pointer as an argument to another function. In
this manner, you can call a function that can in turn call another function.

We demonstrate this technique in the program that follows. Consider the main function of
this program. Notice that we assign the address of either function max or function minO
to variable pointer_to_a_function. Therefore, when we call function initial_checkingO,
we pass the address of one of these functions.

Function initial_checkingO copies the address of either maxO or minO. Then it does
some checking regardless of whether max or min was passed. Finally, initial_checkingO
calls either maxO or minO by dereferencing variable pf.

/* Program name is "pointers_to_functions". This program
* shows how to pass a function pointer as an argument to
* another function.
*/

#include <stdio.h>

void initial_checking(int (*pf)(), int intl, int int2)
{

5-24 Functions

int answer;

if «intl <= 0) I I (int2 <= 0»
{

}

printf ("You entered an illegal value. \n");
exit ();

else
{

answer = (*pf) (intl, int2);
printf("\nThe result is %d\n", answer);

}

}

/* find the maximum of two integers */
int max (int argl, int arg2)
{

}

if (argl > arg2)
return argl;

else
return arg2;

/* find the minimum of two integers */
int min(int argl, int arg2)
{
if (argl < arg2)

return argl;
else

return arg2;

int main(void)
{

int (*ptr_to_a_function)(), valuel, value2, reply;

printf("Enter two positive integers -- ");
scanf("%d%d", &valuel, &value2);

printf("\nEnter 0 to find the max of the two integers,\n");
printf("Enter 1 to find the min of the two integers. -- ");
scanf ("%d", &reply);
if (reply)

ptr_to_a_function
else

&min;

ptr_to_a_function &max;
initial_checking(ptr_to a function, valuel, value2);

}

5.S The mainO Function
All C programs must contain a function called main 0, which is always the first function
executed in a C program. When mainO returns, the program is done. The compiler
treats the main 0 function like any other function, except that at run time, the host envi­
ronment is responsible for providing two arguments. The first, usually called argc by con­
vention, is an int that represents the number of arguments that are present on the com­
mand line when the program is invoked; the second, called argv by convention, is an ar­
ray of pointers to the command line arguments.

Functions 5-25

The following program uses argc and argv [] to print out the list of arguments supplied to
it when it is invoked:

/* Program name is "echo". It prints the command line
* arguments on stdin.
*/

#include <stdio.h>

int main(int argc, char *argv[])
{

}

while (--argc > 0)
printf ("%s ", *++argv);

printf ("\n");

In UNIX systems, there is a program like this called echo. So, if you write at the com­
mand line,

echo Alan Turing was a father of computing.

the system prints:

Alan Turing was a father of computing.

Note that a pointer to the command itself is stored in argv[O]. This is why we use the
prefix increment operator rather than the postfix operator to increment argv. Otherwise,
the name of the command, echo, would be printed first.

When you invoke a program, each command line argument must be separated by one or
more spaces. Note that the command line arguments are always passed to mainO as char­
acter strings. If the arguments are intended to represent numeric data, you must explicitly
convert them. Fortunately, there are several functions in the run-time library that convert
a string into its numeric value. The function atoiO, for example, converts a string into an
int, and atofO converts a string into a float. The following program takes two arguments,
and returns the first to the power of the second:

#include <math.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

}

5-26 Functions

float x, y;

if (argc < 3)
{

}

printf ("Usage: power <number>\n");
printf ("Yields argl to arg2 power\n");
return;

x = atof(*++argv);
y = atof(*++argv);
printf("%f\n", pow(x, y));

The powO function is part of the run-time library.

-------88-------

Functions 5-27

Chapter 6

C Program Development

This chapter describes how to produce an executable object file (that, is, a finished pro­
gram) from Domain C source code. There are three Domain/OS environments in which
you can develop programs: Aegis, SysV, and BSD. Where the development process differs
depending on the environment, we describe each environment separately.

6.1 Program Development in a Domain/OS Environment

Briefly, you create an executable object file in the following steps:

1. Compile each file of source code that makes up the program. The compiler cre­
ates one object file for each file of source code.

2. Debug program if it contains errors.

3. Link (bind) the object files if necessary. Linking is necessary if your program
consists of more than one object file. The linker resolves external references; that
is, it connects the different object files so that they can communicate with one
another. Before linking, you may wish to package related object files into a li­
brary file with the UNIX archiver utility.

Figure 6-1 illustrates the general program development process. As described in later sec­
tions, the details differ somewhat depending on whether you are developing programs in an
Aegis or UNIX environment.

Program Development 6-1

Edit

- Source
File(s)

,
Compile
Source
File(s)

-- ,
>1 Yes

Bind
Object ... Object - Files File

No I -
~

Execute
Object

File

+
Find ~ Errors

Errors - 1 ___ 7 __ --'

Figure 6-1. Program Development in a Domain/OS System

This chapter details the compiler and provides brief overviews of the binder (linker), ar­
chiver, and debugger utilities.

In addition to the traditional programming development scheme shown in Figure 6-1, you
can also use the Domain Software Engineering Environment (DSEE@!) system to develop C
programs. This chapter also contains a brief description of Domain/Dialogue@!, which is a
product that simplifies the writing of user interfaces.

6-2 Program Development

6.2 Compiling

There are two cc commands: one resides in Icorn/cc and the other resides in Ibin/ec. Ul­
timately, both commands invoke the same compiler, which we refer to as Domain C. The
syntaxes of the two ee commands, however, are somewhat different. The Ibin/cc com­
mand is the traditional UNIX command for compiling C source code. When you type cc
in a UNIX shell, the system invokes Ibin/cc.

The Icom/cc command is the traditional Aegis command for compiling C source code.

The behavior of each of these commands is described in the following sections.

6.2.1 Compiling with Ibin/cc

To invoke the Domain C compiler with the Ibin/cc command, type cc in a UNIX shell, or
Ibin/cc in an Aegis shell. The Ibin/cc command has the following format:

$ Ibin/cc [optionl ... optionN] pthnml [... pthnmN]

where pthnm is a pathname and option is a command line option for ce, cpp, or ld.

The Ibin/ce command is actually a driver for other commands. If the command line con­
tains files with .c suffixes (source files), Ibin/cc begins by invoking the UNIX preprocessor
(cpp). It passes along any options that are supported by the epp utility.

After cpp has finished processing the source files, Ibin/cc sends them to the Domain C
compiler. This is the same compiler that is invoked by Icom/cc. However, Ibin/cc implic­
itly passes along the -bss option so that the compiler will produce . bss sections rather than
overlay sections (see the description of -bss in section 6.3.5). The other principal differ­
ence between Ibin/cc and Icom/cc is that Ibin/cc compiles without optimizations by de­
fault, whereas Icom/cc compiles with optimization level 3 by default.

Finally, the Ibin/cc command is capable of invoking the link editor to bind object mod­
ules. It will do so automatically unless you specify the -e option. (The -c option sup­
presses the linking stage and saves all object modules in files with a .0 suffix.) The link
editor links together all the object modules, including those just produced by Ibin/ce, and
creates an executable program named a.out. Note, however, that a.out is created only if
all global symbols are resolved. After creating a.out, the Ibin/cc command deletes all of
the .0 object files produced by the compilation. By specifying options to the Ibin/cc com­
mand, you can prevent deletion of these files. You can also have the executable binary
written to a file other than a.out.

Program Development 6-3

6.2.1.1 Some Compilation Examples

Let us consider a few compilation examples.

Example 1

Consider a C program consisting of only one file called completeyrogram.c. If we
compile as follows from a UNIX shell

$ cc complete_program.c

the compiler produces an executable object file named a.out. We can use the -0 option
to produce an executable with a different name:

Alternatively, we could use the -c option to suppress the linking stage:

$ cc -c complete_program.c

In this case, compilation would produce an object file named complete_program.o.

Example 2

Now consider a program broken into two files of source code-m.c and r.c. Assume that
m.c contains the mainO function. Further assume that somewhere in m.c, a call is made
to a function stored in file r.c. Probably the easiest way to create an executable object
file is to compile like this:

$ cc m.c f.c

Assuming no errors, the preceding command creates three files-two object files (m.o and
r.o) and an executable file named a.out.

Example 3

Suppose that we discovered a mistake in file m.c from Example 2. After changing the
source code in m.c, we can recompile with the following command:

$ cc m.c r.o

The preceding command creates a new m.o and a new a.out, but it does not affect r.o.

6-4 Program Development

Example 4

Let us now use the same source files as in Example 2, except that this time, we will com­
pile with the -c option as follows:

$ cc -c m.c r.c

As before, this compiler compiles both m.c and r.c to produce m.o and r.o. This time,
though, the -c option suppresses the linking of m.o and r.o. Later, you can optionally
link m.o and r.o with the cc command:

$ cc m.o r.o

6.2.1.2 Ibin/cc Compiler Errors

The compiler does not produce a .0 file if there is an error in the source code or if compi­
lation ends prematurely for some other reason (you type a CTRLlQ, for example). In ad­
dition, if you compile and one or more of the files contain errors, then the linking phase
will be suppressed, and consequently, no a.out file will be produced.

For instance, consider the following compilation:

$ cc t1.c t2.c t3.c

If all three source files are error-free, then the compiler creates the following four files:

t1.o
t2.0
t3.0
a.out

However, if t2.c had an error, then the compiler would have created the following two files
only:

t1.o
t3.0

Unlike many UNIX systems, the Domain Ibin/cc command renames any existing .0 files to
.0. bak before compiling a .c file. For example, suppose that you compile file test.c to
produce file test.o. Before beginning the compilation, the system will rename any existing
test.o file to test.o.bak. If compilation succeeds, you will have two files-test.o and
test.o. bak. If compilation fails, you will still retain the previous object module, but it will
be renamed to test.o.bak.

If errors occur during compilation, the compiler writes diagnostic messages in stderr and
flags the incorrect statements in the listing file. See Chapter 9 for a complete list of com­
piler error and warning messages.

Program Development 6-5

6.2.1.3 Overview of Ibin/cc Options

The Ibin/cc command is really an interface to the preprocessor (cpp), the Domain C com­
piler, and the link editor (Id). Not all standard UNIX options are available. Further­
more, some unique options are provided by the Domain C compiler. The compiler will
interpret any command line argument beginning with a dash (-) as a compiler option. If
the compiler doesn't recognize an option, it will assume that it is an option for the link
editor (I d) and will pass it along. The options it recognizes as preprocessor options are:
-C, -D, -H, -I, and -U. The link editor options are: -a, -I, -m, -0, -r, -s, -t, -u, -x,
-Z, -L, -M, and -v. See the DomainlOS Programming Environment Reference manual
for more information about Id.

The supported options are described in Table 6-1. Some of the Domain-specific options
are described in more detail in section 6.3. Note that unlike options to the Icom/cc com­
mand, these options must be entered in the correct case. Also, you can enter multiple op­
tions with a single dash (-). For example:

$ Ibin/cc -almc test.c

Table 6-1. Ibinlcc Command Options

Option Default Description

-a -a (Id option) Produces an object file for
execution. This is the default. Use -r
to retain relocation information in the
object module. If you specify both -a
and -r, the link editor will retain relo-
cation information for all data except
common symbols, which will be allo-
cated.

-B name Assigns a prefix pathname to cc and ld
for substitute compiler and linker
passes. If name is not specified, the
default is lusr/lib/o.

-c Suppresss the linking phase of the
compilation and force an object file to
be produced, even if only one program
is compiled.

-C (cpp option) Prevents the preprocessor
from stripping comments.

(Continued)

6-6 Program Development

Table 6-1. /bin/cc Command Options (Cont.)

Option Default Description

-D name[=def] (cpp option) Defines name to the
preprocessor, as if by #define. If no
definition is given, defines name as 1.
This is the same as the Aegis -def
option described in Section 6.3.10.
The - D option has lower precedence
than -U; if both are used for the
same name, the name will be unde-
fined, regardless of the order in
which the options appear.

-E Runs only the macro preprocessor on
the named C programs, and sends the
result to the standard output. This is
similar to the Aegis -es option de-
scribed in Section 6.3.11. Note, how-
ever, that -E passes the source file
through the UNIX preprocessor (cpp) ,
whereas -es processes the source file
with the Domain preprocessor that is
part of the Domain compiler.

-f Not supported.

-F Not supported.

-g Generates full run-time debugger infor-
mation. See the Aegis -dbs option de-
scribed in Section 6.3.9.

-H (cpp option) Prints out to stderr the
pathname of every file included during
this compilation. The map lists the
name of each section, its starting ad-
dress, and its size.

(Continued)

Program Development 6-7

Option

-I dir

-Ix

-Ldir

-m

6-8 Program Development

Table 6-1. /bin/cc Command Options (Cont.)

Default Description

(cpp option) Changes the search path
for #include files with names not be­
ginning with a slash (I) and enclosed in
double quotes rather than angle brack­
ets. Look first in the directory of the
source file in which the #include direc­
tive occurs; then in directories named
in this option; and finally. in directo­
ries on a standard list. Note that this
option does not affect filenames en­
closed in angle brackets. It is also
similar to the Aegis -idir option (Sec­
tion 6.3. 14). though the search rules
are somewhat different. See the de­
scription of #include in Chapter 4 for
more information.

Searches the library named Iibx.a. Li­
braries are searched in the order that
they appear on the command line.
The link editor searches for libraries in
the directories specified by the environ­
ment variables LIBDIR and LLIBDIR
(these generally resolve to /lib and
/usr/lib). You can specify additional
library directories with the -L option.

(Id option) Changes the search path
for libraries. By default. the compiler
looks for Iibx.a libraries in the directo­
ries specified by LIBDIR and LLIB­
DIR. This option allows you specify a
different directory before searching
these standard directories. This is use­
ful if you have different versions of a
library and you want to specify which
one the link editor should use. Note
that this option is only effective if it
precedes a -I option.

(Id option) Produces a map or listing
of the input/output sections on stan­
dard input.

(Continued)

Option

-M id

-0 output

-0

-p

Table 6-1. /bin/cc Command Options (Cont.)

Default

-Many

-0 a.out

Description

Generates code for a particular class of
processor. Legal values for id are:

any standard M68000 code
160 DSP160 code
460 DN460 code
660 660 code
90 DSP90 code
330 DN330 code
560 DN560 code
570 DN570 code
580 DN580 code
3000 DN3000 and DN400 code
FPX Floating-Point Accelerator

Board
PEB Performance Enhancement

Board

This is the same as the -cpu option
described in Section 6.3.8.

Names the final output file output. By
default, output is a.out. If you specify
a different name, the system leaves any
existing a.out file undisturbed. This is
similar to the Aegis -b option de­
scribed in Section 6.3.4.

Turns on compiler optimizations. This
is the same as the Aegis -opt option
described in Section 6.3.21. The de­
fault when you compile with /bin/cc is
-opt O.

Produces code that, when executed,
creates a mon.out file that can be used
by the prof utility to evaluate the pro­
gram's performance. This is the same
as the -prof option described in Sec­
tion 6.3.23. This is the same as the
-qp option available in SysV environ­
ments.

(Continued)

Program Development 6-9

Option

-p

-pg

-qg

-qp

-r

-s

6-10 Program Development

Table 6-1. /bin/cc Command Options (Cont.)

Default

-a

Description

Runs only the macro preprocessor on
the named C programs, and leaves the
result on corresponding files suffixed
with.i. This is similar to the Aegis
-esf option described in Section
6.3.11.

(BSD only) Produces code that, when
executed, creates a gmon.out file for
use by the gprof utility. This is the
same as the -qg option available in
SysV environments.

(SysV only) Produces code that, when
executed, creates a gmon.out file for
use by the gprof utility. This is the
same as the -pg option available in
BSD environments.

(SysV only) Produces code that, when
executed, creates a mon.out file that
can be used by the prof utility to
evauluate the program's performance.
This is the same as the -prof option
described in Section 6.3.23. This is
the same as the -p option available in
BSD environments.

(ld option) Retains relocation entries in
the output object module. Relocation
entries must be preserved if the object
file will be specified in a future ld or
bind command. -a is the default.

(ld option) Strips line number entries
and symbol table information from the
output object file. The option is
equivalent to using the strip utility and
is useful if you want to reduce the size
of the object module. Note, however,
that removing this information from a
program makes it impossible to debug
the program with a source level debug­
ger (dbx or dde).

(Continued)

Option

-t

-t[POI]

-T systype

-u symname

-U name

-v

Table 6-1. /bin/cc Command Options (Cont.)

Default Description

Not supported. Use the -Y option.

Finds only the preprocessor (p), com­
piler passes(O). or binder (I) in the
files whose names are constructed by a
-B option. In the absence of a -B op­
tion. the name is taken to be /usr/
lib/no The value -t is equivalent to
-tOl. The - Y option performs the
same function and is easier to use.

Defines the target system type (systype)
for the compiled object. systype may
be one of

any
bsd4.1

bsd4.2
bsd4.3
sys3
sys5
sys5.3

version independent
Berkeley version 4.1BSD
(obsolete)
Berkeley version 4.2BSD
Berkeley versions 4.3BSD
System III (obsolete)
System V
System V, Release 3

This is the same as the Aegis -systype
option described in Section 6.3.26.

Enters symname as an undefined sym­
bol in the symbol table. This option is
useful if you are using the cc command
to load a library. The symbol table is
initially empty and needs an unresolved
reference to force ld to load the first
routine.

(cpp option) Removes any initial defi­
nition of name.

(Id option) Outputs a message giving
information about the version of ld be­
ing used.

(Continued)

Program Development 6-11

Table 6-1. Ibinlcc Command Options (Cont.)

Option Default

-w

-Wc,arg1, [arg2 ...]

-x

6-12 Program Development

Description

(BSD only) Suppresses warning diag­
nostics. This is the same as the Aegis
-nwarn option described in section
6.3.30.

Hands off the arguments argi to pass c
where c is one of p, 0, or I, indicating
the preprocessor, compiler or the
binder. Using -WO enables you to use
Icom/cc options that are not available
with Ibin/cc. For instance, to specify
the -exp option, you could write:

$ /bin/cc -WO,-exp foo.c

(ld option) Does not preserve local
symbols in the output symbol table; en­
ter external and static symbols only.
This saves space in the object module,
but still enables the link editor to re­
solve global references.

Specifies a new pathname and direc­
tory for the locations of the tools and
directories designated by the first argu­
ment. You can include only one letter
or number per - Y option, but there is
no limit to the number to - Y options
per compilation. The valid letters and
numbers, and their meanings, are as
follows:

(Continued)

Table 6-1. Ibinlcc Command Options (Cont.)

Option Default Description

p Preprocessor
0 Compiler
I Link editor
S Directory containing the start-up

routine
I Default include directory searched

by the preprocessor
L First default library directory

searched by the link editor (Id)
U Second default library directory

searched by the link editor

If the location of a tool is being speci-
fied, the new pathname for the tool
will be Idir/tool. If more than one - Y
option is applied to anyone tool or di-
rectory, the last occurrence holds.

-z (Id option) Does not bind anything to
address zero. This option enables the
run-time system to detect null pointers.

6.2.2 Compiling with Icomlcc

To compile a file of C source code using the Icom/cc command, type cc from an Aegis
shell or Icom/cc from a UNIX shell. The Icom/cc command has the following format:

$ cc sourceJile [optiOn1...optionN]

For sourceJile, specify the pathname of the source file to be compiled. By convention,
C source files usually end with a . c suffix, though the suffix is not required. Filenames
may contain up to 256 characters, including the .c suffix. If the filename includes the .c
suffix, you may omit the suffix on the command line. For example, to compile C source
code stored in file test.c, you can enter either of the following commands:

$ cc ~est
$ cc Itest.c

Following the source filename, you can optionally enter one or more of the C compiler
options listed in Table 6-2, and detailed in Sections 6.2.3 to 6.2.21. Be sure to separate
each option with at least one space.

If there are no errors in the source code and the compilation proceeds normally, the C
compiler creates an object file and, optionally, a listing file. By default, the compiler

Program Development 6-13

gives the object file the . bin suffix and the listing file the .1st suffix. For example, in re­
sponse to the command

$ cc plot_data -1

the C compiler reads the file plot_data.c, and produces an object file named
plot_data. bin and a listing file named plot_data. 1st.

The Icom/cc command preprocesses and compiles a single source file (plus any included
header files), and produces a single object file. If your program contains more than one
module, you must link the object files together with the Icom/bind or Ibin/ld command.
These two commands perform similar operations-/com/bind invokes the Aegis binder;
Ibinlld invokes the UNIX link editor. You can use either one to link object modules to­
gether.

You also need to use the Icom/bind or /bin/ld commands if your program accesses rou­
tines in a user-supplied library. If your program consists of a single module that does not
access user-supplied library routines, you do not need to explicitly invoke a linker. For
more information about the bind and Id commands, see the DomainlOS Programming En­
vironment Reference manual.

6.2.3 Icomlcc Compiler Errors

The compiler does not produce an object module if there is an error in the source code or
if compilation ends prematurely for some other reason (you type a CTRLlQ, for example).
Rather, it looks in the appropriate directory for a binary object module with the same
name as the one it would have created, had it been successful. If such a file exists, the
compiler changes its name by appending the additional suffix .bak (filename.bin.bak.) For
example, suppose your working directory contains the following files:

abc. c (the source file)
abc. bin (the object file)

Now suppose you recompile abc.c:

$ cc abc

If the source file contains an error, the compiler does not create a new version of
abc.bin. Instead, the compiler changes abc. bin's name to abc.bin.bak. If the compi­
lation completes successfully, the compiler creates the new filename. bin file and deletes
any previous filename. bin. bak file.

If errors occur during compilation, the compiler writes diagnostic messages in errout and
flags the incorrect statements in the listing file. See Chapter 9 for a complete list of com­
piler error and warning messages.

6-14 Program Development

6.2.3.1 Overview of leo mice Compiler Options

Domain C supports the compiler options summarized in Table 6-2. You cannot abbreviate
option names.

The optional "n" prefix negates the effect of some options. For example, the -b compiler
option causes the compiler to produce an object file; conversely, the -nb option prevents
the compiler from producing an object file.

Option

-ac

-alnchk

-nalnchk

-b [pathname]

-nb

-bss

-nbss

Table 6-2. C Compiler Options

Default

-ac

-alnchk

-b

-nbss

Description

Produces absolute code. This
is the default. Another option
is -pic, which forces the compiler
to produce position-independent
code.

Display messages about alignment
of structures
Suppresses alignment messages.

Produces a binary output file. The
operational pathname specifies a
name for the output file. If you
omit the pathname, the compiler
appends the . bin suffix to the
source file's name. -nb inhibits
production of a binary output file.

Put uninitialized global variables
in the . bss section of the object
file. By default, all global variables
are put in separate, named sections.

(Continued)

Program Development 6-15

Table 6-2. C Compiler Options (Cont.)

Option Default Description

-comchk -ncomchk Checks to see if comment delimiters
-ncomchk are balanced and generates a warning

if they are not.

-cond -ncond Compiles lines begining with the
-ncond #debug preprocessor directive.

-cpu id -cpu any Specifies the cpu type on which the
program will run. The id argument
can be any of the following: 90, 160,
330, 460, 560, 570, 580, 660, 3000,
fpx, peb, and any. Using any causes
the compiler to produce universal ma-
chine code that can run on any of the
CPUs. (Note: This option replaces the
-peb option supported in earlier re-
leases.)

-db -db Generates minimal debugging
-ndb information. When you debug a pro-

gram compiled with this option, you
can set breakpoints but you cannot ex-
amine variables.

-dbs -db Generates full run-time debugging in-
formation and optimizes the generated
object file (implies the -opt option).

-dba -db Generates full run-time debugging in-
formation, but prevents optimization of
the generated object file (implies -opt
0).

-def name [= value]
Defines a name (works like the #de-
fine preprocessor directive). Each
compilation command supports up to
128 -define options.

-es Causes the compiler to run only as a
preprocessor. Writes the expanded
source code to stdout.

(Continued)

6-16 Program Development

Table 6-2. C Compiler Options (Cont.)

Option Default Description

-esf [pathname]

Causes the compiler to run only as a
preprocessor. Writes the expanded
output to pathname or to stdout if
pathname is omitted.

-exp -nexp Expands the code listing in the listing
-nexp file to include the generated assembly-

language code. This option implies the
-1 option.

-frnd Forces the compiler to write all float-
ing-point operands to memory so that
floating-point comparisons produce
correct results.

-idir pathname Specifies a list of directories for the
compiler to search to find #included
filenames. Each compilation command
supports up to 63 -idir options.

-indexl -nindexl Produces a 32-bit index for all array
-nindexl references.

-info level -info 0 Controls the output of informational
messages. There are four possible lev-
els: 0, 1, 2, and 3. Each higher level
causes the compiler to output addi-
tional informational messages to indi-
cate potential errors in the source file.
-info 0 suppresses informational mes-
sages.

-inlib pathname Specifies one or more libraries that are
not currently installed but should be in-
stalled when the program is executed.
These libraries are searched at com-
pile-time to determine whether indirect
or absolute references should be gener-
ated.

(continued)

Program Development 6-17

Table 6-2. C Compiler Options (Cont.)

Option Default Description

-I pathname -nl Writes a listing file to filename.lst or
-nl to pathname.lst if pathname is speci-

fied. By default, this option is off, but
is automatically turned on by the -map
and -exp options.

-map -nmap Inserts a symbol map in the listing file.
-nmap This option implies the -I option.

-natural Makes natural alignment the default
for this compilation.

-mgbl Obsolete. As of SRI0, this option is a
-nmgbl no-op.

-msgs -msgs Controls output of the warning and
-nmsgs error summary line. If -nmsgs is

specified, the final message from the
compiler is suppressed.

-opt -opt Causes the compiler to perform global
-nopt program optimizations. The -nopt op-

tion suppresses optimizations.

-pic -ac Produces position-independent object
code. The default is to produce abso-
lute code.

-prof Produces a . mon file that can be used
by the prof utility to evaluate perform-
ance of the program.

-run type systype sysS Causes the compiler to use the run-
time semantics of the specified systype
regardless of the current environment
setting. The possible systypes are:
bsd4.2, bsd4.3, sysS, sysS.3, and any.

-std -nstd Causes the compiler to issue warning
-nstd messages when nonstandard language

elements are encountered.

(Continued)

6-18 Program Development

Table 6-2. C Compiler Options (Cont.)

Option Default

-systype systype -systype sys5

-type -type
-ntype

-uline -uline

-nuline

-version

-warn -warn
-nwarn

6.3 Domain Compiler Options

Description

Causes the compiler to stamp
the obj ect module for execution
under a specific version of the
UNIX system. The possible
systypes are:
bsd4.2, bsd4.3, sys5, sys5.3,
and any.

Causes the compiler to
recognize function prototypes
and reference variables. Also
defines STDC to be 1. - -

Causes the compiler to recognize
#line preprocessor directives.
-nuline forces the compiler to
ignore #line directives.

Causes the compiler to print its
version number.

Causes the compiler to display
warning messages. The -nwarn
option suppresses warning

messages.

The following sections describe the Ibin/cc and Icom/cc options in more detail.

Program Development 6-19

6.3.1 Absolute Code in User Space: -ac (lcom/cc)

The -ac option is the default. It forces the compiler to produce absolute code, which gen­
erally executes faster than position-independent code. Unlike code produced with the
-abs option, however, code produced with -ac uses indirect referencing for all global vari­
ables that are defined in global libraries. This includes global libraries currently installed as
well as libraries specified with the -inlib option.

Refer to the Domain/OS Programming Environment Reference, and Domain Assembler Ref­
erence manuals for more information about absolute and position-independent code.

6.3.2 Longword Alignment: -align and -nalign (lcom/cc)

The -align and -nalign options are obsolete.

6.3.3 Displaying Messages about Alignment: -alnchk and -nalnchk (lcom/cc)

When you use the -alnchk option, the compiler displays messages telling you whether your
data is naturally aligned. Naturally aligned data increases efficiency at least slightly on any
workstation, but the increase in efficiency is very significant on Series 10000 workstations.

Use the -nalnchk option to suppress messages about alignment. The -alnchk option is the
default.

6.3.4 Binary Output: -bl-nb (lcom/cc)

-0 (lbinlcc)

The -b option (lcom/cc) produces a binary object module file as output. This option takes
the format:

-b ~athname]

If you specify a pathname following -b, and your program compiles without errors, a bi­
nary file is created with the specified pathname and the suffix .bin. If you omit the path­
name, the binary file is given the same name as the source file, except that .bin replaces
. c as the suffix.

Specify -nb to suppress creation of an object module. This option is useful if you are com­
piling only to check for errors in your program. -b is the default.

6-20 Program Development

The -0 option (/bin/cc) allows you to direct the resulting object file to a file other than
a.out, which is the default. This option takes the following format:

-0 pathname

Note that you must specify a pathname.

6.3.5 Global Variables in .bss Section: -bssl-nbss (lcom/cc)

By default (-nbss), the cornice compiler creates a separate, named section for each global
variable. The name of the section is the same as the name of the variable. In contrast,
the Ibin/cc compiler puts all initialized global variables in .data and all uninitialized global
variables in .bss. The -bss option causes the leo mice compiler to mimic the behavior of
the Ibin/cc compiler. This is useful if your program uses many global variables and you
don't want a named section for each one. Even if you use the -bss option, you can still
create named sections for global variables by using the #attribute[section] modifier. See
Chapter 2 for more information about this modifier.

6.3.6 Comment Checking: -comchkl-ncomchk (lcom/cc)

The -comchk option causes the compiler to check that comment pairs are balanced-that
there are no extra left comment delimiters (1*) before a right comment delimiter (*/).
When -comchk is specified, the compiler returns a warning for every additional left com­
ment delimiter. Using -comchk can help you identify a place in the program where some
code was not compiled because the compiler assumed that it was part of a comment. The
-ncomchk option inhibits this extra check. -ncomchk is the default.

For example, consider the following program fragment:

/*This comment should be closed, but I forgot to do it!
crash_flag = 10; /* MUST occur or else disaster */

If we compile with -comchk, then the preprocessor will report the following warning:

******** Line 8: Warning: Unbalanced comment; another comment start
found before end.

If we compile with -ncomchk (or simply without -comchk), then the preprocessor will not
report the warning.

NOTE: Using -comchk only identifies a problem area in the source
code; the option has absolutely no affect on the machine code
generated.

Program Development 6-21

6.3.7 Conditional Compilation: -condl-ncond (lcom/cc)

The -cond option invokes conditional compilation. When this option is on, lines marked
with the #debug preprocessor directive are treated as source code lines and are compiled.
If you compile with the -ncond option, the compiler treats the marked lines as comments.

-ncond is the default.

6.3.8 Target Node Selection: -cpu cpu (lcom/cc)

-M cpu (lbin/cc)

Use the -cpu or -M option to select the target workstations that the compiled program can
run on. If you choose an appropriate target workstation, your program might run faster;
however, if you choose an inappropriate target workstation, the run-time system will issue
an error message telling you that the program cannot execute on this workstation. The Do­
main C compiler can generate code in five possible modes:

• Code that will run on a DSP160, DN460, or DN660 workstation

• Code that will run on a workstation with the M68020 microprocessor and the
M68881 floating-point coprocessor

• Code that will run on a workstation with a Performance Enhancement Board
(PEB)

• Code that will run on any Apollo workstation

• Code that will run on a DN5xx-T with a floating-point accelerator (FPX) unit

You select the code generation mode through the argument that you specify immediately
after -cpu or -M. Table 6-3 shows the possible arguments and the code generation mode
that they select.

Note that there are many possible arguments to -cpu and -M; however, many of them are
synonyms. For example, -cpu 330 produces exactly the same code as -cpu 560.

The advantage of compiling with -cpu any is that the resulting program can run on any
Apollo workstation. This is how Apollo compiles the programs that appear in your Icom or
Ibin directories. -cpu any and -Many are the defaults.

6-22 Program Development

Table 6-3. Arguments to the -cpu and -M Options

Argument What It Does

-cpu 160
-cpu 460 Generates code for the DSP160, DN460, and

-cpu 660 DN660 workstations.

-cpu 90 Generates code for workstations with a
-cpu 330 M68020 processor and a M68881 floating-
-cpu 560 point unit (includes the DSP90, DN330,
-cpu 570 DN560, DN570, DN580, DN3000, and DN4000).
-cpu 580
-cpu 3000

Generates code for workstations with a

-cpu fpx
floating-point accelerator (FPX) unit
(includes DN5xx-T's)

Generates code for workstations with a PEB
-cpu peb (includes the DN100, DN320, DN400, and the

DN600, when equipped with an optional PEB).

-cpu any Generates code for any workstation.

The advantage of the processor-specific code generation modes is that the compiler gener­
ates code optimized for that particular processor, which makes the programs so compiled
run faster. The advantage is seen mostly in programs that make heavy use of floating­
point. Programs that make heavy use of 32-bit integer multiply and divide might also show
significant improvement.

NOTE: There is one caveat concerning programs compiled with the
-cpu fpx option. The address of an instruction for a floating­
point fault is not stored in the Instruction Address register
(lAD DR) as it is for programs compiled with the -cpu 330
and -cpu 3000 options. Consequently, fault handlers should
not rely on this address when code is compiled with -cpu fpx.
This warning applies only to assembly language fault handlers.

6.3.9 Debugger Output: -dbl-ndbl-dbsl-dba (lcom/cc)
-g (lbin/cc)

The -db, -dba, -dbs, and -g options generate output for later use by dde and dbx, the
language-level debuggers. These debuggers allow you to search for program errors using the
program's variables, parameters, statement labels, and other program-defined symbols. The
output generated by the four compiler options allows the debuggers a particular level of
access to the program. The -ndb option specifies no debugger access. Table 6-4 summa-

Program Development 6-23

rizes the access granted to the debuggers by each option. For an overview of the debug­
gers. see Section 6.8.

Table 6-4. DEBUG Compilation Options

Compiler Option Debugger Access

-ndb None.

-db Source line numbers (except lines optimized out) and functions.

-dbs (or -g) Same access as -db with the addition of local and global variables.

-dba Same access -dbs but without any code optimization.

If you use the -db option. the compiler puts minimal debugger preparation information
into the .bin file. This preparation is enough to enter the debugger and set breakpoints.
but not enough to access symbols. such as variables and constants.

If you use the -dbs option. the compiler puts full debugger preparation information into
the .bin file. This preparation allows you to set breakpoints and access symbols. When
you use the -dbs option. the compiler sets the optimization level to 3. (You can override
this by specifying a different optimization level with the -opt option.)

The -g option to Ibin/cc is the same as -dbs.

The -dba option is identical to the -dbs option except that when you use the -dba op­
tion. the compiler sets the -nopt option (even if you specify -opt).

For more complete details on these four options. see the Domain Distributed Debugging
Environment Reference manual.

6.3.10 Name Definition: -def name [= value] (lcom/cc)

-Dname[=value] (lbin/cc)

The -def option lets you define a name and. optionally. its value at compilation time. It
takes the format:

-def name [= value]

This option has the same effect as the #define preprocessor directive. You may use as
many as 128 -def options in a compile command line. If you do not use the optional
=value component. the default value of the name is 1. For example. consider the follow­
ing simple program stored in file test.c:

6-24 Program Development

Hinclude <stdio.h>
int x = 0;

int main(void
{

Hif envl
x 500;

HeIse
Hif env2

x = 1000;
Hendif

Hendif

printf ("x %d\n", x);
}

Tables 6-5 and 6-6 shows the varying effects of three different compilation command
lines:

Table 6-5. The Effect of -def

Compilation Command Result

$ cc test x=O

$ cc test -def envl x = 500

$ cc test -def env2 x = 1000

Table 6-6. The Effect of-D

Compilation Command Result

$ cc test.c x=O

$ cc -Denvl test.c x = 500

$ cc - Denv2 test. c x = 1000

If there are spaces in the value, be sure to surround the entire definition with quotes. For
example,

$ Icomlcc -deC "rev_string=@"Revision 1.23 I-JAN-85@""

or

Program Development 6-25

$ Ibin/cc '-Drev_string="Revision 1.23 I-Jan-85'"

is the same as

#define rev_string "Revision 1.23 I-Jan-85"

Note that in an Aegis shell, any embedded quotation marks must be preceded with u@".

The -D option behaves just like the -def option. Note, however, that unless you enclose
the entire option in single quotes, you cannot put a space between the defined name and
the equal sign or between the equal sign and the value.

6.3.11 Preprocessor Options: -esl-esf (lcom/cc)
-EI-P (lbin/cc)

Compilation actually consists of two phases-preprocessing and processing. During
preprocessing, the preprocessor obeys all the preprocessor directives (such as #define, #if,
#include) in your source code. It is not until processing that the compiler actually gener­
ates executable code. By default, when you issue the cc command, you invoke both the
preprocessor and the processor. However, by using the -es or -esf options (-E or - P op­
tion with Ibin/cc) , you invoke only the preprocessor. The output (known as the expanded
source) from the preprocessor can be studied and run through the processor if desired.

The two Icom/cc options produce the exact same expanded source file; the only difference
is in the pathname of the expanded source file. The options take the following format:

-es

-esf [pathname]

The -es option directs the expanded source to standard output.

The -esf option takes an optional pathname as an argument. If you omit a pathname, the
expanded source file gets the same name as the source file, but the .c suffix is replaced by
the suffix . i. If you specify a pathname, the compiler uses that name and automatically
appends the .i suffix, unless it is already present.

NOTE: You cannot use -es or -esf in a command line that also con­
tains -I, -b, or -expo

The Ibin/cc -E option behaves exactly like the -es option; the -P option functions exactly
like the -esf option without a pathname argument.

6-26 Program Development

6.3.12 Expanded Code Listing: -exp!-nexp (lcom/cc)

-8 (lbin/cc)

If you use the -exp or -S option. the compiler produces an expanded listing file that con­
tains a representation of the generated assembly-language code. interleaved with the source
code. The listing also shows all macro expansions.

Note that using -exp causes the compiler to produce a listing file even if you did not use
the -1 option. However. if -01 appears on the command line after -expo then the ex­
panded code listing will be suppressed.

-oexp is the default.

6.3.13 Floating-Point Accuracy: -frnd (lcom/cc only)

The -frod option forces the compiler to write all floating-point operands to memory and
then fetch the memory contents before evaluating the expression. This ensures that each
operand will have the same amount of precision so that floating-point comparisons will
produce correct results. If you do not compile with -frod. floating-point operands may be
kept in registers. which support more accuracy than memory. Consequently. when a regis­
ter operand is compared with a memory operand. the result may not be what is expected.
This is particularly true of equality comparisons. Consider the following C program:

double fetch(void)
{

return 1.1;
}

int main(void
{

}

double x;

x = fetchO;

if (x - 0.1 == 1.0)
printf(" Pass\n");

else
printf(" Fail\n");

If you compile with -cpu 3000. and without -frod. this program fails because the values
0.1 and 1.1 cannot be represented exactly in base 2 floating-point. Thus. the quantity (x
- 0.1) can only be approximated. This value is calculated in an 80-bit register. and then
a compare is generated to see if this value is exactly equal to 1.0. which is stored in mem­
ory. Since the register has more accuracy than memory. the comparison fails.

If you compile with -frod. the 80-bit register is stored (and rounded) in a single-precision
32-bit temporary memory location. Now when it is compared with 1.0. which is also
stored in memory. the comparison passes.

Program Development 6-27

6.3.14 Include Directories: -idir (/com/cc)

The -idir option tells the compiler to look for include files in the directories specified by
the pathname. (Include files are detailed in the "#include" listing of Chapter 4.)

This option allows you to postpone until compilation naming the directories for include
files. Suppose, for example, that different versions of an include file have the same name
but reside in different directories. You might enter the filename in an #include command
in your code, and then select the appropriate directory with -idir. You may use as many
as 63 -idir options in each compilation command.

When you enclose the include filename in quotes in the #include control line, the com­
piler first searches the working directory, then the directories specified by -idir (if any),
and finally, the directory lusr/include. When you enclose the include filename in angle
brackets « », the compiler searches the -idir directories first, and then lusr/include.

Suppose that your source file contains these #include statements:

#include "local_include_file"
#include <global_include_file>

You then compile the program with the following options while in the same directory as the
local include file:

cc test -idir Ipersonal -idir \impersonal

The C compiler resolves the include files by searching for filenames in the following order:

2. Ipersonai/local_include_file

3. \impersonal/locaUnclude _ file

4. lusr/include/locaUnclude_file

1. Ipersonal/global_include_file

2. \impersonal/ globaUnclude _ file

3. lusr/includel global_include _ file

Note that the -idir directories are searched in the order in which they appear in the com­
pilation command.

6-28 Program Development

6.3.15 Array Reference Index: -indexll-nindexl (leorn/ee)

The -indexl option disables some optimizations and forces the compiler to use 32-bit in­
dexing in subscript calculations for all array references. -nindexl, the default, causes tqe
compiler to use the source code's array dimension information to determine whether to u.se
16-bit or 32-bit indexing.

6.3.16 Informational Messages: -info I -ninfo (leorn/ee)

The Domain C compiler produces three types of messages:

informational

warning

error

Identifies aspects of the source file that will compile correctly, but
could be rewritten to be more efficient or more portable.

Identifies aspects of the source file that may be correct, but are sus­
pect. The compiler makes a "best guess" as to what the source means
and produces an object file.

Identifies syntactical or semantic errors that prevent the compiler from
producing an object file.

By default, the compiler outputs warning and error messages but not informational mes­
sages. (You can suppress warning messages with the -nwarn option.)

The -info option causes the compiler to output informational messages. However informa­
tional messages are divided into four levels, where each higher level represents additional
messages. The four levels are as follows:

o

1

2

3

4

No messages (this is the default).

Messages about old-style function definitions and allusions and mes­
sages indicating that members of a structure are not naturally aligned.

Messages indicating that the program could be written more efficiently
(for example, a variable is declared but never used).

Reserved for future use.

Reserved for future use.

Note that each level includes the messages in all lower levels. For instance, if you specify
-info 3, you will receive level 1, 2, and 3 messages, but not level 4 messages.

Program Development 6-29

6.3.17 Installed Libraries: -inlib (lcom/cc)

The -inlib option allows you to specify additional libraries that are not currently installed,
but will be installed when you execute the program. The compiler needs this information to
determine whether to use indirect or long absolute addressing modes. If you are producing
absolute code (the default), you must use this option to specify any library that is not cur­
rently installed, but should be installed when the program is executed. If you use the -pic
option to produce position-independent code, you do not need to specify libraries that are
not yet installed. See the Domain/OS Programming Environment Reference and the Do­
main Assembler Reference manuals for more information about absolute and position-inde­
pendent code.

The -inlib option has a format similar to the -idir option. Instead of specifying the path­
names of directories, however, you specify the pathnames of files that you want to inlib.
The following command line, for example, tells the compiler that the object files -libs/
my_lib and //nodellibs/master_lib will be installed when examp.bin is loaded:

$ cc examp -ac -inlib -libs/my_lib //node/libs/master_lib

If you specify a library with the -inlib option, the compiler writes a library record into
the object file so that the loader automatically inlibs the library when it loads the object
file. If the library is not available at load time, an error occurs.

6.3.18 Listing File: -ll-nl (lcom/cc)

The -I option causes the compiler to produce a listing file. The listing file contains the
following information:

• The source code complete with line numbers. Note that line numbers start at 1
and increment by 1 (even if there is no code at a particular line in the source
code). In addition, note that the listing file separately numbers lines from include
files.

• Compilation statistics.

• An object module section summary.

• A list of the compiler options affecting code generation.

• Errors and warnings generated during the compilation.

• A count of the error and warning messages produced by compilation.

The format for the -I option is

-I [pathname]

6-30 Program Development

If you specify a pathname following -I, the listing file is created with the specified path­
name and the suffix .Ist. If you omit pathname, the listing file is given the same name as
the source file, except that .Ist replaces .c as the suffix.

The -nl option is the default, but note that -map and -exp contain an implicit -I.

6.3.19 Symbol Map: -mapl-nmap (lcom/cc)

If you use the -map option, Domain C creates a map file. A map file contains everything
in the listing file (produced by using -1) plus a special symbolic map. The special symbolic
map consists of two sections.

The first section describes all the routines in the compiled file; for example, here is a sam­
ple first page:

001 TEST_C module(Psect = procedure$,Dsect = data$)

002 q function(Proc = OOOOOO,Ecb = 000040,Stack Size 16,
Psect = my-proc,Dsect = data$)

003 main function(Proc = OOOOOO,Ecb = 00002C,Stack Size 4,
Psect = procedure$,Dsect = data$)

004 <apollo_c_startup> program(Proc
Stack Size = O,Psect

00004C,Ecb = 000018,
procedure$,Dsect = data$)

Let us consider this information on a line-by-line basis.

The first line

001 TEST_C module(Psect = procedure$,Dsect = data$)

tells us the name of the module (TEST_C) and the names of the head-of-file procedure
and data sections.

The second and third lines

002 q function(Proc = OOOOOO,Ecb = 000040,Stack Size 16,
Psect = my-proc,Dsect = data$)

003 main function(Proc = OOOOOO,Ecb = 00002C,Stack Size 4,
Psect = procedure$,Dsect = data$)

tell us the names (q and main) of the two user-supplied functions in the source code.
The map supplies five pieces of information for each function. The first piece of informa­
tion is the starting address of the function measured in bytes from the beginning of the
procedure section. The section piece of information is the offset in bytes of the ECB (En­
try Control Block). The third piece of information is the stack size measured in bytes.
The fourth and fifth pieces are the names of the procedure and data sections that the
function is stored in.

Program Development 6-31

The fourth line

004 <apollo_c_startup> program(Proc = 00004C,Ecb = 000018,
Stack Size = O,Psect = procedure$,Dsect = data$)

tells us the same information as the second and third lines, but for a special startup func­
tion provided by the compiler.

The second section of the special symbolic map contains an alphabetic listing of all the
variables used in the source code. For example, here is a sample second page:

002 arg1 var(+000014/S): long int
002 c var(-000006/S): char
001 g var(+OOOOOO/g): float
003 j4 var(-000008/S): long int
002 m var(-000004/S): long int
001 student var(+OOOOOO/student): array[0 .. 9) of char
001 x var(extern) : long int
001 y var(+OOOOOO/y): long int

The preceding data tells us that the program referred to eight variables. Let us consider
the second variable

002 c

in greater detail:

002

c

(-000006/S)

char

var(-000006/S): char

The number to the far left tells us where within the program that the
variable was declared. Top-level declarations get the number 001. A
number higher than 001 indicates a variable declared in a function.
For example, 002 means that this variable was declared in the first
function of the file, 003 identifies a variable declared in the second
function of the file, and so on.

The name of the variable.

This number and identifer tells us where the variable is actually stored
at run time. If the identifier is "S", it means that the variable is
stored on the stack. Otherwise, the identifier tells you the name of
the section in which the variable is stored. The numerical part of the
data is the offset (in bytes) from the beginning of the stack or the sec­
tion.

This tells us the data type of the stored variable.

Note that variable x does not have an offset or section name since it is a declaration, but
not a definition.

The -nmap option suppresses creation of the special symbol map. -nmap is the default.

6-32 Program Development

6.3.20 Error and Warning Summary: -msgsl-nmsgs (lcom/cc)

The -msgs and -nmsgs options control the output of a summary message from the com­
piler. If -nmsgs is given, the final message from the compiler (shown below) is sup­
pressed:

XX errors, YY warnings, C Compiler, Rev n.nn

The default is -msgs.

6.3.21 Optimization Levels: -opt [n] (/com/cc)

-0 [n] (lbin/cc)

For Icom/cc, the -opt 3 option is the default. For Ibinlcc, the default is no optimization.

The -opt option allows you to specify the kinds of optimization performed on your source
program, by means of an "optimization level." The syntax for the -opt option is:

where n is an integer between 0 and 4 that represents the optimization level. At -opt 0,
very few optimizations are performed. For each higher optimization level, more optimiza­
tions are performed. If you specify -opt and omit the optimization level, the level defaults
to -opt 3. If you omit the -opt option completely, the default option, -opt 3, is assumed.

The obsolete option -nopt is equivalent to -opt O. Each higher level of optimization in­
cludes all optimizations performed at the lower levels of optimization. Because the com­
piler does more work at each higher level of optimization, it may take longer to compile
your program at higher optimization levels.

It is important to note that the· -dba option overrides anything you specify for the -opt
option. If you want your code to be optimized, and want to use the debugger on your
program, you should use the -dbs option rather than -dba. When you specify -dba, the
-opt option is set to -opt 0, regardless of what you specified for -opt on the command
line for the compilation. In addition, -dba represents an even lower level of optimization
than -opt O.

Program Development 6-33

NOTE: If you wish to use the Debugger (described in the Section 6.8)
to debug a program compiled at -opt 3 or -opt 4, you may
find that you get inaccurate values for some local variables at
points in the source code where those variables are not ac­
tively in use. This happens because the value of the variable is
assigned to a machine register, rather than being kept in the
computer's main memory. The optimizer may decide that the
main memory location for this variable does not need to be
updated, because all uses of the variable in the source pro­
gram can legally use the value of the variable that is retained
in the machine register. In addition, the optimizer may inerge
some source statements together, or eliminate source state­
ments entirely, when legal to do so. When you are debugging
with these optimizations, you may see what appear to be
strange jumps in the control flow of the program. In addition,
you may be unable to set a breakpoint at a particular source
line because the generated code for that source line has been
optimized away or merg~d with the code from another source
line. It can be slightly more difficult to use the debugger with
optimized code, but there is no reason to avoid using dde or
dbx with the optimization levels discussed here. See the Do­
main Distributed Debugging Environment Reference manual
for more details concerning the use of the debugger.

The following is a brief description of the optimizations performed at each optimization
level. For a detailed discussion of compiler optimization techniques, consult a general
compiler textbook.

-dba Represents the lowest possible optimization level. It forces the -opt option to
be -opt 0, and additionally suppresses some optimizations that are normally
performed at -opt O. In particular, the -dba option forces the compiler to
store machine registers in main memory after every statement. Even with the
-dba option, however, some optimizations are still performed. For example,
the compiler may:

• Rearrange expressions to minimize the number of registers needed to
compute the expression.

• Generate faster short range branch instructions in place of long
branches where possible.

• Compute constant expressions that appear in the source code, such as
2 • 3, rather than generating code to compute them.

• Compute multiple occurrences of the same expression only once.

6-34 Program Development

-opt 0

-opt 2

Another example of simple constant folding performed at this level is shown
by the following example:

unsigned char small_range;

if (small_range < 0)

In this example, small_range can never be less than zero because of its type.
The compiler will therefore substitute the value FALSE for the expression
"small_range < 0". The expression

if FALSE

means that the statements following if cannot be executed, so the compiler
will not generate code for them.

Performs the optimizations described above. If -dba is not also set, the com­
piler will permit values to remain in registers across statements where it is legal
to do so. Additionally, a sequence of generated code that is identical to an­
other sequence may have all its instructions replaced by a branch to the other
identical sequence of instructions.

-opt 1 performs the following optimizations:

• Eliminates limited global "common subexpression."

• Eliminates "dead code."

• Transforms integer multiplication by a constant into shift and add in­
structions rather than using direct multiply, where appropriate.

• Performs simple transformations for speed.

• Merges assignment statements where possible.

A common subexpression is an expression that appears two or more times in
the program, with no intervening assignments to any component of the expres­
sion. In such cases, the expression need only be computed once, and the
other occurrences of the expression can be replaced with the resulting value.
Dead code is code that cannot be executed because there is no execution
path of the program that leads to the code.

Performs the following optimizations:

• Substitutes constants for "reaching" definitions.

• Folds global constants.

Assigning to a variable, or using the variable as parameter in a function call,
produces a definition of the variable. A particular definition of a variable is

Program Development 6-35
\

-opt 3

said to "reach" later uses of the variable if there are no other definitions be­
tween the original definition and the use of the variable. If the definition is an
assignment of a constant to the variable, uses of the variable that are
"reached" by the definition can be replaced with the constant value. As con­
stants are substituted for variable uses, the expressions in which the variable
uses occurred are sometimes transformed into constant expressions that can be
evaluated during compilation. This eliminates the need to generate code to
compute the value of the expression. For example, in the statements

a = 3;
c = 2 * a;

there are no other definitions of the variable a between the original assignment
and the use of a in the expression 2*a. So the compiler can substitute the
value 3 in the expression 2*a. The expression then becomes 2*3, which is
computed during compilation. As a result, the program does not perform a
multiply when it executes. Instead, it merely assigns the already computed
value 6 to c.

This is the default optimization level. At this level, the compiler performs the
following optimizations:

• Live analysis on local variables.

• Redundant assignment statement elimination.

• Global register allocation.

• Instruction reordering.

• Removal of invariant expressions from loops.

• Exhaustive searches through each routine for global common sub­
expressions to eliminate.

The -opt 1 and -opt 2 levels make only limited searches through the code for
global common subexpressions.

Performing live analysis of local variables involves determining the areas of a
routine where a variable is actively used. For example,

j k;
if (i 0)
{

}

i = 2;
j=3*j;
printf("%d\n" , j);

else
{

}

k = i * 4;
printf("%d", k);

6-36 Program Development

In the else clause of the example, there are no uses of j. If there are no fur­
ther uses of the variable j on any execution path from the else clause to the
end of the program, j is not actively used in the else clause and on execution
paths from the else to other parts of the routine. j is therefore considered
"dead" from the statement following the else to the end of the routine.
Within the if clause, there is a use of j. Therefore, j is actively used within
the if clause, and is considered "live" within the if clause. If there are other

uses of j that can be reached from the if clause, j is considered "live" along
the paths that lead to those uses. Live analysis is important because it allows
the compiler to allocate local variables to machine registers for exactly as long
as the variable's value is needed. When the variable becomes "dead," the reg­
ister can be used for other variables or expression values. In general, the CPU
can reference a value in a register faster than a value in the computer's main
memory. Efficient use of registers increases the execution speed of your pro­
gram.

Redundant assignment elimination performed at this optimization level may
result in warning messages such as the following:

******** Line 14: [Warning 279] Value assigned to
SMALL RANGE is never used; assignment is eliminated by op­
timizer.

Consider the following example:

main()
{

}

int i, j;
fscanf ("%d%d", &i, &j);
if (i == 0)

j = 3;
printf("%d", i);

There are no uses of the variable j after the assignment j=3. Since the value
assigned to j is not used. the compiler can eliminate the assignment completely
without changing the result computed in the program. In fact, once the assign­
ment is eliminated, the if portion of the statement isn't needed either, and
can be eliminated. If we change the example so that j is used after the assign­
ment,

main ()
{

}

int i. j;
fscanf ("%d%d". &i. &j);
if (i==O)

j = 3;
printf ("%d\ t%d". i. j);

the assignment is no longer eliminated.

Global register allocation allows variables that are local to a routine to have
their values placed in machine registers for faster access. In many cases, all

Program Development 6-37

-opt 4

definitions and uses of a local variable may occur in a register, and the copy
of the variable in the computer's main memory is never used or updated.
Keeping variables in registers makes your program execute faster. The global
register allocator treats the register variable declaration as advice, not as a di­
rective. Variables declared as register receive special consideration for alloca­
tion to registers. However, if a variable is declared as register, but is not used,
it will not be allocated to a register.

Instruction reordering changes the order in which some instructions are exe­
cuted to take advantage of overlaps that are possible in some instruction se­
quences. Some integer instructions can execute at the same time as some
floating-point instructions, as long as the integer instructions do not depend
upon the result computed by the floating-point instruction.

A loop invariant expression is an expression whose value does not change
during the execution of a loop. When invariant expressions are computed out­
side a loop, they are only computed once, instead of needlessly being com­
puted on each pass through the loop. This makes the loop execute faster,
and generally increases program execution speed. For example:

for (i=l; i <= 10; i++)
{

}

j k * m;
j i + j;

The expression k * m is invariant in the above example. The compiler can
safely transform this loop as follows:

temp = k * m;
for (i=l; i <= 10; i++)
{

}

j temp;
j i + j;

After the invariant expression is removed from the loop, the example does
only one multiply instead of 10 to make the assignment to j.

This is identical to -opt 3 in the present compiler. Future releases may use
this level to perform additional optimizations.

6-38 Program Development

6.3.22 Position-Independent Code: -pic (lcom/cc)

By default, Domain compilers produce absolute or fixed position code. Absolute code
programs are loaded at a fixed (determined prior to load time) address. By default, abso­
lute code program,s are loaded at the low end of user virtual memory (hexadecimal address
8000). If the loader cannot load your program at the pre-determined address (because
there is already a resident program), it reports an error.

The -pic option enables you to produce position-independent code (pic). Pic code can
be loaded and run anywhere in virtual address space without relocating (modifying at load­
time) the procedure text. The procedure text is mapped at load time, which is a much
faster operation than copying and relocating.

In general, absolute code runs faster than position-independent code so you will not use
the -pic option often. However, there are a few instances where you must use the -pic
option. In particular, you should produce pic code for all routines that are to be entered
into an installed library. In addition, you should produce pic code for the following:

.. Programs that invoke other absolute code programs in-process with the pgm_$in­
yoke system call in pgm_$wait mode.

fD Programs that are dynamically loaded, such as lOS type managers, GPIO drivers,
and shared libraries.

Refer to the DomainlOS Programming Environment Reference and Domain Assembler Ref­
erence manuals for more information about absolute and position-independent code.

6.3.23 Profiling: -prof (lcom/cc)
-p (lbin/cc)

The -prof and -p options force the compiler to produce code that, when executed, pro­
duces a .mon file that can later be used by the prof utility to identify bottlenecks in the
program. For example, if you compile a program called test.c with the command,

$ Icom/cc test -prof

the compiler will produce a file called test. mon in the working directory. To get perform­
ance statistics, execute the command:

$ prof test. bin

will display the number of calls to each function and the amount of time spent in each
function. If you don't specify the program name on the prof command line, prof assumes
a.out. For example:

$ Ibin/cc -p test.c
$ prof

Program Development 6-39

For more information about the prof utility, see the SysV Command Reference manual.
Note that you can also use the dpak utility to obtain more detailed statistics about program
performance. For details about dpak, refer to Analyzing Program Performance with
DPAK.

6.3.24 Nonportable References: -stdl-nstd (/com/cc)

The -std option causes the compiler to issue warning messages for nonportable language
elements (that is, extensions to the K&R standard). If portability is an issue, pay attention
to the warnings; otherwise, ignore them.

The -nstd option suppresses reporting of nonstandard elements. -nstd is the default.

6.3.25 Run-Time UNIX Version Selection: -runtype systype (lcom/cc)

When you execute a C program, the run-time environment uses the semantics of the sys­
type stamped on the object module. By default, this is sys5, but you can change it with
the #systype preprocessor directive or the -systype compile option. Use the -runtype
option to override the systype that is stamped on the object module. That is, you can use
-run type when you compile with one systype setting but want to execute the program with
a different systype setting. Suppose, for example, that you want to use the C shell in a
SysV environment. Because the C shell is a BSD program, you need to compile it in a
BSD environment. When you actually run the program, however, you want all filenames
to resolve to the SysV tree. To accomplish this, you need to compile with -systype
BSD4.3 and -runtype SysV.3. Note that the -runtype setting only affects the run-time
semantics for library calls-it does not affect the resolution of #include pathnames. See
the discussion of -systype for more information.

6.3.26 UNIX Version Selection: -systype systype (lcom/cc)

-T systype (lbin/cc)

Because C programs are often written to run in UNIX environments, and because not all
UNIX environments are the same, Domain C supports the #systype preprocessor directive
and the -systype compilation option, which allow you to define the version of the UNIX
system for which your program is targeted.

The Domain C library contains two sets of routines. One is compatible with Bell Labs ver­
sions of the UNIX system (System V, Releases 2 and 3) and the other set is compatible
with Berkeley's versions of the UNIX system (4.2BSD, and 4.3BSD). All of the routines
in both sets work properly in any Domain environment. However, you may encounter
problems if you attempt to mix functions from the two sets that interact with each other.
In general, it is best to choose one set and stick with it whenever possible.

I
The two sets of functions overlap to a large extent. It is sometimes the case, however, that
while function x exists in both sets, the semantics of the function (and in some cases its
arguments) may be subtly different. As an illustration, consider the function setgrpO. In
the Bell Labs version, the function definition is:

6-40 Program Development

int setpgrp ()

It is defined to "set the process group ID of the calling process to the process ID of the
calling process and return the new process group ID." In the Berkeley versions of UNIX
systems, there is an identically named function with similar semantics but a different calling
sequence. The Berkeley function,

setpgrp(pid, pgrp)
int pid, pgrp;

"sets the process group of the specified pgrp. Zero is returned if successful; -1 is returned
and errno is set on failure."

To avoid unexpected behavior, always know which set of functions you are accessing. The
system chooses one set of functions over another based on a version selector called the
systype. The systype can affect both the compilation and the execution of a program. At
compilation time, it determines which include files the compiler uses. At run time, it deter­
mines which set of functions are called and makes sure that the proper calling conventions
are employed. However, it is possible to compile with one systype and execute the pro­
gram with a different systype by using the -runtype option.

To affect the execution of a program, the compiler stamps the object code with the sys­
type that was in effect when the module was compiled. This is either the systype specified
by the -systype option, the #systype directive, or the -runtype option. Note that the
-runtype option overrides all other systype specifications for determining how the object
module is stamped. When the program is executed, the loader checks this stamp and uses
the semantics and calling sequences of the designated systype when invoking library func­
tions.

There are several ways to define the systype, one of which is to place a #systype directive
in the source file. You may define the systype only once per source file. Any subsequent
definitions produce an error. Moreover, the #systype directive must be the first non-com­
ment token in the source file.

You also can define the target operating system with the -systype compile option. The
format of -systype is as follows:

-systype systype

where systype can be any of the following:

• bsd4.1 Berkeley 4.1BSD (obsolete)

• bsd4.2 Berkeley 4.2BSD

• bsd4.3 Berkeley 4.3BSD

• sys3 Bell System III (obsolete)

• sysS System V Release 2

• sysS.3 System V Release 3

• any program is independent of a particular UNIX system

If you specify one systype on the command line and a different one in the file, the com­
piler reports an error. If you do not explicitly specify a systype, the compiler inherits the

Program Development 6-41

systype from an environment variable called COMPILESYSTYPE. By default, this variable
is set to sysS. If, for some reason, the COMPILESYSTYPE variable does not exist, the
systype is inherited from another environment variable called SYSTYPE. This variable is
always set. These environment variables are described in more detail in the Using Your
BSD Environment and Using Your SysV Environment manuals.

6.3.27 Function Prototypes: -typel-ntype (lcom/cc)

By default (-type), Domain C expects function prototypes for all functions. If the com­
piler encounters an old-style function declaration or a function invocation prior to a proto­
type, it will issue an informational message (assuming -info is set to level 1 or above). If
you 'ar.e compiling older source files that do not contain prototypes, you should use the
-ntype1 option, which suppresses these messages.

The -type option also turns on the reference variable feature. If you compile a file with
-ntype, the compiler will issue errors when it encounters declarations of reference vari­
ables.

Finally, -type sets the predefined macro _STDC_ to 1. If -ntype is specified, this mac­
ro expands to zero.

6.3.28 Line Numbers: -ulinel-nuline (lcom/cc)

Use -uline and -nuline to enable or disable any #line preprocessor directives in your pro­
gram.

The #line and #line_number preprocessor directives establish nondefault line numbers. If
you specify -uline, the compiler honors these preprocessor directives. However, if you
specify -nuline, the compiler ignores these preprocessor directives, and therefore, numbers
statements according to its normal scheme.

For details on #line, see the "#line" listing of Chapter 4.

-uline is the default.

6.3.29 Version Number: -version (lcom/cc)

The -version option causes the compiler to print the current version number of the com­
piler. Use this number when reporting APRs (Apollo Product Reports) to Customer Serv­
ice. If you specify -version, you should not specify any other options, nor should you
specify a source file. For example:

$ cc -version
cc (C compiler), revision 4.89

6-42 Program Development

6.3.30 Warning Messages: -warnl-nwarn (/corn/cc)
-w (lbin/cc)

If you specify -warn, the compiler issues any warning messages generated by compilation.
If you specify -nwarn, the compiler suppresses these warning messages. Note that -warn
and -nwarn do not affect the warning summary; the warning summary is controlled by the
-msgs and -nmsgs options described earlier in this section.

The default is -warn.

6.4 Linking in a Domain Environment

There are two commands that enable you to link object modules to form an executable
image. The Ibin/ld utility is the standard UNIX link editor with some Domain enhance­
ments. The bind command is the traditional Aegis binder. You can use either command
regardless of whether the modules were compiled with Ibin/cc or Icom/cc.

6.4.1 The Ibinlld Utility

Use the UNIX link editor, Ibin/ld, to combine several object modules into one executable
program. You can invoke the link editor with the Id command or with the Ibin/cc com­
mand. In fact, the link editor is automatically invoked by a Ibin/cc command if the com­
mand line contains .0 files or a source file containing the main 0 function. The input ob­
ject modules can come from the following sources:

• Libraries created by ar (the UNIX archiver)

• Object modules created by the Domain C, Domain Pascal, or Domain FORTRAN
compilers, or the Domain assembler.

• Object modules previously created by Id.

• Object modules created by bind (the Aegis binder).

One of the primary purposes of ld is to resolve external references. If there are any unre­
solved external references, Id will report them. The UNIX utility nm can also be used to
perform a check of resolved and unresolved global symbols.

When the link editor is called by Ibin/cc, a startup routine named Ilib/crtO.o is linked
with the program. This routine invokes mainO. Assuming mainO returns normally,
crtO.o finishes by invoking exit(2).

Note that Id's output can either be executed (assuming that there is a start address) or
used as input for a further Id run. For syntax details on Id and its options, see the BSD
Command Reference manual and the SysV Command Reference manual.

Program Development 6-43

6.4.2 The bind Command

The format for the bind command is as follows:

$ bind pthnml [... pthnmN] [optionl [... optionN]]

A pthnm must be the pathname of an object file (created by a compiler) or a library file
(created by the librarian). Your bind command line must contain at least one pthnm.

The available options are described in the Domain/OS Programming Environment Refer­
ence manual. For example, suppose you write a program consisting of the source files
named test_main.c, mod1.c, and mod2.c. To compile the source files using /com/cc, you
issue the following three commands:

cc test_main
cc modl
cc mod2

The /com/cc command creates three object files named test_main. bin, mod1.bin, and
mod2. bin. To create an executable file named complete_program with the com/bind
utility, enter the following command:

bind test._main.bin mod1.bin mod2.bin -b complete_program

6.5 Archiving in a Domain Environment

Use the UNIX archiver, ar, to create and update library files. Once created, a library file
can be used as input to the link editor, /bin/ld. As with most linkers, /bin/ld will option­
ally bind only those modules in a library file that resolve an outstanding external reference.
For syntax details on ar and its options, see the BSD Command Reference manual and the
SysV Command Reference manual.

6.6 System Libraries

There are a number of libraries that come automatically with your operating system. One
of these libraries-known as the standard C library-is available regardless of whether you
run in an Aegis or UNIX environment. The standard library enables you to perform buff­
ered 110, memory management, double-precision math, and other functions.

Though it is known as the "standard" library, there is no real standard for it. The ANSI
C Subcommittee has proposed a standard for the C library, which is expected to be ap­
proved by the full ANSI Committee in 1988. In the meantime, the de facto standard is
the UNIX library, which also agrees with the subset of library functions described by K&R.
Domain/OS systems support the UNIX version of the standard library.

6-44 Program Development

In addition to the standard library, Domain/OS also supports lower-level libraries that en­
able you to perform systems-type operations, such as creating and deleting directories,
changing protection codes, and creating new processes. For more information about these
library routines, see the BSD Programmer's Reference manual, the SysV Programmer's Ref­
erence manual, and the Aegis Programmer's Reference manual. In addition, there are sev­
eral libraries for performing graphics operations, 110 through streams, and for manipulating
windows. For a complete list of manuals that describe these libraries, see the Technical
Publications Master Index.

6.6.1 The Standard C Library

Although the standard C library exists in a single object file (/lib/clib), it is really a con­
glomeration of many special-purpose libraries. Each sub-library contains routines that cov­
ver a particular area of functionality, such as 110 or memory management. Each sub­
library has an associated header file. The header file contains the declarations for any re­
lated functions, macros, or data types needed to execute a set of library functions. Table
6-7 lists the standard header files. All header files for the standard library reside in /usrl
include and can be included in your source file by surrounding the filename with angle
brackets. For example,

#include "jusrjincludejstdio.h"

and

#include <stdio.h>

are equivalent in a Domain/OS environment. The second method is preferred because it is
more portable. In some cases, the header file is not required but we recommend that you
include them anyway. Because they contain prototypes, they enable the compiler to per­
form type checking of arguments, and they also inhibit unnecessary argument type conver­
sions.

Both the loader and the linkers (ld and bind) automatically search through clib for unre­
solved references. It is not necessary, therefore, to explicitly link routines from the stan­
dard library.

Program Development 6-45

Table 6-7. Header Files

Header File Functions

assert.h Diagnostic functions.

ctype.h Character testing and mapping functions.

curses.h The curses screen control utility.

errno.h The errno global variable.

malloc.h Memory management functions.

math.h Double-precision math functions.

setjmp.h The setjmpO and longjmpO functions, which enable you
to bypass the normal function call and return discipline.

signal.h Functions that handle signals.

stdio.h Buffered I/O functions.

string.h String manipulation functions.

strings.h (BSD only) String manipulation functions.

time.h Time functions.

varargs.h Variable argument list macros.

6-46 Program Development

6.6.2 Built-in Routines

Domain C supports built-in code (also called in-line code) for many of the routines de­
clared in string.h, strings.h, and math.h. To obtain the built-in versions of these func­
tions, you must include the <builtins.h> header file. The functions for which built-in ver­
sions exist are as follows:

atanO
atan20
cosO
expO
fabsO
logO
sinO
sqrtO
strcatO
strncatO
strcpyO
strcmpO
strlenO
strncpyO
tanO

Normally, when you invoke a library function, the compiler produces code to pass control
to the specified function at run time. This requires some overhead since local variables
must be preserved and arguments must be passed. When you include <builtins.h>, the
compiler simply inserts the function's object code wherever it is invoked. While this results
in somewhat longer object files, it can produce much faster executable code, particularly
when double-precision math functions are used heavily.

NOTE: The built-in functions do not support the error-checking and
recovery that normally accompanies library routines. This is
particularly important for the math.h functions, which check
for overflow and assign meaningful values to errno. If your
programs rely on this error handling, do not use the built-in
routines.

Program Development 6-47

6.7 Executing Programs in a Domain/OS Environment

The following sections describe how to execute a program in a UNIX or Aegis environ­
ment.

6.7.1 Executing in a UNIX Environment

To execute a program, simply enter its full pathname (including any suffixes). For exam­
ple, to execute an object file named a.out, just enter

$ a.out

By default, standard input and standard output for the program are directed to the key­
board and display, respectively. You can redirect standard input and output by using the
shell's redirection notation (described in Using Your SysV Environment and Using Your
BSD Environment). For example, to redirect standard input when you invoke a. out, type

$ a.out <trading_data

The "<" character redirects standard input from the file trading_data. You can redirect
standard output in a similar fashion, for example:

$ a.out >results

This command uses the character U>" to redirect standard output for a.out to the file re­
sults.

6.7.2 Executing in an Aegis Environment

To execute a program, simply enter its full pathname (including any suffixes). For exam­
ple, to execute an object file named complete_program, just enter

The operating system searches for a file named complete_program according to its usual
search rules, then calls the loader utility. The loader utility is user transparent. It binds
unresolved external symbols in your executable object file with global symbols in the lan­
guage and system libraries. Then, it executes the program.

By default, standard input and standard output for the program are directed to the key­
board and display, respectively. You can redirect standard input and output by using the
shell's redirection notation (described in the Using Your Aegis Environment). For example,
to redirect standard input when you invoke complete_program, type

$ complete_program <trading_data

6-48 Program Development

The "<" character redirects standard input to the file trading_data. You can redirect
standard output in a similar fashion, for example:

$ complete_program >results

This command uses the character ">" to redirect standard output for completeyrogram
to the file named results.

NOTE: If the executable object has a suffix (such as .bin), you must
not forget to type this suffix.

6.8 Debugging Programs in a Domain Environment

The Domain systems support two source level debuggers-dde and dbx. The following sec­
tions describe these sections briefly. For more information about dde, refer to the Domain
Distributed Debugging Environment Reference manual. For information about dbx, refer
to the Domain/OS Programming Environment Reference manual.

6.S.1 The dde Utility

The Domain Distributed Debugger (dde) utility is a powerful screen-oriented debugger. To
prepare a file for debugging with dde, you do not have to do anything special at bind time
but you do have to compile with the -db, -dba, or -dbs compiler options. -db provides
minimal debugger preparation, -dba and -dbs provide full debugger preparation. Use the
following syntax to invoke dde:

$ dde [-dde_options] targetyrogram_name [targetyrogram_options]

where targetyrogram_name is the pathname of the program you want to debug. For ex­
ample, issue the following command to debug the executable object stored in file com­
plete _program:

$ dde complete_program

For complete details on dde and its commands. refer to the Domain Distributed Debugging
Environment Reference manual. Note that dde works somewhat differently for C programs
than for Pascal programs.

Program Development 6-49

6.8.2 The dbx Utility

dbx is the traditional Berkeley UNIX source language debugger. Although it is usually
available only on BSD systems, the Domain/OS version is available regardless of what envi­
ronment you are running. Note also that, like dde, dbx can be used on programs com­
piled with /com/cc as well as with programs compiled with /bin/cc. The command syntax
for invoking dbx is:

% dbx [options] [objectJile [coredump]]
where objectJile is the name of the program you want to debug. If you omit the ob­
jectJile name, dbx attempts to debug the file a.out. If you specify a coredump filename,
or if a file named core exists in the working directory, you can use dbx to examine the
state of a program that has aborted prematurely.

For complete details about the dbx utility, refer to the Domain/OS Programming Environ­
ment Reference manual.

6.9 Program Development Tools

Domain/OS supports several programming tools that aid in program development, debug­
ging, and source management. Some of these tools are listed below. Most of these utili­
ties are described in detail in the Domain/OS Programming Environment Reference manu­
al, although the DSEE facility has its own documentation set. Refer to the appropriate
manual for more information about these tools.

cb

lint

make

sccs

DPAK Package

6-50 Program Development

Formats a C source file according to user-supplied rules so that it is
consistent and readable.

Examines C source files and attempts to detect obscure bugs and non­
portable usages. The lint utility is described in detail in Appendices C
and D of this manual.

Creates a program from input object modules according to a list of
dependencies that the programmer supplies in a makefile. The make
utility is described in the Domain/OS Programming Environment Refer­
ence manual.

sccs stands for Source Code Control System, which is a collection of
programs that help you maintain a record of versions of a program.
The sees utility is described in the Domain/OS Programming Environ­
ment Reference manual.

DPAK is a collection of three programs-DSPST, DPAT, and HPC­
that allows you to analyze the performance of a program. It is par­
ticularly useful for isolating bottlenecks. The DPAK package is de­
scribed in Analyzing Program Performance with DPAK.

DSEE Facility The DSEE (Domain Software Engineering Environment) package is a
support environment for software development. DSEE helps engineers
develop, manage, and maintain software projects; it is especially useful
for large-scale projects involving a number of modules and developers.

Domain/Dialogue Package
The Domain/Dialogue package is a tool for designing the interface to
an application program and specifying how the interface should be
presented to users of the application. The primary advantage of the
Domain/Dialogue package is that it lets you create interfaces separately
from the application code.

6.9.1 tb (Traceback)

If you execute a program and the system reports an error, you can use the tb utility to
find out what routine triggered the error. You invoke tb by entering the command

$ tb

immediately after a faulty execution of the program. (To execute tb in a Bourne shell, you
must set the in process environment variable before executing the program.)

For example, suppose you execute object file complete_program, encounter an error, and
then invoke tb. The whole sequence might look like the following:

$ complete_program
Enter a value -- 2
?(sh) "./test.bin" - access violation (as/fault handler)
In routine" doscan" line 320.
$ tb
access violation (from as / fault handler)
In routine " doscan" line 320
Called from "scanf" line 53
Called from "my_rout" line 12
Called from "main" line 6

tb first reports the error, which in this case is

access violation (from as / fault handler)

Then, tb shows the chain of calls leading from the routine in which the error occurred all
the way back to the main program block. For example, the error was picked up at line
320 of routine _doscan, which was called by routine scanf which was called by routine
my_rout which was called by routine main. Given this information, it is probable, though
not certain, that there is a problem at line 12 of routine my_rout. We make this presump­
tion because my_rout is the deepest user-defined routine shown in the traceback.

The Aegis Command Reference manual details the tb utility.

Program Development 6-51

NOTE: If you compile a file with the -ndb option (/corn/cc) , then the
functions stored in this file will not be included in the
traceback.

-------88-------

6-52 Program Development

Chapter 7

Cross-Language Communication

This chapter describes how to call Pascal and FORTRAN routines from a C program and
how to share data between a C program and a FORTRAN or Pascal program. Because
many Domain system routines are written in Pascal, the information in this chapter also
applies to invoking system routines from C. Briefly, this chapter covers the following top­
ics:

• U sing function prototypes to declare parameters

• Understanding data type agreement of Domain C, Pascal, and FORTRAN

• Using reference variables to declare Pascal IN parameters

• Calling Pascal routines from a C program

• Calling FORTRAN routines from a C program

• Sharing data between routines written in different languages

• Using global names

• Calling system service routines

For detailed information about system calls, see the Domain/OS Calls Reference manual.

Cross-Language Communication 7-1

7.1 Suppressing Automatic Type Promotions of Arguments

When you call a C function without a prototype for that function being in scope, the com­
piler automatically converts the data types of the parameters according to the rules shown
in Table 7-1. For communication among C functions, these conversions are usually invis­
ible because the arguments are converted back to the type declared in the formal argument
declaration. When calling routines written in other languages, however, it is important to
suppress these conversions. The simplest way to suppress these conversions is to declare
the external routine with a function prototype. For instance, consider the following pro­
gram:

mainO
{

}

short j = 3;
float x = 3.141;

ex_func(j, x);

Because there is no prototype for ex_funcO, the C compiler implicitly casts j to an int and
x to a double before passing them to ex_funcO. There is no problem if ex_funcO is a C
routine that expects two arguments of type short and float because the necessary conver­
sions will occur on the receiving side. However, if ex_runcO is a Pascal routine that ex­
pects arguments of type INTEGER16 and REAL passed by value, the function call will
fail. This problem can be avoided by prototyping ex_funcO:

int main(void)
{

}

extern void ex func(short, float);
short j = 3; -
float x = 3.141;

ex _ func (j, x);

The prototype causes the C compiler to suppress the automatic argument type promotions.
Note that the prototype should be used even if the function is a C routine because it turns
on type checking which can identify bugs that would otherwise go unnoticed. For more
information about function prototypes, see Chapter 5.

NOTE: Prior to SR10, the Domain C compiler did not support function
prototyping. Instead, Domain C supported the reserved word
std_Scall, which turned off automatic type promotions of argu­
ments. Domain C continues to support std_Scall but it is
viewed as an obsolete and inferior means for cross-language
communication. We strongly urge you not to use std_Scall for
new programs and to convert your older programs that use
std_Scall to the new prototyping syntax. std_Scall is described
in Appendix E.

7-2 Cross-Language Communication

Table 7-1. C Function Argument Conversions without Prototypes

Data Type
of Argument

char
short
unsigned char
unsigned short
float

Data Type
Actually Passed

int
int
unsigned int
unsigned int
double

7.2 Data Type Agreement in C, Pascal and FORTRAN

Table 7-2 shows equivalences among the three languages' data types. To call a Pascal or
FORTRAN routine, make sure that the types declared in the C prototypes are compatible
with the types in the definition.

7.2.1 Non-C Data Types

As Table 7-2 shows, the C language has no equivalent types for Pascal's BOOLEAN and
SET types or for FORTRAN's LOGICAL and COMPLEX types. Section 7.5.4 shows how
to simulate the BOOLEAN type in C, and Sections 7.6.6 and 7.6.7 show how to simulate
FORTRAN's LOGICAL and COMPLEX data types. It is also possible to simulate the SET
type in C, but a description of this technique is beyond the scope of this manual. However,
the Programming with Domain/OS Calls manual describes how to simulate sets in C. (For
an interesting discussion of implementing SET functions in C, see C: A Reference Manual,
by Samuel P. Harbison and Guy L. Steele Jr.)

7.2.2 Non-FORTRAN Data Types

There are a few C types that have no FORTRAN equivalents. Most of these, however, can
be simulated in FORTRAN. Programming with Domain/OS Calls describes how to simu­
late C's structure, union, and enumerated data types. Section 7.6.5 describes how to pass

. pointers from Domain C to Domain FORTRAN.

There is no easy way to simulate C's unsigned types in FORTRAN. Therefore, if you pass
an unsigned value to a FORTRAN routine, it will be interpreted as a signed value. This
will only make a difference when the high-order bit is set.

Cross-Language Communication 7-3

Table 7-2. Domain C, Pascal, and FORTRAN Data Types

C Pascal FORTRAN

char, char enum CHAR CHARACTER *1
short INTEGER,INTEGER16 INTEGER*2
int, long INTEGER32 INTEGER, INTEGER * 4
float REAL, SINGLE REAL, REAL * 4
double DOUBLE DOUBLE PRECISION, REAL*S
short enum enumerated types INTEGER * 2
long enum, enum INTEGER32 INTEGER * 4
struct record none
union variant record none
pointer (*) pointer n none

unsigned char none none
unsigned short 0 .. 65335 none
unsigned long o .. 4295967295 none

none BOOLEAN none
none SET none

none none LOGICAL
none none LOGICAL * 2
none none LOGICAL * 1
none none COMPLEX
none none COMPLEX * 16

7.3 Data Type Agreement of Return Value

Just as the parameters must agree in type, so must the function return value. For example,
if a Pascal function returns an INTEGER16 value, you must declare it in your C program
as a function that returns a short. That is, if the Pascal declaration is

FUNCTION funel : INTEGERl6;

then the C declaration should be:

extern short funel(void);

7-4 Cross-Language Communication

All C declarations of Pascal procedures and FORTRAN subroutines should use the void
type since these routines do not return a value. For instance. the Pascal procedure defined
by

PROCEDURE procl;

should be declared as:

extern void procl(void);

7.3.1 Functions Returning Pointers

When Pascal returns the value of a function. it places it in one of two registers: a data reg­
ister (DO) if the value being returned is not a pointer or an address register (AO) if the
value is a pointer. C normally expects values to be returned in a data register (DO).
Therefore. when you prototype a Pascal function that returns a pointer. you need to tell
the C compiler to fetch the returned value from the address register rather than the data
register. You do this by appending #options[aOJeturn] to the prototype. For instance. if
pass_pointO is a Pascal function that returns a pointer to an into the prototype would be:

extern int *pass_point() #options[aO_return];

FORTRAN has no syntax for declaring a function that returns a pointer. All FORTRAN
functions return their values in a data register as do C programs so no special syntax is
required.

7.4 Argument Passing Conventions

In addition to ensuring that arguments agree in type. you also need to compensate for dif­
ferent passing conventions. Domain FORTRAN passes all arguments by reference. and
Domain Pascal passes most arguments by reference. This means that they pass the address
of the argument rather than the value of the argument. In contrast, C passes all arguments
(except arrays and functions) by value.

Although Domain C passes arguments by value, it provides two mechanisms to simulate
passing by reference. The first is to explicitly pass the address of the argument. For ex­
ample, if pas_funcO is a Pascal procedure that expects an integer16 argument, you could
invoke it from C with the following statements:

int maine void)
{

extern void pas_func(short *);
short x;

pas_func(&x);

Cross-Language Communication 7-5

Note that in the prototype of pasjuncO, we declare the argument as a pointer. There
are two drawbacks with this method. First, it does not provide an easy means for passing
constants or expressions since it is illegal to take the address of these. For example, if you
want to pass the constant 5 to pasjuncO you need to store the value in a variable first:

int main(void)
{

extern void pas_func(short *);
short x;

/* pas func(&5); ILLEGAL */
x =5;-
pas_func(&x); /* Legal */

Likewise, if you want to pass the product of two numbers, you must again store the prod­
uct in a variable before passing it:

int main(void)
{

extern void pas_func(short *);
short x, y;

/* pas func(&(x*y»; ILLEGAL */
x *= y;
pas_func(&x); /* Legal */

The other problem with passing addresses explicitly is that the prototype gives no indication
of whether the argument is an IN or OUT parameter. That is, the declaration of
pass_CuneO does not reveal whether pas_CuneO will modify the value of the argument or
not. You cannot, therefore, assume that the value of x will be the same after the call as it
was before the call.

Both of these limitations can be avoided by using reference variables, a Domain extension
borrowed from C++. Reference variables are described in Sections 3.15 and 5.3.2.

Declaring a parameter as a reference variable in a prototype causes the compiler to pass
the argument by reference when the function is invoked. For example:

int main(void)
{

extern void pas_func(short &);
short x;

7-6 Cross-Language Communication

Note that reference variables make it legal to pass constants and expressions by reference:

int main(void)
{

extern void pas_func(short &);

pas_func(5); /* Legal */

Although this will work, the receiving routine, pas_funcO, may not modify the constant
value passed. If it attempts to modify this value, a run-time access error will occur.

Because there are two ways to pass arguments by reference-explicitly passing addresses or
declaring arguments as reference variables-you can set up conventions to use one method
in certain situations and the other method in different situations. Domain/OS system calls,
for example, use the two methods to distinguish between IN variables and all other type of
parameters. In the insert files, all IN variables are declared as reference variables and all
other parameters are declared as pointers. A single function might include a combination
of pointers and reference variables.

7.5 Pascal Examples

Pascal can pass by reference or by value depending on how a parameter is declared. In
Domain Pascal, there are five ways to declare a formal parameter: IN, OUT, IN OUT,
V AR, or without a keyword. In the first four cases, the parameters are passed by refer­
ence. The Pascal keywords control what operations are legal within the Pascal routine.
Consult the Domain Pascal Language Reference for information about these declaration
specifiers.

When you declare a variable in Pascal without one of the declaration specifiers, it directs
the compiler to use call-by-value semantics. This means that the Pascal routine will use a
local copy of the parameter so that the formal and actual parameters are different objects.
The actual parameter in the calling routine will remain unchanged despite any modifica­
tions that the called. routine makes to the formal parameter.

Domain Pascal uses two methods to achieve call-by-value semantics:

1. For nested routines (routines that are visible only within a single source file), Do­
main Pascal passes arguments by value just like C.

2. If the routine is globally visible, Domain Pascal assumes that it may be called by
routines written in other languages, such as FORTRAN, that only support pass by
reference. Therefore, the Pascal routine expects an address of the actual argu­
ment and then generates a local copy on the receiving side.

From a Pascal programmer's perspective, the two methods are equivalent since both
achieve the call-by-value semantics (that is, the routine operates on a local copy of the

Cross-Language Communication 7-7

argument). From a C programmer's perspective, however, it is important to know which
method is being used. If the first method is being used, you should declare and pass argu­
ments as though you were invoking a function written in C. If the second method is used,
you need to pass arguments by reference by either explicitly passing a pointer or by declar­
ing the arguments as reference parameters. (You can force the Pascal compiler to use
method 1 by declaring the globally visible routine with the val_param option.)

The following examples show how to pass various objects of different types and sizes to
Pascal routines.

7.5.1 Passing Integers and Floating-Point Numbers

Passing characters, integers and floating-point values to Pascal programs is fairly straightfor­
ward. The prototype for the Pascal function should be type compatible with Pascal func­
tion definition. The actual arguments passed must be assignment compatible. To conform
with Domain conventions, you should declare IN parameters as reference arguments and
all other parameters as pointers. Consider the following Pascal function that raises its first
argument to the power specified by the second argument:

MODULE power_p;

FUNCTION power (IN argI
IN pow

VAR
temp: INTEGER16;
count INTEGER16;

BEGIN
temp := argI;
count := pow;
WHILE count > 1 DO

BEGIN
temp := argI*temp;
count := count-I;

END;
power := temp;

END;

SINGLE;
INTEGER16)

The C program below show~ various ways to call powerO:

7-8 Cross-Language Communication

DOUBLE;

/* Program name is "callyowery". To execute it, you
* need to compile this program and the pascal routine
* in file "powery.pas", and then bind the two binaries.
*/

#include <stdio.h>

int main(void)
{

extern double power(float &, short &);
float x = 2.5;
short j = 5;
double z;

z = power(x, j) ;
printf(" %f to the power of %d is %f\n" ,
z = power(3.0, 2) ;
printf(" %f to the power of %d is %f\n" ,
z = power(2, 3.0) ;
printf(" %f to the power of %d is %f\n" ,

}

x, j , z) ;

3.0, 2, z) ;

2, 3.0, z) ;

Note that both arguments are declared as reference variables in the prototype because they
are declared as Pascal IN parameters. Because they are reference variables, it is legal to
pass constants, as illustrated in the second and third invocations. In the third invocation,
note that the types of the actual arguments do not match the types declared in the proto­
type. This is acceptable so long as the actual arguments are assignment-compatible with
the prototype parameters. The compiler implicitly casts the first argument to float and the
second argument to short before passing them.

7.5.2 Passing Character Arrays

Pascal supports both fixed-length and variable-length character arrays. In C, strings are
fixed-length, but C's convention of ending string with a null character makes them behave
like variable-length strings. Having allocated an array of characters, you can store strings
of any length in that array as long as they do not exceed the total length of the array.

To facilitate passing strings between the two languages, Domain Pascal supports two run­
time functions-ptocO and ctopO. The ptocO function appends a null character to a Pas­
cal variable-length string to make it a C-style string. The ctopO function helps convert a
C-style null-terminated string into a Pascal-style variable-length string. These functions
are primarily designed to simplify calling C functions from Pascal. As shown in the exam­
ple in this section, though, they can also be used when a C function passes a string to a
Pascal routine. For more information about these functions, and about Pascal variable­
length strings, see the Domain Pascal Language Reference manual.

Unlike other type of variables, C arrays are automatically passed by reference. Therefore,
if a Pascal routine expects an array argument, you should prototype and invoke the routine
as though it were written in C. Do not use reference parameters for array arguments. If
you do, you will need to dereference the array before passing it, which will produce very
unusual-looking code.

The Pascal program in our example takes one argument: a string with a maximum size of
256 characters. It copies the string to a variable-length string in order to find the length

Cross-Language Communication 7-9

and then reverses the string. Because s is an IN OUT parameter, the reversed string is
available to the calling C routine.

MODULE reverse_string;

TYPE
str = ARRAY[1 .. 256] of CHAR;

VAR
var string
temp

VARYING [256] of CHAR;
CHAR;

j INTEGER;
len INTEGER;

PROCEDURE reverse_string(IN OUT s UNIV str);

BEGIN
j := 1;
var_string.body := s; {COpy s to variable-length string}
CTOP(var_string); {set length of var-Iength string}
len := var string. length;
WHILE j <=-len/2 DO
BEGIN

temp : = s [j] ;
s[j] := s[len+1-j];
s[len+1-j] .- temp;
j .- j+1;

END;
END;

The following mainO function calls reverse_stringO. C automatically passes arrays by ref­
erence so there is no need to precede the array name with an ampersand.

/* Program name is "call reverse string". To execute this
* program, you need to compile this source file with cc,
* and the "reverse string.pas" source file with pas, and then
* link the two object modules.
*/

#include <stdio.h>

int main(void)
{

}

extern void reverse string(char *);
static char s[] = "reverse this string";

reverse string(s);
printf("%s\n", s);

The output is:

gnirts siht esrever

7-19 Cross-Language Communication

7.5.3 Passing Pointers

In both C and Pascal, pointers are 4-byte entities. The example below shows a simple
linked-list application. The C program creates the first element of the list and then calls
the Pascal routine appendO to add new elements to the list. The function printlistO is a
C routine that prints the entire list. In addition to illustrating how to pass pointers, this ex­
ample also shows the correspondence of Pascal records to C structures.

The Pascal program is:

MODULE pointer_example;

TYPE
link = ~list;

list =
RECORD

nex : link;
data: char;

END;

PROCEDURE append (firstrec
IN val

link;
CHAR) ;

VAR
newdata link;

BEGIN
new(newdata); {allocate memory for new element.}

WHILE firstrec~.nex <> NIL DO
firstrec := firstrec~.nex;

firstrec~.nex := newdata;
newdata~.data := val;
newdata~.nex := NIL;

END;

The C program is shown below. Note that C's NULL pointer (defined in <stdio.h» is
equivalent to Pascal's NIL pointer. The Pascal function expects the first argument to be a
pointer to a structure. Because Pascal passes by reference, however, the function is really
expecting a pointer to a pointer to a structure, which is how we declare it in the C proto­
type. When we make the call, we pass the address of base, which is a pointer to the first
element of the linked list. The second argument is declared as an IN parameter in the
Pascal routine so we can declare it as a reference variable in the C prototype. This en­
ables us to pass a character constant as the second argument.

Cross-Language Communication 7-11

/* .
*
*
*

Program name is IIpassJ)ointer_c ll • To execute this
program, you must also obtain the Pascal program named
IpassJ)ointerJ)". After compiling passJ)ointerJ) and
passJ)ointer_c, you must bind them together.

*/
#include <stdio.h>

static struct list {

} j

struct list *nextj
char dataj

int main(void)
{

}

extern void append(struct list **, char &)j
extern void printlist(struct list *)j
struct list first, *basej

char ch='z'j
first.data = 'a'j /* assign 'a' to first element of list */
first.next = NULLj
base = &firstj
append (&base,'b')j
append (&base, ch)j
printlist(base)j

/* printlist() prints the data in each member of the list. */

void printlist(struct list *base
{

}

while (base != NULL)
{

}

printf("%c\n", base->data) j
base = base->nextj

After compiling and binding these routines, the output is:

a
b
Z

7.5.4 Simulating the BOOLEAN Type

The Pascal BOOLEAN type is an 8-bit entity that evaluates to TRUE when its numeric
value is -1 and to FALSE when its numeric value is O. (In a packed record, a
BOOLEAN uses only one bit.) The BOOLEAN type can be simulated in C with the char
data type. Suppose that you want to call the Pascal routine shown below. This routine
takes a BOOLEAN argument and returns a BOOLEAN result (the opposite of the argu­
ment).

7-12 Cross-Language Communication

MODULE pass_boolean-p;

FUNCTION log not(IN bool arg : BOOLEAN) : BOOLEAN;
BEGIN - -

writeln('pascal value of argument:',bool arg);
bool arg := NOT bool arg; -
writeln('Pascal value returned: ',bool_arg);
log_not := bool_arg;

END;

The C program below shows several ways to invoke boolO.

/*
*
*
*

Program name is "pass boolean c". To execute this
program, you must also obtain-the Pascal program named
"pass_boolean-p". After compiling pass_boolean-p and
pass_boolean_c, you must bind them together.

*/
#include <stdio.h>

#define TRUE -1
#define FALSE 0

int main(void)
{

extern char bool(char &);
char x;

printf ("Numeric value of argument: %d\n", TRUE);
x = boo 1 (TRUE);
printf("Numeric value returned: %d\n\n", x);

printf ("Numeric value of argument: %d\n", FALSE);
x = bool (FALSE) ;
printf("Numeric value returned: %d\n\n", x);

}

The output after compiling, binding and executing is:

Numeric value of argument: -1
Pascal value of argument:
Pascal value returned:
Numeric value returned: 0

Numeric value of argument: 0
Pascal value of argument:
Pascal value returned:
Numeric value returned: -1

TRUE
FALSE

FALSE
TRUE

Cross-Language Communication 7-13

7.6 FORTRAN Examples

The following examples show how to pass various objects of different types and sizes to
FORTRAN routines. Remember that FORTRAN does not make local copies of parame­
ters-all arguments are passed by reference. Unlike Pascal, FORTRAN does not include
syntax to control whether a parameter can or can't be modified within the called function.
To be safe, you should assume that the called function may modify any arguments you
pass from C. Therefore, you should be careful about passing constants and expressions.
If the FORTRAN routine attempts to modify constants or expressions, a run-time error will
occur.

There is one restriction concerning the types of data that you can pass to, or return from,
a FORTRAN routine:

• You cannot return a character array of any size, including 1, from a FORTRAN
function. For instance, a FORTRAN function declared as

CHARACTER FUNCTION char_funcO

cannot be called from a C program.

As with Pascal, there are two methods for passing arguments from C to FORTRAN: explic­
itly pass addresses or declare the arguments as reference variables so that the compiler will
implicitly pass the address. Either method will work, although only the reference variable
method enables you to pass constants and expressions. The choice of which to use is
largely a question of style. Using reference variables provides a cleaner interface since the
implicit addressing is hidden. On the other hand, this cleanliness can be misleading.
Someone reading the code must look at the prototype to realize that the arguments are
being passed by reference rather than by value. The examples in Section 7.6.2 through
7.6.7 illustrate both methods.

7.6.1 Names of FORTRAN Routines

The Domain system supports two FORTRAN compile command: Ibin/f77 and Icom/ftn.
Both commands compile FORTRAN source files, but the resulting object files differ
slightly. One of the differences is that Ibin/f77 appends an underscore to all global names.
This includes names of functions and subroutines as well as names of common blocks.

When you invoke a FORTRAN routine from C, you need to know whether the routine has
an appended underscore or not. For example, consider the following FORTRAN function
definition:

REAL*8 FUNCTION hypot(sidel, side2)
REAL*4 sidel, side2

7-14 Cross-Language Communication

If the function is compiled with Icom/fto, the C prototype would be:

extern double hypot(float &, float &);

On the other hand, if the function is compiled with Ibio/f77, the C prototype would be:

extern double hypot_(float &, float &);

If you don't know how the function was compiled, you need to look at the object file to
see whether the function name has an appended underscore. One way to look at the ob­
ject file is with the om command, described in the BSD Command Reference manual.

7.6.2 Passing Integers and Floating-Point Data

Passing integers and floating-point values to FORTRAN programs is fairly straightforward.
The prototype for the FORTRAN function should be type compatible with the FORTRAN
function definition. The actual arguments passed must be assignment compatible. The
example below shows a FORTRAN subroutine that accepts the values of the two sides of a
right-angle triangle and returns the length of the hypotenuse. The parameters are REAL*4
and the result is REAL * 8.

REAL*8 FUNCTION hypot(sidel,side2)
REAL*4 sidel, side2

hypot = SQRT«sidel*sidel) + (side2*side2»

END

The first C program below shows how to declare and invoke hypotO using pointers as pa­
rameters. The second example illustrates the function call using reference variables.

/* Passing floats using pointers */
int maine void)
{

extern double hypot(float *, float *);
float x = 3.0, y = 4.0;
double z;

z = hypot(&x, &y);

/* Note that you cannot pass constants -- the following is
* illegal

}

z = hypot(&3.0, &4.0
*/

/* Passing floats using reference variables */
int maine void)
{

extern double hypot(float &, float &);
float x = 3.0, y = 4.0;
double z;

z = hypot(x, y);

/* Note that it is legal to pass constants */

z = hypot(3.0, 4.0)
}

Cross-Language Communication 7-15

7.6.3 Passing Character Data

Passing character data is the same as passing integers, with two exceptions:

• FORTRAN routines expect an additional argument for every character parameter
specifying the size of the character array. (For a single character, the size is only
one.)

• A FORTRAN routine cannot return character data. To return a character value,
create a subroutine and return the character value in a parameter.

Consider the following FORTRAN case-inversion routine that takes two character argu­
ments. The routine inverts the case of the first argument and returns the result through the
second argument.

The FORTRAN routine is:

SUBROUTINE UPPER LOWER(in char, inverted)
CHARACTER in_char,inverted-

IF (ICHAR(in char) .LE. 97) THEN
inverted- CHAR(ICHAR(in char) + 32)

ELSE -
inverted = CHAR(ICHAR(in_char) - 32)

END IF

END

The following C program shows how to call upper_lowerO. Note that the first character is
declared as a reference variable to allow us to pass character constants; the second pa­
rameter is declared as a pointer to prevent us from passing a constant. (Passing a constant
would produce a run-time error when the FORTRAN routine attempts to modify its value.)
Note also that the size parameters come at the end of the argument list. Both size param­
ters are declared as reference variables so that we can pass them as constants.

7-16 Cross-Language Communication

/* Program name is "pass char cf". To execute this
* program, you must also obtain the FORTRAN program named
* "pass char f". After compiling pass char cf and
* pass_char_f, you must bind them together~
*/

#include <stdio.h>

int main(void)
{

}

extern void upper_lower(char &, char *,short &,

char out char,result;
short long_char;

out char = 'A"
long_char = 'b!;

short &);
/* 8-bit variables */
/* 16-bit variable */

printf("Original Char\t\tCase-Inverted\n\n");

upper lower (out char, &result, 1, 1);
printf("\t%c\t\I\t\t\t%c\n", out_char, result);

upper lower ('b', &result, 1, 1);
printf("\t%c\t\t\t\t\t%c\n",'b', result);

upper lower (81, &result, 1, 1);
printf("\t%c\t\t\t\t\t%c\n", 81, result);

The result of program execution is:

Original Char

A
b
Q

Case-Inverted

a
B
q

Because the hidden size parameters come at the end of the argument list, you can omit
them without affecting your program.

7.6.4 Passing Arrays

There are three points to remember when passing arrays from C to FORTRAN:

• FORTRAN expects the size of each character array to be passed implicitly. In the
C prototype for the FORTRAN routine, you should declare this extra argument as
a short. Size arguments always come at the end of the argument list.

• FORTRAN and C access multidimensional arrays in a different order. In C, the
rightmost subscript varies fastest while in FORTRAN the leftmost subscript varies
fastest.

• Unlike other variables, C arrays are passed by reference. Therefore, if a FOR­
TRAN routine expects an array argument, you should prototype and invoke the
routine as though it were written in C. Do not use reference parameters for array
arguments. If you do, you will need to dereference the array before passing it,
which will produce very unusual-looking code.

The following example illustrates how to pass a character array from C to FORTRAN. Note
that you can declare the array in FORTRAN as a character string or as an array of type

Cross-Language Communication 7-17

CHARACTER. The two FORTRAN routines shown here return the last character of a
string and the next-to-Iast character, respectively.

C Pass a string and get the last char.

SUBROUTINE pass_char_array(ca, clen, outchar)
CHARACTER ca(256)
INTEGER*2 clen
CHARACTER outchar

C Test for null string.

IF (clen .LT. 1) THEN
outchar
RETURN

ENDIF

out char
RETURN
END

ca(clen)

C Pass a string and get the next-to-last char.

SUBROUTINE pass_char_string(ca, clen, outchar)
CHARACTER*256 ca
INTEGER*2 clen
CHARACTER outchar

C Test for null string.

IF (clen .LT. 1) THEN
outchar
return

ENDIF

outchar
RETURN
END

ca(clen-1:clen-1)

The following C program calls these FORTRAN routines.

7-18 Cross-Language Communication

/* Program name is "pass char array c". To execute this
* program, you must also obtain the FORTRAN program named
* "pass char array f". After compiling pass char array c
* and pass_char_array_f, you must bind them-together. -
*/

#include <stdio.h>

int main(void)
{

extern void pass char string(char &, short &, char &,
- - short &, short &);

extern void pass char array(char *, short &, char &,
- - short &, short &);

char result;
static char s1[]
static char s2[]

"This is the first string";
"This is the second string";

/* To pass an array declared as a reference variable, you
* need to dereference the array. This is the WRONG way
* to pass arrays.
*/
pass_char_string(*s1, strlen(s1), result, sizeof(s1),

sizeof(result));
printf("The second to last character is %c\n", result);

/* To pass an array declared as a pointer, you just pass the
* array name, as you would in a C-to-C function invocation.
* This is the RIGHT way to pass arrays.
*/
pass char array(s2, strlen(s2), result, sizeof(s2),

- - sizeof(result));
printf("The last character is %c\n", result);

}

The result is:

The second to last character is n
The last character is g

Note that we need to pass the length of the string twice. The first string length is for the
c1en argument explicitly declared in the FORTRAN routines. The second length is the
implict array size that FORTRAN expects for every character argument. The last argument,
" 1", is the length of the outchar parameter.

7.6.4.1 Passing Adjustable Arrays

The following example illustrates how to pass an adjustable array from C to FORTRAN.
The C program passes two arguments: an array of integers and the size of the array. The
FORTRAN routine uses the second argument to declare the size of the array. The routine
then returns the average value of the array elements.

Cross-Language Communication 7-19

C Pass an array of long int and return the average.

INTEGER*4 FUNCTION pass int array (larray, array_len)
INTEGER*4 array len - -
INTEGER*4 larray(array len)
INTEGER*4 i, tot -

tot = 0
DO i = 1,array len

tot = tot + Iarray(i)
print *,'larray(',i,') = ',larray(i)

END DO

pass_int_array = tot / array_len
RETURN
END

The C program is:

/* Program name is IIpass int array". To execute this program,
* you must also obtain the FORTRAN program named
* "pass int array fll. After compiling pass int array c and
* pass_Int_array_f, you must bind them together. -
*/

#include <stdio.h>

int main(void)
{

extern int pass int array(int *, int &);
static int average,-pass_array[]={ 325, 478, 982,331, 21,

56, 79
} ;

average = pass int array (pass array,
-sizeof(pass array)/sizeof(pass array[O]));

printf(liThe average is: %(1\n", average); -
}

Note that the array is declared as a pointer rather than a reference parameter so that we
can pass the array name without dereferencing it; the length is declared as a reference
variable so that we can pass the expression that computes the array's length. The result of
executing the program is:

larray(1) 325
larray(2) 478
larray(3) 982
larray(4) 331
larray (5) 21
larray(6) 56
larray(7) 79
The average is: 324

7-20 Cross-Language Communication

7.6.4.2 Passing Multidimensional Arrays

When you pass a multidimensional array, it is important to remember that in C the right­
most subscript varies fastest while in FORTRAN the leftmost subscript varies fastest. The
example below shows the consequences of this difference.

The FORTRAN routine is:

SUBROUTINE dyn dim(arr, x, y)
INTEGER*4 x, y-
INTEGER*4 arr(x, y)
INTEGER*2 i, j

WRITE(*,*)
WRITE(*,*) 'This
DO i = 1, x

is the FORTRAN array:'

DO j = 1, y
WRITE(*,*)

END DO
, arr (' , i , ' , ' ,j , ') , ,arr (i, j)

END DO
END

The C program is shown below. Note that the array is declared as a pointer to an int, just
as it would be declared if dyn_dimO was a C function. The x and y arguments are de­
clared as reference parameters so that we can pass constants.

/* Program name is "multi dim array C". To execute this
* program, you must also-obtain the FORTRAN program named
* "multi dim array fll. After compiling multi dim array c
* and multi_dim_arraY_f, you must bind them together. -
*/

#include<stdio.h>
#define DIM1 2
#define DIM2 3

int main(void
{

}

extern void dyn dim(int *, int&, int&);
static int arr[DIM1] [DIM2] = { { 1, 2, 3 },

{ 4, 5, 6 }
} ;

short i,j;

printf(IIThis is the C array:\n");

for (i = 0; i<=1; i++)
for (j=O; j<=2; j++)

printf("arr(%d,%d) = %d\n", i, j, arr[i] [j]);

dyn_dim(arr, DIM1, DIM2);

Cross-Language Communication 7-21

The result is:

This is the C array:
arr(O,O) 1
arr(O,I) 2
arr(O,2) 3
arr(I,O) 4
arr(I,I) 5
arr(I,2) 6

This is the FORTRAN array:
arr(1, 1) 1
arr(1, 2) 3
arr(1, 3) 5
arr(2, 1) 2
arr(2, 2) 4
arr(2, 3) 6

7.6.5 Passing Pointers

As an extension to the ANSI standard, Domain FORTRAN enables a FORTRAN routine
to dereference pointers passed from C or Pascal programs. For complete details, consult
the Domain FORTRAN User's Guide.

In the following example, the C program passes the FORTRAN subroutine a pointer to a
structure that contains four short integers. By using the the POINTER statement, the
FORTRAN subroutine is able to modify the structure elements.

Pay special attention to the C prototype for the FORTRAN routine. We declare the pa­
rameter as a pointer to a structure of type S, passed by reference. What actually gets
passed, therefore, is a pointer to a pointer. We declare the parameter as a reference pa­
rameter so that we can pass a constant (the result of the address-of operator).

The FORTRAN subroutine is:

SUBROUTINE pass point(pl)
INTEGER*4 pI -
INTEGER*2 a,b,c,d
POINTER/pl/a,b,c,d

a=a+l
b=2**a
c=3**a
d=4**a

END

7-22 Cross-Language Communication

The C program is:

/*
*
*
*

Program name is "pass_point_c". To execute this program,
you must also obtain the FORTRAN program named
"pass_point_f". After compiling passyoint_c and
pass_point_f, you must bind them together.

*/
#include <stdio.h>

typedef struct {
short s1,s2,s3,s4;

} S;

int maine void
{

}

The result is:

2
4
9
16

extern void pass_pointe S *&); /* Parameter is a pointer to
* S, passed by reference.
*/

static S struct_pass = { 1, 1, 1, 1 };

passyoint(&structyass);
printf("%d\n%d\n%d\n%d\n" , struct pass.s1, struct_pass.s2,

struct_pass.s3, struct_pass.s4);

7.6.6 Simulating the LOGICAL Types

Domain FORTRAN supports three LOGICAL types:

• LOGICAL and LOGICAL*4

• LOGICAL*2

• LOGICAL*l

The numbers refer to the length, in bytes, of the type. Note that the default is four bytes
long.

Each of these types describes an object that evaluates to TRUE when its numeric value is
-1 and to FALSE when its numeric value is O. In C you can simulate the logical types
with integer types of the same size. The following FORTRAN function accepts two argu­
ments: a LOGICAL*l and a LOGICAL*2, and returns a LOGICAL*4. Note that
out_arg is modified, so we need to be careful not to pass an address of a constant.

Cross-Language Communication 7-23

LOGICAL*4 FUNCTION pass_logical (in_arg, out_arg)
LOGICAL*l in arg
LOGICAL*2 out_arg

PRINT *,'FORTRAN value of in_arg:',in_arg
PRINT *,'FORTRAN value of out arg:' ,out arg
out arg = .NOT. out arg - -
pass logical = in arg .EQV. out arg
PRINT * ,'FORTRAN value returned:', pass_logical

END

The C program below shows how to invoke pass_logical 0 .

/* Program name is "pass logical cIt. To execute this program,
* you must also obtain the FORTRAN program named
* "pass logical fIt. After compiling pass logical c and
* pass_logical_f, you must bind them together. -
*/

#include <stdio.h>

#define TRUE -1
#define FALSE 0

int maine void)
{

}

extern int pass logical(char &, short *);
char arg1 = TRuE;
char arg2 = TRUE;
int result;

printf("C numeric value of arg1: %d\n", arg1);
printf("C numeric value of arg2: %d\n", arg2);
result = pass logical(arg1, &arg2);
printf("C numeric value of arg2 after function call: %d\n",

arg2);
printf("C numeric value returned: %d\n\n", result);

printf ("c numeric value of arg1: %d\n", arg1);
printf("c numeric value of arg2: %d\n", arg2);
result = pass logical(arg1, &arg2);
printf("C numeric value of arg2 after function call: %d\n",

arg2);
printf("c numeric value returned: %d\n\n", result);

7-24 Cross-Language Communication

The output after compiling, binding, and executing is:

C numeric value of arg1: -1
C numeric value of arg2: -1

FORTRAN value of in arg: T
FORTRAN value of out arg: T
FORTRAN value returned: F

C numeric value of arg2 after function call: 0
C numeric value returned: 0

C numeric value of arg1: -1
C numeric value of arg2: 0

FORTRAN value of in arg: T
FORTRAN value of out arg: F
FORTRAN value returned: T

C numeric value of arg2 after function call: -1
C numeric value returned: -1

7.6.7 Simulating the COMPLEX Types

Domain FORTRAN supports two sizes of complex data types. The FORTRAN COMPLEX
data type is stored as two 4-byte floating-point numbers, the first representing the real part
and the second representing the imaginary part of a complex value. The COMPLEX*16
type is stored as two 8-byte floating-point numbers.

It is easy to simulate both types in C via structures containing two floats or two doubles.
In the following example, the FORTRAN function accepts a COMPLEX argument, and
returns the square of the argument.

COMPLEX FUNCTION sqr_comp(com-param
COMPLEX com_param

END

The C program is:

/* Program name is "pass complex c". To execute this program,
* you must also obtain the FORTRAN program named
* "pass complex f". After compiling pass complex c and
* pas s_complex_f , you must bind them together. -
*/

#include <stdio.h>

typedef struct {
float real;
float imag;

} COMPLEX;

int main(void
{

}

extern COMPLEX pass complex (COMPLEX *);
static COMPLEX result, arg = { 2.5, 3.5 };

printf("Complex Number\t\t\tSquare of Number\n\n");
result = pass complex(&arg);
printf("(%f,if)\t\t(%f,%f)\n", arg.real, arg.imag,

result.real, result.imag);

Cross-Language Communication 7-25

The result is:

Complex Number Square of Number

(2.500000,3.500000) (-6.000000,17.500000)

7.7 Data Sharing

As the previous sections illustrated, one way to share data between routines is by passing
arguments. The following sections describe two other methods:

• Explicitly define and allude to global variables in the C and Pascal routines.

• Create overlay sections.

Before describing these two techniques, it will be helpful to explain how declarations of
global variables get entered into the object file. This is especially important in C because
the Ibin/cc command and the Icom/cc command handle global declarations differently.

7.7.1 Global Variable Declarations Using Icornlcc

NOTE: The description in this section assumes that you do not use the
-bss switch. If you specify this switch, the compiler will handle
global variables as described in Section 7.7.2.

When the Icom/cc compiler encounters a global definition, it creates a new section in the
object file to hold the variable. The name of the new section is the same as the name of
the variable. These sections are called overlay sections because the linker is allowed
overlay sections with the same name. If you include the file scope declaration:

int x;

in three different source files, the compiler will produce an overlay section named x in
each of the three resulting object files. When you link these object files together, the
compiler overlays the three sections with the same name so that there is only one section
for the variable in the resulting executable file.

Because of this overlay technique, it is possible to initialize a global variable in more than
one source file (although this is not recommended). The variable gets whatever initial
value was overlaid last. (Sections are overlaid in the order in which the files are listed in
the link command.) If none of the source files contain an initialization value, the linker
initializes the variable to zero.

Note that this discussion refers to global definitions, not global allusions. If you allude to a
global variable (precede the declaration with extern), the compiler enters the variable into
the symbol table as an undefined name. It is up to the linker to resolve this reference by

7-26 Cross-Language Communication

finding the definition in another object module. If the linker can't resolve an allusion, it
reports an error.

7.7.2 Global Variable Declarations Using Ibin/cc

Unlike the Icom/cc compiler, the Ibin/cc compiler makes a distinction between global defi­
nitions that contain an initializer and those that don't. If a compiler encounters a global
definitions with an initializer, it allocates space for the variable in the .data section of the
object file, which is where local static data is also kept. If the definition does not contain
an initializer, the compiler treats the variable as "weakly defined" -it enters the variable
into the symbol table, but does not allocate any storage for it.

When the linker attempts to resolved undefined references, it recognizes these "weakly
defined" variables as a special case. If the linker cannot find memory allocated for a
weakly defined variable in any of the other object modules, it allocates memory for it in a
section named. bss. Eventually, therefore, all uninitialized global variables are placed in
. bss. At run time, the entire section is initialized to zero.

To put a global variable in a named section, as is done with Icom/cc, you must declare the
variable with the #attribute [section] specifier, described in Section 3.16.6.

NOTE: When the . bss section is used, you must pass object modules
through the linker before you can execute them. If you compile
with the Ibin/cc command, the linker is automatically invoked.
However, if you compile with Icom/cc and the -bss switch, you
must explicitly invoke the linker yourself.

7.7.3 Case Sensitivity and Global Names

Unlike C, Pascal and FORTRAN are case-insensitive, which means that names written in
lowercase are the same as names written in uppercase. By convention, both Pascal and
FORTRAN export global variables to the linker as lowercase names. Therefore, all C
global names that are accessed by FORTRAN or Pascal routines must also be lowercase. C
global names that are shared between C modules may use only uppercase and lowercase
letters.

7.7.4 Data Sharing Between C and Pascal

There are two ways to declare global variables in Pascal and C such that the linker can
resolve references:

Cl) Declare the variables so that they are placed in the . data or . bss sections.

o Declare the variables so that they are placed in named overlay sections.

7.7.4.1 Declaring .data and .bss Global Variables

In Pascal, an external variable is defined with the DEFINE keyword and alluded to with
the EXTERN keyword. All variables defined with DEFINE are placed in the .data section

Cross-Language Communication 7-27

of the the object file. Variables declared as EXTERN are listed as unresolved references
in the symbol table. For compatible behavior in C, you must compile with Ibinlcc or use
the -bss switch with Icom/cc.

There are several scenarios for declaring and defining variables in Pascal and C. The
three most common are described below:

• Define a variable in Pascal and allude to it in C. For example, the Pascal
source file might contain the following:

VAR x: DEFINE INTEGER32 .- 0;

and the C file would contain:

extern int x;

In this case, the definition in the Pascal module causes the compiler to allocate
space for x in the . data section. The C declaration produces an undefined refer­
ence to x in the symbol table, which is resolved by the linker.

• Define a variable in C (initialized) and allude to in Pascal. For example, the
C file would contain:

int x = 10;

and the Pascal source file would declare x as:

VAR x: EXTERN INTEGER32;

In this case, the definition of x in the C module forces the C compiler to allocate
space for x in the .data section. The declaration of x in the Pascal file causes
the compiler to produce an undefined reference to x in the symbol table, which is
resolved by the linker.

• Define a variable in C (uninitialized) and allude to in Pascal. For example,
the C file would contain:

int x;

and the Pascal source file would declare x as:

VAR x: EXTERN INTEGER32;

In this case, the uninitialized definition of x in the C module causes the C com­
piler to make a "weakly defined" entry in the symbol table. The declaration of x
in the Pascal file causes the compiler to produce an undefined reference to x in
the symbol table. The linker then places x in the . bss section, initialized to zero,
and resolves the Pascal reference.

It is also possible to define the same variable in C and in Pascal, as long as only one or
neither of the definitions contain initializers. If both definitions contain initializers, the
linker will report an error.

7-28 Cross-Language Communication

In the following example, we define the global variable xx at the top of the C source file;
the function mainO prints the initial value of xx and then calls the C routine add_threeO
which adds 3 to xx; finally, add_threeO calls the Pascal procedure sub_twoO which sub­
tracts 2 from xx.

The Pascal routine is:

MODULE global_var_p;

PROCEDURE sub_two;
VAR

xx : EXTERN INTEGER32;

BEGIN
xx := xx - 2;
WRITELN('Value of xx after sub_two():' ,xx);

END;

The C routines are:

/*
*
*
*
*/

Program name is "global var c". To execute this program,
you must also obtain the Pascal program named
"global_var_p". After compiling global_vary and
global_var_c, you must bind them together.

#include <stdio.h>

int xx = 1; /* Definition of xx */

int maine void
{

extern void add_three(void);

printf("Initial value of xx: %d\n" , xx);
add_three() ;

void add three(void
{ -

extern void sub_two (void);

xx += 3;
printf("Value of xx after add_three(): %d\n", xx);
sub_two() ;

}

The result of executing the program is:

Initial value of xx: 1
Value of xx after add three(): 4
Value of XX after sub=two(): 2

7.7.4.2 Creating Overlay Data Sections

Both C and Pascal have syntaxes that enable you to produce named overlay sections for
global data. Since the binder ensures that overlay sections with the same name refer to
the same memory locations, this mechanism enables you to share data across procedures.

Cross-Language Communication 7-29

In Pascal, you create an overlay section with the syntax:

VAR ' (' section name')'
declaration -
declaration

For instance, the following statements define an overlay section called example with two
variables.

VAR (example)
x INTEGER16;
y : DOUBLE;

In C, there are two ways to create overlay sections. If you use the Icom/cc compiler, you
can create an overlay section simply by defining an external variable. All external variables
are automatically stored in their own named sections. For instance, if compiled with Icoml

cc, the declarations shown below create three overlay sections called first_sec, sec­
ond_sec, and example.

int first sec=O;
float second sec=1.0;
struct { -

main ()
{

short x;
double y;
} example;

Note that example contains two variables: x and y.

If you compile your program with /bin/cc, you need to use a special #attribute[section])
syntax (described in Section 3.16.6) to create a named overlay section:

int first sec #attribute[section(first sec)] = 0;
float second sec #attribute[section(second sec)] = 1.0;
struct { - -

short x;
double y;
} example #attribute[section(example)];

int main(void)
{

Consider the example below. The Pascal program calculates the power of a number. The
number, the exponent, and the reSUlting value are all located in an overlay section accessi­
ble to the calling C program.

7-30 Cross-Language Communication

The Pascal routine is:

VAR (sec1) { All Pascal names are sent to }
{ the binder in lowercase. }

exponent: INTEGER32;
value : INTEGER16;
result: DOUBLE .- 1.0;

PROCEDURE power;
VAR

temp : SINGLE;

BEGIN
temp := exponent;

END;

WHILE (temp >=1) DO
BEGIN

END

result := result*value;
temp .- temp-1;

The Icom/cc version of the program is:

/* Program name is "section example c". To execute this
* program, you must also obtain the Pascal program named
* "section_example_p". After compiling section_exampley and
* section_example_c, you must bind them together.
*/

#include <stdio.h>

struct {
int exp;
float val;
double res;
} sec1;

int main(void)
{

}

extern void power(void);

secl. val = 5.1;
secl. exp = 3;
power () ;
printf ("%f to the power of %d is: %f\n", sec1. val,

sec1.exp, sec1.res);

Cross-Language Communication 7-31

The Ibin/ee version of the program is:

/* Program name is "section example COl. To execute this
* program, you must also obtain the Pascal program named
* "section example pOI. After compiling section example p and
* section_example_c, you must bind them together. -
*/

#include <stdio.h>

struct {
int exp;
float val;
double res;
} sec1 #attribute[section(sec1)];

int main(void)
{

The result is:

extern void power(void);

secl. val = 5. 1 ;
secl. exp = 3;
power();
printf("%f to the power of %d is: %f\n", secl.val,

sec1.exp, sec1.res);

5.100000 to the ,power of 3 is: 132.650993

Note that the names of the variables in the overlay section can be different in the two rou­
tines. Their sizes and types, however, should be the same.

7.7.5 Data Sharing Between FORTRAN and C

In FORTRAN, variables are declared external by placing them in a common block. A
common block declaration creates an overlay data section. To communicate with a C pro­
gram, the C program must create an overlay section with the same name. If you compile
with leom/ee, you can create an overlay section simply by defining an external variable. If
you compile with Ibin/ee, you must use the special #attribute[section] syntax, as described
in Section 3.16.6. For example:

The FORTRAN program is

COMMON /XVAR/ X
INTEGER*4 X

7-32 Cross-Language Communication

The Icorn/cc declaration is:

int xvar;

The Ibin/cc declaration is:

int xvar Hattribute[section(xvar)];

Note that the C declaration corresponds to the name of the common block, not to the
name of the variable in the common block.

If the FORTRAN common block contains more than one external variable, the C source
file should define an external structure with the same name as the common block. The
fields of the structure should correspond to the variables in the common block. For exam­
ple, consider the following FORTRAN and C declarations.

Here are the declarations in the FORTRAN source file:

COMMON /CNAME/IFIELD,RFIELD
INTEGER*4 IFIELD
REAL RFIELD

Here is Icorn/cc version of the declaration:

struct {
int ifield;
float rfield;

} cname;

Here is Ibin/cc version of the declaration:

struct {
int ifield;
float rfield;

} cname Hattribute[section(cname)];

Note that the variable is declared as cname and not CNAME in the C programs. This is
because all FORTRAN global names are exported to the linker in lowercase.

The example below illustrates this data-sharing mechanism. The C routine calls a FOR­
TRAN subroutine that evaluates the natural log of a number. The number and the log of
the number are global variables that can be accessed by both routines.

The FORTRAN routine is:

SUBROUTINE GET LOG
REAL*4 NUM, LOG OF NUM
COMMON /GLOBAL_VARS/ NUM, LOG_OF_NUM

LOG_OF_NUM = LOG(NUM)

END

Cross-Language Communication 7-33

The Icorn/cc version of the program is:

/* Program name is get log c". To execute this program,
* you must also obtain the FORTRAN program named "get log f".
* After compiling get log c and get log f, you must bInd -
* them together. - - --
*/

Hinclude <stdio.h>

struct S {
float cnum;
float clog of num;
} global_vars;;;; { 1. 0 '0 0.0 };

int main(void)
{

extern void get_log(void);

printf("Number\t\t\tNatural Log of Number\n\n");
while (global vars.cnum++ < 10)
{ -

}
}

get logO;
printf("%f\t\t\t%f\n", global vars.cnum,

global_vars.clog_of_num);

The Ibin/cc version of the program is:

/* Program name is get log c". To execute this program,
* you must also obtain the FORTRAN program named "get log f".
* After compiling get log c and get log f, you must bInd -
* them together. - - --
*/

Hinclude <stdio.h>

struct S {
float cnum;
float clog of num;
} global_vars-Hattribute[section(global_vars)]

{ 1.0, 0.0 };

int main(void)
{

extern void get_log(void);

printf("Number\t\t\tNatural Log of Number\n\n");
while (global vars.cnum++ < 10)
{ -

}

get log 0 ;
printf("%f\t\t\t%f\n", global vars.cnum,

global_vars.clog_of_num);

7-34 Cross-Language Communication

If we compile, bind, and execute, the program produces the following results:

Number

2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.000000

7.8 System Service Routines

Log of Number

0.693147
1.098612
1. 386294
1.609438
1. 791759
1.945910
2.079442
2.197225
2.302585

System routines provide a variety of services, including direct manipulation of the display,
error handling, interprocess communication, and general input and output. These routines
are described in the Domain/OS Call Reference manual and the Programming With Do­
main/OS Calls manual.

The system routines follow the standard calling conventions described earlier in this chap­
ter. You should treat them like Pascal routines when passing arguments and variables.

7.8.1 Insert Files

There are a number of header files distributed with the operating system and language
software. A header file defines constants and type definitions used by the system service
routines, as well as declarations of the system service routines themselves.

Each system component has an associated header file. For example, there is a header file
for serial 110, for touchpad manipulation, and for error reporting. All header files are dis­
tributed in the directory /usr/include. You can include a header file by specifying the full
pathname enclosed in double quotes are by enclosing the filename in angle brackets:

#include "/usr/include/ component_name. h"

or

#include <component_name.h>

where component_name is one of the header files listed in the Domain/OS Call Reference
manual. Note that all header filenames end with a .h suffix.

The example below shows the files needed for a C program that uses the the system I/O
routines and system error-handling routines:

#include <base.h>
#include <streams.h>
#include <error.h>

Cross-Language Communication 7-35

Always include the header file <base.h> first, since some of the other system header files
rely on the definitions in this file.

7.8.2 Returned Status Code

- Most system routines return a status code as a value of the system's STATUS_$T type.
The status code indicates whether the routine completed successfully. The value of the
status code is STATUS_$OK (defined as zero in base. h) for successful completion, posi­
tive for error-level failure, and negative to indicate a warning-level error. You should
check the value of the status code after each system call to find out if errors occurred.

Every nonzero status code is associated with descriptive error text. To analyze the status
code and retrieve the text, use the error handling routines described in the Programming
with Domain/OS Calls manual.

7.8.3 Linking and Execution

The system service routines are included in preinstalled, shared libraries. References to
identifiers in these libraries are resolved at execution time. Therefore, you do not need to
specify any additional files when compiling or binding a program that calls system service
routines. For more information about the linker, refer to Domain/OS Programming Envi­
ronment Reference.

-------88-------

7-36 Cross-Language Communication

Chapter 8

Input and Output

Input and output are not built-in features of the C language. Instead, C comes with a
standard run-time library that covers I/O functions and other operations. In addition to
the standard run-time library, there is the UNIX run-time library, which enables you to
perform I/O at a lower level, and the Domain/OS system library, which enables you to
perform I/O at the lowest level.

Altogether, there are three types of I/O, organized hierarchically. Each higher-level
function maps onto one or more lower-level functions, as shown in Figure 8-1.

Standard 1/0

UNIX I/O

DomainlOS System Calls

1/0 Devices

Figure 8-1. Hierarchy of I/O Libraries

Input and Output 8-1

Ultimately. all I/O is performed through Domain/OS system calls. The lower levels give you
more flexibility, but they are more difficult to use and are not portable. All of the
functions described in this chapter are available in all Domain/OS environments. Briefly.
the three types of I/O are:

Standard I/O Functions
The standard C I/O library (clib) enables you to open and close files.
and to read and write data in a variety of formats. These functions
provide automatic buffering by default. but you can override this
mechanism. In addition to file I/O functions. the standard library also
includes several functions for performing I/O to default input and
output devices. The standard I/O functions are the most portable.
They are implemented in most C libraries regardless of the operating
system.

UNIX I/O Functions
For users writing UNIX applications, these functions enable you to
access files and devices via UNIX-compatible system calls. These
functions offer many of the same capabilities as the standard I/O
functions, but without buffering. In addition. the UNIX calls give you
more control in assigning protection attributes to files.

Domain/OS System Calls
At the lowest level, you can access the Domain/OS operating system
directly. These calls are more complex than the other two groups and
they do not provide any portability. On the other hand, they offer
some features that are not available with the other functions. You
should use these calls only if portability is not an issue. In particular,
you should use the Domain/OS system calls to access mailboxes.
perform GPIO operations on peripheral devices, and access files that
have a system-defined structure.

This chapter primarily describes performing I/O operations using the standard I/O library.
For specific information about the standard I/O functions and the UNIX I/O function see
the SysV Programmer's Reference and the BSD Programmer's Reference manuals. For
information about Domain system calls, refer to the Programming with Domain/OS Calls
manual.

8.1 General Remarks

The next few sections provide an overview of many of the 110 concepts that are common
to both the standard buffered 110 library and the UNIX unbuffered library.

8-2 Input and Output

8.1.1 File Types

The Domain operating system supports many types of files, including the following:

• Headerless ASCII files

• Fixed-length record files

• Variable-length record files

• User-written type-manager files (extensible streams)

• No defined-record structure files

The Domain/OS system calls enable you to create and access any of these types. With the
standard I/O library and UNIX functions, however, you can access only ASCII files. These
are files that consist a string of ASCII characters. You can create your own records within
such a file by entering a delimiting character, but there is no predefined record structure.
Also, you can read and write bytes in numeric rather than string formats, but it is your
responsibility to keep track of how data is represented.

8.1.2 Streams and File Descriptors

C makes no distinction between devices such as a terminal or tape drive and logical files
located on a disk. In all cases, I/O is performed through streams that are associated with
the files or devices. A stream consists of an ordered series of bytes. You can think of it
as a 1-dimensional array of characters, as shown in Figure 8-2. Reading or writing to a
file or device involves reading data from the stream or writing data onto the stream.

C PROGRAM

FILE

Figure 8-2. C Programs Access Data on Files Through Streams

Input and Output 8-3

To perform I/O operations, you must associate a stream with a file or device. For the
buffered I/O operations (the ones in the standard I/O library), you do this by declaring a
pointer to a structure type called FILE. The FILE structure, which is defined in the
stdio.h header file, contains several fields to hold such information as the file's name, its
access mode, and a pointer to the next character in the stream.

The FILE structures proVide the operating system with bookkeeping information, but your
only means of access to the stream is the pointer to the FILE structure (called a file
pointer). The file pointer, which you must declare in your program, holds the stream
identifier returned by the fopenO function. You use the file pointer to read from, write
to, or close the stream. A program may have more than one stream open simultaneously,
although each implementation imposes a limit on the number of concurrent streams. The
limit for Domain/OS systems is 31.

For Unix unbuffered functions, you must also associate a stream with a file, but instead of
identifying the file by a pointer to the stream, you identify it with a file descriptor. A file
descriptor is a unique integer that identifies a particular stream. It is a component of the
FILE structure. You can obtain a file descriptor with the openO function.

Even if you open a file with a standard I/O function, it is possible to extract the file
descriptor and access the file through UNIX functions. Conversely, you can open a file
with UNIX functions and then access it with standard I/O functions. You should not
however, mix UNIX read and write operations with standard I/O read and write
operations.

8.2 The Standard I/O Library

The standard, buffered I/O library contains nearly 30 functions for accessing files and
devices. We have divided the functions into two groups:

1) Those that access standard streams.

2) Those that access user-defined files and devices.

Before describing the specific functions, however, we discuss the buffering mechanism.

8.2.1 Buffering

Compared to memory, secondary storage devices such as disk drives and tape drives are
extremely slow. For most programs that involve I/O, the time taken to access these
devices overshadows the time the CPU takes to perform operations. It is extremely
important, therefore, to reduce the number of physical read and write operations as much
as possible. Buffering is the simplest way to do this.

A buffer is an area where data is temporarily stored before being sent to its ultimate
destination. Buffering provides more efficient data transfer because it enables the
operating system to minimize accesses to I/O devices.

8-4 Input and Output

All operating systems use buffers to read from and write to 110 devices. That is, the
operating system only accesses 110 devices in fixed-size chunks, called blocks. Typically,
a block is 512 or 1024 bytes. In Domain/OS systems, blocks are 1024 bytes long by
default. This means that even if you want to read only one character from a file, the
operating system reads the entire block in which the character is located. For a single
read operation, this isn't very efficient, but suppose you want to read 1000 characters from
a file. If 110 were unbuffered, the system would perform 1000 disk seek and read
operations. With buffered I/O, on the other hand, the system reads an entire block into
memory and then fetches each character from memory when necessary. This saves 999
I/O operations.

The C run-time library contains an additional layer of buffering, which comes in two
forms: line buffering and block buffering.

In line buffering, the system stores characters until a newline character is encountered, or
until the buffer is filled, and then sends the entire line to the operating system to be
processed. This is what happens, for example, when you read data from the terminal.
The data is saved in a buffer until you enter a newline character. At that point, the
entire line is sent to the program.

In block buffering, the system stores characters until a block is filled, and then passes the
entire block to the operating system. Note that these are not the same blocks used by the
operating system. To distinguish between the two levels of buffering, we use the term
user-level blocks to refer to blocks used by the standard I/O library, and kernel-level
blocks for blocks used by the operating system.

By default, all I/O streams that point to a file are block buffered. Streams that point to
your terminal (stdin and stdout) are line-buffered.

The buffered I/O library package includes a buffer manager that keeps buffers in memory
as long as possible. So if you access the same portion of a stream more than once, there is
a good chance that the system can avoid accessing the I/O device multiple times. Note,
however, that this can create problems if the file is being shared by more than one
process. For inter-process synchronization, you need to use UNIX unbuffered functions or
Domain/OS system calls.

In both line buffering and block buffering, you can explicitly direct the system to flush the
buffer at any time (with the ff1ushO function), sending whatever data is in the buffer to its
destination.

Although line buffering and block buffering are more efficient than processing each
character individually, they are unsatisfactory if you want each character to be processed as
soon as it is input or output. For example, you may want to process characters as they
are typed rather than waiting for a newline to be entered. C allows you to tune the
buffering mechanism by changing the default size of the buffer. You can set the size to
zero to turn buffering off entirely. Alternatively, you can use the UNIX unbuffered
functions or Domain/OS system calls.

Input and Output 8-5

There are several functions in the standard library that allow you to change the buffering
parameters of a stream:

void setbuf(FILE *stream, char *buf)
Assigns a specific buffer to a stream rather than using the default
buffer. If you pass a null pointer as the buffer, then the stream is
unbuffered.

void setbuffer(FILE *stream, char *buf, int size)
(BSD library only) Same as setbufO, but allows you to set the size of
the buffer.

void setIinebuffer(FILE *stream)
(BSD library only) Changes stdin or stdout from block-buffered to
line-buffered or unbuffered.

void setvbuf(FILE *stream, char *buf, int type, int size)
(SysV library only) Assigns a specific buffer to a stream. You may
specify block-buffering, line-buffering, or no buffering. If you specify
block-buffering, you may also specify the size of the block.

In most instances, buffering is invisible. The standard I/O functions make sure that all data
is processed as if it were being handled immediately even though it is not. So long as you
do not mix buffered calls with unbuffered calls, you should have no problem.

8.2.2 The <stdio.h> Header File

To use any of the standard I/O functions. you should include the stdio.h header file. This
file contains:

• Prototype declarations for all the I/O functions.

• Declaration of the FILE structure.

• Several useful macro constants. including stdin. stdout. stderr, EOF, and NULL.

EOF is the value returned by many functions when the system reaches the end-of-file
marker. NULL is the name for a null pointer.

8-6 Input and Output

8.2.3 Macros and Functions

A number of the standard I/O functions are implemented as macros rather than functions.
Specifically, the macros are:

• geteO

• geteharO

• puteO

• puteharO

• ferrorO

• clearerrO

• feofO

• filenoO

Because they are macros, you should not include side effect operators in the arguments
when you invoke them. For example,

putc(c, *fp++)

causes erroneous results. For geteO and puteO, you can get around this problem by using
fgeteO and fputeO, which perform the same operation, but are implemented as true
functions.

8.2.4 Error Handling

All standard I/O functions return either NULL or EOF for errors. Both names are defined
in <stdio.h>, NULL as zero and EOF as -1. Some functions also return EOF when an
end-of-file condition is encountered. There are also two flags in the FILE structure that
indicate whether an error or end-of-file has occurred for the stream. Because EOF is
returned for both errors and end-of-files, it is often difficult to tell which of these
conditions has occurred. Moreover, some functions, such as getwO, may return -1 as a
valid return value.

To find out for sure whether an end-of-file has occurred, you can call feofO, which
checks the end-of-file flag and returns 1 if an end-of-file has occurred. Similarly, the
ferrorO function checks the error flag. Neither of these functions, however, resets the
flags. To reset the flags, use the clearerrO function. If either flag is set, the system will
prevent you from performing further operations on the stream.

Input and Output 8-7

To summarize, the error-handling routines for standard I/O functions are:

void c1earerr(FILE *stream)
Resets the error and end-of-file indicators for the specified stream.

int feof(FILE *stream)
Checks whether an end-of-file was encountered during a previous
read operation.

int ferror(FILE *stream)
Returns an integer error code (the value of errno) if an error
occurred while reading from or writing to a stream.

The following function checks the error and end-of-file flags for a specified stream and
returns one of four values based on the results. The c1earerrO function sets both flags
equal to zero.

/* If neither flag is set, stat will equal zero.
* If error is set, but not eof, stat equals 1.
* If eof is set, but not error, stat equals 2.
* If both flags are set, stat equals 3.
*/

#include <stdio.h>
#define EOF FLAG 1
#define ERR=FLAG 2

char stream stat(FILE *fp)
{ -

}

char stat = 0;

if (ferror(fp »
stat 1= ERR_FLAG;

if (feof(fp »
stat 1= EOF_FLAG;

clearerr(fp);
return stat;

8.2.5 File Position Indicators

One of the fields in each FILE structure is a file position indicator that points to the byte
where the next character will be read from or written to. As you read from and write to
the file, the operating system adjusts the file position indicator to point to the next byte.
Although you can't directly access the file position indicator (at least not in a portable
fashion), you can fetch and change its value through library functions (fseekO and ftellO,
thus enabling you to access a stream in non-serial order.

Do not confuse the file pointer with the file position indicator. The file pointer identifies
an open stream connected to a file or device. The file position indicator refers to a
specific byte position within a stream.

8.2.6 1/0 to Standard Devices

There are three streams that are automatically open: stdin, stdout, and stderr. All three
point to your pad by default. The streams stdin and stdout are both line-buffered. The

8-8 Input and Output

stderr stream, which is where error messages are output, is not buffered. At the
command level, you can redirect the input and output by using the redirection commands
or the pipe facility. To redirect the standard streams within programs, use the freopenO
function.

The following is a list of all routines that perform input and output to stdin, stdout, and
stderr.

int getchar(void) Reads the next character from the standard input stream. getcharO is
identical to getc(stdin).

char *gets(char *string)
Reads characters from stdin until a newline or end-of-file is
encountered.

int printf(char *format, ...)
Outputs one or more values according to user-defined formatting
rules.

int putchar(char c)
Outputs a single character to the standard output stream. putcharO is
identical to putc(stdout).

int puts(char *string)
Outputs a string of characters to stdout. It appends a newline
character to the string.

int scanf(char *format, ...)
Reads one or more values from stdin, interpreting each according to
user-defined formatting rules.

The BSD Programmer's Reference and the SysV Programmer's Reference manuals describe
each of these functions in detail. The following example, which reads user input, and then
writes output, uses several of these routines.

/* Program name is "standard_io_example". */
#include <stdio.h>
#define RETURN 10 /* ASCII value of linefeed character */

int maine void
{

}

int age, i = 0;
static char name [30] , profession[30] , ageyrompt[]= "Age: ";
static char prof_prompt[] = "Profession: ";

printf("Name: ");
gets(name);
puts(age prompt);
scanf ("%d", &age);
getchar(); /* Flush linefeed character from buffer. */
printf ("%s", profyrompt);
while«(profession[i++]=getchar(» != RETURN) && (i < 30»

,
profession[i] = '\0';

Input and Output 8-9

A typical execution of the program, with user input, is:

Name: John Doe
Age:
37
Profession: Tech Writer

The getsO function reads characters from stdin until a linefeed character is encountered.
Although it reads the linefeed character, it replaces it with a null character when it stores
the string in memory. The putsO function automatically outputs a linefeed following the
string. The scanfO function takes an address of a variable as its argument. If you use the
%s format, scanfO automatically appends a null character to the input string. scanfO does
not read the linefeed character at the end of the input. As a result, the first character in
the input buffer following a scanfO is often a linefeed character. You can discard this
character by invoking getcharO once, as we did.

Unlike putsO, printfO does not output a linefeed after each string. The getcharO
function reads successive characters from stdin. If an error or end-of-file occurs, it
returns EOF. In our program, we call getcharO until it reads a linefeed character (ASCII
value 10). We then append a null character to make it a true string.

8.2.7 110 to Files

For each of the functions in the previous section, there is a corresponding function that is
exactly the same except that it takes one additional argument, a pointer to a file. There
are also additional functions for opening and closing files, listed below (they are listed
alphabetically by function name).

int fclose(FILE *stream)
Closes a stream.

FILE *fdopen(int filedes, char *type)
Associates a stream with a file descriptor. This enables you to open a
file with UNIX functions and then access it with standard I/O
functions.

int ff1ush(FILE *stream)
Flushes a buffer by writing out everything that has been buffered for
the specified stream. The stream remains open.

int fgetc(FILE *stream)

8-10 Input and Output

Same as getcO, but it is implemented as a function rather than a
macro.

char *fgets(char *s, int n, FILE *stream)
Reads a string from a specified input stream. Unlike getsO, fgetsO
enables you to specify a maximum number of characters to read and
includes the terminating newline in the string.

int fileno(FILE *stream)
Returns the file descriptor associated with a specified stream. This
enables you to open a file with standard I/O functions, and then
access it with UNIX functions.

FILE *fopen(char *fiIename, char *type)
Opens and possibly creates a file, and associates a stream with it.
fopenO takes two arguments: a pathname identifying the file, and a
mode specification that determines what types of operations may be
performed on the file. See Section 8.2.8 for more information about
this function.

int fprintf(FILE *stream, char *format, ...)
Exactly like printfO, except that output is to a specified file.

int fputc(int c, FILE *stream)
Writes a character to a stream. This is the same as putcO, but it is
implemented as a function rather than a macro.

int fputs(char *s, FILE *stream)
Writes a string to a stream. This is like puts 0, except that it does not
append a newline to the stream.

int fread(void *ptr, unsigned size, unsigned nitems, FILE *stream)
Reads a block of binary data from a stream. The arguments specify
the size of the block and where it should be stored.

FILE *freopen(FILE *stream)
Closes a specified stream, and then reopens it for a new file. This is
useful for recycling a stream, particularly stdin, stdout, and stderr.

int fscanf(FILE *stream, char *format, ...)
Same as scanfO, except that data is read from a specified file.

int fseek(FILE *stream, long offset, int ptrname)
Positions a stream marker. This function enables you to perform
random access on a file.

long ftell(FILE *stream)
Returns the position of a stream marker.

Input and Output 8-11

int fwrite(void ·ptr, unsigned size, unsigned nitems, FILE ·stream)
Writes a block of binary data from a specified buffer to a specified
stream.

int getc(FILE ·stream)
Reads a character from a specified stream.

int getw(FILE ·stream)
Reads the next word (four bytes) from a specified stream.

int putc(char c, FILE ·stream)
Writes a character to a specified stream.

int putw(int w, FILE ·stream)
Writes a word (four bytes) to a specified stream.

void rewind(FILE ·stream)
Sets the file position indicator to the beginning of the file for a
specified stream.

int ungetc(int c, FILE ·stream)
Pushes a character onto a stream. The next call to getcO returns this
character.

8.2.8 Opening and Closing a File

Before you can read from or write to a file, you must open it with the fopenO function.
fopenO takes two arguments-the first is the file name and the second is the access mode.
The text stream modes are shown in Table 8-1. Table 8-2 summarizes the properties of
the fopenO modes.

When you open a file with one of the + modes, you may read and write to the file.
However you cannot write and then read without an intervening fseekO or rewindO call.
Likewise, you may not read and then write without an intervening fseekO or rewindO call,
unless the write operation encounters an end-of-file.

If you use the append mode (a), it is impossible to overwrite existing data in the file.
Whenever you write to the file, the data is appended at the end regardless of the stream
marker's current position.

8-12 Input and Output

Mode

"r"

"w"

"a"

"r+"

"w+"

"a+"

Table 8-1. jopenO Text Modes

Description

Open an existing text file for reading. The system in­
itializes the file position indicator to point to the begin­
ning of the file.

Create a new text file for writing. If the file already ex­
ists, the system will truncate it to zero length, thereby
destroying the file's previous contents. The file posi­
tion indicator is initially set to the beginning of the file.

Open an existing text file in append mode. You can
write only at the end-of-file position. Even if you ex­
plicitly move the file position indicator, the system will
reassign the inidicator to point to the end of the file
prior to any write operation.

Open an existing text file for reading and writing. The
file position indicator is initially set to the beginning of
the file.

Create a new text file for reading and writing. If the
file already exists, the system will truncate it to zero
length, thereby destroy the file's previous contents.

Open an existing file or create a new one in append
mode. You can read data anywhere in the file, but you
can only write data at the end-of-file marker.

The fopenO function returns a file pointer that you can use to access the file later in the
program. The following function opens a text file called test with read access.

#include <stdio.h>

FILE *open test(void);
{ -

/* Returns a pointer to a FILE */
/* struct */

}

FILE *fp;

fp = fopen("test", "r");
if (fp == NULL)

fprintf(stderr, "Error opening file test\n");
return fp;

Note how the file pointer fp is declared as a pointer to FILE. The fopen 0 function
returns a null pointer (NULL) if an error occurs. If successful, fopen 0 returns a

Input and Output 8-13

non-zero file pointer. The fprintfO function is exactly like printfO, except that it takes
an extra argument indicating which stream the output should be sent to. In this case, we
send the message to the standard I/O stream stderr. By default, this stream usually points
to your terminal.

Table 8-2. File and Stream Properties of fopenO Modes

Mode

Property r w a r+ w+ a+

File must exist before open * *
Truncates file to zero length * *
Can read from stream * * * *
Can write to stream * * * * *
Can write to stream only at end * *

We have written the opeo_testO function more verbosely than is usual. Typically, the
error test is combined with the file pointer assignment:

if «fp = fopen("test", "r" » == NULL)
fprintf(stderr, "Error opening file test\n");

The opeo_testO function is a little too specific to be useful since it can only open one
file, called test, and only with read-only access. A more useful function, shown below,
can open any file with any mode.

#include <stdio.h>

FILE *open file(char *file_name, char *access_mode)
{ -

FILE *fp;
if «fp = fopen(file name, access mode » == NULL)

fprintf(stderr, "Error opening file %s with access mode\
%s\n" , file name, access mode);

return fp; -

Our opeo_fileO function is essentially the same as fopeoO, except that it prints an error
message if the file cannot be opened.

8-14 Input and Output

To open test from mainO, you could write:

#include <stdio.h>

mainO
{

}

extern FILE *open_file();

if «open file ("test", "r"»
exit (1);-

NULL)

Note that the stdio.h header file is included in both routines. You can include it in any
number of different source files without causing conflicts.

8.2.8.1 Closing a File

To close a file, you need to use the fcloseO function:

fclose (fp);

Closing a file frees up the FILE structure that fp points to so that the operating system can
use the structure for a different file. It also flushes any buffers associated with the stream.
Domain/OS has a limit on the number of streams that can be open at once (128), so it's a
good idea to close files when you're done with them. In any event, the system
automatically closes all open streams when the program terminates normally. Domain/OS
will close open files even when a program aborts abnormally, but it is more efficient for
you to close the files yourself.

Bug Alert: Opening a File

In the statement,

if «fp = fopen("test","r" » == NULL)
fprintf (stderr, "Error opening fi Ie test \n");

the parentheses around,

fp = fopen("test", "r")

are necessary because == has higher precedence thaIlj =. Without the parenthe­
ses, fp gets assigned zero or one, depending on whether the result of fopenO is a
null pointer or a valid pointer. This is a common programming mistake.

Input and Output 8-15

8.2.9 Reading and Writing Data

Once you have opened a file, you use the file pointer to perform read and write
operations. The standard 110 library supports three degrees of 110 granularity. That is,
you can perform 1/0 operations on three different sizes of objects. The three degrees of
granularity are as follows:

• One character at a time

• One line at a time

• One block at a time

Each of these methods has some pros and cons. In the following sections, we show three
ways to write a simple function that copies the contents of one file to another. Each uses
a different degree of granularity.

One rule that applies to all levels of 110 is that you cannot read from a stream and then
write to it without an intervening call to fseek 0, rewind 0, or fflush O. The same rule
holds for switching from write mode to read mode. These three functions are the only 110
functions that flush the buffers without disconnecting the stream.

8.2.9.1 One Character at a Time

There are four functions that read and write one character to a stream:

getcO A macro that reads one character from a stream.

fgetcO Same as getcO, but implemented as a function.

putcO A macro that writes one character to a stream.

fputcO Same as putcO, but implemented as a function.

Note that getcO and putcO are usually implemented as macros whereas fgetcO and
fputcO are guaranteed to be functions. Because they are implemented as macros, putcO
and getcO usually run much faster. In fact, on Apollo computers, they are almost twice as
fast as fgetcO and fputcO. Because they are macros, however, they are susceptible to
side effect problems (see Section 8.2.3). For example, the following is a dangerous call
that may not work as expected:

putc('x', fp[j++]);

If an argument contains side effect operators, you should use fgetcO or fputcO, which are
guaranteed to be implemented as functions.

The following example uses getcO and putcO to copy one file to another.

8-16 Input and Output

#include <stdio.h>
#define FAIL 0
#define SUCCESS 1

int copyfile(char *infile, char *outfile)
{

}

FILE *fpl, *fp2;

if «fpl = fopen(infile, "r" » == NULL)
return FAIL;

if « fp2=fopen (outfile, "w" » == NULL)
{

}

fclose(fpl);
return FAIL;

while (!feof(fpl »
putc(getc(fpl), fp2);

fclose (fpl);
fclose (fp2);
return SUCCESS;

The getcO function gets the next character from the specified stream and then moves the
file position indicator one position. Successive calls to getcO read each character in a
stream. The feofO function returns a nonzero value if the stream's end-of-file flag is set.

8.2.9.2 One Line at a Time

Another way to write this function is to read and write lines instead of characters. There
are two line-oriented I/O functions-fgetsO and fputsO. The prototype for fgetsO is:

char *fgets(char *s, int n, FILE stream);

The three arguments have the following meanings:

s

n

stream

A pointer to the first element of an array to which characters are
written.

An integer representing the maximum number of characters to read.

The stream from which to read.

fgetsO reads characters until it reaches a newline, an end-of-file, or the maximum
number of characters specified. fgetsO automatically inserts a null character after the last
character written to the array. This is why, in the following copyfileO function, we specify
the maximum to be one less than the array size. fgetsO returns NULL when it reaches the
end-of-file. Otherwise, it returns the first argument. The fputsO function writes the array
identified by the first argument to the stream identified by the second argument. The
prototype for fputsO is:

char *fputs(char *s, int n, FILE stream);

Input and Output 8-17

The three arguments have the following meanings:

s

n

stream

A pointer to the first element of an array from which characters are
read.

An integer representing the maximum number of characters to write.

The stream to which characters are written.

One point worth mentioning is the difference between fgetsO and getsO (the function that
reads lines from stdin). Both functions append a null character after the last character
written. However, getsO does not write the terminating newline character to the input
array. fgetsO does include the terminating newline character. Also, fgetsO allows you to
specify a maximum number of characters to read, whereas getsO reads characters
indefinitely until it encounters a newline or end-of-file. There is a similar difference
between fputsO and ,putsO. putsO appends a newline to the end of each string it writes,
but fputsO does not.

The following function illustrates how you might implement copyfiJeO using the
line-oriented functions.

#include <stdio.h>

#define FAIL a
#define SUCCESS 1
#define LINESIZE 100

int copyfile(char *infile, char *outfile)
{

}

FILE *fp1, *fp2;
char line[LINESIZE];

if «fp1 = fopen(infile, "r" » == NULL)
return FAIL;

if «fp2 = fopen(outfile, "w" » == NULL)
{

}

fclose (fp1);
return FAIL;

while (fgets(line, LINESIZE-1, fp1) != NULL)
fputs(line, fp2);

fclose (fp1);
fclose(fp2);
return SUCCESS;

You might think that the copyfiJe 0 version that reads and writes lines would be faster than
the version that reads and writes characters because it requires fewer function calls.
Actually, though, the version using getcO and putcO is significantly faster. This is because
Domain/OS systems implement fgetsO and fputsO using fputcO and fgetcO. Since these
are functions rather than macros, they tend to run more slowly.

8-18 Input and Output

8.2.9.3 ODe Block at a Time

In addition to character and line granularity, you can also access data in lumps called
blocks. Note that these are user-level blocks, not kernel-level blocks. You can think of a
block as an array. When you read or write a block, you need to specify the number of
elements in the block and the size of each element. The two block I/O functions are
freadO and fwriteO. The prototype for fread() is

int fread(void *ptr, int size, int nmemb, FILE *stream);

The arguments represent the following data:

ptr A pointer to an array in which to store the data.

size The size of each element in the array.

nmemb The number of elements to read.

stream The file pointer.

fread() returns the number of elements actually read. This should be the same as the
third argument unless an error occurs or an end-of-file condition is encountered.

The fwrite() function is the mirror-image of freadO. It takes the same arguments, but
instead of reading elements from the stream to the array, it writes elements from the array
to the stream.

The following function shows how you might implement copyfileO using the block I/O
functions. Note that we test for an end-of-file condition by comparing the actual number
of elements read (the value returned from freadO) with the number specified in the
argument list. If they are different, it means that either an end-of-file or an error
condition occurred. We use the ferror() function to find out which of the two possible
events happened. If an error occurred, we print an error message and return an error
code. Otherwise we return a success code. For the final fwrite() function we use the
value of Dum_read as the number of elements to write, since it is less than BLOCKSIZE.

Input and Output 8-19

#include <stdio.h>
#define FAIL 0
#define SUCCESS 1
#define BLOCKSIZE 512
typedef char DATA;

int copyfile(char *infile, char *outfile)
{

}

FILE *fp1,*fp2;
DATA block[BLOCKSIZE];
int num_read;

if «fp1 = fopen(infile, "r" » == NULL)
{

}

printf ("Error opening file %s for input. \n", infile);
return FAIL;

if «fp2 = fopen(outfile, "w" » == NULL)
{

}

printf ("Error opening file %s for output. \n", outfile);
fclose (fp1);
return FAIL;

while «num read = fread(block, sizeof(DATA) ,
BLOCKSIZE, fpl » == BLOCKSIZE)

fwrite(block, sizeof(DATA) , num_read, fp2);

fwrite(block, sizeof(DATA) , num_read, fp2);
fclose (fp1);
fclose(fp2);

if (ferror(fp1 »
{

}

printf("Error reading file %s\n", infile);
return FAIL;

return SUCCESS;

Like fputsO and fgetsO, the block I/O functions are usually implemented using fputeO
and fgeteO functions, so they are not as efficient as the macros puteO and geteO. Note
also that these block sizes are independent of the blocks used for buffering. The buffer
size, for instance, might be 1024 bytes. If the block size specified in a read operation is
only 512 bytes, the operating system will still fetch 1024 bytes from the disk and store
them in memory. Only the first 512 bytes, however, will be made available to the freadO
function. On the next freadO call, the operating system will fetch the remaining 512 bytes
from memory rather than performing another disk access. The block sizes in freadO and
fwriteO functions, therefore, do not affect the number of device I/O operations
performed.

8-20 Input and Output

8.2. 10 Random Access

The previous examples accessed files sequentially, beginning with the first byte and
accessing each successive byte in order. For a function such as copyfileO, this is
reasonable since you need to read and write each byte anyway. In this case, it's just as
fast to access them sequentially as any other way.

For many applications, however, you need to access particular bytes in the middle of the
file. In these cases, it is more efficient to use C's two random access functions-fseekO
and ftellO.

The fseekO function moves the file position indicator to a specified position in a stream.
The prototype for fseekO is:

int fseek(FILE *stream, long int offset, int whence);

The three arguments are:

stream A file pointer.

offset An offset measured in characters (can be positive or negative).

whence The starting position from which to count the offset.

There are three choices for the whence argument, all of which are designated by names
defined in stdio.h:

SEEK SET The beginning of the file.

SEEK CUR The current position of the file position indicator.

The end-of-file position.

For example, the statement,

stat = fseek(fp, 10, SEEK_SET)

moves the file position indicator to character 10 of the stream. This will be the next
character read or written. Note that streams, like arrays, start at the zero position, so
character 10 is actually the 11th character in the stream.

The value returned by fseekO is zero if the request is legal. If the request is illegal,
fseekO returns a nonzero value. This can happen for a variety of reasons. For example,
the following is illegal if fp is opened for read-only access because it attempts to move the
file position indicator beyond the end-of-file position:

stat = fseek(fp, 1, SEEK_END)

Obviously, if SEEK_END is used with read-only files, the offset value must be less than or
equal to zero. Likewise, if SEEK_SET is used, the offset value must be greater than or
equal to zero.

Input and Output 8-21

The ftell 0 function takes just one argument, which is a file pointer, and returns the
current position of the file position indicator. ftell 0 is used primarily to return to a
specified file position after performing one or more I/O operations. For example, in most
text editor programs, there is a command that allows the user to search for a specified
character string. If the search fails, the cursor (and file position indicator) should return
to its position prior to the search. This might be implemented as follows:

cur pos = ftell(fp);
if (search(string) == FAIL)

fseek(fp, cur-pos, SEEK_SET);

Note that the position returned by ftellO is measured from the beginning of the file.

The example in the next section illustrates random access, as well as some of the other I/O
topics discussed in this chapter.

8.2.10.1 Printing a File in Sorted Order

Suppose you have a large data file composed of records. Let's assume that the file
contains one thousand records, where each record is a VITALSTAT structure, as declared
below in a file called vitalstat.h:

#define NAME LEN 19
typedef char-NAME[NAME LEN] ;
typedef struct date { -

unsigned day: 5,

DATE;

month: 5,
year: 11;

typedef struct vitalstat
{

NAME vs name;
char vs-ssnum[II];
DATE vs=:date;
char vs jersey;

} VITALSTAT;

Suppose further that the records are arranged randomly, but you want to print them
alphabetically by the vs_name field. First, you need to sort the records. We can do this
by creating an index for each record.

The following function reads the key field (vs_name) of every record, and stores them in
an array of structures that contain just two fields-the record id (index) and the key.

We assume that the data file has already been opened, so that the function is passed a file
pointer. The include file recs.h contains the following:

#include "vitalstat.h"
#include <stdio.h>
#define MAX REC NUM 1000
typedef struct T

8-22 Input and Output

int index;
NAME key;

} INDEX;

/* Reads up to max rec num records from a file and stores the
* key field of each record in an index array. Returns the

* number of key fields stored.
*/

'include "recs.h"

int get records(FILE *data file, INDEX names_index,
- int max_rec_num)

{

}

int offset = 0, counter = 0;

for (k = 0; !feof(data_file) && counter < max_rec_num; k++)
{

}

fgets(names index[k] .key, NAME LEN, data file);
offset += sizeof(VITALSTAT); - -
if (fseek(data file, offset, SEEK SET) &&

(!feof(data=file ») -
{

}

fprintf(stderr, "Problem accessing file\n");
exit (1);

counter++;

return counter;

The function reads the first NAME_LEN characters of each record using fgetsO and
stores them in the array names_index, then moves the file position indicator to the
beginning of the next record with fseekO. In this way, we avoid reading extraneous parts
of the record. In reality, of course, the I/O buffering mechanism fetches blocks of 1024
characters, so the entire records are read anyway. Within each buffer, however, we need
only access the first field in each record. This saves us memory-to-memory data copying
time, even though we don't save any device-to-memory processing time. For large
records, which span blocks, this approach could also save you device-to-memory
processing time.

The next task is to sort the array of NAMES_INDEX structures. This function, which
makes use of the library function qsortO, is shown below. The return value is a pointer to
an ordered array of NAMES_INDEX structures.

Input and Output 8-23

/* Sort an array of NAMES INDEX structures by the
* name field. There are-index count elements to be
* sorted. Returns a pointer to the sorted array.
*/

#include "recs.h"

void sort index (INDEX names_index, int index_count)
{ -

int j;
static int compare func(); /* Defined in this file. */

/* Assign values to-the index field of each structure.
*/
for (j = 0; j < index count; j++)

names_index[j].index = j;

qsort(names_index, index_count, sizeof(INDEX),
compare_func);

return names_index;

static int compare_func(NAMES_INDEX *p, NAMES INDEX *q)
{

return strcmp(p->name, q->name);
}

The next step is to print out the records in their sorted order. We definitely need to use
fseekO for this function because we need to jump around the file. We can compute the
starting point of each record by multiplying the index value with the size of the
VITALSTAT structure. If each VITALSTAT structure is 40 characters long, for example,
record 50 will start at character 2000. After positioning the file position indicator with
fseekO, we use freadO to read each record. Finally, we print each record with a printfO
call.

/* Print the records in a file in the order
* indicated by the index array.
*/

#include recs.h

void print_indexed_records(FILE *data file, INDEX index[],
int index=count)

{

}

VITALSTAT vs;
int j;

for (j = 0; j <= index_count; j++)
{

}

if (fseek(data file,
sizeof(VITALSTAT) * index[j] . index,
SEEK SET»

exit (1);-
fread(&vs, 1, sizeof(VITALSTAT), data file);
printf("%20s, %hd, %hd, %hd, %12s", vS. name , vs.bdate.day,

vs.bdate.month, vs. bdate. year , vS.ssnum);

8-24 Input and Output

To make this program complete, we need a mainO function that calls these other
functions. We have written mainO so the filename can be passed as an argument.

#include "recs.h"

int maine int argc, *argv[]
{

}

extern int get records();
extern void sort index();
extern int print=indexed_records();

FILE *data file;
static INDEX index [MAX_REC_NUM] ;

if (argc != 2)
{

}

printf("Error: must enter filename\n");
printf("Filename: ");
scanf("%s", filename);

else
filename = argv[l];

if «data file = fopen(filename, "r" » == NULL)
{ -

printf("Error opening file %s.\n", filename);
exit (1);

num recs read = get index(data file, index, MAX REC NUM);
sort index(index, num recs read); - -
print indexed records (-data-file, index, num_recs_read);
exit(-O); - -

8.3 UNIX Unbuffered 110 Functions

Although these functions are called "unbuffered," they do not bypass the disk buffering
that occurs at the lowest levels of the operating system. These functions are called
unbuffered because they do not use the additional layer of buffering employed by the
standard I/O library.

Whereas the standard I/O functions access a stream through a stream pointer, UNIX
unbuffered I/O functions operate through a file descriptor. A file descriptor is an integer
that identifies a channel between a stream and a file or device. A unique file descriptor is
returned whenever you open or create a file. Each process can support up to 20 file
descriptors, numbered 0 through 19. By default the standard devices have the following
file descriptors:

standard device

stdin
stdout
stderr

file descriptor

o
1
2

Input and Output 8-25

The basic UNIX I/O functions are shown in table 8-3.

Function

c1oseO

creatO

IseekO

openO

readO

write 0

unlinkO

Table 8-3. UNIX I/O Functions

What It Does

Closes a file. This function breaks the connection be­
tween a file descriptor and a file. allowing you to reuse
the descriptor.

Creates a new file or re-creates (overwrites) an existing
file. This function enables you to assign specific protec­
tion attributes to a file.

Moves a stream marker. This function is similar to
fseekO. but it uses a file descriptor instead of a stream
pointer.

Opens a file. This function is similar to fopenO. but it
returns a file descriptor instead of a stream pointer.

Reads a block. This function is similar to fread O. but
blocks are unbuffered.

Writes a block. This function is similar to fwriteO. but
blocks are unbuffered.

Deletes a file.

In addition to these functions. there are a number of functions that enable you to access
directory files and change the protection attributes of data files. but these are beyond the
range of this manual. For information about these functions. see the manuals BSD
Programmer's Reference and the SysV Programmer's Reference manuals.

The following example is a file copy function using the UNIX I/O library.

8-26 Input and Output

/* Program name is "unix copy". */
#include <fcntl.h> -
#define BUFSIZE 100

unix copy(char *infile, char *outfile)
{ -

int fdin, fdout, nbuf;
char buf[BUFSIZE] ;

if «fdin=open(infile, 0 RDONLY » -1)

}

{

}

perror ("Error") ;
exit () ;

if «fdout=open(outfile, 0 WRONLY

{

}

perror ("Error");
exi t () ;

O_CREAT, 066 »

while «nbuf = read(fdin, buf, sizeof(buf») > 0)
write(fdout, buf, nbuf);
if (nbuf == -1)

perror ("Error") ;
if (close(infile) == -1 I I close(outfile) -1)

perror ("Error");

-1)

This routine performs the same operation as the file copy functions listed previously using
standard I/O calls. But in this function, we define our own buffering. Data is read in and
written in 100-byte chunks.

8.3.1 UNIX I/O Error-Handling

Like the standard I/O functions, UNIX I/O functions return -lor 0 when an error occurs,
but they do not use the names EOF and NULL. Also, instead of setting flags in the FILE
structure, they use a global variable called errno. This variable is assigned a positive integer
value that represents a specific error message. Chapter 9 lists all the error codes and
messages. After an error has occurred, you check to see which error it is by looking at
the value of errno (errno is defined in <errno.h>, which you must include in the source
file). There is also a function called perror 0 that prints out the message corresponding to
errno's current value. As with the standard I/O flags, you must explicitly reset errno.

-------88-------

Input and Output 8-27

Chapter 9

Diagnostic Messages

This chapter details the error, warning, and informational messages that the C compiler
produces. An error indicates a problem severe enough to prevent the compiler from cre­
ating an executable object file. A warning is less severe than an error; a warning does not
prevent the compiler from creating an executable object file. The warning message tells you
about a potential ambiguity in your program for which the compiler believes it can generate
the correct code. Informational messages are intended to inform you of potential prob­
lems in your program.

The C compiler always outputs error messages; warning messages can be suppressed by
compiling with the -nwarn option. There are four levels of informational messages. You
can select the level you want with the -info option. To suppress all informational mes­
sages, specify -info 0 or -ninfo (this is the default).

When the compiler outputs a diagnostic message, it lists the following information:

• The error, warning, or informational message number. This is an integer symbol­
izing a message. In Section 9.2, we list all messages by number.

• The line number in the source code where the problem was detected. (Occasion­
ally, the given line number is one or more lines after the line containing the er­
ror.)

• The line of source code where the problem was detected.

• The actual message.

The compiler includes in the message invalid symbols defined by the program, but it can
identify only those symbols defined after preprocessor execution.

Diagnostic Messages 9-1

The Domain C compiler is designed to compile code as quickly as possible. This means
that there are minimal error recovery mechanisms. Although the compiler does attempt to
recover from errors, a single mistake can produce cascading errors. Therefore, the cardinal
rule of error-fixing in Cis:

Worry about the first reported error only!

For instance, if the compiler reports twenty errors, stare at the first one, for it may have
indirectly triggerered the other nineteen. Now, it is entirely possible that some or all of the
other nineteen errors may be real errors that you will have to take action on, but don't
waste your time on them until you are sure that they are real errors. Fix the first one and
then recompile.

9.1 Common C Programming Mistakes

We draw your attention to the most commonly made C programming mistakes:

• Forgetting a semicolon at the end of a statement.

• Putting a semicolon where it is not needed, for instance, at the end of a pre­
processor directive, or after a function's argument list.

• Forgetting to balance braces; that is, you must have the same number of left
braces { and right braces }.

• Confusing = with ==. (This confusion will cause a run-time error, not a compile
time error.)

• Forgetting to use the ampersand (&) in front of an argument to the scanf func­
tion. (This will probably cause a run-time error, and possibly a compile time
warning.)

9.2 Domain C Compiler Messages

Here is a list of the C compiler error, warning, and informational messages:

1 ERROR

2 ERROR

9-2 Diagnostic Messages

unterminated comment.

You forgot to close a comment. Remember that you begin a com­
ment with / * and close it with • / .

Improper numeric constant.

For example, you entered a numeric constant of the form Oxreal.
This implies that you are trying to specify a hexadecimal floating­
point number. The number following Ox must be a hexadecimal in­
teger.

3 ERROR

4 ERROR

5 ERROR

6 ERROR

7 ERROR

8 WARNING

9 ERROR

Unterminated character string.

You started a string, but you did not finish it. Remember that you
must enclose a string with double-quotes. A common trigger for
this error is calling printfO and forgetting to end the string before
you list the data arguments.

Bad syntax TOKEN.

The compiler encountered TOKEN when it was expecting to find
something else.

Illegal module name module_name.

A module name must be a legal identifier. See Chapter 2 for identi­
fier rules. (The most common mistake is to begin the module name
with a digit instead of a letter.)

Quoted string is too long; maximum size is 4095
characters.

You should break the long string into several shorter strings.

-DEF option has no name to define.

You specified the compiler option -def with the format:

-def = value

rather than the correct form which is:

-def name = value

See Chapter 6 for details on -def.

Old-fashioned assignment operator; taken as
assignment_operation.

This is only a warning. Some older C compilers let you use assign­
ment operators in a format opposite to that of modern C compilers.
For instance, some older C compilers let you use the assignment op­
erator =+ instead of +=. You should use the modern format (Le.,
+=).

"void" is illegal for identifier in this context.

For a complete discussion of void, see Chapter 3.

Diagnostic Messages 9-3

11 ERROR

12 ERROR

13 WARNING

14 ERROR

15 ERROR

9-4 Diagnostic Messages

Missing right parenthesis on declaration.

In a declaration, the number of right parentheses must match the
number of left parentheses.

storage class specifier is illegal in this context;
default assumed.

You used a storage class specifier inappropriately. For example, you
cannot specify auto or register when declaring a global variable. As
a second example, you cannot specify static, auto, or extern on a
parameter declaration. See Chapter 3 for a complete discussion of
storage classes.

Old-fashioned initialization; missing "="

This is only a warning. Some older C compilers allow you to initial­
ize variables with the format

data_type variable initial_value;

Domain C lets you use this format, but we suggest that you use the
modern C format which is

data_type variable = initial_value;

Unrecognizable item token; syntax error in declaration.

There are many possible causes for this error. One common cause
is that you put a semicolon after a function definition. (When you
remove the semicolon many other errors will probably go away.)
Sometimes this error occurs when the compiler is expecting to find
an identifier but finds token instead. (See Chapter 5 for a discussion
of function syntax.)

When allocated, size of array_name was zero.

Possibly, you omitted the array size when defining array_name but
you forgot to initialize the array; for example, compare the following
two definitions:

char str [] ; I * wrong • I
charstr[] = "Hello"; I· right *1

Another possibility is that you declared an array improperly, and
consequently, the compiler did not allocate any space for it. See
Chapter 3 for details about array declaration.

18 ERROR

19 ERROR

20 ERROR

21 WARNING

22 WARNING

23 ERROR

Array dimension token is not an integer constant.

When you declare the number of elements in an array, the number
must be a positive integer value. For example, compare the follow­
ing two declarations:

int a[3]; /* right */
int a[3.2]; /* wrong */

See Chapter 3 for details about array declaration.

Array dimension token is either zero or negative.

When you declare the number of elements in an array, the number
must be a positive integer value. See Chapter 3 for details about ar­
ray declaration.

Too many enumerators for "enum" type; max is 1024.

See Chapter 3 for details on enumerated variables.

"long" or "short" in this context is meaningless and
ignored.

long and short can only be applied as prefixes to the data types int,
unsigned int, or float. They cannot be applied to any other data.
type.

"unsigned" in this context is meaningless and ignored.

The unsigned keyword can only be applied to integer data types.
Floating-point data types cannot be made unsigned.

Identifier has not been declared.

If it seems like you did declare it, then just make sure that your
spelling matches the spelling of the variable in the definition.

Diagnostic Messages 9-5

24 ERROR

25 WARNING

26 ERROR

27 ERROR

28 WARNING

30 ERROR

9-6 Diagnostic Messages

Multiple declaration of identifier I previous declaration
was on 1 ine number.

Possibly, you used the same identifier as both a parameter and a lo­
cal variable. For example, the following function will trigger this er­
ror:

f(arg)
int arg;
{

int arg;

}

Another possibility is that you declared the same variable twice in
the same block.

Repeated item token is ignored.

You probably repeated the same data type prefix (like long, short,
or unsigned) twice in the same declaration.

Illegal type of constant token for "enum" type.

The compiler encountered token when it expected to encounter an
integer value. See Chapter 3 for details about enumerated variables.

Improper use of "void" type for function; ("int" type
assumed) .

A function can return the type "void", but it cannot return an aggre­
gate type that uses void as its base type.

"enum" constant number exceeds 16 bits.

Since enumerated constants are stored as signed short ints by de­
fault, any number over +32767 or under -32768 will cause an over­
flow problem. Use long enum to store larger constants. Chapter 3
explains enumerated constants.

Parameter identifier was not listed in the function
declaration.

You have defined a function parameter named identifier, but you did
not put identifier in the function heading. See Chapter 5 for details
on function syntax.

31 ERROR

3S WARNING

36 ERROR

37 ERROR

38 ERROR

39 ERROR

Dynamic aggregate variable identifier cannot be
initialized.

The only kind of local aggregate variable that can be initialized is a
static one. For instance, compare the following dynamic aggregate
variable declarations:

fO /* a function declaration */
{

int a[2] {SOO, 400}; /* Illegal */
auto int a[2] {SOO, 400}; /* Illegal */
register int a[2] {SOO, 400}; /* Illegal */
extern int a[2] {SOO, 400}; /* Illegal */
static int a[2] {SOO, 400}; /* Legal */

}

In function function_name, parameter identifier was listed
but never declared; ("int" type assumed).

This is only a warning. Assuming that you wanted identifier to be an
int, you can ignore this warning. However, it is bad programming
style to accept the default data types in parameter declarations. See
Chapter 5 for details about proper function syntax.

Multiple declaration of identifier in parameter_list.

You've declared the same parameter more than once in the parame­
ter list. See Chapter 5 for details on proper function syntax.

Cannot assign "void" from function_name.

You cannot assign a void function to a non-void lvalue. For exam­
ple, the following function call triggers this error:

int i;
i = (void) printf("Bon Jour\n");

Label name on line number is outside of the scope of
the goto.

You specified label name, but name is not defined within the current
function. (See the "goto" listing for details.)

Improper parameter declaration token.

All the arguments in the argument list must be identifiers, but token
is not an identifier.

Diagnostic Messages 9-7

40 ERROR

41 ERROR

42 ERROR

43 ERROR

44 ERROR

9-8 Diagnostic Messages

Token et cetera is not an lvalue.

An "Ivalue" is any C entity that can appear on the left side of an as­
signment statement. Here is a partial list of some things that are not
Ivalues, but which programmers often mistake for Ivalues:

• An entire array (though a single component of an array is an
lvalue)

• A constant specified by a #define statement.

A possible trigger for this error is to define an n-dimensional array,
but to access it with less than n components.

Unknown type token in a structure or union.

The compiler was expecting a valid C data type and encountered to­
ken instead. Perhaps you misspelled the data type, or perhaps you
put the data type in uppercase, or perhaps you just plain forgot the
data type. See Chapter 3 for details about C data types.

Function declaration function_name is illegal in a
structure or union.

You cannot declare a function as a component of a structure or un­
ion. Note that the compiler sees a function declaration as any
phrase of the following form:

IDENTIFIER 0

Perhaps you were trying to declare an array and used parentheses in­
stead of brackets.

"switch" expression type is not an integral type.

The C integral types are int, char, and enum. For details on
switch, see the "switch" listing in Chapter 4.

Value is not of the correct type for the "switch" on
1 ine number.

The most common cause of this error is that you used a floating­
point value in a case statement. (C will not convert the floating­
point number to an integer value.) For details on switch, see the
"switch" listing in Chapter 4.

45 WARNING

46 ERROR

47 ERROR

48 ERROR

49 ERROR

"switch" expression type is unsigned, but constant
name is negative.

The C compiler has detected a probable mistake in your program­
ming logic since this constant will never be equal to the switch ex­
pression. For details on switch, see the "switch" listing in Chapter
4.

Value has already occurred as a "case" constant on line
number.

You cannot specify the same value for a case statement more than
once in the same switch statement. Note that the C compiler evalu­
ates the case expression, so although you may have specified two dif­
ferent expressions, if they evaluate to the same value. then this error
occurs. For details on switch. see the "switch" listing in Chapter 4.

Token is not a valid option specifier.

You put a pound sign (#) in column 1 and then followed it with
some token other than an identifier or a number. For example. the
following expression triggers this error:

"Aloha"

Include file name is not a string; found token.

C expected to find a string pathname immediately following #in­
clude. but it found token instead. Remember that a string consists
of characters enclosed in double-quotes or angle brackets. For ex­
ample. compare the following #include statements:

#include I sys/insltest .ins. c
#include "/sys/insltest.ins.c"
#include </sys/insltest.ins.c>

1* wrong *1
1* right * I
1* right *1

Nested includes are too deep (> 16).

A header file can itself contain header files. which themselves can
contain header files which can contain but there can be no more
than 16 levels of header files. Since exceeding this depth is rather
unlikely. this error is more likely to be caused by an include file that
includes the file that had included it. (It's rather like two facing mir­
rors producing infinite reflections.) For instance. if program main.c
lists "inc.c" as an include file. and file inc.c lists main.c as an in­
clude file. this error will be triggered.

Diagnostic Messages 9-9

50 ERROR

51 ERROR

53 ERROR

55 ERROR

56 ERROR

58 ERROR

9-10 Diagnostic Messages

Token is not a recognized option, or it does not begin
in column 1.

This error is triggered by one of the following two mistakes. First,
perhaps you mistakenly started a preprocessor directive in a line
other than the leftmost column. Second, you put the pound sign #
in column 1, but you did not put a legal preprocessor directive im­
mediately after it. See Section 4.3 for an overview of preprocessor
directives.

Include file pathname is not available.

You have specified an include file with the #include preprocessor di­
rective, but the compiler cannot find it. Possibly, pathname does
not exist or you have misspelled it, or perhaps network problems
prevent the compiler from seeing the pathname.

Multiple declaration of identifier in a structure or
union.

You cannot use the same identifier more than once in the same
structure or union declaration. For details on structure and union
declarations, see Chapter 3.

Bad syntax in a struct/union/enum; Token found.

See Chapter 3 for details on declaring structure, union, and enumer­
ated variables. Possible triggers for this error include:

• You mistakenly separated two enumerated constants with a
semicolon instead of a comma.

• You forgot to put a closing brace after the last enumerated con­
stant.

• You mistakenly used a right parenthesis) or bracket] instead
of a brace }.

Multiple definition of label, previous definition was on
1 ine number.

You cannot define the same label more than once in the same
block. To correct the error, simply rename the second occurrence.

Bad syntax in a struct/union/enum; token found;
assuming end of list.

An unneeded token has slipped into your declaration. Removing to­
ken should clear up the error. See Chapter 3 for details about de­
claring struct, union, and enum variables.

60 ERROR

61 ERROR

62 ERROR

63 ERROR

Improper use of token, only a variable or constant is
valid here.

One possibility is that you mistakenly used a label name as the argu­
ment to a case statement. For example, the following program frag­
ment causes this error:

abc:
switch (i)
{

case abc: break;
}

Variable_name is not an array.

Probably, you've used variable_name as if it were an array, but it is
not. Note that C interprets any expression of the form

IDENTIFIER[]

as an attempt to access an array. A second possibility is that you
defined a i-dimensional array, but you tried to access it as a 2-di­
mensional array.

Variable_name is not a pointer variable.

You tried to use variable_name in a way that only a pointer variable
can be used. For instance, maybe you tried to dereference vari­
able_name, but you can only dereference a pointer variable. See
the "pointer operations" listing in Chapter 4 for details.

Variable_name is not a structure or union.

You used variable_name in a manner that is appropriate for a struc­
ture or union variable only. Note that C interprets expressions of
the form

identifier.token OR
identifier->token

as an attempt to access a structure or union.

Diagnostic Messages 9-11

64 ERROR

66 ERROR

67 ERROR

68 ERROR

69 ERROR

70 ERROR

9-12 Diagnostic Messages

Identifier is not a member of struct_or _union_name.

It appears to the compiler that you are trying to access a member of
a structure or union, but identifier not a declared member of this
structure or union. Perhaps you misspelled identifier or perhaps
there is a mistake in your structure or union declaration. See the
"structure and union operations" listing in Chapter 4 for information
about using structures and unions in the body of a function, or see
Chapter 3 for information on declaring structures and unions.

Bit field constant number is not an integer.

Bit fields must be integers. See Section 3.8.4 for details on bit
fields.

Improper use of identifier, only a function reference is
valid here.

You used an expression of the form identifier(token), but identifier
was not a function name. A common mistake is to use parentheses
()instead of brackets (for an array) or braces (for comments).

The types of tokenl and token2 are not compatible with
the operator _name operator.

See Chapter 4 for descriptions of all the operators. Common mis­
takes include:

• Using the modulo operator (%) for floating-point division .
• Using floating-point expressions as arguments to the bit-shift

operators.

The type of variable_name is not compatible with the
operator _name operator.

See Chapter 4 for descriptions of all the operators.

Incompatible operands [operandl, operand2] to the
operator_name opera tor.

This error can be triggered in many ways. Possibly, you've misused
the = operator. Another possibility is that you've called a function
using a format like this

answer = function () ;

but the data type the function will return cannot be converted to an­
swer's data type. For example, if the function returns void, then
answer must be void also. If you've misused an operator, see Chap­
ter 4. But, if you've had a problem calling a function, see Chapter
5.

71 ERROR

72 WARNING

73 ERROR

74 ERROR

75 WARNING

76 ERROR

Subscript [subscript] to array array_name is not of the
correct type.

The implicit or explicit data type of subscript must be compatible
with the int type. For instance, you'll get this error if subscript is a
pointer variable, but you won't get this error if subscript is an integer
or enumerated value.

No path to statement statement.

This is only a warning, but it could very well mean that there is a
mistake in your coding. The warning tells you that there is no way
that the program will ever reach statement. This warning is usually
caused by a go to statement or by a return statement (if it is uncon­
ditionally called and if it is not the last line of the function).

No declaration for type type.

A superfluous comma is the culprit here; notice the right and wrong
ways to use the comma operator inside a declaration:

int i, ;

int i,j;
int ,i ;

'* wrong, causes error 73 *' '* right *' '* wrong, causes error 73 *'
Function function_name may not be defined inside another
function; (identifier begins the definition).

Unlike some other structured languages, C does not support nested
functions. Since you probably already know that you cannot nest
functions, you probably made some other mistake. Did you forgot to
end the previous function with a closing brace? Perhaps you mistak­
enly placed a pair of parentheses right after an identifier name.
(This means "function definition" to the C compiler regardless of
what you wanted it to mean.)

s izeof identifier is zero.

You have specified an expression whose storage allocation is zero
bytes. Perhaps you mistakenly declared an array without an explicit
size, and then forgot to supply an initial value that would allow the
compiler to set its size.

Illegal cast type for variabk.

You cannot cast variable to the stated data type. See the "casting
operations" listing in Chapter 4.

Diagnostic Messages 9-13

77 ERROR

78 WARNING

79 ERROR

80 WARNING

84 ERROR

86 ERROR

9-14 Diagnostic Messages

Cannot initialize external variable variable name.

This error highlights one of the subtler distinctions in C-that be­
tween allusion and definition. The storage class specifier extern in­
dicates that you are alluding to a variable. Note that you can initial­
ize a variable when you define it, but you cannot initialize a variable
when you allude to it.

Incompatible pointer and integer operands [operandi,
operand2] to the operator _name operator.

See the "pointer operations" listing of Chapter 4. For example,
consider some right and wrong ways to mix pointers and integers:

VARIABLE = POINTER + INTEGER;
POINTER_VARIABLE = POINTER + INTEGER;
VARIABLE = * (POINTER + INTEGER);·

Illegal type of constant token for variable
variable name.

I" wrong *1
1* right "I
1* right *1

The compiler was expecting a constant of a particular data type. You
supplied a constant, but it was of the wrong data type. For instance,
code like the following triggers this error:

struct {int a;} x={3.14}; I" wrong *1
struct {int a;} x = {3}; 1* right *1

Illegal pointer combination: incompatible types.

C is flexible about converting data types; however, C is not so flex­
ible that it allows you to mix pointer variables that point to two dif­
ferent types. For example, a pointer to an int cannot be assigned
to a pointer to a char.

Named bit field identifier cannot have a size of O.

A named bit field must have an integer value greater than or equal
to 1. See Chapter 3 for details on structures and unions.

Unrecogn i zed s ta temen t keyword.

You've used keyword (probably break) in an illegal context. For in­
stance, you cannot use break outside of a for, while, or do/while
loop or outside of a switch statement.

87 ERROR

89 WARNING

90 WARNING

91 ERROR

92 ERROR

93 ERROR

94 WARNING

IIgotoll label expected; token found.

If you specify a token followed by a colon, C assumes that you are
specifying a label. Although most computer languages accept num­
bers as labels, C only accepts identifiers as labels. (Remember, a
number is not a legal identifier.) See Chapter 2 for a definition of
identifiers.

Non-standard usage: partial member reference field_name
resolved.

This is only a warning. Ignore the warning if you do not plan to
port the program to another system. If you are trying to write port­
able code, then you will have to specify field_name in the standard
way. (See the "structure and union operations" listing of Chapter 4
for details.)

Ambiguous reference; more than one member named
identifier.

See the "structure and union operations" listing in Chapter 4 for de­
tails on this error message.

Illegal type for bit field identifier.

The only kind of data type that can be packed down into a bit field
is an int or unsigned into See Section 3.8.4 for details on bit fields.

Address operator is illegal for bit field identifier.

It is okay to take the address of a member of a structure or union.
However, you cannot take the address of a bit field (even if the bit
field stalts on a byte boundary). For example, the following code
triggers this error:

struct x {unsigned a 2} y;

z = &(y. a) ;

Input line too long; it has been truncated.

You have exceeded the line limit of 1024 characters.

Negative shift constant value may give undefined
results.

The compiler is warning you that a negative shift might not give the
expected results. Note that C supports both a left shift operator «
and a right shift operator », so instead of trying to use a negative
shift value, perhaps you should just use the other shift operator with
a positive shift value. See the "bit operators" listing in Chapter 4 for
details.

Diagnostic Messages 9-15

95 ERROR

96 ERROR

97 ERROR

98 ERROR

99 ERROR

100 ERROR

101 ERROR

9-16 Diagnostic Messages

Too many include files.

There is no fixed limit on the number of include files. In fact, even
a program with a small number of #includes can cause this error if
the include files themselves contain other include files.

Constant value token cannot be evaluated at compile
time.

The compiler was expecting a constant that could be evaluated at
compile time. Certain constants cannot be evaluated at compile
time. For example, any constant that relies on an address cannot be
evaluated until run time.

Label label is never defined.

You made one of three mistakes. First, perhaps you just plain forgot
to define the label (see the "goto" listing in Chapter 4 for details on
labels). Second, perhaps the spelling of the label does not match
the spelling in the goto statement. Third, perhaps the label is de­
fined in one function and the goto statement is in another function.
(They must be in the same function.)

Line exceeds maximum length of number by number
characters.

This line is too long; divide it into multiple lines.

Left brace ({) expected; token found.

There are many possible causes for this error. In particular, you
should check to see that you are not missing a { immediately after
the parameter declarations. Another possibility is that at the line
prior to the line where the error was reported, there was a faulty
function declaration.

Right brace (}) expected; token found.

You started a block with the left brace {, but the compiler did not
encounter its matching right brace. Sometimes, this error occurs
when you do a lot of nesting and forget to close a function or a
loop. Another possibility is that you forgot to terminate a comment
or a string.

statement terminator expected; token found.

Probably, you forgot a semicolon at the end of a statement. An­
other possibility is that a letter somehow crept into a number; for ex­
ample, maybe a line contained the numeric constant 1.2f3 instead of
1.2e3. A third possibility is that you forgot to enclose a compound
statement within a pair of braces.

102 ERROR

103 ERROR

104 ERROR

105 ERROR

106 ERROR

107 ERROR

Improper argument list; token found.

You tried to call a C library routine, but your list of arguments does
not look right. If the mistake occurred in a printfO call, make
sure that you put the comma in the right places, for example:

printf("%d\n", count);
printf("%d\n," count);

/* right */
/* wrong */

Keyword expr must begin with "("; token found.

The keywords if, switch, while, and for must be followed by a
parenthesized expression. If something besides a comment comes
between one of these keywords and a left parenthesis, the compiler
issues this error.

Keyword expr must end with ")"; token found.

The keywords if, switch, while, and for must be followed by a
parenthesized expression. Apparently, you started the parenthesized
expression, but you forgot to finish it with a right parenthesis.

Colon (:) expected in "case" or "default"; case/default
found.

This error may confuse you because it will probably be reported at
the line beneath where the error actually occurred. For instance, if
the error was reported at line 20, look at line 19. The problem can
be remedied by putting a colon after the case statement.

"case" or "default" expected in "switch"; token found.

See the "switch" listing in Chapter 4.

More than one "default" case given for a "switch".

See the "switch" listing in Chapter 4.

Diagnostic Messages 9-17

108 ERROR

109 ERROR

110 ERROR

111 ERROR

112 ERROR

9-18 Diagnostic Messages

Illegal return expression (expression et cetera) for
"void" function.

The function heading specifies that the function will not return any
value to the caller. Therefore, you cannot specify any expression
with return. For instance, compare a legal and an illegal return for
a void function:

void f ()
{

return;
return (expression);

}

/* legal */
/* illegal * /

Cannot initialize null array identifier.

This error is a byproduct of some other error. The other error pre­
vented the compiler from allocating any space for the array. An ar­
ray with no space is a null array, and you cannot initialize a null ar­
ray. Fix the other error and you'll cure this one too.

"while" expected in "do" statement; token found.

In a do/while loop, you must place the keyword while immediately
after the closing} of the loop.

";" expected in "for" statement; token found.

The parenthesized list that immediately follows the keyword for must
contain exactly two semicolons.

string initializer too long for array_name; truncated
to fit.

You declared array_name to hold n components, but you are initial­
izing array_name with more than n values. It may surprise you to
find that the following char array declaration triggers this error:

char alpha[5] = {"abcde"}

Although it seems like a snug fit between the five-element array and
the five-char initialization string, in actuality, the string "abcde"
takes up six components. The sixth component is the terminating
null character that Domain C automatically supplies for you. If you
want to be sure that you've defined the perfect array size, just omit
the array size as explained in Chapter 3.

113 WARNING

115 WARNING

116 ERROR

117 ERROR

118 ERROR

120 ERROR

Structure or union member member name has size of
zero.

This warning will be associated with an error that explains what went
wrong when you declared member _name. If you fix the associated
error, this warning should go away. For details about structure and
union declarations, see Chapter 3.

Function function_name is declared as an argument.

This is only a warning. The compiler was expecting parameter decla­
rations here, but got another function declaration instead. Remem­
ber that the compiler interprets any expression of the form

IDENTIFIERO

as a function declaration. So, when the compiler issues this warning
you should ask yourself, "Did I put the parentheses in the right
place?"

Improper expression; token found.

Many situations could have caused this error. In particular, check
for a missing comma or semicolon in a variable declaration. Con­
versely, check for an extra semicolon or comma.

Identifier expected; token found.

See Chapter 2 for a definition of identifier. The most common mis­
take is in trying to start an identifier with a digit rather than a letter.
Another possible trigger for this error is that you used a keyword
where an identifier was expected. See Chapter 2 for a list of Do­
main C keywords. Another possibility is that you were supposed to
supply one or more identifiers inside a set of parentheses, but you
supplied the parentheses without the identifiers.

Member name expected; token found.

Your source code contained an expression of the format

structure or union variable. - - -

This format is illegal. The correct format is

structure_or_union_variable.member

Illegal operation on pointer to function function_name.

You cannot do mathematical operations on a pointer to a function.

Diagnostic Messages 9-19

121 ERROR

122 WARNING

123 WARNING

124 ERROR

125 ERROR

126 ERROR

9-20 Diagnostic Messages

Function function_name returns more than 32K bytes.

You are trying to pass a very large amount of data back to the call­
ing function. Probably, you are trying to pass back a structure that
contains a very large array. Can you reduce the size of this array?
If not, can you make the structure into a global variable that does
not have to be returned to the caller?

Function function_name needs number bytes of stack,
which approaches the maximum stack size of number
bytes.

You are passing arguments to this function that take up a lot of
space. The sort of argument that could trigger this error is a struc­
ture that contains a large array. This warning informs you that addi­
tional arguments may result in an overflow.

Function function_name needs number bytes of stack,
which exceeds the maximum stack size of number bytes.

You are passing arguments to this function that take up too much
space. The sort of argument that could trigger this error is a struc­
ture or union that contains a large array. If the compiler issues this
warning, then the resulting object file is non-executable.

Cannot add two pointers: pointer _expJ + pointer _exp2.

C permits you to add an integer to a pointer, but you can never add
a pointer to another pointer. Perhaps you were trying to add two
dereferenced pointers and you did not use the proper syntax. In
that case, please see the "pointer operations" listing in Chapter 4.
Incidentally, don't forget that an array name is a pointer constant.

Illegal type of token for addition to a pointer.

If you add a value to a pointer, the value must be an integer. Ap­
parently, you have added a value that is not an integer.

Cannot subtract two pointers of different type:
pointer _var 1 - pointer _var2 .

For example, compare two possible pointer subtractions:

int i,
int j,
char c,
i pi -

i pi -

*pi
*pj
*pc
pc;

pj

&i;
&j;
&c;
/*

/*

wrong

right

pi points to int, but pc
points to char */
both pi and pj point to
ints */

127 ERROR

128 ERROR

129 WARNING

131 ERROR

Either expression1 is not a pointer type. or expression2 is
not an integer type.

Pointers and subtraction do not often mix. C permits you to subtract
an integer value from a pointer; however. you cannot

• Subtract a non-integer value from a pointer.

• Subtract a pointer from any value.

For example. compare some proper and improper methods of sub­
traction:

int *px;

(px - 2) /* right */
(px - 2.2) /* wrong */
(2 - px) /* wrong */
(2.2 - px) /* wrong */

"main" function cannot return a type whose size is
greater than 4 bytes.

By default. the main function returns an into You are trying to pass
back something that cannot be converted to an into

Ignoring data initialization for "switch" variable
declarations.

A compound switch statement contains a block. Since C permits
you to define variables on the block level. you can define a variable
within the switch statement. However. if you try to initialize this
variable. C ignores the value. In other words. the variable will spring
into existence when the program enters the block. but the variable
will have a garbage value.

Cannot take the address of register variable
variable name.

Since a program ideally stores a register variable in a register. and
since a CPU register has no address. you cannot find the address of
a register variable. For more information on the register storage
class specifier. see Chapter 3.

Diagnostic Messages 9-21

132 WARNING

133 ERROR

134 ERROR

135 ERROR

136 ERROR

137 ERROR

138 ERROR

9-22 Diagnostic Messages

Multiple declaration of variable_name with data
initialization, previous declaration was on line
number.

You'll trigger this warning if you declare two or more variables of the
same name and at least one of them contains an initialization value.
If two or more variables have the same name but different initializa­
tion values, then the compiler will set the variable's value to the last
initialization value. For example, given the following two initializa­
tions

float s = 2.2;
float s 4.2;

the compiler will initialize s to 4.2.

Compiler failure, unexpected data init construct:
construct.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, Pascal-only error code.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Floating point constant number conversion problem.

For some reason (probably overflow), the compiler could not convert
number to the desired data type.

Compiler failure, register consistency.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, no temp created.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, improper forward label at token.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

139 ERROR

140 ERROR

141 ERROR

142 ERROR

143 ERROR

144 ERROR

145 ERROR

146 ERROR

147 ERROR

Compiler failure, pseudo pc consistency.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, unknown tree node.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, unknown top node.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, no temp space.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, lost value of node.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, registers locked.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, no emit inst.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, procedure too large.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, inst disp too large.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Diagnostic Messages 9-23

148 ERROR

149 ERROR

150 ERROR

151 ERROR

152 ERROR

154 ERROR

159 WARNING

160 ERROR

9-24 Diagnostic Messages

Compiler failure, obj module too large.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, no free space.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, short branch optimization.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, data frame overflow.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

External variable definition identifier conflicts with
procedure or data section name.

You cannot declare a global variable having the same name as a pro­
cedure or data section name.

Compiler failure, too many nodes.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Variable variable_name was not initialized before this
use.

You are using variable_name on the right side of an assignment op­
erator, but you have not assigned variable_name a value yet, so us­
ing it may cause bizarre results.

Illegal bit field constant identifier; cannot be negative.

Bit fields must be positive integers. See Section 3.8.4 for details
about bit fields.

161 ERROR

162 ERROR

163 ERROR

164 ERROR

165 ERROR

Unknown or incomplete structure/union type name.

You mistakenly tried to declare a recursive structure or union. For
example, the following declaration causes this error because name
was not yet a declared data type when you attempted to use it:

struct S {int x;
struct S c;}; /* wrong */

Note that you can declare a pointer to this structure or union. For
example, the following declaration is okay:

struct S {int x;
struct S *c;}; /* right */

Illegal option identifier for typedef.

You are using the #attribute address modifier in a typedef state­
ment. In a typedef statement, #attribute address is illegal; how­
ever, #attribute volatile and #attribute device are legal. For de­
tails about the #attribute modifier, see Chapter 3. Incidentally, by
fixing this error, you will probably fix a lot of other errors.

Left bracket ([) expected; token found.

The C compiler expected a left bracket immediately after the #at­
tribute modifier, but found token instead. For details about the
#attribute modifier, see Chapter 3.

Right bracket (]) expected; token found.

The C compiler expects a right bracket just after the #attribute ar­
gument. For details about the #attribute modifier and its argu­
ments, see Chapter 3.

Left parenthesis "(" expected; token found.

Possibly, you were using the #attribute address modifier, but you
forgot to put an address (enclosed within parentheses) right after ad­
dress. For details on #attribute address, see Chapter 3. Another
possibility is that you forgot the left parenthesis in a #section pre­
processor directive.

Diagnostic Messages 9-25

166 ERROR

167 ERROR

169 ERROR

170 ERROR

9-26 Diagnostic Messages

Right parenthesis ")" expected; token found.

Possibly, you were using the #attribute device modifier with the
read or write options, but you forgot to close the list of read and
write options with a right parenthesis. For example, compare the
following declarations:

int q #attribute[deviee(read)] = 2; /* right */
int q #attribute [device (read] = 2; /* wrong,

missing ")" */

If you correct this error, a lot of other errors will probably vanish.
For details on #attribute device, see Chapter 3.

Another possibility is that you were using the #sectioo preprocessor
directive, but forgot to put a ,::omma between the two section names.

Number expected; token found.

You misused the #lioe preprocessor directive. Compare the right
and wrong ways to use #lioe in the following examples:

#23 /* right */
#23 "new_file.c ll /* right */
#line 23 /* right */
#line 23 "new_file.c /* right */
#line "new_file.c ll /* wrong, triggers error 167 */

For details about its correct use, see the "#line" listing in Chapter 4.

string expected; token found.

You forgot to enclose the file name in double quotes while using the
#lioe preprocessor directive. Compare the right and wrong ways to
use #lioe in the following examples:

#23 /* right */
#23 "new_file. e" /* right */
#line 23 /* right */
#line 23 "new file.e" /* right */
#23 new_file.e /* wrong, triggers error 169. */
#line new_file.e /* wrong, triggers error 169. */

Dividing by zero in a eompiletime constant expression.

Division by zero is illegal.

171 ERROR

172 ERROR

173 WARNING

174 ERROR

175 ERROR

176 ERROR

Compiler failure, store elimination failure.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

No static address for dynamic variable variable_name.

C issues this error when you assign the address of a dynamic variable
to a static pointer. For example, consider the following statements:

auto int x 3;
static *px &x;

Since px is a static pointer variable, it cannot hold the address of
the dynamic variable x. To correct the problem, make both vari­
ables dynamic or make both variables fixed. For an explanation of
dynamic and static, see Chapter 3.

Comma expected but not found in data init list.

You must separate the elements of a data initialization list with com­
mas; for example:

int x []
int x []

{2,3,5,7};
{2 3 57};

Empty structure or union.

/* okay */
/* wrong */

C prohibits you from declaring a structure or union without mem­
bers. By fixing this error, you may indirectly also fix many other er­
rors. For details on structures and unions, see Chapter 3.

Unknown type name in "sizeof".

The sizeof operator is evaluated at compile time, not run time.
Therefore, if sizeof's operand is a partially constructed type, then
this error is triggered. For example, the following use of sizeof trig­
gers this error because data type x is not fully constructed at the
point when sizeof is called:

struct x {unsigned int q: sizeof(struct x);};

Too many nested pointer references for debug tables.

You declared a structure or union having a member which is itself a
structure or union, and one of the members of this structure or un­
ion is itself a structure or union, and so on, and so on, down 256 or
more levels.

Diagnostic Messages 9-27

177 WARNING

178 ERROR

179 ERROR

180 ERROR

182 ERROR

183 ERROR

184 ERROR

9-28 Diagnostic Messages

8 or 9 found in an octal number.

This is only a warning, but if you get it, your program will probably
produce bizarre run-time results. As in the rules of conventional
math, the digits 8 and 9 are forbidden in a base 8 number. Note
that in C, an octal number is any integer that begins with the digit
O. Did you mistakenly put a leading 0 in your decimal number?

Null dimension in a sub-array declaration.

A multidimensional array cannot have any null dimensions other
than the first dimension. For example, consider the following array
declarations:

int
int
int
int

x[3] [5];
x[3] [5] [] ;
x [] ;
x[] [3] [5];

/* right */
/* wrong */
/* right */
/* right */

Invalid systype string.

See the "#systype" or "if" listings in Chapter 4 for a list of valid sys­
types.

Compiler failure, limit exceeded; identifier.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Cannot give more than one "systype".

You can put no more than one #systype preprocessor directive in a
file. For details on #systype, see the "#systype" listing in Chapter
4.

Cannot take "systype" once other tokens are seen.

The only place that a #systype preprocessor directive can occur is as
the first or the second token in the file. If it is the second token,
then the only token that can precede it is the #module preprocessor
directive. For details on #systype, see the "#systype" listing in
Chapter 4.

Comma expected, token found.

Probably, you forgot a comma in a #module preprocessor directive.
For example, compare the right and wrong ways to use #module:

#module math, x$, y$ /* right */
#module math, x$ y$ /* wrong, missing a comma */

185 ERROR

186 ERROR

187 ERROR

188 ERROR

189 ERROR

190 ERROR

Found "end-of-line" before end of definition.

You made a mistake in a preprocessor directive. Possibly, you forgot
to close parentheses or quotes. See Chapter 4 for descriptions of all
the preprocessor directives.

Redundant #module control line found; ignored.

A source file contains more than one #module preprocessor direc­
tive, but C allows one (at most) per file.

Procedure section name conflicts with a previously
defined data section name or identifier.

Suppose you created a procedure section named "x" with the #sec­
tion preprocessor directive. If, later in the same file you use x as a
data section name, you will trigger this error. Also, if you define x
as a global variable, C will issue this error because a global variable
named x is stored in a data section named x. Probable cause for
this error-you accidentally reversed the section names. See the
"#section" listing in Chapter 4 for details.

Data section name conflicts with a previously defined
procedure section name or identifier.

Suppose you created a data section named x with the #section pre­
processor directive. If later in the same file you use x as a proce­
dure section name, you will trigger this error. Also, if you define x
as a global variable, C will also issue this error because a global vari­
able named x is stored in a data section named x. Probable cause
for this error-you accidentally reversed the section names. See the
"#section" listing in Chapter 4 for details.

Extraneous data at end of control line; ignored.

A #section preprocessor directive should end with a right parenthesis
). However, you have mistakenly put some more code after the
right parenthesis. This extra code may cause many errors. See the
"#section" listing in Chapter 4 for details.

Compiler failure, invalid use of multiple sections and
non-local goto to label identifier.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Diagnostic Messages 9-29

191 ERROR

192 ERROR

193 ERROR

194 ERROR

195 ERROR

196 ERROR

197 WARNING

9-30 Diagnostic Messages

Compiler failure, bad address constant.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Compiler failure, invalid use of multiple sections and
up-level referencing in routine identifier.

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Illegal option token for parameter.

You cannot use #attribute address in a parameter declaration,
though #attribute volatile and #attribute device are okay. For de­
tails on the #attribute modifier, see Chapter 3.

Data section name conflicts with a previously defined
external variable.

One of your global variables matches the name of a data section.
(See the "#module" listing of Chapter 4 for details on section
names.)

Cannot take "#module" directive once other tokens are
seen.

The #module preprocessor directive is optional, but when you use
it, it must be the very first thing in the file.

"#section" directive may not appear within a function.

A C function can appear outside a function, but can never appear
within a function. See the "#section" listing in Chapter 4 for details.

Identifier exceeds 32 characters, only identifier is
recognized.

Your source code can contain names of up to 256 characters; how­
ever, for internal representation, Domain C truncates any name
longer than 32 characters down to 32 characters. Thus, the com­
piler sees the following two identifiers as identical even though we
see them as unique:

int accounts_receivable_kansas_city_kansas;
int accounts_receivable_kansas_city_missouri;

198 WARNING

199 ERROR

200 ERROR

201 ERROR

202 WARNING

203 ERROR

Type of variable_name is illegal for member token.

Possibly, you are misusing the arrow operator ->. The arrow opera­
tor dereferences a pointer to a structure or union, so the compiler is­
sues this warning if variable_name is not a pointer to a structure or
union. Another possibility is that you misspelled the name of the
structure or union. See the "structure and union operations" listing
in Chapter 4 for details.

Non-unique member name requires structjunion or
structjunion pointer.

You can trigger this rather rare error by using the same member
name more than once in different structure or union declarations.
For example, the following attempt to reference member a is
doomed because the compiler cannot figure out whether you mean
j.a or k.a:

struct {int a;} j;

struct {float a;} k;

int *i;
i->a = 10;

Illegal return type for function function_name;
functions must return either an lvalue or void.

Functions cannot return arrays, but see Chapter 5 for a way around
this restriction.

Internal error - error_message

The error is in the compiler, not in your code. Please contact your
customer support representative or mail us an APR.

Value assigned to variable_name is never used;
assignment eliminated by optimizer.

You made an assignment to a local, automatic variable, but never
used that variable again. To make the program more efficient, the
optimizer eliminated the assignment.

Illegal declaration of variable_name; cannot have an
array of functions.

You have attempted to declare an array of functions as in:

Diagnostic Messages 9-31

204 WARNING

205 WARNING

206 WARNING

207 ERROR

208 ERROR

9-32 Diagnostic Messages

int f [] () ;

This is not allowed in C. To declare an array of pointers to func­
tions, which is legal, you can write:

int (*f[]) ()

Wrong size for enum variable_name; original size
type_name assumed.

This warning occurs when you declare an enum type with the char,
short, or long qualifiers, and then use the type without the qualifier.
For example:

short enum color { green, red, blue };
enum color hue;

The declaration of hue will generate this warning because it does not
include the short specifier.

Enumeration type clash [variable_name, variable_name] to
the operator operator.

Technically, it is legal to mix enums of one type with enums of an­
other type, and to mix enums with integer types. However, Domain
C reports a warning when it encounters one of these type clashes.

Address of array or function in this context is
redundant and ignored.

This warning occurs when you precede a naked array name (Le.,
one without a subscript) or a naked function name (Le., one without
the parentheses indicating invocation) with an ampersand. Naked'
array names and function names are implicitly converted to ad­
dresses, so the address-of operator is ignored.

Illegal type "void" for argument parameter_name.

You have attempted to pass an argument of type void. Recall that
the void type used in a prototype means that the function accepts no
arguments, not that it accepts an argument of type void.

Illegal use of "void" in a function prototype; void
must be the only type specified.

The type void in a prototype means that the function takes no argu­
ments, so it is invalid to specify void and additional parameter types.

209 ERROR

210 ERROR

211 ERROR

212 INFO 1

213 INFO 1

214 WARNING

215 ERROR

Illegal use of "ellipsis" in a function prototype; no
other elements may follow" "

The ellispsis notation in a function prototype can only appear as the
last parameter. It indicates that the function accepts an unspecified
number of additional arguments.

Exceeded maximum number of allowable parameters (>
64).

Domain C does not support functions that take more than 64 argu­
ments.

Type of formal parameter parameter_name conflicts with
prototype declaration.

This error occurs when the types declared in a prototype declaration
do not match the parameter types in the function definition. For
example:

extern int foo(int);

int foo(char x) {};

Old-style function declaration encountered; default
prototype function_name (...) assumed.

This informational message indicates an old-style function definition,
such as:

extern int f(), g();

No prototype in scope, default prototype
function_name (...) assumed.

When the compiler encounters a function invocation for a function
that has not been prototyped, it assumes that the function returns an
iot and takes an unspecified number of arguments.

Cannot dereference "pointer to void" .

You may not dereference a pointer that is declared to point to the
void type.

Missing parameter name for argument argument_name of
function_name.

You have forgotten to enter a parameter name in a prototype defini­
tion.

Diagnostic Messages 9-33

216 INFO 1

217 ERROR

218 ERROR

219 ERROR

220 ERROR

221 WARNING

9-34 Diagnostic Messages

Although argument argument_name to function_name is
assignment compatible, it does not match the declared
argument type.

You have invoked a function with arguments that are assignment­
compatible with the parameters declared in the prototype, but are
not exactly the same type. For example:

extern void foo(short, double);
int a;
float b;

foo(a, b);

a will be converted to short, and b to double, but you will receive
info messages telling you that they types of a and b are not the same
as the parameter types declared in the prototype.

Invalid Hoptions specifier, token.

The only valid #options specifiers are aO_return and dO_return.

Illegal declaration of variable_name; array of
references not allowed.

You have attempted to create an array of reference variables, which
is not allowed.

Unini tialized reference variable variable name.

You have declared a reference variable, but failed to initialize it.
You must initialize all reference variables.

Global or static reference variable variable_name; not
implemented.

Currently, Domain C does not support global or static reference vari­
ables. Reference variables must be local and automatic, or be func­
tion parameters.

Incompatible combination of integer and pointer types.

This warning occurs when you attempt to assign an integer value to a
pointer type, or vice versa. Assignments such as these are not port­
able.

222 ERROR

223 INFO 3

224 ERROR

225 ERROR

226 ERROR

227 ERROR

228 ERROR

229 WARNING

Invalid runtype token.

You have compiled with the -runtype switch, but have specified a
runtype that the compiler does not recognize. See Chapter 6 for a
list of valid runtypes.

Unnaturally aligned load/store variable_name diminishes
code quality.

You have referenced an object that is not naturally aligned.

Compiler failure, no case for object type.

Internal failure. Submit APR.

Argument to attribute_specifier attribute conflicts with
value already specified for this type.

You have attempted to assign an attribute specifier to an object that
has already been declared with a conflicting specifier.

Maximum specifiable alignment is alignment_value.

You may not specify alignment greater than 3 (octword boundaries).

Size of "@1" bits is invalid for specified type.

Pascal error. Not used by C compiler.

Structured types may not be UNALIGNED.

You have specified byte alignment for a structure or union. The
minimum alignment for structures and unions is word alignment.

Specified attribute_specifier attribute conflicts with
attributes of base type.

This error occurs when you specify an attribute for an object of a
user-specified type, and the type definition specifies a conflicting at­
tribute. For example:

typedef struct {
int a;
short b;

} S #attribute[natural);

S sl #attribute[align(I»);

Diagnostic Messages 9-35

230 ERROR

231 ERROR

232 ERROR

233 ERROR

234 INFO 1

235 INFO 1

236 WARNING

237 ERROR

9-36 Diagnostic Messages

Attribute_specifier attribute is inappropriate for target
machine type.

Reserved for future use.

Attribute_specifier and attribute_specifier attributes may not
both be specified.

You have specified two attributes that are mutually exclusive.

PHYSICAL attribute specified without an ADDRESS.

You have specified the physical attribute for a variable, but have
failed to specify an address. You must specify an address attribute
when you specify a physical attribute. See Chapter 2 for more in­
formation about these attributes.

Attribute is inappropriate in this context.

You have specified an inappropriate attribute. For example, specify­
ing volatile for a function parameter will generate this error.

Actual alignment of variable_name (alignment) is less than
natural alignment (natural_alignment).

This info message tells you that you have declared an object or type
that is not naturally aligned.

Large bit field bitJield_name not on longword boundary.

The bit field named bitJield_name is not aligned on a longword
boundary.

Invalid section attribute for static var - ignored.

You have used the #section specifier to indicate a named overlay
section, but the section name you specified is not valid.

This section name conflicts with a previously defined
global variable.

You have attempted to create a section with the same name as a
previously defined global variable. This is not allowed. For exam­
ple:

238 ERROR

239 INFO 1

240 WARNING

241 WARNING

int global_var = 1;
int x #attribute[section(global_var)];

mainO
{

}

Bi t field constant bitJield_name too large.

You may not declare a bit field larger than 32 bits.

Actual alignment of array elements array_name is less
than natural alignment n@2n.

This message occurs when you declare an array of structures where
the size of the structure is not evenly divisible by the size of the larg­
est member. For example:

typedef struct {
int a;
short b;

} S;

Alignment of array elements is dependent on the current
default alignment environment.

This warning signifies that the alignment of array elements depends
on the current alignment setting.

Size of array element rounded up from num to num bits.

Reserved for future use.

-------88-------

Diagnostic Messages 9-37

Appendix A
ISO Latin-l Table

Domain C uses the ISO DIS 8859/1 character set. commonly known as Latin-l, for charac­
ter data representation. The Latin-1 set also includes all ASCII characters in their standard
positions. Table B-1 shows the decimal. octal. and hexadecimal values for all ISO Latin-1
characters.

You can use Latin-1 characters in comments or character strings. but are limited to using
ASCII letters A-Z and a-z (decimal positions 65-90 and 97-122. respectively). digits. under­
scores U. and dollar signs ($) in identifiers. This adheres to existing C standards.

ISO Latin-l Table A-I

Table A-I. ISO Latin-I Codes

oct dec hex character oct dec hex character

0 0 0 NUL A@ 40 32 20 space
1 1 1 SOH AA 41 33 21 !
2 2 2 STX AB 42 34 22 "
3 3 3 ETX AC 43 35 23 #
4 4 4 EOT AD 44 36 24 $
5 5 5 ENQ AE 45 37 25 %
6 6 6 ACK AF 46 38 26 &
7 7 7 BEL AG 47 39 27 ,

10 8 8 BS AH 50 40 28 (
11 9 9 TAB AI 51 41 29)
12 10 A LF AJ 52 42 2A *
13 11 B VT AK 53 43 2B +
14 12 C FF AL 54 44 2C ,
15 13 D CR AM 55 45 2D -
16 14 E SO AN 56 46 2E ·
17 15 F SI AO 57 47 2F /
20 16 10 DLE Ap 60 48 30 0
21 17 11 DC1 AQ 61 49 31 1
22 18 12 DC2 AR 62 50 32 2
23 19 13 DC3 AS 63 51 33 3
24 20 14 DC4 AT 64 52 34 4
25 21 15 NAK AU 65 53 35 5
26 22 16 SYN AV 66 54 36 6
27 23 17 ETB AW 67 55 37 7
30 24 18 CAN AX 70 56 38 8
31 25 19 EM Ay 71 57 39 9
32 26 1A SUB AZ 72 58 3A · ·
33 27 1B ESC A[73 59 3B · ,
34 28 1C FS AI 74 60 3C <
35 29 1D GS A] 75 61 3D =
36 30 1E RS AA 76 62 3E >
37 31 1F US A 77 63 3F ?

(Continued)

A-2 ISO Latin-I Table

Table A-i. ISO Latin-l Codes (Cont.)

oct dec hex character oct dec hex character

100 64 40 @ 140 96 60 ,

101 65 41 A 141 97 61 a
102 66 42 B 142 98 62 b
103 67 43 C 143 99 63 c
104 68 44 D 144 100 64 d
105 69 45 E 145 101 65 e
106 70 46 F 146 102 66 f
107 71 47 G 147 103 67 g
110 72 48 H 150 104 68 h
111 73 49 I 151 105 69 1

112 74 4A J 152 106 6A J
113 75 4B K 153 107 6B k
114 76 4C L 154 108 6C I
115 77 4D M 155 109 6D m
116 78 4E N 156 110 6E n
117 79 4F 0 157 111 6F 0

120 80 50 P 160 112 70 P
121 81 51 Q 161 113 71 q
122 82 52 R 162 114 72 r
123 83 53 S 163 115 73 s
124 84 54 T 164 116 74 t
125 85 55 U 165 117 75 u
126 86 56 V 166 118 76 v
127 87 57 W 167 119 77 w
130 88 58 X 170 120 78 x

131 89 59 y 171 121 79 y
132 90 SA Z 172 122 7A z

133 91 5B [173 123 7B {
134 92 5C \ 174 124 7C I
135 93 5D] 175 125 7D }
136 94 5E A 176 126 7E -
137 95 SF 177 127 7F del -

(Continued)

ISO Latin-l Table A-3

Table A-I. ISO Latin-I Codes (Cont.)

oct dec hex character oct dec hex character

204 132 84 IND 247 167 A7 §
205 133 85 NEL 250 168 A8 ..
206 134 86 SSA 251 169 A9 ©

207 135 87 ESA 252 170 AA a

210 136 88 HTS 253 171 AB «

211 137 89 HTJ 254 172 AC .,

212 138 8A VTS 255 173 AD SHY
213 139 8B PLD 256 174 AE ®

214 140 8C PLU 257 175 AF -
215 141 8D RI 260 176 BO 0

216 142 8E SS2 261 177 B1 ±
217 143 8F SS3 262 178 B2 2

220 144 90 DCS 263 179 B3 3

221 145 91 PU1 264 180 B4 ,

222 146 92 PU2 265 181 B5 J.L

223 147 93 STS 266 182 B6 ~

224 148 94 CCH 267 183 B7 .
225 149 95 MW 270 184 B8 ,
226 150 96 SPA 271 185 B9 1

227 151 97 EPA 272 186 BA Q

233 155 9B CSI 273 187 BB »

234 156 9C ST 274 188 BC 1,4

235 157 9D OSC 275 189 BD V2
236 158 9E PM 276 190 BE 3,4

237 159 9F APC 277 191 BF 6
240 160 AO NBSP 300 192 CO A
241 161 Al I 301 193 C1 A
242 162 A2 ¢ 302 194 C2 A
243 163 A3 £ 303 195 C3 A
244 164 A4 xx 304 196 C4 A
245 165 A5 ¥ 305 197 C5 A
246 166 A6 I 306 198 C6 lE

(Continued)

A-4 ISO Latin-I Table

Table A-I. ISO Latin-I Codes (Cont.)

oct dec hex character oct dec hex character

307 199 C7 <; 347 231 E7 (:

310 200 C8 E 350 232 E8 e
311 201 C9 E 351 233 E9 e
312 202 CA E 352 234 EA e
313 203 CB E 353 235 EB e
314 204 CC i 354 236 EC i
315 205 CD i 355 237 ED i
316 206 CE I 356 238 EE i
317 207 CF I 357 239 EF i
320 208 DO £> 360 240 FO 0
321 209 Dl N 361 241 F1 Ii.

322 210 D2 0 362 242 F2 0
323 211 D3 6 363 243 F3 6
324 212 D4 6 364 244 F4 0
325 213 D5 6 365 245 F5 5
326 214 D6 6 366 246 F6 0
327 215 D7 x 367 247 F7
330 216 D8 0 370 248 F8 0

331 217 D9 (] 371 249 F9 U

332 218 DA (] 372 250 FA U

333 219 DB 0 373 251 FB 0.

334 220 DC 0 374 252 FC ii

335 221 DD Y 375 253 FD Y
336 222 DE l> 376 254 FE P
337 223 DF 13 377 255 FF Y
340 224 EO a
341 225 E1 a
342 226 E2 a
343 227 E3 a
344 228 E4 a
345 229 E5 a
346 230 E6 re

--88--

ISO Latin-I Table A-S

Appendix B

Domain C Extensions

This appendix lists all extensions to the de facto C standard defined in The C
Programming Language by Kernighan and Ritchie. The extensions listed in Table B-1 are
compatible with the proposed ANSI C standard or with the C++ programming language.
The ones listed in Table B-2 are unique to Domain C.

Table B-1. ANSI C and c++ Extensions Supported by Domain C

Extension ANSI C++

function prototypes V' V'

reference variables V'

void and (void *) V' V'

FILE and _LINE_ predefined symbols V' V'

- DATE_, _TIME_ and _STDC_ predefined symbol V'

structure and union assignment V' V'

union initialization V' V'

defined preprocessor operator V' V'

unsigned short, unsigned long, and unsigned char types V' V'

long constants V' V'

passing structures and unions as arguments V' V'

Domain C Extensions B-1

B-2 Domain C Extensions

Table B-2. Domain Extensions to the C Language

Extension

sized enums (char, short, and long)

#attribute specifier

#option specifier

std_$call keyword

#section and #module preprocessor directives

#debug preprocessor directive

#eject preprocessor directive

#list and #nolist preprocessor directives

#systype preprocessor directive

systype predefined macro

_BFMT_COFF predefined name

long float data type

dollar sign ($) in identifiers

partial specification of struct and union members

----88------

Appendix C

BSD lint: A C Program Checker

C.l Introduction

The lint utility examines C source code, detecting any bugs or obscurities. It enforces the
type rules of C more strictly than the C compilers do. It may also be used to enforce many
portability restrictions involved in moving programs between different machines and/or op­
erating systems. Furthermore, it detects certain constructions which, although technically
"legal," are nonetheless wasteful, error-prone, or otherwise best avoided. lint accepts mul­
tiple input files and library specifications, and checks them for consistency.

The separation of function between lint and the C compilers has both historical and practi­
cal rationale. The compilers turn C programs into executable files rapidly and efficiently.
This is possible, in part, because the compilers don't do sophisticated type checking, espe­
cially between separately-compiled programs. lint takes a more global, leisurely view of the
program, looking much more carefully at the compatibilities.

This chapter discusses the use of lint, gives an overview of the implementation, and gives
some hints on the writing of machine independent C code.

C.2 Summary of lint Options

The command currently has the form

% lint [options] files ... library-descriptors ...

BSD lint Utility C-l

The following options are available:

-a

-b

-c

-h

-n

-p

-s

-u

-v

-x

C.2.1 Usage

Print messages about assignments of long objects to integers that are
not long.

Print messages about unreachable break statements.

Complain about questionable casts.

Perform heuristic checks.

Don't do any library checking.

Perform portability checks.

Perform heuristic checks (same as h).

Don't report unused or undefined externals.

Don't report unused arguments.

Report unused external declarations.

Suppose there are two C source files, file1.c and file2.c, that are ordinarily compiled and
loaded together. Then the command,

$ lint file1.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The follow­
ing command

$ lint -p file1.c file2.c

also produces these messages, as well as other messages that relate to the "portability" of
the programs to other operating systems and machines. Replacing the -p by -h produces
messages about constructions that, although legal, demonstrate poor programming style (ac­
cording to lint). You may use both options

$ lint -hp file1.c file2.c

to get both types of messages.

Many of the facts that lint needs to establish may, in reality, be impossible to discover.
For example, it may not be possible to know whether a given function in a program ever
gets called without also knowing the input data. Deciding whether exit is ever called is
equivalent to solving the famous "halting problem," known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called.

C-2 BSD Lint Utility

lint tries to give only relevant information. Messages of the form "xxx might be a bug" are
easy to generate, but are acceptable only in proportion to the fraction of real bugs they
uncover. If this fraction of real bugs is too small, lint loses credibility, and its "error" mes­
sages merely clutter up the output, obscuring other, possibly more important messages.

C.2.2 Unused Variables and Functions

As sets of programs evolve, previously used variables and arguments to functions may be­
come unused. It isn't uncommon for external variables, or even entire functions, to be­
come unnecessary, and yet not be removed from the source. These "errors of commission"
rarely cause working programs to fail, but they are a source of inefficiency, and make pro­
grams harder to understand and change. Moreover, information about such unused vari­
ables and functions can occasionally help you to discover bugs; if a function does a neces­
sary job and is never called, something is probably wrong.

lint complains about variables and functions that are defined but not otherwise mentioned.
An exception is variables that are declared through explicit extern statements but are
never referenced; thUS, the statement

extern float sin();

evokes no comment if sin is never used. Note that this agrees with the semantics of the
Domain C compiler. In some cases, these unused external declarations might be of some
interest; you can discover them by adding the -x option when you invoke lint.

Certain styles of programming require many functions to be written with similar interfaces;
frequently, some of .the arguments may be unused in many of the calls. The -v option sup­
presses the printing of complaints about unused arguments. When -v is in effect, lint pro­
duces no messages about unused arguments except for those arguments that are unused
and also declared as register arguments. This can be considered an active (and prevent­
able) waste of the register resources of the machine.

In one particular case, information about unused or undefined variables is more distracting
than helpful. This is when lint is applied to some, but not all, files in a collection that is
normally loaded together. Here, many of the functions and variables defined may not be
used, and, conversely, many functions and variables defined elsewhere may be used. Use
the -u option to suppress the spurious messages that might otherwise appear.

C.2.3 SetlU sed Information

lint attempts to detect cases where a variable is used before it is assigned a value. This
isn't easy to detect. Many algorithms take a good deal of time and space, and still produce
"error" messages about perfectly valid programs. lint detects local variables (automatic and
register storage classes) whose first use appears physically earlier in the input file than the
first assignment to the variable. It assumes that taking the address of a variable constitutes
a "use," since the actual use may occur later, in a data-dependent fashion.

BSD lint Utility C-3

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. This
genre of complaint has its roots in stylistic, rather than actual, error. Because static and
external variables are initialized to zero, no meaningful information can be discovered
about their uses. The algorithm deals correctly, however, with initialized automatic vari­
ables, and variables used in the expression that first sets them.

The set/used information also permits recognition of those local variables that are set and
never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

C.2.4 Flow of Control

lint attempts to detect unreachable portions of the programs that it processes. It complains
about unlabeled statements immediately following goto, break, continue, or return state­
ments. It attempts to detect loops that can never be left at the bottom, detecting the spe­
cial cases while(1) and for(;;) as infinite loops. lint also complains about loops that can't
be entered at the top. As is often true when lint makes false accusations, this condition
may not be a bug, but a complaint about programming style.

lint has an important area of blindness in the flow of control algorithm: it can't detect
functions that are called and never return. Thus, a call to exit may cause unreachable
code that lint doesn't detect; the most serious effects of this are in the determination of
returned function values (see Section C.2.5).

A break statement that can't be reached causes no message. Programs generated by yacc
and lex may have hundreds of unreachable break statements. The -0 option in the C
compiler often eliminates the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing you can do about them, and
the resulting messages would clutter up lint's output. If you want to see these messages,
invoke lint with the -b option.

C.2.S Function Values

Sometimes functions return values that are never used; sometimes programs incorrectly use
function "values" that have never been returned. lint addresses this problem in a number
of ways. Locally, within a function definition, the appearance of both

return (expr);

and

return ;

statements is cause for alarm; lint gives the. message

function name contains return(e) and return

C-4 BSD Lint Utility

The most serious difficulty with this is detecting when a function return is implied by flow
of control reaching the end of the function. For example:

f (a) {
if (a) return (3);
g ();
}

Notice that, if a tests false, f calls g and then returns with no defined return value; this
triggers a complaint from lint. If g, like exit, never returns, the message is produced even
though nothing is actually wrong. In practice, some potentially serious bugs have been dis­
covered by this feature. It also accounts for a substantial fraction of the "noise" messages
produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes or always unused. When the value is always unused, it may constitute an ineffi­
ciency in the function definition. When the value is sometimes unused, it may represent
bad style (e. g., no testing for error conditions).

The dual problem of using a function value when the function does not return one is also
detected. This is a serious problem that has been observed in "working" programs where,
by chance, the desired function value was computed in the function return register.

C.2.6 Type Checking

lint enforces the type checking rules of C more strictly than compilers do. The additional
checking goes on in four major areas: across certain binary operators and implied assign­
ments, at the structure selection operators, between the definition and uses of functions,
and in the use of enumerations.

Several operators have an implied balancing between types of the operands. The assign­
ment, conditional (?:), and relational operators have this property. The argument of a
return statement, and expressions used in initialization also suffer similar conversions. In
these operations, char, short, int, long, unsigned, float, and double types may be freely
intermixed. The types of pointers must agree exactly, except that arrays of x's can be in­
termixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
"->" be a pointer to structure, the left operand of the "." be a structure, and the right
operand of these operators be a member of the structure implied by the left operand.
Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside from this, all actual arguments
must agree in type with their declared counterparts.

With enumerations, lint checks to see that enumeration variables or members are not
mixed with other types or other enumerations. Another check ensures that the only opera­
tions applied are =, initialization, ==, !=, and function arguments and return.

BSD lint Utility C-5

C.2.7 Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider this assignment, where p is a character pointer:

p = 1 ;

lint has reason to complain. Now, consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. This assign­
ment clearly signals the desired action. It seems harsh for lint to continue to complain
about this. On the other hand, if this code is to be truly portable, such constructs should
be examined carefully. The -c option controls the printing of comments about casts. When
-c is in effect, casts are treated as though they were assignments subject to complaint; oth­
erwise, all legal casts are passed without comment, no matter how strange the type mixing
seems to be.

C.2.S Nonportable Character Use

On most C implementations, characters take on only positive values. lint flags certain com­
parisons and assignments as illegal or nonportable. For example, the fragment

char c;

if((c = getchar(» < 0)

works where the version of C allows a character to have a negative value, but fails on ma­
chines where characters always assume positive values. The real solution is to declare c an
integer, since getchar is actually returning integer values. In any case, lint responds with
.. nonportable character comparison."

A similar issue arises with bitfields; when assignments of constant values are made to bit­
fields, the field may be too small to hold the value. This is especially true because, on
some machines, bitfields are considered signed quantities. While it may seem unintuitive to
consider that a 2-bit field declared as type int cannot hold the value 3, the problem disap­
pears if the bitfield is declared to have type unsigned.

C.2.9 Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which loses accuracy in some imple­
mentations. This may happen in programs that have been incompletely converted to use
typedefs. When a typedef variable is changed from int to long, the program can stop
working because some intermediate results may be assigned to ints, losing accuracy. Since
there are a number of legitimate reasons for assigning longs to ints, the detection of these
assignments is enabled by the -a option.

C-6 BSD Lint Utility

C.2.tO Unorthodox Constructions

lint flags several perfectly legal, but somewhat unorthodox, constructions in the hope of
promoting better code quality and clearer style, and even of pointing out bugs. The -b op­
tion enables these checks. For example, in the statement

*p++ ;

the asterisk (*) does nothing. This provokes the message "null effect" from lint. In the
following program fragment,

unsigned x ;
if(x < 0) ...

the test never succeeds. Similarly, the test

if(x > 0)

is equivalent to

if(x != 0)

which may not be the intended action. lint accuses you of making a "degenerate unsigned
comparison" in these cases. If the code says

if(1 != 0)

lint reports "constant in conditional context," since the comparison of 1 with 0 gives a
constant result.

Another construction detected by lint involves operator precedence. Bugs arising from mis­
understandings about the precedence of operators can be accentuated by spacing and for­
matting, making such bugs extremely hard to find. For example, the statements

if (x&077 == 0) ...

or

x«2 + 40

probably don't do what was intended. The best solution is to place such expressions in pa­
rentheses, and lint encourages this by an appropriate message.

Finally, when the -b option is in force, lint complains about variables that are redeclared
in inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is
considered by many to be bad style, often unnecessary, and frequently a bug.

C.2.11 Antiquated Syntax

lint attempts to discourage several forms of older syntax. These fall into two classes: assign­
ment operators and initialization.

BSD lint Utility C-7

The older forms of assignment operators (e.g., =+, =-, ...) could cause ambiguous ex­
pressions, such as

a =-1 ;

This expression could be interpreted as either

a =- 1 ;

or

a = -1 ;

It is especially perplexing when such ambiguity arises as the result of a macro substitution.
The newer and preferred operators (+=, -=, etc.) don't cause such confusion. To spur the
abandonment of the older forms, lint complains about these older operators.

A similar issue arises with initialization. Older versions of C allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties. For example,

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) { . . .

and the compiler must read some distance past x to be sure what the declaration really is.
Again, the problem is even more perplexing when the initializer involves a macro. The cur­
rent syntax places an equal sign between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

C.2.12 Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. On machines where double-precision values may be­
gin on any integer boundary, it is reasonable to assign integer pointers to double pointers.
On other machines, double-precision values must begin on even word boundaries; thus,
not all such assignments make sense. lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message "possible pointer
alignment problem" results from this situation whenever either the -p or -h options are in
effect.

C.2.13 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines in which the stack runs backwards,

C-8 BSD Lint Utility

function arguments are probably be best evaluated from right-to-Ieft; on machines with a
stack running forward, left-to-right seems most attractive. Function calls embedded as ar­
guments of other functions mayor may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

So that the efficiency of C on a particular machine isn't unduly compromised, the C lan­
guage leaves the order of evaluation of complicated expressions up to the local compiler.
In fact, the various C compilers have considerable differences in the order in which they
evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

a[i] = b[i++]

draws the complaint:

warning: i evaluation order undefined

C.3 Implementation Details

lint consists of two programs and a driver. The first program is a version of the Portable C
Compiler (PCC). This compiler does lexical and syntax analysis on the input text, con­
structs and maintains symbol tables, and builds trees for expressions. Instead of writing an
intermediate file which is passed to a code generator (as the other compilers do), lint pro­
duces an intermediate file which consists of lines of ASCII text. Each line contains an ex­
ternal variable name, an encoding of the context in which it was seen (use, definition, dec­
laration, etc.), a type specifier, and a source file name and line number. The information
about variables local to a function or file is collected by accessing the symbol table, and
examining the expression trees.

Comments about local problems are produced as detected. The information about external
names is collected onto an intermediate file. After all the source files and library descrip­
tions have been collected, the intermediate file is sorted to bring together all information
collected about a given external name. The second, rather small, program then reads the
lines from the intermediate file and compares all of the definitions, declarations, and uses
for consistency.

The driver controls this process, and is also responsible for making the options available to
both passes of lint.

C.3.1 Portability

This section describes some of the differences between C implementations, and discusses
the lint features that encourage portability.

BSD lint Utility C-9

Uninitialized external variables are treated differently in different implementations of C.
Suppose two files contain a declaration without initialization, such as

int a ;

outside of any function. The loader resolves these declarations and cause only a single
word of storage to be set aside for G. Under some implementations, this isn't feasible, so
each such declaration causes a word of storage to be set aside and called a. When loading
or library editing takes place, this causes fatal conflicts that prevent the proper operation of
the program. If lint is invoked with the -p option, it detects such mUltiple definitions.

A related difficulty comes from the amount of information retained about external names
during the loading process. Names known externally to UNIX software have seven signifi­
cant characters, with the upper/lowercase distinction preserved. On other systems, the num­
ber of characters used and the preservation of case distinction may not be handled the
same way. This leads to situations where programs that run fine under the UNIX system
encounter loader problems on other systems. lint -p causes all external symbols to be
mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling. The UNIX system uses
8-bit ASCII. Other systems may use other character lengths or even other encoding
schemes (e.g., EBCDIC). Moreover, character strings go from high to low bit positions
("left to right") on some systems, and low to high ("right to left") on the others. Thus,
code attempting to construct strings out of character constants, or attempting to use charac­
ters as indices into arrays, are suspect. lint is of little help here, except to flag multi-char­
acter character constants.

Other problems are likely to arise in shifting or masking words. C supports a bit-field facil­
ity that can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. For ex­
ample, consider the use of

x &= 0177700

to clear the low order six bits of x. If the bit field feature cannot be used, the same effect
can be obtained by writing the following, which works on many machines:

x&= 9- 8 077 ;

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed un­
signed. Characters are considered signed integers on the PDP-ll, and unsigned on the
other machines. This persistence of the sign bit may be reasonably considered a bug in the
PDP-ll hardware that has infiltrated itself into the C language. If there were a good way
to discover the programs that would be affected, C could be changed; in any case, lint is
no help here.

The above discussion may have made the problem of portability seem bigger than it in fact
is. The issues involved here are rarely subtle or mysterious, at least to the implementor of

C-IO BSD Lint Utility

the program, although they can involve some work to straighten out. The most serious bar
to the portability of UNIX system utilities has been the inability to mimic essential UNIX
system functions on the other systems. The inability to seek to a random character position
in a text file, or to establish a pipe between processes, has involved far more rewriting and
debugging than any of the differences in C compilers. On the other hand, lint has been
very helpful in moving the UNIX operating system and associated utility programs to other
machines.

C.3.2 Suppressing Unwanted Output

Sometimes you want lint to refrain from citing various constructs that, while technically
"wrong," are nevertheless there for a good reason. There may be valid reasons for "ille­
gal" type casts, functions with a variable number of arguments, etc. Moreover, the flow of
control information produced by lint often has blind spots, causing occasional spurious
messages about perfectly reasonable programs. Thus, some way of controlling lint's output
is often desirable.

The form that this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar
problems.

What was finally done was to cause several words to be recognized by lint when they were
embedded in comments. This required minimal preprocessor changes; the preprocessor just
had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on sys­
tems with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in the
program cannot be reached, but this is not apparent to lint, it can be asserted by the di­
rective

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if you want to turn off strict type check­
ing for the next expression, you can use the directive

/* NOSTRICT */

This causes the program to revert to the previous default after the next expression. The -v
option can be turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by
using this directive

/* VARARGS */

BSD lint Utility C-ll

before the function definition. Sometimes, it is desirable to check the first several argu­
ments, and leave the later arguments unchecked. This can be done by following the
V ARARGS keyword immediately with a digit giving the number of arguments to be
checked; thus, this causes the first two arguments to be checked, the others unchecked:

/* VARARGS2 */

Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file (see Section 6.3.3).

C.3.3 Library Declaration Files

lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries by accessing library descrip­
tion files whose names are constructed from the library directives. These files all begin with
the directive

/* LINTLIBRARY */

followed by a series of dummy function definitions. The critical parts of these definitions
are the declaration of the function return type, whether the dummy function returns a
value, and the number and types of arguments to the function. You can use the
V ARARGS and ARGSUSED directives to specify features of the library functions.

lint library files are processed almost exactly like ordinary source files. The only difference
is that functions defined on a library file, but not used on a source file, draw no com­
plaints. lint doesn't simulate a full library search algorithm, and complains if the source
files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file, which con­
tains descriptions of the programs which are normally loaded when a C program is run.
When the -p option is in effect, another file containing descriptions of the standard 110
library routines that are expected to be portable across various machines is checked. The
-n option can be used to suppress all library checking.

-------88-------

C-12 BSD Lint Utility

Appendix D

SysV lint Utility

The lint program examines C language source programs, detecting a number of bugs and
obscurities. It enforces the type rules of C language more strictly than the C compiler. It
may also be used to enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems. Another option detects a
number of wasteful or error-prone constructions, which nevertheless are legal. lint accepts
multiple input files and library specifications and checks them for consistency.

D.l Usage

The lint command has the form:

lint [options] files ... [librarY-deScriPtors ...]

where options are optional flags to control lint checking and messages; files are the files to
be checked which end with .c or .In; and library-descriptors are the names of libraries to
be used in checking the program.

SysV lint Utility D-l

The options that are currently supported by the lint command are:

-a

-b

-c

-h

-n

-0 name

-p

-u

-v

-x

Suppress messages about assignments of long values to variables that
are not long.

Suppress messages about break statements that cannot be reached.

Only check for intra-file bugs; leave external information in files
suffixed with .In.

Do not apply heuristics (which attempt to detect bugs, improve style,
and reduce waste).

Do not check for compatibility with either the standard or the portable
lint library.

Create a lint library from input files named IIib-lname.ln.

Attempt to check portability.

Suppress messages about function and external variables used and not
defined or defined and not used.

Suppress messages about unused arguments in functions.

Do not report variables referred to by external declarations but never
used.

When more than one option is used, they should be combined into a single argument, such
as -ab or -xha. The names of files that contain C language programs should end with the
suffix .c, which is mandatory for lint and the C compiler.

lint accepts certain arguments, such as:

-1m

These arguments specify libraries that contain functions used in the C language program.
The source code is tested for compatibility with these libraries. This is done by accessing
library description files whose names are constructed from the library arguments. These
files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function
returns a value, and the number and types of arguments to the function. The V ARARGS
and ARGSUSED comments can be used to specify features of the library functions.
Section D.2 describes how it is done.

D-2 SysV lint Utility

lint library files are processed almost exactly like ordinary source files. The only
difference is that functions that are defined in a library file but are not used in a source
file do not result in messages. lint does not simulate a full library search algorithm and
will print messages if the source files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file that contains
descriptions of the programs that are normally loaded when a C language program is run.
When the -p option is used, another file is checked containing descriptions of the standard
library routines that are expected to be portable across various machines. The -n option
can be used to suppress all library checking.

D.2 lint Message Types

The following paragraphs describe the major categories of messages printed by lint.

D.2.1 Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to
functions may become unused. It is not uncommon for external variables or even entire
functions to become unnecessary and yet not be removed from the source. These types of
errors rarely cause working programs to fail, but are a source of inefficiency and make
programs harder to understand and change. Also, information about such unused variables
and functions can occasionally serve to discover bugs.

lint prints messages about variables and functions which are defined but not otherwise
mentioned, unless the message is suppressed by means of the -u or -x option.

Certain styles of programming may permit a function to be written with an interface where
some of the function's arguments are optional. Such a function can be designed to
accomplish a variety of tasks, depending on which arguments are used. Normally lint
prints messages about unused arguments; however, the -y option is available to suppress
the printing of these messages. When -y is in effect, no messages are produced about
unused arguments except for those arguments which are unused and also declared as
register arguments. This can be considered an active (and preventable) waste of the
register resources of the machine. Messages about unused arguments can be suppressed for
one function by adding the comment:

/* ARGSUSED */

to the source code before the function. This has the effect of the -y option for only one
function. Also, the comment:

/* VARARGS */

SysV lint Utility D-3

can be used to suppress messages about variable number of arguments in calls to a
function. The comment should be added before the function definition. In some cases, it
is desirable to check the first several arguments and leave the later arguments unchecked.
This can be done with a digit giving the number of arguments which should be checked.
For example:

/* VARARGS2 */

will cause only the first two arguments to be checked. When lint is applied to some but
not all files out of a collection that are to be loaded together, it issues complaints about
unused or undefined variables. This information is, of course, more distracting than
helpful. Functions and variables that are defined may not be used; conversely, functions
and variables defined elsewhere may be used. The -u option suppresses the spurious
messages.

D.2.2 SetlUsed Information

lint attempts to detect cases where a variable is used before it is assigned a value. lint
detects local variables (automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use" since the actual use may occur at any
later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement since the true flow of control need not be discovered. It
does mean that lint can print error messages about program fragments that are legal, but
these programs would probably be considered bad on stylistic grounds. Because static and
external variables are initialized to zero, no meaningful information can be discovered
about their uses. The lint program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables that are set and
never used. These form a frequent source of inefficiencies and may also be symptomatic of
bugs.

D.2.3 Flow of Control

lint attempts to detect unreachable portions of a program. It will print messages about
unlabeled statements immediately following goto, break, continue, or return statements.
It attempts to detect loops that cannot be left at the bottom and to recognize the special
cases whileCl) and forC;;) as infinite loops. lint also prints messages about loops that
cannot be entered at the top. Valid programs may have such loops, but they are
considered to be bad style. If you do not want messages about unreached portions of the
program, use the -b option.

lint has no way of detecting functions that are called and never return. Thus, a call to
exit may cause unreachable code which lint does not detect. The most serious effects of

D-4 SysV lint Utility

this are in the determination of returned function values (see "Function Values"). If a
particular place in the program is thought to be unreachable in a way that is not apparent
to lint, the comment

/* NOTREACHED */

can be added to the source code at the appropriate place. This comment will inform lint
that a portion of the program cannot be reached, and lint will not print a message about
the unreachable portion.

Programs generated by yacc and especially lex may have hundreds of unreachable break
statements, but messages about them are of little importance. There is typically nothing
the user can do about them, and the resulting messages would clutter up the lint output.
The recommendation is to invoke lint with the -b option when dealing with such input.

D.2.4 Function Values

Sometimes functions return values that are never used. Sometimes programs incorrectly use
function values that have never been returned. lint addresses this problem in a number of
ways.

Locally, within a function definition, the appearance of both

return (expr);

and

return ;

statements is cause for alarm; lint will give the message

function name has return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow
of control reaching the end of the function. This can be seen with a simple example:

f (a)
{

}

if (a) return (3);
g ();

Notice that, if a tests false, f will call g and then return with no defined return value; this
will trigger a message from lint. If g, like exit, never returns, the message will still be
produced when in fact nothing is wrong. A comment

j*NOTREACHED*/

SysV lint Utility D-S

in the source code will cause the message to be suppressed. In practice, some potentially
serious bugs have been discovered by this feature. On a global scale, lint detects cases
where a function returns a value that is sometimes or never used. When the value is never
used, it may constitute an inefficiency in the function definition that can be overcome by
specifying the function as being of type void. For example:

void fprintf(stderr, "File busy. Try again later!\n");

When the value is sometimes unused, it may represent bad style (e.g., not testing for error
conditions). The opposite problem, using a function value when the function does not
return one, is also detected. This is a serious problem.

D.2.S Type Checking

lint enforces the type checking rules of C language more strictly than the compilers do.
The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

There are several operators which have an implied balancing between types of the
operands. The assignment, conditional (?:), and relational operators have this property.
The argument of a return statement and expressions used in initialization suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double
types may be freely intermixed. The types of pointers must agree exactly, except that
arrays of xs can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
-> be a pointer to structure, the left operand of the "." be a structure, and the right
operand of these operators be a member of the structure implied by the left operand.
Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside from this, all actual arguments
must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed
with other types or other enumerations and that the only operations applied are =,
initialization, ==, !=, and function arguments and return values.

D-6 SysV lint Utility

If it is desired to turn off strict type checking for an expression, the comment

/ * NO STRICT * /
should be added to the source code immediately before the expression. This comment will
prevent strict type checking for only the next line in the program.

D.2.6 Type Casts

The type cast feature in C language was introduced largely as an aid to producing more
portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. lint will print a message as a result of detecting this.
Consider the assignment

p = (char *)1

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this and has clearly signaled these
intentions. Nevertheless, lint will continue to print messages about this.

D.2.7 Nonportable Character Use

On some systems, characters are signed quantities with a range from -128 to 127. On
other C language implementations, characters take on only positive values. Thus, lint will
print messages about certain comparisons and assignments as being illegal or nonportable.
For example, the fragment

char c;

if((c = getchar(» < a) ...

will work on one machine but will fail on machines where characters always take on
positive values. The real solution is to declare c as an integer since getchar is actually
returning integer values. In any case, lint will print the message

nonportable character comparison

A similar issue arises with bit fields. When assignments of constant values are made to bit
fields, the field may be too small to hold the value. This is especially true because on
some machines bit fields are considered as signed quantities. While it may seem logical to
consider that a 2-bit field declared of type int cannot hold the value 3, the problem
disappears if the bit field is declared to have type unsigned.

SysV lint Utility D-7

D.2.S Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which will truncate the contents.
This may happen in programs that have been incompletely converted to use typedefs.
When a typedef variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to ints, which are truncated. The-a
option can be used to suppress messages about the assignment of longs to ints.

D.2.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by lint. The
messages encourage better code quality, clearer style, and may even point out bugs. The
-h option is used to suppress these checks. For example, in the statement

*p++ ;

the * does nothing. This provokes the message

null effect

from lint. The following program fragment:

unsigned x ;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x != 0)

which may not be the intended action. lint will print the message

degenerate unsigned comparison

in these cases. If a program contains something similar to

if(1 != 0)

lint will print the message

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

D-8 SysV lint Utility

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing
and formatting. making such bugs extremely hard to find. For example. the statements

if(x&077 == 0) ...

and

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions. and lint encourages this by an appropriate message.

D.2.10 Old Syntax

Several forms of older syntax are now illegal. These fall into two classes: assignment
operators and initialization. The older forms of assignment operators (e.g .• =+. =-....)
could cause ambiguous expressions. such as:

a =-1 ;

which could be taken as either

a =- 1 ;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the result of a
macro substitution. The newer and preferred operators (e.g .• +=. -=) have no such
ambiguities. To encourage the abandonment of the older forms. lint prints messages about
these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties. For example. the initialization

int x (-1) ;

looks somewhat like the beginning of a function definition:

int x (y) { . . .

and the compiler must read past x in order to determine the correct meaning. Again. the
problem is even more perplexing when the initializer involves a macro. The current syntax
places an equal sign between the variable and the initializer:

SysV lint Utility D-9

int x = -1 ;

This is free of any possible syntactic ambiguity.

D.2.11 Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal on others due
entirely to alignment restrictions. lint tries to detect cases where pointers are assigned to
other pointers and such alignment problems might arise. The message

possible pointer alignment problem

results from this situation.

D.2.12 Multiple Subexpressions and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines in which the stack runs backwards,
function arguments will probably be best evaluated from right to left. On machines with a
stack running forward, left to right seems most attractive. Function calls embedded as
arguments of other functions mayor may not be treated similarly to ordinary arguments.
Similar issues arise with other operators that have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated expressions up
to the local compiler. In fact, the various C compilers have considerable differences in the
order in which they will evaluate complicated expressions. In particular, if any variable is
changed by a side effect and also used elsewhere in the same expression, the result is
explicitly undefined. lint checks for the important special case where a simple scalar
variable is affected. For example, the statement

a[i] = b[i++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

----88----

D-IO SysV lint Utility

Appendix E

Using std_$call

This chapter describes how to use std_Scall to invoke. Pascal and FORTRAN routines from
a C program. The std_Scall convention is obsolete and will not be supported in future
releases of the operating system. This documentation, therefore, is designed to enable you
to maintain old programs. Do not use std_Scall for new programs. Moreover, we strongly
recommend that you remove std_Scall from your existing programs as soon as possible.
See Chapter 7 for information about current cross-language communication techniques.

E.l Data Type Agreement of Arguments

When you call a C function in the absence of a prototype, the compiler automatically con­
verts the data types of the parameters according to the rules shown in Table E-l. All of
these conversions are suppressed, however, if you declare the function with a function pro­
totype.

Table E-1. C Function Argument Conversions Without Prototype

Data Type
of Argument

char
short
unsigned char
unsigned short
float

Data Type
Actually Passed

int
int
unsigned int
unsigned int
double

Using std_$caII E-l

E.2 Data Types of Constant Arguments

If you pass a constant to a Pascal or FORTRAN routine, you must make sure that the con­
stant is the same size as the parameter declared in the Pascal or FORTRAN routine. The
sections below describe the default sizes for constant expressions. For the sake of clarity,
we recommend that you explicitly cast all constant expressions used as arguments to a
std_Scall routine even when the casting is not necessary. This does not produce any extra­
neous machine code.

NOTE: When you pass a constant or constant expression, the value is
stored in read-only memory. Therefore, you cannot attempt to
change the parameter's value in the called routine. This applies
to all FORTRAN parameters and any Pascal parameters de­
clared with VAR, OUT, or IN OUT.

E.2.1 Integer Constants

Normally in C, all integral parameters are passed as 32-bit integers. For std_Scall invoca­
tions, however, the default is 16 bits. That's because most of the Domain system calling
sequences require 16-bit integers rather than 32-bit integers. The only times a constant
expression is passed as 32 bits are when the value is too large to fit in 16 bits (i.e., if it is
less than -32768 or greater than +32767), when it is explicitly cast to int or long, or when
it has an "L" or "I" suffix. For instance. the following examples illustrate how different
integer constants are passed to a std_Scall routine.

Constant Expression

100
100·1000
-25
-25L
(long) 25

E.2.2 Floating-Point Constants

Type Passed

short
long
short
long
long

All floating-point constants are represented as double. Therefore. they will agree in size
with Pascal's DOUBLE and FORTRAN's REAL*8 data types. To pass a 4-byte floating­
point constant, you must cast it to float.

E.2.3 Character Constants

C treats character constants like integer constants. Since they are always within the range 0
through 128, they are passed as 16-bit values. To pass a character constant as a character.
you must cast it to char.

E-2 Using std_$call

E.2.4 String Constants

C passes string constants as arrays of type char.

E.3 Data Type Agreement of Function Declarations

Just as the parameters must agree in type, so must the function itself. For example, if a
Pascal function returns an INTEGER16 value, you must declare it in your C program as a
short function. That is, if the Pascal declaration is

FUNCTION funcl (invar: DOUBLE) : INTEGER16;

then the C declaration should be:

std_$call short funcl();

All C declarations of Pascal procedures and FORTRAN subroutines should use the void
type since these routines do not return a value. For instance, the Pascal procedure defined
by

PROCEDURE procl(invar

should be declared as:

std_$call void procl();

E.3.1 Functions Returning Pointers

DOUBLE);

In most cases, C treats pointers and integers interchangeably. For std_Scan functions re­
turning pointers, however, they are not the same. When Pascal returns the value of a func­
tion, it places it in one of two registers: a data register or an address register. Although C
normally expects values to be returned in a data register, it conforms to the Pascal conven­
tion for std_Scan functions. For instance, in the following example, C expects the value of
pass_pointO to be returned in an address register, and the value of pass_dataO to be
returned in a data register.

mainO
{

std $call int *pass-point();
std=$call int pass_data();

Make sure that when you declare a std_Scan function returning a pointer that you also
declare it in Pascal as a function returning a pointer. Otherwise, the returned value will be
put in one register while the C program is looking for it in a different register.

FORTRAN has no syntax for declaring a function that returns a pointer. All FORTRAN
functions return their values in a data register. In C, you should never declare a std_Scall
FORTRAN function that returns a pointer.

Using std_$call E-3

E.3.2 Using std_ScalI

Pascal and FORTRAN usually pass arguments by reference; C generally passes arguments
by value. To simplify cross-language communication, the Domain system uses a standard
calling convention. In C, you signify that you are using the standard calling convention
by declaring external Pascal and FORTRAN routines with the keyword std_Scall before
invoking them. This keyword tells the compiler that the C program will pass arguments ac­
cording to the Domain system's standard calling convention.

The syntax for std_Scall is:

std_Scall function-declaration

For instance, all of the following are legal uses of std_Scall:

std_$call void string_match();

std_$call int sum();

std_$call char *sp();

NOTE: Do not use the storage class extern in a std_Scall declaration.

The std_Scall declaration has the following effects on function calls:

• All arguments in the function call are passed by reference rather than by value.
Essentially, the compiler adds an address-of operator (&) to every argument in
the function call.

• All normal C argument conversions are suppressed.

• Integral constant expressions are passed as 16-bit values if they are in the range
-32768 through +32767; otherwise, they are passed as 32-bit values.

E-4 Using std_$call

The standard calling convention has some important consequences that are discussed in
detail in this chapter. There are three general caveats that deserve special attention:

• Passing Arrays-When a FORTRAN or Pascal routine expects an array as an ar­
gument, you must pass it an array reference: either an array name or a
dereferenced pointer. If you pass a pointer without dereferencing it, you will pass
the address of the pointer. See Sections 7.5.3 and 7.6.4 for more information.

• Passing Integer Constants-Normally all integer arguments in C are expanded to
32 bits before they are passed. For std_$call functions, however, constant integer
expressions are passed as 16 bits if they can fit in 16 bits. If they cannot fit in 16
bits, they are passed as 32 bits.

• Passing Constants and Expressions-Do not pass a constant or an expression to
a Pascal or FORTRAN routine that attempts to change the value of the incoming
argument. If you do, you will get an error or unpredictable results. The one ex­
ception to this rule occurs when you declare a Pascal parameter without a declara­
tion keyword. In this case, Pascal generates a local copy of the argument that can
be changed.

The program below shows two ways to call a Pascal routine named pass_example 0 , first
by declaring it with std_$call and then by declaring it as a normal external routine and
explicitly compensating for the different calling conventions.

static float x=l.O , y=l.O;
void pass! ()
{

std $call void pass example();
pass example(x,y); - /* x and yare passed by reference */

- /* because it is a std_$call function. */
}

void pass2 ()
{

extern void pass example();
pass example(&x,&y); /* x and yare explicitly passed by

reference. */
}

In addition to the pass-by-reference and pass-by-value conventions, there are also compli­
cations created by the different data types supported by C, Pascal, and FORTRAN. The
following sections describe the intricacies of data type agreement.

E.4 Pascal Examples

The following examples show how to pass various objects of different types and sizes to
Pascal routines. In our examples, we always cast constant arguments even if the cast is un­
necessary.

In Pascal, there are five ways to declare a formal parameter: IN, OUT, IN OUT, VAR, or
without a keyword. In all five cases, the parameters are passed by reference, but the Pascal

Using std_$call E-S

keywords control what operations are legal within the Pascal routine and whether or not a
local copy of the parameter is generated. The only time a local copy is generated is when
the parameter is declared with no keyword. In this case, the Pascal routine can change the
value of the argument without affecting the argument in the calling C program. Whenever
one of the parameter keywords is used, however, the Pascal argument and the correspond­
ing C argument have the same address.

E.4.l Passing Integers

Suppose you need to send a 16-bit integer and a 32-bit integer to a Pascal routine that
returns a 32-bit integer. In our example, the Pascal function squares the second argument,
multiplies the result to the first argument, and returns the product.

MODULE pass int p;
FUNCTION pass int(invarl

- invar2
BEGIN

INTEGER16
INTEGER32

invar2 .- sqr(invar2);
pass_int := invarl*invar2;

END;

INTEGER32;

The C program below shows a variety of ways to call this routine. Note especially that con­
stants that can fit in 16 bits are passed as shorts unless you cast them. Non-constant ex­
pressions are passed as ints unless you cast them to short.

E-6 Using std_$call

main ()
{

std $call int pass int();
short argl; - /* argl is 16 bits */
int arg2,answer; /* arg2 and answer are 32 bits */

/* Initialize variables. */
argl=10;
arg2=20;

/* First we call pass_int with the correct-size arguments.
* No casting is necessary.
*/

answer = pass int(argl, arg2);
printf ("%d\ t%d\ t%d\n" ,argl, arg2, answer) ;

/* If we want to send arg2 as the first argument and argl as
* the second, both arguments must be cast.
*/

answer = pass int ((short) arg2 , (long) argl);
printf ("%d\ t%d\ t%d\n", arg2, argl, answer) ;

/* Any integer expression containing a variable is converted to
* long into
*/

answer = pass int«short) (argl+arg2) , (arg2-argl»;
printf("%d\t%cf\t%d\n", (argl+arg2), (arg2-argl) ,answer);

/* By default, integral constant expressions are passed as
* shorts. Both constants are short because they are in the
* range: -32767 - 32767.
*/

answer = pass int((short) 10 , (long) (20*3»;
printf ("%d\ t%d\ t%d\n" ,10,60, answer) ;

/* Append L to constant to make it long. */
answer = pass int((short) 5 , 3L);
printf ("%d\ t%d\ t%d\n" ,5,3, answer) ;

/* Chars may be sent as integer values, but they are 16 bits.
*/

}

answer = pass int ((short) 'A' , (long) '8');
printf("%d\t%d\t%d\n" , 'A' ,'8' ,answer);

If we execute the preceding program, the output is:

10
20
30
10
5
65

20
10
10
60
3
66

4000
2000
3000
36000
45
283140

E.4.2 Passing Floating-Point Numbers

The rules for passing floating-point numbers are similar to the rules for passing integers.
All arguments must agree in type, either by declaration or by casting. By default, all float­
ing-point expressions are passed as double values unless explicitly cast to float.

Using std_$call E-7

The example below shows a Pascal procedure that accepts two floating-point numbers; the
first is four bytes and the second is eight bytes. The program assigns the second argument
to be equal to the square root of the first argument. Note that this is not a function-the
value is returned through the second argument, which is declared with V AR.

MODULE pass_float-p;

PROCEDURE pass float (single var
VAR double=var

BEGIN
double_var := sqrt(single_var);

END;

SINGLE;
DOUBLE) ;

The C program below shows various ways to call pass_floatO. Because double_var is de­
clared with VAR and has its value changed in the Pascal routine, it is illegal to pass it a
constant or an expression.

E-8 Using std_$call

#module pass_float_c
main()
{

std $call void pass float();
float argl=O.O; -
double arg2=O.O;

/* First we pass variables of the correct size. No casting is
* needed.
*/

printf("number\t\t\tsquare root\n\n");
while (argl<=2.0) {

}

pass float(argl,arg2);
printf ("%f\ t \ t%f\n" , argl, arg2) ;
argl += .25;

/* Expressions that contain at least one floating-point
* variable are converted to double before being passed.
*/

pass float«float) (argl+3),arg2);
printf("%f\t\t%f\n",argl+3,arg2);

/* Floating-point constants must be cast or they will be passed
* as doubles.
*/

pass float«float) 2e+3 , arg2);
printf ("%f\ t\ t%f\n" , (float) 2e+3, arg2) ;

The output is:

number

0.000000
0.250000
0.500000
0.750000
1.000000
1.250000
1.500000
1. 750000
2.000000
5.250000
2000.000000

E.4.3 Passing Character Data

square root

0.000000
0.500000
0.707107
0.866025
1.000000
1.118034
1. 224745
1.322876
1.414214
2.291288
44.721359

When a Pascal routine expects a Pascal CHAR type. make sure that the argument you
supply is passed as a reference to eight bits. not as a reference to 16 or 32 bits. You can
do this either by passing a C char variable or by casting the argument to char. Be espe­
cially careful of char constants because for std_$call functions. all integral constant argu­
ments. including character constants. are passed as 2-byte integers if possible.

Consider the following Pascal case-inversion routine that accepts a character as an argu­
ment and returns the same character with the opposite case.

MODULE pass_char-p;

FUNCTION upper lower (in_char : CHAR) : CHAR;
BEGIN -

END;

If «ord(in char) < 65) OR (ord(in char) > 122) OR
«ord(in char) >= 91) AND (ord(in char) <= 96»)

THEN-upper lower := in char -
ELSE IF (ord(in char) <= 97) -

THEN upper lower := chr(ord(in char) + 32)
ELSE - -

upper_lower := chr(ord(in_char) -32);

The C program below calls upper_IowerO in a variety of ways.

Using sld_$call E-9

#module pass char c
maine) --
{

std_$call char upper lower();
char out char, result;
short long_char, long_result;

out char = 'A"
long_char = 'B;;

/* 8-bit variables */
/* 16-bit variables */

printf("Original Char\t\tCase-Inverted\n\n ll);

/* We do not have to cast out_char because it is one byte. */

result = upper lower(out char);
printf("\t%c\t\t\t\t\t%c\n", out_char,result);

/* We must cast long_char because it is two bytes. */

long result = upper lower«char) long char)
printf ("\ t%c\ t \t \ t\ 't\ t%c\n ll , (char) long_char, long_result) ;

/* This is the right way to pass a character constant. */

result = upper lower«char) 'c');
printf("\t%c\t\t\t\t\t%c\n", 'c' ,result);

/* We can send integers if they can be represented in one byte.
*/

result = upper lower«char) 81);
printf("\t%c\t\t\t\t\t%c\n", (char)81,result);

/* IF WE PASS A CONSTANT WITHOUT CASTING IT, IT WON'T WORK. */

}

result = upper lower('c');
printf("\t%c\t\t\t\t\t%c\n", 'c', result);

The result of this program execution is:

Original Char

A
B
c
Q
c

Case-Inverted

a
b
C
q

Note that when we try to pass the constant 'c' without casting it, the result is an unprint­
able character.

E.4.4 Passing Character Arrays

Suppose you are calling a Pascal procedure that expects an array of char and the length of
the string in the array. The Pascal program in our example takes two arguments: a string
and the length of the string. It reverses the string and returns a pointer to the reversed
string.

E-IO Using std.;...$call

MODULE pass_string-p;
TYPE

GENERIC STRING = ARRAY [1 .. 256] OF CHAR;
STRING~OINT = AGENERIC_STRING;

FUNCTION reverse string (IN str UNIV GENERIC_STRING;
- IN len : INTEGERI6) : STRING_POINT;

VAR
length: INTEGERI6;
temp : CHAR;
.temp str : STATIC GENERIC STRING;

BEGIN - -
length := len;

WHILE length > len/2 DO
BEGIN

temp := str[len-Iength+l] ;
temp str[len-length+l] := str[length] ;
temp-str[length] := temp;
length := length-I;

END;
temp str[len+1] := CHR(O);
reverse string := addr(temp str);

END; - -

The standard call declaration and some invocations appear below. Note that when Pascal
expects an array argument, you must pass it either the name of the array or a
dereferenced pointer to an array. For std_Scall invocations, an array name and a pointer
are not the same.

Using std_$call E-ll

#module pass string c
maine) - -
{

std $call char *reverse string();
char *sp="This is an example";

short len=O; /* C's short is equivalent to Pascal's
*INTEGER16 */

/* A "real" array of char!! */
static char an_array[128]="This is the second example";

len = strlen(sp); /* strlen() returns a 32-bit length which
* is then converted to a short into */

/* Notice that we must DEREFERENCE the pointer "sp" , to make a
* true 'array-type' expression. Don't give "sp" by itself as
* an argument, as you would in normal C; you'll only send the
* ADDRESS of "sp"!
*/

printf("%s\n",sp);
sp = reverse string(*sp,len);
printf("%s\n\n",sp) ;

/* reverse string(sp, len);
WRONG! ! ! ! ! ! ! ! ! T! ! ! ! ! ! ! ! ! ! ! !! * /

/* You could return the value from "strlen" directly, but then
* you must cast it to short since the value returned is an
* into This next call returns the string back to the original.
*/

sp reverse string(*sp, (short)strlen(sp»;
printf("%s\n\n",sp) ;

/* A real array of char is passed as an array reference

}

* since that is what the Pascal procedure actually expects.
*/

printf ("%s\n", an_array) ;
sp = reverse string(an array, (short)strlen(an_array»;
printf("%s\n",sp); -

The output is:

This is an example
elpmaxe na si sihT

This is an example

This is the second example
elpmaxe dnoces eht si sihT

E.4.S Passing Pointers

Passing pointers between C and Pascal programs is fairly straightforward. In both cases,
pointers .are 4-byte entities. The example below shows a simple linked-list application. The

E-12 Using std_$call

C program creates the first element of the list and then calls the Pascal routine appendO
to add new elements to the list. The function printlistO is a C routine that prints the en­
tire list. In addition to illustrating how to pass pointers, this example also shows the corre­
spondence of Pascal records to C structures.

The Pascal program is:

MODULE pointer_example;

TYPE
link = Alist;
list =

RECORD
nex : link;
data : char;

END;

PROCEDURE append (firstrec
val

VAR
newdata link;

link;
CHAR) ;

BEGIN
new(newdata) ; {allocate memory for new element.}

WHILE firstrecA.nex <> NIL DO
firstrec := firstrecA.nex;

firstrecA.nex := newdata;
newdataA.data := val;
newdataA.nex := NIL;

END;

The C program is shown below. Note that C's NULL pointer (defined in <stdio.h» is
equivalent to Pascal's NIL pointer.

Using std_$call E-13

#module pass-pointer_c
#include <stdio.h>
static struct list {

} ;

struct list *next;
char data;

main()
{

}

std ScalI void append();
extern void printlist();
struct list first,*base;
char ch='z';

first.data 'a'; /* assign value to first element of
* linked list
*/

first.next = NULL; /* The first element is also the last
* so set pointer to NULL
*/

base = &first; /* base points to the beginning of the
* list
*/

append(base,(char)'b'); /* Must cast a char constant. */
append(base,ch);

printlist (base) ;

/* printlist() prints the data in each member of the list. */

void printlist(base)
struct list *base;
{

}

do {
printf ("%c\n", base->data) ;
base= base->next;
} while (base != NULL);

After compiling and binding these routines, the output is:

a
b
z

E.4.6 Simulating the BOOLEAN Type

The Pascal BOOLEAN type is an 8-bit entity that evaluates to TRUE when its numeric
value is -1 and to FALSE when its numeric value is O. The BOOLEAN type can be simu­
lated in C with the char data type. Suppose that you want to call the Pascal routine shown
below. This routine takes a BOOLEAN argument and returns a BOOLEAN result (the
opposite of the argument).

E-14 Using std_$call

MODULE pass_boolean-p;

FUNCTION bool(bool arg : BOOLEAN) : BOOLEAN;
BEGIN -

writeln('Pascal value of argument:',bool arg);
bool arg := NOT bool arg; -
writeln('Pascal value returned: ' ,bool_arg);
bool := bool arg;

END; -

The C program below shows several ways to invoke boo I O.

#module pass_boolean_c
#define TRUE «char)-l)

#define FALSE «char)O)

mainO
{

std $call char bool();
int-x;

/* Cast to char
* 1.
*/

/* Cast to char
* O.
*/

and set all

and set all

printf("Numeric value of argument: %d\n",TRUE);
x = (bool(TRUE»;
printf("Numeric value returned: %d\n\n",x);

printf ("Numeric value of argument: %d\n", FALSE) ;
x = (bool(FALSE»;
printf ("Numeric value returned: %d\n\n", x) ;

}

The output after compiling, binding and executing is:

Numeric value of argument: -1
Pascal value of argument:
Pascal va~ue returned:
Numeric value returned: 0

Numeric value of argument: 0
Pascal value of argument:
Pascal value returned:
Numeric value returned: -1

E.S FORTRAN Examples

TRUE
FALSE

FALSE
TRUE

bits to

bits to

The following examples show how to pass various objects of different types and sizes to
FORTRAN routines. Remember that FORTRAN does not make local copies of parameters.
Therefore, if you change the value of a parameter in a FORTRAN routine, the corre­
sponding argument in the C program is also changed. Do not pass constants or expressions
as arguments if the FORTRAN routine attempts to change the argument value.

Using std_$call E-15

There are a two restrictions concerning the types of data that you can pass to, or return
from, a FORTRAN routine:

• You cannot pass an assumed-size array from C to FORTRAN. In other words, the
called FORTRAN routine cannot declare an array parameter with an asterisk, as
in:

SUBROUTINE assumed_size Car)
INTEGER·4 arC·)

• You cannot return a character array of any size, including 1, from a FORTRAN
function. For instance, a FORTRAN function declared as

CHARACTER FUNCTION char _ func ()

cannot be called from a C program.

E.S.l Passing Integers

Suppose you need to send a 16-bit integer and a 32-bit integer to a FORTRAN routine
that returns a 32-bit integer. In our example, the FORTRAN function returns the sum of
the two arguments squared.

INTEGER*4 FUNCTION PASS_INT(invarl,invar2)
INTEGER*2 invarl
INTEGER*4 invar2

PASS_INT = (invarl*invarl) + (invar2*invar2)
END

The C program below shows a variety of ways to call this routine. Note especially that con­
stants that can fit in 16 bits are passed as shorts unless you cast them. Non-constant ex­
pressions are passed as ints unless you cast them to short.

E-16 Using std_$call

#module pass int cf
main() --
{

std $call int pass int();
short argl; - /* argl is 16 bits */
int arg2,answer; /* arg2 and answer are 32 bits */

/* Initialize variables. */
argl=10;
arg2=20;

/* First we call pass int with the correct-size arguments.
* No casting is necessary.
*/
answer = pass int(argl, arg2);
printf ("%d\ t%d\ t%d\n", argl, arg2, answer) ;

/* If we want to send arg2 as the first argument and argl as
* the second, both arguments must be cast.
*/
answer = pass int «short) arg2 , (long) argl);
printf ("%d\ t%d\ t%d\n" ,arg2, argl, answer) ;

/* Any expression that contains a variable is converted to an
* into
*/
answer = pass int «short) (argl+5), (arg2+arg1»;
printf("%d\t%d\t%d\n", (argl+5), (argl+arg2) ,answer);

/* By default, integral constant expressions are passed as
* shorts.
*/

/* Both constants are short because they are in the range:
* -32767 - 32767.
*/
answer = pass int((short) 10 , (long) (20*3);
printf ("%d\ t%d\ t%d\n" ,10,60, answer) ;

/* Append L to constant to make it long. */
answer = pass int((short) 5 , 3L);
printf ("%d\ t%d\ t%d\n", 5,3, answer) ;

/* Chars may be sent as integer values, but they are 16 bits.
*/

}

answer = pass int((short) 'A' , (long) 'B');
printf ("%d\ t%d\ t%d\n", ' A' , 'B' ,answer) ;

The output is:

10
20
15
10
5
65

20
10
30
60
3
66

500
500
1125
3700
34
8581

E.S.2 Passing Floating-Point Numbers

The rules for passing floating-point numbers are similar to the rules for passing integers.
All arguments must agree in type, either by declaration or by casting. By default, all float-

Using std_$call E-17

ing-point constants and expressions are passed as double values unless explicitly cast to
float.

The example below shows a FORTRAN subroutine that accepts the values of the two sides
of a right-angle triangle and returns the length of the hypotenuse. The first parameter is
four bytes and the second is eight bytes. The result is eight bytes.

REAL*8 FUNCTION hypot(side1,side2)
REAL*4 side1
REAL*8 side2

hypot = SQRT«sidel*sidel) + (side2*side2»

END

The C program below shows various ways to call hypotO.

#module pass float cf
maine) - -
{

std $call double hypot();
float argl=3.0;
double arg2=4.0,result;

printf("side1\t\t\side2\t\thypotenuse\n\n");

/* First we call it with the correct data types. */

result = hypot(argl, arg2);
printf("%f\t%f\t%f\n",argl,arg2,result) ;

/* If we reverse the order of the arguments, we must cast both.
*/

result = hypot((float) arg2, (double) argl);
printf("%f\t%f\t%f\n",arg2,arg1,result);

/* Any expression that contains a floating-point variable is
* converted to double.
*/
result = hypot «float) (arg1+arg2), (arg2+2»;
printf("%f\t%f\t%f\n", (arg1+arg2), (arg2+2),result);

/* When we pass constant expressions, the float argument must
* be cast.

}

*/
result = hypot((float)7.5 , (double) 3.2);
printf("%f\t%f\t%f\n",7.5,3.2,result);

The output is:

E-18 Using std_$call

side1

3.000000
4.000000
7.000000
7.500000

side2

4.000000
3.000000
6.000000
3.200000

hypotenuse

5.000000
5.000000
9.219544
8.154140

E.S.3 Passing Character Data

When a FORTRAN routine expects a FORTRAN CHARACTER type, make sure that the
argument you supply is passed as a reference to eight bits, not as a reference to 16 or 32
bits. You can do this either by passing a char variable or by casting the argument to char.
Be especially careful of character constants, because for std_$call functions all integral
constant arguments, including character constants, are passed as 2-byte integers if possible.

Note that you cannot return a character from a FORTRAN function. To return a character
variable, create a subroutine and return the character value in a parameter.

Consider the following FORTRAN case-inversion routine that takes two character argu­
ments. The routine inverts the case of the first argument and returns the result through the
second argument.

The FORTRAN routine is:

SUBROUTINE UPPER LOWER(in char,inverted)
CHARACTER in_char,inverted

IF (ICHAR(in char) .LE. 97) THEN
inverted- CHAR(ICHAR(in char) + 32)

ELSE -
inverted = CHAR(ICHAR(in_char) - 32)

END IF

END

The following C program calls upper_lowerO in a variety of ways.

Using std_$call E-19

#module pass charf c
main() - -
{

std $call void upper lower();
char out char,result;
short long_char;

/* 8-bit variables */
/* I6-bit variable */

out char = 'A';
long char = 'b';
printf("Original Char\t\tCase-Inverted\n\n");

/* We do not have to cast out char because it is 8 bits. */
upper lower(out char,result);
printf("\t%c\t\t\t\t\t%c\n", out_char,result);

/* The short int argument must be cast to char. */

upper lower«char) long char,result);
printf ("\ t%c\ t \t \ t\ t \ t%c\n", 'b', result);

/* This is the right way to pass a character constant. */

upper lower«char) 'c',result);
printf("\t%c\t\t\t\t\t%c\n", 'c' ,result);

/* You can send integers if they can be represented in 8 bits.
*/

upper lower«char) 8I,result);
printf("\t%c\t\t\t\t\t%c\n", (char)8I,result);

/* THIS DOESN'T WORK BECAUSE THE CONSTANT IS NOT CAST. */

upper lower('c',result);
printf("\t%c\t\t\t\t\t%c\n", 'c', result);

The result of program execution is:

Original Char

A
b
c
Q
c

Case-Inverted

a
B
C
q

Note that when we try to pass the constant Ie' without casting it, the result is an unprint­
able character.

E-20 Using std_$call

E.S.4 Passing Arrays

There are two points to remember when passing arrays from C to FORTRAN:

• FORTRAN and C access multidimensional arrays in a different order. In C, the
rightmost subscript varies fastest while in FORTRAN the leftmost subscript varies
fastest.

• When FORTRAN expects an array argument, you must pass it either the name of
the array or a dereferenced pointer to an array. For std_$call invocations, an ar­
ray name and a pointer are not the same.

The following example illustrates how to pass a character array from C to FORTRAN. Note
that you can declare the array in FORTRAN as a character string or as an array of type
CHARACTER. The two FORTRAN routines shown here return the last character of a
string and the next-to-Iast character, respectively.

C Pass a string and get the last char.

SUBROUTINE pass char array(ca, clen, outchar)
CHARACTER ca(256) -
INTEGER*2 clen
CHARACTER outchar

C Test for null string.

IF (clen .LT. 1) THEN
out char
RETURN

ENDIF

outchar = ca(clen)
RETURN
END

C Pass a string and get the next-to-last char.

SUBROUTINE pass char string(ca, clen, outchar)
CHARACTER*256 ca -
INTEGER*2 clen
CHARACTER out char

C Test for null string.

IF (clen .LT. 1) THEN
outchar
return

ENDIF

out char = ca(clen~1:clen-1)
RETURN
END

The following C program calls these FORTRAN routines.

Using std_$call E-21

#module pass_char_array
mainO
{

std $call void pass char string();
std-$call void pass-char-array();
char result, *sl "This-is the first string";
static char s2[] = "This is the second string";
short length;

/* First we pass a dereferenced pointer. */

length = strlen(sl);
pass char string(*sl,length,result);
printf("The second to last character is %c\n",result);

/* Then we pass an array. */

}

pass char array(s2, «short)strlen(s2»,result);
printf("The last character is %c\n",result);

The result is:

The second to last character is n
The last character is g

E.S.4.1 Passing Adjustable Arrays

The following example illustrates how to pass an adjustable array from C to FORTRAN.
The C program passes two arguments: an array of integers and the size of the array. The
FORTRAN routine uses the second argument to declare the size of the array. The routine
then returns the average value of the array elements.

E-22 Using std_$call

C Pass an array of long int and return the average.

INTEGER*4 FUNCTION pass int array(larray, array_len)
INTEGER*4 array len - -
INTEGER*4 larray(array len)
INTEGER*4 i, tot -

tot = 0
DO i = l,array len

tot = tot + Iarray(i)
print *,'larray(',i,') = ' ,larray(i)

END DO

pass_int_array = tot / array_len
RETURN
END

The C program is:

#module pass_int_array
MainO
{

std $call int pass int array();
static int average~ array size,pass ar-

ray[]={325,478,982,331,21,56,79}i -

array size=sizeof(pass array)/4;
average = pass int array(pass array,array size);
printf("The average is: %d\nll~average); -

}

The result is:

larray(1) 325
larray(2) 478
larray(3) 982
larray(4) 331
larray(5) 21
larray(6) 56
larray(7) 79
The average is: 324

E.S.4.2 Passing Multidimensional Arrays

When you pass a multidimensional array, it is important to remember that in C the right­
most subscript varies fastest while in FORTRAN the leftmost subscript varies fastest. The
example below shows the consequences of this difference.

The FORTRAN routine is:

SUBROUTINE dyn dim(arr, x, y)
INTEGER*4 x, y-
INTEGER*4 arr(x, y)
INTEGER*2 i, j

WRITE(*,*)
WRITE(*,*) 'This
DO i = 1, x

is the FORTRAN array:'

DO j = 1, Y
WRITE(*,*)

END DO
END DO
END

, arr (' , i , , , , , j , ,) , , arr (i I j)

Using std_$call E-23

The C program is:

#module multi_dim_array
maine)
{

}

std $call void dyn dime);
static int arr[2] [3]={1,2,3,4,5,6};
short i,jj

i=O; j=O;
printf("This is the C array:\n");

while (i<=l) {
while (j<=2) {

i++;

printf("arr(%d,%d) = %d\n",i,j,arr[i] [j]);
j++;
}

j = 0;
}

dyn_dim(arr, (long)2, (long)3);

The result is:

This is the C array:
arr(O,O) 1
arr(O,l) 2
arr(0,2) 3
arr(l,O) 4
arr(l,l) 5
arr(1,2) 6

This
arr(
arr(
arr(
arr(
arr(
arr(

E.S.S Passing Pointers

is the
1, 1)
1, 2)
1, 3)
2, 1)
2, 2)
2, 3)

FORTRAN
1
3
5
2
4
6

array:

As an extension to the ANSI standard, Domain FORTRAN enables a FORTRAN routine
to dereference pointers passed from C or Pascal programs. For complete details, consult
the Domain FORTRAN User's Guide.

In the following example, the C program passes the FORTRAN subroutine a pointer to a
structure that contains four short integers. By using the the POINTER statement, the
FORTRAN subroutine is able to modify the structure elements.

E-24 Using std_$call

The FORTRAN subroutine is:

SUBROUTINE pass point(p1)
INTEGER*4 p1 -
INTEGER*2 a,b,c,d
POINTER/p1/a,b,c,d

a=a+1
b=2**a
c=3**a
d=4**a

END

The C program is:

#module pass point c
struct S {- -

short sl,s2,s3,s4;
} struct_pass = {1,1,1,1};

mainO
{

std_$call void pass-point()j
struct S *p;

p = &struct-pass;
pass-point (p) ;
printf("%d\n%d\n%d\n%d\n",struct_pass.s1,struct-pass.s2,

}

The result is:

2
4
9
16

struct_pass.s3,struct_pass.s4);

E.S.6 Simulating the LOGICAL Types

The FORTRAN LOGICAL type is a 4-byte entity that evaluates to TRUE when its nu­
meric value is -1 and to FALSE when its numeric value is O. Although FORTRAN allo­
cates four bytes, it uses only one of them (the high byte). Therefore, in C you can simu­
late the logical type with either a char type or an int type. For the best results, we recom­
mend the following:

• Declare in arguments (those that are not changed in the FORTRAN code) as
chars.

• Declare out arguments (those that are changed in the FORTRAN routine) as a
union of a char and an into

• Declare FORTRAN functions that return a LOGICAL value as type char.

The following example shows all three cases. The FORTRAN function accepts an in argu­
ment and an out argument and returns a LOGICAL value.

Using std_$call E-25

LOGICAL FUNCTION pass logical(in arg,out arg)
LOGICAL in_arg, out_arg - -

PRINT *,'FORTRAN value of in arg:',in arg
PRINT *,'FORTRAN value of out arg:',out arg
out arg = .NOT. out arg - -
pass logical = in arg .EQV. out arg
PRINT *,'FORTRAN value returned:', pass_logical

END

The C program below shows how to invoke pass_logical.

#module pass logical c
#define TRUE-«char)=l) /* Cast to char and set all bits to 1.

*/
#define FALSE «char)O) /* Cast to char and set all bits to o.

*/
mainO
{

std $call char pass logical();
char arg1,result; -
union {

char log;
int filler;
} arg2;

arg1 = TRUE;
arg2.log = TRUE;
printf("C numeric value of arg1: %d\n",arg1);
printf("C numeric value of arg2: %d\n",arg2.log);
result = pass logical(arg1,arg2);
printf("C numeric value of arg2 after function call:

%d\n II , arg2. log) ;
printf("C numeric value returned: %d\n\n",result);

printf ("C numeric value of arg1: %d\n ", arg1) ;
printf("C numeric value of arg2: %d\n",arg2.log);
result = pass logical(arg1,arg2);
printf(IIC numeric value of arg2 after function call:

%d\n", arg2 .log) ;
printf("C numeric value returned: %d\n\n",result);

}

The output after compiling, binding, and executing is:

E-26 Using std_$call

C numeric value of arg1: -1
C numeric value of arg2: -1

FORTRAN value of in arg: T
FORTRAN value of out arg: T
FORTRAN value returned: F

C numeric value of arg2 after function call: 0
C numeric value returned: 0

C numeric value of arg1: -1
C numeric value of arg2: 0

FORTRAN value of in arg: T
FORTRAN value of out arg: F
FORTRAN value returned: T

C numeric value of arg2 after function call: -1
C numeric value returned: -1

E.S.7 Simulating the COMPLEX Type

The FORTRAN COMPLEX data type is stored as two 4-byte floating-point numbers, the
first representing the real part and the second representing the imaginary part of a complex
value. It is easy to simulate in C via a structure containing two floating-point members. In
the following example, the FORTRAN function accepts a COMPLEX argument, and re­
turns the square of the argument.

COMPLEX FUNCTION pass_complex(com-param)
COMPLEX com-param

pass_complex = com-param * com-param

END

The C program is:

#module pass_complex_c
mainO
{

struct complex {
float real;
float imag;
} ;

std $call struct complex pass complex();
static struct complex result,arg = {2.5,3.5};

}

The result is:

printf(IIComplex Number\t\t\tSquare of Number\n\n");
result = pass complex(arg);
printf("(%f,%f)\t\t(%f,%f)\n",arg.real,arg.imag,

result.real, result.imag);

Complex Number Square of Number

(2.500000,3.500000) (-6.000000,17.500000)

-------88-------

Using std_$call E-27

Symbols
., structure member operator, 4-146

... , ellipsis token, used to specify a variable
number of arguments, 5-15

.bak filename suffix, 6-14

.c filename suffix, 1-6, 6-3, 6-13

.h filename suffix, 4-103, 7-35

.i filename suffix, 6-10, 6-26

.lst filename suffix, 6-14, 6-31

.0 filename suffix, 6-3

I, logical NOT operator, 4-115

1=, not equal to operator, 4-132

?:, conditional expression operator, 4-55 to
4-56

" comma operator, 4-54
in for statements, 4-85

; semicolon, mistakenly used to end macro defi-
nitions, 4-66

:, statement label, 4-88

", double quotes, surrounding filenames, 4-104

" single quotes, 3-8

(), parenthesized expression, 4-9 to 4-10

{, begin block symbol, 2-13

}, end block symbol, 2-13

&
address-of operator, 4-122, 5-22

declaring reference variables, 3-63
illegal with register variables, 3-56

bitwise AND operator, 4-42, 4-44

&&, logical AND operator, 4-115

#, preprocessor directive symbol, 4-15

Kndex

#undef preprocessor directive, 4-64 to 4-71,
4-71

$, dollar sign, used in identifiers, 2-4

%, modulo division operator, 4-19

+, addition operator, 4-19

++, increment operator, 4-106 to 4-110
and arrays, 2-16
and pointers, 4-124
postfix, use of, 5-26

sign reversal operator, 4-19
subtraction operator, 4-19

and pointers, 4-124

--, decrement operator, 4-106 to 4-110
and pointers, 4-124

->, structure member operator, 4-147

-alnchk compiler option, 6-20

-es compiler option, 4-66

-nalnchk compiler option, 6-20

dereferencing operator, 4-123
multiplication operator, 4-19

"Empty' *, 6-20, 7-35

, I, comment delimiter, 2-2

I, division operator, 4-19

1*, comment delimiter, 2-2

" bitwise exclusive OR operator, 4-42, 4-45

I, bitwise inclusive OR operator, 4-42, 4-45

II, logical OR operator, 4-115

=, assignment operator, 4-34 to 4-40
confused with equal to operator (==). 4-132
erroneous use in macro definitions, 4-69

==, equality operator, 4-132
confused with assignment operator (=), 4-132

Index 1

<, less than operator, 4-132

<=, less than or equal to operator, 4-132

«, shift left operator, 4-42

<>, #include directive, 4-104

>, greater than operator, 4-132

>=, greater than or equal to operator, 4-132

», shift right operator, 4-42

\
continuation character, 2-3

in strings, 2-10
in pathnames, 4-104

\", double quote escape code, 2-8

\', single quote escape code, 2-8

\0, null character, 2-9, 3-40
in strings, 2-10

\b, backspace escape code, 2-8

\f, formfeed escape code, 2-8

\n, newline escape code, 2-8

\r carriage return escape code, 2-8

\t, horizontal tab escape code, 2-8

\v, vertical tab escape code, 2-8

bitwise complement operator, 4-45
bitwise negation operator. See complement

operator

_, underscore
appeJ;lded to FORTRAN routine names, 7-14
used in identifiers, 2-4

Numbers
OX, prefix for hexadecimal constants, 2-6

Ox, prefix for hexadecimal constants, 2-6

A

-a compiler option, 6-6

a.out file, 1-6, 6-3

aOJeturn, #options specifier, 5-19

abnormal, #options specifier, 5-19

2 Index

absO function, 4-21

absolute code, 6-39
-ac compiler option, 6-20

absolute pathnames, 4-104

abstract declarators, 3-41

-ac compiler option, 6-20

access modes, fopenO, 8-13

accuracy
double type, 3-12
float type, 3-11

actual arguments, 5-8

addition operator (+), 4-19

address attribute specifier, 3-63, 3-68

address-of operator (&), 4-122, 5-22
declaring reference variables, 3-63
illegal with register variables, 3-56

addresses
assigning to pointer variables, 4-122
binding variables to, address attribute

specifier, 3-68

adjustable arrays, passing from C to FORTRAN
7-19 '

Aegis, executing programs in, 6-48

aggregate types, 3-2, 3-4 to 3-5

aliases, 3-62

-align compiler option, 6-20

alignment
bit field, 3-31
char type, 3-25
of object file sections, 6-20
pointer, C-8, D-10
structure, 3-24 to 3-25

allusions, 3-57, 5-1, 5-5
and initialization, 9-14
function, 3-61, 5-5 to 5-6

-alnchk compiler option, 6-20

alphabetic letters, used in identifiers, 2-4

AND
bitwise operator (&), 4-42, 4-44
logical operator (&&) , 4-115

ANSI standard
list of features supported by Domain C, B-1
STDC predefined name, 4-145

any systype, 6-41

apollo_$std.h header file, 4-103

ar utility, 6-44

archiving, 6-44

argc, argument to mainO, 5-25

/* ARGSUSED */, lint comment, C-ll, D-2

arguments
actual, 5-8
automatic conversions of, 5-3, 5-9

suppressing, 5-12, 7-2 to 7-3
table of, 7-3

command line, 5-25
declaring, 3-46, 5-3 to 5-4
default type of, 5-3
formal, 5-8
multidimensional arrays, 4-29 to 4-33
pass by reference, 4-148, 5-7, 5-11 to 5-14,

7-5
pass by value, 4-148, 5-7, 5-7 to 5-10
passing arrays, vs. passing structures, 4-150
passing arrays as, 4-26 to 4-82, 5-3, 5-10
passing conventions in C, FORTRAN, and

Pascal, 7-5 to 7-7
passing functions as, 5-3
passing pointers to functions as, 5-24 to 5-25
passing structures, vs. passing arrays, 4-150
passing structures as, 4-148 to 4-149, 5-10
passing unions as, 5 -1 0
to macros

binding of, 4-67
no type checking for, 4-67 to 4-82
side effects in, 4-71

type checking of, 5-12
variable number of, 5-15

argv, argument to mainO, 5-25

arithmetic, pointer, 4-124 to 4-165

arithmetic operators, 4-6, 4-19 to 4-21

arithmetic type conversions, 4-12

arithmetic types, 3-1
table, 3-3

array elements
accessing through pointers, 4-24 to 4-82
assigning values to, 4-22
indexing, 4-22

with enums, 4-23

array names, 3-35
interpretation of, 4-24
naked, 4-25

arrays, 3-4, 3-35 to 3-41
adjustable, passing from C to FORTRAN,

7-19
and typedefs, 2-16
as function parameters, 3-36
base address of, 4-25
bounds checking, 4-23
char, 3-40 to 3-41

See also strings
declaring, 3-35
example, 4-32
finding number of elements in, 4-27
finding the size of, 4-26
functions returning (illegal), 3-44
indexing with enums, 4-23
initializing, 3-36
interpreted as pointers, 4-24
memory allocation of, 4-23
multidimensional, 4-28 to 4-33

See also multidimensional arrays
passing as arguments, 4-29 to 4-33

of char, passing from C to Pascal, 7-9 to
7-10

of functions (illegal), 3-44
of pointers, initializing, 3-36
of structures, 3-28

initializing, 3-39
operations on, 4-22 to 4-33

See also array elements
passing as arguments, 4-26 to 4-82, 5-3,

5-10
passing as function arguments, 5-3

vs. passing structures, 4-150
passing from C to FORTRAN, 7-17 to 7-22
returning from functions, 4-28 to 4-82
size, 3-4, 3-35, 3-39

omitting, 3-36
size of index value, 6-29
storage of, 3-39
zero-sized, 9-4

ASCII codes
character constants, 2-8
table of, A-I to A-3

ASCII files, 8-3

assembly language code, 6-27
declaring, 5-19

assignment conversions, 4-12, 4-36 to 4-82

assignment operator (=), 4-34 to 4-40
and structures and unions, 4-147
confused with equal to operator (==) , 4-132
erroneous use in macro definitions, 4-69

assignment operators, 4-8, 4-34 to 4-40
old-style, 4-36

Index 3

associativity of operators, 4-9
table of, 4-11

atanO function, built-in version of, 6-47

atan20 function, built-in version of, 6-47

atofO function, 5-26

atoiO function, 5-26

#attribute modifier, 3-63 to 3-70
and pointers, 3-64
inheritance of, 3-64

attribute specifiers
address, 3-63, 3-68
device, 3-63, 3-66 to 3-68
section, 3-63, 3-69
volatile, 3-63, 3-64 to 3-66

auto storage class specifier, 3-55

automatic duration, 3-52
and initialization, 3-4, 3-54

automatic type conversions, 4-12

B
- B compiler option, 6-6

-b compiler option, 6-20 to 6-21

backspace escape code (\b) , 2-8

backward references, to functions, 5-6

backwards compatibility, for function declara-
tions, 5-16

base address, of arrays, 4-25

base.h header file, 7-36

begin block symbol ({), 2-13

_BFMT_COFF predefined name, 4-145

.bin filename suffix, 6-14, 6-20
debugger information, 6-24

!bin/cc, command line syntax, 1-5

!bin/cc command, 1-3, 6-3 to 6-13
and the preprocessor, 4-16, 4-99
creating named sections, 3-69

binary operators, 4-13

bind utility, 6-14, 6-43, 6-44 to 6-45
global variables, 3-57

binding
See also linking
of macro arguments, 4-67

4 Index

of operators. See associativity

bit fields, 3-31 to 3-32
declaring, 3-31
illegal operations, 3-31
length, 3-31
order of assignment, 3-31
sign, 3-31
syntax for declaring, 3-31
unnamed, 3-31

bit operators, 4-7, 4-41, 4-42 to 4-45

bitwise AND operator (&), 4-42

bitwise exclusive OR operator n, 4-42

bitwise inclusive OR operator (i), 4-42

bitwise logical operators, 4-43

bitwise negation operator (-). See complement
operator

bitwise shift operators, sign preservation, 4-43

block. See compound statement

block buffering, 8-5

block 110, 8-19 to 8-27

block scope, 3-48, 3-50 to 3-51

blocks, 8-5
begin symbol ({), 2-13
end symbol 0), 2-13
kernel-level, 8-5
user-level, 8-5

body
function, 5-4 to 5-5
macro, 4-64

Boole, George, 4-133

BOOLEAN, Pascal data type, 7-3
simulating in C, 7-12 to 7-14

Boolean data types, 4-133

boolean expressions. See comparison expressions

bottlenecks, identifying with prof utility, 6-39

bounds checking, 4-23

braces ({})
and if statements, 4-92
in enum declarations, 3-14
initialization, 3-5

branching statements, 4-3
conditional, 4-91

break statement, 4-3, 4-46 to 4-48
unreachable, C-4
used to exit a switch statement, 4-155 to

4-165

breakpoints, 6-24
and optimized code, 6-34

Brodie, James, 1-2

bsd4.2 systype, 6-41

bsd4.3 systype, 6-41

-bss compiler option, 3-69, 6-3, 6-21, 7-26

.bss section, 3-69, 4-140, 6-21, 7-27

buffer manager, 8-5

buffering, 8-4 to 8-6
block, 8-5
line, 8-5

buffers, 8-4

bug alerts
binding of macro arguments, 4-67
comparing floating-point values, 4-135
confusing = with ==, 4-132
ending a macro definition with a semicolon,

4-66
integer division and remainder, 4-21
opening a file, 8-15
passing structures vs. passing arrays, 4-150
referencing elements in a multidimensional

array, 4-31
side effects, 4-109
side effects in macro arguments, 4-71
side effects in relational expressions, 4-117
space between left parenthesis and macro

name, 4-69
the dangling else, 4-93
using = to define a macro, 4-69
walking off the end of an array, 4-23

built-in routines, 6-47 to 6-48

builtins.h header file, 6-47

c
C beautifier. See cb utility

C programming language
Domain extensions, 1-3
history, 1-1 to 1-2
overview, 1-1 to 1-7
standards, 1-2 to 1-3
tenet of, 1-2

C Reference Manual. See K&R standard

-C compiler option, 6-6

-c compiler option, 6-3, 6-6

C library, choosing version of, 4-160

C preprocessor (cpp) , 6-3
command options, 6-6

c++ programming language, 1-3
features supported by Domain C, B-1
reference variables, 3-62, 5-12

calls, function, 5-7 to 5-12

carriage return escape code (\r) , 2-8

case keyword, 4-3, 4-154

case label, 4-154

case sensitivity, 2-5
of global names, 7-27

cast operator, 4-5

casts, 4-49 to 4-53, C-6, D-7
abstract declarators, 3-41
double to float, 4-53
enum to integer, 4-52
float to double, 4-53
floating-point to integer, 4-52
generic pointers, 3-21
integer to floating-point, 4-21
integer to integer, 4-50 to 4-82
of pointers, 4-125 to 4-165
pointer to integer, 4-52
pointer to pointer, 4-53 to 4-82
to pointer, 4-31
to unsigned integer, 4-51
void, 3-19

cb utility, 6-50

cc command, 6-3 to 6-19
/com/cc, 6-13 to 6-14
differences between /bin/cc and /com/cc, 1-3

to 1-5, 3-69
#include preprocessor directive, 4-104

char, arrays. See strings

char arrays, 3-40 to 3-41

char type, 3-2, 3-6
alignment, 3-25
range, 3-3
representation, 3-8 to 3-9
size, 3-3

char type specifier, 3-8

character codes, ASCII, A-I to A-3

character constants, 2-8 to 2-9, 3-8
escape characters, 2-8
multi-character, 2-9

character data, passing from C to FORTRAN,
7-16 to 7-17

Index 5

characteristic. of floating-point constants. 2-7

characters. nonportable use of. C-6. D-7

clearerrO function. 8-7. 8-8

clib. See standard C library

closeO function. 8-26

closing a file. 8-15

code
absolute. 6-39
dead. 6-35
fixed position. See absolute code
relocatable. See position independent code

COFF (common object file format). 4-145

/com/cc. 1-3
command line syntax. 1-5

-comchk compiler option. 2-3. 6-21

comma operator (.). 4-8. 4-54
erroneously used in multidimensional array

references. 4-31

comma operator(.). in for statements. 4-85

command line arguments. 5-25

comments. 2-2 to 2-3
checking for balanced delimiters. 6-21
terminating. 9-2

common blocks. FORTRAN. 7-32
accessing from C. 3-69

common object file format. See COFF

common subexpressions. 6-35

comparison operators. 4-6
See also relational operators

compatibility. backwards. for function declara-
tions. 5-16

compilation. conditional. 4-98, 6-22

compilation errors, 6-30

compilation statistics. 6-30

compilation warnings. 6-30

compile-time errors. 6-5
/com/cc. 6-14 to 6-19

compiler options. 6-19 to 6-43
-a. 6-6
-abs. 6-19
-aCt 6-20
-align. 6-20
-alnchk. 6-20
-B. 6-6

6 Index

-b, 6-20 to 6-21
-bss. 3-'69, 6-3, 6-21. 7-26
-C, 6-6
-c. 6-3, 6-6
-comchk, 2-3, 6-21
-cond, 4-61, 6-22
-cpu, 6-22 to 6-23
-D, 4-98, 4-99. 6-24 to 6-26
-db, 6-23 to 6-24, 6-49
-dba, 6-23 to 6-24, 6-33, 6-34, 6-49
-dbs. 6-23 to 6-24. 6-49
-def, 4-98. 4-99, 6-24 to 6-26. 9-3
-E, 4-66, 6-26
-eSt 4-66, 6-26
-esf. 6-26
-exp, 6-27
-F, 6-7
-f, 6-7
-fpa, 6-27
-g. 6-23 to 6-24
-H, 6-7
-I, 4-104, 4-105, 6-8
-idir, 4-104, 4-105, 6-28
-indexl, 6-29
-info, 5-16. 6-29, 6-42. 9-1
-inlib, 6-30
-L, 6-8
-I. 6-8, 6-30 to 6-31
-M, 6-9, 6-22 to 6-23
-m, 6-8
-map, 6-31 to 6-32
-msgs, 6-33
-nalign, 6-20
-nalnchk, 6-20
-nb, 6-20 to 6-21
-nbss, 6-21
-ncomchk. 6-21
-ncond, 4-61. 6-22
-ndb, 6-23 to 6-24. 6-52
-nexp, 6-27
-nindexl, 6-29
-ninfo, 6-29, 9-1
-nl, 6-30 to 6-31
-nmap, 6-31 to 6-32
-nmsgs, 6-33
-nopt, 4-38, 6-24, 6-33 to 6-38
-nstd, 6-40
-ntype. 3-62. 4-98, 5-16, 6-42
-nuline, 6-42
-nwarn, 6-43, 9-1
-0, 6-33 to 6-38
-0, 6-9. 6-20 to 6-21
-opt. 6-24, 6-33 to 6-38
-P, 6-10, 6-26

-p, 6-9, 6-39 to 6-40
-pg, 6-10
-pic, 6-30, 6-39
-prof, 6-39 to 6-40
-qg, 6-10
-qp, 6-10
-r, 6-10
-runtype, 6-40
-S, 6-27
-s, 6-10
-std, 4-148, 6-40
-systype, 4-161, 6-40 to 6-42
-T, 6-11, 6-40 to 6-42
-t, 6-11
-type, 6-42
-U, 6-11
-u, 6-11
-uline, 6-42
-V, 6-11
-W,6-12
-w, 6-43
-warn, 6-43
-x, 6-12
-Y, 1-3
-Y, 6-12
/com/cc, 6-15 to 6-19

invoking from /bin/cc, 6-12
affecting code generation, 6-30
/bin/cc, 6-6 to 6-13

COMPILESYSTYPE environment variable,
4-161, 6-42

compiling programs, 6-3 to 6-19
for specific processors, 6-9, 6-22 to 6-23
introduction, 1-6
with /bin/cc, 6-3 to 6-13
with /com/cc, 6-13

complement operator, bitwise (-), 4-42, 4-45

COMPLEX, FORTRAN data type, 7-3
simulating in C, 7-25 to 7-26

complex declarations, 3-42 to 3-45

compound blocks, and if statements, 4-92

compound statements, 4-2

-cond compiler option, 4-61, 6-22

conditional branching statements, 4-91

conditional compilation, 4-98, 6-22

conditional expression operator, 4-8, 4-55 to
4-56

constant expressions, 4-79
and initialization, 3-5
computing at compile-time, 6-34
in enum declarations, 3-14

constant folding, 6-35

constants, 2-6 to 2-10
character, 2-8 to 2-9, 3-8

escape characters, 2-8
enumeration, 3-15 to 3-16
floating-point, 2-7 to 2-8

magnitude, 2-7
scientific notation, 2-7 to 2-8
table, 2-8
type, 2-7

improper, 9-2
integer, 2-6 to 2-7

decimal, 2-6
hexadecimal, 2-6
long, 2-6
octal, 2-6

multi-character, 2-9
negative, 2-7
passing by reference, 7-7
sign, 2-7
string, 2-10 to 2-12
using as lvalues, 3-62

continuation character (\), 2-3
in strings, 2-10

continue statement, 4-3, 4-57 to 4-59

conversions
automatic argument, 7-2 to 7-3

suppressing, 5-12
table of, 7-3

of function arguments, 5-3, 5-9
type. See type conversions

copying files, 8-16 to 8-25

cosO function, 4-151
built-in version of, 6-47

cpp
UNIX C preprocessor, 4-104
UNIX C preprocessor. See preprocessor

-cpu compiler option, 6-22 to 6-23

creatO function, 8-26

cross-language communication, 7-1 to 7-36
calling FORTRAN from C, 7-14 to 7-26
calling Pascal from C, 7-7 to 7-14
sharing data, 7-26 to 7-35

Index 7

D
-D compiler option, 4-98, 4-99, 6-24 to 6-26

dangling else, 4-93

data
sharing between C and FORTRAN, 7-32 to

7-35
sharing between C and Pascal, 7-27 to 7-32

.data section, 3-69, 4-140, 7-27

data sections, 4-140
changing name of, 4-119

data types, 2-14
aggregate, 3-2, 3-4 to 3-5
agreement between C, Pascal, FORTRAN,

7-3 to 7-4
arithmetic, 3-1

table, 3-3
array. See arrays
C, FORTRAN, and Pascal, 7-4
casting. See casts
char, 3-2, 3-6

range, 3-3
representation, 3-8 to 3-9
size, 3-3

double, 3-2, 3-11
accuracy, 3-12
range, 3-3
representation, 3-12 to 3-13
size, 3-3

enum, 3-2, 3-14 to 3-17
declaring, 3-14
range, 3-3
size, 3-3
type-checking, 3-15

float, 3-2, 3-11
accuracy, 3-11
range, 3-3
representation, 3-11 to 3-12
size, 3-3

floating-point, 3-11 to 3-13
hierarchy, 3-2
int, 3-2, 3-6

range, 3-3
representation, 3-6 to 3-7
size, 3-3

integer, 3-6 to 3-10
portability, 3-6

long, 3-2, 3-6
range, 3-3
representation, 3-6 to 3-7
size, 3-3

8 Index

long enum, 3-17
long float, 3-11

representation, 3-12 to 3-13
not supported in C, 7-3
overview, 3-1 to 3-4
pointer

See also pointers
size, 3-3

qualifiers, 3-2
range, 3-3
scalar, 3-1, 3-2 to 3-3

hierarchy of, 4-14
short, 3-2, 3-6

range, 3-3
representation, 3-7 to 3-8
size, 3-3

short enum, 3-17
size of, 3-3, 4-143
struct. See structures
union. See unions
unsigned, 3-2, 3-6

integer overflow, 3-10
range, 3-3
size, 3-3

unsigned char, representation, 3-8 to 3-9
unsigned int, representation, 3-6 to 3-7
unsigned short, representation, 3-7 to 3-8
void, 3-2, 3-18 to 3-19

date, of program compilation, 4-60

DATE predefined name, 4-15, 4-60

-db compiler option, 6-23 to 6-24, 6-49

-dba compiler option, 6-23 to 6-24, 6-33,
6-34, 6-49

dbg utility, 6-23, 6-49 to 6-52

-dbs compiler option, 6-23 to 6-24, 6-49

dbx utility, 6-23, 6-50

dead code, 6-35

#debug preprocessor directive, 4-61 to 4-62,
6-22

debug sections, 4-140

debuggers
compiling for, 6-23 to 6-24
using on optmized code, 6-33

debugging code, adding to source files, 3-50

debugging programs, 6-49 to 6-50
using conditional compilation feature, 4-98

decimal integer constants, 2-6

decimal point, 2-7

declarations, 2-13 to 2-17
allusions, 3-57
argument, 3-46
array, 3-35
#attribute modifier, 3-63 to 3-70
complex, 3-42, 3-42 to 3-45
composing, 3-42 to 3-45
deciphering, 3-43
decomposing, 3-42 to 3-45
definitions, 3-57
enum, 3-14
examples, 2-14
function, 3-61
global, 2-11
global variable, 3-57, 3-57 to 3-60
head-of-block, 3-46
in a compound statement, 4-2
legal and illegal, 3-45
of bit fields, 3-31
of function arguments, 5-3 to 5-4, 5-3 to

5-4
pointer, 3-19
position of, 3-46 to 3-47
reference variable, 3-63
scope of, 3-48, 3-48 to 3-51
storage class. See storage class
structure, 3-23 to 3-24
table of, 3-45
top-level, 3-46
typedef, 2-14 to 2-16
union, 3-23 to 3-24, 3-29
visibility of, 3-50

declarators, abstract, 3-41

decrement operators, 4-5, 4-106 to 4-110
and pointers, 4-124
precedence of, 4-108

-def compiler option, 4-98, 4-99, 6-24 to
6-26, 9-3

default initialization, of fixed variables, 3-53

default label, 4-3, 4-155

DEFINE, Pascal keyword, 7-27

#define preprocessor directive, 4-64 to 4-71,
6-24

defined names, 6-24

defined predefined macro, 4-15, 4-96 to 4-100

definitions
function, 3-61, 5-1, 5-1 to 5-5

prototyping, 5-14 to 5-15
global variable, 3-57, 3-57 to 3-60

reaching, 6-35

Delphi online documentation system, 1-7

dereferencing operator (*), 4-123

descriptors, file. See file descriptors

device attribute specifier, 3-63, 3-66 to 3-68

device registers, device attribute specifier, 3-66

devices, standard, 8-8 to 8-10

diagnostic messages, 9-1 to 9-37

directives, preprocessor. See preprocessor direc­
tives

directories
for header files, 6-28
/usrlinclude, 6-28, 6-45, 7-35

divO function, 4-21

division, integer, 4-21

division operator (/), 4-19

DN460 workstation, 6-22

DN5xx-T workstation, 6-22

DN660 workstation, 6-22

DNxxx, compiling code for, 6-9, 6-22 to 6-23

do/while statement, 4-3, 4-72 to 4-73

dollar sign ($), used in identifiers, 2-4

Domain extensions, 1-3
#attribute modifier, 3-63 to 3-70
#debug preprocessor directive, 4-61
dollar sign in identifiers, 2-4
#eject preprocessor directive, 4-74
#list preprocessor directive, 4-114
long float type, 3-11
name spaces, 2-17
#nolist preprocessor directive, 4-114
#options specifier, 5 -19
reference variables, 3-62 to 3-63
#section preprocessor directive, 4-140 to

4-142
short and long enum, 3-3, 3-17
systype predefined macro, 4-160
#systype preprocessor directive, 4-160
table of, B-1 to B-2

domain extensions, module preprocessor direc-
tive, 4-119

Domain/Dialogue, 6-51

Domain/OS environments, 1-3 to 1-5

dot operator (.). See structure member operator

Index 9

double quote escape code (\") , 2-8

double quotes, delimiting strings, 2-10

double type, 3-2, 3-11
accuracy, 3-12
casting to float, 4-53
range, 3-3
representation, 3-12 to 3-13
size, 3-3

double-precision floating-point, 3-11, 3-12 to
3-13

dpak utilities, 6-50

drivers, GPIO, compiling with -pic, 6-39

DSEE (Domain Software Engineering Environ-
ment), 6-51

DSP160 workstation, 6-22

duration, 3-46, 3-52 to 3-54
automatic, 3-52
fixed, 3-52

E
E, exponent in scientific notation, 2-7

e, exponent in scientific notation, 2-7

-E compiler option, 4-66, 6-26

ECB. See entry control block

echo program, 5-26

efficiency
and built-in routines, 6-47
and prototypes, 5-17
register variables, 3-56
using macros for, 4-70

#eject preprocessor directive, 4-74

elements, array. See array elements

#elif preprocessor directive, 4-16, 4-99

ellipsis, used to specify a variable number of
arguments, 5-15

else clause, 4-91 to 4-95

#else preprocessor directive, 4-96 to 4-100

else statement, dangling, 4-93

end block symbol (}), 2-13

#endif preprocessor directive, 4-96 to 4-100

entry control block (ECB), 6-31

10 Index

enum type, 3-2, 3-14 to 3-17
declaring, 3-14
initializing, 3-17
range, 3-3
short and long, 3-3, 3-17
size, 3-3
type-checking, 3-15

enumerated data type. See enum type

enumeration constants, 3-15 to 3-16

enums
casting to integer, 4-52
in switch statements, 4-156
indexing arrays with, 4-23
initializing, 3-17
maximum number of enumerators, 9-5
names of, 2-16
operations on, 4-78

environment variables
COMPILESYSTYPE, 4-161, 6-42
inprocess, 6-51
LIBDIR, 6-8
LLIBDIR, 6-8
SYSTYPE, 6-42

EOF macro, 8-6

equality operator (==), 4-132
confused with assignment operator =, 4-132

ermo, 6-47, 8-27

ermo.h header file, 8-27

error handling.
for 110, 8-7 to 8-8
for unbuffered 110, 8-27

error messages, 9-1 to 9-37

errors, compile-time, 6-5, 6-30

errout stream, 6-14

-es compiler option, 6-26

escape characters, 2-8 to 2-9

escape codes. See escape characters

-esf compiler option, 6-26

evaluation, order of, 4-10 to 4-11
and logical operators, 4-116
and side effects, 4-109

examples
break_example, 4-47
bubble_sort, 4-32
callyowery, 7-9
callJeverse_string, 7-10
conditional_exp_op_example, 4-56

continue_example, 4-58
date_and_time_example, 4-60
debugyreprocessor _ cmd, 4-61
do. while_example, 4-73
echo, 5-26
floatJounding, 4-39
for_example, 4-85
get_IoLc, 7-34
global_var_c, 7-29
goto_example, 4-89
if. else_example , 4-94
inc. dec_example 1 , 4-107
inc.dec_example2, 4-107
inc. dec_example 3 , 4-110
line_example, 4-112
logical_op_example, 4-117
multi_dim_array_c, 7-21
online, 1-6 to 1-7
pass_boolean_c; 7-13
pass_bYJeCexample, 5-9
pass_bLval_example, 5-8
pass_char_array_c, 7-19
pass_char_cf, 7-17
pass_complex_c, 7-25
pass_int_array, 7-20
pass_Iogical_c, 7-24
passyoint_c, 7-23
passyointer_c, 7-12
pointer_example 1, 4-128
pointer_example 2 , 4-129
print_size, 4-27
ptr_example2, 4-123
ptr_example3, 4-124
recursive_example, 5-20
relational_example, 4-136
return_example, 4-139
returning_arrays, 4-28
section_example_c, 7-31
sizeoC example, 4-144
standard_io_example, 8-9
switch_example, 4-158
unix_copy, 8-27
while_example, 4-165

executable files, 6-48

executing programs, 6-48 to 6-49
introduction, 1-6

-exp compiler option, 6-27

expO function, built-in version of. 6-47

expanded listing files. 6-27

expansion. macro, 4-64

exponent, 2-7
in floating-point constants. 2-7

expressions. 4-79 to 4-81
boolean. 4-133
constant, 4-79

and initialization. 3-5
computing at compile-time, 6-34
in enum declarations, 3-14

float. 4-79
integer, overflow. 3-10
integral. 4-79
loop-invariant, 6-38
order of evaluation, 4-10 to 4-11, 4-109

See also operators
parenthesized, 4-9 to 4-10
pointer. 4-79
pointer arithmetic, 4-124 to 4-165
rearranging to optimize code. 6-34
relational, 4-115 to 4-118
side effects. 4-108
subexpressions. 4-13

extensible streams, 8-3

extensions. Domain. See Domain extensions

EXTERN. pascal keyword. 7-27

extern storage class specifier, 3-55, 3-57, 5-5
, and array size. 3-36

and initialization, 3-4
function allusions. 3-61

external references. resolving. 6-43

external variable. See global variable

F
-F compiler option, 6-7

-f compiler option. 6-7

f77 command. 7-14

fabsO function, built-in version of. 6-47

false values. 4-133
and logical operators. 4-115

fault handlers. 6-23

fcloseO function. 8-10

fdopenO function. 8-10

feofO function, 8-7, 8-8. 8-17

ferrorO function, 8-7. 8-8. 8-19

fflushO function. 8-5. 8-10

fgetcO function. 8-10. 8-16

Index 11

fgets() function, 8-11, 8-17 to 8-27

fields, bit. See bit fields

file descriptors, 8-3 to 8-4, 8-25

file names, in #include directive, 4-104

file pointers, 8-4

file position indicators, 8-8

FILE predefined name, 4-111

file scope, 3-48, 3-51, 3-61

FILE structure, 8-4

file types, 8-3

filename suffixes
.bak, 6-14
.bin, 6-14, 6-20
.c, 6-13
.h, 7-35
.i, 6-26
.1st, 6-14, 6-31

filenames
FILE predefined macro, 4-111
changing with #line directive, 4-112

filenoO macro, 8-7, 8-11

files
.bin, debugger information in, 6-24
ASCII, 8-3
closing, 8-15
executable, 6-48
expanded listing, 6-27
fixed-length record, 8-3
header, 4-103
I/O to, 8-10 to 8-12
listing, 4-114, 6-30 to 6-31
map, 6-31 to 6-32
object, 6-3

specifying name of, 6-20
opening, 8-12 to 8-15
reading and writing, 8-16 to 8-27
source, 2-11, 6-3
types of, 8-3
variable-length record, 8-3

fixed duration, 3-52
and initialization, 3-4
initialization, 3-54

fixed position code. See absolute code

fixed-length record files, 8-3

flags
end-of-file, 8-8

12 Index

error, 8-8

float expressions, 4-79

float type, 3-2, 3-11
accuracy, 3-11
casting to double, 4-53
range, 3-3
representation, 3-11 to 3-12
size, 3-3

floating-point
casting from integer to, 4-52 to 4-82
double-precision, 3-12 to 3-13
single-precision, 3-11 to 3-12

floating-point accelerator (FPX) , 6-22
compiling code for, 6-9

floating-point accuracy, 6-27

floating-point constants, 2-7 to 2-8
magnitude, 2-7
scientific notation, 2-7 to 2-8
table, 2-8
type, 2-7

floating-point data
passing from C to FORTRAN, 7-15
passing from C to Pascal, 7-8 to 7-9

floating-point data types, 3-11 to 3-13

floating-point expressions, rounding of, 4-135

floating-point overflow, 4-38

floating-point precision, 6-27

floating-point registers, 6-27

floating-point values
comparing, 4-135
passing as arguments, 5-17

floating-point variables, initializing, 3-13

flow of control
abnormal, 5-19
and lint utility, C-4, D-4

fopenO function, 8-11, 8-12 to 8-15

for loops, 4-84

for statement, 4-3, 4-83 to 4-87, 4-101,
4-102, 4-121

form feed, forcing with #eject directive, 4-74

formal arguments, 5-8
See also arguments

formal parameters. See formal arguments

formfeed escape code (\f) , 2-8

FORTRAN data types, table of, 7-4

FORTRAN programming language, 4-31
calling routines from C, 7-14 to 7-26
names of routines, 7-14 to 7-15
type agreement with C, 7-3 to 7-4

FORTRAN programs, accessing common blocks
from C, 3-69

forward refereences, of functions, 5-6

-fpa compiler option, 6-27

fprintfO function, 8-11, 8-14

fputcO function, 8-11, 8-16

fputsO function, 8-11, 8-17 to 8-27

fpx floating-point accelerator, compiling code
for, 6-9

freadO function, 8-11, 8-19 to 8-27

freopenO function, 8-11

fscanfO function, 8-11

fseekO function, 8-11, 8-21 to 8-27

ftellO function, 8-11, 8-21 to 8-27

ftn command, 7-14

function allusions, 3-61, 5-5 to 5-6
syntax of, 5-6

function calls
See also functions, invoking
syntax of, 5-7
using pointers to functions, 5-23 to 5-25

function definitions, 2-11, 5-1, 5-1 to 5-2
prototyping, 5-14 to 5-15

function parameters. See arguments

function prototypes, 5-12 to 5-17
and efficiency, 5 -1 7
backwards compatibility of, 5-16
turning on and off, 6-42
using _STDC_ to turn on and off, 4-145
using to suppress automatic argument prom or-

tions, 7-2

function return values
pointers to functions, 5-22
structures, 4-150

function scope, 3-48, 3-51

function signatures, 2-11

functions, 2-12, 5-1 to 5-27
allusions to, 3-61, 5-1, 5-5 to 5-6
and macros, 8-7
arrays of (illegal), 3-44

body of, 5-4 to 5-5
calling, 5-7 to 5-12
default return type of, 5-2
defining, 5-1
definitions, 2-11
definitions of, 3-61
invoking, 5-7 to 5-12
mainO, 5-25 to 5-27
nested, 9-13
pass by value, 5-7 to 5-10
passing as function arguments, 5-3
pointers to, 5-20 to 5-25

assigning values to, 5-21 to 5-22
calling functions using, 5-23 to 5-25
dereferencing, 5-23
passing as arguments, 5-24 to 5-25
return type agreement, 5-22

preamble of, 5-2 to 5-4
recursive, 5-20
return type of, 5-2
return value of, 5-2, 5-17 to 5-19

incorrectly used, C-4
returning arrays (illegal), 3-44, 4-28 to 4-82
returning functions (illegal), 3-44
returning pointers, 7-5
returning void, 4-138, 5-2
scope, 3-61
storage class of, 3-60 to 3-62, 5-6
unused, C-3, D-3
vs. macros, 4-70

fwriteO function, 8-12, 8-19 to 8-27

G
-g compiler option, 6-23 to 6-24

gaps, in structures. See padding

garbage values, 3-53

generic pointers, 3-21 to 3-23
casting, 4-53, 4-126

getcO function, 8-7, 8-12, 8-16, 8-17

getcc utility, 1-6

getcharO macro, 8-7, 8-9

getsO function, 8-9

getwO function, 8-12

global declarations, 2-11

global names, case sensitivity of, 7-27

global register allocation, 6-37

global variables, 3-48, 3-51, 3-57 to 3-60
allusions, 3-57

Index 13

and cross-language communication, 7-26 to
7-35

defining, 3-57 to 3-60
length of names, 2-4
placement in object file, 6-21
portability, 3-60
sharing data between C and FORTRAN, 7-32

to 7-35
sharing data between C and Pascal, 7-27 to

7-32
using /bin/cc, 7-27
using /com/cc, 7-26 to 7-27

gmon.out file, 6-10

goto labels, scope of, 3-48, 3-51

goto statement, 4-3, 4-88 to 4-90

GPIO drivers, compiling with -pic, 6-39

gprof utility, 6-10

greater than operator (», 4-13 2

greater than or equal to operator (>=) , 4-132

grouping, of operators, 4-9

H
-H compiler option, 6-7

head-of-block declarations, 3-46

header files, 4-103
apollo_$std.h, 4-103
base.h, 7-36
builtin.h, 6-47
default, 6-13
directories for, 6-28
errno.h, 8-27
list of standard, 6-46
macro definitions in, 4-71
nesting, 9-9
stdio.h, 8-4, 8-6
system, 7-35 to 7-36

hexadecimal constants, in escape codes, 2-9

hexadecimal integer constants, 2-6

hierarchy
of data types, 3-2
of scalar data types, 4-14
of scopes, 3-48

history, of the C language, 1-1 to 1-2

holes, in structures. See padding

horizontal tab escape code (\t) , 2-8

14 Index

I
-I compiler option, 4-104, 4-105, 6-8

I/O. See input and output

identifiers, 2-4
length, 2-4
table of legal and illegal, 2-4
uniqueness, 2-4

-idir compiler option, 4-104, 4-105, 6-28

#if preprocessor directive, 4-96 to 4-100

if statement, 4-3, 4-91 to 4-95

#ifdef preprocessor directive, 4-96 to 4-100

#ifndef preprocessor directive, 4-96 to 4-100

implementation dependencies, sizes of objects,
4-144

implicit type conversions, 4-12

IN parameters, 7-6

in-line code, 6-47 to 6-48

include directories, 6-28

include files. See header files

#include preprocessor directive. 4-103 to 4-105

inclusive OR. bitwise operator (I). 4-42

increment operator (++)
and pointers. 2-16
postfix. use of. 5-26

increment operators, 4-5, 4-106 to 4-110
and pointers, 4-124
precedence of, 4-108 to 4-165

-indexl compiler option, 6-29

indirection operator (*). See dereferencing op­
erator

-info compiler option. 5-16. 6-29. 6-42, 9-1

informational messages. 6-29. 9-1 to 9-37

inifinite loops, 4-23

initial values. 2-14

initialization
and automatic duration. 3-4
and braces ({}), 3-5
and constant expressions. 3-5
and extern storage class specifier. 3-4
and fixed duration. 3-4
and type conversion, 3-5. 3-9
array. 3-36

using strings, 3-36

array of struct, 3-39
automatic variables, 3-54
default, 3-53
enum variables, 3-14, 3-17
fixed duration variables, 3-54
floating-point variables, 3-13
integer variables, 3-9 to 3-10
multidimensional array, 3-38 to 3-39
of aggregate objects, 9-7
old-style, 3-5, 9-4
overview, 3-4 to 3-5
pointer, 3-20
pointer to char, 3-41
string, 3-40
structure, 3-33
union, 3-33 to 3-35

initializations, allusions and definitions, 9-14

-inlib compiler option, 6-30

inprocess environment variable, 6-51

input, standard, redirecting, 6-49

input and output, 8-1 to 8-27
buffering, 8-4 to 8-6
closing a file, 8-15
error handling, 8-7 to 8-8
file pointers, 8-4
file position indicators, 8-8
granularity of, 8-16
opening a file, 8-12 to 8-15
random access, 8-21 to 8-25
reading data, 8-16 to 8-25
standard I/O library, 8-4 to 8-25
to files, 8-10 to 8-12
unbuffered functions, 8-25 to 8-27
writing data, 8-16 to 8-25

insert files. See header files

installed libraries, 6-30

instruction address register (IADDR), 6-23

instruction reordering, 6-38

int type, 3-2, /3-6
assigning longs to, C-6, D-8
range, 3-3
representation, 3-6 to 3-7
size, 3-3

integer constants, 2-6 to 2-7
decimal, 2-6
hexadecimal, 2-6
long, 2-6
octal, 2-6

integer data types, 3-6 to 3-10
portability, 3-6

integer division, sign of result, 4-21

integer overflow, 3-10, 4-37

integer remainder. See modulo division operator

integer widening, 4-50

integers
32-bit, 3-6 to 3-7
8-bit, 3-8 to 3-9
and pointers, 4-24, 4-126
casting, 4-50 to 4-82
conversions of, table of, 4-50
passing from C to FORTRAN, 7-15
passing from C to Pascal, 7-8 to 7-9

integral expressions, 4-79

integral promotions. See integral widening con-
versions

integral widening conversions, 4-12

invocation, of macros. See macro expansion

invocations, function, 5-7 to 5-12

lOS type managers, compiling with -pic, 6-39

K
K&R standard, 1-2

extensions to, 6-40
name spaces, 2-17

kernel-level blocks, 8-5

Kernighan, Brian, 1-2

keywords, 2-5
for scalar types, 3-2
table of, 2-5

L
L, integer constant suffix, 2-6

1, integer constant suffix, 2-6

-1 compiler option, 6-8, 6-30 to 6-31

-L compiler option, 6-8

labels
case, 4-154
default, 4-155
statement, 3-51, 4-88

Id link editor, 1-4, 6-43, 6-43
global variables, 3-57

Index 15

left-to-right binding order, 4-9

less than operator «), 4-132

less than or equal to operator «=) , 4-132

letters, alphabetic, used in identifiers, 2-4

lexical elements, of a C program, 2-1 to 2-5

/lib/clib. See standard C library

/lib/crtO.o, startup routine, 6-43

LlBDIR environment variable, 6-8

libraries
Domain system calls, 8-2
for I/O, 8-1
installed, 6-30
lint, C-12
managing with ar utility, 6-44
shared, compiling with -pic, 6-39
specifying search order, 6-8
standard C, 6-44, 6-45 to 6-46
standard I/O, 8-2, 8-4 to 8-25
system, 6-44, 7-35 to 7-36

linking to, 7-36
UNIX I/O functions, 8-2

library directory, specifying default, 6-13

library records, 6-30

line buffering, 8-5

line numbers
#line preprocessor directive, 4-112
LlNE predefined macro, 4-111
in listing file, 6-30
stripping from object file, 6-10

LlNE predefined name, 4-15, 4-111

#line preprocessor directive, 4-112 to 4-113,
9-26

enabling and disabling, 6-42

lines, spanning multiple, 2-3

link editor (ld), 1-4, 6-14
command options, 6-6

linking
global variables, 3-57
named sections, 3-60

linking object modules, 6-43 to 6-44
and the #section preprocessor directive, 4-140

lint utility, 6-5 0
BSD version, C-l to C-12
sysV version, D-l to D-I0

/* LlNTLlBRARY */, lint comment, C-12, D-2

16 Index

#list preprocessor directive, 4-114

listing files, 4-114, 6-30 to 6-31
expanded, 6-27

live analysis of local variables, 6-36

LLlBDIR environment variable, 6-8

local variables, length of names, 2-4

logO function, built-in version of, 6-47

LOGICAL, FORTRAN data type, 7-3
simulating in C, 7-23 to 7-25

logical operators, 4-7, 4-115 to 4-118
and order of evaluation, 4-116
bitwise, 4-43
truth table for, 4-115

long enum type, 3-3, 3-17

long float type, 3-11
See also double type
representation, 3-12 to 3-13

long integer constants, 2-6

long type, 3-2, 3-6
range, 3-3
representation, 3-6 to 3-7
size, 3-3

longword alignment, 3-25

loop-invariant expressions, 3-67, 6-38

looping statements, 4-3

loops
for, 4-84
infinite, 4-23
while, 4-84

IseekO function, 8-26

lvalues, 9-8
definition of, 4-4
using constants as, 3-62

M
-M compiler option, 6-9, 6-22 to 6-23

-m compiler option, 6-8

M68020 mocroprocessor, 6-22

M68881 floating-point co-processor, 6-22

macro body, 4-64

macro expansion, 4-64

macro names, and name spaces, 2-17

macros
advantages of, 4-70
and functions, 8-7
arguments to

binding of, 4-67
no type-checking for, 4-67 to 4-82
side effects in, 4-71

body of, 4-64
calling, 4-64
defining, 4-64, 4-64 to 4-71
disadvantages of, 4-70
expansion of, 4-64
names of, 4-64
predefined, 4-15

See also predefined macros
syntax of, 4-65
undefining, 4-71
vs. functions, 4-70 to 4-82

magnitude, floating-point constants, 2-7

mainO function, 2-12, 5-25 to 5-27

make utility, 6-50

malloc function, return type, 3-21

mantissa, in floating-point constants, 2-7

-map compiler option, 6-31 to 6-32

map files, 6-31 to 6-32

math.h header file, built-in routines for, 6-47

memory
array storage, 3-39
shared, volatile attribute specifier, 3-65
storage of multidimensional arrays, 3-39
structure representation, 3-24 to 3-29
union representation, 3-29 to 3-30
virtual, 6-39

memory allocation
of arrays, 4-23
of automatic variables, 3-52
of strings, 3-41
of structures, 3-27 to 3-29
of unions, 3-30

memory storage. See memory allocation

messages
compile-time, 9-1 to 9-37
informational, 6-29
warning, suppressing, 6-43

#module preprocessor directive, 4-119 to
4-120, 9-28

modules, object
changing name of, 4-119
section summary of, 6-30

modulo division operator (%), 4-19
sign of result, 4-21

man. out file, 6-9

-msgs compiler option, 6-33

multi-character constants, 2-9

multidimensional arrays, 3-37 to 3-39, 4-28 to
4-33

initializing, 3-38 to 3-39
passing as arguments, 4-29 to 4-33
passing from C to FORTRAN, 7-21
storage, 3-39

multiplication operator (*), 4-19

N
-nalign compiler option, 6-20

-nalnchk compiler option, 6-20

NAME predefined name, 4-15

name spaces, 2-16 to 2-17
struct and union, 3-32

named sections
for global variables, 7-26
section attribute specifier, 3-69
using to access FORTRAN common blocks,

3-69

names
See also identifiers
array, 4-25

interpretation of, 4-24
conflicting, 3-49, 3-50
defining at compilation time, 6-24 to 6-26
macro, 4-64
predefined, 4-15
struct and union member, name space, 2-16
structure and union members, 2-16
tag and member, 3-24
variable, 2-14
visibility of, 3-50

natural alignment, 3-25, 3-27

-nb compiler option, 6-20 to 6-21

-nbss compiler option, 6-21

-ncomchk compiler option, 6-21

-ncond compiler option, 4-61, 6-22

Index 17

-ndb compiler option, 6-23 to 6-24, 6-52

negation, bitwise operator (-). See complement
operator

negative constants, 2-7

negative integers, representation, 3-7

nested members, structure and union, 4-147

newlines, 2-2
escape code (\n) , 2-8

-nexp compiler option, 6-27

NIL pointers, 7-11

-nindexl compiler option, 6-29

-ninfo compiler option, 6-29, 9-1

-nl compiler option, 6-30 to 6-31

nm command, 7-15

-nmap compiler option, 6-31 to 6-32

-nmsgs compiler option, 6-33

no-ops, 5-7

#nolist preprocessor directive, 4-114

-nopt compiler option, 4-38, 6-24, 6-33 to
6-38

noreturn, #options specifier, 5-19

nosave, #options specifier, 5-19

f* NO STRICT *f, lint comment, C-11, D-7

NOT, logical operator (!), 4-115

not equal to operator (!=), 4-132

f* NOTREACHED *f, lint comment, C-11

-nstd compiler option, 6-40

-ntype compiler option, 3-62, 4-98, 5-16,
6-42

-nuline compiler option, 6-42

null character \0, 2-9, 3-40
in string constants, 9-18
in strings, 2-10
inserted by fgets 0, 8-17

NULL macro, 8-6

null pointers, 3-20, 4-126 to 4-165, 7-11

null statement, 4-2

null string, 2-10

-nwarn compiler option, 6-43, 9-1

18 Index

o
OR

bitwise exclusive operator C) , 4-42, 4-45
bitwise inclusive operator (I), 4-42, 4-45

-0 compiler option, 6-33 to 6-38

-0 compiler option, 6-9, 6-20 to 6-21

object file sections, specifying alignment of,
6-20

object files, 6-3
differences between Aegis and UNIX, 1-4
specifying name of, 6-20

object modules
changing name of, 4-119
section summary of, 6-30

octal constants, 2-6
in escape codes, 2-9

old-style initialization, 3-5

online sample programs, 1-6 to 1-7
See also examples

openO function, 8-26

opening a file, 8-12 to 8-15

operands, 4-3 to 4-11, 4-13

operating systems, 1-1

operators, 4-3 to 4-11
See also expressions
address-of (&), 5-22
arithmetic, 4-6, 4-19 to 4-21
assignment, 4-8, 4-34 to 4-40

old-style, 4-36
to structures and unions, 4-147

associativity of, 4-9
table of, 4-11

binary, 4-13
binding of, 3-42

See also associativity of operators
bit, 4-7, 4-41, 4-42 to 4-45
cast, 4-5
casts. See casts
comma, 4-8, 4-54
comparison, 4-6

See also relational operators
conditional expression, 4-8, 4-55 to 4-56
decrement, 4-5, 4-106 to 4-110
grouping of operands to, 4-9
increment, 4-5, 4-106 to 4-110
logical, 4-7, 4-115 to 4-118

bitwise, 4-43

order of evaluation, 4-10 to 4-18
overview of, 4-3 to 4-11
pointer, 4-4, 4-122 to 4-130

pointer arithmetic, 4-124 to 4-165
postfix, 3-42, 4-106
precedence of, 3-42, 4-9

table of, 4-11
prefix, 3-42, 4-106
relational, 4-132 to 4-136

See also comparison operators
side effects in, 4-117

side effect, 4-109
sizeof, 4-5, 4-26, 4-143 to 4-144
structure, 4-146 to 4-153
unary, 4-13
union, 4-146 to 4-153

-opt compiler option, 6-24, 6-33 to 6-38

optimization levels, 6-33 to 6-38

optimizations, 6-33 to 6-38
and noreturn #options specifier, 5-19
common subexpressions, 6-35
computing constant expressions at compile-

time, 6-34
constant folding, 6-35
dead code, 6-35
differences between /com/cc and /bin/cc, 6-3
global register allocation, 6-37
instruction reordering, 6-38
live analysis of local variables, 6-36
loop-invariant expressions, 3-67
reaching definitions, 6-35
rearranging expressions, 6-34
redundant assignment elimination, 6-37
removing loop-invariant expressions, 6-38
turning off, 3-63, 6-29

device attribute specifier, 3-66
volatile attribute specifier, 3-65

options. See compiler options

#options specifier, 5-19, 7-5

OR, logical operater ([[),4-115

order of evaluation, 4-10 to 4-18
and logical operators, 4-116
and side effects, 4-109

organization, of programs, 2-1 to 2-17

OUT parameters, 7-6

output, standard, redirecting, 6-49

overflow conditions, 4-10, 4-38
floating-point, 4-38
integer, 3-10, 4-37

overlay sections, 7-26, 7-32
creating, 7-29 to 7-32

p
-P compiler option, 6-10, 6-26

-p compiler option, 6-9, 6-39 to 6-40

padding
in structures, 3-25
unnamed bit fields, 3-31

page break, forcing with #eject directive, 4-74

parameters. See arguments

parentheses, 4-9 to 4-10
in macro definitions, 4-67
used to change precedence in declarations,

3-43

parenthesized expressions, 4-9 to 4-10

Pascal data types, table of, 7-4

Pascal programming language, 1-2, 4-31, 4-133
calling from C, 7-7 to 7-14
sharing data with C, 7-27 to 7-32
type agreement with C, 7-3 to 7-4

pass by reference, 4-148, 5-7, 5-11 to 5-14,
7-5

. pass by value, 4-148, 5-7, 5-7 to 5-10

pathnames
absolute, 4-104
in #include directives, 4-105
relative, 4-104

PCC. See portable C compiler

peb performance enhancement board, compiling
code for, 6-9

performance
evaluating with prof utility, 6-9
evaluating with the gprof utility, 6-10

performance enhancement board, 6-22
compiling code for, 6-9

-pg compiler option, 6-10

pgm _ $invoke system call, compiling with -pic,
6-39

pic. See position independent code

-pic compiler option, 6-30, 6-39

pointer alignment, C-8

pointer arithmetic, 4-24, 4-124 to 4-165
scaling, 4-125

Index 19

pointer expressions, 4-79

pointer operators, 4-4

pointers, 3-19 to 3-22
accessing array elements through, 4-24 to

4-82
alignment of, D-10
and #attribute modifier, 3-64
and increment operator (++), 2-16
and integers, 4-24
arithmetic with, 4-124 to 4-165
assigning integer values to, 4-126
assigning values to, 4-122
casting, 4-53 to 4-82, 4-125 to 4-165
casting to integer, 4-52
declaring, 3-19, 4-122
dereferencing, 4-123 to 4-165
functions returning, 7-5
generic, 3-21 to 3-23

casting, 4-126
initializing, 3-20
internal representation, 3-20
NIL, 7-11
null, 3-20, 4-126 to 4-165, 7-11
operations with, 4-122 to 4-130
passing as arguments, 5-9, 7-6
passing from C to FORTRAN, 7-22 to 7-23
passing from C to Pascal, 7-11 to 7-12
to char, initializing, 3-41
to functions, 5-20

assigning values to, 5-21 to 5-22
calling functions using, 5-23 to 5-25
dereferencing, 5-23
passing as arguments, 5-24 to 5-25
return type agreement, 5-22

to structures, 4-147
type compatibility of, 4-122, 4-124, 4-138

portability, C-9 to C-11
and integer data types, 3-6
and integer division, 4-21
and pointers to functions, 5-24
global variables, 3-60

Portable C Compiler (PCC) , 1-2

position independent code (Pic), 6-39

postfix operators, 3-42, 4-106

powO function, 5-27

preambles, of functions, 5-2 to 5-4

precedence of operators, 4-9
table of, 4-11

20 Index

precision, loss of, 4-37, 4-38

predefined macros
defined, 4-15, 4-96 to 4-100
systype, 4-15, 4-160 to 4-162
table of, 4-15

predefined names
DATE, 4-60
FILE, 4-111
LINE, 4-111
STDC, 4-98, 4-145, 6-42
TIME, 4-60
_BFMT_COFF, 4-145
table of, 4-15

prefix operators, 3-42, 4-106

preprocessor
differences between Aegis and UNIX, 1-4
execution, 6-26
macros. See macros
UNIX (cpp) , 1-4, 4-16, 4-99

preprocessor directives, 2-11, 2-13
#debug, 4-61 to 4-62, 6-22
#define, 4-64 to 4-71, 6-24
#eject, 4-74
#elif, 4-16, 4-99
#else, 4-96 to 4-100
#if, 4-96 to 4-100
#ifdef, 4-96 to 4-100
#ifndef, 4-96 to 4-100
#include, 4-103 to 4-105
#line, 4-112 to 4-113, 9-26

enabling and disabling, 6-42
#list, 4-114
#module, 4-119 to 4-120, 9-28
#nolist, 4-114
#section, 4-140 to 4-142
#systype, 4-160 to 4-162, 6-40
#undef, 4-64 to 4-71
column position in source file, 4-16
overview of, 4-15
table of, 4-16

printfO function, 8-9
prototype for, 5-15

procedure section, 4-140
changing name of, 4-119

procedures, 2-12

processors, compiling code for specific, 6-9,
6-22 to 6-23

-prof compiler option, 6-39 to 6-40

prof utility, 6-9, 6-39

profiling programs
See also prof utility
prof utility, 6-9

program development, 6-1 to 6-52

program organization, 2-11 to 2-13

program scope, 3-48, 3-51

program start-up, 3-53

programming languages, systems, 1-1

programs
compiling, 6-3 to 6-19
debugging, 6-49 to 6-50
developing, 6-1 to 6-3
executing, 6-48 to 6-49
online examples, 1-6 to 1-7
organization of, 2-1 to 2-17

prototypes, 3-62, 4-68
See also function prototypes

putcO function, 8-7, 8-12, 8-16

putcharO macro, 8-7, 8-9

putsO function, 8-9

putwO function, 8-12

Q
-qg compiler option, 6-10

-qp compiler option, 6-10

qsortO function, 4-33, 8-23

qualifiers, data type, 3-2

quiet type conversions, 4-12

quotes
double

delimiting strings, 2-10
escape code (\"), 2-8
surrounding filenames, 4-104

single, 2-8, 3-8
escape code (\'), 2-8

R
-r compiler option, 6-10

random access, 110, 8-21 to 8-25

range, data types, 3-3

reaching definitions, 6-35

readO function, 8-26

read-only variables, 3-68

reading files, 8-16 to 8-25

recursive functions, 5-20

redirecting standard input, 6-49

redirecting standard output, 6-49

redundant assignment elimination, 6-37

reference variables, 3-62 to 3-63
declaring, 3-63
passing arguments by reference, 5-11 to 5-14
turning on and off, 6-42
using for cross-language communication, 7-7
using to return values from functions, 5-18

references
backward, 5-6
external, resolving, 6-43
forward, 5-6

register storage class specifier, 3-55, 3-56, 5-3
in prototypes, 5-13

register variables, 3-56

registers
AO, 5-19
and optimized code, 6-34
controlling use of, 5-19
DO, 5-19
device, device attribute specifier, 3-66
floating-point, 6-27
global allocation of, 6-37
instruction address (lAD DR) , 6-23
preserving, 5-19
used for returning functions, 7-5

relational expressions, 4-115 to 4-118
side effects in, 4-117

relational operators, 4-132 to 4-136
See also comparison operators

relative pathnames, 4-104

relocatable code. See position independent code

relocation entries, retaining, 6-10

remainder, integer. See modulo division operator

reordering, instruction, 6-38

reserved names, 2-4

return statement, 4-3, 4-137, 4-137 to 4-139,
5-17

used to exit a switch statement, 4-155 to
4-165

return type, of functions, default, 5-2

Index 21

return value of functions, 5-2, 5-17 to 5-19
by reference, 5-18

rewindO function, 8-12

right-arrow operator (-». See structure mem-
ber operator (-»

right-to-Ieft binding order, 4-9

Ritchie, Dennis M., 1-1

rounding, 4-38
of floating-point expressions, 4-135

row-major order, storage of multidimesnional
arrays, 3-39

-runtype compiler option, 6-40

s
-S compiler option, 6-27

-s compiler option, 6-10

sample programs, online, 1-6
See also examples

scalar types, 3-1, 3-2 to 3-3
hierarchy of, 4-14

scaling, pointer arithmetic, 4-125

scanfO function, 8-9

sccs utility, 6-50

scientific notation, 2-7 to 2-8

scope, 3-46, 3-48 to 3-51
block, 3-48, 3-50 to 3-51
file, 3-48, 3-51, 3-61
function, 3-48, 3-51
global, 3-48, 3-51
hierarchy of, 3-48
of functions, 3-61
program, 3-48, 3-51

section attribute specifier, 3-63, 3-69

#section preprocessor directive, 4-140 to 4-142

sections
.bss, 7-27
.data, 7-27
data, 4-140

changing name of, 4-119
debug, 4-140
named, 3-60

for global variables, 7-26
overlay, 7-26, 7-32

creating, 7-29 to 7-32

22 Index

procedure, 4-140
changing name of, 4-119

SEEK_CUR macro, 8-21

SEEK_END macro, 8-21

SEEK_SET macro, 8-21

SET functions, implementing in C, 7-3

setbufO function, 8-6

setbufferO function, 8-6

setlinebufferO function, 8-6

setvbufO function, 8-6

shared libraries, compiling with -pic, 6-39

shared memory, volatile attribute specifier, 3-65

shift left operator «<) , 4-42

shift operators, bitwise, 4-42
sign preservation, 4-43

shift right operator (») , 4-42

short enum type, 3-3, 3-17

short type, 3-2, 3-6
range, 3-3
representation, 3-7 to 3-8
size, 3-3

side effects, 4-108, 4-109, C-8, D-10
in macro arguments, 4-71
in relational expressions, 4-117

sign reversal operator (-), 4-19

sign-preserving, during bitwise shift operations,
4-43

signatures, function, 2-11

simple statement, 4-2

sinO function, 4-151
built-in version of, 6-47

single quote escape code (\ '), 2-8

single quotes, 2-8, 3-8

single-precision floating-point, 3-11, 3-11 to
3-12

size
data types, 3-3
structure, 3-26

sizeof operator, 4-5, 4-143 to 4-144
abstract declarators, 3-41
applied to arrays, 4-26
strings, 2-10

sorting
bubble_sortO function, 4-32

qsortO function, 4-33

source files, 2-11, 6-3
line numbers in, 4-111

sqrtO function, built-in version of, 6-47

stack frame, 5-19

stack size, 6-31

standard C library, 6-45 to 6-46

standard devices, 8-8 to 8-10

standard I/O library, 8-4 to 8-25

standard input, redirecting, 6-49

standard output, redirecting, 6-49

standards, for the C language, 1-2 to 1-3

start-up, of programs, 3-53

start-up routine, selecting directory of, 6-13

startup routine, 6-43

statement labels, 4-88
scope of, 3-51

statements, 2-13, 4-1 to 4-3
branching, 4-3
break, 4-3, 4-46 to 4-48, 4-155
compound, 4-2
continue, 4-3, 4-57 to 4-59
do/while, 4-3, 4-72 to 4-73
for, 4-3, 4-83 to 4-87, 4-101, 4-102, 4-121
goto, 4-3, 4-88 to 4-90
if, 4-3, 4-91 to 4-95
labeled, 4-88
looping, 4-3
null, 4-2
return, 4-3, 4-137 to 4-139, 4-155, 5-17
simple, 4-2
switch, 4-3, 4-154 to 4-159
while, 4-3, 4-164 to 4-165

static duration. See fixed duration

static storage class specifier, 3-48, 3-51, 3-52,
3-55, 3-61, 5-5

dual meanings of, 3-54
example of, 4-28

status codes, returned by system routines, 7-36

STATUS_$T type, 7-36

-std compiler option, 4-148, 6-40

std_$call reserved word, 7-2, E-1 to E-27

STDC predefined name, 4-15, 4-98,
4-145, 6-42

stderr, 8-8

stdin, 8-8

stdio.h header file, 8-4, 8-6

stdout, 8-8

storage class, 3-46 to 3-56
duration. See duration
function, 3-60 to 3-62
of functions, 5-6
scope. See scope
table of, 3-56

storage class specifiers, 2-14, 3-55 to 3-56
auto, 3-55
erroneous use of, 9-4
extern, 3-55, 3-57, 5-5

function allusions, 3-61
omitted, 3-55
register, 3-55, 3-56, 5-3

in prototypes, 5-13
static, 3-48, 3-51, 3-52, 3-55, 3-61, 5-5

dual meanings of, 3-54

strcatO function, built-in version of, 6-47

strcmpO function, built-in version of, 6-47

strcpyO function, built-in version of, 6-47

streams, 8-3 to 8-4
extensible, 8-3

string constants, 2-10 to 2-12

string.h header file, built-in routines for, 6-47

strings, 3-40 to 3-41
constant, 2-10 to 2-12

converted to pointer, 2-10
maximum size, 2-10

initializing, 3-40
maximum size of, 9-3
memory allocation, 3-41
null, 2-10
passing from C to Pascal, 7-9 to 7-10
size of, 9-18
terminating, 9-3
uppercase and lowercase, 2-5
used to initialize char arrays, 3-36

strings.h header file, built-in routines for, 6-47

strip utility, 6-10

strlenO function, built-in version of, 6-47

strncatO function, built-in version of, 6-47

strncpyO function, built-in version of, 6-47

Stroustrup, Bjarne, 3-62

structure member operator (.), 4-146

Index 23

structure member operator (-», 4-147

structure members, 4-146 to 4-153
alignment, 3-25, 3-31
layout, 3-25
nested, 4-147
referencing, 4-152

structures, 3-22 to 3-34
alignment, 3-24 to 3-25
array of, 3-28
assigning values to, 4-147
bit fields, 3-31 to 3-32
declaring, 3-23 to 3-24
initializing, 3-33
members of. See structure members
memory allocation, 3-27 to 3-29
name space, 3-32
names of, 2-16
operations on, 4-146 to 4-153
passing as arguments, 5-10
passing as function arguments, 4-148 to

4-149
vs. passing arrays, 4-150

pointers to, 4-147
referencing each other, 3-24
representation, 3-24 to 3-29
returning from functions, 4-150
self-referential, 3-24
size, 3-4, 3-26

subexpressions, 4-13, D-10
common, 6-35

subtraction operator (-), 4-19
and pointers, 4-124

suffixes, filename. See filename suffixes

switch statement, 4-3, 4-154 to 4-159

symbol table, undefined symbols in, 6-11

symbolic map. See map files

symbols, predefined. See predefined names

sys5 systype, 6-41
default systype, 4-161

sys5.3 systype, 6-41

system libraries, 6-44
linking to, 7-36

system service routines, 7-35 to 7-36

systems programming language, 1-1

-systype compiler option, 4-161, 6-40 to 6-42

SYSTYPE environment variable, 6-42

24 Index

systype macro, 4-15

systype predefined macro, 4-160 to 4-162

#systype preprocessor directive, 4-160 to 4-162,
6-40

systypes, 6-40
designating at compile-time, 6-40

T
-T compiler option, 6-11, 6-40 to 6-42

-t compiler option, 6-11

tabs
horizontal, escape code (\t) , 2-8
vertical, escape code (\ v), 2-8

tag names, 3-23
name space, 2-16

tags. See tag names

tan () function, 4-151
built-in version of, 6-47

target cpu, compiling for, 6-22

tb utility. See traceback utility

.text section, 4-140

Thompson, Ken, 1-1

time, of program compilation, 4-60

TIME predefined name, 4-15, 4-60

tokens, 2-1

top-level declarations, 3-46

traceback utility (tb) , 6-51

true values, 4-133
and logical operators, 4-115

two's-complement notation, 3-7

type checking, C-5, D-6

-type compiler option, 6-42

type conversions, 4-12 to 4-14
and initialization, 3-5, 3-9
arithmetic, 4-12
array to pointer, 4-24, 4-27
assignment, 4-12, 4-36 to 4-82
automatic, 4-12
casts, 4-49 to 4-53
floating-point to integer, 4-21
implicit, 4-12
integer, table of, 4-50
integer widening, 4-50

integral promotion. See integral widening con-
versions

integral widening, 4-12
quiet, 4-12
rounding, 4-38

type managers. See lOS type managers

type specifiers, char, 3-8

type-checking
none for macro arguments, 4-67
of function arguments, 5-12
of function return values, 4-137

typedef declarations, 2-14 to 2-16
and arrays, 2-16
used to simplify declarations, 3-42

typedef keyword, 2-14

types. See data types

u
-U compiler option, 6-11

-u compiler option, 6-11

-uline compiler option, 6-42

unary operators, 4-13

unbuffered 110, 8-25 to 8-27

underscore C), used in identifiers, 2-4

undersore, appended to FORTRAN routine
names, 7-14

ungetcO function, 8-12

union members, 4-146 to 4-153
nested, 4-147
referencing, 4-152

unions, 3-22 to 3-34
assigning values to, 4-147
bit fields, 3-31 to 3-32
declaring, 3-23 to 3-24, 3-29
initializing, 3-33 to 3-35
members of. See union members
memory allocation, 3-30
name space, 3-32
names of, 2-16
operations on, 4-146 to 4-153
passing as arguments, 5-10
referencing each other, 3-24
representation, 3-29 to 3-30
size, 3-4

UNIX
compiling for different versions, 6-40
different versions of, 4-160
echo program, 5-26
executing programs in, 6-48

unlinkO function, 8-26

unnamed bit fields, 3-31

unsigned char type, representation, 3-8 to 3-9

unsigned int type, representation, 3-6 to 3-7

unsigned integers, casting, 4-51

unsigned short type, representation, 3-7 to 3-8

unsigned type, 3-2, 3-6
integer overflow, 3-10
range, 3-3
size, 3-3

unused functions, C-3, D-3

unused variables, C-3, D-3

user-level blocks, 8-5

/usr/include directory, 4-104, 6-28, 6-45, 7-35

/usr/lib/o directory, 6-6

v
-v compiler option, 6-11

/* VARARGS */, lint comment, C-ll, D-2

/* VARARGS2 */, lint comment, C-12

variable length record files, 8-3

variable names, 2-14

variable number of arguments, 5-15

variables
integer, initializing, 3-9 to 3-10
list of, 6-32
names of, 3-49
reference. See reference variables
unused, C-3, D-3

version selector, systype, 4-161

vertical tab escape code (\v) , 2-8

virtual address. See address

virtual memory, 6-39

visibility, of names, 3-50

void, pointers to. See generic pointers

void type, 3-2, 3-18 to 3-19
casting, 4-49

Index 25

functions returning, 4-138
illegal with arrays, 3-35
used as function return type, 5-2

volatile attribute specifier, 3-63, 3-64 to 3-66

w
-w compiler option, 6-12

-w compiler option, 6-43

-warn compiler option, 6-43

warning messages, 9-1 to 9-37
compilation, 6-30
suppressing, 6-43

while loops, 4-84

while statement, 4-3, 4-164 to 4-165

white space, 2-2

26 Index

word alignment, 3-25, 3-27

writeO function, 8-26

write-only variables, 3-68

writing to files, 8-16 to 8-25

x
X3J11 Technical Committee, 1-2

-x compiler option, 6-12

XOR operator. See exclusive OR operator

y
-y compiler option, 1-3, 6-12

yacc utility, 4-113

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals fron
your point of view.

Document Title: Domain C Language Reference
Order No.: 002093-AOO
Date of Publication: July, 1988

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the Domain system? ________________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to include? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.) _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

1111
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o
S-
O ...,

Q:
Co
III
0"
:J

CO

Co
o
::\
11)
Co

:J
11)

\
\
\
\
\
\
\
\
\
\
\
\ --,

)LD

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: Domain C Language Reference
Order No.: 002093-AOO
Date of Publication: July, 1988

What type of user are you?
__ System programmer; language
__ Applications prograr.lmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the Domain system? ________________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to include? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.) _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

.0

o
~
o ...
0'
0:
DI
0"
:::J
(Q

0.
~ ..
CD
0.

:::J
CD

__ J

I " III
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

.---4
LO

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals frOJ
your point of view.

Document Title: Domain C Language Reference
Order No.: 002093-AOO
Date of Publication: July, 1988

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrat:>r Technical Professional
__ Student Programmer Novice

Other

How often do you use the Domain system? _______________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to include? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure.
or table number wherever possible. Specify additional index entries.) _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

" II
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

()

s
o -.
0' a:
I»
0'
::J
IQ

C.
o --CD
C.

::J
CD

--,
LD

,

\111\~ml~~I\\lmi\I\\II\i~1

