
Writing
Device Drivers
with GPIO
Calls
000959-AOO

apollo

Writing Device Drivers with GPIO Calls

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 000959-AOO

Confidential and Proprietary.
Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Apollo Computer, Inc., Chelmsford,
Massachusetts.
Unpublished -- rights reserved under the Copyright Laws of the United States. All Rights Reserved.

First Printing:
Latest Printing:

November 1981
July 1988

This document was produced using the Interleaf Technical Publishing Software (TPS) and the InterCAP Illustrator I
Technical Illustrating System, a product of InterCAP Graphics Systems Corporation. Interleaf and TPS are trademarks of
Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

3Com is a registered trademark of 3Com Corporation.

ETHERNET is a registered trademark of Xerox Corporation.

IMAGEN is a registered trademark of IMAGEN Corporation.

MULTIBUS is a trademark of Intel Corporation.

PC AT and PC XT are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of AT&T in the USA and other countries.

VERSATEC is registered trademark of VERSATEC, Inc.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C, Domain/ComController,
Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL, Domain/Dialogue, Domain/DQC, Domain/IX,
Domain/Laser-26, Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain X.2S, DPSS,
DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel, Network Computing System, Network
License Server, Open Dialogue, Open Network Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super
Workstation, Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this publication
without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Writing Device Drivers with GPIO Calls describes how to write device drivers for Domain®
nodes, using the General Purpose Input/Output (GPIO) software package.

Audience

This manual is intended for programmers who must write drivers for devices that Apollo®
does not support. Readers of this manual should be familiar with the hardware of the I/O
device and with its software requirements, and should have a working knowledge of Pascal
or C.

Organization

We've organized this manual as follows:

Part 1

Chapter 1

Chapter 2

I/O Hardware and Software

Describes the MULTIBUS* interface with Domain nodes, address
translation between MUL TIBUS memory and processor memory,
and the rules for configuring MULTIBUS controllers.

Describes the VMEbus and its interface with our system to help
you to write drivers for VMEbus devices.

* MUL TIBUS is a trademark of the Intel Corporation.

Preface iii

Chapter 3

Chapter 4

Part 2

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Part 3

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Describes the PC AT· compatible bus and its interface with our
system to help you to write drivers for PC AT devices.

Provides an overview of the major components of 110 software
(that is, the application, GPIO software, and the device driver).

Writing a Driver

Describes the different types of insert files that you can include in
your driver and how to set them up.

Describes the call side of the driver and how to write the routines
that belong there.

Describes how to transfer data using DMA, memory mapped 110,
and programmed 110.

Describes the interrupt side of the driver and different approaches
to processing interrupts.

Describes how to construct a global driver.

Describes how to bind and debug the driver.

Describes how to build the device descriptor file.

Describes how to acquire and release the device.

Reference Information

Describes the GPIO commands that the user invokes to run the
driver.

Describes the calling format and parameters of the OPIO routines.

Provides some tips on setting up the CSR page and using data
types in C.

Provides performance and timing information that relates to driver
execution on our operating system.

Provides a program listing of a device driver coded in C.

Provides a program listing of a device driver coded in Pascal.

A glossary of terms appears at the back of the manual.

... PC AT is a registered trademark of International Business Machines Corporation .

iv Preface

Summary of Technical Changes

This manual has been revised for Software Release 10.

Related Manuals

The file linstall/doc/apollo/os. v.latest software release number _manuals lists current ti
tles and revisions for all available manuals.

For example. at SR10.0 refer to linstall/doc/apollo/os.v.l0.0_manuals to check that
you are using the correct version of manuals. You may also want to use this file to check
that you have ordered all of the manuals that you need.

(If you are using the Aegis environment. you can access the same information through the
Help system by typing help manuals.)

Refer to the Domain Documentation Quick Reference (002685) and the Domain Documen
tation Master Index (011242) for a complete list of related documents. For more informa
tion on GPIO. refer to the following documents:

The Aegis Command Reference (002547) manual describes the command environment as
well as the function and format of the commands that users can invoke.

The DN5xx-T Workstations and DSP500-T Server Technical Reference (009491) manual
and the DN5xx-T Workstations and DSP500-T Server Hardware Architecture Handbook
(009490) describe our implementation of the VMEbus.

The Domain Binder and Librarian Reference (004977) manual describes how to use the
Domain binder to combine several object modules (for example. a call library and an in
terrupt library) into one executable object module.

The Domain C Language Reference (002093) and Domain C Library (CLIB) Reference
(005805) manuals describe our implementation of the C language.

The Domain Distributed Debugging Environment (DomainIDDE) Reference (011024)
manual describes how to use DDE.

The Domain/OS Calls Reference manuals. Volume 1 (007196) and Volume 2 (012886)
describe the calling syntax for the system services that your driver can call.

The Domain Pascal Language Reference (000792) manual describes our implementation of
the Pascal language. Appendix C lists our extensions to Standard Pascal.

Preface v

The Domain Personal Workstations and Servers Technical Reference (008778) and the Do
main Personal Workstations and Servers Hardware Architecture Handbook (007861) de
scribe our implementation of the PC AT compatible bus.

The IEEE Standard Microcomputer System Bus (IEEE-796 specification) provides detailed
information about the MULTIBUS.

The Installing Input/Output (lIO) Devices for Domain Nodes (008268) manual describes
the hardware requirements for attaching peripheral devices to the Domain system bus.

The Managing SysV System Software (010851) manual describes how to create the SysV
network environment, protect network software, and maintain and troubleshoot the net
work.

The Microsystem Components Handbook (230843) is published by Intel.

The Programming with Domain/OS Calls (005506) manual describes the general purpose·
Domain/OS system calls that you can use to perform system services for your driver.

The Using the OPEN System Toolkit to Extend Your Domain Streams (008863) manual
describes how to extend the Streams facility so that it performs input and output for new
types of files and devices.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make it easy for you to
communicate with us, we provide the Apollo Problem Reporting (APR) system for com
ments related to hardware, software, and documentation. By using this formal channel,
you make it easy for us to respond to your comments.

You can get more information about how to submit an APR by consulting the appropriate
Command Reference manual for your environment (Aegis TM, BSD, or SysV). Refer to the
mkapr (make apollo problem report) shell command description. You can view the same
description online by typing:

$ man mkapr (in the SysV environment)

% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader's Response Form at the back of this manual to sub
mit comments about the manual.

vi Preface

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions:

literal values

user-supplied values

example user input

output

{ }

< >

CTRLi

----88----

Bold words qr characters in formats and command descriptions
represent commands or keywords that you must use literally.
Pathriames are also in bold. Bold words in text indicate the first
use of a new term.

Italic words or characters in formats and command descriptions
represent values that you must supply.

In examples, information that the user enters appears in bold.

Information that the system displays appears in this typeface.

Square brackets enclose optional items in formats and command
descriptions. In sample Pascal statements, square brackets assume
their Pascal meanings.

Braces enclose a list from which you must choose an item in for
mats and command descriptions. In sample Pascal statements,
braces assume their Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRLi followed by the name of a key indicates a
control character sequence. Hold down <CTRL> while you press
the key.

Horizontal ellipsis points indicate that you can repeat the preced
ing item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure
or example have been omitted.

This symbol indicates the end of a chapter.

Preface vii

Chapter 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.4

Contents

1/0 Bus Structures: the MULTIBUS

MUL TIBUS Compliance Levels
Bus Control .. .
Data Path ,
Memory Address Path
I/O Address Path
Interrupt Request Lines
Bus Request Arbitration Resolution

MULTIBUS Address Translation
Address Translation from Processor to MULTIBUS

Programmed I/O
Memory-Mapped I/O

Address Translation from MUL TIBUS to Processor: DMA
Configuring MULTIBUS Controllers

Nodes With a 16-Bit MULTIBUS
Assigning CSR Addresses
Configuring Controller Memory
Configuring Controller Address Lines
Using Interrupt Request Lines

Nodes With a 20-Bit MULTIBUS ,
Assigning CSR Addresses
Configuring Controller Memory
Configuring Controller Address Lines
Using Interrupt Request Lines

Byte Swapping

1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-6
1-6
1-7
1-8
1-8
1-10
1-10
1-10
1-11
1-11
1-11
1-12
1-12
1-12

Contents ix

Chapter 2 110 Bus Structures: the VMEbus

2.1 Address Space Allocation 2-2
2.2 Bus Grant Level. .. 2-2
2.3 Address Modifiers .. 2-2
2.4 Interrupt Level ... 2-3
2.5 Status/ID Byte. .. 2-3
2.6 Software Considerations. .. 2-3
2.6.1 Wiring for DMA: pbu_Swire_special 2-4
2.6.2 Creating a DDF for a VMEbus Device. .. 2-4

Chapter 3 110 Bus Structures: the IBM PC AT Compatible Bus

3.1 PC AT Compatible Address Space. .. 3-2
3.1.1 I/O Address Space ... 3-2
3.1.2 Memory Space .. 3-5
3.2 Unit Numbering .. 3-6
3.3 Testing for Controller Presence. .. 3-8
3.4 DMA and IRQ Lines. .. 3-8
3.5 Byte Swapping. .. 3-9
3.6 Software Considerations. .. 3-10
3.7 Creating a DDF for a PC AT Compatible Device , 3-11

Chapter 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.4

x Contents

Overview of 1/0 Software

Application Program .. .
Streams Manager .. .
GPIO Commands and Routines
Device Driver

Driver Functions .. .
Major Components of a Driver
Operation of a Driver: A Dry Run of bm_example

Initialization
Command Processing
Interrupt Handling
Cleanup .. .

Driver Checklist ..

4-2
4-2
4-3
4-4
4-4
4-4
4-6
4-7
4-7
4-8
4-8
4-9

Chapter 5

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.2

Chapter 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.4.1
6.1.4.2
6.2
6.3
6.3.1
6.3.2
6.4

Chapter 7

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.1.3
7.1.1.4
7.1.1.5
7.1.1.6
7.1.2

7.1.2.1
7.1.2.2
7.1.3
7.1.3.1
7.1.3.2
7.1.4

Insert Files

System Insert Files
Driver-Specific Insert Files

Private Insert File
CSR Page .. .
Driver Control Block
Internal Driver Routines

Public Insert File ..

Call-Side Routines

Initialization .. .
Initialization Routine Format
Initializing Driver Internal Storage .
Testing for Device Presence
Initializing Controller Data Structures

Allocating Hard-Wired Control Blocks on the MULTIBUS
Defining Page-Aligned Control Blocks

Command Processing
Waiting for Device Interrupts

Using pbu_$wait .. .
Using pbu_$get_ec and ec2_$wait

Performing Cleanup Functions

Transferring Data

DMA Transfers .. .
Using the I/O Map to Perform DMA Transfers

Allocating B1,1s Address Space
Wiring I/O Buffers
Setting Up the I/O Map
Preallocating I/O Resources
Dynamic Resource Allocation
Scatter-Gather Operations

Starting and Stopping a DMA Operation on the
PC AT Compatible Bus

DMA Transfers Without the I/O Map
DMA Transfers With the I/O Map

Releasing I/O Resources After a DMA Transfer
Deallocating the I/O Map
Unwiring the I/O Buffer

Releasing I/O Resources During Faults

5-2
5-2
5-3
5-3
5-5
5-6
5-6

6-2
6-3
6-4
6-4
6-6
6-7
6-7
6-8
6-10
6-10
6-12
6-14

7-2
7-2
7-2
7-3
7-4
7-5
7-6
7-6

7-8
7-9
7-14
7-15
7-15
7-16
7-16

Contents xi

7.2
7.2.1
7.2.2
7.2.3
7.3

Chapter 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.3.1
8.2.3.2
8.2.4
8.2.5
8.3

Chapter 9

Memory-Mapped Transfers
Referencing Controller Memory
Mapping Controller Memory
Unmapping Controller Memory ,

Programmed 1/0

Interrupt-Side Routines

Interrupt Side Restrictions
Interrupt Routine .. .

Interrupt Routine Format
Enabling and Disabling Device Interrupts
Processing Device Interrupts

Processing by the System Interrupt Handler
Processing by the User-Written Interrupt Routine

Faults in User-Written Interrupt Routines
Mapping Buffers from the Interrupt Routine

Starting an 110 Operation

Global Drivers

7-17
7-18
7-19
7-20
7-21

8-1
8-2
8-3
8-3
8-4
8-5
8-5
8-6
8-7
8-7

9.1 Controlling Multiple Processes .. 9-2
9.1.1 Mutual Exclusion. .. 9-2
9.1.2 Synchronization.... 9-3
9.2 Global Memory. .. 9-4
9.3 Initialization and Cleanup 9-4
9.4 Fault Handling ... 9-4
9.5 Loading and Unloading .. 9-5
9.6 Multiple-Device Drivers .. 9-5

Chapter 10 Building and Debugging

10.1 Building the Device Driver. .. 10-1
10.1.1 Compiling the Device Driver 10-1
10.1.2 Binding the Device Driver 10-2
10.1.2.1 Using Bind to Page Align Buffers 10-3
10.1.2.2 System Globals ... 10-4
10.2 Debugging the Device Driver. .. 10-4
10.3 Debugging the Global Driver. .. 10-6

xii Contents

Chapter 11

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3

Chapter 12

12.1
12.1.1
12.1.2
12.1.3
12.2

Appendix A

Appendix B

Device Descriptor File

Building a DDF in a Shell Script
Version 2 DDF .. .
Version 3 DDF .. .

DDF for a PC AT Compatible Device
DDF for a VMEbus Device
DDF for a Device Accessed Through a Streams Manager

Acquiring and Releasing the Device

Acquiring the Device
Using aqdev .. .
Acquiring a Device in Your Application
Acquiring a Device with pbu_$acquire_stream

Releasing the Device

GPIO Commands

GPIO Routines

11-3
11-4
11-5
11-6
11-7
11-8

12-1
12-2
12-2
12-3
12-5

B.l Data Types. .. B-1
B.2 GPIO Procedures and Functions B-11
B.3 Error Messages .. B-78

Appendix C Programming Information

C.l CSR Page. .. C-l
C.2 Programming in C .. C-3
C.2.1 Insert Files .. C-3
C.2.2 Type int ". C-3
C.2.3 Boolean Values. .. C-3
C.2.4 Universal Pointer Type. .. C-4
C.2.5 Defining Globals .. C-4
C.3 Considerations for Compiler Optimization. .. C-5

Contents xiii

Appendix D Performance Information

0.1
0.2
0.3
0.4

OMA Bandwidth...... 0-1
Interrupt Processing Overhead. .. 0-2
Setting Up OMA Buffers 0-3
Timing Information .. 0-4

Appendix E Sample Driver in C

E.l bm.h ... E-2
E.2 bm_lib.c .. E-7
E.3 bm_int_lib.c ; .. E-17
E.4 make file E-21

Appendix F Sample Driver in Pascal

F.l bm.pvt.pas .. F-2
F.2 bm.ins.pas .. F-4
F.3 bm_lib.pas .. F-6
F.4 bm_int_lib.pas F-15

Glossary

Index

xiv Contents

Figures

1-1
1-2
1-3
1-4
1-5

2-1

3-1
3-2
3-3

4-1
4-2

7-1

Tables

1-1
1-2
1-3

2-1

3-1
3-2

3-3
3-4

4-1

5-1

6-1

11-1

B-1

D-1
D-2

Relationship Between a Domain Node and Peripheral Controllers. 1-1
MappingCSR Pages to MULTIBUS I/O Space. 1-5
Mapping Processor Address Space to MULTIBUS Memory Space. . .. 1-6
Mapping MULTIBUS Address Space to Processor Address Space 1-7
8-Bit Controller CSR Assignment. .. 1-9

Relationship Between a Domain Node and Peripheral Controllers. 2-1

Relationship Between a Domain Node and Peripheral Controllers. 3-2
CSR Mapping Scheme for PC AT Compatible Devices 3-4
Mapping a 16-Bit PC AT Address to Processor Address Space 3-5

Interaction of I/O Software. .. 4-2
Driver Routines in bm_example 4-6

Mapping Discontiguous Buffers. .. 7-7

MULTIBUS Implementations on Node Models 1-2
MULTIBUS Address Space Used by Domain System-Supplied Devices 1-8
Allocation of Interrupt Request Lines 1-10

Address Space Allocated for DN5xx-T VMEbus Devices 2-2

I/O Address Space Allocated for Domain System-Supplied Devices. .. 3-3
DN3000/DN4000 Physical Memory Allocated for Domain
System-Supplied Devices .. 3-6
Allocation of Unit Numbers on the DN3000 .. 3-7
Allocation of Unit Numbers on the DN4000 .. 3-7

GPIO Software .. 4-3

System Insert Files. .. 5-2

pbu_$wait Actions When Asynchronous Faults Are Inhibited/Enabled. 6-12

Required Options for Different DDF Versions. 11-2

GPIO Procedures and Functions B-11

CPU Times During Interrupt Processing .. D-2
Timing for DN560, DSP80, DSP160, ON660, ON5xx-T,
DN3000, and DN4000 Workstations 0-5

Contents xv

Chapter 1

I/O Bus Structures: the MULTIBUS

This chapter describes MULTIBUS implementations currently available for Domain nodes,
the theory of MULTIBUS address translation, how to configure a MULTIBUS controller,
and byte swapping. For detailed information about the MUL TIBUS, refer to the IEEE
Standard Microcomputer System Bus (IEEE-796 specification). See the Preface for a
complete list of related manuals and their order numbers.

The I/O bus is the network of signal routes through which device controllers and the proc
essor address one another and transfer data. The bus is, therefore, the key hardware
component of a computer system's I/O structure. Figure 1-1 shows the relationship of the
I/O bus to a Domain node and a set of controllers. The processor, memory, and memory
management (address translation) subsystems are linked by an internal bus. Interface
hardware connects this internal bus to the I/O bus. User-supplied and Domain system
supplied device controllers attach to the I/O bus and, through the bus, link to the node.

Domain
Processor and Memory

Display

Figure 1-1. Relationship Between a Domain Node and Peripheral Controllers

The MULTIBUS 1-1

1.1 MULTIBUS Compliance Levels

The MUL TIBUS supports compliance levels that allow for the varying capabilities of differ
ent computer systems. The levels are described in the IEEE Standard Microcomputer Sys
tem Bus (IEEE-796 specification). To know the implementation available for a particular
node model, refer to the section on MUL TIBUS interfaces in the peripheral installation
instructions or refer to the operating guide for the node model, if one is shipped with the
node. If the peripheral installation instructions provide interface information for your node
model, you will find the MULTIBUS implementation level available and specific hardware
information for that node type. For node models that have an operating guide, you will
find the same information in the guide. Table 1-1 lists the MULTIBUS implementation
levels that we currently support for various node models.

Table 1-1. MULTIBUS Implementations on Node Models

Node Type MULTIBUS Implementation Compliance Level

ON660, 16-bit MULTIBUS, serial MASTER 016 M16 116 VO L
OSP160 arbitration priority

OSP80 20-bit MULTIBUS, parallel MASTER 016 M20 116 VO L
OSP90 arbitration priority

ON5xx, DN5xx-T 20-bit MUL TIBUS, serial MASTER 016 M20 116 VO L
arbitration priority

The notation used to specify the compliance level is interpreted as follows:

MASTER D16 Mxx 116 VO· L

l L L Level-Triggered Interrupt Sensing

Non-Bus-Vectored Interrupts

8- or 16-Bit I/O Address Path
16- or 20-Bit Memory Address Path
(depending on which is specified)

8- and 16-Bit Data Path

Can Be Bus Master or Bus Slave

The following sections explain the compliance levels more fully, particularly the two levels
that we currently support:

• MASTER D16 M16 116 VO L

• MASTER 016 M20 116 VO L

1-2 The MULTIBUS

1.1.1 Bus Control

A device controller is bus master when it acquires control of the bus, and bus slave when
it carries out commands or decodes addresses presented by another device acting as bus
master. Domain nodes with 16-bit MULTIBUS implementation allow both the central
processor and any attached controller to act as bus masters:

• When the processor is bus master, it can address 32 KB of MULTIBUS I/O space
and 32 KB of MULTIBUS memory space (O-7FFF).

• When a controller is bus master, the processor must be the only slave; it responds
to addresses in the range O-FFFF (64K).

Domain nodes with 20-bit MUL TIBUS implementations also allow either the processor or
the controllers to act as bus masters:

• When the processor is bus master, it can address 64 KB of MULTIBUS I/O space
and 1 MB of MUL TIBUS memory space.

• When a controller is bus master, either the processor or another controller on the
MULTIBUS may be the slave; up to 1 MB of address space is available.

1.1.2 Data Path

NOTE: Although the full 64 KB of 110 address space is implemented on
nodes with a 20-bit MUL TIBUS, user Control and Status Regis
ter (CSR) page addresses are restricted to the first 16 KB of
MULTIBUS I/O space (see Subsection 1.3.2).

For all Domain nodes, the MULTIBUS supports either an 8- or a 16-bit bidirectional
data path (016) for the transfer of data from MULTIBUS memory or 110 addresses. The
bus master drives the data lines on a write operation, and the slave drives them on a read
operation (memory or 1/0).

1.1.3 Memory Address Path

Under compliance level MASTER 016 M16 116 YO L, the MULTIBUS supports 16-bit
memory addresses on the memory address path; whereas under compliance level MASTER
016 M20 116 YO L, the MULTIBUS supports 20-bit memory addresses. We use the terms
16-bit MULTIBUS or 20-bit MULTIBUS to describe nodes whose 110 hardware supports
16- or 20-bit memory addresses.

NOTE: If a node with a 20-bit MUL TIBUS is fully configured with 3
MB of memory, the upper half (512 KB) of the address space is
unavailable for memory-mapped operations.

The MULTIBUS 1-3

1.1.4 1/0 Address Path

For all Domain nodes, the MULTIBUS I/O address path supports 8-bit or 16-bit I/O ad
dresses (116).

1.1.5 Interrupt Request Lines

The MULTIBUS provides eight interrupt request lines: line 0 is the highest priority line
and line 7 the lowest. A device generates an interrupt by activating its assigned interrupt
request line. The MULTIBUS on all Domain nodes uses nonbus-vectored interrupts (VO).
With this type of interrupt, the device raises its interrupt line without sending its interrupt
vector address over the bus; the I/O hardware generates the interrupt vector address to
identify the interrupting device to the processor.

1.1.6 Bus Request Arbitration Resolution

MUL TIBUS devices can arbitrate for bus control by using serial or parallel priority resolu
tion. All Domain 16-bit MULTIBUS implementations use a serial scheme. Some 20-bit
implementations use a parallel scheme and others use a serial scheme. See the peripheral
installation instructions for the priority resolution scheme used by each node type.

With serial resolution, device controllers are daisy-chained together. The first device in
the daisy-chain has highest priority. With parallel resolution, arbitration logic in the I/O
hardware determines the device that gets highest priority, instead of the device's position
relative to other controllers. See the node's operating guide or peripheral installation in
structions for the priority assignments supplied by our I/O hardware for nodes that use par
allel arbitration resolution.

1.2 MULTIBUS Address Translation

Device drivers on nodes with a 16-bit MULTIBUS can allocate up to 32 pages of proces
sor address space to reference MUL TIBUS address space; drivers on nodes with a 20-bit
MULTIBUS can allocate up to 1024 pages of processor address space. On any node, the
I/O hardware translates addresses between MULTIBUS and processor memory in units of
1024-byte pages. The method of translation depends upon whether processor addresses are
to be translated into MUL TIBUS addresses (initiated by the processor) or MUL TIBUS
addresses into processor addresses (initiated by the controller).

1.2.1 Address Translation from Processor to MULTIBUS

When the processor acts as bus master, it initiates a read or write to MULTIBUS address
space, and the I/O hardware automatically translates the virtual address that refers to proc
essor address space into a physical address.

1-4 The MULTIBUS

This physical address refers to either one of two separate address spaces supported by the
MULTIBUS, depending on the kind of I/O operation:

• I/O space: Used for programmed I/O data transfers

• Memory space: Used for memory-mapped data transfers

Much of what follows concerning processor-to-MULTIBUS address translation depends on
this concept of two separate MULTIBUS address spaces.

1.2.1.1 Programmed I/O

In programmed I/O, data is transferred as single words or bytes by means of Control and
Status Registers (CSRs) on the controller. Device drivers pass or reference data by using
these CSRs.

References to the MULTIBUS I/O space are actually references to a controller's CSRs. A
page from MULTIBUS I/O space is allocated to them and becomes the controller's CSR
page. Section 1.3 describes how to allocate pages of MULTIBUS I/O space for controller
CSRs.

When the device is acquired, the GPIO device acquisition routine. pbu_$acquire. auto
matically maps the CSR page to processor address space (that is. establishes a correspon
dence between MULTIBUS I/O space and processor address space) and passes a pointer
to the driver initialization routine. The device driver can then obtain controller status and
activate the controller by using the pointer to read and write to the mapped CSRs.
Figure 1-2 shows how CSR pages mapped to processor address space correspond to MUL
TIBUS I/O locations.

Figure 1-2. Mapping CSR Pages to MULTIBUS I/O Space

The MULTIBUS 1-5

1.2.1.2 Memory-Mapped 1/0

In memory-mapped 110, the controller appears to the processor as so many memory loca
tions, and the processor performs 110 operations by storing data to or fetching it from con
troller memory.

Device drivers gain access to areas of MULTIBUS memory space by calling GPIO routines.
These routines map areas of processor address space and particular sections of MULTI
BUS memory space. Device drivers next call the GPIO routines that map a controller's
memory to processor address space. The drivers can then read and write to controller
memory through reads and writes in processor address space. Figure 1-3 illustrates how
controller memory is mapped to processor address space.

Processor
Address Space

Memory
Management
Unit (MMU)

MULTIBUS
Memory Space

o

16K

32K

Figure 1-3. Mapping Processor Address Space to MULTIBUS Memory Space

1.2.2 Address Translation from MULTI BUS to Processor: DMA

A Direct Memory Access (DMA) operation contrasts with programmed liD and memory
mapping in the following ways:

• The controller is the bus master.

• Address translation proceeds from the MULTIBUS to the processor.

• A bus address (referred to as an iova) is translated into a physical address in
processor memory.

1-6 The MULTIBUS

Once activated by its device driver, a DMA controller can transfer large amounts of data
directly between processor memory and MULTIBUS address space. The job of translating
references to MULTIBUS address space into references to processor address space is per
formed by a data structure called the I/O map. The 1/0 map contains entries that each
map one page of processor memory. The device driver calls GPIO routines to allocate 1/0
map entries for the DMA. Chapter 7, Section 7.1 describes these GPIO routines in more
detail.

For nodes with a 16-bit MULTIBUS, controllers can transfer up to 64 pages of data be
tween the MULTIBUS and the processor at one time. For nodes with a 20-bit MULTI
BUS, controllers can transfer up to 1024 pages at one time. Figure 1-4 illustrates a DMA
transfer of 64 pages of MUL TIBUS address space to two different areas of processor ad
dress space.

Processor
Address Space

200000

207FFF

2COOOO

2C7FFF

110 Map

MULTIBUS
Address Space o

32K

64K

Figure 1-4. Mapping MULTIBUS Address Space to Processor Address Space

1.3 Configuring MULTIBUS Controllers

When you supply your own MULTIBUS controllers for use with a Domain node, you must
observe basic configuration rules. The following subsections summarize controller configura
tion rules for nodes with a 16- or 20-bit MULTIBUS. Table 1-2 lists the address ranges
reserved for Domain system-supplied devices.

The MULTIBUS 1-7

Table 1-2. MULTIBUS Address Space Used by Domain System-Supplied Devices

Devices Addresses Used

Domain/ComController™ Memory pages 4000 to 7FOO and I/O page OBOO are always in
use ona 16-bit MULTIBUS. .

ETHERNET· Interlan Board Uses three dynamically allocated memory pages for DMA I/O
address space OBO-OBF every 256 bytes (lBO-1BF, 2BO-2BF,
3BO-3BF, etc.).

FSD-500 Memory pages F400 and FBOO on a 16-bit MULTIBUS or
memory pages 6F400 and 6F800 on a 20-bit MULTIBUS are
used by the mnemonic debugger, then released during operating
initialization. The operating system uses two dynamically allo
cated memory pages for DMA.

Magtape Uses 19 dynamically allocated memory pages for DMA, plus
memory page FCOO (used during initialization, then released).

Storage Module Device (SMD) Memory pages F400 and FBOO on a 16-bit MULTIBUS or
memory pages 6F400 and 6FBOO on a 20-bit MUL TIBUS are
always reserved, whether or not SMD is in use.

VERSATEC·· and IMAGEN"· Uses five dynamically allocated memory pages for DMA;' I/O
Printers page 400 reserved.

X.25 Pages 7000-7COO are always in use.

• ETHERNET is a registered trademark of the Xerox Corporation.
• • VERSATEC is a registered trademark of VERSATEC, Inc.

• •• IMAGEN is a registered trademark of the IMAGEN Corporation.

1.3.1 Nodes With a 16-Bit MULTIBUS

You can connect only one B-bit controller to a 16-bit MULTIBUS; the others must be
16-bit controllers.

1. 3 .1.1 Assigning CSR Addresses

Each controller is allocated one page of MULTIBUS I/O space for its set of CSR ad
dresses. MULTIBUS I/O space is divided into two 16-page sections. The lower 16-page
section is reserved for the CSR pages of user-supplied controllers; the top 16-page section
is reserved for the CSR pages of controllers that Apollo supplies. You can assign the CSR
a!1dresses of a 16-bit controller to any page within the 16 pages of MULTIBUS I/O space
(0-3FFF hex) allocated to user-supplied controllers. Word (2-byte) and longword
(4-byte) registers must reside on even-byte addresses.

1-8 The MULTIBUS

If an 8-bit controller is present on your system, its CSR addresses should fall between 8.0
and FF (hex) on the first page (page 0) of the allocated I/O address space. Of the remain
ing pages (1-15), 16-bit controllers must occupy only the first 128 bytes (0-7F) of each
page. This arrangement is necessary because 8-bit controllers respond to any address in
the range O-FF, modulo 255. For example, an 8-bit controller CSR at address 80 re
sponds to page 0 addresses of 80, 180, 280, 380; page 1 addresses of 480, 580, 680, 780;
and so on. By restricting 8-bit controller CSRs to the range 80-FF, all addresses in the
range 0-7F become available. to 16-bit controllers. Refer to Chapter 11, Section 11.2 for
a description of how to set the address of an 8-bit controller CSR.

If you do not have an 8-bit controller on your system and never plan to add one, ,you can
configure a 16-bit controller to respond to any addresses (0-3FF) on its CSR page. Again,
word and longword registers must reside on even-byte addresses.

Figure 1-5 illustrates the allocation of CSR addresses when an 8-bit controller is present.

CSR Page 0

CSR Page 1

CSR Page 2

CSR Page 15

MUL TIBUS I/O Space

8-Blt CSRs

16-Blt CSRs
(128 Bytes)

16-Blt CSRs
(128 Bytes)

....

o
7F
80

FF

400

47F

800

87F

... ~

...~

1----------1 3COO
16-Blt CSRs
(128 Bytes)

~--------~3C7F

Figure 1-5. 8-Bit Controller CSR Assignment

The MULT/BUS 1-9

1. 3.1. 2 Configuring Controller Memory

Drivers call GPIO routines to map a controller's memory to processor address space so that
programs can refer to the controller's memory directly. When configuring controller mem
ory on nodes with a 16-bit MULTIBUS, the following rules apply:

• Controller memory must begin on a page boundary and must reside completely in
the first 32 KB (0-7FFF) of MULTIBUS memory space.

• Because of hardware restrictions, the part of the MUL TIBUS memory space occu
pied by controller memory is permanently unavailable for DMA to or from any
controller on the bus.

• Programs can access controller memory through the MULTIBUS, but other con
trollers on the bus cannot do so (see Chapter 7, Subsection 7.2.1).

1. 3.1. 3 Configuring Controller Address Lines

On a node with a 16-bit MULTIBUS, up to 64 pages of MULTIBUS address space can
be mapped (through the I/O map) to processor memory. Controller references to
MULTIBUS addresses above 64K are wrapped; the top four bits of addresses on the bus
are driven to O. For example, a controller reference to 65K appears as a reference to lK.
Consequently, when you have the choice of configuring a controller to a 16-bit or a 20-bit
address path, configure for a 16-bit address path.

1.3.1.4 Using Interrupt Request Lines

Of the eight interrupt request lines available on the MUL TIBUS, the highest priority line
(line 0) is reserved for customer devices. The remaining seven interrupt lines are reserved
for devices that we supply. Table 1-3 lists the allocation of bus interrupt request lines.

Table 1-3. Allocation of Interrupt Request Lines

Line Owner

0 Customer devices

1 COM-ETH product controller

2 COM-X.25 product controller and
Domain/ComController product

3 Magtape controller

4 Storage module or FSD-500 product controller

5 VERSATEC printer/plotter controller and IMAGEN
printer with MUL TIBUS option

6 Parallel outputlIine printer (only on 16-bit MULTIBUS;
unused on 20-bit MULTIBUS)

7 Reserved

1-10 The MULTIBUS

Because line 6 is used for parallel 110, it is unavailable for your use. Lines 1 through 5,
though reserved for our use, are available to user-supplied controllers. However, if you as
sign your device to one of lines 1 through 5 and later acquire one of our supported devices
assigned to that line, conflicts will result. Line 0 is reserved for customer devices and will
never be used by Domain devices.

A single controller can be configured to request interrupts on more than one request line,
but each line can handle only one controller.

On nodes with a 16-bit MULTIBUS, the processor is solely responsible for acknowledging
peripheral device interrupt requests. Device controllers should never respond to interrupt
requests from other peripheral devices on the bus.

1.3.2 Nodes With a 20-Bit MULTIBUS

Nodes with 20-bit MULTIBUS implementations can also handle 8-bit or 16-bit control
lers. Of the devices that can be attached to such nodes, only one can be an 8-bit control
ler; the others must be 16-bit controllers.

1.3.2.1 Assigning CSR Addresses

On nodes with a 20-bit MUL TIBUS, 64 pages of MUL TIBUS I/O space are available;
however, user devices are restricted to the first 16 pages because Domain system-supplied
devices occupy the second 16 pages and addresses 8000-FFFF are reserved for future use.
Each controller is allocated one page of the first 16 pages of I/O address space for its set
of CSRs (if any). You can assign the addresses of a 16-bit controller to any page within
the first 16 pages (O-3FFF hex). Word (2-byte) and longword (4-byte) registers must re
side on even-byte addresses. If an 8-bit controller is present in your configuration, assign
its CSRs according to the rules outlined in Subsection 1.3.1.

1.3.2.2 Configuring Controller Memory

If a node with a 20-bit MULTI BUS is fully configured with 3 MB of memory, the upper
half (512 KB) of the address space is available for DMA operations only. Also, if your
configuration includes both 16-bit and 20-bit memory-mapped controllers, you must use
caution when configuring 20-bit controller memory into MUL TIBUS memory space to
avoid possible conflicts with 16-bit controller memory. For example, a 16-bit controller
configured to respond to memory address coon will also respond to addresses lCOOO,
2COOO, ... FCOOO. In this case, you must ensure that the MUL TIBUS addresses assigned
to the 20-bit controller do not equal coon, modulo 64K.

The MULTIBUS 1-11

1.3.2.3 Configuring Controller Address Lines

Nodes with a 20-bit MULTIBUS implementation can map up to 1024 pages of
MULTIBUS address space through the I/O map to processor memory. As in 16-bit
MULTIBUS systems, controller references to MULTIBUS addresses above 1 MB are
wrapped. Consequently, when you have the choice of configuring a controller to a 24-bit
or a 20-bit address path, configure for a 20-bit address path.

1.3.2.4 Using Interrupt Request Lines

Nodes with a 20-bit MUL TIBUS allocate interrupt request lines in the same way as nodes
with a 16-bit MULTIBUS, except that lines 6 and 7 are also available (although they are
reserved for Domain system-supplied devices). Again, the processor is solely responsible
for acknowledging peripheral device interrupt requests; device controllers should never re
spond to interrupt requests from other peripheral devices on the bus. Table 1-3 lists the
allocation of bus interrupt lines.

1.4 Byte Swapping

The necessity for byte swapping (exchanging the left and right bytes of a word) arises from
the fact that the Domain processor, which is based on the Motorola 68000 family, orders
bytes within a word the opposite of the way Intel processors order them on MUL TIBUS
controllers.

This is how our processor does it: This is how MUL TIBUS does it:

15 8 7 o 15 8 7 0

BYTE 0 I BYTE 1
1r----B- YT--E- 1----'I----B-YT-E--O---,1

1-12 The MULTIBUS

We deal with this incompatibility by swapping bytes in hardware during byte transfers. Ef
fectively, character strings copied as bytes and integers copied as words are preserved, but
character strings copied as words (and words copied as bytes) are byte swapped. The fol
lowing illustrates this strategy:

Word Transfer Byte Transfers

~~~rr~ ______ ~O 1r5~ ____ -..~~~~O 

:E"§i~~":"~:"',,,,: I Iljj[:::;'~i:::::~:::Jlljlll Processor: 

15~rt:m:mn;r--"""l° 
MULTIBUS: 

Note that this strategy uses the' following byte/word arrangements: 

• Pointers to words must be even. 

• Pointers to processor left bytes (byte 0) must be even. 

• Pointers to processor right bytes (byte 1) must be odd. 

The GPIO call pbu_$control is available for 20-bit MULTIBUS implementations (refer to 
Appendix B for a description of the call). This call gives you control over the byte-swap
ping hardware so that you can specify other byte/word arrangements than those just spelled 
out (the pbu_swap_off option gives you the arrangement described previously). By speci
fying the pbu_swap_words option with this call, you ensure that all character strings have 
their byte order preserved regardless of whether they are copied as words or bytes and that 
integers are always byte swapped. The following illustrates byte swapping when 
pbu_swap_words is specified: 

Word Transfer 

Processor: 

a 

MULTIBUS: 

The MULTIBUS 1-13 



By specifying the pbu_swap_bytes option with the pbu_$control call, you ensure that inte
gers have their byte order preserved regardless of whether they are copied as words or 
bytes and that character strings are always byte swapped. The following illustrates byte 
swapping when pbu_swap_bytes is specified: 

Word Transfer Byte Transfers 

Processor: 
1r57777~~ ______ ~O 1r5~-----m~rnm~mO 

:~:',,:~Yi~""~'~,,::~ I Ili:[:::;,rr:~:::::~::::.::::::111 

a 15 

MULTIBUS: 

It should be noted that single byte transfers always occur on MULTIBUS data lines 0 
through 7 and that word transfers use all 16 data lines. 

----- gg ----

1-14 The MULTIBUS 



Chapter 2 

I/O Bus Structures: the VMEbus 

This chapter presents information you need to know about the VMEbus in order to use 
GPIO software to write device drivers for VMEbus devices, specifically, address space allo
cation. grant levels, use of address modifiers, interrupt levels, and software considerations. 
For additional information about the VMEbus, refer to the DN5xx-T Workstations and 
DSP500-T Server Technical Reference manual and the Motorola VMEbus Specification 
Manual, Rev. C.l or IEEE Pl014/D1.2. 

The I/O bus is the network of signal routes through which device controllers and the proc
essor address one another and transfer data. The bus is, therefore, the key hardware 
component of a computer system's I/O structure. Figure 2-1 shows the relationship of the 
I/O bus to a Domain node and a set of controllers. The processor, memory, and memory 
management (address translation) subsystems are linked by an internal bus. Interface 
hardware connects this internal bus to the I/O bus. User-supplied and Domain system
supplied device controllers attach to the I/O bus and, through the bus, link to the node. 

Domain 
Processor and Memory 

Display 

Figure 2-1. Relationship Between a Domain Node and Peripheral Controllers 

The VMEbus 2-1 



2.1 Address Space Allocation 

Because there is no mapping mechanism between the VMEbus and a customer VMEbus 
device, there must be agreement as to what VMEbus addresses are reserved for your con
trollers. In addition, you must be aware that as our allocation of the physical address 
space on existing and future workstations changes, it may be necessary for you to modify 
your controllers to respond to different addresses on different workstations. 

The address layout for the DNSxx-T is listed in Table 2-1. 

Table 2-1. Address Space Allocated for DN5xx-T VMEbus Devices 

Physical Addresses Resource Address/Data Lines 

0OOO-7FFF VMEbus CSRs 16-Bit Addressing, 16-Bit Data Path 
COOO-DFFF VMEbus CSRs 24-Bit Addressing, 16-Bit Data Path 
80000-FFFFF User VMEbus 24-Bit Addressing, 16-Bit Data Path 
200000-2FFFFF User VMEbus 24-Bit Addressing, 16-Bit Data Path 
310000-3FFFFF User VMEbus 24-Bit Addressing, 16-Bit Data Path 
600000-7FFFFF User VMEbus 24-Bit Addressing, 32-Bit Data Path 
800000-FFFFFF User VMEbus· 24-Bit Addressing, 32-Bit Data Path 
3000000-300FFFF VMEbus I/O 32-Bit Addressing, 32-Bit Data Path 

(CSRs) 
3200000-3FFFFFF User VMEbus 32-Bit Addressing, 32-Bit Data Path 

* Available only on DNS70-T workstation. 

2.2 Bus Grant Level 

VMEbus devices should use bus grant level 2. 

2.3 Address Modifiers 

The current DNSxx-T VMEbus interface defines the following address modifiers for all 
references to VMEbus controllers: 

• 2D: 16-Bit Addressing 

• 3D: 24-Bit Addressing 

• OD: 32-Bit Addressing 

Domain system-supplied controllers also use these address modifiers for DMA activity. 

2-2 The VMEbus 



Apollo recommends that the address modifiers that a device uses be held in two program
loadable registers. one for slave responses and the other for master requests. In the initial 
power-on/reset state of the device. it should be possible to load these registers by using 
any address modifier. 

2.4 Interrupt Level 

Customer VMEbus devices are currently assigned to VMEbus interrupt levelS. The 
VMEbus interrupt level used by a customer device should be jumperable to allow for possi
ble changes in interrupt level allocation on future workstations. 

2.5 Status/ID Byte 

A VMEbus controller presents a status lID byte during a VMEbus interrupt acknowledge 
cycle. The operating system uses this byte to distinguish between multiple VMEbus devices 
and by GPIO as the unit number identifying the device. Status/ID bytes F8 through FE 
(corresponding to unit numbers 8 through 14) are available for customer devices; status/ID 
bytes FO through F7 and FF are reserved. 

The Device Descriptor File (DDF) for a VMEbus device defines the bottom nibble of the 
status/ID as the device unit number. 

2.6 Software Considerations 

GPIO software supports memory-mapped I/O. programmed I/O. and DMA operations on 
the VMEbus. 

NOTE: Apollo provides two kinds of calls. pbu_S and pbu2_S. for sev
eral GPIO operations. When referring to either kind inter
changeably. we use the term pbu[2LSroutine_name. 

There is no DMA address translation hardware (110 map) for the VMEbus; the following 
GPIO calls are. therefore. not applicable to drivers that support VMEbus devices: 

• pbu[2LSallocate_map 

• pbu[2LSmap 

• pbu[2LSunmap 

The VMEbus 2-3 



In addition, the following GPIO calls are not applicable to VMEbus devices and cannot be 
used in drivers for VMEbus devices: 

• pbu _ Sdeviee _interrupting 

• pbu_Sdisable_deviee 

• pbu_ Senable_deviee 

• pbu_Seontrol 

• pbu[2LSdma_start 

• pbu[2LSdma_stop 

Otherwise, you use GPIO software when writing drivers for VMEbus devices just as you 
would for MULTIBUS devices. Extensions to the GPIO package to accommodate the 
VMEbus in no way limit the current facilities of GPro. 

2.6.1 Wiring for DMA: pbu_$wire_special 

Since there is no mapping hardware between the customer's device and the VMEbus, de
vice drivers should call pbu_Swire_special (instead of pbu[2LSwire) to wire buffers for 
DMA operations. This call returns a list of physical (VMEbus) addresses at which the 
buffer is located. The customer's driver or controller hardware uses the addresses to per
form the necessary scatter-gather operations. Refer to Appendix B for a full description of 
this call. 

2.6.2 Creating a DDF for a VMEbus Device 

To create a DDF for a VMEbus device, you must specify the -vme option with the erddf 
command. This option indicates to GPIO that the device in question resides on the 
VMEbus. It is recommended that this option be the first specified when building a new 
DDF. Valid unit numbers when the -vme option is specified are in the range 8 to 14 
(pbu_$min_vme_unit to pbu_$max_vme_unit). 

If the -vme option is specified, the specification of a CSR page is optional. If a CSR page 
is specified, it must be page-aligned and in the range 0000-7COO (A16) or 
COOO-DCOO (A24). 

Refer to Appendix A for a full description of the crddf command and the -vme option 
and to Chapter 11, Subsection 11.3.2 for an example of the erddf command with the 
-vme option. 

-------88-------

2-4 The VMEbus 



Chapter 3 

I/O Bus Structures: the IBM 
PC AT Compatible Bus 

This chapter presents information about the IBM PC AT compatible bus in order to use 
GPIO software to write device drivers for PC AT compatible devices, specifically: 1/0 ad
dress and memory space allocation, unit numbering, testing for device presence, DMA and 
interrupt lines, byte swapping, and software considerations. For additional information 
about the PC AT compatible bus, refer to the Domain Personal Workstations and Servers 
Technical Reference manual. 

NOTE: Apollo provides two kinds of calls, pbu_S and pbu2_S, for sev
eral GPIO operations. When referring to either kind inter
changeably, we use the term pbu[2L$routine_name. 

The IBM PC AT Compatible Bus 3-1 



The 1/0 bus is the network of signal routes through which device controllers and the proc
essor address one another and transfer data. The bus is the key hardware component of a 
computer system's I/O structure. Figure 3-1 shows the relationship of the I/O bus to a Do
main node and a set of controllers. The processor, memory, and memory management 
(address translation) subsystems are linked by an internal bus. Interface hardware con
nects this internal bus to the I/O bus .. User-supplied and DOmain system-supplied device 
controllers attach to the I/O bus and, through the bus, link to the node. 

DomaIn 
Processor and Memory 

DIsplay 

Figure 3-1. Relationship Between a Domain Node and Peripheral Controllers 

3.1 PC AT Compatible Address Space 

The physical address space on the PC AT compatible bus that is available to the user con
sists of I/O address space (reserved for device CSRs), and memory address space (reserved 
for memory-mapped controllers). The following subsections describe these two address 
spaces in detail. For additional information on the PC AT compatible bus address space, 
refer to the Domain Personal Workstations and Servers Hardware Architecture Handbook. 

3.1.1 1/0 Address Space 

The I/O address space (O-3FF) is reserved for device CSRs. Table 3-1 lists the address 
ranges within this area that are reserved for Domain system-supplied devices and those 
that are available for customer devices. If your system is not configured with the system
supplied device that occupies a particular address range, then you may use that range for 
your own device. 

3-2 The IBM PC AT Compatible Bus 



Table 3-1. I/O Address Space Allocated for Domain System-Supplied Devices 

B us Address (Hex) Device 

OOO-OFF Reserved 
100-19F Customer Devices 
lAO-1A7 Disk Controller 
lAB-1FF Customer Devices 
200-207 Tape Controller 
20B-21F Customer Devices 
220-23F Apollo Token Ring Network Controller-AT 
240-2F7 Customer Devices 
2F8-2FF Serial-Parallel Expansion (SPE) option - Serial Line 2 
300-307 802.3 Network Controller-AT 
310-317 802.3 Network Controller-AT (Alternate) 
320-33F Apollo Token Ring Network Controller-AT 
340-377 Customer Devices 
378-37F SPE option - Parallel Port 
380-3AF Customer Devices 
3BO-3BF Monochrome Graphics (Alternate Color) 
3CO-3CF Customer Devices 
3DO-3DF Color Graphics (Alternate Monochrome) 
3EO-3EF Customer Devices 
3FO-3F7 Disk Controller 
3F8-3FF SPE - Serial Line 1 

To provide protection for system devices and virtual memory support, addresses in the 
PC AT compatible I/O address space are mapped differently from addresses in 
MUL TIBUS and VMEbus address spaces. Ten-bit consecutive addresses in the I/O ad
dress space are mapped into processor address space in groups of eight bytes, and each 
group is assigned the first eight bytes of a different, but consecutive, page (1024 bytes). 
Thus, the first 1024 addresses in PC AT compatible address space (0-3FF) map to 128 
physical pages (40000-SFFFF ) in processor address space. 

A PC AT compatible controller using three 8-byte CSR addresses might have the following 
type declaration: 

typede£ struct csr-page_t { 
char first_eight[7]; 
char next_eight [7] ; 
char last_eight [7] ; 

} csr-page_t #attribute[device]; 

The IBM PC AT Compatible Bus 3-3 



In Apollo systems. however. the type declaration should be as follows: 

typedef struct csr-page_t { 
char first_eight[8]; 
char padl[bytes-per-page-8] ; 
char next_eight [8] ; 
char pad2[bytes-per-page-8]; 
char last_eight [8] ; 
char pad3[bytes-per-page-8]; 

} csr-page_t Nat tribute [device] ; 

Figure 3-2 illustrates the mapping scheme for the preceding example (csr.J'tr is the pointer 
that pbu_$acquire passes to the device initialization routine after mapping the CSR page(s) 
into driver address space). 

BUS ADDRESS SPACE 

200 .--_____ --, 

207 f--------i 
208 

20F 
210 1----------1 

21 F '---------' 

DEVICE DRIVER 
ADDRESS SPACE 

Figure 3-2. CSR Mapping Scheme for PC AT Compatible Devices 

Sixteen-bit addresses (so-called PC AT addresses. which are not supported on the PC AT 
compatible bus) extend the address range beyond the 1 KB (O-3FF) range of 10-bit 
addresses up to 64 KB (O-FFFF). Such addresses are "folded" and mapped to different 
locations on the same set of 128 physical pages as are occupied by 10-bit addresses. 

3-4 The IBM PC AT Compatible Bus 



Figure 3-3 shows how the 16 bits of an PC AT compatible 1/0 address are translated to a 
processor physical address. 

15 10 9 3 2 o 

AT 

CPU 

Figure 3-3. Mapping a 16-Bit PC AT Address to Processor Address Space 

Apollo provides the cvt_at command to return the iova for 10- and 16-bit addresses. 
The cvt_at command also reports any conflict between the address you specify for your 
device and the address of any system-supplied devices. Refer to Appendix A for the syn
tax and usage. 

3.1.2 Memory Space 

The PC AT compatible memory space is used for memory-mapped and bus-master de
vices. Addresses are mapped one-to-one to processor physical address space. Controllers 
are mapped and unmapped using the GPIO routines pbu2_$map_controller and 
pbu2_$unmap_controller. 

Table 3-2 lists the address ranges that are reserved for Domain system-supplied devices as 
well as those that are available for customer devices. If your system is not configured with 
the system-supplied device that occupies a particular address range, then you may use that 
range for your own device. For a more detailed map of memory space usage, refer to the 
Domain Personal Workstations and Servers Hardware Architecture Handbook. 

The IBM PC AT Compatible Bus 3-5 



Table 3-2. DN3000IDN4000 Physical Memory Allocated for Domain 
System-Supplied Devices 

Physical Address (Hex) Device 

0OOOOO-03FFFF Reserved for the System 
040000-0SFFFF 1/0 Address Space (see Table 3-1) 
OBOOOO-09FFFF Available for Customer Devices 
OAOOOO-OBFFFF Color or Alternate Monochrome Graphics 
OCOOOO-ODFFFF Alternate Monochrome Graphics or Apollo Token 

Ring (ODOOOO-ODFFFF) 

OEOOOO-OFFFFF Alternate Color Graphics or Alternate or Second 
Single-Board Ring (OEOOOO-OEFFFF) 

100000-BFFFFF* Main Memory 
900000-BFFFFF Available for Customer Devices 

COOOOO-CFFFFF PC Coprocessor 
DOOOOO-DFFFFF PC Coprocessor Alternate 
EOOOOO-F9FFFF Available for Customer Devices 
FAOOOO-FDFFFF Monochrome Graphics 
FEOOOO-FFFFFF Available for Customer Devices 

·On the DN4000, this area is not occupied by main memory and is available 
for customer devices. 

3.2 Unit Numbering 

The unit number of an PC AT compatible device is identical with the Interrupt Request 
(IRQ) line. There are 16 possible unit numbers; unit number 0 has the highest priority. 
However, since Domain system-supplied devices also use this range, not all unit numbers 
are available for customer devices. The current allocation of unit numbers as well as the 
interrupt priority (from highest to lowest) assigned to each unit number are listed in 
Table 3-3 for the DN3000 and in Table 3-4 for the DN4000. 

NOTE: In Table 3-3 and Table 3-4 the phrase "or User Device" 
means that the IRQ reserved for a device that is not present on 
the system can be used for another device. 

3-6 The IBM PC AT Compatible Bus 



Table 3-3. Allocation of Unit Numbers on the DN3000 

Unit No. Interrupt 
and IRQ Priority Device 

O· 1 Timer 
1* 2 Keyboard 
2· - Reserved 

3 3 Apollo Token Ring Network Controller-AT 

4 12 SPE - Serial Line 1 or User Device 

5 13 Tape Controller 

6 14 Disk Controller or User Device 

7 15 SPE - Parallel Line or User Device 
8· 4 Calendar - Serial Lines 1 and 2 
9 5 ETHERNET 2, SPE - Serial Line 2 or User Device 

10 6 ETHERNET 1 or User Device 

11 7 PC Coprocessor or User Device 
12 8 User Device 
13· 9 Reserved 
14 10 Disk Controller 
15 11 PC Coprocessor Alternate or User Device 

·This IRQ line is used by_ the processor and is not available on the bus. 

Table 3-4. Allocation of Unit Numbers on the DN4000 

Unit No. Interrupt 
and IRQ Priority Device 

O· 1 Timer 
1· 2 Keyboard 
2· - Reserved 

3 3 Apollo Token Ring Network Controller-AT 

4 12 SPE - Serial Line 3 or User Device 

5 13 Tape Controller 

6 14 Disk Controller or User Device 

7 15 SPE - Parallel Line or User Device 
8· 4 Calendar - Serial Lines 1 and 2 

9 5 ETHERNET 2, SPE - Serial Line 4 or User Device 
10 6 ETHERNET 1 or User Device 

11 7 PC Coprocessor or User Device 
12 8 User Device 
13· 9 Reserved 
14 10 Disk Controller 
15 11 PC COQrocessor Alternate or User Device 

·This IRQ line is used by the processor and is not available on the bus. 

The IBM PC AT Compatible Bus 3-7 



3.3 Testing for Controller Presence 

The PC AT compatible bus does not generate bus time-outs. Therefore, you cannot use 
the GPIO callspbu_$read_csr or pbu_$write_csr to test for controller presence on the 
bus. Instead, you must write to an I/O register control bit and check if the appropriate 
status bites) react as you would expect if the controller were present on the bus. 

3.4 DMA and IRQ Lines 

DMA and IRQ lines typically float on PC AT compatible controllers. Refer to the device 
documentation for specific information on enabling these lines. Generally, however, you 
should do the following: 

• Call pbu[2L$dma_start after enabling the DMA lines and pbu[2L$dma_stop 
before disabling them (refer to Appendix B for information on these GPIO calls). 
If the device only does DMA at your command, you can set a "DMA enable" bit 
in the driver's initialization routine and then do pbu[2L$dma_start followed by 
the data transfer command to the device in your driver. 

• Call pbu_$enable_device after you have set up the controller to have some inter
rupts enabled. Call pbu_$disable_device before you clear all interrupt enables 
from the controller. Refer to Appendix B for more information on these GPIO 
calls. 

3-8 The IBM PC AT Compatible Bus 



3.5 Byte Swapping 

The necessity for byte swapping (transposing the order of the bytes in a word) arises from 
the fact that the Domain processor orders bytes differently from the way that a PC AT 
compatible controller does. To compensate for this, 1/0 hardware performs byte swapping 
during data transfers according to the following rules: 

• 1/0 hardware transposes the bytes of words transferred between the processor and 
the bus. Thus, integers and CSRs defined as 16 bits are byte swapped. For ex
ample, a CSR that has the following internal representation on the PC AT com
patible controller: 

15 7 0 

(;::;1 
.,\ ., Illllllili:il I 
L DMA Enable L Device Busy 

would look like this on our processor: 

7 o 15 8 

111111:1111111 

L Device Busy L DMA Enable 

• Byte swapping does not occur during byte transfers. Thus, characters are trans
ferred correctly. 

The following illustration shows byte swapping between the processor and the PC AT com
patible bus: 

Word Transfer Left Byte Transfer Right Byte Transfer 

CPU: 
v""'" .V .,' .V .V .~ " .. 

,< BYTE 0 ':, 
" ..... ,,1.' .,~ ,," \". ,y.' ",)0 

BUS: 

The IBM PC AT Compatible Bus 3-9 



3.6 Software Considerations 

GPIO software supports four kinds of I/O operations on the PC AT compatible bus: 

• Memory-mapped I/O 

• Programmed I/O 

• DMA by nonbus-master devices 

• DMA by bus-master devices 

Memory-mapped I/O and programmed I/O work on the PC AT compatible bus the same 
way as on the MUL TIBUS or VMEbus and do not require any special GPIO routines. 
DMA operations by both bus-master and nonbus-master devices, however, do require two 
special GPIO routines: pbu[2LSdma_start and pbu[2LSdma_stop. (If your driver is to 
run on the DN4000, use pbu2_Sdma_start and pbu2_Sdma_stop; if on the DN3000, use 
pbu_Sdma_start and pbu_Sdma_stop.) 

If you are writing a driver for a device that cannot request external bus mastership, your 
driver must surround each DMA operation with pbu[2LSdma_start and 
pbu[2LSdma_stop, no matter whether the operation was successful or not. The 
pbu[2LSdma_start routine prepares the processor's DMA hardware for the DMA opera
tion. After the driver calls pbu[2LSdma_start, the controller can begin its operation. 
When the controller indicates that the operation is completed, the driver next calls 
pbu[2LSdma_stop to get status from DMA hardware to ensure that the hardware has 
completed its share of the operation as well. The driver must call pbu[2LSdma_stop 
even if the controller reports an error. The driver may ignore the status returned by 
pbu[2LSdma_stop; however, if the controller had a problem, it is likely that the DMA 
operation did not run to completion. The call to pbu[2LSdma_stop must be made so 
that software can reset its knowledge of who is using the DMA channel. 

If you are writing a driver for a device that can request external bus mastership, your 
driver must call pbu[2LSdma_start once, specifying the pbu_dma_cascade option. This 
option reserves the DMA channel and provides bus arbitration. The pbu[2LSdma_stop 
routine must be called when the device is released. 

For more detailed information on what GPIO routines to call and how to use them when 
performing DMA on the PC AT compatible bus, refer to Chapter 7, Subsections 7.1.1 and 
7.1.2. 

3-10 The IBM PC AT Compatible Bus 



3.7 Creating a DDF for a PC AT Compatible Device 

To create a Device Descriptor File (DDF) for a PC AT compatible device, you must spec
ify the -at option with the crddf command. This option indicates to GPIO software that 
the device in question resides on the PC AT compatible bus. We recommend that this op
tion be the first specified when building a new DDF. Valid unit numbers when -at is 
specified are in the range 0-15, except for those assigned to Domain system-supplied de
vices (see Table 3-3 and Table 3-4). 

The -dma_channel option must be used with PC AT compatible devices to specify the 
DMA channel number that a controller will use. 

Refer to Appendix A for a full description of the crddf command and the -at and 
-dma_channel options and to Chapter 11, Subsection 11.3.1 for an example of the crddf 
command with the -at option. 

----88---

The IBM PC AT Compatible Bus 3-11 





Chapter 4 

Overview of I/O Software 

The major components of I/O software are 

• One or more application programs (user written) 

• GPIO routines and commands (supplied by Apollo) 

• Device driver routines (user written) 

Section 4.1 through Subsection 4.4.3.4 briefly describe these components and show the 
relationships among them. Figure 4-1 shows the relationships among the application pro
gram, the device driver, and the GPIO routines and commands. Subsection 4.4.4 provides 
a driver component checklist for your use when writing a driver. 

Overview of I/O Software 4-1 



A 
P 
P 
L 
I 
C 
A 
T 
I 
o 
N 

or 

S 
T 
R 
E 
A 
M 
S 

M 
G 
R. 

pbu_$acqulre 
or 

pbu_$acqulre_stream 

PROCESS 
SPACE 

------------- -------- --- ------

GPIO ROUTINES 
(PBU Manager) 

Figure 4-1. Interaction of I/O Software 

4.1 Application Program 

, 

SYSTEM 
SPACE 

System Interrupt 
Handler 

The application program can consist of one or more programs. For example, application 
programs can call a device server, which is a collection of programs that perform device
specific processing before calling the device driver to perform an I/O operation. In other 
cases, the application program is the device driver itself. 

4.2 Streams Manager 

For information on how to write and use streams, refer to the Using the OPEN System 
Toolkit to Extend the Streams Facility manual, and to Chapter 12, Subsection 12.1.3 in 
this manual for examples of how to acquire a device with a streams manager using the 
pbu_$acquire_stream routine. 

4-2 Overview of I/O Software 



4.3 GPIO Commands and Routines 

The GPIO commands and routines create the environment in which a device driver runs 
by performing the following: 

• Controlling the acquisition and release of the device 

• Creating and deleting the mapping between a device's memory or registers and 
processor address space 

• Setting up the mechanisms to facilitate data transfers to and from a device 

Table 4-1 lists the files associated with the GPIO software product. The individual com
mands are described in Appendix A, the routines in Appendix B. 

Table 4-1. GPIO Software 

File Contents 

llib/pbu_int_lib Library to be bound with user-written interrupt routines 

llib/pbulib GPIO routines and interface to internal GPIO 
manager, automatically installed at system startup 

Icom/aqdev aqdev (acquire_device) command for users in the 
Domainl Aegis environment (note that the aqdev 
command is not available to users in the Domainl 
BSD4.3 or Domain/SysV environments) 

Icom/rldev rldev (release_device) command for users in the 
Domainl Aegis environment (note that the rldev 
command is not available to users in the Domainl 
BSD4.3 or Domain/SysV environments) 

Icom/crddf crddf (create_ddf) command for users in the 
Domainl Aegis environment 

Icom/cvt_at cvt_at (convert_at_addresses) command 

lusr I apollolbinl crddf crddf (create_ddf) command for users in the 
Domain/BSD4.3 and Domain/SysV environments 

lusr/apollolbin/cvt_at cvt_at (convert_at_addresses) command for users 
in the Domain/BSD4.3 and Domain/SysV 
environments 

Isys/ins/pbu.ins. pas Insert file for Pascal programs using GPIO routines 
lusr lincludel apollo/pbu. h Insert files for C programs using GPIO routines 
Isys/help/pbu.hlp Help file for GPIO routines and command index 

to GPIO commands 
Isys/help/aqdev.hlp Help file for the aqdev command 

Isys/help/rldev. hlp Help file for the r1dev command 

Isys/helpl crddf.hlp Help. file for the crddf command 
Isys/help/cvt_at.hlp Help file for the cvt_at command 
Idomain _ examplesl gpio _examples Directory containing sample drivers 

Overview of I/O Software 4-3 



4.4 Device Driver 

The device driver is a user-written program, or set of programs, that controls a peripheral 
device on behalf of an application program. 

4.4.1 Driver Functions 

In general, a device driver performs the following functions: 

• Ensures that the device is physically present on the bus 

• Initializes the driver control block 

• Allocates resources required for data transfers 

• Processes 110 requests from the application into device-specific commands 

• Reads controller status registers 

• Responds to device interrupts 

• Responds to device time-out conditions 

• Responds to requests to cancel an 110 operation 

• Performs status checking and error logging 

• Returns status from the device to the application that made the 110 request 

4.4.2 Major Components of a Driver 

To carry out these functions, a device driver may include the following routines: 

• An initialization routine called during device acquisition. This routine creates con
troller data structures and readies the device for I/O operations. You must include 
this routine in your driver, using the calling sequence described in Chapter 6, Sub
section 6.1.1. 

• One or more interrupt routines called by the System Interrupt Handler to respond 
to device interrupts. This routine is optional. If you decide to write an interrupt 
routine, use the calling sequence described in Chapter 8, Subsection 8.2.1. 

• A cleanup routine called during device release (by pbu_$release). This routine 
ensures that no 110 is in progress to or from the device and that the device will 
not generate any more interrupts. Write the cleanup routine according to the call
ing sequence in Chapter 6, Section 6.4. Although this routine is optional, we 
strongly recommend that you include it in your device driver. 

4-4 Overview of I/O Software 



In addition, a driver may include one or more of the following routines: 

• A validation routine that checks device-specific parameters of an I/O request 

• I/O preprocessing routines that allocate the needed I/O data structures, depending 
upon the type of transfer and the type of bus 

• A data transfer routine 

• A wait routine that waits for an interrupt or device time-out while the I/O opera
tion is in progress 

• Command handling routines that process commands from the application 

Which of these routines you decide to include in your driver and how you implement them 
depends on the requirements of the device and the application. To help you with the de
sign of your driver, Part 2 of this manual "Writing a Driver" describes the driver compo
nents in detail and explains how to construct them by using GPIO routines. Part 3 "Refer
ence Information" provides information, such as the format and syntax of GPIO com
mands and routines, performance information, and so on. You may also find it helpful to 
refer to the following online sample drivers, located in subdirectories of Idomain_exam
ples/gpio_examples: 

• Versions in C and Pascal of a device driver for a hypothetical "bulk memory" de
vice (see subdirectories bm_example_c and bm_example; see also the program 
listings in Appendixes E [C] and F [Pascal]) 

• A device driver for an Interlan controller (see subdirectory interlan_example) 

• A device driver for a 3Com· controller (see subdirectory threecom_example) 

• A shared driver for the SPE board (see subdirectory global_example) 

To make the device driver accessible to user programs, you must bind the routines as de
scribed in Chapter 10, Subsection 10.1.2. If your driver includes one or more interrupt 
routines, you must bind them separately from the other routines. 

You specify the pathname(s) of the device driver and the entry points of the initialization, 
interrupt, and clean-up routines using the crddf (create_ddf) command. This command 
establishes a DDF that describes the device to the system and allows GPIO routines to call 
driver routines. See Chapter 11 and Appendix A for information about the purpose of the 
DDF, how to build the DDF with the crddf command, and the options available with the 
crddf command. 

When a user process acquires the device (see Chapter 12), the driver routines are loaded 
into its address space so that application programs can call them. The set of driver routines 
that programs can actively call constitutes the call side of the driver, whereas the interrupt 
routine(s) and associated data structures make up the interrupt side of the driver. 

• 3Com is a registered trademark of 3Com Corporation. 

Overview of I/O Software 4-5 



4.4.3 Operation of a Driver: A Dry Run of bm_example 

You may find the online sample driver in bm_example a good place to begin familiarizing 
yourself with a driver. In order to give you a feel for how it functions, the following para
graphs explain a typical DMA operation. The driver was written for a hypothetical bulk 
memory MUL TIBUS device in order to illustrate the general design of a driver and to 
demonstrate the use of GPIO routines. For these reasons, the driver and the fictitious 
controller for which it was written were kept simple: the controller has five 8-bit registers 
and can perform read and write DMA operations. However, bm_example is a compilable 
functioning driver and includes all the major components. Figure 4-2 illustrates how these 
components relate to each other as well as to the application and GPIO routines. A 
slightly reorganized version of the bm_example driver appears in Appendixes E (C) and F 
(Pascal) . 

Note that names of driver routines begin with bm (Bulk Memory), whereas names of 
GPIO routines all begin with pbu (Peripheral Bus Unit). Also, names of driver routines 
that do not include a dollar ($) sign (for example, bm_command) are internal subroutines 
that are not referenced outside the module in which they are defined. 

I aqdev I rldev I I SYSTEM INTERRUPT HANDLER I 
i- i- + 

--:;~ PBU MANAGER I 
P 
P 
L 

I C 
A 

C L 
A LI 
T ---I S 

I 
0 0 
N E 

~ 1 I 
I I bm_ $cleanup I ~r I bm_$read II ~, 

N I I bm_$lnt I .. .. I T S 
bm_$lnlt II bm_$walt 

bm_$wrlte I I 
~ E I .. , I R 0 I bm_ command L I.J bm_$slo I .. R E 

i- I U 
~ .. I P 

I unwire_buffer I I T 
'--- L I 

i- ~, ~ 

DEVICE REGISTERS, DEVICE MEMORY, OR GPIO ROUTINES I 

PERIPHERAL CONTROLLER I 

Figure 4-2. Driver Routines in bm_example 

4-6 Overview of //0 Software 



4.4.3.1 Initialization 

After the device has been acquired, the PBU Manager (a collection of routines that are 
internal to the operating system and manage GPIO resources) activates the driver's initiali
zation routine, bm_$init. This routine does the following: 

• Initializes the driver control block (bmcb) 

• Calls pbu_$write_csr to determine if the device is physically present on the bus 

• Calls pbu_$allocate_map to allocate an area of the I/O map for mapping buffers 
to MUL TIBUS address space 

The bm_$init routine then returns control to the PBU Manager, The driver is now ready 
to accept I/O commands from the application. 

4.4.3.2 Command Processing 

The application calls one of the command-handling routines, bm_$read or bm_$write, 
depending on the type of I/O operation. Either routine immediately calls an internal rou
tine, bm_command, which in turn calls the following GPIO routines: 

• pbu_$wire, to make the I/O buffer permanently resident in processor address 
space so that it is unavailable to the operating system's page-replacement mecha
nisms 

• bm_$sio, to start up the DMA operation 

• pbu_$enable_device, to allow the controller to ,issue interrupts 

When the driver's data transfer routine, bm_$sio (the start I/O routine), is called, it does 
the following: 

• Calls pbu_$map, which maps the I/O buffer into MULTIBUS address space 

• Issues the read or write command to the controller via the CSR page 

Program control then passes from bm_$sio through bm_command and bm_$read/write to 
the application. The application calls the driver's wait routine, bm_$wait, which in turn 
calls the following GPIO routines: 

• pbu_$wait, to wait either for the eventcount to advance (for information about 
eventcounts, refer to Chapter 6, Section 6.3) or for a specified interval to pass, 
whichever comes first 

• pbu_$unmap, to unmap the I/O buffer from MULTIBUS address space 

• pbu_$unwire (called via an internal routine, unwire_buffer), to unwire the I/O 
buffer 

The bm_$wait routine then returns a status code to the application that indicates whether 
or not the I/O operation was complete. 

Overview of I/O Software 4-7 



4.4.3.3 Interrupt Handling 

When the I/O operation is complete, the device issues an interrupt that is intercepted by 
the System Interrupt Handler. The System Interrupt Handler then transfers program con
trol to the driver's interrupt routine, bm_$int. This routine first determines whether any 
more data remains to be transferred. If there is, bm_$int calls bm_$sio to start the next 
data transfer and enables the controller interrupt logic. Once all data has been transferred, 
bm_$int advances the eventcount and returns program control to the PBU Manager. 

4.4.3.4 Cleanup 

The PBU Manager calls the driver's cleanup routine, bm_$c1eanup, when either the appli
cation calls pbu_$release or the user inserts the End-Of-File (EOF) mark (under the 
DM, this is usually done by pressing CTRLlZ or CTRLlD). Initially, bm_$c1eanup deter
mines if an 110 operation is still in progress. If so, it either resets the controller or calls 
bm_$wait, depending on what the application specifies. Regardless of whether an 110 op
eration is still in progress, bm_$cIeanup calls the following GPIO routines: 

• pbu_Sfree_map, to release the area of the 110 map previously allocated by 
pbu_ Sail ocate _map 

• pbu_$disable_device, to prevent the controller from issuing any more interrupts 

The bm_$cIeanup routine then returns program control to the PBU Manager, thus con
cluding operation of the driver. 

4-8 Overview of I/O Software 



4.4.4 Driver Checklist 

Following is a checklist of components that can be included in a driver. Italicized items 
must be included. Whether or not you decide to include any of the other items depends 
on the device you are supporting, the application, and your convenience. 

o Insert files (Chapter 5) 

Q System Insert Files (Section 5.1) 

Q CSR Page (Subsection 5.2.1.1) 

Q Driver Control Block (Subsection 5.2.1.2 ) 

o Call-Side Library (Chapter 6) 

Q Initialization Routine (Section 6.1) 

Q Command-Processing Routine (Section 6.2): Required if the device is to be 
under the control of the application 

Q Wait Routine (Section 6.3): Necessary if your driver has an interrupt routine 

Q Cleanup Routine (Section 6.4): Highly recommended 

Q Data-Transfer Routine (Chapter 7): Can be installed in either the call-side 
library or (if one exists) the interrupt-side library 

o Interrupt Library (Chapter 8): Required only if your driver has an interrupt rou
tine 

Q Interrupt Routine (Section 8.2): Required if your device handles interrupts 
and performs asynchronous transfers 

Q Start I/O Routine (SIO) (Section 8.3): Must be installed in the interrupt-side 
library if called by any interrupt-side routine; otherwise, can be included as 
part of the data-transfer routine in the call-side library 

o Device Descriptor File: (Chapter 11) 

-------88-------

Overview of I/O Software 4-9 





Chapter 5 

Insert Files 

Insert files are included in the driver to enable it to reference certain resources: either sys
tem calls that reside outside the driver (GPIO routines) or routines and data structures that 
exist within the driver and which both call-side and interrupt-side routines can reference. 
To reference any of these resources, you must specify the pathname of the insert file (us
ing the #include keyword in C or the %INCLUDE directive in Pascal) in the module where 
the calling routine resides. This chapter describes which system insert files to include in the 
driver and explains how to set up driver-specific insert files. For a description of insert 
files in general and available system calls, see the Programming with Domain/OS Calls 
manual. 

NOTE: Unlike Pascal, the C programming language is case-sensitive; 
therefore, all system procedure names (such as GPIO routines) 
must be lowercase, which is consistent with their appearance in 
the system insert files. However, any global names in C that are 
accessed by GPIO routines are case-sensitive. 

Insert Files 5-1 



5.1 System Insert Files 

Table 5-1 shows the pathnames for the required and optional system insert files. 

Table 5-1. System Insert Files 

Language Required Insert Files Optional Insert Files 

Pascal /sys/ins/base. ins. pas / sys/ins/vfmt. ins. pas 
(base definitions) (variable formatting calls) 

/sys/ins/pbu. ins. pas /sys/ins/error.ins.pas 
(GPIO routines) (error reporting calls) 

C <apollo/base. h> <apollo/vfmt.h> 
(base definitions) (variable formating calls) 

<apollo/pbu. h> <apollo/ error. h> 
(GPIO routines) (error reporting calls) 

5.2 Driver-Specific Insert Files 

Driver-specific insert files serve as links between the call side and the interrupt side of the 
driver and between the driver and the application. They fall into two categories: 

• Public Insert Files: Declare data structures and driver routines that the application 
can use 

• Private Insert Files: Declare the structures and routines to which the driver alone 
refers 

This division between public and private is admittedly an artificial distinction, and you may 
wish to ignore it by creating only one driver-specific insert file, especially if your driver is 
simple and straightforward. However, creating two insert files does have the advantage of 
presenting to the user, who may not care to know the inner workings of the driver, only 
what is pertinent to interfacing the application with the driver. At any rate, we have fol
lowed the distinction here, and Subsections 5.2.1 and 5.2.2 describe private and public 
insert files separately. 

Examples of public and private insert files appear in the bm_example in Appendix F, Sec
tions F.1 and F.2. 

5-2 Insert Files 



5.2.1 Private Insert File 

The private insert file connects the call and interrupt sides of the driver. It is where you 
declare those internal components (flags, pointers, records, etc.) that are common to both 
sides. The three most important of these components (the CSR page, the driver control 
block, and internal driver routines) are described in Subsections 5.2.1.1 through 5.2.1. 3. 

5.2.1.1 CSR Page 

The CSR page is a record structure that defines the controller's internal registers which the 
driver needs to access, such as the command, status, and address registers. It is through 
the CSR page that the driver reads and writes to those registers. For this reason, it is im
portant to set up each field in the CSR page so that it exactly matches the position of the 
corresponding register in controller memory. This procedure ensures against, for example, 
the driver writing to what it takes to be a write-only command register when in fact it is a 
read-only status register. 

An example of a CSR page as declared in a private insert file follows: 

typedef union mm_csr-page_t { 
struct { 

} c' , 

unsigned char command; 
unsigned char status; 
unsigned char pad_I; 
unsigned char r_data; 
unsigned char pad_2; 
unsigned char int_status; 
unsigned char pad_3; 
unsigned char pad_4; 
unsigned char d_data; 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

char 
char 
char 
char 
char 
char 

int_enable; 
pad_5 ; 
pad_6; 
pad_7; 
pad_8; 
pad_9; 

char all[bytes-per-page]; 
} mm_csr-page_t Uattribute[device]; 

Insert Files 5-3 



As you examine the previous example, note the following points: 

• The #attribute [device] directive in this example is designed for use in a device 
driver to protect against any undesired compiler optimization. Its function is ex
plained more fully in Appendix C, Section C.3. 

• The record structure itself is of the union type so that, in this case, the CSR page 
can be accessed either as a whole or register by register; it could, however, have 
been constructed of fixed parts only, depending upon the requirements of the 
driver. 

• Each structure member is of the char data type because each register consists of 
eight bits; that is, the space allocated to the char data type. (Use of the char data 
type, or arrays of chars, to specify structure members ensures that the compiler 
does not perform improper compressions.) 

• The field" all" is declared as an array of bytes.,JJer.,JJage chars because that is the 
space allocated to any CSR page. 

• Finally, pads are used where appropriate to maintain proper spacing between regis
ters. Note that pad_5 through pad_9 could also have been coded as an array: 

char pads [9-5+iJ ; 

• In this CSR page, the interrupt enable register (int_ enable), a write-only register, 
is offset at 09 hex from the base address. If we were to remove the pads from 
the CSR page record, int_enable would then be offset at 05 hex. Any attempt to 
write to this register would result in a bus time-out error since we would actually 
be trying to write to a read-only register, the interrupt status register (int_status), 
which is offset at 05 hex. If you are in any doubt about the positioning of fields 
within the CSR page, you should use the compiler's -map option so that you can 
check the field displacements within the CSR page definition. 

• The record structure that defines the CSR page is referenced as a pointer; for this 
reason, a declaration such as the following also appears in the private insert file: 

typedef union mm_csr-»age-»tr_t { 
mm_csr-»age_t *c; 
pbu_$csr_page-»tr_t p; 

} mm_csr_page-»tr_t; 

• The pointer in this example is declared as a union so that it can be used in two 
different contexts, either in the driver or in a GPIO routine. 

For tips on setting up the CSR page, refer to Appendix C, Section C.l. 

5-4 Insert Files 



5.2.1. 2 Driver Control Block 

Although the driver control block is optional, you may find it useful to include one in your 
driver as a storage area to be used for communications between the call and interrupt 
sides. It contains information that is shared by different driver routines and continuously 
updated, such as status flags, buffer address and length, and so on. The nature and layout 
of this information depend upon the requirements of the driver and the convenience of the 
programmer. In the following example, because the control block is referenced by the in
terrupt handler, it must be part of the interrupt library. 

It should be noted that, for drivers written in Pascal, if the control block is referenced by 
the interrupt side, it must be allocated (using the DEFINE clause) in the interrupt library; 
for more information on defining globals in drivers written in Pascal or C, refer to Appen
dix C, Subsection C.2.S. 

The driver control block in bm_example_c is declared in bm.h as follows: 

typedef union { 
struct { 

unsigned int 

unsigned int 
unsigned int 

unsigned int 

unsigned int 
} b; 
char all; 

} bm_$flags_t; 

init: 1; 

buffer_wired 
busy 1; 

done l' . 
pad : 4; 

/* set to true when controller 
initialized * / 

1; /* set when a buffer is wired */ 
/* set when an operation is in 

progress */ 
/* set by interrupt routine when 

transfer completes */ 
/* fill out to byte ? */ 

/* status register definition */ 

typedef union { 
struct { 

unsigned 

unsigned 

unsigned 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

} b; 
unsigned 

} bm_$status_t; 

int 

int 

int 

int 
int 
int 
int 
int 

char 

attention: 1; /* 1 => change in controller 
status */ 

status_modifier : 1; /* 1 => current 

busy : 1; 
channel_end 

/* 1 
l' • 

device_end : 1; 
unit_check : 1; 
unit_exception 

all; 

status unavailable */ 
1;/* 1 => busy condition 

cleared */ 
=> controller currently busy */ 

/* 1 => end of operation */ 
/* 1 => end of operation */ 
/* 1 => parity error in bm */ 
/* 1 => illegal bm address */ 

Insert Files 5-5 



typedef struct { 
pbu_$unit_t 
bm_$flags_t 
char 
pbu_$ddfJ)tr_t 
bm_$csrJ)ageJ)tr_t 
pbu_$iova_t 

bm_$bufJ)tr_t 
bm_$buf_Ien_t 
bm_$bm_address_t 
unsigned char 

bm_$status_t 
status_$t 

bm_$bufJ)tr_t 
bm_$buf_Ien_t 
unsigned char 

unsigned char 
unsigned char 

} bm_$bmcb_t; 

pbu_unit_number; 
/* define communications area */ 
/* number of this pbu device */ 

flags; 
pad; 
ddfJ)tr 
csrJ'tr; 
bm_iova; 

bufaddr; 
buflen; 
bm_address; 
command; 

/* a byte of padding 
/* pointer to mapped 
/*pointer to mapped 
/* start of our area 

space */ 

*/ 
ddf */ 
csr page */ 
of i/o address 

/* address of start of buffer */ 
/* total length of buffer */ 
/* address of start of bm area */ 
/* current command (read or 

write) */ 
/* length remaining to read or 

write */ 
status; /* 
sio_status; /* 

status from last interrupt */ 
status from bm_$sio (start I/O 
routine) called from int side */ 

io_addr; 
io_len; 
init_cmd; 

read_cmd; 
write_cmd; 

/* address of last i/o transfer */ 
/* length of last i/o transfer */ 
/* initialization command (see 

bm_$init!) */ 
/* read command */ 
/* write command */ 

/* main control block */ 

5.2.1.3 Internal Driver Routines 

The only routines that must be referenced (using the EXTERN clause) in the private insert 
file are those functions and procedures that are shared by the call and interrupt sides, but 
not by the application. These routines must be allocated in the interrupt side. In 
bm_example, there is only one such routine: bm_Ssio (the start 1/0 routine). However, 
you may wish to list all external routines (except those already referenced in the public 
insert file; see Subsection 5.2.2) for documentation purposes. 

5.2.2 Public Insert File 

The public insert file is a convenience for the user who wants to know only what is neces
sary to interface the driver with the application. It therefore typically contains device 
status codes that the user may want to access and any user-callable routines within the 
driver, such as status-checking routines and user-visible entry points. The three user-call
able routines listed in the bm_example_c public insert file, bm.h, are bm_Sread, 
bm_Swait, and bm_Swrite. 

-------88-------

5-6 Insert Files 



Chapter 6 

Call-Side Routines 

This chapter describes the following call-side routines: 

• Initialization 

• Command Processing 

• Wait 

• Cleanup 

The data-transfer routine, which may be included in either the call-side library or the in
terrupt-side library, is treated separately in Chapter 7. 

For information on fault handling, refer to the description of the PFM calls in the Do
main/OS Calls Reference manual. 

NOTE: Unlike Pascal, the C programming language is case-sensitive; 
therefore, all system procedure names (such as GPIO routines) 
must be lowercase, which is consistent with their appearance in 
the system insert files. However, any global names in C that are 
accessed by GPIO routines are case-sensitive. 

Call-Side Routines 6-1 



6.1 Initialization 

The device acquisition routine, pbu_$acquire, calls the driver initialization routine to per
form the functions necessary to ready a controller for I/O operations. Typically, these func
tions include: 

• Initializing any internal storage for the device driver and writing to it the device 
unit number and pointers to the CSR page and the DDF. 

• Accessing the DDF (if necessary) to determine how the controller is configured on 
the system. 

• Ensuring that the controller is present on the bus. 

• Allocating I/O resources and saving pointers to these resources within the driver's 
control block. The resources allocated depend upon the method of data transfer 
used by the controller and the type of bus. 

• Performing controller-specific initialization. This step can include setting up any 
initialization control blocks or data structures that the controller requires. 

• Enabling device interrupts. 

It should be noted that the initialization routine need not return after it initializes the de
vice; it can perform all required device I/O, service requests from other processes, and so 
on. 

Chapter 7 describes resource allocation for DMA and memory-mapped 110, and Chapter 
8, Subsection 8.2.2 describes device enabling and disabling. Subsections 6.1.1 through 
6.1.4 give more information about the required calling format for the initialization routine, 
initializing driver storage, testing for controller presence, and setting up controller-specific 
data structures. For an example of an initialization routine, see the bm_$init routine in 
Appendix E, Section E.2 (C) and Appendix F, Section F.3 (Pascal). 

6-2 Call-Side Routines 



6.1.1 Initialization Routine Format 

The initialization routine is called by GPIO software and must, therefore, conform to the 
following calling sequence (shown in C and in Pascal): 

Synopsis (C) 

Synopsis (Pascal) 

Description 

void initialization_routine ( 
pbu_$unit_t 
pbu_$ddf...,.ptr_t 
pbu_$csr""'page...,.ptr_t 
status_$t 
) ; 

&unit, 
&ddf...,.ptr, 
&Csr...,.ptr, 
*status 

procedure initialization_routine ( 
in unit: pbu_$unit_t; 
in ddf...,.ptr: pbu_$ddf...,.ptr_t; 
in csr...,.ptr: pbu_$csr""'page...,.ptr_t; 
out status: status_$t 
) ; 

If the initialization routine returns a nonzero status, pbu_$acquire unloads the driver, re
leases the device, and returns an error status to its caller. 

The input and output parameters are described as follows: 

csrytr 

ddfytr 

status 

unit 

The virtual address of the device's CSR page in pbu_Scsryageytr_t for
mat. 

A virtual address of the DDF in pbu_Sddfytr_t format. This data type 
is described in Appendix B, Section B.1. 

Completion status in status_St format. 

The device unit number in pbu_Sunit_t format. 

Call-Side Routines 6-3 



6.1.2 Initializing Driver Internal Storage 

Some device drivers may require an internal storage area, such as a driver control block, 
to be used for communications between their call and interrupt sides. (The interrupt side 
of the driver allocates this storage area, using the DEFINE clause, see Appendix C, Sub
section C.2.5.) If a storage area has been defined, it should be initialized by the initializa
tion routine. (When pbu_$acquire maps the page that contains the device's CSRs into 
user-process address space, it passes a pointer to the CSR page to the initialization routine. 
If the initialization routine has stored the pointer, your program can refer to the CSR page 
as necessary.) The routine can then optionally store pointers to the mapped CSR page 
and DDF within it. During an I/O transfer, the call and interrupt routines can read and 
write to it such information as I/O buffer location and length, current transfer status (read 
or write), interrupt status, and other statistics. 

In bm_example_c, the initialization routine, bm_$init, initializes the control block bmcb 
with the following assignments: 

bmcb.pbu_unit_number = unit; 

bmcb.ddf-ptr = ddf-ptr; 
bmcb.csr-ptr.p = csr-ptr; 

6.1.3 Testing for Device Presence 

/* unit number to pass pbu 
manager */ 

/* pointer to mapped ddf */ 
/* pointer to mapped controller 

page */ 

If a device is not present on the bus (MUL TIBUS or VMEbus only) or if the driver at
tempts to reference a nonexistent CSR, the system generates a bus time-out error and re
turns the application program to the shell command level (unless it has specified a fault 
handler; see Chapter 7, Subsection 7.1.4). 

The initialization routine can test for a device's presence by reading or writing to its CSR 
with the routines pbu_$read_csr or pbu_$write_csr. If the read or write request causes a 
bus time-out error, the routines suppress normal bus time-out handling and instead return 
an error status to the driver. In this way, the driver can retain control even if the device is 
not responding or does not exist. (Device drivers can also use pbu_$read_csr and 
pbu_$write_csr to refer to addresses on a memory-mapped controller; see Chapter 7, 
Subsection 7.2.2.) 

NOTE: The PC AT compatible bus does not generate bus time-out er
rors, which means that you cannot use pbu_$read_csr or 
pbu_$write_csr to test for device presence; instead, you must 
tweak the appropriate device register and see if it responds as 
you would expect if the device were present. 

6-4 Call-Side Routines 



In the following segment from bm_example_c, bm_$init calls pbu_$write_csr in order to 
test for device presence and to initialize it. After pbu_$write_csr returns, bm_$init 
checks status for a nonzero value, indicating that the device was not present; if the status 
is nonzero, program control returns to pbu_$acquire. 

pbu_$write_csr(bmcb.pbu_unit_number, /* number of this pbu 
device */ 

(char)bmcb.csr-ptr.c->command, /* the command 
register */ 

BM_INIT_CMD, /* initialization 
command */ 

false, /* do a byte, not word 
write to command 
reg */ 

status); /* returned status */ 

if (status->all == pbu_$bus_timeout) { /* controller probably 
not there if error */ 

} 

status->all = bm_$no_controller; 
return; 

else if (status->'all != status $ok) { 
status->s.fail = 1; 
return; 

This next example (taken from /domain_examples/gpio_examples/global_example), 
tests for the presence of the device by issuing several device-specific commands. 

{ To test for the presence of the controller and that we are handling} 
{ the CSR page pointer correctly we will write to the controller and} 
{ check if the appropriate status bit(s) react as you would expect } 
{ if the controller were present on the bus } 

with cb.device_csr-ptr.c~ : csr do begin 

{ Initialize controller to test for it's presence} 

cb.line_cntrl_copy.wrd_len := 3; { 8-bits/char } 
cb.line_cntrl_copy.dlab := false; { latch/off} 
csr.line_cntrl := cb.line_cntrl_copy.all; 
time_$wait(time_$relative, device_wait_time, st); 

csr.int_enable := no_interrupts_byte; { disallow all} 
{ interrupts } 

time_$wait(time_$relative, device_wait_time, st); 

cb.modem_cntrl_copy.loop := true; { loopback } 
csr.modem_cntrl := cb.modem_cntrl_copy.all; 
time_$wait(time_$relative, device_wait_time, st); 

Call-Side Routines 6-5 



cb.line_cntrl_copy.dlab := true; { latch/on} 
csr.line_cntrl := cb.line_cntrl_copy.all; 
time_$wait(time_$relative, device_wait_time, st); 

csr.data := chr(12); { set baud rate to 9600 } 
time_$wait(time_$relative, device_wait_time, st); 

csr.int_enable := chr(16#00); {set second baud rate byte} 
time_$wait(time_$relative, device_wait_time, st); 

cb.line_cntrl_copy.dlab := false; { done with setting baud} 
{ rate, latch/off} 

csr.line_cntrl := cb.line_cntrl_copy.all; 
time_$wait(time_$relative, device_wait_time, st); 

{ To test for the presence of the controller we will write to the} 
{ transmit register. This should cause the 'data ready' bit in the line} 
{ status register to become true. Next we will read the receive} 
{ register. This should cause the 'data ready' bit in the line status} 
{ register to become false. } 

csr.data := chr(16#5a); { write dummy data to transmit reg} 
time_$wait(time_$relative, device_wait_time, st); 

cb.line_st_copy.all := csr.line_st; 
if not cb.line_st_copy.data_rdy then begin 

if dbg in cb.flags then 
vfmt_$write2('data ready NOT true, should be 

status.all .- device_no_controller; 
return; 
end; 

6.1.4 Initializing Controller Data Structures 

true%. ' ,0, 0) ; 

Certain controllers, particularly those based on Intel 8089 110 processors, may need to use 
initialization control blocks or other data structures that are located at preset, or hard
wired, memory addresses. During initialization, the controller makes DMA references to 
these control blocks that are indistinguishable from normal DMA transfers to and from 
processor memory. If a controller uses hard-wired addresses during initialization, the in
itialization routine must first allocate memory for these addresses. 

6-6 Call-Side Routines 



6.1.4.1 Allocating Hard-Wired Control Blocks on the MULTIBUS 

The initialization routine allocates hard-wired addresses by 

• Calling the routine pbu_$allocate_map 

• Specifying the memory's starting address within MULTIBUS memory 

• Giving a length, which must be in 1024-byte increments 

As stated in Chapter 1, Subsection 1.2.2, each 110 map entry maps one page of 
MULTIBUS memory address space. The pbu_$allocate_map routine allocates the 110 
map entries that correspond to the MUL TIBUS address specified in the call, thereby re
serving the addresses occupied by the control blocks. 

For example, if a controller refers to MULTIBUS address FFF6 for an initialization con
trol block, the initialization routine calls pbu_$allocate_map and specifies MULTIBUS 
address FCOO (because it is a page-aligned address) and a length of 1024. Because the 
routine specifies a particular address, the /orceJlag parameter must be set to "true" (see 
Appendix B for a syntactic description of the GPIO call pbu_$allocate_map). If the driver 
needs to allocate two pages of address space in addition to the page required during in
itialization, it specifies a MULTIBUS address of F400 (FCOO-BOO) and a length of 3072. 

Controllers that use hard-wired control blocks during initialization greatly reduce the flexi
bility with which the 110 map can be allocated. Moreover, if several peripheral devices are 
simultaneously in use, the MULTIBUS address that the controller requires might already 
be allocated to another controller. Since most controllers allow you to specify hard-wired 
MULTIBUS addresses by setting switches on the controller, you should refer to the infor
mation in Table 1-2 to avoid setting MULTIBUS addresses that Domain controllers are 
likely to use. 

NOTE: We make no guarantee that the addresses currently used by Do
main controllers will not change. 

6.1.4.2 Defining Page-Aligned Control Blocks 

Device drivers for controllers using hard-wired initialization control blocks or PC AT com
patible and VMEbus controllers that need to align a 1-KB buffer must also ensure that the 
data area used to define the control blocks is page aligned by allocating a buffer at least 
one page larger than the required size. 

Call-Side Routines 6-7 



The following program allocates a page-aligned buffer for a data area less than or equal to 
one page, and then sets the sixth byte in the page to 0 ("bytesyeryage" is defined in 
pbu.ins.pas) : 

#nolist; 
#include n<apollo/base.h>n 
#include n<apollo/pbu.h>n 
#list; 

typedef struct buffer_t { 
char page [bytes-per-page] ; 

} buffer_t; 

char buffer [2*bytes-per-page-l] ; 

main(argc, argv) 
int argc; 
char *argv[]; 
{ 

p (buffer_t *) buffer; 

/* define buffer page */ 

/* point to start of buffer */ 

p (buffer_t *) «(unsigned long)p + bytes-per-page-l) 
& -(bytes-per-page-l»; /* round up to page boundary */ 

printf(nbuffer = %lx, p = %lx\nn, buffer, p); 

exit (0) ; 
} 

You can also page align control blocks and data buffers when you bind the driver by using 
the -align option; refer to Chapter 10, Subsection 10.1. 2.1. 

6.2 Command Processing 

The driver's command-processing routine (or any other driver routine that performs com
mand processing) is the application's entry point into the driver. The command-processing 
routine receives 110 requests from the application and, on the basis of those requests, 
passes the appropriate command to the device. There are several ways to set up command 
processing in the driver. The driver may include routines for each kind of I/O request that 
the application may issue; one routine may handle all requests, or the initialization routine 
may do all command processing (it all depends upon the requirements of the application 
and the kinds of I/O that the peripheral device services). 

6-8 Call-Side Routines 



Command processing in bm_example is performed by two types of routines (see Appendix 
B. Section B.2 [CD and Appendix F. Section F.3 [Pascal]: 

• Command-specific routines. bm_$read and bm_$write. that the application can 
call 

• An internal routine. bm_command. that is called by the command-specific rou
tines to perform any common processing before passing control to the routine that 
starts the I/O operation 

Depending on whether the application wants the controller to do a read or write operation: 

• The application calls either bm_$read or bm_$write, passing as parameters: 

The data buffer to be transferred 

Its address 

The bulk memory address 

• The bm_$read or bm_$write routine passes the same parameters, along with the 
specific controller commands, to bm_command 

It The bm_command routine: 

Takes care of any processing common to both read and write commands, such 
as checking to see that the controller has been initialized and is not busy and 
validating buffer length and address 

Wires down the buffer by calling pbu_$wire (wiring ensures that no buffers 
are removed from memory. or "paged out," during the I/O operation) 

Calls bm_$sio to start the I/O operation 

The following program segment from bm_command shows how it prepares for 
the call to bm_$sio (the expressions in the assignment statements were passed 
to bm_command as parameters by one of the command-specific routines): 

bmcb.command command; /* command to perform */ 
bmcb.io_addr bmcb.bufaddr; /* first address to transfer */ 
bmcb.rem_len len; /* length "remaining" to transfer */ 
bmcb.bm_address = bm_address; /* where to start in the bm */ 
bm_$sio(status); /* start up the operation */ 

Just before returning, bm_command enables interrupts by calling 
pbu $enable device. - -

Call-Side Routines 6-9 



6.3 Waiting for Device Interrupts 

The function of a wait routine is to defer any driver activity until either an interrupt occurs 
(usually indicating the end of an I/O operation) or a specified time-out value elapses. 
Wait routines, or for that matter any other driver routine, can wait for interrupts from a 
device by calling either pbu_$wait alone or both pbu_$get_ec and ec2_$wait. The wait 
routine in bm_example is bm_$wait; see Appendix E, Section E.2 (C) and Appendix F, 
Section F.3 (Pascal). 

6.3.1 Using pbu_$wait 

Drivers (and their applications) use pbu_$wait if they need to wait for only three events: 

• Device interrupt 

• Device time-out 

• Quit fault (asynchronous fault) from the terminal user 

The pbu_$wait routine waits for any or all of the these events by checking for either of 
the following conditions: 

• The System Interrupt Handler has advanced the device's eventcount since the last 
call to pbu_$wait. If the eventcount is advanced, pbu_$wait returns immediately. 
Eventcounts are described in Chapter 8, Subsection 8.2.3. 

• A positive time-out value. If the time-out value is less than or equal to 0, 
pbu_$wait returns. Otherwise, the routine waits for the specified interval or until 
the System Interrupt Handler requests an eventcount advance. 

The pbu_$wait routine contains an internal flag that indicates whether or not the System 
Interrupt Handler has advanced the device's eventcount. When pbu_$wait returns, it re
sets this flag to indicate an eventcount advance. 

The caller can also permit quit faults (CTRLlQs or CTRLlDs) to terminate the wait state 
by specifying a parameter to pbu_$wait; refer to Appendix B for a description of 
pbu_$wait calling format. 

The bm_$wait routine in bm...;example_c specifies "index" as the output parameter of 
pbu_$wait. Depending on whether the value of index is 0, 1, or 2, bm_$wait then deter
mines which of the three events occurred and acts accordingly. 

6-10 Call-Side Routines 



The following segment illustrates how bm_Swait handles this task: 

if (!bmcb.flags.done) { 

} 

pbu_timeout timeout; /* value in seconds */ 
pbu_timeout = (pbu_timeout == 0) ? (3600 * 1000) 

(pbu_timeout * 1000); 

/* 
* We want the ability to handle any faults through the 
* return value of pbu_$wait, when we enable again, we 
* will get the fault. If we did not inhibit before the 
* pbu_$wait call, and we received a fault, we would not 
* be able to cleanup (unmap and unwire buffer) since we 
* would be blasted back to the shell or the last fault 
* handler. 
*/ 

pfm_$inhibit() ; /* inhibit faults */ 
index = pbu_$wait(bmcb.pbu_unit_number, 

pbu_timeout /* number of 

true, 

status); 

milliseconds to wait */ 
/* true means allow quits 

while waiting * / 

if (status->all != status_$ok) { /* he didn't like 
something */ 

} 

status->s.fail = 1; 
return; 

else index = 0; /* transfer already complete */ 

switch (index) { 
case 0: 

case 1: 

case 2: 

/* The operation completed. Get the ending status and 
* length transferred for the caller. 
*/ 

bm_status->all = bmcb.status.all; 
if (bmcb.status.all == bm_$sio_error) 

status->all = bmcb.sio_status.all; 
else if (bmcb.status.all != bm_$status_ok) 

status->all = bm_$io_error; 
*rem_len = bmcb.rem_len; /* residual count */ 
break; 

/* the operation did not complete in time. */ 
status->all = bm_$timeout; 
break; 

Call-Side Routines 6-11 



default: 

} 

/* 
* the user typed control-q while we were waiting. Note: 
* the standard system fault catcher will blast us 
* directly back to shell command level, so we'd never 
* get here. But just in case the fault catcher chooses 
* to ignore the quit, we'll handle it. 
*/ 

status->all = bm_$quit_during_wait; 
break; 

printf("Invalid pbu_$wait index value, %d\n", index); 

Table 6-1 shows how pbu_$wait responds to asynchronous faults (quit faults), depending 
on whether asynchronous faults are inhibited or enabled and whether errors are handled 
by the cleanup handler or by the fault handler. 

Table 6-1. pbu_$wait Actions When Asynchronous Faults Are Inhibited/Enabled 

Handler Asynchronous Asynchronous 
Response Faults Faults 

Inhibited Enabled 

Cleanup Handler Does not handle fault, but Executes cleanup handler 
Response returns indication that 

quit fault did occur 

Fault Handler Does not handle fault, but Executes fault handler; if 
Response returns indication that fault handler returns con-

quit fault did occur trol to the interrupted 
code, pbu_$wait returns 
an indication that a quit 
fault occurred 

A device driver or one of its applications may want to wait for more events than device 
interrupt, time-out, or quit fault. For example, an application may be simultaneously han
dling a peripheral device and fielding commands from the terminal. In this case, the appli
cation uses system routines pbu_$get_ec and ec2_$wait to wait for a variety of events, 
including device interrupt. 

6-12 Call-Side Routines 



The driver routine or application specifies the following as arguments to pbu_$get_ec: 

• The unit number of the device. 

• A key that indicates which eventcount to get. Currently, the key must be 
pbu_$get_device_ec. 

The pbu_$get_ec routine returns a value that identifies the device's eventcount. Drivers 
need to call pbu_$get_ec only once during the time the device is acquired; they should 
store the returned pointer for subsequent use. However, no errors occur if pbu_$get_ec is 
called more than once. 

Next, the application or driver routine constructs two lists: 

• A list of identifiers for any eventcounts to be waited on, including the identifier 
returned by pbu_$get_ec 

• A list of satisfaction values for each eventcount 

The routine (or application) specifies these lists as parameters to ec2_$wait. This system 
routine waits until one of the eventcounts reaches its corresponding satisfaction value and 
returns an index value that indicates which eventcount was satisfied. 

The following example shows how to wait for device interrupt with ec2_$wait. (For a de
scription of ec2_$wait and the other eventcount routines, refer to the Domain/OS Calls 
Reference manual.) 

#nolist; 
#include <apollo/base.h> 
#include <apollo/pbu.h> 
#list; 

boolean 
dev_$wait(uec, uecval. st) 
ec2_$ptr_t *uecp; 
long &uecval; 
status_$t *st; 
{ 

int i; 
ec2_$ptr t ecp; 

ec2_$ptr_t ec-ptr_Iist[2] ; 
long ec_val_list[2] ; 

/* get the device ec */ 

/* true => device advance */ 
/* false => user's ec advanced */ 
/* user's eventcount */ 
/* user's eventcount value */ 

/* ec ptr list and value arrays */ 

pbu_$get_ec(unit. pbu_$get_device_ec. &ecp. st); 
if (st->all != status_$ok) 

return(false); /* no eventcount */ 

Call-Side Routines 6-13 



} 

/* wait for either the device or the user's ec to be advanced */ 
ec-ptr_list[O] ecp; 
ec_val_list[O] ec2_$read(*ecp) + 1; 
ec-ptr_list[l] uecp; 
ec_val_list[l] uecval; 

/* if the operation is already done, don't wait, just 
return success */ 

if (op_already_done) 
return (true) ; 

i ec2_$wait(ec-ptr_list, ec_val_list, st); 
if (st->all != status_$ok) 

return(false); /* no eventcount */ 

return(i-1 == 0); /* eC2_$wait returns 1 .. n */ 

In the example, op_already_done is a flag that the user-written interrupt routine sets when 
an interrupt is received from the device. The example procedure checks the flag after it 
calculates the eventcount value to wait for. In general, whenever a program waits for an 
eventcount, it must provide a method (other than the eventcount itself) by which it can 
identify whether or not the desired event has already occurred. 

NOTE: The variable returned by pbu_$get_ec is an ec2_$ptr_t, which 
is not a normal pointer. Do not assume that it contains a virtual 
address. 

The driver can go about other business while an I/O operation is in progress. In this case, 
the driver should return an eventcount for the application to wait upon while the driver is 
off doing something else. 

6.4 Performing Cleanup Functions 

User-written device drivers can optionally supply a cleanup routine to perform device-spe
cific cleanup functions before a device is released. The routine pbu_$release obtains the 
entry point of the cleanup routine from the DDF and calls the routine during device re
lease. The cleanup routine in bm_example is called bm_$cleanup; refer to Appendix E, 
Section E.2 (C) and Appendix F, Section F.3 (Pascal). 

6-14 Call-Side Routines 



Functions performed by the cleanup routine include: 

• Ensuring that no I/O is in progress when the device is released. The routine can 
perform this function either by waiting for any outstanding device I/O to complete 
or aborting any outstanding I/O. 

• Clearing any pending interrupts from the device. 

• Deciding whether or not to cancel the release process. 

• For PC AT compatible device drivers, ensuring that the last call to 
pbu[2L$dma_start had a corresponding call to pbu[2L$dma_stop. 

• Releasing any acquired I/O resources. 

The cleanup routine is bound with the other call-side routines. 

The cleanup routine is called by GPIO software and must, therefore, conform to the fol
lowing calling sequence (shown in C and Pascal): 

Synopsis (C) 

Synopsis (Pascal) 

Description 

forceJlag 

status 

unit 

void cleanup_routine( 
pbu_$unit_t &unit, 
boolean &force_flag, 
status_$t *status 
) ; 

procedure cleanup_routine( 
in unit: pbu_$unit_t; 
in force_flag: boolean; 
out status: status_$t 
) ; 

A Boolean value that indicates whether or not the cleanup routine can 
abort the device release operation. If this parameter is set to "true", the 
device is released regardless of the status returned by the cleanup routine. 
If this flag is set to "false", the cleanup routine can abort the release pro
cedure by returning a nonzero status code. Upon receipt of the status, 
pbu_$release aborts device release and returns to its caller. This flag is 
the same as the forceJlag parameter for pbu_$release. 

Completion status in status_St format. 

The device unit number in pbu_Sunit_t format. 

-------88-------

Call-Side Routines 6-15 





Chapter 7 

Transferring Data 

Data can be transferred between the application and the device by means of DMA, mem
ory-mapped I/O, or programmed I/O. The method you use depends on the kind of con
troller your driver supports. This chapter describes how to implement each method in your 
driver, using GPIO routines. 

NOTE: Apollo provides two kinds of calls, pbu_$ and pbu2_$, for sev
eral GPIO operations. The pbu2_$ routines take addresses and 
lengths specified as 4-byte integers rather than 2-byte integers. 
When referring to either kind interchangeably, we use the term 
pbu[2L$routine_name. 

MULTIBUS users should take note that drivers running on nodes equipped with a 16-bit 
MULTIBUS can also use pbu2_$ routines; however, on nodes with a 20-bit MULTIBUS, 
the driver must not call a pbu_$ routine for which there is a pbu2_$ counterpart. For this 
reason, it may be convenient always to use the pbu2_$ routine, where one is available, so 
that the same driver can run on either 16-bit or 20-bit MULTIBUS nodes. Also, note 
that if your driver specifies a 20-bit MUL TIBUS address and is running on a node with a 
16-bit MULTIBUS, the GPIO routines will return an error indication because the 16-bit 
MULTIBUS supports only 16-bit MULTIBUS addresses. 

If you are writing a driver for an PC AT compatible and VMEbus device, you must use 
pbu2_$ routines where they are available. The one exception to this rule concerns 
pbu[2L$dma_start and pbu[2L$dma_stop routines. Drivers running on the DN3000 use 
pbu_$dma_start and pbu_$dma_stop. Drivers running on the DN4000 use 
pbu2_$dma_start and pbu2_$dma_stop. The exception to the exception is that if you 
are writing a driver for a device that can exert bus mastership on a DN4000, you must use 
pbu2_$dma_start and pbu2_$dma_stop. 

Transferring Data 7-1 



NOTE: Unlike Pascal, the C programming language is case-sensitive; 
therefore, all system procedure names (such as GPIO routines) 
must be lowercase, which is consistent with their appearance in 
the system insert files. However, any global names in C that are 
accessed by GPIO routines are case-sensitive. 

7.1 DMA Transfers 

A DMA transfer to or from processor memory occurs when a DMA controller makes 
memory references to bus address space. Apollo supports DMA transfers on the 
MULTIBUS, PC AT compatible bus, and VMEbus. Differences in the way you implement 
a DMA transfer in your driver depend not so much on the kind of bus as on whether your 
node's I/O hardware includes an I/O map. All workstations that support the MULTIBUS 
are equipped with the I/O map. For the PC AT compatible bus, the DN3000 doesn't have 
the I/O map and the DN4000 does. If your workstation has the I/O map, refer to Subsec
tion 7.1.1; otherwise, refer to Subsection. 7.1.2.1. You should also refer to Chapter 1, 
Chapter 2, and Chapter 3 of this manual for additional bus-specific information. 

7.1.1 Using the 110 Map to Perform DMA Transfers 

The I/O map translates memory references to bus address space into processor memory 
references. Before the controller can initiate memory references, the device driver must 
establish an association between the pages of processor memory and the pages of bus ad
dress space. This is referred to as mapping an I/O buffer. 

The process of mapping an 1/0 buffer consists of the following: 

• Allocating bus address space for the controller 

• Wiring the pages of the I/O buffer 

• Setting up the I/O map to establish mapping between processor memory and bus 
address space 

7.1.1.1 Allocating Bus Address Space 

All controllers use the same bus address space to access processor memory. 

NOTE: The address space is 64 KB for 16-bit controllers, 1024 KB for 
20-bit controllers, and 16 MB for 24-bit controllers. 

7-2 Transferring Data 



Since I/O buffers concurrently in use by controllers must not overlap in bus address space, 
the device driver must ensure against overlap by allocating a section of bus address space 
for the controller. You use the GPIO routine pbu[2LSallocate_map to allocate the section 
for the controller. The driver specifies the length of the I/O buffer to 
pbu[2LSallocate_map; the routine locates a portion of the I/O map that matches the 
given length and returns the address of the first page of bus memory allocated to the 
buffer. 

If another device is active when the driver calls pbu[2LSallocate_map, either the re
quested amount of 110 map space may be unavailable or a hard-wired bus address may 
already be in use (see Chapter 6, Subsection 6.1.4). In this case, the driver has several 
choices: 

• Wait for an interval and then retry the operation 

• Request a smaller amount 

• Report the error to the application program 

• Inform the interactive user that the requested system resources are unavailable 

The following call to pbu_$allocate_map (from the initialization routine of 
bm_example_c) allocates an area of the 110 map that corresponds to the largest block 
(32 KB) the driver ever reads or writes. The constant bm_$block_len is declared as hav
ing a value of 32768; bmcb.bm_iova contains the start of the allocated area of bus address 
space. 

bmcb.bm_iova = pbu_$allocate_map( 
bmcb.pbu_unit_number, /* number of this pbu d~vice */ 
bm_$block_len, /* maximum block size we'll use */ 
false, /* don't need a specific iova */ 
0, /* forced iova would go here */ 
status); /* returned status *1 

7.1.1.2 Wiring 110 Buffers 

A buffer is wired when it is permanently resident in processor memory and is, therefore, 
unavailable to the MMU's paging operations. Device drivers must wire their 110 buffers 
because the 110 map cannot handle the movement or absence of pages during an 110 op
eration. 

A device driver wires an 110 buffer by calling the routine pbu[2L$wire, specifying the 
buffer to be wired and its length. A page that is part of a wired buffer cannot be wired 
again. If a page of the requested buffer is already wired, pbu[2L$wire returns an error 
indication to the driver. 

Transferring Data 7-3 



The bm_command routine in bm_example_c calls pbu_$wire just before sending the read 
or write command to the routine, as follows: 

bmcb.bufaddr = buffer; 
bmcb.buflen = len; 

/* save address of buffer */ 
/* save length of buffer */ 

pbu_$wire(bmcb.pbu_unit_number, 
(void *)buffer, 
bmcb.buflen, 
status); 

if (status->all != 0) { 

} 

status->fail = 1; 
return; 

/* number of this pbu unit */ 
/* buffer to wire */ 
/* length to wire (in bytes) */ 
/* returned status */ 

/* give up if something goes 
wrong */ 

bmcb.flags.buffer_wired = 1; /* remember we wired the buffer */ 

The size of a node's main memory determines the maximum number of 1024-byte pages 
that can be wired by all drivers in the system. To determine the approximate maximum 
number of wired pages for your node, subtract 256 from the number of pages of memory 
that the node has. For example, for a node with 1 MB of main memory, 1024 pages mi
nus 256 (pages) equals 768, so drivers must wire fewer than 768 pages. 

The driver can also wire an I/O buffer by defining a static storage area in the interrupt 
routine and copying data to it or from it for 110. If the storage area is allocated in the 
interrupt module, it is wired by virtue of being allocated in the interrupt side, which is itself 
wired; therefore, no call to pbu[2L$wire need ever be made. 

For timing considerations in wiring and unwiring an 110 buffer, refer to Appendix D, Sec
tion D.3. 

7.1.1.3 Setting Up the 110 Map 

After the driver has allocated pages of bus address space for the buffer and wired the 
buffer into processor memory, it must establish the mapping between the buffer and the 
pages of bus address space by calling the GPIO routine pbu[2L$map. This routine takes 
three arguments: 

• The 110 buffer 

• The 1/0 buffer's length 

• A bus address within any page of the area allocated by pbu[2L$allocate_map 

The pbu[2L$map routine establishes the displacement within bus address space for the 
buffer and returns an address that corresponds to the start of the buffer. 

7-4 Transferring Data 



If the buffer you want to map is permanently wired, you can call pbu[2L$map in the in
itialization routine, just after calling pbu[2L$allocate_map; otherwise, you should call it in 
one of the command-processing routines or in the start I/O routine. In the following ex
ample (from bm_example_c), pbu_$map is called in the start I/O routine (bm_$sio), just 
before touching the controller's command register. The return value (bmcb.csrytr.c) is 
the buffer's address, which is written to the controller's address register: 

bmcb.csr-ptr.c->iova = pbu_$map(bmcb.pbu_unit_number, /* number 
of this pbu unit */ 

(void *)bmcb.bufaddr, /* virtual address of buffer */ 
bmcb.io_len, /* length of buffer */ 
bmcb.bm_iova, /* iova we got from pbu_$allocate_map */ 
status); /* returned status */ 

if (status->all != 0) 
return; 

7.1. 1. 4 Preallocatiog I/O Resources 

A device driver does oot need to allocate and deallocate I/O map entries for each I/O op
eration. Instead, when it initializes the device, the driver can allocate a portion of the I/O 
map that corresponds to the largest buffer that will be used during I/O transfers. The 
driver can map buffers via the allocated I/O map entries until the device is released. 

Similarly, the device driver can "permanently" wire and map an I/O buffer at device in
itialization for the duration of driver execution. During device initialization, the initializa
tion routine can call the routines pbu[2L$allocate_map, pbu[2L$wire, and 
pbu[2L$map to establish a correspondence between this preallocated buffer and a section 
of bus address space. The routine saves the address returned by pbu[2L$map. To per
form a DMA transfer, the driver copies data into the preallocated buffer, loads the address 
returned by pbu[2L$map into the controller's DMA registers, and initiates the transfer. 
Appendix D, Section D.4 discusses some performance advantages of a permanently wired 
buffer. 

Another way to preallocate I/O resources is to define a preallocated buffer in the interrupt 
side of the driver, as described in Subsection 7.1.1.2, "Wiring I/O Buffers." 

Transferring Data 7-5 



7.1.1. 5 Dynamic Resource Allocation 

Drivers for applications that move data directly to or from a file-system object mapped into 
processor address space usually wire and unwire a buffer for each I/O operation. For ex
ample, 

map file into address space; 
i := 0; 
WHILE i < number_of-pages_in_file DO BEGIN 

wire pages i to i+n-l; 
do i/o; 
unwire pages i to i+n-l; 
i := i+n; 
END; 

Note that the driver need not wire any pages used by the interrupt routine; they are wired 
when the driver is installed into user-process address space during device acquisition. 
Sometimes, however, the device driver may attempt to wire a buffer in the data$ section of 
an application program that shares a page with the data$ section of the interrupt routine. 
Because this page has already been wired, pbu[2L$wire returns an error. To prevent this 
error, the driver can 

• Place the buffer in dynamic storage (the stack) 

• Place the buffer in a mapped object (which will always be page aligned) 

• Declare a dummy array of one page immediately following the buffer declaration 

7.1.1. 6 Scatter-Gather Operations 

A scatter-gather I/O operation consists of reading (scattering) or writing (gathering) a sin
gle block of data in bus address space to or from discontiguous buffers in processor ad
dress space. For example, when the operating system reads a Domain disk block, it places 
the 32-byte header in supervisor memory and the 1024 bytes of data elsewhere in mem
ory. 

The pbu[2L$map routine can be used to implement limited forms of scatter-gather by 
observing Rules 1, 2, and 3: 

1. The end of the first section of data to be read or written must fall on a page
aligned boundary. 

2. The driver should map each subsequent section to a bus address that is one page 
higher than the page address of the previous section. 

3. All blocks of data following the first section must be an integral number of pages 
in length and must start on page-aligned boundaries. (The last section need not 
end on a page boundary.) 

7-6 Trans/erring Data 



The following example shows how to apply the rules when mapping a block of data to 
discontiguous buffers. In this example, the block has a SC-byte header and lAO bytes of 
data. 

First, the driver calls pbu[2L$allocate_map, which reserves an area of the I/O map and 
returns the address of the first available page in bus memory (in this example, 3000). 

Next, the driver calls pbu[2L$map, specifying iova 3000, the length SC, and buffer ad
dress 2A9FA4 (that is, the start of the area in processor address space where the header is 
to be transferred). The buffer address is obtained by subtracting the length of SC from a 
page-aligned address in processor address space (2AAOOO), giving the starting address 
2A9FA4. This procedure satisfies Rule 1 by ensuring that the first section ends on a page
aligned boundary. The pbu[2L$map routine returns the header's starting address (33A4) 
in bus address space. 

The lAO bytes of data are to be transferred to a buffer at address 2E4400, thus satisfying 
Rule 3, which requires each subsequent section to start on a page boundary. The driver 
calls pbu[2L$map, specifying iova 3400, the length of the data lAO, and the address 
2E4400. The pbu[2L$map routine returns a bus address 3400 for the data, in accordance 
with Rule 2, which requires the driver to map each subsequent block to a bus address that 
is one page higher than the bus address of the previous block. 

Figure 7-1 illustrates this example of mapping to dis contiguous buffers. 

Header 
(5C Bytes) 

2A9COO 

Processor 
Address Space 

1/0 Map 

3000 

Bus 
Address Space 

Figure 7-1. Mapping Discontiguous Buffers 

Transferring Data 7-7 



7.1.2 Starting and Stopping a DMA Operation on the PC AT Compatible Bus 

You must use the pbu2_$ DMA calls for bus-master PC AT compatible devices with an 
1/0 map. For bus-master PC AT compatible bus devices without an I/O map, we prefer 
that you also use the pbu2_$ DMA calls. Although the nonbus-master device code may 
use either pbu2_$ or pbu_$ DMA calls to perform DMA operations, we recommend that 
the pbu2_$ calls be used for the following reasons: 

• pbu2_$ DMA calls will work on machines with or without I/O map hardware. 

• Even if I/O map hardware is present, drivers that use the pbu_$ DMA calls are 
still restricted to DMA operations with a maximum length of one page. 

• If 1/0 map hardware is present, drivers that make pbu2_$ DMA calls have better 
control over and can more efficiently use the I/O map resources, and may per
form DMA operations of more than one page. 

For drivers that wish to use pbu_$ DMA calls on machines without I/O map hardware and 
pbu2_$ DMA calls on machines with I/O map hardware, use the pbu_$get_info call to 
determine the presence of an 1/0 map. 

#nolist 
#include <apollo/base.h> 
#include <apollo/pbu.h> 
#list 

void device_$init( 

{ 

pbu_$unit_t &unit, 
pbu_$ddf-ptr_t &ddf-ptr, 
pbu_$csr-page-ptr_t &csr-ptr, 
status_$t *status) 

info; 

/* determine configuration */ 
pbu_$get_info(sizeof(info), &info, status); 
if (status->all != status_$ok) return; 

/* unit number */ 
/* pointer to ddf */ 
/* pointer to csr page */ 
/* returned status */ 

/* check for iomap existence for bus my device is on */ 

/* yes, machine has an iomap */ 

} 
else { 

7-8 Transferring Data 

/* is there an iomap for 
atbus? */ 



/* machine has no iomap */ 

} 

} 

7.1.2.1 DMA Transfers Without the I/O Map 

In drivers for nonbus-master devices, pbu_$dma_start and pbu_$dma_stop must sur
round each DMA operation, whether successful or not. The pbu_$dma_start routine pre
pares DMA hardware for the controller's operation. After the driver calls 
pbu_$dma_start, the controller can begin its operation. When the controller indicates 
that the operation is completed, the driver calls pbu_$dma_stop to get status from DMA 
hardware to ensure that the hardware completed its share of the operation as well. The 
driver must call pbu_$dma_stop even if the controller reports an error. The driver may 
ignore the status returned by pbu_$dma_stop, but if the controller had a problem, it is 
likely that the DMA operation did not run to completion. The call to pbu_$dma_stop 
must, in any case, be made so that software can reset its knowledge of who is using the 
DMA channel. 

It is important that these two calls surround each DMA operation. If you make a call to 
pbu_$dma_start without a subsequent call to pbu_$dma_stop, the channel you specified 
in pbu_$dma_start becomes unavailable for any additional DMA activity; the next time 
you attempt to call pbu_$dma_start, you will get a REQUESTED DMA CHANNEL IN 
USE error message. If you get this message, however, you can call pbu_$dma_stop to 
release the channel. 

Use the following calls in the sequence in which they appear. The sequence of calls made 
by a driver using pbu2_$dma_start/stop for nonbus-masters follows: 

• pbu2_$wire Wires the buffer 

• pbu_$dma_start Sets up and starts DMA operation 

• Device-specific code to activate DMA operation 

• pbu_$dma_stop Stops DMA operation 

• pbu2_$unwire Unwires the buffer 

Transferring Data 7-9 



Drivers for bus-master devices must call pbu[2.LSdma_start once, specifying the 
pbu_dma_cascade option. This option reserves the DMA channel and provides bus arbi
tration. The pbu[2.LSdma_stop routine must be called when the device is released. 

Use the following calls in the sequence in which they appear. The sequence of calls made 
by a driver using pbu_Sdma_startlstop for bus-masters follows: 

• pbu_Sdma_start Sets processor's DMA hardware to cascade mode so that the 
device can use its own DMA hardware 

• pbu2._Swire Wires the buffer 

• Device specific code to activate DMA operation 

• pbu2._Sunwire Unwires the buffer 

• pbu_Sdma_stop Takes DMA processor's DMA hardware out of cascade mode 

Unless the device itself supports scatter-gather operations, DMA transfers without the I/O 
map are limited to 1024 bytes of data per operation and must not cross page boundaries. 
(Methods of aligning a buffer on a page boundary are discussed in Chapter 6, Subsection 
6.1.4, and Chapter 10, Subsection 10.1.2.1.) If your device has its own scatter-gather 
hardware, your driver must wire its I/O buffer by calling pbu_Swire_special, specifying as 
arguments the buffer to be wired and its length. The routine returns a list of physical ad
dresses, which the driver sends to the device. Refer to Appendix B, Section B.2 for a de
scription of this GPIO routine. 

PC AT compatible devices that can request bus mastership must also call 
pbu_Swire_special, specifying as arguments the buffer to be wired and its length. (Drivers 
for nonbus-master devices must call pbu2_Swire.) 

Drivers designed to run only on the DN3000 should call pbu_Sdma_start and 
pbu_Sdma_stop. How you use these calls depends on whether your driver supports a 
bus-master or nonbus-master device. 

NOTE: If you are designing your driver to run on the DN4000 and you 
wish to take advantage of its I/O map, you must use 
pbu2._Sdma_start and pbu2_Sdma_stop (see Subsection 
7.1.1). 

The following program segments are from a DN3000 driver for a nonbus-master device. 
Included here are parts of the call-side transfer routine (dma_data), which initiates the 
DMA operation, and the interrupt routine (dev_$int), which services device interrupts and 
stops the DMA operation. 

7-10 Trans/erring Data 



The driver assumes that the data to be transferred is page aligned, but it does include a 
check to determine if the amount of data to be transferred exceeds the 1-KB limit per 
DMA operation. If the amount of data exceeds 1 KB the interrupt routine restarts the 
DMA operation for the next 1-KB block of data and continues to do so until all of the 
data is transferred. 

First, the transfer routine: 

PROCEDURE dma_data ( { DMA data to/from the 

VAR 

begin 

controller } 
IN cb-ptr: dev_cb-ptr_t;{ control block pointer} 
IN dir_read: boolean; { a flag: 

IN va: univ-ptr; 

IN len: pinteger; 
OUT status: status_$t 
) ; 

dma_buf-ptr: Astring; 
dma_dir: pbu_$dma_direction_t; 
st: status_$t; 
cnt: pinteger; 

{ 

{ 
{ 

True read data 
from device 

False = write data to 
device } 

virtual address 
(pointer) to the 
buffer to read/write} 
length to dma in bytes} 
return status } 

with cb-ptrA:cb, cb.csr_ptrA:csr do begin 
cb.dma_complete := false; { no DMA started yet 

{ Enable the DMA request on the device before calling 
start_dma. This must be done because the DMA line will float 
unless the dma enable bit is set. } 

cb.dev_control:= cb.dev_control + 
[dma_ienable, dma_enable]; { DMA interrupt enable, 

DMA enable } 
csr.dev_control .- cb.dev_control; {write driver's copy to 

csr page } 

if dir_read then cb.dma_dir := pbu_dma_read; {if true, DMA 
read} 

else cb,dma_dir := pbu_dma_write; { if false, DMA 
write} 

{ Check that that the data to DMA is in bytes-per-page chunks. } 

Transferring Data 7-11 



cb.dma_buf-ptr := va; 
if cnt > bytes-per-page then begin; 

cb.dma_remainder := cnt - bytes-per-page; 
cnt := bytes-per-page; 
end 

else cb.dma_remainder := 0; 

{ Call PBU routine to setup and enable DMA controller on CPU 
board. } 

pbu_$dma_start (cb.pbu_unit, cb.dma_chan, cb.dma_dir, 
cb.dma_buf-ptrA, cnt, [], status); 

if status.code <> status_$ok then goto dma_fail; 

{ Wait for the DMA to complete. The interrupt routine will call 
pbu_$dma_stop if DMA goes to completion. } 

while not cb.dma_complete do 
if (pbu_$wait (cb.pbu_unit, dey_timeout, true, status)<>O) 

then exit; 
if not cb.dma_complete then begin {interrupt did not happen ... } 

status.all := dev_$dma_timeout; { ... DMA timed out, so 
abort DMA. } 

dma_fail: discard(pbu_$dma_stop (cb.pbu_unit, cb.dma_chan, st»; 

cb.dev_control := cb.dev_control -
[dma_ienable, dma_enable]; { turn off device's DMA 

enables } 
csr.dev_control := cb.dev_control; { write driver's copy 

out to csr page } 
end; {if not cb.dma_complete } 

end; {with cb-ptrA, cb.csr-ptrA } 
return; 

end { dma_data }; 

Next, the interrupt routine (some device-specific code is omitted at the beginning of the 
routine that checks for a command-complete interrupt): 

device interrupt 

var 
st: 

begin 
dev_$int := [pbu_$interrupt_advance, 

pbu_$interrupt_enable]; 
with dev_$cb[O] :cb, cb.csr-ptrA:csr do 

7-12 Trans/erring Data 

routine } 

{ default return} 
begin 



{ Check for DMA-complete interrupt. It is necessary to disable 
the DMA channel before disabling DMA on the device, because as 
soon as DMA is disabled on the device, the DMA request lines 
will float, causing spurious DMA cycles if the DMA channel were 
still enabled. } 

if csr.dev_status.dma_done then begin 
discard (pbu_$dma_stop(cb.pbu_unit, cb.dma_chan, 

cb.dma_stop_stat»; 

{ Make sure we don't try to DMA more than lK at a time. 
cb.dma_remainder is initialized in dma_data and is updated 
here. } 

if cb.dma_remainder <> 0 then begin { more to do } 
dev_$int := [pbu_$interrupt_enable]; 

{ adjust the buffer pointer to the 
bytes-per-page block } 

cb.dma_buf-ptr := 
univ-ptr(integer32(cb.dma_buf-ptr) + 

bytes-per-page) ; 
{ check to see if we have more than bytes-per-page 

left to transfer } 

if cb.dma_remainder > bytes_per-page then begin 
cnt := bytes-per-page; 
cb.dma_remainder := cb.dma_remainder -

bytes-per-page; 
end 

else begin 
cnt := cb.dma_remainder; 
cb.dma_remainder .- 0; 
end; 

{ start up the DMA channel for the next 
bytes-per-page block } 

cb.dev_control := cb.dev_control -
[dma_enable,dma_ienable]; {disable DMA 

interrupt and 
DMA lines} 

csr.dev_control .- cb.dev_control; {copy to CSR 
page } 

cb.dma_complete := true; { flag dma complete} 
end; { if - then - else cb.dma_remainder <> 0 } 

end; { if csr.dev_status.dma_done } 
end; { with dev_$cb[O] , cb.csr-ptrA } 

end; { dev_$int } 

Transferring Data 7-13 



7.1.2.2 DMA Transfers With the I/O Map 

Drivers that are designed to run on a PC AT compatible bus machine with an liD map 
and take advantage of its liD map use the same calls as drivers for MULTIBUS devices. 
In addition, such drivers also call pbu2_$dma_start and pbu2_$dma_stop. How you 
make these calls depends on whether your driver supports a bus-master or nonbus-master 
device. 

In drivers for nonbus-master devices, pbu2_$dma_start and pbu2_$dma_stop must sur
round each DMA operation, whether successful or not. The pbu2_$dma_start routine 
prepares DMA hardware for the controller's operation. After the driver calls 
pbu2_$dma_start, the controller can begin its operation. When the controller indicates 
that the operation is completed, the driver calls pbu2_$dma_stop to get status from the 
DMA hardware to ensure that the hardware completed its share of the operation as well. 
The driver must call pbu2_$dma_stop even if the controller reports an error. The driver 
may ignore the status returned by pbu2_$dma_stop, but if the controller had a problem, it 
is likely that the DMA operation did not run to completion. The call to pbu2_$dma_stop 
must, in any case, be made so that software can reset its knowledge of who is using the 
DMA channel. 

It is important that these two calls surround each DMA operation. If your driver makes a 
call to pbu2_$dma_start without a subsequent call to pbu2_$dma_stop, the channel you 
specified in pbu2_$dma_start becomes unavailable for any additional DMA activity; the 
next time the driver attempts to call pbu2_$dma_start, you will get a REQUESTED DMA 
CHANNEL IN USE error message. If you get this message, however, you can call 
pbu2_$dma_stop to release the channel. 

Use the following calls in the sequence in which they appear. The sequence of calls made 
by a driver for a nonbus-master device follows: 

• pbu2_$allocate_map Allocates an area of the liD map 

• pbu2_$wire Wires the buffer 

• pbu2_$map Maps the buffer to bus memory space 

• pbu2_$dma_start Sets up and starts the DMA operation 

• Device-specific code to activate DMA operation 

• pbu2_$dma_stop Stops the DMA operation 

• pbu2_$unmap Unmaps the buffer 

• pbu2_$unwire Unwires the buffer 

• pbu2_$free_map Releases the previously allocated area of the liD map 

7-14 Transferring Data 



Drivers for bus-master devices must call pbu2_$dma_start once, specifying the 
pbu_dma_cascade option. This option reserves the DMA channel and provides bus arbi
tration. Tht; pbu2_$dma_stop routine must be called when the device is released. 

Use the following calls in the sequence in which they appear. The sequence of calls made 
by a driver for a bus-master device follows: 

• pbu2_$dma_start Sets the processor's DMA hardware to cascade mode so that 
the device can use its own DMA hardware 

• pbu2_$allocate_map Allocates an area of the I/O map 

• pbu2_$wire Wires the buffer 

• pbu2_$map Maps the buffer to bus memory space 

• Device-specific code to activate DMA operation 

• pbu2_$unmap Unmaps the buffer 

• pbu2_$unwire Unwires the buffer 

• pbu2_dma_stop Takes the DMA hardware out of cascade mode 

• pbu 2_$ free_map Releases the previously allocated area of the I/O map 

7.1.3 Releasing 1/0 Resources After a DMA Transfer 

The driver uses GPIO routines to release I/O resources following the completion of a DMA 
transfer. Subsections 7.1.3.1 and 7.1.3.2 describe what routines to call and how to use 
them. 

NOTE: If you are not designing your driver to run only on the DN4000, 
only Subsection 7.1.3.2 is pertinent to you. 

7.1.3.1 Deallocating the 1/0 Map 

Because each device can have only one area of the I/O map allocated to it at a time, the 
device driver must call pbu[2L$free_map to deallocate I/O map entries before it can call 
pbu[2L$allocate_map again. However, the driver need not allocate the I/O map dynami
cally (see Subsection 7.1.1 for more information about I/O resource allocation). 

Transferring Data 7-15 



7.1.3.2 Unwiring the I/O Buffer 

Device drivers that have wired their buffers by using pbu[2LSwire or pbu_Swire_speciaJ 
must unwire them with pbu[2LSunwire unless they are going to use them again for an
other I/O operation. If the buffer is a file-system object into which data has been read, 
the driver should ensure that the data is saved when the file is closed by 

• Copying the buffer to another area in memory before unwiring it, or 

• Setting to "true" the modify_flag argument to pbu[2LSunwire so that 
pbu[2L$unwire marks each page of the buffer as having been modified before 
unwiring it 

7.1.4 Releasing 1/0 Resources During Faults 

If a device driver has allocated I/O resources and a synchronous or asynchronous fault oc
curs, the allocated resources (I/O map entries, wired buffers, or mapped memory) are not 
deallocated unless the application program or driver establishes a cleanup handler or the 
process terminates. 

The application or driver uses the system function pfm_Scleanup to establish its own fault 
handling routine. The device driver should also contain a cleanup routine that deallocates 
I/O resources and disables the device. The driver should monitor the allocation of the fol
lowing I/O resources: 

• The area of the I/O map that is allocated 

• Locations and sizes of wired buffers 

• Bus memory addresses and sizes of mapped buffers 

When a fault occurs, the application's fault handler, as one of its functions, calls the driver 
cleanup routine to release any allocated I/O resources. 

If the initialization routine contains the entire application, the application need not estab
lish a fault handler. The pbu_Sacquire routine establishes a fault handler before calling 
the initialization routine, so that any fault during initialization causes the device to be re
leased, thereby releasing any allocated resources. 

7-16 Transferring Data 



7.2 Memory-Mapped Transfers 

A memory-mapped controller contains on-board memory that can store data received 
from external devices. However, the controller itself does not transfer the blocks of data to 
processor address space, as it would if it performed DMA; instead, the device driver moves 
the data to or from controller memory. 

The driver in Idomain_examples/gpio_exampleslthreecom_example supports a memory
mapped controller. 

Before a device driver can refer to controller memory, it must associate the area of con
troller memory with an area of processor address space. The way this mapping is accom
plished depends on the node's bus. 

II Device drivers running on a node equipped with a 16-bit MULTIBUS call GPIO 
routines pbu_$map_controller and pbu_$unmap_controller to map and unmap 
controller memory to and from processor address space. 

• Drivers for 20-bit controllers running on nodes with a 20-bit MUL TIBUS call 
GPIO routines pbu2_$map_controller and pbu2_$unmap_controller to map and 
unmap controller memory to and from processor address space. 

• Drivers for VMEbus and PC AT compatible devices call GPIO routines 
pbu2_$map_controller and pbu2_$unmap_controller to map and unmap con
troller memory to and from processor address space. 

NOTE: If a DN5xx workstation, DSP80, or DSP90 with a 20-bit 
MULTIBUS is fully configured with 3 MB of memory, only 
512 KB of the MUL TIBUS address space is available for mem
ory-mapped operations. This restriction does not apply to the 
DN5xx-T family. 

Transferring Data 7-17 



7.2.1 Referencing Controller Memory 

Certain restrictions apply when referencing controller memory on the MULTIBUS, 
VMEbus, and PC AT compatible bus. 

For the MULTIBUS: 

• Controller memory must be page aligned and must occupy only the first 32 KB of 
MULTIBUS memory space on nodes with a 16-bit MULTIBUS and 1 MB on 
nodes with a 20-bit MULTIBUS. (For more controller configuration information, 
see Chapter 1, Section 1.3.) 

• The area of MUL TIBUS memory space occupied by the controller memory is per
manently unavailable to DMA operations by any controller. 

• On the 16-bit MULTIBUS, neither the memory-mapped controller nor any other 
controller can use the MULTIBUS to read or write to memory on the memory
mapped controller. 

The reason for this restriction is that the I/O hardware interprets memory refer
ences on the bus as DMA references to processor memory. If the reference is a 
memory write, the data is transferred to both controller memory and processor 
memory, causing a bus time-out error if the I/O map was not set up correctly. If 
the reference is a memory read, the I/O hardware and the controller simultane
ously become bus masters, resulting in corrupted data. 

This restriction does not apply to the 20-bit MUL TIBUS. 

For the VMEbus: 

• Controller memory must be page aligned. 

• Controller memory must lie within the area reserved for it in processor physical 
address space (see Table 2-1). 

• The area of memory space occupied by controller memory is permanently unavail
able to DMA operations by any controller. 

For the PC AT compatible bus: 

• Controller memory must be page aligned. 

• Controller memory must occupy user-available locations in processor physical ad
dress space (see Table 3-2). 

7-18 Transferring Data 



7.2.2 Mapping Controller Memory 

The device driver calls pbu[2LSmap_controller to map controller memory to processor 
address space. The pbu[2LSmap_controller routine returns a virtual address that repre
sents the start of the mapped area in processor address space. Any subsequent reads or 
writes to this area will read or write directly to controller memory. The driver can use 
pbu_Sread_csr and pbu_Swrite_csr to reference the mapped memory. These routines 
suppress normal bus time-out generation if part of the memory is not responding. 

NOTE: The PC AT compatible bus does not generate bus time-outs, 
which means that you cannot use pbu_Sread/write_csr to test 
for controller presence; instead, you must tweak the appropriate 
device register and see if it responds in a predictable fashion to 
determine if the device is present. 

The following segment is from the initialization routine for a driver supporting a memory
mapped controller. The routine calls pbu_Smap_controller and pbu_Sread_csr to test if 
the controller is present on the bus and, if it is, to initialize it; cbp has been declared as a 
pointer to the driver control block. 

with cbp~ do begin 

mem-ptr := pbu_$map_controller (pbu_unit, mem_base, mem_Ien, 
status) ; 

if status .. all <> status_$ok then 
begin 

end; 

status. fail .- true; 
return; 

{ Read the status register with read_csr to see if the 
controller is really there. } 

if status.all = pbu_$bus_timeout then 
begin 

end; 

status.all .- dev_$no_controller; 
return; 

if status.all <> status_$ok then 
begin 

end; 

status. fail .- true; 
return; 

flags := flags + [init]; { tell everyone we're initialized} 

Transferring Data 7-19 



end; 

{ Issue a reset command to the controller, then go online. 
From here on in, we depend on dev_$cleanup to clean up if we 
get an error. } 

dev_$set_mode (unit, dev_$reset, [], status); 
if status.all <> status_$ok then return; 
dev_$set_mode (unit, dev_$online, [], status); 
if status.all <> status_$ok then return; 

MUL TIBUS users should take the following precautions when performing memory-mapped 
I/O: 

• The pbu[2L$map_controller routine makes the area of bus memory space allo
cated to the controller unavailable for any subsequent DMA operations. Note that 
the bus addresses required for the controller may already be allocated for a DMA 
transfer. To prevent this situation from occurring, application programs should ac
quire memory-mapped devices before DMA devices. 

• Because the hardware has no indication that a memory-mapped controller is pre
sent until pbu[2L$map_controller is called, the I/O map allocation routines may 
allocate, for the memory-mapped controller or for another controller, an I/O map 
area that overlaps the area allocated to the memory-mapped controller. As a pre
caution, you should configure the controller memory to occupy the high end of 
bus memory space, because the I/O map allocation routines allocate I/O map 
areas from low addresses to high addresses. 

• If the driver of a memory-mapped controller needs to perform a DMA transfer, it 
can call pbu[2L$alIocate_map to allocate another area of the I/O map. How
ever, the device driver must call pbu[2L$map_controlIer before calling 
pbu[2L$alIocate_map. 

7.2.3 Unmapping Controller Memory 

Drivers must call pbu[2L$unmap_controller to unmap controller memory. If the driver 
needs to retain an image of the controller memory, it must copy the memory to another 
area of processor address space before calling pbu[2L$unmap_controller. 

7-20 Transferring Data 



7.3 Programmed 1/0 

In programmed 110, the processor transfers the data one word (or byte) at a time, testing 
a device register following each transfer to determine if it was complete. A device for any 
bus may perform programmed 110, provided it is equipped with the necessary interface. 

Writing a data-transfer routine using programmed I/O is the simplest of the three methods 
because there are no buffers to allocate and wire (and deallocate and unwire), no I/O map 
to set up, and no DMA hardware to turn on and off. However, programmed I/O is also 
generally the slowest because 

• The rate of transfer is limited to one word or byte at a time. 

• The transfer itself is under the control of software rather than hardware. 

• The device must inform the processor after each transfer. 

In the case of the DN3000, however, programmed I/O is appreciably faster than DMA be
cause 

• The MC68020 programmed I/O transfer rate is 12 MHz versus the specification 
for the PC AT compatible bus DMA transfer rate of 6 MHz. 

• DMA transfers for nonbus-master devices on the DN3000 are limited to 1 KB. 

Thus, given the choice, you may wish to opt for programmed I/O, especially in drivers for 
slow (serial lines) or fast (hard disk) buffered devices, and reserve DMA for devices of 
intermediate speed (floppy disk). 

-------88-------

Transferring Data 7-21 





Chapter 8 

Interrupt -Side Routines 

The interrupt side differs from the call side in that all memory on the interrupt side is 
wired to prevent paging. How this affects what you can and cannot do with the interrupt 
side is the subject of Section 8.1. Not all drivers require an interrupt side. Whether or not 
you include one in your driver depends on whether you want the driver or the System In
terrupt Handler to handle interrupts. Refer to Subsection 8.2.3 for a comparison of the 
way that the System Interrupt Handler processes interrupts with the way a user-written in
terrupt routine does. Also, refer to Appendix D, Section D.4 for interrupt-processing 
times. If you decide to include an interrupt routine in your driver, then the interrupt side 
must be bound separately from the call side (see Chapter 10, Section 10.1.2). 

Included in this chapter is a description of the Start I/O (SIO) function. Although an I/O 
operation may be started in the call side of the driver, it must be started in the interrupt 
side if the interrupt routine is going to call it. 

NOTE: Unlike Pascal, the C programming language is case sensitive; 
therefore, all system procedure names (such as GPIO routines) 
must be lowercase, which is consistent with their appearance in 
the system insert files. However, any global names in C that are 
accessed by GPIO routines are case-sensitive. 

8.1 Interrupt Side Restrictions 

The interrupt side differs from the call side because it is wired to protect the address space 
occupied by the interrupt routine from memory management paging operations. This 
means that, for drivers written in Pascal, any routine or data structure referenced by the 
interrupt routine must be installed and DEFINEd in the same module as the interrupt rou
tine. As a result, the interrupt side is set up somewhat differently from the call side. (For 
more information about defining globals, see Appendix C, Subsection C.2.5.) 

Interrupt-Side Routines 8-1 



No interrupt-side routine must ever reference unwired memory, shared nonglobal memory, 
or global memory. This restriction applies to referencing library routines such as PGM and 
VFMT calls and doing reads or writes in Pascal or C. Such references could cause a page 
fault, thus aborting interrupt processing and generating a fault in the driver process (see 
Subsection 8.2.4). The only GPIO routines that an interrupt-side routine can call are 
pbu[2LSmap, pbu[2LSunmap, pbu_Sdevice_interrupting (which determines whether an 
interrupt occurred), pbu_Sadvance_ec, pbu[2LSdma_start, and pbu[2LSdma_stop. 

Because any reference that an interrupt-side routine makes to globals must be resolved 
internally to the interrupt library, all routines and data structures referenced in the inter
rupt side must be allocated there. Thus, for example, you must allocate the driver control 
block (using the DEFINE clause, if your driver is written in Pascal) within the interrupt 
side in order to reference it there. The same holds true for routines. To ensure that the 
interrupt side makes no unresolved references, we recommend that you specify the -sys 
option when you bind the interrupt library. This option produces a listing of all system 
globals that cannot be resolved within the input object module; a successful binding should 
result in the message, "All globals are resolved" (see Chapter 10, Subsection 10.1.2.2). 

NOTE: pbu_Sacquire, pbu_Sacquire_stream, and aqdev will refuse to 
load an interrupt library with unresolved globals. 

A driver can contain several interrupt routines to handle a device that interrupts on more 
than one request line. However, the size of the interrupt module (the interrupt routine(s) 
and any other procedures bound with it) must not exceed 32 KB, including procedure, 
data, and debug information. 

8.2 Interrupt Routine 

Drivers handle interrupts by performing the following functions: 

• Enabling and disabling interrupts from the device 

• Waiting for interrupts from the device 

• Processing (optionally) device interrupts with one or more interrupt routines 

Subsections 8.2. 1 through 8.2.5 discuss these functions as well as other aspects of interrupt 
routines. 

8-2 Interrupt-Side Routines 



8.2.1 Interrupt Routine Fonnat 

The interrupt routine is called by GPIO software and must, therefore, conform to the fol
lowing formats: 

For C: 

For Pascal: 

The input parameter, unit, is optional (for more information, see Chapter 9, Section 9.6). 
The function returns a set of flags in pbu_$interruptJeturn_t format that specify actions 
that the System Interrupt Handler is to perform. Possible values are 

• pbu_$interrupt_advance, which directs the System Interrupt Handler to advance 
the device's eventcount 

• pbu_$interrupt_enable, which directs the System Interrupt Handler to re-enable 
interrupts from the device 

8.2.2 Enabling and Disabling Device Interrupts 

On all buses except the VMEbus, a hardware interrupt mask register controls the proces
sor's receipt of interrupts. Each bit within the register corresponds to one of the interrupt 
lines. Resetting the bit prevents the processor from receiving interrupts from the device. If 
the device requests an interrupt and the interrupt mask bit is reset, the interrupt is taken 
when the bit is set. 

Device interrupts are automatically disabled under the following conditions: 

• At system initialization (all device interrupts disabled) 

• After the device is acquired 

• When the System Interrupt Handler intercepts an interrupt from the device, re
gardless of whether the driver includes a user-written interrupt routine 

• When the device is released 

• During system shutdown 

When the device driver requires that the processor receive interrupts from the device, it 
enables interrupts by calling the routine pbu_$enable_device. This routine clears the de
vice's interrupt mask bit, permitting the processor to receive interrupts from the device. 
Calling the routine pbu_$disable_device sets the interrupt mask bit, which prevents receipt 
of device interrupts. 

Interrupt-Side Routines 8-3 



Any of the routines that make up the call side of the driver can call pbu_Senable_device 
and pbu_Sdisable_device to prevent the interrupt routine from running during the execu
tion of critical sections of code. The interrupt routine can optionally enable interrupts by 
setting the appropriate return value, but it cannot call pbu_Senable_device or 
pbu_Sdisable_device. In bm_example_c, bm_command calls pbu_Senable_device just 
after it calls bm_Ssio to start the 110 operation, and bm_Scleanup calls 
pbu_Sdisable_device as part of the release routine. 

Of course, the controller itself may provide its own means of enabling and disabling inter
rupts that the driver can directly access. Refer to the controller documentation. 

NOTE: Interrupt lines typically float on the PC AT compatible bus (see 
Chapter 3, Section 3.4 for important information on enabling 
and disabling interrupts). 

8.2.3 Processing Device Interrupts 

Processing a device interrupt proceeds through three stages: 

1. When an interrupt occurs, control is transferred to the System Interrupt Handler. 

2. If a user-written interrupt routine exists, the System Interrupt Handler transfers 
control to this routine for further interrupt processing. 

3. The user-written interrupt routine returns control to the System Interrupt Handler, 
which returns from the interrupt. 

The System Interrupt Handler synchronizes operations with driver routines using 
eventcounts. An eventcount is an ec2_$eventcount type that programs can define to count 
the occurrence of a specific event. The eventcount may be shared among two or more 
processes, any of which can increment the eventcount to mark the passing of an event. 

Each device has an associated eventcount. The System Interrupt Handler can advance this 
eventcount to indicate that an interrupt occurred. The driver's call side waits for an inter
rupt to occur by waiting for this eventcount to advance, as does the bm_Swait routine in 
bm_example_c. Thus, the device's eventcount provides the method by which the interrupt 
handler can signal to the driver's call side that an interrupt is completed. The Program
ming with Domain/OS Calls manual describes eventcounts in detail. 

Depending on the requirements of the device and your driver, you may decide to let the 
System Interrupt Handler do all of the interrupt processing and not include an interrupt 
side in your driver. The advantage of not including an interrupt side is that you decrease 
the time it. takes for program control to return from the System Interrupt Handler to the 
call side. (For information about interrupt processing overhead, see Appendix 0, Section 
0.2.) 

8-4 Interrupt-Side Routines 



8.2.3.1 Processing by the System Interrupt Handler 

When the System Interrupt Handler gains control, it performs the following functions: 

• After determining which device has requested the interrupt, it disables further in
terrupts from the device by resetting the appropriate bit in the interrupt mask reg
ister. 

• If a user-written interrupt routine exists, the System Interrupt Handler transfers 
control to it. Otherwise, the handler advances the eventcount associated with the 
device and exits. Note that in the latter case the handler does not enable inter
rupts from the device when it exits, and the driver must make another call to 
pbu_$enable_device if it wants to re-enable interrupts. 

8.2.3.2 Processing by the User-Written Interrupt Routine 

The user-written interrupt routine performs device-specific interrupt processing. Typically, 
these functions include 

• Reading the device's status register(s) by referencing offsets into the CSR page 

• Writing to the device's CSRs to acknowledge the interrupt 

• Saving information about the interrupt for use by other driver functions 

• Determining whether or not the device must perform more 110, and restarting the 
device or calling an SIO routine 

• Calling pbu[2L$map to map a new I/O buffer 

• Determining whether any other driver functions should be notified of the interrupt 

• Determining whether or not to re-enable interrupts from the device 

• Determining whether or not to advance the eventcount associated with the device 

For an example of a user-written interrupt, refer to Appendix E, Section E.3 (C) and Ap
pendix F, Section F.4 (Pascal). 

Interrupt-Side Routines 8-5 



8.2.4 Faults in User-Written Interrupt Routines 

As noted in Section 8.1, a user-written interrupt routine is not allowed to generate any 
faults. If a fault does occur during interrupt processing, the operating system takes the fol
lowing actions: 

1. It locates the process owning the device, and saves fault diagnostic information at 
the low end of the interrupt routine's stack. 

2. It generates an asynchronous fault for the owner process. The fault status is 
fault_$pbu_user_int_fault (in Isys/ins/fault.ins.lan). 

3. It discontinues processing of the interrupt, advances the eventcount for the device, 
and resumes the interrupted process. 

4. When the owning process next gains control, it receives the fault status that the 
system generated in Step 2. 

Information about the fault can be obtained by using the tb (traceback) command with the 
-u option. The -u option dumps the pbu unit fault information, as shown in the following 
example. (Or you can supply a specific unit number for tb to dump, by using the -u 
<unit number> option to the tb command.) 

$ tb -u 

Process 
Time 
Program 
Status 

In routine 
Called from 
Called from 

Fault frame for 
Fault Status 
User Fault PC 
00-03: 
04-07: 
AO-A3: 
A4-A7: 
Supervisor ECB 
Supervisor SR 
Supervisor PC 

86 (parent 85, group 0) 
88/03/15.10:08(EST) 
//cray/dmb/pbu_test.new/pbutest 
00120017: fault in user-space interrupt handler for 
pbu device (OS/fault handler) 
"pbutest" line 872 
"PM_$CALL" line 151 
"pgm_$load_run" line 605 

pbu unit 4 
00120003: integer divide by zero (OS/fault 
031F0030 
00000001 00000000 00000000 OOOOFFFF 
OOOOFFFF 0000020C 00000000 0002331C 
03150B8C 03C89E18 03C89E18 02048400 
031CFOF8 031F15CC 03150B7C 03150B64 
00000000 
0000 
00000000 

handler) 

The "User Fault PC", along with a map of the interrupt library and the information 
printed by the aq"dev command (available only in the Aegis environment) with the -d[b] 
option, or by the pbu_$acquire routine with debug set to "true", can be used to isolate 
the logic that caused the fault. 

8-6 Interrupt-Side Routines 



8.2.5 Mapping Buffers from the Interrupt Routine 

Drivers for devices that need to queue more data buffers than they can transfer at one 
time can facilitate transfers by calling pbu[2] $map (and pbu[2] $unmap) from their in-. - -
terrupt routines. An outline of this sequence of events follows: 

1. The driver's resource allocation routines obtain the data to be transferred and wire 
down the needed buffers until they reach the limit set by pbu[2L$wire (see 
Chapter 7, Subsection 7.1.1). 

2. The driver calls pbu[2L$map to map the first buffer and starts the I/O transfer. 

3. When the interrupt routine gains control at the end of the first transfer, it saves 
the ending status. If there is another buffer waiting to be transferred, the interrupt 
routine calls pbu[2L$map and starts another I/O transfer. 

Mapping buffers from the interrupt routine ensures a minimal delay between data transfer 
startups because the interrupt routine need not reactivate the call side of the driver until an 
entire sequence of I/O has finished. 

To use this same technique in a driver for an PC AT compatible device, you would make 
the following changes, depending on the machine type: 

• Drivers running on the DN4000 would call pbu2_$dma_start and 
pbu2_$dma_stop in addition to pbu2_$map and pbu2_$unmap. 

• Drivers running on the DN3000 would call pbu_$dma_start and pbu_$dma_stop 
instead of pbu2_$map and pbu2_$unmap. 

8.3 Starting an 1/0 Operation 

The Start I/O (SIO) routine is that part of the driver which actually performs the data 
transfer. The mechanics of the data transfer have already been described in Chapter 7. 
You might want to include an SIO routine in the interrupt side because the driver may 
have more data to transfer than can be handled in one I/O operation, and the interval 
between I/O operations is shorter when the interrupt side interacts directly with the SIO 
routine rather than going through the call side. In any case, if the interrupt routine (or 
any routine installed in the interrupt-side library) calls the SIO routine, it must be installed 
in the interrupt-side library. 

In the sample driver in bm_example, the SIO routine (bm_$sio) is called by both call and 
interrupt sides and is, therefore, included in the interrupt side; refer to Appendix E, Sec
tion E.3 (C) and Appendix F, Section F.4 (Pascal). 

-------BB-------

Interrupt-Side Routines 8-7 





Chapter 9 

Global Drivers 

This chapter describes how to design and write global device drivers. A global driver al
lows different processes to multiplex different operations on various devices such as the 
ETHERNET controller. 

The general organization of a global driver is the same as for a private driver, consisting of 
a call side, interrupt side, and insert files. Likewise, the program crddf creates a DDF for 
a global driver in the same way as it does for a private driver: arguments to the program 
specify the unit number, call and interrupt libraries, initialization and cleanup entry points, 
interrupt entry points, and other useful information. 

Whereas the private driver resides in user private address space where it is accessible only 
to the process assigned to that address space, the global driver resides in global address 
space where it is accessible to any process that wants it. This difference impacts the design 
of the global driver, which must be capable of handling calls from multiple processes and 
keeping them separate from each other. 

NOTE: Writers of global device drivers must not use variable names that 
conflict with names of system-defined symbols. Use the esa 
(external_symbol_address) command to determine if a name 
belongs to a system-defined symbol. 

See /domain_examples/gpio_examples/global_example for an example of a global driver. 

Global Drivers 9-1 



9.1 Controlling Multiple Processes 

The major design consideration of a global driver is how to control multiple processes that 
are attempting to access the same procedure or data structure. Specifically, a global driver 
must be designed to perform these functions: 

• Mutual exclusion; that is, preventing two or more processes from getting into the 
call library at the same time and tripping over each other 

• Synchronization among client processes where one may be controlling resources on 
which others need to wait 

9.1.1 Mutual Exclusion 

Any routines in the call-side library that update shared data structures, including those that 
actually control the device, must be protected with mutual exclusion (MUTEX) locks; that 
is, surrounded by calls to mutex_$lock and mutex_$unlock. This precaution ensures that 
only one process can be executing in the body of a procedure at a time. A procedure de
signed for mutual exclusion would typically look like the following: 

mutex_lock_rec_t lock; 
void p (parameters) 

} 

if (mutex_$lock(lock, wait_time»{ 
/* body of procedure */ 

mutex_$unlock (lock); 
} 

It should be noted that prior to releasing the lock (either for the purpose of waiting or 
upon exiting) the procedure must restore the state of all shared data structures to some
thing that is "safe" for any other process. 

If in the body of the procedure a process needs to wait on an event, the procedure must 
provide a means of releasing the lock so that another process can begin execution and sat
isfy the wait condition, as in the following: 

mutex_$unlock (lock); 
eC2_$wait ( ... ); 
(void) mutex_$lock (lock, wait_time); 

9-2 Global Drivers 



9.1.2 Synchronization 

As described in Chapter 8, GPIO software provides one built-in eventcount per device as a 
means of synchronizing device operations with driver routines. However, a global driver 
typically needs multiple eventcounts (for example, per client process, per socket, or per 
queue). The driver's interrupt handler must also be able to advance one or more of these 
eventcounts selectively. The following GPIO calls provide this functionality: 

The first two are paired calls that manage the allocation from a special pool of eventcounts 
in wired space in the nucleus. The third enables an interrupt handler to selectively ad
vance a particular eventcount based on the type of interrupt, data received, etc. All three 
routines use ordinary ec2_$ptr_t eventcount pointers; thus, the ordinary ec2_$ ... routines 
can be used. (Note, however, that only eventcounts from the special pool can be ad
vanced by an interrupt handler.) For a description of these calls, refer to Appendix B. 

The interrupt handler decides which eventcount to advance based on status or the results 
of the device, then advances that particular eventcount, awakening whatever process is 
waiting for that particular event. For example, a network device supports multiple devices, 
each waiting on an eventcount for a particular packet. When a packet comes in, the inter
rupt handler decides which process it is destined for by checking the packet type or other 
information in the packet. It then advances the appropriate eventcount, which notifies the 
process that its packet has arrived. 

The procedures pbu_$wait and pbu_$get_ec work as they do for private drivers. The 
pbu_$get_ec procedure returns the pointer to the built-in eventcount in the device control 
table entry. This is advanced under control of the return value from the interrupt handler. 
The procedure pbu_$wait can be used to wait on this eventcount and a time-out. How
ever, it should only be used in a global driver under the protection of a MUTEX lock. It 
is subject to a race condition so that, if two processes try to call it at approximately the 
same time, one waits while the other does not. The behavior is likely to appear unpredict
able to the developer of a device driver. 

Global Drivers 9-3 



9.2 Global Memory 

Because global drivers reside in global memory, they are like global libraries in that they 
must be loaded at system initialization and unloaded at system shutdown. However, a 
global driver differs from a global library in that a global driver has read-write "state" and 
its data sections are loaded into write able global virtual memory, making it accessible to all 
processes. Read-write data structures for global drivers can be declared in a data section 
of the call or interrupt library, or allocated dynamically by calling the routines 
rws_$allocJwJ'ool and rws_$alloc_heapJ'ool. If you call either procedure in a global 
driver, you must specify rws_$globalJ'ool as an input parameter (for private drivers, you 
must specify rws_$stdJ'ool). 

There is only one copy of the data for the entire system, not one per process (as with the 
... _impure_data$ sections for ordinary global libraries) or one read-only section per system 
(as with data$ and ... J'ure_data$ sections). Any routines and variables that are exported 
by both the call-side and interrupt-side libraries are entered in the system-wide Known 
Global Table (KGT) so that they are visible and accessible to all processes and, therefore, 
corruptible by all processes. 

If you wish to avoid filling up the KGT and generating long, unique variable names, you 
should put all variables in a named common section (overlay section) in the insert file; 
only one entry will be stored in the KGT rather than one for each variable. You should 
be forewarned, however, that if an overlay section contains initialization data, it is reinitial
ized each time a program containing that section is loaded. 

9.3 Initialization and Cleanup 

All driver initialization occurs when the driver is loaded (at system initialization), and all 
cleanup occurs when the driver is unloaded (at system shutdown). In other words, there is 
no per-process initialization or cleanup for global drivers. Each procedure in a global 
driver must be so designed that it restores the module invariant (doesn't leave the proce
dure in an inconsistent state) before releasing the lock and allowing another process to be
gin execution. 

9.4 Fault Handling 

If the interrupt handler in a private driver takes a fault, the fault is reflected back to the 
process that owns the driver. In a global driver, however, the fault is reflected back to the 
process that last touched the driver. The reason for this difference is that in a global 
driver you don't want the fault to reflect back to the owning process, which is the DM, the 
SPM, or the init process. As a result, if an interrupt handler generates a fault, the fault 
may not be sent back to the offending process. 

9-4 Global Drivers 



9.5 Loading and Unloading 

Unlike private drivers, which are dynamically loaded, global drivers must be loaded at sys
tem initialization. To load a global driver, you place the DDF for the global device in the 
directory /dev/global_devices. Immediately after loading the global libraries, the system 
searches the directory /dev/global_devices for global device drivers and then calls 
pbu_$acquire for each DDF it finds. If it finds non-DDF objects, it writes a message into 
the /dev/sio file for display on the screen or terminal, identifying them and the fact that 
they were not loaded. The list of global devices is recorded (by unit number) in 
pbu_$global_units. This read-only variable is initialized during system initialization and is 
readable by all processes. Thus, a driver can discover if it is loaded globally by testing 
whether its unit number is in that set. Devices are initialized in ascending order of unit 
number. 

A status code is returned for any DDF that cannot be loaded, and the DDF is ignored. 
Files in the directory that are not DDFs are also ignored. 

During system initialization for the DM, SPM, or init process and immediately after all li
braries are initialized, the driver initialization routine is called for each global device. As 
mentioned, devices are initialized in ascending order of unit number. If a driver initializa
tion routine returns bad status, system initialization is immediately suspended and an error 
message is displayed. The system cannot be restarted until either the problem is corrected 
or the device's DDF is removed from the directory /dev/global_devices. Note that DDFs 
can be removed with the delete_file (dlf) command to the phase II shell (the boot shell). 

When the system exits, it calls the cleanup routine of each global driver to gracefully re
lease each device. Devices are called in descending order of unit number so that they are 
released in Last In, First Out (LIFO) order. 

9.6 Multiple-Device Drivers 

The GPIO software package allows the same driver (either global or private) to support 
more than one device. A node configured with two ETHERNET controllers, for example, 
can be supported either by two independent drivers or by the same driver. In the latter 
case, the same call and interrupt libraries service both devices, using common data struc
tures to control them. This holds true, whether or not the devices are shared. 

Each device is specified by its own DDF. The DDF specifies the interrupt level, CSR 
page, entry points for the initialization and cleanup routines, and other vital information 
for the device. Different DDFs may point to the same call and interrupt modules. Speci
fying the multiple option with the crddf command ensures that pbu_$acquire doesn't load 
multiple copies of the same library. Note, however, that the initialization and cleanup en
try points are called individually for each device. 

Global Drivers 9-5 



The interrupt handler has an input parameter, in pbu_$unit_t format, that identifies the 
unit which this handler services so that it knows which registers to read, which data struc
tures to work on, and so on. Thus, one interrupt routine can support multiple devices at 
different interrupt levels and decide dynamically which one has interrupted. This parame
ter is passed to the interrupt handler at interrupt time. The procedure signature of an in
terrupt handler is as follows: 

For C: 

For Pascal: 

-------88-------

9-6 Global Drivers 



Chapter 10 

Building and Debugging 

The final steps in creating your device driver are 

• Building a single output file by compiling and binding the modules that make up 
your driver 

• Debugging the driver 

10.1 Building the Device Driver 

The purpose of building is to create a single output object file by compiling and binding 
the several modules that make up your driver. 

10.1.1 Compiling the Device Driver 

A sample compile line from a build script from 
/domaio_examples/gpio_exampJes/bm_exampJe/build_lib.sh follows. Notice the -pic 
option to create a relocatable executable library. 

NOTE: You must use the -pic option to the compiler in order to create 
a relocatable executable library. 

Building and Debugging 10-1 



10.1.2 Binding the Device Driver 

As input, the bind operations take the call-side and the interrupt-side (if one exists) rou
tines. The output of the bind becomes the input for the DDF's call_library and 
interrupt_library parameters. Follow the instructions in this section to produce the proper 
input for the DDF. (Chapter 11 and Appendix A describe how to build the DDF and the 
DDF parameters.) 

During device acquisition, pbu_$acquire reads the DDF to find the pathname in 
call_library and uses the pathname to install the device driver into user-process address 
space, making it accessible to user programs. Specification of interrupt_library is optional, 
depending on whether you have written interrupt routines for the driver. 

If the driver does support one or more interrupt routines, use two bind operations to pro
duce two separate executable modules: 

• The call-side module (input for call_library in the DDF) 

• The interrupt-side module (input for interrupt_library in the DDF) 

For convenience, you can write a shell script to perform the two bind operations. This sec
tion provides a sample shell script. 

The call-side module contains the call-side routines. For input to the bind, use the binary 
file produced in a successful compilation of the module(s) that contain the call-side rou
tines, including 

• The device initialization routine 

• The driver routines 

• An optional cleanup routine 

The interrupt-side module contains the interrupt-side routine(s), bound with the GPIO 
source library /lib/pbu_int_lib. The interrupt-side module also contains any communica
tions areas (a driver control block) to be shared between the interrupt routine(s) and the 
call-side routines. For input to the bind, use 

• The system binary file /lib/pbu_int_lib. 

• The binary file produced in a successful compilation of the interrupt-side module. 
In the sample shell script, this module is named interrupt_side. bin. 

• Any other areas that the driver's interrupt routine references. 

If you've written a device acquisition program (see Chapter 12, Subsection 12.1.2), you 
should not bind it with the driver. 

10-2 Building and Debugging 



When binding a driver that contains variables that are globally visible, we recommend using 
the -mark option to specifically mark each variable, rather than the -allmark option. 
Such variables include anything you want to share between the call side and the interrupt 
side as well as routines that are entry points for the application or GPIO software. If you 
are writing a shared driver you must not use the -allmark option. Refer to the Domain 
Binder and Librarian Reference manual for information on the -mark option. 

Sample bind lines from a build script from 
/domain_examples/gpio_exampJes/bm_exampJe/build_lib.sh follow. Notice the use of 
the -mark option, and that only symbols use the -mark option. 

bind -b bm.lib -map >bm_lib.map - «~I 

bm_lib.bin 
-allunmark 
-mark bm_$init 
-mark bm_$cleanup 
-mark bm_$read 
-mark bm_$write 
-mark bm_$wait 
":'end 

cpf bm.lib /lib/bm.lib -chn 
dlf bm_lib.bin 

10.1.2.1 Using Bind to Page Align Buffers 

If you have to page align a buffer, you may want to consider using the -align option. To 
use this option, you must declare the area of memory you want page aligned in a specially 
marked data section and then specify (in this order) -align, the name of that section, and 
the word page when entering the bind command line. For example, to page align a l-KB 
area of memory called dma_buffer, first you would declare the following area of memory: 

var (buffer_sec) 
dma_buffer : array [O .. by tes_per_page-1] of char; 

then you would enter the following command line: 

$ bind -allmark my_call_side. bin -align buffer_sec page -b mycall_side.lib 
-m my_call_side. map 

NOTE: Arguments to the -align option must all appear on the same line 
with -align. 

Building and Debugging 10-3 



For additional information, refer to the Domain Binder and Librarian Reference manual. 
For information about placing variables in sections, refer to the Domain Pascal Language 
Reference manual and to the discussion of C's #section command in the Domain C Lan
guage Reference manual. 

10.1. 2. 2 System Globals 

Specifying -sys causes the binder to list all interrupt routine references to system globals. 
This list must be empty, as pbu_$acquire will not install an interrupt library with any unre
solved globals (see Chapter 8, Section 8.1). The pathnames specified as the -b arguments 
are those you use for call_library and interrupt_library when you build the DDF (see 
Chapter 11). If you specify -sys when binding the call-side module, you'll probably notice 
that several unresolved globals are listed. These are external references to globals defined 
in the interrupt side and will be resolved at run time. 

For information about the binder, refer to the Domain Binder and Librarian Reference 
manual. For information about shell scripts, refer to the Aegis Command Reference man
ual. 

10.2 Debugging the Device Driver 

You can use the high-level language debugging tool Domain Distributed Debugging Envi
ronment(DDE) on the call-side library by following the procedure outlined in this section, 
but you must not use it on the interrupt-side library. By its very nature, an interrupt rou
tine cannot take faults, but must run to completion without interruption. 

To make it possible to debug your interrupt routine, follow these guidelines: 

• Debug the interrupt routines as call-side routines, before installing them in the 
interrupt side. That is, write your interrupt routines as you normally would, but 
for debugging purposes, install them in the call-side library, just after the call is 
made to the wait routine. Then, after you have debugged them with DDE, you 
can copy them into the interrupt-side library where they belong. 

• There is no way to set break points in an interrupt-side routine. The best way to 
debug it is to make it leave a trail of data and flags about where it has been and 
then examine the data to see if it is what you would expect it to be. 

• Store as many statistics as possible in a control block that is shared by the call 
and interrupt sides. In this way, you can read the control block to determine what 
the interrupt routine is doing. 

Although you may use DDE on global drivers, there are special considerations when debug
ging in global space. These are discussed in Section 10.3. 

10-4 Building and Debugging 



Using DDE on call-side routines that are accessible from the application is simple and 
straightforward. 

The following example of using DDE on an initialization routine is annotated, showing the 
descriptions of the debugging activity in italic print. 

NOTE: The line: 
dde> property lib <call_library_executableyathname> 
tells the debugger to stop after loading the call library so that you 
can set break points before the pbu initialization routine gets 
called. 

Debugging Example: Description of Activity: 

$ dde fast debug the application program 

Initializing image"/ /acme/abe/backup/fast/fasV' ... 
Initializing block"\\tape_mt_mgr". 
Stopped at: \ \ tape_mt_mgr\main\ 71 debugger stops at program start 
dde> prop lib mt_Iib.lib stop when mt_lib.lib is loaded 
dde> go continue application program 
Ini tializing image"/ /acme/abe/backup/driver/mt_lib.lib" ... 
The target program has loaded //acme/abe/backup/driver/mt_Iib.lib 
Stopped at: \ \ tape_mt_mgr\main\ 71 debugger stops at program start 
dde> prop lib mt_lib . lib stop when mt_lib.lib is loaded 
dde> go continue application program 
Initializing image"/ /acme/abe/backup/driver/mt lib. lib" ... 
The target program has loaded //acme/abe/backup/driver/mt lib. lib 
Stopped at: unkown location (OE82117E) debugger has loaded mt_lib.lib 
dde> break \ \mt_user\umt_$init set a breakpoint in in it routine 
Initializing block"\\mt_user". 
dde> break \\mt_user\umt_$release 
dde> go 
Break at: \\mt_user\umt_$init\395 

and release routine 
continue 
here we are at the init routine 

For additional information on using DDE, refer to the Domain Distributed Debugging Envi
ronment (DomainIDDE) Reference manual. 

Building and Debugging 10-5 



10.3 Debugging the Global Driver 

A device driver that has been designed as globally shareable can always be loaded as a 
private nonshared driver, which means that it can be debugged in the privacy of its own 
address space, like an ordinary nonshared GPIO driver. Thus, you can use the debugging 
procedure outlined in Section 10.2. 

To debug the driver in global space, work with just one process at a time. Getting the 
driver to work properly for a single process in global space should not be much more diffi
cult to do than in private space. You need 

• The debug 4 switch to the phase II shell. This causes system initialization to tell 
where it has loaded the driver and interrupt libraries, how many pages are wired, 
where the entry points are, etc. (debug 4 switch is the same as aqdev's -db 
switch and crddf's -debug switch; it generates the same information for a private 
driver as for a shared driver.) 

• The property system -on command allows you to step right into the driver in 
global space. 

To debug the driver as a shared driver, check that it has already been loaded from the 
directory /dev/global_devices. Start the debugger on any number of applications that use 
the device concurrently. Among other things. you will be able to track down deadlocks, 
observe synchronization problems, and notice shared access to data unprotected by locks. 

The most reliable approach to debugging shared libraries with a state that is common to 
many processes is to test it with a random-number-driven diagnostic application. This ap
plication exercises the interface to the library, calling the different procedures at random 
with different values, then comparing the actual results with the expected ones. The ran
dom aspect is important because after enough time, you start to flush out synchronization 
problems. The first round of problems typically shows up within seconds, the second 
round within minutes, but the subtle bugs sometimes take hours or days before they hap
pen. If your driver can stand up to a weekend of exercising by a dozen randomly driven 
processes without revealing any bugs, it has a good chance of surviving a number of real 
applications concurrently. 

-------88-------

10-6 Building and Debugging 



Chapter 11 

Device Descriptor File 

The Device Descriptor File (DDF) is a character special device file that stores static con
figuration information about a device. as well as information about the driver. that GPIO 
software needs to know. Each device connected to a node has one associated DDF. You 
create the DDF by invoking the crddf command (see Appendix A) and specifying a path
name for the DDF. normally in the /dev directory on the node to which the device is 
physically attached. The information stored in the DDF comes from the options you specify 
with the crddf command. 

The DDF is mapped into user-process address space when the device is acquired. The 
DDF format is completely defined by the type pbu_$ddCt (see Appendix B. Section B.1). 

Device Descriptor File 11-1 



The DDF contains the following information: 

• The device's unit number and the ID of the node to which the device is attached. 
The device's unit number is equal to its lowest assigned interrupt request line 
number. 

• The pathname of the module that contains the user-written call-side routines. The 
aqdev command uses the pathname to install the device driver in the address 
space of the user process from which the call to pbu_$acquire was made. 

• The entry point of the device initialization routine. 

• The entry point of the cleanup routine, if one exists. 

• The pathname of a library that contains one or ~ore interrupt routines, if they 
exist. 

• The stack size required by the interrupt routine(s). 

• The address of the device's CSR page. 

• The interrupt request line number for the device. 

DDFs exist in three versions, which differ from each other according to the options you 
specify when invoking the crddf command. If you specify a Version 3 option (-at), then 
the system creates a Version 3 DDF. Table 11-1 lists the required options for each ver
sion. For a full description of all crddf options, refer to Appendix A. 

Table 11-1. Required Options for Different DDF Versions 

Version 1 Options* Version 2 Options Version 3 Options 

-unit Version 1 options plus Version 1 and 2 options plus 
-node any of the following: any of the following: 

-call_library -csr _offset -at 

-initialization routine -memory-base « 64 KB) -vme 

-memory-size « 64 KB) -memory_base (> 64 KB) 

-memory size (>64 KB) 

* All Version 1 options are required for a Version 1 DDF (see Appendix A). 

11-2 Device Descriptor File 



11.1 Building a DDF in a Shell Script 

One way to build the DDF is to create a shell script so that if you need to change the 
DDF, you can simply change the shell script and rebuild the DDF. 

A shell script called build_bm_ddf.sh for the sample driver in bm_example_c follows; it 
also appears in the subdirectory /domain_examples/gpio_examples/bm_exampJe. A brief 
explanation follows the example. As you read the script, note that it consists mainly of the 
crddf command and appropriate options read from standard input (this shell script builds a 
Version 1 DDF): 

#!von 
dlf /dev/bm > ? /dev/null 
crddf /dev/bm - «! 
-unit 2 
-node * 
-csr_page 400 
-call_library /lib/bm.lib 
-interrupt library /lib/bm_int.lib 
-initialization_routine bm_$init 
-cleanup_routine bm_$cleanup 
-interrupt_routine 2 bm_$int 
-serial number 01234567 
-user_info ddf_for_bulk_memory_device 
-display 
-end 

The pathnames specified for call_library and interrupt_library are the call-side and inter
rupt-side modules generated by two of the build_". shell scripts in the bm_example_c 
subdirectory. Refer to build_call_lib.sh and build_int_lib.sh in these directories to see the 
origin of the pathnames /lib/bm.lib and /lib/bm_int.lib. 

You could also use the bind shell script given in Chapter 10, Section 10.1.2. If you used 
this script, you would first have to compile the modules bm_lib.pas and bm_int_lib.pas. 
You would use the binary output from the compilations for <call_side. bin> and 
<interrupt_side. bin>; you would then specify the pathnames /lib/bm.lib and 
/lib/bm_int.lib as <call_lib_pathname> and <interrupt_pathname>. Note that the shell 
scripts in the online examples place the modules in the /lib directory. If the shell script 
you write to bind the device driver specifies pathnames in the !lib directory, ensure that 
the node's Access Control Lists (ACLs) provide you adequate rights to this directory. For 
information about shell scripts, refer to the Aegis Command Reference manual. 

Device Descriptor File 11-3 



For the DDF's initialization_routine, cleanup_routine, and interruptJoutine parame
ters, the shell script provides the name of each routine. Note that these routines are part 
of the modules you specify for the call_library and interrupt_library parameters. You 
specify their names in the shell script to make their entry points available to the GPIO rou
tines. 

Certain crddf options (revision, serial_number, user_info, debug, and memory_base) 
are not used by any internal software and are intended only for the convenience of the 
user. You can use the debug option to turn on and off the driver's debugging logic, as in 
the following example: 

if ddf-ptrA.debug then 
begin 

flags := flags + [dbg]; { add debug flag} 
if dbg in flags then 

vfmt_$write2 ('ETHER: Beginning initialization%.', 0, 0); 
end; 

11.2 Version 2 DDF 

GPIO software creates a Version 2 DDF if you specify any or all of the following options: 
memory_base (less than 64 KB), memory_size (less than 64 KB), and csr_offset. The 
usefulness of Version 2 options is that you can store information that is subject to change 
in the DDF rather than in the driver, where it is more difficult to update. If, for example, 
your driver supports a memory-mapped controller, instead of coding the driver to include 
information about memory size and starting address (information that you might want to 
change), you can specify this information with the memory_size and memory_base op
tions, as in the following build_ddf shell script (from the subdirectory 
/domain_examples/gpio_examples/threecom_exampJe) : 

von 
dlf /dev/ethernet 
crddf /dev/ethernet - «~I 

-unit 0 
-node * 
-memory_base 4000 
-memory_size 2000 
-call_library /lib/ether.lib 
-interrupt_library /lib/ether_int.lib 
-initialization_routine ether_$init 
-cleanup_routine ether_$cleanup 
-interrupt_routine 0 ether_$intO 
-serial_number 
-user_info 
-display 
-end 

11-4 Device Descriptor File 



Then, your driver's initialization routine can fetch this information and store it in the con
trol block. This is how the initialization routine in the threecom_example driver does it: 

if ddf.version = pbu_$ddf_version_2 then begin 
mem_base := ddf.memory_iova; 
mem_Ien .- ddf.memory_size; 
end 

else begin 
mem_base := 16#6000; 
mem_len .- 16#2000; 
end; 

The csr_offset option allows you to supply information to the driver about the address of 
the controller's CSR page. In the following example, csr_offset is used to specify a CSR 
address that falls within the range 80-FF recommended for 8-bit MULTIBUS controllers 
(see Chapter 1, Subsection 1.3.1): 

von 
dlf /dev/comm 
crddf /dev/comm - «~I 

-unit 0 
-node * 
-csryage 0 
-csr_offset 80 
-call_library /lib/comm.lib 
-interrupt_library /lib/comm_int.lib 
-initialization_routine comm_$init 
-cleanup_routine comm_$cleanup 
-interrupt_routine 0 comm_$intO 
-serial_number 
-user_info 
-display 
-end 

You should note that the information you supply with any Version 2 option is not used by 
the operating system and can be in any form that is useful to the driver. In fact, you can 
use these options to store any kind of information you want. 

11.3 Version 3 DDF 

GPIO software creates a Version 3 DDF if you specify any or all of the following options: 
at, vme, dma_channel, memory_base (greater than 64 KB), or memory_size (greater 
than 64 KB). Subsections 11.3.1 through 11.3.3 present shell scripts for building DDFs for 
a PC AT compatible device and a VMEbus device. For a full description of all Version 3 
options, refer to Appendix A. 

Device Descriptor File 11-5 



11.3.1 DDF for a PC AT Compatible Device 

A sample shell script that builds a DDF for a PC AT compatible device follows. Note that 
the -csryage iovas are supplied by the cvt_at command (see Appendix A). 

von 
dlf /dev/at 
crddf /dev/at - «~I 

-at 
-unit 4 
-nodef * 
-csr-page 208 21F 
-dma_channel 7 
-call_library bmlib 
-interrupt_library bmintlib 
-initialization_routine bm_$init 
-cleanup_routine bm_$cleanup 
-interrupt_routine 4 bm_$int 
-serial_number 01234567 
-user_info at_ddf 
-display 
-end 

The DDF generated by the preceding shell script is as follows: 

$ crddf Idev/at -display 

ddf version: 3 
device uid: 00030004.00002CBC (unit 4, node 2CBC) 
controller is an AT device. 
dma channel: 7 
csr page iova: 200-21F 
call library: 
interrupt library: 
initialization entry 
cleanup entry point: 
interrupt stack size: 
interrupt routines: 

level 0: [unused] 
level 1: [unused] 
level 2: [unused] 
level 3 : [unused] 
level 4: bm_$int 
level 5 : [unused] 
level 6: [unused] 
level 7 : [unused] 
level 8: [unused] 
level 9: [unused] 
level 10: [unused] 
level 11: [unused] 
level 12: [unused] 

11-6 Device Descriptor File 

bmlib 
bmintlib 

point: bm_$init 
bm_$cleanup 

1024 



level 13: [unused] 
level 14: [unused] 
level 15: [unused] 

serial number: "01234567 
revision: 
user info: 

" 

" " 

11.3.2 DDF for a VMEbus Device 

" 

A sample shell file that builds a DDF for a VMEbus device follows: 

von 
dlf /dev/vme 
crddf /dev/vme - «~I 

-v me 
-unit 14 
-nodef * 
-csryage COOO 
-call_library bmlib 
-interrupt_library bmintlib 
-initialization_routine bm_$init 
-cleanup_routine bm_$cleanup 
-interrupt_routine 14 bm_$int 
-serial_number 01234567 
-user_info vme_ddf 
-display 
-end 

The DDF generated by the preceding shell script is as follows: 

dlf /dev/vme 
crddf /dev/vme - «~I 

New DDF. 
ddf version: 3 
device uid: 0003000E.00002CBC (unit 14, node 2CBC) 
controller is a VME device. 
csr page iova: COOO 
call library: bmlib 
interrupt library: bmintlib 
initialization entry point: bm_$init 
cleanup entry point: bm_$cleanup 
interrupt stack size: 1024 
interrupt routines: 

ID F8: [unused] 
ID F9: [unused] 
ID FA: [unused] 
ID FB: [unused] 

Device Descriptor File 11-7 



ID Fe: [unused] 
ID FD: [unused] 
ID IFE: bm_$int 
ID FF: [unused] 

serial number: "01234567 
revision: 
user info: 

" " 
" 

" 

11.3.3 DDF for a Device Accessed Through a Streams Manager 

The following build script uses the -major option to set the major device number of the DDF. 
The type uid will be set to the type associated with the major device number given. For 
information about how a major device number is mapped to a trait manager refer to the 
description of the mkdevno command in the Managing SysV System Software manual. 

#!/com/sh 
dlf /dev/mm >7 /dev/null 
# 
crddf /dev/mm - «~I 

-unit 0 
-node * 
-csryage. 0 
-call_library /lib/mm.lib 
-interrupt_library /lib/mm_int.lib 
-initialization_routine mm_$init 
-cleanup_routine mm_$cleanup 
-interrupt_routine 0 mm_$int 
-major 4 
-minor 0 
-check 
-display 

11-8 Device Descriptor File 



The DDF generated by the preceding shell script is as follows: 

New DDF. 
No missing fields. 

ddf version: 1 
device uid: 00030000.0000712E (unit 0, node 712E) 
controller supports 16-bit addresses only (M16). 
csr page iova: 0 
call library: 
interrupt library: 
initialization entry point: 
cleanup entry point: 
interrupt stack size: 1024 
interrupt routines: 

level 0: mm_$int 
level 1: [unused] 
level 2: [unused] 
level 3: [unused] 
level 4: [unused] 
level 5: [unused] 
level 6: [unused] 
level 7: [unused] 

serial number: " 
revision: 
user info: 

" 

" 
" 

" 

/lib/mm.lib 
/lib/mm_int.lib 
mm_$init 
mm_$cleanup 

" 

The following build script uses the -type option to set the type uid of the DDF to the type 
associated with the installed type "stype". (Refer to the Using the OPEN Systems Toolkit to 
Extend Your Domain Streams manual for more informaion.) The major device number of the 
DDF will also be set. 

#!/com/sh 
dlf /dev/stype >? /dev/null 
# 
crddf /dev/stype - «~I 

-unit 0 
-node * 
-csryage 0 
-call_library /lib/stype.lib 
-interrupt_library /lib/stype_int.lib 
-initialization_routine stype_$init 
-cleanup_routine stype_$cleanup 
-interrupt_routine 0 stype_$int 
-type stype 
-check 
-display 

Device Descriptor File 11-9 



The DDF generated by the preceding shell script is as follows: 

New DDF. 
No missing fields. 

ddf version: 1 
device uid: 00030000.0000712E (unit 0, node 712E) 
controller supports 16-bit addresses only (M16). 
csr page iova: 0 
call library: 
interrupt library: 
initialization entry point: 
cleanup entry point: 
interrupt stack size: 1024 
interrupt routines: 

level 0: stype_$int 
level 1: [unused] 
level 2: [unused] 
level 3: [unused] 
level 4: [unused] 
level 5: [unused] 
level 6: [unused] 
level 7: [unused] 

serial number: II 

revision: 
user info: 

II 

II 

II 

/lib/stype.lib 
/lib/stype_int.lib 
stype_$init 
stype_$cleanup 

II 

-------88-------

11-10 Device Descriptor File 



Chapter 12 

Acquiring and Releasing the Device 

This chapter describes the routines used for acquiring and releasing the device. It also 
describes the advantages of using the pbu_$acquire routine rather than the aqdev com
mand to acquire the device. 

12.1 Acquiring the Device 

The pbu_$acquire routine acquires control of the device by performing the following: 

• Mapping the DDF to the address space of the user process from which the call to 
pbu_$acquire was made 

• Locking the DDF for the device 

• Loading the device driver into the user-process address space 

• Wiring the interrupt routine, interrupt data, and interrupt stack 

• Mapping the device's CSR page to the user-process address space 

In addition, pbu_$acquire calls the device initialization routine specified in the DDF. For 
a description of aqdev and pbu_$acquire, refer to Appendixes A and B. 

There are two ways to make the call: 

• Invoking the pbu_Sacquire routine 

• Invoking the aqdev command 

The end result of either is the same. Note, however, that the aqdev command is only 
available in the Aegis environment. 

Acquiring and Releasing the Device 12-1 



12.1.1 Using aqdev 

If you are working in the Aegis environment and if you plan to execute several application 
programs that use the device, you can acquire the device with the aqdev command, as in 
the following: 

$ aqdev /dev/my_dev 

Device 0 acquired. 

$ application_l 
$ application_2 
$ application_3 
$ <CTRL/Z> 

*** EOF *** 
Device 0 released. 
$ 

The aqdev command invokes pbu_$acquire, which loads the driver into the address space 
of the user process from which the aqdev command was issued. The application programs 
are then invoked. Because the driver routines have been installed in user-process address 
space, each application program can call the driver routines. 

After installing the device driver, aqdev creates a new copy of the shell command inter
preter. Typing CTRLfZ (inserting the EOF mark) causes the new shell to return control to 
aqdev, which unloads the driver routines from the user process and releases the device so 
that the application programs may no longer call driver routines. 

In previous software releases, some programmers preferred to use aqdev to acquire the 
device because aqdev simplified the task of debugging. With Software Release 10 this ad
vantage no longer applies and we recommend that you use pbu_$acquire instead, for the 
following reasons: 

• The increased power of the Domain Debugging Environment (DOE) eliminates 
previous problems in debugging 

• The aqdev command is available only in the Aegis environment 

12.1.2 Acquiring a Device in Your Application 

If you need to run only one application, such as a server, then you can call pbu_$acquire 
to load the driver. It is preferable to call pbu_$acquire rather than to use aqdev to ac
quire the device. Calling pbu_$acquire from your application minimizes your dependence 
on in-process program execution for future software releases. 

12-2 Acquiring and Releasing the Device 



The following program uses pbu_$acquire to acquire a device, invoke the application, and 
release the device: 

#include <apollo/base.h> 
#include <apollo/error.h> 
#include <apollo/pbu.h> 

char *dev = "/dev/my_dev"; 

main (argc, argv) 
int argc; 
char *argv [] ; 
{ 

pbu_$unit_t unit; 
status_$t st; 

pbu_$acquire(dev, strlen(dev), unit, &st); 
if (st.all != status_$ok) { 

error_$print(st); 

} 

exit (1) ; 
} 

/* application code ..... */ 

pbu_$release(unit, true, &st); 
if (st.all != status_$ok) { 

error_$print(st) ; 
exit (1) ; 

exit (0) ; 

12.1.3 Acquiring a Device with pbu_$acquire_stream 

For information on how to write and use streams, refer to the Using the OPEN System 
Toolkit to Extend the Streams Facility manual. 

The following examples show how to acquire a device with a streams manager using the 
pbu_$acquire_stream routine. The first example is written in C, the second example is 
written in Pascal. 

eversion: 

void mgr_open 
xoid_$t &xoid, 
ios_$open_options_t &opts, 
spe_handle_ptr_t *h, 
status_$t *st); 

Acquiring and Releasing the Device 12-3 



{ 

/* attempt to acquire device */ 

pbu_$acquire_stream(xoid, unit, st); 
if (st->all != status_$ok) { 

/* see if device is acquired globally. the status 
pbu_$unit_is_global indicates that not only is the requested 
pbu unit already acquired globally, but it is also the device 
identified by 'xoid'. 'unit' is also returned. */ 

} 

if (st->all == pbu_$unit_is_global) 
st. all = status_$ok; 

else { 
st. fail = true; 
return; 

/* it is, report OK */ 
/* problems */ 

/* return with bad status */ 

/* device is acquired (either globally or in 
private address space) */ 

Pascal version: 

module mgr; 

define mgr_open; 

procedure mgr_open (* 

var unit: 

begin 

IN xoid: xoid_$t; 
IN opts: ios_$open_options_t; 
OUT h: spe_handle-ptr_t; 
OUT st: status_$t 
*) ; 

{ attempt to acquire device } 

pbu_$acquire_stream(xoid, unit, st); 
if st. all <> status_$ok then begin 

12-4 Acquiring and Releasing the Device 



{ see if device is acquired globally. the status 
pbu_$unit_is_global indicates that not only is the requested 
pbu unit already acquired globally, but it is also the device 
identified by 'xoid'. 'unit' is also returned. } 

if st.all = pbu_$unit_is_global then 
st.all := status_$ok 

else begin 

end; 

st. fail .- true; 
return; 
end; 

it is, report OK } 
problems } 

{ return with bad status} 

{ device is acquired (either globally or in private address space) } 

end; {mgr_open} 

12.2 Releasing the Device 

You can release a device by inserting the EOF mark or by calling pbu_$release. For the 
case where aqdev was used to acquire the device, the device may be released by issuing an 
EOF mark to the DM. For the case where pbu_$acquire or pbu_$acquire_stream was 
used to acquire the device, the application or streams manager should call pbu_$release. 

The pbu_$release routine unwires all wired procedures and data pages, deallocates any 
I/O map space, unmaps any mapped controller memory, and releases control of the de
vice. If the DDF contains the entry point of a cleanup routine, pbu_$release will call it 
during device release. The device acquisition program can call pbu_$release. However, 
since pbu_$release unloads the driver library, device drivers should not call it. The 
pbu_$release routine is described in Appendix B. 

-------88-------

Acquiring and Releasing the Device 12-5 





Appendix A 

GPIO Commands 

This appendix describes the use, format, parameters, and options for the four GPIO com
mands that the user can invoke: aqdev, crddf, cvt_at, and rldev. 

GPIO Commands A-I 



aqdev (acquire_device) Acquires control of a peripheral device. 

FORMAT 

aqdev pathname [-d[b]] [-c progname argJ arg2 ... ] 

ARGUMENT 

OPTION 

pathname 
(required) 

-d[b] 

-c 

The pathname of the DDF associated with the device to be acquired. 
The pathname normally refers to the a DDF in Idev directory on the 
node to which the device is physically attached. 

Acquires the device in debug mode. Specifying this option causes aqdev 
to display the addresses of the DDF and the CSR page, and to display 
information about device driver routines as they are loaded into user
process address space. 

Allows aqdev to run a command instead of a shell. Specifying this op
tion causes aqdev to acquire the device, run progname (passing argJ, 
arg2 ... to the program), release the device, and finally, return to the 
shell. This option also allows the user to use aqdev in a shell script (see 
example 3). 

DESCRIPTION 

NOTE: This command is supported only for compatibility purposes. At 
SR10 the aqdev command is available only in the Aegis envi
ronment, and will not be supported in the next major Software 
Release. 

The aqdev command is used to acquire a device at the shell command level. When in
voked, aqdev calls the routine pbu_$acquire, which maps to user-process address space 
the DDF, the device's CSR page, and device driver routines and associat~d data structures. 

Currently, the aqdev command (without the -c option) creates a new copy of the shell 
after it installs the device driver. To release the device, exit the shell, which causes the 
new shell to return to the aqdev command. The aqdev command then releases the device. 

A-2 GPIO Commands 



ERROR MESSAGES 

ddf has wrong file type 

The file pointed to by the specified pathname is not a DDF. 

name not found 

The file pointed to by the specified pathname does not exist. 

object is not local 

The DDF belongs to a device that is physically connected to another node. 

PBU not present 

No peripheral bus is present on the system. 

unit in use 

Another process is using the device. 

unit is global 

EXAMPLES 

Device unit number is already acquired as a global device. 

1. 

$ aqdev Idev/mtO -db 
DDF mapped at 2DOOOO for 1024 bytes. 
Interrupt stack_size = 1024 
CSR page at 2D8000 

aqdev 

Interrupt library: start address = 000000, n_sects 3 
Name PROCEDURE$, loc = 2BABAE, len = 0002AC 
Name = DATA$, loc = 2BAEFC, len = 000C6E 
Name = DEBUG$, loc = 2BAE5A, len = 0000A2 
Call library: Start address = 000000, n_sects 3 
Name PROCEDURE $ , loc = 2E0040, len = 00126C 
Name DATA$, loc = 2BBB6A, len = 000190 
Name DEBUG$, loc = 2E12AC, len = 00051C 
Device 3 acquired. 
$ 

GPIO Commands A-3 



aqdev 
2. 

3. 

A-4 GP 10 Commands 

$ aqdev /dev/my_dev 
Device 0 acquired. 
$ (Run your program using the device.) 
$ CTRL/Z 
*** EOF *** 
Device 0 released. 
$ 

$ aqdev /dev/my_dev -c driver_application 
Device 0 acquired. 
(driver_application runs using the device.) 
Device 0 released. 
$ 



crddf (create_ddf) Creates, displays, or modifies a Device Descriptor File (DDF). 

FORMAT 

crddf pathname [-option] [-option] ... [-J 

ARGUMENT 

OPTIONS 

pathname 
(required) 

-at 

The pathname of the DDF to be created. The pathname normally refers 
to a DDF in the Idev directory on the node to which the device is physi
cally attached. 

Specifies that crddf is to read further options from stream_$stdin. 

Specifies that the device resides on the IBM PC AT compatible bus. It is 
recommended that this option be the first specified when building a new 
DDF. Valid unit numbers when -at is specified must be in the range 
0-15 and must not be used by Domain system-supplied devices. Specify
ing this option results in the generation of a Version 3 DDF. 

-call_library pathname 

-check 

Specifies the pathname of the call side of the driver. This option is re
quired when creating a DDF. 

Checks the DDF to ensure that all required files have been specified. The 
options associated with these requirements are call_library, initializa
tion_routine, node, and unit. 

-cleanup_routine entry-name 
Specifies the entry point name of a cleanup routine to be called when the 
device is released. 

-csr_offset port-number 
Specifies the offset into the CSR page, in hexadecimal format, at which 
the device's control and status registers are located. Device drivers may 
use this information during controller initialization. Specifying this option 
results in the generation of a Version 2 DDF. 

GPIO Commands A-5 



crddf 

-csrJlage iova Specifies the hexadecimal address of the device's CSR page. If this option 
is omitted, no CSR page is mapped. The following information applies to 
the particular bus structure implemented on your node: 

-debug 

-display 

• MULTIBUS: Optional. If specified, must be page aligned. 

• VMEbus: Optional. If specified, must be page aligned and in the 
range 0000-7FFF (16-bit addressing, 16-bit data path) and 
COOO-DFFF (24-bit addressing, 16-bit data path). 

• PC AT compatible bus: Optional. If specified, must be 8-byte 
aligned, may indicate a range (-csrj>age 200 21F). If the second 
parameter is missing, a range of eight consecutive bytes is assumed 
("-csrj>age 200" assumes a range of 200-207). Use the cvt_at 
command (described in this appendix) to derive properly aligned 
iovas. 

Sets a flag (ddf.debug) that can be used to turn on debugging logic in a 
driver. 

Displays the current contents of the DDF. 

-dma_channel channel-number 

-end 

Specifies to the driver the DMA channel number that a PC AT compat
ible controller will use. Specifying this option results in the generation of 
a Version 3 DDF. 

Closes the updated DDF and exits. 

-initialization_routine entry-name 
Specifies the device driver's initialization routine entry point name. 
pbu_$acquire calls this routine during device acquisition. This option is 
required when creating a DDF. 

-interrupt_library pathname 
Specifies the pathname of the device driver's interrupt side. You only 
need to specify this parameter if you have user-written interrupt routines. 

-interruptJoutine level [entry-name] 
Assigns an interrupt request level to the device and optionally specifies 
the name of an interrupt routine to handle device interrupts at that level. 

The level is required; the name of the interrupt routine is optional. If no 
entry-name is specified, the System Interrupt Handler processes the inter
rupt and advances the eventcount associated with the device. A single 
device may interrupt at several levels. If that is the case, this option can 
be specified more than once. 

If the -interrupt_routine option is omitted, interrupts are processed at 
the level equal to the device's unit number. 

A-6 GPIO Commands 



crddf 
-major decimal-number 

Allows the user to set the major device number of the DDF file. With 
this option, crddf looks up the type UID corresponding to the major de
vice number. The type UID of the DDF is set to the result of the look
up. If crddf doesn't find a type UID corresponding to the major device 
number, the user is notified that the major device number is not set. 
The -major and -type options are mutually exclusive. 

-memory_base iova 
Specifies the bus address that marks the base of a controller's local mem
ory. Device drivers use this information in arguments to the GPIO routine 
pbu[2L$map_controller to associate a virtual address with the memory 
on the controller. Specifying this option with an iova less than 64 KB 
results in the generation of a Version 2 DDF; if the iova is greater than 
64 KB, a Version 3 DDF is generated. 

-memory_size length 
The size, in hexadecimal format, of controller memory. Device drivers 
use this information in arguments to pbu[2L$map_controller to associ
ate a virtual address with the memory on the controller. Specifying this 
option with an iova less than 64 KB results in the generation of a Version 
2 DDF; if iova is greater than 64 KB, a Version 3 DDF will be gener
ated. 

-minor decimal-number 

-multiple 

Allows the user to set the minor device number of the DDF file in the 
range 0 to 512. 

Specifies that the device driver supports more than one device and causes 
pbu_$acquire to use copies of previously loaded call-side and interrupt
side libraries, so as to avoid loading mUltiple copies of the same driver. 

-node [node-number I *] 

-nodef [node-number I *] 

-quit 

Specifies the number, in hexadecimal format, of the node to which the 
device is physically connected. This option is required when creating a 
DDF. The -nodef option suppresses the check that makes certain that 
the node exists. An asterisk (*) specifies the local node. 

Causes crddf to exit without modifying the original DDF. 

-revision [string-B] 
Specifies an optional revision number as an 8-character string. 

-serial_number [string-16] 
Specifies an optional serial number as a 16-character string. 

GPIO Commands A-7 



crddf 

-share Specifies that the DDF describes a memory-mapped controller that can 
be shared by multiple applications. The pbu[2LSmap_controller routine 
maps the shared controller into global address space, and pbu_Smemytr 
returns its address. Unlike a nonshared controller, a shared controller is 
not automatically unmapped on abnormal termination of a device driver. 

NOTE: Apollo recommends that a fault handler be estab
lished to ensure that the controller is unmapped 
should the driver terminate without going through 
the normal device release mechanism. 

-stack_size decimal-number 

-type type_name 

Specifies the number of bytes to be allocated to the interrupt stack (the 
default is 1024). 

Allows the user to change the type UID of the DDF file to the type of 
type_name. The crddf command looks up the major device number that 
corresponds to the type of type_name. The crddf command then uses 
the result of the look-u..p as the DDF's major device number. If crddf 
does not find the major device number for type_name, a major device 
number is created for type_name, and the DDF's major device number is 
set to it. The -type and -major options are mutually exclusive. 

-unit unit_number 

-update 

Specifies the device unit number. The unit number must match the lowest 
interrupt level on which the device interrupts. This option is required 
when creating a DDF. The following information applies to the particular 
bus structure implemented on your node: 

• MULTIBUS: Must lie in the range 0-5 for a 16-bit controller 
and 0-7 for a 20-bit controller. 

• VMEbus: Must lie in the range 8-14. 

• IBM PC AT compatible bus: Must lie in the range 0-15. 

Allows modification of an existing DDF. This option must be specified 
before any other option. 

-user_info string-64 

-vme 

Specifies up to 64 characters of optional information for use by the de
vice driver. The string-64 argument is initialized as a field of blanks that 
you overwrite. 

Specifies that the device resides on the VMEbus. It is recommended that 
this option be the first specified when building a new DDF. Valid unit 
numbers when -vme is specified must be in the range 8-14. Specifying 
this option results in the generation of a Version 3 DDF. 

A-8 GPIO Commands 



crddf 
- 20_ bit_addressing 

DESCRIPTION 

Specifies that the DDF describes a 20-bit controller. You must use this 
option when creating a DDF for a 20-bit controller on a node that has a 
20-bit MULTIBUS. 

Invoke the crddf command at the shell prompt or from a shell command file to create, 
display, or modify a DDF. The DDF created by crddf is a character special device file. 

You can create different versions of a DDF, depending upon which options you specify 
with the crddf command. Modifying an existing DDF by adding Version 2 or Version 3 
options results in the generation of a Version 2 or Version 3 DDF. Refer to Chapter 11, 
Table 11-1 for a list of the relevant options and to Chapter 11, Section 11.1 through Sec
tion 11.3 for a discussion of the different DDFs and examples that show how to create 
them. Note that all three versions must include the following options: unit, node, 
call_library, and initializationJoutine. 

The following options are not used by the operating system and are only for the optional 
use of the driver: csr_offset, debug, dma_channel, memory_base, memory_size, 
revision, serial_number, and user_info. 

The entire contents of the DDF are available to the driver's initialization routine by refer
ence through the ddf _ptr argument. 

EXAMPLES 

1. Create a new DDF specifying only the required information. 

$ crddf Idev/mtO -
new ddf. 
> -unit 3 
> -node 2f 
> -csryage 1400 
> -call_library /lib/mt.lib 
> -initializationJoutine mt_$init 
> -interrupt_library /lib/mt.int.lib 
> -interruptJoutine 3 mt_$int 
> -check 
no missing fields. 
> -end 
$ 

GPIO Commands A-9 



crddf 

2. Display a DDF. 

$ crddf Idev/mtO -display 
ddf version: 1 
device uid: 00030003 0000002f (unit 3, node 2f) 
csr page iova: 1400 
call library: 
interrupt library: 
initialization entry 
cleanup entry point: 
interrupt stack size: 
interrupt routines: 

level 0: [unused] 
level 1: [unused] 
level 2: [unused] 
level 3: mt_$int 
level 4: [unused] 
level 5: [unused] 
level 6: [unused] 
level 7: [unused] 

serial number: 
revision: 
user info: 
$ 

/lib/mt .lib 
/lib/mt. int .lib 

point: mt_$init 

1024 

3. Change the name of the interrupt routine in an existing DDF. 

$ crddf Idev/mtO -update -interruptJoutine 3 mt_$sio 
$ 

4. Create a new DDF for a device that will be accessed through streams for the 
installed type "foodev" (for information on writing and using streams managers 
refer to the Using the OPEN System Toolkit to Extend the Streams Facility 
manual): 

$ crddf Idev/foodev -
New DDF. 
> -unit 3 
> -node * 
> -csryage 1400 
> -call_library /lib/foodev.lib 
> -initialization_routine foodev_$init 
> -interrupt_library /lib/foodev.int.lib 
> -interrupt_routine 3 mt_$int 
> -type foodev 
> -check 
No missing fields. 
> -end 
$ 

A-lO GPIO Commands 



cvt_at (convert_at_addresses) Converts a PC AT compatible I/O address to a processor physical 
address. 

FORMAT 

ARGUMENTS 

at addr 
A PC AT compatible I/O address in hexadecimal. 

at_addr l-at_addr2 
A range of PC AT I/O addresses in hexadecimal. 

DESCRIPTION 

The cvt_at command converts PC AT compatible bus addresses to physical addresses in 
processor address space. The command reports any conflict between the PC AT address 
you specify and the address of any system-supplied device. It also supplies the iova for 
so-called PC AT (16-bit) addresses (see Example 2 that follows). 

If one or more addresses are specified, each is translated, and its physical address, page 
number, offset within a page, and the CSR page iova are displayed. If addresses are speci
fied in pairs and both fall on the same page, a warning is given. Also, if one of the ad
dresses in the pair is in the 0-3FF range for lO-bit controllers and the other address is in 
the 3FF-FFFF range for l6-bit controllers, a warning is given if they would conflict with 
each other on the bus. 

If a dashed parameter is specified, all addresses between those values are generated and 
converted. Both addresses must be either lO-bit or l6-bit. 

A warning is given if an address conflicts with a known system device control page within 
processor memory. 

GPIO Commands A-ll 



EXAMPLES 

1. Translate I/O address 5100: 

AT Addr DOMAIN Phys Addr 
5100 48140 

DOMAIN PPN 
120 

Page offset 
140 

CSR Iova 
100 

The cvt_at command converts the I/O address 5100 to the Domain physical address 48140 
and displays a CSR iova of 100. When you create the DDF for the PC AT compatible 
device, use this iova (not the I/O address) as input to the crddf command option 
-csryage (for example, crddf /dev/aU -csr_page 100). 

2. Translate I/O address 1A4: 

AT Addr DOMAIN Phys Addr 
1A4 4D004 

DOMAIN PPN 
134 

Page offset 
4 

CSR Iova 
1A4 

Warning: Above address (lA4) may occupy same physical page as 
DOMAIN device, if present: winchester (4DOOO). 

The cvt_at command converts the I/O address 1A4 to the Domain address 4D004 and 
. issues a warning that a conflict between device control pages exists if a Winchester disk is 
present in the configuration. 

3. Translate I/O address 41A4: 

AT Addr DOMAIN Phys Addr 
41A4 4D104 

DOMAIN PPN 
134 

Page offset 
104 

Csr Iova 
1A4 

Warning: Above address (41A4) may occupy same physical page as 
DOMAIN device, if present: winchester (4DOOO). 

A-12 GPIO Commands 



rldev (release_device) Releases a peripheral device. 

FORMAT 

rldev {unit-number I all} [-force] 

ARGUMENTS 

unit-number 

all 

OPTION 

-force 

The unit number of the device to be released. 

Causes rldev to release all devices acquired by the current process. 

Causes rldev to release the device unconditionally. waiting 1 second (at 
most) for any I/O operations to complete. 

DESCRIPTION 

NOTE: This command is currently supported only for compatibility pur
poses. At SRI0 it is available only in the Aegis environment. 
and will not be supported at the next major Software Release. 

The r1dev command releases one or more devices previously acquired by the aqdev com
mand (or pbu_$acquire). Currently. when you invoke rldev. a message appears advising 
you to insert the EOF mark to release the device. 

ERROR MESSAGES 

device not acquired 

The current process has not acquired any device associated with the specified unit 
number. 

object is not local 

The DDF belongs to a device that is physically connected to another node. 

-------88-------

GPIO Commands A-13 





Appendix B 

GPIO Routines 

This appendix describes the calling format, input and output parameters, and usage of the 
GPIO routines that application programs and user-written device drivers can call. Also 
described are the data types that are used by the routines and error messages. 

B.I Data Types 

The following are the constants and data types used by GPIO routines. Records are illus
trated to show their composition and byte displacements. 

CONSTANTS 

Name 

pbu_$ddCcurrent_version 

pbu_ $ddC version _2 

pbu_$ddCversion_3 

pbu_$ddf_Iowest_ version 

Value 

1 

2 

3 

1 

3 

64 

32 

1 

Description 

Current version of DDF. 

Version 2 of DDF. 

Version 3 of DDF. 

Lowest supported version of 
DDF. 

Highest supported version of 
DDF. 

Maximum length of pathnames 
in DDF. 

Maximum length of entry point 
names in DDF. 

Current version of pbu_$info_t. 

GPIO Routines B-1 



Name 

pbu $no csr iova - - -
pbu_$max_unit 

pbu_$min_vme_unit 

pbu_$max_vme_unit 

pbu_$max_at_unit 

bytes_peryage 

pbu_ $max _virtual_address 

DATA TYPES 

B-2 GPIO Routines 

Value Description 

-1 Indicates no CSR page 
(Version 2). 

7 Maximum allowable unit 
number. 

8 Minimum VMEbus unit 
number. 

15 Maximum VMEbus unit 
number. 

1 Maximum PC AT unit number. 

1024 Bytes per page. 

16#7FFFFFFF Maximum user-space virtual 
address. 

A 4-byte integer. A pointer to an eventcount. 

An array of up to 1024 characters. A buffer to be 
mapped. 

A 2-byte integer. Indicates the presence of the 
specified bus. Returns any combination of the fol
lowing values: 

pbu_multibus_m16 
The node supports the 16-bit MULTIBUS. 

pbu_multibus_m20 
The node supports the 20-bit MULTIBUS. 

pbu_atbus 
The node supports the PC AT compatible bus. 

pbu_vmebus 
The node supports the VMEbus. 

A 4-byte integer. A pointer to the CSR page. 

An array of up to 1024 characters. A Control and 
Status Register (CSR) page. 



predefined 
type 

" 

The name of the driver's interrupt routine entry 
point. The following diagram illustrates this data 
type. 

byte 
offset 

0: 

~ n: char 

OR 

0: I binteger I 

field 
name 

name 

flag 

Field Description 

name 
Interrupt routine entry point. 

flag 
For internal use only. 

byte 
offset 

0: 

2: 

4: 

5: 

r 

A 4-byte integer. A pointer to a DDF. 

A Device Descriptor File (DDF). The following dia
gram illustrates the pbu_$ddCt data type. 

integer 

integer 

binteger 

binteger 

field 
name 

sio_number 

version 

unit_number 

flags'" 

dev uid 

See the "Field Description" that appears later for for field names of bits. 

GPIO Routines B-3 



predefined byte field 
type offset name 

14: device sn 

30: call lib name 

94: inUib_name 

158: init_ep 

190: cleanup_ep 

pbu_$ddfJnUist_entry_t 222: int list 

pbu $iova t 478: integer csr _page Jova - -
480: integer stack size 

482: rev 

490: sn 

··506: user info 

570: integer csr _base_offset 

pbu_$iova_t 572: integer memoryJova 

574: integer memory_size 

pbu2_$iova_t 576: integer32 csr _page Jova2 

pbu2 $iova t 580: integer32 memory Jova2 - -
584: integer32 memory _ size2 

588: integer dma channel 

pbu $iova t 590: integer at_csr_high - -

1
592 

inUist2 

pbu_$ddfJnUist_entry_t 

n: 

B-4 GPIO Routines 



Field Description 

siD_number 
SIO number in old DDFs. 

version 
DDF version number. 

unit_number 
Unit number of this device. 

flags 
A bit mask that contains Boolean values, indicating device 
attributes. The following table lists the bit numbers within 
the mask, the record field names, and a short description of 
each attribute: 

Bit Field Name Description 

0 large 20-bit controller 

1 share Memory-mapped controller mapped 
in global address space 

2 vme VMEbus device 

3 sys Reserved 

4 debug User debug flag 

5 at PC AT compatible device 

6 multiple Driver supports multiple devices 

7 pad 

dev uid 
Device uid (for locking). 

device_sn 
Unit serial number. 

call_lib _name 
Pathname of call-side library. 

int_lib_name 
Pathname of interrupt-side library. 

init_ep 
Entry point of driver's initialization routine. 

cleanup_ep 
Entry point of driver's cleanup routine. 

int_list 
Interrupt request level and name. 

GP 10 Routines B-S 



B-6 GPIO Routines 

Field .Description (Cont.) 

csr yage _iova 
Address of device CSR page. 

stackjize 
Size (in bytes) of interrupt stack. 

rev 
Optional revision number. 

sn 
User-specified serial number. 

user_info 
User-specified information. 

csr _base_offset 
Offset within CSR page of CSR base. 

memory _lova 
Memory-mapped controller base. 

memory_size 
Memory-mapped controller memory size. 

The following fields are valid in Version 3 DDFs only: 

csr yage _iova2 
Address of VMEbus and PC AT compatible device CSR 
page. 

memory _lova2 
Memory-mapped controller base. 

memory_slze2 
Memory-mapped controller memory size. 

dma_channel 
PC AT compatible device channel number. 

at_csr _high 
High PC AT compatible I/O address (if greater than 8-byte 
area). 

int_list2 
Interrupt request level and name (VMEbus and 
PC AT compatible devices). 

A 2-byte integer. The DMA channel number used 
by PC AT compatible devices. Possible values are 
integers between 0 and 7. 



A 2-byte integer. Used with pbu_$dma_start to 
specify a read or write DMA operation. One of the 
following predefined values: 

pbu_dma_read 
The PC AT compatible controller reads processor 
memory. 

pbu_dma_write 
Processor memory writes to the PC AT compatible 
controller. 

A 2-byte integer. Specifies various DMA modes on 
the PC AT compatible bus. Any combination of the 
following predefined values: 

pbu_dma_adr_decr 
DMA hardware decrements the address to or from 
which data is transferred. The default is to incre
ment. 

pbu_dma_auto_init 
DMA hardware reinitializes itself after completing 
data transfer. 

pbu_dma_cascade 
Sets DMA channel in cascade mode; use with de
vices that can request bus mastership doing DMA 
with their own DMA hardware. 

pbu_dma_ext_mem 
DMA to PC AT compatible or PC XT* compatible 
extension memory. 

A 2-byte integer. Specifies the eventcount to get. 
Currently. only the following predefined value is sup
ported: 

pbu_$get_device_ec 
Get device EC. 

• PC XT is a registered trademark of International Business Machines Corporation. 

GPIO Routines B-7 



B-8 GPIO Routines 

predefined 
type 

I/O bus information. The following diagram illus
trates the pbu_$info_t data type: 

byte field name 
offset 

0: integer version 

2: bus_types 

4: iomap_types 

A 2-byte integer. Flags returned from the device 
driver's interrupt routine that specify actions the Sys
tem Interrupt Handler is to perform. One or both of 
the following predefined values: 

pbu_Sinterrupt_advance 
Advance the device's eventcount. 

pbu_Sinterrupt_enable 
Enable interrupts from the device. 

A 2-byte integer. A set of pbu_$interrupt_flags_t. 

A 2-byte integer. Indicates whether the node's I/O 
hardware includes an I/O map for the specified bus 
type. Returns any combination of the following val
ues: 

pbu_multibus_iomap 
The node is equipped with the MULTIBUS and 
includes an I/O map. 

pbu_atbus_iomap 
The node is equipped with tJ:te PC AT compatible 
bus and includes an I/O map. 

A 2-byte integer. A physical address on the I/O bus. 

A 4-byte integer. A physical address on the I/O bus. 



A 2-byte integer. Available byte-swapping options 
when using pbu_$control. One or more of the fol
lowing predefined values: 

pbu_map_r 
Maps pages of processor memory read-only .. 

pbu_map_rw 
Maps pages of processor memory read-write. 

pbu_swap_off 
Swaps bytes during byte transfers only. 

pbu_swap_words 
Preserves byte order for character string transfers; 
swaps bytes for integer transfers. 

pbu_swap_bytes 
Preserves byte order for integer transfers; swaps 
bytes for character string transfers. 

An array of up to 64 univytrs. A list of physical 
addresses that locate the buffer in processor mem
ory. 

A 2-byte integer. Device unit number. 
Possible values are integers between 0 and 
pbu_$max_ vrne_unit. 

A 2-byte integer. A set of pbu_$unit_t. 

A 2-byte integer. Indicates the event that caused 
pbu_$wait to return. Possible values are integers be
tween 0 and 2. 

A 2-byte integer. Options when wiring an I/O buffer 
with pbu_$wire_special. Only one predefined value 
is currently available: 

pbu_$wired_buffer 
Verifies whether the buffer is already wired. 

GP 10 Routines B-9 



univytr 

B-IO GPIO Routines 

A status code. The following diagram illustrates this 
data type: 

byte 
offset 31 

0: I integer 

OR 

0: 

1 : 
o 

2: 

Field Description 

all 
All 32 bits in the status code. 

fail 

0 

I 

field 
name 

all 

fail 

subsys 

modc 

code 

The fail bit.· If this bit is set, the error was not within the 
scope of the module invoked, but occurred within a lower
level module (bit 31). 

subsys 
The subsystem that encountered the error (bits 24-30). 

mode 
The module that encountered the error (bits 16-23). 

code 
A signed number that identifies the type of error that oc
curred (bits 0-15). 

Unique identifier for an object. The following dia
gram illustrates the uid_St data type: 

byte 
offset 

0: 

4: 

Field Description 

high 

integer32 

integer32 

The high 4 bytes of the VID. 

low 
The low 4 bytes of the UID. 

A 4-byte integer. A universal pointer type. 

field 
name 

high 

low 



B.2 GPIO Procedures and Functions 

Table B-1 lists the GPIO calls described in this section, along with the type of bus each 
call supports. 

Table B-1. GPIO Procedures and Functions 

GPIO Call Supported Bus 

pbu_$acquire MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$acquire_stream MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$advance_ec MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_ $allocate_ec MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$allocate_map MULTIBUS 

pbu $control MULTIBUS 

pbu_ $device _interrupting MULTIBUS and PC AT Compatible Bus 

pbu $disable device - - MUL TIBUS and PC AT Compatible Bus 

pbu_ $dma_start PC AT Compatible Bus 

pbu_$dma_stop PC AT Compatible Bus 

pbu_$enable_device MUL TIBUS and PC AT Compatible Bus 

pbu_$free_map MULTIBUS 

pbu_$get_ec MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$get_info MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$map MULTIBUS 

pbu_$map_controller MULTIBUS 

pbu_$mem_ptr MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$read_csr MUL TIBUS and VMEbus 

pbu $release MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu $release ec MULTIBUS, VMEbus, and PC AT Compatible Bus 

(Continued) 

GPIO Routines B-ll 



Table B-1. GPIO Procedures and Functions (Cont.) 

GPIO Call Supported Bus 

pbu_$unmap MULTIBUS 

pbu_ $ unmap _controller MULTIBUS 

pbu_$unwire MULTIBUS 

pbu_$wait MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu_$wire MULTIBUS 

pbu_$wire_special PC AT Compatible Bus and VMEbus 

pbu_$write_csr MUL TIBUS and VMEbus 

pbu2_$allocate_map MULTIBUS and PC AT Compatible Bus with I/O Map 

pbu2_$dma_start PC AT Compatible Bus with I/O Map 

pbu2_$dma_stop PC AT Compatible Bus with I/O Map 

pbu2_$free_map MULTIBUS and PC AT Compatible Bus with I/O Map 

pbu2_$map MUL TIBUS and PC AT Compatible Bus with I/O Map 

pbu2 _ $map _controller MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu2_$unmap MUL TIBUS and PC AT Compatible Bus with I/O Map 

pbu2 _ $unmap _controller MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu2_$unwire MULTIBUS, VMEbus, and PC AT Compatible Bus 

pbu2_$wire MUL TIBUS, VMEbus, and PC AT Compatible Bus 

B-12 GPIO Routines 



Domain/OS 

NAME 

pbu_$acquire Acquires control of a peripheral device. 

SYNOPSIS (C) 

#include <apollojbase.h> 
#include <apollojpbu.h> 

void pbu_$acquire( 
name_$long_pname_t pathname, 
short &name len , 
boolean &xdebug, 
pbu_$unit_t *unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "jsysjinsjbase.ins.pas" 
%include "jsysjinsjpbu.ins.pas" 

procedure pbu_$acquire( 
in pathname: univ name_$long_pname_t; 
in namelen: integer; 
in xdebug: boolean; 
out unit: pbu_$unit_t; 
out status: status_$t) ; 

DESCRIPTION 

The pbu_$acquire routine acquires control of a device as follows: 

1. Locates the DDF, using the specified pathname, and maps it into the address 
space of the user process from which pbu_$acquire was called. 

2. Locks the device's DDF. 

3. Copies information from the DDF into internal I/O tables. 

GPIO Routines B-13 



Domain/OS 

If necessary, pbu_$acquire also establishes the device driver entry points and data struc
tures needed to communicate with the device: 

1. Locates the device driver routines and maps them into user-process address space. 

2. Wires the interrupt stack and associated interrupt code and data. 

3. Maps the CSR page for the device into user-process address space. 

4. Executes (or calls) the initialization routine specified in the DDF. 

Normally, the aqdev command calls pbu_$acquire, but user-written routines can call it 
and pbu_$acquire can also be called directly by application programs. 

The input and output parameters are as follows: 

debugJlag 

namelen 

pathname 

unit 

status 

B-14 GPIO Routines 

A Boolean value that indicates whether load information is printed. See 
the aqdev command in Appendix A. 

The length in characters of the specified pathname. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

The pathname of the DDF for the device to be acquired. Specify this 
parameter as an array of characters. 

The unit number in pbu_$unit_t format for use in subsequent calls to 
PBU routines. 

Completion status in status_$t format. 



pbu_$acquire_stream Domain/OS pbu _ $acq uire _stream 

NAME 

pbu_$acquire_stream Acquires control of devices from an extensible streams type 
manager. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$acquire_stream( 
xoid_$t &xoid, 
boolean &xdebug, 
pbu_$unit_t *unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/.ins/base. ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$acquire_stream( 
in xoid_$t: xoid; 
in xdebug: boolean; 
out unit: pbu_$unit_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_$acquire_stream procedure works in the same way as pbu_$acquire. The dif
ference is that pbu_$acquire_stream uses only xoid as an input parameter. 

The input and output parameters are described as follows: 

status 

unit 

xoid 

Returned status in status_$t format. 

The unit number in pbu_$unit_t format for use in subsequent calls to pbu 
routines. 

The xoid of the DDF in xoid_$t format. A xoid is an extended object 
identifier, a unique identifier of an object. It is 16 bytes long and has a 
predefined type of xoid_$t. Every object has its own unique xoid. Refer 
to Using the OPEN Systems Toolkit to Extend Your Domain Streams 
manual for an explanation of xoid. 

GPlO Routines B-15 



pbu $advance ec - - Domain/OS 

NAME 

pbu_$advance_ec Advances a device eventcount. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$advance_ec( 
pbu_$unit_t 
ec2_$ptr_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&ec2p, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$advance_ec( 
in unit: pbu_$unit_t; 
in ec2p: ec2_$ptr_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_$advance_ec routine advances an eventcount from a special pool of eventcounts 
in wired memory. It enables the interrupt handler of a shared driver to selectively advance 
a particular eventcount based on the type of interrupt. See also the descriptions of 
pbu_$allocate_ec and pbu_$release_ec, as well as the discussion of global drivers in 
Chapter 9, Section 9.1. 

The input and output parameters are described as follows: 

ec2p 

status 

unit 

B-16 GPIO Routines 

The eventcount pointer, in ec2jJtr_t format, returned from the GPIO call 
pbu_$allocate_ec. This is a 4-byte integer. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a 2-byte Pascal 
integer or C unsigned short integer. 



Domain/OS 

NAME 

pbu_$allocate_ec Allocates a new device eventcount. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

ec2_$ptr_t pbu_$allocate_ec( 
pbu_$unit_t &unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$allocate_ec( 
in unit: pbu_$unit_t; 
out status: status_$t); ec2_$ptr_t; 

DESCRIPTION 

The pbu_$allocate_ec routine allocates an eventcount from a special pool of eventcounts 
in wired memory. It is designed for use with shared drivers that occupy global memory. 
See also the descriptions of pbu_$advance_ec, and pbu_$release_ec as well as the discus
sion of global drivers in Chapter 9, Section 9.1. 

The input and output parameters are described as follows: 

status 

unit 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a 2-byte Pascal 
integer or C unsigned short integer. 

GPIO Routines B-17 



Domain/OS 

NAME 

pbu_$allocate_map Allocates I/O map space. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

pbu_$iova_t pbu_$allocate_map( 
pbu_$unit_t &unit, 
pinteger &length, 
boolean &force_flag, 
pbu_$iova_t &iova, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$allocate_map( 
in unit: pbu_$unit_t; 
in length: pinteger; 
in force_flag: boolean; 
in iova: pbu_$iova_t; 
out status: status_$t); pbu_$iova_t; 

DESCRIPTION 

The pbu_$allocate_map routine reserves an area of MULTIBUS address space for subse
quent DMA transfers. The function allocates the number of I/O map entries that corre
spond to the required number of pages of MULTIBUS memory plus one (to enable map
ping of buffers that are not page aligned). 

In general, a driver may allocate only one area of the I/O map for a given device at any 
time. However, drivers can allocate a second area of the I/O map for a device by calling 
pbu [2L $map _controller. 

B-18 GPIO Routines 



Domain/OS p bu _ $allocate _map 

The input and output parameters are described as follows: 

forceJlag 

iova 

length 

status 

unit 

A Boolean value that indicates whether or not a specific MULTIBUS ad
dress is to be assigned. For C programs, refer to Appendix C, Subsection 
C.2.3 for information about using Boolean values in C. 

If the forceJlag parameter is "true", the MULTIBUS address in 
pbu_$iova_t format to be assigned as the starting address of the portion 
of MULTIBUS address space to be allocated. 

The length in bytes of MUL TIBUS address space for which an area of 
the I/O map is to be allocated. This is a C unsigned short integer or a 
2-byte Pascal integer. 

The MULTIBUS address in pbu_$iova_t format that marks the start of 
MULTIBUS address space allocated by pbu_$allocate_map. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 

GPIO Routines B-19 



Domain/OS pbu_$control 

NAME 

pbu $control Specifies mapping controls. 

SYNOPSIS (C)-

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$control( 
pbu_$unit_t 
pbu_$opts_t 
pbu_$opts_t 
linteger 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&opts, 
*old_opts, 
&reserved, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$control( 
in unit: pbu_$unit_t; 

pbu_$opts_t; 
pbu_$opts_t; 
univ linteger; 
status_$t); 

DESCRIPTION 

in opts: 
out old_opts: 
in reserved: 
out status: 

The pbu_$control routine modifies the byte-swapping and protection hardware on 20-bit 
MULTIBUS implementations. The byte-swapping options are described in Chapter 1, Sec
tion 1.4. 

The input and output parameters are described as follows: 

opts 

B-20 GPIO Routines 

Specifies one or more of the following options in pbu_$opts_t format: 

pbu_mapJ: 
Pages of processor memory are mapped read-only, that is, a MULTIBUS 
controller cannot modify the data on the page. 

pbu_map_rw: 
Pages of processor memory are mapped read-write. This is the default. 



reserved 

status 

unit 

Domain/OS 

pbu_swap_off: 
No byte swapping occurs except during byte transfers. This is the default. 

pbu_swap_words: 
Byte transfers are unchanged; word transfers have their bytes reversed. 

pbu_swap_bytes: 
Word transfers are unchanged; byte transfers are swapped. 

If a null set "[]" is specified. nothing is changed. and the current settings 
are returned in old_opts. 

The previous setting of the options in pbu_$opts_t format. 

Reserved for future use; pass in O. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 

GPIO Routines B-21 



Domain/OS 

NAME 

pbu...,:$device_interrupting Checks for device interrupts. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

boolean pbu_$device_interrupting( 
pbu_$unit_t &unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$device_interrupting( 
in unit: pbu_$unit_t; 
out status: status_$t); boolean; 

DESCRIPTION 

The pbu_$device_interrupting routine reads the current state of the device's interrupt 
request line. This routine can be called from a user-written interrupt routine. Because it 
reads the current state of the interrupt line, the information this routine returns is not al
ways reliable. The interrupt signal may disappear before the routine is able to read it. 

The pbu_$device_interrupting routine cannot be used with VMEbus devices. 

The input and output parameters are described as follows: 

boolean 

status 

unit 

B-22 GPIO Routines 

A value that indicates (if "true") that the device's interrupt line is as
serted. For C programs, refer to Appendix C, Subsection C.2.3 for infor
mation about using Boolean values in C. 

Completion status in status_St format. 

The device unit number in pbu_Sunit_t format. This is a C unsigned 
short integer or a 2-byte Pascal integer. 



p bu _ $disable _device Domain/OS 

NAME 

pbu_$disable_device Disables interrupts from a peripheral device. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$disable_device( 
pbu_$unit_t &unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include ~/sys/ins/base.ins.pas~ 
%include ~/sys/ins/pbu.ins.pas~ 

procedure pbu_$disable_device( 
in unit: pbu_$unit_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_$disable_device routine prevents a device from requesting interrupts by setting its 
interrupt mask bit. 

The system automatically disables interrupts from a device as follows: 

• After it is acquired 

• During interrupt processing 

• When the device is released 

The pbu_$disable_device routine cannot be used with VMEbus devices. 

The input and output parameters are described as follows: 

status 

unit 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 

GPIO Routines B-23 



Domain/OS 

NAME 

pbu_Sdma_start Starts a DMA operation. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$dma_start( 
pbu_$unit_t &Unit, 
pbu_$dma_channel_t &chan, 
pbu_$dma_direction_t &direction, 
pbu_$buffer_t buffer, 
1 integer &length, 
pbu_$dma_opts_t &opts, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$dma_start( 
in unit: pbu_$unit_t; 
in chan: pbu_$dma_channel_t; 
in direction: pbu_$dma_direction_t; 
in buffer: univ pbu_$buffer_t; 
in length: linteger; 
in opts: pbu_$dma_opts_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_Sdma_start and pbu_Sdma_stop routines ,are paired functions for use with 
PC AT compatible devices. They should surround each DMA operation, whether success
ful or not. The pbu_Sdma_start routine prepares the system DMA hardware for the con
troller's operation. The driver must call this routine before issuing any 110 commands to 
the device. After pbu_Sdma_start is called, the controller can begin its operation. Be
fore calling pbu_Sdma_start again, the driver must call pbu_Sdma_stop. Refer also to 
the description of pbu_Sdma_stop. 

The pbu_Sdma_start routine can be called from the driver's interrupt side. 

B-24 GPIO Routines 



Domain/OS 

For bus-master devices, pbu_Sdma_start must be called with the option 
pbu_dma_cascade in order to reserve the DMA channel and to provide for proper bus 
arbitration. 

If you are designing your driver to run on the DN4000, you must call pbu2_Sdma_start, 
which is described later in this appendix. Refer also to Chapter 3, Section 3.6 for addi
tional information. 

The input and output parameters are described as follows: 

buffer 

channel 

direction 

length 

opts 

The buffer to be mapped, specified as a universal array of characters, in 
pbu_$buffer_t format. It must be page aligned. 

This is a C unsigned short integer or a 2-byte Pascal integer in 
pbu_$dma_channel_t format. Specifies the number (0-7) of the channel 
to be started. 

The direction of the data transfer in pbu_$dma_direction_t format. 
Specify one of the following options: 

pbu_dma_read 
Controller to processor memory. 

pbu_dma_ write 
Processor memory to controller. 

The length of the buffer in bytes. This is a C unsigned short integer or a 
2-byte Pascal integer and must be greater than 0 and less than or equal 
to 1024. If your driver is for a 16-bit device, the length must be ex
pressed as an even number. 

Specifies any combination of the following options in pbu_$dma_opts_t 
format: 

pbu_dma_auto_init 
Specifies that DMA hardware is to reinitialize itself after completing transfer, 
using the buffer and length parameters supplied with the call. Note that 
pbu_Sdma_start converts the length parameter from bytes to words. For 
more information, refer to the description of "autoinitialize" for the 8237A 
in Intel's Microsystem Components Handbook. 

pbu_dma_adr_decr 
Specifies that DMA operations decrement the address to or from which data 
is transferred. The default is that DMA transfers are made to increasing 
memory addresses. 

GPIO Routines B-25 



pbu $dma start - -

status 

unit 

B-26 GPIO Routines 

Domain/OS 

pbu_dma_cascade 
Sets the processor's DMA hardware in cascade mode so that a bus-master 
device can use its own DMA hardware. It is a way of arbitrating for the 
PC AT compatible bus. You must specify this option if you want the device 
to use its own DMA hardware. 

pbu_dma_ext_mem 
Specifies that the DMA transfer is to PC AT compatible or 
PC XT compatible extension memory, not processor memory. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 



Domain/OS 

NAME 

pbu_$dma_stop Stops a DMA operation. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

long pbu_$dma_stop( 
pbu_$unit_t 
pbu_$dma_channel_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&chan, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$dma_stop( 
in unit: pbu_$unit_t; 
in chan: pbu_$dma_channel_t; 
out status: status_$t); integer32; 

DESCRIPTION 

The pbu_$dma_start and pbu_$dma_stop routines are paired functions for use with 
PC AT compatible devices. They should surround each 110 operation, whether successful 
or not. The pbu_$dma_start routine prepares DMA hardware for the controller's opera
tion. After the controller completes its operation, the driver must call pbu_$dma_stop to 
get status from DMA hardware to ensure that the hardware completed its operation as 
well. Even if the controller reports an error, the driver must call pbu_$dma_stop. The 
driver may ignore the status returned by pbu_$dma_stop, but if the controller had a prob
lem, it is likely that the DMA operation did not run to completion. The call to 
pbu_$dma_stop must, in any case, be made so that software can reset its knowledge of 
who is using the DMA channel. 

The pbu_$dma_stop routine can be called from the driver's interrupt side. 

If you are designing your driver to run on the DN4000, you must call pbu2_$dma_start, 
which is described later in this appendix. Refer also to Chapter 3, Section 3.6 for addi
tional information. 

GPIO Routines B-27 



Domain/OS 

The input and output parameters are described as follows: 

channel 

status 

unit 

B-28 GPIO Routines 

This is a C unsigned short integer or a 2-byte Pascal integer in 
pbu_$dma_channel_t format. Specifies the number (0-7) of the channel 
to be stopped. 

A 4-byte integer that specifies the residual count in bytes of the amount 
of data (if any) that was not transferred during the last DMA operation. 
This return value should only be 0 if there is nothing left to transfer. 
The purpose of this parameter is to tell the driver if it needs to perform 
another DMA operation, and if so, how large the buffer length parameter 
for pbu[2L$dma_start should be. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 



pbu $enable device - - Domain/OS pbu _ $enable _device 

NAME 

pbu_$enable_device Enables interrupts from a peripheral device. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$enable_device( 
pbu_$unit_t &unit, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys /ins/pbu.ins.pas" 

procedure pbu_$enable_device( 
in unit: pbu_$uni t_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_$enable_device routine enables interrupt requests from a device by clearing its 
interrupt mask bit in the Peripheral Interrupt Controller (PIC). 

Note that a user-written interrupt routine cannot call p bu _ $enable _device. The routine 
can optionally enable device interrupts by returning the appropriate function value to the 
System Interrupt Handler. 

The pbu_$enable_device routine cannot be used with VMEbus devices. 

The input and output parameters are described as follows: 

status 

unit 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-29 



Domain/OS 

NAME 

pbu_Sfree_map Releases the 110 map area previously allocated to a device. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$free_map( 
pbu_$unit_t 
status_$t 

&unit, 
*status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$free_map( 
in unit: pbu_$unit_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_Sfree_map routine releases the area of the 110 map previously allocated by the 
GPIO call pbu_Sallocate_map for MULTIBUS devices. 

The input and output parameters are described as follows: 

status 

unit 

B-30 GP 10 Routines 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 



Domain/OS 

NAME 

pbu_$get_ec Retrieves the eventcount associated with a device. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$get_ec( 
pbu_$unit_t 
pbu_$get_ec_key_t 
c2_$ptr_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&key, 

&ec2p, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$get_ec( 
in unit: 
in key: 
in ec2p: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
pbu_$get_ec_key_t; 
ec2_$ptr_t; 
status_$t); 

The pbu_$get_ec routine returns an eventcount identifier that the driver or the application 
can place into a list of eventcount identifiers that they pass to ec2_$wait. Drivers need 
only call this routine once while the device is acquired and should save the eventcount 
pointer until the device is released. However, no errors occur if drivers call pbu_$get_ec 
more than once. 

Drivers (or any other programs) must not rely solely upon eventcounts to indicate the oc
currence of an event; they should provide an additional mechanism to determine whether 
an event occurred. Refer to Chapter 6, Subsection 6.3.2. 

The input and output parameters are described as follows: 

ecp 

key 

status 

unit 

A pointer to the eventcount for the device in ec2_$ptr_t format. 

The key that specifies which eventcount to get in pbu_$get_ec_keLt for
mat. Currently, the only value allowed is pbu_$get_device_ec. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-31 



Domain/OS 

NAME 

pbu_$get_info Gets information concerning I/O bus type and I/O map. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$get_info( 
pinteger 
pbu_$info_t 
status_$t 

SYNOPSIS (Pascal) 

&length, 
*info, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$get_info( 
in length: pinteger; 
out info: pbu_$info_t; 
out status: status_$t); 

DESCRIPTION 

This procedure returns information concerning the presence of the I/O bus type and the 
I/O map. With this information, you can design your driver to run on different node mod
els. Thus, for example, if you want to design a driver that could run on either the 
DN3000 or the DN4000, your driver can use the information returned by pbu_$get_info 
to determine whether or not to perform a DMA transfer of more than 1 KB of data. 

The input and output parameters are described as follows: 

length 

info 

status 

B-32 GPIO Routines 

The length of info in bytes. This is a C unsigned short integer or a 
2-byte Pascal integer. 

The name of the record, in pbu_$info_t format, in which bus information 
is returned. 

Completion status in status_$t format. 



DomainlOS 

NAME 

pbu_$map Maps an 1/0 buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

pbu_$iova_t pbu_$map( 
pbu_$unit_t 
pbu_$buffer_t 
pinteger 
pbu_$iova_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&iova, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$map( 
in unit: 

DESCRIPTION 

in buffer: 
in length: 
in iova: 
out status: 

pbu_$unit_t; 
univ pbu_$buffer_t; 
pinteger; 
pbu_$iova_t; 
status_$t); pbu_$iova_t; 

The pbu_$map routine establishes the mapping between the buffer in processor address 
space and MULTIBUS address space. Drivers must call this routine before using the buffer 
for I/O operations and only after they have called pbu_$allocate_map and pbu_$wire 
(the buffer must be wired before it can be passed to pbu_$map). User-written interrupt 
routines can call pbu_$map. 

The address specified as a parameter to pbu_$map need not be the address that 
pbu_$allocate_map returned; the address can lie on any page that corresponds to the al
located area of the 110 map. In this way, drivers can map several different buffers into 
different sections of the allocated 110 map area at the same time. 

GPIO Routines B-33 



Domain/OS pbu_Smap 

The input and output parameters are described as follows: 

buffer 

iova 

length 

status 

unit 

B-34 GP 10 Routines 

The buffer to be mapped, specified as an array of characters. 

A page-aligned MUL TIBUS address within the I/O map area allocated by 
pbu_Sallocate_map in pbu_Siova_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

The length in bytes of the buffer. This is a C unsigned short integer or a 
2-byte Pascal integer. 

The MULTIBUS address that marks the start of the buffer in 
MULTIBUS address space in pbu_Siova_t format. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

Completion status in status_St format. 

The device unit number in pbu_Sunit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 



pbu_$map_controller Domain/OS 

NAME 

pbu_$map_controller Maps controller memory to processor address space. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

char *pbu_$map_controller( 
pbu_$unit_t &unit, 
pbu_$iova_t &iova, 
pinteger &length, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$map_controller( 
in unit: pbu_ $unit 
in iova: pbu_ $iova 
in length: pinteger; 

t· - , 
t· - , 

out status: status _$t) ; 

DESCRIPTION 

univytr; 

The pbu_$map_controller routine maps controller memory to processor address space. 
Device drivers can map only one area of controller memory per device at a time. 

Memory that is mapped with pbu_$map_controller must be unmapped with 
pbu_$unmap_controller. 

Refer to Chapter 7, Section 7.2 for information on referencing controller memory. 

The input and output parameters are described as follows: 

address The virtual address of the first byte of the controller's mapped memory in 
univytr format. For an equivalent of univytr in C, refer to Appendix 
C, Subsection C.2.4. 

GP IO Routines B-35 



iova 

Domain/OS 

The MULTIBUS address that marks the start of controller memory in 
pbu_Siova_t format. This is a C unsigned short integer or a 2-byte Pascal 
integer. The address must lie on a page boundary and must be smaller 
than 32 KB. 

length The length in bytes of controller memory. This is a C unsigned short inte
ger or a 2-byte Pascal integer. The length to be mapped must be between 
o and 32 KB, and the sum of the length and the MULTIBUS address 
must be less than 32 KB. 

status Completion status in status_St format. 

unit The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

Possible error messages associated with this routine include: 

PBU_$BAD_UNIT 

The specified unit number is invalid. 

PBU_$NOT_ACQUIRED 

The device has not been acquired. 

PBU_$ALREADY_MAPPED 

Controller memory has already been mapped. 

PBU_$BAD_IOVA 

The specified MUL TIBUS address is larger than 32 KB or causes the sum of length 
and address to exceed 32 KB. 

PBU_$BAD_LEN 

The specified length is not between 0 and 32 KB or causes the sum of length and ad
dress to exceed 32 KB. 

Errors can also include those errors generated by pbu_$allocate_map, the most common 
of which is that the requested memory is already allocated. If this error is generated, check 
the DMA devices in the configuration to see if they are using the desired MUL TIBUS 
addresses. 

B-36 GPIO Routines 



Domain/OS 

NAME 

pbu_$mem_ptr Returns the address and length of a shared controller. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

char *pbu_$mem_ptr( 
name_$long_pname_t &pathname, 
short &namelen, 
linteger 
status_$t 

SYNOPSIS (Pascal) 

*mem_Ien, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$mem_ptr( 
in pathname: 
in namelen: 
out mem len: 
out status: 

DESCRIPTION 

univ name_$long_pname_t; 
integer; 
linteger; 
status_$t); univ-ptr; 

The pbu_$mem_ptr routine returns the address of a shared memory-mapped controller 
mapped in global address space to any application that wants to use it. The following ex
ample shows how to use pbu_$mem_ptr so that a process that wants to access the shared 
controller can obtain its address: 

REPEAT 
mem-pointer := pbu_$mem_ptr(ddf_name, 

sizeof(ddf_name), mem_Ien, status); 
if status.all = pbu_$device_not_mapped then 

time_$wait(time_$relative, delay_time, 
status2) 

else begin 
error_$print(status) ; 
goto error_exit; 
end; 

UNTIL status.all = 0 

GPIO Routines B-37 



Domain/OS 

The input and output parameters are described as follows: 

address 

ddLlength 

length 

pa~hname 

status 

B-38 GPIO Routines 

The virtual address of the first byte of the controller's mapped memory in 
univytr format. For an equivalent of univytr in C, refer to Appendix 
C, Subsection C.2.4. 

The length in characters of the specified pathname. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

The length in bytes of the area for the mapped controller. This is a C 
unsigned long integer or a 4-byte Pascal integer. 

The pathname of the DDF for the shared controller. Specify this parame
ter as an array of characters. 

Completion status in status_$t format. 



Domain/OS 

NAME 

pbu_$read_csr Reads a device's Control and Status Register (CSR). 

SYNOPSIS (C) 

#include <apollojbase.h> 
#include <apollojpbu.h> 

void pbu_$read_csr( 
pbu_$unit_t 
char 
pinteger 
boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&csr, 
*value, 
&word_flag, 
*status) 

%include "jsysjinsjbase.ins.pas" 
%include "jsysjinsjpbu.ins.pas" 

procedure pbu_$read_csr( 
in unit: pbu_$unit_t; 

DESCRIPTION 

in csr: 
out value: 
in word_flag: 
out status: 

univ char; 
pinteger; 
boolean; 
status_$t) ; 

Device drivers can call pbu_$read_csr during initialization to determine whether a device 
is physically present on the bus. If a read to the device's CSR causes a bus time-out error, 
this r;outine suppresses normal bus error handling and sets the status code to reflect the 
error. 

If the specified CSR does not reside within the device's CSR page, pbu_$read_csr returns 
an error value. For a memory-mapped controller, pbu_$read_csr returns an error if the 
address does not reside within the area of processor address space to which the memory 
has been mapped. 

The pbu_$read_csr routine is typically used in the initialization routine, but other call-side 
routines can call it. 

NOTE: Drivers for PC AT compatible controllers should not use this call 
to test if the controller is present on the bus. For more informa
tion, refer to Chapter 3, Section 3.3. 

GPIO Routines B-39 



pbu $read csr - - Domain/OS 

The input and output parameters are described as follows: 

csr 

unit 

value 

wordJlag 

status 

B-40 GPIO Routines 

The control and status register to be read in universal character format 
(C type char or Pascal type UNlY char). Refer to Appendix C, Section 
C.l for more information. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

The result of the read, located in the low-order (right-hand) byte if a 
byte read was performed. This is a C unsigned short integer or a 2-byte 
Pascal integer. 

A Boolean value that specifies whether a word or byte read is to be per
formed ("false" = byte read, "true" = word read). For C programs, refer 
to Appendix C, Subsection C.2.3 for information about using Boolean 
values in C. 

Completion status in status_$t format. 



Domain/OS 

NAME 

pbu_$release Releases an acquired device. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$release( 
pbu_$unit_t 
boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit , 
&force, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$release( 
in unit: 
in force: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
boolean; 
status_$t) ; 

To release control of a device, pbu_$release performs these functions: 

• Unloads the device driver 

• Unwires all wired procedures and data pages 

• Deallocates any I/O map areas that are still allocated 

• Unmaps any mapped controller memory 

• Calls the user-written cleanup routine whose entry point is specified in the DDF 
for the device. This routine ensures that there are no I/O operations in progress 
and clears any pending interrupts generated by the device. 

Currently, pbu_$release is called only from the aqdev command or from the device acqui
sition program. Since pbu_$release unloads the driver, it should not be called by driver 
routines. 

GPIO Routines B-41 



Domain/OS 

The input and output parameters are described as follows: 

/orceJlag 

status 

unit 

B-42 GPIO Routines 

A Boolean value that indicates whether or not the cleanup routine can 
abort the device release operation. If this parameter is set to true, the 
device is released regardless of the status returned by the cleanup routine. 
If this parameter is set to "false", the cleanup routine can abort the re
lease procedure by returning a non-zero status code. Upon receipt of the 
status, pbu_$release aborts device release and returns to its caller. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 



Domain/OS 

NAME 

pbu_$release_ee Releases an eventeount. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$release_ec( 
pbu_$unit_t 
ec2_$ptr_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&ec2p, 
*status) 

%include II/sys/ins/base.ins.pas ll 

%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$release_ec( 
in unit: pbu_$unit_t; 
in ec2p: ec2_$ptr_t; 
out status: status_$t); 

DESCRIPTION 

The pbu_$release_ee routine releases an eventcount allocated by pbu_$alloeate_ee to a 
special pool of eventcounts in wired memory. It is designed for use with global drivers that 
occupy global memory. See also the descriptions of pbu_$advanee_ee and 
pbu _ $alloeate _ ee, as well as the discussion of global drivers in Chapter 9, Section 9.1. 

The input and output parameters are described as follows: 

ec2p 

status 

unit 

The eventcount pointer in ec2j)tr_t format, returned from the GPIO call 
pbu_$alloeate_ee. This is a 4-byte integer. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

GPIO Routines B-43 



Domain/OS 

NAME 

pbu_$unmap Unmaps an 110 buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$unmap( 
pbu_$unit_t 
pbu_$buffer_t 
pinteger 
pbu_$iova_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&iova, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$unmap( 
in unit: 
in buffer: 
in length: 
in iova: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
univ pbu_$buffer_t; 
pinteger; 
pbu_$iova_t; 
status_$t) ; 

The pbu_$unmap routine unmaps the buffer from MULTIBUS address space and invali
dates the I/O map for the space occupied by the buffer. 

Device drivers are not required to unmap previously mapped buffers; another call to 
pbu_$map that specifies the same area of the I/O map effectively unmaps the previously 
mapped buffer. The pbu_$unmap routine is used primarily to protect a buffer from erro
neous references by a controller. 

The pbu_$unmap routine can be called from interrupt-side routines. 

B-44 GPIO Routines 



Domain/OS 

The input and output parameters are described as follows: 

buffer 

iova 

length 

status 

unit 

The buffer to be unmapped, specified as an array of characters. 

The MUL TIBUS address that marks the start of the buffer in 
pbu_$iova_t format. This address must be the address that pbu_$map 
returned (the actual start of the buffer). 

The length in bytes of the area to be unmapped. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-45 



pbu_ $unmap _controller Domain/OS pbu_$unmap_controller 

NAME 

pbu_$unmap_controller Unmaps a controller's memory from processor address space. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$unmap_controller( 
pbu_$unit_t &unit, 
char 
pinteger 
status_$t 

*&va, 
&length, 
*status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$unmap_controller( 
in unit: pbu_$unit_t; 
in va: univ_ptr; 
in length: pinteger; 
out status: status_$t); 

DESCRIPTION 

The pbu_$unmap_controller routine unmaps from processor address space the controller 
memory mapped by pbu_$map_controller. The whole mapped length must be unmapped. 

The input and output parameters are described as follows: 

address 

length 

status 

unit 

B-46 GPIO Routines 

The virtual address of the first byte of the controller's mapped memory in 
univytr format. For an equivalent of univytr in C, refer to Appendix 
C, Subsection C.2.4. 

The length in bytes of the area to be unmapped. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

Completion status in status_St format. 

The device unit number in pbu_Sunit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 



pbu_$unmap_controller Domain/OS pbu_$unmap_controller 

Possible errors associated with this routine can include the following: 

PBU_$BAD_UNIT 

The specified unit number is invalid. 

PBU_$NOT_ACQUIRED 

The specified device has not been acquired. 

PBU_$NOT MAPPED 

Controller memory has not been mapped. 

GPIO Routines B-47 



Domain/OS 

NAME 

pbu_$unwire Unwires an 110 buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$unwire( 
pbu_$unit_t 
pbu_$buffer_t 
pinteger 
boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&touch, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$unwire( 
in unit: pbu_$unit_t; 
in buffer: 
in length: 
in touch: 
out status: 

DESCRIPTION 

univ pbu_$buffer_t; 
pinteger; 
boolean; 
status_$t) ; 

The pbu_$unwire routine makes a buffer previously wired into processor memory with 
pbu_$wire available for MMU paging operations. 

NOTE: Buffers that are part of a driver's interrupt side must never be 
unwired. 

The input and output parameters are described as follows: 

buffer 

length 

B-48 GPIO Routines 

The buffer to be unwired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a C unsigned short integer or a 
2-byte Pascal integer. 



modifyJlag 

status 

unit 

Domain/OS 

A Boolean value that indicates whether the buffer pages being unwired 
should be marked as· modified by an input I/O operation. This flag is 
needed because DMA does not set the page's modify bit in Memory 
Management Unit (MMU) tables. For more information, refer to Chap
ter 7, Subsection 7.1.3.2. For C programs, refer to Appendix C, Subsec
tion C.2.3 for information about using Boolean values in C. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-49 



Domain/OS pbu $wait 

NAME 

pbu_$wait Waits for device interrupt. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

pbu_$wait_index_t 
pbu_$unit_t 
long 

pbu_$wait( 

boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&timeout, 
&quit_enable, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu_$wait( 
in unit: 

DESCRIPTION 

in timeout: 
in quit enable: 
out status: 

pbu_$unit_t; 
integer32; 
boolean; 
status_$t); pbu_$wait_index_t; 

Device drivers call pbu_$wait if they need only to wait for device interrupt, time-out, or 
quit fault. The routine performs these functions: 

• Checks the device's eventcount to determine whether the System Interrupt Han
dler advanced it since the last time pbu_$wait was called. If an advance oc
curred, the routine returns. 

• Checks for a positive time-out value. If the time-out value is less than or equal to 
0, pbu_$wait returns; otherwise, it waits for the specified interval or until the Sys
tem Interrupt Handler advances the eventcount. 

To enable and disable quit faults during the wait, use the quit_enable parameter. 

B-SO GPIO Routines 



Domain/OS pbu_$wait 

The input and output parameters are described as follows: 

index 

status 

time-out 

unit 

A C unsigned short integer or a 2-byte Pascal integer that corresponds to 
the event that caused pbu_$wait to return, in pbu_$wait_index_t format. 
Possible values are as follows: 

o = Eventcount advanced by the System Interrupt Handler 

1 = Time-out 

2 = Quit fault (CTRLlQ or CTRLlD) 

A Boolean value that indicates whether or not quit faults are enabled 
during the wait. When this parameter is set to "true", quit faults termi
nate the wait state; when it is set to "false", quit faults are disabled. For 
information on quit faults, refer to Chapter 6, Subsection 6.3.1. For C 
programs, refer to Appendix C, Subsection C.2.3 for information about 
using Boolean values. 

Completion status in status_$t format. 

The length of time in milliseconds that the routine is to wait. This is a 
4-byte integer (C or Pascal). 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-Sl 



Domain/OS pbu Swire 

NAME 

pbu_$wire Wires an I/O buffer. 

SYNOPSIS (C) . 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$wire( 
pbu_$unit_t 
pbu_$buffer_t 
pinteger 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$wire( 
in unit: 
in buffer: 
in length: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
univ pbu_$buffer_t; 
pinteger; 
status_$t) ; 

The pbu_$wire routine makes the buffer's pages permanently resident in processor mem
ory in preparation for an I/O operation. Drivers must wire I/O buffers before mapping 
them with pbu_$map. 

Drivers need not wire interrupt-side buffers with pbu_$wire because pbu_$acquire auto
matically wires the data sections of the driver's interrupt routine(s) when the device is ac
quired. Refer to Chapter 7, Subsection 7.1.1. 

The pbu_$wire routine returns an error if any page of the specified buffer is already 
wired. 

B-S2 GPIO Routines 



pbu $wire Domain/OS pbu $wire 

The input and output parameters are described as follows: 

buffer 

length 

status 

unit 

The buffer to be wired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a C unsigned short integer or a 
2-byte Pascal integer. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-53 



Domain/OS 

NAME 

pbu_$wire_special Wires an I/O buffer and returns its physical addresses. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$wire_special( 
pbu_$unit_t &unit, 
pbu_$wire_spec_opt_t &opts, 
pbu_$buffer_t buffer, 
linteger &length, 
pbu_$pa_list_t *pa_list, 
short &max_cnt, 
short *cnt, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$wire_special( 
in unit: pbu_$unit_t; 
in opts: pbu_$wire_spec opt t; 
in buffer: univ pbu_$buffer_t; 
in length: linteger; 
out pa_list: univ pbu_$pa_list_t; 
in max_cnt: integer; 
out cnt: integer; 
out status: status_$t); 

B-S4 GPIO Routines 



Domain/OS 

DESCRIPTION 

The pbu_$wire_special routine is provided for VMEbus controllers and bus-master 
PC AT compatible controllers that use physical addresses to access processor memory. 
Like pbu[2L$wire, pbu_$wire_special makes the buffer's virtual pages permanently resi
dent in processor memory in preparation for an I/O operation. (Drivers must wire I/O 
buffers before starting an I/O operation.) The physical addresses returned in pa_list are 
32-bit, page-aligned physical addresses in processor memory. To obtain the exact physical 
address of the start of the buffer, the byte offset within the page of the start of the buffer 
must be added to the first entry in pa_list: 

buffer_start .- pa_list[l] + (ptr(addr(buffer» mod 
bytes-per-page) ; 

You should use pbu2_$unwire to unwire buffers wired with pbu_$wire_special. 

The input and output parameters are described as follows: 

buffer 

ent 

length 

opts 

status 

unit 

The buffer to be wired, specified as a universal array of characters. 

The number of entries returned in pa_list. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

The length in bytes of the buffer. This is a C unsigned long integer or a 
4-byte Pascal integer. 

The length (number of entries) in the pa_list array. This is a C unsigned 
short integer or a 2-byte Pascal integer. 

Specify one of the following options in pbu_$wire_spec_t format: 

[ ] 

Verifies that buffer is already wired and returns 
error message if it is not. 

Wires buffer. 

An array of physical addresses in pbu_$pa_list_t format. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. The unit number must refer to a 
VMEbus or demand-DMA PC AT compatible device. 

GPIO Routines B-55 



pbu $write csr - - Domain/OS 

NAME 

pbu_$write_csr Writes to a device's control and status register. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$write_csr( 
pbu_$unit_t 
char 
pinteger 
boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
&csr, 
&value, 
&word_flag, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$write_csr( 

DESCRIPTION 

in unit: pbu_$unit_t; 
in csr: 
in value: 
in word_flag: 
out status: 

univ char; 
pinteger; 
boolean; 
status_$t) ; 

Device drivers can call pbu_$write_csr during initialization to determine whether a device 
is physically present on the bus. If a write to the device's CSR causes a bus time-out error, 
this routine suppresses normal bus error handling and sets the status code to reflect the 
event. 

If the specified CSR does not reside within the device's CSR page, pbu_$write_csr returns 
an error value. For a memory-mapped controller, pbu_$write_csr returns an error if the 
address does not reside within the processor address space to which the memory is 
mapped. 

NOTE: Drivers for PC AT compatible controllers should not use this call 
to test if the controller is present on the bus. For more informa
tion, refer to Chapter 3, Section 3.3. 

B-56 GPIO Routines 



pbu $write csr - - Domain/OS 

The input and output parameters are described as follows: 

csr 

status 

unit 

value 

wordJlag 

The control and status register to be written in universal character format 
(C type char or Pascal type UNIV char). Refer to Appendix C, Section 
C.2.4 for more information. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

The value to write into the CSR. If the routine is to perform a byte-write 
operation, the value is specified in the low-order (right-hand) byte of the 
integer. This is a C unsigned short integer or a 2-byte Pascal integer. 

A Boolean value that specifies whether a word or byte write is to be per
formed ("false" = byte write, "true" = word write). For C programs, refer 
to Appendix C, Subsection C.2.3 for information about using Boolean 
values. 

GPIO Routines B-57 



Domain/OS 

NAME 

pbu2_$allocate_map Allocates 110 map space. 

SYNOPSIS (C) 

#include <apollojbase.h> 
#include <apollojpbu.h> 

pbu_$iova_t pbu2_$allocate_map( 
pbu_$unit_t &unit, 
linteger &length, 
boolean &force_flag, 
pbu2_$iova_t &iova, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "jsysjinsjbase.ins.pas" 
%include "jsysjinsjpbu.ins.pas" 

function pbu2_$allocate_map( 
in unit: pbu_$unit_t; 
in length: linteger; 
in force_flag: boolean; 
in iova: pbu2_$iova_t; 
out status: status_$t); pbu2_$iova_t; 

DESCRIPTION 

You must use pbu2_$allocate_map if your device driver supports a 20-bit MULTIBUS 
controller or an PC AT compatible bus controller designed to run on the DN4000. 

The routine reserves an area of the bus address space for subsequent DMA transfers from 
either a 20-bit MULTIBUS controller or an PC AT compatible controller on the DN4000. 
The function allocates the number of 110 map entries that correspond to the required 
number of pages of bus memory plus one, to enable mapping of buffers that are not page 
aligned. 

In general, a driver may allocate only one area of the 110 map for a given device at any 
time. However, drivers for 20-bit controllers can allocate a second area of the 110 map for 
a device by calling pbu2_$map_controller. 

B-58 GPIO Routines 



DomainlOS 

The input and output parameters are described as follows: 

forceJlag 

iova 

length 

status 

unit 

A Boolean value that indicates whether or not a specific bus address is to 
be assigned. For C programs, refer to Appendix C, Subsection C.2.3 for 
information about using Boolean values. 

If the forceJlag parameter is "true", the bus address in pbu2_$iova_t 
format to be assigned as the starting address of the portion of bus address 
space to be allocated. This is a 4-byte integer (in C and Pascal). 

The length in bytes of bus address space for which an area of the 1/0 
map is to be allocated. This is a 4-byte integer, in C and Pascal. 

The bus address in pbu2_$iova_t format that marks the start of bus ad
dress space allocated by pbu2_$allocate_map. This is a 4-byte integer, 
in C and Pascal. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 

GPIO Routines B-59 



Domain/OS 

NAME 

pbu2_$dma_start Starts a DMA operation using the I/O map. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu2_$dma_start( 
pbu_$unit_t &unit, 
pbu_$dma_channel_t &chan, 
pbu_$dma_direction_t &direction, 
pbu_$buffer_t buffer, 
pbu2_$iova_t &iova, 
linteger &length, 
pbu_$dma_opts_t &opts, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu2_$dma_start( 
in unit: pbu_$unit_t; 
in chan: pbu_$dma_channel_t; 
in direction: pbu_$dma_direction_t; 
in buffer: univ pbu_$buffer_t; 
in iova: pbu2_$iova_t; 
in length: linteger; 
in opts: pbu_$dma_opts_t; 
out status: status_$t); 

DESCRIPTION 

The pbu2_$dma_start routine is for use in drivers running on the DN4000. 

The pbu2_$dma_start and pbu2_$dma_stop routines are paired functions for use with 
PC AT compatible devices. They should surround each DMA operation, whether success
ful or not. The pbu2_$dma_start routine prepares the system DMA hardware for the con
troller's operation. The driver must call this routine before issuing any 110 commands to 
the device. 

B-60 GPIO Routines 



pbu2 $dma start - - Domain/OS 

After pbu2_$dma_start is called, the controller can begin its operation. Before calling 
pbu2_$dma_start again, the driver must call pbu2_$dma_stop. Refer also to the descrip
tion of pbu2_$dma_stop. 

The pbu2_$dma_start routine can be called from the driver's interrupt side. 

For bus-master devices, pbu2_$dma_start must be called with the option 
pbu_dma_cascade in order to reserve the DMA channel and to provide for proper bus 
arbitration. 

If you are designing a driver to run only on the DN3000, you must call pbu_$dma_start, 
which is described earlier in this appendix. Refer to Chapter 3, Section 3.6 for additional 
information. 

The input and output parameters are described as follows: 

buffer 

channel 

direction 

iova 

length 

The buffer to be mapped, specified as a universal array of characters in 
pbu_$buffer_t format. It must be page aligned. 

A C unsigned short integer or a 2-byte Pascal integer in 
pbu_$dma_channel_t format. Specifies the number (0-7) of the channel 
to be started. 

The direction of the data transfer, in pbu_$dma_direction_t format. 
Specify one of the following options: 

pbu_dmaJead 
Controller to processor memory. 

pbu_dma_ write 
Processor memory to controller. 

The starting address of the portion of bus address space that has been 
allocated by pbu2_$allocate_map in pbu2_$iova_t for.mat. This is a 
4-byte integer, in C and Pascal. 

The length of the buffer in bytes. This is a 4-byte integer, in C and Pas
cal and must be greater than 0 and less than or equal to 64 KB for 8-bit 
devices, 128 KB for 16-bit devices, and 512 KB for bus-master devices. 
If your driver is for a 16-bit device, the length must be expressed as an 
even number. 

GPIO Routines B-61 



opts 

status 

unit 

B-62 GPIO Routines 

Domain/OS 

Specifies any combination of the following options in pbu_Sdma_opts_t 
format: 

pbu_dma_auto_init 
Specifies that DMA hardware is to reinitialize itself after completing the 
transfer, using the buffer and length parameters supplied with the call. 
Note that pbu2_$dma_start converts the length parameter from bytes to 
words. For more information, refer to the description of "autoinitialize" 
for the 8237A in Intel's Microsystem Components Handbook. 

pbu_dma_adr_decr 
Specifies that DMA operations decrement the address to or from which 
data is transferred. The default is that DMA transfers are made to in
creasing memory addresses. 

pbu_dma_cascade 
Sets the processor's DMA hardware in cascade mode so that a bus-mas
ter device can use its own DMA hardware. It is a way of arbitrating for 
the PC AT compatible bus. You must specify this option if you want the 
device to use its own DMA hardware. 

pbu dma ext mem - - -
Specifies that the DMA transfer is to PC AT compatible or 
PC XT compatible extension memory, not processor memory. 

Completion status in status_St format. 

The unit number of the device in pbu_Sunit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 



Domain/OS 

NAME 

pbu2_$dma_stop Stops a DMA operation using the I/O map. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

long pbu2_$dma_stop( 
pbu_$unit_t 
pbu_$dma_channel_t 
status $t 

SYNOPSIS (Pascal) 

&unit, 
&chan, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

DESCRIPTION 

in unit: 
in chan: 
out status: 

pbu_$unit_t; 
pbu_$dma_channel_t; 
status_$t); integer32; 

The pbu2_$dma_start routine is for use in drivers running on the DN4000. 

The pbu2_$dma_start and pbu2_$dma_stop routines are paired functions for use with 
PC AT compatible devices. They should surround each I/O operation, whether successful 
or not. The pbu2_$dma_start routine prepares DMA hardware for the controller's opera
tion. After the controller completes its operation, the driver must call pbu2_$dma_stop to 
get status from the DMA hardware to ensure that the hardware completed its operation as 
well. Even if the controller reports an error, the driver must call pbu2_$dma_stop. The 
driver may ignore the status returned by pbu2_$dma_stop, but if the controller had a 
problem, it is likely that the DMA operation did not run to completion. The call to 
pbu2_$dma_stop must in any case be made so that software can reset its knowledge of 
who is using the DMA channel. 

GPIO Routines B-63 



Domain/OS 

The pbu2_$dma_stop routine can be called from the driver's interrupt side. 

If you are designing a driver to run only on the DN3000, you must call pbu_$dma_stop, 
which is described earlier in this appendix. Refer to Chapter 3, Section 3.6 for additional 
information. 

The input and output parameters are described as follows: 

channel 

status 

unit 

B-64 GP/O Routines 

A C unsigned short integer or a 2-byte Pascal integer in 
pbu_$dma_channel_t format. Specifies the number (0-7) of the channel 
to be stopped. 

A 4-byte integer that specifies the residual count in bytes of the amount 
of data (if any) that was not transferred during the last DMA operation. 
This return value should only be 0 if there is nothing left to transfer. 
The purpose of this parameter is to tell the driver if it needs to perform 
another DMA operation, and if so, how large the buffer length parameter 
for pbu[2L$dma_start should be. 

Completion status in status_$t format. 

The unit number of the device in pbu_$unit_t format. This is a C un
signed short integer or a 2-byte Pascal integer. 



Domain/OS 

NAME 

pbu2_$free_map Releases a previously allocated I/O map area. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu_$free_map( 
pbu_$unit_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu_$free_map( 
in unit: pbu_$unit_t; 
out status: status_$t); 

DESCRIPTION 

This routine releases the ar.ea of the I/O map previously allocated by the call 
pbu2_$allocate_map. You must use pbu2_$free_map if your device driver supports a 
20-bit MULTIBUS controller or an PC AT compatible bus controller designed to run on 
the DN4000. 

The input and output parameters are described as follows: 

status 

unit 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GP/O Routines B-65 



Domain/OS 

NAME 

pbu2_$map Maps an 110 buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

pbu2_$iova_t pbu2_$map( 
pbu_$unit_t 
pbu_$buffer_t 
!integer 
pbu2_$iova_t 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&iova, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu2_$map( 
in unit: 
in buffer: 
in length: 
in iova: 
out status: 

DESCRIPTION 

pbu_$uni t_ t; 
univ pbu_$buffer_t; 
!integer; 
pbu_$iova_t; 
status_$t); pbu2_$iova_t; 

You must use pbu2_$map if your device driver supports a 20-bit MULTI BUS controller 
or an PC AT compatible bus controller designed to run on the DN4000. 

The pbu2_$map routine establishes the mapping between the buffer in processor address 
space and bus address space. Drivers must call this routine before using the buffer for 110 
operations and only after they have called pbu2_$allocate_map and pbu2_$wire. (110 
buffers must be wired before being passed to pbu2_$map.) User-written interrupt routines 
can call pbu2_$map. 

B-66 GPlO Routines 



Domain/OS 

The address specified as a parameter to pbu2_Smap need not be the address that the call 
pbu2_Sallocate_map returned, but can reside on any page that corresponds to the allo
cated area of the I/O map. In this way, drivers can map several different buffers into dif
ferent sections of the allocated I/O map area at the same time. 

The input and output parameters are described as follows. 

buffer 

iova 

length 

status 

unit 

The buffer to be mapped, specified as an array of characters. 

A page-aligned bus address within the I/O map area allocated by 
pbu2_$allocate_map in pbu2_$iova_t format. This is a 4-byte integer, in 
C and Pascal. 

The length in bytes of the buffer. This is a 4-byte integer, in C and Pas
cal. 

The MULTIBUS address that marks the start of the buffer in bus address 
space in pbu2_$iova_t format. This is a 4-byte integer, in C and Pascal. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GP/O Routines B-67 



NAME 

Domain/OS pbu2_ $map _controller 

pbu2_$map_controller Maps 20-bit MULTIBUS, PC AT compatible, or VMEbus 
controller memory to processor address space. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

char *pbu2_$map_controller( 
pbu_$unit_t &unit, 
pbu2_$iova_t &iova, 
linteger &length, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

function pbu2_$map_controller( 
in unit: pbu_$unit_t; 
in iova: pbu2_$iova_t; 
in length: linteger; 
out status: status_$t); univ-ptr; 

DESCRIPTION 

The pbu2_$map_controller routine maps 20-bit MULTIBUS, PC AT compatible, or 
VMEbus controller memory to processor address space. Device drivers can map only one 
area of controller memory per device at a time. 

Note that memory mapped with pbu2_$map_controller must be unmapped with 
pbu2_$unmap_controller. 

Refer to Chapter 7, Subsection 7.2.1 for information on referencing controller memory. 

The input and output parameters are described as follows: 

address 

B-68 GPIO Routines 

The virtual address of the first byte of the controller's mapped memory in 
univ ytr format. For an equivalent of univ ytr in C, refer to 
Appendix C, Subsection C. 2.4. 



iova 

length 

status 

unit 

Domain/OS 

The bus address that marks the start of controller memory in 
pbu2_$iova_t format. This is a 4-byte integer. in C and Pascal. The ad
dress must lie on a page boundary. 

The length in bytes of controller memory. This is a 4-byte integer. in C 
and Pascal. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

Possible errors associated with this routine include: 

PBU_$BAD_UNIT 

The specified unit number is invalid. 

PBU_$NOT_ACQUIRED 

The device has not been acquired. 

PBU_$ALREADY_MAPPED 

Controller memory has already been mapped. 

Errors can also include those generated by pbu2_$allocate_map, the most common of 
which is that the requested memory is already allocated. If this error is generated, check 
the DMA devices in the configuration to see if they are using the desired bus addresses. 

GPIO Routines B-69 



Domain/OS pbu2_$unmap 

NAME 

pbu2_$unmap Unmaps an I/O buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu2_$unmap( 
pbu_$unit_t 
pbu_$buffer_t 
!integer 
pbu2_$iova_t 

" status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&iova, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu2_$unmap( 
in unit: 
in buffer: 
in length: 
in iova: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
univ pbu_$buffer_t; 
linteger; 
pbu2_$iova_t; 
status_$t); 

You must use pbu2_$map if your device driver supports a 20-bit MULTIBUS controller 
or a PC AT compatible bus controller designed to run on the DN4000. 

The pbu2_$unmap routine unmaps the buffer from bus address space and invalidates the 
I/O map for the space occupied by the buffer. Device drivers are not, however, required 
to unmap previously mapped buffers; another call to pbu2_$map that specifies the same 
area of the I/O map effectively unmaps the previously mapped buffer. The pbu2_$unmap 
routine is used primarily to protect a buffer from erroneous references by a controller. 
The pbu2_$unmap routine can be called from the interrupt side. 

B-70 GPIO Routines 



Domain/OS pbu2_$unmap 

The input and output parameters are described as follows: 

buffer 

iova 

length 

status 

unit 

The buffer to be unmapped. Specifies the buffer as an array of charac
ters. 

The bus address that marks the start of the buffer in pbu2_$iova_t for
mat. This address must be the address that pbu2_$map returned (the 
actual start of the buffer). 

The length in bytes of the area to be unmapped. This is a 4-byte integer, 
in C and Pascal. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-71 



NAME 

Domain/OS 

pbu2_Sunmap_controller Unmaps a 20-bit MULTIBUS, PC AT compatible, or 
VMEbus controller's memory from processor address space. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu2_$unmap_controller( 
pbu_$unit_t &unit, 
char *&va, 
linteger &length, 
status_$t *status) 

SYNOPSIS (Pascal) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu2_$unmap_controller( 
in unit: pbu_$unit_t; 
in va: univytr; 
in length: linteger; 
out status: status_$t); 

DESCRIPTION 

The pbu2_$unmap_controller routine uomaps from processor address space the controller 
memory mapped by pbu2_$map_controller. The whole mapped length must be un
mapped. 

The input and output parameters are described as follows: 

address 

length 

status 

B-72 GPIO Routines 

The virtual address of the first byte of the controller's mapped memory in 
univJ)tr format. For an equivalent of univJ)tr in C, refer to 
Appendix C, Subsection C.2.4. 

The length in bytes of controller memory. This is a C unsigned long inte
ger or a 4-byte Pascal integer. 

Completion status in status_$t format. 



pbu2 _ $ unmap _controller Domain/OS pbu2 _$ unmap _controller 

unit The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

Possible errors associated with this routine can include the following: 

PBU_$BAD_UNIT 

The specified unit number is invalid. 

PBU_$NOT_ACQUIRED 

The specified device has not been acquired. 

PBU_$NOT_MAPPED 

Controller memory has not been mapped. 

GPIO Routines B-73 



Domain/OS pbu2_$unwire 

NAME 

pbu2_$unwire Unwires an I/O buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu2_$unwire( 
pbu_$unit_t 
pbu_$buffer_t 
!integer 
boolean 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
&touch, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu2_$unwire( 
in unit: 
in buffer: 
in length: 
in touch: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
univ pbu_$buffer_t; 
!integer; 
boolean; 
status_$t) ; 

The pbu2_$unwire routine makes a buffer previously wired into processor memory with 
pbu2_$wire and pbu_$wire_special available for MMU paging operations. 

NOTE: Buffers that are part of a driver's interrupt side must never be 
unwired. 

B-74 GPIO Routines 



Domain/OS 

The input and output parameters are described as follows: 

buffer 

length 

modifyJlag 

status 

unit 

The buffer to be unwired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 4-byte integer, in C and Pas
cal. 

A Boolean value that indicates whether the buffer pages being unwired 
should be marked as modified by an input I/O operation. This flag is 
needed because DMA does not set the page's modify bit in Memory 
Management Unit (MMU) tables. For more information, refer to Chap
ter 7, Subsection 7.1.3.2. For information about using Boolean values in 
C, refer to Appendix C, Subsection C.2.3. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-75 



Domain/OS 

NAME 

pbu2_$wire Wires an I/O buffer. 

SYNOPSIS (C) 

#include <apollo/base.h> 
#include <apollo/pbu.h> 

void pbu2_$wire( 
pbu_$unit_t 
pbu_$buffer_t 
linteger 
status_$t 

SYNOPSIS (Pascal) 

&unit, 
buffer, 
&length, 
*status) 

%include "/sys/ins/base.ins.pas" 
%include "/sys/ins/pbu.ins.pas" 

procedure pbu2_$wire( 
in unit: 
in buffer: 
in length: 
out status: 

DESCRIPTION 

pbu_$unit_t; 
univ pbu_$buffer_t; 
linteger; 
status_$t); 

The pbu2_$wire routine makes the buffer's pages permanently resident in processor mem
ory in preparation for an I/O operation. Drivers must wire I/O buffers before mapping 
them with pbu2_$map. 

Drivers need not wire interrupt routine buffers with pbu2_$wire because pbu_$acquire 
automatically wires the data sections of the driver's interrupt routine(s) when the device is 
acquired. Refer to Chapter 7, Subsection 7.1.1. 

The pbu2_$wire routine returns an error if any page of the specified buffer is already 
wired. 

B-76 GPIO Routines 



Domain/OS 

The input and output parameters are described as follows: 

buffer 

length 

status 

unit 

The buffer to be wired. specified as a universal array of characters. 

The length in bytes of the buffer. This is a 4-byte integer. in C or Pascal. 

Completion status in status_$t format. 

The device unit number in pbu_$unit_t format. This is a C unsigned short 
integer or a 2-byte Pascal integer. 

GPIO Routines B-77 



B.3 Error Messages 

This section lists the possible error messages that can be returned by GPIO calls. If a mes
sage is returned by only one call, or set of calls, that call is given in parentheses. 

PBU_$ALL_IN_USE 

All GPIO units are in use. 

PBU_$ALREADY_ACQUIRED 

Unit already acquired. 

PBU_$ALREADY_ALLOCATED 

I/O map already allocated (pbu[2L$aIlocate_map). 

PBU_$ALREADY_MAPPED 

Controller already mapped (pbu[2L$map_controIler). 

PBU_$ALREADY_WIRED 

Page already wired (pbu [2L $wire) . 

PBU_$BAD_BUFFER 

Bad buffer address. 

PBU_$BAD_CSR_ADDRESS 

CSR address not on CSR page (pbu_$read/write_csr). 

PBU_$BAD_CSR_ADDR_IN_DDF 

Invalid CSR page address. 

PBU_$BAD_DDF_TYPE 

Not a DDF (pbu_ $acquire). 

PBU_$BAD_DDF_VERSION 

DDF is wrong version (pbu_$acquire). 

PBU_$BAD_DIRECTION 

Bad DMA direction specified (pbu_ $dma_start). 

PBU_$BAD_IOVA 

Bad iova (pbu[2L$map). 

PBU_$BAD_LEN 

Length parameter too large or too small. 

PBU_$BAD_PARM 

Bad parameter. 

B-78 GPIO Routines 



PBU_$BAD_UNIT 

Bad unit number specified in call. 

PBU_$BAD_UNIT_IN_DDF 

Bad unit number in DDF (pbu_$acquire). 

PBU_$BUFFER_TOO_BIG 

Buffer too big (pbu[2L$map). 

PBU_$BUS_TIMEOUT 

Read/write CSR caused bus time-out (pbu_$read/write_csr). 

PBU_$CHANNEL_IN_USE 

Requested DMA channel in use (pbu_ $dma_start). 

PBU_$CHANNEL_NOT_IN_USE 

Requested DMA channel not in use (pbu_$dma_stop). 

PBU_$CLEANUP_ROUTINE_MISSING 

Cleanup routine not in driver (pbu_$acquire). 

PBU~$CSR_PAGE_IN_USE 

CSR page in use. 

PBU_$DDF_TOO_BIG 

DDF greater than 1 KB in length. 

PBU_$DEVICE_NOT_MAPPED 

Controller not mapped (pbu[2L$unmap_controIler). 

PBU_$DEVICE_NOT_SHARED 

pbu_$memytr called for nonshared memory-mapped controller (pbu_$mem_ptr). 

PBU_$DEVICE_TIMEOUT 

MUL TIBUS device got bus time-out. 

PBU_$DMA_NOT_EOR 

DMA channel not at end of range (pbu_$dma_stop). 

PBU_$EC_NOT_ALLOCATED 

Eventcount not allocated to this unit. 

PBU_$ILLEGAL_CHANNEL 

Illegal DMA channel number (pbu_$dma_start). 

PBU_$ILLEGAL_TRAP 

Trap 6 from level O. 

GPIO Routines B-79 



PBU_$ILLEGAL_TRAP_CODE 

Bad trap 6 code. 

PBU_$ILLEGAL_USP 

Invalid USP on trap 6. 

PBU_$INIT_ROUTlNE_MISSING 

Initialization routine not in driver library (pbu_Sacquire). 

PBU_$ I NTERRUPT_ROUTI NE_MI SSING 

Interrupt routine not in driver library (pbu _ Sacquire) . 

PBU_$INT_LIB_NOT_FOUND 

Interrupt library name (from DDF) not found (pbu_Sacquire). 

PBU_$INT_LIB_TOO_BIG 

Interrupt library larger than 32 KB (pbu_Sacquire). 

PBU_$INT_VECTOR_IN_USE 

VMEbus interrupt vector in use (pbu_Sacquire). 

PBU_$LIB_NOT_FOUND 

Device library not found (pbu_Sacquire). 

PBU_$MAP_IN_USE 

Requested I/O map in use (pbu[2LSallocate_map). 

PBU_$NO_MORE_ECS 

No more eventcounts available (pbu_Sallocate_ec). 

PBU_$NO_ROOM 

No room in I/O map (pbu[2LSallocate_map). 

PBU_$NOT_ACQUIRED 

Unit not acquired. 

PBU_$NOT_ALLOCATED 

I/O map not allocated (pbu[2LSfree_map). 

PBU_$NOT_MAPPED 

Buffer not mapped (pbu[2LSunmap). 

PBU_$NOT_VME 

Operation valid for VMEbus device only (pbu_Swire_special). 

PBU_$NOT_WIRED 

Page not wired (pbu[2LSunwire). 

B-80 GPIO Routines 



PBU_$OS_PUBLIC_DEVICE 

Unit is publicly owned; can be released by any process. 

PBU_$PA_LIST_OVERFLOW 

List of physical addresses too small (pbu_Swire_special). 

PBU_$PAGE_NOT_WIRED 

Buffer page not wired (pbu[2LSmap). 

PBU_$ PBU_NOT_PRE SENT 

MUL TIBUS not present in system. 

PBU_$PPN_LIST_OFLO 

Too many PBU Manager pages wired (crash system). 

PBU_$PROTECTION_VIOLATION 

Bad argument on trap 6. 

PBU_$TOO_MANY_WIRED_PAGES 

Too many wired pages. 

PBU_$UNEXPECTED_INTERRUPT 

Unexpected interrupt from some device. 

PBU_$UNIT_IN_USE 

Requested unit in use. 

PBU_$UNIT_IS_GLOBAL 

Unit already in use as a global device. 

PBU_$UNSUPPORTED_FUNCTION 

Unsupported function requested. 

PBU_$WRONG_LI BRARY 

Out of date pbulib. 

STATUS_$OK 

Successful completion. 

-------88-------

GPIO Routines B-81 





Appendix C 

Programming Information 

This appendix provides tips, warnings, and rules for Pascal and C programmers who are 
developing device drivers on our operating system. 

C.l CSR Page 

In general, use data types of char for C, or integer and char for Pascal, when declaring a 
CSR page because the compiler word-aligns records (or C structs) and arrays even if they 
appear inside a packed record. 

If you want to declare a register as a C or Pascal enumerated type, C struct, or Pascal set, 
follow these steps: 

1. Declare the register as char for C, or type char and integer for Pascal, to ensure 
proper byte alignment. 

2. Copy the register into local storage that contains a union in C, or a variant in Pas
cal, for the character or integer type and a variant for the structure. 

3. Operate on the copy of the register in local storage. 

4. Write the modified version back to the actual register. 

Programming Information C-1 



Suppose that a CSR has the following internal representation: 

15 14 10 9 5 4 1 0 

RESET I COMMAND STATUS I 

The definition of the driver's private copy of this register in C would be as follows: 

typedef union { 
struct { 

unsigned int reset :1; 
unsigned int cmd : 5; 
unsigned int status : 5; 
unsigned int misc :4; 
unsigned int mbz :1; 

} fields; 
short all; 

} csr t #attribute[device] ; 

The following statement illustrates addressing in C: 

An example of its use: 

csr-ptr->fields.reset = 1; /* reset the device */ 

The following sequence of code illustrates how to define the driver's private copy of this 
register as a record in Pascal: 

type csr_t = [device] packed record case integer of 
0: (reset: boolean; 

cmd: O .. 31; 
status: O .. 31; 
misc: O .. 15; 
mbz: O .. 0); 

1: (all: integer) ; 
end; {csr_t} 

The following statement illustrates addressing in Pascal: 

An example of its use: 

csr-ptrA.reset := true; { reset the device } 

C-2 Programming Information 



Declare 8-bit registers within the CSR page as char types. The char type ensures that the 
registers will be byte aligned. If you want to perform arithmetic or bit-manipulation opera
tions on the register, use the ord function, which will return the integer value of the char 
data type. 

Do not declare 8-bit registers within the CSR page as Pascal sets or Pascal or C enumer
ated types. If an 8-bit register within the CSR page is declared as a set or an enumerated 
type (for example, 0 ... 255), the compiler generates code that copies the register to a tem
porary variable and passes the temporary variable to the routine. This sequence touches 
the CSR and may cause a bus time-out if the controller is not responding. 

C.2 Programming in C 

This section contains several additional hints for C programmers. Before you write a device 
driver in C, refer to the Domain C Language Reference manual and the Domain C Library 
(CLIB) Reference manual for complete information about our version of the C language. 
Use the suggestions in Subsections C.2.1 through C.2.5 to supplement the information in 
those manuals. An example of a driver coded in C appears in Appendix E. 

C.2.1 Insert Files 

The GPIO insert file for C programmers is lusr/include/apollo/pbu.h. Include this file in 
your C modules by using the #include compiler control line, as described in the Domain C 
Language Reference. You should also include the standard C include files listed in the C 
manual. 

C.2.2 Type int 

In C, type int is four bytes and short int is two bytes. In Pascal, type integer is two bytes. 
The Domain C Language Reference manual contains a table of corresponding data types in 
the various languages. 

C.2.3 Boolean Values 

Although C does not support a Boolean type, certain GPIO routines take Boolean argu
ments in which the routine expects a value of "true" or "false". As arguments for those 
routines, you must use the definitions of "true" and "false" available in the C include file 
lusr/include/apollo/base.h. Remember to include this file in your device driver program, 
as described in the Domain C Language Reference manual. 

In C, any nonzero value is defined as "true"; in Pascal, only a value of FF (hex) is 
"true." For "true," the GPIO routines expect the Pascal value. "True" is defined in the 
include file as FF (hex). If you don't use the include file definitions, the GPIO routines 
may not recognize as "true" the value the C compiler gives as "true." 

Programming Information C-3 



C.2.4 Universal Pointer Type 

Domain Pascal includes a predeclared data type called univ ytr, which is a universal 
pointer. To create an equivalent to this type in C, use a pointer to char as follows: 

char *ptr; 

C.2.S Defining Globals 

For drivers written in C, the following example from bm_example_c shows how to ensure 
that a global needing to be wired gets defined in your interrupt routine. 

The bm_pvt.h file includes this line: 

/* declare bmcb as external, every module 
that includes this file knows about 
bmcb */ 

The bm_int_lib.c file includes this line: 

/* here we provide bmcb */ 

In Pascal, globals reside in the data section of the module in which they are defined. 
Thus, globals that are referenced in the interrupt side of a Pascal driver must be declared 
there with the DEFINE clause. 

For drivers written in Pascal, the following example from bm_example shows how to ensure 
that a global needing to be wired gets defined in your interrupt routine. 

The bm.pvt.pas file includes this line: 

VAR bmcb: EXTERN bm_$bmcb_t; declare bmcb as external, every module 
that includes this declaration knows 
about bmcb } 

The bm_int_lib.pas file includes this line: 

DEFINE bmcb; { here we provide bmcb } 

C-4 Programming Information 



C.3 Considerations for Compiler Optimization 

In SR8.0 and later software revisions, the compiler provides optimization (the -opt option) 
by default. For correct optimization in device driver modules, you must identify to the 
compiler the variables that are actually mapped into device registers. The compilers at 
SR8.0 and later software revisions provide attributes you may use; this section discusses 
them. For more specific information about compiler switches, refer to the Software Release 
Document shipped with the compiler software, or to the online version of the compiler re
lease document. See also the Language Reference manual for each compiler product. 

In editions of this manual previous to SR8.0, we suggested using dummy labels to thwart 
compiler optimizations; however, in SR8.0 and later software releases, this technique no 
longer suffices. Instead, you use the DEVICE attribute to inform the compiler not to per
form certain optimizations in some situations. 

The DEVICE attribute is necessary because certain sequences of references to device regis
ters may not generate the desired code. Programs commonly use a register for commands 
on output and status on input. The example that follows shows the code generated by the 
compiler without optimization (-nopt option used). 

csr := read_status_command; 
MOVEQ.B #01,D1 
MOVE.B D1,CSR(DB) 

status .- csr; 
MOVE.B CSR(DB) , STATUS (DB) 

Using ordinary optimization (without using the DEVICE attribute in the device register type 
declaration), the compiler remembers the value in D1 and never makes a second reference 
to the register. 

csr := read_status_command; 
MOVEQ.B #01,D1 
MOVE.B D1,CSR(DB) 

status .- csr; 
MOVE.B Dl,STATUS(DB) 

The code generated is incorrect because Dl, not CSR(DB), is written to STATUS(DB), 
and the value in CSR(DB), depending on the action of the controller, may not be the 
same as that in D1. The DEVICE attribute informs the compiler that the variable is part of 
an I/O controller and requires careful handling. Specifically, it ensures that the compiler 
does not omit assignments or use instructions that involve "hidden" read cycles. In mod
ules that directly reference device registers mapped into the MULTIBUS address space, 
use the DEVICE attribute in the declaration of the device register data structure. The com
piler then will always generate a reference to the register on both reads and writes. 

Programming Information C-5 



For example, note the following segment of a type declaration. The example is from the 
module ether. pvt. pas, in the directory 
Idomain_examples/gpio_examples/threecom_example. (Note that declarations for 
ether_mecsr_t, ether_xmit_buCt, and ether_rcv_buf_t appear earlier in ether. pvt. pas, 
and the declaration for ether_$adr_t appears in ether.ins.pas.) 

ether_memory_t = [device] packed record case integer of 
0: (csr: ether_mecsr_t; { control & 

1: 
end; 

retran timr: 

pad_to_adr_rom: 
adr_rom: 
pad_to_adr_ram: 
adr ram: 
pad_to_tbuf: 
tbuf: 
rbuf: 

integer16; 

array [1 .. 16#3FC] 
ether_$adr_t 
array [1 .. 16#IFA] 
ether_$adr_t; 
array [1 .. 16#IFA] 
ether_xmit_buf_t; 
array [0 .. 1] of 
ether_rcv_buf_t) ; 

(bytes: array [0 .. 16#IFFF] of char); 

status 
registers } 

{ Retransmit 
timer } 

of char; 
{ + 400 } 

of char; 
{ + 600 } 

of char; 
{ + BOO } 

{ + 1000, +IBOO} 

The example that follows shows the same segment written in C. In this example, the pad 
arrays are called pad_1, pad_2, etc., instead of the names used in the Pascal example, but 
they perform the same functions as in the Pascal example. The C example also includes 
type declarations so that the segment will compile on its own. 

typedef shortether_mecsr_t; 
typedef charether_$adr_t[6]; 
typedef charether_xmit_buf_t[OxBOO]; 
typedef charether_rcv_buf_t[OxBOO]; 

typedef union { 
struct { 

ether_mecsr t 

short 

char 
ether_$adr_t 
char 
ether_$adr_t 
char 
ether_xmit_buf_t 
ether_rcv_buf_t 

} fields; 
charbytes[Oxlfff] ; 

csr; 

retran_timer; 

pad_1[Ox3fc] ; 
adr_rom; 
pad_2[Oxlfa] ; 
adr_ram; 
pad_3[Oxlfa] ; 
tbuf; 
rbuf[2] ; 

} ether_memory_t #attribute[device]; 

C-6 Programming Information 

/* Control 
status 
registers */ 

/* Retransmit 
timer */ 

/* + 400 */ 

/* + 600 */ 

/* + BOO */ 
/* + 1000, 

+ IBOO */ 



Use of the DEVICE attribute guarantees that 

• The compiler does not merge adjacent register references into larger references. 
For example, two MOVE.W instructions do not become a MOVE.L. 

• The compiler does not generate gratuitous read-modify-write references for DE
VICE registers. 

• The compiler does not generate CLR or ST instructions when it writes a 0 or -1 
to a location defined as having the DEVICE attribute. 

Another attribute, the VOLATILE attribute, informs the compiler that memory contents 
may change without notice. Any register declared with the DEVICE attribute receives the 
VOLATILE attribute as well. 

-------88-------

Programming Information C-7 





Appendix D 

Performance Information 

This appendix describes hardware and software performance during I/O operations. 

D.l DMA Bandwidth 

The rate at which a controller on the bus moves data to or from system memory depends 
upon how long it has control of the bus, the bus acquisition time, and the number of 
words transferred per bus acquisition. In turn, bus acquisition time depends upon the cur
rent activity of other devices using the bus, such as the CPU, ring/disk board, and so on. 
Bus acquisition time can range from 100 nanoseconds (minimum) to 2 microseconds (typi
cal) to 1 millisecond (worst case; usually during a ring or disk transfer). Once the control
ler acquires the bus, it can transfer data over the bus at a rate of 1 microsecond per 
16-bit word. 

DMA controllers should not cause excessive DMA overruns. A DMA overrun occurs when 
a controller cannot transfer data to the processor as fast as it is receiving the data and so 
loses data. If a controller does cause an overrun, it must abort the rest of the transfer so 
that at least one DMA controller can successfully complete a transfer when an overrun oc
curs. 

As a general rule, a controller should not require a long-term average of more than 20 
percent of the bus bandwidth. No single transfer should take longer than 10 microseconds. 
This limit prevents a controller from unduly interfering with system operation. 

Performance Information D-l 



D.2 Interrupt Processing Overhead 

The amount of CPU time required to process a device interrupt depends upon several con
siderations: 

• Basic system overhead 

• The amount of processing the user-written interrupt routine performs 

• The directives (interrupt enable or eventcount advance) that the user-written in
terrupt routine sends to the System Interrupt Handler through the returnJlags 
parameter 

Table D-1 lists the CPU times in the various stages of interrupt processing. All times are in 
microseconds. Observed times may vary up to 10 percent, depending on the processor, 
system activity, hardware caching, and so on. 

Table D-l. CPU Times During Interrupt Processing 

CPU Time 
Interrupt Activity (/J.sec) 

Interrupt request by device to first instruction of interrupt routine 125 

Interrupt routine Variable 

Enabling the device specifying pbu_Sinterrupt _enable on return 10 

Exit to interrupted process with no advance of the device's eventcount 110 

Exit to interrupted process with advance, but no one waiting on eventcount 200 

Exit to interrupted process with advance, with someone waiting on eventcount 265 

Using Table D-1, we can determine that, for example, the total system overhead for an 
interrupt routine that awakens a waiting process is 125 + 265 = 390 microseconds. 

If the only action of the interrupt routine is to advance the eventcount, the routine itself 
can be eliminated. If no user interrupt routine is specified for the device, the system inter
rupt handler automatically advances the device's eventcount. This requires a total of 260 
microseconds if no one is waiting on the eventcount, 325 microseconds if someone is wait
ing. 

D-2 Performance Information 



D.3 Setting Up DMA Buffers 

When designing a device driver for a DMA controller, you have a choice of how to set up 
the DMA buffers. Assume that the driver has a routine called WRITE, which an applica
tion program calls with the address and length of a buffer; WRITE must then perform the 
appropriate operations to send the data to a device. 

The first approach looks like this: 

Driver initialization routine: 
Allocate iomap for largest possible buffer. 

WRITE routine: 
Wire the buffer. (pbu2_$wire) 
Map the buffer. (pbu2_$map) 
Start the I/O and wait for completion. 
Unwire the buffer. (pbu2_$unwire) 
Return to caller. 

On a DSP80, the total time (ignoring the I/O time) for a buffer n pages in length is as fol
lows: 

pbu2 $wire: 
pbu2_$map: 
pbu2 $unwire: 

0.302 (SVC overhead) + 0.605n 
0.295 (SVC overhead) + 0.175n 
0.312 (SVC overhead) + 0.311n 

============================== 
0.909 (SVC overhead) + 1.091n milliseconds 

In the second approach, there is a permanently wired and mapped buffer area, and appli
cation data is copied into this buffer for each write operation. 

Driver initialization routine: 
Allocate iomap for largest possible buffer. 
Create (ms_$crmapl*) and wire the buffer. 
Map the buffer. 

WRITE routine: 
Copy user~s data into the buffer. 
start the I/O and wait for completion. 

The time for this approach is 

page copy: 0.000 (SVC overhead) + 0.913n milliseconds 

·Refer to the Domain/OS System Calls Reference manual. 

Performance Information D-3 



The point is that wiring and unwiring buffers are relatively expensive operations, and you 
should always consider the option of copying data into a permanently allocated and 
mapped buffer. 

Also keep in mind that the stated times do not include the overhead of any page faults 
required to get the buffer into memory. Such overhead, however, would be the same for 
both approaches. If data is being collected from several noncontiguous buffers for a single 
DMA operation, copying saves even more time because pbu2_$wire, pbu2_$map, and 
pbu2_$unwire will have to be called for each separate buffer. For example, mapping a 
5-page buffer with one call to pbu2_$map takes 1.561 milliseconds; mapping five i-page 
buffers takes 2.765 milliseconds. You will notice that pbu2_$unmap is not used (refer to 
the description of pbu_$unmap and pbu2_$unmap in Appendix B). If an application 
requires very large buffers (for example, 512 KB), overall performance may suffer if a 
buffer is permanently wired. In such cases experimentation is required to determine the 
best approach. 

D.4 Timing Information 

Table D-2 lists the times of certain GPIO operations for the DN560, DSP80, and DSP160 
as of SR9.5, and DN660, DN3000, DN4000, and DN5xx-T as of SR10. Observed times 
may vary up to 5 percent, depending on other activity in the system. The times for 
pbu_$wire do not include any page faults; the pages being wired were all residen~ in physi
cal memory. All times are in milliseconds. 

NOTE: Using pbu_$read_csr or pbu_$write_csr to read or write to a 
CSR takes around 100 microseconds, depending on the node 
model. Doing the read/write directly is typically 1-2 instructions 
or 3-5 microseconds, depending on the node model. 

D-4 Performance Information 



Table D-2. Timing for DN560, DSP80, DSP160, DN660, DN5xx-T, DN3000, 
and DN4000 Workstations 

Model Operation Times (msec) 

DN560 (SR9.5) page copy 0.000 (SVC overhead) + 0.255/page 
pbu2_$wire 0.107 (SVC overhead) + 0.216/page 
pbu2_$unwire 0.112 (SVC overhead) + 0.100/page 
pbu2_$map 0.101 (SVC overhead) + 0.056/page 
pbu2_$unmap 0.146 (SVC overhead) + 0.004/page 

DSP80 (SR9.5) page copy 0.000 (SVC overhead) + 0.913/page 
pbu2 Swire 0.302 (SVC overhead) + 0.605/page 
pbu2 $unwire 0.312 (SVC overhead) + 0.311/page 
pbu2_$map 0.295 (SVC overhead) + 0.175/page 
pbu2_$unmap 0.443 (SVC overhead) + 0.009/page 

DSP160 (SR9.5) page copy 0.000 (SVC overhead) + 0.849/page 
pbu2 Swire 0.159 (SVC overhead) + 0.252/page 
pbu2 $unwire 0.239 (SVC overhead) + 0.166/page 
pbu2_$map 0.116 (SVC overhead) + 0.098/page 
pbu2_$unmap 0.230 (SVC overhead) + 0.004/page 

DN660 (SR10) page copy 0.000 (SVC overhead) + 1.177 /page 
pbu2_$wire 0.412 (SVC overhead) + 0.749/page 
pbu2 $unwire 0.313 (SVC overhead) + 0.373/page 
pbu2_$wire_map 0.447 (SVC overhead) + 0.722/page 
pbu2_$map 0.140 (SVC overhead) + 0.0911page 
pbu2_$unmap 0.220 (SVC overhead) + 0.004/page 

DN5xx-T (SR10) page copy 0.000 (SVC overhead) + 0.323/page 
pbu2_$wire 0.095 (SVC overhead) + 0.316/page 
pbu2_$unwire 0.111 (SVC overhead) + 0.295/page 
pbu2_$wire_map 0.124 (SVC overhead) + 0.322/page 
pbu2_$map 0.104 (SVC overhead) + 0.338/page 
pbu2_$unmap 0.431 (SVC overhead) + 0.004/page 

DN3000 (SR10) page copy 0.000 (SVC overhead) + 0.299/page 
pbu2_$wire 0.097 (SVC overhead) + 0.409/page 
pbu2_$unwire 0.106 (SVC overhead) + 0.4411page 
pbu2_$map Unsupported call 
pbu2_$unmap Unsupported call 

DN4000 (SR10) page copy 0.000 (SVC overhead) + 0.246/page 
pbu2 Swire 0.149 (SVC overhead) + 0.582/page 
pbu2 $unwire 0.067 (SVC overhead) + 0.321/page 
pbu2_$wire_map 0.174 (SVC overhead) + 0.594/page 
pbu2_$map 0.048 (SVC overhead) + 0.090/page 
pbu2_$unmap 0.152 (SVC overhead) + 0.002/page 

---88---

Performance Information D-5 





Appendix E 

Sample Driver in C 

This appendix contains the files that make up the online device driver in the subdirectory 
Idomain_examples/gpio_examples/bm_example_c. The "makefile" script in Section E.4 
organizes the files into call and interrupt libraries at bind time. 

Both the functional parts and the operation of this driver are fully described in Chapter 4, 
Subsections 4.4.2 and 4.4.3, and Figure 4-2. For additional information about the driver 
and the hypothetical bulk-memory controller it supports, refer to Section E.4. For infor
mation about writing device drivers in C, refer to Appendix C, Section C.2. 

NOTE: Unlike Pascal, the C programming language is case sensitive; 
therefore, all system procedure names (such as GPIO routines) 
must be lowercase, which is consistent with their appearance in 
the system insert files. However, any global names in C that are 
accessed by GPIO routines are case-sensitive. 

The driver consists of three files (plus the makefile): 

• C insert file: bm.h 

• Call-side library file: bm_lib.c 

• Interrupt side library file: bm int_lib.c 

Sample Driver in C E-l 



E.I bm.h 

The bulk memory unit is a MULTIBUS controller at address Ox400 in MUL TIBUS ad
dress space. It has 8-bit command and status registers at addresses Ox400 and Ox401. a 
32-bit bulk memory address register at 402. a 16-bit count register at 406. and a 16-bit 
MULTIBUS (iova) register at 408. The controller interrupts at level 2. The device supports 
three operations: read from bulk memory. write to bulk memory. and wait for transfer 
complete. Up to a 1 MB can be transferred with one call. but since the MULTIBUS can 
transfer only up to 64 KB in one I/O operation. the interrupt side of the driver (this rou
tine) is given the job of blocking large transfers into portions of size bm_Sblock_len. Note 
that bm_Sblock_len is not the maximum possible. which is 64 KB. The reason for not 
allowing 64-KB transfers is that it would require taking over the entire I/O map. There
fore. if another MUL TIBUS device is using even a single page of the 1/0 map. our call to 
pbu_Sallocate_map would fail. 

This file contains the data structures and constants for the bulk memory device. 

/* Error codes from bm manager calls. (We've arbitrarily picked a 
* subsystem code of OF.) 
*/ 

#define bm_$no_controller 
#define bm_$not_init 

#define bm_$busy 
#define bm_$not_ready 
#define bm_$bad_address 

OxOF000001 /* controller not present */ 
OxOF000002 /* controller not 

OxOF000003 /* 
OxOF000004 /* 
OxOF000005 /* 

initialized * / 
controller is busy */ 
unit not ready */ 
buffer beyond protection 
boundary */ 

#define bm_$bad_Iength OxOF000006 /* bad buffer length */ 
bad bm address */ #define bm_$bad_bm_address OxOF000007 /* 

#define bm_$transfer_not_started OxOF000008 /* tried to wait before read 

#define bm_$timeout 
#define bm_$quit_during_wait 
#define bm_$io_error 

E-2 Sample Driver in C 

or write */ 
OxOF000009 /* timeout during wait */ 
OxOFOOOOOA /* quit during wait */ 
OxOFOOOOOB /* i/o error during 

transfer */ 

2147483647 /* maximum bm address = 
2**31 - 1 */ 

32768 

131072 

/* maximum transfer per i';o 
operation = 32K */ 

/* maximum amount to 
transfer per call = 
128K */ 

/* N.B.: MUST be multiple of 
bm_$block_len (see 
bm_$int)! */ 



typedef pinteger 
typedef int 
typedef bm_$buf_t 
typedef long 

bm_$buf_Ien_t; 
bm_$buf_t[bm_$max_Ien]; 
*bm_$bufytr_t; 
bm_$bm_address_t; 

/* bm buffer dimension */ 

/* address of block in bulk 
memory */ 

/**************** ALL PRIVATE DEFINITIONS FOLLOW ******************/ 

/* possible command for csr command register */ 

Udefine BM_INIT_CMD (unsigned char)OxOO 
Udefine BM_READ_CMD (unsigned char)OxOl 
Udefine BM_WRITE_CMD (unsigned char)Ox02 

Udefine bm_$status_ok (unsigned char)OxOc /* normal completion 
status */ 

Udefine bm_$si9_error (unsigned char)Oxff /* interrupt routine 
got error from 
bm_$sio (start I/O 
routine) */ 

/* 
* Define the bulk memory controller's csr page. (Note: when defining 
* the contents of a csr page, watch out for the compiler's rules about 
* packing records. In particular, avoid using records inside the csr 
* page record, since embedded records will be word-aligned, even in a 
* packed record. For example, we might have defined the status register 
* to be bm_$status_t (see below), but then the compiler would have 
* aligned it at offset 2 in the page even though bm_$status_t 
* is only 8 bits wide.) 
*/ 

/* use device attribute */ 

typedef struct { 
unsigned char command; 

unsigned char status; 

short iova; 

short count; 

bm_$bm_address t bm_address; 

} bm_$csryage_t Uattribute[device] ; 

typedef union { 
bm_$csryage_t *c; 
pbu_$csryageytr_t p; 

} bm_$csryage-ptr_t; 

/* 00 one byte command register 
at offset 0 */ 

/* 01 one byte status 
register */ 

/* 02 io virtual address to use 
for transfer */ 

/* 04 number of bytes to 
transfer */ 

/* 06 bulk memory address to 
read/write */ 

Sample Driver in C E-3 



/* 
* Define the bulk memory control block (bmcb). This area is used for 
* communications between the call and interrupt sides of the bm driver. 
* Since it is referenced by the interrupt handler, it must be part of 
* the interrupt library 
*/ 

typedef union { 
struct { 

} b; 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

char all; 
} bm_$flags_t; 

/* status register definition */ 

typedef union { 
struct { 

} b; 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned char all; 
} bm_$status t· - , 

E-4 Sample Driver in C 

init: 1 /* set to true when 
controller initialized */ 

buffer_wired: 1; /* set when a buffer 

busy 1; 

done l' , 

pad 4' , 

is wired */ 
/* set when an operation is 

in progress */ 
/* set by interrupt routine 

when transfer 
completes */ 

/* fill out to byte? */ 

attention: 1; /* 1 => change in 
controller 
status */ 

status_modifier 

busy 1; 

channel_end : l' , 

device_end l' , 

unit - check l' , 

unit_exception 

1; /* 1 => current 
status 
unavailable */ 

1; /* 1 => busy 
condition 
cleared */ 

l' , 

/* 1 => controller 

/* 

/* 

/* 

/* 

currently 
busy */ 
1 => end of 
operation */ 
1 => end of 
operation */ 
1 => parity 
error in bm */ 
1 => illegal bm 
address */ 



typedef struct { /* define 
communications 
area */ 

pbu_$unit_t pbu_unit_number; /* number of this pbu 
device */ 

bm_$ flag s_t flags; 
char pad; /* a byte of 

padding */ 
pbu_$ddfJ)tr_t ddfJ)tr; /* pointer to mapped 

ddf */ 
bm_$csrJ)ageJ)tr_t csrJ)tr; /* pointer to mapped 

csr page */ 
pbu_$iova_t bm_iova; /* start of our area 

of i/o address 
space */ 

bm_$bufJ).tr_t bufaddr; /* address of start of 
buffer */ 

bm_$buf_Ien_t buflen; /* total length of 
buffer */ 

bm_$bm_address t bm_address; /* address of start of 
bm area */ 

unsigned char command; /* current command 
(read or write) */ 

bm_$buf_Ien_t rem_len; /* length remaining to 
read or wr ite * / 

bm_$status_t status; /* status from last 
interrupt */ 

status_$t sio_status; /* status from bm_$sio 
(start I/O routine) 
called from int 
side */ 

bm_$bufJ)tr_t io_addr; /* address of last i/o 
transfer */ 

bm_$buf_Ien_t io_len; /* length of last i/o 
transfer */ 

unsigned char init_cmd; /* initialization 
command (see 
bm_$init! ) */ 

unsigned char read_cmd; /* read command */ 
unsigned char write_cmd; /* write command */ 

} bm_$bmcb_t; 

extern bm_$bmcb_t bmcb; /* main control 
block */ 

Sample Driver in C E-S 



/* Define the library entrypoints. (Note: strictly speaking, the 
* user-visible entry points should be defined in a separate include 
* file so that the internal routines and data structures are not seen 
* by application programs.) 
*/ 

extern void bm_$cleanup( 
pbu_$unit_t 
char 
status_$t 

) ; 

extern void bm_$init( 
pbu_$unit_t 

) ; 

pbu_$ ddfJ) tr_t 
pbu_$csrJ)ageJ)tr_t 
status_$t 

*unit, 
*force, 
*status 

*unit, 
*ddfJ)tr, 
*csrJ)tr, 
*status 

extern pbu_$interrupt_return_t bm_$int( 
pbu_$unit_t *unit 

) ; 

extern void bm_$read( 
bm_$buf_t 
bm_$buf_len_t 
bm_$bm_address_t 
status_$t 

) ; 

extern void bm_$write( 
bm_$buf_t 
bm_$buf_len_t 
bm_$bm_address_t 
status_$t 

) ; 

extern void bm_$wait( 
short 
bm_$status_t 
bm_$buf_len_t 
status_$t 

) ; 

extern void bm_$sio( 
status_$t *status 

) ; 

E-6 Sample Driver in C 

buffer, 
buflen, 
bm_addr, 
*s 

buffer, 
buflen, 
bm_addr, 
*s 

timeout, 
*bm_status, 
* rem_len , 
*status 

/* pbu unit number */ 

/* pbu unit number */ 

/* timeout value */ 
/* controller status */ 
/* residual count */ 



E.2 bm lib.c 

The bm_lib.c file consists of the call-side routines that perform initialization (bm_$init), 
cleanup (bm_$cleanup), command processing (bm_$read, bm_$write, and bm_com
mand), and wait for interrupt (bm_$wait). 

/* This module is the device driver library for a fictitious pbu device 
* -- a bulk memory (BM) unit. The intent of the driver is to show the 
* general structure of a user-space device driver and to demonstrate 
* the use of the pbu manager routines. 

* The bulk memory unit is a pbu device whose controller is at address 
* 400 (hex) in the pbu address space. It has a 8-bit command and status 
* registers at addresses 400 and 401, a 32-bit bulk memory address 
* register at 402, a 16-bit count register at 406, and a 16-bit i/o 
* virtual address (iova) register at 408. The controller interrupts at 
* level 2. 

* The controller is initialized by writing 16#00 to the command 
* register. Read and write operations are performed by loading the 
* address, count, and iova registers the then writing a 16#01 (read) or 
* 16#02 (write) to the command register. status is obtained by reading 
* the status register. 

* The bm manager (this module) supports three operations -- read from 
* bulk memory, write to bulk memory, and wait for transfer complete. Up 
* to a 128K can be transferred with one call, but since the pbu cannot 
* transfer 128K in one i/o operation, the interrupt side of the driver 
* (see bm_int lib.pas) is given the job of blocking large transfers 
* into chunks of size bm_$block_len. (Note that bm_$block_len is not 
* the maximum possible, which is 64K. The reason for not allowing 64K 
* transfers is that it would require we take over the entire iomap. 
* Therefore if another pbu device is using even a single page of the 
* iomap, our call to pbu_$allocate_map would fail.) 

* A typical invocation of the bm library might appear as follows: 
*/ 

char 
status $t status; 
bm_$status_t bm_example; 
long bytes_left; 

bm_$write(data_buffer, 1024*10, 0, &status); write 10 pages to bm 
addr 0 

if (status. all != 0) {. 
error_$print(status); display error code 
process_errore); 

} 

Sample Driver in C E-7 



bm_$wait(l, &bm_status, &bytes_Ieft, &status); wait 1 second for 

if (status.all != 0) { 
error_$print(status); 

} 
*/ 

#noEst 

if (status.all == bm_$io_error) 
display_status_byte(); 

process_errore); 

#include <apollo/base.h> 
#include <apollo/error.h> 
#include <apollo/pfm.h> 

completion 

display error code 

#include "/latest/srlO/gpio/usr/include/apollo/pbu.h" 

#include "bin.h" 
#list 

/* unwire_buffer -- internal routine to unwire a buffer */ 

static void 
unwire_buffer (void) 
{ 

} 

st; 

if (!bmcb.flags.b.buffer_wired) 
return; 

pbu_$unwire (bmcb. pbu_unit_number, 
(void *)bmcb.bufaddr, 
bmcb.buflen, 
(boolean)bmcb.command 
&st) ; 

/* 

/* nothing to do */ 

* If returned status is non-zero, we may have an error on error 
* condition. Since we don't want to overlay the error code from 
* the original error, just print the error message here. 
*/ 

if (st.all != 0) 
error_$print(st); 

bmcb.flags.b.buffer_wired false; 

E-8 Sample Driver in C 



/* bm_command -- Common internal command processing for read/write 
* routines. 

* This routine: 

* 
* 

*/ 

(1) finishes common argument validation; 
(2) wires down the user's buffer; 
(3) calls the internal bm_$sio routine to start the 

transfer. 

static void 
bm_$command( 

unsigned char 
bm_$buf_t 
bm_$buf_Ien_t 

command, 
*buffer, 
len, 

/* 
/* 
/* 

read or write */ 
buffer for transfer */ 
length in bytes of 

{ 

buffer */ 
bm_address, /* bulk memory address 

to use */ 
*status) 

/* 
* Make sure the controller has been initialized, it's not busy, 
* and that we have valid parameters for the transfer. 
*/ 

if (!bmcb.flags.b.init) { 
status->all = bm_$not_init; 
return; 

} 

if (bmcb.flags.b.busy) { /* make sure it isn't already busy */ 
status->all bm_$busy; 
return; 

} 

if «len <= 0) I I (len> bm_$max_len» { 
status->all = bm_$bad_Iength; 
return; 

} 

if «bmcb. bufaddr < 0) II « linteger) (bmcb. bufaddr+len) > 
pbu_$max_virtual_address» { 

status->all = bm_$bad_address; 
return; 

if «bm_address < 0) II «linteger) (bm_address+len) > 
bm_$max_address» { 

} 

status->all bm_$bad_bm_address; 
return; 

Sample Driver in C E-9 



/* Wire down the buffer. */ 

bmcb.bufaddr = buffer; 
bmcb.buflen = len; 

/* save address of buffer */ 
/* save length of buffer */ 

pbu_$wire(bmcb.pbu_unit_number, 
(void *)buffer, 
bmcb.buflen, 
status) ; 

if (status->all != 0) { 
,status->fail = 1; 
return; 

} 

bmcb.flags.buffer_wired 1; /* remember we wired the buffer */ 

/* 
* Buffer is all ready. Call the internal start I/O (sio) 
* routine to map the buffer and load the controller registers. 
* (bm_$sio, because it is also called from the interrupt side 
* of the driver, is defined in bm_int_lib.c. 
*/ 

bmcb.command command; 
bmcb.io_addr bmcb.bufaddr; 
bmcb.rem_len len; 

bmcb.bm_address = bm_address; 
bm_$sio(status); 

if (status->all != 0) { 
status->fail = 1; 
unwire_buffer() ; 
return; 

} 

/* 
/* 
/* 

/* 
/* 

command to perform */ 
first address to transfer */ 
length "remaining" to 
transfer */ 
where to start in the bm */ 
start up the operation */ 

/* Enable interrupts from the bm controller. */ 

/* bm_$cleanup -- Cleanup pbu logic. 
* This routine is called by pbu_$release when the user issues the rldev 
* command. */ 

void 
bm_$cleanup( 

pbu_$unit_t 
char 
status_$t 

{ 

E-IO Sample Driver in C 

*unit, 
*force, 
*status) 

st; 



} 

bm_$status_t 
bm_$buf_Ien_t 

bm_status; 
rem_len; 

/* If there's an operation in progress, attempt to clean up 
* nicely. * / 

if (bmcb.flags.b.busy) { 

/* If user said -force, then forcibly reset the 
* controller. */ 

if (*force) 

else { 
bmcb.csr_ptr.c->command = bmcb.read_cmd; 

bm_$wait(5, &bm_status, 
if (status->all != 0) { 

&rem_Ien, status); 
/* probably a 

timeout */ 
status->fail = 1; /* couldn't clear 

controller */ 
return; 

} 

/* Give back our iomap space if we have any. */ 

if (bmcb.bm_iova != 1) /* (1 is impossible iova 

} 

see bm_$init) */ 
pbu_$free_map (bmcb.pbu_unit_number , &st); 
if (st.all != 0) 

error_$print(st); 
bmcb.bm_iova = 1; /* no longer have any iomap space */ 

/* Disable the device to prevent further interrupts. */ 

pbu_$disable_device(bmcb.pbu_unit_number, status); 
bmcb.flags.init = 0; /* no longer initialized */ 

/* bm_$init Initialize BM library. 
* Since it is being called from Pascal, all parameters are passed by 
* reference */ 

void 
bm_$init ( 

{ 

pbu_$unit_t 
pbu_$ddf_ptr_t 
pbu_$csr-page-ptr_t 
status_$t 

printf ("uni t 

*unit, 
*ddf-ptr, 
*csr-ptr, 
*status) 

%d\n", *uni t) ; 

/* pbu unit number */ 

Sample Driver in C E-ll 



/* Save the information passed by pbu_$acquire in the bmcb. */ 

bmcb.pbu_unit_number = *unit; /* unit number to pass pbu 
manager */ 

bmcb.ddfytr = *ddfytr; /* pointer to mapped ddf */ 
bmcb.csrytr.p = *csrytr; /* pointer to mapped controller 

page */ 

/* 
* Initialize the controller. We don't want to try loading the 
* command register ourselves yet because if the controller 
* doesn't exist, we'll get a bus-timeout fault and be 
* unceremoniously dumped back to shell command level. 
*/ 

bmcb.flags.all = 0; /* nothing going on yet and not 
initialized */ 

l' , /* this tells cleanup routine that we 
haven't gotten iomap space yet */ 

printf("csr page at %X\n", bmcb.csrytr.c); 

pbu_$write_csr(bmcb.pbu_unit_number, /* number of this pbu 
device */ 

(char)bmcb.csr_ptr.c->command, /* the command 
register */ 

BM_INIT_CMD, /* initialization 
command */ 

false, /* do a byte, not word 
write to command 
reg */ 

status) ; /* returned status */ 

if (status->all == pbu_$bus_timeout) { /* controller probably 
not there if error */ 

} 

status->all 
return; 

else if (status->all != 0) { 
status->s.fail = 1; 
return; 

} 

E-12 Sample Driver in C 



} 

/* Allocate an area of the iomap corresponding to the largest 
* block we are going to read or write. */ 

pbu_$allocate_map(bmcb.pbu_unit_number,/*number 
of this 
pbu 
device*/ 

bm_$block_len, /* maximum 
block size 
we'll use */ 

false, /* don't need a 
specific 
iova */ 

0, /* forced iova 
would go 
here */ 

status) ; /* returned 
status */ 

if (status->all != 0) { 
status->s.fail 
return; 

l' , 

} 

/* Define controller commands for loading into csr command 
* register. 
* NOTE: THESE COMMANDS SHOULD NOT BE DEFINED AS PASCAL 
* CONSTANTS! 
* The reason for this is that the compiler, when setting a csr 
* page register to a value it knows to be zero, will generate a 
* CLR instruction, which, since a CLR does a read-modify-write, 
* will probably cause a bus timeout error. To be safe, we just 
* make sure that all command values are in 

variables. * / 

bmcb. init cmd 
bmcb.read cmd 
bmcb.write cmd 

/* 

BM_INIT_CMD; 
BM_READ_CMD; 
BM_WRITE_CMD; 

/* initialization command */ 
/* read command */ 
/* write command */ 

* We could enable interrupts from the controller here, but 
* we'll wait until we actually start an operation -- see 
* bm_command above. 
*/ 

bmcb.flags.b.init l' , /* note we're initialized */ 

/* bm_$read -- Read from bulk memory. 
* This routine reads a block of memory from the bulk memory device into 
* Apollo memory. This should probably be a macro for maximum 
* performance. 
*/ 

Sample Driver in C E-13 



void 
bm_$read( 

{ 

} 

bm_$buf_t 
bm_$buf_len_t 
bm_$bm_address_t 
status_$t 

buffer, 
buflen, 
bm_addr, 
*s) 

bm_command(bmcb.read_cmd, buffer, buflen, bm_addr, s); 

/* bm_$wait -- Wait for completion of read or write operation. 
* This routine waits for the completion of a bulk memory transfer. 
* Note that for bm_$wait a timeout value of zero means wait forever. 
* This is unlike pbu_$wait, for which a timeout value of zero means 
* return immediately. 
*/ 

void 
bm_$wait( 

{ 

short 
bm_$status_t 
bm_$buf_len_t 
status_$t 

timeout, 
*bm_status, 
*rem_len, 
*status) 

int 
pbu_$wait_index_t 
status_$t 

/* controller status */ 
/* residual count */ 

pbu_timeout; 
index; 
st; 

/* If there's an operation in progress, attempt to clean up 
* nicely. 
*/ 

if (!bmcb.flags.b.init) { 
status->all = bm_$not_init; 
return; 

if (!bmcb.flags.b.busy) { /* don't wait if no transfer 
started */ 

status->all bm_$transfer_not started; 
return; 

E-14 Sample Driver in C 



/* 
* Check to see if the operation has already completed ('done' 
* flag set). If it is, we don't have to bother calling 
* pbu $wait. Note that the done flag may be set AFTER we check 
* it and BEFORE we call pbu_$wait, but this is ok -- pbu_$wait 
* will realize that the event we want to wait for has already 
* happened and return immediately. 
*/ 

status->all = status $ok; /* assume o.k. */ 

if (!bmcb.flags.done) { 
pbu_timeout timeout; /* value in seconds */ 
pbu_timeout (pbu_timeout == 0) ? (3600 * 1000) 

(pbu_timeout * 1000); 

} 

/* 
* We want the ability to handle any faults through the 
* return value of pbu_$wait, when we enable again, we 
* will get the fault. If we did not inhibit before the 
* pbu$wait call, and we received a fault, we would not 
* be able to cleanup (unmap and unwire buffer) since we 
* would be blasted back to the shell or the last fault 
* handler. 
*/ 

index = pbu_$wait(bmcb.pbu_unit number, 
pbu_timeout, 

true, 

status) ; 

/* inhibit 
faults * / 

/* number of 
milliseconds 
to wait */ 

/* true means 
allow quits 
while 
waiting */ 

if (status->all != 0) { 
status->s. fail 
return; 

/* he didn't like something */ 
1; 

else index = 0; /* transfer already complete */ 

swi tch (index) 
case 0: 

/* The operation completed. Get the ending status and 
* length transferred for the caller. 
*/ 

Sample Driver in C E-15 



} 

case 1: 

case 2: 

default: 

} 

bm_status->all = bmcb.status.all; 
if (bmcb.status.all == bm_$sio_error) 

status->all = bmcb.sio_status.all; 
else if (bmcb.status.all != bm_$status_ok) 

status->all = bm_$io_error; 
*rem_len = bmcb.rem~len; /* residual count */ 
break; 

/* the ,operation did not complete in time. */ 
status->all = bm_$timeout; 
break; 

/* 
* the user typed control-q while we were waiting. Note: 
* the standard system fault catcher will blast us 
* directly back to shell command level, so we'd never 
* get here. But just in case the fault catcher chooses 
* to ignore the quit, we'll handle it. 
*/ 

status->all = bm_$quit_during_wait; 
break; 

printf (" Invalid pbu_$wait index value, %d\n ", index); 

/* Unmap and unwire the buffer. */ 

pbu_$unmap(bmcb.pbu_unit_number, 
(void *)bmcb.bufaddr, 
bmcb.io_len, 
bmcb.bm_iova, 
&st); 

if (st.all != 0) 
error_$print(st) ; 

/* the buffer */ 
/* length mapped */ 
/* where it's mapped */ 
/* returned status */ 

unwire_buffer(); /* unwire the buffer regardless of how 
operation completed */ 

bmcb.flags.busy 0; 
pfm_$enable(); 

/* controller is no longer busy */ 
/* enable again */ 

/* If we did receive a fault, we will take it here, but at least 
* we were able to cleanup. 
*/ 

/* bm_$wri te -- Write to bulk memory., 
* This routine writes a block of memory from Apollo memory into the 
* bulk memory device. This should probably be a macro for maximum 
* performance. 

*/ 

E-16 Sample Driver in C 



void 
bm_$write( 

{ 

} 

bm_$buf_t 
bm_$buf_Ien_t 
bm_$bm_address_t 
status_$t 

buffer, 
buflen, 
bm_addr, 
*s) 

bm_command(bmcb.write_cmd, buffer, buflen, bm_addr, s); 

E.3 bm int lib.c 

The bm_int_lib.c file consists of the interrupt routine (bm_$int) and the start I/O routine 
(bm_$sio). 

/* This module is the interrupt handler for a fictitious pbu device -- a 
* bulk memory (BM) unit. The intent of this routine is to show the 
* general structure of a user-space interrupt handler and to 
* demonstrate the use of the pbu manager "routines. 

* The bulk memory unit is a pbu device whose controller is at address 
* 400 (hex) in the pbu address space. It has a 8-bit command and status 
* registers at addresses 400 and 401, a 32-bit bulk memory address 
* register at 402, a 16-bit count register at 406, and a 16-bit i/o 
* virtual address (iova) register at 408. The controller interrupts at 
* level 2. 

* The bm manager supports three operations -- read from bulk memory, 
* write to bulk memory, and wait for transfer complete. Up to a 
* megabyte can be transferred with one call, but since the pbu can 
* transfer only up to 64K in one i/o operation, the interrupt side of 
* the driver (this routine) is given the job of blocking large 
* transfers into chunks of size bm_$block_len. (Note that 
* bm_$block_len is not the maximum possible, which is 64K. The reason 
* for not allowing 64K transfers is that it would require we take over 
* the entire iomap. Therefore if another pbu device is using even a 
* single page of the iomap, our call to pbu_$allocate_map would fail.) 
*/ 

#include <apollo/base.h> 
#include "/latest/sr10/gpio/usr/include/apollo/pbu. hll 
#include "bm.hll 

pbu_$interrupt_return_t 
bm_$int( 

pbu_$unit_t *unit) 
{ 

Sample Driver in C E-17 



E-18 

/* We're called from the internal pbu interrupt handler when an 
* interrupt is received from the bm. (Note: we could call 
* pbu_$unmap here to unmap the last buffer, but choose not to: 
* if another chunk of the buffer needs to be transferred, 
* mapping the new chunk (see bm_$sio) will effectively unmap 
* the chunk that was just transferred. If there is no more of 
* the buffer to be transferred, we will wake up the call side 
* of the driver and the bm_$wait routine will unmap the last 
chunk of the buffer. 

* 
* Since we only enable the controller when we've started a 
* transfer, we're pretty sure this is a valid interrupt. For 
* debugging, or if a controller is left enabled all the time, 
* it might be prudent to make sure this interrupt is expected. 
*/ 

bmcb.flags.b.done = 1; /* transfer completed */ 
bmcb.status.all = bmcb.csr-ptr.c->status; /* read the status 

and save for 
call side * / 

/* 
* If an error occurred on last transfer, don't try to continue 
* the operation. Just wake up the call side to process the bad 
* status. 
*/ 

if (bmcb.status.all != bm_$status_ok) 
return(pbu_$interrupt_advance); 

/* 

/* advance bm's 
event count */ 

* Last transfer completed ok. Decrement the length remaining to 
* be transferred and see if there's more to do. 
*/ 

bmcb.rem len - bmcb.io_len; /* decrement length 
remaining to 
transfer */ 

if (bmcb.rem_Ien == 0 ) 
return(pbu_$interrupt_advance); 

/* we're all done */ 
/* tell call side 

we're done */ 

/* 
* There's more to do. Calculate start of the next chunk of 
* buffer to be transferred and call bm_$sio to start the 
* transfer. 
*/ 

bmcb. io addr 

Sample Driver in C 

(bm_$buf-ptr_t) «char *) bmcb.io_addr + 
bmcb. io_len) ; 



bmcb.bm_address = bmcb.bm_address + bmcb.io_len; /* start in the bulk 
memory */ 

bm_$sio(&bmcb.sio_status); /* call internal start I/O 
(sio) routine to start up 
controller */ 

if (bmcb.sio_status.all != 0) { /* oops -- bm_$sio had a 
problem */ 

} 

/* 
* Note that since we're on in an interrupt routine, we 
* can't do much about this error, for example, call 
* error_$print. So we'll just save the bad status for 
* inspection by the call side of the driver. 
*/ 

bmcb.status.all = bm_$sio_error; 
return (pbu_$interrupt_advance) ; /* wake him up */ 

/* 
* The transfer was started ok, so tell the pbu interrupt logic 
* to re-enable interrupts from the controller. 
*/ 

return (pbu_$interrupt_enable) ; /* want to get another 
interrupt */ 

/* bm_$sio -- Start I/O operation to bulk memory controller. 
* This routine maps (a part of) the buffer and loads the controller 
* registers to start an i/o operation. Since this routine is called 
* from both bm_command (in the call side of the driver) and from the 
* interrupt handler, it must be loaded with the interrupt handler. 
*/ 

void 
bm_$sio( 

{ 
status_$t *status) 

bmcb.csr_ptr.c->bm_address 

/* 

bmcb.bm_address; /* tell controller 
where to start 
in bulk memory 

*/ 

* If the buffer length is less than or equal to bm_$block_len 
* then we can do the whole thing at once. Otherwise, start 
* with a block of length bm_$block_len. The interrupt 
* routine will start the next chunk. 
*/ 

Sample Driver in C E-19 



} 

bmcb.io_len = (bmcb.rem_len <= bm_$block_len) ? bmcb.rem_len 
bm_$block_len; 

bmcb.csr_ptr.c->count 

/* 

/* give byte count to 
controller */ 

* Map the buffer through the area of iomap that we allocated at 
* initialization time and give the controller the pbu address. 
*/ 

bmcb.csr_ptr.c->iova = pbu_$map(bmcb.pbu_unit_number, /* number 
of this pbu unit */ 

(void *)bmcb.bufaddr, /* virtual address 
of buffer */ 

bmcb.io_len, /* length of buffer */ 
bmcb.bm_iova, /* iova we got from 

if (status->all != 0) 
return; 

/* 

pbu_$allocate_map */ 
status); /* returned status */ 

* All set to start operation. Set our internal flags and load 
* command register to fire up controller. 
*/ 

bmcb.flags.b.busy 1· , 

bmcb.flags.b.done 0; 
bmcb.csr-ptr.c->command 

/* controller will be busy after 
loading command reg */ 

/* transfer hasn't completed yet */ 
bmcb.command; /* start read or write 

operation */ 

E-20 Sample Driver in C 



E.4 makefile 

The makefile script organizes the files that make up the driver into the call-side and inter
rupt-side libraries when the driver is bound. 

bm_lib: bm_lib.bin 
bind -allmark bm_lib.bin -b bm_lib -map -sys 

bm_int.lib: bm_int_lib.bin 
bind -allmark bm int_lib.bin jlibjpbu_int_lib -b bm_int.lib 

-map -sys 

bm_lib.bin: bm_lib.e bm.ins.e 
jeom/ee bm_lib.c -ndb 

bm int_lib.bin: bm_int_lib.e bm.ins.c 
jeom/ce bm_int_lib.e -ndb 

----~-88-------

Sample Driver in C E-21 





Appendix F 

Sample Driver in Pascal 

This appendix lists the files that make up the online device driver in the subdirectory 
Idomain_examples/gpio_examples/bm_example. This version differs from the online 
version in two respects: 

o Whereas in the online version the controller commands are assigned values in the 
initialization routine (bm_$init), here they are declared as constants in 
bm.pvt.pas. This is permissible because the CSR page definitions in bm.pvt.pas 
have been marked with the [DEVICE] attribute. For information on the [DE
VICE] attribute, refer to Appendix C, Section C.3. 

o A private insert file, bm. pvt. pas, has been added, and some of the data struc
tures and routines formerly in the public insert file, bm.ins.pas, have been moved 
over to this new file. This change does not affect the running of the driver, but it 
does show the format of a private insert file. 

Both the functional parts and the operation of this driver are fully described in Chapter 4, 
Subsections 4.4.2 and 4.4.3 and Figure 4-2. For additional information about the driver 
and the hypothetical bulk-memory controller it supports, refer to the header comments in 
bm_lib.pas (Section F.3). An identical version of this driver coded in C is listed in Ap
pendix E. 

Four files make up the bm_example driver: 

o Private insert file: bm. pvt. pas 

o Public insert file: bm.ins.pas 

o Call-side module: bm_lib.pas 

e Interrupt-side module: bm_int_lib.pas 

Sample Driver in Pascal F-l 



F.1 bm.pvt.pas 

The bm. pvt. pas file declares the private storage area for the interrupt and call sides of the 
driver. Specifically, it declares the controller command constants, the CSR page 
(bm_$csryage_t), the control block used by the driver (bm_$bmcb_t), and the internal 
start I/O routine (bm _ $sio) . 

{ bm.pvt.pas, private definitions for bulk memory device driver} 

{ Define controller commands for loading into csr command register. } 

CaNST bm_init_cmd := chr(16#00); 
bm_read_cmd .- chr(16#01); 
bm_write_cmd := chr(16#02) ; 

{ initialization command 
{ read command } 
{ write command} 

{ Define the bulk memory controller's csr page. (Note: when defining 
the contents of a csr page, watch out for the compiler's rules about 
packing records. In particular, avoid using records inside the csr page 
record, since embedded records are word-aligned, even in a packed re
cord. For example, we might have defined the status register to be 
bm_$status_t (see below), but then the compiler would have aligned it at 
offset 2 in the page even though bm_$status_t is only 8 bits wide.) } 

TYPE bm_$csr-page_t = [DEVICE] PACKED RECORD 
command char; { 00 one byte command register at offset 

status char; 
iova : integer; 

O} 
{ 01 one byte status register } 
{ 02 io virtual address to use for 

transfer } 
count : integer; { 04 number of bytes to transfer} 
bm_address : bm_$bm_address_t; {06 bulk memory address to 

read/write } 

bm_$csryageytr_t = RECORD CASE INTEGER OF 
0: (c Abm_$csryage_t) ; 
1: (p pbu_$csryageytr_t); 
end; {of bm_$csr-pageytr_t } 

{ Define the bulk memory control block (bmcb). This area is used for 
communications between the call and interrupt sides of the bm driver. 
Since it is referenced by the interrupt handler, it must be part of the 
interrupt library -- see bm_int_Iib.pas. } 

TYPE bm_$flags_t = PACKED RECORD CASE INTEGER OF { define flags field in 

0: (init : boolean; 
buffer_wired : boolean; 
busy : boolean; 

F-2 Sample Driver in Pascal 

{ 
{ 

bmcb } 
set to true when controller initialized} 
set when a buffer is wired } 

{ set to true when operation in progress } 



done boolean; { set by interrupt routine when transfer 
completes } 

pad SET OF 0 .. 3) ; { fill out to byte } 
1: (all binteger); 

end; { of bm_$flags_t } 

PACKED RECORD CASE INTEGER OF {define status 

0: (attention boolean; 

status_modifier : boolean; 

control_unit_end : boolean; 
busy : boolean; 

channel_end : boolean; 
device_end : boolean; 
unit_check: boolean; 
unit_exception : boolean); 

1: (all : char); 
end; {of bm_$status_t } 

CONST bm_$status_ok = chr(16#OC); 
bm_$sio_error = chr(16#FF); 

{ 1 => 

{ 1 => 

{ 1 => 
{ 1 => 

{ 1 => 
{ 1 => 
{ 1 => 
{ 1 => 

register } 
change in controller 
status } 
current status 
unavailable } 
busy condition cleared} 
controller currently 
busy} 
end of operation } 
end of operation } 
parity error in bm } 
illegal bm address } 

{ normal completion status } 
{ interrupt routine got error 

from bm_$sio (start I/O routine) } 

TYPE bm_$bmcb_t = RECORD 
pbu_unit_number : pbu_$unit_t; 
flags : bm_$flags_t; 

{ define communications area } 

pad: SET OF O .. 7; 
ddf-ptr pbu_$ddf-ptr_t; 
csr_ptr bm_$csr-page_ptr_t; 
bm_iova pbu_$iova_t; 

bufaddr bm_$both_t; 

{ number of this pbu device } 
{ a byte of flags} 
{ a byte of padding } 
{ pointer to mapped ddf } 
{ pointer to mapped csr page } 
{ start of our area of i/o 

address space } 
{ address of start of buffer } 
{ total length of buffer } buflen : bm_$buf_Ien_t; 

bm_address : bm_$bm_address_t; 
command char; 

{ address of start of bm area } 

rem_len: bm_$buf_Ien_t; 

sio status: status_$t; 

io addr : bm_$both_t; 
io_len bm_$buf_Ien_t; 
end; {of bm_$bmcb_t } 

{ current command (read or write) 
{ length remaining to read or 

write} 
status from last interrupt } 

status from bm_$sio called from 
int side } 

{ address of last i/o transfer } 
{ length of last i/o transfer } 

{ Define global routines not visible to the user. } 

} 

Sample Driver in Pascal F-3 



PROCEDURE bm_$cleanup ( { called from pbu_$release } 
{ pbu unit number} IN unit: pbu_$unit_t; 

IN force: boolean; { force flag } 
OUT status status_$t { returned status } 
); EXTERN; 

PROCEDURE bm_$init 
IN 
IN 
IN 

{ called from pbu_$acquire} 
unit: pbu_$unit_t; { pbu unit number} 
ddf_ptr pbu_$ddf_ptr_t; {pointer to mapped ddf } 
csr_ptr : pbu_$csr_page_ptr_t; {pointer to mapped 

csr page } 
OUT status 
); EXTERN; 

{ returned status } 

PROCEDURE bm_$sio (OUT status status_$t); EXTERN; { start i/o 
operation } 

F.2 bm.ins.pas 

The bm. ins. pas file is the interface between the application and the driver; it defines error 
codes, buffer parameter information, and driver entry points (bm_$read, bm_$write, and 
bm_$wait). 

{ bm.ins.pas, insert file for users of bulk memory device} 

{ Error codes from bm manager calls. (We've arbitrarily picked a subsystem code of OF.) 

CONST bm_$no_controller 
bm_$not_init 
bm_$busy 
bm_$notJeady 
bm_$bad_address 
bm _ $bad _length 
bm_$bad_bm_address 
bm_$transfer_not_started 
bm _ $timeout 
bm _$ quit_ during_wait 
bm_$io_error 

bm_$max_address 
bm_$block_len 
bm_$max_len 

F-4 Sample Driver in Pascal 

= 16#OF000001; {controller not present} 
= 16#OF000002; {controller not initialized} 
= 16#OF000003; {controller is busy} 
= 16#OF000004; {unit not ready} 
= 16#OF000005; {buffer beyond protection boundary} 
= 16#OF000006; {bad buffer length} 
= 16#OF000007; {bad bm address} 
= 16#OF000008; {tried to wait before read or write} 
= 16#OF000009; {timeout during wait} 
= 16#OFOOOOOA; {quit during wait } 
= 16#OFOOOOOB; {i/o error during transfer} 

= 2147483647 ; 
= 32768 ; 
= 131072 ; 

{ maximum bm address =2 * * 31 - 1 } 
{ maximum transfer per i/o operation = 32K } 
{ maximum amount to transfer per call = 128K 

N.B.: MUST be multiple of bm_$block_len 
(see bm_$int) I } 



TYPE bm_$buCt = ARRAY [bm_$buClen_t] OF INTEGER; 
bm_$bufytr_t = Abm_$buf_t; 

TYPE bm_$bm_address_t = integer32; {address of block in bulk memory} 

TYPE bm_$both_t = RECORD CASE INTEGER OF {for handling buffer pointers} 
0: (p : bm_$bufytr_t); 
1: (i : integer32); 
end; {of bm_$both_t } 

{ Define the application-visible library entry points. } 

PROCEDURE bm_$read ( { read record} 
OUT buffer: UNIV bm_$buf t; { data buffer} 
IN buflen: UNIV bm_$buUen_t; {buffer length} 
IN bm_address: UNIV bm_$bm_address_t; {address in bulk memory} 
OUT status: status_$t { returned status} 

); EXTERN; 

PROCEDURE bm_$wait ( { wait for transfer completion} 
IN timeout: integer; { optional timeout value (sees) } 
OUT bm_status : bm_$status_t; { status from controller} 
OUT rem_len: UNIV bm_$buf_Ien_t; { residual count} 
OUT status: status_$t { return code} 
); EXTERN; 

PROCEDURE bm $write ( { write record} 
IN buffer: UNIV bm_$buCt; { data buffer} 
IN buflen :UNIV bm_$buUen_t; { buffer length} 

IN bm_address : UNIV bm_$bm_address_t; {address in bulk memory} 
OUT status: status_$t { returned status} 

); EXTERN; 

Sample Driver in Pascal F-5 



The bm_lib.pas file consists of the call-side routines that perform initialization (bm_$init), 
cleanup (bm_$c1eanup), command processing (bm_$read, bm_$write, and 
bm_command), and wait for interrupt (bm_$wait). 

{ bm.pas, device driver library for bulk memory device} 

{ This module is the device driver library for a hypothetical pbu (pe
ripheral bus unit) -- a bulk memory (BM) unit. The intent of the driver 
is to show the general structure of a user-space device driver and to 
demonstrate the use of the pbu manager routines. 

The bulk memory unit is a pbu device whose controller is at address 400 
(hex) in the pbu address space. It has an 8-bit command and status reg
isters at addresses 400 and 401, a 32-bit bulk memory address register 
at 402, a 16-bit count register at 406, and a 16-bit i/o virtual address 
(iova) register at 408. The controller interrupts at level 2. 

The controller is initialized by writing 16#00 to the command register. 
Read and write operations are performed by loading the address, count, 
and iova registers the then writing a 16#01 (read) or 16#02 (write) to 
the command register. status is obtained by reading the status register. 

The bm manager (this module) supports three operations -- read from bulk 
memory, write to bulk memory, and wait for transfer complete. Up to a 
128K can be transferred with one call, but since the pbu cannot transfer 
128K in one i/o operation, the interrupt side of the driver (see 
bm_int_lib.pas) is given the job of blocking large transfers into chunks 
of size bm_$block_len. (Note that bm_$block_len is not the maximum pos
sible, which is 64K. The reason for not allowing 64K transfers is that 
it would require we take over the entire iomap. Therefore, if another 
pbu device is using even a single page of the iomap, our call to 
pbu_$allocate_map would fail.) 

A typical invocation of the bm library might appear as follows: 

VAR data_buffer: ARRAY[O .. buf_size] OF CHAR; 
status : status_$t; 
bm_status : bm_$status_t; 
bytes_left : integer32; 

bm_$write(data_buffer,1024*10,0,status); 

IF status.all <> 0 THEN BEGIN 
error_$print(status) ; 
GOTO process_error; 
END; 

bm_$wait(l,bm_status,bytes_left,status); 

F-6 Sample Driver in Pascal 

write 10 pages to bm 
addr ° 
display error code 

wait 1 second for 
completion 



IF status.all <> 0 THEN BEGIN 
error_$print(status); display error code 
IF status. all := bm_$io_error THEN display_status_byte; 
GOTO process_error; 
END; 

MODULE bm; 

DEFINE bm_$cleanup, 
bm_$init, 
bm_$read, 
bm_$wait, 
bm_$write; 

%nolist; 

} 

%include '/sys/ins/base.ins.pas'; 
%include '/sys/ins/vfmt.ins.pas'; 
%include '/sys/ins/error.ins.pas'; 
%include '/sys/ins/pbu.ins.pas'; 
%include '/sys/ins/pbu_acquire.ins.pas'; 
%list; 
%include 'bm.ins.pas'; 
%include 'bm.pvt.pas'; 
%eject; 

VAR bmcb bulk memory control block 
(defined in bm_int_Iib.pas) 

PROCEDURE unwire_buffer; INTERNAL; 

VAR st 
BEGIN 

internal routine to unwire 
a buffer} 

IF NOT bmcb.flags.buffer_wired THEN RETURN; { nothing to do } 

pbu_$unwire(bmcb.pbu_unit_number, 
bmcb. bufaddr.pA, 
bmcb.buflen, 
bmcb.command = bm_read_cmd, 

st) ; 

{ number of this pbu unit} 
{ buffer to unwire } 
{ length of buffer } 
{ touch pages if read 

command } 
{ returned status } 

{ If returned status is nonzero, we may have an error on error condi
tion. Since we don't want to overlay the error code from the original 
error, just print the err0r message here. } 

IF st.all <> 0 THEN error_$print(st); 

bmcb.flags.buffer_wired .- false; 

END; {of unwire_buffer } 
%eject; 

Sample Driver in Pascal F-7 



{ BM_COMMAND -- Common internal command processing for read/write rou
tines. } 

{ This routine: 

(1) finishes common argument validation; 
(2) wires down the user's buffer; 
(3) calls the internal bm_$sio routine to start the transfer. } 

PROCEDURE bm_command ( 

VAR 

BEGIN 

IN command char; 

OUT status: status_$t); INTERNAL; 

i, j : integer; 
temp : bm_$buf_Ien_t; 
st status_$t; 

{ command byte (read 
or write) } 

{ buffer for 
transfer } 

{ length in bytes of 
buffer } 

{ bulk memory 
address to use } 

{ returned status } 

{ Make sure the controller has been initialized, it's not busy, and that 
we have valid parameters for the transfer. } 

IF NOT bmcb.flags.init THEN BEGIN 
status.all .- bm_$not_init; 
RETURN; 
END; 

IF bmcb.flags.busy THEN BEGIN { make sure controller isn't already 
busy } 

status.all .- bm_$busy; 
RETURN; 
END; 

IF (len <= 0) OR (len> bm_$max_Ien) THEN BEGIN 
status.all .- bm_$bad_Iength; 
RETURN; 
END; 

bmcb.bufaddr.p .- addr(buffer); { save address of buffer } 

IF (bmcb.bufaddr.i < 0) OR (bmcb.bufaddr.i+len > 
pbu_$max_virtual_address) THEN BEGIN 

status.all := bm_$bad_address; 

F-8 Sample Driver in Pascal 



RETURN; 
END; 

IF (bm_address < 0) OR (bm_address + len> bm_$max_address) THEN 
BEGIN 
status. all .- bm_$bad_bm_address; 
RETURN; 
END; 

{ Wire down the buffer. 

bmcb.buflen := len; 

pbu_$wire(bmcb.pbu_unit_number, 
buffer, 
bmcb.buflen, 
status) ; 

IF status.all <> 0 THEN BEGIN; 
status.fail .- true; 
RETURN; 
END; 

{ 

{ 
{ 
{ 
{ 

{ 

save length of buffer } 

number of this pbu unit } 
buffer to wire } 
length to wire (in bytes) 
returned status } 

give up if something wrong } 

bmcb.flags.buffer_wired := true; { remember we wired the buffer} 

{ Buffer is all ready. Call the start I/O routine (sio) routine to map 
the buffer and load the controller registers. (Because bm_$sio is 
called from the interrupt side of the driver, it is defined in 
bm_int_lib.pas. } 

bmcb.command := command; 
bmcb.io_addr .- bmcb.bufaddr; 
bmcb.rem_len := len; 

bmcb.bm address .- bm_address; 
bm_$sio(status) ; 
IF status. all <> 0 THEN BEGIN; 

status. fail := true; 
unwire_buffer; 
RETURN; 
END; 

{ command to perform } 
{ first address to transfer } 
{ length "remaining" to 

transfer} 
{ where to start in the bm } 
{ start up the i/o operation } 

{ Enable interrupts from the bm controller. } 

RETURN; 

END; {of BM_COMMAND } 
%eject; 

status) ; 

number of this pbu 
device } 
returned status } 

Sample Driver in Pascal F-9 



{ BM_$CLEANUP -- Cleanup pbu logic. } 

PROCEDURE bm_$cleanup (* { called by pbu_$release } 
IN unit: pbu $unit_t; 
IN force : boolean; 
OUT status : status_$t 

*) ; 

VAR st : status_$t; 

BEGIN 

bm_status : bm_$status t; 
rem_len: bm_$buf_Ien_t; 

{ If there's an operation in progress, attempt to clean up nicely. } 

IF bmcb.flags.busy THEN 

{ If user said -force, then forcibly reset the controller. } 

{ If user didn't say -FORCE, wait 5 seconds for operation to complete. } 

ELSE BEGIN 
bm_$wait(5,bm_status,rem_Ien,status) ; 
IF status.all <> a THEN BEGIN {probably a timeout} 

status. fail := true; { couldn't clear controller} 
RETURN; 
END; {of status <> a } 

END; {of ELSE } 

{ Give back our iomap space if we have any. } 

IF bmcb.bm_iova <> 1 THEN BEGIN { (1 is impossible iova--see 
bm_$init) } 

pbu_$free_map(bmcb.pbu_unit_number,{number of this pbu device} 
st); { returned status} 

IF st.all <> a-THEN error_$print(st); 
bmcb.bm_iova .- 1; { no longer have any iomap 

space } 
END; 

{ Disable the device to prevent further interrupts. } 

pbu_$disable_device(bmcb.pbu_unit_number, {number of this pbu 
device } 

status); { returned status} 

bmcb.flags.init := false; { no longer initialized} 

END; {BM_$CLEANUP 
%eject; 

F-IO Sample Driver in Pascal 



{ BM_$INIT -- Initialize BM library. } 

PROCEDURE bm_$init (* { called from pbu_$acquire } 
IN unit : pbu_$unit_t; { pbu unit number} 
IN ddf_ptr : pbu_$ddf_ptr_t; 
IN csr_ptr :pbu_$csr_page_ptr_t; 
OUT status : status_$t 

*) ; 

{ This routine is called from pbu_$acquire to device-dependent initiali
zation. (Note: pbu_$acquire has already checked that the device isn/t 
already acquired, so we don/t need to worry about it here.) } 

VAR i integer; 

BEGIN 

Save the information passed by pbu_$acquire in the bmcb. } 

bmcb.pbu_unit_number := unit; 
bmcb.ddf_ptr := ddf-ptr; 
bmcb.csr_ptr.p .- csr_ptr; 

{ unit number to pass pbu manager 
{ pointer to mapped ddf } 
{ pointer to mapped controller 

page} 

{ Initialize the controller. We don/t want to try loading the command 
register ourselves yet because if the controller doesn/t exist, we/II 
get a bus-timeout fault and be unceremoniously dumped back to shell com
mand level. } 

bmcb.flags.all := 0; 
bmcb.bm iova .- 1; 

{ nothing going on yet and not initialized 
{ this tells clean-up routine that we 

haven/t gotten iomap space yet} 

vfmt_$write2(/csr page at %lh%./ ,bmcb.csr_ptr.c,O); {*** temp ***} 

bmcb.csr_ptr.cA.command, 
ord(bm_init_cmd) , 
false, 

status); 

{ number of this pbu 
device } 

{ the command register } 
{ initialization command 
{ do a byte, not word 

write to command reg} 
{ returned status } 

IF status.all <> ° THEN BEGIN { controller probably not there if 
error } 

IF status.all = pbu $bus_timeout THEN 
status.all .- bm_$no_controller ELSE status.fail .- true; 

RETURN; 
END; 

Sample Driver in Pascal F-ll 



{ Allocate an area of the iomap corresponding to the largest block we 
are going to read or write. } 

bmcb.bm_iova .- pbu_$allocate_map( .-
bmcb.pbu_unit_number, 

bm_$block_len, 

false, 

0, 

status) ; 

IF status.all <> 0 THEN BEGIN 
status.fail .- true; 
RETURN; 
END; 

{ 

{ 

{ 

{ 

{ 

number of this pbu 
device } 
maximum block size 
we'll use} 
don't need a 
specific iova } 
forced iova would 
here } 
returned status } 

{ We could enable interrupts from the controller here, but we'll wait 
until we actually start an operation -- see bm_command above. } 

bmcb.flags.init := true; { note we're initialized} 

END; {of BM_$INIT } 
%eject; 

{ BM_$READ -- Read from bulk memory. } 

PROCEDURE bm_$read (* 
IN unit : bm_$unit_t; 
IN buffer: bm_$buf_t; 
IN buflen: bm_$buf_Ien_t; 
IN bm_address : bm_$bm_address_t; 
OUT status status_$t; *); 

go 

{ This routine reads a block of memory from the bulk memory device into 
Apollo memory; } 

BEGIN 

bm_command (bm_read_cmd, { let bm_command do all the work} 
buffer,buflen, 
bm_address, 
status) ; 

END; {BM_$READ} 
%eject; 

F-12 Sample Driver in Pascal 



{ BM_$WAIT -- Wait for completion of read or write operation. } 

PROCEDURE bm_$wait (* { wait for DMA completion } 
IN timeout integer; { optional timeout value 

(secs) } 
OUT bm_status : bm_$status_t { status from controller } 
OUT rem len : bm_$buf_Ien_t; { residual count } 
OUT status : status_$t { return code } 

*) ; 

{ This routine waits for the completion of a bulk memory transfer. Note 
that for BM_$WAIT a timeout value of zero means wait forever. This is 
unlike PBU_$WAIT, for which a timeout value of zero means return immedi
ately. } 

VAR 
pbu_timeout : integer32; 
st : status_$t; 
index: pbu_$wait_index_t; 

BEGIN 

IF NOT bmcb.flags.init THEN BEGIN 
status.all .- bm_$not_init; 
RETURN; 
END; 

IF NOT bmcb.flags.busy THEN BEGIN { shouldn't wait if no transfer 
started } 

status.all .- bm_$transfer_not_started; 
RETURN; 
END; 

{ Check to see if the operation has already completed ('done' flag set). 
If it is, we don't have to bother calling pbu_$wait. Note that the done 
flag may be set AFTER we check it and BEFORE we call pbu_$wait, but this 
is ok --pbu_$wait will realize that the event we want to wait for has 
already happened and return immediately. } 

status.all := status_$ok; { assume ok for now } 

IF NOT bmcb.flags.done THEN BEGIN 

pbu_timeout .- timeout; { value in seconds } 
IF pbu_timeout = a THEN pbu_timeout .- 3600 * 1000 { default to 

1 hour} 
ELSE pbu_timeout .- pbu_timeout * 1000; 

index := pbu_$wait( 
bmcb.pbu_unit_number, {number of this pbu device} 
pbu_timeout, { number of milliseconds to wait} 
true, { true means allow quits while waiting} 
status); { returned status} 

Sample Driver in Pascal F-13 



IF status. all <> 0 THEN BEGIN { pbu_$wait didn't like 
something } 

status.fail := true; 
RETURN; 
END; 

END {of not done } 

ELSE index := 0; { transfer already complete } 

CASE index OF 

{ If index = 0, the operation completed. Get the ending status and 
length transferred for the caller. } 

0: BEGIN 
bm_status.all := bmcb.status.all; 
IF bmcb.status.all = bm_$sio_error THEN 

status := bmcb.sio_status 
ELSE IF bmcb.status.all <> bm_$status_ok THEN 

status.all := bm_$io_error; 
rem_len .- bmcb.rem_Ien; {residual count} 
END; 

{ If index 1, then the operation did not complete in time. } 

1: status. all := bm_$timeout; 

{ If index 2, the user typed CTRL/Q while we were waiting. Note: the 
standard system fault catcher will blast us directly back to shell com
mand level, so we'd never get here. But just in case the fault catcher 
chooses to ignore the quit, we'll handle it. } 

END; {of CASE } 

{ Unmap and unwire the buffer. } 

pbu_$unmap(bmcb.pbu_unit_number, {number of this pbu unit } 
bmcb. bufaddr. p ~ , { the buffer } 
bmcb.io_len, { length mapped} 
bmcb.bm_iova, { where it's mapped} 
st); { returned status} 

IF st.all <> 0 THEN error_$print(st); 

unwire_buffer; {unwire the buffer regardless of how operation 
completed } 

bmcb.flags.busy .- false; {controller is no longer busy} 

END; {of BM_$WAIT } 
%eject; 

F-14 Sample Driver in Pascal 



{ BM_$WRITE -- Write a record } 

PROCEDURE bm_$write (* 
IN unit : bm_$unit_t; 
IN buffer: bm_$buf_t; 
IN buflen: bm_$buf_Ien_t; 
IN bm_address : bm_$bm_address_t; 
OUT status : status_$t; *) ; 

{ This routine writes a block of processor memory out to the bulk memory 
device. 

BEGIN 

bm_command(bm_write_cmd, { let bm_command do all the work} 
buffer, 
buflen, 
bm_address,status); 

END; {BM_$WRITE} 
%eject; 

The bm_int_lib.pas file consists of the interrupt routine (bm_$int) and the start 110 rou
tine (bm _ $sio) . Since the control block, like bm _ $sio, is referenced by the interrupt rou
tine, it must be DEFINEd here. 

{ bm_int_lib.pas, interrupt handler for bulk memory device} 

DEFINE bmcb, {define anything here that the interrupt routine has to 
reference } 

%nolist; 
%include //sys/ins/base.ins.pas/; 
%include //sys/ins/pbu.ins.pas/; 
%include //sys/ins/pbu_acquire.ins.pas'; 
%include 'bm.ins.pas'; 
%list; 
%include 'bm.pvt.pas'; 
%eject; 

VAR bmcb { bulk memory control block } 

%eject; 
FUNCTION bm_$int 

Sample Driver in Pascal F-15 



F-16 

{ We're called from the System Interrupt Handler when an interrupt is 
received from the device. (Note: we could call pbu_$unmap here to un
map the last buffer, but choose not to: if another portion of the 
buffer needs to be transferred, mapping the new portion (see bm_$sio) 
will effectively unmap the portion that was just transferred. If there 
is no more of the buffer to be transferred, we will wake up the call 
side of the driver and the bm_$wait routine will unmap the last chunk 
of the buffer.) } 

VAR st : status_$t; 

BEGIN 

WITH bmcb.csr-ptr.cA : csr DO BEGIN { shorthand name for csr page} 

{ Since we only enable the controller when we've started a transfer, 
we're pretty sure this is a valid interrupt. For debugging, or if a con
troller is left enabled all the time, it might be prudent to make sure 
this interrupt is expected. Something like: 

if not bmcb.flags.busy then BEGIN 
set_bitchy_flag_for_call_side_or_cause_bus_timeout_error; 
bm_$int .- []; no advance, no enable 
return; 
END; } 

bmcb.flags.done := true; 
bmcb.status.all := csr.status; 

{ transfer completed } 
{ read the status and save for 

call side } 

{ If an error occurred on last transfer, don't try to continue the op
eration. Just wake up the call side to process the bad status. } 

IF bmcb.status.all <> bm_$status ok THEN BEGIN 
bm_$int .- [pbu_$interrupt_advance]; {advance bm's event 

RETURN; 
END; 

count } 

{ Last transfer completed ok. Decrement the length remaining to be 
transferred and see if there's more to do. } 

bmcb.rem len .- bmcb.rem_Ien - bmcb.io_len; { decrement length 

fer } 
IF bmcb.rem_Ien = 0 THEN BEGIN 

bm_$int .- [pbu_$interrupt_advance]; 

RETURN; 
END; 

Sample Driver in Pascal 

{ 
{ 

remaining to trans-

we're all done } 
tell call side 
we're done } 



{ There's more to do. Calculate start of the next portion of buffer to 
be transferred and call bm_$sio to start the transfer. } 

bmcb.io_addr.i := bmcb.io addr.i + bmcb.io_len; { start of next 
chunk } 

bmcb.bm_address := bmcb.bm_address + bmcb.io_len; start in bulk 
memory } 

bm_$sio(bmcb.sio_status); { call internal start I/O (sio) 
routine to start up controller } 

IF bmcb.sio_status.all <> 0 THEN BEGIN oops -- bm_$sio had a 
problem } 

{ Note that since we're in an interrupt routine, we can't do much about 
this error, for example, call error_$print. So we'll just save the bad 
status for inspection by the call side of the driver. } 

bmcb.status.all := bm_$sio_error; 

bm_$int .- [pbu_$interrupt_advance]; 
END {of st <> 0 } 

fake i/o status to tell 
him to look at 
sio_status } 

{ wake him up } 

{ The transfer was started ok, so tell pbu interrupt logic to re-enable 
interrupts from the controller. } 

ELSE bm_$int .- [pbu_$interrupt_enable]; {want to get another 
interrupt } 

RETURN; 
END; {of WITH csr } 

END; of BM_$INT } 
%eject; 

{ BM_$SIO -- Start I/O operation to bulk memory controller. } 

PROCEDURE bm_$sio (* OUT status 

{ This routine maps (a part of) the buffer and loads the controller reg
isters to start an i/o operation. Since this routine is called from both 
bm_command (in the call side of the driver) and from the interrupt han
dler, it must be loaded with the interrupt handler. } 

BEGIN 

WITH bmcb.csr-ptr.c~ : csr DO BEGIN 

csr.bm address .- bmcb.bm_address; { tell controller where to 
start in bulk memory } 

Sample Driver in Pascal F-17 



{ If the buffer length is less than or equal to bm_$block_len then we 
can do the whole thing at once. Otherwise, start with a block of length 
bm_$block_len. The interrupt routine will start the next chunk. } 

csr.count := bmcb.io_len; 

bmcb.rem_Ien 
ELSE bmcb.io_len := 

bm_$block_len; 

{ give byte count to controller} 

{ Map the buffer through the area of iomap that we allocated at in
itialization time and give the controller the pbu address. } 

csr.iova := pbu_$map (bmcb.pbu_unit_number , {number of this 
pbu unit } 

bmcb.bufaddr, { virtual address of 
buffer } 

bmcb.io_len, { length of buffer} 
bmcb.bm_iova, { iova we got from 

pbu_$allocate_map} 
status); { returned status} 

IF status.all <> 0 THEN RETURN; {if error, just return} 

{ All set to start operation. Set our internal flags and load command 
register to fire up controller. } 

bmcb.flags.busy := true; 

bmcb.flags.done := false; 
csr.command := bmcb.command; 

END; {of WITH csr } 

END; {of BM_$SIO } 
%eject; 

-------88-------

F-18 Sample Driver in Pascal 

{ controller will be busy after 
loading commanp reg } 

{ transfer hasn/t completed yet} 
{ start read or write operation} 



Glossary 

acquire a device 

To reserve a particular device for exclusive use. Application programs can acquire a device 
only when that device is not acquired by any other programs. 

address translation unit 

A hardware function that handles virtual-memory address translation operations in Domain 
system nodes. See also memory management unit. 

asynchronous fault 

bus 

A fault that is unrelated to program or hardware action. Asynchronous faults include the 
quit fault, which is generated when you type CTRL/Q to exit from a program, and the 
process stop fault, generated when you log out. See also fault. 

A network of signal routes through which device controllers and the processor address one 
another and pass data; one of the buses that we currently support (that is, MULTIBUS, 
VMEbus, and PC AT compatible bus). 

bus master 

bus slave 

The hardware component that currently controls the bus. When a controller acquires the 
bus, it becomes bus master. 

The hardware component that decodes addresses and acts on commands from the bus 
master. 

byte swapping 

Rearranging the left and right bytes of a word to compensate for the difference between 
the way our processor orders bytes and the way a controller does. 

Glossary GL-l 



call side 

The set of routines and procedures within a device driver that programs actively call to 
perform operations. A device driver's call side is bound separately from its interrupt side. 
See also interrupt side. 

cleanup routine 

The device driver routine called during device release to ensure that no I/O is in progress 
and that the device will not generate further interrupts. The cleanup routine is a call-side 
routine. 

control and status register (CSR) 

CSR 

CSR page 

A control and status register for a device or controller. Control and status registers are lo
cated in bus I/O space. 

See control and status register. 

A page of bus I/O space that contains the control and status registers for a particular de
vice or controller. A device or controller's CSR page is loaded into user-process address 
space when the device is acquired. 

data structure 

DDF 

device 

Any table, list, queue, or array whose format and access conventions are well defined for 
reference by one or more programs. 

See device descriptor file. 

One drive and its controlling logic (for example, a storage module device). In this docu
ment, the terms device and controller are synonymous. 

device descriptor file (DDF) 

A data structure that describes the device to the system. Each device has one associated 
DDF. 

device driver 

The set of user-written routines and procedures that handle I/O operations to and from a 
peripheral device. The device driver is composed of a call side and an interrupt side, 
bound in separate modules. 

device interrupt 

A signal sent to the processor by a peripheral device through an interrupt request line. 

direct memory access (DMA) 

A type of liD transfer where a device transfers data directly to processor memory. 

GL-2 Glossary 



DMA 

See direct memory access. 

DMA controller 

A controller that performs direct memory access I/O transfers. 

DMA overrun 

A condition in which a device cannot transfer data to the processor as fast as it is receiving 
it, and so loses data. 

eventcount 

fault 

A 32-bit integer that processes establish to count the occurrence of an event or events. 
The eventcount is the primary method of interprocess synchronization. 

A fatal error from which a program cannot recover. 

fault handler 

The routine that performs cleanup services after a fault occurs and before the program 
exits. Both application programs and device drivers can contain fault handling routines. 

general purpose input/output (GPIO) software 

The set of routines and commands that application programs and device drivers use to 
perform I/O operations on a peripheral device. 

hard-wired memory 

Device data structures or CSRs that are located at preset fixed addresses. 

initialization routine 

interrupt 

The device driver routine that readies a device for I/O operations. The initialization routine 
is a call-side routine. 

See device interrupt. 

interrupt mask register 

A register that determines whether or not the processor will receive an interrupt from a 
given device. Each bit within the register corresponds to an interrupt line. When clear, 
the process can receive interrupt requests on the line; when set, the processor does not 
receive the request. See also interrupt request line. 

interrupt request line 

Lines that devices use to generate interrupt requests to the processor. 

interrupt routine 

The device driver routine that performs device-specific interrupt processing. The interrupt 
routine is part of the driver's interrupt side. 

Glossary GL-3 



interrupt side 

The part of a device driver that is called by the System Interrupt Handler in response to 
an interrupt condition. The interrupt side is composed of one or more user-written inter
rupt routines and data. 

interrupt stack 

Wired memory that contains scratch storage, saved registers, and subroutine addresses used 
by a device driver. The default interrupt stack size is 1024 bytes (one page). 

interrupt vector 

1/0 map 

110 space 

iova 

The address generated that identifies an interrupting device to the processor. 

A data structure used to map MULTIBUS or PC AT compatible bus memory to processor 
memory. Each entry within the liD map maps one page of MULTIBUS or 
PC AT compatible bus memory to processor memory. 

The region of the bus address space that contains device CSRs. 

A virtual address that is mapped into the physical address space of any of the buses that 
we support. 

mapping an 1/0 buffer 

The process by which a device driver establishes an association between pages of MULTI
BUS or PC AT compatible bus memory and the pages of a buffer within process address 
space. 

memory management unit (MMU) 

The hardware component that handles virtual memory translation operations within Domain 
system nodes. Also called the Address Translation Unit. 

memory-mapped controller 

A controller that contains on-board memory in which it stores data from external devices. 

memory-mapped 1/0 

Data transfers to and from the local memory of memory-mapped controllers. Device driv
ers must map the local memory to virtual address space before they can read and write to 
it. 

memory space 

The region of the bus address space that contains memory locations. 

MMU 

See memory management unit. 

GL-4 Glossary 



non bus-vectored interrupt 

offset 

page 

paging 

PBU 

A type of interrupt where the device raises its interrupt request line, but does not send an 
interrupt vector over the bus. See also interrupt vector. 

A fixed displacement from the beginning of a data structure. 

1024 bytes; the unit of measure in our systems. 

Moving pages of virtual memory to and from physical memory. The MMU controls paging 
operations. 

Peripheral bus unit, synonymous with MULTIBUS, PC AT compatible bus, or VMEbus 
device. 

PBU Manager 

The collection of routines that are internal to the operating system and manage GPIO re
sources. 

peripheral interrupt controller (PIC) 

The hardware component that arbitrates interrupt requests sent by devices along their inter
rupt request lines. 

PIC 

See peripheral interrupt controller. 

processor memory 

The main memory of a Domain node. 

programmed 1/0 

Data transfers of single words or bytes through CSRs. 

scatter-gather 

Contiguous disk transfer to andlor from dis contiguous pages of memory. 

serial priority resolution 

A method of bus arbitration where position in the card cage determines a controller's bus 
request arbitration priority level. 

synchronous fault 

A fault that occurs as a result of program or hardware errors, such as floating-point over
flow or disk errors. See also asynchronous fault, fault. 

system interrupt handler 

The part of the operating system that processes device interrupts. 

Glossary GL-5 



user-process address space 

The area of virtual address space in which a process executes. When a device is acquired, 
its device driver, CSR page, and other I/O data structures are loaded into user-process 
address space. 

virtual address 

The 32-bit integer that identifies a "location" in virtual address space. The MMU trans
lates virtual addresses to physical addresses. 

virtual address space 

The set of all possible virtual addresses that a program executing within a process can use 
to identify the location of an instruction or data. 

wired memory 

One or more pages of virtual address space that are made permanently resident in proces
sor memory and therefore cannot be paged out by the MMU. 

wiring a buffer 

Making the pages of a buffer ineligible for virtual memory paging operations. Device drivers 
must wire the pages of an I/O buffer before initiating a DMA transfer. 

-------88-------

GL-6 Glossary 



Symbols 

/dev directory. 11-1. A-2. A-5 

/dev/global_devices. 10-6 

/dev/sio. 9-5 

/lib directory. 11-3 

/lib/pbu_int_lib. 10-2 

A 

Access Control List (ACL). 11-3 

acquire a device. GL-1 

acquiring the device. 12-1 to 12-5 
calling pbu_$acquire. 12-2 
device acquisition program. 12-2 to 12-3 
with aqdev command. 12-2 

addresses. assigning CSR 
MULTIBUS 

16-bit controllers. 1-8 to 1-9 
20-bit controllers. 1-11 to 1-12 
8-bit controllers. 1-9 

address modifiers (VMEbus). 2-2 to 2-3 

address space (PC AT compatible bus). 3-2 to 
3-6 

address space allocation (VMEbus). 2-2 

address translation unit. GL-1 

application program. 4-2 

aqdev command. description. A-2 to A-4 
to acquire device. 12-2 

Index 

-c option. A-2 
-d[b] option. A-2 
error messages. A-3 
refusing to load unresolved globals. 8-2 
using DDF pathname. 11-2 

asynchronous fault. GL-1 

assigning CSR addresses 
MULTIBUS 

16-bit controllers. 1-8 to 1-9 
20-bit controllers. 1-11 to 1-12 
8-bit controllers. 1-9 

B 

bind command. 10-3 
options 

-align. 10-3 
-allmark. 10-3 
-mark. 10-3 

to page align buffer. 10-3 to 10-4 

binding. 4-5. 10-2 to 10-4 
call side. 10-2 
interrupt side. 10-2 
system globals. 10-4 
unresolved globals. 10-4 
with shell script. 10-3 

bm.ins.pas (Pascal driver insert file). F-4 to 
F-5 

bm.pvt.pas (Pascal driver private insert file). 
F-2 to F-4 

bm_$c1eanup 
C version. E-10 to E-11 
Pascal version. F-10 

Index 1 



bm_Sinit 
C version, E-ll to E-13 
Pascal version, F-ll to F-12 

bm_Sint 
C version, E-17 to E-19 
Pascal version, F -15 to F -17 

bm_Sread 
C version, E-13 to E-14 
Pascal version, F-12 

bm_Ssio 
C version, E-19 to E-20 
Pascal version, F-17 to F-18 

bm_Swait 
C version, E-14 to E-16 
Pascal version, F-13 to F-14 

bm_Swrite 
C version, E-16 to E-17 
Pascal version, F-15 

bm_command 
C version, E-9 to E-l0 
Pascal version, F-8 to F-9 

bm_example 
allocating address space, 7-3 
building version 1 DDF, with shell script, 

11-3 
C version, see also bm example c, E-l to 

E-21 --
cleanup, 4-8 
dry run of, 4-6 to 4-8 
command processing, 4-7, 6-8 to 6-9 
GPIO calls, 4-6 to 4-8 
initialization, 4-7, 6-2 to 6-8 
insert files, 5-2 to 5-6 
interrupt handling, 4-8, 8-4 to 8-5 
Pascal version (bm_example listing), F-1 

to F-18 
bm.ins.pas (insert file), F-4 to F-5 
bm.pvt.pas (private insert file), F-2 

to F-4 
bm_Scleanup (cleanup routine), F-l0 
bm_command (internal command 

processing routine), F-8 to F-9 
bm_Sinit (initialization routine), F-ll 

to F-12 
bm_int_lib. pas (interrupt handler), 

F-15 to F-18 
bm_lib.pas (call-side library), F-6 to 

F-15 
bm_Sread (read routine), F-12 
bm_Ssio (start I/O routine), F-17 to 

F-18 

2 Index 

bm_Swait (wait routine), F-13 to 
F-14 

bm_Swrite (write routine), F-15 
setting up the I/O map, 7-4 to 7-5 
testing for device presence, 6-4 to 6-6 
wait routine, 6-10 to 6-14 

bm_example_c, listing, E-l to E-21 
bm.h (insert file), E-2 to E-6 
bm_command (internal command process

ing routine) E-9 to E-l0 
bm_Scleanup (cleanup routine), E-l0 to 

E-ll 
bm_Sinit (initialization routine) E-ll to 

E-13 
bm_int_lib.c (interrupt handler), E-17 to 

E-20 
bm_lib.c (call-side library), E-7 to E-17 
bm_Sread (read routine) E-13 to E-14 
bm_$sio (start I/O routine) E-19 to E-20 
bm_$wait (wait routine) E-14 to E-16 
bm_$write (write routine), E-16 to E-17 
control block, example of, 5-5 to 5-6 
makefile, E-21 
wiring, example of 7-4 

bm_int_lib.c, C version interrupt handler, E-17 
to E-20 

bm_int_lib.pas, Pascal version interrupt han
dler, F-15 to F-18 

bm_lib.c, C version call-side library, E-7 to 
E-17 

bm_lib.pas, Pascal version call-side library, F-6 
to F-15 

boolean values (C), C-3 

buffers 
discontiguous, 7-6 
wiring, 7 - 3 to 7-4 

bus, definition, GL-1 
address space, allocating for DMA trans

fers, 7-2 to 7-3 
grant level, VMEbus, 2-2 
master, definition, GL-l 

DN4000, 7-10 
MULTIBUS, 1-3 
PC AT compatible bus, 3-10 

bus slave,definition, GL-l 
request arbitration, MULTIBUS, 1-4 
time-out, 5-4, 7-18, C-3 

MULTIBUS, 6-4 
PC AT compatible bus, 3-8 



byte swapping 
definition, GL-l 
MULTIBUS, 1-12 to 1-14 
PC AT compatible bus, 3-9 

bytesyeryage, B-2 

c 
C programming, C-3 to C-4 

boolean values, C-3 
CSR page example, C-2 
enumerated type, C-l, C-3 
equivalent of Pascal universal pointer type, 

C-4 
globals, C-4 
insert files, C-3 
makefile, example, E-2l 
struct, C-l 
type int, C-3 
union, C-l 

call-side, GL-2 
C example, bm_lib.c, E-7 to E-17 
binding, 10-2 to 10-4 
debugging, 10-4 to 10-5 
Pascal example, bm_lib.pas, F-6 to F-15 
routines, 6-1 to 6-15 

CHANNEL IN USE message, 7-9 

char data type, 5-4 

checklist, 4-9 

cleanup routine, 4-4, GL-2 
C example, bm_$cleanup, E-l0 to E-11 
driver entry point, 6-14 to 6-15, 7-14, 

11-2, 11-4, 12-3 
functions, 6-15 
Pascal example, bm_$cleanup, F-l0 

command processing, 6-8 to 6-9 
C example, bm_command, E-9 to E-l0 
Pascal example,bm_command, F-8 to F-9 

commands 
crddf, 4-5, 11-1 to 11-10, A-4 to A-l0 

creates a DDF, 9-1 
DDF options, 11-1 to 11-2 
multiple option, 9-5 
options, A-5 to A-9 
PC AT compatible bus, 3-11 
-vme option, 2-4 

cvt_at, A-11 to A-12 
PC AT compatible bus, 3-5 

compiler considerations, C-l 

packed-record, C-l 

compiler optimization, C-5 to C-7 

configuring 
MULTIBUS, 1-7 to 1-12 

controller memory 
16-bit controllers, 1-10 
20-bit controllers, 1-11 

controller address lines 
16-bit controllers, 1-10 
20-bit controllers, 1-12 

constants, B-1 to B-2 

Control and Status register (CSR), 1-3 
definition, GL-2 
mapping scheme, PC AT compatible de

vices, 3-4 
MULTIBUS, 1-5 

assigning addresses 
16-bit controllers, 1-8 to 1-9 
20-bit controllers, 1-11 
8-bit controllers, 1-9 

page, 5-3, 5-4, A-2, A-11 
PC AT compatible bus, 3-2 to 3-5 
address, 11-2 
definition, GL-2 
examples, 5-3, C-2 to C-3 
iova 

PC AT compatible bus, A-6 
MULTIBUS, A-6 
VMEbus, A-6 

pointer, 5-4 
PC AT compatible bus, 3-2 to 3-5 
VMEbus,2-4 

control block, 5-5 to 5-6, 6-4, 6-5, 8-2 
hard-wired, 6-6 to 6-10 
page-aligned, 6-7 to 6-8 

contoller data structures, initializing, 6-6 to 
6-10 

controlling multiple processes, 9-2 to 9-3 

copying I/O buffers, D-3 to D-4 

CPU times, D-2 

crddf command, 9-1, 11-1 to 11-10, A-5 to 
A-l0 
DDF options, 11-2 
multiple option, 9-5 
PC AT compatible bus, 3-11 

crddf command, continued 
options, A-5 to A-9 
-vme option, 2-4 

CSR see Control and Status register 

Index 3 



CTRLlQ, 6-10, B-51 

CTRLlZ, 4-8, 12-2, A-13 

cvt_at command, A-11 to A-12 
PC AT compatible bus, 3-5 

D 

data path (MUL TIBUS) , 1-3 

data structures 
definition, GL-2 
initializing, controller, 6-6 to 6-8 

data transfers, 7-1 to 7-21 

data types, B-2 to B-10 
integer (Pascal), C-1 

DDE. See Domain Distributed Debugging Envi
ronment 

DDF, 4-5, 10-2, 11-1 to 11-10, A-2 
building with shell script, 11-3 to 11-4 

version 1, 11-3 
definition, GL-2 
for global drivers, 9-5 to 9-6 
functions, 11-2 
PC AT compatible device, 3-11, 11-6 to 

11-7 
VMEbus device, 11-7 to 11-8 
version 1, 11-2 
version 2, 11-2, 11-4 
version 3, 11-2, 11-5 to 11-10 

de allocating the I/O map, 7-15 

debugging, 10-4 to 10-6 
call-side, 10-4 to 10-5 
interrupt side, 10-4 to 10-5 
shared driver, 10-6 

DEFINE clause (Pascal), 5-5, 6-4, 8-1 to 8-2, 
C-4 

device, definition, GL-2 

device attribute, 5-4, C-5 to C-7 

device acquisition program, 10-2 

device descriptor file, See also DDF 

device driver, 4-4 to 4-9, GL-2 
binding, 10-2 to 10-4 
call side, 4-5 

routines, 6-1 to 6-15 
checklist, components, 4-9 
components, 4-4 to 4-5 
debugging, 10-4 to 10-5 

4 Index 

entry points, 4-5, 11-4 
functions, 4-4 
global, 9-1 to 9-6, B-43 
insert files, 5-1 to 5-6 
internal storage, 6-4 
interrupt side, 4-4, 8-1 to 8-7 
online examples, 4-5 
sample in C, E-1 to E-21 
sample in Pascal, F-1 to F-18 
shared, 9-1 to 9-6, B-43 

debugging, 10-6 

device interrupt, See also interrupt 
definition, GL-2 
disabling, 8-3 to 8-4 

device time-out, 6-10 

direct memory access. See DMA 

disabling device interrupts, 8-3 to 8-4 

discontiguous buffers, 7-6 

dif command, 9-5 

DMA 
bandwidth, D-1 
controller, definition, GL-3 
definition, GL-3 
overrun, definition, GL-3 
overruns, D-1 
PC AT compatible bus lines, 3-8 
transfers, 7-2 to 7-16 

allocating bus address space, 7-2 to 
7-3 

dynamic resource allocation, 7-6 
preallocating I/O resources, 7-5 
releasing I/O resources (abnormal), 

7-16 to 7-21 
releasing I/O resources (normal), 7-15 

to 7-16 
deallocating the I/O map, 7-15 
unwiring the I/O buffer, 7-16 

scatter-gather operations, 7-6 to 7-7 
setting up the I/O map, 7-4 to 7-5 
starting/stopping on PC AT compatible 

bus, 7-8 to 7-15 
VMEbus, 2-4 
wiring I/O buffers, 7-3 to 7-4 
without I/O map, 7-9 to 7-13 
with I/O map, 7-14 to 7-15 

DN3000 timing, D-5 

DN4000 
bus master, 7-10 
timing, D-5 

DN5xx-T timing, D-5 



DN660 timing, D-S 

Domain-system supplied devices, PC AT com
patible bus, 3-3 

Domain/ComController, 1-8 

Domain Distributed Debugging Environment 
(DDE) , 10-4 to 10-S 

driver control block, S-S to S-6 

driver routines, internal, S-6 

dynamic resource allocation, 7-6 

E 

ec2_$eventcount, 8-4 

ec2_$ptr_t, 6-14, 9-3, B-2 

ec2_$wait, 6-12 to 6-14, B-31 

enabling device interrupts, 8-3 to 8-4 

End of File mark (EOF) , 4-8, 12-2, A-13 

enumerated type (Pascal), C-1, C-3 

error mesages, GPIO, B-78 to B-81 

ESA (external_symbol_address), 9-1 

ETHERNET Interlan Controller, addresses used 
on MULTIBUS, 1-8 

eventcount, 6-10 to 6-12 
as ec2_eventcount type, 8-4 
definition, GL-3 
pbu_$advance_ec, advanced by, B-16 
pbu_$get_ec, retrieved by, B-31 
pbu_$release_ec, released by, B-43 

EXTERN clause (Pascal), S-6 

external_symbol_address (ESA) , 9-1 

F 

fault, definition, GL-3 

fault handler, definition, GL-3 

fault handling, 6-1 
by application, 7-16 
by driver, 7-16 

faults in user-written interrupt routines, 8-6 

floating, IRQ and DMA lines (PC AT compat
ible bus), 3-8 

FSD-SOO, addressses used on MULTIBUS, 1-8 

G 
general purpose input/output (GPIO) software, 

definition, GL-3 
see also GPIO 

global driver, 9-1 to 9-6, B-16, B-43 
cleanup, 9-4 
controlling multiple processes, 9-2 to 9-3 
DDF,9-1 
eventcount, 9-3 
example, 4-S, 9-1 
fault handling, 9-4 
functions, 9-2 to 9-3 
global library, 9-4 
global memory, 9-4 
initialization, 9-4 
loading, 9-S 

global driver, continued 
mutex locks, 9-2 
mutual exclusion, 9-2 
synchronization, 9-3 
unloading, 9-S 

global library, 9-4 

global memory, 9-4 

global_example, 4-S, 9-1 
testing for device presence, 6-S to 6-6 

globals, 8-2, 10-4 to 10-6, C-4 

glossary, GL-1 to GL-6 

GPIO 
calls (routines), B-11 to B-81 
See also under the name of each call 

pbu_$acquire, B-13 to B-14 
pbu_$acquire_stream, B-1S 
pbu_$advance_ec, B-16 
pbu_$allocate_ec, B-17 
pbu_$allocate_map, B-18 to B-19 
pbu_$control, B-20 to B-21 
pbu_$device_interrupting, B-22 
pbu_$disable_device, B-23 
pbu_$dma_start, B-24 to B-26 
pbu_$dma_stop, B-27 to B-28 
pbu_$enable_device, B-29 
pbu_$free_map, B-30 
pbu_$get_ec, B-31 
pbu_$get_info, B-32 
pbu_$map, B-33 to B-34 
pbu_$map_controller, B-3S to B-36 
pbu_$mem_ptr, B-37 to B-38 
pbu_$read_csr, B-39 to B-40 
pbu_$release, B-41 to B-42 
pbu_$release_ec, B-43 

Index 5 



pbu_Sunmap, B-44 to B-45 
pbu_Sunmap_controller, B-46 to 

B-47 
pbu_Sunwire, B-48 to B-49 
pbu Swait, B-50 to B-51 
pbu_Swire, B-52 to B-53 
pbu_Swire_special, B-54 to B-55 
pbu_Swrite_csr, B-56 to B-57 
pbu2_Sallocate_map, B-58 to B-59 
pbu2 Sdma start, B-60 to B-62 
pbu2=Sdma=stop, B-63 to B-64 
pbu2_Sfree_map, B-65 
pbu2 Smap, B-66 to B-67 
pbu2-Smap controller, B-68 to B-69 
pbu2=Sunmap, B-70 to B-71 
pbu2_Sunmap_controller, B-72 to 

B-73 
pbu2_Sunwire, B-74 to B-75 
pbu2_Swire, B-76 to B-77 

commands, A-l to A-13 
aqdev comand, A-2 to A-4 
crddf command, A-5 to A-10 
cvt_at, A-11 to A-12 
rldev command, A-13 

data types, B-1 to B-10 
error messages, B-78 to B-81 
procedures and functions, B-11 to B-77 
routines, B-1 to B-78 
software, concepts and forms 4-1 to 4-9 

table, 4-3 

H 

hard-wired memory, definition, GL-3 

I 

IMAGEN printer, addresses used on 
MULTIBUS, 1-8 

initialization routine, 4-7, 6-2 to 6-8, GL-3 
C example, bm_Sinit, E-11 to E-13 
driver entry point, 11-2, 11-4 
format, 6-3 
functions, 6-2 
Pascal example, bm_Sinit, F-11 to F-12 

initializing controller data structures, 6-6 to 6-8 

insert files, concepts and forms, 5-1 to 5-6 
C example, bm.h, E-2 to E-6 
driver-specific, 5-2 to 5-6 
general, 5-1 

6 Index 

Pascal examples 
bm.ins.pas, F-4 to F-5 
bm.pvt.pas (private insert file), F-2 

to F-4 
private, 5-3, 5-5 to 5-6 

insert files, continued 
public, 5-6 
system, 5-2 

integer data type (Pascal), C-1 

interlan_example, sample driver, 4-5 

internal driver routines, 5-6 

internal storage, 6-4 

interrupt 
definition, GL-3 
disabling, 8-3 to 8-4 
enabling, 8-3 to 8-4 
handler 

C example, bm_int_lib.c, E-17 to 
E-20 

Pascal example, bm_int_lib.pas, F-15 
to F-18 

mask bit, 8-3 
mask register, 8-3 

definition, GL-3 
processing by System Interrupt Handler, 

8-5 
processing overhead, D-2 
request, line, 11-2 

definition, GL-3 
MULTIBUS, 1-4 
VMEbus, 2-3 

routine, 4-4, 8-2 to 8-7 
C version, E-17 to E-19 
definition, GL-4 
driver entry point, 11-4 
faults in, 8-6 
format, 8-3 
functions, 8-2, 8-5 
GPIO calls, 8-2 
mapping buffers, 8-7 
Pascal version, F-15 to F-18 
pathname, 11-2 
processing, 8-4 to 8-5 
stack 

definition, GL-4 
size required, 11-2 

wiring, 8-1 
side, 4-5 

binding, 10-1 to 10-4 
concepts and forms, 8-1 to 8-7 
debugging, 10-4 to 10-5 
definition, GL-4 



I/O 

maximum size of, 8-2 
restrictions, 8-1 to 8-2 
wiring, 7-4 

vector, definition, GL-4 
waiting for, 6-10 to 6-14 

address 
path (MULTIBUS), 1-4 
space 

buffers 

PC AT compatible bus, 3-2 to 
3-5 

definition, GL-4 
MULTIBUS, 1-4 to 1-7 

copying, 0-3 to 0-4 
wiring, 0-3 to 0-4 

bus, definition, 1-1 
map, definition, GL-4 

See also PC AT compatible bus; 
MULTIBUS; VMEbus 

deallocating, 7-15 
setting up, 7-4 to 7-5 

requests, 6-8 to 6-10 
software, 4-1 to 4-9 
virtual address. See iova 

iova, 1-6, A-11, GL-4 
PC AT compatible bus, A-6 
MULTIBUS, A-6 
VMEbus, A-6 

IRQ lines (PC AT compatible bus), 3-8 to 3-9 

K 

KGT (Known Global Table), 9-4 

L 

Last-in-first-out, See LIFO 

LIFO order, 9-5 

loading 
global driver, 9-5 
private driver, 12-1 
shared driver See loading, global driver 

locking, OOF, 12-1 

M 

magtape, 1-8 

make file , C version, E-21 

mapping 
buffers in interrupt routine, 8-7 
controller memory, 7-19 to 7-20 
CSR page, 12-1 

PC AT compatible bus, 3-2 to 3-5 
OOF, 12-1 
I/O buffer, definition, GL-4 
MULTIBUS, 1-4 to 1-6 

memory, wiring, 7-3 to 7-4 
address path (MULTIBUS), 1-3 
memory management unit See MMU 
space, 

definition, GL-4 
PC AT compatible bus, 3-5 

memory-mapped 
controller, 7-15 to 7-21 

definition, GL-4 
PC AT compatible bus, 3-2 to 3-5 

I/O, 7-17 to 7-21 
definition, GL-4 
mapping controller memory, 7-19 to 

7-20 
MULTIBUS, 1-6 
PC AT compatible bus, 3-10 to 3-11 
unmapping controller memory, 7-20 to 

7-21 
VMEbus, 2-3 

transfers, 7-17 to 7-21 
referencing controller memory, 7-18 

MMU (memory managment unit) 
definition, GL-4 
paging operations, 7-3 

MULTIBUS 
address 

space, 1-4 to 1-6, 6-7 
lines, configuring, 1-10 
translation, 1-4 to 1-7 

Apollo node type implementation compli
ance levels, 1-2 

bus 
control, 1-3 
master, I/O space addressing, 1-3 
request arbitration, 1-4 

parallel priority resolution, 1-4 
serial resolution, 1-4 

slave, I/O space addressing, 1-3 
byte swapping, 1-12 to 1-14 
Control and Status register See 

MULTIBUS, CSR 
compliance levels, 1-2 
configuring 

Index 7 



address lines, 1-10 
controller memory, 1-10 
controllers, 1-7 to 1-12 

controllers 
16-bit 

assigning CSR addresses, 1-8 to 
1-9 

configuring controller memory, 
1-10 

configuring controller address 
lines, 1-10 

memory-mapped transfers, 7-18 
page boundary, 1-8 
using interrupt request lines, 1-10 
using pbu2_$ routines, 7-1 

20-bit 
assigning CSR addresses, 1-11 
byte-swapping, 1-12 to 1-14 
configuring controller memory, 

1-11 
configuring controller address 

lines, 1-12 
memory-mapped transfers, 7-18 
using interrupt request lines, 1-12 
using pbu2_$ routines, 7-1 

8-bit 
CSR addresses, 1-9 
csr_offset, example, using for, 

11-5 
limit of one on 16-bit 

MULTIBUS, 1-8 
page boundary, 1-8 

configuring, 1-7 to 1-8 
memory, configuring, 1-10 

CSR, 1-5 
addresses, 1-8, 1-11 
page, 1-5, A-5 
page iova, A-5 
allocating bus address space, 7-2 to 

7-3 
dynamic resource allocation, 7-6 
preallocating I/O resources, 7-5 
scatter-gather operations, 7-6 to 7-7 
wiring I/O buffers, 7-3 to 7-4 

MUL TIBUS, continued 
data path, 1-3 
DDF, 11-3 
DMA transfers, 1-6, 7-2 to 7-15 
Domain system-supplied devices, 1-8 
I/O address path, 1-4 
I/O Bus Structure, 1-1 to 1-14 
I/O map, 1-6, 7-2 to 7-7 
I/O space, 1-3, 1-5 

8 Index 

interrupt request lines, 1-4, 1-10 
mapping 1/0 buffer, 7-2 to 7-7 
memory 

controller, configuring, 1-10 
memory address path, 1-3 

16-bit memory addresses, 1-3 
20-bit memory addresses, 1-3 

memory space, 1-4 to 1-6, 1-10 
memory-mapped I/O, 1-6, 7-17 to 7-21 

mapping, controller memory, 7-19 to 
7-20 

unmapping controller memory, 7-20 to 
7-21 

memory-mapped transfers, referencing con
troller memory, 7-18 

processor address space allocation, 1-4 to 
1-7 

programmed I/O, 1-5, 7-21 
unit number, A-8 

multiple-device driver, interrupt routine, 9-6 

multiple-device drivers, 9-5 to 9-6 

mutex_$lock, 9-2 

mutex_$unlock, 9-2 

mutual exclusion, 9-2 

N 
node ID, 11-2 

nonbus-vectored interrupt, definition, GL-5 

o 
offset, definition, GL-5 

online sample drivers, 4-5 

page 

p 

alignment, 6-7 to 6-8, 10-3 to 10-4 
definition, GL-5 
fault, 8-2 

paging, GL-5 

parallel priority resolution (MUL TIBUS), 1-4 

Pascal 
enumerated type, C-l, C-3 
integer data type, C-l 
sample driver, F-l to F-18 
set, C-l, C-3 



universal pointer type, C-4 
variant record, C-1 

PBU (Peripheral Bus Unit), definition GL-5 

PBU Manager, 4-7, GL-5 

pbu[2LSdma_start 
with PC AT compatible bus, 3-8, 3-10 to 

3-11 

pbu [2L $dma_stop 
with PC AT compatible bus, 3-8, 3-10 to 

3-11 

pbu[2L$routine_name notation, 7-1 

pbu_$acquire, B-13 to B-14 
called by aqdev, A-2 
calling driver initialization routine functions, 

6-2 to 6-8 
establishing fault handler, 7-16 
functions, 12-2 to 12-3 
loading interrupt libraries with unresolved 

globals, 8-2, 10-4 
loading multiple copies of same libraries, 

9-5 
mapping CSR page to processor address 

space (MULTIBUS), 1-5 
preferred over use of aqdev, 12-2 to 12-3 
reading DDF, 10-2 
steps in acquiring device, B-13 
user process which calls, 11-2 
wiring data sections of driver's interrupt 

routines, B-52 

pbu_$acquire_stream, B-15 
loading interrupt libraries with unresolved 

globals, 8-2, 10-4 

pbu_$advance_ec, B-16 

pbu_$allocate_ec, B-17 

pbu_$allocate_map, B-18 to B-19 
allocating hard-wired addresses 

(MULTIBUS), 6-7 
area allocated by, as argument to 

pbu[2LSmap, 7-4 

pbu_$buffer_t, B-2 

pbu_$bus_t, B-2 

pbu_Scontrol, B-20 to B-21 

pbu_$csryageytr_t, B-2 

pbu_$csryage_t, B-2 

pbu_$ddCcurrent version, B-1 

pbu_$ddCep_name_Ien, B-1 

pbu_$ddf_highest_version, B-1 

pbu_$ddCint_list_entry_t, B-3 

pbu_$ddf_lowest_ version, B-1 

pbu_$ddfJlathname_len, B-1 

pbu_$ddfytr_t, B-3 

pbu_$ddf_t, B-3 
DDF format defined by, 11-1 

pbu_$ddf_version_2, B-1 

pbu_$ddCversion_3, B-1 

pbu_$device_interrupting, B-22 

pbu_$disable_device, 8-3 to 8-4, B-23 

pbu_$dma_channel_t, B-6 

pbu_$dma_direction_t, B-7 

pbu_$dma_opts_t, B-7 

pbu_$dma_start, B-24 to B-26 
on drivers for DN3000, 7-10, 8-7 

pbu_$dma_stop, B-27 to B-28 
on drivers for DN3000, 7-10, 8-7 

pbu_$enable_device, 8-3 to 8-4, B-29 

pbu_$free_map, B-30 

pbu_$get_device_ec, B-7 

pbu_$get_ec, B-31 
using, 6-12 to 6-14 

with global drivers, 9-3 

pbu_$get_ec_keLt, B-7 

pbu_$get_info, B-32 

pbu_$global_units, 9-5 

pbu_$info_t, B-8 

pbu_$info_version, B-1 

pbu_$interrupt_advance, 8-3, B-8 

pbu_$interrupt_enable, 8-3, B-8 

pbu_$interrupt_flags_t, B-8 

pbu_$interruptJeturn_t, B-8 

pbu_$iomap_t, B-8 

pbu_$iova_t, B-8 

pbu_$map, 7-4, B-33 to B-34 
using in interrupt-side routines, 8-7 

pbu_$map_controller, B-35 to B-36 
example of use, 7-19 
using with 16-bit MULTIBUS, 7-17 

pbu_$max_at_unit, B-2 

Index 9 



pbu_$max_unit, B-2 

pbu_$max_ virtual_address, B-2 

pbu_$max_vme_unit, B-2 

pbu_$memJ>tr, B-37 to B-38 

pbu_$min_vme_unit, B-2 

pbu_$no_csr_iova, B-2 

pbu_$opts_t, B-9 

pbu_$pa_list_t, B-9 

pbu_$read_csr, B-39 to B-40 
referencing mapped memory, 7-19 
testing for device presence, 6-4 
timing considerations, D-4 

pbu_$release, 12-5, B-41 to B-42 
calling cleanup routine, 4-4 

pbu_$release_ec, B-43 

pbu_$unit_set_t, B-9 

pbu_$unit_t, B-9 
as input parameter to interupt handler, 9-6 

pbu_$unmap, B-44 to B-45 
using in interrupt-side routines, 8-7 

pbu_$unmap_controller, 7-20, B-46 to B-47 
using with 16-bit MULTIBUS, 7-15 

pbu_$unwire, 7-16, B-48 to B-49 

pbu_$wait, B-50 to B-51 
discussion of use, 6-10 to 6-12 
response to asynchronous faults (table) 

6-12 
use with global drivers, 9-3 

pbu_$wait_index_t, B-9 

pbu_$wire, B-52 to B-53 
example of use, 7-3 
use in interrupt-side routines, 8-7 

pbu_$wire_spec_opt_t, B-9 

pbu_$wire_special, B-54 to B-55 
used if device has scatter-gather hardware, 

7-10, 

pbu_$wired_buffer, B-9 

pbu_$write_csr, B-56 to B-57 
referencing mapped memory, 7-17 
testing for device presence, 6-4 
timing considerations, D-4 

pbu_atbus, B-2 

pbu_atbus_iomap, B-8 

10 Index 

pbu_dma_adr_decr, B-7 
as option to pbu_$dma_start, B-25 

pbu_dma_auto_init, B-7 
as option to pbu_$dma_start, B-25 

pbu_dma_cascade, B-7 
as option to pbu_$dma_start, B-26 

pbu_dma_cascade option, 7-15 

pbu_dma_ext_mem, B-7 
as option to pbu_$dma_start, B-26 

pbu_dma_read, B-7 

pbu_dma_write, B-7 

pbu_maPJ, B-9 

pbu_maPJw, B-9 

pbu_multibus_iomap, B-8 

pbu_multibus_m16, B-2 

pbu_multibus_m20, B-2 

pbu_swap_bytes, B-9 

pbu_swap_off, B-9 

pbu_swap_words, B-9 

pbu_ vmebus, B-2 

pbu2_$ calls, 7-1 

pbu2_$allocate_map, B-58 to B-59 
area allocated by, as input to 

pbu[2L$map, 7-4 
example of use, 7-3 

pbu2_$dma_start, B-60 to B-62 
used on systems with I/O map, 7-10 

on DN4000 with pbu2_$map and 
pbu2_$unmap, 8-7 

pbu2_$dma_stop, B-63 to B-64 
used on systems with I/O map, 7-8, 7-10 

on DN4000 with pbu2_$map and 
pbu2_$unmap, 8-7 

pbu2_$free_map, B-65 

pbu2_$iova_t, B-8 

pbu2_$map, 7-4, 8-7, B-66 to B-67, D-4 

pbu2_$map_controller, 7-17, 7-19, B-68 to 
B-69 
with PC AT compatible bus, 3-5 

pbu2_$unmap, 8-7, B-70 to B-71, D-4 

pbu2_$unmap_controller, 7-17, 7-20, B-72 to 
B-73 
PC AT compatible bus, 3-5 

pbu2_$unwire, B-74 to B-75 



timing considerations, D-4 
to unwire buffers wired by pbu[2]wire or 

pbu_$wire_special, 7-16 

pbu2_$wire, B-76 to B-77 
discussion of wiring I/O buffers, 7-3 
timing considerations, D-4 
used by nonbus-master devices, 7-10 
unwire I/O buffers with pbu [2] $unwire, 

7-16 -

PC AT compatible bus, 3-1 to 3-11 
address space, 3-2 to 3-6 
address space assignments, B-S4 to B-SS 
bus mastership, 3-10 
bus time-out, 3-8 
byte swapping, 3-9 
Control and Status Register (CSR) , 3-2 to 

3-S 
CSR page iova, A-6 
converting addresses, A-ll to A-12 
crddf command, 3-11 
cvt_at command, 3-S 
DDF,3-11 
DMA 

channel, 3-11 
devices, CSR mapping scheme, 3-4 
lines, 3-8 to 3-9 
transfers, 7-2 to 7-1S 

allocating bus address space, 7-2 
to 7-3 

deallocating the I/O map, 7-1S 
dynamic resource allocation, 7-6 
preallocating I/O resources, 7-S 
starting/stopping, 7-8 to 7-1S 
unwiring the I/O buffer, 7-16 
wiring I/O buffers, 7-3 to 7-4 
without I/O map, 7-9 to 7-13 

Domain system-supplied devices, 3-3 
floating IRQ and DMA lines, 3-8 
I/O 

address space, 3-2 to 3-S 
allocation, 3-3 

map, 7-2 to 7-7 
interrupt request lines (IRQ), 3-8 
mapping CSRs, 3-2 to 3-S 
mapping I/O buffer, 7-2 to 7-7 
memory-mapped 

controller, 3-S to 3-6 
I/O, 3-2 to 3-S, 3-10, 7-2 to 7-9 

mapping/unmapping controller 
memory, 7-17 to 7-20 

transfers, referencing controller mem
ory, 7-14 to 7-16 

memory space, 3-S to 3-6 
allocation, 3-6 

using GPIO calls on PC AT compatible bus 
pbu_Sdisable_device, 3-8 
pbu_Sdma_start, B-24 to B-26 
pbu_Sdma_stop, B-27 to B-28 
pbu_Senable_device, 3-8 

. pbu_Swire_special, B-S4 to B-SS 
pbu2_Sdma_start, B-60 to B-62 
pbu2_Sdma_stop, B-63 to B-64 
pbu2_$map, B-66 to B-67 
pbu2_$map_controller, 3-S 
pbu2_$unmap_controller, 3-S 

programmed I/O, 3-10, 7-21 
testing for controller presence, 3-8 
testing for device presence, 6-4 
unit numbers, 3-6, 3-11, A-8 

performance information, D-1 to D-S 
DMA bandwidth, D-1 
interrupt processing overhead, D-2 
timing information, D-4 to D-S 
to copy or to wire, D-3 to D-4 

performing cleanup functions, 6-14 to 6-1S 

Peripheral Bus Unit, See PBU 

peripheral interrupt controller (PIC), definition, 
GL-S 

pfm_$c1eanup, 7-16 

PGM calls, 8-2 

phase II shell, 9-S, 10-6 

PIC (Peripheral Interrupt Controller), definition, 
GL-S 

preallocating I/O resources, 7-S 

processing device interrupts, 8-4 to 8-S 

processor memory, definition, GL-S 

programmed 1/0 
definition, GL-S 
discussion of, 7-21 
MULTIBUS, 1-S 
PC AT compatible bus, 3-10 to 3-11 
VMEbus, 2-3 

programming in C, C-3 to C-4 

programming information, C-1 to C-7 
CSR page, C-1 to C-3 

property system -on command, 10-6 

public insert file, S-6 

Index 11 



Q 
quit fault 

response to by pbu_$wait, 6-12, B-51 
terminating wait state, 6-10 

R 

read routine 
C example, hm_$read, E-13 to E-14 
Pascal example, hm_$read, F-12 

referencing controller memory, 7-18 

release device, A-13 

releasing 
device, 12-5 

device acquisition program, 12-5 
I/O resources 

abnormal, 7-16 to 7-21 
normal, 7-15 to 7-16 

rldev command, A-13 
error messages, A-13 

routines 
GPIO, B-11 to B-77 
driver, internal, 5-6 

rws_$alloc_heapyool, 9-4 

rws_$allocJwyool, 9-4 

rws_$globalyool, 9-4 

rws_$stdyool, 9-4 

s 
sample drivers 

C, E-1 to E-21 
online directory, 4-3 
Pascal, F-l to F-18 

set (Pascal), C-l, C-3 

scatter-gather 
definition, GL-5 
operations, 7-6 to 7-9 
VMEbus, 2-4 

serial priority resolution, definition, GL-5 

serial priority resolution (MUL TIBUS) , 1-4 

setting up the I/O map, 7-4 to 7-5 

shared controller, B-37 to B-38 

12 Index 

shared driver, 9-1 to 9-6, B-16, B-43 
cleanup, 9-4 
controlling multiple processes, 9-2 to 9-4 
DDF, 9-1 
debugging, 10-6 
eventcount, 9-3 to 9-4 
fault handling, 9-4 to 9-5 
functions, 9-2 to 9-4 
global libraries, 9-4 
global memory, 9-1, 9-4 
initialization, 9-4 
interrupt routine, 9-6 
loading, 9-5 
MUTEX lock, 9-3 
mutual exclusion, 9-3 to 9-4 
online example directory, 4-5, 9-1 
synchronization, 9-3 to 9-4 
unloading, 9-5 

shell script 
binding, 10-2 
building a DDF, 11-3 to 11-4 

SIO see Start I/O Routine 

Start I/O routine (SIO) , 8-7 
C example, bm_$sio, E-19 to E-20 
Pascal example, bm_$sio, F-17 to F-18 

starting an I/O operation, 8-7 
See also Start I/O Routine 

starting/stopping DMA, PC AT compatible bus, 
7-8 to 7-15 

status/ID byte (VMEbus), 2-3 

status_$t, B-10 

storage, internal, 6-4 

Storage Module Device (SMD) , 1-8 

synchronization, 9-3 to 9-4 

synchronous fault, definition, GL-5 

sys option, 8-2 

system globals, 8-2, 10-4 to 10-6 

System Interrupt Handler 
advancing device's eventcount, 6-10 
called by interrupt routines, 4-4 
checked by pbu_$wait, B-50 
definition, GL-5 
discussion of use in interrupt handling, 4-8 
functions, 8-5 
processing interrupts, 8-5 

system insert files, 5-2 



T 

tb command, 8-6 

testing for controller presence, PC AT compat
ible bus, 3-8 

testing for device presence, 6-4 to 6-6 

threecom_example, 4-5 
building a DDF, 11-4 to 11-5 
CSR page, C-6 
CSR page (C), C-6 
CSR page (Pascal), C-6 
memory-mapped I/O, 7-17 

timing, D-5 
DN3000, D-5 
DN4000, D-5 
DN560, D-5 
DN5xx-T, D-5 
DN660, D-5 
DSP160, D-5 
DSP80, D-5 

timing information, D-4 to D-5 

touchy age program, 6-8 

traceback command, 8-6 

transferring data, 7-1 to 7-21 

u 
uid $t, B-l0 

unit number, 11-2 
MULTIBUS, A-8 
PC AT compatible bus, 3-6, 3-11, A-8 
VMEbus, 2-3, A-8 

univytr, B-10, C-4 

universal pointer type (Pascal), C-4 

unloading 
global driver, 9-5 
shared driver, 9-5 

unloading the driver, private driver, 12-5 

unmapping controller memory, 7-20 to 7-21 

unwire_buffer routine, C version, E-8 

unwiring, 7-16 

unwiring the I/O buffer, 7-16 

user fault PC, 8-6 

user-process adress space, GL-6 

using I/O map for DMA transfers, 7-2 to 7-7 

v 
variant record (Pascal), C-1 

VERSATEC printer, 1-8 

VFMT calls, 8-2 

virtual address, GL-6 

virtual address space, GL-6 

VMEbus, 2-1 to 2-4 
address layout (DN5xx-T), 2-2 
address modifiers, 2-2 to 2-3 
address space allocation, 2-2 
address space assignments, B-55 
bus grant level, 2-2 
CSR page, A-6 
CSR page iova, A-6 
crddf command, 2-4 
DDF, 2-4, 11-5 to 11-10 
DMA transfer 

releasing 1/0 resources (abnormal), 
7-16 to 7-21 

releasing I/O resources (normal) 
de allocating the I/O map, 7-15 
unwiring the I/O buffer, 7-16 

DMA transfers, 2-4, 7-2 to 7-17 
allocating bus address space, 7-2 to 

7-3 
dynamic resource allocation, 7-6 
preallocating I/O resources, 7-5 
scatter-gather operations, 7-6 to 7-9 
wiring I/O buffers, 7-3 to 7-4 

DMA transfers without I/O map, 7-9 to 
7-15 

GPIO calls, 2-3 to 2-4 
I/O map, 7-2 to 7-7 
interrupt request line, 2-3 
mapping I/O buffer, 7-2 to 7-7 
memory mapped I/O, 2-3 
memory-mapped I/O, 7-17 to 7-21 

mapping, controller memory, 7-19 to 
7-20 

unmapping controller memory, 7-20 to 
7-21 

memory-mapped transfers, referencing con-
troller memory, 7-18 

pbu_$wire_special, 2-4, B-54 to B-55 
programmed I/O, 2-3, 7-21 
scatter-gather, 2-4 
status/ID byte, 2-3 
unit number, 2-3, A-8 
wiring, 2-4 

Index 13 



VOLATILE attribute, C-7 

w 
wait routine 

C example, bm_$wait, E-14 to E-16 
Pascal example, bm_$wait, F-13 to F-14 

waiting for device interrupts, 6-10 to 6-14 

wired memory, definition, GL-6 

wiring 
I/O buffer, 7-3 to 7-4 
interrupt data, 12-1 
interrupt routine, 12-1 

14 Index 

interrupt side, 7-4 
interrupt stack, 12-1 
interupt routine, 8-1 
maximum number of pages, 7-4 

wiring a buffer, definition, GL-6 

wiring I/O buffers, 7-3 to 7-4, D-3 to D-4 

write routine 
C example, bm_$write, E-16 to E-17 
Pascal example,bm_$write, F-15 

x 
X.25, 1-8 



Reader's Response 

Please take a few minutes to send us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: Writing Device Drivers with GPIO Calls 
Order No.: 000959-AOO 
Date of Publication: July 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language _________ _ 
__ System maintenance person __ Manager/Professional 
__ System Administrator Technical Professional 
__ Student Programmer Novice 

Other 

How often do you use the Domain system? _______________________ _ 

What parts of the manual are especially useful for the job you are doing? ___________ _ 

What additional information would you like the manual to include? _____________ _ 

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure, 
or table number wherever possible. Specify additional index entries.} ____________ _ 

Your Name Date 

Organization 

Street Address 

City State Zip 

No postage necessary if mailed in the U.S. 



o 
S 
o ., 
0' 
a: 
~ 
o 
:J 
(Q 

C. 
~ -ID 
C. 

:J 
ID 

I 
I 
I 
I 
I 

'OLD I . _______________________________________________________________________________________ J 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO, 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

I NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

I 
I 

---------------------------------------------------------------------------------------, 
:::>LD 



Reader's Response 

Please take a few minutes to send us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: Writing Device Drivers with GPIO Calls 
Order No.: 000959-AOO 
Date of Publication: July 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language _________ _ 

__ System maintenance person __ Manager/Professional 
__ System Administrator Technical Professional 
__ Student Programmer Novice 

Other 

How often do you use the Domain system? ________________________ _ 

What parts of the manual are especially useful for the job you are doing? ___________ _ 

What additional information would you like the manual to include? ______________ _ 

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure, 
or table number wherever possible. Specify additional index entries.) _____________ _ 

Your Name Date 

Organization 

Street Address 

City State Zip 

No postage necessary if mailed in the U.S. 



OLD 

" II 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

o 
5-
o ... 
0' 
c:: 
!!. 
o 
:J 
(Q 

a. 
~ 
iii 
a. 

:J 
til 

--------------------------------------------------------------------------------------, 
)LD 



Reader's Response 

Please take a few minutes to send us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: Writing Device Drivers with GPIO Calls 
Order No.: 000959-AOO 
Date of Publication: July 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language _________ _ 
__ System maintenance person __ Manager/Professional 
__ System Administrator Technical Professional 
__ Student Programmer Novice 

Other 

How often do you use the Domain system? _______________________ _ 

What parts of the manual are especially useful for the job you are doing? ___________ _ 

What additional information would you like the manual to include? _____________ _ 

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure, 
or table number wherever possible. Specify additional index entries.) ____________ _ 

Your Name Date 

Organization 

Street Address 

City State Zip 

No postage necessary if mailed in the U.S. 



OLD 

o 
~ 
o .., 
0' 
c: 
!!. 
o 
:J 
UJ 

a. 
2 -lD 
a. 

:J 
lD 

---------------------------------------------------------------------------------------) 

IIII 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

I 
I 

--------------------------------------------------------------------------------------, 
)LD 



, 

IIIII~IIIII.I 
+[100'359 - RCiD+ 


