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Preface

The Domain C Language Reference manual describes the Domain C programming language
and the Domain programming environment relevant to C programmers.

We’ve organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Presents an overview of the Domain C compiler.

Describes the lexical components of a C program (such as identifi-
ers, comments, and keywords), and describes the general organiza-
tion of C programs.

Describes data types and storage classes, and the syntax and se-
mantics of declaring variables.

Provides encyclopedic descriptions of all C language statements
and operators, as well as descriptions of general C programming
concepts.

Provides details about declaring and invoking functions.
Describes compiler options and the compilation/linking process.

Describes how to call FORTRAN and Pascal routines from a C
program, and how to share global data with routines written in
other languages.

Provides an overview of input and output operations that can be
performed with the standard C run-time library and the UNIX
system library.

Describes the types of diagnostic messages that the compiler issues,
and lists each message along with its probable cause.

Lists the ISO Latin—-1 code values.

Lists Domain extensions to the C programming language.
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Appendix C . Describes the BSD version of the lint utility.
Appendix D Describes the SysV version of the lint utility.

Appendix E Describes the std_$call keyword, which is now obsolete.

Revision History

Because this manual has been extensively revised, we have not used marginal change bars
to indicate each modification. See the C Compiler Release Document for a list of func-
tional changes to the C compiler.

Related Manuals

For more information about the standard C run-time library and UNIX system calls, see
the BSD Programmer’s Reference manual (005801) and the SysV Programmer’s Reference
manual (005799).

For more information about system calls see the Domain/OS Call Reference manual
(007196) and Programming with Domain/OS Calls (005506).

For more information about the programming environment and software tools, see the Do-
main/OS Programming Environment Reference manual (011010).

For more information about the Domain Pascal programming language, see the Domain
Pascal Programming Language Reference manual (000792).

For information about the Domain FORTRAN programming language, see the Domain
FORTRAN Programming Language Reference manual (000530).

For more information about the binder (bind), link editor (Id), librarian (lbr), and ar-
chiver (ar), see the Domain/OS Programming Environment Reference manual (0011010).

For more information about the Domain high-level debugger, see the Domain Distributed
Debugging Environment Reference manual (011024).

For more information about DSEE, see the Domain Software Engineering Environment
(DSEE) Reference manual (003016).

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make it easy for you to
communicate with us, we provide the Apollo Product Reporting (APR) system for com-
ments related to hardware, software, and documentation. By using this formal channel,
you make it easy for us to respond to your comments.
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You can get more information about how to submit an APR by consulting the appropriate
Command Reference manual for your environment (Aegis, BSD, or SysV). Refer to the
mkapr (make apollo product report) shell command description. You can view the same
description online by typing:

$ man mkapr (in the SysV environment)

% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader’s Response Form at the back of this manual to sub-
mit comments about the manual.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

literal values

user—supplied values

Domain extensions
sample user input

output

CTRL/

Bold words or characters in formats and command descriptions
represent commands or keywords that you must use literally.
Pathnames are also in bold. Bold words in text indicate the first
use of a new term. ‘

Italic words or characters in formats and command descriptions
represent values that you must supply.

Domain-specific features of C appear in color.
In samples, information that the user enters appears in color.

Information that the system displays appears in this
typeface.

Square brackets enclose optional items in formats and command
descriptions.

Braces enclose a list from which you must choose an item in for-
mats and command descriptions. In sample Pascal statements,
braces assume their Pascal meanings.

A vertical bar separates items in a list of choices.
Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a
control character sequence. Hold down <CTRL> while you press
the key.
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Horizontal ellipsis points indicate that you can repeat the preced-
ing item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or ex-
ample have been omitted.

Because this manual has been extensively revised, we have not
used marginal change bars to indicate each modification.

This symbol indicates the end of a chapter.
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Chapter 1

An Overview of Domain C

This manual describes Domain® C, which is our implementation of the C programming
language. In this chapter, we provide an overview of the C language, list some of the key
Domain extensions, and show how to compile and execute a simple C program.

1.1 History of C

The C language was first developed in 1972 by Dennis M. Ritchie at AT&T Bell Labs as a
systems programming language—that is, a language to write operating systems and system
utilities. Ritchie’s intent in designing C was to give programmers a convenient means of ac-
cessing a machine’s instruction set. This meant creating a language that was high-level
enough to make programs readable and portable, but simple enough to map easily onto the
underlying machine architecture.

C was so flexible, and enabled compilers to produce such efficient machine code, that in
1973 Ritchie and Ken Thompson rewrote most of the UNIX* operating system in C. Since
then, C and the UNIX system have had a close association, although in recent years C has
become more popular as a general-purpose programming language.

Although the power and flexibility of C is undisputed, C has also acquired the reputation
for being a mysterious and messy language that promotes bad programming habits. Part of
the problem is that C gives special meanings to many punctuation characters, such as aster-
isks, plus signs, braces, and angle brackets. Once a programmer has learned the C lan-
guage, these symbols look quite commonplace, but there is no denying that a typical C
program can be intimidating to the uninitiated.

The other, more serious, complaint concerns the relative dearth of rules. Other program-
ming languages, such as Pascal, have relatively strict rules to protect programmers from

*UNIX is a registered trademark of AT&T in the USA and other countries.
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making accidental blunders. It is assumed in Pascal, for instance, that if a programmer at-
tempts to assign a floating—point number to a variable that is supposed to hold an integer,
it is a mistake, and the compiler issues an error message. In C, the compiler quietly con-
verts the floating—point value to an integer.

The C language was designed for experienced programmers. The compiler, therefore, as-
sumes little about what the programmer does or does not intend to do. This can be
summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual code. In many in-
stances, this freedom allows programmers to write useful programs that would be difficult to
write in other languages. However, the freedom can be abused by inexperienced program-
mers who delight in writing needlessly tricky code. C is a powerful language, but it re-
quires self-restraint and discipline.

You should be somewhat familiar with C before attempting to use this manual. If you are
not, please consult a good C tutorial. If you are familiar with C, you should be able to
write programs in Domain C after reading this manual.

1.2 C Standards

1-2

Until recently, the only formal specification for the C language was a document written by
Dennis Ritchie entitled The C Reference Manual. In 1977, Ritchie and Brian Kernighan
expanded this document into a full-length book called The C Programming Language
(sometimes called “the white book” because of its white cover). For years, The C Pro-
gramming Language was the only C text and so acquired the status of a de facto standard.
We refer to this book, and the language it defines, as the K&R standard.

In the early days of C, the language was used primarily on UNIX systems. Even though
there were different versions of UNIX systems available, each used the same C compiler.
The version of C running under a UNIX operating system is known as PCC (Portable C
Compiler). Like the K&R standard, PCC became a de facto standard. In fact, PCC can
be viewed as an implementation of the K&R standard. There are a few points about the C
language, however, that the K&R standard does not define. In these cases, the PCC im-
plementation has become the standard.

In February 1983, James Brodie of Motorola Corporation applied to the X3 Committee of
the American National Standards Institute (ANSI) to draft a C standard. ANSI approved
the application, and in March the X3J11 Technical Committee of ANSI was formed.
X3J11 is composed of representatives from all the major C compiler developers (including
Apollo), as well as representatives from several companies that program their applications
in C. In the summer of 1983, the committee met for the first time, and they have been
meeting four times a year since then. The final version of the C standard is expected to
be approved by ANSI in 1988.
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In addition to the K&R standard, the PCC implementation, and the ANSI standard, there
is a new language based on C called C++. C++ was developed by Bjarne Stroustrup at
AT&T. It includes many of the features in the ANSI standard, as well as further exten-
sions to make the language object-oriented.

Except for a few rare cases, Domain C is fully compatible with the K&R standard and with
PCC. Therefore, programs compiled in a UNIX environment can be ported to Apollo ma-
chines without altering the source text, and vice versa. At the same time, Domain C sup-
ports many of the newer features introduced by ANSI and C++. In particular, Domain C
supports the following: '

® enum data type
® Function prototypes
® Reference variables
® Generic pointers
Finally, Domain C includes some features that are not available in any of the existing stan-

dards. These features enable you to take full advantage of the Domain/OS environment,
though use of special Domain syntaxes will make your programs less portable.

Throughout this manual, we highlight all Domain-specific features in colored text. Every-
thing printed in black is consistent with either the K&R standard or the ANSI standard.
Where the two standards differ, we explicitly state the difference in the text. Appendix D
contains a detailed list of ANSI and C++ features that Domain C supports.

1.3 Two Ways to Call C

Although there is only one Domain C compiler, there are two command line interfaces to
it. By default, typing cc in a UNIX shell gives you the /bin/cc interface. Typing cc in an
Aegis shell gives you the /com/cc interface.

The /com/cc interface is always available regardless of what shell you are running and
which environments are installed on your node. If you are in a UNIX shell and have
Aegis installed on your node, you can access the /com/cc interface by typing /com/cc on
the command line. If Aegis is not installed on your node, the /com/cc interface will reside
in /usr/apollo/lib/cc. Note, however, that you can also access the /com/cc interface by
using the -YO option with the /bin/cc command. See Chapter 6 for more information
about this compiler option.

The /bin/cc interface is available only if a UNIX environment is installed on your node. If
a UNIX environment is installed but you are running an Aegis shell, you can access the
/bin/cc interface by typing /bin/cc on the command line.
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The /bin/cc command first calls the UNIX preprocessor (cpp); then it invokes the Domain
C compiler; after compilation, it invokes the UNIX link editor (Id).

The /com/cc command only invokes the Domain C compiler (which includes the Aegis
preprocessor). Unlike the /bin/cc command, /com/cc does not automatically invoke a link
editor. See Chapter 6 for more information about the differences between /com/cc and
/bin/cc.

1.3.1 Two Preprocessors

The C product supports two preprocessors—a UNIX preprocessor called cpp and an Aegis
preprocessor that is bundled with the Domain C compiler. The UNIX preprocessor is
automatically invoked whenever you execute the /bin/cc command. You can also invoke it
as a stand-alone utility by executing the /usr/lib/cpp command. The Aegis preprocessor
executes whenever you invoke the Domain C compiler. Note that when you compile in a
UNIX environment, your source text is passed through both preprocessors—cpp first and
then the Aegis preprocessor.

In general, the two preprocessors behave identically. The key differences are:

® The two preprocessors use different methods for resolving relative pathnames in
#include directives. See the description of the #include directive in Chapter 4 for
more information about this difference.

® The two preprocessors support different sets of command options. See Chapter 6
for details about all command options.

® The UNIX preprocessor supports the #elif directive; the Aegis preprocessor does
not.

® The Aegis preprocessor supports many Domain-specific directives and predefined
macros that cpp does not support.

1.3.2 Two Styles of Object Code

Both /bin/cc and /com/cc produce COFF (Common Object File Format) object files.
However, the two commands produce slightly different styles of COFF. The notable differ-
ences are:

® Object files produced by /bin/cc have a .o suffix. Object files produced by /com/
cc have a .bin suffix.

e If you compile with /bin/cc, the resulting code will not be optimized by default.
If you compile with /com/cc, your code will be optimized at optimization level 3.
You can override both of these defaults with compiler options. See Chapter 6 for
more information about optimization levels.
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If you compile with /bin/cc, all uninitialized global variables will be placed in the
.bss section of the object file. If you compile with /com/cc, all global variables
will be placed in named overlay sections. This becomes an issue in cross-language
communication, as explained in Chapter 7.

Object files compiled by /com/cc are executable if they contain a main() function
and do not reference externally defined objects. All object files produced by
/bin/cc must be processed by a binder before they can be executed. Note that
since /bin/cc automatically invokes the link editor (Id), this difference is usually
invisible.

1.3.3 Two Command Line Syntaxes

The /bin/cc and /com/cc commands have separate syntaxes and recognize entirely different
sets of command line options (although the functionality overlaps to a large extent). Chap-
ter 6 describes these differences in detail. Here, we briefly list some of the principal dif-
ferences.

The /bin/cc command accepts multiple source filenames on the command line.
The /com/cc command accepts only one filename.

With /bin/cc, you can specify the names of object files, which are passed to the
link editor. The /com/cc command accepts only source files.

When you compile with /bin/cc, all source filenames must have a .c suffix and all
object filenames must have a .o suffix. There are no suffix requirements with the
/com/cc command.

With the /bin/cc command, you must place compiler options before filenames.
With /com/cc, compiler options are placed after the filename.

The compiler options supported by /bin/cc are case-sensitive. The /com/cc com-
piler options are not case-sensitive. '

1.4 A Sample Program

The best way to get started with Domain C is to write, compile, and execute a simple pro-

gram.

Here is a simple program to get you started:

/* Program name is "getting started" */
#include <stdio.h>

int main( void )

{

int x, y;

printf( "enter an integer —— " );
scanf ( "%d", &x );

y=x*2

printf( "\n%d is twice %d\n", y, X );
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1.4.1 Compiling and Executing

Suppose that you store this program in a file named getting_started.c. (If you use /bin/
cc, you must enter the full name of the source file, including the .c suffix; with /com/cc,
you may omit the .c suffix.) Compiling with /com/cc produces an executable object file
named getting_started.bin; compiling with /bin/cc produces an executable binary file
named a.out. To run these objects, just enter the name of the file. Table 1-1 summa-
rizes the whole process.

Table 1-1. Compiling and Executing a Simple Program

With /com/cc With /bin/cc
$ /com/cc getting_started $ /bin/cc getting_started.c
No errors, No warnings. No errors, No warnings.
$ getting_started.bin $ a.out
Enter an integer —- 15 Enter an integer —-- 15
30 is twice 15 30 is . twice 15

1.5 Online Sample Programs

Many of the programs from this manual are stored online, along with sample programs
from other Apollo manuals. These programs illustrate features of the C language, and
demonstrate programming with Domain/OS graphics calls and system calls. There are two
ways to access these online programs—with the getcc utility or with the Delphi system.

1.5.1 Accessing Sample Programs with getcc

1-6

The getcc utility enables you to extract a program from a master file that contains all sam-
ple programs. The getcc utility prompts you for the name of the sample program and the
pathname of the file to which you want it copied.

If the online examples are stored on your node, you can access getcc directly or through a
link. To access them directly, you must change your working directory before invoking
getcc:

# In an Aegis shell # In a UNIX shell
$ wd /domain_examples/cc_examples $ cd /domain_examples/cc_examples
$ getcc $ getcc

To access the examples through a link, you need to create the following link before invok-
ing getcc:
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# In an Aegis shell
crl -/com/getcc /domain_examples/cc_examples/getcc
getcc

& &

In a UNIX shell
In —s /domain_examples/cc_examples/getcc path_dir/getcc
getcc
where "path_dir" is a name of a directory on your list of search
pathnames.

I WA O X

If the online examples are stored on a remote node, you need to create the following two
links to invoke getcc:

In an Aegis shell
crl /domain_examples/cc_examples //node/domain_examples/cc_examples
crl ~/com/getcc //node_name/domain_examples/cc_examples/getcc
getcc

®PH P X

In a UNIX shell
In -s //node/domain_examples/cc_examples /domain_examples/cc_examples
In -s //node/domain_examples/cc_examples/getcc path_dir/getcc
getcc )
where "node" is the name of the node where the examples are
stored, and "path_dir" is a name of a directory on your list of
search pathnames.

I R - - -

1.5.2 Accessing Sample Programs with Domain/Delphi

All of the sample programs are available through the Delphi online documentation system.
To compile and run an example, enter the name of the program in the Domain/Delphi
subject field. When the source for the program appears, cut it and paste it into another
file. You can then compile and execute this file as you would any other source file. See
the Retrieving Information With Domain/Delphi manual for more information.

oo
oo
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Chapter 2

Program Organization

This chapter describes the following subjects:

Lexical elements of a C program
Organization of a C program
Constants

Declarations

2.1 Lexical Elements

The lexical elements of the C language include the characters that may appear in a C
source file, and how these characters are grouped into meaningful tokens by the Domain C
compiler. In particular, we describe the following syntactic objects:

White space and newlines
Comments
Identifiers
Keywords

Constants
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2.1.1 White Space and Newlines

In C source files, blanks, newlines, vertical tabs, horizontal tabs, and formfeeds are all
considered to be white space characters. The main purpose of white space characters is
to format source files so that they are more readable to humans. In general, the compiler
ignores white space characters, except when they are used to separate tokens or when they
appear within string literals. The newline character also serves the special function of termi-
nating preprocessor directives. See the “Preprocessor Directives” section in Chapter 4 for
more information about preprocessor directives.

2.1.2 Comments

A comment is any series of characters beginning with /* and ending with */. The compiler
ignores all comments. In the following example, a comment follows an assignment state-
ment:

average = total / number_of components; /* Find mean value. */

Comments may also span multiple lines, as in:

/* This is a
multi-line comment.
*/

Domain C allows comments to appear anywhere in the source file. Since the compiler in-
terprets comments as nulls, this can result in unusual concatenations if you are not careful.
For instance, the statement,

int x/* This is an example */z;
becomes:
int xz;
NOTE: Domain C’s implementation of comments conforms to the

PCC implementation. The ANSI standard, however, states
that comments must be replaced by a single space character.

The C language does not support nested comments. The following, for example, will pro-
duce a compile-time error:

/* This is an outer comment
/*¥ This is an attempted inner comment —— WRONG */

* %

¥*

This will be interpreted as code.
*/
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C identifies the beginning of a comment by the character sequence /*. It then strips all
characters up to, and including, the end comment sequence */. What’s left gets passed to
the compiler to be further processed. In the example above, therefore, the preprocessor
will delete everything up to the first */ sequence, but pass the rest to the compiler. So the
compiler will attempt to process:

* This will be interpreted as code.
*/

Not recognizing these lines as valid C statements, the compiler will issue an error message.
You can check for nested comments by compiling with the —comchk option (available with
/com/cc only).

2.1.3 Spreading Source Code Across Multiple Lines

In C, you can start a statement or declaration at any column and spread it over as many
lines as you want. In older versions of C, including the K&R standard, you cannot split a
keyword or identifier across a line. Domain C, in conformance with the ANSI standard,
defines the continuation character more generally, allowing you to use it to split identifiers
and tokens as well as strings. For example, the compiler views the following two lines as
the keyword switch:

swit\
ch

You can split a string or preprocessor directive across one or more lines. (See Chapter 3
for a definition of strings.) To split a string or preprocessor directive, however, you must
use the continuation character (\) at the end of the line to be split; for example:

#define foo_macro(x,y,z) ((x) + (¥))\
* ((2) - (X))

printf("This is an very, very, very lengthy and very, very \
uninteresting string.");
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2.1.4 Identifiers

2-4

Identifiers, also called names, can consist of the following:

® Letters (ASCII decimal values 65-90 and 97-122)
® Digits
o Dollar sign ($)

® Underscore ()

The first character must be a letter or an underscore. Identifiers that begin with an under-
score are generally reserved for system use. In fact, the ANSI standard has reserved all
names that begin with two underscores or an underscore followed by an uppercase letter.
Note that the dollar sign is a Domain extension.

In addition, identifiers may not conflict with reserved keywords, which are listed in Figure
2-1. Table 2-1 lists some legal and illegal identifiers:

Table 2-1. Legal and lllegal Identifiers

Identifier Legal or Illegal

meters Legal.

green_eggs_and_ham Legal.

system_name Legal.

UPPER_AND_lower_case Legal.

20_meters Illegal, because it starts with a digit.

$name Illegal, because it starts with a dollar sign.

name$ Legal in Domain C, but nonstandard.

int Illegal, because int is a reserved keyword.

no%#@good Illegal, because it contains illegal
characters.

Identifiers are unique up to 4096 characters. Because Domain C exceeds the limits re-
quired by the K&R and ANSI standards, long names may not be portable. The ANSI
standard requires compilers to support names of up to 32 characters for local variables and
6 characters for global variables.
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2.1.5 Case Sensitivity

In C, identifier names are always case-sensitive; that is, an identifier written in uppercase
letters is considered different from the same identifier written in lowercase. For example,
the following three identifiers are all considered unique:

kilograms
KILOGRAMS
Kilograms

Some Domain/OS programming languages (such as Pascal and FORTRAN) are case-insen-
sitive. When writing a Domain C program that calls routines from these other languages,
you must be aware of this difference in sensitivity. (See Chapter 7 for details on cross-lan-
guage communication.)

Note that strings (discussed in Chapter 3) are also case-sensitive. That is, the system rec-
ognizes the following two strings as distinct:

"THE RAIN IN SPAIN"
"the rain in spain"

2.1.6 Keywords

Domain C supports the list of keywords shown in Figure 2-1. You cannot use keywords as
identifiers; if you do, the compiler will report an error. You cannot abbreviate a keyword
and you must enter keywords in lowercase letters only.

auto extern sizeof
break float static
case for std_$call
char goto struct
continue if switch
default int typedef
do long union
double register unsigned
else return void
enum short while

Figure 2-1. Domain C Keywords
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2.2 Constants

There are four types of constants in C:

® Integer constants
® Floating-point constants
® Character constants

® String constants

Every constant has two properties: value and type. For example, the constant 15 has
value 15 and type int.

2.2.1 Integer Constants

2-6

An integer constant is a simple number like 12 as opposed to an integer variable (like x or
y) or an integer expression. Whenever you use an integer constant in your source code,
Domain C represents it as an int (32 bits). You cannot change this default. However,
you can append an | or L to any constant to specify that you want it long. For example,
S5L is a constant with a decimal value of 55 and the storage size of a long int. Since long
and int have the same meaning in Domain C, the | or L is redundant. You may still
want to use it, though, if you are planning to port your programs to a non-Apollo ma-
chine.

If the constant value cannot fit in a long int, the results are unpredictable. However, the
compiler will not report an error.

Domain C supports three forms of integer constants: decimal, octal, and hexadecimal.
Decimal constants consist of one or more digits from 0-9 (but not starting with 0). Octal
constants are formed by preceding the constant with a zero(0); hexadecimal constants are
formed by preceding the constant with 0x or 0X. Hexadecimal constants consist of the
digits 0-9 and the letters a-f (or A-F).

Integer constants may not contain any punctuation such as commas or periods. The follow-
ing examples show some legal constants in all three forms.
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Decimal Octal Hexadecimal

3 003 0x3

8 010 0x8

15 017 0xF

16 020 0x10

21 025 0x15

-87 -0127 -0x57

187 0273 0xBB
255 0377 Oxff

Strictly speaking, constants are always positive values. A negative constant is interpreted as
a positive constant preceded by the unary negation operator. In practice, this distinction is
moot.

Technically, an octal constant cannot contain the digits 8 and 9 since they are not part of
the octal number set. The Domain C compiler accepts 8 and 9 in octal numbers but is-
sues a warning message. For example, the statement

X = 098;

compiles successfully, but a warning message appears. The compiler interprets this value to
mean 9 eights plus 8 ones, so that 098 has a decimal value of 80. (The ANSI Standard
does not support this feature.)

2.2.2 Floating-Point Constants

A floating-point constant is any number that contains a decimal point and/or exponent sign
for scientific notation. All floating-point constants are of type double even if they can be
accurately represented in four bytes. If the magnitude of a floating—point constant is too
great or too small to be represented in a double, the C compiler will substitute a value that
can be represented. This substitute value is not always predictable. See Chapter 3 for a
description of the representable ranges of floating—point types.

2.2.2.1 Scientific Notation

Scientific notation is a useful shorthand for writing lengthy floating-point values. In scien-
tific notation, a value consists of two parts: a number called the mantissa followed by a
power of 10 called the characteristic (or exponent). The letter e or E, standing for ex-
ponent, is used to separate the two parts. The floating—point constant 3e2, for instance,

is interpreted as 3*102, or 300. Likewise, the value -2.5e-4 is interpreted as -2.5*10" 4,
or -0.00025. Table 2-2 shows some legal and illegal floating—point constants.
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Table 2-2. Floating—-Point Constants
Constant Legal or Illegal
3. Legal.
35 Legal — Interpreted as an integer.
3.141 Legal.
3,500.45 Illegal — commas are illegal.
.3333333333 Legal.
4E Illegal — the exponent sign must be followed by a
number.
0.3 Legal.
3e2 Legal.
4e3.6 Illegal — the exponent must be an integer.
3.0ES Legal.
+3.6 Illegal — Domain C doesn’t support a unary plus sign.
0.4E-5 Legal.

2.2.3 Character Constants

A character constant is any printable character or legal escape sequence enclosed in single

quotes. The value of a character constant is the integer ASCII (or ISO) value of the char-

acter.

2.2.3.1 Escape Characters

For example, the value of the constant “x” is 120.

Domain C supports several predefined character constants known as escape characters.
They are listed in Table 2-3.

Table 2-3. Character Escape Codes

Escape

Code Character What It does

\b backspace Moves the cursor back one space.

\f formfeed Moves the cursor to the next logical page.
\n newline Prints a newline.

\r carriage return Prints a carriage return.

\t horizontal tab Prints a horizontal tab.

\v vertical tab Prints a vertical tab.

\” single quote Prints a single quote.

\" double quote Prints a double quote.

2-8
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In addition to the escape sequences listed in Table 2-3, C also supports escape character
sequences of the form:

\octal-number

and

\xhex-number

which translates into the character represented by the octal or hexadecimal number. For
example, if ASCII representations are being used, the letter ‘a’ may be written as ‘\141’
or \x61’ and ‘Z’ as ‘\132’ or ‘\x5A’. This syntax is most frequently used to represent
the null character as “\0’. This is exactly equivalent to the numeric constant zero (0).

When you use the octal format, you do not need to include the zero prefix as you would
for a normal octal constant.

2.2.3.2 Multi-Character Constants

Each character in a character constant takes up one byte of storage; therefore, you can
store up to a four-byte character constant in a 32-bit integer and up to a two-byte charac-
ter constant in a 16-bit integer. For example, the following assignments are quite legal
(though not recommended and probably not portable):

{ .
char X; /¥ one-byte integer */
short int si; /* two-byte integer */
long int 1i; /* four-byte integer */
x ="3%; /* one-byte character constant */
si = “ef’; /* two-byte character constant */
1i = “abcd’; /* four-byte character constant */
}

The variable si is assigned the value of ‘e’ and ‘f’, where each character takes up 8 bits
of the 16-bit value. The Domain C compiler places the last character in the rightmost
(least significant) byte. Therefore, the constant ‘ef’ will have a hexadecimal value of 6566.
Since the order in which bytes are assigned is machine dependent, other machines may re-
verse the order, assigning f to the more significant byte. In that case, the resulting value

would be 6665. For maximum portability, we recommend that you do not use multi—char-
acter constants.
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2.2.4 String Constants
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A string constant is any series of printable characters or escape characters enclosed in dou-
ble quotes. The compiler automatically appends a null character (‘\0’) to the end of the
string so that the size of the array is one greater than the number of characters in the
string. For example,

"A short string"

becomes an array with 15 elements:

011123 |4|5(6|7 8|9 (10(11(12(13|14

Al |s|hjof|r]t s|t|r|i|n|g]|\O

To span a string constant over more than one line, use the backslash character (\), also
called the continuation character. The following, for instance, is legal:

string = "This is a very long string that requires more \
than one line";

Note that if you indent the second line, the spaces will be part of the string.

In Domain C, the length of a string constant is limited to 4095 characters including the
trailing null character. This limit may differ on other implementations.

The type of a string is array of char, and strings obey the same conversion rules as other
arrays. Except when a string appears as the operand of sizeof or as an initializer, it is
converted to a pointer to the first element of the string. Note also that the null string,

nn

is legal, and contains a single trailing null character.
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2.3 Program Organization

When you write 2 Domain C program, you can put all your source code into one file or
spread it across many files. Figure 2-2 shows a simplified scheme for organizing C source
files. The C language permits other file organizations that are not depicted in the figure.
For example, most preprocessor directives may appear anywhere in a source file, and
global declarations may appear between functions. The figure, however, depicts a general
organization that reflects many C programs.

Source File Preprocessor Directives

preprocessor #define
directives > zi?:;Ude
* Global Declarations
* typedef declarations
definitions of variables with file scope
global
declarations P> definitions of variables with program scope
allusions to variables and functions
defined in another source file
Function Definitions Function Signatures
function » | function signature > l old-style signatures
{ !
[local declarationsl prototypes
function
statements
. }

Figure 2-2. Organization of a File of C Source Code
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To help illustrate this organization, we provide the following commented program:

/* Program name is "file_org _example */

#include <stdio.h> /* preprocessor directive */
#define WEIGHTING_FACTOR 0.6 /* preprocessor directive */
typedef float THIRTY _TWO_BIT REAL; /* global typedef decl. */
THIRTY_TWO_BIT_ REAL correction_factor = 1.15; /* global variable
* decl. */

float average( float argl, THIRTY TWO BIT REAL arg2) /* prototype */
{ /* start of function body */

float mean; /* local variable decl. * /

mean = (argl * WEIGHTING_FACTOR) + .
(arg2 * (1.0 — WEIGHTING_FACTOR)); /* assignment stmnt */

return (mean * correction_factor); /* return statement */
} /* end of function body */
int main( void ) /* prototype for main */
{
float valuel, value2, result; /* local variable declarations */
printf( "Enter two values —— " ); /¥ statement */

scanf( "%f%f", &valuel, &value2 ); /* statement */

result = average( valuel, value2 ); /* statement */

printf( "The weighted average adjusted by a correction factor \
of %4.2f is %5.2f\n", correction_factor, result); /* statement */
} /* end of function */

In the following sections, we describe the various components of a C program.

2.3.1 Functions

2-12

As shown in both the figure and the example, functions are the primary organizational unit
of C. A C program must contain one or more functions.

The function called main has a special meaning. The C run-time system uses the first
executable statement in main as the starting address of the entire program. Consequently,
if you do not name one of the functions main, the program will have no starting address.
Conversely, naming more than one function main will cause a compile-time or link-time
error.

Unlike some other languages (such as Pascal), which support both procedures and func-
tions, C supports only functions. However, a C function can emulate a Pascal procedure
or a Pascal function. In other words, you can declare a C function that either returns or
does not return a value to the calling program. See the description of the void type in
Section 3.6 for more information about functions that behave like procedures.

Every function (main or not) adheres to the same rules of organization, and we detail
these rules in Chapter 5. For now, we provide an overview.
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2.3.2 The Begin and End Symbols: {}

In all structured programming languages it is necessary to mark where a block starts and
finishes. A block is any logically distinct section of source code. In some languages, mark-
ing blocks is accomplished through keywords like begin and end. In C, you mark the be-
ginning of a block of C code with the { symbol and the end with the } symbol. Because
every function must contain at least one block, you need to specify { and } to denote the
start and finish of a function.

In addition to delimiting a function, the { and } symbols serve to demarcate blocks in a
variety of declarations and statements.

2.3.3 Statements

A function can contain zero or more statements. Chapter 4 describes all the statements
that Domain C supports. Note that you cannot put a statement outside of a function.

2.3.4 Preprocessor Directives

Domain C supports a wide variety of preprocessor directives that serve purposes such as
controlling conditional compilation, including header files, and defining program constants.
Preprocessor directives begin with the # character. Although some preprocessor directives
can be placed anywhere in a file, others can only be placed at specific junctures. For
complete information on preprocessor directives, see the “Preprocessor Directives” listing in
Chapter 4.

2.4 Declarations

With a few rare exceptions, every variable must be declared before it is referenced. A
declaration serves to identify the data type and storage class of a variable, and may option-
ally give the variable an initial value. As Figure 2-2 shows, C supports declarations made
both within a block and outside of a block. The position of the declaration affects the
storage class of the variable, as explained later in this chapter.
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In general, a variable declaration takes the following format:

[storage_class_specifier] [a’ata_type] variable_name [= initial_value];

where:

storage_class_specifier is an optional keyword that we describe later in Section
3.12.

data_type is one of the data types described in Chapter 3.

variable_name is a legal identifier.

initial_value is an optional initializer for the variable. (We describe

variable initialization in Chapter 3.)

For example, here are a few sample variable declarations without storage class identifiers or
initial values:

int age; /¥ an integer variable named age */
float ph; /*¥ a floating-point variable named ph */
char a_letter; /* a character variable named a_letter */
int values[10]; /* an array of 10 integers named values */
enum days {mon, wed, fri}; /* an enumerated variable named

* days */

It is legal to omit the data type in certain instances, although it is considered bad practice.
You may omit the data type in global declarations and in local declarations that include a
storage class specifier. In all of these cases, the data type defaults to int. (The proposed
ANSI Standard does not support omitting the data type.)

2.4.1 Typedef Declarations

2-14

The C language allows you to create your own names for data types with the typedef key-
word. Syntactically, a typedef is exactly like a variable declaration except that the declara-
tion is preceded by the typedef keyword. Semantically, the variable name becomes a
synonym for the data type rather than a variable that has memory allocated for it. For ex-
ample, the statement,

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTE_INT synonymous with long int. The following two decla-
rations are now identical:

long int j;
FOUR_BYTE_INT j;
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A typedef declaration may appear anywhere a variable declaration may appear and obeys
the same scoping rules as a normal declaration. You may not, however, include an in-
itializer with a typedef. Once declared, a typedef name may be used anywhere that the
type is allowed (such as in a declaration, cast operation, or sizeof operation). By conven-
tion, typedef names are written in all uppercase so that they are not confused with variable
names.

There are a number of uses for typedefs. They are especially useful for abstracting global
types that can be used throughout a program, as shown in the following structure and array
declaration:

typedef struct {char month([4];

int day;
int year;
} BIRTHDAY;

typedef char A LINE[80]; /* A_LINE is an array of 80
* characters */

Another use of typedefs is to compensate for differences in C compilers. For example:

#if SMALL_COMPUTER
typedef int SHORTINT;
typedef long LONGINT;
#else
#if BIG_COMPUTER
typedef int LONGINT;
typdef short SHORTINT;
#endif
#endif

The idea here is that you may be writing code to run on two computers, a small computer
where an int is two bytes, and a large computer where an int is four bytes. Instead of us-
ing short, long, and int, you can use SHORTINT and LONGINT and be assured that
SHORTINT is two bytes and LONGINT is four bytes regardless of the machine.

You can also use typedefs to simplify complex declarations. Consider the following exam-
ple:

typedef float *PTRF, ARRAYF[], FUNCF();
This declares three new types called PTRF (a pointer to a float), ARRAYF (an array of

floats), and FUNCF (a function returning a float). These typedefs could then be used in
declarations such as:

PTRF x[5]; /* a 5-element array of pointers to floats */
FUNCF z; /* A function returning a float */
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2.4.2 Name Spaces

All identifiers (names) in a program fall into one of three name spaces. The three name
spaces are:

Structure, Union, and

Enumeration Tags Tag names that immediately follow these type specifiers:
struct, union, and enum. These types are described in
Chapter 3.

Member Names Names of members of a structure or union.

All Other Names Any names that are not members of the preceding two
classes.

Names in different name spaces never interfere with each other. That is, you can use the
same name for an object in each of the three classes without these names affecting one an-
other.
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The following example uses the same name, overuse,in all three ways (this is an example
of name spaces, not of good programming style):

int main( void )

{
int overuse; /* normal identifier */
struct overuse /* tag name */
{ float overuse; /* member name */
char *p;
}
}

Note that each struct, union, or enum defines its own name space, so that different types
can have the same member names without conflict. The following, for example, is legal:

struct A {
int x;
float y;
}s
struct B {
int x;
float y;
}s

The members in struct A are distinct from the members in struct B. Note that this is con-
sistent with the ANSI standard, although it is an extension to the K&R standard.

Macro names do interfere with the other three name spaces. Therefore, when you specify
a macro name, do not use this name in one of the other three name spaces. For exam-
ple, the following program fragment is incorrect because it contains a macro named square
and a label named square:

#define square(arg) arg * arg

int main( void )

{

square:
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Chapter 3

Data Types and Storage Classes

Every variable and expression has a data type and every function has a return data type.
The type determines how the bits are to be interpreted by the computer. This chapter de-
scribes all Domain C data types in the following order:

e Integer types (int, char, short, long, unsigned)

e Floating—point types (float, double)

e Enumerated types (enum)

® void

® Pointers

® Structures and unions (struct, union)

® Arrays

In addition to data type, every variable has a storage class, which defines its scope and du-
ration. The latter half of this chapter describes storage classes.

3.1 Data Type Overview

The C language offers a moderately sized and useful set of data types. There are six dif-
ferent types of integers and two types of floating-point objects. These types—integers and
floating-points—are called arithmetic types. Together with pointers and enumerated types,
they are known as scalar types because all of the values lie along a linear scale. That is,
any scalar value is less than, equal to, or greater than another scalar value of the same
type.
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In addition to scalar types, there are aggregate types, which are built by combining one or
more scalar types. Aggregate types, which include arrays, structures, and unions, are use-
ful for organizing logically related variables into physically-adjacent groups. There is also
one type—void—that is neither scalar nor aggregate. Figure 3-1 shows the logical hierarchy
of C data types.

Data Types

] l

void Scalar Types Aggregate Types

l

Arithmetic Types Pointers enum| larrays| |structures

unions

|

Integral Types Floating Types

Figure 3-1. Hierarchy of C Data Types

3.1.1 Scalar Types

There are nine reserved words for scalar data types, as shown in Figure 3-2.

char long
unsigned
short float
enum
int double

Figure 3-2. Scalar Type Keywords

The types char, int, float, double, and enum are basic types. The others—long, short,
and unsigned—are qualifiers that modify a basic type in some way. You can think of
the basic types as nouns and the qualifiers as adjectives.

An enumerated variable consists of an ordered group of identifiers. The only value you
can assign to an enumerated variable is one of those identifiers. By default, the size of an
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enumeration variable is four bytes, but you can explicitly make it two bytes by using the
short modifier. You can also use long to explicitly specify 4-byte enums. Applying short
and long to enums is a Domain extension.

Table 3-1 shows the scalar data types supported by Domain C, their size, and their range
of values. Types listed together in a group are synonymous.

Table 3-1. Domain C’s Arithmetic Data Types

Data Type Size Lowest Highest

(in bytes) Possible Possible

Value Value

int
long 4 -2147483648 +2147483647
long int
unsigned int
unsigned long 4 0 4295967295
unsigned long int
short 2 -32768 +32767
short int
unsigned short 2 0 +65535
unsigned short int
char 1 -128 +127
unsigned char 1 0 +255
float 4 -0.29 * 10°8 +1.7 * 1038
double 8 -1.0 * 10308 +1.0 * 10308
long float
short enum 2 -32768 +32767
enum
long enum 4 -2147483648 +2147483647
void none N/A N/A
pointers 4 N/A N/A
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3.1.2 Aggregate Types

The following briefly describes the supported aggregate data types:

arrays An array variable consists of a fixed number of elements of
the same data type. The size of an array equals the num-
ber of elements times the size of each element.

structures A structure variable consists of one or more members, each
having its own data type. For instance, a structure variable
could be composed of two integers and one float. (A
structure in C is similar to a fixed record in Pascal.) The
size of a structure is the sum of the sizes of all the mem-
bers, plus possible padding due to alignment rules.

union A union variable consists of one or more members, each
having its own data type. The difference between a struc-
ture and a union is that all the members of a structure oc-
cupy separate (unique) addresses, but all the members of a
union share the same address. (A union in C is similar to
a variant record in Pascal.) The size of a union is equal to
the size of its largest member.

3.2 Overview of Variable Initialization
C permits you to initialize certain variables when you declare them. Throughout this chap-

ter, we detail variable initialization for specific data types. Here in this section we provide
some general guidelines about initialization.

The following variables may not be initialized:

® Automatic structures, unions, and arrays

® Variables declared with the extern keyword

If you do not explicitly initialize a fixed variable, the run—-time system initializes it to zero
for you. Members of fixed aggregate types not explicitly assigned an initalization value are
automatically initialized to zero. Automatic variables do not receive a default initialization.
If you do not explicitly initialize them, they will start with unpredictable values.
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Fixed variables may be intialized only with constant expressions (defined in the “expres-
sions” listing of Chapter 4). Automatic scalar variables may be initialized with either con-
stant or non-constant expressions. If the data type of the initialization expression does not
match the data type of the variable, the expression is converted as if a normal assignment
were being made. For instance:

int global_int = 1; /* Fixed duration integer initalized to 1 */
int main( void )
{
float f = 1; /*¥ Initialization value is converted to 1.0 */
char char_int = global_int/2; /* Automatic integer initialized
* to 0 (after conversion).
*/
}

Scalar initializations may optionally include surrounding braces. That is,
int x = 1;

is the same as:
int x = {1};

In practice, however, braces are generally reserved for initialization of aggregate types.

3.2.1 Old-Style Initialization
Some older compilers permit initialization without the equal sign. For example,
int x 1;
is equivalent to the current:
int x = 1;
To support programs written for these early C compilers, the Domain C compiler accepts

the old-style initialization but issues a warning message. Do not use the old-style syntax for
programs you are writing now.
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3.3 Integer Data Types

Integers come in three different sizes and can be either signed (the default) or unsigned.
With one exception, an integer declaration must include at least one of the type keywords:
unsigned, long, short, int, or char. (The one exception is that a global declaration that
does not contain a data type defaults to an int.) An integer declaration may also include
combinations of these keywords.

To declare an integer variable, simply specify the name of one of the integer data types
followed by the variable name. The following examples show all of the possible combina-
tions of integer variables:

int a; /* signed 32-bit integer */

long int b; /* same as int in Domain C */

long c; /* same as int in Domain C*/

unsigned int d; /* unsigned 32-bit integer */

unsigned e; /* same as unsigned int */

unsigned long int f; /* same as unsigned int in Domain C */
unsigned long g; /* same as unsigned int in Domain C */
short h; /* signed 16-bit integer */

short int i; /* same as short */

unsigned short j; /* unsigned 16-bit integer */

unsigned short int k; /* same as unsigned short */

char m; /* signed 8-bit integer in Domain C */
unsigned char n; /* unsigned 8-bit integer */

The sizes of integer types are implementation-dependent. The K&R and ANSI standards
only require that a short be no larger than an int, and an int be no larger than a long.
Programs that depend on ints being 32 bits long, for example, may not be portable.

3.3.1 32-Bit Integers

You declare a signed 32-bit integer by specifying one of the following three data types:

® int
® long int

® long

Such variables can hold any integral value from -2147483648 (-0x80000000) through
214748367 (0x7FFFFFFF) inclusive.

3-6 Data Types and Storage Classes



You declare an unsigned 32-bit integer with any of the following data types:

® unsigned int
® unsigned
® unsigned long int

® unsigned long
Unsigned 32-bit variables hold values from 0 through 4295967295.
The Domain system stores 32-bit integers in four contiguous bytes as illustrated in Figure
3-3. The most significant bit in the integer is bit 31; the least significant bit is bit 0. For

signed 32-bit integers, bit 31 holds the sign bit. Negative signed integers are stored in
two’s—complement form.

31 (MSB) 16

Byte O Byte 1

Byte 2 Byte 3

15 0 (LSB)
Figure 3-3. 32-Bit Integer Format

3.3.2 16-Bit Integers

You declare a signed 16-bit integer by specifying either of the following two data types:

® short

® short int

16-bit signed integer variables can hold any integral value from -32768 through +32767 in-
clusive.
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You declare an unsigned 16-bit integer by specifying either of these two data types:

® unsigned short

® unsigned short int
Unsigned 16-bit variables can hold any value from 0 through 65535.
The Domain/OS system stores 16-bit integers in two contiguous bytes as illustrated in Fig-
ure 3-4. The most significant bit is bit 15; the least significant bit is bit 0. Negative signed

integers are stored in two’s—complement form. For signed 16-bit integers, bit 15 holds the
sign bit.

15 (MSB) 0 (LSB)

Byte 0 Byte 1

Figure 3-4. 16-Bit Integer Format

3.3.3 8-Bit Integers (Character Data Type)

In C, the distinction between characters and numbers is blurred. There is a data type
called char, but it is really just a 1-byte integer value that can be used to hold either char-
acters or numbers.

Domain C supports two kinds of character data types—char and unsigned char. The char
data type holds signed 8-bit quantities ranging from -127 through +128. The unsigned
char data type holds unsigned 8-bit quantities ranging from 0 through 255. Since the AS-
CII values of characters range from 0 to 127, you can use either data type to hold key-
board characters.

Here are two sample character variable definitions:

char c1l1;
unsigned char c¢2;

After declaring c1 as a char, you can make either of the following assignments:

cl i
cl = 65;

In both cases, the decimal value 65 is loaded into the variable cl since 65 is the ASCII
code for the letter ‘A’. Note that character constants are enclosed in single quotes. The
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quotes tell the compiler to get the numeric code value of the character. For instance, in
the following example, a gets the value 5, whereas b gets the value 53 since that is the AS-
CII code for the character ‘S’.

char a , b;

a = 5;

b=-5";
Figure 3-5 shows how the Domain/OS system stores character variables. If the variable is
an unsigned char, then bit 7 contains the most significant bit (MSB), and bit 0 contains
the least significant bit (LSB). If the variable is a char, then bit 7 contains the sign bit,
and bit 0 contains the least significant bit. char variables with a negative value are stored
in two’s—-complement form.

7 (MSB) 0 (LSB)

Figure 3-5. Internal Representation of
Character Variables

3.3.4 Initializing Integer Variables

* You may initialize integer variables with integer or floating-point values. If the initializa-
tion expression is a floating—point value, it is converted to an integer before being assigned.
If the variable has fixed duration, the initializer must be a constant expression. Here are a
few sample initializations:

{
int X = 50000;
short int y = x/2;
unsigned long int z = x*y;
static int xx = 1.5; /¥ converted to 1 */
char yy = -20;
unsigned char zz = 200;

See Section 3.2 for details on how storage class affects initialization. See Section 4.3 for
information about assignment conversions.

You can initialize character variables with integer or floating—point expressions. All of the
following, for example, are legal:

‘g”; /* a character enclosed in single quotes. */
char zebra 103; /* a small integer */

char zebra 0147;/* an octal integer */

char zebra = “\147° /* a small integer preceded by a backslash
' * and enclosed in single quotes

*/

char zebra
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Interestingly, all four formats produce the same results. The character constant ‘g’ causes
the compiler to initialize zebra with the ASCII value of the letter g, which happens to be

103. By specifying the decimal integer value 103, we accomplish the same thing. The oc-
tal value 147 is also equal to 103. Finally, by preceding 147 with a backslash and enclos-
ing it in single quotes, we tell the compiler to treat it as an octal number.

3.3.5 Integer Overflow

An overflow condition occurs whenever a value is too large to be represented in the bits
allocated for it. Overflow for expressions containing unsigned objects is explicitly defined by
the K&R and ANSI standards. Overflow for signed expressions, however, is implementa-
tion-dependent. Domain C handles both cases identically.

When the Domain/OS system identifies an overflow condition, it truncates the most signifi-
cant bits (including the sign bit). When performing an operation on signed integers, an
overflow condition may cause an unexpected change of sign in the answer. When per-
forming an operation on unsigned integers, you can spot an overflow by recognizing an an-
swer that is much smaller than anticipated.

Consider the following example:

/* Program name is "int_overflow_example" */
#include <stdio.h>

int main( void )

{
short x = OXFFFO;
unsigned short y = OXFFFO;
printf( "x = %hd\n", x );
printf( "y = %hd\n", y );

}

The results are:

X -16
y = 65520

In both cases, the same bit pattern results:

11111111 11110000

However, x is interpreted as a negative number whereas y is interpreted as a positive
value.
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3.4 Floating-Point Data Types

Domain C supports three types, float, long float and double, for representing floating—
point values. The float type is a single-precision floating—point type and the double type
is double—precision. The long float type is a synonym for double (long float is an exten-
sion to the ANSI and K&R standards). You may not use the unsigned qualifier in a float-
ing—point declaration. Here are a few sample declarations:

float tiger;
double giraffe;
long float elephant;

3.4.1 Single-Precision Floating-Point
Single—precision floating—point numbers (type float) occupy four contiguous bytes, as

shown in Figure 3-6. The range of a float is approximately —.29*1038 through 1.7*1038.
It is accurate to approximately seven digits.

31 23 22 16

S Exponent + 127 Mantissa

Mantissa (continued)

15 0 (LSB)

Figure 3-6. Single-Precision Floating—Point Format

The first bit (bit 31) is the sign bit. The sign bit is set (S=1) to denote a negative number,

and clear (S=0) to denote a positive number. The next eight bits contain the exponent plus
127. The following 23 bits contain the mantissa of the number without the leading 1. (The

mantissa is stored in magnitude, not two’s—complement, form.)

The following example shows how Domain/OS stores the floating—point value +100.5. The
four bytes contain the bit pattern shown in Figure 3-7.
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31 23 22 16

15 0
Figure 3-7. Internal Representation of +100.5

Breaking up the number into sign, exponent, and mantissa gives us the following informa-
tion:
sign —— O (positive)
exponent —— 10000101 (133 in decimal)
significant part of mantissa -— 1001001

The exponent is 133, and 133 is equal to 127 plus 6. Therefore, we view the mantissa bits

as follows:
bit 22 represents 25 * 1
bit 21 represents 24 * 0
bit 20 represents 23 *x 0
bit 19 represents 22 % ]
bit 18 represents 21 * 0
bit 17 represents 20 x o
bit 16 represents 2-1 *x ]

The quantity 100.5 is equal to (28+ 25 + 22 4+ 2-1)

3.4.2 Double-Precision Floating—Point
Double-precision floating-point numbers (type double and long float) are represented in

eight bytes (64 bits). Figure 3-8 illustrates the format. A double has a range of approxi-
mately —10308 to 10398 and is accurate to approximately 16 decimal digits.
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63 (MSB)

82 51 48
Sign Exponent + 1023 Mantissa
Mantissa
Mantissa
Mantissa
0 (LSB)

Figure 3-8. Double-Precision Floating—Point Format

The first bit of the first word is the sign bit. The next 11 bits contain the exponent plus
1023. The remaining 52 bits hold the mantissa without the leading 1. (The mantissa is
stored in magnitude form, not in two’s—complement form.)

3.4.3 Initializing Floating-Point Variables

You may initialize floating-point variables with either integer or floating-point data. The
data is converted to the variable’s type as if a normal assignment were being made. For

example:
float guava = 3.2;
double pi = 3.1415926535;
float z = 5;
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3.5 Enumerated Data Types

An enumerated data type consists of an ordered group of identifiers. Enumeration types
are particularly useful when you want to create a unique set of values that may be associ-
ated with a variable. The compiler reports a warning if you attempt to assign a value that’s
not part of the declared set of legal values to an enum variable. The possible formats of
enumerated declarations are as follows:

cnan [ rame] a0 [nt] [ sow [oa]}]

enum tag_name variable_namel [{,variab\le_nameN}]

enum [tag_name] {idl [=val] [{ idN [=val] }] } variable_namel
[{, variable_nameN }]

That is, to declare an enumerated variable, you must specify the keyword enum followed
by an optional tag_name. The tag_name is not the name of the variable; rather it is the
name of the enumerated type that you are declaring. After the optional tag_name, you
optionally specify a list of identifiers separated by commas. This list of identifiers must be
enclosed in braces. Each identifier may be followed by an optional constant expression
that assigns a value to the enumeration constant. If no value is specified, the enumeration
constant is assigned a value one greater than the value assigned to the previous enumera-
tion constant in the list. If no values are specified for the entire list, the numbering begins
at zero. Following the optional list of identifiers, you can optionally specify one or more
variable_names. A tag name cannot be used by itself; it must be preceded by the keyword
enum; for example, compare the right and wrong ways to use the tag name forest:

enum forest {maple, pine, fir} nordic;
forest southern; /* wrong */
enum forest alpine; /* right */

Here are five sample enumerated declarations:

/* These two declarations have a tag name and a variable name. */
enum citrus {lemon, lime, orange, carambola, grapefruit} c_fruits;
enum beatles {John, Paul, George, Ringo} beatles_members;

/*¥ This declaration has a tag name and two variable names. */
enum color { red , blue , yellow } used, not_used;

/* This declaration has a variable name, but no tag name. */
enum {one, two, three} cardinal_numbers;

/* This declaration has a tag name, but no variable name. */
enum ordinal_numbers {first, second, third};
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Consider the third declaration. It declares an enumerated type called color with possible
values of red, blue, and yellow. Two variables, used and not_used, are defined to
have thi§ type. Therefore, variables used and not_used can have the values red, blue,
or yellow. For example, you can make these assignments

used = red;
not_used = yellow;
used = not_used;

~ but you cannot make this assignment:

used = orange; /* ILLEGAL: orange is not a value of color */

Because enumeration types are stored as integers, it is possible to assign integer values to
an enumeration variable. However, the Domain C compiler will issue a warning message
when it encounters such usages. For example, the assignment,

not_used = 5;

would produce the following warning message:

**xxkxx* J,ine 6: [Warning #205] Enumeration type clash [not_used,
5] to the = operator.

You can avoid this warning by casting the integer expression to the enumeration type:

not_used = (enum color) 5;

For details on how you can use enumerated variables within statements, see the “enumer-
ated operations” listing in Chapter 4.

3.5.1 The Values of Enumerated Constants

Enumerated constants are the list of possible identifiers that an identifier can have. For
example, the enumerated constants for variables used and not_used are red, blue, and
yellow. The Domain C compiler automatically associates an integer value with each enu-
merated constant. By default, the integer values of enumerated constants start at zero and
increment by one with each constant. For example, in the declaration of tag name color,
the compiler assigns red=0, blue=1 and yellow=2. Therefore:

(yellow > red) /* evaluates to 1 (true) */
(yellow == red) /* evaluates to O (false) */
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You can override this numbering scheme by explicitly assigning a number to one or more
enumerated constants. For instance, the following initializations

enum fruits {apple=3, pear=1, orange, banana, melon=(-1)};

result in the following integer representations:

apple = 3
pear = 1
orange = 2
banana = 3
melon = -1

You can specify the values in any order and you do not have to supply consecutive integer
values. If you do not explicitly assign an integer value, the system assigns a value by add-
ing one to the previous constant’s value. In our example, this means that both apple and

banana have a value of 3. This is perfectly legal and means, in effect, that apple and ba-
nana are synonyms.

Some compilers allow previously defined enum constants to be used in the initializing ex-
pression, as in:

enum vegetables {carrots=1, celery=carrots+2};

However, the Domain C compiler does not allow this syntax.

Since enumerated constants have an explicit or implicit value, you can use an enumerated
constant in place of an integer to subscript an array. For example:

enum {part_number=0, order_number, quantity} num;
int part[1000][2];

part[0] [part_number] = 1357; /* a;§ign part[0] [0] */

part[0] [order_number] = 22567; /* assign part([0][1] */

part[0] [quantity] = 370; /* assign part[0][2] */
}
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3.5.2 Initializing Enumerated Variables

You can initialize an enumerated variable when you define it; for example:

enum citrus { lemon, lime, orange, carambola, grapefruit }
c_fruits = lime;
enum beatles {John, Paul, George, Ringo} beatles_members = John;
enum eurofrancophones {France, Suisse, Belgique} la_langue =
Belgique;
enum color { red , blue , yellow } used = red, not_used = yellow;

If the enumerated type has dynamic duration, it may also be initialized by a previously de-
clared variable with the same enumerated type. The following lines, for instance, initialize
color to blue, hue to red, and shade to red:

{
static enum rainbow {red, blue, green} color = blue, hue = red;
enum rainbow shade = hue; /* Automatic variable initialized

* with previously declared

* variable.

*/

3.5.3 Sized enums — Domain Extension

By default, the Domain C compiler allocates four bytes for all enumeration variables.
However, if you know that the range values being assigned to an enum variable is small,
you can direct the compiler to allocate only two bytes by using the short type specifier.
You can also use the long type specifier to indicate four-byte enums even though this is
the default. For example:

enum default_enum { ERR1, ERR2, ERR3, ERR4 }; /* four-byte enum
* type */

long big_enum { STO, ST1, ST2, ST3 }; /* four-byte enum type */

short enum small_enum { cats, dogs }; /* two-byte enum type */

When mixed in expressions, enums behave exactly like their similarly sized integer counter-
parts. That is, an enum behaves like an int, a long enum acts like a long int, and a
short enum acts like a short int. Note, however, that you will receive a warning message
when you mix enum variables or constants with integer or floating—point types, or with dif-
ferently typed enums.
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3.6 The void Data Type

Domain C supports the void data type, which has become a common feature of modern C
compilers. The void type is not a data type in the traditional sense. You cannot declare

a simple variable as being void; for instance, a declaration like the following will cause an

error:

void X;

The void data type has three important purposes. The first is to indicate that a function
does not return a value. For instance, you can write a function definition such as:

void func( a, b )
int a, b;

{

}

This indicates that the function does not return any useful value. Likewise, on the calling
side, you would declare func() as:

extern void func();

This informs the compiler that any attempt to use the returned value from func() is a mis-
take and should be flagged as an error. For example, you could invoke func() as follows:

func( x, y );

But you cannot assign the returned value to a variable:

num = fune( x, y ); /* This should produce an
* error

*/

In situations where the function returns an actual value that you want to ignore, you can
use void in a cast operation. In the following example, for instance, function
print_line_rtn returns an integer error code, but we explicitly discard the returned value
through a cast:
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/* Program name is "void_example2" */
#include <stdio.h>
#include <string.h>

int print_line( char *string )
{
if (strlen( string ) > 80) /*¥ If line is too long, return
* error */
return -1;

else
{
printf("%s\n",string);
return 1;
}
}
int main( void )
{
char *string = "This is an example of a void function";

(void) print_line( string );

}

In the preceding example, the void cast is not required since the context makes it clear
that the value returned by the function should be discarded. Nevertheless, the void cast
enables you to make this explicit. You cannot use in any way an object that has been cast
to void. That is, you cannot cast it to another type, you cannot pass it as an argument,
and you cannot assign it to a variable.

Another purpose of void is to declare a function that takes no arguments. This is de-
scribed in Section 5.4, which discusses prototypes.

Finally, the void type allows you to create generic pointers, as described in Section 3.7.3.

3.7 Pointer Data Types

The C language allows you to create a pointer to an object of any type. To declare a
pointer variable, precede the pointer variable name with an asterisk (*). The following
statements show some examples of pointer declarations.
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int *ip; /¥ ip is a pointer to an int. */

char *chp; /* chp is a pointer to a char. */
char *cp[]; /* cp is an array of pointers to chars. */
float *fp(); /*¥ fp is a function that returns a pointer
* to a float.
*/
float (*pfp)();/* pfp is a pointer to a funtion that returns a
* float.
*/
short **cpp; /* cpp is a pointer to a pointer to a short. */

In the fifth declaration, we need to use parentheses to achieve correct binding. The rules
for composing complex declarations such as this one are described in Section 3.11.

For details on using pointers in the action part of your program, see the “pointer opera-
tions” listing of Chapter 4.

3.7.1 Internal Representation of Pointers

Domain C stores pointers in the 32-bit structure shown in Figure 3-9.

31 16

Address (most significant part)

Address (least significant part) |

15 0

Figure 3-9. Pointer Variable Format

3.7.2 Initializing Pointers

You can initialize pointer variables with pointer expressions or with the constant zero (0).
If the pointer variable has automatic duration, any pointer expression is legal. If the vari-
able has fixed duration, the expression must be a pointer constant. Initialization with zero
produces a null pointer. Due to dynamic conversions, it is possible to initialize a pointer
with a function name, array name, string constant, or address of an object. The following
examples show a variety of ways to initialize pointers.
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float *null_point = 0; /* Null Pointer */

int i, *pi = &i; - /* Address of i */
static char *string="string"; /* Pointer to "string" */
float array([5], *pa = array; /* Pointer to beginning of array
*/
float *pal = array+2; /* Pointer to third element of array */
extern void f(); /* Define a function named f */
void (*pf)() = £f; /* Initialize pf to point to f */
int *p_absolute = (int *) OXFFAABB12; /* Pointer to absolute
* address
*x/

3.7.3 Generic Pointers

In accordance with the ANSI standard, the Domain C compiler now allows you to create a
generic pointer variable by declaring a pointer to void:

void *genp; /* genp is a generic pointer */

A generic pointer can be cast to any other pointer type. Moreover, a generic pointer is
implicitly converted to the destination type when it is assigned a pointer value or is as-
signed to a pointer variable. When a generic pointer is compared to a pointer of another
type, it is implicitly converted to the other pointer type. For example:

char *cp;
float *fp;
void * genp;

genp = cp; /* genp is implicitly converted to pointer to char.

*/
fp = genp; /* genp is implicitly converted to pointer to
* float.
*/
if (cp == genp) /* genp is implicitly converted to pointer to
* char.
*/

It is illegal to dereference a generic pointer without first casting it to a valid pointer type.

float £ = 2.0;
void *genp;

genp = &f; /* ok */

f = *genp; /* ILLEGAL */
f = *(float *)genp; /* ok */

Generic pointers are particularly useful for functions that can return pointers to different
types of objects. The classic example is malloc(), which dynamically allocates memory for
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different types of objects. Traditionally, malloc() returns a pointer to char, which must
then be cast to the appropriate pointer type. For example:

struct S {
char str[10];
int val;
}

int main( void )

{

extern char *malloc();
struct S *ps;

/¥ cast returned value to pointer to struct S. */
ps = (struct S *) malloc( sizeof(struct S) );

}

By redefining malloc() to return a pointer to void rather than a pointer to char, you can
avoid casting the returned value because it will be implicitly converted:

struct S {
char str[10];
int val;
}

int main( void )

{

extern void *malloc();
struct S *ps;

/¥ returned value is implicitly converted to type of ps. */
ps = malloc( sizeof(struct S) );

}

3.8 Structure and Union Data Types

Because structures and unions obey most of the same syntactic rules, we describe them to-
gether.

A structure is an object that contains other objects. It is similar to a fixed record in Pas-
cal. The objects within a structure, called members or components, are usually named
and can be of any data type, including other structures, unions, or arrays. For instance, a
structure might contain an int, a float, and a char as members. A bit field is a special
member that takes up from 1 to 32 bits of memory.

A union is similar to a structure, but instead of holding all of the members at once, it can
hold only one at a time because each member has its storage allocated at the same ad-
dress. It is similar to a variant record in Pascal. The compiler makes sure that enough
space is allocated to hold the largest member.

3-22 Data Types and Storage Classes



For details on using structures and unions in statements, see the “structure and union op-
erations” listing in Chapter 4.

3.8.1 Declaring a Structure or Union

The only difference between declaring a structure and a union is in the keywords struct
and union.

There are four basic types of structure and union declarations:

1. No tag name—If you do not specify a tag name, you should declare at least one
variable. For instance, the following declares a structure variable called struct_ex-
ample, which is a structure with three members:

struct { int member_one;
float member_two;
char member_three;

} struct_example;

2. Tag name and member declaration(s), but no variable name(s)—This defines a
name that can be used in place of the full structure specification in future declara-
tions. For instance, after declaring

struct S1 {int i; float f;};
you can declare:
struct S1 x,y;

which declares x and y to be structures containing an int member named i and a
float member named f.

3. Tag name, member declaration(s), and variable name(s)—This type of declaration
serves two purposes: it defines a tag name that can be used in subsequent declara-
tions, and it declares specific variables. For example,

union U { char ch[8];
int i;

} ul, u2, u3;

defines a type called U, and three variables—ul, u2, and u3—that have this
type.

4. Tag name and variable name(s), but no member declarations—This form of decla-
ration may only be used if you have already defined the tag name. For example,
after making the preceding declaration, we could write:

union U u4;
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This would define another variable, u4, with type U. Note that you cannot use
the tag name by itself; it must be preceded by the keyword union or struct.

Tag names and member names are distinct from each other and from variable names so
that a tag and a variable and a member may all have the same name without a conflict
arising. The following, for example, is a legal declaration:

struct x { int x;};
char x;

The compiler will not confuse the three x’s: their usage in the code makes it clear which
one is being referenced.

A structure or union may not contain instances of itself, but it may contain pointers to it-
self. For example:

struct S { int a,b;

float c;
/* struct S d; THIS IS ILLEGAL! */

struct S *d; /* This is legal */
}s

It is possible to create structures and unions that reference each other as shown in the fol-
lowing example:

union Ul { int a;
union U2 *b;

}s

union U2 { int a;
union Ul *b;
b
Each union contains an integer as the first component and a pointer to the other union as
the second component. Note that it is possible to declare a pointer to U2 before U2 is
ever declared. This is one of the few situations in the C language where you may use an
identifier before it has been declared.

3.8.2 Internal Representation of Structures

Each member of a structure takes up the same amount of space that it would require if it
were an unattached variable rather than a member of a structure. For instance, an int re-
quires 32 bits whether it is used as a scalar variable or used as a member of a structure.
The boundary alignment rules are somewhat different, however, as explained in the next
section.

3.8.2.1 Alignment of Structure Members

The alignment of an object identifies the set of legal addresses at which that object can be
allocated. Objects that are byte-aligned can be allocated anywhere; objects that are
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word-aligned can only be allocated at even addresses; objects that are longword-aligned
can only be allocated at addresses that are evenly divisible by four.

Natural alignment means that an object’s address is evenly divisible by its size. For ex-
ample, a naturally aligned 4-byte object begins at an address that is evenly divisible by 4,
and a naturally aligned 8-byte object begins at an address that is evenly divisible by 8. In
general, natural alignment produces faster executable code, although the efficiency savings
vary a great deal from one processor to another. Code for the 68000 family of processors
runs slightly faster if objects are naturally aligned.

By default, all scalar objects are naturally aligned. The rules for structures and unions,
and for structure and union members, however, are somewhat different. This section de-
scribes the default rules.

NOTE: The rules described in this section do not apply to bit fields.
See Section 3.8.4 for information about the alignment of bit
fields.

Alignment rules affect two properties of structures:

® How members are laid out in the record (that is, whether padding is inserted be-
tween members).

® How memory for the entire record is allocated.

3.8.2.2 Layout of Structure Members

The compiler lays out structure members based on word alignment rules. According to
word alignment rules, all objects longer than a byte must be aligned on shortword
boundaries (even addresses). chars may be aligned on odd or even addresses.

As illustrated in the following examples, the default alignment rules can produce padding
(also called “holes” or “gaps”) in a structure, but the padding is never larger than one
byte. Consider the following structure:

typedef struct { long int a;
char b;
short c;
} S1;

Figure 3-10 shows how the members are laid out. Note that there is a byte of padding in-
serted after b to ensure that c is aligned on a word boundary.
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- 1 word L

C

Figure 3-10. Default Layout of Structure S1

The total size of a structure must be an even multiple of two bytes. This rule can result in
padding at the end of a structure. (This rule also means that the smallest possible struc-
ture is 16 bits.) Figure 3-11 shows the layout of a structure that contains a gap in the
middle and a gap at the end as a result of the default alignment rules.

typedef struct { char cl;

short s1;
char c2;
} 82;
-
ci

c2

Figure 3-11. Layout of Structure S2
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3.8.2.3 Memory Allocation of Structures

Structures are always allocated on even addresses (word boundaries). In addition, they
may be allocated on even larger boundaries if that allocation will produce natural alignment
for some of the structure’s members. The actual algorithm used by the compiler to decide
how to allocate structures is somewhat complex. The general steps are as follows:

1. As the compiler lays out members, it assumes that the starting address of the
structure is zero.

2. The compiler then notes which members are naturally aligned.

3. After all the members have been laid out, the compiler looks for the largest mem-
ber that is naturally aligned. The compiler then allocates the entire structure on a
boundary that matches the natural alignment for this member.

These rules will be clearer if we show how they work for a couple of examples. Consider
the following structure type:

typedef struct { float a;
char b;
short c;

} S3;

The layout for this structure is shown in Figure 3-12.

- 1 word L

C

Figure 3—12. Naturally Aligned Structure S3 with I-byte Padding

The compiler lays out the members according to word alignment rules, and assumes that
the structure begins at address zero. For this structure, the alignment rules produce a lay-
out in which all elements are naturally aligned. (Any member that starts at address zero is
naturally aligned.) The compiler then searches for the largest member that is naturally
aligned, which is a. The natural alignment of a is longword; therefore, structures of type
S3 will be allocated on longword boundaries.
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Consider a second example:

typedef struct { short a;
float b;
} S4;

The layout is shown in Figure 3-13. In this case, a is naturally aligned, but b is not natu-
rally aligned (because the address 2 is not evenly divisible by b’s size, which is 4). There-
fore, the compiler uses the natural alignment of a (word alignment) to allocate structures
of type S4.

Figure 3-13. Layout of S2 Using Word Alignment Rules

You can usually guarantee that all members of a structure will be naturally aligned by ar-
ranging. the members in descending order of size. This technique will always work if all
the members are scalar objects. This technique may not work if one or more of the struc-
ture members is an aggregate. Arranging members in decreasing order of size also guaran-
tees that there will be no padding between structure members. (There might still be a byte
of padding at the end of the structure to make it an even number of bytes.)

In some instances, a structure that would normally be allocated on a longword or quad-
word boundary receives a different allocation because the structure is part of a larger ag-
gregate type (such as a structure or array). For example, consider the declaration of S1:

typedef struct { long int x;
short y;
} 81

The compiler can guarantee that an individual structure of type S1 will be allocated on a
longword boundary (so that x and y will be naturally aligned), but if you declare an array
of S1 structures, only half of them will be aligned on longword boundaries

S1 a_of_S1[3];

Figure 3-14 shows the layout of an array of three S1 structures. Note that the second ele-
ment is aligned on a shortword boundary, not a longword boundary.
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boundary

shortword___ a
boundary

longword
boundary

shortword
boundary

longword ____ a
boundary

shortword
boundary

longword
boundary

shortword__ a
boundary

longword
boundary

shortword
boundary

Figure 3-14. Array of SI Structures, Not Naturally Aligned

To ensure that all elements of a_of_S1[] are naturally aligned, you would need to insert
an additional word of padding at the end of S1. You could do this explicitly, as shown in
the following declaration:

typedef struct { long int x;
short y;
short padding;
} S1;

3.8.3 Internal Representation of Unions
Unions are similar to structures except that the members are overlaid one on top of an-

other, so members share the same memory. For example, the following declaration results
in the storage shown in Figure 3-15.
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typedef union

{

struct

{

char cl, c2;
} s
long j;
float x;
} U

U example;

1000 1001 1002 1003

Figure 3-15. Example of Union Memory Storage

The compiler always allocates enough memory to hold the largest member and all members
begin at the same address. The union is aligned so that the largest member is naturally
aligned. The data stored in a union depends on which union member you use. For ex-
ample, the assignments,

example.s.cl =
example.s.c2 = “b”;

|
[

would result in the storage shown in Figure 3-16.

1000 1001 1002 1003

’a’ 'bl

Figure 3-16. Storage in Union example After Assignment

But if you make the assignment,

example.j = 5;

it would overwrite the two characters, using all four bytes to store the integer value 5.
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3.8.4 Bit Fields in Structures and Unions
Structures and unions can contain members known as bit fields that consist of a specified
number of bits. Bit fields allow you to name groups of 1 to 32 bits. Bit fields are a useful

construct when space is at a premium, or when you need to map an object onto a
predefined structure, such as a device register.

The syntax for declaring a bit field is shown in Figure 3-17.

.| base =©_, . E.
E L ................................... ot fongth

bit field
name

Figure 3-17. Syntax of Bit Field Declarations

Bit fields are always of type unsigned int. If you declare them as int, the compiler auto-
matically converts them to unsigned int.

Bit fields may be named or unnamed. Unnamed fields cannot be accessed and are used
only as padding. As a special case, an unnamed bit field with a width of zero causes the
next structure member to be aligned on the next shortword boundary.

The bit length is an integer constant expression that may not exceed the length of an int
(32 bits with Domain C).

The compiler assigns bit fields from left to right. The first field starts on a word boundary.
After the first field, if the exact number of bits required for the next field crosses only one
or zero shortword boundaries, the field starts in the next free bit. If the field would have
to cross two shortword boundaries, it starts at the next shortword boundary.

You cannot declare an array of bit fields, and you may not take the address of a bit field
(even if it starts on a byte).

For example, given the following declaration of structure s1,

struct { char a;
int b : 3,
5; /* unnamed 5-bit field padding. */
unsigned int ¢ : 2,
d : 11,
: 0;
float e;
} s1;

Data Types and Storage Classes 3-31




Figure 3-18 shows how Domain C represents sl1:

15 14 13 8 7 54 0

Figure 3-18. Sample Bit-Field Alignment in a Structure

3.8.5 struct and union Name Spaces

Domain C, like most recent C compilers, creates a separate overloading class for each
structure and union, so that two or more structures or unions can have components with
the same name. (This is consistent with the ANSI standard although it is an extension to
the K&R standard.) The following declarations, for example, are legal in Domain C.

{

struct first { int i
float x;
} first_struct;

/* struct second has its own overloading class so it may also
* contain the member names x and 1i.

*/
struct second { char x;
double 1i;
} second_struct;
}

Some older compilers may require that all names be unique. The only restriction that Do-
main C imposes on member names is that two members of the same structure or union

cannot have the same name.
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3.8.6 Initializing Structures

You can only initialize structures that have fixed duration; structures with automatic dura-
tion cannot be initialized. (This is consistent with the K&R standard but not with the ANSI
standard.) To initialize a structure, put the values of the members inside braces; for exam-
ple:

static struct st2 { char c;
int 1i;
} two = {"f°, 4};

The preceding initialization sets member two.c to ‘f° and two.i to 4.

There may not be more initialization values than there are members in the structure. If
there are fewer initialization values than members, the remaining members are initialized to
zero (0).

If a structure contains another structure nested within it, the innermost members may be
initialized by enclosing them in nested braces. For instance,

static struct { char a,b,c,d;
struct { float f£;
double df;
} inner;
} outer = {*x*, “y°, ‘m”, “a”, { 1.0 , 100.0 } };

results in the following initializations:

outer.a = “x’
outer.b = “y’
outer.c = “m”’
outer.d = ‘a’

outer.inner.f = 1.0
outer.inner.df = 100.0

Note that the inner braces help program readability; however, if we had not used inner
braces in the example, we still would have obtained the same results.

3.8.7 Initializing Unions

The Domain C compiler allows unions with fixed duration to be initialized by assigning the
initialization value to the first union component. (This is consistent with the ANSI stan-
dard but is an extension to the K&R standard.) For example:

{
union init_example { int ij;
float f;
}; static union init_example test = {1};
/* Assigns 1 to test.i */
}
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If you supply more than one initial value, then the last value is the only one that matters.
For example, the compiler ignores the values 5 and ‘a’ in the following declaration:

union { int i;
char a;
float f;
} weird = { 5, “a’, 2.3 };

If the first component of a union is a structure, the entire structure may be initialized as
in:

union U { struct { int i;
float f;
} s
char ch[6];
}s
static union U test2 = { 1 , 1.0 };
/% Assigns 1 to test2.S.i and 1.0 to test2.S.f */

Note, however, that if a union contains inner unions, the last inner union is the one that
gets directly initialized. For instance, in the following example, outer.inner2.a2 is directly
initialized, not outer.innerl.al. Note, however, that outer.innerl.al is indirectly (and
probably incorrectly) initialized.

union { union { int al;
int bl;

} innerl;

union { char a2;

int b2;

} inner2;

} outer

b’}

See the beginning of this chapter for details on how storage class affects initialization.

3-34 Data Types and Storage Classes



3.9 Arrays

An array is a collection of identically typed variables stored contiguously in virtual memory.
Each element of an array is accessed individually. The syntax for declaring an array is
shown in Figure 3-19.

— type arra > array
specifier namye [ size

initializer

Figure 3-19. Syntax of an Array Declaration

The type specifier is any previously declared Domain C data type except void and “func-
tion returning...”. The array name is any identifier. The array size is an optional ele-
ment, but if you do include it, it must be a positive integral expression. Here are some

sample array declarations:

int x[5]; /* A 5-element array of ints. */
float farray([7]; /*¥ A T-element array of floats. */
char st[50]; /* A 50-element array of chars. */
short *y[10]; /* A 10-element array of pointers to

* shorts. */
float (*pf[100]1)();/* A 100-element array of pointers to
* functions that return floats. */

In the final example we needed to use parentheses to achieve correct binding. The compo-
sition of complex declarations such as this one is discussed in Section 3.11.

In C, arrays start at element 0, so the highest subscript is one less than the array’s size.
For example, an array declared as

char x[3];

contains three elements that can be referenced by x[0], x[1], and x[2].
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3.9.1 Omitting the Array Size

It is optional to specify explicitly the array size under any of the following conditions:

® When you specify initial values for the array. (This is described in Section 3.9.2)

® When you declare an array with the extern storage class specifier. If you do omit
the array size, then the size of the array is determined by a global declaration of
this array (in another file).

® When the array is a function parameter.

3.9.2 Initializing Arrays

Only arrays with fixed duration may be initialized. To initialize an array when you declare
it, enter the initialization values separated by commas and enclosed in braces; for example:

static float quatre[4] = { -1.2, 3.8, -6.3, 10.3 };

If the initialization values do not match the data type of the array, the values are con-
verted. For instance, the following line initializes all elements of a to 1.

static int af[4] = { 1, 3/2, 7-6, 1 };

If an initializer does not contain enough values to initialize all the elements of an array, C
initializes the remaining elements to zero. For instance, in the following example, elements
a[0], a[1], and a[2] are initalized to 1, 2, and 3, and elements a[3] and a[4] are initial-
ized to 0:

static int a[5] = { 1, 2, 3 };

If an initializer contains too many initalization values, an error occurs.

Note that you can also use array initialization to establish the size of the array. In such a
case, the compiler sets the size of the array so that it is just large enough to hold all the
initial values. This technique is frequently used for declaring arrays of type char initialized
with a string constant. For instance, the following three declarations are equivalent:

static char string[] = "Example";
static char string[8] = "Example";
static char string[] = { "E",’x",”a”,’m","p","1",7e”,"\0" };

Similarly, arrays of pointers may be initialized with string constants. For instance:

static char *str([3] = {"first string" , "second string"
"third string"};
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3.9.3 Multidimensional Arrays

An array of arrays is a multidimensional array and is declared with consecutive pairs of
brackets. For instance:

/*¥ 1In the following, x is a 3-element array of
* 5-element arrays.

*/
int x[3][5];

/¥ In the following, x is a 3-element array of
* 4-element arrays of 5-element arrays.
*/

char x[3][4]1([5]1;

Although a multidimensional array is stored as a 1-dimensional sequence of elements, you
can treat it as an array of arrays. For example, consider the following 5x5 “magic
square.” It is called magic because the rows, columns, and diagonals all have the same

sum.
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

Figure 3-20. Magic Square

To store this square in an array, we could make the following declaration:

static int magic(51(5]1 = { {17 , 24, 1 ,' 8 , 15},
(23, 5, 7,14, 16 },
{4, 6,13, 20, 22},
{10 , 12 , 19, 21, 3},
{11, 18,25, 2, 9}
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3.9.3.1 Initializing Multidimensional Arrays

When initializing a multidimensional array, you may enclose each row in braces. If there
are too few initializers, the extra elements in the row are initialized to zero. Consider the
following example:

static int examp[5]([3] = { {1, 2, 3},
{41},
{5,6, 7}
}s
This example declares an array with five rows and three columns, but only the first three

rows are initialized, and only the first element of the second row is initialized. Pictorially,
this declaration produces the following array:

O O Ut b M
OO oo N
OO NO w

If we do not include the inner brackets, as in:

static int examp[5][3] = { 1
4 ’
5
};

the result is:

cCOoONnR
cooww
cCooow

Obviously, the initializer in this example is very misleading. To enhance readability and
clarity, you should always enclose each row of initializers in its own set of braces, as we
did in the first example.

As with a single-dimension array, if you omit the size specification of a multidimensional
array, the compiler automatically determines the size based on the number of initializers
present. In the case of multidimensional arrays, however, it is important to remember that
you are really declaring an array of arrays. That is, you are declaring an array where each
element is itself an array. While you may omit the number of elements in the array you
are declaring, you must tell the compiler the size of each element. From a syntactic point
of view, this means that you may omit only the first size specification, but you must specify
the other sizes. For example,

static int a_ar([]([2][2] = {{{1, 1},

{1, 1}},
{{1, 1},
{1, 1}}};
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results in a 2-by-2-by-2 cubic array because there are eight initializers. Each element in
the array a_ar is itself a 2-by-2 array. If we added another initializer, the compiler would
allocate space for a 3-by-2-by-2 array, initializing the extra elements to zero. The follow-
ing declaration is illegal because the compiler has no way of knowing what shape the array
should be:

/* ILLEGAL */
static int b_ar([][] = { 1, 2, 3, 4, 5, 6 };

Should the compiler create a 2-by-3 array or a 3-by-2 array? There’s no way to tell.
However, if you specify the size of each element, the declaration becomes unambiguous.

You can initialize arrays of structures and unions in the same manner as multidimensional
arrays. For instance:

static struct { int i;

float f;
} s(31 = { {1, 1.0},
{2 , 2.0},
{3 , 3.0}

}s

Please see the beginning of this chapter for details on how storage class restricts initializa-
tion.

3.9.4 Storage of Arrays

The base type of the array establishes its storage allocation. Every element occupies the
same amount of space. Each element of a 16-bit (short) integer array occupies two bytes;
each element of a character (char) array occupies one byte; and so forth. The total
amount of space that an array uses is equal to the size of the base type multiplied by the
number of elements in the array.

For an array of structures or unions, each element is aligned on word boundaries. If it is
an array of scalar types, the alignment of elements is the same as the alignment of the sca-
lar type.

An array of arrays is a multidimensional array. Multidimensional arrays are stored in
row—major order, which means that the last subscript varies fastest. For example, the ar-
ray declared as

int ar[2](31={ { O,
{3

is stored as shown in Figure 3-21.
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Memory

Element ﬁgdrl;g)s(;: Contents
ar[0] [O] 1000
ar[0][1] 1004
ar[0] [2] 1008
ar[1][0] 100C
ar[1][1] 1010
- ar[1]112] 1014
1018

Figure 3-21. Storage of a Multidimensional Array

3.9.5 Strings

A string is an array of characters terminated by a null character. A null character is a
character with a numeric value of zero. It is represented in C by the escape sequence:
’\0’. String literals may not be longer than 4095 characters.

To store a string in memory, you need to declare an array of type char. You may initialize
an array of chars with a string constant. For example:

static char str[] = "some text";
The array is one element longer than the number of characters in the string to accommo-
date the trailing null character. str[], therefore, is ten characters in length. If you specify
an array size, you must allocate enough characters to hold the string. In the following ex-

ample, for instance, the first four elements are initialized with the characters ’y’, ’e’, ’s’,
and '\0’. The remaining six elements receive the default initial value of zero:

static char str[10] = "yes";

The following statement, however, is illegal:

static char str[3] = "four"; /* illegal */
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Note also that you should allocate enough space for the trailing null character, so the fol-
lowing, though legal, is probably not incorrect and will result in a compiler warning:

static char str[4] = "four"; /* illegal */

You may also initialize a char pointer with a string constant. The declaration,

char *ptr = "more text";

also creates an array of characters initialized with “more text”, but it is subtly different
from the preceding declaration. Both declarations allocate the same amount of storage for
the string and initialize the memory locations with the same values, but the pointer declara-
tion creates an additional 4-byte variable for the pointer.

3.10 Abstract Declarators

A declarator is the part of a declaration that does not include a storage class or initializer.
An abstract declarator is the part of the declarator that does not include the variable
name. For instance, in the declaration,

static char *p="test";

the declarator is:

char *p

and the abstract declarator is:

char *

There are two situations where a declarator is used without a variable name: in a cast op-
eration and in a sizeof operation. The declarator in these cases obeys all the rules dis-
cussed in the previous section, except that the variable name is absent. For example,

X = (int *[1) vy;

casts y to be an array of pointers to ints. Since the pointer operator always appears to the
left of the variable name and the array and function operators appear to the right, there is
never any ambiguity about where the variable name would be placed if it were a true dec-
laration. To compose or decompose an abstract declarator, follow the rules discussed in
Section 3.11.
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3.11 Complex Declarations

Declarations in C have a tendency to become complex, making it difficult to determine ex-
actly what is being declared. The following declaration, for instance, declares x to be a
pointer to a function returning a pointer to a 5—element array of pointers to ints:

int *(*(*x) () [5];

One way to avoid complex declarations such as this one is to create intermediate typedefs,
as shown below:

typedef int *AP[5]; /* 5-element array of pointers
¥ to ints.
*/

typedef AP *FP(); /* Function returning pointer to
* 5-element array of pointers
* to ints.
*/

FP *x /* Pointer to function returning
* pointer to 5-element array of
* pointers to ints.

*/

The main reason that complex declarations look so forbidding in C is that the pointer op-
erator is a prefix operator, whereas the array and function operators are postfix opera-
tors. As a result, the variable becomes sandwiched between operators. To compose and
decipher complex declarations, you must proceed inside-out, adding asterisks to the left of
the variable name, and parentheses and brackets to the right of the variable name. It is
also important to remember the following three binding and precedence rules:

1. The array operator [ ] and function operator () have a higher precedence than
the pointer operator (*).

2. The array and function operators group from left to right, whereas the pointer op-
erator groups from right to left.

3. Parentheses that are not used to denote a function can alter the grouping rules of
declarators as they do for expressions.

See Section 4.2.12 for more information about precedence.
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3.11.1 Deciphering Complex Declarations

The best strategy for deciphering a declaration is to start with the variable name by itself
and then add each part of the declaration, starting with the operators that are closest to
the variable name. In the absence of parentheses to affect binding, you would add all of
the function and array operators on the right side of the variable name first (since they
have higher precedence), and then add the pointer operators on the left side. The decla-
ration,

char *x[];

would be deciphered through the following steps:

1. x[] is an array.
2. *x[] is an array of pointers.

3. char *x[] is an array of pointers to chars.
Parentheses can be used to change the precedence order. For example,

int (*x[1) () ;

would be broken down as follows:

1. x[] is an array.

2. (*x[ ]) is an array of pointers.

3. (*x[ DO is an array of pointers to functions.

4. int (*x[ ])() is an array of pointers to functions returning ints.

If this declaration had been written without the parentheses as:

int *x[1();

it would have been translated as:

an array of functions returning pointers to ints

which is an illegal declaration since arrays of functions are invalid.
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3.11.2 Composing Complex Declarations

To compose a declaration, you perform the same process. For example, to declare a
pointer to an array of pointers to functions that return pointers to arrays of structures
with tag name S, you could use the following steps:

1. (*x) is a pointer.

2. (*x)[] is a pointer to an array.

3. (*(*x)[]) is a pointer to an array of pointers.

4. (*(*x)[D O is a pointer to an array of pointers to functions.

5. CC(x)[DO) is a pointer to an array of pointers to functions returning point-
ers. :

6. (*C*(*x)[DO)[] is a pointer to an array of pointers to functions returning
pointers to arrays.

7. struct S (*(*(*x)[1)O)[] is a pointer to an array of pointers to functions re-
turning pointers to arrays of structures with tag name S.

Note that we add parentheses for binding each time we add a new pointer operator.

Table 3-2 shows a number of legal and illegal declarations. Note that it is illegal to de-
clare the following:

® Arrays of functions
® Functions returning functions

® Functions returning arrays
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Table 3-2. Legal and Illegal Declarations in Domain C

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int

int
int
int
int
int
int

int

ij;

*p;

all;

£0);

**pp;

(*pa) [1;
(*pf) () ;
*ap[];
aal]l[]l;
af[1();
*fp();
fa()[1;
£f£0) QO
*¥XXppp;
(**ppa) [1;
(**ppf) () ;
*(*pap) [1;
(*paa) [1[];
(*paf) [10);
*(*pfp) ();
(*pfa) () [1;
(*pf£) () O);

**app[];
(*apaf])[];
(*apf[1) ();
*aap({]I[1;
aaa[][]1I[1;
aaf[1[10);
*afp[1();
afa[]l () [];
aff[1()O);

**fpp () ;
(*fpa()) [1;
(*fpf()) ();
*fap() [1;
faa () [1(];
faf () [10);

*£fp () () ;

An int

A pointer to an int

An array of ints

A function returning an int

A pointer to a pointer to an int

A pointer to an array of ints

A pointer to a function returning an int

An array of pointers to ints

An array of arrays of ints

An array of functions returning ints (ILLEGAL)

A function returning a pointer to an int

A function returning an array of ints (ILLEGAL)

A function returning a function returning an int (ILLEGAL)
A pointer to a pointer to a pointer to an int

A pointer to a pointer to an array of ints

A pointer to a pointer to a function returning an int

A pointer to an array of pointers to ints

A pointer to an array of arrays of ints

A pointer to an array of functions returning ints (ILLEGAL)
A pointer to a function returning a pointer to an int

A pointer to a function returning an array of ints (ILLEGAL)
A pointer to a function returning a function returning an

int ILLEGAL)

An array of pointers to pointers to ints

An array of pointers to arrays of ints

An array of pointers to functions returning ints

An array of arrays of pointers to ints

An array of arrays of arrays of ints

An array of arrays of functions returning ints (ILLEGAL)
An array of functions returning pointers to ints

An array of functions returning arrays of ints (ILLEGAL)
An array of functions returning functions returning

ints (ILLEGAL)

A function returning a pointer to a pointer to an int

A function returning a pointer to an array of ints

A function returning a pointer to a function returning an int
A function returning an array of pointers to ints (ILLEGAL)
A function returning an array of arrays of ints (ILLEGAL)
A function returning an array of functions returning

ints (ILLEGAL)

A function returning a function returning a pointer to an

int (ILLEGAL)
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3.12 Storage Classes

Every variable has several characteristics. One of those characteristics is its data type
(which is detailed in Chapter 3). Another characteristic is its storage class, which we de-
scribe in this section. Storage classes describe two properties of variables—duration and
scope. Duration represents the period over which memory is allocated for a variable.
Scope refers to the region in the source code over which a variable’s name has meaning.

You control a variable’s storage class through both of the following:

® position Where in the file you declare the variable.
® storage class specifier An optional keyword in a declaration.

In the example below, variable x has fixed duration and global scope because it appears
outside of a function; variable y has fixed duration because it is preceded by the static
storage class specifier, and block scope because it is declared within a block:

int x = 1;
int main( void )

{

static int y;

3.12.1 Declaration Position

Variable declarations fall into three categories, based on their position in a source file:

top-level declaration A declaration that occurs outside of a function.

head-of-block declaration A declaration that occurs at the beginning of a block. A
block is any series of statements enclosed in braces. Note
that the body of a function is itself a block.

function parameter
declaration A declaration of a function parameter.
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The comments in the following program fragment illustrate these three types of declara-
tions:

int a[5]; /* top-level declaration */
float value; /* top-level declaration */

int f( int argl, char arg2) /* top-level declaration */

{
unsigned char count; /* head-of-block declaration */
int q; /* head-of-block declaration */
for(count = 0; count <= 200; count += 5)
{
int so; /* head-of-block declaration */
}
}
main() /* top-level declaration */
{
int *p, m; /* head-of-block declaration */
}
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3.12.2 Scope of a Variable Declaration

The scope of a variable is the region in the source code over which a name’s declaration is
active. If a variable is active, it means that it is accessible.

There are four types of scope: program, file, function, and block.

® Program scope signifies that the variable is active among different source files that
make up the entire executable program. Variables with program scope are usually
referred to as global variables.

e File scope signifies that the variable is active from its declaration point to the end
of the source file.

® Function scope signifies that the name is active from the beginning to the end of
the function.

@ Block scope signifies that the variable is active from its declaration point to the
end of the block in which it is declared. A block is any series of statements en-
closed in braces. This includes compound statements as well as function bodies.

In general, the scope of a variable is determined by the location of its declaration. Vari-
ables declared within a block have block scope; variables declared outside of a block have
file scope if the static keyword is present, or program scope if static is not present; only
goto labels have function scope.

The four scopes are arranged hierarchically as shown in Figure 3-22. A variable with pro-
gram scope is also active within all files, functions, and blocks that make up the program.
Likewise, a variable with file scope is also active within all functions and blocks in the file
that follow its declaration, but is not active in other parts of the program. At the bottom
of the hierarchy is block scope, the most limiting case.

Program Scope

Figure 3-22. Hierarchy of Active Region; (Scopes)
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The program fragment below shows variables with all four types of scope:

int i; /*
static int j; /*

func( k ) /*
int k; /*
{
int m; /*
start: /¥

Program scope */
File scope */

Program scope */
Block scope */

Block scope */

Function scope */

Note that function parameters have block scope. They are treated as if they are the first
declarations in the top-level block of the function.

The C language allows you to give two variables the same name, provided they have differ-
ent scopes. For example, the two functions below both use a variable called j, but be-
cause they are declared in different blocks, they do not conflict.

funcl ()
{

int j;

}

func2()
{

int j;
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3.12.2.1 Visibility

The visibility of a variable determines whether or not the variable can be accessed in a
specific region of the source file. A variable can become invisible throughout a region if
another variable with the same name and name space is declared within the region in a
new block. For instance:

/* Program name is "scope_example" */
#include <stdio.h>

int j = 10; /* Program scope */

int main( void )

{

int j; /* Block scope —— hides global j */

for (j=0; j < 5; ++J)
printf( "j: %d\n", j );

There are two j’s, one with program scope and the other with block scope. Although they
have the same name, they are distinct variables. The j with block scope temporarily hides
the other j, so the result of running the program is:

[ ST SR SR S N
ww N H O

The j with program scope retains its value of 10.

3.12.2.2 Block Scope

A variable with block scope cannot be accessed outside of its block. Block scoping allows
you to write sections of code without worrying about whether your variable names conflict
with names used in other parts of the program.

It is also possible to declare a variable within a nested block. This temporarily hides any
variables of the same name declared in outer blocks. This feature can be useful when you
want to add some debugging code into a function. By creating a new block and declaring
variables within it, you eliminate the possibility of naming conflicts. In addition, if you de-
lete the debugging code at a later date, you need not look at the top of the function to
find variable declarations that also need to be deleted.

In the following example, we add some debugging code that prints the values of the first
ten elements of an array.
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foo()

{
int ar[20];
int j;

/* Begin debug code */

{

/* This j does not conflict with other j’s.*/
int j;
for (j=0; j <= 10; ++3)

printf( "%d\t", ar[j] );

}
/* End debug code */

3.12.2.3 Function Scope

The only names that have function scope are goto labels. Labels are active from the be-
ginning to the end of a function. This means that labels must be unique within a function.
Different functions, however, may use the same label names without creating conflicts.

3.12.2.4 File and Program Scope

Giving a variable file scope makes the variable active throughout the rest of the file. So if
a file contains more than one function, all of the functions following the declaration are
able to use the variable. To give a variable file scope, declare it outside of a function with
the static keyword.

Variables with program scope, called global variables, are visible to routines in other files
as well as their own file. To create a global variable, declare it outside of a function with-
out the static keyword. In the following program segment, j has program scope and k has
file scope. Both variables can be accessed by routines in the same file, but only j can be

accessed by routines in other files.

int j;
static int k;

main ()

{

Variables with file scope are particularly useful when you have a number of functions that
operate on a shared data structure, but you don’t want to make the data visible to other
functions.
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3.12.3 Duration of a Variable

The duration of a variable describes the lifetime of a variable’s memory storage. There
are two categories of duration: automatic and fixed. As the names imply, a fixed variable
is one that is stationary, whereas an automatic variable is one whose memory storage is
automatically allocated when its scope is entered during program execution. This means
that a fixed variable has memory allocated for it at program start-up time, and the variable
is associated with a single memory location until the end of the program. An automatic
variable has memory allocated for it whenever its scope is entered. The automatic variable
refers to that memory address only as long as code within the scope is being executed.
Once the scope of the automatic variable is exited, the compiler is free to assign that mem-
ory location to the next automatic variable it sees. If the scope is re-entered, a new ad-
dress is allocated for the variable. There is no way to ensure that an automatic variable
will retain its value from one scope entry to another.

The difference between fixed and automatic variables is especially important for initialized
variables. Fixed variables are initialized only once whereas automatic variables are initial-
ized each time their block is re-entered. Consider the following program:

/* Program name is "example_of_static" */
#include <stdio.h>

void increment( void )

{
int j = 1;
static int k = 1;

J++;

k++;

printf( "j: %d\tk: %d\n", j, k );
}

int main( void )
{
increment () ;
increment () ;
increment () ;

}

The increment() function increments two variables, j and k, both initialized to 1. j has
automatic duration by default, while k has fixed duration because of the static keyword.
The result of running the program is:

J: 2 k: 2
j: 2 k: 3
J: 2 k: 4

When increment() is called the second time, memory for j is reallocated and j is reinitial-
ized to 1. k, on the other hand, has still maintained its memory address and is not reini-
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tialized, so its value of 2 from the first function call is still present. No matter how many
times we call increment(), the value of j will always be 2, while k will increase by 1 every
time we call it.

We can summarize this observation with the following rule: an automatic variable, when
declared with an initializer, is re—initialized every time its block is re-entered; a fixed vari-
able is initialized only once, at program startup—time.

Another important difference between automatic and fixed variables is that automatic vari-
ables are not initialized by default, whereas fixed variables get a default initial value of
zero. If we rewrite the previous program without initializing the variables, we get:

/* Program name is "init_example" */
#include <stdio.h>

void increment( void )

{
int j;
static int k;

J++;

k++;

printf( "j: %d\tk: %d\n", j, k );
}

int main( void )

{

increment () ;
increment () ;
increment () ;

}

Executing the program on our machine results in:

j: 52517483 k: 1
j: 52517483 k: 2
j: 52517483 k: 3

The values of j are random because the variable is never initialized. With each invocation
of increment(), j receives a new memory allocation and acquires whatever “garbage” value
happens to be at the new location. Because Domain C uses a stack—frame implementa-
tion, the garbage values are, in this simple example, the same each time. The C language,
however, does not guarantee this. If you use a more complicated calling sequence, the re-
sults will be different. The Domain C compiler issues the following warning if you attempt
to use an uninitialized automatic variable before you have made an assignment to it:

**x*x*x** ],ine 15: Warning: Variable "auto2" was not
initialized before this use.
No errors, 1 warning, C Compiler, Rev 4.82
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Another difference between initializing variables with fixed and automatic duration is the
kinds of expressions that may be used as an initializer. For scalar variables with automatic
duration, the initializer may be any expression, so long as all of the variables in the expres-
sion have been previously declared. For example, all of the following declarations are le-
gal:

{

extern double f();
int x = 10, y = x*x;
float z = x + £(x);

For variables with fixed duration, on the other hand, the initilization expressions must be
constant expressions.

We can summarize the differences between fixed and automatic variables as follows:

® Fixed variables maintain their values from one block invocation to another, but
automatic variables lose their value each time the block is deactivated.

® Fixed variables get a default initialization value of zero if you do not explicitly in-
itialize them. If you do not explicitly initialize an automatic variable, the compiler
will not initialize it for you.

® The run-time system initializes fixed variables only once, whereas automatic vari-
ables, if they are declared with an intializer, are re-initialized each time their
block is entered.

Bug Alert: The Dual Meanings of “static”

One of the most confusing aspects about storage-class declarations.in C is that the
static keyword seems to have two effects depending on where it appears. In a declara-
tion within a block, static gives a variable fixed duration instead of automatic dura-
tion. Outside of a function, on the other hand, static has nothing to do with duration.
Rather, it controls the scope of a variable, giving it file scope instead of program scope.

One way of reconciling these dual meanings is to think of static as'signifying both file
scoping and fixed duration. Within: a block, the stricter block scoping rules override
static’s file scoping, so fixed duration is the only manifest result. - Outside of a func-
tion, duration is already fixed, so file scoping is the only manifest result.
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3.12.4 Storage Class Specifiers

As mentioned earlier, you can supply an optional storage class specifier when you declare
a variable. There are four storage—-class specifiers (auto, static, extern, and register).

Any of the storage class keywords may appear before or after the type name in a declara-
tion, but by convention they come before the type name. (The ANSI standard requires
that storage class specifiers appear before type specifiers.) The semantics of each keyword
depends to some extent on the location of the declaration. Omitting a storage class
specifier also has a meaning, as described below. Table 3-3 summarizes the scope and du-
ration semantics of each storage class specifier.

auto The auto keyword, which makes a variable automatic, is le-
gal only for variables with block scope. Since this is the
default anyway, auto is somewhat superfluous and is rarely
used.

static The static keyword may be applied to declarations both
within and outside of a function (except for function argu-
ments), but the meaning differs in the two cases. In decla-
rations within a function, static causes the variable to have
fixed duration instead of the default automatic duration.
For variables declared outside of a function, the static key-
word gives the variable file scope instead of program scope.

extern The extern specifier may be used for declarations both
within and outside of a function (except for function argu-
ments). In both cases, it signifies a global allusion, dis-
cussed in Section 3.13.

register The register keyword may be used only for variables de-
clared within a function. It makes the variable automatic,
but also passes a hint to the compiler to store the variable
in a register whenever possible. You should use the regis-
ter keyword for automatic variables that are accessed fre-
quently. Compilers support this feature at various levels.
Some don’t support it at all, while others support as many
as 20 concurrent register assignments. Note that it is illegal
to apply the address—of operator (&) to any variable de-
clared with register.

omitted For variables with block scope, omitting a storage class
specifier is the same as specifying auto. For variables de-
clared outside of a function, omitting the storage class
specifier is the same as specifying extern. It causes the
compiler to produce a global definition.
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Here are some sample declarations that contain storage class specifiers:

auto int i;

register short quart;

static char dog[] = "Fenster";
extern float f;

Table 3-3. Storage Class Summary

Place Where
Declared T .
Outside of Within a Function
%tlorage a Function Function Arguments
ass — —of-
Specifier (top-level) (head-of-block)
scope: block scope: block
aure o NOT ALLOWED
register duration: automatic | duration: automatic
scope: file scope: block
static NOT ALLOWED
duration: fixed duration: fixed
scope: program scope: block
extern duration: fixed duration: fixed NOT ALLOWED
No storage scope: program scope: block scope: block
class specifier . . . . . .
present duration: fixed duration: automatic duration: automatic

3.12.5 The register Specifier

The register keyword enables you to help the compiler by giving it suggestions about which
variables should be kept in registers. However, register is only a hint, not a directive—
the compiler is free to ignore it. In fact, the Domain compiler is so efficient in allocating

variables to registers that using the register keyword has little or no effect on most pro-
grams.

Since a variable declared with register might never be assigned a memory address, it is il-

legal to take the address of a register variable (registers are not addressable). This is true
regardless of whether the variable is actually assigned to a register. You will get a compile-
time error if you ever try to take the address of a variable declared with register.
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3.13 Global Variables

A global variable (also called an external variable) is one that can be accessed by mod-
ules in different source files; that is, a global variable has program scope. There are two
types of declarations for global variables: allusions and definitions, as described in the
next section.

3.13.1 Definitions and Allusions

The difference between an allusion and a definition in C is subtle but important. An al-
lusion associates a data type with an identifier, but does not actually allocate any storage
for it. A definition, on the other hand, actually allocates memory. For example, consider
the following allusions and definitions:

int x; /* This is a definition */
static int y; /*¥ This is a definition */
extern int z; /*¥ This is an allusion */

If you use the storage class specifier extern, you generate an allusion. If you use a storage
class specifier other than extern, or if you omit a storage class specifier, then you generate
a variable definition.

The distinction between allusions and definitions is particularly important when creating
global variables.

NOTE: At some points during this manual, the distinction between an
allusion and a definition is unimportant For these instances,
we use the more general word “declaration.”

Typically, you put all allusions in a header file, which can be included in other source
files. This ensures that all source files use consistent allusions. Any change to a declara-
tion in a header file is automatically propagated to all source files that include that header
file.

3.13.2 Defining Global Variables

In Domain C, every global variable can be alluded to zero or more times (in different
files), but must be defined at least once. It may be defined more than once in different
files. You cannot, however, define a global variable more than once in the same file. If
you explicitly initialize a global variable in more than one file, the last initializer read by
the linker is the variable’s initial value at run time. Therefore, the order in which you list
files in the bind or 1d command determines the initial values of external variables. If you
do not initialize a global definition, its initial value defaults to 0. To demonstrate these
rules, consider Figures 3-23, 3-24, and 3-25.
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tl.c t2.c t3.c

extern int x;/*all*/ extern int x;/*all*/ int x;/*def*/

main() £0) g0
printf ("%5d", Xx); ¢ printf ("%5d", x); { printf ("%5d\n", X);
20 }

$ cc tl; cc t2; cc t3
$ bind tl.bin t2.bin t3.bin -b t
$t

$ cc tl.c t2.c t3.c

$ a.out
0 0 0 0 0 0
Figure 3-23. Two Declarations and One Definition with No Initialization
tl.c t2.c t3.c
extern int x;/*all*/ extern int x;/*all*/ int x = 5;/*def*/
main() f() %()
printf ("%5d", x); printf ("%5d", x); printf ("%5d\n", X);
£(O); }
g();
$ cc tl; cc t2; cc t3 $ cctl.c t2.c t3.c
$ bind tl.bin t2.bin t3.bin -b t
st $ a.out
5 5 5 5 5 5

Figure 3-24. The Effect of Initializing a Global Variable
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tl.c t2.c t3.c
extern int x;/*all*/ int x = 7;/*def*/ int x = 5;/*def*/
main() . f() %()
printf ("%5d", Xx); printf ("%5d", x); printf ("%5d\n", x);
£0); }
g0);
$ cc tl; cc t2; cc t3 $ cc tl.c t2.c t3.c
$ bind tl.bin t2.bin t3.bin -b t
st $ a.out
5 5 5 5 5 5
$ bind tl.bin t2.bin t3.bin -b t $ cctl.c t2.c t3.c
$t $ a.out
7 7 7 7 7 T

Figure 3-25. The Effect of Linking Order on Variable Initialization

For further clarification on global variables, we provide the following program fragments:
Here is FILE 1:

int di; /* This is a definition of a global variable. */
int d2=1; /* This is a definition of a global variable with an
* initializer.

*/
extern int d3; /* This is an allusion to a global variable defined
¥ in FILEZ2.
*/
/* extern int d4=5; THIS IS ILLEGAL! You cannot initialize an
* allusion.

*/

int main( void )
{
int local; /* This is a definition of a local variable. It is
* not exported by the binder.
*/
extern int d5; /* This is an allusion to a global variable
* defined in FILE 2.
*/
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Here is FILE 2:

int d3 = 0; /* This is a definition of a global variable. */
char d5; /*¥ This is a definition of a global variable. */

void some_function( void )

{
extern int di; /* This is an allusion to the variable defined on
* line #1 of FILE 1.
*/
}

3.13.3 Portability Considerations Regarding Global Variables

If you are planning to port your Domain C programs to a different machine, take into ac-
count that not all compilers use the same strategy for external definitions and declarations.
For maximum portability, follow these guidelines:

® Do not define the same global variable more than once in the same program. Do-
main C permits you to define a global variable multiple times, but other C compil-
ers may be stricter.

® For each routine that refers to a global variable, declare the variable with the key-
word extern, and without an initializer.

3.13.4 Sections

The Domain C compiler creates a named section for each globally defined variable. Sec-
tions are detailed in the Domain/OS Programming Environment Reference manual. When
the object files are bound together, the linker makes sure that all global variables with the
same name refer to the same named section.

3.14 Storage Class of Functions

Just like variables, functions also have a scope, although the rules are somewhat different.
When discussing storage class of functions it is important to distinguish between function
definitions and function allusions.

3-60 Data Types and Storage Classes



3.14.1 Function Definitions

A function definition is a complete function—that is, a data type that the function returns,
the name of the function, optional parameters, parameter declarations, and the function
body. For example, here is the function definition of a function named fun:

#include <stdio.h>

int fun( int x, int y)

{
printf( "%d %d", x, y );

return (x + y);

}

By default, function definitions have global scope. In other words, you can call these rou-
tines from any place in the program (including some other file). If you want the function
definition to have file scope instead, then use the storage class specifier static. For exam-
ple:

#include <stdio.h>

static int fun( int x, int y)

{
printf( "%d %d", x, y );

return (x + y);

}

By using static, you limit the scope function fun to the file in which it is defined. Note
that static is the only legal storage class specifier for a function definition.

3.14.2 Function Allusions

A function allusion identifies a function that is defined elsewhere, either in the same
source file or in another source file. A function allusion can begin with the extern storage
class specifier. It optionally contains the data type that the function can return, and con-
cludes with the name of the function followed by an empty pair of parentheses. (This is
the old-style type of function allusion; the new style uses prototypes, as described below.)
For example:

extern int fun();
extern fun();
int fun();

Note that you can omit either the type specifier or extern, but not both. If you omit
both, the declaration will be interpreted as a function invocation.
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Domain C supports a new syntax for function allusions called prototypes. A prototype en-
ables you to specify the types and number of arguments that the function accepts. For ex-
ample:

extern int fun( int, char *, float );

Prototypes are described in detail in Chapter 5.

You can specify a function allusion either within a block or outside of a block. When de-
clared within a block, it means that you can invoke that function within the block. When
declared outside of a block, you can invoke the function anywhere from the declaration
point to the end of the source file. Technically, you do not need to declare functions that
return an int since this is the default. However, it is good programming practice to declare
all functions since it makes your programs easier to understand.

For more information on function allusions and definitions, see Chapter 5.

3.15 Reference Variables — Domain Extension

The Domain C compiler supports reference variables as implemented in the C++ lan-
guage. This discussion describes the most common usages of reference variables. For a
more complete discussion, we recommend that you read The C++ Programming Language
by Bjarne Stroustrup. (Reference variable features will not be activated if you compile with
the -ntype option.)

A reference variable is a variable that refers to another object (an lvalue or an rvalue).
Whenever a reference variable appears in an expression, the object it denotes is accessed.
Reference variables have three main applications:

® Reference variables allow you to create aliases for a variable so that two or more
names refer to the same object.

® Reference variables allow you to give names to constants, and, more importantly,
to use the constants as Ivalues. In effect, reference variables turn constants into
variables.

® Reference variables provide a clean syntax for passing function arguments by refer-
ence.

These applications of reference variables are discussed in Chapter 5. The following section
describes how to declare reference variables.
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3.15.1 Declaring Reference Variables

To declare a reference variable, precede the variable name with the address—of operator
(&) and include an initializer:

int j;
int &rj = j; /* rj refers to j */
float &rf = 3.141; /* rf refers to the constant 3.141 */

The initializer is required because it specifies the object that the reference variable denotes.
Having made these declarations, you can write:

rj =1; /* assigns 1 to j */
Tj++; /* increments j */
rf *= rf /* squares 3.141 */

The last example is the most interesting because it uses a reference variable denoting a
constant as an lvalue. This is legal because the compiler generates a temporary variable
for all reference variables initialized with a constant value. For example, the declaration,

int &r = 0;

causes the compiler to generate a hidden temporary variable initialized to zero. Whenever
r appears in an expression, this hidden variable is accessed.

3.16 The #attribute Modifier — Domain Extension

The Domain C compiler supports a declaration modifier called #attribute that enables you
to access special features of the Domain C compiler. One of the purposes of #attribute is
to turn off certain kinds of compiler optimizations. This feature is particularly useful for
writing device drivers or other programs that access fixed memory locations.

Although it begins with the # character, #attribute is a reserved word, not a preprocessor
statement. You use it when you declare or define a variable, tag name, or typedef. The
#attribute modifier always takes one of the following arguments (called attribute
specifiers) enclosed in brackets:

address Binds a variable to a specific virtual address.

device Informs the compiler that the variable is a device register.
The device specifier is similar to volatile, but restricts op-
timizations even further.

section Specifies a named section in which to overlay the variable.

volatile Informs the compiler that the variable may change in ways
that it cannot predict. Consequently, the compiler refrains
from executing certain optimizations.
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Each of these specifiers is described in detail in later sections. First, however, we provide
some general information about the #attribute modifier.

3.16.1 Inheritance of Declaration Modifiers

The device, volatile, and section modifiers are inheritable in the type declaration hierar-
chy. That is, if you define a type in terms of some more primitive type that was declared
with one or more of these modifiers, then the new type inherits those modifiers. For exam-
ple, the following declaration defines a type called SEMAPHORE and an array called re-
source:

typedef int SEMAPHORE #attribute([volatile];
SEMAPHORE resource(10];

The resource array inherits the volatile storage class from the definition of the SEMA-
PHORE typedef. Note that this rule does not apply to the address specifier because this
specifier is valid only in variable definitions, not in tag name or typedef declarations.

3.16.2 #attribute and Pointer Types

It is usually incorrect to associate the device and volatile specifiers with a pointer type.
For example, declaring a pointer to a device register by means of the following declaration
is almost certainly incorrect:

int *iodata #attribute[device];

The correct specification is:

typedef int DEVINT #attribute[device];
DEVINT *iodata;

which declares a pointer to an int with the #attribute modifier, rather than assigning the
modifier to the pointer itself.

3.16.3 The volatile Specifier

The syntax of the volatile specifier is:

[specifier] data_type variable_name #attribute[volatile] [initializer]

where specifier can be extern, auto, static, register, or typedef.
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The volatile specifier informs the compiler that memory contents may change in a way that
the compiler cannot predict. There are two situations, in particular, where this might occur:

® The variable is in a shared memory location accessed by two or more processes.

® The variable can be accessed by two different access paths. (That is, multiple
pointers with different base types refer to the same memory locations.)

In both of these situations, it is crucial that you tell the compiler not to perform certain
optimizations as it normally would. For example, the following code causes optimizations
leading to erroneous code.

/* Program name is "volatile_example" */
#include <stdio.h>

#ifdef ATTR

# define VOL #attribute[volatile]

#else

# define VOL

#endif

typedef int VINT VOL;

void killer( int a, VINT b )

{
int j;
int *p = &a + 1;
J = b*(b+1);
*p = 0;

J =3 + b¥(b+l);
printf( "b = %d\n", b*(b+l) );

}
int main( void )
{

killer( 1, 2 );
}

In the preceding program, the compiler sees that the calculation

b * (b+1)

is done three times without any change to b. Since it appears to the compiler that it is
wasteful to do the same calculation needlessly, it will make the calculation only once, then
store the result in a register. Then, instead of calculating it a second or third time, the
value will simply be fetched from the register. The problem with this optimization is that
b’s value is indirectly changed between the first and second calculations. Therefore, you
must use #attribute[volatile] to tell the compiler to avoid the optimization. Notice that
#attribute is defined in a conditional compilation directive. Therefore, if we compile with
the following compilation option:
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—def ATTR

and run the resulting program, we get the following results:

b=2o0

However, if we compile without the ~def ATTR option, and we run the program, we get
the following results:

b=2¢6

3.16.4 The device Specifier

The syntax for the device specifier is:

[specifier] data_type variable_name #attribute[device [( [read,] [write] )] ]

[initializer]

where specifier can be extern, auto, static, register, or typedef.

The device specifier informs the compiler that a device register (control or data) is
mapped as a specific virtual address. The device specifier prevents the same optimizations
that volatile prevents, and prevents two other optimizations as well.

The first optimization that device prevents concerns adjacent references. By default, the
compiler optimizes certain adjacent references by merging them into large reference. The
device specifier prevents this optimization. For example, consider the following fragment:

short int a,b;

a=0
b=0
By default, the compiler optimizes the two 16-bit assignments by merging them into one
32-bit assignment. (That is, at run time, the system assigns a 32-bit zero instead of as-
signing two 16-bit zeros.) By specifying the device specifier, you suppress this optimiza-
tion.

The device specifier also prevents the compiler from generating gratuitous read-modify-
write references for device registers. That is, specifying a variable as #device causes the
compiler to avoid using instructions that do unnecessary reads.
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Now let’s demonstrate device through some examples. Suppose kb in the following frag-
ment is a device register that accepts characters from the keyboard:

char ¢, cl, *kb;

c = *kb;
cl = *kb;

The purpose of the program is to read a character from the keyboard and store it in c,
then read the next character and store it in cl1. However, the C compiler, unaware that
the value of kb can be changed outside of the block, optimizes the code as follows: It
stores the value of kb in a register, and thus assigns both ¢ and c1 identical values. Ob-
viously, this is not what the programmer intended, since Domain C assigns the same char-
acter to both ¢ and cl. To ensure that Domain C reads kb twice, declare it as:

char *kb #attribute[device];

Another situation where normal optimization techniques can change the meaning of a pro-
gram is in loop-invariant expressions. For instance, using kb again, suppose we have the
program segment:

int x;
char c, *kb;

{
while (x < 10)

{
c = *kb;
foo(c);
++X;

}

The purpose of the block is to read 10 successive characters from the keyboard and pass
each to a function called foo. However, to the compiler, it looks like an inefficient pro-
gram since ¢ will be assigned the same value 10 times. To optimize the program, the com-
piler may translate it as if it had been written:

int x;
char ¢, *kb;

{
c = *kb;
while (x < 10)
{

foo(c);
++X;

}
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To ensure that the compiler does not optimize your program in that manner, declare kb as
follows:

char ¢ #attribute[device];

In addition to suppressing optimizations, you can also use device to specify that a device is
either exclusively read from or exclusively written to. You achieve this by using the read
and write options:

device(read) This attribute specifies read-only access for this variable or
type. That is, if you attempt to write to this variable, the
compiler flags the attempt as invalid and issues an error
message. Although the syntax is available, the read and
write options currently have no effect.

device(write) This attribute specifies write-only access for this variable or
type. That is, if you attempt to read from this variable, the
compiler flags the attempt as invalid and issues an error
message. Although the syntax is available, the read and
write options currently have no effect. It will be imple-
mented in a future release of Domain C.

device(read,write) This attribute specifies both read and write access for this
variable. Using it is identical to using device by itself
(without any options).

device(write,read) Same as device(read,write).

For example, here are some sample declarations using device:

typedef int a[10] #attribute[device(read)]; /* read access */
char c #attribute[device(write); /* write access */
char c2 #attribute[device(read,write)]; /* read and
* write

* access */

3.16.5 The address Specifier

The syntax for the address specifier is:

[specifier] data_type variable_name #attribute[address] [initializer]

where specifier can be auto, static, or register.
The address specifier binds a variable to the specified virtual address, specified by a con-

stant. You can use address for a variable definition only; therefore, you cannot use it
with typedef or extern. The address specifier is useful for referencing objects at fixed lo-
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cations in the address space (such as device registers, the PEB page, or certain system data
structures). Typically, the compiler generates absolute addressing modes when accessing
such an operand.

Using address by itself (without device or volatile) does not suppress any compiler op-
timizations. You should use it in conjunction with device or volatile. The example below
associates the variable peb_page with the hexadecimal virtual address FF7000.

char peb_page #attribute[device, address(OxFF7000)];

3.16.6 The section Specifier

The syntax for the section specifier is:

[extem] data_type variable_name #attribute[section(name)] [initializer]

where name is the named section in which to place the variable. Note that the #attrib-
ute[section] modifier is legal only for global declarations. You will receive an error if you
attempt to use it with local declarations.

When you compile with /bin/cc, the compiler places all uninitialized global declarations in
a section of the object file called .bss. All initialized global variables are placed in a sec-
tion called .data. This is the standard format for UNIX object files. The /com/cc com-
piler, on the other hand, creates a special named section for each global variable, whether
it is initialized or not. By default, the name of the section is the same as the global vari-
able. (You can obtain the /bin/cc object file format by compiling with the —-bss option.)

The section specifier enables you to mimic /com/cc behavior when you compile with /bin/
cc. This is particularly useful for interacting with FORTRAN programs that use common
blocks. For example, suppose a FORTRAN program contains the following common block
definition:

integer*4 first
real*8 second
char*20 third

common /com_block/ first, second, third

These declarations produce a named section called com_block in the object file that con-
tains the three variables named first, second, and third. If you want to access these vari-
ables from a C program compiled with /bin/cc, you need to use the section specifier:

typedef struct {
int first;
double second;
char third[20];
} COM_BLOCK;
COM_BLOCK com_block #attribute[section(com block)];
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If you are compiling with /com/cc, the section #attribute[section] modifier is unnecessary
because /com/cc automatically creates a named section for each global variable. The
binder then overlays sections that have the same name. See Chapter 7 for more informa-
tion about sharing global data with Pascal and FORTRAN programs.
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Chapter 4
Code

This chapter describes the statements and operators that make up the action part of a Do-
main C function.

We provide an overview at the beginning of this chapter. The remainder of the chapter is
a Domain C encyclopedia. If you are just beginning to learn C, we suggest you read a good
C tutorial textbook before trying to use this chapter.

This overview of Domain C code is divided into the following categories:

® Statements
® Operators
® Type Conversions

® Preprocessor Directives

4.1 Statements
There are many type of C statements—null statements, simple statements, compound state-

ments, branching statements, and looping statements. The following sections briefly de-
scribe each of these types.
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4.1.1 Null Statement

A null statement is simply a semicolon by itself. The null statement is sometimes used as
the block of a for or while loop, when the action is specified in the loop. The following
loop, for instance, reads characters from stdin until an EOF character is encountered:

while((c = getchar()) != EOF)
; /*¥ null statement */

4.1.2 Simple Statement

A simple statement consists of an expression followed by a semicolon. Here are a few
examples of simple statements:

X =5; /* a variable assignment */
X++; /* a variable increment */
f(x); /*¥ a function call (see Chapter 5 for details) */

4.1.3 Compound Statement or Block

A compound statement or block has the following format:

declarationl

declarationN

statementl

statementN

That is, a compound statement consists of one or more optional declarations followed by
one or more optional statements. A declaration can be any variable or typedef declara-
tion. (Note that such a declaration has block scope.) A statement can be any null state-
ment, simple statement, or compound statement. The body of a function is itself a block.

C programmers commonly use compound statements as the body of a loop. In the follow-
ing example, two statements (an assignment statement and a function call) make up the

Compound statement:

for (x = 1; x < 11; x++)

{
running total = running total + x; /* assignment statement */
printf("running total is %d\n", running total); /* function
call */
}
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A right brace } marks the end of a compound statement; do not put a semicolon after this
right brace.

4.1.4 Branching Statements

C supports two conditional branching statements—if(and if/else) and switch. The if and
if/else statements test expressions and execute statements depending on the results of the
test. The switch statement selects among several statements based on constant values.
The case, default, and break keywords are optional elements of a switch statement.

C supports two unconditional branching statements—goto and return. The goto statement
causes a jump to a label (or more specifically, a jump to the first statement following that
label). All statements may be preceded by a label. The return statement causes an un-
conditional return to the calling routine. You can optionally use return to pass data back
to the caller.

4.1.5 Looping Statements

Domain C supports three looping statements—for, while, and do/while. These statements
enable you to iterate through a block of code. Within a loop, you can use the continue
and break statements. The continue statement causes a jump to the next iteration of the
loop, while break transfers control to the first statement following the end of the loop.

4.2 Overview: Operators

Operators are the verbs of the C language that let you calculate values. C’s rich set of
operators is one of its distinguishing characteristics. The operator symbols are composed of
one or more special characters. If an operator consists of more than one character, you
should enter the characters without any intervening spaces:

X <=y /* legal expression */
X <=y /* illegal expression */

Each operator takes one or more operands. If you think of operators as verbs, then the
operands are the subject and object of those verbs.
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Domain

C supports the following kinds of operators:

Pointer operators

Increment and decrement operators
Cast operators

sizeof operator

Arithmetic operators

Comparison (relational) operators
Bit operators

Logical operators

Conditional expression operators
Comma operator

Assignment operator

We summarize these operators in this section. For many of the operators, one or more of
the operands must be an lvalue. An lvalue is an expression that refers to a region of stor-

age that

can be manipulated. In other words, an lvalue is any expression that you can use

on the left side of an assignment operation. For example, all simple variables, like ints
and floats, are Ivalues. An element of an array is also an lvalue; however, an entire array
is not. A member of a structure or union is an lvalue; an entire structure or union is not.

4.2.1 Pointer Operators

We begin this overview with a look at the pointer operators:

*ptr_exp Dereferences a pointer. That is, it finds the contents
stored at the virtual address that ptr_exp holds.

ptr->member Dereferences a ptr to a structure or union where member is
a member of that structure or union.

&lvalue Finds the virtual address where the lvalue is stored.

See the “pointer operations” listing later in this chapter for details.
p p g p
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4.2.2 Increment and Decrement Operators

C supports the increment and decrement unary operators listed below.

++lvalue Increments the current value of /value before lvalue is ref-
erenced.

Ivalue++ Increments the current value of /value after lvalue has been
referenced.

—=lvalue Decrements the current value of lvalue before Ivalue is ref-
erenced.

lvalue—— Decrements the current value of Ivalue after lvalue has

been referenced.

For details, see the “increment and decrement operators” listing later in this chapter.

4.2.3 Cast Operator

C supports the cast operator which takes the following form:

(data_type)exp ‘Casts the value of exp to a new data type.

For details, see the “cast operator” listing later in this chapter.

4.2.4 sizeof Operator

The following list provides an overview of the sizeof operator:

sizeof exp Calculates the size (in bytes) of exp.

sizeof (data_type) Calculates the size (in bytes) that a variable of this
data_type takes up in memory.

For details, see the “sizeof” listing later in this chapter.
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4.2.5 Arithmetic Operators

The following list summarizes all the binary arithmetic operators:

expl + exp2

expl - exp2

expl * exp2

expl | exp2

expl % exp2

-exp

Adds expl and exp2. An exp can be ahy integer expres-
sion or floating—point expression.

Subtracts exp2 from expl. An exp can be any integer ex-
pression or floating—point expression.

Multiplies expl by exp2. An exp can be any integer ex-
pression or floating—point expression.

Divides expl by exp2. (Can perform integer or real divi-
sion. If integer division, / operator performs division and
truncates result to an integer.)

Finds modulo of expl divided by exp2. (That is, finds the
remainder of an integer division.) An exp can be any inte-
ger expression.

Negates the value of exp. (That is, it multiplies exp by
-1.) exp can be any integer expression or floating-point
expression.

For full details on these operators, see the “arithmetic operators” listing later in this chap-

ter.

4.2.6 Comparison (Relational) Operators

Use the following operators to compare two expressions:

expl < exp2

expl > exp2

expl <= exp2

expl >= exp2

expl == exp2

4-6 Code

Evaluates to 1 (true) if expl is less than exp2; otherwise,
evaluates to 0 (false).

Evaluates to 1 if expl is greater than exp2; otherwise,
evaluates to 0.

Evaluates to 1 if expl is less than or equal to exp2; other-
wise, evaluates to 0.

Evaluates to 1 if expl is greater than or equal to exp2; oth-
erwise, evaluates to 0.

Evaluates to 1 if expl is equal to exp2; otherwise, evaluates
to 0.



expl = exp2 Evaluates to 1 if expl is not equal to exp2; otherwise,
evaluates to 0.

For details, see the “relational operators” listing later in this chapter.

4.2.7 Bit Operators

Use operators from the following list to perform bit operations. Note that all operands in
this list must be integers.

expl << exp2 Left shifts the bits in exp! by exp2 positions.
expl >> exp2 Right shifts the bits in expl by exp2 positions.
expl & expj Performs a bitwise AND operation.

expl "~ exp2 Performs a bitwise exclusive OR operation.
expl | exp2 Performs a bitwise inclusive OR operation.
~exp Calculates the one’s—complement of exp.

For details, see the “bit operators” listing later in this chapter.

4.2.8 Logical Operators
The following list summarizes the three logical operators:
expl && exp2 Performs a logical AND on the values of expl and exp2.

In C, the value 0 is equivalent to false, and any nonzero
value is equivalent to true.

expl || exp2 Performs a logical OR on the values of exp! and exp2.

lexp Calculates the logical negation of exp.

For details, see the “logical operators” listing later in this chapter.
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4.2.9 Conditional Expression Operator
C supports the following conditional expression operator:
expl ? exp2 : exp3 C shorthand for an if/else statement. If expl is true (non-
zero), then the result is exp2. If exp! is false (zero), then
the result is exp3. Note that the conditional operator has

the advantage that it can be used in some places that an if/
else statement cannot.

For details, see the “conditional expression operator” listing later in this chapter.

4.2.10 Comma Operator

C supports the comma operator as follows:

expl, exp2 Separates two expressions. Note that all expressions return
values. The value of a comma operation is equal to the
value of exp2.

For details, see the “comma operator” listing later in this chapter.

4.2.11 Assignment Operators

Finally, C supports all of the following assignment operators:

Ivalue = exp Sets Ivalue (a variable name) to the value of exp.
lvalue += exp Sets Ivalue equal to Ivalue + exp.

lvalue —= exp Sets Ivalue equal to Ivalue — exp.

Ivalue *= exp Sets Ivalue equal to Ivalue * exp.

Ivalue /= exp Sets Ivalue equal to Ivalue / exp.

Ivalue %= exp Sets Ivalue equal to lvalue % exp.

Ivalue >>= exp Sets Ivalue equal to lvalue >> exp.

Ivalue <<= exp Sets Ivalue equal to lvalue << exp.

Ivalue &= exp Sets lvalue equal to Ivalue & exp.

Ivalue "= exp Sets Ivalue equal to lvalue * exp.
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lvalue |= exp Sets Ivalue equal to Ivalue | exp.

See the “assignment operators” listing later in this chapter.
g p g

4.2.12 Precedence and Associativity of Operators

All operators have two important properties associated with them called precedence and
associativity. Both properties affect how operands are attached to operators. Operators
with higher precedence have their operands bound, or grouped, to them before operators
of lower precedence, regardless of the order in which they appear. For example, the mul-
tiplication operator has higher precedence than the addition operator, so the two expres-
sions,

2 +3 % 4

3 ¥4 + 2

both evaluate to 14—the operands 3 and 4 are grouped with the multiplication operator
rather than the addition operator because the multiplication operator has higher prece-
dence. If there were no precedence rules, and the compiler grouped operands to opera-

tors in left-to-right order, the first expression,

2 +3 % 4

would evaluate to 20. Table 4-1 lists every C operator in order of precedence.

In cases where operators have the same precedence, associativity (sometimes called bind-
ing) is used to determine the order in which operands are grouped with operators. Group-
ing occurs in either right-to-left or left-to-right order, depending on the operator.
Right-to-left associativity means that the compiler starts on the right of the expression and
works left. Left-to-right associativity means that the compiler starts on the left of the ex-
pression and works right. For example, the plus and minus operators have the same
precedence and are both left-to-right associative:

a+b-c; /¥ add a to b, then subtract c */

The assignment operator, on the other hand, is right-associative:

a=b=c; /* assign c to b, then assign b to a */

4.2.13 Parentheses

The compiler groups operands and operators that appear within parentheses first, so you
can use parentheses to specify a particular grouping order. For example:

/* subtract 3 from 2, then multiply that by 4 ——
* result is -4

*/

(2 - 3) * 4

/* multiply 3 and 4, then subtract from 2 ——

¥ result is -10
*/
2 - (3 * 4)
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In the second case, the parentheses are unnecessary since multiplication has a higher
precedence than addition. Nevertheless, parentheses serve a valuable stylistic function by
making an expression more readable, even though they may be redundant from a semantic
viewpoint.

In the event of nested parentheses, the compiler groups the expression enclosed by the in-
nermost parentheses first.

4.2.14 Order of Evaluation

An important point to understand is that precedence and associativity have little to do with
order of evaluation, another important property of expressions. The order of evaluation
refers to the actual order in which the compiler evaluates operators. This is independent
of the order in which the compiler groups operands to operators. For most operators, the
compiler is free to evaluate subexpressions in any order it pleases. It may even reorganize
the expression, so long as the reorganization does not affect the final result. For example,
given the expression,

(2 + 3) * 4

the compiler might first add 2 and 3, and then multiply by 4. On the other hand, a com-
piler is free to reorganize the expression into:

(2 * 4) + (3 * 4)

since this gives the same result.

The order of evaluation can have a critical impact on expressions that contain side effects.
Moreover, reorganization of expressions can sometimes cause overflow conditions.
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Table 4-1.

Binding and Precedence of Operators

class of operator operators in that class binding precedence
primary 0 {1 -> Left-to-Right HIG?EST
cast operator
unary sizeof )
& (address of) Right-to-Left
* (dereference)
- (reverse sign)
- 1
++ -
multiplicative * / % Left-to-Right
additive + - Left-to-Right
shift < >> Left-to-Right
relational < <= > >= Left-to-Right
equality = |I= Left-to-Right
bitwise AND & Left-to-Right
o . ) Left-to-Right
bitwise exclusive OR
bitwise inclusive OR | Left-to-Right
logical AND && Left-to-Right
logical OR 1 Left-to-Right
conditional ? Right-to-Left
assignment = += -= *= Right-to-Left
1= %= >>= <<=
&= "= 1=
comma ) '

Left-to-Right

LOWEST
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4.3 Type Conversions

The C language allows you to mix arithmetic types in expressions with few restrictions. For
example, you can write:

num = 3 * 2.1;

even though the expression on the right-hand side of the assignment is a mixture of two
types, an int and a double. Also, the data type of num could be any scalar data type ex-
cept a pointer.

To make sense out of an expression with mixed types, C performs conversions automati-
cally. These implicit conversions make the programmer’s job easier, but it puts a greater
burden on the compiler since it is responsible for reconciling mixed types. This can be
dangerous since the compiler may make conversions that you don’t expect. For example,
the expression,

3.0 + 1/2

does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0 because the
value .5 (result of 1/2) is converted to an integer (the fractional part is truncated, leaving
a value of zero).

Implicit conversions, sometimes called quiet conversions or automatic conversions, occur
under four circumstances:

1. In assignment statements, the value on the right side of the assignment is con-
verted to the data type of the variable on the left side. These are called assign-
ment conversions and are described in the “assignment operators” section of this
chapter.

2. Whenever a char or short int appears in an expression, it is converted to an int.
An unsigned char or unsigned short is converted to an unsigned int. These are
called integral widening conversions.

3. In an arithmetic expression, objects are converted to conform to the conversion
rules of the operator. These arithmetic conversions are described later in this
section.

4. In certain situations, arguments to functions are converted. This type of conver-
sion is described in Chapter 5.

As an example of the first type of conversion, suppose j is an int in the following state-
ment:

j = 2.6;

Before assigning the double constant to j, the compiler converts it to an int, giving it an
integral value of 2. Note that the compiler truncates the fractional part rather than round-
ing to the closest integer.
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The second type of implicit conversion, called integral widening or integral promotion, is
almost always invisible.

To understand the third type of implicit conversion, we first need to briefly describe how
the compiler processes expressions. When the compiler encounters an expression, it di-
vides it into subexpressions, where each subexpression consists of one operator and one
or more objects, called operands, that are bound to the operator. For example, the ex-
pression,

-3/ 4+ 2.5

contains three operators: —, /, and +. The operand to — is 3; there are two operands to /,
-3 and 4; and there are two operands to +, -3/4 and 2.5.

The minus operator is said to be a unary operator because it takes just one operand,
whereas the division and addition operators are binary operators. Each operator has its
own rules for operand type agreement, but most binary operators require both operands to
have the same type. If the types differ, the compiler converts one of the operands to
agree with the other one. To decide which operand to convert, the compiler resorts to the
hierarchy of data types shown in Figure 4-1, and converts the “lower” type to the
“higher” type. For example:

1+ 2.5

involves two types, an int and a double. Before evaluating it, the compiler converts the
int into a double because double is higher than int in the type hierarchy. The conversion
from an int to a double does not usually affect the result in any way. It is as if the ex-
pression were written:

1.0 + 2.5
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long double

double

float

unsigned
long int

long int

Figure 4-1. Hierarchy of C Scalar Data Types

The rules for implicit conversions in expressions can be summarized as follows. Note that
these conversions occur after all integral widening conversions have taken place.

If a pair of operands contains a long double, the other value is converted to long
double.

Otherwise, if one of the operands is a double, the other is converted to double.
Otherwise, if one of the operands is a float, the other is converted to float.

Otherwise, if one of the operands is an unsigned long int, the other is converted
to unsigned long int.

Otherwise, if one of the operands is a long int, then the other is converted to
long int.

Otherwise, if one of the operands is an unsigned int, then the other is converted
to unsigned int.

In general, most implicit conversions are invisible. They occur without any obvious effect.
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4.4 Overview: Preprocessor Directives

The compiler analyzes preprocessor directives before analyzing any statements or declara-
tions. The preprocessor directives provide information to the compiler on how the code
should be compiled. There is no limit to the number of preprocessor directives that a pro-
gram can contain. Preprocessor directives (with the exception of #module, #section, and
#systype) can appear on any line in a program.

Domain C supports the preprocessor directives shown in Table 4-3. Preprocessor direc-
tives always begin with the # character.

In addition to these directives, Domain C supports the predefined macros and names
shown in Table 4-2.

Table 4-2. Predefined Macros and Names

Name or Macro What It Does

. defined A macro that returns 1 if the argument is defined; 0 if the
argument is not defined.

systype A macro that sets the systype environment variable.
__DATE__ A name that expands to the date at compilation time.
__FILE__ A name that expands to the current source filename.
__LINE__ A name that expands to the current line number in the

source file.

_TIME__ A name that expands to the time of compilation.

__STDC__ A name that expands to 1 if prototyping is turned on;
otherwise it expands to zero.
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Table 4-3. Preprocessor Directives

Preprocessor

Directive What It Does

#debug Marks source code for conditional compilation.
#define,#undef Defines and undefines constants and macros.
#eject Inserts a page break into the listing file.

#elif Same as an #else directive followed by an #if

directive. (The #elif directive is support by the
UNIX preprocessor (cpp) but not by the
preprocessor in the Domain C compiler.
Therefore, use #elif only if you are compiling in
a UNIX environment or explicitly specify the
/bin/cc command.

#if, #ifdef, #ifndef,
#else, #endif

Controls conditional compilation.

#include

Loads an include file.

#line

Resets the compiler’s knowledge of the current
source line number and filename.

#list, #nolist

Enables and disables the listing of source code
in the listing file.

#module Changes the internally stored name of the
object module.

#section Directs the binder to place instructions and data
into named sections rather than the default
sections.

#systype Defines the target system on which the

program will run.

* Preprocessor directives marked with an asterisk can begin on any column; how-
ever, the other preprocessor directives must begin in the very first column of a line.
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4.5 Encyclopedia of Domain C Code

The remainder of this chapter contains an alphabetical listing of all the elements that can
make up the action part of a function. Figure 4-2 shows all the listings of C keywords in
this encyclopedia, Figure 4-3 provides all the preprocessor directive listings, and Figure
4-4 gives all the other listings.

break if
continue return
do/while sizeof
for switch
goto while

Figure 4-2. Keyword Listings in Encyclopedia

__DATE__ and __TIME__ __LINE__ and _FILE__

#debug #line

#define, #undef #list

#eject #module

#if, #ifdef, #ifndef, #else, #endif #section

#include __STDC__ and _BFMT__COFF
#systype

Figure 4-3. Preprocessor Directive Listings in Encyclopedia

Code 4-17



arithmetic operators

array operations

assignment operators

bit operators

cast operations

comma operator

conditional expression operator

enum operations

expressions

increment and decrement operators
logical operators

pointer operations

predefined macros

relational operators

structure and union operations
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arithmetic operators

arithmetic operators

Operators used to perform arithmetic calculations.

FORMAT
expl + exp2 Addition
expl - exp2 Subtraction
expl * exp2 Multiplication
expl | exp2 Division
expl % exp2 Modulo division
—exp Sign reversal
ARGUMENTS
exp Any constant or variable expression.
DESCRIPTION
The addition, subtraction, and multiplication (+, —, and *) operators perform the usual

arithmetic operations in C programs. All of the arithmetic operators (except the unary sign
reversal operator) bind from left to right. The operands may be any integral or floating—
point value (except for the modulo operator, which accepts only integer operands). The
addition and subtraction operators also accept pointer types as operands. Pointer arithme-
tic is described in the “pointer operations” section of this chapter.

C’s modulo operator (%) produces the remainder of integer division and so equals zero if
the two numbers divide each other exactly. This can be useful for something like determin-
ing whether or not it’s a U.S. presidential election year. For example:

if (year % 4 == 0)

printf("This is a U.S. presidential election year.\n");
else

printf ("There will not be a U.S. presidential election this\
year.\n");

As required by the ANSI standard, Domain C supports the following relationship between
the remainder and division operators:

a equals a%b + (a/b) * b for any integer values of a and b

As with division expressions, the result of a remainder expression is undefined if the right
operand is zero.

The additive inverse operator (-) multiplies its sole operand by —1. For example, if x is
an integer with the value -8, then -x evaluates to 8.
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arithmetic operators

Refer to the precedence rules at the beginning of this chapter for information about how
these and other operators evaluate with respect to each other.
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~ tional part.. For example:

Bug Alert: Integer Division and Remainder

When both operands of the division operator (/) are integers, the result is an integer. If both op-
erands are positive, and the division is inexact, the fractional part is truncated:

5/2 evaluates to 2
772 evaluates to 3
1/3 evaluates to 0

If either operand is negative, however, the compiler is free to round the result either up or down.
In accord with the PCC implementation of C, the Domain C compiler always rounds up:

-5/2 evaluates to -2 (on Apollo machines) but -3 (on some machines)
7/-2 evaluates to -3 (on Apollo machines) but -4 (on some machines)
-1/-3 evaluates to 0 (on Apollo machines) but -1 (on some machines)

By the same token, the sign of the result of a remainder operation is undefined by the K&R and
ANSI standards:

-5 %2 evaluates to “1or-1
7 % -4 evaluates to 3 or -3

Domain C makes the sign of the result agree with the sign of the left-hand operand:

-5% 2 evaluates to -1 (on Apollo machines)
7 % -4  evaluates to 3 (on Apollo machines)

This is consistent with the PCC implementation.

For portability reasons, you should avoid division and remainder operations with negative num-
bers since the results can vary from one compiler to another. One way to avoid the sign problem
- during division is to always cast the operands to float or double. Even if the result is assigned to

an integer, you are guaranteed that the compiler will convert to an integer by truncating the frac-

/* If j is an integer, it will be assigned the value -2, */
j = (float) 5 / -2; :

+ Although this is a portable solution, it is expensive, since it requires the CPU to perform floating-
point - arithmetic.

The sign of the remainder is a more difficult problem to circumvent because the operands must be
integer—you cannot cast them to float or double.: If you always want the sign to be positive, you
can use the run-time library abs() function, which returns the absolute value of its argument:

/* Ensures that ‘the value assigned to j is positive. */
J = abs(k%m) ;

If the sign of the remainder is important to your program’s operations, you should use the run-
~ time library div() function, which computes the quotient and the remainder of its two arguments.
- The sign -of both results is determined in a guaranteed and portable manner. (See the description

of div() in the SysV Programmer’s Reference manual or the BSD Programmer’s Reference man-
ouall) o , ‘ ' v
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array operations Operations that may be performed with arrays.

DESCRIPTION

Chapter 3 explains how to declare array variables. Here we explain how to use array vari-
ables in statements.

You assign a value to an element of an array by specifying an assignment statement of the
following form:

array_name[component_number] = value;

For example, given the following array declaration
float r_array[1000];

you can assign the value 5.29 to element 3 with the following statement:
r_array[3] = 5.29;

Note that the component_number must always be an integral value. Consider the following
legal and illegal declarations:

r_array[3] = 5.29; /* legal */
r_array[’B’] = 5.29; /* legal */
r_array[143.5] = 5.29; /* illegal */

The following program fragment assigns values to an integer array and shows the use of a
simple index expression:

int i, num[5];

for (i =0; i < 5; i++)
num[i] = i;

The array num can hold five integers, and those five are assigned with a simple for loop.
Notice that the loop begins its assignments with the zeroth element of the array. All C ar-
ray subscripts, or indexes, begin at zero (array[0]). Some programming languages always
begin at 1 (array[1]), while others allow the programmer to determine the initial subscript
value, but C always starts counting at zero. This is important because it means if you create
an array of size n, no nth element is defined. In the example above, num has these five

elements:
num(0] /* first element */
num(1l] /* second */
num([2] /* third */
num{3] /¥ fourth */
num(4] /* fifth */
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Even though there is no num[5] element, the compiler does not complain if you assign
something to it (or num[6], or num[12], or whatever), and that fact can create hard-to-
find errors. When storing an array value, C looks at the array name and then uses the sub-
script value to determine the memory offset. No bounds checking occurs, as explained in
the “Bug Alert: Walking Off the End of an Array.”

Subscripting with enums

Domain C allows you to use an enumerated value as an array index. In the following code
fragment, the value 3.14159 is assigned to array[2]:

{

enum subscripts { zero, one, two, three, four};
float array[10];

array[two] = 3.14159;
}

Bug Alert: Walking Off the End of an Array

Unlike some programming languages, C does not require compilers to check array
bounds. This means that you can attempt to access elements for which no memory has
been allocated. The results are unpredictable. Sometimes you will access memory
that has been allocated for other variables. Sometimes you will attempt to access spe-
cial protected areas of memory and your program will abort. Usually this type of error
occurs because you are off by one in testing for the end of the array. For example,
consider the following program which attempts to initialize every element of an array

to zero:
main()
{
int ar[10], J;
for (j=0; j <= 10; j++)
ar[jl] = 0;
}

Since we have declared ar[] to hold ten elements, we can validly refer to elements 0
through 9. Our for loop, however, has an off-by-one bug in it. The loop runs from
0 through 10, so element 10 also gets assigned zero. Since there is no element 10, the
compiler overwrites a portion of memory, very likely the portion of memory reserved
for j. This will produce an infinite loop because j will be reset to zero.
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Accessing Array Elements Through Pointers

One way to access array elements is to enter the array name followed by a subscript. An-
other way is through pointers. The declarations,

short ar[4];
short *p;

create an array of four variables of type short, called ar[0], ar[1], ar[2], and ar[3], and
a variable named p that is a pointer to a short. Using the address-of operator (&), you
can now make the assignment,

p = &ar(0];
which assigns the address of array element 0 to p. If we dereference p,
*p

we get the value of element ar[0].

Until the value of p is changed, the expressions ar[0] and *p refer to the same memory
location. Due to the scaled nature of pointer arithmetic, the expression,

*(p+3)
refers to the same memory contents as:
ar[3]

In fact, for any integer expression e,
*(pte)
is the same as:

arfe]

This brings us to the first important relationship between arrays and pointers: Adding an in-
teger to a pointer that points to the beginning of an array, and then dereferencing that ex-
pression, is the same as using the integer as a subscript value to the array.

The second important relationship is that an array name that is not followed by a subscript
is interpreted as a pointer to the initial element of the array (except when an array name

appears as the operand of the sizeof operator). That is, the expressions,

ar

and

&ar[0]
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are exactly the same. Combining these two relationships, we arrive at the following impor-
tant equivalence:

ar[n] is the same as *(ar + n)

This relationship is unique to the C language and is one of C’s most important features.
When the C compiler sees an array name, it translates it into a pointer to the initial ele-
ment of the array. Then the compiler interprets the subscript as an offset from the base
address position. For example, the compiler interprets the expression ar[2] as a pointer
to the first element of ar, plus an offset of 2 elements. Due to scaling, the offset deter-
mines how many elements to skip, so an offset of 2 means skip two elements. The two
expressions .

ar[2]
*(ar+2)

are equivalent. In both cases, ar is a pointer to the initial element of the array, and 2 is
an offset that tells the compiler to add 2 to the pointer value.

Because. of this interrelationship, pointer variables and array names can be used inter-
changeably to reference array elements. It is important to remember, however, that the
values of pointer variables can be changed whereas array names cannot be changed. This
is because an array name by itself is not a variable—it refers to the address of the array
variable. You cannot change the address of variables. This means that a naked array
name (one without a subscript or indirection operator) cannot appear on the left-hand side
of an assignment statement. For instance:

float ar[5], *p;

p = ar; /* legal —— same as p= &ar[O0] */
ar = p; /% illegal —- you may not assign */
/* to an array address */
&p = ar; /* illegal —- you may not assign */
/* to a pointer address */
ar++; /* illegal —- you may not */
/* increment an array address */
ar[l] = *(p+3); /* legal —— ar[l] is a variable */
p++; /* legal —— you may increment a */
/* pointer variable */
++ar[2] /* legal —- increment element 2 or array */

In the above examples, note that scaling allows you to use the increment and decrement
operators to point to the next or previous element of an array.
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Passing Arrays as Function Arguments

In C, an array name that appears as a function argument is interpreted as the address of
the first element of the array. For instance:

int main( void )

{

extern float func( float [] );
float x, farray([5];

x = func( farray ); /* Same as func(&farray[0]) */

On the receiving side, you need to declare the argument as a pointer to the initial element
of an array. There are two ways to do this:

func( float *ar )

{

or

func( float ar[] )

{

The second example declares ar to be an array of indeterminate size. You may omit the
size specification because no storage is being allocated for the array. (You may include a
size for documentation purposes.) The array has already been created in the calling rou-
tine, and what is being passed is really a pointer to the first element of the array. Since
the compiler knows that array expressions result in pointers to the first element of the ar-
ray, it converts ar into a pointer to a float, just like the first declaration. Functionally,
therefore, the two versions are equivalent.

The choice of declaring a function argument as an array or a pointer has no effect on the
compiler’s operation—it is purely for human readability. To the compiler, ar simply points
to a float—it is not an array. Because of the pointer-array equivalence, however, you can
still access ar as if it were an array. But you cannot find out the size of the array in the
calling function by using the sizeof operator on the argument. For example:
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/* Program name is "print_size" */
#include <stdio.h>

void print_size( float arg(] )

{

printf( "The size of arg is: %d\n", sizeof(arg ) );
}

int main( void )

float f_array([10];
printf( "The size of f_array is: %d\n", sizeof(f_array) );
print_size( f_array );

}
The results of running this program are:

The size of f_array is: 40
The size of arg is: 4

The variable f_array is an array of ten 4-byte floats, so the value 40 is its correct size in
bytes. The variable arg, on the other hand, is converted to a pointer to a float. Pointers
are four bytes long, so the size of arg is 4. Because it is impossible for the called function
to deduce the size of the passed array, it is often a good idea to pass the size of the array
along with the base address. This enables the receiving function to check array bounda-
ries:

#define MAX_SIZE 1000

void foo( f_array, f _array size );
float f_arrayl];
int f_array_size;

{

if (f_array_size > MAX_SIZE)

{
printf( "Array too large.\n" );
exit( 1 );

}

You can obtain the number of elements in an array by dividing the size of the array by the
size of each element. On the calling side, you would write:

foo( f_array, sizeof(f_array)/sizeof(f_array[0]) );

Note that this expression works regardless of the type of element in f_array[].
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Returning Arrays from Functions

The return statement can pass only one value back to the caller. It may therefore seem
impossible to pass an array back to the caller, but it can be done. The trick is to define
the called function so that it returns a pointer to the base type of the array. The following
example demonstrates this method. In it, we pass in an array of lowercase letters to the
function f(), and it returns an array of uppercase letters.

/* Program name is "returning_arrays". It demonstrates how a
* function can return an array to the caller.
x/

#include <stdio.h>
#include <ctype.h>
#include <string.h>

/* Define a function that returns a pointer to a character */
char *toupper_string( char *arg )

{
static char result[100];

int i=0;
while (*arg) N
result[i++] = toupper( *arg++ );
return result; /* pass back the address of the first element
* of array “result’.
*/
}

int main( void )
{
char x[100], *px;
strepy( x, "hi there" );
px = toupper_string( x ); /* upon return from the function,
* px points to the first element
* of array result
*x/
printf( "%s => %s\n", X, px );

NOTE: In the preceding example, we declare array result as a static
so that it will not disappear after function invocation. Note
though that any dereference of pointer px may inadvertently
alter the contents of the array, so be careful.

Multidimensional Arrays

An array of arrays is a multidimensional array and is declared with consecutive pairs of
brackets. To access an element in a multidimensional array, you specify as many sub-
scripts as are necessary.
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Consider the following array of arrays:

int ar(2](31 = { { 0, 1, 2},
{3, 4, 5}
b
The array reference,

ar (1] [2]

is interpreted as

*(ar[l] + 2)

which is further expanded to:

*(*(ar+l)+2)

Recall that ar is an array of arrays. When *(ar+1) is evaluated, therefore, the 1 is scaled
to the size of the object, which in this case is a 3-element array of ints (which we assume
are four bytes long), and the 2 is scaled to the size of an int:

*((int *) ((char *)ar + (1*3*4)) + (2*4))

We put in the (char *) cast to turn off scaling because we have already made the scaling
explicit. The (int *) cast ensures that we get all four bytes of the integer when we
dereference the address. After doing the arithmetic, the expression becomes:

*(int *) ((char *)ar + 20 )

The value 20 has already been scaled so it represents the number of bytes to skip. If ar
starts at address 1000 ar[1][2] refers to the int that begins at address 1014 (in hex),
which is 5.

If you specify fewer subscripts than there are dimensions, the result is a pointer to the base
type of the array. For example, given the 2-dimensional array declared above, you could
make the reference,

ar[l]
which is the same as:

&ar[1] [0]

The result is a pointer to an int.

Passing Multidimensional Arrays as Arguments

To pass a multidimensional array as an argument, you pass the array name as you would a
single-dimension array. The value passed is a pointer to the initial element of the array,
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but in this case the initial element is itself an array. On the receiving side, you must de-
clare the argument appropriately, as shown in the following example.

f10)

{
int ar([5]([6]1([7];

f2( ar );

}

f2( received_arg )
int received_arg[]1[6][7];
{ .

}

Again, you may omit the size of the array being passed, but you must specify the size of
each element in the array. Most compilers don’t check bounds, so it doesn’t really matter
whether you specify the first size. For example, the compiler would interpret the declara-
tion of received_arg as if it had been written:

int (*received_arg) [6]([7];

Another way to pass multidimensional arrays is to explicitly pass a pointer to the first ele-
ment, and pass the dimensions of the array as additional arguments. In our example, what
gets passed is actually a pointer to a pointer to a pointer to an int.

10

{
int ar([5]([6]([7];

f2( ar, 5, 6, 7 );

f2( received_arg, diml, dim2, dim3 )
int ***received_arg;

int diml, dim2, dim3;

{
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The advantage of this approach is that you need not know ahead of time the shape of the
multidimensional array. The disadvantage is that you need to manually perform the index-
ing arithmetic to access an element. For example, to access ar[x][y][z] in £2(), you
would need to write:

¥((int *¥*)received_arg + x*dim3*dim2 + y*dim2 + z)

Note that we need to cast received_arg to a pointer to an int because we are performing
our own scaling. Although this method requires considerably more work on the program-
mer’s part, it gives more flexibility to f2() since it can accept 3—-dimensional arrays of any
size and shape. Moreover, it is possible to define a macro that simplifies the indexing ex-
pression.

Bug Alert: Referencing Elements in a Multidimensional Array

One of the most common mistakes made by beginning C programmers—especially
those familiar with another programming language—is to use a comma to separate sub-
scripts,

ar[l1,2] = 0; /* Legal, but probably wrong */
instead of:
ar[1l][2] = O0; /* Correct */

The comma notation is used in some other languages, such as FORTRAN and Pascal.
In C, however, this notation has a very different meaning because the comma is a C
operator in its own right. The first statement above causes the compiler to evaluate the
expression 1-and discard the result; then evaluate the expression 2. The result of a
comma expression is the value of the rightmost operand, so the value 2 becomes the
subscript to ar. As a result, the array reference accesses element 2 of ar.

If ar is a 2-dimensional array of ints, the type of ar[2] is a pointer to an int, so this
mistake will produce a type incompatibility error. This can be misleading since the
real mistake is using a comma instead of brackets.
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EXAMPLE
/* Program name is "bubble_sort". It sorts an array of
* ints in ascending order using the bubble sort algorithm.
*/

#define FALSE O
#define TRUE 1
#include <stdio.h>

void bubble_sort( int list[], int list_size )
{
int j, k, temp, sorted = FALSE;
while ( sorted )
{
sorted = TRUE; /* assume list is sorted */
/* Print loop —- not part of bubble sort algorithm */
for (k = 0; k < list_size; k++)
printf( "%d\t", list[k] );
printf( "\n" );
/* End of print loop */
for (j = 0; j < list_size -1; j++)
{
if (list(j] > list[j+11)
{
temp = list[j];
list([j] = list([j+1];
list[j+1] = temp;
/* At least 1 element is out of order
*/
sorted = FALSE;
}
} /*¥ end of for loop */
} /* end of while loop */

}
int main( void )
{
int i;
static int 1list[] = { 13, 56, 23, 1, 89, 58,

20, 125, 86, 3};
bubble_sort( list, sizeof(list)/sizeof(list[0]));
exit( 0 );

}

The function accepts two parameters, a pointer to the first element of an array of ints and
an int representing the size of the array.

The following program calls bubble_sort() with a 10—element array.
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int main( void )

{

int i;

static int list([] = { 13, 56, 23, 1, 89, 58,

bubble_sort( list, sizeof(list)/sizeof(list[0]));

exit( 0 );

}

USING THIS EXAMPLE

Program execution results in the following output:

13
13
13
1

MO e

56
23
1

13
13
13
13
13
3

23
1

23
23
20
20
20
3

13

1

56
56
20
23
23
3

20
20

20, 125, 86, 3};

89
58
20
56
56
3

23
23
23

58
20
58
58
3

56
56
56
56

20
89
86
3

58
58
58
58
58

125
86
3
86
86
86
86
86
86

86
3

89
89
89
89
89
89
89

array operations

3

125
125
125
125
125
125
125
125

The bubble sort is not very efficient, but it’s a simple algorithm that illustrates array ma-
nipulation. The standard run-time library contains a much more efficient sorting function
called gsort(), which is described in the SysV Programmer’s Reference manual and the
BSD Programmer’s Reference manual.

Code 4-33



assignment operations

assignment operators Assign new values to variables.

FORMAT
Ivalue = exp Simple assignment
lvalue += exp Addition and assignment
Ivalue -= exp Subtraction and assignment
Ivalue *= exp Multiplication and assignment
Ivalue /= exp Division and assignment
Ivalue %= exp Modulo division and assignment
Ivalue <<= exp Left shift and assignment
Ivalue >>= exp Right shift and assignment
lvalue &= exp Bitwise AND and assignment
lvalue "= exp Bitwise XOR and assignment
Ivalue |= exp Bitwise OR and assignment
ARGUMENTS
Ivalue Any lvalue.
exp Any legal expression.
DESCRIPTION

The = is the fundamental assignment operator in C. The other assignment operators pro-
vide shorthand ways to represent common variable assignments. We begin with a discus-
sion of =.

The Assignment (=) Operator

When C sees an equal sign, it processes the statement on the right side of the sign and as-
signs the result to the variable on the left side. For example:

X = 3; /* assigns the value 3 to variable x */
X =Yy; /* assigns the value of y to x */
x = (y*z); /* performs the multiplication and assigns

* the result to x
*/

An assignment expression itself has a value, which is the same value that is assigned to the
left-hand operand.
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The assign operator has right-to-left associativity, so the expression,

is interpreted as:

(a = (b= (c=(d=1))));

First 1 is assigned to d, then d is assigned to ¢, then c is assigned to b, and finally, b is
assigned to a. The value of the entire expression is 1. This is a convenient syntax for as-
signing the same value to more than one variable. Note, however, that each assignment
may cause quiet conversions, so,

int j;
double f£;
f=3=23.5;
assigns the truncated value 3 to both f and j. On the other hand,

j=f =3.5;

assigns 3.5 to f and 3 to j.

The Other Assignment Operators

C’s assignment operators provide a handy way to avoid some keystrokes. Any statement in
which the left-hand side of the equation is repeated on the right is a candidate for an as-
signment operator. If you have a statement like this:

i=1+ 10;

you can use the assignment operator format to shorten the statement to:
i += 10;

In other words, any statement of the form

var = var op exp; /* traditional form */

can be represented in the following shorthand form:

var op= exp; /* shorthand form */

The only internal difference between the two forms is that var is evaluated only once in
the shorthand form. Most of the time this is not important; however, it is important when
the left-hand operand contains side effects, as in the following example:

int *ip;
*ip++ += 1; /* These two statements produce */
*ip++ = *ip++ + 1; /* different results. */

Code 4-35



assignment operations

The second statement is ambiguous because C does not specify which assignment operand
is evaluated first. See Section 4.2.14 for more information concerning order of evaluation.

Assignment Operators in Older C Compilers

Some older C compilers accept assighment operators written with the equal sign first (for
example, =+ instead of +=). When the Domain C compiler encounters such an old-style
operator, it processes it as if the two signs were reversed, and issues a warning message.

Also, some compilers accept a space between the two signs. In those compilers, something
like

+ =

is interpreted as

+=

Since this can lead to ambiguous expressions, the Domain C compiler forbids the space be-
tween the operator and the equal sign.

Assignment Type Conversions

Whenever you assign a value to a variable, the value is converted to the variable’s data
type if possible. In the example below, for instance, the floating-point constant 3.5 is con-
verted to an int so that i gets the integer value 3.

main()
{
int 1i;
i=3.5;
}

Unlike arithmetic conversions, which always expand the datum, assignment conversions can
shorten the datum and therefore affect its value. For example, suppose c is a char, and
you make the assignment:

c = 882;

The binary representation of 882 is:

00000011 01110010
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It requires two bytes of storage, but the variable ¢ has only one byte allocated for it, so the
two upper bits don’t get assigned to ¢. This is known as overflow and the result is not de-
fined by the ANSI and K&R standards for signed types. Domain C simply ignores the extra
byte, so ¢ would be assigned the right-most byte:

01110010

This would erroneously give ¢ the value of 114. The principle illustrated for chars also
applies to shorts, ints, and long ints. For unsigned types, however, C has well-defined -
rules for dealing with overflow conditions. When an integer value x is converted to a
smaller unsigned integer type, the result is the non-negative remainder of

X / (U_MAX+1)

where U_MAX is the largest number that can be represented in the shorter unsigned type.
For example, if j is an unsigned short, which is two bytes, then the assignment

J = 71124;

assigns to j the remainder of:

71124 / (65535+1)

The remainder is 5588. Note that for non-negative numbers, and for negative numbers
represented in two’s complement notation, this is the same result that you would obtain by
ignoring the extra bytes.

It is perfectly legal to assign an integer value to a floating—point variable. In this case, the
integer value is implicitly converted to a floating-point type. If the floating—point type is
capable of representing the integer, there is no change in value. If f is a double, the as-
signment

f = 10;
is executed as if it had been written:

f = 10.0;

This conversion is invisible. There are cases, however, where a floating-point type is not
capable of exactly representing all integer values. Even though the range of floating—point
values is generally greater than the range of integer values, the precision may not be as
good for large numbers. In these instances, conversion of an integer to a floating—point
value may result in a loss of precision. Consider the following example:

#include <stdio.h>

main()

{
long int j = 2147483600;
float x;

X = J;

printf( "j is %d\nx is %10f\n", j, X );
exit( 0 );
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If you compile this program with the —nopt switch to ensure that x is not stored in a regis-
ter, and then execute it, you get:

J is 2147483600
x is 2147483648.000000

The most risky mixture of integer and floating—point values is the case where a floating—
point value is assigned to an integer variable. First, the fractional part is discarded. Then,
if the resulting integer can fit in the integer variable, the assignment is made. In the fol-
lowing statement, assuming j is an int, the double value 2.5 is converted to the int value 2
before it is assigned.

j =2.5;

This causes a loss of precision which could have a dramatic impact on your program. The
same truncation process occurs for negative values. After the assignment,

j = -5.8;

the value of j is -5.

An equally serious situation occurs when the floating—point value cannot fit in an integer.
For example:

J = 999999999999.0

This causes an overflow condition which will produce unpredictable results if it is not
caught by the compiler. As a general rule, it is a good idea to keep floating-point and in-
teger values separate unless you have a good reason for mixing them.

As is the case with assigning floating—point values to integer variables, there are also poten-
tial problems when assigning double values to float variables There are two potential
problems: loss of precision and an overflow condition. In Domain C a double can repre-
sent approximately 16 decimal places, and a float can only represent 7 decimal places. If
f is a float variable, and you make the assignment,

f = 1.0123456789

the computer rounds the double constant value before assigning it to f. The value actually
assigned to f, therefore, will be 1.012346 (Domain C always rounds toward zero). The
following example shows rounding due to conversions.
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/* Program name is "float_rounding". It show how double values
* can be rounded when assigned to a float.
*/

#include <stdio.h>

int main( void )

{
float £32;
double f64;
int i;

for (i=1, £64=0; i < 1000; ++i)
£64 += 1.0/i;

£f32 = f64;
printf( "value of f64: %1.7f\n", f64 );
printf( "value of £32: %1.7f\n", £32 );

}

The output is:

Value of f64: 7.4844709
Value of £32: 7.4844708

A more serious problem occurs when the value being assigned is too large to be repre-
sented in the variable. For example, the largest positive number that can be represented
by a float is approximately 2e38. What happens if you try to execute the following assign-
ment?

f = 2e40;

The behavior is not defined by the K&R or ANSI standards. In this simple case, the com-
piler will recognize the problem and report a compile-time error. In other instances, how-
ever, a run-time error could result.
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EXAMPLE

/* Following are examples of each assignment operator. In each
* case, Xx =5 and y = 2 before the statement is executed.

*/

X =y; = x= 2
X +=y + 1;= X 8
X =y * 3; = X -1
X ¥=y + 1;, = x = 15
X /=Y; = x =2
X %= y; = X =1
X L=Y; = X = 20
X D=y, = X =1
X &= y; = x =0
X "=y, = x =17
X |=y; = X =17
X=y=1 = x =1, y=1
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_BFMT__COFF

_BFMT__ COFF Refer to the __ STDC__ listing later in this chapter.
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bit operators Access specific bits in an object.
FORMAT
expl << exp2 Left shifts (logical shift) the bits in exp! by exp2 positions
expl >> exp2 Right shifts (logical or arithmetic shift) the bits in exp! by exp2
positions
expl & exp2 Performs a bitwise AND operation
expl ~ exp2 Performs a bitwise OR operation
expl | exp2 Performs a bitwise inclusive OR operation
~expl Performs a bitwise negation (one’s complement) operation
ARGUMENTS
expl Any integer expression.
exp2 Any integer expression.
DESCRIPTION

Domain C supports the usual six bit operators, which we group for descriptive purposes
into shift operators and logical operators.

Bit Shift Operators

The << and >> operators shift an integer left or right respectively. The operands must
have integer type, and all automatic promotions are performed for each operand. For ex-
ample, the following program fragment

short int to_the_left = 53, to_the_right = §3;
short int left_shifted_result, right_shifted_result;

left_shifted_result = to_the_left << 2;
right_shifted_result = to_the_right >> 2;

sets left_shifted_result to 212 and right_shifted_result to 13. The results are clearer in

binary:
base 2 base 10
0000000000110101 53
0000000011010100 212 /* 53 shifted left 2 bits */
0000000000001101 13 /* 53 shifted right 2 bits */
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Shifting to the left is equivalent to multiplying by powers of two.

X <<y is equivalent to  x * 2 Y

Shifting non—-negative integers to the right is equivalent to dividing by powers of two:

X >>y is equivalent to x/27Y

The << operator always fills the vacated rightmost bits with zeros. If expl is unsigned, the
>> operator fills the vacated leftmost bits with zeros. If expl is signed, then >> fills the
leftmost bits with ones (if the sign bit is 1) and zeros (if the sign bit is 0). In other words,
if expl is signed, the two bit shift operators preserve its sign.

NOTE: Not all compilers preserve the sign bit when doing bit shift op-
erations on signed integers. The K&R and ANSI standards
make this behavior implementation-defined. Domain C is
consistent with the PCC implementation of C.

Make sure that the right operand is not larger than the size of the object being shifted.
For example, the following produces unpredictable arid nonportable results because ints
have fewer than 50 bits:

10 >> 50

You will also get nonportable results if the shift count (the second operand) is a negative
value.

Bit Logical Operators

The logical bitwise operators are similar to the Boolean operators, except that they operate
on every bit in the operand(s). For instance, the bitwise AND operator (&) compares
each bit of the left operand to the corresponding bit in the right operand. If both bits are
one, a one is placed at that bit position in the result. Otherwise, a zero is placed at that
bit position.
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The four logical operators perform logical operations on a bit-by-bit level using the follow-
ing truth tables:

& AND Inlusive OR
bit x bit x bit x of ) bit x bit x bit x of
of opl of op2 result of opl of op2 result
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
. ~ Bitwise
~ Exclusive OR Complement
bit x bit x bit x of
of opl of op2 result bit x bit x of
of op2 result
0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 0
Figure 4-5. Bitwise Operators
Table 4-4 shows some examples of the bitwise AND operator.
Table 4-4. The Bitwise AND Operator
Expression Hexadecimal Binary Representation
Value
9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 & 5722 0x0452 00000100 01010010

The bitwise inclusive OR operator (|) places a 1 in the resulting value’s bit position if
either operand has a bit set at the position (see Table 4-5).
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Table 4-5. Examples Using the Bitwise Inclusive OR Operator
Expression Hexadecimal Binary Representation
Value
9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 | 5722 0x36DE 00110110 11011110

The bitwise exclusive OR (XOR) operator (") sets a bit in the resulting value’s bit position
if either operand (but not both) has a bit set at the position (see Table 4-6).

Table 4-6. Example Using the XOR Operator

Expression ‘Hexadecimal Binary Representation
Value

9430 0x24D6 00100100 11010110

5722 0x165A 00010110 01011010

9430 ~ 5722 0x328C 00110010 10001100

The bitwise complement operator (~) reverses each bit in the operand (see Table

4-7).
Table 4-7. Example Using the Bitwise Complement Operator
Expression Hexadecimal Binary Representation
Value
9430 0x24d6 00100100 11010110
-9430 0xdb29 11011011 00101001
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break Provides an early exit from for, while, and do/while loops and from switch statements.

FORMAT

break;

DESCRIPTION

There are times when it is convenient to be able to exit from a loop without testing a con-
dition at the top or bottom. The break statement allows you to exit immediately from the
for, while, or do/while loop that encloses it. Execution resumes at the first statement af-
ter the end of the loop.

The break statement is also used to exit from switch statements. For more information on
that use of break, see switch later in this encyclopedia.
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/* Program name is "break_example". This program finds what

* number day (out of 365) a user-supplied date is in a year.
* Leap years are ignored.

*/

#include <stdio.h>

i

{

/

nt main( void )

int i, month_num, day, tot_days;

static int m[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30,
31, 30, 31};

char answer = “y’;

printf ("\n");

* The program asks for a month and day and then checks to see
* if they are valid. If not, the break statement terminates

* the do/while loop. Otherwise, the number day is computed

* and printed.

*/
while ((answer != “n’) && (answer != “N7))
{
printf( "Enter the month and day separated by a space: " );

scanf ( "%d %d", &month num, &day );
fflush( stdin );

if (month_num > 12 || day > m[month_num])

{
printf ( "You entered an invalid date\n" );
break;

} /*¥ end if */

tot_days = 0;
for (i = 1; i < month_num; i++)
tot_days += m[i];
tot_days += day;
printf( "The date you entered is number %d of the year.\n",
tot_days );
printf ( "Again? " );
scanf ("%c", &answer);
fflush( stdin );
} /* end while */

break
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USING THIS EXAMPLE

If we execute this program, we get the following output:

Enter the month and day separated by a space: 7 13
The date you entered is number 194 of the year.
Again? y

Enter the month and day separated by a space: 19 24
You entered an invalid date
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cast operations Convert a value to another data type.

FORMAT

(data_type) exp

ARGUMENTS
data_type Any scalar data type including a scalar data type created through a
typedef statement. data_type cannot be an aggregate type, but it can
be a pointer to an aggregate type.
exp Any scalar expression.
DESCRIPTION

To cast a value means to explicitly convert it to another data type. For example, given
the following two definitions: :

int y = 5;
float x;

the following cast operation casts the value of y to float:

x = (float) y; /¥ x now equals 5.0 */

Here are four more casts (assume that j is a scalar variable):

(float) 3j; /* Cast j’s value to float */

i = (char *)j; /* Cast j’s value to a pointer to a char */

((int *)())j;/* Cast j’s value to a pointer to a function
* returning an int
*/

i = (float) (double) j; /* Cast j’s value first to a double

* and then to a float

*/

. e
Il

It is important to note that if exp is a variable, a cast does not change this variable’s data

type; it only changes the type of the variable’s value for that one expression. For instance,
in the preceding casting examples, the cast does not produce any permanent effect on vari- .
able j.

There are no restrictions on casting from one scalar type to another, except that you may
not cast a void object to any other type. You should be careful when casting integers to
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pointers. If the integer value does not represent a valid address, the results are unpredict-
able.

The type specifier that makes up the cast expression is called an abstract declarator. The
rules for composing abstract declarators are described in Chapter 3.

Casting Integers to Other Integers

It is possible to cast one integer into an integer of a different size and to convert a float-
ing—point value, enumeration value or pointer to an integer. Conversions from one type of
integer to another fall into five cases (A-E) as shown in Table 4-8. Each of these conver-
sions is described in the following sections.

Table 4-8. Integer Conversions

Converted Type
unsigned | unsigned | unsigned
Original Type char short int char short int
char A B B D E E
short C A B C D E
int (long) C C A C C D
unsigned char D B B A B B
unsigned short C D B C A B
unsigned int C C D C C A

CASE A: Trivial Conversions

It is legal to “convert” a value to its current type by casting it, but this conversion has no
effect.

CASE B: Integer Widening

Casting an integer to a larger size is fairly straightforward. The value remains the same but
the storage area is widened. The compiler preserves the sign of the original value by filling
the new leftmost bits with ones if the value is negative or with zeros if the value is positive.
When converting to an unsigned integer, the value is always positive so the new bits are al-
ways filled with zeros. The following table illustrates this principle.
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hex dec
char i = 37 55
(short) i = 0037 55
(int) i => 00000037 55
char j = c3 -61
(short) j = ffc3 -61
(int) j => ffffffc3 -61
unsigned char k = 37 55
(short) k => 0037 55
(int) k => 00000037 55

CASE C: Casting Integers to a Smaller Type

When an int value is cast to a narrower type (short or char), the excess bits on the left
are discarded. The same is true when a short is cast to a char. For instance, if an int is
cast to a short, the 16 leftmost bits are truncated. The following table of values illustrates
these conversions.

v hex dec
signed long int i = cf34bf1l 217271281

(signed short int)i => 4bfl 19441
(signed char)i => fi -15
(unsigned char)i => f1 241

Note that if, after casting to a signed type, the leftmost bit is 1, then the number is nega-
tive. However, if you cast to an unsigned type and after the shortening the leftmost bit is
1, then that 1 is part of the value (not the sign bit).

CASE D: Casting from Signed to Unsigned, and Vice Versa

When the orginal type and the converted type are the same size, a representation change
is necessary. That is, the internal representation of the value remains the same, but the
sign bit is interpreted differently by the compiler. For instance:

hex dec hex dec
signed int i = fffffca9 -855 0000f2al 62113
(unsigned int)i => fffffca9 4294966441 0000f2al 62113

The hexadecimal notation shows that the numbers are the same internally, but the decimal
notation shows that the compiler interprets them differently.

CASE E: Casting Signed to Unsigned and Widening

This case is equivalent to performing two conversions in succession. First, the value is con-
verted to the signed widened type as described in case B, and then it is converted to
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signed as described in case D. In the table below, note that the new leftmost bits are
filled with ones to preserve negativeness even though the final va