
AEGIS OUTLINE

PHILOSOPHY of AEGIS

Integrated System
Object orientation
Managers as Model for Data Abstraction

OVERVIEW of AEGIS CONCEPTS

Processes
Object-Based File System
Naming ,
Mapping I Address Space Management
Memory Management
Networking
Protection

OBJECTS

. Storage and Disk Structures
pvol, lvol, bat, vtoc
important bootstrapping information

in the Iv label
UIDs, Attributes, Segmentation, Locating
Locking (local)

NAMING

. -_ .. _ .•.. --_ ... _.

Directories
I, II, 'Node_Data, WD, ND
Links (hard and soft) .

<J

iC)

'0/--' .. ~ . \

ACCESSING OBJECTS

Address Spaces (asids, global)
Mapping Objects· (mst)
Active Objects (ast)
PaginglPurifier

NETWORK FILE SYSTEM

Remote vs. Local
Paging Server, Remote File Server
Asknode

INTERPROCESS COMMUNICATION

The Ring
Packets and Sockets
Major Clients of Sockets
MBX

SECURITY

Acls, Registry, Protected Subsystems
Login, SIDs

PROCESS MANAGEMENT (Supervisor Mode)

Process Switching (dispatching)
Interrupt Handling
Processor Scheduling
Synchronization (event counts)
Mutual Exclusion
Special CPU B Handling

-2-

o

CJ

Process Creation and Deletion
Clocks and Time-Driven Events

PROCESS MANAGEMENT (User Mode)

Program Management
Parsing
Program Levels, Procceses and Fork
Mapped Segment Manager (ms)
Storage Allocator (rws)
The Loader, KGT
Libraries; Global and Private

PROCESS MANAGEMENT
(Error and Fault Handling)

Kinds of Faults
Supervisor Mode Fault Handling/Generation .
User Mode Fault Generation
Fault Handlers
Dynamic Cleanup Handlers
Static Cleanup .Handlers
Mark/Release Handlers

STREAMS

The Stream Table
Opening Streams
The Generic Switch Call
Some Special Switch Calls
The D_File Manager
Other Managers

-3-

FROM POWER-UP TO LOGIN

o Physical/Virtual Address Space Layout

MD

o

o

SIO vs. Display KBD
Service / N annal
Boot Device Selection
Commands : Internal vs. External

_ (LD, LO, EX)

SYSBOOT / NETBOOT

Aegis initialization
required directories and files
creating the first level 2 process

THE BOOT SHELL

ENV / Libraries
the basic idea (SH, DM, SPM)
firmware (PEB and COLOR)
global libraries
startup-files (where and why)

. DISKLESS NODES

NETWORK SERVERS

SPM / CRP
SIOLOGIN
SF HELPER
ALARM SERVER

-4-

--... _._------_. -~

u

()

o

-~ .. ~.--.----

THE APPLICATION LEVEL

PST

GPIO

NETSTAT
HPC
NETLOG
DB
FST
TB
COMPILER/BINDER.

MULTIBUS Limits
Device Driver Considerations

-5-

o

o

o

Philosophy & Overview
of AEGIS

Philosphy: 3 perspectives
market
hardware technology
system architecture technology

Overview: textbook OS taxonomy
processor management
address space management
memory management
file system
network
110 device management-

o

------------_ .. _--_ _ ... _-_ .. .

Apollo Computer

The premier supplier of workstations

for the technical professional

Maximize the productivity of the technical
professional via:

o 1. ability to run large, mainframe class application
programs tailored to his profession

2. high user <-> computer bandwidth

3. network for cooperation and sharing with others

o -2-

,/

0
-

o

o

Implications:

1. a. Fast, 32 bit CPU
b. Virtual memory

2. a. Bit-mapped display
b. Window-oriented user environment

3. a. Distributed system
b. Net-wide access to files

AEGIS is the operating system that
resulted to support these objectives.

-3-

o

o

o

-_. --.---- ... - -

Hardware Technology

1. VLSI CPU's
2. 64k RAM
3. Winchester disks

Pioneered by the Alto at Xerox PARe, started
to see other systems:

Nu Machine (MIT)
SUN Machine (Stanford)

This new, cheaper computing power was changing
the focus on how computing was done

-4-

o

o

o

TIME

SHARING

CAPABILITY

COMPUTING

NETWORKS

OF

PEOPLE

GRAPHICS

DOMAIN

o

o

o

System Architecture Technology

Operating systems, 8
•. {)~\\ \ Q,Jeska.

Multlcs (Min 1)(C~',e StU{)\rf

original implementation
restructuring studies

Hydra, Medusa (eMU)
System/3S (IBM)

Distributed systems
Pilot (Xerox PARe)
WFS (Xerox PARe)

Languages
Mesa (Xerox PARC)
CLU (MIT)
Alphard (eMU)
Smalltalk (Xerox PARe)
Ada (000)

-6-

- ------------ -----------------------

Key attributes of AEGIS

AEGIS is a

- distributed
- integrated
- local area network

- object-oriented
- personal workstation

o operating system.

o
-7-

o

o

o

Distributed Systems

. Advantages:
robustness, reliability

when one node fails, system still runs
incremental expansion of computing power

just keep on adding nodes
potential for higher periormance

run computations in parallel

Problems:
partial failures

if you need the node that failed ...
"richer" set of errors

not just "up" or "down"
replication needed for reliability

hard to do automatically
parallelism needs to be explicitly programmed

no automatic decomposition today
sharing & cooperation

can be hard to get back to timesharing level

-8-

Where does Aegis fit?

o

Lots of different kinds of distributed systems.

-- VAXcluster: a distributed multi-computer
- meant to act exactly like one big VAX

- good sharing & cooperation
- all the problems of timesharing

- ARPAnet: communicating, autonomous hosts
- seperately owned and administered

- limited sharing & cooperation o - remote login, file transfer, mail

Aegis falls somewhere in between.

o
-9-

.. - - ~-

Q

o

o

----------~-... __ .. _ .• ----_ •.. __ -

Structural Implications

- distributed systems are naturally structured
differently. than centralized ones

- Aegis was built from the ground up to be
distributed

"Local access is the special case" - PHL·
u ••. but it still has to be fast" - PJL

- 10-

o

o

o

-- -----_ ... _ .. -_ _ .. -.... _--- ---------------

Contrast to Post-Hoc
Distributed Systems

Application.

Remote ~,
OS

~, Local
OS

A complete remote OS is layered on top of a
complete local OS; applications determine which is
being requested at each use.

- 11 -

o

o

Aegis Structure I

In Aegis, each component has a local and remote
part within it.

Application

Remote MBX
Local MBX

Remote Name
Local Name

Remote File
Local File

Remote Paging
Local Paging

Disk Net

- 12-

o

o

o

To Datagram
IPC

Rle System Structure

User

Supervisor

Pageable

Wired,
Location
Dependent

Datagram
IPC

To Net Hardware

Legend:

~ocal ~ss_.

Cached oss B""'! ~i
Location Independent t=1

OSSc::=::J

. RemoteossK<,<.j

Single Level Store It f i I
. Lock Managerb<.~;,;:1

Name serverC]

o

o

o

Aegis Structure II:
Net-Wide Caching

Another example of "ground up" distribution: .

Network-wide caching of objects would probably
not have been feasible without having designed it
in from the start.

The file locking' operations were specifically
designed to allow cache control in addition to
concurrency control.

- 14-

-----.--.- ... --... -----~----------------

Personal Workstation Implications

o
With a network of .personal workstations:

- (potentially) can share what's important
- information, programs
- expensive peripherals

- don't share what's not important
- CPU cycles: they're cheap

- you can decide how to use your node
- autonomy

o Potential advantages:

- cooperation & sharing
- use network

- dedicated, controllable performance
- you allocate your node

- high user <-> computer bandwidth
- CPU is close to the display
- highly interactive user environment

.... simpler OS if only run one user

o - 15 -

o
Simpler OS

Protection
- all computation on a node is on behalf

of a single person
- don't worry about maliciousness
- just worry about accidents

Fairness of resource allocation
- just do what the owner says

Accounting o -Is in terms of the whole node

o

Structure
- can put software in user space

- easier to modify, debug, replace

Openness
- more facilities can be made accessible

if needn't worry about above items

- 16-

o

o

o

- ----------- ----------------

Problems with Personal
Workstation Model

How to manage tension between autonomy and
cooperation.

- autonomy means independence
- cooperation means dependence

Solution: make cooperation voluntary; but how?
- need mechanisms
- usually, cooperation & autonomy go along

machine boundaries
- on same machine: cooperate
- on different machine: autonomy

- not good enough for personal workstations

- 17-

o

o

Problems II

How to provide traditional system services:
- identifying users to the system
- printing
- backup
- mail
- storage of community information

- at project, department, organization and
corporate levels

- data integrity
- data privacy
- communication gateways
- background computation (batch)

Partial solution: use "servers" to provide them
- dedicated nodes running trusted applications

- 18 -

o

o

o

Cooperation vs. Autonomy
Why are both needed? .

Cooperation:
- need to cooperate with colleagues to get

your job done
- personal workstation didn't change that!

Autonomy:
- need to control resources of own node

- in order to get controllable response·
- need to control sharing

- to protect privacy of data
- need to manage own data files

.- to guarantee data integrity
- need to operate when network is down

- need enough independence to do so

- 19 -

o

o

o

Server Issues

Protection:
- all programs on same server node trust each

other

Fairness of resource allocation:
- they also trust each other to be reasonable

in their resource use

Accounting:
- is up to each server to do in an application

specific way

- 20-

o

o

o

Local" Area Network Implications

Local area networks are sufficiently different from
other kinds of networks that different techniques
need to be used to take advantage of them.

Bandwidth:
- typical networks are orders of magnitude

slower than the memory bus
- LAN's are faster: ours has 2/3 the bandwidth

of the memory bus of a DN400.

Error rates:

so:

- typical network error rates: 1 0 * * -4 or so.
- LAN error rates much lower

- minimize CPU time to "get on and off the
wire"

don't spend it trying to optimally utilize
network bandwidth

- don't worry as much about errors
use simple retransmission techniques

- 21 -

o

o

o

Problem Oriented Protocols

Don't use the traditional OSI "layered" architecture

- make a very cheap datagram service.

- don't use virtual circuits, sessions,
presentation layer.

- take advantage of operation semantics to
cheaply do what those layers normally do.

- use "end-to-end" argument. ovoid (;ttK{\Owl.eJse,Vlel)ts.

Examples:
- idempotent operations
- transaction IDs
- "natural" state

- 22-

.. _------ ._ .. -. __ ._. __ .. _.---_.- .. _--

o
p-o-p Examples

Idempotent operations
- has same effect if done twice in a row as if

done once.
- example: read page N of a file

- use simple two message protocol
- RR: request/response
- retransmit on time out
- duplicate requests no problem

- saves an acknowledge message (RRA)

o Transaction IDs

o

- eliminate duplicate replies
- tag each request with a unique number
- discard replies with duplicate TIDs

Natural state
- for non-idempotent operations
- save request TID in a database that was

needed anyway
- discard requests with duplicate TIDs; resend

old response
- example: lock database

- 23-

o

o

------------- --------_ .. __ .. ---_ .. -._ __ ._--_.

Integrated· Distributed System

System provided, user selectable mechanisms
that:

- Preserve
- Permit

autonomy.
cooperation & sharing (when
desired).

Provide the user with a unified system:
- name files, not hosts
- system wide user identification

- 24-

o

o

o

Integrated Implications

Network wide file system:
- to make sharing easy .

Network transparency:
- location transparency:

- all resources accessed in same way,
regardless of their location

- easier software development
- supports incremental changes to system
- easier to realize increased reliability
- simpler user model'

- name transparency:
- name doesn't imply location
- allows relocation, substitution

Control mechanisms:
- access control
- network wide user identification

- 25 -

o

o

o

Integrated Implications II

Reliability criterion:
- must always be able to access information on

own node, even if network down
- if two nodes are up and want to cooperate,

then no single failure will stop them
- so, third parties must be replicated

Functional integration: .
-each node has a complete set of OS facilities

- so can run when network down
- a/so for performance reasons .

- 26-

._-_. __ .-... --_ .. _ .. ------

o

o

o

._.-.. _ __ ._ ... --------

CPU
MEM t----{

NET

CPU
MEM
NET

CPU
MEM
NET

CPU
MEM t----t

NET

CPU

MEM

NET

FULL USER

WORKSTATION

COMPUTATION or

110 SERVER

FILE

SERVER

DISKLESS

USER

NODE

MODULAR WORKSTATION DESIGN

o

o

o

-_ .. __ .- _._-- --------... --~-... -----...

Object Orientation

Object:
- user. level: soine sealed data plus operations
- as level: a storage container for uninter-

preted data, plus a type tag that
- identifies the object's manager
- tells how to interpret the data.

Managers:
- each module is manager of some object.
- object is some meaningful (OS) e.ntity

- disk block, process, file, directory, etc.
- manager handles all details of "its" objects
- interface to manager gives all permissable

operations; completely defines object to
clients
-- clients only manipulate object through

the interface
- manage_r is solely responsible for the

integrity of its objects
- knowledge of representation (data

structures) confined to manager
- managers correctness depends. on/yon

itself, managers of components

- 27-

Objects II

o Why?

o

o

- understandable semantics for modules;
a principle for OS decomposition into
modules

- managers are orthogonal and independent
- can isolate bugs to one manager
- can find manager to change to make an

enhancement

- 28-

o

0-

o

Protection

Need access control to allow you to choose with
whom to share and cooperate.

Can't protect data on a node from the node owner:
- has physical access

so:
- allow each node to protect own -data

against access from the network
- don't try to protect data from deliberate

efforts of node owner
- try to make accidents improbable

- 29 -

.. _----_.-_ ... _--

o

o

o

Aegis Interface

Single Level Store

Object Storage System

Low Level IPC

Naming Server

Processes

ill d ,v A 6 [((S
.-: ... -... -.-.. -~--

MST

FILE

MSG

NAME

PROC2, EC2
--------------------~~~~~~---------

Faults FAULT, FIM .~ ... 'f"

Display

1/0

. COLOR, 'SMD, SMDU

MT, LPR, PBU"
DISK, VOLX,TERM

Protection ACL
r-S~, k.' ",Ii-'"

Jj SIlQ(.<;.. ,\,;.(.1 "'\\,,~ .~\t c, \ 'D tv

Info AS, BAT, ASKNODE,
PROC1, VTOC, CAL, NETWORK,

':;~fOS, PEB, TPAD, NETLOG,
GET _BUILD _ TIME, OSINFO

Mise TIME, UID, VFMT
UID LIST

o

o

o

----_.-_ ... _-_ _ _ ... -

Processes

- independent, asynchronously executing
- 33 total g pro(,,z5ses r<se.rveJ for O.S.

- one is the Display Manager ("We,oteSOJ

- Shell windows are processes, edit pad
windows are not

- Serarate address space per process

* for protection
* because the address space is too

small (less than 10 MB min.)

- Address Space

* 256 (or 16) Megabyte
* objects mapped into it

. *. R/W with ordinary instructions

- Object Type,s

* programs, libraries,. data

- Aegis is in ~ach address space .

o

o

o

Processes 2

- Synchronization and Communication

* Shared Objects (communication)

same object in AS of > 1 proc.
both observe changes
restricted to 1 machine

* Eventcounts (synchronization)

processes can wait on an EC
processes can "advance" EC
to wake up waiters
also restricted to 1 machine

* IPC (MBX)

both comm. and synch.

sends data, wakes up receiver

network wide!

. local, too; exactly the same

semantics (but more efficient)

o Processes 3

Dispatching Sclted~ (/',) ~

- dynamic (recalculates)

- priority based

- priority is inversely proportional to the
amount of CPU time used

* attempts to give interactivity priority

* paging is currently a problem

o - Priority boost 1-.

o

* delta added to the priority
computed above

* Dispaly Manager gets it 1.

* It is not user settable

Process Layering

PM
PROC2
PROC1

..... _ .. -._---

o
PROC1

- A finite number of them (33
)

- Wired state

- State = registers
PSW
ASID
locks

Runs only in global space

o - Needed to implement Virtual Memory

o

* purifier

* paging server

* file server

•••

(' ,'vll j'" s c>~ t..-uiclve ss Sf a. ct:)

GJ r'-oc~ s s e~ . n e. eJuJ. -tv ~'t\~rlt""'-th+- I<-e f V1 c, I (u.s~ s ... ~ cial-a. b~~~

r; \,t\" IA S u)

._--- -----.----------.. ------.-.-.... -.-.----- -.---~

C)

o

o

PROC2

-. Synchronized with EC2

- Runs in its own address space

. - Can use Virtual Memory

- Potentially unwired state

* eventually bind and unbind

. * copies state in VM

ML
o

- Mutex Lock

- Uses EC1

- Deadlock detection

o

o

-- .-. - _.- - ._.- . --- -_ .. -

o 1 6 . SUPERVISOR (II () ') e l J ; _,1-0 .
. 1; I i\JctrCS~

G\-G~J~"" GLOBAL
-e. \/eJ j C'l'Its ., ~

sr"'~"'"

256

4
SUPERVISOR PRIVATE XI/VI, ~k

1 \
\
\

\

\
"

USER PRIVATE

o ADDRESS SPACE

2 \

5

)

2

t; / USER GLOBAL
~ -----f'. ~O~)f\\..

L1 o o

o

o

o

o

16 ~------------------, 256
SUPERVISOR GLOBAL

/ and /COM directories

14 SUPERVISOR PRIVATE
, l~\V)

WD and ND directories huo;~o 1: ere"

USER PRIVATE

ADDRESS SPACE
MAPPED OBJECTS
RWS

SHELL

DM MBX

STACK

GUARD

. STATIC DATA for GLOBAL LIBRARIES

GUARD
2~------------------~

USER GLOBAL
GLOBAL LIBRARIES and DATA

o~----------------~ o

0
• \bkJo"l

~ 0rV\!.Ci" "j
d&~~·~ 5e.e.,

~iJ.,~v ,

VA Range ObJ Start Pathname

8000 FFFF 0 /sys/node_data/global_data
10000·- lFFFF 0 /lib/pmlib
20000 - 37FFF 0 /lib/syslib.460
38000 - 3FFFF 0 /lib/vfmt_streams
40000 - 47FFF 8000 Isys/node_data/global_data
48000 - 67FFF 0 Ilib/streams
68000 7FFFF 0 Ilib/error·
80000' - 9FFFF 0 /lib/swtlib
AOOOO - A7FFF 0 /lib/pbulib
A8000 - AFFFF 10000 Isys/node_data/global_data
BOOOO - BFFFF 0 /lib/rtnlib
COOOO - E7FFF 0 / 1 i b / 9 P l' 1 fb
E8000 - FFFFF O' /lib/elib.

100000 117FFF 0 Ilib/shlib
118000 llFFFF 0 Ilib/auxlib
120000 - 127FFF 18000 /sys/node_data/global_data

0
128000 137FFF 0 /lib/tfp
138000 - 13FFFF 0 Ilib/x251ib
140000 147FFF 20000 /sys/node_data/global_data
148000 - 14FFFF 0 Isys/node data/st~eam $sfebs
800000 - 897FFF 0 -- temporary file -- StztCk..

898000 - 89FFFF 0 /sys/node_ data/dm_mbx
8AOOOO - 8A7FFF 0 /com/sh
8ASOOO 8AFFFF 0 -- temporary file stz:.c.i' __

8BOOOO - 8B7FFF 0 leom/las
BBSOOO - 8DFFFF 98000 -- temporary file 5+o.(,k

BEOOOO - BE7FFF ·0 If/las. big
F788000 - F797FFF 0 If
F798000 - F7A7FFF 0 Ilnode_28f4

2368 KB mapped.

o

.. _---_ .. _._---_._----. __ .- ------------------

o Single Level Store

- Direct access to objects via machine
instructions

- " Map" an object into a portion of a
process' address space

- Only page in the needed pieces

- Similar to Multics, IBM System/38, and
o Xerox Pilot

- Distributed over the whole network

o

o

o

o

OPERATING S.YSTEM MAPPING

GLOBAL

PER
PROCESS

SUPERVISOR

PER
PROCESS

USER

o ---~

. SINGLE NODE
. PROCESS

VIRTUAL ADDRESS·
SPACE

ADDRESS
SPACE

MAPPING

'0 ___ __

NETWORK
GLOBAL
OBJECT SPACE

o

o

o

I I \'::,~' 11 /,/
:? e: ,., I !-! --.,-----

! I ~ s! ~'~! 11/' 'fJ
I I i ;1 ~~ ! ! . ~: .. , I ':I~.
1-~·-------·...1 j' r::c.

l...-,-I I ... i i ___ . ..u~ ?dllif : "',.1
r--t----.;... _-.-;.1-1,-; --.5-t h. I I t V !~ ~. "'. • I

I

I
!
i
i
I

·1.L~--4_--'-_-.--'
I, ',
" " \. I I, '.

11 • ... , I, ...
I, 'j \,
", j ...
• I ...
) ~ \
\ 'I
I I \
'I I '\
I, \ .•.....
\ 1 ...
I I '. ~ I \ ~~
L~ ~ I 1 r,.!

"'J \. I' I
.--_-.J.-_~-

~. ! i
\ __ ... I i t%i-----] r--J

V;1v /1' i i
! I ! I

!VI I ________________ ~ ________ .L___ I

~"n
• t.::-·

r=rlOlt
t. ~ ;;
~

~t~"J

F.

~i
ttW!!~~

1rtiitU..;:;tii

L
G)

eH9.~;!:~

E lJ
~:t'

:;~~
tt =P"!::

.. ~P.-
.,.- "'=<.-

~~ l

o

o

Libraries

- the environment for programs

* all callable entry points not bound
with the program dj.\tt"',all'l. bc~~<\ •

tl~ projlGllM I S (,(AI'). f)c~d 5~,'>\6bll
r-e..fe-ot'\CC ;'S I~

* most of the system services are j., 1~ piC~VU.~

made available through libraries
(nucleus calls are in a library)

- . dynamic linking to libraries

* symbolic references left in program
(the name of the proc/subr/func)

* resolved by the 19ade~ when the
program is invoked

* uses the KGT (known global table)

- loading vs. installing

* programs are loaded _
{5PJO

'.* libraries are installed, entries are
kept in the KGT

__ __________________________ .n ••••• ___ _

----_.- - _. -------

o Global vs. Private Libraries

- Global

- in the Address Space of all processes

- automatic'

- don't need to be loaded when each
process is created

- more efficeint, sharing (hardware)

- installed when the system comes up

o (ENV)

Private

- in the AS of processes that load it

- installed after the system comes up

- not enough global space for all libraries
eah P'0f-U5 r,ltJts ["'LIf? - _

- still sharable, but more costly (bw~><- 6f v;rtu-G-I 5j..Jt ...
fw 0 fVlS7 po:.\ k.r5 to reso!.;e)

- INLIB command

o

C
"--"" ..

)

PM

PGM

PFM

o
KGT

RWS

MS

o

_ __ . ___ - .. - -

Programs

o . - a file system object

- a kind of procedure (or set of ...)

- special convention for invocation

* args are an array of strings

* redirection upon invocation

* not normally in AS, must be
mapped

- resource management unit

o * . all resources a program acquires

o

are released when program exits

open streams are closed
mapped objects are unmapped
scratch space is released
database areas are cleaned up

* extensible

mark/release handlers
new managers install their own

... ,.,----_." -...... "" - .. ,-_., _-" .. , .. ------_ _ ... , •.. -. __ .. _----

-0

o

o

Memory Management

Demand Paged Virtual Memory
- LRU replacement
_ purifier (write-behind) ~vtv'j 10 ~eGC()&\~) ~at} 'lh\'(;~jh Yt; c~ {~ef~j

ASTE's
- hold disk addresses for "active" objects
- also object attributes

~-~

- ~ASTE's per megabyte _ ~ k h -, ~; d;s ",i->o,k odd<.
" d eM Jot ~ fl\.{" + -6 b k -e vdr. ,e ~ (c O@j e.s 6+ V! 0 C ~y t 0 :J I.! c- k(

" Sequential access'
_ touch~ead (rto.d ClII.La61)

- allocate tor disk locality

Random access to ~very large files
- large: more than@ meg/meg of main memory
- causes 2 disk 1/0 per page

~--

- one for file map
- one for the page

b~~'t;;ttP ~ 3 t)
e-d.. r-£J q :: 2

~ I to l.ll'\dDC ~,' ted 6()h~ 1-0 /{\ V6 1

~,,1I0 {fhoJ le-J-s ~O\(set fle
5AJ G+ep - 30-

... _ _._-_ .. _ .. __ ... _ ... _--------------_ ... __ .-._ ... --

File System Management

File system =

Object storage system-

+ Naming server

+ Streams

o

o - 31 -

.---.. ---.-----~---~

o

o

o

Streams

Traditional device independent sequential I/O, plus
-seek
- record structure
- locate mode

Operations:
- Open, Close, Read, Write

- a.k.a. get_rec, put_rec
- "handle" is a stream 10 (small integer) .

Implementation:
- "switch"

- uses type UIO
- calls type dependent manager

- Files:
- map into the address space (window)
- slide the window over file
- access via "load/store"

j'\ll6vt ,~olk - copies data into caller's buffer
- no nucleus intervention

-!oueh ahead automatically set depc;vlcl.h.~ O'fl. access
re.o..c,l

- 32-

-"'-"'--" ._ .. _ ... __ -_ ... ".,,-"-_.-

o

------- _ ... -

Object Storage System ~. L!SS

- network transparent data access

- access files anywhere in the network
. as if they were local

- port Fortran, C, Pascal programs
without change

- preserve investment

- only a 90% solution

o * * * BUT a very important one ! * * *

Totally distributed systems are not built in a
day!

- object orientation

- all operations are operations on some
object

- a 'natural' way to distribute

o

o

o

o

Software Environment

Aegis Operating System

-Objects

* named byUID

- Object attributes

* UID of ACL

* UID of type descriptor

* physical storage descriptor

* misc. (DTM,DTU, etc.)

------_._-_._-_._. __ .. -_.- ._-----

o Supported Object Types

- alphanumerictext

- record structured data

- IPC " mailboxes"

- IPC " pipes"

- executable procedure

- directories

- ACLs

o - serial I/O ports

- magnetic tape drives

- display bit maps

•••

t r-e 0, k,; CIW /\ 6 b~ e (/~ :~ pe-.s .r l'V\ c(" II c\je-r -5 QA-0 S fZ q ~

t xJeV\ 6 <~ b k SfreCL rV\ S.

o

Q

o

o

Internal/External Names

- External Name

* user visible, human usable

* text string

- Internal name

* computer convenient "handle"
. for an object

- Choices for form of internal name

* UIO

* "structured name" Y)4~ ~·he If ·Jelis jG~
W l\tre.- ~ l ~ S'. sl-ured .

* just like a bit string that uniquely
identifies an object

* but doesn't tell how to find it
* like a Social Security Number

o

o

----------._.- -----------------

- Structured name

* multiple components

* gives location of, or route to,
object

* mayor may not be reused

* mayor may not be one-to-one
with object

o

o

o

...
I

4 WORDS

UIDs

*. 64 BIT UNIQUE NAME

* NEVER (EVER) REUSED

* CONCRETE REPRESENTATION

..... --- 16 BITS --- ~

CREATION TIME

AVAILABLE

NODE ID

* OBJECTS ARE ACCESSED BY
MAPPING INTO THE VIRTUAL
MEMORY

* OBJECT ACCESS IS NETWORK
TRANSPARENT

C ey- .f'a~ U\ l D 5 w~(II A\?,,('lIJ-t t rt: ~,f-&l : I' (4"'\ ne-A L,u D ') II

u s-e.d ·~b r-"\t'S ~ 0~ rh\; A CC'M P ~ e., 13 of tl~ 0 IS,

Jt~ ~re 11) .0 ~ I-Ct IY\ ,~d 'I ,,\ b th.L ex,of- p j'""Cnt- ~ •

. _--_ ... _----- _ .. _._ .. -

o WHY UIDs?

- location independence

- absolute names with respect to
processes, nodes

- simple nucleus interface

- uniform naming for all objects, by most
o levels

- composite objects

- typed objects

o

... ,._---,,-----_._---.,._-_ .. ,. __ ._-,,-------_.,,_ ... ,,',.--, --

o

o

o

--------------------- ----------:------------

. Locating Objects·

- Make the task easier by restricting
locations

* d 't I t b· t Ctv"" 'J IlU,"-t. on e 0 ~ec s move ~GV(Lb~ vol~,s

* require objects to be on the same
volume as the directory in which it
is cataloged

* establish. equivalence classes
among volumes

* no restrictions; broadcast c~;~r,:~~"'rb:I:~

- -Requirements

* removable volumes

* internet environment compatibility

n, \." I 0 C ['{ H. c u.l L -j'l t-

-_ .. _---"._._--_ ... ~~----------------

o - Use" hints"

o

o

. * from node 10 in UIO
. * from" hint manager": takes hints

from anywhere: directory manager,
. user ...

- Improve algorithm over time

1. look local, then the node on which
the object was created.

2. local; hint manager; then the node
of creation

3. modify 2. to try' remote first if the
node 10 in the UIO is remote

C) Concurrency Control
(a.k.a. the stale cache problem)

lQ., . \ -s .. ~ l~Je, s~

- SLS makes no consistency guarantee
. (property: purely local use is OK)

- Locking and timestamp techniques

* lock before use; unlock after
* timestamp detects stale data

'7 k1fw.. Iv-

- Lock (an object) /~1 8>,

* send message to home node
o (acts as a coordinator)

* get back version number
(timestamp)

* discard stale pages
. (ones with older timestamps)

- Unlock

* send modified pages back to
home node

* send message to release lock

· _._----_ .. _. __ - ._--- - -

o - Page In

o

o

* returns page's. version number
* check version number against

current one
* return error if no match

- Page Out

* bumps version number, returns it
* checks, rejects if not owner

requesting'

- Client Protocols

* Possible because cache flushing
operations are exported

o

o

o

Uniform Name Space

Same "absolute " file name refers to
the same object, anywhere in the
network·

- Allows file names to be exchanged
without changing meaning

- Means data, programs are more easily
shared

o

o

o

USER NAME SPACE

NETWORK

LOCAL ROOT----~
DIRECTORY

SYNTAX

IIENG/JONES/PROG ••• NETWDRK WIDE
IJONES/PROG/SORT ••• LOCAL ROOT RELATIVE

SORT/V4 ••• WORKING DIRECTORY ~ELATIVE

DIRECTORY OBJECT

NAME· . OR

POINTS TO NEXT
DIRECTORY OR
TARGET OBJECT

·UID L
PATHNAME PATHNAME
.. SUBSTITUTED

IN NAME (L:INK)

0 Naming

Text string names

- hierarchical tree structure

* ·"path name"

* made up of "component names"

* for example, /x/y/z

directory objects

0 * component name => UIO .

* component name =>. path name /i/l ks

- absolute path name

* starts at "root" directory

* leads to UIO of an object

* valid network wide, like UIO

o

.......... _. __ ._ .. _-

Network Management
o

Sockets:
- datagram service
- 10$ are small integers
- services are at "well known" sockets
- reply sockets allocated as needed

J'hr Ms~r. .lee ~
9DC k+ 'i ~S .fk

~l5;1A 5 5cL~,+

MBX: "'f" p\er~e,,+ed' CM 1-z>9 of j

- virtual circuit service
- IDs areUIOs, names
- "advertise" service in name space o . -is not in the nucleus

o
- 33-

o

o

o

1/0. Management

Barely any; all special cased
- disk
- serial 110
- network
- magtape-
- line printer

(\ II cl~ h') _ l c."'~
at t~r{vA- Sre(,\O-

r'\o,l\().,ctrs .

- 34-

o

o

o

Protection

User identification
- registry

Access Control Lists (ACLs)

Protected Subsystems d u'·h, pre kL,·Ie(j f~ 6"1"\ LA. ~W-
) -

bu;t- 1\£1+ f\eCeSSo.,,;;tj .~6M a

prvgro."" 1\-a+ f\-t u~ j l)V6id) ..

- 35 -

Registry

- system wide registry of people,
projects, and accounts

- identifies a user to the system, not
just a node

- replicated for reliability,availability

o - each node owner doesn't have to be a
system administrator.

CtV\I+ h~v-e, ott IS

~'d'~ow~ C-tcc,ov-n ~ (rej ;shj)

o

--------------- - ---- ----------- --- _ .. _----_ .. _. -.,---,------------

o Why not just ass and SLS ?

- good if data «computing

* user pays computing cost
* automatic caching

- not so good if computing «data

* cost of moving data high

- not so good: exposes representation
of data 0t the whole network'

-tv o - good when one process is computing

o

on distributed data

- not so good when many , distributed
processes are working on distributed
data

* more processes =>
more reliability

* more processes =>
more performance

* need synchronization

. -

II
General Distributed Computing Tools

- Remote procedure calls

- Concurrent programming

- Replicated objects

- Consistency control

"Yellow Pages"

o - Remote process invocation
and migration

- Debugging

o

o

o

o

Basic AEGIS Vocabulary

UID

* Unique Identifier

Object

* Anything where existence is associated with
a UID (e.g. Files, Volumes, Processes)

File

* Disk Resident Object

.- Page

* Smallest spearable unit of Memory, Disk,
Object (1024 bytes for us)

Segment

* 32-page grouping of Virtual Memory of
object-~smallest MAP-ABLE unit

Mapping

* Associates Virtual Memory Segment with
Object Segment

o

o

o

_ -..... _._ _ .. _ ----------------:-----

Disk Glossary

- Physical Volume

* A disk

Disk Block

* . 1056 byte section on a disk
(32 byte header/1024 byte data)

Logical Volume

* A section of a physical volume that is
completely self-describing and contained
(Usually one L. V. per P. V.)

- Physical-Volume Label

* Single di~k block that describes the
Physical Volume

Logical-Volume Label

* Single disk block that describes the
Logical Volume

Disk Address (DADDR)

* Disk block number as an offset from the
start of Logical-Volume (usually)

o

o

--------- _._ ""------~------

Disk Block HEADER

- Reliability
- Recoverability

32 bytes in addition to 1024 data bytes

1056 total

UID of object to which.
block belongs
Pagel in file
Time written

() -

)
(

Checksum of Data
Disk Address

~\

U

o

o

Anatomy of a DID

Time Since 1/1/1980
MBZ Node ID

16 millisecond units
.

36 bIts 8 20

34.8 Years worth of

Uniqueness

(2014 I!)

1 million nodes

, · d et" ,. We're not worrle y .. ••

o

o

o

"Canned" UID's

Hand constructed by R&D

- To identify "SPECIAL" objects

* Examples:

"Canned" ACLs-
.%.%.%.%
FNDWRX
0001800F,0 .;'9 /

• n .,\Q.
-¥\t........... '" or

* Disk Structures

PHYS VOL LABEL -
00000200,0

* "Canned" People (!)

USER 00000500,0

o

o

o

I",
, I

IF :' Ii

lID. vi:
10""<1 il
I@ ".I i
1Ei9~ I !II
rr-;-----I' i

I fJJ ,I !
i~<i "
j, 'I I
i CtJ, 'I . I.......... ' t "

i i !
I ffJ I i

I --< Ii" I tit i
, til II I 10 1
16 1 i
I ~ I I
~!_~,_I I
I i I
I ' I
i I, i

I i I
; II ,;
l i I
I i I
I 'I r
! I j
! 'i i
! I I
i J t
1 i
! '
1

(t]
'~f i"
~~-.r:;

.L.t":;:\,
F "

;;;;iOJ::-,.~

f~~~~fJ
~~.:"Zi~7iZn!

i::' a',. __ _

t;E:.. ... ;so;

t ~
-:;, .. ~~~
:=-~- .. ~

~~f~}:
Fr,?~
P. ~! ~

o

o

PHYSICAL VOLUME LABEL

VERSION NUMBER

"APOLLO"

PHYSICAL VOLUME
NAME

PHYSICAL VOLUME
UID

BLOCK COUNT

BLOCKS PER TRACK

TRACKS PER CYLINDEF~

DISK ADDRESS (DADDR:
OF LOGICAL VOLUME 1

DISK ADDRESS (DADDR:
OF LOGICAL VOLUME 2

• • •

Describes the
DISK

Locates Logical
Volumes

(up to 10 per Physical
Volume)

plus Alternate Logical
Volume Labels

---_._-_._----

o

o

-----------.. _---------------------

LOGICAL VOLUME LABEL

VERSION #

LV NAME

LVUID

BAT HEADER

VTOCHEADER

TIME MOUNTED

TIME DISMOUNTED

TIME SALVAGED

NODE MOUNTED ON

TIME ZONE

BAD SPOT

LIST

FREE BLOCK
MANAGEMENT

. VOLUME TABLE
OF CONTENTS

VOLUME

MAINTENANCE

o

o

o

BAT HEADER

NUMBER OF BLOCKS
REPRESENTED

NUMBER OF FREE BLOCKS Ivo/Fs.

DISK ADDRESS OF FIRST
BAT BLOCK

BLOCK NUMBER REPRESENTED
BY THE FIRST BIT IN THE BAT

NEEDS SALVAGING FLAG

o VTOCHEADER

NUMBER OF HASH BUCKETS

NUMBER OF BLOCKS USED

, e.) VTOCX OF NETWORK ROOT
DIRECTORY

VTOCX OF LOGICAL VOLUME
ENTRY DIRECTORY

VTOCX OF OS PAGING FILE

VTOCX OF SYSBOOT BOOT FILE

VTOCMAP

o

1k Po.3 ;i15 -Rk
i ~ {I;~w(l.:j 5 COVlioS \;I.e;,

LA s(,l CL + bee + n.V'{..,
C;~ PVjjl,,~ P~k is

ik b,-, (, k-j {\ S & 4-crC.- Jrr
3 ~j IIAt,v'ts; oS fl.-c
o ~ s ~ (~1.ll Q -{ t(dJ ,-ess

b~"l fwu ()J 1'k."'- cl\.(
o.{wc'j> Ii..f;red

I
\j

los - los
-'-'-'-

o

0

o

VOLUME TABLE OF CONTENTS
VTOC

LOGICAL
VOLUME LABEL

\ /

VTOC
0 0 1 2 BLOCK

VTOC
1 BLOCK 0 1 2

VTOC 2 0 1 2 BLOCK

VTOC
3 BLOCK -0 1 2

VTOC
4 BLOCK 0 1 2

3 4 ~11213141
VTOC EXTENSION 3 4

BLOCK

3 4

3 4 5 (0-4) VTOCEs
per VTOC BLOCK

3 4

V\"s\~(;~
Q Viot'A. (V1DL i()(..\t~)

,

\
V'IO e. f (C'oV"lfa:hS ~\~ /I\ap ~,obJccf)

~
~, \e

o

o

o

.......•..... _ -- ._-----_ .. _ .. __ .. _--------_._------

USING THE VTOC

VTOCHEADER

HASH
FUNCTION

a..--__ ---' HASH
RESULTS

FIND START
OF HASH
THREAD

VTOC BLOCK
DISK ADDRESS

USE "THREAD"
TO VTOC
EXTENSION
BLOCK

SEARCHVTOC
"'---I BLOCK ENTRIES
FAIL FOR MATCH

WIN!

VTOCK

I (J

I

I

\

\

I

o

o

- - ---~------------------------_ ... _ _ _.---

VTOCENTRY
VTCOE (vee-toe-chee)

DATA BLOCK POINTERS
FOR SEGMENT #0 Ll L2 -L3

t{\\" \t~ - 1J,'rt-\Jlt- D (Clnne.J

SYS ~r ,\.,v" ,~ ~\.Q, \'(\~ \~ ... w
TYPE CURR BLKS t. (;J," Lr\i.;~ \'""'~

TYPE PERM IMM UID DID LEN USED
\ b~, \

\ 'o~ \ (9 ~ '0\ \: ~L\ \;l \:

~~\\\\{I

ACL DIR 11J~-\- REF
UID UID?' DTU DTM

CNT
J~Ie. \Jeg~<S1\ h&".,.1 t:.-Ajkks

L<.r;",Cj /t.,j$ cqfec..f-

LOCK \

KEYR'~
f ; II k.s o.r{n

6bjec{s) ~

.

VTOCHEADER

clc/5 U~(
Ie { (<nA ... 1--s

o

o

o

VTOCENTRY
VTCOE (vee-toe-chee)

DATA BLOCK POINTERS
HDR . FOR SEGMENT #0

LEVEL 1 FILE MAP

256 Disk Addresses

L2 L3

- 256 data blocks (32-287)

- segments #1 - #8

32

8

o

o

o

HDR

VTOCENTRY
VTCOE . (vee-toe-chee)

DATA BLOCK POINTERS
FOR SEGMENT #0 Ll L3

LEVEL 2 FILE MAP

256 DISK ADDRESSES

- 256 LEVEL 1
FILE MAPS

- SUPPORTS 2048
SEGMENTS

t----~> B
t----~> B
t----~> ~

•
•
•

'. .~

o

HDR

VTOCENTRY
. VTCOE (vee-toe-chee)

DATA BLOCK POINTERS
FOR SEGMENT #0 Ll L2

o [),\

- FILE_CREATE (LOC_DID, DID, ST)

1. Find the volume that holds
LOC DID -

2. Call DID _ $GEN to get a DID

3. Build a VTOCE-hea~er for the
new file.

0 4. Add the VTOCE to the VTOC

DONE!

o

... _.-.. __ . __ . __ .. _ .. __ .-••. __ .. _ .. ------_. __ .---

o

()

Allocating Blocks on Disk

- Strategy

* Nearest available block to last
allocated block
.-j-a/<..;"f\j)h1-o CI\CCOUI1i- i1~

* "BAT" step

- Mechanism

* Read the appropriate part of
the "BAT" into memory

* Find FREE blocks and change in
memory copy of BAT (Write it
b kl) \.. Y1 ac ater... If' jll\e.Y\~ i~ 6St of -'I--e. f,'I'l''-<-

Note: SAL VOL's biggest job is to fix
. the BAT, since the ON-DISK

copy is almost always out-of
date!

-----........................... -.-

o Apollo Virtual Memory

- The Idea

o

o

* Lots of processes with
independent address spaces
(256MB or 16 MB)

* Some stuff GLOBAL to all
processes

* Divide A.S. into 32 Kbyte
segments

* Divide objects into 32 Kbyte
segments

* Some processes will Jive only in
the nucleus and won't need
private space. . .only GLOBAL!

o

o

o

------------- ---

PROCESS ADDRESS SPACE

FFFFFF

FOOOOO

EOOOOO

cooooo
Beoooo

(PROTECTION
BOUNDARY)

200000

000000

I/O

AEGIS

UNUSED

,\T TPFRVTW)R _PRTV A TF

PER

PROCESS

PRIVATE

ADDRESS

SPACE

GLOBAL
LIBRARIES

FFFFFFF

F800000

F788000

0800000

~ 0000000 ,

\
en \J r\f\s··b\.\ S

~al)~trk tlS+ b~ nu{\vt S .

o
Virtual Memory Glossary

- ASID: Address Space Identifier
c ; s AetJ', S

i ; ~ ~i).M c • .sPI'A

- MAPPING

* Binding V.A. Segments with
OBJECT Segments

- MST: Mapped Segment Table (6"Y\e per Pyoce5~)

Active Segments

o * Object segments whose
information and data are cached
in physical memory.

- AST: Active Segment Table

- PMAP

* Disk Address & Physical Address
(if resident) of each page in an
object segment

o

o

o

VIRTUAL MEMORY

The Main Players·

MST

Virtual Address
to

Object Address

to
Physical Address

(1'1(,:." r-'li')(j~j)

MMU

AST

Obj ect Address ;:r---
to

Physical Address

r---""

U

o

o

96 Bit Address

System Global Name UID Object Address.
Space. Names ~nique~~~~~~~~~~~~~~~~~~~
for all Time

Object Address Space

OBJECT ADDRESS

VIRTUAL ADDRESS

N~ ~

=SID A

MST indexed by
Virtual Address
and Current AS

Segment#
ID

64 bits

Segment#

j.7··bits
a
I '.rv-1",Y)

S\'-)l-J

Segment#
(Virtual)

17 bits

I -
I

MST

Page# I Byte#

5 10
f ~ .. \

1 01. ~ b}-€> f?"':)Q.. ')-2. ~iY1<' ~~1

Page# Byte#

5 \ 10

Byte#,

Pagel
/'

Object UID ,
"- /

Object Segment#/

1\

1 Per ASID

Object
Address

C)

o

o

TERN (DNX60) Virtual Addressing
-> Virtual Addressing differs slightly

Region# Segment# Page# Byte#

5 12 5 10

Why: 1) Simplifies table organization for big
address space

2) Simplifies hardware/microcode

it's transparent to everyone but
BUT: AEGIS memory management

code

o

o

o

Finding the RIGHT MST

CURRENT
ASID

VIRTUAL

ADDRESS

IN NO IN

GLOBAL A GLOBAL B

YES YES

GLOBAL A

PRIVATE

UNUSED

GLOBAL B

IT'S

PRIVATE!

S =VA132 KB
USE SPECIAL

PART OF

MST
MSTE MST [ASID, S]

---.. ---~

C)

u

MAPPED SEGMENT TABLE ENTRY

(MSTE)

OBJECT
UID

OBJECT
SEGMENT
NUMBER

EXTEND OK
FLAG

ACCESS

GUARD

HINT
ASTE
~ED

LOCATION
VIOt'/...

UID of the Object

Segment within the
ODject

Can the File be
Extended?

Access Rigt$

Is this a Guard
. Segment?

Performance
Enhancement

Disk or Network

- Now improved with "Touch Ahead
Count"

o

o

o

THE ACTIVE SEGMENT TABLE

- An Array of AST Entries (ASTEs)

- Each ASTE is a cache entry over the
VTOC

ASTE
HEADER OBJECT SEGMENT PAGE MAP (PMAP)

- ASTE Header

* Object UID
* Object Segment Number
* ACL UID
* Location
*DTM

- Object Segment Page Map

* 32 PMAP Entries.(pMAPEs);
one per page in the segment

* Current PPN P\\'lS'\cC\l to.~9.- f\\!.M)yv

* Disk Address (DADDR)

o

o

o

Object Address -> Physical Address
(OlD, SEG#, PAGE#, BYTE#)

1. Find ASTE for (UID, SEG#). If not
in AST, read VTOC and-fill in an
ASTE.

2. Look in -PMAP for the ASTEto get
the disk address for page "P AGE#" .

3. Find a free physical memory page.

4. Read the disk.

-5. Update the PMAP.

6. Load the MMU (so it can succeed
next time!).

o

o

o

Memory Management Unit (MMU)

(Virtual Address, ASI]), Operation)

Physical Address,
_. (MMUHit)

MMU

Not Found
(MMU Miss)

/
On to the MST

Protection Violation .

[.
operations Are:]

Read, Write,
Execute

o

o

o

VIRTUAL ADDRESS
TO

OBJECT ADDRESS

Any Object Segment may be:

- MAPPED BUT NOT ACTIVE

- ACTIVE BUT NOT MAPPED

- MAPPED TO MORE THAN
ONE ADDRESS SPACE
SEGMENT WITHIN A SINGLE
ADDRESS SPACE

- MAPPED TO DIFFERENT
ADDRESS SPACE SEGMENTS
IN DIFFERENT PROCESSES

o Virtual
Address UID segment # location access

300000 U a 0 Node - 2 rw

308000 U a 1 Node - 2 rw

301000 Ub 0 Node - 2 r

300000 Vb 0 Node - 2 r

308000

o 301000 Vb 0 Node - 2 r

I A S T I
UID segment # attribs page map

Va 1 ••••••• (32 daddrs & ppns)

Vb 0 ••••••• (32daddrs & ppns)

Va 0 ••••••• (32 daddrs & ppns)

EXAMPLE: MST & AST in a running system

o

_. -.. _ __ _ _ .. _ ... _ -. __ _ .. -_. __ .---

ASID
1

ASID

2

o

~ 1\

--

+----+---+
NAME

+--+--+--+

(user space)

+---------+
+-+----+--+

FILE
+-:-+-+-+-+-+

--

+---+---+
MSr

+-+-+-+-+

.+---------+ +----------+

++-+-++
: ACL :
+-----+

+-----------------------+
+-----------+ +-------:----+ +------+

+:-+-----+-+
ASr

+-+-----+-+

+-+-+-+
: I1MU :
+-----+

+--------+ +--+ +-------------+

+-+----+-+
VTae

+-+----+-+

+---+----+
PMAP

+-+--+--++

+--------+ +----+

+---+---+
BAT

+-----+-+

+-------------+ :

+-+-+--+
: DBUF :
+---+--+

+-----------------+ ..
t

+--+---+
: MMAP :
+--...;.---+

+----+

+----+----+
: REMFILE :
+----+----+

+-+---+----++
DISK

+--+---l--+--+

+--+--------+ +---+---+
MSG

+---+---+
NETWOUK

+-_._--+-----+

+-------+ f·-----+

+-+-+-+-+
PKT

+-+---+-+
+----+ +---+

+--+--+ +--+--+
• WIN • • FLP • t , , t

+-----+ +-_._--+

+-+--+
• SM • t ,
+----+

+-+----+
: SOCK :
+-+----+

+--·f--"';'+-+
RING

+--------+

o

o

o

i
I
I

I
I 1'1 I I
I 1_/-

I I I I:

II' i
I II

! I

Ii! I

I
I

i
i
i

i
! i __ _

-------· .. ---'1

D I

~~r~.

~~ l
~

({)
tTl 'ii,

~
'ih

-""'"
a~~.:

i
----I !'.'-'. '. --------. ---. I ~_~.i~.-_,,··., ~.- 1 -. _ •. --.• _ i .. ~ u: I - -~.--.'. i

E~ F --"l,t~~) C) !
~'~ i\, ,,' _:
~'.- 1-- .•. -:::-.:.- -:="" I 1;ju,~ :-:7- :
~~:r.::; r _ .. -.. _., ___ -______ . ___ .~

I t· .. ·

Q

o

o

I

I
I
I
I

I I--
I . __ . I

~t1~~---1 .. I

l-
I

I

Gr~t.
~t~htt.::· ~;

~~

i,;

~~
p

»

;;;;'~':--:i
J.; :;

;:;.l~

~<

u
r--·-----·------·--· .. --·':

o

o

._------_ ... _ .. -. __ . __ . ----.... - .. --... --

~~::~~~

Pt.';::,~_.
,......-.~

~4. t)

~.~

.•) .. ~
i' r:,

r~.:!:.i~-r!.

f.~~!rJ!

i~'~
-::i ~~

.tt'a.ii:i:iti r::-
:e~

r~.~rr
ifir.~~

~~~ 

~~;~ 
m;;:;;;:;~;'-

r.;.:;.;;~ 

\; 

"IN\/OL -10 



u 

0 

o 

r·---·--·-·----· 

I 
L 
I 
I 
I ,. 

I 
i 
I 

I 
I 
I 

! 

I 
I 
I 
I 
I 
! 
! 
j 
i 
I 

! 

~:? 
'~:' 
1-1 ..... 

~ 
u.' 
!.Cr 
ff· 
-~ 

-!~ ~? 
i~ ~:~.. i 
;t; -J .. 

;:;:: l\ .~.. t\ 
Ii§.: i j I! .... f I 
'; ,. l. J 

t t ..... ~ IrtlM'JIHt:" 

~:~:~ r~ ... .::; .. .j' f:ft!.'"!::::t:;':: 

. ..::. ~_if~.l~: 

iD~i~: ~~ ~ t .u....~: 

r' t~·:.; ~i?:r.i·; 
e ~, J. ..,.., .. f" "'-t.!t.r-

eo!':~~-.: 

:' ( ... }: 1iLUl!':i~: 

" ~G~t-' 
~ ...... ~ 

t r. ~! ~-f.~~" 
t' ~ 
l: t\ 

~~; r""'~~",;l 

~:~ .. - .ft;. 
'1::"'7;;'. ~:::c,. 

I!!i:..~:::':": -..:: 

I '.'-----.. :... I 
-' -----------_._ .. _---_._--_. _._--_._-j 

.:.rr"'''''' ...... ~i; . .r:a".~: 

''-«-... Il,;~. t. ! 

ll.1f".~~~:~:;. 
-t'i~~~ 

ifii ... -,.jFltr- ,.#' .... ;, 
t· F ~ ~ 

,r~t~.~~J· 'i'-q,~.r-.f 
l-

'" :;"#-:: f.'!~1:':Mr.,! 

b "l~ii--,-;" 
~~...,.-. 

a:!·t:~~I:O_ 

L. 
fit ·T"-,::~ 
'~..'u.:..~! 

-~.,~. 

~~;.i" 
...... 

r-'.cf~7:f"!:~· 
tF_7Ir.~~ 

~~~., 
-,....:~ .

~;
:i1.':::!£t:!=ft.-:!

o NETWORK FILE SYSTEM

Remote-file server
handles file level operations

lock, ~ unlock, directory-lookup,
get-attributes, create, delete

Arguments are passed from the
client to the server, the server
executes the call and passes back

o the answer.

o

Remote paging server
handles paging operations

page-in, page-out, attributes

based on unique object addresses
(uid, segment #, page #)

u

o

o

FILE SERVER

Menu of Services .

File Services

1m LOCK

8] UNLOCK

fill CREATE

lID DELETE

fj TRUNCATE

[ill INFORMATION

lID NAME LOOKUP

• • •

Node Information
Services

Wi] VOLUME
FREE SPACE

ACTIVE
§] PROCESS

INFORMATION

!@ ~.pATISTICS
Em TIME

mill) HELP WITH
LCNODE

• • •

--_ .. _-------- ---

o

o

o

USER

FILE
SERVER

LOCK REQUEST

Handle It

"Rem file"

NETWORK I/O
MANAGER

NETWORK I/O
MANAGER

Handle It

remote

LOCK MANAGER

o

o

o

LOCKING OBJECTS

CONCURRENCY CONTROL (2 models)

(1) n readers XOR 1 writer

any number of readers,

or exactly one writer.

(2) cowriters

any number of readers,

LOCKING MODES (3 kinds)

(1) READ ONL Y

(2) READ & WRITE

. (3) READ - INTENDING - WRITE

(warning that I'll change to

READ & WRITE before I'm done)

o

o

o

THE ROLE OF THE LOCK MANAGER

Enforce concurrency rules at loc.k time

Control all LOCAL files

Cooperate on REMOTE files

Maintain the LOCK TABLE

Support the distributed system .

Help manage the object caches

(flushing when needed)

Pass authorization information

to paging system through

the object's lock key_

o

o

o

Lock Managers Tools ..

- Lock Table: Database

- Authorization Control

* Set Object Lock-key

ZERO means read-only·

NODE_ID means only that·
node may write

- V. M. Cache Control

. * Get object DTM

* Flush cache if needed

* Purify
send changes home

I .

I

() " AL"

Node 1

o

~
X

disk

1 STEP 11

o

Node 2 Node 3 " BOB"

AL gets us rolling.

File "X" => l~

AL locks X for reading
and touches the page

Then AL unlocks X.

Note that Node 2 keeps it's
copy of X in case it's needed
again soon.

o " AL"

Node 1

o

o

._ _ -._--_.- ... _-- .--_., ---,.",--". __ .-

Node 2 Node 3 " BOB"

BOB gets in on the fun!

X starts out as ~

BOB locks X -for writing
touches the page, and
changes it to:

BOB unlocks X, forcing
the modified page back
to Node 1.

Note that Node 2 doesn't know.
Note that the disk doesn't get
updated right away.

o

o

o

~-------.-- -.-- .. -....... -

" AL"

Node 1

x

1 STEP 31

Node 2 Node 3 " BOB"

AL's back for more!

X starts out as
AL locks X for reading and
finds out that his copy of th
page is out-of-date. He
flushes his cache and gets
a new copy.

Note that if X hadn't changed, AL
wouldn't have needed a new copy.

Note that AL's bad copy of the page
isn't flushed until AL locks X again.

o

o

o

ORPHAN LOCKS

SHADOW ENTRY

AL

1) AL LOCKS "X" FOR READ
(LOCK TABLE ENTRY MADE)

2) THE NETWORK "B~REAKS"

3) AL IS UNABLE TO C011PLETE
THE -UNLOCK WHEN FINISHED

4) JOE WANTS TO MODIFY "X"

IS "X" IN USE?

JOE

LOCK TABLE ENTRY

"X"

v~' l'\odLid

'·x·· AL

/...; 1) #'A 1-

AL nO+ .tCNt) c1.

lA L kot) 1\ X \\ -F

C)

o

o

~

.f'n'.:;,....

5.::n:b
..... F"
t~

4;~

~!::~~

N ~
_I!
~

rr~
;.~

~
~:;.
i:"u':;:::1ti:

~!!~~
~

rl~'~;

~~~ 



u 

-~---~~-~~~----~ .. ~ -----

Naming Vocabulary 

- Naming Server 

* Set of routines that store and 
retri\te (NAME, UID) mapping. 

- Directories 

* The file storage database used by 
the naming server. 

- "Resolve" 

* The Naming Server operation 
o that takes a name and returns a 

o 

UID. 

- "GP A TH" (get-path) 

* The Naming Server operation 
that takes a UID and returns a 
name. 



. 
o 

o 

o 

NAMING VOCABULARY 2 

- Soft Links: A Naming Server facility 
that allows text substitution in names ~\ot 

• \, .... c: pse.. ~. ("c'· l- ' N~V . / .... , ru\.,v 
\'" "'i) t:tS ~\ 01»)'-' .c. 

'.f ~,v-v \\ ~y. .~ 
eJ-G'\ \6"'-\-- (,{,rY" 

during "name resolve" 

I (; (,Q.. 

- Hard Links: A facility supported by" ;t\C:t.' 

the Naming Server that allows more 
than one name to be paired with a 
single UID (needed to support A UX) 

- Entry Directory: The directory c-€tated 
byINVOL to be the root of all named . 
objects on a Logical Volume ciLlrnl01"& \:I>~l ?P:'~5 "( 

I\Qti-,s.5 C(Qe 
,.... -.J \' 

~----------------------------~~~ 

OK 

VOLUME ENTRY 
DIRECTORY 

NEVER 



o 

o 

o 

Naming Vocabulary (Cont'd) 

_ Node entry directory (ttlw(C~5;) ~O\<- c"" ho.vG "p+O lObu 
!OfjICc,( \fO(\AI~S ilAov'Vlf<d) 

O'\lJ (,rV\e C,;l"Y\ bt * The entry directory of the boot I\1D~\1Ie.d (l~ r~· 
volume. bt~+ vd~Ine-. 

Network Root 

* The special directory created by 
INVOL to hold the node entry 
directory (NAME, UID) pairs 
for nodes in the network. "II" 
ALWAYS refers to the network 
root directory "hidden" on the 
BOOT VOLUME. 

- Initial ACL's 

* The Naming Server facility to 
allow newly created files to inherit 
their ACL based on the directory 
that holds their name. 



o 

o 

NAME RESOLUTION 

BOOT VOLUME 

object 
UID • 

ENTRY DIRECTORY 0 
AL 1 ~ 

/ALIDOCINAM_SVR 
o 

directory • 99 BOB 2 
UID L..----1 

STUFF 3 

2 FUN 11 

0 WORK 12 

11 PETAL 13 

2 LUNAR 14 

13 

11 

C reO. k (1"1- Co P j ().. ~~ l<. " 

~ .. ®'. ' ·~0 
o 

6 

.Q) 
{ 

5 

AMES "/BOB/FUN" 

C textfi0 

ev'lc-le:.s:r.j 
d;~c.lCiJ LA ID : 

U.5td bj G PATH tperc-11-G"'\. 

Ob~e0t ~'S [rt ~f-cJ 6>'\ I OJ; c c(.i vDl v.~ 
{(u LE~ A" 6~Je.cA~ \ ~.r-e- (-,.,'\ {k .5~ ~~ 
.-- {OS:ca( vo(~~ tiS'" ~he'lr e",do~,'j of ent lo~ ~"'J d: f't.C'~ f 

tl ~ ,"-{, c':t-Oij J . 



I. -

object 
UID • 

directory. 

o 

99 

NAME RESOLUTION 

BOOT VOLUME 
ENTRY DIRECTORY CD Find: IAL/GAMESIPETAL 
~ 

UID l------I 

STUFF 
~ 4 1 DOC 

2 

o WORK 12 

o 
11 

2 LUNAR 14 

13 

11 

o 
.fl~ os p'\j:Y1J ·Ale ~_5 

a;) u.n Vl (.\.~~cl per 1Y1.:A ell+ .tr Ie, 

o 

Name becomes: IBOBIFUNIPETAL 

4 NAM SRV 6 

1 NETWORKS 7 

PROJ_PLAN 8 

6 

4 text file 

r.' ncl- (5;-ph ,,,..15 : 

.fb '~'(\ ,1 (,Hl C It'ro.( (50 eA U 1])5 e, 

(8Y\ lYpt1a.r. o6j~cJ ~5 Gt UID 

. w .. ·thc-....tf C4.- (\C.~) 



o 

o 

o 

DIRECTORY STRUCTURE 

Linear 
List of 
Entries 

Hash 
Threads 

()V\-t J"Sk (lCC-{S> J!c. d ;i'fc,k;~ 
~~.th 1£8 CJr IeS5 ~I-e~" 

'",.Y\ ~~ O~ d~d.c.f-t"j s"\\:e; 5 

2 sej"'\.t,~.f..s -=? .1\1 1300 I"\~\~~ 



o 

-0 

o 

ADVANCED NAMING TOPICS 

Why SALD (salvage-directory) 
internal directory structure- contains 
hash threads that can be damaged 
when the system crashes. 

COLOCATION OF NAME and OBJECT 
un-necessary for correct operation 
but necessary for sanity! 

HARD LINKS (needed for AUX) 
UNIX allows a file to have many 
names, as long as all of the names 
live on the same disk volume. 

Scdvc I 

Sulci 
sa.{atl . .' 
St>1 r'jJ '-Cc6"'ol,ioj-ts. ~.a O~6'C/rJ 

" c up,IIZ./-<' I"tj /sf •• es. ~ 



o 

o 

o 

MTVOL AND CTNODE 

Background: 
When a logical volume is created with INVOL, it is given S things: 

1) A Network Root /I + vTOe.. 4- o.AT 

2) An entry directory for the volume / 
3) A SYSBOOT file entry 
4) /SYS directory 
5) 'NOOE_ OAT A directory 

Each of these has a UID, let us say UID1, UID2, UID3, UID4 and 
UfOS, respectively. The initial state of the network root is to 
contain the pair (NODE_nnnn, UID2). The initial state of the 
entry directory is to contain the pairs ( SYSBOOT, UID3), 
( SYS, UID4 ) and ISYS contains ('NODE_DATA, UIDS ). 

Network Root directory 4. Logical Volume 

I Entry directory 
NODE nnnn ... 

- I ~ 

SYS .. + 
SYSBOOT .. NODE DATA 

~, 

SYSBOOT blocks 

When a system is running, its network root is accessed through the 
naming convention of "II". "/I" ALWAYS refers to the network root 
directory on the BOOT LOGICAL VOLUME. The node entry directory 
is accessed through the naming convention "I". " I" ALWAYS refers 
to the logical volume entry directory on the BOOT LOGICAL VOLUME. 

\V--

1/ ~:;+ ;:tk~~S~,~t~ (~~~/~~~::.~~ fUals flul Ckklcg-e,{, 6"QCv:::"~(' 
Ci~ ,}a...-,/// Cal) I t do 0- -hI Ie I C> C tL·1-e bYt 0- C ~ A 1\ ed ulf D o-?~{\ 

_____ . b(2.Wwse" r'\O ood e ~ I d ~ VI.~ : 1'\ c;. c.CtoIl t1eJ lA 11)" 

W: Idc..rJ"'5 ""t j;Ievei ,':, cI:~-I 
J'h ILl) aAj,JI~'re, else" I" 



C) 

o 

o 

MTVOL 

MTVOL F 1 IFLOPS/FLP 1 

LOCAL 

SYSBOOT e-r-

~, 

LOCAL ... 
.. JIIIII"" 

SYSBOOT 

FLOPS 

FLP ONE 

Winchester Logical Volume One 

and 
Boot Logical Volume 



------------_ .... _ ........ _._-_ ...•....•. _-_ .....••. _--

o 

CTNODE JACK lA 4 

o 

o 

JACK 

SAM Z 

JANE Y 

"I I" 

~, 

X 

,...----.---. 

JACK NODE: lA4 

CTNODE 
4~ z 

.. 
SAM - ,... 

JANE .-- ~, 

JACK X SYSBOOT 

"I I" 

SAM 

JANE 

SAM Z 

JACK X 

"II" 

NODE: 53 

~~ Y 

,...---_r----""1 

~~----lf.--f 

JANE NODE: 12C 

.-~ 

~, 



o 

o 

o 

Co-locating Names & Objects 

- . System architecture does NOT· , 
require it. 

- SANITY DEMANDS IT! 

- So ... Released utilities ENFORCE IT! 



----- ------- -- ----------- - - ---------- ----- - - --- --- ------ ----- --- ---------_ .. __ . _ .... - --- - -- - ---- - ------- ---- - ----- - .-.. _--_. __ ._----_.-

o Naming Issues Today (1/85) 

1. Set of Legal Characters 

2. Case Sensitivity 

3. Character "Confiicts " 

( , 
/ ) -• 

4. Component name length . 

0 5. Directory size limit 

- A UXIUNIX compatibility issue. 

o 



VM Performance Issues 

- Disk through-put 

* File layout 

* Touch-ahead 

- Network through-put· 

* Touch-ahead 

* Paging server queuing 

* Expoliting overlap 

o - Page replacement 

* Purifier 

o 

* LRU 

- ASTE Replacement 

* LRU 



o 

o 

Networking at Apollo 

1. The Ring 

2. Packets & Sockets 

3. Clients of Sockets 

Paging Server 

File Server: 

NETMAN 

- MBX 

-_ .. -._--_._--

"[ht. da~j(aV\" se(V;c.e.... 

I'S I' .,vi S j " 



o 

o 

" ""-"-"~---""""""""-."--"--""""-----"--

The Apollo Ring "Network 

- Ours is a TOKEN-PASSING RING 
network 

* TOKEN PASSING 

A special bit-pattern circulates 
through the network 
("passing" from 
node-to-node). In order to 
transmit a message, a node 
must have control of this 
TOKEN. 

* RING 

The nodes are connected in a 
circle. 



o 

o 

o 

Why a ring like ours? 

1. Token-passing for distributed control 
of communications hardware. 

2. Graceful degradation under heavy 
traffic bursts. 

4. Allows different "WIRING" 
technologies. 

* e.g. Fiber, microwave 



-- --- ----- ---------- - -----

THE APOLLO RING NETWORK 
u 

4 

1 3 

2 

o - Every message goes "through" every 

o 

node (ring hardware) 

- Only targeted receiver "processes" the 
message (DMA into memory, change 
the ACK byte) 

- The transmitter "removes" the message 
after one full circle 

-The transmitter examines the ACK 
byte to see if the intended receiver got 
the message (altered the ACK byte) 



r---------::I~----. 

MEMORY 

o 

THE APOLLO RING NETWORK 

ring 
interface .. 

MEMORY 

ring 
• interface 

ring 
interface .. r---~~-

MEMORY 



o 

o 

r 

THE APOLLO RING NETWORK 

r---..;;::JI"""'-:;"-, 

ring 
interface ... 

MEMORY II 

"A" Disconnected 

ring 
• interface 

MEMORY 

ring 
interface ... r---~~-

MEMORY 



o 

o 

. THE APOLLO RING NETWORK 

IDLE - no node wants to TRANSMIT 

r----..;:::!I~--.., 

MEMORY 

ring 
interface .. 

T 0 KEN 

ring 
• interface 

MEMORY 

ring 
interface .. 

\\e;\~~\ t ~ ~ \ S j ()vl 

l \ .-\\L clt\ lNj ~ L\ S bte" 
jvvl\c\-.£IL\ ~U\ I 

r-----~...-:;....-

MEMORY 



·0-

r---~~---' 

MEMORY 

o 

THE APOLLO RING NETWORK 

"B" sends to "C" and watches 
for the ACK fields 

ring 
interface ... 

ring 
interface ... ~~~-

MEMORY 

~IFIFOI 

bit 
bucket 

MEMORY 

ring 
• interface 



o 

o 

c 

PACKETS 

& 

SOCKETS 



o 

o 

o 

f,.IOOi iNiYJ r:, t 

:D .. --
ii=i 
~~ 

(jj 
.. dE.-4~ 
l!iL~' 
~~-! 

• I 

~~ 
;;.?~ 
~~ 

> 
~:!'i 
p~ 

r.:9!!£ 
!!. t 

:r:~ 
~.k~ 

~ 
~ 

~~ 

i!Ti.1:·rJ 

~!!i~: 

[~1~~~;-1: 

Er: r;; t=:.' 

~4~rr.··~ 

~p 

~~-, f~~~,:!: 
~"!t.".~- 1~ ~!:! ______ ._ .. _._ .. _______ .. _.,~ 

f.:="t·-';j'~ ~·t:--"'~ 
i~; u. [ r f.!: t: 
!J':!f:~';',i:-?" ---,.,---;:: 

r-~ ti 
~~~t 

~~

~" ~!,;

_lI"!""
r .! -~
f'Q.},
~o-:"" -L., .;
r<'
.~::"

=.:;;;

I!I

1~\.II"'LW.Ur
1..i~~~!1a~';':

~

?::g: ;..-....
;; f ~.
p.:..:"
;r.:!;:!
~..:~

"'f!-r ~t."~

m::g;
=~~;
r~-·f
itiii:.i1

~
c)
~
~:"!i::J

:r:~"~

~G

='"
i~ __ ~

.... ,J!
po--
.~=;tr.;:

-~
~-~~
~,

~
~
=n~;

~~~ 
~it 
~:~"! 



o 

o 

o 

THE TYPE FIELD 

BROADCAST 

SOFTWARE 
DIAGNOSTIC 

HARDWARE· 
DIAGNOSTIC 

PLEASE. 

THANKS 

USER 

PAGING 

extra 

To receive a packet : 

1) The "To Node" 
must match or 

BROADCAST 
must be set 

AND 

2) The "To Node" 
must be willing 
to accept packets 

of this TYPE 

onJd· t<)'\\-' ~fe ,",,"51<-. · 

~~~ VV\().:;k.. is SeJ bj "eA-svc, 


o

o

Lc tJo\)f: I ~ bLl.~ It

. 0'" ·tu~ o!- ASkNC\J\:

~\Uflcif('

Apollo Network Sockets
-IJ-i

r).e t\. ~'S '7 \J~0

Queues of received packets S6U~ .~ 0
Zk ~:,~:'"~~ ..

? iv (, \V j"Pl-
o~so'-l L~ ~ \ . ',~ ,\ • , CI-P '0"- 5
be- u,) ~\\t\pl,G}

Identified by "simple" numbers I\O[f.~'~"'~", ,'_ Ib~
tl-z \~~5 , 1'~

(e.g. "1", "4 ") L.vl~" . '\ rt-que~ efV(~
() ~j''v--v ~5';-.J
\ r!1-V~\Je ve- I

Numbers unique within a node, but
not unique across nodes

Two "kinds"- Well-known and Reply

* Well-known

Used by System Services· (e.g.
Paging Server uses Socket #1 in
every Apollo node)

* Reply

o Clients of "Socket"

1. Paging S.erver

2. File ServerlInformation Server

3. Netman·

4. MBX

- Each of these servers is assigned a
o well-known socket number. To

obtain service, a client must address

o

a packet containing the REQUEST to
a (NODE, SOCKET) pair. (paging
server on node 1BA can receive
paging requests on Socket #1 at
node 1BA.

o

-----.- ---

PAGING
SERVER

NETMAN
j 5" h 6+ Stcke+3

USER
REPLY

SOCKETS

<

1

2

3

10

. .
IncomIng

packets

RING

RECEIVE

INTERRUPT

HANDLER

To decline incoming packets, the Interrupt Handler
examines the Packet Software -Header for the Target
Socket Number

.~\o so-~ •
(6~:\"~~ "

'. ,(0.

o

o

o

, Socket Service

1. DATAGRAM

2. Unreliable

- Can lose/discard packets

- Can arrive out of sequence

- . Can deliver duplicates

3. The ONLY Apollo packet delivery
mechanism.

4. Available to user space through the
(unreleased/undocumented) "MSG"
interface. .

o
User Available IPC

MBX

- Interprocess

- Intra- and Inter- node

- User callable

- Fully documented

- Full-duplex virtual circuits

* Flow control

o * Guaranteed delivery

- Identified by pathnames

o

o

o

A MAILBOX

MBX FILE HEADER AND
SERVER INFORMATION

CHANNEL 1 HEADER

Client to Server Queue Header

Server to Client Queue Header

CHANNEL 2 HEADER

Client to Server Queue Header

Server to Client Queue Header

Client to Server DATA

Server to Client DATA

Client to Server DATA

Server to Client DATA

* "Owned" by the SERVER

* SERVER specifies the number of chan nels
and the size of the DATA area

* Shared memory (co-writers)

l0hl>\e. cl~~_ o~ec.,~~ hetv-e
~'\O btl e,k:",~ S tCf"CJ :

fh,t,j CC;~'" I') e..;el" \:rC ptl(J~'l J

(per rna-nefl ttj tv '\ ~~l) .

MBX
o

SERVER AND CLIENT CO-RESIDENT

MBX file
./ get_ree

SERVER to CLIENT
./ put_ree

"' ~

CLIENT
DATA

SERVER
put_ree CLIENT to SERVER get_ree "'-

.",

DATA
/'

SERVER AND CLIENT ON DIFFERENT NODES

o SYSMBX file
./ get_ree SERVER to CLIENT ./ put_ree

CLIENT ~

DATA
~

CLIENT NODE
put_ree MBX

/' HELPER

NODE A / I
NODEB ;V dec MBX file

SERVER

NODE SERVER MBX put_ree "'- CLIENT to SERVER
get ree

HELPER - "'-
/' .",

DATA

o

o MAILBOX SERVER INFORMATION

SERVER HANDLE and FLAGS

ANY CHANNEL EVENTCOUNT

ANY ROOM EVENTCOUNT

QUEUE SIZE

NUMBER OF CHANNELS

SET OF OPEN CHANNELS

SET OF CHANNELS WITH DATA

SWEEP INDEX

. I C'

... .~

------_ -...... _ _-_.

o A QUEUE DESCRIPTOR

USAGE AND FLAGS

BYTES IN EVENTCOUNT

BYTES OUT EVENTCOUNT

REMOTE BYTES NEEDED

QUEUE START OFFSET

QUEUE END OFFSET

o
QUEUE IN OFFSET

-

QUEUE OUT OFFSET

QUEUE OUT REMAINING

IN FRAGMENTED PUT

FRAGMENTED START

FRAGMENTED LENGTH

o

UNUSED

}
LOCAL
REMOTE
EOF PENDING

'Se+ b~ (,f\-trl/z

cc e"" d 0 ~ e ~ ({ v'WI€ I

o

o

o

CIRCULAR QUEUES

I
FREE ~
AREA DATA

2 I

I FREE
I ~A
I I

OUT

I
DATA I

2 I
I

IN

IN

. I

FREE
AREA

I DATA
I 1

IN
T
I
I
I

OUT

I
OUT

ALL FREE
OR

ALLEMPTY?

FREE IFF BYTES IN = BYTES OUT

o

o

o

<

MESSAGES

NORMAL CASE

I DATA +--1 -~> MBX
HELPER

OK
mbx_$put_rec

status ok

FRAGMENTED CASE

(UP TO :a' FRAGMENTS)
7

MBX

HELPER

< OK
mbx_$putJrag

last fragment?

status ok

o

o

o

AEGIS Process Management

- Topics:

* Process Switching (dispatching)

* Interrupt Handling

* Processor Scheduling

* Synchronization (eventcounts) ((

* Mutual Exclusion r\L-

* Special CPU BHandling

* Process Creation & Deletion
all PC ~ ~ a~ .,u~~cl

*v'M os: t" ~ f.

* Asynchronous Fault Delivery

* Clocks & Time-Driven Events

() AEGIS Process Management (Cont'd)

o

o

process y'V\ a l'\a..fft~Y\.t",·~
- Managers: i,,(.nage.-,;

* Level One Processes (pROC 1)

* Level.Two Processes (pROC 2)

* Level One Eventcounts (EC)

* . Level Two Eventcounts (EC2)

* Mutex Locks (ML)

* Timers (Time)

o

o

o

WHY TWO LEVELS ?

unbounded number
named by UID
can create and delete
mainly user processes

VIRTUAL MEMORY

MST, etc.

PROCESS 1
fixed numbr 33
named by PID - SM~II if)kjer~

no creation or deletion
some special virtual memory process(s

reSoArvO w',,--{'d
ctllrin j 05: 'll'\~ ~

----_ •. _.-._-_._._ - --------.-----.----

o

o

o

What is a Level One Process?

Processor State _</ r (
.'-.1\ '\j-' ~ 'v- -JY"'

f.J.~V &IJ o~·(" .01 l(V-u QD\
.) ';) '\ \i-'S" S '\

* Stack Pointers (SSP, USP) ,,~
'. \\,.-c,··j...

* Address Space ID (ASID) &1;(b;~""'5 W

* Virtual Time Clock

* "Resource Lock" Set

Scheduling Information
\,\ ~-\-

* Scheduling Priority ~"rts""~~ ~:~~:\ t>-'S

* Resource Lock Set

* Remaining Time Slice

* Time Since Last Wait

* State:
bound j\\lO,I\S ~+ eC'.f\ be, -sche.Jv.l-ed

waiting L'n fAn~. So<~W\W~
u·,ev-!.p:.\J

suspended LlOSd,U!"\ ~ bl.e ~t ',,,,"'"t

~\\v \'I ~

suspend pending --h-j ·ro s~spt-.d C\ p{~d~t w'Jh a .~~C'~vce (at,k.

TSE with resource lock
(" , I -11 n"-t, s \ \ ~-e. €,\ £,-l

o

o

o

- - ---------------------------------------

Resource Locks

- Not really locks at PROCllevel

- Control deadlock detection

- Control scheduling priority

* A process with a resource lock
has proirity over a process with
none

* A process with an "important"
resource lock has proirity over a
less important one

o

o

o

._------_.- - ._._--_._-

Resource Locks (Cont'd)

- Control ability to turn on CPU B

* A process with an .lock higher
than OK ON B can run on - -
CPU B 'Ji5 "I .j" c1ispdc"-e- :" I'"" "o/- g oi',5 /-0 Jr.ke

Cl p4.je ,~v. It II

* A process witn no locks or whose
highest lock is less than
OK ON B cannot run on B - -

- Prevent process suspension

- User-mode code never holds a
resourc"e lock

o

o

o

Example: A Disk Driver

needs exclusive access to the device

must berunnable on CPU B

wants high priority

- a time line:

holds disk lock

[) process

d o k I S\!,l\ I interrupt
start IS wait ... , Pl

i page fault

P2 ...
~ I wait I for

holds disk
onb lock lock

use disk return
1---------1 from

fault

I CPU A ~I --- CPUB -~I

o

o

o

Resource Locks

network_$server_lock
mt_$lock
ml_$free3
ml_$free4
ml_$free5
file _ $lock _lock
ec2_$lock
smd _ $respond _lock
smd_$request_lock
disk_$mnt_lock
term_$lock
proc1_$create_lock
onb_$lock
bok_$lock
vtuid _ $lock
vtoc_$lock
bat_$lock
ast_$lock
pag_$lock
ml_$free6
flp_$lock
win_$lock
ring..;,. $xmit_Iock
ml_$free7

time_$lock

{ 00 1 }
{ 01 2 }
{ 02 4 }
{ 03 8 }
{ 04 10 }
{ 05 20 }
{ 06 40 }
{ 07 80 }
{ 08 100 }
{ 09 200 }
{ 10 400 }
{ 11 800 }
{ 12 "1000 faulted to CPU B
{ 13 2000 runnable on B }
{ 14 4000 }
{ 15 8000 }
{ 16 10000 }.
{ 17 20000 }
{ 18 40000 }
{ 19 80000 }
{ 20 100000 }
{ 21 200000 }
{ 22 400000 }
{ 23 800000 }
{ the next two locks are the

highest}
{ 24 1000000 clock process

only}
{ 25 2000000 clock process

database }

o The PROCI Database

- The Process Control Block (PCB)

* Stores processor state &
scheduling information

* One per level one process

- The PCB Array

* Array [pid_t] of pcb_t

* pid_t = 1. .. 32

o - The Currently Running Process

o

* PROCI $CURRENT -
- The Ready List

* A linked list of PCBs

* Ordered by CPU scheduling
priority

- All PROCI data is wired -

--- - ..

PROCIOperations
o

- Scheduling

o

C)

* PROCl $CHG PRI - -
(pid, priority_increment)

increment/decrement CPU
priority

assigns new time slice

returns old priority

* PROCl $SET TS - -
(pid, new _time_slice),

used only internally and by
clock process

o

o

o

PROCl Operations (Cont'd)

- Resource Locks

* PROCI $SET LOCK - -
(lock_no)

crash system if higher lock
already held

* PROCl $CLR LOCK -
(lock_no)

crash if not held or not highest
lock held

*PROCl $SPECIAL CLR LOCK - --
used for CPU B-A transition

-••...............•...• . .. _ ...• _-_._ .. .

o More PROCl Operations

- SUSPEND/RESUME

o

o

* PROC1_$SUSPEND (Pid)

returns boolean -> success

set SUSPEND PENDING
otherwise:

* PROCl $SUSPEND E.C - -
advanced when actually
suspended

* . PROC1 $SUSPENDP (Pid)

returns boolean -> process
now suspended

* PROC1_ $ RESUME (Pid)

u

o

o

More PROCl Operations

- Inquiry

* PROCl $GET CPUT - -
(virtu al_ time)

* PROCl $GET INFO - -
(pid, info_record)

- BindlUnbind

* PROCl $BIND -
(start-pc, stackJ)tr, stack_base)

allocate PCB
build call frame on stack
make ready
returns newpid

* PROC1_$UNBIND (Pid)

suspend process
make PCB available

(unbound)

o

o

o

- Allocate Supervisor Stack

* PROCl_$ALLOC_STACK
(size_needed) t(eAefW\ihtd b~
\; tr-ia,l + ecrcr.

returns STACK PTR

wires pages of new stack

* PROCl $FREE STACK - -
. (stack-ptr),

* PROCl_$CREATE (start,
stack_size)

not really create-just a
combination of
ALLOC STACK and BIND -
used only for special nucleus
processes

-0

o

o

Implementing PROCl Calls.

- Rule: Ready = Current ·1t~(Y' .

*. Except when interrupts are
disabled inside PROCl

- Procedure

1. Check validity of call

2. Disable interrupts

3. Modify PCB

4. Reorder ready list

5. Dispatch

o Dispatching

- Procedure

* IF ready < > current THEN

save CPU state of current
establish CPU state of ready

* Enable interrupts

* Return

- Only hard part is maintaining
o time slice/virtual clock

o

* Special timer clip holds remaining
time slice

o

o

o

Null process

* pid = 2

* Always ready

* Always lowest priority (¢') l--e:, ~,~~~':< ~::~

* Just loops looks d rertdj ll~'~
;~ ~J\5 (''\A;.~ o~ {)-1Jer -':.:> Crc~sl~ I1-t s:J'sfcwl.

(0Ic;c")M~s l).,t-€' I""~/- 1("1 li'lear ,-veIlr)

What if highest priority process not
readable on CPU B?

* Determined by resource locks

* Just run null process

o

o

Interrupt Handling

- Interrupts vector directly to driver
no special interrupt queueing or
dispatching mechanism ;I\Mrr"r~ od",,)

ira p ~ .th "~j ~ pet;re 9

-' Most interrupt handlers are very
simple-just advance an eventcount
and return-actual interrupt processing
done by driver in requesting process

- PROCl $INT ADVANCE - -
* Jump to here to advance an

eventcount and return from an
. interrupt

* Push all registers on stack, plus
eventcount address

* Must· be done in assembly
language

* INT ADVANCE simply calls a
special version of'

o

o

c'

EC $ADV ANCE that doesn't _.
dispatch or enable interrups, then
calls dispatch if this interrupt is
returning to level 0

-' PROCI $INT EXIT - -
* Use to simply return from

interrupt

* Jump here with all registers intact

* Calls dispatch if necessary, then
RTE

'.

o
SCHEDULING ALGORITHM

- - READY LIST IS ORDERED BY THE FOLLOWING 48 BIT
QUANTIY (VIEWED AS A SINGLE INTEGER)

j - I ~

1 32 BIT RESOURCE LOCK SET 116 BIT PRIORITyl

- PRIORITY VARIES FROM 1 TO 16 WITH 16 BEING THE
HIGHEST

- NULL PROCESS HAS PRIORITY ZERO

- -THE PRIORITY OF A NEW PROCESS IS 16

- PRIORITY IS DECREMENTED BY ONE AT EACH TIME
SLICE END

- PRIORITY IS INCREMENTED BY ONE FOR EACH 1/4
SECOND OF WAIT TIME WHEN A PROCESS FINISHES o EC_$WAIT ~~ v-ts irv\-ertl(.·ti\J:'~ tt() -tdW-.

o

- A PROCESS IS ADDED TO THE READY LIST AT THE
END OF ITS PRIORITY CLASS. THIS IMPLEMENTS
ROUND-ROBIN SCHEDULING FOR PRIORITY ONE.

- IF A TIME SLICE END OCCURS WHILE A PROCESS
HOLDS A RESOURCE LOCK, IT IS MOVED TO THE END
OF ITS PRIORITY CLASS WHEN THE LAST RESOURCE
LOCK IS CLEARED (TSE_ ONB IN THE PCB)

SCHEDULING STATE)

- THE TIME SLICE VALUES ARE LARGER FOR LOW
PRIORITY PROCESSES AND SMALLER FOR HIGH
PRIORITY PROCESSES. PRIORITY 16 GETS 1/10 SEC. ,
PRIORITY 1 GETS 1/2 SEC. (MAX. IN 16 BITS)

- THE DISPLAY MANAGER ALWAYS HAS PRIORITY 16

o

o

Level One Eventcounts

- Operations

* EC_$WAIT (ecl, ec2, ec3,
valuel, value 2, value 3,)

* EC _ $W AITN (ec J)tr _list,
value_list, count)

these both return ordinal of
first EC in list which" is
satisfied

* EC_$ADVANCE (ec)

* EC_$READ (ec)

returns current value

normally done by inline code
for speed

* EC_$INIT (ec)

initializes an eventcount

o

o

o

Level One Eventcounts (Implementation)

Integrated with PROCl \\,\(L"e<a-e.r

Value
- Format Waiters list head

Waiters list tail

Pi

Waiters list nodes allocated in process
stack

* wait value
* PCB pointer
* forwardlbackward waiters list

links

P3
wait eel, ee2) wait eel, ee2, ee3)

Eel

dispatch
frame

P2 STACK

Ee2

wv6

dispatch
frame

"0

o

o

Mutual Exclusion

- Operations

* ML_$LOCK (resource_lock)

obtain exclusive use of
resource

crash if
RESOURCE LOCK < = -
highest currently held lock
(enforced by
PROC _ $SET _LOCK)

* ML_$UNLOCK (resource_lock)

release exclusion

crash if RESOURSE LOCK -
< > highest currently held lock

o

o

\ C

Mutual Exclusion (Implementation)

Data

* One eventcount and one lock byte
for each of the 32 resource locks

- ML $LOCK -
1. CailPROC1 $SET LOCK-- -

. must be done first

2. Try to set lock bit (BSET
instruction) return in successful

3. Get a "ticket" (eventcount value
to wait for)

* Must be done disabled

* Guarantees FIFO ordering

o

o

o

Mutual Exclusion (Cont'd)

- ML $UNLOCK -
1. Clear lock byte

2. If ticket value = EC value there
are no waiters -> return

3. Advance eventcount

-Reality

* Because these calls are very
heavily used, they have been
merged with PROCl, refer to
PCBs directly, and are carefully
coded in assembly language

o

o

o

Special Considerations For
2 CPU (68000)Systems

- 3 B-A Returns

* Normal

CPU A proceeds normally.

* Error

. Cause bus error on A.
Usually generates user mode
fault.

* Interrupt

Cause interrupt on A. Used
when process returning to A
is not the highest priority.
Vectors directly to
PROC1_$INT_EXIT.

o

o

o

Special Considerations For
2 CPU (68000) Systems

- Multiple Faults in Same Instruction

* It can happen on B-A return that
an interrupt is desired because
ready < > current. However, it
may not happen due to second
page fault in some instruction.
PROC $SET LOCK detects this

. - -
and fixes the ready list.

- Force Dispatch

* It may happen on CPU B that
ready = current but current
cannot run on B. A special
version of dispatch is used by
PROCI $CLR LOCK to force - -
a process switch.

o

o

o

Timer Hardware

- Battery operated "digital watch"

* Retains date and time

* U sed only at node boot

* Updated by standalone
calendar utility

* Not as accurate as real digital -- i;·~ lOS'

watch (- 1 part in 104
)

o

o

o

The Real Time Clock

- Two generally accessible external
variables

* TIME_$CLOCKH-The high
32 bits of the 48 bit system time.
Incremented by 1 at each
interrupt from 4 usee timer (every
1/4 sec).

* TIME $CLOCKH EC-:-An - -
eventcount which is advanced
everytime TIME _ $CLOCKH
is incremented.

- One procedure call

* TIME_$CLOCK (real_time)

Returns the full 48 bit system
by reading the 4 usec timer.

o

. "

O
'-'~

o

Real-Time Events

- Operations

*. TIME_$WAIT (rel_abs,
expiration _ time)

Blocks caller until a relative
or absolute .expiration time.

* TIME_ WAIT2 (rel_abs,
exp _time, eventcount) .

Waits for expiration time, or
for one arbitrary eventcount.

Returns boolean -> event
count went off, no timer.

* TIME_$ADVANCE (rel_abs,
exp _time, event c ount)

Advances eventcount when
EXP TIME is reached .. -

o Virtual Time Events

- Handled by interrupt routine for
8 usec timer

Per-process virtual time queue

- Handles repeating events, like time
slice-end

o - Future virtual-time events

* UNIX signals

* Working set memory management

o

o

o

o

The Clock Process

- A special high priority, wired, system
process (pid #3)

- Handles real-time events and time
slice ends

.. - One big loop waiting ona single clock
process BC

- Real-time event processing"

* List of all real-time events,
ordered by absolute expriation
time

* 32 usec timer loaded with next
event

* Interrupt from this timer
advances clock process BC

* Clock process discovers expired
events, advances assqciated BC,
and dequeues them.

-- -_ ... _--_ .. _--_ .. _-- -'

o

o

o

Level Two Process Manager

- Creates and deletes user processes

- Manages UID process name space

- Passes through some PROCI calls

- Allocates user stack files

- Maintains level 2 process stack

* user stack UID

* UNIX process ID information

* whether a process is an "orphan"

* whether a process should be
stopped at logout

* process group UID

- Implements asynchronous faults

u LEVEL TWO PROCESS MANAGER

User Stack Allocation

- Maintains a pool of used user stack files to avoid
file _ $ create / file _ $ delete overhead .

- PROC2_$ALLOC_STACK_FILE

. - PROC2_$FREE_STACK FILE

- PROC2 _ CLEANUP _STACKS (subject _ id)

Pass· Through Operations'

- PROC2_$SUSPEND (puid) o Waits for successful suspension if necessary

- PROC2_$RESUME (puid)

Inquiry Operations

- PROC2_$LIST.(puid_list, list_size, process_count)
returns a list of active level 2 processes

- PROC2_$GET_INFO(p2_uid, info_buf, buf_size)

- PROC2_$WHO_AM_I (P2_uid)

- PROC2_$MY_PID
return level 2 and level 1 names of current process

o

Miscellaneous
, : CJ

'"
- PROC2_$MAKE_SERVER (P2_uid)

make given process a "server"
server processes are not stopped at logout

Create / Delete Operations

- PROC2_$CREATE
(stack _ uid, start -pc, is_orphan, new _ uid)
allocate a new address space and map the user
stack (stack_uid); allocate a supervisor stack and
bind all to a level one process; process will execute
starting at start-pc in user mode; alloGate new
process group UID of orphan --

. --------o - PROC2_$FORK (s~ck_uid, start-pc, new_uid)
like PROC2_$CREATE but different treatment
of new address space for UNIX; a forked process
is never an orphan ----- ---

o

- PROC2_$MAKE_ORPHAN (P2_uid)
make the given process an orphan

- PROC2_$DELETE
delete the calling process and release all the
resources; calls almost all nucleus managers to

cleanup their per-process data; if orphan, frees the
user stack; otherwise advances the process
termination eventcount; cannot currently delete
other processes

o LEVEL TWO EVENTCOUNTS

- Like level'one except that eventcounts
a,re unwired and can be anywhere in
Virtual Memory

- Level two calls can also wait on level
one eventcounts - they are recognized
by their special addresses,. obtained

from manager specific calls that return
them

o - Level two eventcount calls do not
work over the network

o

- Operations are almost identical to
level one; manager name is EC2
Documented in System Programmer
manual

o

o

o

LEVEL TWO EVENTCOUNT
IMPLEMENTATION

Data Structures

One level 1 ec per process; all EC2_$WAlT
calls wait on~ this

- Each level two ec heads a linked list of
WAlTERS NODES:

EVENTCOUNT

WAITERS NODE

- EC2_$WAlT

VALUE

W ai ters List
Head

WAIT VALUE

PID LINK

For level 2 ec : allocate and chain a waiters node
For level 1 ec: include in ec_$waitn call

- EC2_$ADVANCE
Runs in user mode for speed if no waiters;
Increment value;. if waiters list is not null, call

EC2_$WAKEUP (an SVC)

EC2_ $W AKEUP
Search waiters list for any satisfied wait values
If found, remove from list and advance the level
one ec of the corresponding process

o

o

o

User Mode ProcesslProgram Management

o Program Levels, Processes, and Fork

o The Stack File

<> Mapped Segment Manager (MS)

o Storage allocator (RWS)

o The loader, KGT, etc.

o Libraries, global and private

o

The User Program Environment

. 0 Contains:

• A storage (virtual memory) allocator

• A mapped file manager

• A stream manager

• Some" standard" streams

• Some program arguments

• Exception handling mechanisms

<> Semi-isolated

• Parent affects child only by

o passing arguments

o passing streams

o inherited state

o pre-arranged sharing

• Child affects parent. only by

o returned status

o "permanent" side-effects

o pre_arranged sharing

o Design Trade-offs

• What state to inherit automatically

• What system calls should have "permanent" side-effects (e.g. gpr_$init,
stream_ $create, pad_ $def.J)fk)

o

o

New Process vs. Same Process

o Goal: make them identical except for

• performance

• potential concurrency

• address space available

o Reality:

• Substantial performance penalty for new process

• New process can't use private libraries

• Complex export-import operations required to use most resources in new
process - most managers (e.g. gpr, smd, gpio, magtape) don't
implement.

11\(($2.-t o~
• pgm _ $ invoke for new process not documented 'P5 I'" ~ ~I'111 vo~-e. [J ./' "a,:) "",,",,~

I'\' ((. ({£.S ; t c~
o Result: customer use of multiple processes is very limited Child prCc~s~

o

o

o

Program Environment Tree

Process 1

- Level 0

1

2

~, ~, Proce

Level 0
~,

Level 0

1 I Level 0 I 1

2 Process 4

3 ~,

Process 2
Level 0

Process 5

Each small box is a separate program environment

Within a process, program levels form a stack

ss 3

---'- .. _ .. _ .. _ .. _ .. _-------_.

o

o

Calls That Create Program Environments

<> pgm_$invoke_s(name, name_len, arge, argv, side, sidv,
flags, eep, statusl, status2)

• makes a new process if

o pgm_$wait NOT in flags
- creation record left mapped in parent
- parent can wait for termination and check status

o pgm _ $background in flags
- creation record unmapped
- process disappears when done

o program is a protected subsystem
- caller waits for termination

<> pgm_$exec(name, namelen, arge, argv, env, status)

• like pgm_$invoke, except

o never makes a new process

o first exits current level with partial cleanup

o doesn't rearrange streams

o

o

o

----~------- - ----------------- ----- --- -

Miscellaneous Process-related Calls

<> pm_$finish(ecp, status)

• Waits for process termination

• Returns its status

• Unmaps creation record

• Releases stack. file

• Note: this call should be made even if ec2_$wait is used

<> pm_$make_orphan(ecp, p2uid, status)

• Makes process an orphan

• Returns process urn (all subsequent references must use this· instead of
ecp)

• This operation cannot be undone

o

o

o

Process Names

<> Processes are initially unnamed

<> Name can be assigned by creator or by process itself

<> Names are just process UIDs, cataloged in
'node_data/proc_dir

<> Name can only be set once (because there is no way to tell
DM to change name in banner)

<> Several PM_$ calls to set/inquire process names

u

o

o

~-~--

Fork

<> pm_$fork(is..,:.vfork, parent_SP, child_puid, child_suid, ecp,
status)

<> Makes a new process

• copies the parent's stack file

• copies the parent's address space, except that references to parent's
stack are replaced with references to child's stack

<> Managers with global state (e.g. streams) must be
informed

• streams pre-forkJpost-fork

• pfm_$static_fork

o

o

o

Vfork

<> Push a program level

<> Make a new process

• Address space is an EXACT duplicate of parent

<> Parent waits until child executes PGM_$EXEC

• Child's activity during this time limited mainly to streams operations

<> When child executes PGM_$EXEC

• Address space is cleared

• Equivalent of new process pgm_$invoke is done, using already created
process

• New stack file is initialized at this point

<> Parent resumes execution, and pops a program level to
recover streams state

~ --~------~-.-~~~ ---------------------~-

Stack File Allocation

o Holds ALL per-process read-write data

File offset Virtual Address
O~C-r-e-a-ti-o-n-r-ec-o-r-d--------------------~200000

· termination eventcount
· termination status
· arguments
· exported streams
· program to execute
· login info
• UNIX context

8000 208000
Per process static data for global libraries

30000 guard segment 230000

38000 238000
User mode execution stack

0 78000 guard segment 278000

80000 various

Storage managed by RWS

o

------------ _ ... _ .. _ .. __ ... _ .. __ ._ .. _ ... _ _---------_.---_ _ - ... _._._----_. __

o
Mapped Storage Manager (MS)·

- maps objects into the private address
space

- handles object locking and unlocking

- objects are automatically unmapped
and unlocked at level exit

o - based on kernel FILE and MST
managers

...

o

- usee by EVERYBODY, including
other PM services
(read / write storage manager)

MS _ $MAPL (name, len, start, length, conc, access, o extend_ok, length_mapped, status):

o

o

univ-ptr

- maps the area of the file 'name' ('len' chars)
starting at offset 'start' for 'length' bytes

- returns the virtual address of the first byte mapped
(function value), and the number of bytes mapped
('length_mapped')

- locks the file according to (conc, access); 'conc'
specifies the desired concurrency control:

ms_$nr_xor_l w N readers XOR 1 writer
ms_$cowriters N readers and N writers*
ms _ $none no locking

- * cowriters must be on the same node

- 'access' specifies the desired access to the file:
ms_$r read
ms_$rx read, execute
ms_$wr write, read
ms _ $wrx write, read, execute
ms _ $riw read intend to write

- allows file growth if extend_ok is true

o
MS_$MAPL_UID (uid, start, length, conc, access,

extend_ok, length_mapped,
status): univ -ptr

- similar to MS _ $MAPL, except 'uid' is specified in .
lieu of 'name' and 'len'

MS_$CRMAPL (name, len, start, length, conc,
status): univ -ptr

- similar to MS _ $MAPL, but creates the object and
catalogs it under 'name', 'len'

- . object is mapped for read / write

extend~ok is true (it MUST be!)

o - object is made permanent

o

MS_$CRMAPL_UID (uid, start, length, conc,
status): univ -ptr

- similar to MS _ $MAPL _ UID except that an
object is created and its uid is returned

- object is NOT made permanent

o MS_$CRTEMP (location, len, start, length, conc,
status): univ ytr

- like MS_$CRMAPL but creates a temporary,
unnamed object

- 'location', 'len' descibe the volume on which the
temporary object is to be created

MS_$REMAP (va, start, length, length_mapped,
status): univ ytr

- unmaps a portion of the object at 'va' and maps a
new section ('start', 'length')

- object stays locked as before

o MS_$ADDMAP (va, start, length, length_mapped,
status): univ ytr

- maps an additional part of object mapped at 'va'

- object at 'va' is not unmapped

- object remains locked as before

- object is unlocked when the oldest part is
unmapped

o

'. .'lo

MS_$UNMAP (va, length_mapped, status)

. 0 - unmaps the object specified by 'va' and
'length_mapped'

- unlocks the object if this 'va' was returned from
from a procedure other than MS_$ADDMAP

I b l 0 Q,cle,.r
u5LO- j

- unmaps part of a mapping done by one of the
MS _ $xxMAPxx procedures

- does not unlock the object

MS_$RELOCK (va, access, status)

C) - changes the lock on an object

- access must be 'ms_$r' or 'ms_$rw'

o

o MS_$ATIRIBUTES (va, attributes, -actlen, maxlen,
status)

- returns the attributes of the object mapped at 'va'

- attributes include:
permanent flag
immutable flag
current length
disk blocks used
date/time used, modified, created

MS_$TRUNCATE(va, length, status)

- truncates object mapped at 'va' to 'length' bytes

·0 MS_$MK_PERMANENT (va, opts, name, len,

·0

status)

- makes a temporary object (created with
MS_$CRTEMP) perrpanent and names it

optionally creates a backup file if an object
with an identical name exists

MS_$MK_TEMPORARY (va, status)

- makes a permanent file (mapped at 'va')
temporary

- drops its name

o

o

o

~--.. ,---.... - _.- _ __ _-_ ... --------

MS_$MK_IMMUTABLE (va, status)

- makes the object mapped at 'va' immutable

MS_$NEIGHBORS (val, va2, status): boolean

- determine if the objects mapped at 'val' and
'va2' reside on the same disk volume

MS_$FW _FILE (va, status)

- causes the file mapped at 'va' to be force-written
to disk

- doesn't return until the forced write completes

MS_$FW_PARTIAL (va, length, status)

- force writes part of the object mapped at 'va'

- 'length' bytes are force-written

- doesn't return until the force write is complete

MS_$STREAMS_FLAG (va, flag, status)

-- sets an internal flag saying, "the mapping at this
virtual address is owned by a STREAMS type
manager"

- needed because of UNIX 'exec' primitive

- required because of mangers orientation to
'Mark/Release' instead of 'Resouces'

o

o

o

Storage Allocation (RWS)

<> Basic call:

• Allocates non-returnable vanilla virtual memory

• Recovered at program termination

• rws_$streams_tmyool used to avoid recovery at pgm_$exec (because
streams are supposed to stay open across EXEC·,

<> Implementation

• Maintain high water mark in stack file

• Allocate andms _ $mapl in mUltiples of a segment

• Maintain VM high water mark within a given stack aIlo,cation

• Just push and pop high water marks' at program level transitions. MS
cleanup takes care of the rest

<> Heap allocation

• rws_$alloc_heapyool and rws_$release_heap

• Layered on rws_$alloc_rwyool

• Maintains special free-lists for small blocks

• 16 bytes overhead precedes each allocated block

• Not notably fast

/ (J

Object Module
/~

32 byte stream header (obs.) ~

32 byte object module header

Pure t\ .. o cee\..Act':\ (\IY'\!'~
~ \i.J. r-L~

Sections ·Ve 'o"'-~ ~ ~ ,,:.

Impure data
Ct.,l~NSS ~d· t-.;
gt~H(.. If.c;r;',.bl-ts

(j"r. ~ ""s (\...:.-1 h -t b c \. .. .-.j{)

te..sO\vl,,l bj !>;,~~ ...

Global Symbol Data ';'C v'" el'-e(~h·G"
i) .. '..b ~ ,h1>U~

Relocation Data ,t..l<" ·,Mr"..-t. dwl~

More impure data \'fpect t
&

More global symbols

More relocation data

...

_/'

ms_$unmap_
partial

---t---+--.., rws $alloc _ (op;('S (ialc, ;"fo
copy, 'p ~ce$s stc.Lk

resolve ext.
---t---+---J and relocate

<> Note that normal cleanup of MS and RWS managers takes
care of unloading

Private Libraries (lNLm)

G o Start with normal load

o Enter marked global symbols into private KGT
.. t="~

o Persists only until termination of current program level

o Hence INLIB is an internal shell command

o

-------_._----------_._---_ .•

o

o

o

Unresolved Globals

<> Never terminate any loading process

<> Generate TRAP instruction, followed by symbol name, in
DATA$

<> When trap occurs' at run time, KGT is tried again

• if successful, TRAP is replaced by IMP
"-, o-~·.kr w«.rl-lS

• otherwise fault handling proceeds ~'\ 6 R\.(th.e (cLl·\t.vyf
0+ resD\v.,·b~b'l"- .

\i"~
[>,

ij.t'1

7I ___ .. ____ .. -... ,--..... ---.----

@~-~~ .
~
'V ----l r-"'- 91-4

\~

---_._---_.--.. --_ --

o
, GIQ!}al,Lihraries
,:v..I1'\ 'l'':,~ .~ G

u J I.-r. \ '('r"-J
\ ,;{" ,.1,,>- '" ~~ 11{\ s\lt\\t(j\ V_-l'~~\'l'''''~~a- -iJ ,

<> tuaded-by ENV in response to DM, SH, SPM, or GO -

<> Use globrws_$alloc_rw for DATA$ section

<> Use privrws_$alloc_rw for impure sections other than
DATA $

\ \\. L 0'\;:<:' . Q,~~
"\~'} r I: ~\ot .

Sk
O 0 0 0 10 0 c;~().~~ ~

• Ip Inltla lzatl?n ~dl1~
,",,1.'-';' ~\'~ rJ"
\ b-~"

•. Map stack file into appropriate range of private address space in
pm_$init

<> Make DATA$ read-only after loading is complete

o • Shared storage managers initialized first

M · II d · /';b I'b ' I,., <> aln program ca e In every new process /user I "pI' ~hl·t-e-
• Hence should be avoided if library is not always needed

o

o

o

Error and Fault Handling

<> Kinds of faults

<> Supervisor mode fault handling/generation

<> User mode fault generation

<> Fault handlers

<> Dynamic Cleanup Handlers

<> Static Cleanup Handlers

<> Mark/Release

._- ---_._-_ _. __ .. __ .. _.

o

o

o

Error and Fault Handling

¢ Kinds of faults

¢ Supervisor mode fault handling/generation

¢ User mode fault generation

¢ Fault handlers

¢ Dynamic Cleanup Handlers

¢ Static Cleanup Handlers

¢ MarklRelease

--- - --------------------------------

Kinds of Faults
(

o <> Program error

• Unimplemented instruction

• Odd address error c.--V
\o.a~~s 5~

i \\tj(A \l"\oA- \ ~ ,\()J'(().

• Reference to invalid address \ \ J

• Access violation ~~\- y..o-v't '{'\ CJ ~.'r,

• Reference to unresolved global

• Guard fault (stack overflow)

<> System error

• Network failure (e.g. too many transmit retries)

• Disk full

b
• Disk error

<> Asynchronous

• Quit

• Stop

• UNIX signal (e.g. child death)

-- -------.----.---~ --_. --_ .. -_._-----_._.--_._--

b

o

Supervisor Mode Fault HB:ndling (synchronous)

o Address-related faults

• These are all page faults that cannot :he resolved, either because of a user
program error, or due to system failure

• Assign appropriate status code

• On 68000 systems, return to CPU A with a bus error

• If fault occurred .in supervisor mode:

o H address in supervisor range, crash system

o Otherwise, report both supervisor and user mode state

• Go to fim_$com to report fault to user mode

o CPU-detected faults ~~
0t~ :\.,,,

\\' \t,~ DC
'\'I. -r .'" ..,. >,0- \

• Just set the status code, and go to fim _ $com

<> Common fault handling

• Push a fault frame on the user mode stack

• If this causes another fault, process dies

• Fault frame contains registers, PC, status, etc.

• Fault frame flagged with 16#DFDF

• Force supervisor stack to contain a simple exception frame with PC set to
the user mode fim (set by fim _ $ install)

.RTE

/

o

b

o

Asynchronous Fault Generation

<> Set desired fault status in fim_$trace_status

<> Set trace-trap bit in supervisor stack of process to receive
fault

<> Advance fim_$quit_ec to get process out of nucleus if
necessary - long waiters also wait on this and
fim_$quit_value .

<> When trace-trap occurs, usefim_$trace_status, and go to
fim_Scorn to complete fault handling normally

<> Disabling handled in user mode support

<> User mode must acknowledge fault (using
fim_$acknowledge) before further asynchronous faults can
occur _

.. --.... -.. , .. ".~ ,.~.---.--.... ' . . "._--' _.-.".-.. _._ ... " .. , ... ,--" , .. ,,, ,, ..

o

o

o

------------_ .. _._--

Multiple Asynchronous Faults

• Error if a fault is pending which has not yet been acknowledged by
fim _ $acknowledge

• DM says "another fault is pending for this process"

• May be inhibited in user mode by pfm~$inhibit, due to user program or
system library error in missing are-enable

• May be hung in nucleus in a call (network retry is typical) that doesn't
wait on fim_$quit_ec

• User fim may be trashed and getting faults in the fault handler before
previous fault can be acknowledged

• Enqueues multiple faults

• Subsequent faults delivered after fim_ Sacknowledge

• Used by UNIX signal mechanism to avoid losing faults

---_. __ ._. __ .. --_._.-._--

o

o

o

Process Groups

<> This mechanism supports AUX

<> It only affects asynchronous fault delivery

<> A parent and its child (either pm_Sfork or pgm_Sinvoke)
are in the same process group

<> A background process (pgm_Sbackground to pgm_Sinvoke,
or pgm_Smake_orphan) starts a new process group

-<> A process may decree itself to be in a new process group

<> A process group is denoted by a UIn

<> proc2_$trace_faultJ)group and
proc2_$trace_fault_pgroup_enq

• Deliver faults to all members of process group

• Process urn may ftte used to denote the process group it is in

• The DM uses this form of the call for quits

---_._-----------_.-
.- ._-----------------

,.

o

o

supervisor

()

User Mode Fault Layering

fault
I---~ handlers

.dynamic
t---~ cleanup

handlers

----'------~-~----------.----

o

o

o

Fault Handlers

<> Always "static" (i.e. not related to call stack)
h ~J i" h (;'I'"N\.G;.,.(O'r'Lw- 01"\ ~ ,""~ .,s·)-u.vk.. fra.~ ~.

<> Established by pfm_$establish_fault_handler(funcJ)tr)

• Returns handle for later release

• Func J)tr is a Pascal . (or C) function pointer whose single argument is the
fault frame constructed in the nucleus

<> Called in inverse ~rder of establishment, by pfm_$fault

<> Not called on asynchronous faults if inhibited

<> Return value from fault handler can cause. fault to be
ignored, if restart is possible

• restartability is recorded in the fault frame by the nucleus, depending on
the nature of the fault -- addressing faults are usually notrestartable

• if a fault handler says to ignore the fault, no further fault handlers are
called, and the program is restarted

• if no fault handler says to ignore the fault, then proceed to pfm_Ssignal,
and dynamic cleanup handlers

. ,._--_ _._ _--_ ... --_ .. -.-.... -.. _ ---_. _•.. , -... "

{
t o

o

o

Dynamic Cleanup Handlers

<> Associated with active call frames on stack

cleanup list

________________ m

SP . ---..I .. --:-.:---.:---.:---.:-.:---.:-----.:---~
~. ~ ..

~
......

...1 I
AS-A7 I .,... cleanup_record
PC

~,

AS-A7
PC ..til. I ~ ... I ,....

stack

<> Activated (not c~IIed) by pfm_$signal

• thus includes all program termination except· return from main program

<> Return to exception handling only by resignal

<> Cleanup handler automatically released when activated.

<> pfm_Sinhihit done automatically

----.:..----- .. _---_._---_ .. _---_.,.,_ .. __ ... , , .. -

o

o

o

Dynamic Cleanup Handlers (page 2)

<> Consistency checking

• . cleanup list scanned. for handler with SP >= current SP

• cleanup record checked for overwriting due to reuse of stack frame
exited without pfm _ $release _cleanup

<> These . cleanup handlers are moderately expensive in
relation to a simple proc.edure call. We are working on a
cheaper mechanism

<> We should really have language support for this, but ...

o

o

o

-------_ .. -...• _._-

Typical Cleanup Handler Usage

VAR

BEGIN

•••

status := pfm_$cleanup(cleanup_rec);
IF status. all = pfm_$cleanup_set THEN
BEGIN

{ normal operation}
pfm_$release_cleanup(cleanup_rec);

END
ELSE BEGIN

END;
END;

{ cleanup the mess we started}

{ depending on the operation we desire, either: }
PFM_$ENABLE;
RETURN; { turns fault into normal bad status from

this procedure}

{ OR } .
pfm_$signaI(status); {resignaI other cleanup

handlers}

o

o

o

Disabling Asynchronous Faults

• Increment inhibit counter

• H fault is asynchronous (recorded in fault frame by nucleati fim) and
inhibit count is not zero~Jrecord status and ignore fault.

• Decrement inhibit counter

• If zero, and status recorded by pfm_$fault, then pfm_$error_trap

<> Many system calls (e.g. ec2_$wait_svc, but not ec2_$wait)
will return error status if asynchronous faults are inhibited
and one occurs

<> Note: these calls ONLY inhibit asynchronous faults. Since
it is very difficult to preventasynchronous faults altogether,
it is best to use a clean~p handler if you need to be robust
and can afford the cost.

....... ----.~-------.:--------'--------.-..... -.-.---.---- .. _-----

Program Initiationffermination

o <> A. K. A. MarkIRelease

<> pm_$proc_mark

• called by pgm_Sinvoke after program is loaded and streams switched

• pm _ Slevel <- pm _ Slevel + 1

• call mark/release handlers

• establish normal cleanup handler

• set status/severity to status _ $OK

• if not cleanup, call main program

• call pm _ $release

<>pm_$proc_release

o • 'call static cleanup handlers

• pm_$level <-pm_$level - 1

• call mark/release handlers

<> pgm_$set_severity

• Set status.code (used in pm_$mark) to the severity value

--'""-----'"-"-,,-_:,--------'---"-"---"----- --"""""""-'''''-,-,-------

o

o

o

<> Executed (called) at program termination, from the level
at which handler was established

<> Established via pfm_$static_cleanup(ecb_addr, status)

<> Called in inverse order of establishment

<> Calling sequence is

• handIer(false, new_level_number, termination_status, is_exec)

<> No actual relation to fault handling

<> Preferred method of cleanup for managers· in global or
private libraries (~etter than a mark/release handler)

<> Try to avoid depending on managers other than MS, R'VS,
STREAMS in Y0ll:r static cleanup handler, since other
managers' cleanup routines may be called before yours (we
should fix this, but are not sure how)

, o

o

o

--- ---------_ -.-_ _---

MarkIRelease Handlers

o Like static fault handlers except:

• called on all level transition, both up and down

o Use when

• you need to keep client status at each level

• you need to initialize default state for new programs

• you have to "init" call where you could conveniently establish a static
cleanup handler

• almost all programs will use 'your services (e.g. streams)

o Otherwise use a static cleanup handler, established in your
"init" call, and released in your "terminate" call.

----,----- ----------- ._.--_ _ .. _ .. -._-_._._- -

b

I

l.,--,

U

Fault State. and Traceback Recording

<> Information reported by FST and TB c'ommands
-':--

<> At the end of pfm_$fault,' and before pfm_$signal, the
registers, etc., in the fault frame are copied to a global
buffer for later use. Alsok the stack is scanned (if possible)
and routine names and line numbers are put in another
global buffer

<> Traceback collection sometimes gets a second fault

----- ---

o THE STREAM MANAGER

- Device Independent 110

- A Big Switch

USER PROGRAMS

o I I II

D FILE

VIR TERMlNAL MAGTAPE

TYPE MANAGER

Topics

- The Stream Table

- Opening Streams

- The Generic Switch Call

- Some Special Switch Calls
'6/7'<-

The D _FILE Manager

b - Other Managers

b

(J

o

THE STREAM TABLE

- The Database of the Switch itself
. . pPtb:

- Array [0 ... 127] of stream _ tab le_ entry process f1k

- Each entry is :

UID

HANDLE

MANAGER TYPE

OPEN PM LEVEL

SOME UNIX BITS:

* close on exec - -
* n'delay

t:cmfrO (b\oc,k..

o

o

OPENING A STREAM

PATHNAME ·w name_$resolve
ALLOCATE A

STREAM TABLE
ENTRY

UID) 1---___ --4.f

file Sattributes .

---~/ -

IVTOCEI
TYPE UID

CONVERT TO
MANAGER

TYPE

~GR_TYPE---,

CALL TYPE
MANAGER'S

OPEN HANDLE

STREAM TABLE

b

b

o

A . TYPICAL CALL

-t handle

Type Manager

WITH stream_table [stream_id] DO

CASE manager_type OF

d _ file: dfile _ $get _rec(handle,args ...)
vir_term: vt_$get_rec(handle,args ...)

I.

•••

END

o

b

Stream Table Operations

STREAM $SWITCH -
* Move stream table entry to a

different stream id.

* Caller can specify new sid - .
otherwise allocate downward
from 127 'D~ c~ e~ .. ~~s

\"iWrl.\lt- '. n 'I h;. i\cA-
cw\~;'\ Gloj;e~) . Iy\'" •

/" c loscl ('-or pc..

STREAM $REPLICATE and
ST-REAM $DUP 'vvvS S\\(}I't--e..

:-~. 1-. . \l) P rtj ,--w . ,~ \&j)
_ 'I v- .. , f><.R.t ~

\~ S(J.,~ _c1o<J;C'-\.
1 ' ;eti d-s * Copy'stream table entry to a ~\..t." (;to"

different sid fo{ v·
Xh

I

* Two resulting streams are
indistinguishable by type manager

* PM OPEN LEVEL and some - -
other STREAM TABLE values -
may differ

* MGR_$REPLICATE is called to
increment replication count

* DUP & REPLICATE differ in order
of allocating new sid

o

o

o

Inquire/Redefine

- Mixture of switch attributes and
manager specific attributes
m.anager called only if switch can't
do operation itself.

- Pathname operations done in switch,
since manager is pathname .
independent.

- Best to operate on only one attribute
per call, so sensible errors can be
reported.

- Growing number of inquires that
manager must answer makes
manager impl~mentation tedious.

- MGR $INQUIRE must be able to -
open object temporarily, for inquire by
name.

------------_._-- ..•. __ _ ••..... _ _._ .•. _ .• -.•..... __ .. _._--_._--

o

o

o

. ,

IMPORTIEXPORT

- Like replicate, except new stream is in
a different process.

- Used to pass standard streams to a new
process.

- Both manager data and stream table
data, which are not shared, must be
packed for export.

1-
t,~fcr

- STREAM $GET XP BUF - --
* CallMGR $EXPORT to -

package data

* Add STREAM TABLE data -
* Caller provides buffer (in creation

record for PGM _ $ INVOKE)

* Also called by
PAD _ $CREATEL WINDOW]

o

o

IMPORTIEXPORT (Cont'd)

- STREAM· $ OPEN XP BUF - --
* Allocate and fill

STREAM_TABLE entry

* Call MGR $IMPORT -
* Called by PM_$INIT in new,

process

- STREAM $FORK -
* Just call MGR $FORK-data -

already copied

o
Manager Specific Functions

- Operations that are not common to all
. types of streams

* e.g. PAD_$USE_FONT,
SIO $CONTROL . -

- They take a STREAM_ID as
argument, however

- These entries must look in the stream
table to find their handles, a~d to
check that the stream is open and has

o the right type.

- MGR_$CREATE is a manager
specific function because there is no
open stream involved, and no object
from which to derive the type.

- STREAM $CREATE is mis-named.
It should be (D _FILE 3 _CREATE.

\ '--I \ n \JlAs(" t ~-t,l).'~~ a ,. ~k .
0\.t, (,--i\ y\~ (\1

f

o

o

I ,,,

0
:,..-

The D _FILE Manager

- The file structure

* VTOCE, stream header

- The open stream structure

* PFCB, SFCB

- Data Organization

* D FILEI

Counted Records (REC)

* D FILE2
- \t Y-.L b \a"":.~s

Byte Stream (UNDEF)

* D FILE3 lLvi _ .\t{ \'"I a)

tI \ '" - • (".cuX " c\.e:,\'"'I'i: t~ ~
bj

Byte Stream (UASC)

Locking and Concurrency

u

o

THE FILE STRUCTURE

VTOCE
TYPE UID
LENGTH
TEMPIPERM
OS STUFF

32 BITE BLOCK .
HEADER

* LENGTH cS bj.k~ oS- (,d-o..

* RECORD TYPE
* INFORMATION
* CONCURRENCY

CONTROL

* ASCIIIBINARY
* HEADER

CHECKSUM

DATA

THE . OPEN STREAM STRUCTURE
o

o

PRIVATE TO EACH
PROCESS

Handle

"
PFCB

UID

Replication Count

Mapping Information

Open Attributes
* opos po ~ ~ .~~'"
* ocone tU"u\,\.,-~L'j

Redefined Attributes .-----...... ~""::---"

__ /--tinoy-~ / locate
-~.//-~ * fOrce locate I\t~ ,}

Aurl-:t " /. * appen~ f'

{\'I. \;:.,
cl'h r,

tJ},; \oJ (~~) r ()-
'\\ -'\'

.;;, u-f' \ Private Seek Key ,{(\

Seek Key Shared ?

SHARED AMONG ALL
PROCESSES ON A NODE

SFCB

, UID, TYPE

Use Counts:

users
writers
no concurrent. write _. -

opens

Lock Bit

Header Cache

if TRUE --I---+--+--~> Shared Seek Key

b
ONE TO MANY RELATIONSHIP

PFCB PFCB . PFCB

PFCB

o
SFCB

SSK

PFCB

b

.>,-~

·f)
\...-

o

WINDOWING

The d _file managers do "110", by
mapping files

ql!~

16-MB may be too small to map a
whole file

So, we move a window over the file

VA:= stream_ window (pFCB, offset, lenth)
o ~ ____________ ~

offset

VIRTUAL ADDRESS

* OPTIMIZATION:
potential calIers of stream_$window
check and use map info first '--------------'

FILE

o

o

Data Organization

- Byte Stream

* UNDEF: D FILE2
",". -

* UASC: D FILE3 - .

- File (except header) is "pure data"

- Seek key is 4-byte file offset

- No ·"record" seek

GETREC/GETBUF

* UNDEF
Return the number of bytes
requested, up to EOF

* UASC

GETREC: return # of bytes
requested, up to EOF/newline.
Say how many bytes would be
returned if the buffer were big
enough~

GETBUF: same as UNDEF

o

o

o

DATA ORGANIZATION

- Counted Records : (REC = d_filel)

* 4 byte count followed by data

* The count (hence data) always
word aligned .

* 8 byte seek key

Record Offset

- 2 Subtypes :

Byte Offset
in file

* V: Variable Length

* F2: Fixed Length

allows record seeks

if set by Redefine, causes
error on Putrec if length is
wrong

-_. ----------_ .. - - ------_._--------_._ ... _--_. __ ._ ..

o

o

o

Data Operation (Cont'd)

- Creation
D- ~\e,,?

* STREAM $CREATE makes -
VASC/ASCII

\) -,.~~ \ ~< 1-

* STREAM $CREATE BINARY-- -
makes REClbinary

* All others must be made by
redefine.

()

o

Locking & Concurrency _

- Files locked only once per node

- SFCB reflects actual concurrent use
on the node

- Special lock call (FILE _ $LOCK_
STREAM) used to support the
following sequence:

* Process 1 - open F

* Process 2 open F

* Process 1 close F

o

o

b

Locking & Concurrency (Cont'd)

- If both openers and file header agree
on concurrent access (including at
least one writer) then USE_COUNT in
SFCB control access

- SFCB is locked on each read/write
whenever file and opener allow
concurrency

* Lock is done by bitset & periodic
retry

* Timeout yields "unable to obtain
needed resources"

* ULKOB also releases streams
lock, and invalidates SFCB.
Subsequent operation gets
"internal fatal error-table verify
failed" .

o

o

o

Other Managers

- NULL DEV

* EOF -on read, bit bucket on
write

- DUMB TERMINAL

* READIWRITE SIO lines

* Disk object used to determine SiD I\~l':r.,tl""
\)cc:rO-)

type and line number .' S,D $ w~

- VIR_TERMINAL ""5-e,l h:; D;vt. lM~J
lt1o~ 61- '11-ese c.:..lls 4..e l-e {e~s.e-d .

, * Display manager input!
transcript pads

- DM EDIT PAD -
* Allows only subset of pad

operations and close

MBX FILE

* Interface to MBX manager for
clients

---_ ... -_ .. _---------,----_._--_._--- ----

o

Other Managers (Cont'd)

- PIPE FILE -
* UNIX pipes

- DIRECTORY

* UNIX format directory reader

- MAGTAPE

* STREAM level interface to
MAGTAPE support

CASE HM h\~~Q'- - - 1e\Ya.. 0
~ ~iI'.:tI.r - ~ J eJ ~\ ,-t sset.l

- ~ "'t\br\~£1. .. ,.~ cCf"'p coC!c,i-'jJ
t '1'" f~\-<"W\ leat\~{\j;..r

* CASE (DSEE) history manager
reader

- All but NULL DEV, CASE HM use
, - -
PFCB variant

- OnlyD .-FILE, transcript pads, use
SFCB

o

o

o

PROTECTION

Identifying and Authenticating Users

Subject ID (SID)

Registry

Access Control Lists

Protected Subsystems

Locksmith

.. .~

------ ----------------------------- ----

Q

o

o

Identifying Users

Subject ID (SID)

PPO

who is accessing the object:

person
project
organization
protected subsystem

- abbreviation for :
person, project, organization

- a user

- if the subsystem is important : PPOS

Representation :

- each component of the SID (PPOS)
is aUlD

o

o

o

-----~ .. ~ ~ ~ -~ --...... ~ .. ~ .. -- .. - ... -----.. --

.. Authenticating Users

Establishing the user's identity and
authorization to use the system

- a. k. a. "login"

Network Registry

- database of text string PPO to UID
translations

database of accounts

subset of PPO combinations that
can log in

password

home directory

Local Registry

- one per node (use when network down)
\O\l-S'V) /2.. c; lJ-tv) '?

- last 10 users to log in on that node

- guarantees login on your own node

o
Registry Algorithms

Registry file format (pPO and ACCT)

TRANSACTION UID

COMMI'I'I'ED BIT

READ VERSION

Atomic Transaction

o - all or nothing

o

- roll forward / roll back

Read Algorithm

- find one, read it

Update Algorithm basics

- make change to one copy
(clear committed bit)

- "commit" it
- propogate changes to all the rest

o Update and Recovery

Update
- lock all resigtry copies for RIW

login can still happen
- pick one to update
- clear the comitted bit (force write)
- generate new transaction UID

(time stamp)
- make changes; force write
- set committed; force write .
- propogate changes to all copies

o Crash Recovery

o

- find the latest committed copy
make sure the clocks are in sync!

- overwrite all the rest with it
rolls foward if changes finished
rolls backward if changes unfinished
takes advantage of the replication
110 separate before / after images

- done before each update
no wor'k (just checking) if no crash

Propogation: same as crash recovery

o

(.' o

o

---_ .. _-_ - --------,------------:----

REGISTRY

- A network-wide, distributed,
replicated database

- Contains people's names, projects,
organizations (PPO)

- Contains accounts: subset of all PPO's'
that are authorized to log in (ACCT)

* Password

* Home directory

- -Why Replicated?

* Availability in face of failures

* PARTIAL FAILURE

A fact of life for distributed
systems

o

REGISTRY LOCATOR

/REGISTRY /REGISTRY

3 ENTRIES

..

lIn 0 de l/registry Irgy _site·
//

/

Ilnode2/registry/alt_site

Ilnode3/registry/alt_site

/

r ~\,t

~r fJ"'~ \"
\ /

The LOCATOR
file is a list of
locations of a
distributed object.

SEARCH FOR
ONE!

PARTIAL INFORMATION IS A FACT

OF LIFE IN A DISTRIBUTED SYSTEM

o
COMMITTED LOCK

TRANS UID

COMMITTED LOCK

TRANS UID

o
COMMITTED LOCK

TRANS UID

o

---------_ -.•. --.-.---.••. - ------

u NORMAL CASE

COMMITTED LOCK
YES NO

TRANS UID
11:00 AM

COMMITTED LOCK
YES NO

o TRANS UID
11:00 AM

COMMITTED LOCK
YES NO

TRANS UID
11:00 AM

o

--------_._-_._._-_._-----_ ------._-----_._. __ .--

o START UPDATE

COMMITTED LOCK
NO RIW

TRANS UID
2:00 PM

COMMITTED LOCK
-YES RIW

TRANS UID
o 11:00 AM

COMMITTED LOCK
YES RIW

TRANS UID
\.
~- t-t~C

11:00 AM

o

- ------------------------ ----------------------- ----------------

COMMIT UPDATE o
COMMITTED LOCK

YES W

TRANSUID
2:00-PM

COMMITTED LOC·K
YES RIW

TRANS UID

o 11:00 AM

COMMITTED LOCK
YES RIW

TRANS UID
11:00 AM

o

u

o

o

c
a
p

y

~

-

COMMITTED
YES

TRANS UID
2:00 PM

COMMITTED
NO

TRANS UID
2:00 PM

COMMITTED
YES

-

TRANS UID
11:00 AM

·.--_ .. _._-_ _-_ ...•..... _ _.-._----_._.-._ _.. . _. --

LOCK
RIW

LOCK
W

. LOCK
RIW

o 1 PROGATION DONE

COMMITTED LOCK
YES RIW

TRANS UID
2:00 PM

COMMITTED LOCK·
YES RIW

TRANS UID·
o 2:00 PM

COMMITTED LOCK
YES RIW

TRANS UID
11:00 AM

o

ALL DONE o
COMMITTED LOCK

YES NO

TRANS UID
2:00 PM

. COMMITTED LOCK
YES NO

TRANS UID
o 2:00 PM

COMMITTED LOCK
YES NO

'TRANS UID
- 2:00 PM

o

u

o

o

ACLs

Basic: list of (SID, rights) entries

Rights

-files: dwrx

-directories: dcalr

-all: pgn

Initial ACLs

stored in directory

ACL given to newly created files
and directories

inherited by new directory

o ACL Format

Version
Type (file, dir)

Default Node
Number of Entries

Subsystem Manager

Subsystem Data

ACL Entries

o Entry format: PPOSNER

ppo: person, project, organization UIDs
S: subsystem UID (not currently used)
N: node to which rights apply
E: expiration date ~not currently used)
R: rights bits (32)

o

(J

o

o

.•.. _ .. __ ._-_. __ .. __ .. ----------

Protected Subsystems

A way to restrict access to certain objects
to certain programs

The protected subsystem has aUlD

The "certain objects":
-have subsystem UID in the
"subsystem data" field of their ACL
-called "protected" or "se~led" data

The "certain progams":
-have subsystem UID in the "sub
system manager" field of their ACL

-called "subsystem manager"

Subsystem managers
-have complete control over access
-have all rights to protected data

----------------~-- .. - .. -----.--.-------....... -- .. ' .. -... _ ,-, .. "._-

o

o

o

Protected Subsystems II

Commands:
CRSUBS
- create a new protected subsystem

ENSUBS
- enter a subsystem at shell level
- examine, debug protected data

and managers
- make new managers, prote~t data

SUBS
-make new manager, protected data
-increase priveledge
- print subsystem status of an object

name of owning subsystem
name of subsystem that the

pr·ogram marlages

XSUBS
-execute a shell program as a
protected subsystem manager

o Protected Subsystems III

Protected subsystem creation

- copy shell into /sys/subsyslname
- generate subsystem, DID

it's the UID of the shell!
. - set subsyst~m manager field of shell

- now have a shell to use to protect data,
make new managers

Protected subsystem invocation·

o - pgm _ $ invoke sees its a manager
- creates new process for it

o

-----------:------'- ------------ ------. -- _._---------------

o

o

o

Outside

Protected Subsystems IV
(Rights Checking)

- when not running in a manager
- in a manager, but without increased'

priviledge .
- get ordinary "base" rights from ACL

Inside
- in manager, with increased priviledge
- get all rights

Increased priviledge
- "UP", "DOWN" calls
- why,?

prevents trickery
pass subsystem data where manager

expected ordinary object

o Protected Subsystems V
(and miscellaneous)

"Login" protected subsystem

- ships with system
- has one extra priviledge:

it can set SID
- it promises to do so only after checking

PPO, password in registry

Subsystem names

- look up subsystem UID in /sys/subsys
o - find object whose ACL has that UID in

subsystem manager field
-- use its name
- if none on that node can't get name

Locksmith

- a project and a protected subsystem
- has all rights to EVERYTHING

o

o

o

o

Mo....> Aej"'<:>
c~e..s ur'

ADDRESS SPACE'
PHYSICAL '0 - __ ... ~ I

REAL

• • •

00

00

ao

8000 0

MEMORY 10000 0

100400

100800

100eoo

SAUs 102000

DIAGs 10AOOO

SYSBOOT 13D800

~OC.~> "I
':>\~'~\~.\~ l'" -,!t

\"f:~:"'~ 17D800
~~

L-

'- -

I-

l-

t.-

L-

......

-

-.
TRAP PAGE -

PROM

PFr P£L'/1 ~ ~b l,t,

-
MMU

110
-

OPTIONAL

••• MAPPED

400

FFB800 (fffbSOO)

FFB400 (fffb400)

tv ~"c.\. ~-. i~ ,..-~ ~ a~)S \" {\ -\<' ~
/./0 o-J. \\.-1" l' c.~
~ \<- 0.",0

-\-v(" .

_ :-

I/2MB
-

MDPAGE

TRAP PAGE

COLD START

DUMP PAGE -

Eoaaaa (fSOOOO)

a
? •
E00400

pr
da
ta

oc
ta {AEGIS
bles

bu ffers

FOOOOO
I

I/O
I

FFFFFF

.t] e ~ ; 5 1\I\l'P~ d be/J...> et" J ~o 000 7

a.)Ct Os_ proc=-e",J labe (

-------------~ --- ---.. - _ .. __ .. -=,;:.----.-._

,- _...,

u
PROM

- 0 ~ 3FFF Physical. kz SejNll4-

- Major Pieces

* SYS INIT (SIOS, MMU, I/O)

* B~ot Logic

* Device Drivers

DISPLAY

S10S·

DISKS-WIN, FLP, SM

RING (ETHER?)

LEDS

* Diagnostics

* MD CMDS & PARSING.
,

- Runs Disabled - (,lcM',; ,,,I- 5erv"ee 'h+en "pl3. hlr,,'
(ffr;tsf.rr\ 10t JOlNbU t(.(nA5~(e 1/

- Runs Either Physical or Mapped, All
I/O Mapped 0~~jV'-

\ "" 0 ·,Stt .ll t(~ \'J\ot."
Ct O@VI
& ~ \,\ \f'\~\, ~

0
PROM (Cont'd)

. v' ~-1?'(., X\u"
'? V(.,/.>

- Machine ID at 100

0 Old DN400, 420, 600

1 DN420, 600

2 DN300
o~f"

cf\~ ~?-
~ . s'A\J\ :?

3 DSP80
\~\ crJ J\-.{}; ~ -

-y... f-oJ v> 'J \ C1 J(\

4 DNx60
to \00"

5 - DN550
0

o

o

~rdW~ 0

o

40 (

o

-.. -........ -.-- --•............ - .. -----

Power-On
(Reset Switch)

L:;.\'V-(.V~

INIT SP , \ef
rO\I\

tv.'"

INIT PC
f(::;J

~r
(,OJ-'"

INIT System

1
Test

N ormal/Service
Swifch

t

o

o

o

NORMAL

DIAGNOSTICS

ERROR

GET BOOT

LoAD
EX 11f:.~ls

J
"CALL" PROGRAM I

III
RTS

QUIET_RETURN

TRAPF
I

V9ct h?
J.I b&<c.l ,1-0

9 . JtbtulJdf
Y'1n,c"",oJ<l'C V

LD
LO

EX

SERVICE

DL

1
DLLF

SIO
Interconnect

DLLF

WD
LD
LO
EX

o
DI N [0]

o Request
NETBOOT

o

Read
NETBOOT

no

--_._-_ ... _._._ __ ._ -...... --_ _.-- .. --_. __ . __ .. _._--'- _ .. -.-... -.-... - -.- _ .. _. __ . _ .. _._._-_.-._._--

GETTING A BOOT

W, S, F

relax !.

Initialize disk
Read PVL

SYSBOOT
ead 2 - B

Call BOOT

Call Program

Command
Loo

o

o

o

SYSBOOT and NETBOOT

Parse commands, pick driver

SYSBOOT

READ:

- PV Label

LV Label

(Salvage ?) ~ex salvol

I

- Root Directory (I)

. * Find ISAUn

- VTOCE for ISAUn

- ISAUn directory

* Find program

- VTOCE for program

- Program

(Right machine_ID)

- Done

(Return "GO" flag to MD)

NETBOOT

my place or yours ?

- Chat with NETMAN

- Read file

- Get UIDs :

* . paaina file o 0

* I

* II

- DONE!

LD

-----_ __ __ _._--

Get UIDs o
Resolve "II"

Resolve "I"

Resolve " 'NODE DATA.nnn

* UNLOCK

* CREATE
o

* SET DEFAULT ACLs

Resolve " 'NODE DATA.nnnl -
OS PAGING FILE"

*CREATE or EXTEND

Copy 'NODE-.DATNSHELL·

o

o

o

o

. __ __ ._ ... _ _ _-_ .. _.-

- Copy /SYS/SYSDEV ->
'NODE DATA.nnnlDEV -

- . Copy
ISYSIDMISTARTUP TEMPLATES -

* Add KBD 2 ifDN300

* Use
ISYS/SPMlSTARTUP TEMPLATES -
if server (DS? Z OJ

- REPLY WITH UIDs of

* II

* I

* 'NODE DATAJOSPAGING FILE - - -
-PROBLEM? Run:

* NETMAN ·in window

* NETMAN ~DB

o

o

o

-----------------_ _ __ _ •... --_._-_.- ----

RFCFORMAT

LOAD ADDRESS

START ADDRESS

RFC - Run File Converter

"Calling" Sequence:
~c~~t<

tP"\.,j~t..

MUNCH (ctype, unit, lv_n~m, flags, os_data)

flags = set of (new -prom, dtty, normal)

os_data = Paging file UID
Root directory UID
Node UID (host)
His node ID

------------------------.-----.-------_. ----

(j

o

o

I

AEGIS Initialization Sequence

* Save ARGS for PROM

* Copy TRAP PG to 100400

* Initialize MMU 1:1

* Initialize as TRAP IF A UL T
Vectors ~ tl'e.-·~J

~ , s a,l\ o· -\-- (lI"'j
t,e'rl\i-- _ ,--yo.

\ * Turn On ECCClParity '~~~~::-
\ v
\ /

"'~/ * CallOS $INIT to Do Hard Stuff -

o

o

-----------_. __ .. _--_ __ .. _.

AEGIS Initialization Sequence

* Initialize 110 Devices

* Initialize Managers-Clock, UID
PROCl, SMD, DTTY, EC2, .'
DBUF

dLl,Y\b
fer I"~'''a.\

(j-t ~J. b vJ{:os

* Mount BOOT VOL & Verify
Calendar

\.,,) or'-\
\I~I-('" ""e...... J

* Initialize VM MGRS-MST,
AST, FILE

* Fix Up Address Space
(Activate Segs, Wire, Whole
Cloth) ;:!~~P;,)<ej'''rl-i<,

{!~;.f Create OS Processes-Clock,
0:") ~~ ,,':;

~ 'N4.~ Term Helper, Purifer, Net
, ¥

~ . IJQ.; ~ , Servers' \V ~ ~~~

s . .Jcf" ot, Q~

\
rB t- ~".~
"J ~_~ v~ ~/ * Become Process 1 D ~\ \ 0(5 Prv\

.. t'\;~,,~
.. ~ _'i:~
,.~ \~ ~

Q ~ ~'0
. <;.) :::;' * Initialize PROC2 MGR

~~ ~

.Q~' 'f'"' ~ * PROC2 $ STARTUP -
o

o
·'LI:~~.~L~~ j .. , ~~~. --_._-_. __ ._-

r'r1 .. ~~~.

ID!Ff rn r~ rn
r .. , .:r. "t:r.-.l."

.J'"C~ ,.,....,,,,
~:;J Cl t } '"='"

C~; .~a...coT 0 ~:::> "-..f'

C~
.,.r.-:-.; •. lr::'~ ~~
;,."..'" '"="""

r!-~ L~' ~=~
r~-",.

't ;~ -=.J~:t' "
.. a:~II.

t~ c::') 0 ~l:"J'

o

o

to)

-_._-- '.--'---1~~-+~.f:~---'-'--.---'"

CI
o
r'li

'i_--

,...=-'; ... ~'.

o

.. ::

... "
!

::r:.
~"J

.. '::'

s ~~ --:
--1 ; :

(~~:)
I:r·...:.o:'~-, '.
"·-:zr·:t .. -.-------- ----- ----t"-

'~'r
-r;
::.':1 :=!

:::

C) ,., :
::c:
, '"'I

r"~:

C)

o

o

Bootshell

- RFC'edPGM

- Mostly vestigial resting point now

- Commands

* Version of MD

* VM, FS commands
() ~\\H "I'II"'~(} .f;tes

1v\G., r

WD, LD, MAP, UMA
b6ct s\...t;\\ (C"' w-1!l

* IBSCOM

LAS, CPBOOT, DLT

- "GO" "DM" "SH" "SPM"->
loads ENV & passes flag

- Runs as USER.NONE.NONE
except for DM, GO, SH, SPM

o

o

o

TAPE BOOT

Why? DN550 has no floppy, so how do

you load software on a new disk ?

The NEW Invol creates Isys/node _data

From PROM > DI C ex (any SAD)

Cartridge Tape :

ctboot fm • bscomlrbak shell ... aegis ... -
... ...
I

I
I

"CPBOOT ISYS -DEV CT" "WEAK -SYSBOOT'

AEGIS: "NO, LET'S NOT PAGE TO THE
CARTRIDGE TAPE"

. . J l

PROC2_$INIT: "IF BOOTED FROM TAPE, /~RfG5~
FIRST RBAK BSCOM/RBAK SHELL

RBAK _SHELL: LIKE SHELL, BUT RBAK
FILE #1 BEFORE CONTINUING

THEN; "GO", LOGIN, INSTALL FROM TAPE

_. __ . __ ... __ ... __ ._ .. _ .• ---- -------------------------_ ... _-_ _._._----_. __ ._ .. -_ _-_ _._--

u

o

o

FILES REQUIRED DURING BOOT 01/18/85

. REQUESTING AGENT FILE
====================== ==

'PROM

if tern:

SVSBOOT

AEGIS

SHELL

ENV

OM .

BOOT

Notes

ISVSBOOT (records 2-8 on track 0)

ISAUn/WCS.UC
OCOOE.UC
SPAO.UC
ULOAO

ISAUn/AEGIS

ISAUn/SALVOL

(mi crocode f i Ie)
(instr. decode RAM contents)
(scratchpad constants and temps)
(program to load the above)

(AEGIS load file)

(only if salvage required)

[os paging file] <uncatalogued)

II <UIDs found and saved by NAME_$lNIT)
I
ICOM
ISVS/NODE_DATA

ISVS/ENV

ILIB/?*
ISVS/DM/DM
ISVS/BOOT
ISYS/SPM/SPM

ISVS/DM/FONTS

(SHELL tel Is him what to run)

"GO" command or normal boot -OR-
"SHU or boot from 510 line -OR-
"SPM" or normal boot on server node

'NODE_DATA/STARTUP[.19L, .COLOR)(3)

ISVS/BOOT

IREGISTRV/REGISTRV(4) (~PPO,Account fi les pointed to)
LOCAL_REGISTRV
LOCAl_S1TE/?*

ICOM/SH

(1) PEB is disabled if microcode file not found.
(2) If booted from cartridge tape, the tape is first searched for BSCOM/RBAK_SHELL.
(3) Optional -- system will manage without it.
(4) If no registries are available, you can login only as USER.NONE.NONE.

o

o

o

"= =
II

STARTUP FILES

=> unconditionally executes
=> executes if it exists

06/29/84

Netman c~pies Isys/dm/startup_templates (startup, startup.191,
startup.color to 'node_data -------------------------------------+
(If booting node is a DN300, only STARTUP.lSl is copied,
and a Mkbd 2M command is tacked onto the end.)

AEGIS

V
'NODE_DATA/SHELL - - - - - > 'NODE_OATA/s-rAR-rup _SHELL ~

V
ISYS/OM/OH = - - >

\
<override of defaul~ starting
of dm, sh, or spm)(.J"'''bl~ ... t::';,;. .. ,J V

III·' lAih"lt 'j he j (..·

'NODE_DATA/STARTUP (420 portrait)
STARTUP .. 1Sl (300, 320, 460, 550)
ST ARTUP .. COLOR (600, 660)

(define dmwindows, start netman,
mbx_helper, etc., kbd command)

(If "node_data/startup(.. xxxl isn't found, the OM will look for
. /sys/dm/startup(.. xxxl, but this is undocumented & not shipped.)

= = = = =) ISYS/OM/Sn) _KEVS(21

(LOGIN) (default key definitions)

V
ICOM/SH

(personal key defs from last login)

- - - - -) 'NODE_DATA/STARTUP _LOGIN (.. ISl, .. COLOR]
else

- - - - -) ISVS/DM/STARTUP_LOGIN [.. ISL, .COLOR]

(per-login processes, first window,
by convention, points to -----------+

- - - - -) USER~DATA/STARTUP_OH (.19L, .COLOR) <---+

(personal key defs, bgc, etc.,
optionally points to ---------------+

- - - - -) USER_DATA/SrARTUP.SH < -- ----_._-----.-+

(check mail, netsvc, etc.)

o

o

o

HUNG

CRASHES

NODE IS

USE

NETS TAT
PST
LSYSERR

LOOK FOR

IN MD (">")

-Ll -VA

DISK / NETWORK ERRORS
SICK SIO ?
MEMORY PROBLEMS
NETWORK TRAFFIC
READY LIST MESSED UP (P5T)

VTOC (SAL VOL)

-_ ... _ .. ---- - -_.- --- -- ----- - ------------._----- - --------------------- ------ ------ ----- - -- - - - .-- -- ------- ~------- --

o

o

o

CRASHES

NODE IS

SLOW IN MD (">")

CHECK

LIGHTS?
CURSOR ?-
NETWORK?
KEYBOARD?
SERVICE MODE?

CTLRETURN

00 Loop"~
Network
Lost Interrupt
Ready List

,
\

\ '

~ II {,'1I-tJ.

O'rc1er -1'\"21\ tIel e../~
\

P6u.I'ib ! 6Plo I~

M~er 6~ 'p.-!·t j" S </-e ::J

Uf r-e~l~ 1:6/- J

RESET

Double Bus Error
Disabled Loop

(e.g. MMU)
Bus Locked

(bad controller)
Sick CPU .

(J

0

o

Bad CPU

CRASHES

NODE IS

SLOW

Bad Controller
Look at Instruction

HARDWARE SOFTWARE

DISK ~ 8xxxx) AOO01
NET 11xxxx)
FLT (12xxxi
PBU (lExxxx
VMEb~tS (27xxxx)

-h 5·~t- tlja~',

"/lr

OPERATIONAL

10005
1BOO01
EOO07
FOO07
50006

· _._._-_ .. _-_ .. _._ __ _ ... __ _ .. _ ... _-_ .. _ .. -_ ... - . --_ .. _ .. _-_._-_ .. _--_. __ . __ ._-_._---------------

o

o

E29458

DB

AEGIS.MAP ~<----'

LOADED BY "AM"

1------4) SAVED MMU

DUMP

LOADED BY "MA"

o DB CRASH ANALYSIS

- State of the machine:
~~\'.>-, ~,')~\~\t'>

ST, DR, DN460, DP, RL, GD,
~~~\ .... ,,~ 

TS, MST <asid>, VM 

- Error History 

DS, MR, LE 

- Disk Status 

o . DCT, DVT, PVL, L VL 

o 

- AEGIS Variables ~ 0\ '<J"'~ 
to>r.~ ~~~ 

MISS_STATUS, VME_$SAVE 

NETWORK $DISKLESS vI~~~~'~~~'~s 
- " vJl'~ 

TIME $CLOCKH -
PARITY_INFO, 

DCTE.BLK HDR PTR" - -
CPU B PBU SWITCH - - -



o 

o 

S?(Y\ 

8MP/CRP 

- Server Process Manager 

* Services requests to create 
processes on this node 

* Supports CP, CPO, CPS 
requests 

* Replaces DM on DSP-type 
nodes 

* Requires MBX _HELPER 

- Create Remote Process 

* Makes requests of remote SPMs 

* Supports CP, CPO, CPS requests 

. * Provides streams for CP requests 
"window on remote process" 

* Requires MBX _ HELPER 



o 

o 

o 

~ If Process 1: (DSP, DM Replacement) 

* INITprocess name directory 
open STD streams \ '""du/.'m Ip ... d" 

- Set name to 
"SERVER. PROCESS MANAGER" - -

- Set WD ND to "'/" , , 
- Process arguments 

* HIGH, LOW = priority of 
spawned 
processes 

* MBX = mailbox to open on 

* . NLOGIN = processes get SID of 
SPM 

- Process 
'NODE DATAISTARTUP.SPM -
Create mailbox 
('NODE _ DAT AlSPM _ MBX) 



o 

o 

o 

SPM Details (Cont'd) 

- Wait for things to happen 

* Invocation requests on mailbox 

* MBX _HELPER problems 
(restart) 

* Shutdown (if PROCESS_I) 



o 

CRP Details 

- Processes Options (-DB) 

- If CP, Creates Remote Mailbox 

* 'NODE DATAlCRP MBX.n - -
- Opens Channel on Remote 

* SPM MBX 

- Issues Invocation Request 

- Waits 

* SPM _ MBX for Response 

* CRP_MBX.N for Opens (CP) 

- Closes SPM MBX Channel 
( 

-. Waits and Services Inputs 

* STDIN -> CRP _ MBX 

* CRP MBX -> STDOUT 

- Honors Certain Pad Function Calls 



-----------------_ ... _-_ .. __ .. __ ._ .... _ ..•.. _ .... _ .... --... ----

o 

o 

. CRP Details (Cont'd) 

- Faults 

* QUIT, INTERRUPT 

forwarded only· 

* ALL OTHERS Sh r~,,\r ~teded 
+0 sto r CR~ 

forwarded & signaled 

- Invocation Flavors 

* CP 

opens streams to MBX _ UID 
passed 

invokes SPMLOGIN passing 
command line 

* CPO and CPS 

opens streams to IDEVINULL 

invokes SPMSID passing 
command line 



.... _--_ .. _ ..... --... -------------~---

o - Processes are Marked as "Servers" 

o 

o 

- SPMLOGIN & SPMSID must be 
stamped in LOGIN subsystem 

- 110 Anomalies for CP'd Processes 

* Prompts 

* Type-ahead Forwarded 
Immediately 

* No Graphics or Pad Calls 
Supported 

- ACLS 

* on SPM node 
.~ 

:- .. VI' "'Ir~ • ~\>\.,' ,~ ,,-
'NODE DATA = CRL for -
directories and DWRX for 
files 

* on client node 

'NODE DATA = R l -



o 
- SHUTDOWN Event 

(SPM = PROCESS_i) 

* Kills All Processes 

* Closes SPM Mailbox 

* Calls OS $SHUTDOWN -

- Can Run in Window, Logs Events 

o 

o 



o CRP -CP 
DSP - xxx 

USER X.SPE 
MBX HELPER 

"/COM/SH" 
"SPM" 

IDEV/SIO.SPM 'Node Data 

SPM MBX 'Node Data 

CRP MBX.n 

o 
USER· NODE 5FE 

PROCESS X 

"CRP" 

MBX HELPER 

§§§§§ 11111r1l1;1. 
ffM* 

o 



o 

o 

EVEN MORE SPM DETAILS 

SPM REQUEST: 

VERSION NUMBER 
OPERATION [CP, CPO, CPS] 
MBX_UID (for CP) 
LOGIN INFO (for CP) 

COMMAND LINE for 
INVOKED PROCESS 

SPM RESPONSE: 

VERSION NUMBER 
STATUS 
PROCESS UID 
ERROR NAME 



--_._-_ ................... _._._ .. _._._ .•.. _--_ .... - .- _. __ .... _._-_._._._ .. __ ....... _- ..• _---_._.". __ .. _"--_._-----_._--,,._--_._------

o 

.. 0 

o 

SIOMONIT 

- Supports successive logins over SIO 
lines, independent of local node use. 

* Invokes SIO line watchers 

SIOLOGIN 

* Gets instructions from a file 

* Logs its activities 

* Should run as a _ server 



o 

o 

SIOLOGIN 

- Watches a single SIO line 

- Runs the SHELL FILE 

'NODE DATA/STARTUP SIO.SH - -
- Performs login sequence 

- Invokes specified program 

- Supports DIALIN an,d DIRECT 
connect 

- Additional password on DIALIN ' 

- One login per invocation 

- Must be stamped in LOGIN subsystem 



o 

o 

o 

_. __ ._.,-_ .. _._-----_. _ ... -.---.-.----.-.-.~----- _ .. _- . __ . __ .. _-_ .. _-_.-_ .. -, 

SIOMONIT and PROGENY 

Siomonit file 

SIOMONIT 

/SYS/SIOLOGI 
/SIOMONIT 

INSTRUCTIONS I------?I 

SIOLOGINI 

/SYS/SIOLOGI 
/SIOLOGIN 

/DEV/SIOl 

'node_data/startup _sio.sh 

SHELL 

COMMANDS 

'pode_data/siologin_access 
• (.1 uS'-" \' \t;l~\;"\. v''- ... \ !'\ ,~. 

\, J(..CJX.. \tK <A\V,\oJ-,-

(shhhhh ... !) 

HISTORY 

'node _ data/siomonit_log 

HISTORY 

SIOLOGIN2 
DIALIN 

/SYS/SIOLOGI 
/SIOLOGIN 

/DEV/SI02 



o 

o 

o 

____ ._ •••• __ •••• ______ • ___ •••• __ .•••• o .•.••• _ .••••.•••• _. ________ •• __ •.••••.•• _. ______ •••• __ 

Other Things to Know 

- SIOMONIT 

* Reads SIOMONIT FILE -

At Startup 

At Child Death if 
-RESTART option 

When 'QUIT' Fault Received 

Every 15 minutes if there is 
Child Death 

- You can change SIOMONIT_FILE 
and "SIGP" to kick it off. 

- "SIGP -STOP" will stop SIOMONIT. 

- Waits 15 seconds to be sure child 
stays alive. 



o 

o 

o 

- SIOLOGIN 

* Must be stamped.in the LOGIN 
subsystem 

* Hangs up phone line if 
-DIALIN option 

* Can use STARTUP SIO.SH -
to force unlock 

"ULKOB IDEV/SIOx -F" 

------.------ . _._------_ ..... _-----,,--_ .. -_._- . 



o 

o 

o 

. ALARM SERVER -

- Brings to user's attention certain 
asynchronous events 

- Events currently supported 

* MAIL 

* DSEE T ASKLISTS 

* Disk is full for "~I"~ 

* Ring hardware failures . 

* NETMAIN observations 

- Requires MBX _HELPER 



o 

o 

-------_._---

ALARM SERVER: How It Works -

- Internal Scheduler plus Array of 
Procedures 

- Schedules by Time and Certain 
Event Counts 

- Opens Mailboxes i1;l 
'NODE DATA and -
-USER DATA for -
SEND ALARMS -

-. Diddles ACL on -USER DATA -
MBX for MBX HELPER -
Requires Binding with 
Initialization and Service 
Procedures 

- Cost 

* once/minute = 1.5% CPU 



o 

----------- '-'--'-'---

Store and Forward 

IPC from X to Y when Y may not be 
available 

- Contrast to MBX 

- Stuffs messages in SF_QUEUES 

- Requires at least one SF_HELPER on 
• rIng 

o - Supports routing & notification 

- Special Queue: /SYS/SFILOCAL _ Q 

- Used by DSEE 

- Interface NOT released 

o 

--_.----_ ... _-_. __ ._ .. _-----_._----



G 

0 

o 

SF-How it Works 

- Program calls SF _ $PUT 

* "Enqueue this message over 
there." 

"OK-done?" or "Couldn't. 
-put it in the LOCAL _ Q." 

- Some time later 

* SF _HELPER wakes up 

* Looks at his queues 

* Moves message 'over ther'e' 

* Can look at all LOCAL _ Q's 

* Uses II directory for 
'ALL LOCAL' -

I 

* Runs as USER.SERVER.NONE 

- Notification Support 

* A process may register at a queue 
and receive fault notice 



o 

o 

o 

AEGIS 

PERFORMANCE 

ANALYSIS 



o Performance Analysis 

- Proactive 

* Cost: X 

* Benefit: lOX 

- Reactive" 

* Cost: lOX 

o * Benefit: X 

o 

".,,"--,------'._- ------~----



o Important Nonlinear Effects 

* Queueing 

* . Caching 

* Tuning 

o 

o 



o 

o 

o 

P 
E 
R 
F 
o 
R 
M 
A 
N 
C 
E 

----"." 

QUEUEING 

\ 
\ 
I 
I 
I 
\ 
\. 

\ 
\ 

\ 
\ 



o 
P 
E 
R 
F 
o 
R 
M 
A 
N 
C 
E 

CACHE SIZE 

CACHING 

ruv'l VI i '\5 h-e-,h; ryJ ·fk -

p".-;s:.;-er =- de"Mold p<'J ;"'S, 

~ pu.: fWi 11% .-e~ ""r Ce. I C5 ck.-S J 5 '" 
'I _ (l~ (r~"'~ ~ ct-.c::.P d(1)e.r.4t

.' /1..e,::> 
1 f fUllS /1\ .\If ,y~·r J ) 

1l~ pa-c£. H.ad- ~O'" Cu/\ ,""\ () , 

'~nV\<qh'o'" IS 
(JV'-Cte I V\- .. ,} c c1 c h.£,l . 

c"Lh;tr) ~e.P I 

) 



o 

o 

o 

--------- -~----------------------- ----------------

P 
E 
R 
F 
o 
R 
M 
A 
N 
C 
E 

- TUNING 

TIME SPENT TUNING ) 



o 

o 

o 

Tuning 

* Define performance require
ments 

* Go for "smoking gun(s)" 
-j1';"j5 '!\fI,r 1\£Lve.- p65S: 6/12- dramab-c egecls. 

* Measure effects o-J- ea.",/" po·" .. 4 
J () -the.{Lt h i (\ J prv cA?.s S • 



o 

o 

o 

Benchmarks 

1. NETSVC -L (if possible) 
-0- il (all sjS·f.tv"s &l\. "e.fwaV~) 

)u ~6W '{)efsvc 
&~cJ per ~ I'll (}/) ce 

2. BLDT (vVt~~. <;wt: j0vl oIO'lI} hav-t. k) 
ol i ~.IJ +- rtv 5, (r'I .J'U. re fw 0'( 

3. /SYSTEST/C~M/CALIBRAT~~s:~;r :;/;~~if' 

4. NETS TAT -L -CONFIG (before 
and after) 

5. PST -PA -L1 (before and after) 

6. Run benchmark 
---"V 

7 .. Save pad and a LD -A -SI of all 
important files 



(l 

0 

0 

. ' Cf~ 

ISYSTEST/COMICALIBRA TE - f~;le F·~ 

- CPU "benchmark"· 

* no I/O or paging 

* single memory reference 

* ext-remely consistent 

* can be affected by "loading" 

- Typical Values (calibration ratios) 

DN400: 1.04 

DN300: 0.70 

DN420 (w/PEB): 0.70 

DSP80: 0.80 

DN550: 0.82 

DN460: 0.19 
\ 

\, l 1~ l/.J~O\ e, oo~ 
J-)f3 ", n JU 1- c"ac:.ke., 



o 

o 

o 

The Complete Application 
Debugger's Toolbox 

- DEBUG 

PROGRAM 

* Self-Monitoring 

- TB (Traceback) 

- PST (process Status) 

- LAS (List Address Space) ~u 

- LLKOB (List Locked Objects) -u 

- DB (MD-style Debugger) 

----.-------------.. --.--~---.--



o 

o 

( \ ,,/ . 

- DEBUG 

* Use 

. PAS 

* REGS 

* FPREGS 

* DB 

- PROGRAM self-monitoring 

* Use 

PAS -COND 
{% DEBUG} VFMT_$ ... 

* Switches 

-DB 

-MONIT (eg. EMT) 

- PST 
-Ll (Level one processes) 
-TYPE (aegis/user/server) 

... _ ....... ------... _ ..... _ .. _. . ... _--_ ... _ .. _----_ ......... _ .. __ ._-_._-_ .. - . ....... _--._ ..... _._ .. __ ._._-



o DISPLAY MANAGER 

GRAPHIC 

~--------~----------------~METAFILE 
. CORE GRAPHICS 

GPR LffiRARY 

(Graphics Primitives) 

STANDARD LIBRARIES 

PM, STREAM etc. 

RESOURCE 

o USER 

SUPERVISOR 

o 

SMD 

Monochrome BL T and 
mon~~~~~ie text } OUTPUT 

Keyboard / Locator .} INPUT 

Display Arbitration 

VIRTUAL MEMORY· and PROCESS CONTROL 

...... __ ._---



o opoo 
DOMAIN 

Integrated- Local Network of Workstations 

Workstation (~.ode) 
- virtual memory . 

- bit-:-map graphics / pointing device 
- 12 megabit / sec token passing _ ring 

o Operating system (AEGIS) 

·0 

- network-wide flat file system 

typed containers identified by UIOs 
- network-wide hierarchical name-space 
- network transparency for object access 
~ single-level-store (SLS) 

objects are "mapped" into the 
process virtual·address space and 
operated on with machine instructions 

... _, .. _._---_ .. _------'- ----



I AEGIS SYSTEM MODEL I 
Hierarchical 
pathnames 

." 

NAMING 

I 

I 
I 
I . 

- -o name to Uld 
I 

. I 

I 

.-

.. 
. ~ 

Direct Mapping 
(virtual addresses) 

~, 

SINGLE LEVEL 

STORE 

(SLS) 

object address 
(uid / offset) 

Concurrency 
demands 

~ 

LOCKING I 
ffi 

.... ....... f 

cache 
management 

OBJECT STORAGE SYSTEM 

(OSS) I 
~ 

r 
D.I S-K NETWORK 

o 



o 

o 

o 

SINGLE LEVEL STORE 
(SLS) 

Mapping objects 
manage per-process virtual address space 
~egmented - address space and objects 
virtual addre.ss ~> object address 

- NO KNOWLEDGE OF OBJECT LOCATION 

virtual 
address 

process 
id 

mapped segment table 
manager 

." -

object address 
(UIO, offset) 

.. . ..1 

---.. _-_._._._--_ .. _--_.----._---------------_ ..... __ ._---------,-- ----------_._-"--' 



o OBJECT STORAGE SYSTEM (OSS) 

Object locating 
UID -> location in the network 

. Location independent object management 
create, delete, attributes control 

Demand paging 
(UID, offset) -> physical memory page # 

physical memory page cache management 
o It active" object table management 

disk storage management 

object address 
(UID, offset) 

. ~ 

active segment table 
manager 

.. .t 
disk Phyiical 

memory 
network 

o I/O I/O 

... --.---- ----_ .... ,,-_ .... ,."._-_._--------_. __ . ._----'--_. ---~ 



o 

o 

o 

$ netstat -I -config 

The node 10 of this node is 1197. 

**** Node 1197 **** "lIs lash" 
Time 1985/03/05.11:12:12 Up since 1985/03/05.11:10:57 

Net I/O: total= 18 rcvs = 

o page-in requests issued. 
o page-out requests issued. 
o page-in requests serviced. 
o page-out requests serviced. 

Detected concurrency violations -- read: 0 

Xmit count 
NACKs 
WACKs 
Token inserted 
Xmit overrun 

Xmit Ack par 
Xmit Bus error 
Xmit timout 
Xmit Modem err 
Xmit Pkt error 

8 
o 
o 
1 
o 

o 
o 
o 
o 
o 

Delay switched OUT. 

Rcv eor 
Rcv crc 
Rcv timout 
Rcv buserr 
Rcv overrun 

Rcv )Cmit-err 
Rcv Modem err 
Rev Pkt error 
Rev hdr ehksum 
Rev Aek par 

10 )Cmits = 

write: 0 

o 
o 
o 
o 
o 

o 
o 
o 
o 

'0 

8 

Winchester I/O: total= 1540 reads= 1149 writes= 391 

Not ready 0 
Seek error 0 
Drive time out 0 
CRe error percentage: O.OOr. 

Contrlr busy 
Equip check 
Overrun 

No ring hardware failure report. 
System configured with 1.5 mb of memory. 
A total of 0 parity errors were detected. 

NODE CONFIGURATION 
Node Type: DN300/DN320 
Display type: 17/19 inch landscape display 
Disk type: MSD-34M 

------,--'"-----

o 
o 
o 



• l)ost -t 1 4)a -ty -r 30 

Proce~~or 

Ti.e (~ec) 

-0 
l-t7.752 

0.767 
2.037 
0.366 
0.001 
0.001 
0.026 

18.786 

2.181 

·O.~ 

1.538 
0.776 

174.123 

Proce!f~or 

Ti.e (~ec) 

S PRIORITY S 
.,/cu/llX S 

II 0/16 
1/16/16 
1116116 
1/16/16 
1116116 
1116/16 
1116/16 

16116/18 
1118118 
1118116 
1I1-t/16 
1/14/16 

Progr .. S state S Pr ivate S Global SOl S "S .. E T Twe 

Counter S S fau.t~ S fault~ S.PQe 10 S Page 10 S HtD 

.,~'-"~ <, l., --d- \J\ "'" 
.;;. ••• ,. \.f.~J.() .7~Andy ~L ;~' 0 f\ 0 
\' ~-t>< "',UV f},Ii"~ ~~. \ . \J acl:ootO) . Wait 'l~:\ 0 i \~II'Y,~ 0 

CSCCOOEO Wait ~,,~~ 0 ~ u' ... ,,:~ 0 
\ Waii tJ. / lJY~\ 

::')' Wait :)'\~': 
C9CCOOfO Wa i i 0 0 
CSCCOOEO) Wa it O' 1 

1M86 Waii 545 

IA498 
WAllE 
lA5PE. 

<act ive> 

Waii 
Waii 
Wait 

RBady 

76 
29 
55 
56 

761 

889 

52 
11 

25 
5 

, ()II-~ 0 
\"\ o \ 
! 478 ~'J-~' 
I 
I 0 

o 
o 

1682 

o 
o 

o 
o 
o 
o 
o 
o 

o 

S PRIORITY S Progr .. 

.,/cu/llX S Counter 

state I Pr ivate 

fault~ 

Globa' : 0 IS" S lit f T S Twe 
fault~ S Page 10 S Pqe 10 S 

<Nu II Pr oce~!f > 

<Clock Proce~~> 

<Page Pur if ier> 
<T,,",inal Server> 

<.t Receive Server> 

<Net Pag ing Server> 

<Net Reque~t Server> 
d i!.p I ay __ nager 

pr i nt _~erver 
IIbx_helper 
proc;e~~ 3 
proc;e~~_-t 

Proce~~ 

Me. 
--_._-----------

o 

26.138 

0.099 

0.099 
0.129 
0.000 
0.000 
0.001 
2.447 
0.016 
0.000 

0.276 
0.655 

11 0/16 0 
1/16/16 C9CCOOEO 

1/16/16 C9CCOOEO 

1/18/16 C9CCOOE0 
1/16/16 C9CCOOEO 

1/18/18 ~O 
1/18/18 CSCCOOEO 

18/18/16 IM86 

1116118 
1/18/16 
1/15116 
1/16/16 

IA498 
IA21E 

~ 

<act ive> 

RBady 
Wait 

Wait 
Waii 
Wait 
Wait 
Wait 

Ready 
Waii 
Waii 

Ready 
Ready 

o 
o 
o 
o 
o 
o 
o 
7 

o 
o 

10 
3 

20 

Proce~!for S PRIORITY S Progr.. state: Pr ivate 

Ti.e (~ec) .,/cu/"", ' Counter fault~ 

o 

16.701 
0.097 
0.086 
o.~ 

0.000 
0.000 
0.000 
1.189 
0.016 
0.000 

11.209 
0.605 

29.969 

11 0/16 
1118/18 
1115/16 
1116/16 
1/16/18 
1116116 
1/18/18 

18/18/16 
1118/16 
1/18/18 
11 1118 
1116116 

o 
CSCCOOEO 
C9CCOOEO 

CSCCOOEO 
CSCCOOEO 
CSCCOOEO 
CSCCOOEO 

IA6BS 
IA-t98 
JA21E 

280076 
<act ive> 

Ready 
Waii 
Wait 

Wait 
Wait 
Wait 

Wait 
Ready 
Wait 
Wait 

Ready 
Ready 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

35 

2 

31 

o 
o 
o 
2 
o 
o 
o 
7 

o 
o 
4 

2 

15 

o 
o 
9 
2 

o 
o 
o 

22 
o 
o 

19 

2 

o 
o 
o 
o 
o 
o 
o 
o 

aegi~ 

aegi~ 

aegi~ 

aegi~ 

aegi~ 

aegi~ 

agi!. 

U!Jer 

o ~erver 

o !ferVer 

o ~er 

o us.er 

o 

Global SOl S "S lit E T t Twe S 
fault!. S Page 10 S Page 10 S S 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

21 

o 

21 

o 
o 
6 
o 
o 
o 
o 
o 
o 
o 

31 
o 

37 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 

aegi~ 

aegj~ 

aegi~ 

agi!. 

aegi!. 
aegj~ 

HSlj~ 

U!Jer 

~erver 

~erver 

us.er 

us.er 

<Null Proce~!f> 

<Clock Proce!f~> 

<Page Puri'ier> 
<T,,",inal Server> 

<NIrt Reel' i ve Server> 

<Net Paging Server> 

<Net Reque~t Server> 
d i~play __ nager 

pr int_~erver 

IIIbx_he'per 
proC8~~ 3 
proc;e~~_4 

<Nu.. Process> 

<Clock Proce~~> 

<Page Puri, ier> 

<Te,..ina' Server> 
<Net Receive Server> 

<Net Pa~ing Server> 
<Net Reque~t server> 
d i ~p hry __ nager 

pr i nt _~erver 

IIbx_helper 
proc;e~~_3 

proc;e~~ 4 

- - -~----.---------- .. -.-- .. -- ..• -.• --.--.. -.-- --_ ..... _ .... _ ........ -._ .............. _-_ ... _-_ .. --



------------.-----------.. - ... --........... -.... - .... -~-

o 

0 

0 

• ringlog -$tart 
Ringlog [3.2] 
$ Icnode 

Aj5+eS+ /:35f- tl '/;1/ 1-; 1'5'c.~ - sfaft 
-slop 

The node 10 of this node is 2246. 
2 other nodes responded. 

Node 10 Boot time 

2246 
2EF6 
14SC 

1985/03/05 10:49:54 
1985/03/05 10:41:55 
1985/03/05 10:11:25 

$ Id //node_2efS 

Directory "//node_2efS": 

bscom 
ftu 
registry 

.. sys 

16 entries. 

com 
install 
saul 
sys.delete 

$ Id //node_2ef6/com 

Directory "//node_2efS/comu
: 

act arcf 
calendar catf 
chpat ehuvol 
cmt cpboot 
cpscr cpt 
crefs crf 
errgy crsubs 
cvt_ree -uase date 
dldupl dlf 
dsee ed 
edmtdesc edppo 
em3270.pei emhasp 
ensubs esa 
fmc fmt 
fserr fst 
help host 
las Ibr 
Ilkob login 
Ivolfs macro 
net netmain 
netsvc obty 
pas ppri 
pst rbak 
salacl said 
sh sigp 
stcode subs 
tee telnet 
tugs_author tz 
vctl vsize 
wi wi 1st 

149 entries. 

Current time Entry Directory 

1985/03/05 10:55:33 //sr8.1 
1985/03/05 10:49:23 //node_lef6 
1985/03/05 10:49:23 ~.". DISKLESS • ."." partner node: ZEF6 

dev 
lib 
sau4 
sysboot 

args 
chhdir 
elstr 
cpf 
crd 
crt 
crucr 
db 
dll 
edaeet 
edstr 
emrje 
exfld 
fpat 
ftn 
hpc 
lenode 
lopstr 
mtvol 
netmain_chklog 
oed 
prf 
revl 
salrgy 
siorf 
tb 
tic 
uctnode 
vt100 
xdmc 

domain_examples 
preserve 
sse_035 
systest 

bind bldt 
chn ehpass 
emf emsrf 
cpfx~ cpl 
crddf crefpas 
crp erpad 
ctnode ctob 
dcale debug 
dlt dmtvol 
edael edfont 
em3Z-/0. icc i em32"/0.kmw 
emt emtx25 
find_orphans flen 
fpatb fppmask 
ftp haspsvr 
invol lamf 
Id Ikob 
Irgy lusr 
mvf nd 
netmain_note netstat 
os pagf 
probenet prsvr 
rjesvr rwmt 
salvol serto 
siotf srf 
tcpstat tctl 
tpm tugs 
uctob ulkob 
wbak wd 
xsubs 



$ II kob Ilnode_2ef6/com 

Home Locking 

0 Use Constraint Node Node Pathname 

W nR_xor_lW 2246 2246 Isys/node_data/stack 
W Cowriters 2246 2246 Isys/node_data/shell 
W nR_xor_lW 2246 2246 /s'ys/node_data/h i nt_f i Ie 
W _ nR_xor _IW 2246 2246 Isys/node_data/sys_error_log 
W nR_xor_lW 2246 2246 /sys/node_data/data$ 
R - nR_xor _lW 2246 2246 Isys/env 
W nR_xor_lW 2246 2246 Isys/node_data/global_data 
R nR_xor_lW 2246 2246 II ib/pml ib 

-R nR_xor_lW 2246 2246 II i b/sys lib 
R nR xor IW 2246 2246 . II i b/streams 
R nR=xor=IW 2246 2246 Ilib/vfmt_streams 
R nR_xor_lW 2246 2246 II ib/error 
R nR_xor_lW 2246 2246 I I i bl swt lib 
R nR_xor_lW 2246 2246, II ib/ftnl ib 
R nR_xor_lW .2246 2246 II ib/pbul ib 
R nR_xor_lW 2246 2246 II ib/gprl ib 
R nR_xor_lW 2246 2246 II ib/c lib 
R nR_xor_lW 2246 2246 II i b/sh lib 
R nR~xor_lW 2246 2246 II i b/tfp 
W Cowriters 2246 2246 Isys/node_data/acl_cache 
W nR_xor_IW 2246 2246 Isys/node_data/stream_$sf c.bs 
R nR_xor_lW 2246 2246 Isys/dm/dm 
W Cowriters 2246 2246 Isys/node_data/dm_mbx 
W nR_xor_lW 2246 2246 Isys/node_data/pdb 

0 W Cowriters 2246 2246 -- temporary file --
R nR_xor_lW 2246 2246 Isys/dm/fonts/fSx9 
R nR_xor_lW 2246 2246 Isys/dm/fonts/legend.191 
R nR_xor_lW 2246 2246 /sys/dm/fonts/icons 
W nR_xor_lW 2246 2246 Isys/node_data/pasie_buffers/all_group 
W nR_xor_lW 2246 2246 /sys/node_data/pasie_buffers/invis_9rouP 
W nR_xor_lW 2246 2246 /sys/node_daia/pasie_buffers/icon_group 
W Cowriters 2246 2246 Isys/node_data/sysmbx 
R nR_xor_lW 2246 2246 Icom/sh 
R nR_xor_lW 2246 2246 Isys/mbx/mbx_helper 
R nR_xor_lW 2246 2246 Icom/pr'svr 
W Cowriters 2246 2246 /sys/node_data/dm_mbx 
W nR_xor_lW 2246 2246 Isys/node_data/dev/sio2 
W nR_xor_lW 2246 2246 -~ Display Manager PAD --
W Cowriters 2246 2246 /sys/node_daia/dm_mbx 
W nR_xor_lW 2246 2246 -- Display Manager PAD --
R nR.;.xor_lW 2246 2246 Icom/sh 
R n~_xor_lW 2246 2246 Icom/sh 
R nR_xor_lW 2246 2246 Icom/pst 
W nR_xor_lW 2246 2246 lsys/node_daia/pasie_buffers/again 
W nR_xor_lW 2246 2246 -- Display Manager PAD --
W Cowriters 2246 2246 Isys/node_data/dm_mbx 
R nR_xor_lW 2246 2246 Icom/sh 
R nR_xor_lW 2246 2246 Isysiest/com/calibrate 
R nR_xor_lW 2246 2246 Icom/ilkob 

0 49 f i I es locked. 



• ring Jog ~iop 
Ringlog [3.21 

odai a. index = 53 

0 From TO 
NOOE TlO Soek Sock RQSTIRPLV 
-- ---- -- --- --------- -- -- --- ------

x.t 0002 IC WHO IN=O 2 0 022"18 3E1 £0 38E'8 £2 1000 22018 1 EO 8000 ss=eooo 
rev 2EF8 lC INFO WHO 2 0 0 o 2Ef8 BlfF '£1 C 2 20 13 Fl 

rev 2EF6 lC WHO INFO 2 0 02246 3E6 £038E8 £2 20'20 2O'ZO 2020 2020 2020 

rev l"lOC lC INFO WHO 2 0 0 o 146C Blff '£8 f6CO 0 0 E2 £55C 
rev 146C lC WHO INFO 2 0 022"18 3E5 £03BE6 £2 2020 2OZO 2020 2020 2020 

xnrt 2Ef8 10 12 INfO 2 2 0 0 109 o 7EF7 o 1000 2246 £0 eooo ss--eooo 
rev 2EF8 10 INFO' 12 2 3 0 o 252"1 SE2C 2524 6407 C 2 20 13 fl 
x.t 2EF8 IE 12 INfO 2 C 0 0 fO FBA 3 ffOO 1000 22i8 1 EO 8000 ss::eooo 
rev 2EF6 IE INFO 12 2 0 0 0 o 2EF6 24 6101 C 2 20 13 fl 
XJrt 2fF6 If 12 INFO 2 "I 0 0 fO fBA 3 fFOO 1000 2248 1 EO eooo ss=aooo 
rev 2EF6 If INFO 12 2 5 0 o 2"1fB CO"I2 5000 2Ef6 C 2 20 13 fl 

xwrt 2EF6 20 12 PAGE info' r ~i. 24Ff3C042. 5('J.)02ff6 t ype=8 SS=8COO 
rev 2Ef6 20 PAGE 12 in'o rply: 24fBC042.5OOO2EF8 in'o= per. ~~dir (ni.) ~t=O 

xwrt 146C 21 12 1"=0 2 2 0 0 1"16 01EB8 o 1000 2248 1 EO 8000 ss=eooo 
rev 148C 21 INFO 12 2 3 0 o 2524 42£5 2524 8407 fOC.o 0 0 E2 ES5C 
xnrt 1"16C 22 12 INFO 2 C 0 0 l<4F o 7EBI o 1000 2246 1 EO 8000 SS=aooo 

rev 146C 22 INFO 12 2 0 0 0 o 2EF8 ff24 8407 F6CO 0 0 £2 E55C 

XJrt 0002 23 WHO INfO 2 0 02246 3f1 £03Bf6 £2 1000 Z248 £0 6000 ss=aooo 
rev 2Ef8 23 INfO I;I.fO 2 0 0 o 2EF6 Blff '3E.7 C 2 20 13 fl 

rev 2Ef6 23 WHO INFO 2 0 02248 3£8 EO 38f8 £"2 81 0 0 11l9F 

rev 148C 23 INFO WHO 2 0 0 o 1"18C Blff '£8 F6CO 0 0 E2 E55C 

rev 148C 23 WHO INfO 2 0 02248 3£5 EO 38f8 £2 C 2 20 13 Fl o xll't 2EF8 24 12 INFO 2 2 0 0 2B8 01045 o 1000 2248 1 EO 8000 ss=eooo 
rev 2EF8 24 INFO 12 2 3 0 o 252<4 5E2C 2524 6571\ C 2 20 13 Fl 
xmt 2EF6 25 12 INFO 2 C 0 0 268 01045 o 1000 2216 EO 6000 SS=8OOQ 

rev 2Ef8 25 INFO 12 2 0 0 0 o 2Ef6 2"1 657A C 2 20 13 Fl 
xwrt 2EF8 26 12 INFO 2 4 0 0 288 07&15 o 1000 2246 1 EO eooo SS=6OOO 
rev 2Ef8 26 INFO 12 2 5 0 o 24f8 CO"I2 5000 2£F6 C 2 20 13 Fl 
xnrt 2£F8 21 12 PAGE info r~t: 24fBC042.5('J.)02ff6 type=8 SS=8COO 
rev 2fF8 27 PAGE 12 info rply: 24fBC042.5«I02£F8 in'o= per. ~~dir (ni.) ~t=O 

xnrt 1"18C 26 12 INFO 2 2 0 0 2f1\ o 7D06 o 1000 22"16 1 EO 8000 SS=6000 

rev 146C 26 INfO 12 2 3 0 o 252"1 42E5252"1 6571\ f6CO 0 0 £2 E55C 
xnrt 1"16C 29 12 INFO 2 C 0 0 301 01Cff -0 1000 2246 1 £08000 ss::eooo 
rev 140C 29 INFO 12 2 0 0 0 o ZEF6 fF24 657A F6CO 0 0 E2 E55C 

xliii 2fF6 21\ 12 PAGE info r~t: 24f8COCt2. 5('J.)02ff6 i ype=8 SS=8C()O 

rev 2EF6 21\ PAGE 12 info rply: 24FBC012.5('J.)02ff6 in'o= per. ~ysdir (ni J) si=O 

xnrt 2fF8 2B 12 FILE Jock r~t: 24FBC012.5OlO2EF6 --read Jock - ss=aooo 
rev 2EF6 28 FILE 12 Jock rpJy: d't.=25Z"I5E31.18 ~t=O 

xII't 2EF8 2C 12 PAGE info rq!Ji: 24FBC&12. 5('J.)02ff6 i ype=6 SS-6COO 
rev 2EF6 2C PAGE 12 info rp'y: 24FBC012.5('J.)02ff6 in'o= per. sysdir (nit> ~t=O 
xll't 2£F6 20 12 PAGE .. liPSI rq!Ji: 24F8C042.5OOO2EF6 pagB= o ("I pages) dt-= ZZ52"1 SS--8lOO 
rev 2EF6 20 PAGE 12 ... ipsa rp,'Y: 24FBC042.5OOO2£F8 pqe= o (1 0' 2) dtlllh=2524 ~t=O 
rev 2EF6 20 PAGE 12 IM.J f1pg rply: 24FBC042.5()()()2fAl paSlt'= o (2 0' 2) dtlllh=2524 ~t=O 
xnrt 2Ef6 2E 12 FILE un lock rqsi: 24FBC042.s00O'ZEft. es=eooo 
rev 2fF6 2E FILE 12 unlock rp'Y: st=O 

x.t' 2fF6 2F 12 PAGE info r~i: 24fBCl)42. 5IXt02EF6 t ype=8 SS=8OXJ 
rev 2Ef6 2F PAGE 12 info rp'Y: 24f'BC01f2.5COO2EF6 info= per. sysdir (ni I) st=O 

0 



o 

o 

o 

xiii 2EF6 
rev 2EF6 
XIIt 2EF6 
rev 2EF6 
xll't 2EF6 
rev 2EF6 
xnrt 2EF6 
rev 2EF6 
xll't 2EF6 
rev 2EF6 
xll't 2EF6 
rev 2EF6 
xwrt 2fF6 
rev 2EF6 
rev 2Ef6 
rev 2EF6 
xll't 2EF6 
rev 2EF6 
rev 2fF6 
xiii 2fF6 

30 12 FILE nrslve rllSt: 24F8C042.5OOO2fF6 "CO£ •• :' ss=eooo 
30 FILE 12 nrslve rply."'COM" st=O 
31 12 PAGE info rllSt. 24fBC7M.90002EF6 type=6 SS=8O.lO 
31 PAGE 12 info rply. 24F8C7M.9C(I()2fF6 in'o= per. dir (nil) st=O 
32 12 FILE nrs lve rqst. 24F8C042.5OOO2fFtl .. COtE..... ss=eooo 
32 FILE 12 nrslve rply:"'COM" st=O 
33 12 FILE lock rllSt: 24FBC7M.90002EF6 -read lock - SS=6OOO 
33 FILE 12 lock rply: dt.=250ICS59.88 st=O 
34 12 PAGE info rllSt: 24F8C7A4.9C()()2fF6 type=6 SS=ecoo 

34 PAGE 12 info rply. 24fBC7M.90002EF6 in'o= per. d ir (n i I) st=O 
35 12 PAGE .. ,tpg rqst: z..1FBC7A4.90002EF6 page= 0 (~ pages) dtF 82524 'SS=8lOO 

35 PAGE 12 .. ,tpg rply. 24FBC7A~.90002EF6 page= 0 CI 0' 1) dtllh=2501 st=O 
36 12 PAGE aultpg rClSt. 24FBC7A4.90002EF6 page= 1 (4 pages) dh,--s2160596 S8=8lOO 

36 PAGE 12 .. ,tpg rply: 24FBC7M.9OOO2EF6 page= CI 0' 3) dtllh=2501 st=O 
36 PAGE 12 .. ,tpg rply. 24FBC7A4.90002EF6 page= (2 0' 3) dtllh=2501 st=O 
36 PAGE 12 .. Itpg rply: 24FBC7M.9OOO2fF6 page= 1 (3 0' 3) dtllh=2501 st=O 
37 12 PAGE ... tpg rClSt: 24FBC7A4.90002EF6 page= ~ (4 pages) dta=lAfEC959 ss=oooo 
37 PAGE 12 lIU.tpg rply: 24FBC7A4.9OOO2fFtl page= .. CI 0' 2) dtllh=2501 st=O 
37 PAGE 12 .. 'tpg rply. 24FBC7A4.90002EF6 page= ~ (2 0' 2) dtllh=2501 st=O 
38 12 PAGE .. ftpg rllSt: 24FBC7A4.9C(I02fF6 page= . 6 (4 pages) dt.=lAFEC9S9 ss=oooo 

rev 2EF6 38 PAGE 12 .. Upg rp'Y: 24FBC7A4.9C('I()2fF6 pagr.= 6 CI 0' 3) dtllh=2501 st=O 
rev 2EF6 
rev 2EF6 
xwrt 2EF6 

rev lEF6 
rev 2Ef6 
x.t 2Ef6 
rev 2EF6 
xll't 2EF6 
rev 2EF6 
xiii 2EF8 
rev 2EF6 
xat 2EF6 
rev 2fF8 

xll't 2EF8 
rev 2EF6 

38 PAGE 

38 PAGE 

12 .. ,1pg rply: 24FBC7M.90002EF6 page= 6 (2 0' 3) dtllh=2501 st=O 
12 au.1pg rply. 24FBC7A4.90002EF6 page= 6 (3 0' 3) dtllh=2501 st=O 

39 12 PAGE "'tpg rClSt: 24FBC7A4.9OOO2fF6 page= 9 (4 p&ges) dtF1AFEC959 ss=oooo 
39 PAGE 12 ... tpg rply: 24FBC7A4.90002EF6 page= 9 Cl of 2) dtllh=2501 5t=O 
'39 PAGE 12 .. ,1pg rply: 24FBC7M.9OOO2fF6 page= e (2 of 2) dtllh=2501 st=O 
3A12 FILE unlock rClSt. 24FBC7A4.90002EF6 SS=8OOO 
3A FILE 12 unlock rply: st=O 
38 12 PAGE info rllSt. 24FBC7A4.9OOO2EF6 type=6 ss=eooo 
38 PAGE 12 info rply: 24FBC7A4.90002EF6 in'o= per. di,. (nil> st=O 
3C 12 FILE loek rllSt. 24FBC012.5OOO2fF6 -rnd 'oek - SS=6OOO 
'3C FILE 12 loek rply: dtlll=25Z45f'31.16 st=O 

30 12 FILE unlock rllSt: 24FBC042.5OOO2EF8 SS=8OOO 

30 FILE 12 unlock rply: st=O 
3f 12 PAGE info rllSt. 24FBC042.5OOO2fF6 type=6 ss=ecoo 
3E PAGE 12 in'o rp'y: 24F8C042.5OOO2EF6 in'o= per. sysdir (ni I) st=O 



o 

0 

o 

Changes for global libraries: 62/05/26 

1) Global I Address Space 

2) 

3) 

a) global space (6000-200000, or roughly 2 HB) 
1) pureKGT 
2) pure code & data 

b) available private space (200000-SCOOOO, or roughly S+ MB) 
1) 200000 (1 ) - process creation record 
2) 208000 (5) - impure library data 
3) 230000 (1 ) - guard segment 
4) 238000 (8) - stack 
5) 278000 (1) - guard segment 
6) 280000 (2) - private kgt, rws scratch space 
7) 290000 - available 

c) you'll see flguard faultfl on stack overflow - only once per process 

Gtobal 
a) 
b) 
c) 

d) 
e) 

f) 

Global 
a) 
b) 

Library Changes 
alt read-only sections, plus data$ are shared, ergo ••• 
data$ section must be pure (ecb's, ac's, constants only!) 
all other data must be placed in other sections (sugg. name: module_data$) 
use new VAR statement syntax in Pascal, common in Fortran 
impure externs must be handled specially (assembler module is required> 
all u~initializ~d pure and impure data a~e guaranteed to be set = 0, 
generally eliminating the need for library initialization procedures 
2 new libraries: pmlib <process manager) and shlib <shell) 

Library Installation 
installed by process manager when tNV or DMENV is loaded 
to install new global library: 

1) rename old library (use change_name's -0 option) 
2) copy new library into Ilib 
3) exit and re-start the display manager (it's unnecessary to restart as) 
4) delete the old library (when you're confident of the new one!) 

c) library initialization procedures are still-called at process creation 
d) streams is initialized at DHENV load time, by calling stream_$process_init 

(a misnomer): no per-process streams initialization is currently 
required 

e) libraries are not unmapped upon return to boot shell. They are re-mapped 
by env or dmenv 

4) Debugging Libraries in User Space 
a) use db's install command, as presently done 
b) 2e doesn't apply, so a main program or init procedure may be required 

to zero-fill data 
c) names are inserted into private kgt, which is searched prior to 

global (pure) kgt 
d) just a reminder that mark/release is still not called (this is unchanged> 
e) special handling for streams: to use shared stream sfcb's, don't bind 

stream_pure_data.bin (omission of this will cause the global space 
definitions to be used 



o 

o 

o 

5) What SSR's and certain customers should know: 
a) can't mix and match SR4 libraries and OS with previous releases 
b) customers may no longer bind their libraries with FTNLIB 
c) customers using mst_$map_at and mst_$seg_guard must also be sensitive 

to these changes 
d) customers may now install a private library by creating an object 

file named "II ib/userl ib.private". The uid of this file is captured 
at system startup time (i.e. the time at which env or dmenv is loaded) 
This mechanism is not supported 

e) customers may install a global library by creating an object file named 
"/lib/userlib.global". These global libraries must adhere to the rules 
outlined above. Apollo is NOT releasing or supporting customer global 
libraries 



o 

o 

Additional information on ihstalled libraries. 

1. Installing a library adds the entry points to a per-process database 
called the uknown global tableu• This table is later used by the 
loader to resolve globals that were left unresolved by the compiler 
or the binder. 

2. If the object module is ~rocessed by the binder, all entry points which 
are to be added to the known global table must be umarkedu using either 
the -mark or the -allmark binder commands. 

3. The ma i n program in an i n-sta II ed library: 

When a library is installed using the inlib command, its main program 
is cal led only once, during execut.ion of the- inl ib command, right 
after the library is loaded. 

When a library is installed as a'global library (/lib/userlib.private), 
its main program is called once in each process, when the process is 
being created. Since the OM (or SPM) process is created when the node 
is booted, the main program is invoked then, before the OM (or SPM) is 
running. A library need not have a main program, and for global libraries, 
it is recommended that ~hey NOT have a main program, since this impacts 
the performance of process creation. Initialization will be discussed 
further, below. 

4. Multiple uses of library procedures: 

Since a library's static data is initialized only once, when it is loaded, 
and since the library may be used multiple times by different programs, 
it will in general be necessary for a library to cleanup its static 
data when programs terminate execution. In many cases, the library will 
have a termination entry that should be called by application programs 
before they return to the shell. If the application program gets a fault, 
or neglects to call the termination entry, the library should call it 
automatically. (For example, any streams which are left open by an 
application program are closed automatically by the stream manager (which is 
a global library), when the program terminates. In order gain control at 
program termination, a library may use the pfm_$static_cleanup. See the 
programmer's reference manual for further information (actually, I'm not 
sure this is documented right now). The ideal tima to make 
this call (i.e. to establish the static cleanup handler) isin the first 
cal I made to a library procedure by the application program. 



· '. ... 

o 

o 

o 

5. Initialization of static data: 

When a library is installed using the inlib command, its static data are 
loaded and initialized normally, just as if it were bound with the calling 
program. 

When a library is installed as a global library (/lib/userlib.private), 
its static data is initialized in a special way: 

1) The section named OATA$, which by default contains all static data, 
is initialized normally at load time (when the node is booted), but 
is READ-ONLV when the library code is actually executed. This is 
done to save the overhead of re-initializing the static data in each 
new process. 

2) Other impure sections are allocated address space when the library 
is loaded, but any static initialization specified in the object 
module is ignored. Instead, these sections are always initialized 
to zero in each new process. This is inexpensive, because all newly 
referenced pages of virtual memory are set to zero by the OS. These 
pages always occupy the the same range of addresses in each process, 
but are private to the process. Because they are guaranteed to be 
zero, the library can determine whether further initialization is 
~eeded by declaring a boolean variable which will be guaranteed to 
be false on the first use of the library in a new process. Note that 
this variable should also be given a static initial value at compile 
time, since the static data of a library that is. INLIB'ed is NOT 
initialized to zero. This way, the library will work whether it is 
a global library or is INLIB'ed. 

The way you get a static data section in Pascal is to follow the 
VAR keyword by the section name in parenthesis: 

VAR <my_static_data) 
init_done: boolean := false: 
other_stuff: ••• 

The way you get a static data section in Fortran is to use named 
common. 

In C, each global variable is' placed in its own static data section. 

To summarize, when a library is INLIB'ed, its static data is loaded and 
initialized normally, arrd uninitialized data will have random values. When 
a library is global, its DATA$ section is initiaJized, but is global, 
shared, and read-only, whereas its named data sections are read-write, 
private, initialized to zero, and always occupy the same address range in 
each process. 



.. ., '"'" 

o 

o 

o 

6. Multiply defined names. If an external symbol defined by a library is 
already in the Known Global Table at the time a library is instal led 
(either via INLIB, or global) the new definition will override the old 
one as long as the library remains installed. In the case of INLIB, 
the overridden names will be re-instated when the shell that executed 
the inlib command returns to its caller (e.g. a lower level shell). It 
is thus possible to redefine system entry points using this mechanism, but 
th j sis not genera I I y recommende"d, because there is no way to reach the 
real entries while the library is installed -- even from the library itself. 

7. Dynamic linking. A limited form of dynamic linking is available. When 
a library is loaded, any external references which are still unresolved 
after looking in the known global table are left unresolved, and no 
message is given. This is true of ordinary programs as well as libraries. 
If an attempt is made to call one of these entries, the attempt wil I be 
trapped, and the.symbol will be looked up in the known global table again. 
If it is now found, the trap will be removed, and the linkage will be 
established permanently. Thus, a library can reference another library 
which is loaded later. Note that this works only for procedure and function 
cal Is -- it "does not work for data references. (When we release the system 
cal I that instal Is libraries, possibly at SRS, this feature wil I be more 
useful). 



(. " __ . It. 

o 

o 

o 

Asynchronous Fault Handling In AEGlS 63/09/08 

INTRODUCTION 

Async fault handling is broken down into two related operations 
within the kernel: post and delivery. 

An async fault is posted by calling PROC2_*TRACE_tAUlT with a 
target process's p2_uid and a fault code (status_*t) to be sent. 
The post is most frequently made by a user space process: the 
display manager requesting a quit fault is most common. less frequently, 
the kernel posts an async fault be sent to a protess; sio line quits 
and floating point (peb) faults are examples. All kernel-generated 
async faults that I know about are generated by the terminal helper 
process. (They can't be generated by interrupt routines or cpu-B-eligible 
code because the user process OS stack may not be valid and 
PROC2_$TRACE_FAUlT is unwired.) 

Async fault delivery is done by VIM_UNWIRED. When an async 
fault is posted, FIM_UNWIRED is entered with a trace fault. 
(Implementation details follow.> The trace fault code pushes a 
diagnostic frame onto the stack containing the status code passed to 
PROC2_$TRACE_FAUlT. It then enters the user space rlM (usually the 
process fault manager) to perform user space fault handling. 

A process that has received an async fault must acknowledge 
it by calling FIM_$ACKNOWlEOGE. This must be done before any 
more async faults are accepted by PROC2_$TRACE_FAULT for posting. 
FIM_$ACKNOWLEOGE is usually called by the user space FIM. 

IMPLEMENTATION 

N.B.: The term uquitU or "quit fault" used in the variable names and 
the code is an anachronistic reference to the days when the model of 
async faults was simpler. When you see MquitU~ read Uasyncu. 

The kernel data structures used by the async fault mechanism are 
indexed by the address space id of the target process. They are: 

fim_$trace_sts: ARRAV [asid_tl OF status_$t 
the status code to be delivered to the process when a trace 
fau I t occurs". 

fim_$quit_inh: ARRAV [asid_t) OF char 
a flag that indicates the state of async fault handling. 
A false (00) value indicates that an async fault may be 
posted for the process; a true value (f-r) indicates that 
the process has an outstanding <unacknowledged> async 
fault. 

fim_$quit_ec: ARRAV Lasid_tJ OF eventcount_t 
a level 1 eventcount that can be used to trigger a process 
wake up in the event of an async fault. Kernel code that 
desires to be woken up on an async fault includes this 
eventcount in the ec_$wait call. 



o 

o 

o 

fim_$quit_value: ARRAY [asid_tl OF linteger 
the fim_$quit_ec value for the last acknowledged async 
fault. Kernel code that waits on fim_$quit_ec uses 
fim_$quit_value+l as the wake up value. 

fim_$deliv_ec: ARRAY [asid_tl OF eventcount_t 
an eventcount on which a posting process may wait for 
the target process to acknowledge a previously posted 
fault. These ec's aree~ported to user space via 
PROC2_$GET_EC. 

PROC2_$TRACE_FAULT operates with the proc2 mutex lock held, 
thereby avoiding problems when 2 processes try to post a fault 
to the same target at the same time~ (It also avoids posting 
a fault to a target process that deletes itself before the post 
is complete.) 

PROC2_$lRACE_FAULT determines if an async fault is outstanding 
for the target process. If so, it refuses to post another one 
and instead returns with the PROC2_$FAULT_PENDING status. 
If no async fault is outstanding, it sets the status code, 
the async fault inhibit flag (to say that an async fault is 
now outstanding), and the trace bit in the process's OS stack SR. 
It then advances the fim_$quit_ec to wake up the process if 
its waiting on a quittable event inside the kernel. 

When the target process returns to user space, the trace fault 
occurs after one user space instruction is e~ecuted. The trace 
fault causes entry to FIM_UNWIRED trace fault code. 
The trace fault code is distinguished from the common 
FIM code only in that the status code placed in the diagnostic 
frame is that stored in fim_$trace_sts. 

Running in the kernel FIM does not cause the fault to be 
acknowledged. This means that PROC2_$TRACE_FAULT will not yet allow 
another async fault to be posted for the target process. Also, the 
fim_$quit_value is not set to the fim_$quit_ec.value: this 
al)ows process-blocking calls such as ec2_$wait_svc to 
return with a fa'ult-whi Ie-waiting status instead of blocking. 

The user space fim is responsible for acknowledging the fault 
when it is capable of accepting another. The user space PM 
does this when the.fault is dispatched. (Dispatching occurs 
immediately if not pfm_$inhibited, or when the PM's async inhibit 
counter reaches zero.) . 

When the fault is acknowledged, FIM_$AOKNOWLEDut sets the 
fim_$quit_value to the fim_$quit_ec.value, clears the 
way for another async fault by setting fim_$quit_inh to false, 
and advances the fim_$detiv_ec. 



o 

o 

o 

Fim_$quit_ec is used in various places within the kernel to allow 
blocking process to wake up on an asynchronous faults. Code that 
wakes up on the fim_$quit_ec must set the fim_$quit_value to the 
fim_$quit_ec.value. This is required to prevent spurious wake ups that 
could occur between the time the fault is posted <eventcount is' 
advanced> and the time the fault is acknowledged. 

This requirement is NEW as of 83/09/08. Existing kernel code that 
used fim_$quit_ec prior to this date has been updated to follow the 
prescribed protocol. 



.-_ .•....•..• _ ... __ .. _._ .•... --------

o 

o 

I __ 

o 

BAT 1 
VTOC 2 
AST 3 
MST 4 
PMAP 5 
MMAP 6 
MMU 7 
DISK 8 
EC 9 
PROCI A 
TERM B 
DBUF C 
TIME D 
NAME . E 
FILE F 
10 10 
NETWORK 11 
FAULT· 12 
SMD 13 
VOLX 14 
CAL 15 

EC2 
PROC2 
IHEX 
OS 
VFMT 
CBUF 
PBU 
LPR 
OSINFO 

MT 
ACL 
PEB 
NETLOG 
COLOR 
VME 

16 
17 
18 
19 
lA 
IB 
IC 
10 
IE 
IF 
20 
21 
22 
23 
24 
25 
26 
27 

OS module codes: 

BAT manager 
VTOC manager 
AST manager 
MST manager 
PHAP manager 
MMAP manager 
MMU manager 
DISK manager 
level 1 eventcounts 
level 1 process manager 

. <sio line) terminal manager 
disk-buffer manager 
time manager 
naming server 
f i I e manager 
I/O manager 
networks 
M68000 and HHU detected faults 
screen manager display driver 
volume manager 
calendar maint. manager 

level two eventcounts 
level two process mgr 
logical volume import/export mgr 
os startup/shutdown 
vfmt input & decode routines 
circular buffer manager 
peripheral bus unit module 
line printer module 
OS info supplier 
available 
magtape routines 
access control list manager 
PEB debugging module 
network logging mechanism 
color display system 
vme errors 



o 

o 

o 

1. 

2. 

Notes on the MBX helper process 5/83 

This is what a mailbox file looks like: 

MBX FILE HEADER 
+------------------------------------------+ 
--------------------------------------------CHANNEL 1 

Channel 1 header 
;------------------------------------------; 

Channel 1 client to server data buffer 
• • ,------------------------------------------, 
: Channel 1 server to client data buffer : 
+------------------------------------------+ 
--------------------------------------------CHANNEL2 

Channel 2 header 
I I ,------------------------------------------, 

Channel 2 client to server data buffer 
• • ,------------------------------------------, 

Channel 2 server to client data buffer 
+---------------------------~--------------+ 

<The size of the buffers are specified by the creator of the mailbox.> 

The Model 

Each Mailbox supports a Server-with-multiple clients model. The mailbox 
is used to pass messages between the server and his clients (never between 
two clients directly). The server 'owns' the mailbox and must open it . 
first before any clients can use it. 

If the client and the server processes are in the SAME node, they use 
shared memory to communicate through the file (both map for CO-WRITERS). 
(Note that the MaX file doesn't have to exist on the same node, just the 
processes do.) If the c I i ent and the server processes are inDIFfERENT, 
nodes, they must use MBX HELPERS to communicate, since two processes on 
different nodeos can't map the sameofile for CO-WRITERS. (Note that 
the client needs a helper process even if the MBX file is on the same 
node as the client.) 

3. Here" is a picture of server-c I i ent commun i cati on through a ma i I box when 
the processes are co-resident: 

MBX Fi Ie 
+----------------------+ 

put-rec client-to-server data: get-rec 
;-------) :-------) 

CLIENT SERVER 

get-rec server-to-client data: put-rec 
(--------; (--------; 

---------- +----------------------+ ------------



o 

o 

o 

----------_ .•. _ ....• _._ .•.. 

4. When the Server and Client are not co-resident, each needs a mailbox 
helper to deliver messages to the other. Here is what happens when 
a client opens a mailbox to a server: 

a. The client MBX routines get information about the file lock on the MBX 
file. It must be locked for co-writers (server has opened the mailbox). 
If it is locked locally, see figure 3 above. If it is not locked 
in the client's node, continu~ below. 

b. A channel is opened for the client on his local mailbox, SVSHBX, 
(which is serviced by his local MaX-helper (let's call him 'HH-C'» 
and a message is sent to the remote MaX-helper (we'll call him 'HH-S') 
at his well-known socket in the server's node. The client process 
then waits on the SVSMBX channel for the open response. 

c. 'HH-S' in the serving node 'helps' the client by doing an open to 
the target mailbox on behalf of the requestor. He then records 
information in the channel header about the remote client. 

d. The server in turn reads his mailbox normally (get_rec), sees the 
open request and (eventually) does a put_rec to his MBX file accepting 
the open. The MBX library routines, used by the server, 'see' that 
the addressed channel is really remote and so 'bounce' the msg over 
over the network to the remote MBX·-helper. Note that the server 
application NEVER KNOWS that the client is remote. 

e. MH-C receives the open response and delivers it through the SVSMBX 
channel to the waiting client process. The open response is then 
delivered to the client application as if the open on the target file 
occurred locally. Actually, what the client has is an open channel 
that is partly on his local SVSMBX (for reading) and partly in the 
target file (for writing). Note that the client application NEVER 
KNOWS that the server is remote and that his mailbox is sort of 
schizophrenic. 

f. Communication between the client and server now procedes apace, with 
the client reading from his channel (in SVSHBX) normally (get_rec), 
while his put_rec's bounce off his SVSHBX mailbox to the remote MH-S. 
HH-S puts themsgs in the target mailbox, which the server process reads 
normally, while the server's put_recs bounce off the 'target mailbox 
to the client's MH-C which stuffs them in SVSHBX. 

g. Note that all get_recs are local for both the client and server. The 
HBX-helper is needed only for put_recs. 

-_._--- -----



----- --------------

o 

o 

o 

h. A picture is worth a thousand words: 

NODE A 

CLIENT 

get-ree 
: < ---------

SVSHBX f i Ie 
+----------------------+ 

server-to-elient data: put-ree 
: < --------- HHX 

HELPER 

put-ree HH-C 
:-------->/ 

---------- / +----------------------+ ----------
/ /\ 

----------------------/--------------------------------------/-~----------------
/\ / /\ / 

NODE B / \/ / \ /. 
/ / \/ 

V MBX Fi Ie / 
---------- +----------------------+1 -----------

MBX 
HELPER 

1<---------: 
put_re.e 

------------------ SERVER 
• • 

MH-S :put_ree elient_to_server data: get_ree : 
:---------> :--------->: 

---------- +----------------------+ -----------



o 

o 

o 

o 

2 

4 

6 

8 
A 

C 
E 

10 

o IRE C TOR V S T Rue T U R E 
----------------------------------------------------------------------------

header 

linear list 

info block 

hash threads 

entry 
blocks 

Directory Overview 
(dir_t) 

total length - 2 full segments 
(name.pvt.pas) 

· , ,------------------------, 
: version : M B Z : 
:------------------------' 
• , info block length 
:------------------------

info block .hdr length 
• ,------------------------

M B Z 

default acl uid 
for directories 

default act uid 
for files 

24 unused bytes 
:-----------------~------

Directory "irifo block" 
.i nfob I k_hdr _ t 

total length - 48 bytes 
(name. pvt. pas) . 

directory configuration information 

sequentially used directory entries 

At~ manager's intial At~ description block 

Pointers to linked lists of hashed entries 

Holding blocks for hashed entries 
and/or link text 

info block version number 

total length of info block 

length of the info block header (8) 

reserved for future use 

uid of acl to be applied to directories 
catalogued in this directory 

uid of act to be applied to files 
catalogued in this directory 

reserved for future use 

- .. __ .. _-------_ ... __ . __ ._ .. __ .. _-_._--- ------_. __ .. _-_ ...... _ .... -_._---



o 

o 

o 

o 

20 

22 

24 

26 

26 

o 

2 

4 

t 

entry name 

unused 
------------------------

unused 
------------------------

unused 
------------------------

name len entry type 

------------------------

4 words of 
entry data 

(either UIO or link 
text description) 

,------------------------
Directory "entry" 

dir_entry_t-
total length - 48 bytes 

(name.pvt.pas) 

, ------------------------, 
next block number 

------------------------
prev block number 

------------------------

use count: block type 

------------------------
entry block 

data 
.------------------------: 

Directory "entry block" 
- entry _b I ock_ t 

total length - 150 bytes 
(name. pvt. pas) 

32 bytes of entry name 

reserved 

reserved 

reserved 

name len - f of useful characters in entry name 
entry type - 0 = not in use 

1 = name/uid pair 
3 = name/link-data pair 

if entry type = 1, this is the UID 
entry type = 3, this describes the link text~ 

I ink text len 
block that holds link text chars 1-144 
block that holds link text chars 145-256 
reserved for future use 

forward thread for doubly linked list 

backward thread for doubly linked list 

use count - f of used entries in this block 
block type- 0 = not in use 

1 = hash block with 3 dir entries 
- 3 = link text holding block 

either 3 dir entries or 
up to 144 chars of link text 



o 

o 

o 

o 

2 

4 

6 

8 

A 

C 

E 

10 

12 

14 

16 

18 

version 

hash value 

I ist size 

pool si.ze 

entries per block 

high block number 

free block thread 

unused 

unused 

unused· 
.------------------------

unused 
• .------------------------

entry count 
• .------------------------

maximum count 
• ,------------------------

Directory "header" 
first part of dir_t 

total length - 26 bytes 
(name.pvt.pas) 

version number of this directory (1) 

f of hash threads used for entry name hashing 

f of entries configured into linear list (18) 

f of entry blocks in this directory (429) 

f of entries that fit in an entry block (3) 

f of the highes entry block used so far 

f of the first block on the free block list 

reserved for future use 

reserved for future use 

reserved for future use 

reserved for future use 

f of entries currently catalogued in this dir 

* of entries this directory CAN hold (1300) 

Notes on directories: 
------------------------------------------

1. To add an entry to a directory: 
(a) look for an unused entry in the linear list. 

If you find one, use it and you're done. 
{b) Hash the name you want to add. 
(c) Get the hash thread for the specified hash value 

and call that value the found block. 
(d) If the found block number is 0 then we need a new entry block, so: 

(i) See if there are ~ny blocks threaded through the 
free block list and if so, take one of those. 
Otherwise, bump the high block number and use that. 

(ii) Initialize the newly obtained block, add it to the 
end of the apprpriate hash chain, add the new entry 
as the first entry in the new entry block and you're done. 

(e) If there is an:unused entry in the found block, 
use it and you're done. 

(f) Change the found block value to the number in the current 
found block's NETX BlOCK field and goto step (d). 



.. 

o 

o 

o 

2. The searching rule for a directory is: 
(a) look in the linear list. 
(b) hash the name you're searching for. 
(c) follow the hash thread for the specified hash value 

to the first entry block with that hash synonym. 
(d) search all (3) of the entries in the found entry block 
(e) follow the Mnext block number" in the found ent~y block 

to get a NEW found entry block. If the next block number 
is zero, then return NOI FOUND. 

(f> goto step (d) with the newly found block. 



I 

C~ 

6 

o. 

~H ANALYSIS <DMMANlE 

Here are the first three things you will 00. '!he "man (nap) conrnand maps the dump 
and gives its length and starting location. (The dllllP is napped for read/wri te 
access, no extend.). it}e- "dan, "am", and "st" cormnan& are described telow. You 
may want to start ~ reading their descriptions. 

$db 
1 rna dump.425.04.07 
134000 bytes mapped at 2F8000 

Ida 
System built on Tuesday, March 22, 1983 3:13:09 pn (EST) 

1 am map.425.04.07 

ma~d mode entered 
OJrrent asid = 1 

1st ... 

System built at 1983/03/22-15:14:02 EST (Tue) 

a7 [<value>] set SP at time of dump 

A7 must always be saved or remenbered before taking a dump, since it gets 
clobbered. 'lhis cormnand will set the SP displayed _ ~ the IR rornrrand to the given 
value. If no value is entered, the oontents of OEO03FC (physical 1003FC) are used. 
(This is where craslLsystem saves a7 before entering the prom.-) 

a{blwI1}[e] <sym> access via ~1 name 

'!bese are special flavors of db's 'a' cormnand that take a syntx>l name rather than a 
hex address. '!be suffixes 'b', 'w', 'I' stand for !:¥te, word, long. Ie' can also be 
appended if you specify a procedure name and want its ecb instead of its entry 
p>int. 

1 al os_stack-base 
E31CEC: 0 
E31CFO: E4D400 
E31CF4: 0 
E31CF8: EA8800 
E31CFC: EA9400 
E3lDOO: EA9COO 
E3lD04: EAA400 
E3ID08: EABOOO / 

1 ale ast_$touch 
E2 90C4: 4EF90 OEO 
E290C8: 182400E2 / 
! 



---- .. _-_ ..... _-_._ .. _---_ .. _._--

am <path> load Aegis Map 

o This tells db to load a map of aegis as produced l:!i bincLaegis. Example: 

o 

( 

o 

1 am / /hifi/sau/aegis.map . 

mapped mode entered 
Current asid = 2 

System built at 1983/03/24 13:17:08 EST (Thu) 

ihe first line printed indicates when the system was bJil t (this is the first line 
of the map file) 7 the seoond line is printed if a dump (or, actually, anything) 'has 
been previously maR?ed with db's map exmunand7 the third li~ indicates the current 
address space (procl-$as_id). 

If you are looking at a dump, the map should, of oourse, oorresplnd t<? the version 
of aegis in the dmnp. Todetennine this, cmnp:tre the build time printed by the 
'am' exmunand (see below) with the ruild time shown l:!i the 'st' oommand. ntese 
times should be within 15-20 seooncE of each otherJ if they are not, you've got the 
wrong map. If the 'st' exmunand says "Build time not available", which it will for 
any' aegis built before 02/28/83, then you should ~rforrn some reasonabil i ty checks 
if you have any ooubts as to whether or not you have the oor rect map. 

Note 1 

In systems buil t after 02/18/83 the c1.ockh of the build time is stored in 
BUILD_$TIME, which is at OE00800, wired, and should always be in the dump.) 

Note 2 

The 'am' exmunand can be used even if you, haven't mapped a dump. . '!he 'wh ' cnmmand 
can , then be used to look up synDols in the map. 'lhls is useful, for example, if you 
have crashed node next to one on which the map can be examined. 

= 

as [<asid>] set/display current asid 

This oommand is useful only if you have to look in the private address sp3ce of a 
process other than the current process. For example, if process 9 (user process 1) 
is current rut you want to look at the stack of user process 2, you will need to 
set the asid to 3. (His stack, of cx>urse, may' not be in the dump.) If you don It 
know the asid of a. process, dump its pcb with th~ 'dp' cxmmand. 

1 as 
current asid = I 

1 as 2 



o 

1-..., 

U 

.. 
~ 

0 

_._-_ .. _ ... _._._--_ .. _-_. -_ ... -------------

.aste <addr>l<astex> print contents of aste 

The • aste' oommand dtJnp:; an aste (active segnent table entry) identified ei ther by 
astex (aste index, starting at 1) or by an address. Example: 

1 aste 2 

-aste 2 .at EDCOBO: !!HIFI!SYS!NET!PAGIOO_FILE.4BA 
fsegno = 1, link = 1 (= mcOOO), corLctrl =0 (none) 
permanent, not inmutable, no file_trouble, not ill-trans, holCLcxnmt = 1 
vtoce_addr = 8000039F, £nLaddr = 0, sys_~ = 0 
file map not modified, blocks_delta = 0, cur_len = 8001 
gtms = false, dt:nLflag = true ,grace_flag = false, volx = 15, npr = 28 
dtm= Jtt>nday, April 4, 1983 7:27:32 pn (EST) . 
type= uiCL$nil, acl= acl_$nil 

0: wired=l resident, Pf:n=442 
1: wired=l resident, PJ;Jl=443 
2: wired=l resident, PP1=444 
3: wired=l resident, Pf:n=445 
4: wired=l resident, !P'l=446 
5: wired=1 resident, ppn=447 
6: wired=1 resident, ppn=448 
7: wired=l resident, PJ;Jl=449 
8: wired=1 resident, ppn=44A 
9:wired=O resident, PfIl=6Dl 

10: wired=O resident, PIl'l=6D9 
11: wired=O resident, Pfll=6DA 

·12: wired=O resident, IPl=4F2 
13: wired=O resident, ppn=6C7 

Next (cr), link (1) or done (q)?q 

14: wired=O resident, PJ;Il=6C5 
15: wired=O resident, ~=78C 
16: wired=O resident, ptrl=6CA 
.17: wired=O resident, PfIl=4ED 
18: wired=O resident, p;:n=6EB 
19: wired=O resident, ppn=7CA 
20: wired=O resident, J?!l1=788 
21: wired=O resident, pr;n=457 
22: wired=O resident, ppn=458 
23: wired=O resident, ppn=45B 
24Lwired=O resident, PJ:l'l=45C 
25: wired=O resident, PPl=450 
26: wired=O resident, PP'l=6E6 
27: wired=O resident, Rl'l=6D0 

If you ~ return to the above pr~, the ~xt sequential aste is displayed. If 
the aste has a non-zero hash thread, you can display the next aste on the hash 
thread by typing "1". The asteoommand will bitch if you give it an mreasonable 
astex or an address outside the ast. 

d460 

This prints hardware information unique to DNx60 processors: 

1 f460 
rus dtmp was taken by CPIO (not CRJ) 

CUrrent hardware region registers: 
RAR (00-07) : C0200COO 80272COO 0 0 0 0 
RAR (OB-OF) : 0 0 0 0 0 0 
RAR(IO-l7) : 0 0 0 0 0 0 

0 
0 
0 

RAR (lB-IF): 0 0 0 0 0 0 8029F800 
CPU state as saved by CPIO: 

CPU PC: 3256, em SR: 82A2700, CRJ USP: 875258 
00-07: 82AOO04 FFFFFFFF 13M 190 2020000C F9257464 400 
AD-A7: 20A852 20AB52 BeOO' 9090 BCOO 8401 200130 

CO2 

20AOC 
20A83 



da [<clockh> ] display date 

(___. ibe long word entered is interpreted as a c1.ocldLt and displayed. If you do not U enter a time, the wild time of the system in the dump is displayed. 

I a1 builCL$tirne 
E0082A: l7lEBlED / 

1 da l71e8lfd 
Tuesday, M!lrch 22, 1983 3:13:09 pn (EST) 

Ida 
System wilt Q'l Tuesday, March <22", 1983 3:13:09 pn (EST) 

Note 1 'Ihls oonmand can be used even if a nap of aegis has not been loaded. It can 
thus be used wl'en &ciding what nap to load. 

db enter/leave debug mode 

This oommand (which won't a~ar in the help list) toggles an internal variable 
that . oontrols the display of certain cEbugging information, p:lrticularly during the 
process of oonverting mapped addresses into their dump-relative equivalents. You 
should normally have no need' of this mmmand, rut· if you are getting strange 
resul ts or mexpected vtop misses or access violations, turning on debug mode may 

{ help isolate the problem. 

o 

( 

o 

dct [<index>] display dcte (s) 

One or all (if <index> is anitted) of the dctes are displayed. Fach dcte oontains 
information about a p:irticu1ar disk or ring controller on the system. Example: 

1 dct 0 

DCrE for ~ 0 (winchester) at E2F4AB (O'lun=O) : 
ctIr status = 0 
lOCK-no=OOl5, iamap~base=0040, vector-Ptr=240, csrs-Ptr=FF9COO 
bllLhc1r_ptr = E2F400 PAGE_mIT 
int_entry = E2F584 ~ + 0 
int_routine = E3469A wnL$INT<e> 
int ec at 274EBA: 114502 E2F4BC E2F4BC DCl'E. WIN + 14 

df <address> display fault diagnostic reoord 

Just like an nfst -an, except you have to supply the address of the fault reoord. 
Usually, you· won't know where a fault diagnostic reoord is. One technique is to 



-------------------- ._._ ...... _ ....... _-_ ... _----------

o 

o 

o 

enter l;nysical JOOde and search the mapped dump for occurences of DEDF: 

$db 

1 rna dump.144b.01.17 
200400 b¥tes mapped at 2FBOOO 

1 s 2f8000 2f8000+2003fe Odfdf:w 

3066AO: DEDF 
338D32: DEDF 
392420: DIDF 
424804: DIDF 

1 df 424804 
Faul t Diagnostic Information 
Fault Status = 9B450000: 
status 9B450000 
Faul t occured in supervisor due to user program error. 
Access Addr = FFF0246E 
IR ' = 0014 
Acc. Info = 4ES6 
User Fault PC = 488148Cl 
DD-D7: 00000000 64BA2000 00000000 00000000 00000000 00000001 00020000 388EOOOO 
AD-A7: 00200000 388EOOOO 55480000 64900000 64940000 649A2FOD 42A72F08 2A680006 
SUpervisor ECB = 2803242E 
SuPervisor SR = FFF4 
suPervisor PC == 264AS28A 

Most of the DIDF's you find will not be real diagnostic reoorcE, and df will 
display junk. The one above, for example, has very feN reasonable nlJllbers and 
should be ignored. 

dpt disable PrT (renO'Ve from address space) 

The Prl', napp:!d at 700000, is -renO'Ved fran the address space. SUbsequent references 
to virtual addresses in the range 70000o-7FFFFF will reference user space 
addresses. 

dp [<pid>] display pcb (first ten if no pid entered) 

The Idp' oommand displays the oontents of a pcb (process CDntrol block) in nice 
easy to digest format. If "pid" is not ~cified, the pcb's of all bound processes 
are dum~d. Example: 

Idp9 
E2FB82: PID = 9, ~ID = 2 *** USER PROCESS 1 *** 

LOCKS HELD: none 
STATE: bound waiting on 3 eventoounts: 

E32890: 4 EBEF4A F2EF4A SQCfL$SOCKET<d> + 80 
E33396: 392138772 EA9304 F2EF5A TIME_$CLOCKELEC<d> 



(J 

o 

E30550: 0 EBEF6A EBEF6A FIz.t....$QUIT_EC<d> + 18 
REWUN~ TIMESLICE = 764 NEn' = E2FA6A, PRBV = E2FA6A 
CLOCKa..T AT START OF LAST WAIT = l75F58D5 PRIORITY = 3 

1 

Note 1 

If a 10?k is displayed as: 

LOCKS HELD: win....$lock(W) 

STACK Pm = EBEF36 
SPIs=277BO~EBEF90 

,it means that the the process is waiting to acx;luire the lock; saneone else is 
actually oolding the lock. (db notices that the process is waiting on an eventoount 
in LOOL$EVENT_LIS'l5.) 

Note 2 

"STACK Pm" is a !X>inter to where the USP and SP were saved on the process IS 

stack. , 'nle saved USP and SP are displayed following "SPI s". For the current 
process, all three of these fields should be ignored; the current SP is in the 
registers saved by MD (if you're lucky). 

Note 3 

Examination of "CLOCKa..T AT START OF LAST WAIT" is sometimes useful in &termining 
which processes have rtm recently. 

Note 4 

In the interpretation of the eventoounts a process is waiting on, the first field 
(the oount) is in &cimal. 

Note 5 

One 'of the first things you should cb in analyzing dtmlps, p!rticularly those of 
obscure cause, is dump all the pcbs. ihiswill tell you who was running (current), 
who was ready to run, who ran recently, and who was blocked and why. After looking 
at a few dlDTlps, you will reoognize which processes are in their normal quiescent 
states and which have had thei r cages rattled. See also the RL oommand. 

dr display registers at crash 

This oorranand dumps the last set of registers saved by MD. Note that this is Nor a 
shorthand for "d dO a7 8:1", which will show neaningless infonnation. 

Idr 
dO: 
aO: 
1 

Note 1 

o FFFFFFFF 
7D8 EO0294 

13 
E002E2 

o 
E2FAlO 

10 
EO 0242 

o 
FESOOl 

1 
EO0200 

8000 
140000 

'!he A6 and A7 shCMn above are typical of 'the registers saved following a reset 
oommand; they should be ignored. (Usually only A7 has been clobbered.) 



o 

o 

0 

ds display disk statistics 

The "ds" command dump; WnL$CNT, SlL$CNT (if the system has a storage module), and 
DISIL$ERROILINro" - information about the most recent disk error. 

Ids 

Winchester I/O: total= 18441 
Not ready 0 
Seek error 0 
Drive time out 0 
CRC errors 0 

reads= 10338 
Contr1r rusy 
Equip check 
Overrlm . 

No disk error info has been reoorded. 
1 

writes: 
o 
o 
o 

dv <addr> convert db address to virtual address 

8103 

If you have had to 9' into I;ilysical roode (see "p" corrmand) to look at something, 
the "dv" command can l:e used to translate J;ilysical addresses back into their 
virtual equivalents (if one exists). Examples: 

1 dv 32c188 
32C188 = 0/E2F988 PCBS<d> 

1 dv 69 
addr not part of dump 

The nlJ1lber preceeding the "/" is the asid of the address • 

dvt . print disk volume table 

The "dvt" command dump; the entire disk volume table. Use this to see what volll11es 
were mOlmted at the time of the dump, the state of the vo1trnes, etc. 

1 dvt 

m'IE for 1volx 1 at E33F4E: mOlmted 
unit = 0, dtype = 0, dcte p:r = E2FOAB DCrE.WIN + 0 
b_per_vo1 = EB67 (60263), b~r_trk= 12, tJer_cy1 = 3, curr_cy1 = 103 
1vJ:ase = 1, owner pid = 1, vo1l1lle uid = l1EA304C.10000105 

DVTE for pvolx 2 at E33F72: free 

m'IE for p!olx 3 at E33F96: free 

IN'lE for pvolx 4 at E33FBA: free 

IJJ'IE for plolx 5 at E33FDE: free 



,~ u 

b 

, 

6 

IJl'IE for Plolx 6 at E34002: motn'lted 
. t.mit = 0, ~ = 0, dcte ptr = E2FOAB DCrE.WIN + 0 
b--ller_vol = m68 (60264), b--ller_trk = 12, t~r_cyl = 3, curr_cyl = 0 
lv_base = 0, owner pid = 1, vollJlle uid = llEA2E85.00000l05 

ept enable Prl' into the address space 

The Pl'T is ma~d into the address space at 700000. ~s also enables the Pr 
command. 

ff [<addr>] t~ to find stack frame in addr - addr+l024 

This command attempts to find a reasonable looking stack frame inlK h¥tes starting 
with the apecified address. If it finds one, it then calls the trace stack command 
to display the stack from that p:>int. If you oon't like the resulting chain of 
stack frames, typ: "ff" again with no argument. The search will be restarted just 
after (above) the first frame fotn'ld. 

1 ff Oea9000 

stack frame at: EA9006 ••• 
previous frame: EA906C 
ecb : E3lCC8 
unit list : 0 
caller' db : E340BB 
pc for return: E2FE6C 
argument 1 : EA9028 
argmnent 2 : EA9034 
argument 3 : 200El 

Continue trace back? n 

Note 1 

PROCESS 4 STACK - 394 
E~$WAI'IN<e> 

WIN....$RD_WRr<e> + C 
EC_$WAIT<d> + 24 
PROCESS 4 STACK - 3D8 
PROCESS 4 STACK - 3CC 

If you hit on an old chain of stack frames, the trace tack will oostly likely end 
up a garbagey stack frame, access violation, etc. Several "ff" commands are usually 
needed oofore finding a reasonable chain that reaches all the wCJ)J back to top of 
the processs I es stack. 

gd [<unit>] get (pbu) dcte 

This oommand will dump the current state of a PBU dcte (not to 00 confused with 
disk/net dcte' s). This command is only useful on systems that have a pbu; 
particular dcte's of interest are those of the ta~ (3) and storage module (4). If 
no unit number is specified, all the mu dctes are dumJ;ed. 

19dO 



· , 

(J 

o 

b 

DCrE 0 AT E3B946: 

int_addr: 
asid: 
pid: 
f1ags/eoi: 
base_unit: 
uint_addr: 
ec_addr: 
ec: 
timer: 
usp: 
csr_PP'l : 
csr_ptr: 
ianapJase: 
ianap_start: 
ianap_end: 
JIe1LPl:r: 
meJlL1en: 
netLiova: 
1 

E3BCOO Unit 0 
0000 
o 
0060 (ec not advanced, int_addr not set) 
o 
000000 
000000 

0, E3B95A, E3B95A 
0, E3B966, E3B966 

000000 
o 
000000 
o 
0000 
0000 
000000 
0000 
0000 

ha <hi> <10> I <addr> hash uid to astex 

The "han cormnand will accept a uid or the address of a uid and :calculate the index 
of the start of the ast hash thread for that uid. '!his is useful when you have the 
uid of an object and want to examine what the ast says about the current state of 
the object. 

! ~h networlL$I2gin9-file_uid 
networlL$pagingjile_uid at E2BAl.0 

! ha Oe2balO 
hashs to 48, first astex = B 

! ha 1790BA98 800003D4 
hashs to 40, first astex = 8A 

le list system error log 

If system error logging is turned on, the le oommand displays the oontents of the 
mawed log file at the time of the crash. 

! Ie 
Thursday, October 20, 1983 

5: 32: 15 am (EDI') system startup 
1:23:28 pn (Eur) crash on Tuesday, October 20, 1983 1:19:21 am (Eur) 

crash status - nanual stop: typ: G<ret>G *+2<ret> to oontinue (OS/terminal rnanage~ 
1: 23 : 28 pn (Eur) system startup 
4:25:34 pn (Em) system shutdown 



b 

b 

4:25:55 pn (Em') system startup 
6:19:11 pn (EDl') system shutcbwn 
6:19:30 pn (Em) system startup 

Error totals: 
system startups 
disk errors 
ecce errors 
parity errors 
system shutdJwns 
system crashes 

4 
o 
o 
o 
2 
o 

lvl <addr> print logical volane label 

'Ibis will interpret and display a logical volune label starting at <addr. 'Ibis 
oorranand can also be used after IWVol has been used to read the· 1 v label. 

m enter ma~d mode 

In mapped mode, all addresses that you feed db are interpreted according to the 
state of the nmu when the dump was taken. In addition to normal virtual addresses, 
certain (mapped) hardware addresses can be entered. ~ese are:· 

FFF80o-FFF9FE 
70000o-7FFFFF 
FFB404-FFB407 
FFB40A-FFB40B 
F~80o-FFF7FF 

IOMAP 
PrT 
MMU status register (Apollo_l only) 
ftMJ bus status register 
PET 

~rtain other piges (e.g., trap p:lge, debugger p:lge) can be referenced by b:>th 
their {ilysical and virtual addresses.-

Note 1 

Mapped mode is autanatic;::ally entered by the.' am' and 'rna' oornmands once a dump has 
been mapped and a map loaded. 

Note 2 



b 

o 

b 

nm <addr> I <PP1> print nmap entry 

'!he "mm" oornmand shows you the current state of a !ilysical p:lge of memory. Of 
p:lrticular interest is the astex, which will indicate the aste of the object to 
which the p:ige belongs. Example: . 

1 nun 500 
E4lCOO: PPl 500: C4B50ll7 in-use, astex=B5, daddrJt=O, pttx=117 

avail=true, null=false, mod=false, usedp=false, usedr=true 
Next (cr) or cbne (q)? 
E4lC04: pp1 501: C430020E in-use, astex=30, daddr_h=O, pttx=20E 

avail=true, null=false, mod=false, usedp=false, usedr=true 
Next (cr) or cbne (q)?q 

1 

mr print ~rec (ecce or parity error log) 

The contents of the ne:nory eccc or p:lrity record are displayed. (Info is the same 
as that displayed at the end of a netstat -1.) 

1 mr 
A total of o parity errors were detected. 

ms <args> ma~d search (just like md's • s') 

This works just like 00' s "s" oornmand, except that you ~cify dl.llltrrelative 
addresses. (There are oogs here.) 

mst [<asid>l<msteaddr>] print mst for an asid (0 for gbl, anit for curr) 

This oornmand will dlltlp the mst' (ma~d, segment table) for a given asid. If 
anitted, the current asid is used (see "as" oommand). '!he "mst" oornmand will also 
accept an address that is in some p:irt of the mst. It will figure out which asid 
corresponds to that address and dump the entire mat for that aside 

1 mst 3 
- ~ is at EcgOOO -
lt5T for asid 3. 1st MSTE is at: ECBCOO 

VA Range 

'200000 - 28FFFF 
290000 - 297FFF 

Obj Start UID/Pathname 

o l784E56D.70000l92 
o /SYS/~.JA\TA,/IIeLMBX 



0 

298000 - 29FFFF 0 /<DM/m 
2AOOOO - 2BFFFF 90000 1784E56D.70000192 
2COOOO - 2C7FFF 8000 1784E56B.30000192 
2C8000 - 2D7FFF 0 /<DM,Im 
208000 - 2F7FFF BOOOO l784E56D.70000l92 
BCOOOO - BCFFFF 0 /G1S/MEIDS 
BDOOOO - BDFFFF 0 /1f¥:Yd 

mste <addr> print the mste for a particular virtual address 

The "mstew oorrmand is similar to the "mst" cxmnand, but only the msteoorreSIX>nding 
to the given virtual address is durnp:!d. ibe current asid is used. Addresses in the 
global A or B areas can t:e sp:!cified without &litching to asid o. 

p 

1 mste 298000 
mste at ECBD30: 
298000 - 29FFFF 0 l76930FB.300003D4 fsegno=O, ext_ok=false 
access=rx, guard=false, J;8stex=78, 1ocx=1000000l (t(LClt=4, 1c1., volx = 1) 

enter Iilysical (normal) IOOde 

Physical IOOde (as op£X>sed to na~d IOOde, which see) is the normal state of 
affairs in db. Addresses fed to db are interpreted as referring to the address 
space of the process in which you are rtmning db. 

o It is occasionally useful to enter PlYsical IOOde when analyzing a dump in order to 
search the entire dump for some pattern. For example, if you are looking for all 
fozzards that have IPl 425 in their back p>cket, you muld do the following (don't 
expect such terse output as is shown here I) : 

6 

1 p 

I s 2f8000 2f8000+l34000 425:w 

2FA68A: 425 

(using the values printed I:!i the Ina I command) 

1 m 

! dv2fa68a 
2FA68A = O/FEBABA 

1 wh Offba8a 
PFT + 28A 

1 

(just so you chn't forget) 

(oonvert db addr back to virtual addr) 

(as you might e~ct) 

Physical IOOde is also useful if a page in the dump has useful information but 
not in the nmu at the time of the dump (see mxt oommand). 

was 

===================================================================--

-_ .. __ ._ ... -._--



o 

pf <PP1> I <addr> display pft entry 

This ex>rnrnand displays a pft entry given either a pr;n or an address in the pft. 

1 pf 500 

i?fte for 500 at FFCCOO: 06630519 asiCF:3, access=wr, xsvpl=3 
eoc=false, pnod=false, used=false, global=false, link=5l9 . 

Next (cr),link (1) or done (q)?l 

pfte for 519 at FFCC64: 017EF5E7 asid=O, access=swrx, xsvpl=E 
eoc=true, pnod=true, used--true, global=true, link=5E7 

Next (cr), link (1) or done (q)?l 

pfte for 5E7 at FFCF9C: 08636500 asid=4, access=wr, xsvpl=3 
eoc=false, pnod=true, used=true, global=false, link=500 

Next (cr), link (1) or oone (q)?q 

p: <pttx> display p:t entry 

The "pt" cx>rranand displays the ptt entry for a given ptt index (pttx). Example: 

1 pt 241 
790400 (2F8682) = FC38 

o ! 

I o 

The . first address is where the entry would a~ar in a real p:t. '!be virtual 
addresses oorresp:>nding to the p:tx in the above example would be x90400 (90400, 
290400, E90400, etc.).' To see what the p:t entry is currently lX>inting to, display 
the pft entry lX>inted to t¥ the p:t entry (ignore the top 4 bits, e.g., C38 in the 
example) • The ntlllber in p:lrens is where the ptt entry is stored in the dump, in 
case you want to IX>ke around in J;ilysical IOOde. Note that in J;ilysical mode the ptt 
has only one entry for every lK entries in the real pft, e.g., the ptt entry at 
J;ilysical location 2F8684, J.X,tx 242, would a~ar in the real p:t at 790800. 

'Ib use this ex>rnrnand, you must first "enable" the PrT with the EPl' cx>mnand. 

convert ppn to virtual address 

The I!W I ex>rnrnand shoWs you what virtual address is currently associated with a 
PlYsical p!ge fran the dump. Examples: 

1 pi 425 
425 = 0/E08COO PMAP_$GROW<p> + A4 

! pi 4be 
PP1 4BE is not in use, but is at 32B800 



( o 

6 

o 

'!he number preceeding the _/n is the asid of the address • 

. In the seoond example, the PP1 was not in the nmu at the time of the dump (e.g., 
maybe saneone was ching i/o to or fran it). In this case" db prints the address 
where the page can be found in !ilysica1 JOOde (see 'p' oorrm:md). 

~l <addr> print !ilysical volllI\e label 

This will interpret and display a !ilysical volune label starting at <addr. 'Ibis 
cnnrnand can also be used after rwvol has ooen used to read the pi label. 

'rl [check] print ready list 

This is like the DP (display PCBs) cormnand except that the PCBs are displayed in 
the order in which they appear in the ready list, starting with the current 
process. If you give the RL oonunand any argument, the ready list is just checked 
for oorrect order. 

st display status at crash 

ibis is usually the first thing to ch after loading the map of aegis. Example: 

1 st 

Crash occurred on ftk>nday, April 4, 1983 1:40:26 pn (EST) 

System built on Thursday, February 14, 1980 8:07:18 an (EST). 

Machine id = 0 
System oonfigured with 1024K of trenory 

, node = 105 

Crash status: 120020: supervisor fault while resource 1ock(s) set (OS/fault handler) 
ECB: E2FA6A 

current pcocess: 1 

E2FA42: PID = 1, ASID = 1 *** DISPLAY MAN~ER *** 
LOCKS HELD: acl_$lock 
STATE: tse_onb oound current 
REMAINING TIMESLICE = 7749 NEXT = E2FAE2, PRE.V = E2FA6A 
(l,()CKILT AT START OF LAST WAIT = 175F8FFC PRIORITY = 16 

current mnu status: BEOOOO 

SI'ACK PI'R = E4DC92 
SP' s=FFFFFFFF/E4DCDC 

bus status: FFB2 cpub_status: 80110007 renote node failed to resp:>nd to request (OS, 

last miss handled by cpub: AEBEOOOO (miss, stIl? data read) 

last state saved by rOO: 



tJ 

b 

-------- ----------

dO: 
aO: 
1 

o FFFFFFFF 
7D8 E00294 

13 
E002E2 

ts <pid or addr> traceback stack 

o 
E2FAlO 

10 
EO 0242 

o 
FEB 0 01 

1 8000 
E00200 . 100100 

'!be "ts" oommand shows you where a process is, given either its pid or a valid SB. 
If you specify the pid of the current process, the current SB in the registers 
saved by MD is used. For other processes, the starting sa is taken fran what Sl'ACK 
PrR is !X>inting at (the second address following "SPI S= in a pcb display). 
Example: 

1 ts 8 

stack frame at: EBFF24 ••• 
previous frane: EBFF7A 

EBFF28 : E035FE 
EBFF2C : E31CEO 
EBFF30 : EOABSA 
EBFF34 : 986 

Continue trace back? 

stack frame at: EBFF7A ••• 
previous frame: EBFFEC 
ecb : E3lCCB 
unit list : 0 
caller I db : E30FF8 
pc for return : E2FE6C 
argument'l : EBFF9C 
argument 2 : EBFFA8 

, argument 3 : 300EO 
Continue trace back? 

stack frame at: EBFEEC ••• 
previous frame: 0 
ecb : E30EF4 
unit list : 0 
caller I db : E2F988 
pc for return : E036DE 
argument 1 : 0 

, argument 2 : 90 00 
argument 3 : l6C4929E 

Note 1 

(non-standard stack frame) 
mocF.SS 8 STACK - 86 
DISPATOl<p> + 8 
E<:"$READ<e> + C 
E<:"$WArIN<p> + lOA 

PROCESS 8 SI'ACK - 14 
E<:..$WAr.IN<e> 

NE'lWORIL$LOCATE<e> + C 
E~JWAIT<d>+ 24 
PROCEss 8 Sl'ACK - 64 
PROCESS 8 STACK, - 58 

NE'lWORIt..$K)NrroR<e> 

PCBS<d> . 
INIT_STACK<p> + 2C 

'!he first two stack franes for a waiting process will always be the dispatcher and 
E~$WAI'lN. "non-standard stack frame" is printed when db notices that a 
non-standard calling sequence was used. 

Note 2 

If you want to trace' a stack back' intQ user sp3ce, you should first set the asid 
awropriately. 



u 

6 

o 

Note 3 

If you 00 not have a valid SS, use the "ff" oommand. 

uid <hi> <10> .1 <addr> interpret uid 

The "uid" oommand will tell you all it can find out about a uid. You can either 
specify the address of a uid or the uid itself as two hex numbers. Examples: 

1 ui l74F38C7 90000192. 
/SYS/m/IJt1 
1 wh networlL$p:igingJile_uid 
networlL$pagin9-file~uid at E3l03E 

1 ui 0e3l03e 
l1EAJADD.50000l05 

1 ui OeOcfda 
name_$canneCLroot_uid 

Note 1 

A name_$gpath is attempted on the uid, so if the network is flakey or Cbwn, there 
will be a significant p:luse during the Bls Memorial Timeout period. 'Ibis will also 
occur during other oommandsthat 'invoke the "uid"' oommand inte·rnally. 

vd <addr> convert virtual address to db address 

This oommand will show you where in the ma~d dump a certain virtual address is to 
be found. Example: 

1 vd Oe2f988 
E2F988 = 32C188 
1 

ve <addr> print vtooe at <addr> 

This oommand is useful when investigating disk/vtoc/file related problens and you 
want to see what dbuf has in its back p:>cket •. Note that the first vtoce will a~ar 
4 bytes beyond the address of one of plges in dbuf_blks. Example: 

1 wh dbufJllks 
dbuf_blks at ECOOOO 

! ve Oec0004 

vtoce 0 at ECO004: version = 0, sys_~ = 0 
coTLetrl = 0 (none), permanent, not irrmutable, no file_trouble, 

- -----_., •..... _-, .. ,.-..• _ .. _---------_. 



'" -

b 

o 

object uid= 16C4929E.BO000105 
~ uid= objectJile_$uid 
acl uid= 16E73FAl.4000010S 
dir uid= 167FlACD.6000010S 

curJen = 296792, blocks_used = 293, ref_Q'lt = 0 
dtu= Thursday, March 17, 1983 5:13:40 pn (EST) 
dtm= 'lhursday, March 17, 1983 5:13:40pn (EST) 

0: ADF AE2 AE5 - AE8 AEB 
8: AEO AE3 AE6 AE9 AEC 

16: AE1 AE4 AE7 AEA AED 
24: AFA Am B01 B04 B07 

fm2: AFE 1FBA 0 
Next (cr) or ibne (q)? 

Note 1 

AEE 
AEF 
AFO 
Bl.3 

AF1 
AF2 
AF3 
Bl6 

This cmnmand can also be used to look at a blocks read by online rwvo1. 

vrn verify nrnu (against nmap) 

AF4 
AFS 
AF6 
Am 

The nvrnn cmnmand steps through the nmap, pft, and ptt in the dump and verifies that 
- they are oonsistent with one another. 

1 vrn 
ppl 414: more than one eoc in chain 
PPl 414: rranap 417 wrong pttx is 15 sb 12 
PPl 414: more than one eoc in chain 
PI;J1 414: mrnap E66 wrong pttx is 15 sb 12 
P!ll 414: pft has bad chain p>inter 
PP1 D4F: rranap ESFwrong pttx is 163 sb lSB 
PPl D4F: pft has bad chain lDinter 
pttx: 334 misnatch. is 007 sb EF8 
pttx: 336 misnatch. is D9F sb B6 
pttx: 33F mismatch. is E20 sb 0 

Note 1 

At the current time (SR6.0 and earlier), Aegis roes not Ix>ther renove the IBges of 
(nonexistent) -seoond display nenory fran the nrnu, although it does release the 
oorreStx>nding nmap pages. For this reason, the nvrnn cmnmand ignores errors 
involving PfJ'ls 10 0-1 SO • 

vp <addr> convert virtual address to PIXl 

The I vp' cmnmand oonverts a virtual address from the dump into the ptn 
oorresp:>nding to the address when the dump was taken. Examples: 

! vp OecOOOO 
ECOOOO= 402 



., 

b 

b 

o 

1 vp 200400 
mnlL$vtop - nmu miss (OS/MftIJ nanager) 

In the seoond example, there was no entry for 200400 in the nmu when the dump was 
taken. 

w <addr> <data> verify vrntest pige 

On systems with flakey memory or disk hardware, this ammand is useful to pinp::>int 
vmtest failures that result in systen crashes (e.g., nenory p:lrity, disk data 
checks, etc.) The pige at the specified address is scanned using the given 
starting data and vrntest' s increnent/decrenent values. Note: the p:lge of interest 
may well not be in the nmu, so you may have to resort to a db-relative starting 
address (p mode). 

1 vv 348cOO 348cOO 

! 

offset 0 sib 0034COOO, is 00000000 
offset 4 sib 0034C004, is lA98ED9B 

wh[pldle] <sym or addr> look up [procldatalecb] or address in aegis map 

The 'wh' oommand takes either a symbolic name or a virtual address, the latter 
starting with a numeric, as always. When looking up a procedure, the suffixes npn, 
ndn, nen can be used to select a particular definition of the symbol: procedure, 
data, or its ecb. When finding an address, db a~nds n<p>n, n<d>n, n<e>n the the 
symbolic name to indicate where in the map the symbol was fOlmd. Examples: 

1 wh pcbs 
pcbs at E2F988 

1 wh Oel2345 
FILE_$Sm'_LEN<p> + 7 

1 wh mst_$touch 
mst_$touch at E049B4 

1 whd mst_$touch 
mst_$touch at E3OC32 

1 whe vtoc_$a1locate 
vtoc_$allocate at E3350C 



.. , 

o 

o 

o 

. -~-- ...... ---------- --------_ ...• _ ..••...... _ •..... _ .. - ... _ •.. _._ .... 

INTERVAL TlMER IMPLEMENTATION 

Existing timer facilities 

In aegis there are two mechanisms which provide timer facilities to 
user processes. One mechanism uses the clock process to implement its 
timer functions. The corresponding user callable procedures are implemeted in 
time.pas and include time_$wait, time_$advance and time_$cancel. The second 

,mechanism uses the terminal helper process in conjunction with the eventcount 
time_$clockh_ec. The user callable procedures using this mechanism are 

.implemented in time_$unwired.pas and include the procedures time_$alarm 
and time_$free_asid. The first mechanism can handle time specifications 
in the order of microseconds whereas the second mechanism can handle it 
only in the order of seconds. The advantage of the second mechanism 
is that it much more efficient in cpu time consumption. 

Background information on the clock process 

The timer interrupt handler handles interrupts from three timers and 
depending on which timer went off it does the following. 

o If the interrupt was from the time_of_day clock then it advances 
time_$clockh_ec. (happens every 1/4 th of a second). The terminal process 
suspends itself on this eventcount and is awakened to complete the 

o 

timer related processing required by user processes. 

If the interrupt was from the 8 micro second timer for time slice end 
it calls procl_$end_time_slice and and procl_$int_exit which reorder 
the ready list, set the timer and dispatch a new process. procl_$end_time 
_slice updates the cumulative virtual time used by the process and 
also assigns a new time slice to the process. 

o If the interrupt was from the 32 microsecond real time timer then 
it advances time_$int_ec. This awakens the clock process which 
does timer related processing for user processes and sets the next 
timer value at which it should be awakened. It suspends itself by 
waiting on time_int_ec. 

Interval timers implemented 

There are two types of interval timers which have been implemented. They 
are the real timer which decrements in real time and the virtual timer which 
decr'ements in user process virtual time only. The two functions generic to 
both the timers are getitimer and setitimer which read the current value and 
set new values for the interval timers. Interval time completion is made 
known to the user pro~ess by posting an appropriate fault. 

_. __ ..... _ ... __ .,-----_ ..... -.--------



-

o 

o 

o 

Real interval timer implementation 

The real interval timer has been implemented by enhancing the first mechanism 
(i.e. the clock process). The second mechanism was not chosen since bsd 4.2 
required time intervals in units of the system clock (4 micro seconds). Setting 
the real interval timer translates into the modification of the timer queue. If 
the entry is made into the head of the timer queue then a new value is written 
into the 32 micosecond real time timer. When the clock process is awakened due 
to an interval time completion it checks if the queue entry belongs to an 
inte~val timer. If so it reinttoduces the entry back into the queue for the 
next interval completion. In addition it communicates with the terminal process 
to actually post the fault to the user proce~s. The clock process cannot 
directly post the fault to the user process since it is capable of running 
on the B processor in two processor system. The communication with the terminal 
process is done in the following manner. The clock process updates a database 
called the time_$itimer_db and then advances the eventcount called time_$itimer 
_ec.The terminal process suspends itself on a list of eventcounts one of which 
is the time_$itimer_ec. When it awakens due to the advancing of this eventcount 
it looks at the database time_$itimer_db and posts a fault to the proper 
user process. 

Virtual interval timer implementation 

The virtual interval timer has been implemented by enhancing the mechanism 
which keeps track of the cumulative time used by a process. The functions 
which perform this are the dispatcher, eventcount advance and the time_slice_end. 
These functions use the 8 microsecond timer. The advance procedure has been modified 
not to alter the time slice if the virtual timers are being used. This implies 
that the control for time slice selection will only be done by the time_slice_ 
end function. The time_slice_end function has been 
enhanced to check for interval timer completion and also setting the next 
time slice such that it never exceeds the next interval. If the time_slice_end 
function recognizes the expiry of an interval time it communicates with the 
terminal process in the same manner as the clock "process. The database in this 
case is called time_$vitimer_db and the eventcount on which the terminal process 
sleeps is time_$vitimer_ec. The terminal process then completes the posting of 
the fault to the user process. 



o 

o 

o 

._--------_ .. _-------_._-----_ .... --

Force writing Files 

As of the SR3.0 software release, AEGIS supports two user space calls that 
force the modified pages of a file to be written to disk. These calls 
guarantee that any changes to a file are recorded on disk and therefore that 
such changes will not be lost in the event of a system crash. The services 
provided are identical for both local and remote files. 

There is one caveat to the use of the file force write calls. These calls 
are intended for use while the file is locked for writing (in the 
Ufile_$lock" sense) by their caller. There is no enforcement of this 
condition, and in fact the force write calls may be safely issued by any 
process on any node at any time. However, the guarantee is weakened when a 
force write call is issued by process A and the file is locked for writing by 
processB. Specifically, the changes made by B will not necessarily be 
written to disk if (1) A and B are running on different nodes, and (2) B is a 
remote user of the relevant file. The description of the calls below does not 
cal lout this exception explicitly. 

The first of these ca II sis FIlE_ $FW_FIlE. Th is ca II takes as its on I y input 
argument the UIO of the file being force written. Once called, FW_FIlE either 
returns an error code in its status return argument or STATUS_$OK to indicate 
that all of the file's modified pages have been safely written to disk. 

FIlE_$FW_PARTIAl (uid, start, length, status) 

This call may be used to force write a specified section of a fi Ie rather 
than the whole file. The caller must provide the UID of the file to be force 
written, the byte offset into the file at which force writing is to begin, 
and the number of bytes starting at the supplied byte offset to include in 
the operation. As with FIlE_$FWJ:-IlE, this partial fi Ie force write returns 
either an error status code or STATUS_$OK to indicate a successful force 
write. 



., 

(J 

o 

Proceedings of the Symposium on Principles of Distributed Computing, Ottawa, Canada, Aug. 1982, pp. 34-41. 

UIDs as Internal Names in a Distributed Flle System 

Paul J. Leach, Bernard L. Stumpf, 
James A. HamIlton, and Paul H. LevIne 

Apollo Computer, Inc. 
1D Alpha Road, Chelmsford, MA 01824 

Abstract 

The use of UIDs as internal names in 
an operating system tor a local net
work is discussed. The use ot inter
nal names in other distributed sys
tems is briefly surveyed. For this 
system, UIDs were chosen because 
of their intrinsic location indepen-

'dence and because they seemed to· 
lend themselves to a clean structure 
for the operating system nucleus. 
The problems created by UIDs were: 
generating UIDs; locating objects; 
supporting multiple versions of ob
jects; replicating objects; and los
ing objects. Some solutions to these 
problems are presented; for others, 
no satisfactory solution has yet been 
implemented. 

1. Introduction 

Although the area of distributed systems Is a rela
tively new one, there are already many examples of Im
plemented distributed operating systems for local net
works and their attendant rue systems. Many of these 
systems have chosen to use internal names for the ob
jects they support, into which user visible text string 
names are mapped. Among the most popular forms of 
internal name have been unique identifiers (UIDs); how-

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the ACM copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, 

requires a fee, and/or specific permission. 
(C) ACM O-Sg7g1-0S1-S/S2/00S/0034 00.75 

1 

ever, there has been little in the literature discussing the 
motivation for choosing one form of name over another, 
or the consequences' of a choice once made. This paper 
presents the experiences that resulted from using UIDs 
as Internal names in one particular distributed system: 
the Aegis operating system for the Apollo DOMAIN 
network [APOL 81], [NELS 81]. 

1.1. Organization 

The rest of this paper is organized as follows. Sec
tion 2 discusses internal names as they are used in sev
eral other distributed systems. Section 3 presents an 
overview of the DOMAIN system environment, and of 
the nature of VIDs and .objects in Aegis. Section 4 deals 
with ihe motivations and perceived advantages that led 
us to choose VIDs. Section 5 deals with the problems 
we foresaw or discovered In the process of implement
ing the system, and presents some solutions to these 
problems. Section 6 offers some final observations and 
conclusions. 

2. Internal names in other sys

tems 

Given that one decides to use iDternal names, there 
seem to be just two fundamental alternatives: t.o use 
VIDs or "structured names". UIDs can be thought. of as 
simply large Integers or long bit strings, although some 
other information may be encoded within them. The 
Important characteristic is that they are large enough 
that the same UID will never refer to two different ob
jects at the same time. Structured names, as in [SVOB 
79], contain more than one component, some of which 
are used to indicate the location of, or route to, the 
object named. However, individual components may 
be unique for all time only within the context of the 
other components; some systems with this property 
have called their internal names UIDs. ,This section 
briefly indicates the internal naming schemes used by 



o 

o 

o 

.... _._-_ .. _-----------------------

several distributed systems or their distributed file sys
tem components. 

2.1. WFS 

The Woodstock File Server (WFS) [SWIN 79] uses 
"file identifiers" (FIDs) to name files. FIDs are 32 bit 
unsigned Inte~ers, which are unique for all time within 
a Individual WFS server, but may be duplicated across 
servers. Thus, it Is up to each WFS client to remeinber 
the server associated with each FlO. The combination 
of server name and FID Is a form of structured name. 
The mapping from FID to physical disk addresses Is via 
a hash table. 

2.2. Pilot 

Pilot [REDE 80] uses "universal identifiers (UIDs)" 
to name files; they are 64 bits long and "guaranteed 
unique in both space and time". UIDs were chosen so 
that removable volumes could be transported between 
machines without fear of conflict. A B-tree Is used to 
map UIDs to physical disk addresses. 

2.3. DFS 

The distributed file system (DFS) [STUR 80] also 
uses UIDs. We suspect that they are really UIDs be
cause the implementors provide "a simple locating ser
vice" to help find the server which holds a file, given 
only its UID; a structured name would not need a lo
cating service. Like Pilot, a B-tree Is used to map UIDs 
to physical disk addresses. 

2.4. CFS 

The Cambridge File Server (CFS) [DION 80] uses 
what it calls UIDs to name files. They are 64 bits 
long; 32 bits are a random number, and 32 bits con
tain the disk address of the object's descriptor. The 
use of garbage collection [GARN 80] guarantees that 
an object will not be deleted while a reference to it.ex
ists, and therefore that, within a single" server, a DID 
can never refer to more than one object. However, it 
seems that UIDs can be duplicated on different servers, 
although the 32 bit random number makes it highly 
improbable. 

2.5. Felix 

The Felix File Server [FRID 81] uses a system gen
erated "File Identifier" (FID) to name files. An FID 
is a "universal access capability" for the file it names. 

2 

When the file Is deleted, its FID Is guaranteed not to be 
reused for a certain period of time. It also seems that 
FIDs with the same numerical value can be in use by 
more than one server at the same time. 

2.6. LOCUS 

The LOCUS system [POPE 81] uses structured in
ternal names. A name Is a pair " <file group number, 
file descriptor number>". The file group number can 
be thought of as uniquely Identifying a logical volume. 
The file descriptor number Is an Index Into a per-file
group array or file descriptors; it Is unique within a file 
group as long as any references to the ille it identifies 
exist. The choice of internal name seems to have been 
motivated by UNIX (TM, Bell Laboratories) compat
ibility constraints: directory structures are visible to 
application programs and contain file descriptor num
bers, which are relative to the file group containing the 
directory. 

2.7. Others 

There are a number of other recent implementa
tions of, or designs for, distributed systems for which 
descriptions have been published: S/F-UNIX [LUDE 
81]; ACCENT [RASH 81]; TRIX [WARD 80], [CLAR 
81]; EDEN [LAZO 81]. However, they concentrate on 
other aspects of distributed systems design, and do 
not provide much information on their use of internal 
names. 

2.8. Summary 

When the design of Aegis began in early 1980, there 
were fewer examples of distributed systems to study; 
Pilot and WFS particularly influenced us. Pilot uses 
UIDs; WFS uses IDs which are unique within a single 

. file server, but which require its clients to remember 
upon which server files reside. From our studies we 
got little motivation for either choice; yet upon starting 
our design it became clear that there were non-trivial 
problems involved with either choice. 

3. DOMAIN system environment 

3.1. Hardware 

A DOMAIN system consists of a collection of pow
erful personal computers (nodes) connected together by 
a high speed (12 megabit/second) local network. Each 
node has a 'tick' time [LAMP 80] of 1.25 micro~econds 



o 

o 

o 

------------- --------------------------

and can have up to 3.5 megabytes -of main memory. 
Most nodes have 33 megabytes of disk storage and a 1 
megabyte floppy disk, but no disk storage is required 
for a node to operate. A bit mapped display has 800 by 
1024 pixels, and a bit BLT (block transfer) to move ar
bitrary rectangular areas at high speed. The display is 
allocated into windows (called PADs) which are a form 
otvirtual terminal [LANT 79]; multiple concurrent pro
cesses, each possessing its own window(s), can be con
trolled by the user simultaneously. Dynamic address 
translation hardware allows each process to address 16 
megabytes ot demand paged virtual memory. The net
work arbitrates access using a token passing method; 
each node's network controller provides a unique node 
ID which is assigned at the tactory and contained in the 
controller's microcode PROMs. 

3.2. System usage characteristics 

It is expected that the nodes ill a network will be 
owned by many organizations, with each organization 
owning many nodes. One organization is likely to be 
chartered to provide computing related services and re
sources to the entire network community. Within an 
organization, a high degree ot cooperation ;Will be de
sired; while between organizations, a higher degree ot 
autonomy will be preferred; and the service organiza
tion wants resource sharing, protection and (perhaps) 
accountability. Aegis I?rovides tools to allow a high de
gree ot cooperation, and tools to create policies which 
can allow a high degree of autonomy. This results in 
an environment of "policy parameterized autonomy" . 

3.3. Objects and UIDs 

At the highest level, Aegis is an "object-oriented" 
system, and objects are named by UIDs. Objects are 
typed and protected: associated with each object is the 
UID ot an access control list, the UID of a type descrIp
tor, as well as a physical storage descriptor, and some 
other attrIbutes. Supported objects include: alphanu
merIc text, record structured data, IPC maIlboxes, exe
cutable modules, directories, access control lists, serIal 
I/O ports, magnetic tape drives, and display bIt maps. 
UIDs are also used to identify persons, projects, and 
subsystems tor protection purposes. 

Aegis UIDs are 64 bit structures, containing a 36 
bit creation time, a 20 bit node 10, and 8 'other bits 
whose use is descrIbed later. UIDs possess the address
ing aspects of a capability, but without the protection 
aspects [FABR 74]. Or, a UID can be thought of as the 
absolute address of an object in a 64 bit address space. 

3 

The hardware does not support this torm of address, so 
programs access objects by presenting a UID and asking 
tor the object it names to be "mapped" into the pro
gram's hardware processor address space (see [REDE 
80] on the desirablllty of mapping .in distributed sys
tems). After that, they are accessed via virtual memory 
paging: not to create shared memory semantics, but as 
a torm of lazy evaluation, since only the needed por
tions ot objects are actually tetched trom disk or over 
the network. 

The system provides a high degree of network 
transparency in accessing objects. The mapping opera
tion is independent ot whether the UID is for a remote 
or local object. As long as programs assume that their 
objects are not local, and hence operations on them 
are subject to communication faiJureE, they need not 
be aware of their location (see [POPE 81] for a discus
sion). 

3.4. Naming Objects 

Text string names tor objects are provided by a 
directory subsystem layered on top of the AegiS nu
cleus. The name space is a hierarchical tree, like Mul
tics [ORGA 72] or UNIX [RITC 74J; with directories at 
the nodes and other objects at the leaves. Each direc
tory is primarily a simple set of associations between 
component names (strings) and UIDs. The absolute 
path name of an object is an ordered list of component 
names. All but (possibly) the last are names of directo
ries, which, when resolved starting from a network-wide 
distinguished "root" directory, lead to the DID of the 
object. Thus, an absolute path name, like a UID, is 
valid throughout the entire network, and denotes just 
one object. 

4. Motivation for using UIDs 

There were several main reasons for choosing UIDs 
as internal names. First, we wanted location indepen
dence: to divorce the internal name of an object from 
its location in the network. Second, we wanted absolute 
internal names: ones that could be passed trom process 
to process, and trom node to node. without baving to 
be relocated at each step. Third. we wanted to sepa
rate text string naming trom internal naming, in order 
to remove string name management from the nucleus. 
Fourth, we wanted a uniform way of naming all objects 
in the system. Fifth. we wanted to be able to construct 
composite objects (objects which refer to other objects) 



o 

o 

o 

easily, and to allow user programs to do likewise. Sixth, 
. we wanted to allow for typing of objects, and in a po

tentially extensible and manageable way. 

We wanted objects to be able to move without hav
ing to find and alter all references to them. The system 
does not move objects except when explicitly directed 
to do so. However, users may want to move dismount
able volumes from one node to another, or to move a 

. peripheral from a disabled node to a functioning one. 
Structured names Imply locations, which makes moving 
an object harder, because references to the moved ob
ject have to be updated; this in turn mitigates against 
composite objects. UIDs, because of their location in
dependence, have no such problem. 

From an implementation point of view, we wanted 
to be able to start with simple object locating algo
rithms, perhaps with restrictions placed on object loca
tions, and work up to better ones, again without chang- _ 
ing any stored data. Structured names seemed to freeze 
this decision too early: the locating scheme is bound 
into the name. We also wanted to avoid the prolifera
tion of ad hoc internal names by having a singl~, simple, 
cheap, uniformly applicable naming scheme available at 
all but the lowest levels of the system. 

Text string names can also be made location in
dependent, but we wanted the nucleus interrace to be -
simpler than string names. Also, string names are too 
long to be· embedded in objects, too expensive to re
solve, and therefore can usually be used only at fairly 
high ievels in the system. 

So, unlike structured names, UIDs had the right 
properties to satisfy these requirements. They are in
trinsically location independent: they uniquely identify . 
an object no matter where it resides. The node ID con
tained in our UIDs says where the object was created, 
but has no necessary connection with its current loca
tion. They are absolute, and they are (relatively) short 
and of fixed length. The combination of these attributes 
means that it is easy to embed UIDs in objects to make 
composite objects, and that there is little space penalty 
in using them to name all objects. It also makes it 
easy to do mapping from text string names to UIDs in 
a layer above the nucleus. A UID can be used to de
note the type of an object. New types (UIDs) can easily 
be generated without interfering with others doing the 
same, and can extensibly refer to a type descriptor ob
ject containing type data and operations. 

There were other, less crucial, advantages that 
we foresaw. UIDs are good for objects without string 
names, such as temporary files; objects can even be 

4 

created as temporaries, then given string names later. 
Because they are short, they can be easily hashed, and 
stored in system tables, and passed in IPC messages. 
Because they are guaranteed to be unique, they can be 
used as transaction IDs, with the TID also serving to 
name the commit record object for the transaction. Fi
nally, because UIDs are hard to guess, there are certain 
capability protection aspects to them: In some cases, it 
may be acceptable to use possession of a UID . as per
mission to operate on the underlying object. 

5. Problems with UIDs 

We also quickly discovered that there were prob
lems that needed solution to use UIDs effectively. 

1. Generating UIDs and guaranteeing their unique
ness. 

2. Locating an object given its UID. 

3. Naming different versions of an object 

4. Replication of objects 

5. Lost objects 

5.1. Generating UIDs 

We thought that generating UIDs would be easy: 
concatenate the node ID of the generating node with a 
reading from its real time clock. The first issue to deal 
with was choosing the size of the UID. We had a 48 bit 4 

microsecond basic system clock, but that, plus a 20 bit 
node ID, and a few bits for future expansion, seemed to 
imply a UID that we felt would be a bit long. We settled 
on a 36 bit creation time, which meant a 16 millisecond 
resolution. We justified it by noting that, since most 
objects reside on disk, they can't be created faster than 
disk speeds; 36 bits allowed. a resolution several times 
higher. 'lb allow for possibly bursty UID generation, 
the system remembers unused UIDs from the previous 
minute or so, and uses them before generating new ones. 

The second issue is guaranteeing uniqueness. Con
catenating a node ID and a real time clock reading guar
antees uniqueness as long as one makes sure that the 
clock always advances. We thought this could be as
sured by providing a battery operated calendar clock 
from which to initialize the real time clock. But bat
teries have a limited shelf life; and since it is important 
that a UID not be reused, other measures were needed. 
So the system stores the last shutdown time on t,he disk, 
and checks it against the calendar clock during initial
ization-. If the time Is too far wrong, either backward, or 



o 

o 

o 

forward, it requests verification and/or correction from 
the user. It is clear that the clock cannot be allowed 
to go backwards; what may not be so instantaneously 
obvious is that too long a forward jump is also danger
ous. Such a jump is likely to be an error, requiring later 
correction; but if any VIDs are generated from the erro
neously advanced clock, they may be duplicate4 when 
real time catches up to that point. 

Another solution is to use other nodes in the net
work to corroborate the calendar clock reading; but 
since it is possible that none will be available, our solu
tion would still need to be resorted to in that case. It 
seems that no solution is foolproof, but that the prob
ability of failure can be made fairly small. Our expe
rience to date supports this conclusion: with several 
hundred nodes in use, we know of no problems. 

5.2. Locating objects 

A direct consequence of the location independence 
of UlDs is that a locating service is needed to find an ob
ject given its UID. This is the fundamental distributed 
algorithm in Aegis: no global state information is kept 
about object locations. The complexity of this task de
pends on the restrictions on object location that higher 
levels of the system can enforce, and on the desired level 
of performance. Some examples of the effect of various 
restrictions that could be imposed are as follows. - One 
can restrict objects not to move from the node where 
they are created, in which case node ID part of the 
UID is certain to be the location of the object. - One 
can restrict (most) objects to be on same volume as the 
directory in which they are cataloged. Then, as long 
as the locations of a few volume root directories can 
be found, all other objects can be found. - One can re
strict object location as in either of the above examples, 
then relax it by establishing equivalence classes among 
nodes or volumes, such that if the above rules allowed 
an object to be on one node or volume of a class, then 
by these rules, it could be on any node or volume in the 
class. This would allow multiple physical copies of an 
object with the same UID to exist and be located. - Of 
course, it is possible to have no restrictions at all, and 
still locate objects. After whatever other means exist 
have failed, a request to return the location of an object 
can be broadcast, and an answer awaited. Also, in this 
case, there ,is absolutely no necessary relation between 
nodes or volumes and directory hierarchies, making hi
erarchy backup and crash reconstruction difficult. 

We considered all the schemes indicated by the 
above examples. Because we allow removable volumes, 

5 

the assumption that objects reside at the node where 
they were created is not Valid. We also convinced our
selves that in a sufficiently large (inter)network, and' 
given the possibility of removable volumes whose node 
of origin was in a disjoint network, we could not guar
antee to find an object even if it were online and acces
sible. As noted above, even in this case the object could 
be found if one were willing to make a broadcast to the 
entire internet, and walt a (possibly) very longtime for 
an answer; but since this had performance implications, 
as well as the other problems noted above, we were un
willing to base our design on this approach. Thus, we 
would have to rely on heuristics, and, ultimately, per
haps even help from the user. Our initial goal was to 
pursue the second approach, as it met our immediate 
requirements; and it can readily be extended into the 
third scheme, which we think is sufficiently flexible to 
eliminate any need for the fourth. 

We have already gone through three generations of 
locating algorithms, and can foresee more. They used 
two sources of 'hints': the node ID in the UID, and 
the hint manager. The sources for the hint manager's 
hints can be any program which believes it can guess 

. the whereabouts of an object, or 'even direct input from 
a user. In particular, the string name manager guesses 
that a cataloged object is on the same node as the di
rectory in which it is cataloged (except for special node 
boundary crossing points). 

The first generation algorithm was very simple. To 
locate an object given a UID, it would first search all 10-
cal disks. H the local search failed, it would try the node 
whose ID was contained in the VID. This procedure 
could always find local objects, objects on dismount
able volumes mounted locally, and remote objects that 
had never moved from where they were created; others, 
however, could not be located. In particular, remote ob
jects on removable volumes that had been moved from 
their creation node were unlocatable. Also, for remote 
objects, time was wastedsearching local secondary stor
age. Note that for remote objects in this scheme, the 
node ID in the VID was more than just a hint: it had 
to ge right. 

The second algorithm added the hint manager. Af

ter trying locally, it would consult the hint manager, 
and if. a hint were present, would use the hint. If this 
failed, it would proceed as in the first case. Therefore, 
even remote objects on removable volumes could be lo
cated, if they were on the same node as the directory 
in which they were cataloged. This would normally be 
very likely even if we didn't enforce it (which we cur
rently do). 



o 

o 

·0 

The time wasted searching locally for remote ob
Jects in the previous algorithms was noticeable, so a 
third was adopted. Before searching locally, the node 
ID in the UID is examined; if it is not the ID of the 
local node, then the local search is bypassed. Only if 
the remote search fails is a local search initiated. 

In the future, it is likely that direct input to the 
hint manager will be added, as will the equivalence 
. class technique. Also, in an internet environment, a 
second level of hint manager, usually residing on gate
way nodes, will probably become necessary. However, 
its task will be eased considerably because it will only 
have to store location information for objects that could 
not be located using the other available hints. 

It is signlflcant to note that the object locating ser
vice is layered above the nucleus. An object's location 
is determined when it is mapped into a process' address 
space, and retained. Thus, it is guaranteed to be known 
at critical junctures, such as when servicing page faults. 
It is also cached, so that the location of active objects 
is likely to be in the cache. The first case is important 
for clean system structure; the second for good system 
performance. However, even in the absence of cached 
or retained information, locating a remote object usu
ally takes only one, and at most two, messag'es with the 
current algorithm. 

Using UIDs, plus repeated improvement to locating 
algorithms, has allowed us to benefit from the location 
independence of UIDs, without paying a serious perfor
mance penalty. 

5.3. Object versions 

If UIDsare allowed to be embedded in objects, the 
object version problem arises. The object containing 
the reference may wish not to refer to a particular in
stance of an object, but to its latest version. A pro
cedure object may contain the VIDs of other programs 
or of libraries, for example. The fundamental prob
lem is that the same UID can not name two different 
objects, even if they are Just different versions. (For 
Aegis VIDs, this is true; if they contained an explicit 
version number, it need not be true.) We see two pog..; 
sible solutions to this problem in our context, both of 
which involve the use of indirection objects; in one case, 
the indirection object contains a symbolic name; in the 
other, the UID of the current version of the object. (In
direction objects with symbolic names are also used in 
the lMAX-432 filing system [POLL 81J, where they are 
called linkage objects.) In the first case, whenever a new 
version becomes available, the binding of the symbolic 

6 

name is changed to· refer to the new version. In the 
second case, the indirection object is updated with the 
new version's UID. In our environment, the second so
lution is simplest, because it doesn't involve the string 
name manager to resolve the reference. (The iMAX-432 
uses the symbolic solution because it doesn't have real 
VIDs.) 

5.4. Replication 

To take advantage of the potential for enhanced 
rel1abllity that distributed systems offer, it is desirable 
to be able to redundantly store objects at more than 
one node. The logical object thus created we call a 
replicated object and each of the redundant copies we . 
call a replica. If a replicated object is immutable, this 
presents no great problem. It is relatively easy for the 
nucleus to support a replicated immutable object: all 
the replicas can have the same UID. Even though this 
results in multiple physical objects with the same UID, 
since they are all immutable and identical, it never mat
ters which one the nucleus finds and uses; there is only 
one logical object with that UID. One of the object at
tributes supported by Aegis' nucleus is immutability. 

For mutable objects, however, it is not as easy; 
updates to the object instances must be coordinated so 
that all clients see a consistent state. We don't deal with 
the concurrency management problem here, only the 
problem of naming the replicated object and its com
ponents. ([GIFF 79J and [POPE 81J deal directly with 
replication; DFS [STUR 80] provides general support 
for mUlti-node atomic operations which can be used for 
replication purposes.) Because it is complex, it is desir
able to leave the management of replication out of the 
nucleus, wblle still allowing it to be conveniently layered 
on top. In order to make the new layer transparent to 
client programs, it is necessary that they be able to 
refer to a replicated object via one VID. The replica
tion manager, on the other hand, needs to distinguish 
between the replicas, because internally to it they will 
have different states, even though the client only sees 
consistent states. Thus it needs different VIDs for each 
replica. This leads to essentially the same difficulty as 
in the object version problem: the same UID needs to 
refer to more than one object. The replication manager 
must map a UID presented by a client into the UIDs of 
the mutable replicas. 

One way to accomplish this is to record the UIDs 
of the replicas in an immutable object, and have clients 
use its UID to denote the replicated object. A copy of 
this immutable object is then put at each site holding 



o 

o 

o 

a replica. When a client refers to the replicated object, 
its UID Is used to locate one of the immutable object 
copies; if one can be found, then at least the replica at 
the same site will be available. However, this does not 
allow the addition of new replicas. 'lb solve this, we use 
4 of the S 'other' bits in the UID to denote particular 
replicas; let us call it the replica field. A replicated 
object has a UID with a replica field of zero; there is no 
physical object with this UID. Each of the replicas (up 
to fifteen of them) has the same UID except for a non
zero replica field. Thus, a client of a replicated object 
always names it with a UID having a replica field of 
zero; the replication manager selects and operates on 
specific replicas via non-zero replica fields. 

Contrasting the two solutions, we see that using an 
immutable object supports an arbitrary mapping from 
UID of a replicated object to the VIDs of the replicas 
which constitute its representation; whereas the sec
ond scheme causes these UlDs to be easily computable 
from one another, eliminating theneed for the arbitrary 
map. In addition, the second solution allows replicas to 
be added and deleted. 

s.s. Lost objects 

A lost object Is one which exists, but for which no 
references exist; hence it is inaccessible, 1.e. lost. Un
fortunately, it stUl takes up disk space. Objects become 
lost due to crashes, or when objects which contain ref
erences to them are deleted. Actually, objects are never 
completely lost: a scan of a volume's (undamaged) ta
ble of contents data structure can find all objects on a 
volume. However, if an object becomes inaccessible via 
its text string name, it is often as good as ,completely 
lost. The only complete way to recover is garbage col
lection, but we chose not to implement it. Again, the 
consideration was nucleus complexity: if internode ob
ject references are allowed, a distributed, asynchronous 
collector is called for, such as [BISH 77]. We knew of 
no implemented example; the nearest thing is the CFS 
garbage collector [GARN SO], which Is asynchronous, 
but which doesn't handle internode references. Fur
thermore, in our current objects, there is no general 
way to locate ~ll the UIDs, although the implementa-

rary if the system crashes, and will be deleted by the 
file system salvager (see [REDE so]). Furthermore, all 
objects have a father object attribute, which is the UID 
of the directory in which they are cataloged, or of the 
(primary) object which contains its UID. If the father 
object should cease to exist, the resulting lost object(s) 
can be deleted. Thus, object tree structures can be han
dled. We felt that the sum of these techniques would 

. be sufficient. 

6. Observations and conclusions 

The priDcipal advantages of UIDs are their size, lo
cation independence, and the opportunity for layering 
the nucleus implementation that they provided. Most 
of the problems involved have been overcome or are 
understood satisfactorily; the possible exception is the 
general lost object problem. A feature of VIDs we have 
taken advantage of is that, because they are location in
dependent, initial implementations of higher layers can 
impose restrictions on object location, and the restric
tions can later be removed without restructuring the 
lower layers; the same would seem to be hard to ac
complish with structured names. 

Of course, it is eventually necessary to translate 
UIDs into structured names, because the knowing the 
location of an object is a prerequisite to accessing it. 
We have found it advantage~:ms to delay this binding as 
long as possible, and to make general and uniform use 
of the unbound names. 

Aegis as currently implemented is missing some of 
the features described above. Presently, it does not sup
port indirection objects, object replication, partitioned 
objects, garbage collection, network verified time for 
UID generation, or extensible types. However, the fun
damental groundwork, that of makiilg a design that can 
be gracefully extended, and anticipating the most likely 
areas of extension, is essential to any system which is 
intended to have a long and useful life. We think that 
we have accomplished that goal. 

REFERENCES 

tion of partitioned objects (objects segregated into UID 
parts and data parts [JONE so]) would solve this prob- [APOL SI} - Apollo DOMAIN Architecture. Apollo 
lem. Finally, we felt that most common cases could be Computer Inc., Chelmsford, Mass., 19S1. 

handled without it. Most objects are cataloged; and [BffiR so] Birrel, A. D., Needham, R. M. 
by arranging that an object is not marked permanent .. A Universal File Server." IEEE Tranactions 
until it has successfully been cataloged,any newly cre- on Software Engineering, SE-6, 5 (September 
ate~ but not yet cataloged object will still be tempo- 19S0), pp. 450-453 

7 



,0 

[BmR 82] Birrel, A. D., Levin, R., Needham, R.M., 
Schroeder, M. D. 
"Grapevine: An Exercise in Distributed Com
puting." Communications of the ACM, 25, 4 
(April 1982), pp. 260-274. 

[BISH 77] Bishop, P. B. Computer Systems with a 
Very Large Address Space and Garbage 
Collection. Technical Report LCS/TR-178, 
Laboratory tor Computer Science, M.I.T., Cam-

. bridge, Mass., May 1977. 

[CLAR 81] Clark, D., Halstead, B., Keohan, S., Sieber, J., 
Test, J., Ward, S. 
"The TRIX 1.0 Operating System." Newsletter 
of IEEE Tech. Comm. on Distributed Process
ing, 1, 2 (December 1981), pp. 3-5. 

[DION 80] Dion, J. 
"The Cambridge File Server." Operating Sys
tems Review, 14, 4 (October 1980), pp. 26-35. 

[FABR 74] Fabry, R.S., 
" Capability-Based Addressing" Communications 
of the ACM, 17, 7 (July 1974), pp. 403-412. 

[FRID 81] Fridrich, M., Older, W. 
"The FELIX File Server." Proceedings of the 
Eighth Symposium on Operating Systems Prin
ciples, December 1981, pp. 37-44. 

"The Architecture of the Eden System." Pro
ceedings of the Eighth Symposium on Operating 
Systems Principles, December 1981, pp. 148-
159. 

[LEVI 79] Levin, R., Cohen, E., Corwin, W., Pollack, F., 
Wulf, W. 
" Pollcy /Mechanism Seperation in Hydra." Pro
ceedings of the Fifth Symposium on Operating 
Systems Principles, December 1979, pp. 132-
140. 

(LISK 79] Liskov, B. 
"Primitives for Distributed Computing". Pro
ceedings of the Seventh Symposium on Operat
ing Systems Principles, December 1979, pp. 33-
42. 

[LUDE 81] Luderer, G. W. R., Che, H., Haggerty, J. P., 
Kirslis, P. A., Marshall, W. T. 
" A Distributed Unix System Based on a Virtual 
Circuit Switch". Proceedings of the Eighth Sym
posium . on Operating Systems Principles, De
cember 1981, pp. 160-168. 

[NEED 78] Needham, R. M., Schroeder, M. D. 
. "Using Encryption for Authentication in Large 

Networks of Computers." Communications of 
the ACM, 21, 12 (Decemb~r 1978), pp. 993-999. 

O
rGARN 80] Garnett, N. H., Needham, R. M. -

, "An Asyncronous Garbage Collector for the 
Cambridge File Server." Operating Systems Re
view, 14, 4 (October 1980), pp. 36-40. 

[NELS 81] Nelson, D. L. 
"Role of Local Network in the Apollo Computer 
System." Newsletter of IEEE Tech. Gomm. on 
Distributed Processing, 1, 2 (December 1981), 

[GIFF 79] Gifford, D. K. pp. 10-13. 
"Weighted Voting for Replicated Data," Pro-
ceedings of the Seventh Symposium on Operat- [ORGA 72] Organick, E.I. The Multics System: An 
ing Systems Principles, December 1979, pp. 150- Examination of Its Structure M.I.T. Press, 
162. 1972. 

[JONE 80] Jones, A.K. 
"Capability Archictecture Revisited." Operating 
Systems Review, 14, 3 (July 1980), pp. 33-35. 

[LAMP 80] Lampson, B. W., and Redell, D. D. 
"Experience with Processes and Monitors in 
Mesa." Communications of the ACM, 23, 2 
(February 1980), pp. 105-113. 

[LANT 79] Lantz, K. A., Rashid, R. F. 
"Virtual Terminal Management in a Multiple 
Process Environment." Proceedings of the Sev
enth Symposium on Operating Systems Princi
ples, December 1979, pp. 86-97. 

[LAZO 81] Lozowska, E., Levy, H., Almes, G., Fischer, M., 
Fowler, R., Vestal, S. 

o 

[POLL 81] Pollack, F., Kahn, K., Wilkinson, R. 
"The iMAX-432 Object Filing System." Pro
ceedings of the Eighth Symposium on Operat
ing SystemsPrinciples, December 1981, pp. 137-
147. 

[POPE 81] Popek, G., Walker, B., Chow, J., Edwards, D., 
Kline, C., Rudisin, G., Thiel, G. 
"LOCUS: A Network Transparent, High Relia
bility Distributed System." Proceedings of the 
Eighth Symposium on Operating Systems Prin
ciples, December 1981, pp. 169-177. 

[RASH 81] Rashid, R. F., Robertson, G. G. 

8 

"Accent: A Communications Oriented Network 
Operating System Kernel," Proceedings of the 



o 
Eighth Symposium on Operating Systems Prin
ciples, December 1981, pp. 64-75. 

[REDE 80] Redell, D. D., Dalal, Y. K., Horsley, T. R., 
Lauer, H. C., Lynch, W. C., McJones, P. R., 
Murray, H. G., Purcell, S. C. 
"Pilot: an Operating System for a Personal 
Computer." Communications of the ACM', 23, 
2 (February 1980), pp. 81-01. 

[RITC 74] Ritchie, D. M., Thompson, K. 
"The UNIX time-sharing system" Communica
tions of the AOM, 17, 7 (July 1974), pp. 365-

375. 

[STUR 80] Sturgis, H., Mitchell, J., Israel, J. 
"Issues in the Design and Use of a Distributed 
File Server." Operating Systems Review, 14, 3 

(July 1080), pp. 55-60. 

[SVOB 70] Svobodova, L., Liskov, B., Clark, D. Dis
tributed Computer Systems: Structure 
and Semantics. Technical Report LCS/TR-
215, Laboratory for Computer Science, M.LT., 
Cambridge, Mass., March 1079. 

[SWIN 70J Swinehart, D., McDaniel, G., Boggs, D. 
"WFS: A Simple Shared File System for a Dis
tributed Environment." Proceedings of the Sev
enth Symposium on Operating Systems Princi
ples, December 1079, pp. 0-17. 

O[WARD 80] Ward, S; -
"TRIX: A Network-oriented Operating System." 
Proceedings of COMPCON '80, San Fransisco, 
Feb. 1080. 

[WULF 74] Wulf, W., Cohen, E., Corwin, W., Jones. A., 

Levin,R., Pollack, F . 

(J 

.. Hydra: The Kernel of a Multiprocessor Operat
ing System." Communications of the ACM, 17, 
6 (June 1074), pp. 337-345. 

o 



, 

o 

o 

o 

To Appear: ACM Computer Science Conference, New Orleans, LA, March 13-15, 1985. 

The File System of 'an Integrated Local Network 
Paul J. Leach, Paul H. Levine, 

James A. Hamllton, and Bernard L. Stumpf 

Apollo Computer, Inc. 
15 Elizabeth Drive, Chelmsf'ord,MA 01824 

Abstract 
The distributed file system component of' 

the DOMAIN system is described. The DO
MAIN system is an architecture for networks 
of personal workstations and servers which cre
ates an integrated distributed computing envi
ronment. The distinctive featur~s of the me sys
tem include: objects addressed by unique iden
tifiers (UIDs); transparent access to objects, re
gardless of their location in the network; the 
abstraction of a single level store for accessing 
all objects; and the layering of a network wide 
hierarchical name space on top of the UID based 
flat name space. The design of the facilities is 
described, with emphasis on techniques used to 
achieve performance for access to objects over 
the network. 

1. Introduction 

This paper describes the design of the distributed 
file system for the Apollo DOMAIN operating system. 
D01v1AIN is an integrated local network of powerful 
personal workstations and server computers ([APOL 
81], [NELS 81]); both of which are called nodes. A 
D01v1AIN system is intended to provide a -substrate on 
which to build and execute complex professional, engi
neering and scientific applications ([NELS 83]). Other 
systems built following the integrated model of dis-

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the ACM copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, 
requires a fee, and/or specific permission. 

1 

trib~lted computing include EDEN [LAZO 81] and LO
CUS [pOPE 81]. 

Within the DOMAIN system, the network and the 
distributed file system contribute to this goal by al
lowing the professional to share programs, data. and 
expensive peripherals, and to cooperate via electronic 
mail, with colleagues in much the same manner as on 
larger shared machines, but without the attendant dis
advantage of sharing processing power. Cooperation 
and sharing are facilitated by being able to name and 
access all objects in the same way regardless of their 
location in the network. 

Thus, when -we say that DOMAIN is an integrated 
local network, we mean that all users and applications 
programs have the same view of the system, so that 
they see it as a single integrated whole, not a collec
tion of individual nodes. However, we do not sacrifice 
the autonomy of personal workstations to achieve in
tegration: each personal workstation is able to stand 
alone, but the system provides mechanisms which the 
user can select that permit a high degree of cooperation 
and sharing -when so desired. 

Another reason -we say that DOMAIN is an inte-
. grated local network is that each machine runs a com

plete (but highly configurable) set of standard software, 
which (potentially) provides it with all the facilities it 
normally needs - file storage, name resolution, and so 
forth. In contrast are server-based distributed systems, 
wherein network wide services, are provided by desig
nated machines (" servers") which run special purpose 
software tailored to providing some single service or 
small number of services (e.g. Grapevine [BffiR 82], 
WFS [SWIN 79], and DFS [STUR 80]). D01v1AlN has 
server nodes; however, they are created by configur
ing the standard hardware and software for a special 
purpose - a "me server" node, say, is created using a 
machine with several large disks and system software 
configured with the appropriate device drivers. 



o 

o 

o 

1.1. Organization 

The rest of this paper is organized as follows. The 
remainder of this introduction briefly descibes the hard
ware environment on which the system runs. Section 
2 provides an overview of the file system, and breaks 
it into four major component groups. Section 3 gives a 
block diagram of the file system structure, and a brief 
description of each module, locating it within one of the 
component groups. Sections 4,5,6, and 7 each describe 
one of these component groups. Finally, section 8 fo
cuses on those aspects of the design which we believe 
have contributed most to the efficiency of the system. 

1.2. Hardware Environment 

A DOMAlN system consists of a collection of 
powerful personal workstations and server computers 
(generically, nodes) interconnected by a high speed 10-
cat network. 

1.2.1. User Interface 

Users interact with their personal nodes via a dis
play subsubsystem, which includes a high resolution 
raster graphics display, a keyboard and a locating de
vice (mouse, touch pad, or tablet). A typical display 
has 800 by 1024 pixels, and bit BLT (bit block trans
fer) hardware to move arbitrary rectangular areas at 
high speed. Server nodes have no display, and are con
trolled over the network. More information on the user, 
environment can be found in [NELS 84]. 

1.2.2. CPU 

There are several models of both personal and sever 
nodes. Their 'tick' times [LAMP 80] range from .4 
to 1.25 microseconds; their m~imum main memory 
ranges from 3.5 megabytes to 8 megabytes. Most per
sonal nodes have 33 to 154 megabytes of disk storage 
and a 1 megabyte fioppy disk, but no disk storage is 
required for a node to operate. Server nodes configured 
as file servers can have 300-1000 megabytes or more 
of disk storage; those COnfigured as peripheral serv'ers 
can have printers, magnetic tape drives, plotters, and 
so forth. 

All nodes have dynamic address translation (DAT) 
hardware which supports up to 128 processes, with 
each process able to to address 16 or 256 megabytes 
of demand paged virtual memory (depending on CPU 
modei). The DAT hardware on some models uses a re
verse mapping scheme, similar to that used in the IBM 

2 

System/38 [HOUD 78]; Hi is a large, hardware hash 
table keyed by virtual address, with the physical ad
dress given by the hash table slot number in which a 
translation entry is stored. Other models use a forward 
mapping scheme, simUar to the VAX [DEC 79] or Sys~ 
tem/370 [IBM 76]. The DAT also maintains used and 
modiftedstatistics on a per page basis for the use of page 
replacement software, and access protection controlling 
read, write and execute access. The dltrerences between 
the DATs of the ditrerent models are abstracted away 
by an MMU (memory management unit) module. 

1.2.3. Network 

The network is a 12 megabit per second baseband 
token passing ring (other ring implementations are de
scribed in [WILK 79], [GORD 79J; and reasons for pre
ferring a ring network in [SALT 79], [SALT 81)). Each 
node's ring controller provides the node with a unique 
node ID, which is assigned at the factory and c<?ntained 
in the controller's microcode PROMs. The maximum , 
packet size is 2048 bytes. The controller has a broad
cast capability. 

We will not discuss the network further here; for 
purposes of the file system, all that is required is that 
the it deliver messages with hIgh probability and low 
CPU overhead. For more information on the ring con
troller and data link layer protocols see [LEAC 83]. 

2. File System Overview 

The DOMAIN file system is actually made of four 
distinct components: an object storage system (OSS), 
the single level store (SLS), the lock manager, and the 
naming server. (See figure 1 for a block diagram.) 

The OSS provides a fiat space of objects (storage 
containers) addressed by unique identifiers (VIDs). Ob
jects are typed, protected, abstract information con
tainers: associated with each object is -the UID of a 
type descriptor, the UID of an access control list (ACL) 
object, a disk storage descriptor, and some other at
tributes: length; date time created, used and modi
fied; reference count; and so forth. Object types in
clude: alphanumeric text, record structured data, IPC 
maUboxes, DBMS objects, executable modules, directo
ries, access control lists, serial I/O ports, magnetic tape 
drives, and display bit maps. (Other objects which are 
not information containers also exist. UIDs are used 
to identify processes; and to identify persons, projects, 
organizations, and protected subsystems for authenti-



o 

o 

cation and protection purposes.) The distributed OSS 
makes the objects on each node accessible throughout 
the network (if the objects' o~ners so choose by setting 
the objects' ACLs appropriately). The operations pro
vided by the OSS on storage objects include: creating, 
deleting, extending, and truncating an object; reading 
or writing a page of an object; getting and setting at
tributes of an object such as the ACL UID, typeUID, 
and length; and locating the home node of an object. 
The OSS automatically uses a node's main memory as a 
cache of recently used pages, attributes, and locations 
of objects, including remote ones. It does nothing to 
guarantee cache consistency between nodes; however, 
it does provide mechanisms that the lock manager can 
use to make and enforce such guarantees. 

A unique aspect of the DOMAIN system is its net
work wide single level store (SLS). (Multics [ORGA 72] 
and the IBM System/38 (FREN 78] are examples of a 
single level store for centralized systems.) Programs ac
cess all objects by presenting their UIDs and asking for 
them_ to be "mapped" into the program's address space 
(see [REDE 80] on the desirability of mapping in dIs
tributed systems); subsequently, they are accessed with 
ordinary machine instructions, utilizing virtual memory 
demand paging. 

The purpose of the single level store is not to create 
network wide shared memory semantics akin to those 
of a closely coupled multiprocessor; instead, it is a form 
of lazy evaluation: only required portions of objects are 
actually retrieved from disk or over the network. An
other purpose is to provide a uniform, network trans
parent way to access objects: the mapping operation 
is independent of whether the UID is for a remote or 
local object. As long as programs make th~ worst case 
assumption that their objects are not local, and hence 
that operations on them are subject to communication 
failures, they need not be aware of their location. (See 
[POPE 81] on the desirability of network transparency.) 

The lock manager serializes multiple simultaneous 
access to objects by many processes, including ones on 
dl1ferent nodes. A process must lock an object prior 
to its use; the lock manager arbitrates lock requests, 
and uses the sequence of requests to keep main memory 
caches consistent. 

The naming server allows objects to be referred to 
by text string names. It manages a collection of di
rectory objects which implements a hierarchical name 
space much like that of Multics or UNIXl [RITC 74]. 
The result is a uniform, network wide name space. in 
which objects have a unique canonical text string name -

lUNIX is a. tradema.rk of Bell La.bora.tories. 

3 

as well as a UID. The name space supports convenient 
sharing, which would be severely hampered without 
the ablllty to uniformly name the objects to be shared 
among the sharing parties. 

3. -File System Structure 

Figure 1 shows a block diagram of the file sys
tem. Each of the major component groups is indicated 
by a dlfI'erent form of shading. The arrows between 
blocks indicate call dependencies; in addition. all mod
ules above the "pageable" boundary have an implicit 
dependency on the SLS. 

The system is stuctured using a data abstraction 
approach, sometimes called a "type manager" approach 
when applied to operating systems ([JANS 76]). Each 
module has a set of c;>perations and a private database 
in which to record its state. Thus, in describing the 
com-ponents of the system, we will identify the man
agers which comprlse that component, and then, for 
for each manager, the essential operations provided by 
that manager, and an indication of the form of the 
database and algorithms used to implement the opera
tions. (Note: in the des"criptions of calls in thi~ paper, 
irrelevant details have often been suppressed for ease of 
exposition; the intent is to capture the semantic fiavor 
of the interfaces, not their precise syntax.) 

4. Object Storage System 

The ass is the DOMAIN counterpart of dis
tributed file systems such as WFS [SWIN 79] and DFS 
[STUR 80]. The purpose of the ass is to provide per
manent storage for objects, and to allow objects to be 
identified by and operated on using UIDs. independent 
of their location in the network. 

At the level we will discuss here, an object is just a 
data container: an array of uninterpreted data bytes, or 
more precisely, an array of pages (1024 byte units into 
which objects are divided). Other object attributes, 
such as it's type descriptor and access control list are 
not used by the ass, but are simply stored for the 
use of higher levels. (Not all objects are represented by 
storage containers: for example, processes are identified 
by UIDS, but are not associated with any permanent 
storage.) 

The ass consists of several component subgroups: 
a local OSS. remote ass, cached ass, and an object lo
cating service. The top-level location independent ass 



- ~-~-~-----~-- .. ---------- ---------------.-----_.------------------

0-

o 

o 

To Datagram 
IPC 

.I--~ 

File System Structure 

Supervisor 

Pageable 

Wired, 
Location 
Dependent 

Datagram 
IPC 

To Net Hardware 

Legend: 

Local ossa 

Cached oss B .... ~'1j 
Location Independent E~--.,t 

OSS 

Remote OSS t«:<J 
Single Level Store III ~J I 

Lock Manager'·:~:::::::~:.o"., 

Name serverD 



o 

o 

o 

abstraction is created utlllzing these services. 

4.1. Identifying Objects 

UIDs of objects are bit strings (64 bits long); they 
are made unique by concatenating the unique ID of the 
node generating the UID and a time stamp from the 
node's timer. (The system does not use a global clock.) 
UIDsare also location independent: the node ID in an 
object's UID can not be considered as anything more 
than a hint about the current location of the object. 
(More detail on the use and implementation of UIDs is 
presented in [LEAC 82].) 

At any point in time, the permanent storage for an 
object resides entirely at only one node; also, the system 
never attempts to transparently move it to a different 
node. So, for every object there is always one distin
guished node which is its "home" , and which serves as 
the locus of operations on the object. Above the OSS 
level, only UIDs are used to address objects; an opera
tion whose UID addresses a remote object is sent to the 
object's home node to be performed. 

4.2. Local ass 
This subgroup provides access to,localobjects: i.e., 

those objects stored on disk volumes which are attached 
to the node accessing them. It provides operations to 
create and delete loca,.l objects, and to access the at
tributes and contents (pages) of existing objects (see 
figure 2). There are two managers in this group: the 
VTOC (volume table of contents) and the BAT (block 
allocation table). 

The, VTOC for a volume contains an entry for 
each object on the volume; an object's VTOC entry 
contains the object's attributes and the root of its file 
map, which translates page numbers within an object to 
disk block addresses. (VTOC entries are very simUar to 
UNIX inodes [THOM 78].) The VTOC is organized as 
an associative lookup table keyed by object UID, which 
permits rapid location of an object's VTOC entry' given 
its UID. (Using a large direct mapped hash table with 
chained overflow buckets and avoiding high utilization, 
the average lookup time is just over one disk access.) 

To access the contents of an object requires two 
steps: translate the object reference' to disk block ad
dress, then read (or write) the disk block. (An object 
reference is a pair consisting of the object's UID and 
a page number within the object.) The VTOC only 
provides operations to do the translation. not the reads 
or writes. because the translations are then cached and 

5 

allocate - allocate a VTOC entry for an empty object and 
set its attributes 

The object is created on the local disk vol
ume specified by ·vol-index'. The object. de
scriptor contains the object's UID and initial 
attributes. 

FUNCTION allocate(vol-index, obj-decriptor): vtoc-index 

lookup - get the VTOO index of an object 
FUNCTION lookup(vol-index, obj-uid): vtoc-index 

read - get the VTOC entry 01 an object given its VTOC 
index 

Attributes in the 'vtoc-entry' include: object 
UID; type UID; ACL UID; length; time cre
ated, used, and modified; reference count, etc. 

FUNCTION read(vol-index, vtoc-index): vtoc-entry 

write - write the VTOC entry 01 an object given its VTOC 
index 

Note: overwriting a VTOC entry for an object 
with an empty VTOC entry has the effect of 
deleting the object. 

FUNCTION write(vol-index, vtoc-index, vtoc-entry) 

,read-1m - get the file map lor a segment of an object 

Object are divided into 32 page segments; the 
'seg-no' indentifies the segment; the 'file-map' 
is an array of 32 disk block addresses, one for 
each page in the segment. 

FUNCTION read-fm(vol-index, vtoc-index, seg-no): file-map 

write-fm - write the file map for a segment 01 an objeqt 
FUNCTION write-fm(vol-index, vtoc-index,' seg-no, file-map) 

Figure 2: Sample VTOC Operations 



o 

o 

o 

used by the cached OSS (see below). The translation 
is done by reading or writing the file map for 32 page 
units of the file called segments. 

The BAT for a volume keeps track of which disk 
blocks are available for allocation on that volume. The 
principle operations on the BAT are ones to allocate 
and free disk blocks. One interesting feature Is that 
the allocation operation aids in creating locality of the 
pages within an object on the disk. One of the input 
parameters of the allocation operation is a disk block 
address; an attempt is made to make the newly allo
cated block as close as possible to it. When a new page 
Is being added to an object, this parameter is usually 
set to the disk address of the previous logical page of 
that object. We observe that this causes much better 
clustering of objects on the disk than not doing any
thing at all, except when the disk is nearly full. (We 
have not analyzed the benefit quantitatively. Also, to 
get really good locality, it is probably necessary to use 
the more comprehensive methods of [MCKU 84].) 

4.3. Cached OSS 

Disk operations and remote operations are both 
expensive, so it ~ desirable to avoid them when possible. 
One means of doing so Is to cache recently obtained 
results of such operations, and reuse them when it can 
be ascertained that they are still valid. 

The cached OSS consists of the AST, PMAP, and 
M1v1AP managers. The AST (active segment table) 
caches locations, pages, and attributes of active (re
cently used) objects, whether local or remote. Each 
eIitry in the AST contains the UID, location and at
tributes of an object, plus the PMAP for one segment 
of the object. The PMAP (page map) for a segment con
tains the flle map for that segment, plus references to all 
resident main memory pages. Part or the maintenance 
of PMAPs Is done by the purifier process, which period
ically writes back modified pages to secondary storage 
(local or remote, as need be). The M1v1AP (memory 
map) is the allocator of main memory pages, and keeps 
track of their contents. 

The AST provides operations to access pages and 
attributes (including locations) of objects (see figure 3). 
If the requested information is not in its cache (or 
PMAP's), then it uses the local or remote OSS to get 
the necessary information and encache it. The to:J.ch 
operation fetches object contents (pages). (There is no 
write operation; pages are modified via the single level 
store while in the cache, then written back later by the 
PMAP purifier process.f The get-attr operation fetches 

6 

touch - cause several consecutive pages of an object to be 
cached in main memory . 

Cause in' pages pages starting with 'page
num' of object with UID 'object-uid' to be 
cached. The object 'location' is the ID of the 
remote node or local volume where the object 
resides. 

FUNCTION touch(location, object-uid, page-num, n): phys
page-list 

get-attr - get an object's attributes 

Attributes in the 'attr-rec' include: type UID; 
ACL UID; length; time created, used, and 
modified; reference count, etc. 

FUNCTION get-attr(object-uidf: attr-rec 

set-attr-X - set attribute X of an object 

This is a set of operations, where X can be 
replaced by any of the attributes above. 

PROCEDURE set-attr-X(object-uid, X-value) 

cond-flush - remove stale pages of an object from the cache 

The boolean 'flushed' is true if any stale data 
was flushed. 

FUNCTION cond-flush(object-uid, dt~J: flushed 

purify - send all modified pages of an object back to its 
'home' node . 

if 'force' is true, write the pages to disk imme
diately at the home node, else just leave them 
in the home node's cache. 

PROCEDURE purify(object-uid, force) 

Figure 3: Sample AST Operations 



-------- ------------ -------------------------_._----------------

o 
object attributes, and set-attr allows objects' attributes 
to be individually changed. 

The AST also provides operations to manage its 
cache's consistency with that of other nodes, and which 
are designed to be used by the lock manager: it only 
allows access to objects if they are -properly locked; it 
maintains a version number for each object; and it pro
vide operations to control the contents of the cache. 

. 4.3.1. Loek Emoreement 

As one of Its attributes, each file system object has 
a lock key. The lock key is set to either a network node 
ID or one of (for now) two special values: readbyall 
and writebyall. When an object's lock key is set to N, 
only ass requests from node N are processed. All other 
requests are denied with an error indication of concur
rency violation. When the lock key is set to readbyall, 
read requests (for pages and attributes) from every node 
are allowed while all write requests are denied regardless 
of their source. Finally, a lock key value of writebyall 
completely disables the OSS level concurrency control 
checking and so all requests are always fulfilled. 

4.3.2. Objeet Versions 

o A time stamp based version number scheme is used 
to support the cache validation mechanism; An object's 
version number is its date-time modified (DTM) at
tribute. ,(See [KO~ 81] for a survey of distributed con
currency techniques.) Every object has a DTM with 8 
millisecond resolution associated with it, which records 
the time the object was last modifled. 

o 

The DTM of an object is maintained at its home 
node. When an object is modified by locally originating 
memory writes, the page modified bits in the DAT hard
ware record that fact; periodically, the modified bits are 
scanned and cause the object's DTM to be updated. If 
an object is modifled by a remote node, eventually the 
object's modified pages are sent back to the home node; 
the paging server updates an object's DTM In response 
to remotely originating OSS requests to write its pages. 

In addition, every node also remembers the DTM 
for all remote objects whose pages it bas encached In its 
main memory . Every time a page of an object is read 
from or written back to its home node, the latest DTM 
is sent with the network reply message. Recall that the 
requests for page level operations are filtered through 
the lock key based low-level concurrency control. 

7 

4.~.3. Content Control 

There are several operations explicitly provided by 
the AST to allow for cache management by higher level 
synchronization mechanisms. 

1. A conditional Bush operation expunges from the 
cache all pages of an object that are not from 
the current version of the object. (This is used 
by the -lock manager when it discovers that the 
DTM associated with the cached pages of an ob
ject is dlfl'erent from the object's real DTM.) 

2. A get-attr operation returns (among other at
tributes) the DTM of the current version of an 
object. 

3. A purification operation sends copies of all mod
ified pages of an object back to the home node 
of the object (but leaves the pages encached for 
possible later use). (This is used by the lock 
manager at unlock time.) 

4. A force write variant of the purification opera
tioncauses a page to be written to permanent 
store on its home node; its purpose is to be a 
minimally sufficient toe hold with which to im
plement more complex atomic operations. 

We shall see that using by using the AST's lock en
forcement, object version, and cache content control fa
cilites, the lock manager can effectively guarantee cache 
consistency for all clients who obey the system locking 
rules (see section 6). 

4.4. Location Independent ass 
. Location independent access to objects is provided 

by the SLS and the location independent OSS. The SLS 
provides access to the contents of already existing ob
jects, while the location Independent ass provides ac
cess to object attributes, and supports object creation 
and deletion. 

The location independent OSS consists of the FILE 
manager, and the HINT manager. The FILE manager 
exports the attribute access and cache control opera
tions of the AST to user programs in a location in
dependent way. In addition, it implements a create 
operation to create new objects, a delete operation to 
destroy them, and a locate operation to return the node 
ID of the home node of an object (see figure 4). To cre
ate location independence, the FILE manager uses the 
HINT manager to determine the location of an object. 
then either does the operation locally (using the local 
or cached OSS), or uses the services of REMFILE (see 
below) if it must go remote. 



-----_.-._-----------_.------------ ----_. __ .... _ .. --

o 

o 

create - create an object 

the new object is created on the same node as 
'loc-object-uid' 

FUNCTION create(loc-object-uid): new-object-uid 

delete - delete an object 
PROCEDURE delete( object-uid) 

locate - return tbe node address of tbe borne node of an 
object 
FUNCTION locate(object-uid): node-id 

Figure 4: Sample FILE Operations 

The HINT manager is the backbone of the locat
ing service: given an object's UID, it finds the ID of the 
node on which an object resides. This is the fundamen
tal distributed algorithm in the system: no global state 
information is kept about object locations. Instead, a 
heuristic search is used to locate an object. Complete 
details are in [LEAC 82], including design considera
tions and the evolutionary history of the algorithm. To 
summarize briefly, the current algorithm relies heavily 
on hints about object location. One source is the node 
ID in the object's UID, another is the hint file. Any time 
a software component can make a good guess about the 
location of an object, it can store that guess in the hint 
file for later use; one particularly good source of hints 
is the naming server, which guesses that objects are 
co-located with the directory in which they are cata
logued. If all hints fail to locate the object, then the 
requesting node's local disk is searched for the object. 
The algorithm works because, although it is possible 
for objects to do so, they rarely move from the node 
where they were created; and if they do, then the nam
ing servers hint will nearly always be correct. A last 
resort, which would be completely sumc1ent, would be 
to accept user input into the hint file; this has not yet 
been implemented, as it hasn't really been needed. 

4.5. Remote ass 

the REMFILE manager, which provides facilities to re
motely create and delete objects. This is in contrast to 
the local OSS, where one set of managers provides both 
capabilities; the purpose is to separate the piece-s of the 
remote OSS which are needed to resolve page faults 
from those which are not. This both minimizes the 
amount of code and data which must be permanently 
resident in main memory in order to implement vir
tual memory, and allows the RE1\.1FILE manager to use 
the virtual memory provided by the SLS. Both NET
WORK and RE1v1FILE are location dependent abstrac
tions: in order to access a remote object, its location 
must already be known. Both of these managers can 
be thought of as hand-coded stubs for a simple form of 
remote procedure call (RPC) [BIRR 84]. 

The ~"ETWORK manager is divided into a client 
side and a server side. The client side is used by 
the cached OSS to access the attributes and contents 
(pages) of already existing remote objects that are not 
in the main memory cache. When the client side is 
called to make a remote access, it is given the request 
parameters and the node ID of the home node of the 
object being accessed. (The request parameters always 
include the UID of an object, and, for a read page re
quest; would include tlie page number of the object to 
read, for example). It packages the request parame
ters into a message, sends it to the given node using the 
low-level socket datagram IPC and waits for a response. 
Since the requests are all idempotent, it can use- a very 
simple request-response protocol ([SPEC 82]); for more 
details on sockets and protocols see [LEAC 83]. 

The server side uses a remote paging server _ pro
cess to handle client requests, which services all re
motely originating requests to read or write pages and 
attributes of objects on that node. The paging server 
has a socket assigned to it, with a well known ID, upon 
which it receive requests; it uses the local access mech
anism to fulftll those requests. Remote paging oper
ations are requested via (UID, page number) pairs 
only, never by disk address, and other remote opera
tions only via UIDs; thus, a node never depends on any 
other node for the integrity of its object store. (This 
is one of the reasons the system is truly a collection of 
autonomous nodes - to which are added mechanisms 
permitting a high degree of cooperation - as distin
guished from, say, a locally dispersed loosely coupled 
multiprocessing system.) -

The remote OSS is separated into two parts which The REMFILE manager is also divided into client 
are at two very different layers of the system: the NET- and server sides, and except that the operations are to 
WORK manager, which provides remote access to the create and delete objects, its structure is nearly identi-
attributes and contents of already existing objects; and cal to the NETWORK manager. The server side uses 

-0 8 



o 

o 

o 

a remote me server process; It services client requests 
by calling the FILE. manager to service requests. REM
FILE also handles remote lock requests for. the LOCK 
manager; see section 6. 

5. Single Level Store 

The single level store concept means that all mem
ory references are logically references directly to ob
jects. This Is In contrast to a multi-level store, which 
typically has a "primary" store and one (or more) "sec
ondary" store(s); only the primary store is directly ac
cessible by programs, 80 they have to do explicit "1/0" 
operations to copy an object's from secondary to pri
mary store before the data can be accessed. 'Ib make 
the distinction between primary and secondary store 
transparent, a Single level store has to manage main 
memory as a cache over the object store: fetching ob
jects (or portions of objects) from permanent store into 
main memory as needed, and eventually writing back 
modified objects (or portions thereof) to the permanent 
store. SLS is thus a form of virtual memory, since all 
referenced Information need not (indeed could not) be 
in main memory at any one time. 

Our implementation of SLS has many aspects in 
common with implementations of SLS for a centralized 
system: main memory Is divided into page frames; each 
page frame holds one object page; main memory is man
aged as a write-back cache; DAT hardware allows refer
ences to encached pages at main memory speeds. If an 
instruction references a page of an object which Is not In 
main memory, the DAT hardware causes a page fault, 
and supplies the faulting virtual address and the ID of 
the faulting process to software. The page fault han
dler finds a frame for the page; reads the page into the 
frame; updates the DAT related information to show 
that the page Is maln memory resident; and restarts or 
continues the instruction. 

The SLS 1simplemented by the MST manager, 
which comes in two modules: one which is permanently 
resident, called MST-wired; and one which is pageable, 
called MST-unwired. Both manipulate a per process 
table, the Mapped Segment Table (MST), which trans
lates a virtual address to a (UID, page number) pair. 

MST-unwired implements a map operation, which 
adds an object to the address space of a process given 
the object's UID; an unmap operation, which removes 
an object; a get-Did operation to Inquire about the ob
jects in an address space; and a set-touch-ahead-cnt 
operation to cause read-ahead on page faults. To map 

9 

map - make an object accessible through a virtual address 
space range 
FUNCTION map(object-uid, protection, grow-ok, out obj
length): virt-addr 

unmap - remove an object from the address space 
PROCEDURE unmap(virt-addr) . 

getuid - get the UID of a mapped object 
FUNCTION getuid(virt-addr): object-uid 

set-touch-ahead-cnt - set demand paging cluster factor for 
a mapped object 

Causes pages of the object to be read/written 
in 'cluster~size' units. 

PROOEDURE set-touch-ahead-cnt(virt-addr, cluster-size) 

touch - cause a page to be cached in main memory 

The·page refered to by virtual address 'virt
addr' is brought into memory, and the :MMU is 
loaded with the 'virt-addr' <-> 'phys-page
addr' association. 

PROCEDURE touch(virt-addr): phys-page-addr 

wire - cause a page to be cached in main memory and made 
non-pageable 
PROOEDURE wire(virt-addr): phys-page-addr 

find - find the phyical page address for a virtual address 

Optionally wire the page if 'wire-flag' is true. 

PROCEDURE find(virt-addr,wire-flag): phys-page-addr 

Figure 5: Sample MST Operations 



o 

o 

o 

an object into the address space, an entry defining the 
(virtual address, UID) association is made in the 
MST; unmapping just removes the appropriate entry .. 
None of these operations are required while servicing a 
page fault; thus, the module can be pageable. 

MST-wired implements a touch operation, which 
for a given virtual address, causes the object page asso
ciated with it to be cached in main memory. The touch 
operation is given the virtual address of the faulting 
page, which it looks up in the MST to get the UID of 
the object mapped at that address; fetching the page 
is then just a request to the OSS, even if the page be
longs to a remote object (see figure 5). If the touch 
ahead count is more than one, It will also pre-fetch suc
ceeding pages of the object. Other operations include 
a wire operation, which is similar to touch, except that 
the page is made permanently resident as well; and a 
find operation, which returns the main memory address 
of a page if it is resident. 

What distinguishes our implementation from a cen
tralized one is the necessity of dealing with multiple 
main memory caches: in fact, one for each node in the 
network. This leads to the problem of synchronizing 
the caches in some way: of finding and fetching the 
most up-to-date copy of an object's page on a page 
fault, and of avoiding the use of "stale" pages (ones 
that are still in a node's cache, but have been more 
recently modified by another ·node). The objective of 
synchronization is to give programs a consistent view 
of the current version of an object In the face of (p0-
tentially) many updaters. A second objective is that 
the synchronization algorithm should be quite simple 
and need only a small data base, as it would be part 
of the SLS implementation and hence be permanently 
resident in main memory. 

These objectives appeared, for practical purposes, 
to be mutually exclusive, so our SLS implementation 
does not guarantee consistency or the use of the cur
rent version. Instead, the implementation does provide 
operations and information from which a higher level 
can build a mechanism that makes the stronger guar
antees. In addition,_ the higher level can use the virtual 
memory provided by SLS, and thereby be in large mea
sure freed of the constraints mentioned earlier on the 

. size of it and Its data base. The system provides a 
readers/writers locking mechanism at the higher level; 
however, other clients are free to construct their own 
synchronization mechanism at this level if they do not 
wish to use ours. 

10 

lock - lock an object 

See text for explanation of 'obj-mode'; 'acc
mode' is one of read, write, or read-intend
write. The boolean 'locked' is returned true if 
the obje~t was locked; the caller never waits. 

FUNCTION lock(object-uid, obj-mode, ace-mode): locked 

relock - change the access mode of an lock 

The boolean 'changed' is returned true if the 
access mode was changed. 

FUNCTION relock(object-uid, ace-mode): changed 

unlock - unlock an object 
FUNCTION unlock(object-uid, acc-mode) 

read-entry - find the lock entry record for an object 

the 'lock-rec' contains the object uid, process 
uid of the locking process, the object and ac- . 
cess modes of the lock, and a transaction ID 
(see text). 

FUNCTION read-entry(object-uid): lock-rec 

iter-entry - iterate through all locked objects 

if 'volume-uid' is non-nil, restrict the iteration 
to just objects on that volume; 'N' starts at 
0, and after each call is. the index of the next 
entry to be returned. 

FUNCTION iter-entry(volume-uid, N, object-uid): lock-rec 

Figure 6: Sample LOCK Operations 

6. Lock Manager 

The LOCK manager provides clients of the file sys
tem the means to obtain control over an object and to 
block processes that wish to use the object in an in
compatible way. The tools that the lock manager has 
at its disposal are its own lock data base and the lock 
key attribute aSsociated with each object. 

The lock operation supports two locking modes for 
objects. The more famllar is the many readers or single 
writer lock mode [HOAR 74]. A co-writers (co-located 
writers) lock' mode !salso prOVided, which makes no re
strictions on the number of readers and writers, but de
mands that they be co-located at a single network node. 
This mode allows the use of shared memory semantics, 
but only among processes located at the same node. 



o 

o 

(Guardians [LISK 79] employ this same notion, but at 
the level of linguistic support for distributed computa
tion.) For either mode, several types of access mode are 
supported: read, write, read with intent to write later 
[GIFF 79]. 

Other operations include: unlock, to unlock an ob
ject; relock, to change one type of lock to another with
out unlocking; read-entry, to inquire whether an object 
is locked, and if so, how; and iter-entry, to list all locked 
objects on a node. 

An instance of the lock manager exists on every 
network node, and each lock manager keeps its own 
lock data base. This data structure records all of the 
objects, local or remote, that are locked by processes 
running on the local node. The same structure also 
records locks that remotely running processes are hold
ing over local objects. Lock and unlock requests for 
remote objects are always sent to the home node of the 
object involved, and both the requesting node and the 
home node update their data bases. The LOCK man
ager uses the REMFILE manager to handl~ the remote 
requests. 

The lock manager enforces compatible use of an 
object by not granting confiicting lock requests. How
ever, it guards against accidental or malicious subver
sion of the locking mechanism by communicating its 
current intent to the ass on a per object basis through 
the lock key. Whim an object is locked in a way that ex
cludes any writers, the lock manager sets its lock key to 
the readbyall value. When an object is locked for use 
by a single writer, the lock manager sets its key to the 
node ID of the writing process. This causes both reads 
and writes from any other node in the network to be 
refused as concurrency violations. 'Ibday's implemen
tation of the lock manager does not use the writebyall 
value for the lock key, however newly created objects 
have their lock key initialized to this value. 

Locks are either granted immediately or refused; 
processes never wait for locks to become available, so 
there is no possibility of deadlock (but indefinite post
ponement is of course possible). This kind of locking. 
is not meant for distributed database types of transac
tions, or for providing atomicity in the face of node fall
ures, but for human time span locking uses such as file 
editing. For this same reason, locks are not timed out, 
since realistic time outs would be unreasonably long. 

6.1. Cache Consistency 

of a file system object. Since all of the users (both 
simultaneous and serial) of an object run on the same 
system, the memory cache is common to each of them 
and so no cache validation need ever be done. When the 
object is "unlocked" by one process, its pages may stay 
in the main memory cache for awhile, and if another 
process comes along to use the same file, that second 
process wlll always see the latest version of the object. 

In the DOMAIN distributed SLS the simultaneous 
users of a particular file are either all readers (in which 
case the data they see is identical), or all processes run
ning on the same node (in which case the main memory 
cache they see is the same as in the case of a single 
centralized system). All other simultaneous uses of a 
file system object are unsupported by the DOMAIN file 
system. However, we would like serial users of an ob
ject in the DO~ file system to each correctly see 
all changes made to the file by earlier users. 

The simplest demonstration of the problem we 
faced requires two nodes A and B. Suppose a one page 
long file system object 0 resides on a disk that is phys
ically connected to node A. A process on B locks the 
object 0 and reads its single page. That page moves 
through the network from A to B and ends up in the 
main 'memory of system B. After studying the page for 
some time, the process on B unlocks the file and goes 
about its business. A short time lar,er, another process 
on B wants to read the same file O. It locks 0 for read
ing and accesses that page. We wanted the second user 
of 0 to be able to dependably use (or knowingly dis
card) the copy of the page cached in B's main memory. 
It should be able to use that page (without refetching 
it from the network) if the file 0 has not been modified 
since the page was fetched, and it must refetch the page 
if the file has been modified. In this case, we needed to 
be able to answer the question: Did a process on A 
modify 0 between the time the page was delivered to 

B and the time the second B process wanted to use it? 
The .mechanism described below allows us to efficiently 
answer that question, and to invalidate the cached copy 
if it was modified by A. 

The version number (DTM) kept by the AST for 
each object can be used to synchronize main memory 
caches, as follows. The remote user of an object can 
prove the validity of his cached copy by verifying that 
the current DTM (as kept by the home node of the ob
ject) is identical to the DTM his node has remembered 
for the cached pages. Should they be different, the lo
cally cached pages need to be invalidated. The lock 

In a centralized virtual memory system, the main manager performs this validation at lock time for all 
memory is the single cache over the permanent storage remote objects: a request to lock a remote object that 

o 11 



o 

o 

---------------------------------- .. -.-- .....•. --... - .. - .... -

is granted returns the current version number (DTM) 
of the object, which is used in a conditional flush oper
ation; thereby removing stale pages of the object from 
the requesting nodes main memory. 

A second version of the caching problem is to insure 
that it (extending the example above) the first B pro
cess to use 0 had modified the object, that the change 
be available to a process on A that wants to use the 
object immediately after theB process releases it. To 
guarantee correctness in this case, copies of all changed 
pages of remote objects are delivered back to their home 
node before the object is unlocked .. This function is 
performed by the lock manager as part of the unlock 
function: a request to unlock a remote object first puri
fies the object (forces modified pages back to the home 
node), then frees the lock to make the object available. 

Note that concurrency violations can only occur in 
mUlti-node situations: it an object is never locked, and 
is used by only one node, tha~ node is the only source 
of version number changes, and will hence always see 
a consistent view of the current version. This is why 
the LOCK and mNT managers' state can be stored in 
virtual memory: the objects that store their code and 
data do not need to be locked because they are only 
used on one node. 

6.2. Discussion 

This two-layer approach to concurrency manage
ment has several desirable attributes. First is that it 
allows the (presumably) more complicated and larger 
higher level protocol to use the services of OSS to main
tain its data. base. Second is its flexibility. Changes 
to the higher-level lock manager can be accomplished 
without affecting the OSS-level implementation at all. 
Also, because the operations to manage the cache are 
exported, clients can implement their own schemes, any 
number of which can coexist as long as they manage 
disjoint sets of objects. Lastly, the burden of lock key 
checking assigned to the per-page operations at the OSS 
level is very ·slight compared to the lock manager's data 
base maintenance. 

One restriction that it would be desirable to re';' 
lax is· that the concurrency granularity of the current 
implementation is at the level of entire objects. The 
lock key as described is insufficient for some forms of 
concurrency control. However, if the higher-level pro
tocols wanted to take on the entire control task, the 
lock key could be set to its writebyall value to disable 
concurrency checking by the OSS-level. Note that the 
per-object techniques described above, but with a ver-

12 

sion number (DTM) per page, would allow page level 
concurrency control. We already store the DTM with 
each page on backing store; thus keeping one DTM per 
main memory page frame would suffice for this exten
sion. 

7. Naming Objects 

For users, UIDs are not a very convenient means 
to refer to objects; for them, text string names are 
preferable. However, llke UIDs, they should be uni
form throughout the network, so that the name of an 
object does not change from node to node. In DO
MAIN, text string names for objects are provided by a 
directory subsystem layered on top of the single level 
store. The name space is a hierarchical tree, like Mul
tics [ORGA 72] or UN1X [RITC 74], with directories 
at the nodes and other objects at the leaves. A direc
tory is just an object, with its own urn, containing pri
marily a simple set of associations between component 
names (strings) and UIDs. (A symbolic link facility, like 
that of Multics, is the other major feature of directo
ries.) A f$ingle compone~t name is resolved in the_ con
text of a particular directory by finding its associated 
UID (if any). The absolute path name of an object is 
an ordered list of component names. All but (possibly) 
the last are names of directories, which, when resolved 
starting from a network-wide distinguished "root" di
rectory, lead to the UID of the object. Thus, an ab
solute path name, like a UID, is valid throughout the 
entire network, and denotes just one object. (There are 
other forms of path name besides the absolute form; 
these relative path names are mainly for convenience, 
since absolute path names are potentially very long in a 
large network with large numbers of objects. They are _ 
all expressible as the concatenati~n of some absolute 
path name prefix to the relative path name itself.) 

8. Lessons 

The first implementation of the D01v1AIN system 
was completed in March of 1981. Since then, the system 
has been tested, used, and measured extensively. At 
this writing, the largest operational DOMAIN network 
system is a single token-ring network consisting of over 
600 nodes, and DOMAIN installations of over 70 nodes 
are not uncommon. As a result of this almost four 
years of experience, we believe we have learned some 
important practical lessons - some of. which validate 



o 

o 

(and in some cases vindicate) our choices and others 
that suggest alternative implementations. 

8.1--. Choosing. SLS 

The DOMAIN-chosen technique mapping file sys
tem objects into process address space and then turn
ing ~ faults into object read requests of the form 
(UID, pageno) has been very successful. It enjoys the 
benefits of simplicity of implementation, stateless re
mote servers and the emcency of demand-paging lazy 
evaluation. Further, a single main memory cache man
agement mechaniSm equally manages object pages for 
local and remote objects. Our original goal for the re
mote paging system was to have remote sequential file 
system I/O take no more than two times longer than 
the file I/O from a local disk. Over the years, this ratio 
has averaged around 1.8 to 1. 

8.2. Seduction by SLS 

The characteristics of network location trans
parency and a low penalty for remote transparent ac
cess combine to make the "map-it, use-it, unmap-it" 
approach to object manipulation terrifically. attractive. 
However, we have learned that there are sometimes 
compelling pratical reasons for avoiding the allure of 
network transparency at the SLS level for some object 
managers that want to provide a higher level of abstrac
tion. 

Our naming server, which implements the direc- . 
tory hierarchy and the name-to-UID translation, was 
originally implemented completely on top of the loca
tion transparent SLS level. Asa result, it mapped and . 
operated on directories without regard to their location 
in the network. The naming server, then, did not, in 
fact could not, distinguish between directories on lo
cal disks and those on remote disks. As a result, the 
server was straightforward to implement, and as soon 
as it worked on local directories, it worked on remote 
directories. 

The problem with this implementation strategy for 
the naming server was that the storage system (natu
rally) provided no layer of abstraction for the notion of 
directory. The SLS provided access to the raw bits of 
a directory to each naming server that wanted to ma
nipulate that directory. This was fine as long as each 
naming server in the network could ~perate on direc
tories of the same format. In practice, however, the 
naming servers are not the same on every node in the 
network (generally due to software updates occuring at 

13 

different times) and the. older naming servers are un
able to handle constructs added to directories by newer 
naming servers running on other nodes. 

Directories are an important example for a system 
like DOMAIN. They ~re permanent (stored on disk), 
heavily shared by multiple nodes, and most transac
tions on them take very little time. Also, they are likely 
candidates for extensions and improvements over time. 
Because we can never demand simultaneous update of 
software on every node in a network, and because we 
want very much to offer cross-release compatibility, we 
have found ourselves constrained by our original imple
mentation. 

As if that were not enough, we have found that the 
performance of the naming server tree-walk was signif
icantly increased by asking the node that owned the 
target directory do the lookup work itself, rather than 
sending pages of the directory over to the requesting 
node. This change demanded that the naming server 
learn the difference between local and remote directo
ries, and was an example of when .. moving the work 
to the data" was a win over "moving the data to' the 
computation." 

8.3.' Use Simple Protocols 

The key to the attainment of our remote perfor
mance goals has been the use of light-weight problem
oriented protocols. We have taken full advantage of 
the relatively clean environm'ent provided by our high
speed ring network to avoid often costly protocol sup
ported reliability. 

Operations that are idempotent (I.e. for which re
peated applications have the same effect as a single ap
plication) use a connectionless protocol [SWIN 79] and 
retry often enough to achieve the desired level of relia
bility. Network operations to read and write attributes 
and pages are all of this form. 

Operations which are not idempotent (I.e. which 
have side effects), but which naturally have some state 
associated with them, can often be made idempotent, 
using a transaction ID. Each time a client sends a new 
request (not a retry) to perform an operation, it chooses 
a new transaction ID. If an operation was performed 
once with a particular transaction ID, the receipt of a 
second request with the same ID should be rejected. 
File locking, for example, saves the the transaction ID 
of the operation which set the lock along with the lock 
state. 

The SLS protocols we use are inexpensive because 
they are end-to-end protocols [SALT 80] and do not 



o 

o 

o 

rely on the communications substrate to provide any 
service guarantees. Instead, each remote operation in
dividually Implements the least mechanism required by 
its reliablllty semantics. 

8.4. Obtaining High Performance 

Much has been written on this subject lately for 
distributed systems. (In particular, see [CHER 83] and 
[LAZO 84].) The DOMAIN fUe system has evolved over 
the years to provide as much as six times th.e perfor
mance of its original implementation. Certainly in the 
case of completely diskless nodes, but also very fre
quently in the case of disked nodes,. the performance
critical information needed is elsewhere in the network. 
Our performance goals coupled with our aggressive 
remote-to-Iocal ratio goal has influenced the implemen
tation in several ways. 

The disk subsystem implements fairly familiar 
techniques for performance enhancement including: 
physical locality optimizing, control structure caching, 
batched reads, and clustered writes. Physical locality is 
encouraged by the increasingly clever allocation of suc
cessive file blocks and theirfUe maps and VTOC entries. 
The basic disk control structures (free-block allocation 
tables and VTOC control blocks) are cached in their 
own set of control block buffers. File page reads are 
"batched" at the SLS-Ievel. Recall that in DOMAIN, all 
flle read activity is caused by touching the bytes of the 
file with normal CPU instructions and thereby page
faulting on the needed page. When the SLS catches 
the page-fault and determines the need for some (Um, 
pageno), it may ask the lower levels for up to 31 addi
tional successive object pages. Most disk write opera
tions are instigated by the page purifier process, and it 
tries to hand the low-levels a large collection of pages to 
write so that seek-ordering and rotational-ordering can 
be performed. In addition, for remote flle system I/O, 
DON.1AIN implements trans-network batched reads; a 
single read page request message may result in as many 
as eight reply pages in anticipation of their need. In this 
way, the ultimate client 'receives more of the benefit of 
disk page touch-ahead. 

8.5. Indefinite Postponement 

In theory, the remote file server running on one 
node can service requests from any number of clients. 
In practice, however, a single server can be flooded 
with requests from ten, twenty, even one hundred hun
gry clients. Because the communications protocol layer 
provides no delivery guarantees to the higher layers, it 
blithely discards messages it receives after its assorted 
queues and buffers fill up. In theory, the issuer of the 
discarded message will send a time-out based retry and 
all will be well. In practice, indefinite postponement is 
a definite possiblllty. As networks get larger, and in 
particular as server nodes get busier, a solution that 
formally addresses this problem completely is needed 
(rather than an ad hoc approach that, for example, in
creases the depth of the queues periodically). 

8.6. Conclusion 

The essential ingredients to good performance of 
a distributed file system include all those things re
quired for a good centralized file system: caching, bulk 
data transfer from the disk, and good object locality 
on the disk. In addition, the distributed file system 
needs -more: it needs caching of remote data to avoid 
as many remote operations as possible; cheap, fast pro
tocols; and bulk data transfer over the network, even 
when the protocols are very cheap. 

REFERENCES 

[APOL 81] Apollo Computer, Inc. 
Apollo DOMAIN Architecture, Apollo Com
puter Inc., Chelmsford, Mass., 1981. 

[BIRR 82] Birrel, A. D., Levin, R., Needham, R. M., 
Schroeder, M. D. 
.. Grapevine: An Exercise in Distributed Com
puting," Communications of the ACA1, 25, 4 

(AprllI982), pp. 260-274. 

[BIRR 84} Birrel, A. D., Nelson, B. J. 
"Implementing Remote Procedure Calls", ACM 
7ransactionson Computer Systems, 2, 1 (Febru
ary 1984), pp. 39-59. 

We have ended up caching more kinds of infor- [GEIER 83] Cheriton, D. R., Zwaenepoel, W. 
mati on than we originally expected and probably in "The Distributed V Kernel and its Performance 

slightly different ways. In cases where the cost of a 
disk access would have been barely acceptable, the cost 
of a network message pair in addition encouraged the 
use of more aggressive caching strategies. 

for Diskless Workstations," Proceedings of the 
Ninth Symposium on Operating Systems Princi
ples, October 1983, pp. 128-139. 

[DEC 79] Digital Equipment Corporation. 

14 



---- -------- --------- - --------

VAX 11/780 Hardware Handbook, Digital [LAZO 84] Lazowska, E. D., Zahorjan, J., Cheriton, D. R., 
Equipment Corporation, Maynard, MA, 1979. Zwaenepoel, W. 

o 
[FREN 78] French, R. E., Colllns, R. W., Loen, L. W. 

[GIFF 79] 

"System/38 Machine Storage Management," IBM 
System/38 Technical Developments, mM Gen
eral Systems Division, pp. 63-66, 1978. 

Gifford, D. K. 
"Weighted Voting for Replicated Data," Pro
ceedings of the Seventh Symposium on Operat
ing Systems Principles, December 1979, pp. 150-
159. 

[GORD 79] Gordon, R.L., Farr, W., Levine, P. H. 
" Ringnet: A Packet Switched Local Network 
with Decentralized Control," Computer Net
works, 3, North Holland, 1980, pp. 373-379. 

[HOAR 74] Hoare, C. A. R. 
"Monitors: an Operating System Structuring 
Concept," Communications of the ACM, 17, 10 
(October 1974), pp. 549-557. 

[HOUD 78] Houdek, M. E., Mitchell, G. R. 
" Translating a Large Virtual Address," IBM Sys
tem/38 Technical Developments, IBM General 
Systems Division, pp. 22-24, 1978. 

[IBM 76] International Business Machines Corporation 
mM Syste~j370 Principles of Operation, o . GA22-7000-5, IBM, 1976 

[JANS 76] Janson, P. A. 
"Using Type Extension to Organize Vir
tual Memory Mechanisms," Technical Re
port LCS/TR-167, Laboratory for Computer 
Science, M.LT., Cambridge, Mass., September, 
1976. 

[KOHL 81] Kohler, W. H. 
"A Survey of Techniques for Synchronization 
and Recovery in Decentralized Computer Sys
tems," Computing Surveys, 13, 2 (June 1981), 
pp. 149-184. 

[LAMP 80] Lampson, B. W., and Redell, D. D. 
"Experience' with Processes. and Monitors in 
Mesa," Communications of the ACM, 23, 2 
(February 1980), pp. 105-113. 

[LAZO 81] Lazowska, E., Levy, H., Almes, G., Fischer, M., 
Fowler, R., Vestal, S. 

() 

"The Architecture of the Eden System," Pro
ceedings of the Eighth Symposium on Operating 
Systems Principles, December 1981, pp. 148-
159. 

"File Access Performance of Diskless Work
stations", Technical Report 84-06-01, Depart
ment of Computer Science, University of Wash
ington, Seattle, WA, June 1984. 

[LEAC 82] Leach, P. J., Stumpf, B. L., Hamilton, J. A., 
Levine, P. H. 
"UIDs as Internal names in a Distributed File 
System," Proceedings of the 1st Symposium on 
Principles of Distributed Comp~ting, . Ottawa, 
Canada, Aug. 1982. 

[LEAC 83] Leach, P. J., Levine, P. H., Douros, B. P., 
Hamilton, J. A., Nelson, D. L., Stumpf, B. L. 
"The Architecture of an Integrated Local Net
work," IEEE Journal on Selected Areas in Com
munication, SAC-I, 5 (November 1983), pp. 
842-857. 

[LISK 79] Liskov, B. H. 
"Primitives for Distributed Computing," Pro
ceedings of the Seventh Symposium on Operat
ing Systems Principles, December 1979, pp. 33-
42. 

[MCKU 84] McKusick, M. K., Joy, W. N., Leffler, S. J., 
Fabry, R.S. 
.. A Fast File System for UNIX," ACM Transac
tions on Computer Systems, 2, 3 (August 1984), 
pp. 181-197. 

[NEED 79] Needham, R. M. 
"Systems Aspects of the Cambridge Ring," Pro
ceedings of the Seventh Symposium on Operat
ing Systems Principles; December 1979, pp. 82-
85. 

[NELS 81] Nelson, D. L. 
"Role of Local Network in the Apollo Computer 
System," Newsletter of IEEE Tech. Comm. on 
Distributed Processing, 1, 2 (December 1981), 
pp. 10-13. 

[NELS 83] Nelson, D. L. 
"Distributed Processing in the Apollo DOMAIN," 
The CAD Revolution, Second Chautauqua on 
Productivity in Engineering and Design, (spon
sored by Schaeffer Analysis, Inc., Mont Vernon, 
New Hampshire). Kiawah Island, South Car-, 
ollna,November 1983, pp 45-51. 

[NELS 84] Nelson, D. L., Leach,P. J. 

15 

"The Architecture and Applications of the Apollo 
DOMAIN," IEEE Computer Graphics and Ap
plications, 4, 2 (April 1984), pp. 58-66. 



o 

o 

[ORGA 72] Organlck, E. I. 
The Muitics System: An Examination of 
Its Structure M.I.T. Press, 1972. 

[POPE 81] Popek, G., Walker, B., Chow, J., Edwards, D., 
Kline, C., Rudisin, G., Thiel, G. 
"LOCUS: A Network Transparent, High Relia
bility Distributed System," Proceedings of the 
Eighth Symposium on Operating Systems Prin
ciples, December 1981, pp. 169-177. 

[REDE 80] Redell, D. D., Dalal, Y. K., Horsley, T. R., 
Lauer, H. C., Lynch, W. C., McJones, P. R~, 
Murray, H. G., Purcell, S. C. 
"Pilot: an Operating System for a Personal 
Computer," Oommunications of the AOi\f, 23, 
2 (February 1980), pp. 81-91. 

[RITC74] Ritchie, D. M., Thompson, K. 
"The UNIX time-sharing system," Communica
tions oftheAOi\f,17, 7 (July 1974), pp. 365-375. 

[SALT 79] Saltzer, J.H., Pogran, K.T. 
"A Star-Shaped Ring Network with High Main
tainability," Proceedings of the Local Area Oom
munications Network Symposium, :Mitre Corp, 

. May 1979, pp. 179--190. 

[SALT 80] Saltzer, J. H., Reed, D. P., Clark, D. D. 
"End-to-End Arguments in System De~ign," 

Notes from IEEE Workshop on Fundamental Is
sues in Distributed Systems, Pala Mesa, Ca., De
cember 15-17,1980. 

[SALT 81] Saltzer, J. H., Clark, D. D., Pogran, K. T. 
"Why a Ring," Proceeding Seventh Data Oom
munications Symposium, October 27-29, 1981, 
pp. 211-217. 

[SPEC 82] Spector, A. Z. 
"Performing Remote Operations Efficiently On a 
Local Network," Communications of the ACA:f, 
25, 4 (April 1982), pp. 246-260. 

[STUR 80] Sturgis, H., Mitchell, J., Israel, J. 
"Issues in the Design and Use of a Distributed 
File Server," Operating Systems Review, 14, 3 
(July 1980), pp. 55-69. 

[SWIN 79] Swinehart, D., McDaniel, G., Boggs, D. 
"WFS: A Simple Shared File System for a Dis
tributed Environment," Proceedings of the Sev
enth Symposium on Operating Systems Princi
ples, December 1979, pp. 9-17. 

[THOM 78] Thompson, K. 
"UNIX Implementation," Bell System Technical 

o 

Journal, 57, 6 (July-August 1978), pp. 1931-
1946. 

[WILK 79] Wilkes, M. V., and Wheeler, D. J. 

16 

"The Cambridge Digital Communication Ring," 
Proceedings of the Local Area Oommunications 
Network Symposium, May, 1979, pp. 47-61. 



o 

o 

o 

ANATOMY Of- A PAGE FAUlT 3/83 

This is the story of how the pages of an object are brought into memory. 
We will concentrate on objects mapped by segments into a process 
virtual address space. 

The tale begins with the mapping of the object (usually through an mst_$map call) 
somewhere in the address space. The unit of mapping is a segment, so 32 consecutive 
pages of the virtual address space are reserved by creating an entry in the mst. 

The mst is a two dimensional array whose first indice is a process id and whose 
second indice is an mst entry for an object in that process's address space. 

Each time an entry is added to the mst (representing the mapping of a segment of 
an object in some process's virtual address space), an entry must also be made for 
that object segment in the ast. The ast 
is a table used to keep track of 'active' objects: it relates pages of segments of 
objects to physical memory: it caches static and dynamic information about objects 
(e.g. where they live and whether they've been modified). There is one ast for the 
whole system (it is not per-process): its size determines how many objects can have 
pages resident at a time and is a function of physical memory size. 

Back to the mst. An mst entry (mste) contains information about a segment of a 
mapped object (e.g. the segment number, access rights, its storage location) and 
it contains a page map (pmap), a table with 32 entries. Each entry in the pmap is 
used to describe the status of one page in the segment. A page may be: 

wired 
resident 
in_trans 

not available for page stealing 
in memory 
in some sort of transition state, so hands off 

Each pmap entry also contains the physical page number for the page or its disk 
block address if it is not resident. 

Mapping an object does NOT cause any of its pages to be brought into memory. 
Instead, the first reference to a.page within the object causes a page fault to 
occur. (PAGE FAUlT: the result of trying to reference a virtual address that 
is not currently mapped to a physical address).· Briefly, the page fault brings 
you into code which determines that this is indeed a fault 
on a non-resident page and calls mst_$touch. Hst_$touch does some checking to 
be sure the page exists (or can be created (object is writable» and eventually 
determines that it should call ast_$touch. If the page does NOT have to be 
created, mst_$touch includes in its request to ast_$touch a count of the number 
of consecutive pages within the segment it really would like to have resident 
<beginning with the referenced page). This is the 'touch-ahead' count for the 
object: it is settable from user space (mst_$set_touch_ahead_cnt> and is used 
to get better paging performance. 

Ast_$touch does a little checking of its own an~ then calls pmap_$touch, whose 
job it is (finally) to get the page(s) into memory. 



o 

o 

0, 

Pmap_$touch determines how many of the pages requested realty can be touched by 
looking at the page map in the ast for this segment. It will only try to touch 
consecutive pages, starting at the first page request~d and stopping at the point 
that: 

1. 
2. 
3. 

or 4. 

the count would cause a segment boundary to be crossed 
a page is found in transition (remember hands off?) 
a page is found already resident in memory 
a page is found that has not yet been created 

Pmap_$touch puts the pages it is going to read in transition (in the pmap) and then 
allocates enough physical memory to hold the pages (a local subroutine 'alloc' 
calls mmap_$alloc - but the mmap is another story for another time). Pmap_$touch 
also determines if the object is local or remote and calls either disk_$read_ahead 
or network_$read_aheadto trigger the i/o. If there are any errors in the i/o, one 
or more of the pages requested wil' be released from transition. Pmap_$touch then 
installs each successfully-read page in the mmap (by calling mmap_$install) and, in 1 
pmap, marks each page as resident and sets its ppn to the physical page number. It 
then returns the count of pages touched with each page still marked in transition. 

Seeing that the pmap touch was successful, ast_$touch returns (to mst_$touch) which 
installs all the touched pages in the mmu (mmu_$install), clears the in-transition 
bit for the pages and returns to the fim code which resumes the faulting process, 
having successfully resolved the page fault. 

Somewhat more than this happens of course if the original page cannot be read in, 
or if there is a concurrency violation in pages received from the network or if a 
page needs to be created, etc. 

A few more words should be said about the locking involved in all this. Most of 
this work is done under the page resource lock, 'pag_$lock', which must be held 
whenever a change is to be made to the state of a page (as reflected in the 
information in the pmap). However, there is another rule that says the page 
lock cannot be held during i/o (so someone else can get work done while you wait 
for the i/o). To prevent a page from being stolen or modified by someone else 
when you have to give up the page lock, the in-transition bit in the pmap must 
be set. However, this in itself isn't enough. The mmap (remember?) is a table 
that describes the state of physical memory. It contains one entry for each 
physical page. This sti I I isn't the t"ime for the mmap story, but suffice it to 
say that there is some code that doesn't know abouf the pmap and the in-transition 
bit, but only knows about the mmap and the avail bit. Any page in the mmap marked 

. 'avail' is eligible to betaken for use. (Available does not mean 'not used', it 
'means 'may be stolen for another use'.) So, to keep a page from being tampered 
with when you can't keep the page lock, the in-transition bit in the pmap MUST 
be set AND the avail bit in the mmap MUST NOT be set (call mmap_$unavail>. 



o 
DISK iERMINOLOOY gms 07/16/84 

Further infonnation (and pictures) for most disk data structures and 
layouts can be found in the section on the File System in the Engineering 
Handbook. Pascal type definitions are mostly in ins/vol.ins.pas, with 
a fewer lower level ones in ins/base. ins. ~s. Exceptions are noted. 
Values for particular disk parameters can be fomd mder PeriI;ileral I/O 
in the handbook. 

AL'lERNATE LV lABEL 

When INVCL initializes a logical vollllle, it allocates a block (typically 
the last block on the logical vol \JOe) to hold a oopyof the logical voltme 
label. The PlYsical voltme label contains an array (alt_lvJist) of the 
!ilysical disk addresses of the alternate Iv labels for all logical voltmes 
on the disk. 

If the Iv label of a voltme gets destroyed, it can be regenerated from the 
alternate Iv label with the following steps: 

1. Find the daddr of the alternate Iv label by reading the PI label and 
finding the alt_lv_list. If the PI label has also been destroyed, use 
rwvol to read the blocks at the end of the logical volume (assume that 
the volune is the maxirnun number of blocks) and look for a block whose 
block header uid is 201.0. , 

2. Use rwvol to read the al terna te Iv label. 

o 3." Use IB (or MD, if running offline) to patch p:lge number (3rd long word) 
and daddr (8th long word) as follows: 

page: ??? -> 0 
daddr: ?11 -> 1 

4. Use IWVol to write out the block to daddr 1. 

ASSIGNED DISK 

A physical or logical voltme whose "ownership" has been assigned to a user 
process using either the disJL$P\1_assign or disJL$lv_assign call. An assigned 
disk is not used for -file system (virtual nanory) operations: all i/o to the 
disk is p:!rfonned by user programs using the disJL$as_read and disJL$as_write 
calls. R:1.I'E: even though the disk is lI1der the oontrol of a user program, the 
~ysical block fonnat - 32 byte header and 1024 bytes of data - is tnchanged. 
See also Assigned Disk Routines: oontrast with ltbmted Disk. 

ASSIGNED DISK ROOTINES 

o 

There are seven routines that are availablf? to handle assigned disks." 
These routines and their ftmctions are described below (OOling sequences 
are cEfined in /us/ins/disk.ins.pas. Argument types and meanings are as 
described herein.) . 

disJL$pv_assign - assigns oontrol of a physicalvoll1lle to the caller and 
returns the volx of the volune to use in subsequent assiqned calls. 
The caller must supply controller type, oontroller number, and drive 
mit number. If known, the size of the Ii'lysical voltme, blocks/track, 



o 

o 

and tracks/cylinder can be supplied.' If they are lIlknown, the size of 
the tnysical vollJlle (b~r~ol) should be specified as 0, and the 
appropriate pn-arneters will be returned l¥ the low-level driver. (If 
the low-level driver doesn't know the disk parameters, you KJS!' supply 
them.) . 

dislL$lv_assign - assigns oontrol of a logical volune and returns the 
volx of the voltllle to use in subsquent calls. '!he volx of the Ptysical 
volume, which must have been previously OOlD1ted or assigned, must be 
supplied l¥ the caller. The address of the alternate Iv label is also 
returned. (This is because the online SALVOL need9 the address of the 
alternate Iv label, but may. not be able to read it from the Iilysical 
voltltle label if the volmte has been mounted.) 

dislL$as_read - reads a block from the assigned volume and x:eturns the 
block header and d3.ta. '!he d3.ta buffer must be p:.lge aligned.'1be read 
is mder the oontrol of the assigned options as described lIlder 
dislL$as_options. Note: Aegis assmtes that the caller d::>esn't knCM 
what the block header should oontain, so an assigned read will never 
generate a block header error. 

dislL$as_write - writes a block to the assigned voltme. '!he data buffer 
must be page aligned. The write is mder the oontrol of the assigned 
options as cEscribed under dislL$as_options. 

dislL$format - the specified track on the assigned voltme is formatted. 

dislL$as_opl:ions - this alloos the override of some of the d:faul t behavior 
of the low-level disk routines. Options are: . . 

write_protect - logically write-protects the assigned voltme. 
no_crc_retry - if a data check occurs during a read, it is not 

retried (used l¥ EBS). 
use_caller_blkhdr - tells Aegis not to touch the block header, in 

particular nOt to fill in the dtm, p:ld, chksum,. or daddr fields 
(used by EBS). 

dislL$unassign - relinquishes oontrol of an assigned voltme. Any assigned 
options that have been specified are reset. 

BAIlSroT ClLINDER 
J 

A cylinder, typically one of the last two on 'a !ilysical disk (see Engineering 
Handbook), used l¥ INVOL to hold the !ilysical oodspjt list. The Plysical badsp:>t 
list is written out to each head on the bad9!;X)t cylinder in an attempt to 
overcome any badstx'ts that might appear on the tadspotcylinder. 

sru:sroT LISTS 

o 

ihere. are two typ:!s of oodsJ;X>t lists - physical and logiru. ~ !ilysical 
oods!X>t list is ronstructed l¥ INVOL or a disk diagnostic and written out to 
the bads!;X)t cylinder (which see). There is also a logical l:ads~t list oontained 
in the LV label of each logical volmte on the disk. '!his list describes only 
those tadsJ;X>ts which lie within the confines of the logical volune. 

A set of subroutines that oontain all knooledge about the format of the 
Plysical and logical .oodspot lists. Programs needing to reference the tads-r;nt 
lists (IWOL, .SALVOL, . EBS) all call the bads!X>t manager to read, write, and 
update the tadsIX>t lists. 



----------------------------------------------------

A media defect on a disk that renders one or IOOre blocks musable for data 
,storage. M:>stdisks we use oome fran the manufacturer with a list of badsp:>ts. 

O (Sane storage module p:!cks are guaranteed defect-free 1 floppies 00 not have 
badsr;x>t lists.) 

When a disk is initialized, INVOL is used to translate the hard-copy badsr;x>t 
list for ~nnanent storage on the disk (see Badspot c.ylinder). In some cases, 
the bads!X>t infonnation is stored on the disk t¥ the manufacturer, and the 
awropriate disk diagnostic can be used to autanatica1ly read this infonnation 
and oonstruct the {ilysica1 badspot list on the disk. 

As p=lrt of disk initialization, INVOL reads the !hysical badsr;x>t list and 
removes any bad blocks from the Block Availability Table (which see). Note 
in particular that Aegis knows nothing about tBdspots; they just a~ar to 

- be pre-allocated blocks on the disk. 

BAT 

See Block Availability Table. 

BLOCK 

See Disk Block. 

BLOCK AVAILM3ILITY TABLE (BAT) 

o 
A bitmap describing the current allocation of blocks in a logical volune. 
The location and size of the BAT is described ~ the BAT header, which lives 
in the logical voltJne label. 

Each bit in the BAT describes the state of one disk block - 0 if the block 
is free, 1 if the block is in use (or is a badsJ;X>t). '!be BAT header oontains 
the disk address of the block represented I:¥ the first bit in the map. 

The BAT is initialized I:¥ INVOL during initialization of a logical volune. 
When S/lLVOL is run, the BAT is reoonstructed using the -current state of the 
V'lOC and the badsp:>t list in the logical vol~e label. 

BLOCK HEAlER 

See Disk Block Header. 

A disk parameter giving the total number of blocks on a physical volume 
that are available for the &finition of logical volunes. 'lYPically, 
blocks~r_vol will equal blocks..,l?er_Plol (which see) minus the number of 
blocks in the badsp:>t and diagnostic cylinders. On s:mte disks, blocksJ)er_vol 
is artificially reduced further so that the primary and seoondary sourced 
disks will be of oomparable size. 

O A disk parameter giving the total number of usable blocks on a physical 
disk volume (contrast with Blocks_Fer_Vol) • 



o 

----_._-_._._--_._----_ .. _-----_._-----

See SYSBOOl' • . 

An offline (SAU) or online (100M) conrnand used to set the calendar 
clock on a node. '!he calendar utility will also update the last valid 
time in the logical volll1le label. 

WrE: calendar should be rm on a mde before using the offline IN\TOL 
to initialize a disk on the node. If this is not done, INVCL will generate 
invalid UIDs for the disk. (INVOL will check for this in the future.) 

CHECl<SUM --CDMMAND 

o 

CS 

o 

A oommand (See lusx/com) used to enable, disable, and display the 
checksum status of the system. '!he format of the amnand is: 

CS [-e I -a] [winchester f flopp.{ I storage_module I network] 

"-en enables dlecksurmning for the sy;scified device1 "-a" disables 
checksurmning. Only one device can have dlecksurmning enabled at a time. 
If neither -e or, -d is specified, the dleckstm status of the system is 
displayed. 

When dlecksumming is enabled for a cEvice, Aegis ~rforms the follCMing 
actions whenever a block is read or written: 

1. Before writing a block, a software dleckstm is calculated and 
stored in the block header. The l6-bit checksum is a simple sum 
of the 512 words of data in the block. 

2. After any block is written to the cEvice, it isinmediately _reread 
. and checked as in #3 • 

. 3. When any block is read fran the device, if the dleckslJll in the 
header is non-zero (meaning that it was previously written with 
checksurmning enabled), a new checkstm is calculated and oompared 
with the checksum in the header. -

When dlecksllmlling is enabled, Aegis will crash on any of the follCMing 
condi tions: . 

reacLafter_write (BOOlC) FollCMing a write, the ,subsequent read 
incurred an uncorrectable disk error or 
the block had an inoorrect block header. 

reacLchksum (800lF) A read (not a reacLafter_write) failed 
the checksum test. 

reacLafter_write_chkstm (80020) A reacLafter_write failed the dlecksum test. 

See Checksum Command. 

An offline (SAU) and online (in /INSl'ALL) utility used to dlange every 
urn on a J;i1ysical vollJlle. '!he need for this procedure arises when a disk 
is initialized on a node whose node m is different fran the ID of the 
node to which the disk is eventually to be attached. (For example, manufacturing 



----------------------------------------

initializes, loads, and stockpiles m300 disks without knowing the eventual 
qestinations of the disks.) When Aegis is rmming, it expects the node m 
part of ums for local objects to match the m of the node on which it is 
running. If these IDs differ, Aegis I2rfonnance suffers because the algorithm 
for finding object in the network generates many needless network transmits o (trying to find the mde that originally initialized the disk). 

'lb prevent this, once a disk reaches its eventual Inne, aruvOL is run to 
"rename" every object on the disk. ~s involves reoonstructing the V'lOC 
and cilanging the block header of every block in tEe. 

WARNING: CRNCL should be nm only w~n you have a high degree of confidence 
in the disk hardware and the file_ system on the disk in known to be in 
a oonsistent state. If there are user files on the disk (i.e., files not 
replaceable fran master release media), they should be tacked up prior to 
rmming aruvoL. 

See Controller Number. 

CDN'mOLLER NUMBER (muM) 

A number defining which oontroller of a given oontroller ~- you want 
to talk about. A oontroller nurnter can be 0 (first oontroller) or I 
(second oontroller). CUrrently, Aegis and the standalone utilities 
stIpIX>rt only one oontroller numl:er - o. 

O 
An ennllIlerated ~ mfining the names of the various oontrollers that 

- st.IpIX>rt file systern activity. Possible values are 

WIN<BESTER (all flavors of winchester disks) 
ELQPFY 
RING_XMIT 
RIOO_RGV 
SlORlGE_ltDOOLE 
crAPE 

(use this, not rinq..r~) 

(includes Intel controller and file server disks) 
(cartridge talE) 

A command for oopyingSYSBOOI' onto a disk (and the CNLY w8!:l SYSBOOI' 
can be placed ona disk - see also SYSBOOI'). Qxmand format is 

CP.BOOT <souroe-dir> <target-dir> 

Note that the source and target are p:tthnames of the directories 
containing SYSB00l'1 do not SIEcify SYSBOOl' as J;Brt of the J;Bthnarnes. -

CI'YPE 

See Controller TYPe. 

CYLINDER 

OA vertical Slice_ through a physical disk. A ~linder oontains one or 
more heads or tracks. 



.. --_.-----_ .. __ ._._._-----------------

See Disk Address. 

o See Device Controller Table. 

IEVICE <DN'IROLLER TABLE (ocr) 

(Aegis internal) A table internal to Aegis that describes the oontrollers, 
ring and disk in particular, that are or may be part of the hardware 
oonfiguration of the system. Each DC!' entry (DCrE) contains the oontroller 
nanber and ty};e, and a set of p:traneters that are oorranon to all ex>ntrollers 
in the'table (interrupt vector address, ianap slots, read/write routine 
addresses, etc.). '!be DCl'E ty};e definition is in ins/io.ins.p:tS1 actual 
DCrEs are defined in ker/io_tbls.asn. 

DIAGIDSTIC crLINIER 

A cylinder .- typically the last or next to the last on a IilYsical disk 
(see Engineering Handbook) .- reserved for diagnostic o~rations by disk 
diagnostics (offline diagnostics, oontroller built-in diagnostics, the 
online TESTVOL-program). 

DISK AIDRESS (DADDR) 

o 

The address of a block on disk, sane times represented as cylinder/head/sector 
nanbers, but more typically represented as a singl~ DADDR - the sequence 
nanber of the block in a IitYsical or logical volllIle (starting fran 0). . 

DAIDR = (cylinder*tracks/cylinder + track) * sectors/track + sector 

("track" is the same as "head".) 

Disk addresses can be Iilysical or logical. A Plysical daddr is the absolute 
address of a block relative to the start of the IXlysical volllIle regardless 
of which (if any) logical volune it may be in. A logical daddr is the address 
of a block relative to the start of the logical volllne to which it belongs. 
So, for example, the IitYsical daddr of the first logical volllIle label on a 
disk is 11 its logical daddr is O. (In ~neral the logical daddrsof all 
disk addresses on the first logical volune will be one less than their 
J;ilysical disk addresses.) 

ALL disk addresses a~aring in a logical volllIle (except those in block 
headers) are logical disk addresses. 

DISK BLOCK 

A sector or reoord on a disk. A disk block consists of a 32-byte software 
header (see Disk Block Header) and 1024 bytes of data, so the Iilysical block 
size on disk is 1056 bytes. (Floppy disk blOcks have rio headers, so the 
IXlysical block size is 1024 bytes.) For disk block addressing, see Disk Address. 

DISK BLOCl< HEADER (BLILHIJt...T) 

The first 32-bytes of data in any Plysical disk block (except for floppies, 
which have no headers). '!be block header is used ~ Aegis to verify· that the o oorrect block was read and ~ SALVor, to verify the consistency of the file 
system. The block header oontains the following. information: 



o 

OlD The UlD of the file to which the block 0010ngs; 
PAGE ire p:lge nt.Jnber of the block within the file (the first 

block is p:lge 0, the seoond is Pige 1, etc.) ; 
The um and Pige number are sufficient to mique1y 
identify any block in \Se. 

Dl'M The time (as a cl.ocldLt) when the block was last written 
to the disk. 

~ Identifies the block as data (0) or level I, 2, 3 filenap 
SYSTYP Identifies the ~ of object (file, dir, sysdir). 
CHKSUM A software calculated checkslJll for the data in the block. 

(This is used only if read-after-wri te checksunrning is 
turned on - see Read-After-Write Checksllll.) 

PAD Unused (O·s). 
IWDR The };hysical disk address of the block. 

DISK PARAME'lERS 

,A set of ntmlbers that describe the size and ·sha~" of a tilYsical 
disk voltJlle. 'lbese nt.Jnbers are stored in the t;:hysical voltJlle label 
(which see) of a disk so that Aegis and the standalone utilities can 
detennine the size of a disk without depending on self-identifying 
hardware on the disk drive. '!be Piraneters describing a disk are 

DRIVE TYPE 
BLOCI<S_I£ILWCL 
BLOCI<S_I£IL'mK 
'lRACKS_I£ILCYL 
FHYS_SEClD!LSIZE 
HlYS_SEClO!LSl'ART 
SECIU!LDELTA 

OISK VOLUME TABLE (DVT) 

(Aegis internal) A table setup and maintained I¥ Aegis to describe the 
state of all JOOunted and assigned disks on the system. Fach IJJT entry 
(DV'lE) contains the state of the voltJlle (beingJOOunted, IOOunted, assigned), 
the disk parameters describing the volune, the identity of the current 
CMner, the um of the voltJlle, and a p:>inter to the DC1'E for the oontroller 
of the drive on which the volllne resides. For lx>th mounted and assigned 
voltIlles, disks are identified I¥ Aegis I¥ a VoltJlle Index (VOLX), which 
is the index of the Dl'lE for the disk in the rNT. '!he layout of a DV'TE is 
in ins/disk. pvt. pas; the actual IJJT lives in "nuc/dislLwired.p:ls. 

DISILERR 

An online utility (in /SYSTFST/SSRJll'IL) that prints out information 
saved I¥ Aegis on most recent unreoovered disk error. The information 
includes the disk volx, the time, disk address, and Plysical page nunter 
into which the block was read, the error status, and the requested and 
actual block headers. 

IMIVOL (DISIDUNT_ VCLUME) 

An online oornmand to disnount a mounted volume. 

DRIVE TYPE (orYPE) 

o A nunber, which can be p:lssed in to dislL$pv;.....assign but is more typically 
set and returned ~ the lower oontroller-specific driver, that identifies 
a particular drive ~ for a controller that can support more than one 



--------_._--_ .. _ .. _-_._.----- .. 

kind of drive (e.g., 30MB and 70le winchesters). 
(Currently, the only disk driver that takes ~ as an IN argument is 
the flopp'{ driver, for which the drive ~ ism;ed to differentiate between 
single and Cbuble density floppies - coming soon from pjl.) 

CTYPE 
see Drive~. 

See Disk Vollllle Table. 

EXTENT 

A mntiguous set of blocks in the V'lOC. Each V'lOC extent is described 
by an entry in the V'lOC map (which see). 

FBS (FIND_BArSID'lS) 

An offline (SAD) utility that can be used to construct a mcsp:>t list 
for a Iilysical voltme if the original tadsp:>t list has been lost. FBS 
writes and reads several worst-case data patterns to every block on the 
disk for a user-sp:!cified number of passes. ~e original oontents of the 
disk are, of oourse, completely oosed. 

FILE MAP 

o 
A list of (logical) disk addresses that define the locations of the blocks 
of an object in a logical vollIne. There are four levels of file maps, 
referred to as Level 0, 1, 2, and 3. A Level 0 file map p:>ints to the 
first 32 blocks (pages 0-31) of an object and lives in the V'lOC entry for 
the object. A Level 1 file map is 256 entries long and IX>ints to pages 
33-287 of the object. A Level 2 file map contains up to 256 pointers to 
further Level 1 file maps for the object. A Level 3 file map contains up 
to 256 pointers to Level 2 file maps. ~e first Level 1, 2, and 3 file maps 
are p:>inted to by the V'lOC entry. ~e maximllll size of an object is thus 

(32 + 256 + 256**2 + 256**3) * 1024 = 17,247,300,000 b¥tes 
) 

Level 1, 2, and 3 file maps are each 1024 b¥t~s long and are allocated 
as required when a file grCMS. ihe UlD of the block header for ,file map 
blocks is that of theaming -object: the block ~ will identify the 
level of the filenap. 

HEAD 

o 

One of the n thingarnawidgets that sit on disk surfaces and cD reads 
and writes. Number of heads = number of tracks/cylinder. 

~ P'lYsical layout of logically oontiguous pages of an object on disk. 
Since Aegis (and/or the disk oontrol1er) typically isn't fast enough to 
'read oonsecutive blocks from the disk without losing a revolution of the 
disk, Aegis, when allocating disk . blocks to an object, skips one or more 
disk blocks between consecutive pages of the object. So, for example, 
pages 6, 7, 8, 9 of a file might be given disk addresses 100, 103, 106, 
109, lOC (asslllling an interleave factor or Sector Delta of 3). The optimal 
interleave factor is a function of the SJ.=eed of revolution of the disk, 



the amount of work required by the disk driver, and the J;8ttern of reference 
,by the program using the file. Interleave factors range fran 2 for a 
flop!¥ disk up to 9 or so for a storage module on an Intel rontroller. 

INVOL (INITIALIZE_VOLUME) 

o An offline (SllIJ) or online (froM) utility for initializing disk vollllles. 
INVOL has several options that allOVI initializing logical vollJlles, entering 
badsIXlt information, wilding an os p3ging file, and displaying the status 
of the vollJlle. Complete instructions on usage are in some manual. 

LOOIC'AL DruDR 

'!he address of a disk block relative to the start of the' logical vollJlle 
to which. it belongs. All disk addresses (excluding those in block headers) 
on a logical voltlTle are relative to the start of the logical voltlTle. . 
See also Disk Address. 

i 
ImlCAL VOLUME 

A self-contained and independently addressable entity on a Ptysical volune. 
A physical disk volune may rontain one or more logical voltlTles,each of 
which may te mounted (for file system operations) or assigned (for assigned 
i/o). I£>gical vol lines are numbered starting at 1. 

Logical voltlIles are created using INVOL. '!he first block of a logical 
volllne is the Logical Volune Label, which oontains the name and UID of the 
logical voltlIle and information about the other structures on th~ logical. 
volune • . . . 

C~IC'AL VOLUME LABEL (LV lABEL) 

The first block in a logical vollll1e (logical daddr 0), holding information 
about the size and state of the logical voltlTle, headers for other data 
structures on the logical volllIle (the BAT and V'IOC), and p'inters (vroacs) 
to certain standard objects on the logical volune (network root - / / , 
root directory - /, os p3ging file, SYSBOOl'). 
'!he Iv label also oontains the date-times of last mount, disnount, and 
salvage (see SALVOL) • . 
See also Alternate Logical Volune Label • . . . 

LV lABEL 

See Logical VollJlle Label. 

KXJN'IED DISK 

A Plysical or logical voltlTle that is available for file system (virtual 
menory) operations. A volune is mounted using the ftnVOL oommand (an 
exception being the mot voltlIle, which is autanatically IOOunted by Aegis 
at system startup). Once mounted, all access to the voltlIle is oontrolled 
by Aegis via file system and virtual nenory paging operations. 
See also Assigned Disk. 

GflVOL (KXJNI'_ VOLUME) , 

The oomrnand used to moln'lt a logical volllTle and catalog the volune 
in the file system. 



• ~ORK ROO!' (/ /) 

A directory, / /, that is initialized 1¥ INVOL as part of any logical 
volune. A lX'inter (VlOC{) to the network root directory is stored 1¥ o IN\1OL in the logical volune l~l. .' 

OS PAGING FILE 

Anlllcataloged permanent object that must appear on any logical volane 
that is to m used as the Ixx>t device for Aegis. '!he os paging file is 
the backing store for those parts of Aegis that are eligible to be p:lged 
out to disk. '!he p:lging file is wilt using INVOL, and a IXlinter (VlOC{) 
to the p:lging file is stored in the logical volane label. 

mYSlCAL DruDR 

The absolute physical address of a disk ,block relative to the start 
of the !ilysical volune: see Disk Address. 

HiYSlCAL VCLUME 

A disk, oonsisting of a Ihysical volllne label (first block on the disk, 
daddr 0), one or more logical volunes, a tadslX't cylinder, and a diagnostic 
cylinder. A physical volune can be mounted or assigned. See also 
Logi cal Vol line. 

HlYSlCAL VOLUME LABEL (P\7 IABEL) 

o 
The first block - Plysica1 daddr 0 - of a Plysical disk voltJTle. ibe 
pv label oontains p:lrameters describing the physical disk (see Disk 
Parameters) and lists containing the addresses (physical daddrs) of 
each logical volune and its associated alternate Iv label. 

Since the PI label is the first record on a disk~ it can be read 
without first knowing the exact p:lrameters of the disk, which are 
normally required to convert a d:tddr into cyl-head-sector for the 
low-level disk driver. Aegis and the standalone utilities make use 
of this fact· when mounting (or assigning) a disk on a drive whose 
parameters are unknown. 

PV lABEL 

See Physical VolllOe Label. 

READ-AFTER-WRITE OlE(l{S[JMMING 

See Olecksum CDmmand. 

ROO!' DIREcroRY (I) 

A directory, I, that is initialized by INVCL aSt;:art of any logical 
volune. A IX>inter (V'IO<X) to the root directory is stored l:¥ INVOL 
in the logical vollJne label. '!be root directory is the top level of 
the directory structure for the file system on the logical volune. 

O~OL (READ/WRITE:-.VOLUME) . 

A standalone (SAU) or online (/SYSTEST/SS~"J1.r.rL) utility for reading . 
and writing blocks fran a IDysical disk. (To use the online H-NOL, 

.. _ .. _. __ . __ .. _ ..... ---.-.-.-----,-----~ -.. _._._----. __ ._._------



. , the J;i1ysical disk cannot be mounted.) HNCL is a useful tool for 
examining and repairing parts of the file systen. It can also be 
Used to help diagnose failing oontrollers or drives. 

SALVOL (SALVN3E_VOLUME) 
(-'" 
"-../ A standalone (SAU) or online (/OOM) utility for salvaging a disk 

o 

after a &ystem crash or other occurrence that may have oorrupted 
the file &ystem on the disk. Since many changes to files, the V'lOC, 
and other parts of the file systen are not inmediately reflected 

. on the disk, a crash nay leave the disk in an inoonsistent state. 
For example, a file may have grown (had new blocks allocated to it), 
but the Block Availability Table· (BAT) may not have been updated 
on the disk. 

A logical volune is identified as needing salvage I:¥ examining the 
last-IOOunted-time, last-disnounted-time, and last-sal vage-time, 
three fiel& in the logical volune label. If the last mount predated 
the last disnount, and the last salvage was not ~rformed after 
the last mount, then the volune was not oorrect1y dismounted and 
has not yet teen salvaged. 

'!be dlief operation {Erformed by SALVOL is to scan the entire V'lOC 
on a logical vol tme and reoonstruct the BAT so as to be oonsistent 
with the oontents of the V'lOC. In the process, SALVOL will detect 
and attempt: to fix many other file system errors, for example, 
multiply allocated blocks (blocks that claim to belong to two or 
more objects), bad chain p:>inters ,in vmc blocks, and incorrect !\CL 
reference oounts. 

When booting a llOce in normal IOOde, SYSBOOr checks to see if the 
boot volune needs salvaging. If it does, SALVOL is autanatically 
run before bringing up Aegis. 

SEClOR 

Same as Disk Block (which see). 

SEcroR DELTA 

See Interleaving. 

S!'ANOO,CNE UTILITIES (SAlls) . 

A set of programs that live in the SAOn ell rectory and {Erform 
various disk rnaintainence and diagnostic functions. The standalone 
utilities are ~, aru\TOL, INVCL, EBS, HWOL, and SALVCL 
(all of which see). ltt>st of these utilities have online versions 
that can be run tJ1cer Aegis on an assigned disk (a disk which is 
not the boot vol1.lne and has not been mounted for file system use) ~ 
Online versions of CALENDAR, INVOL, and SALVOL live in /ooM; the 
online CHtNOL lives in /INSTALL; the online HWOL lives in 
/SYSTEST/SSR_tJrIL. 

SYSBCXJr 

Cl A program that. lives in (physical) disk blocks 02-0B on any Iilysical 
/ volune that is to be used as a boot cEvice. SYSBOOl' is read from 

the selected root device by MD whenever an EX, EY, ID, or LD cormnand 
is issued. SYSBOOl' knows just enough about the file system to be able 



o 

to find the SAUn directory and read in the requested file. SYSBOOl' 
can also reoognize a volune in need of salvaging and, when asked to 

·load Aegis in normal node, will first execute SALVOL. 

Records 02-0B are also the first 10 data blocks of the first logical 
vollJlle on the disk. '1bese blocks are set aside (narked in use in the 
BAT) by INVOL when the first logicalvollJlle is initialized. INVOL 
also catalogs SYSBOOl' in the root directory of the first logical volune, 
but OOES NCY.l' copy SYSBOOl' onto the logical volune. 'Ib 00 this, the 
cmoor oommand (which see) must be used. Also, since SYSBOOl' occupies 
a particular IilYsical !Dsi tion on the disk, it cmHYr be replaced ~ 
normal file system operations (e.g., CPF). . 

'lES'lVOL (TFSl'_ vtLUME) 

An online disk diagnostic that lives in /S'lSTESr • ... 

A disk ~rameter defining the. number of tracks (heads) per cylinder 
on a physical disk. 

UID 

o 

Unique identifier. A 64-bit number that is the unique "narne" of any 
object (file, Iitysical or logical valune, acl, directory, etc.) that 
lives in or is part of the A!X>llo ,file systen. Certain objects, since 
their ums must be known a priori, are given "canned" UIDs. In iBrticular 
the following p:irts of a disk have canned UIDs: 

Physical volune label 
Logical volune label 
vroc blocks 
BAT blocks 

200.0 
201.0 
202.0 
203.0 

UNIT 

'!he nllTll:er of a particular disk drive oontrolled by a given disk 
controller. Unit nllTll:ers range from 0 to 3, 0 being the number of 
the first (or only) drive on a oontroller. 

VOLUME INDEX (VOLX) 

The nllTll:er returned ~ the dislL$P'l_assign and dislL$l v_assign calls 
that is used to identify the assigned vollJlle in subsequent calls for 
assigned i/o (read, write, format, etc.). (Internally, the VOLX is 
the index of the assigned volune in the Disk Volune Table, which see.) 

VOLUME TABLE OF CDN'.ImTS (VlOC) 

C) 

A table describing the current oontents of a logical volllIle. '!be V'lOC 
is an area allocated near the center of a logical volune t:¥ INVOL during 

- the initialization of a logical volune. '!be size of the V'IOC is a ftmction 
of the size of the logical volme and the average file size as ~cified 
by the user. 

The V'.IOC is allocated in from 1 -to 8 extents, each extent being a oontiguous 
set of blocks. Each extent is described t:¥ an entry in the V'IOC map, a 
table· in the V'.IOC header (which is in turn p:lrt of the Iv label). INVOL 



· . 
allocates the V'lOC in such a WB¥ as to minimize oonflicts with bacspots and 
thus keep the number of V'JDC extents to a minimtJtl. 

I .. 

Each block in the V'lOC contains uP to 5 VlOC entries (which see). Fach 
V'lOC entry contains information about an object stored on the disk. '!be 

o v.roc entry for a pirticular object is fOlmd I¥ hashing the um of the object 
(using a hash rnodul us stored in the vmc header) to obtain the index of the 

V'IOC block in whidl the V'lOC entry for the object is to be fOlmd. (This 
calculation produces the daddr p:>rtion of a V'IOC Index, which see.) 

If an object is being created, and its UID hashs to a V'lOC block that 
already oontains 5 entries, a V'IOC extension block (hash bucket) is allocated 
and dlained to the full V'lOC block. 

VOLX 

See Vol tJtle Index. 

V'lOC 

See Volune Table of Contents. 

V'lOC EN'.mY (VlOCE) 

o 

An entry in a V'IOC block describing the attributes and locatiori of an object 
on a logical vollJlle. A V'lOC entry contains the UID of the object, the 
date/times last used and modified, the Olrrent length and the ums of 
the ACL, TYPE, and oontaining directory for the object (the latter only if 
the object is cataloged). . 

A VIDe entry also oontains IX>inters to the first 32 blocks of the object 
and IX>inters to the Level 1, 2, and 3 file maps (if any) for the object. 

V'lOC INIEX (V'lOQLT) 

A pointer to the V'lOC entry for an object of the form DDIDDX, where DDDDD 
is the logical dadc1r of the V'IOC block for the V'lOC entry of the object 
and X is the index (0-4) of the ViOC entry in the block. 

For example, the p:>inter to root directory in the V'lOC header is a V'IOCX. 
If it has a value of 73400, then the V'lOC entry for "/" is the first entry 
in !ilysical disk block 734E, asslJIling the logical vollJne starts at daddr 1. 

V'1OC MAP 

An array in the V'IOC header (in the Iv label) describing the location 
and size of up to 8 VIDC extents. See V'lOC. 

See V'lOC Entry. 

vrocx 

See V'IOClndex. 

GTRITE PRarECrED 

The state of a mounted or assigned vollJlle that inhibits any writes 
to the volune. Of the disks sllpIX)rted by Aegis, only floppies and 

---"- .. -------~~-



--_ .. _--_. __ .. _._---------------_. 

some storage modules have hardware write protect mechanisns. When' a ' 
. . yolllne is write protected (by the -protect option of MlVOL or by 

, disJL$as_options), the protected state is reoorded by Aegis (in the 
IN'lE for the vollJlle) and prevents Aegis from attempting writes. 

o 

o 

o 

) 



\" 
f" 

o 

N\ A N'M; 8'-

o 
c=-". ----"-J 

o 

I 



I. 

o 

t ~ .. H't\dc w "'Oisr\t\.'1 F\A.'W\.tlt4'M.tW\.~ts . . o 

• S~ It\ e +1 r~ (.t\,\ Stt~"'''''"'t"J 
- Or~\"""'''1 OCol""f" .... -to ~ -\n",sc.t'ir. 

- c.."'"\.-lc rc.'-~ \'W\ ...... '''''p'''''' r"''' 
- Cv, .. o\i"j " p .... uu 

- 0f''''''-", l\W\ eA,t p .... 

o 



-------,---------, ----------------------

"D'~rl .. 1 M ........ ,,, ... ~ t~ f""~"'6tM c-.l\C'c( IS'II/tiM/''''. 
~..... YIl~S i", l,lp~" • .s • ~ ... ~. fI,.~.. to.»''"'' tf..c. 
pro~r .. W\ '" \-t ... .(..u. "'" ..... &1. ""'-I. D.u ",,f 

i"cJ"ie ~r"'f":'"' or dt'vi(& clrivfrJ. 

'P.cI : .. , • ~ \L. ~~c 0 ~ el.W\f' " b w":"" -.., & ft ""-e,.. 
,; .. u 0" "~"MU". O~"'eW\ jlA'''' 0.. .\~"C. ~iCii 
-t eJ'+ ~'\eo. 

Fr'AW\": ... -4-wo .t,,,,t'N:O""( f(.~t'"f .0( .. ,o.c( 

i"" w~ t-'1 r~~,4-'IJl\;"~ QY\t\ b~ 
M.d'Q.t,A 5ro.r~'" ~~~ rs,c~I'. 

W,,,dClw: • rtd,,,,,",\L\-.Y Yf~iCl~ 0' ~c. ~ret''''. 
co "" -\..~~. "'.) -. \) ... '" l\c. .. l... \t. • . t ~ ~ e ... &) , "" \».r-d. • ., 
.. ""cl C$"'+."'~ -.),,~'"'" c~..,) h_- ,........ ."- ... 
pa.L MIA.\4; ,tt wi,,~oClts .".. ... , f:foo)" .e).l'" ~. 

f~~t I A. sloa-b- W:~~W .~ ~ ,-~.).,.. W't\&~cJ. j) .. ,..u 
\£vc b."d.~"'J, ~~'" ~o\ ~ ... "''''t''''J. -("&1 ~d •• v~ 
j.,.,f tile ~ .... \\ ~,,,'.~s " +efll~J 0"," "t-tc,&t\) 
~ ~l. 



Q 

• ----_.-"" 
CA.,,"" b.4--Mr 

\\l\~ ~t\\~ 
sec\&.. ~f.1. \ he·r ,~ 
b14-c ~ \t ... , .. \.. 

leo f\-\. '1'\&. 1& 

""l': ''''- ",~ .. , 
"-,_~~~e 
~~.~f 

~\ f c., D f'. ~ {'t " 
htl.f., ;... "tA';» \ 

• I "flA.o\ pll.As l-,OLVt. ""~Jl ~"~Y\.' 1t- ;,...~~~t' .{ .h-c~ :~(, 
t\ \\ I i ""~ ~ It V'c .. , ~. h , .. r 

• tl..,1>. \. ~ H-t t" , " 0.. d. Y"(. ",J .•. y ".. n-~ 1 • ~ ~ V"W' t. V" 

"1'( '".tJt ( .. ~·;u. f ... c..t'\~ "-(c,\l' ~\-Pvc.."c I", c\-~(cr .. '..c 
~~\\\ ~~ th .. ,JC~ 1.\r-l1)o b",-Utr. 

) o 

} o 

o 



~-.-~.-------.-... -----:------------------

'l////o~//j~/u/P~~ bAl\"tr 
... r;a..c: ___ 

-_ ... -- -- -- - - -.- - - --- -r .... -- -f-r1 
tcp-t\t\f .. 

,,0 
.-_ •• - •• -- ........... « .......... . n'-'+1 

• ch~· ld~"f'''''1 Yt!)iD") 



-- .-_._._-_ ... - .......... _ ... ---.. _---_._------------- --

) o 

W\t-J'DtvJ w''''o,~ 

\ t\ClCf. .. ~_:~_""··_t_------~ 0'-

· ...... ·~1 ''''OJ( 

o 

o 

·~~u ______________ _ 



• ~.1 ~rr.,~ ~oe~ ... ~~.....,,, ",,~~I p ......... ~ 
f'Ay.se--C~" wiH. ",,, "Il, ... ',\c:'" 

• wlt.of.. 'bllll r"""~ t-e t.44r , i ~f '1 c.t ... 4-; I E rJ 

u "" ....... "J t' )1.., .... «"'( S f"'~M.",e "(c. of' M e. ,~ 
CV"'MA--.cl wi 1l",W ~ C\~.l i~Jo"r cI;.\,.utJrs ;f 
,"",c "II\~ Yt~rO\s ..c..... rtc..~_ S""'-.'-"'Iwt 

• " .. W\ .. ~r~sc'v. ~Ht~""-t... ~e( (c~k.. c..tf U'D 

i~ ec.c.rrt .... .." .ft.... pO'l. r.(. ~Ll",d • .)v..t
c-.\\ 'Yc.~~. \tli ~ct.w ."- ~t p-.tI.. 

• eo.\\ $~-W\-•• r~". Q"cI ~ ~\\ f! ..... -h·f.4. 
+-. W\6.\u. Co. ~w ~. MAr"- i+ ~ .. rl •• ~I'f Cw.. p-'() 

• c:,.yc ... 4c.. p_cl ~-(li ytul ..... t'f f"D Ylo.cl +It .... 
~i\l' • .t 100 t,,,,, .~ ~e {;I,. (t •• cI.~rt ea.'" 
'C .... t, .... f.r .6.~ ~,,",.,., t.". ~. ~ "''''L 
"'"."~ n;""l ~. ~ ~'M 0.') .trv .\v ... )l\sc.ri p r, 

o . ea\\ crh,+, .. wi ... A",w 

7 



----_._----_._._-

• 

,s 
.,~. 

~'41( 

r~ 

--------------------------.---

M.d",'~" {, AS"", c:l'3 p--scaO 
,,~cs of c.~. 
-'1 hs o.f. rypc.t'A\4,",c. w..+ 
'=7+«~ o~ ...... ~, d~~ 

~.d",(,,, l, o.~M, ,~ pI-sea" 

""".5 . .{ C'oAc. 

"1~s ,4 1'r-. c...et{\.lye ~c..t 

b1 WI.'\' s-4-...~c. d ... lr ... 

., 

.) 

o 

0 

o 



o 

• I"-'",er rtc~N~£ ~~1slr"r,., Q .... c\ p"SS~~ ,\

+. , " C " • ., • I t\ C "0 Y J.;~ C4 V t r J cl ~ (:, ~: t"., ~.1 
(\".1 f''''5~U. ~c P IC.Y\l/sL" .c.. fAn.- c~cl 

• 1<'4& P(A«.kO' ...... ' (/c ..... /~"'), ~Ad o..,."''''''''' ..... +.s 
( 1'-0 .. • ~ .,.&"i , eM C) • b "'" , do..,. ~ It .......... f " ,f-

• RtAcl cr \)1.1.,'" f .... ~urJ ... t\ ...... C'i'u't'fS .. ~,·' ~"'. 
1-'1. (~~~) A \l. Ii Co~. t (Ie. ~ " ... ~,. C. Ce ,,~t i .. ~~. 

• (,\\ p<-J._'clW._C.,,"~A+t ~ C.HIL4-.. ~ .!:\ot b 
tlc. ~ .c. ~ .. ~ f.. •• , pt ~ «. ~&\. ... c. ~'" ~ " S ~. t\ .,,, 4 
~}. ,.."" .t;\. ,·s Cl.\\.)O-y S +hy,r • .,..., + ""' ... "''''." .. 
" " 4-i\ ptJ Co t'o\.y-\" '" I. ; " .3 ~.,(' ~. 

• Ct.\\ C!. ... u.~~.f4tt. ~ ct\lou+~ # i"'i.f..i6."5~ ~ 
f-" ~e~--". 

• C ... \\ , ... "-~JW'._crf~\r,. .{o.,. -K.t ;"'f".t ~. 
-r"", kSU h'\ b" - .t C f'l W\ _ "1- !.t "'/#... e .. " 

. C~ u· ... ""'- - l' ("'cf ~'(f r(" +f; .. .o ~ cl. • 



"." 

• t-.." r.3 ...... -' hvtkL, fo-lSi ,,", ~ ;k,,,-t Gtr(t\~ .. :.1 
+W~C,4, ••. 4 ~.l ~.",!c"i,t ~tl-f ... ~.,~ ~j;c" • 
.,.." f • "'''' ~ a ~·t i ~ Y'f' / t.-~. rt ~., cJ..tt .,.,." t.... , ' +r 
-tf", sttt ....... , ep/~ ;oI\..f.I.... Il,..., flfru" • 

• - c,~ u ~ ) .... p"t p".e( ~+rtc\WI.. ()",J., ~otu,.,A 
~u· e at p U' +-• 

• ~ -4- -+{. ( f' Yt " .n 
e~,I,.,. it., 

• Ce." ~ .. ,~~c - ~; "'~ c c...l .(.. r -Kc. -h-o. "'" e ..... p.f • 
C\ \0." .. t 't. ","" (c y +'-~ " '" .p 0,4.+ pCU1 e . "'-. ..s .•. 

~ ~f -- t""... '''' .(''' ......... '''-~111 ..... 0 r th ~.lA.l.h 
U~ ... 'U"t'A. p"ioY ~I> d.;~.pfl-.hh:h' .... cP 
C'e tAM'''''. 

". 

I o 

o 
/6 



· r~~",~, c:o "Aih'e"": .~t \~(O""P'fW \, ... e 0'-
t t JL" , , "" "'" t. , ",.f ,~d . ,,-.j "'" ~ .u~y f roUO" 

k., M.)t';+i,,, _" "~~.rMi"",+tA '''+j'I(+ \,,,. '" 
""'-e m"'-SCt"i,.f A~ .. f't'oMf+. -rk,,, fro""ft '" 
~.'" "fir d,f-r'''1,A "-'1 W\.'t'f 0" -tk. ac.ree ht 

• tA.str ft'O, .. AIII\ e .. ns c+ ...... M.f,S'.c-.... , (. "ktj.~_.,e, 

st'l'\ds it\f"'+ rt1".'+ ",.. sW\cf.s s:"tuJ. oNi 

...... i""' .kr ittf"+ i" ~e ~,,~~. 

• s;~" .. , f1".U'~;"'.l ik ."t&Jo,: 
- CQ;U ~Q.i"'r.d" +" c"-',,,- to .. irtfut' .,'y,,.d,, ~ je 
- ,,~,~ -tlcre i~ koM.e .. Y~(.c)"" +'.c. rCt\4.e,t M- ~ 

i ... pfA.~ , ... ~. Q"-~ ea" f'W"o""f* b t_+r .. ,-t -tk.. 
",,~'r~; ~~.& 'i"-L Irr.~ +l~ .wC4 kIC y ;,t 0.....,A 

cli~rf .. y i.f. ;'" #e.. ;"f-i wi ... Aol4l. Tt-. h.\i,~ 
i~,d "" ,,«l~ co"-~'''''~ .. ~c .,~.c\' ~r'.Y' d. 
s~~. w,~Oo w "'''-",,. \~"'I pto"'r t ,·. 

• C~ "f1s~.Cc.t "'~~'~es ,~ ,~'oo,: 

- k~ "t\.e~ .. ., ~. ~ .. ".\t l&c1""""o"e. 
- ,~., "Clt- eH.c • ..,.u·s +1-0. ... K. "'~1 0 .. c\~'i ... ~c'. 

.. ~. c.a. \\, f'A-i!.5E=. ""'-0 u; "'" +ke. $~'''~ ".r"''' 
· ., .. ,'t. c ",,41. c! .. ".s .. ~ ,~y". "" i", ,'~o""l ~ 
~ ~,J ~Ot4M""'.l. 

II 



-- ------------------------------------------------

... '~~er_~_"-t t\.o~'~S ~+ .. froues 
" w •• .fi." t..l' if'f'4:t 0'" +SU, p-A. 
A "''' KJ- +l:" U II. e ca I\. SA. 41, .ty ""' c.. 
~t'''''"",. 1+ r'''''o'''$ n.. ';'\.e ~."'" 
"""" ?AA (, .... "wl: ....... l.'))., deIL~'s tlc. 
fro ~f~ ~"cf ... d'·'f'6.Y' tk ( .... ...., ftAlf./f,/ ~ 
i~/fA,+ wi...d.w . 

.., t t ~ W t , f.c , +'-a , .'", .. -h &. +rca. "--" C H ,tl 

o 

~,,"4 ea.\t, o.rp,.·d.'f.A t-o ""f"o.\--e. ~ 0 
bo.Mcti,... wi~dClw rAi:r'A..,. 

o 

.~-.""-"-~I--.-' '.--1"""-.--"'- -- ... -.~ ... 



, 

o 

• Roo,," ~~) UiMuW' .. .,c M.~kl& o' .. cu.-c.) 

Cl~ • 'i.~ .~ "\5\ ~tc ",t.·"'i~tlowl ,. ~0tAftA+,d. 

• W'",cl.w Co .... +c .... ""' (r...t,) CA"" -.\"" .. ,,' to&. tc cll.,f...,~cI 
,0 .~ .. ""'''1 ~ ",~i ~'e. ~~,.""'. b~-t .cu.\\ y(d.'Sf'-... 

tS ~~USS6"Y - -tt..e bi\- bH· i, .. + CASf" 

, • W''''''.~ ~ .. d~,...J ""'" t."'~.rt "\o ... t ~l\1 Q\)~tt'~~ 
Q~UU..-at, ~c~t-F- ··l/1iSCYt~~ co ... 4i~M._"'''~·'~ 
a\~"'~fI \""f,,,,: .. e bo-tfOM."p Yed,,-.a 
~-----

• M,,,,,~,,~ reA,,&w er.~" co"t\3"'_ ..... _~~~~~~. 
~~--t;-:J~;t.--tku ~ ... ,Ow, Ol/f'f'''rl41. \1 .fk. 
~"clow bt~~ t'ft.wtd/j".w""'p~,,"'J, ~~~_~~, __ _ 
y,4r ... .t ~CI.\,,'~ '"--"" ..... 1 ~'~ioc.J o\li;'--r "1 
_ w'"l."" b~.-,~ ~.\".14" .. h. ~ ycdr .. '-'l~. 

/3 



__________ 4 ______ • __ ~________ _ _ 

o i.T)1~f/!.':l A.!>~.!.. OU.TP&tr_:re ~ T AA~~IP'T _ -

• ~~-:ip~+.y_' ~tls ".~'-t.:t-$r".+ .. VfC ..... ~..J 
-4{( 'i '" +. fl~ .fj f (. , "",, Ii'. 5( to-As It ""' c~ 4--~ 

SM.cl. ~ Si,~( • • 
VI'" 

-_ ... _---------. 

• A Pft tt.1. fAcl. t', ... A s .w..L h,t l:t-'CIM ~e. Li', 
(\I'" .·kc AW ... ,~e"'_ """,.4. i.... ~y(.e_ \OUl> ~ tv..o" ~) 
A"-~ ,\..ec.tc..s lay ~ Yt'~u+ U1"t't\.U .• 

• F'.A\-..~ ~ ... e. ;+ t .. \h ~ ..... ~~":~_~ "'fd~4-t. #.c. 
'i ..... i,,~c.. Sc"".)ikC. CJ£~"""fA~S e~'" C~A.n..c.A-..... 

-",A f",uuu~l.c)l~~~sl .J.I\'" ..... ..f.uds, ben~, ...... " 

'c..1i .l~\O.t A ... " ~ .. f ... +~ .. _~tA_~~ __ UOftotUk. .9l- .. tb 

';-It. " .... U (~,' .. ~ ""U.U~~"1 

• til\A\\1' e.k"w .. _~j~dCl'W ~. Co.\'f~. ~4.\jCc.+ "" ·fh. 
,.tf+i ... ,,~ • .{.. lot., ... ........ ~,J, ~U'.,~ .. \c.. T"e~. 

o..f S.M. 6(' .. ; ..... l .. ~ .. ~' ~ ... ~ "V.tel c.US -4-
S "O'-'l.W'" d. w .c.., If c.o "-' ..... , ~ .. rcc.;£' c. It" • 
------------- --

( 

o 

o 



o 

. 
-.-~ .. -",' 

\ MAi" I 
1 __ --

~~--------

....... -_ ...... 

.. ~ .. ., ......... ~ - ~- - - --- ............. _.......--
• 

t\\6f'-'1 
w\"' •• w 
co",~"b 

"' .. \ " '-t. \ '" f,4 
co~ \-f,,-k 

IS 



• ~"pic.a\ 5c:~ee" ecl'o\Q,. Aff"-,L: 
- ~k &.o.¥'.~.s -'0 ~fc 

- CtL\\ "",re-.' sc.,.&t" ~f4 .. t-t. frt;U ~"'r.. -h 
!"c-c1.'.!~~" • .r ct..",u .~d tMod'.t, "'-,'o.t 

• cQ .. ~#~ajf!.S o~ \'i\-.~l' di'f'tll' M,,\-kpte .fo~+., bi+ .. bf4-
t«'ic.it'AC1 ~'" -tC..', Offr.".," f\t.re c\\((.~Co\(.J 

• t; t~~ ..... \ fA.~"'c pYof.Ctlur. ;.. ~e "'l:>M: 

- iof t~rtt~'" lW\lo.Jt '" ~ "r-.o- .tAt-C., ",->C, 

Y~"r .. w ~,,"'t'"t WtWl.-'e)u,) cc.~.J. .. "n 0 
- ,~~'" o""y "~f.si\='o,,\"j .\~ "'fCf SS-"y -

"'.fir.. .a.\.. ,,~ ~ ~'( ba.M+ ~" .r-4-·I"";~ 

• "OCQ.\ 4.~ ,,~, s """de -\""\I~" I \'1 "f'c,,,( 'P.""t' '05 e c.,(e. 
... i~ser~."/de(e~;G" ,,~. ,,,,,\-,,,,wr,l(it\.s 
- $&t \,.fi~""'" CM.JrIpt-sf~ W\~t'" co. S'I,,"~ 'f I'M

,(.,. ~",,\H ,'e ",,"ca. c\Q ~\, ore 6.\ !i/"," " 
- 'fl..eu .,4;"'~~"'·'~1 "&"i,. ~ .. -4k. c..tsov 

be ''''' t'-t I~~ ""- ,,,,uc.;"t\ i ~"'" ~tr bt ~'~~'-'c. 
- \.~ .. \ C"'6,",~.' 1'V'"".f. l'Av' wi",doloJ \""ec.tf'·d 

c..~ .,s4-.,,+ -.ui '"'" ~",4u. .. f ~''!:.pl.. Y 

I~ 

o 



----------------- -------------------------

--------. < ,-~--

: 0 r •• t 
IW\ CU." __ --r 

r.'~'" ----
"tx+_-, \ 

s 

::v ~,--. 

0 

4\ 0 

• 0 0 • ~.-- ~ alillFe ~ .... ~ • 

10 

(7 



• J9--~ !.~,Ic. (. " ..... o'.-cla..~/."--~) 
- o.,d:",o,."t· ryu.tcl!"LtC c..\\ ~""'L.~. 
- 110 yrf.".Uc,e.+tcl w,~doCA) rh .• nI, 
- otktr ,,'" ~~-h~ ",,,V"\~\'(t ~ 

• \ " • .1 ... &C",~/pp~ 
- h h.f {~\( (A.lt> . 

- 7 Acl y~cc .. i£ 

o 

• \\tt.a l--. .... "aw-t.( h'ftA.p C\\c - ""' .... ,,) .. • tilMn) 
- tyt~cl.d:td liM, ~(. f'~,+- l ,":"'y ... + f"'.l f 0 
- Ih.e U,~t.h ~ '''''f""t p,..d. 
.. CA. M t>c ~ (f.,.,s 
- ~1 ~t (\':l"'I;l~S 
- ~I\\!.u n ... "hC45 1 "",,,,tt, t ~\"ls 

• 1$1~/~'M/."..ff'Ki + ''''f'"t 
- f Wo.fl , ~\~l w,,"oS( 1,1.'0', ,,,. "\l '1 fl. ,~\-tv", .. ' 

p,., \,,~~t .. e~t?~t fA.(' 

• s""-"~r. ~-4--.. r ~r -toj i\'\ I s"-,,_ kttys. 
fA.~e~.,d""'~/ltt1-cf(~, 1-"",,", 

o 
I?; 



........... - ..... _-

(J 
Ire... ------

s 
~ 
~ v 
E T 
lit 
M 
5 

10 

o 



; 
t ~, 
I' 

I' 
i 

" E $e~ re- 5e1 ~\I! iA.ltes (~'"'ft~ titA.+pc.l.f 10 pfif~4-t~,,"J 1 
~ fQ & ",,$ ~~t_ .(:o~ci 
~ f A.e\~, ~ {PC\~\!a 
-~d_~ ,rr ... «s..\t {~eAfrf11k 1i\"iUlS~ "p~ ·rs 

\~ (-~n~~~~) 
fOlD att\5~ 0 Sb'~ff ~e't\e~-,,('G#~ 

-~\;e Are j~~+ ~t loA ~\r,;..V\"~pt -". 
S1'fM~lr(J~\~lll1.h~ -D" -r~tf1 I1~Clifreet. R~JIA.I .... 
(L$,c,i' fliCf,\,f? 'b '1A~Q~o 

K(\("(£$~ ~1't..ell'-C£>~ 
- rif,\~\~ tliI If t~f 0 'ill ~ \ftw.fI"~( o~ ,e~~s~ ........ 

iv Il' ~'''~G f ~ 
- II.A S(t "'" ~i~.,.~+ e~¢o.t~ a \l.e.!I'Il>~ht~ Ltt.. t&) 

... ~\-... ~ptL+.IT(l«- ~ejell.~'§ tW~'~Il''l1 GI.~«" .""~f""-t 
lL ~. 0 L1I ~g ~ 6 5, L_ \9Cj , W\~ U'I" W n~ "'m. r.t t~, ~ (t i 'i" ~ \~y .. «. 'nr .,. 

o A tl v-t?tAf!5+ t\~~ e.su.. r~ 1~' tl-e .... ,z.,£ c.ok\i.+ 6 "'" 
tLe Vll....esf/l2ti u .. pe <t"-e>-n>-c..~V'" ~'~whl ~1 ~ 
C\>olf, ~1~ fr-il\\-e.'cfe fI.!<tc.. efuJI!, tvtt.w#d "1 
4\." j .... w.a~"" .,tA.. tJ.~t.e.'I1 (t!f.lt,+ d~f!.t E~C"~ s) 

o 

c" 


