

DOMAIN 2D Graphics Metafile Resource
Call Reference

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 009793

Revision 00

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: November, 1986

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR,
and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES ..

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

The DOMAIN 2D Graphics Metafile Resource Call Reference describes the constants, data
types, and user-callable routines used by the DOMAlN 2D Graphics Metafile Resource (GMR)
system for developing two-dimensional graphics applications.

Audience

This manual is for programmers who use the DOMAlN 2D Graphics Metafile Resource to develop
application programs. Users of this manual have some knowledge of computer graphics and have
experience in using the DOMAlN system.

We suggest that you read the task-oriented handbook Programming with DOMAIN 2D
Graphics .lwetafile Resource before using this reference.

Organization of this Manual

This manual contains four chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Presents the constants and data types used by the 2D Graphics Metafile
Resource package.

Presents a description of each routine including format and parameters. The
organization of routines is alphabetical.

Presents a listing of 2D GMR errors and a brief description of each error.

Presents two listings of 2D GMR routines. The first is a listing of routines and
descriptions by function. The second is an alphabetical listing of call formats.

Additional Reading

Use this reference as a companion to the Programming With 2D Graphics Metafile Reference
manual (005097).

The Programming With DOMAIN 3D Graphics Metafile Resource manual (005807) describes
how to write programs that use the DOMAlN 3D Graphics Metafile Resource.

The Programmer's Guide to DOMAIN Graphics Primitives manual (005808) describes how to
write graphics programs using DOMAIN Graphics Primitives.

The Programming With General System Calls manual (005506) describes how to write programs
that use standard DOMAlN systems calls.

The DOMAIN Language Level Debugger Reference (001525) describes the high-level language
debugger.

For language-specific information, see the DOMAIN FOKrRAN Language Reference (000530),
the DOMAIN Pascal User's Guide (000792), and the DOMAIN C Language Reference (002093).

iii Preface

The 2D GMR package creates POSTSCRIPT files for hardcopy output to laser printers that
support POSTCRIPT. If you want to modify the POSTSCRIPT files, see the POSTSORIPT
Language Reference (007765).

You can use 2D GMR with the DOMAIN/Dialogue user interface. See the DOMAIN/Dialogue
User's Guide (004299).

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[1

{ }

CTRL/Z

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL > key while typing the
character.

Vertical ellipses represent additional information in a program fragment that is
either too lengthy to include or not relevant to the example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOl\1AIN System
Oommand Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command. You can also view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader's Response form is located at the back of this
manual.

Preface iv

Contents

Chapter 1 Constants and Data Types 1-1

Chapter 2 2D GMR Routines 2-1

Chapter 3 Errors 3-1

Chapter 4 Quick Reference 4-1

Index Index-l

v Contents

Chapter 1
Constants and Data Types

This chapter describes the constants and data types used by the 2D Graphics Metafile Resource
package (hereafter referred to as 2D GMR). Each data type description includes an atomic data
type translation (i.e., GM_$ACC_CREATE_T = 2-byte integer) as well as a brief description of the
type's purpose. The description includes any predefined values associated with the type. The
following is an example of a data type description for the GM_ $CONC _MODE_ T type:

GM $CONC MODE T A 2-byte integer. Defines the number of concurrent
users a file may have. One of the following
predefined values:

GM $lW

N readers or 1 writer is allowed.

GM $COWRITERS

More than 1 writer is allowed,but all must be
on the same node.

This chapter also illustrates the record data types in detail. These illustrations will help
FORTRAN programmers construct record-like structures, as well as provide useful information
for all programmers. Each record type illustration:

e Shows FORTRAN programmers the structure of the record that they must construct
using standard FORTRAN data-type statements. The illustrations show the size and
type of each field.

CD Describes the fields that make up the record.

CD Lists the byte offsets for each field. Use these offsets to access individual fields. Bytes
are numbered from left to right and bits are numbered from right to left .

• Indicates whether any fields of the record are, in turn, predefined records.

1-1 Constants and Data Types

CONSTANTS

GM $MAX ACLASS 16 The maximum number of attribute classes is
16.

GM $MAX ARRAY LENGTH 1000 The maximum number of elements in a
gm_$array ... _t is 1000.

GM $MAX BLOCK 40 The maximum number of attribute blocks is
40.

GM $MAX CURSOR PATTERN WORDS 16 The maximum number of words in a cursor
pattern.

GM $MAX DRAW PATTERN BYTES 8 The maximum number of bytes in a draw
pattern.

GM $MAX FILE 16 The maximum number of files is 16.

GM $MAX FILL PATTERN LWORDS 32 The max number of long words in a fill
pattern.

GM $MAX FONT

GM $MAX FONT FAMILY

GM $MAX GRID

GM $MAX INSTANCE DEPTH

GM $MAX PIXEL VALUE

GM $MAX PLANE ID

GM $MAX PRIM ID

GM $MAX SEGMENT

GM $MAX SEGMENT ID

GM $MAX SEGMENT NAME LENGTH

GM $MAX STRING LENGTH

GM $MAX VIEWPORT

GM $OUTI CIRCLE

Constants and Data Types

32 The maximum number of font family
identification numbers is 32.

8 The maximum number of font families is 8.

4 The maximum number of grids that may be
associated with a vewport.

32 The maximum instancing depth.

255 The maximum value for color map entries; the
numbers are 0 through 255.

7 The maximum number of planes.

16 ThE' maximum number of primitive commands
is 16.

65536 The maximum number of segments; the
numbers are 0 through 65536

16#7FFFFFFF
The largest possible segment id.

12 Maximum length for segment names is 12.

12 The maximum length of a GM string is 12.

64 The maximum number of viewports is 64.

16#40 Opcode to format vector output.

1-2

GM $OUTI CIRCLE FILL 16#41 Opcode to format vector output.

GM $OUTI CURVE 16#50 Opcode to format vector output.

GM $OUTI DRAW RASTER OP 16#82 Opcode to format vector output.

GM $OUTI DRAW STYLE 16#81 Opcode to format vector output.

GM $OUTI DRAW VALUE 16#80 Opcode to format vector output.

GM $OUTI EOF 16#00 Opcode to format vector output.

GM $OUTI FILL BACKGROUND VALUE 16#91 apcode to format vector output.

GM $OUTI FILL PATTERN 16#92 apcode to format vector output.

GM $OUTI FILL VALUE 16#90 Opcode to format vector output.

GM $OUTI FONT FAMILY 16#A3 apcode to format vector output.

GM $OUTI PLANE MASK 16#82 apcode to format vector output.

GM $OUTI POLYLINE 2D 16#20 apcode to format vector output.

GM $OUTI POLYLINE CLOSE 2D 16#21 apcode to format vector output.

GM $OUTI POLYLINE FILL 2D 16#22 Opcode to format vector output.

GM $OUTI PRIMITIVE 16#60 Opcode to format vector output.

GM $OUTI RECTANGLE 16#30 apcode to format vector output.

GM $OUTI RECTANGLE FILL 2D 16#31 apcode to format vector output.

GM $OUTI TEXT 16#70 apcode to format vector output.

GM $OUTI TEXT BACKGROUND VALUE 16#A1 apcode to format vector output.

GM $OUTI TEXT SIZE

GM $OUTI TEXT VALUE

DATA TYPES

GM $ACC CREATE T

16#A2 apcode to format vector output.

16#AO apcode to format vector output.

A 2-byte integer. Specifies the access mode. One of
the following predefined values:

1-3

GM $WRITE

An error is returned if the file already exists.

GM_ $ OVERWRITE

The previous version is deleted if the file
already exists.

Constants and Data Types

GM $ACC OPEN T

GM $ARRAY16 T

GM $ARRA Y32 T

GM $ARRAYREAL T

GM $BORDER UNIT T

Constants and Data Types

GM $UPDATE
The previous version is opened if the file
already exists.

A 2-byte integer. Specifies the read/write
accessibility. One of the following predefined
values:

GM $WR

Access is read or write.

GM $R

Access is read only.

GM $CWR

Access is read or write; if the file does not
exist, create it.

An array of 2-byte integers with
MAX ARRAY LENGTH elements. A list of
coordinate points.

An array of 4-byte integers with
MAX ARRAY LENGTH elements. A list of
coordinate points.

An array of floating-point numbers with
MAX ARRAY LENGTH elements. A list of
coordinate points.

A 2-byte integer. The units for border size. One of
the following predefined values:

1-4

GM $PIXELS

Expresses edge width in pixels.

GM $FRACTIONS

Expresses edge width as fractions of the total
GM bitmap size.

GM $BOUNDSREAL T

predefined byte:
type offset

31

0: I
63

4: I
95

8: I
127

12: I

Defines the bounds of a rectangular area. The
diagram below illustrates the gm_ $boundsreal - t
data type:

field name
0

real I xmin

32

real I ymin

64

real I xmax

96

real I ymax

Field Description:

xmm
The x-coordinate of the bottom-left corner of
the rectangle.

ymin
The y-coordinate of the bottom-left corner of
the rectangle.

xmax
The x-coordinate of the top-right corner of the
rectangle.

ymax
The y-coordinate of the top-right corner of the
rectangle.

1-5 Constants and Data Types

GM $COLOR ENTRY T

GM $COLOR VECTOR T

GM $COMMAND TYPE T

Constants and Data Types

A 3-element array of real values. Specifies color
values in this order: red, green, blue.

An array of 4-byte integers, of up to 256 elements.
Specifies a list of color values.

A 2-byte integer. Specifies the command type as
follows: One of the following predefined values:

1-6

GM $TACLASS

Attribute class.

GM $TCIRCLE 2D

Circle.

GM $TCURVE 2D

Curve.

GM $TDRAW RASTER OP

Raster operations used in drawing.

GM $TDRA WSTYLE

Line style used in drawing.

GM $TDRA WV ALUE

Pixel value used in drawing.

GM $TFILL V ALUE

Fill value used in drawing.

GM $TFILLP ATTERN

Fill pattern used in drawing.

GM _ $TFONTF AMIL Y

Font family.

GM $TINSTANCE SCALE 2D
Scale and translate a segment instance.

GM $TINST ANCE TRANS 2D
Translate a segment instance.

GM $TINSTANCE TRANSFORM 2D

Rotate and translate a segment instance.

GM $TPLANEMASK

Segment: change plane mask.

GM $TPOL YLINE

Draw a linked set of line segments.

GM $TPRIMITIVE

Draw a primitve.

GM $TRECTANGLE

Draw a rectangle.

GM $CONC MODE T

GM $CURSOR PATTERN T

GM $CURSOR STYLE T

GM $CURVE T

GM $DATA TYPE T

GM $TTAG

Insert a tag.

GM $TTEXT 2D

Write a text string.

GM $TTEXTBV ALUE

Background value for text.

GM $TTEXTSIZE
Size for text.

GM $TTEXTV ALUE

The pixel value for text.

A 2-byte integer. Defines the number of concurrent
users a file may have. One of the following
predefined values:

GM $lW

N readers or 1 writer is allowed.

GM $COWRITERS

More than 1 writer is allowed, but all must be
on the same node.

A gm _ $max _ cursor _ pattern _ words-element
array of 2-byte integers. Specifies the values that
set the cursor pattern.

A 2-byte integer. Specifies the type of cursor. One
of the following predefined values:

GM $BITMAP

Only value is bitmap.

A 2-byte integer. Specifies the type of curve. One
of the following predefined values:

GM $SPLINE CUBIC P

Draw a smooth curve through n points.

GM $ARC 3P

Draw an arc through three points.

A 2-byte integer. Specifies the form in which to
store data. One of the following predefined values:

GM_$H>

Data is stored as 2-byte integers.

GM $32

Data is stored as 4-byte integers.

GM $REAL

Data is stored as 4-byte integers.

1-7 Oonstants and Data Types

GM $DISPLAY CONFIG T

GM $DISPLA Y MODE T

Constants and Data Types

A 2-byte integer. Returns the current display
configuration. One of the following predefined
values:

GM $BW _ 800XI024

A portrait black and white display.

GM $BW l024X800

A landscape black and white display.

GM $BW 1280XI024

A landscape black and white display.

GM $COLOR l024XI024X4

A four-plane color display.

GM _ $COLOR _1024XI024X8

An eight-plane color display.

GM $COLOR l024X800X4

A four-plane color display.

GM _ $COLOR _1024X800X8

An eight-plane color display.

GM _ $COLOR _1280X1024X8

An eight-plane color display.

GM _ $COLORl_1024X800X8

An eight-plane color display.

GM _ $COLOR2 _1024X800X4

A four-plane color display.

GM_$BW _1280XI024

A landscape black and white display.

A 2-byte integer. Specifies the mode of operation.
One of the following predefined values:

1-8

GM $BORROW

Uses the entire screen.

GM $MAIN BITMAP

Displays within a bitmap allocated in main
memory.

GM $DIRECT

Displays within a Display Manager window.

GM_ $NO _BITMAP

Allows editing of files without display.

GM _ $WITHIN _ GPR

Displays the output of the metafile within a

GM $DRAW PATTERN T

GM $EVENT T

GM $FILL PATTERN T

GM $FONT TYPE T

GM $GRID ARRAY T

bitmap that you initialize using routines of
DOMAIN graphics primitives.

GM _ $ CURRENT _BITMAP

Use the current DOMAIN/Dialogue GPR
bitmap.

An array of up to
gm _ $max _ draw _ pattern _ bytes characters.
Specifies the bit pattern to use in drawing lines.

A 2-byte integer. Specifies the type of input event;
same as gpr _ $event _ t. One of the following
predefined values:

GM $KEYSTROKE

Returned when you type a keyboard
character.

GM $BUTTONS
Returned when you press a button on the
mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad
puck or use the touchpad.

GM $ENTERED WINDOW

Returned when the cursor enters a window in
which the GM bitmap resides. Direct mode
only.

GM $LEFT WINDOW
Returned when the cursor leaves a window in
which the GM bitmap resides. Direct mode
only.

GM $LOCATOR STOP
Returned when you stop moving the mouse or
bitpad puck, or stop using the touchpad.

A gm _ $max _ fill_ pattern _lwords-element array
of 4-byte integers. Specifies the pattern to use in
filling areas.

A 2-byte integer. Specifies the type of font. One of
the following predefined values:

GM_$PIXEL
A font defined by pixels.

GM_$STROKE

A font defined by strokes.

A list of grid specifications. See gm _ $grid _ t for a

1-9 Constants and Data Types

GM $GRID ATTRIBUTES T

GM $GRID FLAGS T

GM $GRID STYLE T

Constants and Data Types

complete description and a diagram of one element
of the array. This array holds up to
gm_ $max_grid elements.

Specifies whether the grid is placed above or below
the the displayed segment. Currently only one
value.

GM $GRID ABOVE

Specifies that the grid is placed above the
displayed segment.

A 2-byte integer. Specifies whether the snap grid is
visible/invisible and/or whether snapping is
enabled. Snapping is not currently implemented.
Any combination of the following predefined values:

GM $GRID VISIBLE

Indicates that the snap grid is visible.

GM $GRID SNAPTO

Indicates that the grid uses snapping.

A 2-byte integer. Specifies the type of grid style to
be displayed in a viewport. One of the following
predefined values:

GM $GRID POINT

The grid intersections are shown by points.

GM $GRID CROSS

The grid intersections are shown by cross
hairs.

GM $GRID BOX
The grid is shown as boxes

GM $GRID AXIS

The grid is orthogonal coordinate axes.

1-10

GM $GRID T

predefined
type

gm_$grid_style_t

gm _ $grid _attributes _ t

byte:
offset

0:

4:

8:

12:

16:

20:

22:

24:

26:

28:

30:

32:

34:

Specifies the characteristics of the grid. The
diagram below illustrates the gm_ $grid_ t data
type:

field name

real origin.x

real origin.y

real delta.x

real delta.y

integer32 color

integer style

integer attributes

Field Description:

origin
The x and y coordinates of the origin of the grid
in viewport segment coordinates.

delta
The delta-x and delta-y of the grid in viewport
segment coordinates.

color
The color of the grid.

style
The style of the grid display. This is the tag
field of the variant record. The value of style
determines which fields require information if

1-11 Constants and Data Types

predefined
type

gm_ $grid _attributes _ t

Constants and Data Types

byte:
offset

20:

22:

24:

26:

integer

integer

you are establishing a grid, or which fields
contain information if you are inquiring about a
grid.

attributes
The attributes of the grid. Currently, the only
attribute is for grid placement. The grid can be
placed above or below the viewport.

If the value of style is gm _ $grid _ point, do not
add or try to retrieve any more information.
The variant part of the record contains no valid
information.

If the value of style is gm_ $grid_ cross, insert
or retrieve the cross width and and height from
address 24 and 26.

field name

style

attributes

cross size.x

cross_size.y

If the value of style is gm _ $grid _ box or
gm _ $grid _ axis, insert or retrieve II prepeat II
(line repetition factor) at address 24, II plength II
(length of line pattern) at address 26, and
II pattern II (line pattern) at byte addresses 28 -
35.

1-12

predefined byte:
type offset

20: integer

gm_$grid_attributes_t 22: integer

24: integer

gm _ $draw _pattern _ t 26: integer

28:

30:

32:

34:

GM $HIGHLIGHT T

GM $KEYSET T

GM $LINE STYLE T

GM $MODELCMD MODE T

field name

style

attributes

prepeat

plength

pattern

A 2-byte integer. Specifies the type of highlighting.
One of the following predefined values:

GM $OUTLINE
Only value: Highlighting appears as an
outline.

Specifies the set of characters that make up a keyset
associated with the graphics input event types
GM $KEYSTROKE and GM $BUTTONS. This
is a 16-element array of 2-byte integers. For a
FORTRAN subroutine to use in building a set of
characters, see the routine
GM $INPUT ENABLE in this volume.

A 2-byte integer. Specifies the type of lines. One
of the following predefined values:

GM $SAME LINE STYLE

The line style does not change.

GM $SOLID

The line style is solid.

GM_$DOTTED
The line style is dotted.

GM $P ATTERNED

The line style is patterned.

A 2-byte integer. Specifies an editing mode for
modeling commands. One of the following
predefined values:

GM $MODELCMD INSERT

Modeling commands insert a command at the

1-13 Constants and Data Types

GM $PLANE LIST T

GM $PLANE MASK T

GM $POINT16 T

predefined
type

GM $POINT32 T

Constants and Data Types

byte:
offset

15

0:

2:

current position in the currently open
segment. This is equivalent to
GM $REPLACE SET FLAG = false.

GM $MODELCMD REPLACE
Modeling commands replace the command at
the current position in the currently open
segment. This is equivalent to
GM $REPLACE SET FLAG = true.

GM $MODELCMD RUBBERBAND

Modeling commands XOR the previous
modeling command on the screen, thus erasing
it, then XOR the given modeling command
onto the screen. Only bitplane 0 is used for
rubberbanding. No changes are made to the
metafile in this mode.

A 2-byte integer. Specifies a value between 0 and
gm _ $max _ plane _ id inclusive, depending on the
type of node.

A 2-byte integer. Specifies a set of planes from
GM $PLANE LIST T.

Specifies the X- and Y- coordinates of a point. The
diagram below illustrates the gm_ $point16 _ t data
type:

field name

0

integer x

integer y

Field Description:

x
The x-coordinate of the point.

y
The y-coordinate of the point.

Specifies the X- and Y-coordinates of a point. The
diagram below illustrates the gm _ $point32 _ t data
type:

1-14

predefined byte:
type offset

31

0: integer

4: integer

GM $POINTREAL T

predefined byte:
type offset

31

0:

I 4: real

real

GM $POINT ARRAY16 T

GM $POINT ARRAY32 T

GM $POINT ARRAYREAL T

field name

0

x

y

Field Description:

x

The x-coordinate of the point.

y
The y-coordinate of the point.

Specifies the X- and Y-coordinates of a point. The
diagram below illustrates the gm _ $pointreal_ t
data type:

field name

0

I

x

y

Field Description:

x
The x-coordinate of the point.

y
The y-coordinate of the point.

An array of GM_ $POINT16 _ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM_ $POINT _16 _ T illustrates a single
element.

An array of GM_$POINT32_ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM_ $POINT32 _ T illustrates a single
element.

An array of GM_$POINTREAL_ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM_ $POINTREAL _ T illustrates a single
element.

1-15 Constants and Data Types

GM $PRIMITIVE PTR T

GM $PRINT STYLE T

GM $REFRESH PTR T

GM $ROTATE REAL2X2 T

Constants and Data Types

Pointer to procedure for user-defined primitive,
with the following argument protocol:

in N POINTS 2-byte integer
in POINTS array of

GM_$POINT16_T
in N PARAMETERS 2-byte integer
in PARAMETERS array of

GM_$POINTREAL_T
out STATUS status_$T

A 2-byte integer. Specifies the type of output. One
of the following predefined values:

GM_$GMF
Output is a graphics map file.

GM $OUTl

Output is a vector command file.

GM $POSTSCRIPT

Output file is a PostScript file.

Pointer to procedure for refreshing windows, with
the following argument protocol:

in UNOBSCURED
in POS CHANGE

boolean
boolean

Specifies x- and y-coordinates for rotation. The
diagram below illustrates the
gm _ $rotate _ real2x2 _ t data type:

1-16

predefined byte:
type offset

31

0: real

4: real

8: real

12: real

GM $SEARCH COMMAND T

GM $SEARCH SEGMENT T

field name

0

xx

xy

yx

yy

Field Description:

xx
The xx-coordinates for rotation.

xy
The xy-coordinates for rotation.

yx
The yx-coordinates for rotation.

yy
The yy-coordinates for rotation.

A 2-byte integer. Specifies the steps of a command
search. One of the following predefined values:

GM $CNEXT

Find the next command which falls within the
pick aperture, moving forward in the segment.

GM $STEP

Find the next command in the segment,
independent of the pick aperture.

GM $START

Move to the start of the segment, independent
of the coordinates of the pick aperture.

GM $END

Move to the end of the segment, independent
of the coordinates of the pick aperture.

A 2-byte integer. Specifies the steps of a segment
search. One of the following predefined values:

GM $SETUP

11ake the top segment of the current viewport

1-17 Constants and Data Types

GM $SEGMENT ID T

GM $SEGMENT ID LIST T

GM $STRING T

GM $VIEW REFRESH T

Constants and Data Types

the start of the list of picked segments. The
rest of the list is emptied.

GM $DOWN

Find the first segment instanced by the
current segment, which when instanced falls
within the pick aperture.

GM $NEXT

Find the next segment within the segment one
higher in the list of picked segments, which
falls within the pick aperture.

GM $UP
Move up one level in the list of picked
segments.

GM $TOP

Proceed to top segment in the list of picked
segments, destroying the rest of the list of
picked segments.

GM $CLEAR

Clear the entire list of picked segments,
allowing all segments to be edited or deleted.

GM_$BOTTOM
Perform GM_ $DOWN repeatedly until a
segment is reached for which GM_ $DOWN
finds nothing.

GM_ $NEXTBOTTOM

Perform GM $BOTTOM. If nothing is
found, perform GM_ $NEXT until a segment
is found. An alternative to GM _ $NEXT is
one or more uses of GM_ $UP followed by a
GM_$NEXT. When a GM_$NEXT finds a
segment, perform a GM_ $BOTTOM from
there.

A 4-byte integer. Specifies a value between 0 and
gm _ $max _ segment _ id inclusive.

Specifies an array of GM _ $SEGMENT _ ID _ T
with MAX ARRAY LENGTH elements.

An array of up to 256 characters. Specifies a string
of characters.

A 2-byte integer. Specifies the refresh state of the
viewport. One of the following predefined values:

GM $REFRESH INHIBIT

When you change commands in the file, the
viewport is rewritten when you call

1-18

STATUS $T

byte:
offset

GM_ $VIEWPORT _REFRESH.
GM $DISPLAY REFRESH does not affect
a viewport in this refresh state. Other
conditions are mode-dependent.

GM $REFRESH WAIT

When you change commands in the file, the
viewport is rewritten when you call
GM_$VIEWPORT _REFRESH or
GM $DISPLAY REFRESH. Other
conditions are mode-dependent.

GM $REFRESH UPDATE

Every time you change any command in the
file, this viewport is completely corrected if it
is the current viewport.

GM $REFRESH PARTIAL

Every time you change any command in the
file, the following occurs if this viewport is the
current viewport: Inserted primitive
commands are added, and deleted primitive
commands are erased, but underlying data is
not rewritten.

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name

31 0

0:1 '-____ in_te_g_9_r ___ --'1 all

or

0:

1 :

2: integer

fail

subsys

mode

o
code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

1-19 Constants and Data Types

Constants and Data Types

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

1-20

Chapter 2
2D GMR Routines

This chapter lists user-callable routine descriptions alphabetically for quick reference. Each
routine description contains:

• An abstract of the routine's function

• The order of the routine parameters

• A brief description of each parameter

• A description of the routine's function and use

If the parameter can be declared using a predefined data type, the description contains the phrase
"in XXX format II , where XXX is the predefined data type. Pascal and C programmers, look for
this phrase to determine how to declare a parameter.

FORTRAN programmers, look for the phrase that describes the data type in atomic terms, such
as "This parameter is a 2-byte integer. II For a complete description of each data type see
Chapter 1.

The rest of the parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access The access mode, in GM_ $ACC _ CREATE _ T format. This parameter IS a 2-byte
integer. Specify only one of the following predefined values:

GM $WRITE If the file already exists, an error code IS returned in the status
parameter.

GM $OVERWRITE
If the file already exists, the previous version is deleted.

GM $UPDATE If the file already exists, the previous version is opened.

2-1 2D GMR Routines

GM $ABLOCK ASSIGN DISPLAY

GM $ABLOCK ASSIGN DISPLAY

Assigns an attribute block (by number) to an attribute class, for the entire display.

FORMAT

INPUT PARAMETERS

aclass id
The identification number of the attribute class to which the attribute block will be
assigned. This is a 2-byte integer.

ablock id
The identification number of the attribute block to be assigned to the attribute class. This
is a 2-byte integer.

To assign the default attributes to an attribute class for the display, use ablock_id = 1.

To undo the asssignment of an attribute block to an attribute class for the display, use
ablock id = O.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_ASSIGN_DISPLAY to assign an existing attribute block to an
attribute class for all viewports in the display.

Use GM_$ABLOCK_INQ_ASSIGN_DISPLAY to inquire about the current attribute
block number assigned to a particular class for the display.

Assignments of attribute blocks to attribute classes for individual viewportsusing
GM_ $ABLOCK_ASSIGN _ VIEWPORT will override assignments made by
GM $ABLOCK ASSIGN DISPLAY.

2D G MR Routines 2-2

GM $ABLOCK ASSIGN VIEWPORT

GM $ABLOCK ASSIGN VIEWPORT

Assigns an attribute block (by number) to an attribute class, for one viewport.

FORMAT

INPUT PARAMETERS

aclass_id
The identification number of the attribute class to which the attribute block will be
assigned. This is a 2-byte integer.

To assign the default attributes to an attribute class for one viewport, use ablock _ id = 1.

viewport _ id
The identification number of the viewport in which to assign the attribute block to the
attribute class. This is a 2-byte integer.

ablock id
The identification number of the attribute block to be assigned to the attribute class. This
is a 2-byte integer.

To undo the asssignment of an attribute block to an attribute class for one viewport, use
ablock id = O.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_ASSIGN _ VIEWPORT to assign an existing attribute block to an
attribute class for one viewport in the display.

Use GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT to inquire about the current attribute
block number assigned to a particular class for a particular viewport.

Assignments of attribute blocks to attribute classes for individual viewports using
GM_ $ABLOCK_ASSIGN _ VIEWPORT will override assignments made by
GM $ABLOCK ASSIGN DISPLAY.

2-3 2D G MR Routines

GM $ABLOCK COPY

GM $ABLOCK COPY

Copies all attributes from one existing attribute block to another.

FORMAT

INPUT PARAMETERS

source ablock id
The identification number of the existing attribute block from which attributes will be
copied. This is a 2-byte integer.

destination ablock id
The identification number of the existing attribute block to which the attributes of the
attribute block source _ block_id will be copied. This is a 2-byte integer.

You may not copy attributes into attribute blocks 0 and 1 (default). Attribute block 0 is a
list of no-change attribute values; attribute block 1 is a list of default attribute values.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_ CREATE to establish a new attribute block identical to an existing
one. Use GM _ $ABLOCK _ COpy to copy attributes from an existing attribute block to an
existing one.

2D G MR Routines 2-4

GM $ABLOOK OREATE

GM $ABLOOK OREATE

Oreates an attribute block and initializes it equivalent to an existing block.

FORMAT

INPUT PARAMETERS

source ablock id
The identification number of the existing attribute block used as the source for the block
generated with GM_ $ABLOOK_ OREATE. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number assigned to the attribute block generated by
GM $ABLOCK CREATE. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ABLOOK_ OREATE to establish a new attribute block identical to an existing
one. Use GM_ $ABLOCK_ COpy to copy attributes from an existing attribute block to an
existing one.

Ourrently, you are limited to 10 attribute blocks, including the two preassigned ones.

2-5 2D G MR Routines

Returns the current attribute block number assigned to a particular attribute class for the
display.

FORMAT

INPUT PARAMETERS

aclass id
The identification number of the attribute class for which to return the current attribute
block assignment. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number of the attribute block currently assigned to the specified
attribute class for the display. This is a 2-byte integer.

If you have not assigned an attribute block to the specified attribute class for the display,
the returned value is 0 (no assignment).

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOOK_SET _ASSIGN_DISPLAY to assign an attribute block to a display.

2D G MR Routines 2-6

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT

Returns the current attribute block number assigned to a particular attribute class for one
viewport.

FORMAT

INPUT PARAMETERS

aclass id
The identification number of the attribute class for which to return the current attribute
block assignment. This is a 2-byte integer.

viewport _ id
The identification number of the viewport for which to return the current attribute block
identification number. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number of the attribute block assigned to the attribute class for the
display. This is a 2-byte integer.

If you have not assigned an attribute block to the special attribute class for the display, the
returned value is 0 (no assignment).

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _ASSIGN_ VIEWPORT to assign an attribute block to a
viewport.

2-7 2D G MR Routines

GM_$ABLOCK_INQ_DRAW _RASTER_OP

Returns the raster operation code for drawing lines for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the raster operation
codes. This is a 2-byte integer.

OUTPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15, or -1.
The default value is 3. This sets all destination bit values to source bit values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $ABLOCK _ SET _ DRAW _ RASTER _ OP to change the draw raster operation
code in an attribute block.

2D GMR Routines 2-8

GM_$ABLOCK_INQ_DRAW _STYLE

GM_$ABLOCK_INQ_DRAW _STYLE

Returns the line style set for the specified attribute block.

FORMAT

GM_$ABLOCK_INQ_DRAW_STYLE (ablock_id, style, repeat_factor, pattern,
pattern_length, status)

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the drawing style. This
is a 2-byte integer.

OUTPUT PARAMETERS

style
The style of line, in GM_$LlNE_STYLE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM $SOLID Specifies a solid line. If style = GM _ $SOLID, then repeat _ factor,
pattern, and pattern _length are ignored. The default draw style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_ $DOTTED, then
pattern and pattern _length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $P ATTERNED
Specifies a patterned line, determined by repeat _ factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is replicated before proceeding to the next bit
in the pattern. This is a 2-byte integer. The replication factor changes the scaling applied
to the pattern.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an array of 8 bytes
constituting a 54-bit pattern. Only the bits specified in the pattern-length parameter are
used.

pattern _length
The length of the bit pattern, in bits. This is a 2-byte integer. The returned values range
from 1 to 54.

2-9 2D GMR Routines

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_SET _DRAW _STYLE to change the line style in an attribute
block.

2D G MR Routines 2-10

Returns the value for drawing lines set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the drawing value.
This is a 2-byte integer.

OUTPUT PARAMETERS

value
The line drawing value. This is a 4-byte integer. The default draw value is 1.

A value of -1 means that when this attribute block is selected, the draw value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _DRAW _VALUE to change the line drawing value in an
attribute block. The effect is influenced by the plane mask and the raster op.

2-11 2D G MR Routines

GM_$ABLOCK_INQ_FILL_BACKGROUND_ VALUE

GM_$ABLOCK_INQ_FILL_BACKGROUND _ VALUE

Returns the background value for filling areas in the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the fill background
value. This is a 2-byte integer.

OUTPUT PARAMETERS

value
The fill background value of the specified attribute block. This is a 4-byte integer. The
default value is -2, the same as the viewport background.

The value -1 means that fill background pixels are to be left unchanged; that is, the fill
background is II transparent. II

The value -3 means that when this attribute block is selected, the fill background value is
not to be changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$ABLOCK_INQ_FILL_BACKGROUND_V I ALUE

Use GM_$ABLOCK_SET_FILL_BACKGROUND_ VALUE to change the fill value in
an attribute block.

2D G MR Routines 2-12

GM_$ABLOCK_INQ_FILL_PATTERN

Returns the pattern set for filling areas for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the fill pattern. This
is a 2-byte integer.

OUTPUT PARAMETERS

scale

size

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer.

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET_FILL_PATTERN to change the fill pattern in an attribute
block.

2-13 2D G MR Routines

GM_$ABLOCK_INQ_FILL_ VALUE

Returns the value set for filling areas for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablockid
The identification number of the attribute block for'which to return the fill value. This is a
2-byte integer.

OUTPUT PARAMETERS

value
The value for filling areas. This is a 4-byte integer. The default fill value is 1.

A value of -1 indicates that when this attribute block is selected, the fill value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _F'ILL_ VALUE to change the fill value in an attribute block.

, 2D GMR Routines 2-14

GM_$ABLOCK_INQ_FONT_FAMILY

GM_$ABLOCK_INQ_FONT_FAMILY

Returns the font family identification number set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text font family.
This is a 2-byte integer.

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default value is 1.

A value of -1 indicates that when this attribute block is selected, the font family is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_SET _FONT _FAMILY to change the text font family
identification in this attribute block.

2-15 2D G MR Routines

GM_$ABLOCK_INQ_PLANE_MASK

GM _ $ABLOCK _ INQ _ PLANE _ MASK

Returns the value of the plane mask set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the plane mask values.
This is a 2-byte integer.

OUTPUT PARAMETERS

change
A Boolean (logical) variable that indicates whether the plane mask is to be changed when
the specified attribute block is selected. When true, the plane mask is to be changed to
II mask. II A value of change = false means that when this attribute block is selected, the
plane mask is not to be changed. In this case, the value of mask is undefined.

mask
The plane mask, specifying which planes are currently in use, in
GM_$PLANE_MASK_ T format. This is a 2-byte integer. This value may be any
combination of the set of integer values from 0 to 7. Each integer corresponds to a plane in
use. For example, if 0 and 7 are set, planes 0 and 7 are in use. The default is that all
planes are in use and can be modified.

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Operations can occur only on the planes specified in the mask. A program can use this
routine, for example, to perform drawing operations only into certain planes in the bitmap.

Use GM_ $ABLOCK_SET _PLANE_MASK to set the plane mask in an attribute block.

2D CMR Routines 2-16

GM_$ABLOCK_INQ_ TEXT _BACKGROUND _ VALUE

Returns the text background value set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text background
value. This is a 2-byte integer.

OUTPUT PARAMETERS

value
The value to use for the text background in this attribute block. This is a 4-byte integer.

The default text background value is -2. This specifies that the viewport background value
is used as the text background. For borrowed displays and main memory bitmaps, this is
always o.

A value from 0 to 255 means to use that value.

-1 means that text background pixels are to be left unchanged; that is, the text background
is 1\ transparent. 1\

-3 means that when this attribute block is selected, the text background value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$ABLOCK_INQ_TEXT_BACKGROUND_V 1 ALUE

Use GM $ABLOCK SET TEXT BACKGROUND VALUE to set the text
background value in an attribute block.

2-17 2D GMR Routines

GM_$ABLOCK_INQ_TEXT_SIZE

Returns the size of text set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text size. This is a
2-byte integer.

OUTPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value. The default text size is 10.0.

A value of -1 indicates that when this attribute block is selected, the text size is not to be
changed.

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The choice of a font from a font family is based on the specified text size. The largest font
in the font family that does not exceed the text size is used. The size of a font is defined as
the largest ascender height of any character in the font; the descender is ignored.

Use GM $ABLOCK SET TEXT SIZE to set the text size in an attribute block.

2D GMR Routines 2-18

GM_ $ABLOCK_INQ_ TEXT _ VALUE

Returns the value for writing text for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text value. This is
a 2-byte integer.

OUTPUT PARAMETERS

value
The value to use for writing text. This is a 4-byte integer. The default text value is 1.

A value of -1 indicates that when this attribute block is selected, the text value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM $ABLOCK SET TEXT VALUE to set the text value in an attribute block.

2-19 2D GMR Routines

GM $ABLOCK SET DRAW RASTER OP

GM $ABLOCK SET DRAW RASTER OP

Changes the raster operation code for drawing lines for this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the drawing style. This
is a 2-byte integer.

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15. The
default value is 3. This sets all destination bit values to source bit values.

Assigning the value = -1 means that when this attribute block is selected, the draw raster op
value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_DRAW _RASTER_ OP to retrieve the current raster
operations in an attribute block.

2D G MR Routines 2-20

GM $ABLOCK SET DRAW STYLE

GM $ABLOCK SET DRAW STYLE

Changes the value of the line style in this attribute block.

FORMAT

GM_$ABLOCK_SET_DRAW_STYLE (ablock_id, style, repea't_factor, pattern,
pattern_length, status)

INPUT PARAMETERS

ablock id

style

The identification number of the attribute block in which to change the drawing style. This
is a 2-byte integer.

The style of line, in GM_$LlNE_STYLE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $SOLID Specifies a solid line. If style = GM_$SOLID, then repeat_factor,
pattern, and pattern_length are ignored. The default draw style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_ $DOTTED, then
pattern and pattern_length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat _ factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Currently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an array of 8 bytes
constituting a 54-bit pattern. Only the first pattern_length bits are used.

pattern _length
The length of the bit pattern, in bits. This is a 2-byte integer. Currently, pattern_length
is ignored and assumed to be 54.

2-21 2D GMR Routines

GM $ABLOCK SET DRAW STYLE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The following defines a line pattern with dashes and spaces, twelve and four pixels long,
respectively:

pattern
[CHAR(
, CHAR (
, CHAR (
, CHAR (
];

: STATIC gm_$draw_pattern_t :=
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)

Use GM_$ABLOCK_INQ_DRAW _STYLE to retrieve the current line style.

2D GMR Routines 2-22

GM $ABLOCK SET DRAvV VALUE

GM $ABLOCK SET DRAW VALUE

Changes the value for drawing lines in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the drawing value.
This is a 2-byte integer.

value
The value to use in drawing lines. This is a 4-byte integer. The default value is 1.

Assigning the value = -1 means that when this attribute block is selected, the draw value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_DRAW _VALUE to retrieve the current draw value in an
attribute block.

2-23 2D G !vIR Routines

GM $ABLOCK SET Fll.,L BACKGROUND VALUE

GM $ABLOCK SET FILL BACKGROUND VALUE

Changes the background value for filling areas in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the fill background
value. This is a 2-byte integer.

value
The fill background value to use in the specified attribute block. This is a 4-byte integer.
The default value is -2, the same as the viewport background.

Assigning a value from 0 to 255 means to use that value.

Assigning a value of -1 means that fill background pixels are to be left unchanged; that is,
the fill background is II transparent. II

\Assigning the value = -3 means that when this attribute block is selected, the fill
~ackground value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _" $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 I 34567890
---------------------------------1---------
GM_$ABLOCK_SET_FILL_BACKGROUND_V I ALUE

Use GM_$ABLOCK_INQ_FILL_BACKGROUND_ VALUE to retrieve the current fill
background value in an attribute block.

2D CMR Routines 2-24

GM $ABLOCK SET FILL PATTERN

GM $ABLOCK SET FILL PATTERN

Changes the fill pattern in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id

scale

size

The identification number of the attribute block in which to change the fill pattern. This is
a 2-byte integer.

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern), 0 (when clearing a pattern), or -1 (when
specifying II no change II).

A value scale = 0 indicates that filled areas are to be filled with a solid color and that the
pattern is to be ignored. In this case, the fill value is assigned to every pixel in the interior
of the specified area.

Assigning the value scale = -1 means that when this attribute block is selected, the fill
pattern is not to be changed.

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32 x 32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_FILL_PATTERN to retrieve the current fill pattern in an
attribute block.

2-25 2D G MR Routines

GM $ABLOCK SET F~L VALUE

GM $ABLOCK SET FILL VALUE

Changes the value for filling areas in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the fill value. This is a
2-byte integer.

value
The value for filling areas in the specified attribute block. This is a 4-byte integer. The
default value is 1.

Assigning the value = -1 means that when this attribute block is selected, the fill value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_FILL_ VALUE to retrieve the current fill value in an
attribute block.

2D CMR Routines 2-26

GM $ABLOCK SET FONT FAM~Y

GM $ABLOCK SET FONT FAM~Y

Changes the font family in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the text font family.
This is a 2-byte integer.

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default text font family identification number is 1.

Assigning value = -1 means that when this attribute block is selected, the font family is not
to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_INQ_FONT _F AM~ Y to retrieve the current text font family
identification in an attribute block.

Use GM_ $FONT _F AM~ Y _INQ_ID to retrieve the identification number of a font
family for which you know the name.

2-27 2D GMR Rout-ines

GM $ABLOCK SET PLANE MASK

GM $ABLOCK SET PLANE MASK

Changes the value of the plane mask in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the plane mask. This
is a 2-byte integer.

change
A Boolean (logical) variable that indicates whether the plane mask is to be changed when
the specified attribute block is selected. When change is set to true, the plane mask is to be
changed to IImask li

• Assigning change = false means that when this attribute block is
selected, the plane mask is not to be changed.

mask
The plane mask, specifying which planes to use, in GM_$PLANE_MASK_ T format.
This is a 2-byte integer.

The default value is [0 ... 7]' in GM_$PLANE_MASK_ T format, or 255 when expressed as
a 2-byte integer. The default is that all planes are in use and can be modified.

FORTRAN programmers should encode the plane mask in a 2-byte integer in the range of
0-255 (1 means plane 0 is on, 2 means plane 1 is on, 3 means planes 0 and 1 are on, 255
means planes 0 through 7 are on).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-28

GM $ABLOCK SET PLANE MASK

USAGE

Operations can occur only on the planes specified in the mask. A program can use this
routine, for example, to perform drawing operations only into certain planes in the bitmap.

FORTRAN programmers might want to include the parameter definitions given below:

integer*2
+ bitO,
+ bit1,
+ bit2,
+ bit3,
+ bit4,
+ bitS,
+ bit6,
+ bit7

parameter C
+ bitO 16#0001,
+ bit1 16#0002,
+ bit2 16#0004,
+ bit3 16#0008,
+ bit4 16#0010,
+ bitS 16#0020,
+ bit6 16#0040,
+ bit7 16#0080)

Example:

In FORTRAN, to enable planes 2 and S, use the following:

CALL GM_$PLANE_MASKC bit2 + bitS, status

In Pascal, to enable planes 2 and S, use the following:

2-29 2D GMR Routines

GM $ABLOCK SET TEXT BACKGROUND VALUE

GM $ABLOCK SET TEXT BACKGROUND VALUE

Changes the background value for text in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the text background
value. This is a 2-byte integer.

value
The value to use for the text background in this attribute block. This is a 4-byte integer.

The default text background value is -2. This specifies that the viewport 'background value
is used as the text background. For borrowed displays and main memory bitmaps, this is
always O.

Assigning a value from 0 to 255 means to use that value.

Assigning a value of -1 means that text background pixels are to be left unchanged; that is,
the text background is "transparent. 1I

Assigning the value = -3 means that when this attribute block is selected, the text
background value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

I
12345678901234567890123456789012 I 34567890
---------------------------------1---------
GM_$ABLOCK_SET_TEXT_BACKGROUND_V I ALUE

Use GM_$ABLOCK_INQ_ TEXT _BACKGROUND _ VALUE to retrieve the current
text background value in an attribute block.

2D G MR Routines 2-30

GM $ABLOCK SET TEXT SIZE

GM $ABLOCK SET TEXT SIZE

Changes the size of text in this attribute block.

FORMAT

GM_$ABLOCK_SET TEXT SIZE (ablock_id, size, status)

INPUT PARAMETERS

ablock id

size

The identification number of the attribute block in which to change the text size. This is a
2-byte integer.

The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value. The default text size is 10.0.

The value of -1 indicates that when this attribute block is selected, the text size is not to be
changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The choice of a font from a family is based on the specified text size. The largest font in
the family that does not exceed this height is used. The size of a font is defined as the
largest ascender height on any character in the font; descender sizes are ignored.

Use GM_$ABLOCK_INQ_ TEXT _SIZE to retrieve the current text size in an attribute
block.

2-31 2D G MR Routines

GM $ABLOCK SET TEXT VALUE

GM $ABLOCK SET TEXT VALUE

Changes the value for writing text set for this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the text value. This is
a 2-byte integer.

value
The value to use for writing text. This is a 4-byte integer. The default text value is 1.

Assigning the value = -1 means that when this attribute block is selected, the text value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_ TEXT _ VALUE to retrieve the current text value in an
attribute block.

2D GMR Routines 2-32

GM $ACLASS

GM $ACLASS

Inserts a command into the current segment: change to a different attribute class.

FORMAT

GM_$ACLASS (aclass_id, status)

INPUT PARAMETERS

aclass id
The identification number of the attribute class to use. This is 2-byte integer.

The maximum number of attribute classes is 16.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-33 2D GMR Routines

GM_ $CmCLE _ [16,32,REAL]

GM_$CmCLE_[16,32,REAL]

Inserts a command into the current segment: draw a circle.

FORMAT

GM_$CIRCLE_16 (center, radius, fill, status)

GM_$CIRCLE_32 (center, radius, fill, status)

GM_$CIRCLE_REAL (center, radtus, fill, status)

INPUT PARAMETERS

center
The point that is the center of the circle. This is a pair (x,y) of values in the appropriate
format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$INQ_ CmCLE_16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $INQ_ CmCLE_ 32

GM $POINTREAL
A two-element array of real values for GM_ $INQ_ CmCLE _REAL

See the GM_ $ Data Types section for more information.

radius
The radius of the circle, in the appropriate format:

A 2-byte integer for GM_$CmCLE_16

A 4-byte integer for GM_$CmCLE_32

A real value for GM $CmCLE REAL

fill
A Boolean (logical) value which specifies whether to fill the circle.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-34

GM_ $CmCLE _ [16,32,REAL]

USAGE

Use GM_$INQ_OIROLE_[16,32,REAL] to retrieve the parameters of a circle command
inserted by GM_$OIROLE_[16,32,REAL].

Circles may be scaled, rotated, and/or reflected. However, when you apply a transform in
which one axis is stretched more than another, you get a circle of undefined size, not a
distorted circle.

Before supplying coordinate data to GM_$CmOLE_REAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2-35 2D G MR Routines

GM $COMMAND DELETE

GM $COMMAND DELETE

Deletes the current command.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

After you delete the current command, the command before it in the current segment
becomes the current command.

Use GM_ $PICK_ COMMAND to change the current command.

2D G lvlR Routines 2-36

Returns the bounds of the current command in the current segment.

FORMAT

OUTPUT PARAMETERS

bounds
Bounds of the command in GM_ $BOUNDSREAL _ T format. This is a four-element array
of real numbers. See the GM_ $ Data Types section for more information.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes. long. See the
GM_ $ Data Types section for more information.

USAGE

Use this call to obtain the bottom left-hand and top right-hand coordinates of the current
command in the current segment.

Use GM_$SEGMENT _INQ_BOUNDS to obtain the bounds of a segment.

Use GM_$Fll..E_INQ_BOUNDS to obtain the bounds of the primary segment in a file.

2-37 2D G !v1R Routines

GM $COORD BITMAP TO PIXEL 2D

GM $COORD BITMAP TO PIXEL 2D

Converts fraction of GM bitmap coordinates to pixel coordinates.

FORMAT

INPUT PARAMETERS

bitmap _ position
The bitmap coordinates to be converted to pixel coordinates, expressed as an (x,y) pair in
terms of a fraction of the GM bitmap in GM_$POINTREAL_ T format. This is a two
element array of real values. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

pixel_ position
The converted pixel coordinates in the current bitmap, in GM_ $POINT16 _ T format.
This is a two-element array of 2-byte integer values. See the GM_ $ Data Types section for
more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use this call only in GM_ $ CURRENT _BITMAP mode, when using 2D GMR with
DOMAIN/Dialogue. For information on the DOMAIN/Dialogue user interface software
refer to the The DOMAIN/Dialogue User's Guide.

2D GMR Routines 2-38

GM $COORD BITMAP TO SEG 2D

GM $COORD BITMAP TO SEG 2D

Converts fractionn of GM bitmap coordinates to segment coordinates.

FORMAT

INPUT PARAMETERS

bitmap _ position
The bitmap coordinates to be converted to segment coordinates, expressed as an (x,y) pair
in terms of a fraction of the GM bitmap in GM_ $POINTREAL _ T format. This is a
two-element array of real values. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

segment _ position
The converted segment coordinates, in GM_$POINTREAL_ T format. This is a two
element array of real values. See the GM _ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine converts the bitmap coordinates to segment coordinates of the primary
segment of the current viewport.

In within-GPR mode, use GM_$COORD_PIXEL_TO_SEG_2D.

2-39 2D G MR Routines

GM $COORD PIXEL TO BITMAP 2D

GM $COORD PIXEL TO BITMAP 2D

Converts pixel coordinates to fraction of GM bitmap coordinates.

FORMAT

INPUT PARAMETERS

pixel_ position
The pixel coordinates in the current bitmap to be converted to GM bitmap coordinates, in
GM_ $POINT16 _ T format. This is a two-element array of 2-byte integer values. See the
GM_ $ Data Types section for more information.

, OUTPUT PARAMETERS

bitmap _ position
The bitmap coordinates expressed as an (x,y) pair in terms of a fraction of the GM bitmap
in GM_ $POINTREAL _ T format. This is a two-element array of real values. See the
GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use this call only in GM_$CURRENT _BITMAP mode, when using 2D GMR with
DOMAIN/Dialogue. For information on the DOMAIN/Dialogue user interface software
refer to the The DOMAIN/Dialogue User's Guide. -

2D G MR Routines 2-40

GM $COORD PIXEL TO SEG 2D

GM $COORD PIXEL TO SEG 2D

Converts GPR bitmap coordinates used in within-GPR mode to segment coordinates, using
a specified transformation.

FORMAT

GM_$COORD_PlXEL_TO_SEG 2D (rotate, translate, pixel_position,
segment_position, status)

INPUT PARAMETERS

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_$POINTREAL_ T format. This
is a two-element array of real values. See the GM_ $ Data Types section for more
information.

pixel_ position
The pixel coordinates to be converted to segment coordinates, expressed as an (x,y) pair, in
GM_ $POINT16 _ T format. This is a 2-byte integer array of two elements. See the
GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

segment _ position
The converted segment coordinates, in GM_ $POINTREAL _ T format. This is a two
element array of real values. See the GM _ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

In modes other than within-GPR mode, use GM _ $COORD _ BITMAP _ TO _ SEG _ 2D.

2-41 2D GAfR Routines

GM $COORD SEG TO BITMAP 2D

GM $COORD SEG TO BITMAP 2D

Converts segment coordinates to bitmap coordinates.

FORMAT

INPUT PARAMETERS

segment _ position
The segment coordinates to be converted to bitmap coordinates, in GM _ $POINTREAL _ T
format. This is a two-element array of real values. See the GM _ $ Data Types section for
more information.

OUTPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of a fraction of the
GM bitmap, in GM_ $POINTREAL _ T format. This is a two-element array of real
values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine converts the segment coordinates of the primary segment in the current
viewport to bitmap coordinates.

In within-GPR mode, use GM __ $COORD _ SEG _ TO _ PIXEL _ 2D.

2D GMR Routines 2-42

GM $COORD SEG TO PIXEL 2D

GM $COORD SEG TO PIXEL 2D

Converts within-GPR segment coordinates to GPR bitmap coordinates, using a specified
transformation.

FORMAT

GM_$COORD_SEG_TO_PlXEL 2D (rotate, translate, segment_position,
pixel_position, status)

INPUT PARAMETERS
question

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM _ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_$POINTREAL_ T format.
This is a two-element array of real values. See the GM_ $ Data Types section for more
information.

segment _ position
The segment coordinates to be converted to pixel coordinates, in GM _ $POINTREAL _ T
format. This is a two-element array of real values. See the GM_ $ Data Types section for
more information.

OUTPUT PARAMETERS

pixel_ position
The converted pixel coordinates expressed as an (x,y) pair, in GM_ $POINT16 _ T format.
This is a two-element array of 2-byte integers. See the GM_ $ Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

In modes other than within-GPR mode, use GM _ $COORD _ SEG _ TO _ BITMAP _ 2D.

2-43 2D G MR Routines

GM_$CURSOR_INQ_ACTIVE

Returns the status of the cursor: displayed or not displayed.

FORMAT

OUTPUT PARAMETERS

active
A Boolean (logical) value that indicates whether or not the cursor is displayed. The
parameter is set to true if the cursor is displayed; it is set to false if the cursor is not
displayed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $CURSOR_SET _ACTIVE to change the display status of the cursor.

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM_$CURSOR_SET _POSITION to change the position of the cursor.

2D GMR Routines 2-44

GM_ $CURSOR_INQ_PATTERN

GM_$CURSOR_INQ_PATTERN

Returns the type, pattern, and origin of the cursor.

FORMAT

GM_$CURSOR_INQ_PATTERN (style, pattern_size, pattern, origin, status)

OUTPUT PARAMETERS

style
The cursor style, in GM_$CURSOR_STYLE_ T format. This is a 2-byte integer.
Currently, the only valid value is GM_ $BITMAP.

pattern _ size
The size of the cursor pattern, in GM_ $POINT16 _ T format. This is a two-element array
of 2-byte integers. Currently, neither coordinate size may exceed 16. See the GM $ Data
Types section for more information.

pattern
The cursor pattern, in GM_$CURSOR_PATTERN_ T format. This is an array of
(pattern_size.y) 2-byte integers. The length of the array is determined by the y value of
pattern _ size.

origin
The offset from the pixel at the upper left of the cursor to the pixel at the origin of the
cursor, in GM_ $POINT16 _ T format. This is a two-element array of 2-byte integers. See
the GM_ $ Data Types section for more information.

When the cursor is moved using GM_$CURSOR_SET _POSITION, the pixel that is the
cursor's origin is placed at the specified location.

The first element (x) indicates the number of cursor pixels that will be displayed to the left
of the specified cursor location. The second element (y) indicates the number of cursor
pixels that will be displayed above the specified cursor location. Both numbers must be
between 0 and 15; only the first four bits are considered.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM_ $CURSOR_SET _ACTIVE to change the display status of the cursor.

Use GM_ $CURSOR_SET _POSITION to change the position of the cursor.

2-45 2D GMR Routines

GM _ $CURSOR _ INQ _ POSITION

GM_$CURSOR_INQ_POSITION

Returns the position of the cursor.

FORMAT

OUTPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of fractions of the
GM bitmap, in GM_$POINTREAL_ T format. This is a two-element array of real
values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $CURSOR_SET _POSITION to change the position of the cursor.

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM _ $CURSOR _ SET _ ACTIVE to change the display status of the cursor.

2D G MR Routines 2-46

GM $CURSOR SET ACTIVE

GM $CURSOR SET ACTIVE

Specifies whether or not the cursor is displayed.

FORMAT

GM_$CURSOR_SET ACTIVE (active, status)

INPUT PARAMETERS

active
A Boolean (logical) value that indicates whether or not the cursor is displayed. The
parameter is set to true if the cursor is displayed; it is set to false if the cursor is not
displayed.

The default value for active is false.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $CURSOR _ INQ _ ACTIVE to retrieve the display status of the cursor.

2-47 2D G MR Routines

GM $CURSOR SET PATTERN

GM $CURSOR SET PATTERN

Specifies a cursor pattern, type, and origin.

FORMAT

GM_$CURSOR_SET PATTERN (style, pattern_size, pattern, origin, status)

INPUT PARAMETERS

style
The cursor style, in GM_ $CURSOR_STYLE_ T format. Currently, the only valid value
is GM $BITMAP.

pattern size
The size of the cursor pattern, in GM_ $POINT16 _ Tformat. This is a two-element array
of 2-byte integers. Currently, neither coordinate size may exceed 16. See the GM $ Data
Types section for more information.

pattern
The cursor pattern, in GM_$CURSOR_PATTERN_ T format. This is an array of
(pattern_size.y) 2-byte integers. The length of the array is determined by the y value of
pattern _ size.

The default cursor uses the standard Display Manager pattern.

origin
The offset from the pixel at the upper left of the cursor to the pixel at the origin of the
cursor, in GM_ $POINTI6 _ T format. This is a two-element array of 2-byte integers. See
the GM_ $ Data Types section for more information.

When the cursor is moved using GM_ $CURSOR_SET _POSITION, the pixel that is the
cursor's origin is placed at the specified location.

The first element (x) indicates the number of cursor pixels that will be displayed to the left
of the specified cursor location. The second element (y) indicates the number of cursor
pixels that will be displayed above the specified cursor location. Both numbers must be
between 0 and 15; op.ly the first four bits are considered.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-48

GM $CURSOR SET PATTERN

USAGE

The default value is the standard Display Manager pattern.

Use GM_$CURSOR_INQ_PATTERN to retrieve the current pattern of the cursor.

You must place a cursor pattern smaller than 16x16 in the high-order bits of the first words
of the pattern:

VAR
{ note that a cursor pattern smaller than 16x16

starts in the high order bits, and starts
in word 1 of the array }

cursor_patternl : gm_$cursor_pattern_t
:= [16#8080,16#4100,16#2200,16#1400,

16#800,16#1400,16#2200,16#4100,16#8080] ;
cursor size gm_$point16_t:= [9,9];
cursor_origin : gm_$point16_t := [4,4];

gm_$cursor_set_pattern (gm_$bitmap , cursor_size,
cursor_pattern1,cursor_origin, status);

2-49 2D GMR Routines

GM $CURSOR SET POSITION

GM $CURSOR SET POSITION

Moves the cursor on the screen.

FORMAT

GM_$CURSOR_SET POSITION (bitmap __ position, status)

INPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of fractions of the
GM bitmap, in GM_ $POINTREAL _ T format. This is a two-element array of real
values. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$CURSOR_INQ_POSITION to retrieve the current position of the cursor.

2D G MR Routines 2-50

GM_ $ CURVE _ 2D[16,32,REALj

GM_ $CURVE _2D[16,32,REAL]

Inserts a command into the current segment: draw a curve.

FORMAT

GM_$CURVE_2D16 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2D32 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2DREAL (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

INPUT PARAMETERS

curve_type
The type of curve to be drawn, in GM_$CURVE_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $ARC 3P Specifies an arc to be drawn through three points (n_points) in the point
array (point_array). The value for n_points must equal 3.

GM $SPLlNE CUBIC P
Specifies a smooth curve (parametric cubic spline) to be drawn through
the specified number of point (n_points) in the point array
(point _ array).

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinate points, each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$CURVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$CURVE_2D32

GM $POINTREAL
A two-element array of real values for GM_$CURVE_2DREAL

See the GM _ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters. This is an array of real values.

2-51 2D G MR Routines

GM_ $ CURVE _2D[16,32,REAL]

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Currently, n_parameters and parameter _array are not used.

Use GM_ $INQ_ CURVE_2D[16,32,REAL) to retrieve the parameters of a curve command
inserted by GM_$CURVE_2D[16,32,REAL).

Curves are limited to 1000 (GM_$MAX_ARRAY _LENGTH) points.

Before supplying coordinate data to GM_ $CURVE_2DREAL, you must call
GM_$DATA_COERCE_SET __ REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2D GMR Routines 2-52

Returns the data type to which real coordinates are converted.

FORMAT

OUTPUT PARAMETERS

data_type
The form in which to store data, in GM_ $DATA_ TYPE _ T format. This is a 2-byte
integer. Data sent to the package as real variables can be stored in another form.
Currently, the only valid value is GM_ $32.

You must set the data type to GM_$32 because real data must be coerced to 32-bit data
before it can be stored.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$DATA_ COERCE_SET _REAL to force real variables that you send to the
package to be stored in another form.

2-:53 2D GMR Routines

GM $DATA COERCE SET REAL

GM $DATA COERCE SET REAL

Specifies the data type to which subsequent real coordinates are converted.

FORMAT

INPUT PARAMETERS

data_type
The form in which to store data, in GM_ $DATA_ TYPE _ T format. This is a 2-byte
integer. Data sent to the package as real variables can be stored in another form.
Currently, the only valid value is GM_ $32.

You must set the data type to GM_ $32 because real data must be coerced to 32-bit data
before it can be stored.

OUTPUT PARAMETERS

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$DATA_ COERCE_INQ_REAL to retrieve the data type to which real
coordinate data is to be coerced.

Ourrently, supplying real coordinate data before calling this routine is an error.

2D GMR Routines 2-54

OM $DISPLAY FILE

GM $DISPLAY FILE

Displays the entire current file in the current viewport.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
OM_ $ Data Types section for more information.

USAGE

This command changes the view transformation to a value which will cause the entire
metafile to be displayed as follows: one of the two dimensions fills 95 percent of the current
viewport, and the other dimension fills less than or equal to 95 percent of the current
viewport.

Note that the OM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display. You then display that
composite segment.

2-55 2D G MR Routines

GM $DISPLAY FILE PART

Displays part of the current file in the current viewport.

FORMAT

INPUT PARAMETERS

bounds
The part of the primary segment of this file to be displayed, in terms of segment
coordinates. This is a four-element array of real numbers (xmin, ymin, xmax, ymax), in
GM $BOUNDSREAL T format. See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This command sets the view transformation to a value which causes the specified part of
the file to be displayed as follows: one of the two dimensions fills the viewport, and the
other dimension does not overflow the viewport.

The GM package clears the viewport before displaying a file or segment in the viewport.
To display more than one segment in a viewport, you must build a new segment which
contains an instance of each segment you wish to display. You then display that composite
segment.

2D G MR Routines 2-56

GM_ $DISPLAY _INQ_ COLOR_MAP

Returns the values in the display color map.

FORMAT

INPUT PARAMETERS

start index
Index of first color value entry to be read. This is a 4-byte integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1 - 16 For color displays in 4-plane configuration

1 - 256 For color displays in 8-plane configuration

OUTPUT PARAMETERS

values
Color value entries, in GM_$COLOR_ VECTOR_ T format. This is an array of real
values. The array must be at least (3 * n_ entries) in length.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$DISPLAY _SET _ COLOR_MAP to change the value of the display color map.

2-57 2D G MR Routines

GM $DISPLAY REFRESH

GM $DISPLAY REFRESH

Redisplays all uninhibited viewports of the display.

FORMAT

GM_$DISPLAY_REFRESH (status)

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Viewports that are in the GM_ $REFRESH_INHIBIT refresh state are not displayed.

2D G MR Routines 2-58

GM $DISPLAY SEGMENT

GM $DISPLAY SEGMENT

Displays the specified segment (and all called segments) in the current viewport.

FORMAT

INPUT PARAMETERS

segment _ id
The identification number of the segment to display, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This command changes the view transformation to a value which will cause the entire
segment to be displayed as follows: one of the two dimensions fills 95 percent of the current
viewport, and the other dimension fills less than or equal to 95 percent of the current
viewport.

Use GM_ $DISPLAY _FILE to display the entire file.

Note that the GM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display . You then display that
composite segment.

2-59 2D G !v1R Routines

GM $DISPLAY SEGMENT GPR 2D

GM $DISPLAY SEGMENT GPR 2D

In within-GPR mode, allows you to display a segment within a GPR bitmap.

FORMAT

GM_$DISPLAY_SEGMENT GPR 2D Csegment_id, rotate, transl~te, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to display, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_$POINTREAL_ T format. This
is a two-element array of real values. See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

You must specify the transform which relates segment coordinates of your selected segment
to display coordinates (GPR coordinates). This is specified as a 2x2 rotation to be applied
to coordinates in the segment, then a translation to be applied after this rotation.

If you have put data into segments with y pointing up, you will have to insert negative
values into your transform.

The attributes you are currently using in your current GPR attribute block are used, until
modified by attribute commands in the file.

In direct mode, a program must acquire the display before calling
GM $DISPLAY SEGMENT GPR 2D. The graphics metafile package will not acquire
the display.

2D G MR Routines 2-60

GM $DISPLAY SEGMENT GPR 2D

Rotation: Use the following to display segment little _seg at (400,300), at triple size and
rotated 50 degrees:

rotate.xx - 3.0 * cos(50.0 * 3.14159/180.0);
rotate.xy - 3.0 * sin(50.0 * 3.14159/180.0);
rotate.yx - -rotate.xy;
rotate.yy - rotate.xx;
rpoint.x := 400.0;
rpoint.y := 300.0;
GM_$DISPLAY_SEGMENT_GPR_2D(little_seg, rotate,

rpoint, status);

Distortion: Use the following to display segment distort_seg at (12.5, 14.5), with a scale of
1 in the x direction and a scale of 3 in the y direction, unrotated:

rotate.xx - 1.0;
rotate.xy 0.0;
rotate.yx - 0.0;
rotate.yy - 3.0;
rpoint.x - 12.5;
rpoint.y - 14.5;
GM_$DISPLAY_SEGMENT_GPR_2D(distort_seg, rotate,

rpoint, status);

2-61 2D GMR Routines

GM $DISPLAY SEGMENT PART

GM $DISPLAY SEGMENT PART

Displays part of the specified segment (and all called segments) in the current viewport.

FORMAT

GM_$DISPLAY_SEGMENT PART Csegment_id, bounds, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to display, in GM_ $ SEGMENT _ID _ T format.
This is a 4-byte integer.

bounds
The part of this segment to be displayed, in terms of segment coordinates. This is a four
element array of real values (xmin, ymin, xmax, ymax), in GM_ $BOUNDSREAL _ T
format. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This command sets the view transformation to a value which causes the specified part of
the segment to be displayed as follows: one of the two dimensions fills the viewport, and
the other dimension does not overflow the viewport.

It is necessary that ymax be greater than ymin and that xmax be greater than xmin.

Note that the GM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display . You then display that
composite segment.

2D GMR Routines 2-62

GM $DISPLAY SET COLOR MAP

GM $DISPLAY SET COLOR MAP

Changes values in the display color map.

FORMAT

INPUT PARAMETERS

start index
Index of first color value entry to be read. This is a 4-byte integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1 - 16 For color displays in 4-plane configuration

1 - 256 For color displays in 8-plane configuration

values
Color value entries, in GM_$COLOR_ VECTOR_ T format. This is an array of real
values. The array must be at least (3 * n_ entries) in length.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 by~es long. See the
GM_ $ Data Types section for more information.

USAGE

The GM package initializes the color map to 0 = black, 1 = white.

Use GM_ $DISPLAY _INQ_ COLOR_MAP to retrieve the value of the display color
map.

2-63 2D GMR Routines

GM $DRAW RASTER OP

GM $DRAW RASTER OP

Inserts a command into the current segment: change the logical raster operations to be
performed when drawing.

FORMAT

INPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15.

The default raster op value is 3. This sets all destination bit values to source bit values.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $INQ _ DRAW _ RASTER _ OP to retrieve the parameters of a raster op
command inserted by GM _ $DRA W _ RASTER _ OP.

2D GMR Routines 2-64

GM $DRAW STYLE

GM $DRAW STYLE

Inserts a command into the current segment: set the line style (solid, dotted).

FORMAT

GM_$DRAW_STYLE (style, repeat_factor, pattern, pattern_length, status)

INJ;>UT PARAMETERS

style
The style of line, in GM_$LINE_STYLE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $SOLID Specifies a solid line. If style = GM_$SOLID, then repeat_factor,
pattern, and pattern _length are ignored. The default drawing style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = G11_ $DOTTED, then
pattern and pattern_length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat _ factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Ourrently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an 8-byte array
constituting of a 64-bit pattern. Only the first pattern_length bits are used.

pattern _length
The length of the bit patt"ern, in bits. This is a 2-byte integer. Allowed values are 1
through 64. Ourrently, pattern_length is ignored and assumed to be 64.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-65 2D GMR Rout£nes

GM $DRAW STYLE

USAGE

The following defines a line pattern with dashes and spaces, twelve and four pixels long,
respectively:

pattern
[CHAR(
, CHAR (
I CHAR (
, CHAR (
];

: STATIC gm_$draw_pattern_t :=
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)

When a styled line is drawn, pixels along the path which are not in the pattern are not
affected. In other words, the implicit draw background value is transparent.

Use GM_$INQ_DRAW _STYLE to retrieve the current line style.

2D G MR Routines 2-66

GM $DRAW VALUE

GM $DRAW VALUE

Inserts a command into the current segment: set the value used when drawing lines.

FORMAT

INPUT PARAMETERS

value
The value used in drawing lines. This is a 4-byte integer.

The default draw value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_DRAW _VALUE to retrieve the current draw value.

2-67 2D GMR Routines

GM $F~E CLOSE

GM $F~E CLOSE

Closes the current file, saving revisions or not.

FORMAT

INPUT PARAMETERS

save
A Boolean (logical) value that indicates whether to save revisions. Set to true to save
revisions to the currently open segment; set to false not to save revisions.

Currently, save is always assumed to be true.

If a segment is open in this file, the segment is closed and then the file is closed. If no
segment was open, save is ignored.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D G MR Routines 2-68

GM $FILE COMPACT

GM $FILE COMPACT

Creates a new compacted GM file.

FORMAT

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-69 2D GMR Routines

GM $FILE COMPACT

USAGE

GM _ $FILE _ COMPACT changes the name of the the input file from * to *. bak (deleting
any existing * .bak) and then creates a new compacted GM file named *.

With GM_ $FILE _ COMPACT, you can develop a file compacting utility like the
following: .

PROGRAM compact;

@%NOLIST;
@%INCLUDE '/sys/ins/base.ins.pas';
@%INCLUDE '/sys/ins/gmr.ins.pas';
@%INCLUDE '/sys/ins/pfm.ins.pas';
@%LIST;

VAR

name
length
size
status

name_$pname_t;
INTEGER;
gm_$point16_t - [0, 0];
status_$t;

BEGIN

WRITE('File name: ') ;
READLN(name);

length := LASTOF(name);
WHILE (name[length] = ' ,) AND (length> 0)
DO length - length - 1;

GM_$INIT
(gm_$no_bitmap

o
, size

1
, status
) ;

IF status.all <> status_$ok
THEN pfm_$error_trapC status);

GM_$FILE_COMPACT
(name
, lengt.h
, status
) ;

IF status.all <> status_$ok
THEN pfm_$error_trapC status);

.GM_$TERMINATE
C status
) ;

IF status.all <> status_$ok
THEN pfm_$error_trapC status);

END.

2D G MR Routines 2-70

GM $FILE CREATE

GM $FILE CREATE

Creates a new graphics metafile and makes it the current file.

FORMAT

GM_$FILE_CREATE (name, name_length, access, concurrency, file_id, status)

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

access
The access mode, in GM_ $ACC _ CREATE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $WRITE If the file already exists, an error message is returned.

GM $OVERWRITE
If the file already exists, the previous version is deleted.

GM $UPDATE If the file already exists, the previous version is opened.

concurrency
The concurrency mode, defining the number of concurrent users the file may have, in
GM $CONC MODE T format. This is a 2-byte integer. Specify only one of the
following predefined values:

GM $lW N readers or 1 writer is permitted.

GM $COWRITERS
More than 1 writer is permitted, but all users must be on the same node.

Only one segment in the file may be open at a time, and only one writer
may be writing to a segment at a time.

OUTPUT PARAMETERS

file id
The identification number assigned to the file. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-71 2D GMR Routines

GM $F~E CREATE

USAGE

The GM $UPDATE access mode of GM _ $FILE _ CREATE and the GM $CWR access
mode of GM _ $FILE OPEN produce identical results.

2D G MR Routines 2-72

GM_$FILE_INQ_BOUNDS

GM_$F~E_INQ_BOUNDS

Returns the bounds of the primary segment of a file.

FORMAT

OUTPUT PARAMETERS

bounds
Bounds of the primary segment of the file in GM_ $BOUNDSREAL _ T format. This is a
four-element array of real numbers. See the GM_ $ Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use this routine to obtain the bottom left-hand and top right-hand coordinates of the
current file.

Use GM_ $SEGMENT _INQ_BOUNDS to obtain the boundary of the current segment.

Use GM_$COMMAND _INQ_BOUNDS to obtain the boundary of the current command.

2-73 2D G MR Routines

GM_$FILE_INQ_PRIMARY _SEGMENT

GM_$FILE_INQ_PRIMARY _SEGMENT

Returns the segment number assumed to be the start of the current file.

FORMAT

OUTPUT PARAMETERS

segment_id
The number of the primary segment of the current file, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

The primary segment is assumed to be the start of the picture.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

2D GMR Routines 2-74

GM $FILE OPEN

GM $FILE OPEN

Reopens an existing file and makes it the current file.

FORMAT

GM_$FILE_OPEN (name, name_length, access, concurrency, file_id, status)

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

access
The read/write accessibility, GM_ $ACC _ OPEN _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $WR

GM $R

GM $CWR

concurrency

Read or write. In this 3.ccess mode, it is an error to attempt to open a
nonexistent file.

Read only. In this access mode, it is an error to attempt to open a
nonexistent file.

Read or write; if file does not exist, create it.

The GM_$UPDATE access mode of GM $FILE CREATE and the
GM_ $CWR access mode of GM_ $FILE OPEN produce identical
results.

The concurrency mode, defining the number of concurrent users the file may have, in
GM_$CONC_MODE_ T format. This is a 2-byte integer. Specify only one of the
following predefined values:

GM $lW N readers or 1 writer is permitted.

GM $COWRITERS
More than 1 writer is permitted, but all users must be on the same node.

In GM_ $COWRITERS concurrency mode, only one segment in the file
may be open at a time, and only one writer may be writing to a segment
at a time.

2-75 2D G MR Routines

GM $FILE OPEN

OUTPUT PARAMETERS

file id
The identification number assigned to the file. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

In modes other than GM_ $CWR, it is an error to attempt to open a nonexistent file.

2D GMR Routines 2-76

GM $FILE SELECT

GM $FILE SELECT

Makes the specified file the current file.

FORMAT

INPUT PARAMETERS

file id
The identification number of the file which is to become the current file. This is a 2-byte
integer.

A file identification number is assigned by the G~/1 package when GM_ $FILE _ CREATE
or GM $FILE OPEN is called.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more infor!Ilation.

USAGE

When a file is created or opened, it becomes the current file. After closing the current file,
you must select any other open file before you can use it.

2-77 2D G !vIR Routines

GM $F~E SET PR~~Y SEGMENT

GM $F~E SET PRIMARY SEGMENT

Changes the segment number assumed to be the start of the current file.

FORMAT

INPUT PARAMETERS

segment_id
The number of the primary segment of the current file, in GM_$SEGMENT _ID _ T
format. This is a 4-byte integer.

The primary segment is assumed to be the start of the picture.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-78

GM $FILL BACKGROUND VALUE

GM $FILL BACKGROUND VALUE

Inserts a command into the current segment: set the value used for pixels not in the fill
pattern when filling an area.

FORMAT

INPUT PARAMETERS

value
The value used in filling areas. This a 4-byte integer.

The default value is -2. This sets the fill background value equal to the viewport
background value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_FILL_BACKGROUND _ VALUE to retrieve the parameters of a fill
background value command inserted by GM_$FILL_BACKGROUND _ VALUE.

2-79 2D GMR Routines

GM $FILL PATTERN

GM $FILL PATTERN

Inserts a command into the current segment: set the pattern used for the interior of filled
areas.

FORMAT

GM_$FILL_PATTERN (scale, size, pattern, status)

INPUT PARAMETERS

scale

size

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern) or 0 (when clearing a pattern).

A value scale = 0 indicates that filled areas are to be filled with a solid color and that the
pattern is to be ignored. In this case, the fill value is assigned to every pixel in the interior
of the specified area.

The default value is scale = 0 (solid fill).

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. Th.e default fill pattern is all ones.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $INQ _ FILL _ PATTERN to retrieve the parameters of a fill pattern command
inserted by GM _ $FILL _ PATTERN.

2D GMR Routines 2-80

GM $FILL VALUE

GM $FILL VALUE

Inserts a command into the current segment: set the value used when filling an area.

FORMAT

INPUT PARAMETERS

value
The value used in filling areas. This is a 4-byte integer.

The default fill value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_FILL_ VALUE to retrieve the parameters of a fill value command
inserted by GM_$FILL_ VALUE.

2-81 2D G MR Routines

GM $FONT FAMll..,Y

GM $FONT F AMIL Y

Inserts a command into the current segment: set the font family used when writing text.

FORMAT

INPUT PARAMETERS

font _ faIllily _ id
The identification number assigned to the font family. This is a 2-byte integer.

The default font family ID is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

As is characteristic of other attribute commands, this command specifies the font family to
be used for subsequent text commands of the current segment and all segments instanced
from the current segment.

Use GM_$INQ_FONT_FAMILY to get the value stored for the current
GM $FONT FAMILY command.

2D GMR Routines 2-82

GM $FONT FAMILY EXCLUDE

GM $FONT F AMIL Y EXCLUDE

Undoes the inclusion of a font family.

FORMAT

INPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Attempting to exclude a font family which is referenced by a font family command (as
generated by GM _ $FONT _ F AMIL Y) is an error.

2-83 2D G MR Routines

GM $FONT FAMILY INCLUDE

GM $FONT FAMILY INCLUDE

Specifies a font family to use in this metafile.

FORMAT

GM_$FONT_FAMILY_INCLUDE (pathname, pathname_length, font_type,
font_family_id, status)

INPUT PARAMETERS

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the pathname. This is a 2-byte integer.

font_type
The type of font, in GM_$FONT _ TYPE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FONT_FAMILY _INQ_ID to retrieve the font family identification of a
previously included font family.

Currently, you must include at least one font family before text commands will be
displayed.

2D G MR Routines 2-84

GM_$FONT_FAM~Y _INQ_ID

Returns the identification number of a previously included font family.

FORMAT

GM_$FONT_FAMILY_INQ_ID Cpathname, pathname_length, font_type,
font_family_id, status)

INPUT PARAMETERS

pathnam.e
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathnam.e _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font_type
The type of font, in GM_ $FONT _ TYPE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

OM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

font _ fam.ily _ id
The identification number assigned to the font family. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$FONT_FAM~Y _INCLUDE to change a font family to use in this metafile.

2-85 2D G MR Routines

GM_$FONT _FAMILY _INQ_NAME

GM_$FONT _FAMILY _INQ_NAME

Returns the font family name for the specified identification number of a previously
included font family.

FORMAT

GM_$FONT_FAMILY_INQ_NAME (font_family_id, font_type, pathname,
pathname_length, maximum_length, status)

INPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

maximum _length
The size of the array in the pathname parameter. This is a 2-byte integer.

OUTPUT PARAMETERS

font_type
The type of font, in GM_ $FONT _ TYPE _ T format. This is a 2-byte integer. Contains
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the pathname. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $FONT _FAMILY _INCLUDE to change a font family to use in this metafile.

2D GMR Routines 2-86

GM $FONT F AMIL Y RENAME

GM $FONT F AMIL Y RENAME

Changes the font family file corresponding to this font family identification.

FORMAT

GM_$FONT_FAMILY_RENAME (font_family_id, pathname, pathname_length,
font_type, status)

INPUT PARAMETERS

font _ family _ id
The identification number previously assigned to a font family. This is a 2-byte integer.

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the new pathname. This is a 2-byte integer.

font_type
The type of font, in GM_$FONT _ TYPE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-87 2D G MR Routines

GM $INIT

GM $INIT

Initializes the graphics metafile package and opens the display.

FORMAT

GM_$INIT (display_mode, unit, size, n_planes, status)

INPUT PARAMETERS

display _ mode

unit

size

One of six modes of operation. Graphics metafile routines can operate by borrowing the
entire display, by using a Display Manager window, by creating a main memory bitmap but
no display bitmap, by using an already initialized GPR bitmap, and by building a file
without a main memory or display memory bitmap. The value is in
GM_ $DISPLAY _MODE _ T format. Specify only one of the following predefined values:

GM $BORROW
Uses the entire screen.

GM $DIREOT Displays within a Display Manager window.

GM $MAIN BITMAP
Displays within a bitmap allocated in main memory.

GM $NO BITMAP
Allows editing of files without display.

GM $WITHIN GPR
Displays the output of the metafile within a bitmap that you initialize
using routines of the DOMAIN graphics primitives.

GM $OURRENT BITMAP
Use the current DOMAIN/Dialogue GPR bitmap.

This parameter has three possible meanings as follows:

The display unit, if the display mode is GM_ $BORROW. This is a 2-byte integer.
Ourrently, the only valid display unit number for borrow-display mode is 1.

The stream identifier for the pad, if the display mode is GM_ $DIREOT. Use
STREAM_ $ID _ T format. This is a 2-byte integer.

Any value, such as zero, in GM __ $MAIN_BITMAP, GM_$NO _BITMAP,
GM_$OURRENT_BITMAP, or GM_$WITHIN_GPR modes.

The size of the bitmap, in GM_ $POINT16 _ T format. This is a two-element array of
2-byte integers. The first element is the bitmap width in pixels; the second element is the
bitmap height in pixels. Each value may be any number between 1 and 4096 (limits are
reduced to the display or window size if necessary). See the GM_ $ Data Types section for

2D G MR Routines 2-88

GM $INIT

more information. This parameter is ignored in GM_ $NO _BITMAP,
GM_ $WITHIN _ GPR, and GM_ $ CURRENT _BITMAP modes.

n_planes
The number of bitmap planes. This is a 2-byte integer. The following are valid values.

For display memory bitmaps:

1
1 4
1 - 8

For monochromatic displays
For color displays in one- or two-board configuration
For color displays in three-board configuration

For main memory bitmaps: 1 - 8 for all displays

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

You can use the II unit II parameter to display metafiles in a window other than the window
from which you executed your GM program:

VAR

wndw : pad_$window_desc_t;
instid,stid stream_$id_t;
bitmap_size: gm_$point16_t - [1024,1024J;

BEGIN {program}

wndw.top := 0;
wndw.left := 0;
wndw.width := 300;
wndw.height := 300;

pad_$create_window C" ,0, pad_$transcript, 1,
wndw, stid, st);

pad $create C" ,O,pad_$input,stid, pad_$bottom,
[pad_$init_rawJ,5, instid, st);

{ The "unit" parameter is the stream id of the pad
in which you want to display metafiles. }

The graphics metafile package has its own II clean-up II handler that terminates GM
whenever faults are encountered. It is not necessary for an application to install its own
fault handler for this purpose. In fact, an application-installed fault handler will not work
because GM will no longer be initialized by the time the fault handler is called.

2-89 2D GMR Routines

GM $INIT

To use the mode GM_ $WITHIN _ GPR, you must initialize GPR'"before calling
GM_ $INIT. In this mode, you have full control of the screen, but"you must handle
viewports and input yourself using GPR or other routines. In this mode, these parameters
are ignored: unit, size, and n_planes.

GM_ $WITHIN _ GPR is useful when you already have a user interface and want to use it
rather than GM for viewing. GM_ $WITHIN _ GPR allows you to build sequences of
commands using the GM routines which change the contents of a metafile. You can then
display the file using GM_$DISPLAY _SEGMENT _ GPR_2D. This is the only GM
display routine you may use in this mode.

Use GM_ $ CURRENT _BITMAP mode in the display mode parameter with applications
that use 2D GMR within DOMAIN/Dialogue. Do this when your application has already
established a GPR bitmap (in the DOMAIN/Dialogue graphics area) and you then wish to
use 2D GMR. If you are using DOMAIN/Dialogue with 2D GMR, then you may need to
use GM_$COORD_BITMAP __ TO_PIXEL 2D and
GM $COORD PIXEL TO BITMAP 2D routines. For more information on the
DOMAIN/Dialogue user interface refer to the DOMAIN/Dialogue User's Guide.

2D GMR Routines 2-90

GM $INPUT DISABLE

GM $INPUT DISABLE

Disables an input event type.

FORMAT

INPUT PARAMETERS

event_type
The input event type to be disabled, in GM_ $EVENT_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when you press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP
Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM $INPUT ENABLE to enable an input event type.

2-91 2D G Jl.,IR Routines

GM $INPUT ENABLE

GM $INPUT ENABLE

Enables an input event type.

FORMAT

INPUT PARAMETERS

event_type
The event type to be disabled, in GM_ $EVENT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when you press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP

key _set

Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

The set of specifically enabled characters when the event type is GM_ $KEYSTROKE or
GM_ $BUTTONS, in GM_ $KEYSET _ T format. This is an array of up to 256
characters.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-92

GM $INPUT ENABLE

USAGE

Use GM_ $INPUT _DISABLE to disable an input event type.

The routines GM_ $INPUT _ENABLE and GM_ $INPUT _EVENT _ WAIT may acquire
the display (in direct mode only). GM_ $INPUT _ENABLE will acquire the display when
locator events are enabled; GM _ $INPUT _ EVENT _ WAIT acquires the display before
waiting for an event (and releases it after waiting).

GM_ $INPUT _ENABLE expects a Pascal set of characters as one input argument. The
following subroutine provides a way to build a set of characters for a FORTRAN program
using this call.

BUILD SET -- Builds a Pascal set of characters for FORTRAN users.

INPUT ARGUMENTS

list

no of entries

OUTPUT ARGUMENTS

returned set

An integer*2 array, up to 256 entries long.
This array contains the ordinal values of the
characters to be included in the set. For
example, if you wish to include the capital
letters A through Z, make the array
26 entries long, including the values 65
through 90.

The number of entries used in list.
An integer*2 scalar.

The equivalent of the Pascal set of
characters. This can be of any type,
as long as it is 32 bytes long.
Use integer*4 returned_set(8) .

This program does not check for errors. Therefore, values
can be outside the range 0 to 255, although this can give
unpredictable results. The program does not check to see
if the value has already appeared in the list.

The subroutine builds the set anew each time; it does not allow
you to add new elements to an existing set.

2-93 2D G MR Routines

GM $INPUT ENABLE

The following program builds a set of characters for FORTRAN users.

PROGRAM build set

integer*2 list (1) ,no __ of _ entries, returned_set (0: 15)
integer*2 i,mask(0:15),word,bit
data mask/1,2,4,8,16#10,16#20,16#40,16#80,16#100,16#200,

1 16#400,16#800,16#1000,16#2000,16#4000,16#8000/

c A Pascal set of characters is a 256-bit "array." The bit
c corresponding to the ordinal position of the character is
c 1 if the bit is in the set and ° if the character is absent
c from the set. In this example, the set is initialized
c to 0, that is, no characters are present.

do 100 i=0,15
returned_set(i) = °

100 continue
c
c Go through the list, setting the bits for each character listed.
c Note that Pascal numbers the bits right to left.
c Therefore, a set cont,aining only char (0), that is NULL, has
c only the least-significant bit set in the last word of the set.

c
c Set the appropriate bit.

word = 15 - (list(i)/16)
bit = mod(list(i),16)
returned_set(word) = or(returned_set(word),mask(bit))

110 continue
c

return
end

2D OMR Routines 2-94

GM $INPUT EVENT WAlT

GM $INPUT EVENT WAlT

Checks for or waits until an occurrence of an enabled input event.

FORMAT

GM_$INPUT_EVENT_WAIT (wait, event_type, event_data, bitmap_position,
viewport_id, segment_position, status)

INPUT PARAMETERS

wait
A Boolean (logical) value that specifies when control returns to the calling program. Set to
true to wait for an enabled event to occur; set to false to return control to the calling
program immediately, whether or not an event has occurred.

OUTPUT PARAMETERS

event_type
The event type which occurred, in GM_ $EVENT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when y~u press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP

event data

Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This is a character. This parameter
is not modified for other events.

bitmap _position
The position in the display bitmap at which graphics input occurred, in
GM $POINTREAL T format. This is a two-element array of real values. See the
GM _ $ Data Types section for more information.

2-95 2D G MR Routines

GM $INPUT EVENT WAIT

viewport _ id
The identification number of the viewport in which the location "bitmap _ position" is
found. This is a 2-byte integer.

segment _ position
The position at which graphics input occurred, converted to segment coordinates of the
viewport primary segment, in GM_$POINTREAL_ T format. This is a two-element array
of real values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

If the location II bitmap _ position II is not in any viewport, viewport _ id is zero and
segment _position is undefined.

If the location "bitmap _position" is in a viewport which is not displaying,
segment _position is undefined.

The routines GM _ $INPUT _ ENABLE and GM _ $INPUT _ EVENT _ WAIT may acquire
the display (in direct mode only). GM_ $INPUT _ENABLE will acquire the display when
locator events are enabled; GM_ $INPUT _EVENT _ WAIT acquires the display before
waiting for an event (and releases it after waiting).

2D GMR Routines 2-96

GM_$INQ_AOLASS

Returns the value stored for the current (GM _ $AOLASS) command.

FORMAT

OUTPUT PARAMETERS

aclass id
The identification number of the attribute class to use. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Inquiring about a command that is not an GM_ $AOLASS command results in an error.

You can use GM _ $INQ _ OOMMAND _ TYPE to determine the type of the current
command.

2-97 2D G MR Routines

GM_$INQ_BITMAP _SIZE

Returns the size of the GM bitmap in pixels.

FORMAT

OUTPUT PARAMETERS

size
The size of the GM bitmap created when the GM package was initialized, in
GM_ $POINT16 _ T format. This is a two-element array of 2-byte integers. See the
GM_ $ Data Types section for more information.

In direct mode, this routine returns the size of the part of the Display Manager window in
which the GM package was initialized, excluding the edges of the window reserved by the
Display Manager.

In borrow mode, this is the size of the part of the borrowed display in which the GM
package was initialized.

In main-bitmap mode, this is the size of the main memory bitmap which was created when
the GM package was initialized.

planes
The number of planes in the GM bitmap created when the GM package was initialized.
This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-98

GM_$INQ_CIRCLE_[16,32,REAL]

GM_$INQ_CIRCLE_[16,32,REAL]

Returns the values stored for the current (GM_ $CIRCLE) command.

FORMAT

GM_$INQ_CIRCLE_16 (center, radius, fill, status)

GM_$INQ_CIRCLE_32 (center, radius, fill, status)

GM_$INQ_CIRCLE_REAL (center, radius, fill, status)

OUTPUT PARAMETERS

center
The point that is the center of the circle. This is a pair (x,y) of values in the appropriate
format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$INQ_CIRCLE_16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$INQ_ CIRCLE_32

GM $POINTREAL
A two-element array of real values for GM_$INQ_ CIRCLE_REAL

See the GM_ $ Data Types section for more information.

radius
The radius of the circle, in the appropriate format:

A real value for GM_$INQ_ CIRCLE_REAL

fill
A Boolean (logical) value which specifies whether the circle is filled.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

\

USAGE
I

The parameters are returned as they were supplied to the GM _ $CIRCLE command that
inserted this command into the metafile.

Use $GM _ $INQ _ COMMAND _ TYPE to get the command type and the data type of this
command.

2-99 2D GMR Routines

GM_ $INQ_ CIRCLE_ [16,32,REALj

Use $GM_$COMMAND_DELETE and GM_$CIRCLE_[16,32,REAL] to change the
parameters of this command.

Inquiring about a command that is not a GM _ $CIRCLE command results in an error.

Currently, you must use GM_$INQ_CIRCLE_16 if the stored data type is GM_$16;
you must use GM_$INQ_ CIRCLE_32 or _REAL if the stored data type is GM_$32.

2D GMR Routines 2-100

GM _ $INQ _ COMMAND _ TYPE

GM_ $INQ_ COMMAND _ TYPE

Returns the command type and the data type of the current command in the current
segment.

FORMAT

OUTPUT PARAMETERS

command_ type
The type of command, in GM_ $COMMAND _ TYPE _ T format. This is a 2-byte integer.
One of the following predefined values is returned:

GM_$TACLASS
GM_$TCIRCLE_2D
GM_$TCURVE_2D
GM_$TDRAW_RASTER_OP
GM_$ TDRAWS TYLE
GM_$TDRAWVALUE
GM_$TFILLBVALUE
GM_$TFILLPATTERN
GM_$TFILLVALUE
GM_$TFONTFAMILY
GM_$TINSTANCE_SCALE_2D
GM_$TINSTANCE_TRANS_2D
GM_$TINSTANCE_TRANSFORM_2D
GM_$TPLANEMASK
GM_$TPOLYLI NE_2D
GM_$TPRIMITlVE_2D
GM $TRECTANGLE
GM=$TTAG
GM_$TTEXT_2D
GM_$TTEXTBVALUE
GM_$TTEXTSIZE
GM_$TTEXTVALUE

data type
The data storage type, in GM_ $DATA_ TYPE _ T format. The possible values for this
parameter are the following:

GM $16 Data is stored as GM $POINT16 T

GM $32 Data is stored as GM $POINT32 T

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

2-101 2D GMR Routines

GM _ $INQ _ COMMAND _ TYPE

USAGE

Use GM_$INQ_POLYLlNE, GM_$INQ_ TEXT, and other similar commands with data
storage types to get the parameters of the command.

Use GM_$SEGMENT_CREATE, GM_$SEGMENT_OPEN and
GM _ $SEGMENT _ CLOSE to change the current segment. Use
GM_$PICK_ COMMAND to change the current command.

If the current command is the blank space at the start of the segment, as it is after
GM_ $PICK_ COMMAND(GM_ $START,STATUS), this routine returns a
GM $NO CURRRENT CO:M11AND error.

2D GMR Routines 2-102

GM_$INQ_CONFIG

Returns the current configuration of the display device.

FORMAT

GM_$INQ_CONFIG (configuration, status)

OUTPUT PARAMETERS

configuration
Current display configuration, in GM_ $DISPLAY _ CONFIG _ T format. This is a 2-byte
integer. One of the following predefined values is returned:

Returned Value Display Type

GM_$BW_800X1024 monochromatic portrait
GM_$BW_1024X800 monochromatic landscape
GM_$COLOR_1024x1024X4 color 1024 ~ 1024 (DN6xx) 2-board config
GM $COLOR 1024x1024x8 color 1024 x 1024 (DN6xx) 3-board config
GM=$COLOR=1024X800X4 color 1024 x 800 (DN5xx) 2-board config
GM_$COLOR_1024x1024x8 color 1024 x 800 (DN5xx) 3-board config
GM_$COLOR1_1024X800X8 color 1024 x 800 (DN570) 2-board config
GM_$COLOR_1280X1024X8 color 1280 x 1024 (DN580) 2-board config
GM_$COLOR2_1024X800X4 color 1024 x 800 (DN3000) 1-board config
GM_$BW_1280X1024 monochrpmatic (DN3000) 1-board config

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM_ $INQ_ CONFIG is the only GM routine call that is usable when the graphics metafile
package is not initialized.

2-103 2D G MR Routines

GM_$INQ_CURVE_2D[16,32,REAL)

Returns the values stored for the current (GM _ $CURVE) command.

FORMAT

GM_$INQ_CURVE_2D16 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_CURVE_2D32 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_CURVE_2DREAL (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

OUTPUT PARAMETERS

curve_type
The type of curve, in GM_$CURVE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM $ARC 3P Specifies an arc to .be drawn through three points (n_points) in the point
array (point_array). The value for n_points must equal 3.

GM $SPLINE CUBIC P

n_points

Specifies a smooth curve (parametric cubic spline) to be drawn through
the specified number of point (n_points) in the point array
(point _ array).

The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinate points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$INQ_ CURVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$INQ_CURVE_2D32

GM $POINTREAL
A two-element array of real values for GM_$INQ_ CURVE_2DREAL

See the GM_ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters. This is an array of reals.

2D GMR Routines 2-104

GM_ $INQ_ CURVE_2D[16,32,REAL]

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Currently, n_parameters and parameter _array are not used.

Inquiring about a command that is not a GM_ $ CURVE command results in an error.

You can use GM_ $INQ_ COMMAND _ TYPE to determine the type of the current
command.

Use GM_ $ CURVE _ 2D[16,32,REAL] to change the parameters of this command.

Currently, you must use GM_$INQ_CURVE_16 if the stored data type is GM_$16; you
must use GM_$INQ_CURVE_32 or _REAL if the stored data type is GM_$32.

2-105 2D G !v1R Routines

GM_$INQ_DRAW _RASTER_OP

Returns the values stored for the current (GM_$DRAW _RASTER_OP) command.

FORMAT

OUTPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15. The
default value is 3.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.)

USAGE

Use GM_$DRAW _RASTER_ OP to change the raster operation codes.

Inquiring about a command that is not a GM_$DRAW _RASTER_OP command results
In an error.

You can use GM _ $INQ _ COM:MAND _ TYPE to determine the type of the current
command.

2D G MR Routines 2-106

Returns the values stored for the current (GM_$DRAW _STYLE) command.

FORMAT

GM_$INQ_DRAW_STYLE (style, repeat_factor, pattern, pattern_length, status)

OUTPUT PARAMETERS

style
The style of line, in GM_$LlNE_STYLE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM $SOLID Default. Specifies a solid line. If style = GM _ $SOLID, then
repeat_factor, pattern, and pattern_length are ignored. The default
draw style is solid.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_ $DOTTED, then
pattern and pattern _length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $P ATTERNED
Specifies a patterned line, determined by repeat _ factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Currently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an 8-byte array
constituting a 64-bit pattern. Only the first pattern_length bits are used.

pattern _length
The length of the pattern. This is a 2-byte integer. Currently, pattern_length is ignored
and assumed to be 64.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-107 2D G MR Routines

GM_$INQ_DRAW _STYLE

USAGE

Use GM_$SET _DRAW _STYLE to change the line style.

Inquiring about a command that is not a GM_$DRAW _STYLE command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2D GMR Routines 2-108

Returns the value stored for the current (GM_$DRAW _VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value used in drawing lines. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$DRAW _VALUE to change the line drawing value.

Inquiring about a command that is not a GM_ $DRA W _ VALUE command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2-109 2D G MR Routines

GM_$INQ_FILL_BAOKGROUND_ VALUE

Returns the value stored for the current (GM_$FILL_BAOKGROUND _ VALUE)
command.

FORMAT

OUTPUT PARAMETERS

value
The fill background value used in this command. This is a 4-byte integer. The default
value is -2, the same as the viewport background.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Inquiring about a command that is not a GM_$FILL_BAOKGROUND _ VALUE
command results in an error.

You can use GM_$INQ_ OOMMAND _ TYPE to determine the type of the current
command.

Use GM_ $FILL _BAOKGROUND _ VALUE to change the fill background value.

2D G MR Routines 2-110

GM_$INQ_FILL_PATTERN

GM_ $INQ_FILL _PATTERN

Returns the value stored for the current (GM_$FILL_PATTERN) command.

FORMAT

GM_$INQ_FILL_PATTERN (scale, size, pattern, status)

OUTPUT PARAMETERS

scale'

size

The number of times each bit in this pattern is replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern) or 0 (when clearing a pattern).

The size of the bit pattern, in bits, in the x and y directions; in GM _ $POINT16 _ T
format. This is a 2-byte integer array of two eiements. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FILL_PATTERN to change the fill pattern.

Inquiring about a command that is not a GM_$FILL_PATTERN command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2-111 2D G MR Routines

GM_$INQ_FILL_ VALUE

Returns the value stored for the current (GM_$FILL_ VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value used in filling areas. This is a 4-byte integer. The default fill value is 1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FILL_ VALUE to change the fill value.

Inquiring about a command that is not a GM_$FILL_ VALUE command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2D G MR Routines 2-112

Returns the value stored for the current (GM_ $FONT _FAMILY) command.

FORMAT

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default value is 1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$FONT_FAMILY to change the font family,

Inquiring about a command that is not a GM_ $FONT _FAMILY command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2-113 2D G MR Routines

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL]

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL]

Returns the value stored for the current (GM_$INSTANCE_SCALE_2D) command.

FORMAT

OUTPUT PARAMETERS

segment_id

scale

The identification number of the segment to be instanced, in GM_ $SEG1v1ENT _ID _ T
format. This is a 4-byte integer.

A real number indicating the scaling factor.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE SCALE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE SCALE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE SCALE 2DREAL

See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Scaling is performed before translation.

Use GM_$INSTANCE_SCALE_2D[16,32,REAL] to change the segment instanced and its
scale and translation parameters.

Inquiring about a command that is not a GM _ $INSTANCE _ SCALE _ 2D command
results in an error.

2D CMR Routines 2-114

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL]

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_SCALE_2D16 if the stored data type
is GM_$16; you must use GM_$INQ_INSTANCE_SCALE_2D32 or _2DREAL if the
stored data type is GM_ $32.

2-115 2D GMR Routines

GM_ $INQ _ INSTANOE _ TRANSFORM _ 2D[16,32,REAL]

Returns the value stored for the current (GM_$INSTANOE_ TRANSFORM) command.

FORMAT

GM_$INQ_INSTANCE_TRANSFORM_2D[16,32,REAL] Csegment_id, rotate, translate,
status)

OUTPUT PARAMETERS

segInent _ id
The identification number of the segment to transform, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_ $ROTATE _REAL2x2 _ T format. This is a four-element array of 4 real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM _ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANOE TRANSFORM 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANOE TRANSFORM 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANOE TRANSFORM 2DREAL

See the GM_ $ Data Types section for more information.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

I
12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSFORM_2DREA I L

2D G MR Routines 2-116

GM_$INQ_INSTANCE_ TRANSFORM_2D[16,32,REAL]

Use GM_$INSTANCE_ TRANSFORM_2D[16,32,REAL] to change the segment instanced
and its translation and rotation parameters.

Inquiring about a command that is not a GM_$INSTANCE_ TRANSFORM_2D
command results in an error.

You can use GM _ $INQ _ C011MAND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_ TRANSFORM_2D16 if the stored
data type is GM_$16; you must use GM_$INQ_INSTANCE_ TRANSFORM_2D32 or
_2DREAL if the stored data type is GM-.:..$32.

2-117 2D GMR Routines

GM_ $INQ _ INSTANCE _ TRANSLATE _ 2D[16,32,REAL]

Returns the value stored for the current (GM_$INSTANCE_ TRANSLATE_2D)
command.

FORMAT

GM_$INQ_INSTANCE_TRANSLATE 2D16 (segment_id, translate, status)

GM_$INQ_INSTANCE_TRANSLATE_2DREAL (segment id, translate, status)

OUTPUT PARAMETERS

segment_id
The identification number of the segment to be instanced, in GM_ $ SEGMENT _ID _ T
format. This is a 4-byte integer.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSLATE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSLATE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSLATE 2DREAL

See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSLATE_2DREA 1 L

2D GMR Routines 2-118

GM_$INQ_INSTANCE_ TRANSLATE_2D[16,32,REAL]

Use GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL] to change the segment instanced
and its translation parameters.

Inquiring about a command that is not a GM_$INSTANCE_ TRANSLATE_2D
command results in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_ TRANSLATE_2D16 if the stored
data type is GM_$16; you must use GM_$INQ_INSTANCE_ TRANSLATE_2D32 or
2DREAL if the stored data type is GM $32.

2-119 2D G !vIR Routines

GM_$INQ_PLANE_MASK

GM_$INQ_PLANE_MASK

Returns the value stored for the current (GM_ $PLANE _MASK) command.

FORMAT

OU'TIPUT PARAMETERS

mask
The plane mask, specifying which planes to use, in GM_ $PLANE _MASK_ T format.
This is a 2-byte integer. (See the description under GM_$PLANE_MASK.)

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$PLANE_MASK to set the plane mask.

Inquiring about a command that is not a GM _ $PLANE _ MASK command results in an
error.

You can use GM_ $INQ_ COMMAND _ TYPE to determine the type of the current
command.

2D G MR Routines 2-120

GM_ $INQ _POLYLINE _ 2D[16,32,REAL]

Returns the values stored for the current (GM_ $POL YLlNE _2D) command.

FORMAT

OUTPUT PARAMETERS

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array

close

fill

A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM_$INQ_POL YLlNE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM_$INQ_POL YLlNE_2D32

GM $POINTREAL
A two-element array of real values for
GM_$INQ_POLYLlNE_2DREAL

See the GM_ $ Data Types section for more information.

A Boolean (logical) value which specifies whether the first and last points are connected.
Set the parameter to true to close the polygon. You must use close when you want to fill a
polygon.

A Boolean (logical) value which specifies whether to fill the polygon or not. Filled polygons
must be closed. Set the parameter to true to fill the polygon; set it to false for an unfilled
polygon.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-121 2D G MR Rout-ines

GM_$INQ_PLANE_:MASK

USAGE

The parameters are returned as they were supplied to the command
GM_ $POL YLINE _ [16,32,REAL] which inserted this command into the metafile.

Ourrently, you must use GM_$INQ_POLYLINE_16 if the stored data type is gm_$16;
you must use GM_$INQ_POLYLINE_32 or _REAL if the stored data type is gm_$32.

Inquiring about a command that is not a GM _ $POL YLINE command results in an error.

You can use GM_$INQ_ OOMMAND _ TYPE to determine the type of the current
command.

2D GMR Routines 2-122

GM _ $INQ _ PRIMITIVE _ 2D [16,32 ,REAL]

GM_$INQ_PRIMITIVE_2D[16,32,REAL]

Returns the values stored for the current (GM _ $PRIMITIVE) command.

FORMAT

GM_$INQ_PRIMITlVE_2D16 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_PRIMITlVE_2D32 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_PRIMITlVE_2DREAL (primitive type, n points, point_array, n_parameters,
parameter=array, ~tatus)

OUTPUT PARAMETERS

primitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$PRIMITIVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM _ $PRIMITIVE _ 2D32

GM $POINTREAL
A two-element array of real values for GM_$PRIMITIVE_2DREAL

See the GM_ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters, in GM_$ARRAYREAL_ T format. This is an array of real values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-123 2D G MR Routines

GM_ $INQ _PRIMITIVE _ 2D[16,32,REAL]

USAGE

Use GM_$PRIMITIVE_2D[16,32,REAL] to change the current value of the primitive
command.

Currently, you must use GM_$INQ_PRIMITIVE_2D16 if the stored data type is
GM_$16; you must use GM_$INQ_PRIMITIVE_2D32 or _REAL if the stored data
type is GM_ $32.

2D GMR Routines 2-124

GM _ $INQ _RECTANGLE _ [16,32,REAL]

GM_ $INQ _RECTANGLE _ [16,32,REAL]

Returns the values stored for the current (GM_$RECTANGLE) command.

FORMAT

GM_$INQ_RECTANGLE_16 (point1, pOint2, fill, status)

GM_$INQ_RECTANGLE_32 (point1, point2, fill, status)

GM_$INQ_RECTANGLE_REAL (point1, point2, fill, status)

OUTPUT PARAMETERS

point1, point2

fill

The coordinates of two diagonally opposite corners, each a pair (x,y) of integers in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_ $RECTANGLE _16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $RECTANGLE _ 32

GM $POINTREAL
A two-element array of real values for GM_$RECTANGLE_REAL

See the GM_ $ Data Types section for more information.

The GM package sorts rectangle coordinates before storing them. The returned parameter
point! will contain the smaller x value and the smaller y value, regardless of the order in
which you supplied the data.

A Boolean (logical) value which specifies whether to fill the rectangle or not. Set the
parameter to true to fill the rectangle; set it to false for an unfilled rectangle.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-125 2D G MR Routines

GM_ $INQ_RECTANGLE _ [16,32,REAL]

USAGE

Use GM_$RECTANGLE_[16,32,REAL] to change the values for this command.

Use GM_ $INQ _RECTANGLE _ [16,32,REAL] to retrieve the parameters of a rectangle
command inserted by GM_ $RECTANGLE _ [16,32,REAL].

Currently, you must use GM_$INQ_RECTANGLE_16 if the stored data type is
GM_$16; you must use GM_$INQ_RECTANGLE_32 or _REAL if the stored data
type is GM_$32.

2D GMR Routines 2-126

Returns the value stored for the current (GM_ $TAG) command.

FORMAT

OUTPUT PARAMETERS

string
The text string stored, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $TAG to change the text string stored in this command.

2-127 2D GMR Routines

GM_$INQ_ TEXT _2D[16,32,REAL]

GM_ $INQ_ TEXT _ 2D[16,32,REAL]

Returns the value stored for the current (GM_ $ TEXT _ 2D[16,32,REAL)) command.

FORMAT

GM_$INQ_TEXT_2D[16,32,REAL] (point, rotate, string, string_length, status)

OUTPUT PARAMETERS

point
The coordinates of the point at which to locate text. This is a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$TEXT _2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $ TEXT _ 2D32

GM $POINTREAL
A two-element array of real values for G11_$TEXT _2DREAL

See the GM_ $ Data Types section for more information.

rotate
The angle at which this text string is to be written, in degrees. This is a real value. A
value of 0.0 degrees indicates left to right text. Other values indicate clockwise rotation.
For example, -90.0 degrees specifies bottom to top.

string
The text string to write, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$TEXT _2D[16,32,REAL] to change the text string.

Inquiring about a command that is not a GM_ $ TEXT _ 2D[16,32,REAL] command results
In an error.

You can use GM_$INQ_ OOMMAND _ TYPE to determine the type of the current
command.

2D GMR Routines 2-128

GM _ $INQ _ TEXT _ 2D [16,32,REAL]

Use GM_$INQ_ TEXT _2D[16,32,REAL] to retrieve the parameters of a text command
inserted by GM_$TEXT _2D[16,32,REAL].

Currently, you must use GM_ $INQ_ TEXT _2D16 if the stored data type is GM_ $16;
you must use GM_$INQ_ TEXT _2D32 or _2DREAL if the stored data type is
GM $32.

2-129 2D GMR Routines

GM_$INQ_ TEXT _BACKGROUND _ VALUE

GM_$INQ_ TEXT _BACKGROUl'ID _ VALUE

Returns the value stored for the current (GM_$TEXT _BACKGROUND _ VALUE)
command.

FORMAT

OUTPUT PARAMETERS

value
The background value to use when writing text. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $TEXT _BACKGROUND _ VALUE to change the text background value.

Inquiring about a command that is not a GM_$TEXT _BACKGROUND _ VALUE
command results in an error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

2D G MR Routines 2-130

GM_ $INQ_ TEXT _SIZE

GM_$INQ_ TEXT _SIZE

Returns the value stored for the current (GM_ $ TEXT _SIZE) command.

FORMAT

OUTPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $ TEXT _ SIZE to change the text size.

Inquiring about a command that is not a GM _ $ TEXT _ SIZE command results in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

2-131 2D G MR Routines

GM_$INQ_TEXT_ VALUE

Returns the value stored for-the current (GM_$TEXT_ VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value to use when writing text. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $ TEXT _ VALUE to change the text value.

Inquiring about a command that is not a GM_ $ TEXT _ VALUE command results in an
error.

You can use GM_ $INQ_ COMMAND _ TYPE to determine the type of the current
command.

2D GMR Routines 2-132

GM_$INSTANCE_SCALE_2D[16,32,REAL]

GM_$INSTANCE_SCALE_2D[16,32,REAL]

Inserts a command into the current segment: instance the specified segment with the
specified scale and translation parameters.

FORMAT

GM_$INSTANCE_SCALE 2D16 Csegment_id, scale, translate, status)

GM_$INSTANCE_SCALE_2D32 Csegment_id, scale, translate, status)

GM_$INSTANCE_SCALE_2DREAL Csegment_id, scale, translate, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to instance, in GM _ $ SEGMENT _ ID _ T
format. This is a 4-byte integer.

scale
A real number indicating the scaling factor.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE SCALE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE SCALE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE SCALE 2DREAL

See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Scaling is performed before translation.

Use GM_ $SEGMENT _ GET _ID to find the number of a previously defined segment for
which you know only the name.

2-133 2D GJ\,1R Routines

GM_ $INSTANCE _ SCALE _ 2D [16,32,REAL]

Use GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL] to retrieve the parameters of an
instance scale command inserted by GM_$INSTANCE_SCALE_[16,32,REAL].

Before supplying coordinate data to GM_$INSTANCE_SCALE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2D G MR Routines 2-134

GM _ $INSTANCE _ TRANSFORM_ 2D [16,32,REAL]

GM_ $INSTANCE _ TRANSFORM_ 2D[16,32,REAL]

Inserts a command to instance the specified segment with the specified rotation and
translation applied.

FORMAT

GM_$INSTANCE_TRANSFORM 2D16 Csegment_id, rotate, translate, status)

GM_$INSTANCE_TRANSFORM_2D32 Csegment_id, rotate, translate, status)

GM_$INSTANCE_TRANSFORM_2DREAL Csegment_id, rotate, translate, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to transform, in GM_ $ SEGMENT _ID _ T
format. This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_ $ROTATE _REAL2x2 _ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSFORM 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSFORM 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSFORM 2DREAL

See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

2-135 2D G MR Routines

GM_$INSTANCE_ TRANSFORM_2D[16,32,REAL]

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSFORM_2DREA 1 L

Rotation is performed before translation.

Use GM_ $SEGMENT_ GET _ID to find the number of a previously defined segment for
which you know only the name.

Use GM_$INQ_INSTANCE_ TRANSFORM_2D[16,32,REAL] to retrieve the parameters
of an instance transform command inserted by
GM_$INSTANCE_ TRANSFORM_2D[16,32,REAL].

You must call GM_$DATA_ COERCE_SET _REAL before supplying coordinate data to
GM_$INSTANCE_ TRANSFORM_2DREAL. This forces real variables that you send to
the package to be stored in 32-bit storage format.

Rotation: Use the following to include an instance of segment little _seg at (400,300), at
triple size and rotated 50 degrees:

rotate.xx 3.0 * cos(50.0 * 3.14159/180.0);
rotate.xy 3.0 * sin(50.0 * 3.14159/180.0);
rotate.yx -rotate.xy;
rotate.yy rotate.xx;
point.x := 400;
point.y := 300;
GM_$INSTANCE_TRANSFORM_2D16 (little_seg, rotate, point, status);

Distortion: Use the following to include an instance of segment distort_seg at (12.5, 14.5),
with a scale of 1 in the x direction and a scale of 3 in the y direction, unrotated:

rotate.xx - 1.0;
rotate.xy - 0.0;
rotate.yx - 0.0;
rotate.yy - 3.0;
rpoint.x - 12.5;
rpoint.y - 14.5;
GM_$INSTANCE_TRANSFORM_2DREAL(distort_seg, rotate, rpoint, status);

2D GMR Routines 2-136

GM_ $INSTANCE _ TRANSLATE _2D[16,32,REAL]

GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL]

Inserts a command into the current segment: instance the identified segment with the
specified translation.

FORMAT

GM_$INSTANCE_TRANSLATE_2D16 (segment_id, translate, status)

GM_$INSTANCE_TRANSLATE_2D32 (segment_id, translate, status)

GM_$INSTANCE_TRANSLATE_2DREAL (segment_id, translate, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to instance, in GM _ $SEGMENT _ ID _ T
format. This is a 4-byte integer.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSLATE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSLATE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSLATE 2DREAL

See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSLATE_2DREA 1 L

2-137 2D GMR Routines

GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL]

Use GM_$INQ_INSTANCE_ TRANSLATE_2D[16,32,REAL] to retrieve the parameters
of an instance translate command inserted by
GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL].

You must call GM_$DATA_ COERCE_SET _REAL before supplying coordinate data to
GM_$INSTANCE_ TRANSLATE_2DREAL. This forces real variables that you send to
the package to be stored in 32-bit storage format.

2D GMR Routines 2-138

GM_ $MODELCMD _INQ_MODE

GM_$MODELCMD_INQ_MODE

Returns the values stored for the current (GM_$MODELCMD _SET _MODE) command.

FORMAT

OUTPUT PARAMETERS

gm _ modelcmd _ mode
The editing mode, in GM_$MODELCMD _MODE_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $MODELCMD INSERT
Modeling commands insert a command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = false.

GM $MODELCMD REPLACE
Modeling command replaces the command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = true.

GM $MODELCMD RUBBERBAND

status

Modeling commands XOR the previous command on the screen, thus
erasing it, then XOR the given command onto the screen. Only bit plane
o is used for rubberbanding. No changes are made to the metafile in this
mode.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM $MODELCMD SET MODE to set the model command mode.

2-139 2D G MR Routines

GM $MODELCMD SET _ MODE

G1\.1 $MODELCMD SET MODE

Sets the modeling command mode.

FORMAT

INPUT PARAMETERS

gm _ modelcmd _ mode
The editing mode to use, in GM_ $MODELCMD _MODE_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $MODELCMD INSERT
Modeling commands insert a command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = false.

GM $MODELCMD REPLACE
Modeling commands replace the command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = true.

GM $MODELCMD RUBBERBAND
Mo~eling commands XOR the previous modeling command on the screen,
thus erasing it, then XOR the given modeling command onto the screen.
Only bitplane 0 is used for rubberbanding. No changes are made to the
metafile in this mode.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Rubberband mode provides an interactive capability. The mode uses a pointing device and
allows an application program to get information from a user. The application program
then uses the information to insert or replace the command with the changes the user has
specified.

You may still set or inquire the replace flag by calling GM_ $REPLACE _ $SET _FLAG
GM_$REPLACE_$INQ_FLAG, respectively. In new programs, use the
GM $MODELCMD... routines.

Use GM_ $MODELCMD _INQ_MODE to get the values stored in this command.

2D G MR Routines 2-140

GM $MODELCMD SET MODE

Only primitive and instance command types may be replaced. The
GM_ $MODELCMD _REPLACE mode may only be used if the current command is a
primitive or instance command.

2-141 2D GMR Routines

GM $PICK COMJ\1AND

GM $PIOK OOMMAND

Within the current segment, selects a command which contains a selected point on the
display.

FORMAT

INPUT PARAMETERS

search rule
The search rule to apply in selecting the command, in GM_ $SEAROH_ COMJ\1AND _ T
format. This is a 2-byte integer. Specify only one of the following predefined values:

GM $CNEXT Find the next command which falls within the pick aperture, moving
forward in the segment.

GM $STEP Find the next command in the segment, independent of the coordinates of
the pick aperture.

GM $START Move to the start of the segment, independent of the coordinates of the
pick aperture.

GM $END

If search_rule = GM_ $START, the current command is changed to
equal beginning-of-segment (no current command), allowing commands to
be added at the beginning of the segment.

Move to the end of the segment, independent of the coordinates of the
pick aperture.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The current command is changed to equal the picked command.

Instance commands are treated like any other command in their context. To pick II into II an
instanced segment, use GM_ $PIOK_SEGMENT.

Oommands are picked only if the pick aperture intersects the drawn command. An
exception is the GM_$CURVE_2D ... commands. These commands are picked if the
bounding box of the command intersects the pick aperture.

2D GMR Routines 2-142

GM $PICK HIGHLIGHT COMMAND

GM $PICK HIGHLIGHT COMMAND

Highlights the current command on the display.

FORMAT

GM_$PICK_HIGHLIGHT_COMMAND (highlight, time, status)

INPUT PARAMETERS

highlight

time

The method to be used for highlighting the command, in GM_ $HIGHLIGHT _ T format.
This is a 2-byte integer. Currently, the only possible value is GM_ $OUTLINE. Tp.is
value draws a rectangular outline around the command, leaves it displayed for the specified
amount of time, and then erases it.

The number of seconds for which the command is to be highlighted. This is a real value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This operation is performed only if the viewport primary segment of the current viewport is
the current segment.

The outline drawn around picked commands and picked segments is temporary. The
outline remains on the screen for the requested number of seconds and is then erased.

2-143 2D G MR Routines

GM $PICK HIGHLIGHT SEGMENT

GM $PICK HIGHLIGHT SEGMENT

Within the current file, highlights the specified segment.

FORMAT

GM_$PICK_HIGHLIGHT_SEGMENT (highlight, time, status)

INPUT PARAMETERS

highlight

time

The method to be used for highlighting the segment, in GM_ $HIGHLIGHT _ T format.
This is a 2-byte integer. Currently, the only possible value is GM_ $OUTLINE. This
value draws a rectangular outline around the segment, leaves it displayed for the specified
amount of time, and then erases it.

The number of seconds for which the segment is to be highlighted. This is a real value.

OUTPUT PARAMETERS

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This operation is performed only if the viewport primary segment of the current viewport is
the first segment in the pick list.

The outline drawn around picked segments and picked commands is temporary. The
outline remains on the screen for the requested number of seconds and is then erased.

2D CMR Routines 2-144

Returns the center of the pick aperture.

FORMAT

OUTPUT PARAMETERS

center
The (x,y) coordinates of the center of the pick aperture, in GM_ $POINTREAL _ T format.
This is a two-element array of real values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

A program must call GM _ $PICK _ SET _ CENTER and GM _ $PICK _ SET _ SIZE after
the use of the commands GM $FILE DISPLAY or GM $SEGMENT DISPLAY.

2-145 2D G MR Routines

GM_$PICK_INQ_LIST

Returns the current list of picked segments.

FORMAT

INPUT PARAMETERS

max_length
The maximum length of list you are prepared to receive. This is a 2-byte integer.

OUTPUT PARAMETERS

length

list

The number of segment ID's returned. This is a 2-byte integer.

An array of segment ID's, each in GM_$SEGl\1ENT _ID _ T format. This is a 4-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D G MR Routines 2-146

Returns the value of the mask used for segment pickable values during pick segment
operations.

FORMAT

OUTPUT PARAMETERS

mask
The pick mask value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $PICK_SET _MASK to change the current value of the pick mask.

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

2-147 2D G MR Routines

GM_$PICK_INQ_SIZE

Returns the size of the pick aperture.

FORMAT

OUTPUT PARAMETERS

size
The x and y tolerances for the pick aperture, in segment coordinates of the current segment,
in GM_ $POINTREAL _ T format. This is a two-element array of real values. See the
GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM _ $PICK _ SET _ SIZE to change the size of the pick aperture.

2D G MR Routines 2-148

GM_ $PIOK_INQ_ THRESHOLD

Returns the value of the threshold used for segment pickable values during pick segment
operations.

FORMAT

GM_$PICK_INQ_THRESHOLD (threshold, status)

OUTPUT PARAMETERS

threshold
The pick threshold value. This is a 4-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $PIOK _ SET _ THRESHOLD to change the current value of the pick threshold.

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal. to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

2-149 2D G MR Routines

GM $PICK SEGMENT

GM $PICK SEGMENT

Selects a segment which contains a specified point on the display.

FORMAT

INPUT PARAMETERS

search rule
The search rule to apply in selecting the command, in GM_ $SEARCH_SEGMENT _ T
format. This is a 2-byte integer. Specify only one of the following predefined values:

GM $SETUP Make the top segment of the current viewport the start of the list of
picked segments. The rest of the list is emptied.

GM $DOWN Find the first segment instanced by the current segment which, when
instanced, falls within the pick aperture.

GM $NEXT Find the next segment within the segment one higher in the list of picked
segments, which falls within the pick aperture.

GM $UP Move up one level in the list of picked segments.

GM $TOP Proceed to top segment in the list of picked segments, destroying the rest
of the list of picked segments.

GM $CLEAR Clear the entire list of picked segments, allowing all segments to be edited
or deleted.

GM_ $BOTTOM Perform GM_ $DOWN repeatedly until a segment is reached for which
GM_ $DOWN finds nothing.

GM $NEXTBOTTOM
Perform GM_ $BOTTOM. If nothing is found, perform GM_ $NEXT,
or one or more GM_ $UPs followed by a GM_ $NEXT, until a
GM_ $NEXT finds a segment. When a GM_ $NEXT finds a segment,
perform a GM _. $BOTTOM from there.

OUTPUT PARAMETERS

segment_id
The identification number of the picked segment, in GM_ $ SEGMENT _ID _ T format.
This is a 4-byte integer.

n instances
The number of instances of this segment in the file. This is a 4-byte integer.

bounds
(Reserved for future extension.) A GM_$BOUNDSREAL_ T variable. This is an array of
4 real values.

2D GMR Routines 2-150

GM $PICK SEGMENT

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $PICK_SEGMENT to set the current segment.

If a segment is picked, the picked segment becomes the last segment on the list of picked
segments. If no segment is picked, the list of picked segments is unchanged. While a
segment is in the picked list, it may not be deleted or edited.

Use GM_ $INQ_PICK_LIST to examine the current list of picked segments.

Each segment listed in the list of picked segments is instanced in the preceding segment.

2-151 2D GMR Routines

GM $PICK SET CENTER

GM $PICK SET CENTER

Changes the center of the pick aperture.

FORMAT

INPUT PARAMETERS

center
The (x,y) coordinates of the center of the pick aperture, in GJ\1_ $POINTREAL _ T format.
This is a two-element array of real values. See the GM _ $ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

When pi('king commands, GM_ $PICK_SET _ CENTER uses the segment coordinates of
the current segment.

When picking segments, in other than no-bitmap mode, GM __ $PICK_SET _ CENTER
uses the segment coordinates of the viewport primary segment of the segment in which pick
segment operations were initialized.

When picking segments in no-bitmap mode, GM_$PICK_SET _ CENTER uses the
segment coordinates of the primary segment of the file.

The PICK routines search for any segments/commands which fall into the following region:

(center.x - size.x to
center.y - size.y to

2D GMR Routines

center.x + size.x,
center.y + size.y)

2-152

GM $PICK SET MASK

GM $PICK SET MASK

Changes the value of the mask used for segment pickable values during pick segment
operations.

FORMAT

INPUT PARAMETERS

mask
The pick mask value. This is a 4-byte integer.

The pick mask is initialized to 16#7FFF (all segments with nonzero pickable values are
pickable).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

Use GM_ $PICK_INQ_MASK to retrieve the current value of the pick mask.

2-153 2D G /vIR Rout£nes

GM $PICK SET SIZE

GM $PICK SET SIZE

Specifies the size of the pick aperture.

FORMAT

INPUT PARAMETERS

size
The x and y tolerances for the pick aperture, in segment coordinates of the current segment,
in GM_ $POINTREAL _ T format. This is a two-element array of real values. See the
GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $PICK_INQ_SIZE to retrieve the size of the pick aperture.

When picking commands, GM_$PICK_SET _ CENTER uses the segment coordinates of
the current segment.

When picking segments, in other than no-bitmap mode, GM_$PICK_SET _ CENTER
uses the segment coordinates of the viewport primary segment of the segment in which pick
segment operations were initialized.

When picking segments, in no-bitmap mode, GM_ $PICK_SET _ CENTER uses the
segment coordinates of the primary segment of the file.

The dimensions for the pick aperture are the following: (2 * size.x, 2 * size.y).

The PICK routines search for any segments/commands which fall into the following region:

(center.x - size.x to
center.y - size.y to

2D G MR Routines

center.x + size.x,
center.y + size.y).

2-154

GM $PICK SET THRESHOLD

GM $PICK SET THRESHOLD

Sets the value of the threshold used in pick search operations in the current segment.

FORMAT

INPUT PARAMETERS

threshold
The pick threshold value. This is a 4-byte integer.

The pick threshold is initialized to 1 (all segments with nonzero pickable values are
pickable).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

Use GM_$PICK_INQ_ THRESHOLD to obtain the current value of the pick threshold.

2-155 2D GMR Routines

GM $PIOK TRANSFORM POINT

GM $PICK TRANSFORM POINT

Transforms the coordinates of a point from the coordinate system of the viewport segment
to the coordinate system of the picked segment.

FORMAT

GM_$PICK_TRANSFORM_POINT (vsegment_position, psegment_position, status)

INPUT PARAMETERS

vsegment _ position
A point in viewport coordinates, in GM_ $POINTREAL _ T format. See the GM $ Data
Types section for more information.

OUTPUT PARAMETERS

psegment _ position
A point in picked segment coordinates in GM_ $POINTREAL _ T format. See the GM $
Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Strictly speaking, in this context "picked segment" means a selected instance of a segment.

2D GMR Routines 2-156

GM $PLANE MASK

GM $PLANE MASK

Inserts a command into the current segment: change the plane mask.

FORMAT

INPUT PARAMETERS

mask
The plane mask, specifying which planes to use, in GM _ $PLANE _ MASK _ T format.
This is a 2-byte integer.

The default value is [0 ... 7], in GM_$PLANE_MASK_ T format, or 255 when expressed as
a 2-byte integer. The default is that all planes are in use and can be modified.

FORTRAN programmers should encode the plane mask in a 2-byte integer in the range of
0-255 (1 means plane 0 is on, 2 means plane I is on, 3 means planes 0 and 1 are on; 255
means planes 0 through 7 are on).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-157 2D GMR Routines

GM $PLANE MASK

USAGE

Use GM_$INQ_PLANE_MASK to get the value stored for the current
GM $PLANE MASK command.

FORTRAN programmers might want to include the parameter definitions given below:

integer*2
+ bitO,
+ bit1,
+ bit2,
+ bit3,
+ bit4,
+ bitS,
+ bit6,
+ bit7

parameter (

,+ bitO 16#0001,
+ bit1 16#0002,
+ bit2 16#0004,
+ bit3 16#0008,
+ bit4 16#0010,
+ bitS 16#0020,
+ bit6 16#0040,
+ bit7 16#0080)

Example:

In FORTRAN, to enable planes 2 and S, use the following:

CALL GM_$PLANE_MASKC bit2 + bitS, status

In Pascal, to enable planes 2 and S, use the following:

2D G MR Routines 2-158

GM _ $POL YLINE _ 2D[16,32,REAL]

GM_$POLYLINE_2D[16,32,REAL]

Inserts a command into the current segment: draw a linked set of line segments.

FORMAT

GM_$POLYLINE_2D16 (n_points, point_array, close, fill, status)

GM_$POLYLINE_2D32 (n_points, point_array, close, fill, status)

GM_$POLYLINE_2DREAL (n_points, point_array, close, fill, status)

INPUT PARAMETERS

n_points
The number of points in the list of points. This is a 2-byte integer. Polylines are limited to
1000 (GM_$MAX_ARRAY _LENGTH) points.

point _ array

close

fill

A list of coordinate points, each a pair (x,y) of integers in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_ $POL YLINE _ 2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$POLYLlNE_2D32

GM $POINTREAL
A two-element array of real values for GM_$POLYLlNE_2DREAL

See the GM _ $ Data Types section for more information.

A Boolean (logical) value which specifies whether the first and last points are connected.
Set the parameter to true to close the polygon. You must use close when you want to fill a
polygon.

A Boolean (logical) value which specifies whether to fill the polygon or not. Filled polygons
must be closed. Set the parameter to true to fill the polygon; set it to false for an unfilled
polygon.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_POLYLINE_2D[16,32,REAL] to retrieve the parameters of a polyline
command inserted by GM_$POLYLINE_2D[16,32,REAL].

2-159 2D GMR Routines

GM_$POLYLINE_2D[16,32,REAL]

Currently, you must use GM_$INQ_POLYLINE~2D16 if the stored data type is
GM_$16; you must use GM_$INQ_POLYLINE_2D32 or _2DREAL if the stored data
type is GM_ $32.

Selecting close = false and fill = true results in an error.

Before supplying coordinate data to GM_ $POL YLINE _ 2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2D GMR Routines 2-160

GM _ $PRIMITIVE _ 2D [16 ,32,REAL]

GM_$PRIMITIVE_2D[16,32,REAL]

Inserts a command into the current segment: draw a primitive.

FORMAT

GM_$PRIMITlVE_2D16 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRIMITlVE_2D32 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRIMITlVE_2DREAL (primitive_type, n_points, pOint_array, n_parameters,
parameter_array, status)

INPUT PARAMETERS

primitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

Each distinct value of primitive _ type corresponds to a different user-defined primitive
display routine. For each primitive _ type you use, you must write a user-defined display
routine to be used when displaying (GM _ $PRIMITIVE _ 2D) commands of that primitive
type. You define a specified display routine to be used for displaying a specified primitive
type using the routine GM_$PRIMITIVE_DISPLAY _2D.

n_points
The number of points in the list of points. This is a 2-byte integer. The number of points
is limited to 1000 (GM_$MAX_ARRAY _LENGTH).

point _ array
A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$PRIMITIVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $PRIMITIVE _ 2D32

GM $POINTREAL
A two-element array of real values for GM _ $PRIMITIVE _ 2DREAL

See the GM_ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters, in GM_$ARRAYREAL_ T format. This is an array of real values.

2-161 2D G MR Routines

GM_$PRIMITNE_2D[16,32,REAL)

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Before supplying coordinate data to GM_$PRIMITNE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2D G MR Routines 2-162

GM $PRIMITIVE DISPLAY 2D

GM $PRIMITIVE DISPLAY 2D

Assigns the specified user-defined routine to the specified user-defined primitive type
number.

FORMAT

INPUT PARAMETERS

pri:mitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

display _proeedure_ptr
Entry point for the application-supplied procedure that displays (GM _ $PRIMITIVE _ 2D)
commands of the specified primitive type, in GM_$PRIMITIVE_PTR_ T format. This is
a pointer to a procedure.

When a (GM _ $PRIMITIVE _ 2D) command of the specified primitive type is encountered
during display operations, the graphics metafile package calls the application-supplied
procedure to display the command. Four input parameters are passed to the application
supplied procedure:

n_points: the number of points in point_array. This is
a 2-byte integer.

pOint_array: the list of points, transferred to display
coordinates. This is an array of pairs
(x,y) of 2-byte integers.

n_parameters: the number of parameters in parameter_array.
This is a 2-byte interger.

parameter_array: the list of parameters. This is an
array of reals.

If you use a value of NIL for display _procedure_ptr, no routine is called at display time.
You can use this to undo an assignment of a procedure to a specified user-defined primitive
type number.

In FORTRAN, pass procedure pointers as indicated in the description of
GM $REFRESH SET ENTRY. Use 0 (not NIL) to indicate a zero value.

2-163 2D G MR Routines

GM $PRIMITIVE DISPLAY 2D

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Successive calls to GM_ $PRIMITIVE_DISPLAY _2D for the same primitive type override
previously defined entry points.

The user-supplied routine may contain only GPR drawing routine calls.

2D G MR Routines 2-164

GM $PRINT FILE

GM $PRINT FILE

Converts the current metafile to the specified file for subsequent printing on a hard-copy
device.

FORMAT

GM_$PRINT_FILE (file_name, file_name_length, size, invert, print_style,
bpi, status)

INPUT PARAMETERS

file name
Pathname of the output file, in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

If you specify a file name that already exists, the old contents of the file are overwritten.

file _ name _length

size

Number of characters in the pathname. This is a 2-byte integer.

Pair (x, y) of coordinates, in GM_ $POINT16 _ T. This is a two-element array of 2-byte
integers. See the GM Data Types section for more information.

invert
Boolean (logical) value specifying whether to invert the file or not. Set to true to invert the
file. Set to false to print the file without inverting it.

print _ style
Type of output file to be created, in GM_$PRINT _STYLE_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $GMF

GM $OUTI

Specifies that you want to copy a metafile to a bitmap for storage in a
graphics map file (GMF).

Specifies that you want to create a vector command file. Only one plane,
plane 0, is stored.

GM $POSTSORIPT
Specifies that you want to create a PostScript file

For print _ style = GM _ $OUTl, all coordinates are transformed to display coordinates in
accordance with the size parameter of the GM_ $PRINT _ ... routine that you used to
create the vector command file. In the GM_ $OUTI file, the origin of coordinates is the
top left, not the bottom left as in the metafile. The GM _ $OUTI file is scaled to the size
parameter using the standard 95% rule that one dimension fills 95% of the size block, and
the other dimension does not overflow the block.

For print_style = GM_$GMF, the bpi value sets the physical density of the image
represented in the GMF. If this parameter is nonzero, a device to which you output the
GMF may compress or expand the image to produce a result which is as close as possible to

2-165 2D G MR Routines

GM $PRINT F~E

bpi

the specified number of bits per inch. If this parameter is zero, an output device uses one
dot to represent each bit from the GMF, regardless of the resulting physical size of the
image.

Number of bits per inch in the output GMF (graphics map file). This is a 2-byte integer.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM_ $PRINT _F~E prints the primary segment of the file. To print some other segment,
you may mak~ the desired segment the primary segment, call GM _ $PRINT _ F~E, and
then restore the previous value of the primary segment.

2D G MR Routines 2-166

GM $PRINT FILE PART

GM $PRINT FILE PART

Converts part of the current metafile to the specified file for subsequent printing on a hard
copy device.

FORMAT

GM_$PRINT_FILE_PART (bounds, file_name, file_name_length, size, invert,
print_style, bpi, status)

INPUT PARAMETERS

bounds
Part of this file to be printed, in segment coordinates of the primary segment, in
GM $BOUNDSREAL T format. This is a four-element array of real values (xmin, ymin,
xmax, ymax).

file name
Pathname of the output file, in NAl\.1E _ $PNAME _ T format. This is an array of up to
256 characters.

file _ name _length

size

Number of characters in the pathname. This is a 2-byte integer.

If you specify a file name that already exists, the old contents of the file are overwritten.

Pair (x,y) of coordinates, in GM_ $POINT16 _ T. This is a two-element array of 2-byte
integers.

invert
Boolean (logical) value specifying whether to invert the file or not. Set to true to invert the
file. Set to false to print the file without inverting it.

print _style
Type of output file to be created, in GM_$PRINT_STYLE_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $GMF

GM $OUTI

Specifies that you want to copy a metafile to a bitmap for storage in a
graphics map file (GMF).

Specifies that you want to create a vector command file.

GM $POSTSCRIPT
Specifies that you want to create a PostScript file.

For print _style = GM_ $OUTl, all coordinates are transformed to display coordinates in
accordance with the size parameter of the GM _ $PRINT _ ... routine that you used to
create the vector command file. In the GM_ $OUTI file, the origin of coordinates is the
top left, not the bottom left as in the metafile. The GM _ $OUTI file is scaled to the size
parameter using the standard 95% rule that one dimension fills 95% of the size block, and
the other dimension does not overflow the block.

2-167 2D GMR Routines

GM $PRINT FILE PART

bpi

For print _ style = GM _ $G1v1F', the bpi value sets the physical density of the image
represented in the GMF. If this parameter is nonzero, a device to which you output the
GMF may compress or expand the image to produce a result which is as close as possible to
the specified number of bits per inch. If this parameter is zero, an output device uses one
dot to represent each bit from the GMF, regardless of the resulting physical size of the
image.

Number of bits per inch in the output GMF (graphics map file). This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM_$PRINT _FILE_PART prints the primary segment of the file. To print some other
segment, you may make the desired segment the primary segment, call
GM_$PRINT _FILE_PART, and then restore the previous value of the primary segment.

2D GMR Routines 2-168

GM_ $REOTANGLE _ [16,32,REAL]

GM_$REOTANGLE_[16,32,REAL]

Inserts a command into the current segment: draw a rectangle with sides parallel to the x
and y axes.

FORMAT

GM_$RECTANGLE_16 (point1. point2. fill. status)

GM_$RECTANGLE_32 (point1. point2. fill. status)

GM_$RECTANGLE_REAL (point1. point2. fill. status)

INPUT PARAMETERS

point1, point2

fill

The coordinates of two diagonally opposite corners, each a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$REOTANGLE_16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $REOTANGLE _ 32

GM $POINTREAL
A two-element array of real values for GM_$REOTANGLE_REAL

A Boolean (logical) value which specifies whether to fill the rectangle or not. Set the
parameter to true to fill the rectangle; set it to false for an unfilled rectangle.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$INQ_REOTANGLE_[16,32,REAL] to retrieve the parameters of a rectangle
command inserted by GM_$REOTANGLE_[16,32,REAL].

Ourrently, you must use GM_$INQ_REOTANGLE_16 if the stored data type is
GM_$16; you must use GM_$INQ_REOTANGLE_32 or _REAL if the stored data
type is GM_ $32.

Before supplying coordinate data to GM_ $REOTANGLE _ 2DREAL, you must call
GM_$DATA_ OOERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2-169 2D GMR Routines

GM $REFRESH SET ENTRY

GM $REFRESH SET ENTRY

Specifies a user-defined routine to be called when the display is refreshed as a result of a
DM refresh window or POP command.

FORMAT

INPUT PARAMETERS

refresh _ procedure _ ptr
refresh _ procedure _ ptr
Entry point for the application-supplied procedure to refresh the display, in
GM _ $REFRESH _ PTR _ T format. This is a pointer to procedure.

In direct mode, when the Display Manager refreshes the window in which the GM bitmap is
contained, the specified application-supplied procedure is called. Two input parameters are
passed to the application-supplied procedure:

unobscured When false, this Boolean value indicates
that the window is obscured.

position_changed
When true, this Boolean value indicates
that the window has moved or grown since
the display was released.

The "pointer to procedure II data type is an extension to the Pascal language. See the
DOMAIN Pascal Language Reference for an explanation of this extension.

This routine requires you to pass procedure pointers. To do so in FORTRAN programs,
use the following technique. First declare the subroutines to be passed as EXTERNAL.
Then pass their names using the IADDR function to simulate the Pascal pointer mechanism.
For example:

EXTERNAL REFRESH WINDOW

CALL GPR_$SET_REFRESH_ENTRY (IADDR(REFRESH_WINDOW),IADDR,
STATUS)

In FORTRAN, use 0 (not NIL) to indicate a zero value.

2D GMR Routines 2-170

GM $REFRESH SET ENTRY

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Successive calls to GM_$REFRESH_SET _ENTRY override previously defined entry
points.

In within-GPR mode, use GPR_$SET _REFRESH __ ENTRY.

2-171 2D G MR Routines

GM_$REPLAOE_INQ_FLAG

GM_$REPLAOE_INQ_FLAG

Returns the current value of the replace flag (Obsolete). New programs use
GM_ $MODELOMD _INQ_MODE.

FORMAT

OUTPUT PARAMETERS

yes_no
A Boolean value indicating whether the replace flag is set. True indicates that the flag is
set (new commands replace the current command); false indicates that the flag is cleared
(new commands are inserted after the current command). The default value is false.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine is functional, but new programs should use
GM_$MODELOMD_INQ_MODE.

2D G MR Routines 2-172

GM $REPLACE SET FLAG

GM $REPLACE SET FLAG

Sets or clears a flag which causes subsequent commands to replace the current command
rather than being inserted after it (Obsolete). New programs use
GM $MODELCMD SET MODE.

FORMAT

INPUT PARAMETERS

yes_no
A Boolean value indicating whether the replace flag is set. Use true to set the flag (new
commands replace the current command); use false to clear the flag (new commands are
inserted after the current command).

The default value is false (new commands are inserted after the current command).

When the replace flag is set, and you call a routine which creates a command of the same
command type as the current command, the new command replaces the current command.

If you call a routine which creates a different command type, the replace flag is
automatically cleared and the new command is inserted after the current command.

Changing the current command (for example, by calling GM_ $ COMMAND _DELETE)
automatically clears the replace flag.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine is functional, but new programs should use
GM $MODELCMD SET MODE.

Only primitive and instance command types may be replaced. The replace flag may only be
set if the current command is a primitive or instance command.

2-173 2D GMR Routines

GM $SEG:MENT CLOSE

GM $SEG:MENT CLOSE

Closes the current segment, saving revisions or not.

FORMAT

GM_$SEGMENT_CLOSE (save, status)

INPUT PARAMETERS

save
A Boolean (logical) value that indicates whether to save revisions. Set to true to save
revisions; set to false not to save revisions.

You must set save to true. Do not assume that it is true by default.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-174

GM $SEGMENT COPY

GM $SEGMENT COPY

Copies the entire contents of another segment into the current segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to be copied, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The entire contents of the specified segment are copied into the current segment after the
current command. The current command is set equal to the last copied command.

You cannot copy a segment from one file to another file.

Use the following procedure to make a new segment named II newcopy, II which is an exact
copy of an existing segment. The identification of the existing segment is 'source_seg_id':

GM $SEGMENT CREATE ('newcopy', 7, segment id, status);
GM-$SEGMENT-COPY (source seg id, status) -
GM=$SEGMENT=CLOSE (true,-status)

The two copies may then be edited independently and instanced independently.

2-175 2D GMR Routines

GM $SEGMENT CREATE

GM $SEGMENT CREATE

Creates a new segment.

FORMAT

INPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is a character string.

Currently, the segment name is truncated to twelve characters.

Segments in the same file must have different segment names. Note that "SEG" and "seg"
are different segment names; the comparison is case-sensitive.

Verification that each name is unique carries a performance penalty. Therefore, you have
the option of not naming segments and using the the segment identification number to
reference segments. To create an unnamed segment, set the value for name to 0:

You can use GM _ $SEGMENT __ RENAME to give a name to an unnamed segment or to
remove the name of a seg:rp.ent.

name _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

segment_id
The identification number assigned to the segment, in GM _ $SEGMENT _ ID _ T format.
This is a 4-byte integer.

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The segment name is of arbitrary length; however, currently only the first twelve characters
are stored to differentiate one segment from another

You must close the current segment before creating a new segment.

When a segment is created, its pickable and visible values are set to 255.

2D GMR Routines 2-176

GM $SEGMENT CREATE

For a segment name, you can use any collection of byte values of length 1 through 12.
Trailing blanks in segment names are not discarded.

If you are careful, you may use a number for the segment name:

VAR
number: integer32;

2-177 2D OMR Routines

GM $SEGMENT DELETE

GM $SEGMENT DELETE

Deletes the current segment.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

There must be no references to the deleted segment.

If you delete a segment, its identification number will be reassigned. The smallest unused
identification number is reassigned first.

You may not delete the file's primary segment. If you attempt to do so, you will get this
error message: gm _ $illegal_ value.

2D GMR Routines 2-178

GM $SEGMENT ERASE

GM $SEGMENT ERASE

Deletes all commands in the current segment.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

After this routine is performed, the current segment is still the current segment, but it
contains no commands.

2-179 2D G MR Routines

GM_$SEGMENT _INQ_BOUNDS

Returns the bounds of a segment.

FORMAT

INPUT PARAMETERS

seg_id
Segment ID in GM_$SEGMENT _ID _ T format. This is a positive 4-byte integer.

OUTPUT PARAMETERS

bounds
Bounds of the segment in GM _ $BOUNDSREAL _ T format. This is a four-element array
of real numbers. See the GM Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

Use this call to obtain the coordinates of the bottom left-hand boundary and the top right
hand boundary of the segment.

Use GM_$Fll.,E_INQ_BOUNDS to obtain the bounds of the primary segment of a file.

Use GM_ $ COMMAND _INQ __ BOUNDS to obtain the bounds of the current command.

2D GMR Routines 2-180

GM_ $SEGMENT _INQ_ COUNT

GM_$SEGMENT_INQ_COUNT

Returns the number of segments in this metafile and a segment number guaranteed to be
greater than or equal to the largest segment number.

FORMAT

OUTPUT PARAMETERS

count
The number of segments in the metafile, in GM_ $ SEGMENT _ID _ T format. This is a
4-byte integer.

max_segid
A number greater than or equal to the largest segment ID in the file, in
GM $SEGMENT ID T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

When you retrieve the count and maximum segment ID, you can then look at every
segment by checking segment numbers from 0 to this maximum value (0 is used).

2-181 2D GJvIR Routines

GM_ $SEGMENT _ INQ _ CURRENT

GM_ $SEG:MENT _ INQ _ CURRENT

Returns the name, segment identification, and number of instances of the current segment.

FORMAT

GM_$SEGMENT_INQ_CURRENT (name, name_length, segment_id,
n_instances, status)

OUTPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

segment_id
The identification number assigned to the segment, in GM_ $SEG:MENT _ID _ T format.
This is a 4-byte integer.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The returned segment number must be used for creating references to this segment within
other segments.

2D GMR Routines 2-182

GM _ $SEGMENT _ INQ _ ID

GM_$SEGMENT _INQ_ID

Returns the segment identification and the number of instances of the named segment.

FORMAT

INPUT PARAMETERS

name
The pathname of the segment. This is an array of up to 256 characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

segment_id
The identification number assigned to the segment of specified name, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

In creating instances of (references to) this segment within other segments, you must use the
returned segment identification number.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The name is of arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

GM_$SEGMENT _INQ_ID is complementary to GM_$SEGMENT _INQ_NAME.

Only the current file is searched to identify the segment number and the number of
instances of the named segment.

2-183 2D GMR Routines

GM_$SEGMENT _INQ_NAME

Returns the name of the segment with the specified segment identification number.

FORMAT

INPUT PARAMETERS

segment_id
The identification number assigned to the segment, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The name is of arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

GM_ $SEGMENT _INQ_NAME is complementary to GM_ $SEGMENT _INQ_ID.

2D GMR Routines 2-184

GM _ $SEGMENT _ INQ _ PICKABLE

GM _ $SEGMENT _ INQ _PICKABLE

Returns the pickable value of the specified segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the pickable value is to be retrieved, in
GM_ $SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

pickable
The pickable value of the specified segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

2-185 2D G MR Routines

GM_ $ SEGMENT _ INQ _ TEMPORARY

Returns whether the specified segment is temporary or not.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the temporary/permanent status is to
be retrieved, in GM_ $SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

temporary
A Boolean (logical) value that indicates whether the segment is temporary. A value of true
indicates that the segment is temporary; false indicates that the segment is permanent.

Temporary segments are deleted when the file is closed.

status
Completion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-186

GM_$SEGMENT _INQ_ VISIBLE

GM_ $SEGMENT _INQ_ VISIBLE

Returns the visible value of the specified segment.

FORMAT

INPUT PARAMETERS

segment _ id
The identification number of the segment for which the visible value is to be retrieved, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

visible
The visible value of the specified segment. This is a 4-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Typ~s section for more information.

2-187 2D G MR Routines

GM $SEGMENT OPEN

GM $SEGMENT OPEN

Reopens an existing segment.

FORMAT

INPUT PARAMETERS

segment _ id
The identification number of the segment to open, in GM_ $ SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS __ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

You must close the current segment before opening another segment.

Use GM_$SEGMENT _INQ_ OURRENT to get the identification number of the current
segment.

Ourrently, you cannot open a segment in a file that is open for read access. To open a
segment, the file containing the segment must be open in write or read-write access mode.
Otherwise, this error message is returned: gm _ $illegal_ value.

2D G MR Routines 2-188

GM $SEGMENT RENAME

GM $SEGMENT RENAME

Renames an existing segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to rename, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

The segment number remains the same when you rename the segment.

name
The new name of the segment in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

If another segment already has the new name, you receive an error message, and the old
name is not changed.

name _length
The number of characters in the new name of the segment. This is a 2-byte integer.

Currently, the segment name is truncated to twelve characters.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Verification that each name is unique carries a performance penalty. Therefore, you have
the option of not naming segments and using the segment identification number to reference
segments. To create an unnamed segment, set the value for name to 0:

2-189 2D GMR Routines

GM $SEGMENT RENAME

You can use GM _ $ SEGMENT _ RENAME to give a name to an unnamed segment or to
remove the name of a segment.

The name is of arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

To find the segment_id of an existing segment for which you know the name, use
GM_ $SEGMENT _INQ_ID.

2D GMR Routines 2-190

GM $SEGIv1ENT SET PIOKABLE

GM $SEGIv1ENT SET PIOKABLE

Assigns a pickable value to the specified segment.

FORMAT

GM_$SEGMENT_SET PICKABLE (segment_id, pickable, status)

INPUT PARAMETERS

segment_id
The identification number of the segment for which the pickable value is to be changed, in
GM_ $SEGIv1ENT _ID _ T format. This is a 4-byte integer.

pickable
The pickable value for the specified segment. This is a 4-byte integer.

When a segment is created, its pickable value is initialized to 255.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

2-191 2D G MR Routines

GM $SEGMENT SET TEMPORARY

GM $SEGMENT SET TEMPORARY

Makes the specified segment temporary or not. Temporary segments are deleted when the
file is closed.

FORMAT

GM_$SEGMENT_SET TEMPORARY (segment_id, temporary, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to make temporary, in
GM_ $SEGMENT _ID _ T format. This is a 4-byte integer.

temporary
A Boolean value that indicates whether the segment is temporary. Set to true to make
temporary; set to false to make permanent.

When a segment is created, it is made permanent (temporary = false).

A temporary segment is useful for picture data that you want to display now but not store
for future use.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2D GMR Routines 2-192

GM $SEGMENT SET VISIBLE

GM $SEGMENT SET VISIBLE

Assigns a visible value to the specified segment.

FORMAT

GM_$SEGMENT_SET VISIBLE (segment_id, visible, status)

INPUT PARAMETERS

segment_id
The identification number of the segment for which the visible value is to be changed, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

visible
The visible value for the specified segment. This is a 4-byte integer.

When a segment is created, its visible value is initialized to 255.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM_ $ SEGMENT _ SET _ VISIBLE lets you display a picture without certain segments.

2-193 2D GMR Routines

GM $TAG

GM $TAG

Inserts a comment into the current segment.

FORMAT

GM_$TAG (string, string_length, status)

INPUT PARAMETERS

string
The text string to write, in Gtv1_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_ TAG to get the value stored for the current GM_$TAG command.

Descriptor tags in a stroke font file must be entered in the file in capital letters, for
example, WIDTH.

2D G MR Routines 2-194

GM $TAG LOCATE

GM $TAG LOCATE

Looks for the specified tag in the specified range of segments and returns the segment ID of
the lowest numbered segment in which the tag is found.

FORMAT

GM_$TAG_LOCATE (string, string_length, min, max, segment_id, status)

INPUT PARAMETERS

string
The string to be searched for, in GM_ $STRING _ T format. This is an array of up to 120
characters.

The string to be matched is passed through the pathname wildcard parser, as described in
DOMAIN System Command Reference manual. To guarantee noninterference with the
wildcard parser, you may place an escape character (@) between every byte of the string
you wish to search for.

string _length

min

max

The length of the string to be searched for. This is a2-byte integer.

The smallest segment number to search, in GM_ $SEGMENT _ID _ T format. This is a
4-byte integer.

The largest segment number to search, in GM_ $SEGMENT _ID _ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

segment_id
The number of the segment in which the tag was found, in GM_ $SEGMENT _ID _ T
format. This is 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

To find all occurrences of a tag, you must make successive calls to GM_ $TAG _LOCATE.

2-195 2D G MR Routines

GM $TERMINATE

GM $TERMINATE

Terminates the graphics metafile package and closes the display.

FORMAT

GM_$TERMINATE (status)

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

When GM terminates, it currently resets color 1 to whatever it was when GM was
initialized. This is true of color nodes only. If you use GM in borrow mode, the entire
color map is reset when GM terminates. (The resetting is not by GM, but by GPR.)

Any open files are closed. Revisions to these files are saved.

Any open segments are closed, and revisions are saved.

2D G MR Routines 2-196

GM_ $ TEXT _2D[16,32,REAL]

GM_$TEXT_2D[16,32,REAL]

Inserts a command into the current segment: write a text string.

FORMAT

GM_$TEXT_2D[16,32,REALJ (point, rotate, string, string_length, status)

INPUT PARAMETERS

point
The coordinates of the point at which to locate text. This is a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$TEXT _2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $ TEXT _2D32

GM $POINTREAL
A two-element array of real values for GM _ $ TEXT _ 2DREAL

See the GM_ $ Data Types section for more information.

The text is placed as follows: The first character of the text string is placed at the location
you specify. This means that the origin of this charaeter, as defined in the font, is placed at
the specified location. Usually, the origin is the lower left-hand corner, excluding
descenders.

rotate
The angle at which this text string is to be written, in degrees. This is a real variable. Use
0.0 degrees to specify left to right text. Other values indicate clockwise rotation. For
example, -90.0 degrees specifies bottom to top.

string
The text string to write, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-197 2D GMR Routines

GM_ $TEXT _2D[16,32,REAL]

USAGE

Use GM_ $INQ_ TEXT _2D[16,32,REAL] to retrieve the parameters of a text command
inserted by GM_$TEXT _2D[16,32,REAL].

Before supplying coordinate data to GM_$TEXT _2DREAL, you must call
GM_$DATA_ OOEROE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

2D G MR Routines 2-198

GM $TEXT BACKGROUND VALUE

GM $TEXT BACKGROUND VALUE

Inserts a command into the current segment: change the background value used when
wri ting text.

FORMAT

INPUT PARAMETERS

va.lue
The value to use for the text background. This is a 4-byte integer.

The default value is -2. This sets the text background value equal to the viewport
background value.

The value -1 makes the background transparent: the text background value is equal to the
current display pixel value.

OUTPUT PARAMETERS

sta.tus
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $INQ_ TEXT _BACKGROUND _ VALUE to get the value stored for the current
GM $TEXT BACKGROUND VALUE command.

2-199 2D GMR Routines

GM $TEXT SIZE

GM $TEXT SIZE

Inserts a command into the current segment: use a different text size from the same font
family.

FORMAT

INPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value.

The default text size is 10.0.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more inf-ormation.

USAGE

Use GM-,- $INQ_ TEXT _SIZE to retrieve the parameters of a text command inserted by
GM $TEXT SIZE.

2D GMR Routines 2-200

GM $TEXT VALUE

GM $TEXT VALUE

Inserts a command into the current segment: set the value used when writing text.

FORMAT

INPUT PARAMETERS

value
The value that specifies the new value to use when writing text. This is a 4-byte integer.

The default value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $INQ_ TEXT _ VALUE to get the value stored for the current
GM $TEXT VALUE command.

2-201 2D GMR Routines

GM $VIEW SOALE

GM $VIEW SOALE

Scales the view under the current viewport, keeping the specified point fixed.

FORMAT

GM_$VIEW_SCALE (scale, point, status)

INPUT PARAMETERS

scale
The value by which to multiply the view scale factor. This is a real value.

point
An (x,y) pair indicating the fixed point on screen, in GM_POINTREAL _ T format. This
is a two-element array of real values. See the GM _ $ Data Types section for more
information.

The point (point.x,point.y) on the screen (expressed in fraction-of-bitmap coordinates) is
kept fixed during this rescaling.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use the following to rescale the screen by a scaling factor II scale II AND move the point
(point.x,point.y) on the screen (in fraction-of-bitmap coordinates) to the center of the
viewport, all in one operation:

{assumes scale not equal to i.O}

GM_$VIEWPORT_INQ_BOUNDS (vbounds, status);
vcenter_x := 0.5 * (vbounds.xmax + vbounds.xmin);
vcenter y := 0.5 * (vbounds.ymax + vbounds.ymin);
pOintl.X := (vcenter_x - point.x * scale)/(1.0 - scale);
pointl.y := (vcenter_y - point.y * scale)/(i.O - scale);
GM_$VIEW_SCALE(scale, pointl,status);

2D G MR Routines 2-202

GM $VIEW TRANSFORM

GM $VIEW TRANSFORM

Rotates the view under the current viewport, keeping the specified point (in fraction-of
bitmap coordinates) fixed.

FORMAT

GM_$VIEW_TRANSFORM (rotate, point, status)

INPUT PARAMETERS

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

point
An (x,y) pair indicating the fixed point on the screen, in GM_ $POINTREAL _ T format.
This is a two-element array of real values. See the GM _ $ Data Types section for more
information.

The point (point.x,point.y) on the screen (expressed in fraction-of-bitmap coordinates) is
kept fixed during this transformation.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-203 2D GMR Routines

GM $VIEW TRANSFORM RESET

GM $VIEW TRANSFORM RESET

Resets the view tranformation to the form in which it was initially displayed.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM $VIEW _ TRANSFORM_RESET undoes the effects of these commands:
GM_$VIEW _ TRANSLATE, GM_$VIEW _SCALE, and
GM_ $GM_ VIEW _ TRANSFORM. However, GM_ $VIEW _ TRANSFORM_RESET
does not undo changes caused by changing the window size.

2D GMR Routines 2-204

OM $VIEW TRANSLATE

GM $VIEW TRANSLATE

Translates the view under the current viewport.

FORMAT

GM_$VIEW_TRANSLATE (translate, status)

INPUT PARAMETERS

translate
An (x,y) pair indicating the amount of translation, in GM_ $POINTREAL _ T format.
This is a two-element array of real values. See the GM _ $ Data Types section for more
information.

The translation is specified in bitmap coordinates, that is, as fractions of the display
bitmap.

A positive x translation moves the viewport to the right over the view, so that the picture
on the display appears to move to the left. A positive y translation moves the viewport up
over the view, so that the picture on the display appears to move down.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-205 2D GMR Routines

GM $VIEWPORT CLEAP,

GM $VIEWPORT CLEAR

Clears the current viewport.

FORMAT

GM_$VIEWPORT_CLEAR (value, status)

INPUT PARAMETERS

value
The value to which all pixels within the current viewport are to be set. This is a 4-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Only planes enabled by the current value of the plane mask are affected.

2D G MR Routines 2-206

GM $VIEWPORT CREATE

GM $VIEWPORT CREATE

Creates an additional viewport and makes it the current viewport.

FORMAT

GM_$VIEWPORT_CREATE (bounds, viewport_id, status)

INPUT PARAMETERS

bounds
The bounds of the new viewport, in GM _ $BOUNDSREAL _ T format. This is an array of
four real values (xmin, ymin, xmin, ymax). See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is assigned by the GM
package.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM _ $INIT initializes the GM package and viewports, creates one viewport called viewport
1 which fills the display bitmap and makes it the selected viewport. Currently, viewports
may not overlap, so you must change the bounds of viewport 1 before creating additional
viewports. You must supply bounds for the new viewport, in bitmap coordinates. The GM
package assigns a number to the viewport.

Use this procedure to change the original viewport to fill only the left half of the screen and
create a second viewport in the center right of the screen:

bounds.xmin := 0.0; bounds.ymin := 0.0;
bounds.xmax := 0.5; bounds.ymax := 1.0;
GM_$VIEWPORT_SET_BOUNDS (bounds, status);
bounds.xmin := 0.6; bounds.ymin := 0.25;
bounds.xmax := 1.0; bounds.ymax := 0.75;
GM_$VIEWPORT_CREATE (bounds, viewport_id, status);

2-207 2D GMR Routines

GM $VIEWPORT DELETE

GM $VIEWPORT DELETE

Deletes a viewport.

FORMAT

INPUT P ARA~1ETERS

viewport _ id
The number assigned by the GM package to the viewport you wish to delete. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Because viewports currently may not overlap, you must delete all but one viewport if a
single viewport is to be expanded to fill the entire GM bitmap.

2D GMR Routines 2-208

GM_$VIEWPORT_INQ_BACKGROUND_ VALUE

Returns the pixel value used for the background of the specified viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

OUTPUT PARAMETERS

value
The value to use for the viewport background. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

\

12345678901234567890123456789012 \ 34567890
---------------------------------\---------
GM_$VIEWPORT_INQ_BACKGROUND_VALU I E

Use GM_$VIEWPORT_SET_BACKGROUND_ VALUE to change the background
value of the specified viewport.

2-209 2D GMR Routines

GM_$VIEWPORT_INQ_BORDER __ SIZE

GM_$VIEWPORT_INQ_BORDER __ SIZE

Returns the border size of the current viewport, in pixels or fraction-of-bitmap coordinates.

FORMAT

OUTPUT PARAMETERS

border unit
The units for border size, in GM_$BORDER_ UNIT _ T format. This is a 2-byte integer.
One of the following values is returned:

GM $FRACTIONS
Expresses edge width as fraction of the total 6M bitmap size.

GM $PIXELS Default border type. Expresses edge width in pixels.

border size
The size of the border, specified as left, bottom, right, top. This is an array of four real
values (left, bottom, right, top).

The default border type is in pixels, and the default width is 1,1,1,1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM_$VIEWPORT _INQ_BORDER_SIZE returns the size of the four edges of the
current viewport. If border _ unit = GM _ $PIXELS, edge widths are expressed in pixels. If
border _ unit = GM_ $FRACTIONS, edge widths are expressed as fractions of the total GM
bitmap size.

Use GM_$VIEWPORT _SET _BORDER_SIZE to change the size of the border.

2D G MR Routines 2-210

Returns the bounds of the current viewport.

FORMAT

OUTPUT PARAMETERS

bounds
The bounds of the current viewport, in GM_ $BOUNDSREAL _ T format. This is a four
element array of real values (xmin, ymin, xmax, ymax). See the GM_ $ Data Types section
for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM_$VIEWPORT _INQ_BOUNDS returns the bounds of the current viewport, as
fractions of the total GM bitmap size.

2-211 2D GMR Routines

GM_$VIEWPORT_INQ_CURRENT

GM_$VIEWPORT_INQ_CURRENT

Returns the number of the current viewport.

FORMAT

OUTPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is assigned by the GM
package.

status
Completion status, in STATUS._ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

If there is no current viewport, a GM_ $NO _ CURRENT _ VIEWPORT error is returned.

2D GMR Routines 2-212

Returns the number and types of grids for a viewport.

FORMAT

GM_$VIEWPORT_INQ_GRIDS (maxcnt, flags, sindex, cnt, grid, status)

INPUT PARAMETERS

maxcnt
Length of the grid array. This is a 2-byte integer.

OUTPUT PARAMETERS

flags
Attributes of the snap grid, in GM_ $ GRID _FLAGS __ T format. This is a 2-byte integer.
Snapping is not currently implemented.

sindex

cnt

grid

Index of the snap grid. This is a 2-byte integer. Snapping is no~ currently implemented.

Number of grids. This is a 2-byte integer.

Array of grid descriptions, in GM_$GRID _ARRAY _ T format. This is an array of [1 ..
gm_$max_grid] of GM_$GRID_ T. See the GM Data Types section for more
information.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Snapping has not been implemented for grids.

Use GM_ $VIEWPORT _SET _ GRIDS to establish a grid for a viewport.

2-213 2D GMR Routines

GM_ $VIEWPORT _INQ_REFRESH_STATE

GM_ $VIEWPORT _INQ_REFRESH_STATE

Returns the refresh state of the curtent viewport.

FORMAT

OUTPUT PARAMETERS

refresh _ state
The refresh state of the viewport, in GM_ $VIEW _REFRESH_ T format. This is a 2-
byte integer. One of the following values is returned:

GM $REFRESH INHIBIT
In borrow mode, changing commands in the file does not immediately
affect this viewport. The viewport is rewritten only when you call
GM_ $VIEWPORT _REFRESH. In direct mode, the viewport is
rewritten only when you call GM_ $VIEWPORT _REFRESH, or when
the display is refreshed as the result of a DM command which causes the
window to be redrawn. Thus, calling GM_$DISPLAY _REFRESH does
not affect a viewport in this refresh state.

GM $REFRESH WAIT
(Default) In borrow mode, changing commands in the file does not
immediately affect this viewport. The viewport is rewritten only when
you call GM_ $VIEWPORT _REFRESH or
GM_$DISPLAY _REFRESH. In direct mode, the viewport is rewritten
only when you call GM_$VIEWPORT _REFRESH or
GM_$DISPLAY _REFRESH or when the display is refreshed as the
result of a DM command which causes the window to be redrawn.

GM $REFRESH PARTIAL
Every time you change any command in the file, the following occurs if
this. viewport is the current viewport: Inserted primitive commands are
added, and deleted primitive commands are erased, but underlying data
is not rewritten. This provides faster interactive drawing. You should,
however, periodically clean up the accumulating inaccuracies by calling
GM_$VIEWPORT _REFRESH to redisplay the viewport.

GM $REFRESH UPDATE

status

Every time you change any command in the file, this viewport is
completely corrected if it is the current viewport.

Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The viewport refresh states are defined under the routine
GM $VIEWPORT SET REFRESH STATE.

2D G MR Routines 2-214

GM $VIEWPORT MOVE

GM $VIEWPORT MOVE

Translates the current viewport, carrying the view with it.

FORMAT

GM_$VIEWPORT_MOVE (translate, status)

INPUT PARAMETERS

translate
An (x,y) pair indicating the amount of translation, in GM_ $POINTREAL _ T format.
This is a two-element array of real values.

The translation is expressed as fractions of the display bitmap size.

Currently, values which would cause part of the viewport to be moved outside the GM
bitmap result in an error.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-215 2D G MR Routines

GM $VffiWPORT P~L TO SEG 2D

GM $VffiWPORT P~L TO SEG 2D

Oonverts pixel coordinates to segment coordinates.

FORMAT

GM_$VIEWPORT_PIXEL_TO_SEG_2D (p:lxel_posi tion, viewport_id,
segment_position, status)

INPUT P A~AMETERS

pixel_ position
Pixel coordinates of any point on the screen in GM_ $POINT16 _ T format. This is a two
element array of 2-byte integers.

OUTPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer.

segment _ position
Segment coordinates of the point in the viewport segment of the point whose coordinates
were entered in segment_position. This parameter uses GM_$POINTREAL_ T format,
which is a two-element array of real values.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine allows the user to inquire about the segment position of a particular point on
the screen.
The GM_$VffiWPORT_PDCEL_TO_SEG_2D call can only be used in
GM_ $OURRENT _BITMAP mode. Use this call when using 2D GMR with
DOMAIN/Dialogue.

2D GMR Routines 2-216

GM $VIEWPORT REFRESH

GM $VIEWPORT REFRESH

Refreshes the current viewport.

FORMAT

GM_$VIEWPORT_REFRESH (status)

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-217 2D G MR Routines

GM_ $VIEWPORT _SEG_2D[16,32,REAL] _ TO _PIXEL

Converts segment coordinates to pixel coordinates.

FORMAT

GM $VIEWPORT_SEG_2D[16,32,REAL] __ TO_PlXEL (segment_position, pixel_position,
status)

INPUT PARAMETERS

segment _ position
Segment coordinates of any point in the viewport segment, in GM_ $POINT16 _ T format.
This is a two-element array of 2-byte integers, 4-byte integers, or real numbers depending
on which form of the call is used.

OUTPUT PARAMETERS

pixel_ position
Pixel coordinates of the screen location whose coordinates were entered in parameter
segment_position. This parameter uses GM_ $POINT16 _ T format. This is a two
element array of 2-byte integers, 4-byte integers, or real numbers depending on which form
of the call is used.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine allows the user to inquire about the pixel location of a particular point in a
segment. For example, if a rectangle is drawn from (0,0) to (100,100), the user can obtain
the screen location (pixel coordinates) of the point (0,0), or any other point in the segment.

This call is useful when drawing grids. For example, consider drawing the lines of a grid
every 100 segment coordinates. You can use this call to determine where the points (0,0),
and (100,0) will be drawn. This allows you to determine the density of your grid.

2D G MR Routines 2-218

GM $VIEWPORT SELECT

GM $VIEWPORT SELECT

Makes a viewport the current viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

You must create the viewport before you can select it.

2-219 2D G MR Routines

GM $VIEWPORT SET BACKGROUND VALUE

GM $VIEWPORT SET BACKGROUND VALUE

Sets the pixel value used for the background of the specified viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

value
The value to use for the viewport background. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$VIEWPORT_SET_BACKGROUND_VALU 1 E

Use GM_ $VIEWPORT _INQ_BACKGROUND _ VALUE to retrieve the background
value of the specified viewport.

2D GMR Routines 2-220

GM $VIEWPORT SET BORDER SIZE

GM $VIEWPORT SET BORDER SIZE

Specifies the border size of the current viewport, in pixels or fraction-of-bitmap coordinates.

FORMAT

GM_$VIEWPORT_SET BORDER SIZE (border_unit, border size, status)

INPUT PARAMETERS

border unit
The units for border size, in GM_$BORDER_ UNIT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $FRACTIONS
Expresses edge width as fractions of the total GM bitmap size.

GM $PlXELS Default border type. Expresses edge width in pixels.

border size
The size of the border, specified as left, bottom, right, top. This is an array of four real
values (left, bottom, right, top).

The default border type is in pixels, and the default width is 1,1,1,1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Viewport borders are drawn with color value 1 for compatibility with monochrome nodes.
For the same reason, the graphics metafile package sets the color map for color value 1 to
white. With a color node, you may want to use the viewport background color to
differentiate viewports from the overall display or the window background. Changing the
color map to black is usually not practical because the cursor is also set to color value 1.
An alternative is to create the viewport, set the border width to 0 pixels, and then refresh
the viewport.

GM_ $VIEWPORT _SET _BORDER_SIZE sets the size of the four edges of the current
viewport. If border _ unit = GM_ $PlXELS, edge widths are expressed in pixels. If
border _ unit = GM_ $FRACTIONS, edge widths are expressed as fractions of the total GM
bitmap size.

Use GM_ $VIEWPORT _INQ_BORDER_SIZE to retrieve the size of the border.

2-221 2D G MR Routines

GM $VIEWPORT SET BOUNDS

GM $VIEWPORT SET BOUNDS

Changes the display bounds for the current viewport.

FORMAT

GM_$VIEWPORT_SET BOUNDS (bounds, status)

INPUT PARAMETERS

bounds
The bounds of the new viewport, in GM_ $BOUNDSREAL _ T format. This is a four
element array of real values (xmin, ymin, xmax, ymax)'. See the GM_ $ Data Types section
for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM_$VIEWPORT _SET _BOUNDS sets the bounds of the current viewport. You must
provide two diagonally opposite corners. Coordinates are expressed as fractions of the total
display bitmap size: bottom left =: (0.0, 0.0); top right = (1.0, 1.0).

Currently, viewports may not overlap.

Use this procedure to change the bounds of the current viewport to fill only the left half of
the screen.

bounds.xmin := 0.0; bounds.ymin := 0.0;
bounds.xmax := 0.5; bounds.ymax := 1.0;
GM_$VIEWPORT_SET_BOUNDS (bounds, status);

2D GMR Routines 2-222

GM $VIEWPORT SET GRIDS

GM $VIEWPORT SET GRIDS

Specifies the number and type of grids for a viewport.

FORMAT

GM_$VIEWPORT_SET GRIDS (flags, sindex, cnt, grid, status)

INPUT PARAMETERS

flags
Attributes of the snap grid, in GM_ $GRID _FLAGS _ T format. This is a 2-byte integer.
Snapping is not currently implemented. The 2D GMR software ignores this parameter.

sindex

ent

grid

Index of the snap grid. This is a 2-byte integer. Snapping is not currently implemented.
The 2D GMR software ignores this parameter.

Number of grids. This is a 2-byte integer between 1 and GM_ $MAX_ GRID.

Array of grid descriptions, in GM_ $ GRID _ARRAY _ T format. This is an array of [1 ..
cnt] of GM_ $GRID _ T. See the GM Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

Snapping has not been implemented for grids.

Grids are input aids; they are not part of the metafile -- they are strictly attributes of a
viewport.

A given viewport may have an array of grids associated with it (up to 4 grids, currently).
This allows the user to define major and minor grids, or even to define more complicated
grids.

Use GM_ $VIEWPORT _INQ_ GRID to inquire grids for the current viewport.

To determine grid density use GM_ $VIEWPORT _SEG _2D[16,32,REAL] _ TO _PIXEL.

A call to GM_ $VIEWPORT _SET _ GRIDS does not actually draw the grids. To display
the grids call GM_$VIEWPORT _REFRESH or GM_$DISPLAY _REFRESH.

2-223 2D G MR Routines

GM $VIEWPORT SET REFRESH STATE

GM $VIEWPORT SET REFRESH STATE

Sets the refresh state of the current viewport.

FORMAT

INPUT PARAMETERS

refresh state
The refresh state of the viewport, in GM_ $VIEW _REFRESH_ T format. This is a 2-
byte integer. Specify only one of the following predefined values:

GM $REFRESH INHIBIT
In borrow mode, changing commands in the file does not immediately
affect this viewport. The viewport is rewritten only when you call
GM_ $VIEWPORT _REFRESH. In direct mode, the viewport is
rewritten only when you call GM_ $VIEWPORT _REFRESH, or when
the display is refreshed as the result of a DM command which causes the
window to be redrawn. Thus, calling GM_ $DISPLAY _REFRESH does
not affect a viewport in this refresh state.

GM $REFRESH WAIT
(Default) In borrow mode, changing commands in the file does not
immediately affect this viewport. The viewport is rewritten only when
you call GM._ $VIEWPORT _REFRESH or
GM_$DISPLAY _REFRESH. In direct mode, the viewport is rewritten
only when you call GM_$VIEWPORT _REFRESH or
GM_$DISPLAY _REFRESH or when the display is refreshed as the
result of a DM command which causes the window to be redrawn.

GM $REFRESH PARTIAL
Every time you change any command in the file, the following occurs if
this viewport is the current viewport: Inserted primitive commands are
added, and deleted primitive commands are erased, but underlying data
is not rewritten. This provides faster interactive drawing. You should,
however, periodically clean up the accumulating inaccuracies by calling
GM_$VIEWPORT _REFRESH to redisplay the viewport.

Partial refresh does not always update the viewport accurately. For
accuracy in incremental updating, use GM_ $REFRESH_ UPDATE.
Extensive use of partial refresh may necessitate use of
GM $VIEWPORT REFRESH.

GM $REFRESH UPDATE

2D G MR Routines

Every time you change any command in the file, this viewport is
completely corrected.

2-224

GM $VIEWPORT SET REFRESH STATE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

2-225 2D GMR Routines

GM_ $VISIBLE _INQ_MASK

GM_$VISIBLE_INQ_MASK

Returns the value of the visible mask.

FORMAT

OUTPUT PARAMETERS

mask
The visible mask value. This is a 4-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $VISIBLE _ SET _l'v1ASK to change the current value of the visible mask.

2D G MR Routines 2-226

GM_$VISIBLE_INQ_ THRESHOLD

GM_$VISIBLE_INQ_ THRESHOLD

Returns the value of the visible threshold.

FORMAT

GM_$VISIBLE_INQ_THRESHOLD (threshold, status)

OUTPUT PARAMETERS

threshold
The visible threshold value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$VISIBLE_SET _ THRESHOLD to change the current value of the visible
threshold.

2-227 2D G MR Routines

GM $VISIBLE SET MASK

GM $VISIBLE SET MASK

Sets the value of the visible mask.

FORMAT

GM_$VISIBLE_SET MASK (mask, status)

INPUT PARAMETERS

In ask
The visible mask value. This is a 4-byte integer.

The visible mask is initialized to 16#7FFFFFFF (all nonzero segments visible).

The visible mask is BIT-ANDed with the segment visible number. If the result is nonzero,
the segment may be visible. Both the visible mask and visible threshold must be satisfied
for a segment to be visible.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $VISIBLE _ INQ _ MASK to retrieve the current value of the visible mask.

2D GMR Routines 2-228

GM $VISIBLE SET THRESHOLD

GM $VISIBLE SET THRESHOLD

Sets the visible threshold.

FORMAT

GM_$VISIBLE_SET THRESHOLD (threshold. status)

INPUT PARAMETERS

threshold
The visible threshold value. This is a 4-byte integer.

The visible threshold is initialized to 1 (all nonzero segments visible).

If the segment visible number is greater than or equal to the visible threshold, the segment
may be visible. Both the visible mask and visible threshold must be satisfied for a segment
to be visible.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $VISIBLE _ INQ _ THRESHOLD to retrieve the current value of the visible
threshold.

2-229 2D G MR Routines

This chapter lists 2D GMR errors.

ERRORS

GM $ABLOOK ID INVALID

Chapter 3
Errors

The ablock identification number is not valid. Use the number assigned when you
created the ablock.

GM $ABLOOK NOT OREATED
You must create an ablock before you can use it.

GM $AOLASS ID INVALID
The aclass identification number you used is not valid.

GM $ALREADY INITIALIZED
You initialize the GM package only once during a session of using it.

GM $ANOTHER SEGMENT IS OPEN
Only one segment may be open at a time.

GM $ATTRIBUTE VALUE INVALID
The attribute value is not valid.

GM $BOUNDS INVALID
The bounds specified for displaying part of a segment or file do not satisfy the
requirement that the minimum value be less than the maximum value.

GM $OANT DELETE FONT F AMIL Y IN USE
You cannot delete a font family that is referenced by the current file.

GM $OANT DELETE INS TAN OED SEGMENT
You cannot delete a segment if it is instanced by other segments in the file.

GM $OOMMAND TYPE DOESNT MATOH
The current command does not match the type specified in inquire operation.

GM $OOORDINATE OONVERSION OVERFLOW
You have supplied a value to a coordinate conversion routine, GM _ $OOORD ... ,
which cannot be converted.

GM $DATA OOEROE NEEDED
To use the data in the format you have supplied, you must convert it.

GM $FILE ID INVALID
The file identification number you used is not valid.

GM $FILE NAME NOT FOUND
The file name you gave is not valid.

GM $FONT F AMIL Y ID INVALID
When you reference a font family, you must use the font family id.

3-1 Errors

GM $FONT FAM~Y NAME ALREADY USED
You may not rename a font family to have the same name as another font family.

GM $FONT FAM~Y NAME NOT FOUND
You must include a font family before you can use it.

GM $~LEGAL VALUE
One of the input parameters that you supplied to the GM package has an illegal
value.

GM $~LEGAL SELF INSTANCE
A segment may not instance itself, directly or indirectly.

GM $INPUT EVENT TYPE INVALID
You must use the event types associated with input routines.

GM $INVALID POLYLINE OPTIONS
The only options for a polyline are open, closed, or closed and filled. When you
specify filled, you must also specify closed.

GM $NAME LENGTH INVALID
The limitation on the number of characters in a name is 12.

GM $MODULE CODE
GM module

GM $NEGATIVE CIRCLE RADIUS
The radius of a circle must be a positive value.

GM $NO CURRENT COMMAND
For editing procedures such as picking, you must have a current command.

GM $NO CURRENT F~E
You must have a file open. If you have more than one file open and you close the
current file, you must select another current file.

GM $NO CURRENT SEGMENT
You must create or open a segment.

GM $NO CURRENT VIEWPORT
You must have a current viewport. The current viewport is the last viewport created
or selected.

GM $NO FONT FAM~Y INCLUDED
You must include a font family before you can use it. See
GM $FONT FAM~Y INCLUDE.

GM $NO GM BITMAP EXISTS
When you initialize the GM package, the bitmap size is not defined. The procedure
GM_ $INQ_BITMAP _SIZE cannot return a valid value until you define the size.

GM $NO PICK MATCHES FOUND
The command or segment that you searched for was not found.

GM $NOTHING DISPLAYED IN VIEWPORT
You must have displayed a segment in the specified or current viewport before calling
this routine.

GM $NOT INITIALIZED
You must initialize the GM package before you can use it.

Errors 3-2

GM $OPERATION OK
Normal status

GM $PIOK LIST EMPTY
Only picked segments are included on the pick list. Use GM $PIOK SEGMENT to
list a segment.

GM $PIOK LIST NOT INITIALIZED
To use a pick list, you must first initialize it.

GM $PICK LIST TOO LONG
The limitation on the number of segments is 32 in a pick list.

GM $SEGMENT ID INVALID
The segment identification number you used is not valid.

GM $SEGMENT LOOKED BY PIOK
You may not delete or edit a segment included in a list of picked segments.

GM $SEGMENT NAME ALREADY USED
Each segment name must be unique.

GM $SEGMENT NAME NOT FOUND
The segment name is not in the file.

GM $TOO MANY ABLOCKS
The limitation on the number of ablocks is 40.

GM $TOO MANY FILES
The number of files is limited to 16.

GM $TOO MANY FONT FAMILIES
The limitation on the number of font families is 8.

GM $TOO MANY SEGMENTS
The limitation on the number of segments is 16384.

GM $TOO MANY VIEWPORTS
The limitation on the number of viewports is 64.

GM $VIEWPORT BOUNDS INVALID
Viewports may not overlap. Space outside of viewports is empty.

GM $VIEWPORT DOESNT EXIST
You must create a viewport before you can use it.

GM $VIEWPORT ID INVALID
You must use the viewport number assigned by GM_ $VIEWPORT _ CREATE.

GM $WRONG DISPLAY MODE
Each display mode has its advantages and limitations. See GM $INIT.

3-3 Errors

Chapter 4
Quick Reference

This section provides a quick reference to 2D GMR routines. Information is presented in two
parts: a list organized by function followed by an alphabetical list of calls with their formats.

2D GMR Routines

The following is a list of routines organized by functional category. Some routines are included
in more than one category. The method of organization is similar to that in Programming With
DOMAIN 2D Graphics Metafile Resource.

Developing Application Programs

Controlling the 2D GMR Package

GM $INIT
Initializes the graphics metafile package and opens the display.

GM $TERMINATE
Terminates the graphics metafile package and closes the display.

Controlling Files

GM $Fll.tE CREATE
Creates a new graphics metafile and makes it the current file.

GM $Fll.tE OPEN
Reopens an existing file and makes it the current file.

GM $Fll.tE CLOSE
Closes the current file, saving revisions or not.

GM $Fll.tE SELECT
Makes the specified file the current file.

Controllling Segments

GM_ $SEGMENT _ CREATE
Creates a new segment.

GM_ $SEGMENT _ OPEN
Reopens an existing segment.

GM $SEGMENT INQ ID
- Returns th;segm~t identification and the number of instances of the named segment.

GM _ $SEGMENT _ INQ _ CURRENT
Returns the name, segment identification, and number of instances of the current
segment.

4-1 Quick Re ference

GM_$SEGMENT_INQ_NAME
Returns the name of the segment with the specified segment identification number.

GM_$SEGMENT_INQ_COUNT
Returns the number of segments in this metafile and a segment number guaranteed to be
greater than or equal to the largest segment number.

GM $SEGMENT RENAME
Renames an existing segment.

GM $SEGMENT CLOSE
Closes the current segment, saving revisions or not.

GM $SEGMENT DELETE
Deletes the current segment.

Primary Segment

GM $F~E SET PRThUillY SEGMENT
Changes the segment number assumed to be the start of the current file.

Using Basic Modeling Routines

Using Draw and Fill Primitives

GM_$POLYLINE_2D[16,32,REAL]
Inserts a command into the current segment: draw a linked set of line segments.

GM_ $RECTANGLE _ [16,32,REAL]
Inserts a command into the current segment : draw a rectangle with sides parallel to the
x and y axes.

GM_$CIRCLE_[16,32,REAL]
Inserts a command into the current segment: draw a circle.

GM_$CURVE_2D[16,32,REAL]
Inserts a command into the current segment: draw a curve.

GM_$PRIMITIVE_2D[16,32,REAL]
Inserts a command into the current segment: draw a primitive.

Displaying Files and Segments

GM $DISPLAY F~E
Displays the entire current file in the current viewport.

GM $DISPLAY SEGMENT
Displays the specified segment (and all called segments) in the current viewport.

Quick Reference 4-2

Displaying Part of a File/Segment

GM $DISPLAY FILE PART
Displays part of the current file in the current viewport.

GM $DISPLAY SEGMENT PART
Displays~;art of the sp~ified segment (and all called segments) in the current viewport.

Using Transformations

GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL]
Inserts a command into the current segment: instance the identified segment with the
specified translation.

GM_$INSTANCE_SCALE_2D[16,32,REAL]
Inserts a command into the current segment: instance the specified segment with the
specified scale and translation parameters.

Instances with Arbitrary Transformations

GM_ $INSTANCE _ TRANSFORM_ 2D[16,32,REAL]
Inserts a command to instance the specified segment with the specified rotation and
translation applied.

Using Draw and Fin Attributes

Line Attributes

GM $DRAW VALUE
Inserts a command into the current segment: set the value used when drawing lines.

GM $DRAW STYLE
Inserts a command into the current segment: set the line style (solid, dotted).

Fill Attributes

GM $FILL VALUE
Inserts a command into the current segment: set the value used when filling an area.

GM $FILL BACKGROUND VALUE
Inserts a command into the current segment: set the value used for pixels not in the fill
pattern when filling an area.

GM $FILL PATTERN
Inserts a command into the current segment: set the pattern used for the interior of
filled areas.

Using Color Map Attributes Using Plane Masks

GM $PLANE MASK
Inserts a command into the current segment: change the plane mask.

4-3 Quick Re ference

Raster Operation Attributes

GM $DRAW RASTER OP
Inserts a command into the current segment: change the logical raster operations to be
performed when drawing.

Using Modeling Routines: Text

Inserting Text

GM_ $ TEXT _2D[16,32,REAL]
Inserts a command into the current segment: write a text string.

Using Text Attributes

GM $TEXT VALUE
Inserts a command into the current segment: set the value used when writing text.

GM $TEXT BACKGROUND VALUE
Inserts a command into the current segment: change the background value used when
writing text.

GM $TEXT SIZE
Inserts a command into the current segment: use a different text size from the same font
family.

GM $FONT FAMILY
Inserts a command into the current segment: set the font family used when writing text.

Font Families

GM $FONT FAMILY INCLUDE
Specifies a font family to use in this metafile.

GM_$FONT _FAMILY _INQ_ID
Returns the identification number of a previously included font family.

GM_$FONT _FAMILY _INQ_NAME
Returns the font family name for the specified identification number of a previously
included font family.

GM $FONT FAMILY RENAME
Changes the font family file corresponding to this font family identification.

GM $FONT FAMILY EXCLUDE
Undoes the inclusion of a font family.

Quick Re ference 4-4

Using Segment Characteristics

Primary Segment

GM $FILE SET PRIMARY SEGMENT
Changes the segment number assumed to be the start of the current file.

GM_$FILE_INQ_PRIMARY _SEGMENT
Returns the segment number assumed to be the start of the current file.

Setting Segment Characteristics

GM $SEGMENT SET VISIBLE
Assigns a visible value to the specified segment.

GM_$SEGMENT _INQ_ VISIBLE
Returns the visible value of the specified segment.

GM $SEGMENT SET PICKABLE
Assigns a pickable value to the specified segment.

GM_$SEGMENT _INQ_PICKABLE
Returns the pickable value of the specified segment.

GM $SEGMENT SET TEMPORARY
Makes the specified segment temporary or not. Temporary segments are deleted when
the file is closed.

GM_$SEGMENT _INQ_ TEMPORARY
Returns whether the specified segment is temporary or not.

Coordinate Data Types

GM $DATA COERCE SET REAL
Specifies the data type to which subsequent real coordinates are converted.

GM_$DATA_COERCE_INQ_REAL
Returns the data type to which real coordinates are converted.

The Displaying Process

Hardware and Coordinate System.s

GM_$INQ_CONFIG
Returns the current configuration of the display device.

GM_$INQ_BITMAP _SIZE
Returns the size of the GM bitmap in pixels.

GM_$COORD_SEG_ TO_BITMAP _2D
Converts segment coordinates to bitmap coordinates.

4-5 Quick Reference

GM $COORD BITMAP TO SEG 2D
Converts bitmap coordinates to segment coordinates.

GM $COORD P~L TO SEG 2D
Converts GPR bitmap coordinates used In within-GPR mode to segment coordinates,
using a specified transformation.

GM $COORD SEG TO PIXEL 2D
Converts within-GPR segment coordinates to GPR bitmap coordinates, using a specified
transformation.

GM $COORD BITMAP TO PIXEL 2D
Converts fraction of GM bitmap coordinates to pixel coordinates.

GM $COORD P~L TO BITMAP 2D
Converts pixel to fraction of GM bitmap coordinates.

GM $VIEWPORT SEG 2D TO PIXEL
Converts segment coordinates to pixel coordinates.

GM $VIEWPORT P~L TO SEG 2D
Converts pixel coordinates to segment coordinates.

Using Multiple Viewports

GM $VIEWPORT CLEAR
Clears the current viewport.

GM $VIEWPORT CREATE
Creates an additional viewport and makes it the current viewport.

GM $VIEWPORT SET BOUNDS
Changes the display bounds for the current viewport.

GM_ $VIEWPORT _INQ_BOUNDS
Returns the bounds of the current viewport.

GM $VIEWPORT SELECT
Makes a viewport the current viewport.

GM $VIEWPORT DELETE
Deletes a viewport.

GM_$VIEWPORT_INQ_CURRENT
Returns the number of the current viewport.

GM $VIEWPORT MOVE
Translates the current viewport, carrying the view with it.

GM $VIEWPORT SET BORDER SIZE
Specifies the border size of the current viewport, In pixels or fraction-of-bitmap
coordinates.

Quick Reference 4-6

GM_$VIEWPORT_INQ_BORDER_SIZE
Returns the border size of the current viewport, III pixels or fraction-of-bitmap
coordinates.

Segment Visibility Criteria

GM $VISIBLE SET MASK
Sets the value of the visible mask.

GM_$VISIBLE_INQ_MASK
Returns the value of the visible mask.

GM $VISIBLE SET THRESHOLD
Sets the visible threshold.

GM_$VISIBLE_INQ_ THRESHOLD
Returns the value of the visible threshold.

Display a File/Segment

GM $DISPLAY FILE
Displays the entire current file in the current viewport.

GM $DISPLAY SEGMENT
Displays the specified segment (and all called segments) in the current viewport.

GM $DISPLAY SEGMENT GPR 2D
In within-GPR mode, allows you to display a segment within a GPR bitmap.

Displaying Part of a File/Segment

GM $DISPLAY FILE PART
Displays part of the current file in the current viewport':

GM $DISPLAY SEGMENT PART
Displays part of the specified segment (and all called segments) in the current viewport.

Changing the View

GM $VIEW TRANSLATE
Translates the view under the current viewport.

GM $VIEW SCALE
Scales the view under the current viewport, keeping the specified point fixed.

GM $VIEW _ TRANSFORM
Rotates the view under the current viewport, keeping the specified point (in fraction-of
bitmap coordinates) fixed.

GM $VIEW TRANSFORM RESET
Resets the view tranformation to the form in which it was initially displayed.

4-7 Quick Reference

Refreshing the Display

GM $DISPLAY REFRESH
Redisplays all uninhibited viewports of the display.

GM $VIEWPORT REFRESH
Refreshes the current viewport.

GM $REFRESH SET ENTRY
Specifies a user-defined routine to be called when the display is refreshed as a result of a
DM refresh window or POP command.

Developing Interactive Applications

Changing the Picture

GM $MODELCMD SET MODE
Sets the modeling command mode.

GM_ $MODELCMD _INQ_MODE
Returns the values stored for the current (GM_ $MODELCMD _SET _MODE)
command.

Routines for Interactive Applications

Editing Modes

GM $MODELCMD SET MODE
Sets the modeling command mode.

GM_ $MODELCMD _INQ_MODE
Returns the values stored for the current (GM_$MODELCMD _SET _MODE)
command.

GM $REPLACE SET FLAG
Sets or clears a flag which causes subsequent commands to replace the current command
rather than being inserted after it (Obsolete). New programs use
GM $MODELCMD SET MODE.

GM_$REPLACE_INQ_FLAG
Returns the current value of the replace flag (Obsolete).
GM_ $MODELCMD _INQ_MODE.

Establishing a Refresh State

GM $VIEWPORT SET REFRESH STATE
Sets the refresh state of the current viewport.

GM_ $VIEWPORT _INQ_REFRESH_STATE
Returns the refresh state of the current viewport.

Quick Reference 4-8

New programs use

Controlling the Cursor

GM $OURSOR SET AOTIVE
Specifies whether or not the cursor is displayed.

GM $OURSOR SET PATTERN
Specifies a cursor pattern, type, and origin.

GM $CURSOR SET POSITION
Moves the cursor on the screen.

GM_$CURSOR_INQ~AOTIVE

Returns the status of the cursor: displayed or not displayed.

GM_$OURSOR_INQ_PATTERN
Returns the type, pattern, and origin of the cursor.

GM_$OURSOR_INQ_POSITION
Returns the position of the cursor.

Using Input Operations

GM $INPUT ENABLE
Enables an input event type.

GM $INPUT DISABLE
Disables an input event type.

GM $INPUT EVENT WAIT
Checks for or waits until an occurrence of an enabled input event.

Setting the Pick Aperture

GM $PIOK SET OENTER
Changes the center of the pick aperture.

GM $PICK SET SIZE
Specifies the size of the pick aperture.

GM_ $PICK_INQ_ CENTER
Returns the center of the pick aperture.

GM_$PICK_INQ_SIZE
Returns the size of the pick aperture.

Picking and Listing Segments

GM $PIOK SEGMENT
Selects a segment which contains a specified point on the display.

GM_$PICK_INQ_LIST
Returns the current list of picked segments.

4-9 Quick Reference

GM $PICK HIGHLIGHT SEGIVfENT
Within the current file, highlights the specified segment.

GM $PICK TRANSFORM POINT
Transforms the coordinates of a point from the coordinate system of the viewport
segment to the coordinate system of the picked segment.

Picking a Command

GM $PICK COMMAND
Within the current segment, selects a command which contains a selected point on the
display.

GM $PICK HIGHLIGHT COMMAND
Highlights the current command on the display.

Controlling What Is Picked

GM $PICK SET THRESHOLD
Sets the value of the threshold used in pick search operations in the current segment.

G1\1_$PICK_INQ_ THRESHOLD
Returns the value of the threshold used in pick search operations in the current segment.

GM $PICK SET MASK
Changes the value of the mask used for segment pickable values during pick segment
operations.

G1\1_$PICK_INQ_MASK
Returns the value of the mask used for segment pickable values during pick segment
operations.

Deleting and Copying

GM $COMMAND DELETE
Deletes the current command.

GM $SEGMENT ERASE
Deletes all commands in the current segment.

GM $SEGMENT COpy
Copies the entire contents of another segment into the current segment.

Reading Commands

GIVI_ $INQ_ACLASS
Returns the value stored for the current (GM_ $ACLASS) command.

GM_$INQ_CIRCLE_[16,32,REAL]
Returns the values stored for the current (GM_ $CIRCLE) command.

Quick Reference 4-10

GM_ $INQ _ COMMAND _ TYPE
Returns the command type and the data type of the current command in the current
segment.

GM_$INQ_CURVE_2D[16,32,REAL]
Returns the values stored for the current (GM_ $CURVE) command.

GM_$INQ_DRAW _RASTER_OP
Returns the values stored for the current (GM_$DRAW _RASTER_ OP) command.

GM_$INQ_DRAW _STYLE
Returns the values stored for the current (GM_ $DRAW _ STYLE) command.

GM_$INQ_DRAW _VALUE
Returns the value stored for the current (GM_$DRAW _VALUE) command.

Returns the value stored for the current (GM_$Fll.,L_BACKGROUND _ VALUE)
command.

GM_$INQ_Fll.,L_PATTERN
Returns the value stored for the current (GM_$FILL_PATTERN) command.

GM_$INQ_Fll.,L_ VALUE
Returns the value stored for the current (GM_$Fn.L_ VALUE) command.

GM_ $INQ_FONT _FAMll., Y
Inserts a command into the current segment: set the font family used when writing text.

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL]
Returns the value stored for the current (GM_$INSTANCE_SCALE_2D) command.

GM_ $INQ _ INSTANCE _ TRANSFORM_ 2D[16,32,REAL]
Returns the value stored for the current (GM_$INSTANCE_ TRANSFORM) command.

GM_ $INQ _ INSTANCE _ TRANSLATE _ 2D[16,32,REAL]
Returns the value stored for the current (GM_$INSTANCE_ TRANSLATE_2D)
command.

GM_$INQ_PLANE_MASK
Returns the value stored for the current (GM _ $PLANE _ MASK) command.

GM_$INQ_POLYLINE_2D[16,32,REAL]
Returns the values stored for the current (GM _ $POL YLINE _ 2D) command.

GM_$INQ_PRIMITIVE_2D[16,32,REAL]
Returns the values stored for the current (GM_ $PRIMITIVE) command.

GM_ $INQ_RECTANGLE _ [16,32,REAL]
Returns the values stored for the current (GM_ $RECTANGLE) command.

GM_$INQ_TAG
Returns the value stored for the current (GM_ $TAG) command.

4-11 Quick Re ference

GM_$INQ_ TEXT _2D[16,32,REAL]
Returns the value stored for the current (GM_ $ TEXT _ 2D[16,32,REAL]) command.

GM_$INQ_ TEXT _BACKGROUND _ VALUE
Returns the value stored for the current (GM_ $ TEXT _BACKGROUND _ VALUE)
command.

GM_$INQ_ TEXT _SIZE
Returns the value stored for the current (GM_$TEXT _SIZE) command.

GM_$INQ_ TEXT _ VALUE
Returns the value stored for the current (GM_$TEXT_ VALUE) command.

Using Within-GPR Mode

Displaying User-Defined Primitives

GM $PRIMITIVE DISPLAY 2D
Assigns the specified user-defined routine to the specified user-defined primitive type
number.

Output

Printing

GM $PRINT FILE
Converts the current metafile to the specified file for subsequent printing on a hard-copy
device.

GM $PRINT FILE PART
Converts part of the current metafile to the specified file for subsequent printing on a
hard-copy device.

Attribute Classes and Blocks

Using Attribute Classes

GM $ACLASS
Inserts a command into the current segment: change to a different attribute class.

Creating Attribute Blocks

GM $ABLOCK CREATE
Creates an attribute block and initializes it equivalent to an existing block.

Modifying Attribute Blocks

GM $ABLOCK SET DRAW RASTER OP
Changes the raster operation code for drawing lines for this attribute block.

GM $ABLOCK SET DRAW STYLE
Changes the value of the line style in this attribute block.

Quick Re ference 4-12

GM $ABLOCK SET DRAW VALUE
Changes the value for drawing lines in this attribute block.

GM $ABLOCK SET FILL PATTERN
Changes the fill pattern in this attribute block.

GM $ABLOCK SET FILL VALUE
Changes the value for filling areas in this attribute block.

GM $ABLOCK SET PLANE MASK
Changes the value of the plane mask in this attribute block.

GM $ABLOCK SET TEXT VALUE
Changes the value for writing text set for this attribute block.

GM $ABLOCK SET TEXT BACKGROUND
Changes the background value for text in this attribute block.

GM $ABLOCK SET TEXT SIZE
Changes the size of text in this attribute block.

GM $ABLOCK SET FONT FAMILY
Changes the font family in this attribute block.

Reading Attribute Blocks

GM_$ABLOCK_INQ_DRAW _RASTER_OP
Returns the raster operation code for drawing lines for the specified attribute block.

GM_$ABLOCK_INQ_DRAW _STYLE
Returns the line style set for the specified attribute block.

GM_$ABLOCK_INQ_DRAW _VALUE
Returns the value for drawing lines set for the specified attribute block.

GM_$ABLOCK_INQ_FILL_PATTERN
Returns the pattern set for filling areas for the specified attribute block.

GM_$ABLOCK_INQ_FILL_ VALUE
Returns the value set for filling areas for the specified attribute block.

GM _ $ABLOCK _ INQ _PLANE _ MASK
Returns the value of the plane mask set for the specified attribute block.

GM_$ABLOCK_INQ_ TEXT_VALUE
Returns the value for writing text for the specified attribute block.

GM_$ABLOCK_INQ_ TEXT _BACKGROUND _ VALUE
Returns the text background value set for the specified attribute block.

GM_$ABLOCK_INQ_ TEXT _SIZE
Returns the size of text set for the specified attribute block.

4-13 Quick Re ference

GM_ $ABLOCK_INQ_FONT _FAMILY
Returns the font family identification number set for the specified attribute block.

Copying Attribute Blocks

GM $ABLOCK COPY
Copies all attributes from one existing attribute block to another.

Attributes and Viewing Operations

GM $ABLOCK ASSIGN DISPLAY
Assigns an attribute block (by number) to an attribute class, for the entire display.

GM_ $ABLOCK_ INQ _ASSIGN _DISPLAY
Returns the current attribute block number assigned to a particular attribute class for
the display.

GM $ABLOCK ASSIGN VIEWPORT
Assigns an attribute block (by number) to an attribute class, for one viewport.

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT
Returns the current attribute block number assigned to a particular attribute class for
one viewport.

Advanced Display Techniques

Changing the Color Map

GM $DISPLAY SET COLOR MAP
Changes values in the display color map.

GM_$DISPLAY _INQ_COLOR_MAP
Returns the values in the display color map.

Using Viewport Techniques

GM $VIEWPORT SET BACKGROUND VALUE
Sets the pixel value used for the background of the specified viewport.

GM_$VIEWPORT_INQ_BAOKGROUND_ VALUE
Returns the pixel value used for the background of the specified viewport.

Programming Techniques

Using Tags

GM $TAG
Inserts a comment into the current segment.

GM $TAG LOCATE
Looks for the specified tag in the specified range of segments and returns the segment ID
of the lowest numbered segment in which the tag is found.

Quick Reference 4-14

Format for User-Callable Routines:
Alphabetical Listing

GM_$ABLOCK_INQ_DRAW_STYLE (ablock_id, style, repeat_factor, pattern,
pattern_length, status)

GM_$ABLOCK_SET_DRAW_STYLE (ablock_id, style, repeat_factor, pattern,
pattern_length, status)

4-15 Quick Reference

GM_$CIRCLE_16 (center, radius, fill, status)

GM_$CIRCLE_32 (center, radius, fill, status)

GM_$CIRCLE_REAL (center, radius, fill, status)

GM_$COMMAND_DELETE (stat.us)

GM_$COORD_PlXEL_TO_SEG_2D (rotate, translate, pixel_position,
segment_position, status)

GM_$COORD_SEG_TO_PlXEL_2D (rotate, translate, segment_position,
pixel_position, status)

GM_$CURSOR_INQ_PATTERN (style, pattern_size, pattern, origin, status)

GM_$CURSOR_SET_ACTlVE (a.ctive, status)

GM_$CURSOR_SET_PATTERN (style, pattern_size, pattern, origin, status)

GM_$CURVE_2D16 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2D32 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2DREAL (curve __ type, n_points, point_array, n_parameters,
parameter_array, status)

Quick Re ference 4-16

GM_$DISPLAY_REFRESH (status)

GM_$DRAW_STYLE (style, repeat_factor, pattern, pattern_length, status)

GM_$FILE_CREATE (name, name_length, access, concurrency, file_id, status)

GM_$FILE_OPEN (name, name_length, access, concurrency, file id, status)

GM_$FILL_PATTERN (scale, size, pattern, status)

GM_$FONT_FAMILY_INCLUDE (pathname, pathname_length, font_type,
font_family_id, status)

GM_$FONT_FAMILY_INQ_ID (pathname, pathname_length, font_type,
font_family_id, status)

GM $FONT FAMILY INQ NAME (font family id, font type, pathname,
- - - - pathname_length, maximum_length, status)

GM_$FONT_FAMILY_RENAME (font_family_id, pathname, pathname_length,
font_type, status)

GM_$INIT (display_mode, unit, size, n_planes, status)

4-17 Quick Reference

GM_$INPUT_EVENT_WAIT (wait, event_type, event_data, bitmap_position,
viewport_id, segment_position, status)

GM_$INQ_ACLASS (aclass - id, status)

GM_$INQ_BITMAP_SIZE (size, planes, status)

GM_$INQ_CIRCLE_16 (center, radius, fill, status)

GM_$INQ_CIRCLE_32 (center, radius, fill, status)

GM_$INQ_CIRCLE_REAL (center, radius, fill, status)

GM_$INQ_CONFIG (configuration, status)

GM_$INQ_CURVE_2D16 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_CURVE_2D32 (curve_type .. n_points, point_array, n_parameters,
parameter _~~rray, status)

GM_$INQ_CURVE_2DREAL (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_INSTANCE_TRANSFORM_2D[16,32,REAL] (segment_id, rotate, translate,
status)

Quick Reference 4-18

GM_$INQ_PRIMITlVE_2D16 (primitive_type, n_points, point_array,
n_parameters, parameter_a.rray, status)

GM_$INQ_PRIMITlVE_2D32 (primitive_type, n_points, point_array,
n_parameters, parameter_array, status)

GM_$INQ_PRIMITlVE_2DREAL (primitive_type, n_points, point_array,
n_parameters, parameter_array, status)

GM_$INQ_RECTANGLE_16 (pointl, point2, fill, status)

GM_$INQ_RECTANGLE_32 (pointl, point2, fill, status)

GM_$INQ_RECTANGLE_REAL (pointl, point2, fill, status)

GM_$INQ_TAG (string, string_length, status)

GM_$INQ_TEXT_2D[16,32,REAL] (point, rotate, string, string_length, status)

GM_$INSTANCE_SCALE_2D16 (segment_id, scale, translate, status)

GM_$INSTANCE_SCALE_2D32 (segment_id, scale, translate, status)

GM_$INSTANCE_SCALE_2DREAL (segment_id, scale, translate, status)

GM_$INSTANCE_TRANSFORM_2D16 (segment_id, rotate, translate, status)

GM_$INSTANCE_TRANSFORM_2D32 (segment_id, rotate, translate, status)

GM_$INSTANCE_TRANSFORM_2DREAL (segment_id, rotate" translate, status)

GM_$INSTANCE_TRANSLATE_2D16 (segment_id, translate, status)

GM_$INSTANCE_TRANSLATE_2D32 (segment_id, translate, status)

GM_$INSTANCE_TRANSLATE_2DREAL (segment_id, translate, status)

GM_$PICK_HIGHLIGHT_COMMAND (highlight, time, status)

4-19 Quick Reference

GM_$PICK_HIGHLIGHT_SEGMENT (highlight, time, status)

GM_$PICK_INQ_THRESHOLD (threshold, status)

GM_$PICK_SET_THRESHOLD (threshold, status)

GM_$PICK_TRANSFORM_POINT (vsegment_position, psegment_position, status)

GM_$POLYLINE_2D16 (n_points, point_array, close, fill, status)

GM_$POLYLINE_2D32 (n_points, point_array, close, fill, status)

GM_$POLYLINE_2DREAL (n_points, point_array, close, fill, status)

GM_$PRIMITlVE_2D16 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRIMITlVE_2D32 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRIMITlVE_2DREAL (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRINT_FILE (file_name, file_name_length, size, invert, print_style,
bpi, status)

GM_$PRINT_FILE_PART (bounds, file name, file name length, size, invert,
print_style ,-bpi , status) -

GM_$RECTANGLE_16 (point1, point2, fill, status)

GM_$RECTANGLE_32 (point1, point2, fill, status)

GM_$RECTANGLE_REAL (point1, point2, fill, status)

Quick Reference 4-20

GM_$SEGMENT_CLOSE (save, status)

GM_$SEGMENT_INQ_CURRENT (name, name length, segment id,
n_instances, status) -

GM_$TAG (string, string_length, status)

GM_$TAG_LOCATE (string, string_length, min, max, segment_id, status)

GM_$TERMINATE (status)

GM_$TEXT_2D[16,32,REAL] (point, rotate, string, string_length, status)

GM_$VIEW_SCALE (scale, point, status)

GM_$VIEW_TRANSFORM (rotate, point, status)

4-21 Quick Reference

GM_$VIEW_TRANSLATE (translate, status)

GM_$VIEWPORT_CLEAR (value, status)

GM_$VIEWPORT_CREATE (bounds, viewport_id, status)

GM_$VIEWPORT_INQ_GRIDS (flags, index, cnt, grid, status)

GM_$VIEWPORT_MOVE (transla.te, status)

GM_$VIEWPORT~PIXEL_TO_SEG_2D (pixel_position, viewport_id, segment_position
status)

GM_$VIEWPORT_REFRESH (status)

GM_$VIEWPORT_SET_GRIDS (flags, index, cnt, grid, status)

GM_$VISIBLE_INQ_THRESHOLD (threshold, status)

GM_$VISIBLE_SET_THRESHOLD (threshold, status)

Quick Reference 4-22

Index

GM $ABLOCK ASSIGN DISPLAY 2-2

GM $ABLOCK ASSIGN VIEWPORT 2-3

GM $ABLOCK COpy 2-4

GM $ABLOCK CREATE 2-5

GM _ $ABLOCK _ INQ _ ASSIGN _ DISPLAY 2- 6

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT 2-7

GM_$ABLOCK_INQ_DRAW _RASTER_OP 2-8

. GM_$ABLOCK_INQ_DRAW _STYLE 2-9

GM_$ABLOCK_INQ_DRAW _VALUE 2-11

GM_$ABLOCK_INQ_FILL_BACKGROUND _VALUE 2-12

GM _ $ABLOCK _ INQ _ FILL _ PATTERN 2-13

GM_$ABLOCK_INQ_FILL_ VALUE 2-14

GM_$ABLOCK_INQ_FONT _FAMILY 2-15

GM_$ABLOCK_INQ_PLANE_MASK 2-16

GM_$ABLOCK_INQ_TEXT_BACKGROUND_ VALUE 2-17

GM_$ABLOCK_INQ_ TEXT _SIZE 2-18

GM_$ABLOCK_INQ_ TEXT _ VALUE 2-19

GM $ABLOCK SET DRAW RASTER OP 2-20

GM $ABLOCK SET DRAW STYLE 2-21

GM $ABLOCK SET DRAW VALUE 2-23

GM $ABLOCK SET FILL BACKGROUND VALUE 2-24

GM $ABLOCK SET FILL PATTERN 2- 25

GM $ABLOCK SET FILL VALUE 2- 26

GM $ABLOCK SET FONT FAMILY 2-27

GM $ABLOCK SET PLANE MASK 2- 28

GM $ABLOCK SET TEXT BACKGROUND VALUE 2-30

GM _ $ABLOCK _ SET _ TEXT _ SIZE 2-31

GM $ABLOCK SET TEXT VALUE 2-32

GM $ACLASS 2-33

GM_ $CIRCLE_ [16,32,REALj 2-34

GM_$COMMAND_DELETE 2-36

GM_$COMMAND_INQ_BOUNDS 2-37

GM $COORD BITMAP TO PIXEL 2D 2-38

GM _ $COORD _ BITMAP _TO _ SEG _ 2D 2-39

GM $COORD PIXEL TO BITMAP 2D 2-40

GM $COORD PIXEL TO SEG 2D 2-41

GM_$COORD_SEG_ TO_BITMAP _2D 2-42

GM_$COORD _SEG_ TO _PIXEL_2D 2-43

GM_$CURSOR_INQ_ACTIVE 2-44

GM_$CURSOR_INQ_PATTERN 2-45

GM_ $CURSOR _INQ_POSITION 2-46

GM $CURSOR SET ACTIVE 2-47

Index-l

GM $CURSOR SET PATTERN 2-48

GM_$CURSOR_SET _POSITION 2-50

GM_$CURVE_2D[16,32,REAL] 2-51

GM_ $DATA_ COERCE_INQ_REAL 2-53

GM $DATA COERCE SET REAL 2-54

GM $DISPLAY FILE 2-55

GM_$DISPLAY _FILE_PART 2-56

GM_$DISPLAY _INQ_COLOR_MAP 2-57

GM $DISPLAY REFRESH 2-58

GM $DISPLAY SEGMENT 2-59

GM _ $DISPLA Y _ SEGMENT _ GPR 2D 2- 60

GM $DISPLAY SEGMENT PART 2-62

GM_$DISPLAY_SET_COLOR MAP 2-63

GM _ $DRA W _ RASTER _ OP 2- 64

GM $DRAW STYLE 2-65

GM $DRAW VALUE 2-67

GM $FILE CLOSE 2-68

GM_ $FILE_ COMPACT 2-69

GM $FILE CREATE 2-71

GM $FILE INQ BOUNDS 2-73

GM_ $FILE_INQ_PRIMARY _SEGMENT 2-74

GM $FILE OPEN 2-75

GM_$FILE_SELECT 2-77

GM $FILE SET PRIMARY SEGMENT 2-78

GM_$FILL_BACKGROUND_ VALUE 2-79

GM $FILL PATTERN 2-80

GM $FILL VALUE 2-81

GM_$FONT_FAMILY 2-82

GM $FONT FAMILY EXCLUDE 2-83

GM $FONT FAMILY INCLUDE 2-84

GM_$FONT _FAMILY _INQ_ID 2-85

GM_$FONT _FAMILY _INQ_NAME 2-86

GM_$FONT_FAMILY RENAME 2-87

GM $INIT 2-88

GM $INPUT DISABLE 2-91

GM_ $INPUT _ENABLE 2-92

GM $INPUT EVENT WAIT 2-95

GM_$INQ_ACLASS 2-97

GM_$INQ_BITMAP _SIZE 2-98

GM_$INQ-;:- CIRCLE_[16,32,REALj 2-99

GM_$INQ_COMMAND_TYPE 2-101

GM_$INQ_ CONFIG 2-103

GM _ $INQ _ CURVE _ 2D [16,32,REAL] 2-104

GM_$INQ_DRAW _RASTER_OP 2-106

GM_$INQ_DRAW _STYLE 2-107

Index-2

GM_$INQ_DRAW _ VALUE 2-109

GM_$INQ_FILL_BACKGROUND_ VALUE 2-110

GM_$INQ_FILL_PATTERN 2-111

GM_$INQ_FILL_ VALUE 2-112

GM_$INQ_FONT_FAMILY 2-113

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL] 2-114

GM_$INQ_INSTANCE_ TRANSFORM_2D[16,32,REAL] 2-116

G~vf_ $INQ_INSTANCE_ TRANSLATE_2D[16,32,REAL] 2-118

GM_$INQ_PLANE_MASK 2-120

GM_$INQ_POLYLINE_2D[16,32,REAL] 2-121

GM_$INQ_PRIMITIVE_2D[16,32,REAL] 2-123

GM_$INQ_RECTANGLE_[16,32,REAL] 2-125

GM_$INQ_TAG 2-127

GM_$INQ_ TEXT _2D[16,32,REAL] 2-128

GM_$INQ_ TEXT _BACKGROUND _ VALUE 2-130

GM_$INQ_TEXT_SIZE 2-131

GM _ $INQ _ TEXT _ VALUE 2-132

GM_$INSTANCE_SCALE_2D[16,32,REAL] 2-133

GM_$INSTANCE_ TRANSFORM_2D[16,32,REAL] 2-135

GM_ $INSTANCE_ TRANSLATE_2D[16,32,REAL] 2-137

GM_ $MODELCMD _INQ_MODE 2-139

GM_$MODELCMD_SET _MODE 2-140

GM $PICK COMMAND 2-142

GM $PICK HIGHLIGHT COMMAND 2-143

GM $PICK HIGHLIGHT SEGMENT 2-144

GM_ $PICK_INQ_ CENTER 2-145

GM_$PICK_INQ_LIST 2-146

GM_$PICK_INQ_MASK 2-147

GM_$PICK_INQ_SIZE 2-148

GM_ $PICK_INQ_ THRESHOLD 2-149

GM $PICK SEGMENT 2-150

GM $PICK SET CENTER 2-152

GM $PICK SET MASK 2-153

GM $PICK SET SIZE 2-154

GM $PICK SET THRESHOLD 2-155

GM $PICK TRANSFORM POINT 2-156

GM_$PLANE_MASK 2-157

GM_$POLYLINE_2D[16,32,REAL] 2-159

GM _ $PRIMITIVE _ 2D[16,32,REAL] 2-161

GM $PRIMITIVE DISPLAY 2D 2-163

GM $PRINT FILE 2-165

GM _ $PRINT _ FILE _ PART 2-167

GM_$RECTANGLE_[16,32,REAL] 2-169

GM $REFRESH SET ENTRY 2-170

GM $REPLACE INQ FLAG 2-172

Index-3

GM $REPLACE SET FLAG 2-173

GM $SEGMENT CLOSE 2-174

GM_$SEGMENT_COPY 2-175

GM $SEGMENT CREATE 2-176

GM_ $ SEGMENT _DELETE 2-178

GM $SEGMENT ERASE 2-179

GM_ $ SEGMENT _INQ_BOUNDS 2-180

GM _ $ SEGMENT _ INQ _ COUNT 2-181

GM_$SEGMENT _INQ_ CURRENT 2-182

GM_$SEGMENT _INQ_ID 2-183

GM_$SEGMENT _INQ_NAME 2-184

GM_$SEGMENT _INQ_PICKABLE 2-185

GM _ $ SEGMENT _ INQ _ TEMPORARY 2-186

GM_$SEGMENT _INQ_ VISIBLE 2-187

GM $SEGMENT OPEN 2-188

GM_$SEGMENT_RENAME 2-189

GM $SEGMENT SET PICKABLE 2-191

GM_$SEGMENT _SET _ TEMPORARY 2-192

GM $SEGMENT SET VISIBLE 2-193

GM $TAG 2-194

GM $TAG LOCATE 2-195

GM_$TERMINATE 2-196

GM_$TEXT _2D[16,32,REALj 2-197

GM $TEXT BACKGROUND VALUE 2-199

GM $TEXT SIZE 2- 200

GM $TEXT VALUE 2-201

GM $VIEW SCALE 2- 202

GM $VIEW TRANSFORM 2-203

GM $VIEW TRANSFORM RESET 2- 204

GM $VIEW TRANSLATE 2-205

GM $VIEWPORT CLEAR 2-206

GM $VIEWPORT CREATE 2-207

GM_ $VIEWPORT _DELETE 2-208

GM_ $VIEWPORT _INQ_BACKGROUND _ VALUE 2-209

GM_$VIEWPORT _INQ_BORDER_SIZE 2-210

GM $VIEWPORT INQ BOUNDS 2-211

GM_$VIEWPORT _INQ_CURRENT 2-212

GM $VIEWPORT INQ GRIDS 2-213

GM_ $VIEWPORT _INQ_REFRESH_ STATE 2-214

GM $VIEWPORT MOVE 2-215

GM $VIEWPORT PIXEL TO SEG 2D 2-216

GM $VIEWPORT REFRESH 2-217

GM_$VIEWPORT _SEG_2D[16,32,REALj_ TO _PIXEL 2-218

GM $VIEWPORT SELECT 2-219

GM $VIEWPORT SET BACKGROUND VALUE 2-220

Index-4

GM $VIEWPORT SET BORDER SIZE 2- 221

GM $VIEWPORT SET BOUNDS 2-222

GM _ $VIEWPORT _ SET _ GRIDS 2- 223

GM_$VIEWPORT _SET _REFRESH_STATE 2-224

GM_ $VISIBLE_INQ_MASK 2-226

GM_ $VISIBLE_INQ_ THRESHOLD 2-227

GM $VISIBLE SET MASK 2-228

GM $VISIBLE SET THRESHOLD 2-229

Index-5

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN 2D Graphics Metafile Resource Call Reference
Order No.: 009793 Revision: 00 Date of Publication: November, 1986

What type of user are you?
__ System programmer; language
__ Applications programmer; language __________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

o
~
o ..,
-.
o
c:
$I)

o
::J

CO

a.
~
m
a.

::J
m

I
I

FOLD I . __ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--------------------------------------_._--,
FOLD

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB

