
DOMAIN Assembler
Reference

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 008862
Revision 01

------- ---------------------

Copyright © 1987 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing:
Latest Printing:

January, 1986
January, 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
trademarks of Interleaf. Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR. DOMAIN/BRIDGE. DOMAIN/DFL-100. DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAINIIX,
DOMAIN/Laser-26. DOMAIN/PCI. DOMAIN/SNA. D3M. DPSS, OSEE, GMR, and GPR are trademarks of Apollo
Computer Inc ..

Apollo Computer Inc. reserves the right to make changes In specifications and other Information contained In this
publication without prior notice, and the reader should In all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE. SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

The DOMAIN Assembler Reference describes the assembly language used in DOMAIN sys
tems. The purpose of the manual is to provide the reader with information about writing and
debugging DOMAIN assembly language programs, calling assembly language routines from a
high-level language, and interpreting object module format in order to write a compiler com
patible with the DOMAIN system.

The intended reader is an experienced assembly language programmer who is also familiar
with programming in FORTRAN, Pascal, or C on the DOMAIN system. The reader should
have a solid understanding of one or more of the following microprocessors: MC68000,
MC68010, MC68020. Also, because DOMAIN assembly language uses most of the 68000
series instruction set, the reader should have appropriate Motorola documentation to use as a
companion to this manual.

We've divided the manual into two parts. Part One contains DOMAIN assembly language
reference material; Part Two provides useful information about DOMAIN run-time conven
tions. The Appendixes provide additional information about the DOMAIN assembler, the
low-level debuggers, SR9.0 calling conventions, and the object module format. Each part
covers a specific type of information and builds on the preceding part. However, depending
on the reader's familiarity with the DOMAIN system, the parts may be read out of sequence.

We've organized this manual as follows:

PART ONE

Chapter 1

Chapter 2

Chapter 3

Provides fundamental information about DOMAIN assem
bly language, such as address modes, source file format, and
naming conventions. This part assumes that the reader is
familiar with one or more Motorola assemblers, but may not
be familiar with DOMAIN's assembly language implementa
tion.

Provides a conceptual overview of DOMAIN internals and
provides the background information needed to use DO
MAIN assembly language.

Illustrates how ASM (the DOMAIN assembler) works, and
describes how to invoke the assembler.

Introduces various aspects of the DOMAIN assembly lan
guage. The first half of the chapter illustrates the source file
and discusses the elements of the language, such as source
file formats, labels and special characters, format of num
bers, strings, and register lists, and instruction formats. The
first half also provides an overview of instruction conven
tions, pseudo-ops, and directives. In addition, this chapter
describes the four types of operators and details naming
conventions The second half of the chapter provides a
brief definition and an example of each addressing mode.

iii Preface

Chapter 4

Chapter 5

PART TWO

Chapter 6

Chapter 7

APPENDIXES

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Preface

Describes DOMAIN assembly language pseudo-ops and di
rectives. Details each pseudo-op and directive, and provides
examples.

Describes the listing file and related topics, such as special
symbols and the cross-reference listing. Provides a sample
listing as an example.

Presents the run-time conventions of the DOMAIN system.
This part assumes that the reader has knowledge of compil
ers and understands the concepts of calling conventions and
floating-point numbers, but needs information specific to
the DOMAIN system.

Discusses calling conventions topics, such as the stack, pro
logue and epilogue code, and stack unwinders. Provides
many examples of how to call a DOMAIN assembly lan
guage routine and how to pass parameters from DOMAIN
assembly language.

Provides information about two mathematical libraries. The
first library is the Integer Arithmetic Library, which imple
ments 32-bit operations not supported by the processor
hardware. The second library is FPP, the Floating-Point
Package. The chapter discusses FPP implementations, call
ing and exiting conventions, and gives a list of FPP opera
tors.

Provides specific and detailed information on both DO
MAIN assembly language and DOMAIN system topics.

Explains error codes and messages.

Provides a list of DOMAlr\ assembly language's legal in
structions, valid machine types, and legal suffixes.

Lists the TERN instruction set.

Discusses how to use the low-level debuggers DB and MDB,
and provides a list of DB and MDB commands.

Discusses pre-SR9.5 calling conventions, ECE (Entry Con
trol Block), the stack, and prologue and epilogue code. Pro
vides examples of how to call a DOMAIN assembly language
routine and how to pass parameters from ASM.

Discusses the object module in two parts: overview and ap
plication. The overview provides a theory of operation,
which includes how ASM generates an object module, the
role of the binder and loader, and how to display an object
module listing. The application pan uses a sample object
module to illustrate the object module format, which is dis
cussed in detail.

Iv

-----_. __ .. ------_._.--_ _-_._------_ .. -

Summary of Technical Changes
To improve overall performance, SR9.5 makes changes to the runtime environment. In
general, these changes do not affect user programs, since most programs do not depend on
internal information regarding the runtime environment. However, OEMs, software suppli
ers, and anyone coding in assembly language, could depend on details within the runtime en
vironment.

Specifically, you need to adjust your programs if you depend on the following internal struc
tures:

More Registers Saved

Stack Frame Format

Prologue and Epilogue Code

Targets of Stack Unwinders

Symbolic Tracebacks

DOMAIN compilers preserve more registers across routine
calls: registers A2-A4, D2-D7, and FP2-FP7.

ASM routines using registers must be adjusted because
SR9.5 register saving conventions require routines to pre
serve more registers.

The stack frame format now saves more registers, and elimi
nates the pointer to the ECB block, unit word, and optional
DB field. There are now two formats: one for routines that
save FP registers, and one for those that do not.

ASM routines that depend on pre-SR9.5 stack frame for
mat must be adjusted because the SR9. 5 stack frame elimi
nates fields containing the entry control block (ECB) point
er, unit word, and optional saved DB, and adds a new for
mat because of new register saving conventions.

ASM routines that depend on the entry control block
(ECB) structure must change.

Assembly language routines' prologue and epilogue code
have been revised to suppon changes to register saving con
ventions and stack frame format.

Routines that are targets of stack unwinders (such as the
caller of pfm_Scleanup) must now preserve all registers.

ASM routines that call pfm_Scleanup must preserve A and
D registers because pfm_Scleanup does not restore them.

Assembly language routines require a LINK instruction so
that the symbolic traceback mechanism (such as the
traceback (tb) command) can list the routine's name in a
traceback. Without a LINK instruction, the call of the rou
tine will not be listed.

ASM routines should use a LINK instruction in their pro
logue code to provide adequate information to tools per
forming symbolic tracebacks such as tb (traceback), debug
and dpat.

v Preface

~ ',:)
~

Procedure Pointers Procedure pointers now point to the address of the routine,
rather than to a data structure containing the ECB address.
This affects you if you access the Known Global Table
(KGT). install your own global libraries, and write type man
agers in C using the Open Systems Toolkit.

Any routines that depend on the structure of procedure
pointers must be adjusted because SR9.5 uses a new proce
dure pointer format.

Related Manuals
For more information on topics related to DOMAIN assembly language, see the appropriate
Motorola manuals and the following DOMAIN system manuals:

• AEGIS Internals and Data Structures (N/ A - available to OEMs)

• DOMAIN Binder and Librarian Reference (004977)

• Programming With General System Calls (005506)

• DOMAIN C Language Reference (002093)

• DOMAIN FORTRAN Language Reference (000530)

• DOMAIN Pascal Language Reference (000792)

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy for
you to communicate with us, we provide the User Change Request (UCR) system for soft
ware-related comments, and the Reader's Response form for documentation comments. By
using these formal channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN Sys
tem Command Reference. Refer to the crucr (CREATE_USER_CHANGE_REQUEST) AEGIS
Shell command description. You can view the same description on-line by typing:

$ help eruer <return>

For your documentation comments, we've included a Reader's Response form at the back of
each manual.

Preface vi

---.--- --,,----_ .. _-_ ,,-

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

bold

input/output

< >

Bold, uppercase words or characters in formats and command de
scriptions represent commands or keywords that you must use liter
ally.

Bold, lowercase words or characters in formats and command de
scriptions represent values that you must supply.

Bold words in text introduce a new term.

Typewriter font words in command examples represent input or lit
eral system output.

Square brackets enclose optional items in formats and command de
scriptions. In sample Pascal statements, square brackets assume
their Pascal meanings.

Braces enclose a list from which you must choose an item in formats
and command descriptions. In sample Pascal statements, braces as
sume their Pascal meanings.

A vertical bar separates items in a list of choices. Combined with
angle bracket, they indicate an optional item.

Angle brackets enclose the name of a field in which you supply in
formation.

Horizontal ellipsis points indicate that the preceding item can be re
peated one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or exam-
ple have been omitted. .

vii Preface

Contents

Part 1 DOMAIN Assembler Reference

Chapter 1 Introduction to DOMAIN Assembly Language

1.1 What is DOMAIN Assembly Language '. 1-1
1.1.1 What You 'Need to Know .. 1-2

1.2 Overview of the DOMAIN Program Environment 1-2
1.2.1 Address Space ... 1-3
1.2.2 Mapping .. 1-4
1.2.3 Object Programs ... 1-4
1.2.4 Installed Libraries .. 1-5

1.3 Overview of Run-Time and Calling Conventions 1-5

Chapter 2 Using ASM

2.1 How ASM Operates ... 2-1
2.2 Invoking ASM .. 2-2

2.2.1 Pathname ... 2-2
2.2.2 Options ... 2-3

Chapter 3 DOMAIN Assembly Language

3.1 Source File Format : 3-2
3.2 Instruction Format .. 3-3
3.3 Language Elements .. ; 3-3

3.3.1 Character Set .. 3-3
3.3.2 Names and Values ... ' 3-4

Reserved Names ... 3-4
3.3.3 Numbers .. 3-6
3.3.4 Strings .. 3-6
3.3.5Register Lists ... 3-6
3.3.6 Expressions ... 3-7

Arithmetic Operators ... 3-7
Conditional Operators . 3-8
Shift Operators .. 3-9
Logical Operators .. 3-9

3.4 Instructions .. 3-9
3.4.1 Instruction Op-codes .. 3-10

Variants . 3-10
Extensions .. 3-10
Branch Length Determination ' 3-10

3.4.2 Pseudo-Ops .. 3-11
3.4.3 Directives .. 3-11

3.5 Addressing Modes , ... 3-11
3.5.1 Syntax ... 3-11
3.5.2 Address Mode Determination ... 3-13
3.5.3 Additional Notes ... 3-15

viii Contents

-------------------------------- ---------

Chapter 4 Pseudo-Ops and Directives

4.1 Pseudo-Ops . 4-1
4.2 Directives .. 4-30

4.2.1 Include Files .. 4-30
4.2.2 Conditional Assembly ... 4-31

Invoking Conditional Assembly ... 4-31
Forms of Predicates ... 4-32
Conditional Assembly Directives ... 4-32

Chapter 5 The Listing File

5.1 Examining the Listing File .. 5-1
5.1.1 Offset .. 5-2
5.1.2 Object Code ... 5-3
5.1.3 Line Number .. 5-3
5.1.4 Source Code .. 5-3

5.2 Special Symbols ... 5-3
5.3 Cross-Reference Listing .. 5-4

5.3.1 Symbol ... 5-4
5.3.2 Offset .. 5-4
5.3.3 Section ... 5-4
5.3.4 Line Numbers ... 5-4

Part 2 Run-time Conventions

Chapter 6 Calling Conventions

6.1 Register Usage .. 6-2
6.2 Stack Frame ... 6-2
6.3 Argument Passing Conventions 6-4

6.3.1 Pascal .. 6-4
6.3.2 FORTRAN .. 6-4
6.3.3 C .. 6-4
6.3.4 Function Results ... 6-5
6.3.5 Data Representation .. 6-5
6.3.6 Library Routines ... 6-5

6.4 Calling a Procedure .. 6-6
6.5 Procedure Prologue and Epilogue .. 6-6
6.6 Addressing the Data Section ~ . 6-7
6.7 Floating-Point Registers .. 6-8
6.8 Examples .. 6-10

Chapter 7 Mathematical Libraries

7.1 Integer Arithmetic Library .. 7-1
7.1.1 Multiplication ... 7-2
7.1.2 Division .. 7-2
7.1.3 Modulus ... 7-2
7.1.4 Exponentiation .. 7-3

7.2 Floating-Point Package (FPP)•.................................... 7-3
7.2.1 FPP Implementations ... 7-4
7.2.2 FPP Library Calling and Exiting Conventions . 7-4

Calling FPP .. 7-5
Exiting FPP ... 7-5

7.2.3 FPP Floating-Point Operations .. 7-6

:)0
7.2.4 Notes on FPP ... ;;-' ... 7-9

Appendixes

Contents ix

A Error Codes .and Messages .. A-I

B
~."

\ 0
'--'

Legal Op-code and Pseudo-Op Mnemonics .. B-1
B.l Valid Machine Types .. B-1
B.2 Legal Suffixes ... B-2
B.3 Legal Op-code and Pseudo-Op Mnemonics B-2

C TERN Floating-Point Instructions . C-l

D Using Low-Level Debuggers ... D-l
D.l DB Invocation .. D-2
D.2 DB Commands .. D-2

D.2.l DB Command Formats ... D-3
D.2.2 DB Command Semantics .. D-4

D.3 Machine Level Debugger Invocation under DEBUG D-4
D.4 MDB Commands .. D-S
D.S Additional Debugging Commands ... D-7
D.6 Hints for Debugging Assembler Routines D-7

E Pre-SR9.S Calling Conventions ... E-l
E.l The Stack .. E-l

E.l.l Stack Format .. E-2
E.l.2 Stack Frame Format .. E-2
E .1. 3 Prologue and Epilogue Code .. E-4
E.1.4 Calling a DO;\tIAIN Assembly Language Routine E-S
E.1.S Notes on Register Conventions : E-6

E.2 ECBs (Entry Control Blocks) .. E-6
E.3 Passing Parameters ... E-8

F The Object Module .. F-l
F.l What the Binder Does .. F-l
F.2 What the Loader Does .. F-2
F.3 Producing an Object Module Listing ... F-2
F.4 Interpreting the Object Module Listing ... F-3
F.S Object Module Elements .. F-4

F.S.l Object Module Header .. F-6
F.S.2 Read-Only Sections .. F-8
F.S.3 Global Information Header ... F-8
F.S.4 Section Index Table ... F-l1
F.S.S Global Table ... F-14
F.S.6 Read/Write Section Templates ... F-17

F.6 Optional Elements of the Object Module F-21
F.6.1 Module Information Records (MIR) F-21
F.6.2 Static Resource Information (SRI) Records F-23
F.6.3 Debugging Information ... F-28

F.7 Notes on the Known Global Table (KGT) F-31

x Contents

Figure

1-1
1-2
1-3
2-1
3-1
5-1
5-2
6-1
6-2
7-1
E-l
E-2
E-3
E-4
E-5
F-1
F-2
F-3
F-4
F-5
F-6
F-7
F-8
F-9
F-I0
F-11
F-12
F-13
F-14
F-15
F-16
F-17
F-18
F-19
F-12
F-21
F-22
F-23
F-24

Conte.lts

----------- ._-----------------_._----------

Illustrations

Page

Process Address Space (illustrated for 16Mb virtual address space) 1-3
Procedure Stack Frame ... 1-6
External Call Mechanism ... 1-7
Files ASM Produces . 2-1
DOMAIN Assembly Language Source Program Format 3-2
Sample ASM Listing File .. 5-2
Sample Cross-Reference Listing .. 5-4
Stack Frame Format .. 6-3
MC68881 FP Frame Control Block ... 6-9
FPP Implementations and SYSLIB Extension Names 7-4
Stack Format ... E-2
Stack Frame Format .. E-3
Standard Prologue Code ... E-4
Standard Epilogue Code . E-4
ECB Format and Example ... E-7
Object Module Elements Format .. F-5
Object Module Header Fields .. F-6
Global Information Header .. F-9
A Section Table Entry .. F-11
Section Attributes Field ... F-12
A Global Table Entry ... F-15
A Text Record .. F-18
A Relocation Record with Four Entries F-19
A Repeat Record .. F-20
An End Record ' F-20
Module Information Header (with two records) F-21
A Maker Version Module Information Record F-22
An Object File Module Information Record F-23
An SRI Record .. F-24
Hardware SRI Value Field ... F-25
Software SRI Value Field .. F-26
Value Field of DOMAIN/IX SRI record (runs on any version of DOMAIN/IX) F-26
Value Field of DOMAIN/IX SRI record (requires DOMAIN/IX version 4.1 BSD) ... F-27
Value Field of DOMAIN/IX SRI record (requires DOMAIN/IX version 4.2 BSD) ... F-27
Value Field of DOMAIN/IX SRI record (requires DOMAIN/IX System III) F-27
Value Field of DOMAIN/IX SRI record (requires DOMAINIIX System V) F-28
DEBUG Header Record ... F-29
DEBUG Entry Record Format .. F-30
Format of the Debug Entry Record Flag Word F-30

xi

~ .. ---------_ .. -.. -~-.-.-.-.---------

Tables

Table Page

2-1 ASM Command Line Options .. 2-3
3-1 Special Characters .. 3-3
3-2 DOMAIN Assembly Language Reserved Names 3-5
3-3 Arithmetic Operands .. 3-8
3-4 Conditional Operators ... 3-8
3-5 Shift Operators .. 3-9
3-6 Logical Operators .. 3-9
3-7 Addressing Modes Summary ... 3-12
3-8 Addressing Mode Determination .. 3-14
3-9 Normal Case Defaults for Addressing Mode Determination 3-15
4-1 Predicate Forms ... 4-32
4-2 Assembler Directives .. 4-33
5-1 Special Symbols in Listing File ... 5-3
6-1 Argument Type Conversions in C ... 6-5
7-1 FPP Floating-Point Operations ... 7-6
F-1 Identification Field Values ... F-7
F-2 Alignment Bits and Section Alignment Boundaries F-14
F-3 Use Code Field Values .. F-16
F-4 Binder's Interaction with Combining Rule F-24
F-5 DEBUG Information Field Values ... F-31

xii Contents

PART 1:
DOMAIN Assembler

Reference

Chapter 1: Introduction
to DOMAIN Assembly
Language

Chapter 2: Using ASM

Chapter 3: DOMAIN
Assembly Language

Chapter 4: Pseudo-Ops
and Directives

Chapter 5: The Listing File

----•..... _---.. -

Chapter

Introduction to DOMAIN
Assembly Language

1

This introductory chapter presents and defines some basic concepts that you will use throughout the
manual. While some of the information contained within this section is specific to the assembler, many of
the concepts are related to DOMAIN system architecture, or the DOMAIN system. The topics we discuss
are:

• What is DOMAIN assembly language?

• Overview of the DOMAIN program environment

• Run-time and calling conventions

1.1 What is DOMAIN Assembly Language?
The DOMAIN assembly language is the assembly language for DOMAIN processors. It assembles
instructions and data for the following Motorola MC68000-family processors into DOMAIN format object
modules:

•
•
•
•
•
•

MC68000 CPU

MC68010 CPU

MC68020 CPU

MC68881 Floating-Point (FP) Coprocessor

MC68851 Memory Management Unit

TERN CPU

NOTE: The TERN CPU is the propriety processor used in the DN460 and the DN660
workstation models. It supports both the MC68010 instruction set and a
floating-point instruction set that is similar to the MC68881.

1-1 Introduction to DOMAIN Assembly Language

1.1.1 What You Need to Know

To use the assembler, you first must understand

• The architecture and instruction set of the processor(s) you are programming.

• The representation of instructions and data in assembly language, and the procedures for using
the assembler.

• The environment in which your program executes, in particular the run-time and calling
conventions required for your program to interact with compiled routines and the operating
system.

This manual does not discuss the architecture and instruction set of the processor(s) you are programming
(first topic). We' assume that you are familiar with 68000-family processors and have the appropriate
Motorola documentation. Refer to the preface for more information.

The manual discusses the second and third topics. Although assembly language reflects some of the
run-time conventions, you need to understand the assembly language examples. Therefore, the
remainder of this chapter presents an overview of the DOMAIN program environment, which should help
you understand the environment-dependent aspects of the DOMAIN assembly language. Pan One of the
manual discusses the language in detail; Pan Two describes the run-time conventions and mathematical
libraries in full.

We assume that you are familiar with aspects of the DOMAIN system such as high-level programming and
the process of translating, binding, and executing a program. Additionally, you should be generally
familiar with the system call mechanism, as described in Programming with General System Calls.

1.2 Overview of the DOMAIN Program Environment
This section presents the background you need to understand the DOMAIN run-time environment and
calling conventions, such as:

• Address space

• Mapping

• Object modules

• Installed libraries

The last section of this chapter summarizes the actual run-time environment and calling conventions.

Introduction to DOMAIN Assembly Language 1-2

----_ ... __ ._--------_._._ .. _-_._----- _._----

.---_ ... __ .-_._--_._._-

1.2.1 Address Space

Figure 1-1 illustrates the structure of the vinual address space in which a process runs. The specific
addresses in the illustration are only examples; the actual size and partitioning of the address space varies
with machine type and may change between software releases.

Virtual Address

000000

008000

200000

EOOOOO

(Special Use)

User Private Space

User Global Space

User
Mode

Supervisor
Mode

Figure 1-1. Process Address Space (illustrated for 16 Mb virtual address space)

User private space is accessible to only one process. User programs and data are normally loaded and
run in this space.

Us'er global space is shared by all processes running on the node. Two processes that refer to the same
address in this range access the same physical byte. User global space is primarily occupied by shared
libraries, such as the run-time libraries for the various languages. For more information, refer to the
section "Installed Libraries" within this chapter.

Supervisor space is occupied by the operating system kernel and data that it controls. Like user space,
supervisor space is divided into global and private areas. However, supervisor space is not directly
accessible to programs running in user mode.

1-3 Introduction to DOMAIN Assembly Language

·1.2.2 Mapping

Storage management in the DOMAIN operating system is based on a single-level store model in which
no distinction is made between primary (main memory) and secondary (disk) storage. Processes access
files, or any objects, by mapping the files into their address space and operating on them using ordinary
machine instructions. The vinual memory management system pages data between files (local or remote)
and physical memory on demand.

For example, suppose a process maps the file BETH.DAT into virtual addresses 500000-501000. No data
transfer occurs as a result of the mapping. To inspect the first byte of the file, the process simply
references the byte at 500000 (perhaps using a MOVE byte instruction). The first time this happens a
page fault occurs and the virtual memory manager services the fault by copying the first page (1024 bytes)
of the file from the disk or over the network to an available page frame in physical memory. If the
process writes into the mapped file, the memory manager ensures that the changed pages eventually are
written back to the disk.

Mapped files are the only storage available to processes. Physical memory serves only as a cache over
files. Storage that might normally be thought of as simply memory, such as the stack or dynamically
allocated memory, is backed up by a temporary file known as the stack file, which is created for each
process. There is no separate disk swapping area for virtual memory management.

Conversely, mapping is the only way a process can access a file. While there is no explicit data transfer
between disk and main memory, the streams facility simulates a more traditional I/O interface on top of
the mapping mechanism. The streams facility hides the details of mapping and presents a familiar
read/write style interface. Thus, most user programs use the streams interface, or higher-level calls based
on it, to do I/O. Nevertheless, mapping underlies all file I/O operations and is also directly available to
any program through system calls.

Two or more processes can map the same file simultaneously. If the processes are on the same
workstation, they share the same physical data bytes, whether they are on disk or cached in memory.
This provides a shared memory facility that, for example, is the basis of the mailbox interprocess
communication mechanism. Processes on different workstations necessarily have separate physical
memory caches; to avoid consistency problems, these processes are restricted to read-only access to
shared files. Note that this is the only logical distinction between local and remote file access in the
DOMAIN file system. Concurrent file access is subject to locking restrictions, which the programmer
specifies.

1.2.3 Object Programs

Mapped files allow rapid loading and automatic sharing of DOMAIN object modules. An object program
(represented by a . bin file name extension) consists of a set of independently loadable sections. The
two principal types of sections are

• Pure sections - contain read-only code and constant data. Pure sections are stored in the
object module in memory image format. When the module is loaded, the sections are mapped
into the address space of the process. The contents are then paged on demand into physical
memory directly from the object module file. Pure sections are fully shareable among multiple
processes running the same program.

• Impure sections - contain writeable data and any necessary absolute address constants. The
object module contains a template, which describes the size and required initialization for each
impure section. The loader allocates free space for the section and initializes it as directed by the
template. Each loaded instance of a program has a separate copy of its impure sections.

By default, most programs have these three sections:

• PROCEDURES - a pure section that contains code and constant data.

• DATAS - an impure section that contains static data and address constants.

Introduction to DOMAIN Assembly Language 1-4

-_. __ ... __ ... _ .. -...... --- _._ -_._- .. _---_• _-_._---------_._-_ _-_._--_. __ ._ ---

• DEBUGS - a pure section that contains debugging information.

The programmer can define additional or alternate sections. When object modules are bound together,
sections with the same name are concatenated or overlayed, depending on information in the object
module.

DOMAIN programs are position independent, which means that they can be loaded and run anywhere
in the address space of a process. References to external routines and data are resolved to actual
addresses when the program is loaded.

The loader is unable to insert addresses into pure code sections, since the sections are strictly read-only.
Therefore, pure code cannot contain any absolute addresses. Access to external routines and data is
done indirectly through address constants stored in an impure section.

1.2.4 Installed Libraries

The DOMAIN operating system provides two ways to make procedures in one object module available to
another module. Consider an object program that calls procedures in another library object module:

• The two modules can be bound together to produce a new object module that contains both sets
of code, with the references between them resolved.

• The library can be installed in the address space of a process, making it resident in vinual
memory for the life of the process.

When an object module is installed, its entry point names and their associated addresses are recorded in a
process data structure called the Known Global Table (KGT). The loader uses the KGT to resolve
references to installed library routines when a program is loaded for execution.

Most DOMAIN system libraries, such as run-time language support, streams, graphics, etc., are installed
in the global portion of address space where they are accessible to all processes. Thus, object modules
produced by compilers can often be executed directly, without a separate linkage step to bind library
routines.

You can install your own libraries, either in the global or private address space. Note that installing a
library is primarily a mapping operation; that is, code does not physically move from the disk until it is
referenced and brought in by a page fault. An installed routine that is never called uses only vinual
address space and takes no other resources.

1.3 Overview of Run-Time and Calling Conventions
In the DOMAIN program environment conventions, three of the 68000 address registers have special
functions:

• A 7 - the Stack Pointer (SP) points to the top of the call stack. The stack grows from high
addresses to low addresses.

• A6 - the Stack Base (SB) points to a fixed position in the stack frame of the currently active
routine. Local variables and arguments are accessed relative to this register.

• AS - the Data Base (DB)· points to the stan of the impure. data section (usually DATAS)
associated with the active routine. Static data is accessed relatIve to DB.

Figure 1-2 illustrates the stack frame of a typical procedure. Following the illustration is the sequence of
events in a procedure call.

1-5 Introduction to DOMAIN Assembly Language

..... _--_ .. -----_. __ .. -----

,..-",\ :)
--./

--------------------------_ .. __ ._--

A7
SP

A6
58

Return Address

Arguments Passed

Figure 1-2. Procedure Stack Frame

NOTE: Shaded area indicates callee's responsibilities; unshaded area indicates caller's
responsibilities.

1. Caller pushes arguments onto the stack in reverse order so that the first argument is at the top of
the stack.

2. Caller executes a JSR or BSR instruction to push the return address onto the stack and transfer
control to the procedure.

3. Called procedure executes a LINK instruction to establish the SB register value and allocate stack
space for local variables. LINK also provides a thread of pointers linking successive call frames.

4. Callee pushes the registers it can change onto the stack. The callee is responsible for preserving
most of the caller's registers.

S. Callee executes.

6. Callee restores the caller's registers from the stack. If it is a function, the callee can leave a return
value in DO or AO.

7. Callee executes the UNLK instruction to pop local data off the stack and restore the caller's SB
register.

8. Callee returns to the caller using the RTS instruction.

9. Caller pops arguments off the stack.

As you will recall from the section "Object Programs" earlier in this chapter, relocatable addresses are not
available in pure code. Thus, when a caller calls an external procedure (a procedure outside of the
compilation unit), the conventions must provide:

• A method for the caller to get the address of the callee

• A method for the callee to locate its own impure data section - that is, to load the DB (AS)
register with the address of its DAT AS section

To provide the caller with the address of the callee, the caller's DATAS section contains the addresses of
all external references. The loader inserts the proper absolute addresses when it initializes the impure
section at load time. To call an external procedure, the caller loads the entry address from the DAT AS
section into a register, then jumps to the subroutine (JSR) indirectly through the register.

Introduction to DOMAIN Assembly Language 1-6

To allow the callee to locate its own impure data section, the DOMAIN conventions put the entry point to
externally-callable routines in the DATA$ section, rather than in the PROCEDURES section. A short
prologue loads the address of the start of the section into a register, then jumps to the pure code. The
caller can find the pure code from within the DA T AS section because the loader is free to write the
appropriate absolute addresses in the DATA$ section. Figure 1-3 illustrates the process.

I CALLER I
PROCEDURES Section

MOVE.L F_ADDR,AO Get callee' s entry point address

JSR (AO) Transfer to entry point

OAT AS Section

START . Caller's DB (AS) register points here

AC F Callee' s entry point address, put here by loade

DA T A$ Section

START .

ICALLEE I

F LEA START ,AO Load DATAS start address

JMP F _PURE Jump to pure code

PROCEDURE$ Section

F _PURE Start of pure code

MOVE. L AO ,AS Load DB (AS) register

...
RTS Return directly to caller

Figure 1-3. External Call Mechanism

1-7 Introduction to DOMAIN Assembly Language

--_ --_.
._-----_ _•. -.. __ .

Chapter 2

Using ASM

This chapter explains how the DOMAIN assembler (ASM) works and illustrates how to invoke it.

2.1 How ASM Operates
ASM is a two-pass assembler. In first pass, the assembler constructs skeleton code, builds a symbol table,
and assigns values to all the labels in your program. During the second pass, the assembler determines the
addressing modes in the instructions. At the end of the second pass, the assembler generates the object
module file with the .bin extension and listing file with the .lst extension. Figure 2-1 illustrates the files
that ASM produces from your source file.

ASM

Figure 2-1. Files ASM Produces

Within the program, ASM uses the location counter to determine instruction placement. The location
counter is a value used for addressing a series of locations. When the assembler processes an instruction,
it defines the label with the current value of the location counter. The assembler places the instruction at
the current value of the location counter and advances the location counter by the length of the
instruction. For example, if label X, defined in a 32-bit instruction on line 1 of your source program, is
at location 28476, and label Y is defined on the next line, the location of Y is 28480 (incremented by four
bytes) .

2-1 Using ASM

---- -._._-_ .. _ ... _-_ ... _ .. _._-_ .. __ ..

o

The location counter consists of a section and an offset within the section. Therefore, the location
counter only increments the offset, or number of bytes, in an instruction within the section. When ASM
encounters a new section, it resets the location counter to the current offset for that section. Refer to
Chapter 4 for more information.

The following pseudo-ops change the offset or location counter:

ORG

SECT

PROC

DATA

Changes the offset within a section.

Changes the location counter to any section defined within the module.

Changes the location counter to the section of the predefined procedure frame
(usually PROCEDURES).

Changes the location counter to the section of the predefined data frame (usual
DATAS).

You can reference the current value of the location counter in an expression by using the asterisk (.). In
the following example, we set VARl to the current value of the location counter.

VARI EQU *
ASM automatically aligns instructions on even-byte boundaries. Therefore, the location counter is always
on an even-byte boundary after ASM processes an instruction. This is because the 68000, which is a byte
addressable machine, requires instructions to be aligned on word, or even-byte (. W) boundaries. Also,
multi-byte data, such as 16-bit integers and 32-bit integers must be aligned on word boundaries.

NOTE: On the MC68020 and 160/460/660 series nodes, aligning 32-bit integers and
floating-point numbers on long word C.L) boundaries increases performance.

The pseudo-ops DA, DC.B, and DS.B can leave the location counter on an odd-byte boundary. If the
location counter is at an odd-byte boundary, ASM advances the location counter by 1 before defining the
label and processing the instruction. Also, ASM automatically aligns some of the pseudo-ops on
even-byte boundaries. Refer to Chapter 4 for more information about pseudo-ops.

2.2 Invoking ASM
Once you have written your assembly program, you can assemble the source file by invoking ASM. To
invoke ASM, type the appropriate information on the command line using the following format:

$ ASM pathname [options]

2.2.1 Pathname

The path name contains the name and location of your source file. The name of the file must end with
the suffix .asm. However, when you assemble the source file, you do not have to specify the .asm
extension in the pathname. As explained in the first section of this chapter, when ASM assembles your
code, it generates the object module in an object file with the suffix. bin. Also, ASM generates the listing
file with the suffix .Ist. Unless you use the -B or -L options, ASM generates both the binary and listing
file in the current working directory. Refer to Figure 2-1 for a graphic representation of the files ASM
produces.

For example, if test1.asm is the source file name, then you can enter the following information on the
command line:

$ ASM Ilbeth/asm_programs/test1 . asm

Using ASM 2-2

o

o

This causes the assembler to read source statements from the file / /beth/asmyrograms/testl. asm
and generate the following binary and listing files in the current working directory:

testl.bin testl.lst

2.3.2 Options

ASM contains a number of command line options that enable the assembler to generate or suppress
specific listings. Table 2-1 lists the options and provides an explanation of each.

Table 2-1. ASM Command Line Options

Option Meaning Default

-L [<pathname>] Generates an assembly listing (.1st). ~

-NL Suppresses an assembly listing.

-B [<pathname>] Generates object module (.bin). ~

-NB Suppresses binary file.

-XREF Generates cross-reference listing

-NXREF Suppresses cross-reference listing. ~

-IDIRpathname [... J Directs ASM to search a hierarchy of directories
for include filenames. The hierarchy applies
only to insert pathnames that do not begin with , ,

'-', or, 'I', '\', or, , .. You can use up . ,
to 63 -IDIR options. The compiler first tries
to open the specified include filename; if it
fails, it prepends -IDIR pathnames to the include
filename in the same order as entered on the com-
mand line.

-CONFIG name [... J Configures sections of code for conditional assembly
Refer to Chapter 4 for more information.

2-3 Using ASM

------_.--_. __ ._---_._ .. _ _ - _ -- .. -.. ----... -- .. --- _ -_._ .. - .. _ ... -

o

o

o

Chapter

DOMAIN Assembly
Language·

3

An assembler program consists of a sequence of lines that adhere to a particular format. These lines can
contain a comment, a mnemonic instruction, an assembler pseudo-op, or an assembler directive.

This chapter describes the elements of DOMAIN assembly language, including instructions and addressing
modes. DOMAIN assembly language typically uses Motorola MC68000 series instruction set notation
with little or no variations. However, the differences between Motorola notation and DOMAIN assembly
language are detailed in this chapter. You can find more information on the actual 68000 instruction sets
in the appropriate MC68000 series manual.

We also provide a brief definition and an example of each of the addressing modes. For more detailed
information, refer to the appropriate MC68000 programmer's reference manual.

The topics discussed in this chapter are:

• Source file format

• Instruction format

• Language elements

• Instructions

• Addressing modes

3-1 DOMAIN Assembly Language

._-----_ - .. __ . __ ._--_.-.. _--_ --_._------._-----

3.1 Source File Format
{~ Every assembler source file begins with either the pseudo-op PROGRAM (if you are coding the main
~ program), or the pseudo-op MODULE (if you are not coding the main program). Additionally, every

file terminates with the pseudo-op END.

o

A DOMAIN assembly language program generally contains two sections: procedure and data. DOMAIN
assembly language predefines these sections. Therefore, you do not have to use the DFSECT pseudo-op
(defined in Chapter 4) to define the sections. The pseudo-ops PROC and DATA position the location
counter to the section.

As we stated in Chapter 1, the procedure section contains position independent code and constant data.
All compilers produce pure code in this section. If you do not enter a name for the predefined procedure
section in the PROGRAM of MODULE pseudo-op, DOMAIN assembly language predefines the section
with the default name PROCEDURE$.

The data section contains static read/write data and linkages (address constants to external procedures
and data). The data section contains all relocatable references. DOMAIN assembly language predefines
this section with· the default name DATA$ if you do not enter a name for it in the PROGRAM or
MODULE pseudo-op. Figure 3-1 illustrates the format of a DOMAIN assembly language source
program.

PROGRAM name, start-addr [, proc-section name [, data-section name]]

or

MODULE name [, proc-section name [, data-section name]]

PRoe

*pure code and data. No variables, no relocation.

DATA

*read/wri te code and data. Includes al/ address constants.

•

•

•

•

•

END

Figure 3-1. DOMAIN Assembly Language Source Program Format

DOMAIN Assembly Language 3-2

----_ _-_ __ ... ----

0

o

------------_._.--._-_.-----------------_._---------------------------

3.2 Instruction Format
Most assembler source lines have the following format:

[label] operator operands [comments]

If you use a label, it must start in column one. Labels can be up to 32 characters in length. The first
character of a label must be either a letter or the underscore character. The operator cannot start in
column one. Fields are separated by one or more blanks. Most programmers prefer to align the fields in
fixed columns, but this is not required.

Anything following the first blank in the operand field is interpreted as a comment. Therefore, blanks
cannot appear within the operand field (except inside quoted strings). Some operators require no
operands, in which case everything following the operator is a comment.

An entire line can be used for a comment if you begin the line with an asterisk in column one.

3.3 Language Elements
This section describes the the following elements of DOMAIN assembly language:

• Character set

• N ames and values

• Numbers

• Strings

• Register lists

• Expressions

3.3.1 Character Set

The character set that the assembler uses consists of upper and lower case letters, digits, and the special
characters listed in Table 3-1. Labels, operators, and operands (except quoted strings) are
case-insensitive.

Special Characters

•

@

$

Table 3-1. Special Characters

Meaning

Indicates a comment line in column one. Also, indicates the
current contents of location counter in the operand field.

Indicates repetition, as in DC.B 4@O, where 4 bytes
are preinitialized to zero.

Precedes a hex constant, or a symbol character if not first.

Continued on next page

3-3 DOMAIN Assembly Language

__________ -------c-~-~~~~-------~-.

/""""'\
U

o

o

Table 3-1 (Continued)

Special Characters Meaning

Precedes immediate operands.

% Preprocessor directive.

, (comma) Separates arguments within a field.

, (single quote mark) Delimits strings in a variable field.

(period) Size suffix (. B, . W, . L) .

(colon) Follows labels (optional).

/ Separates register lists.

() Sub-expressions, addressing modes.

[] Memory indirect addressing (68020 only).

{ } Bit field addressing (68020 only).

3.3.2 Names and Values

Names (labels) consist of 1 to 32 characters, each a letter, digit, underscore, or dollar sign. The last
character must be a letter or underscore.

Reserved Names
DOMAIN assembly language contains a few reserved symbolic names that you cannot use when defining
your own labels. Table 3-2 lists the DOMAIN assembly language reserved names. In the Processor Type
column, the MC68000 series numbers in parentheses indicate that the names are reserved only under
those processors and coprocessors.

DOMAIN Assembly Language 3-4

o

0

o

Table 3-2. DOMAIN Assembly Language Reserved Names

Reserved Name Meaning Processor Type

AO - A7 Address registers All

DO - D7 Data registers All

SR Status Register All

CCR Conditional Code Register All

DB Data frame Base register (AS) All

SB Stack frame Base register (A6) All

SP Stack Pointer (A 7) All

USP User Stack Pointer All

MSP Master Stack Pointer All

ISP Interrupt Stack Pointer All

DFC Destination Function Code (68010, '020)

CACR CAche Control Register (68020)

CAAR CAche Address Register (68020)

VBR Vector Base Register (68010, '020)

FPO - FP7 Floating-Point registers (TE &"l, 6 8 8 8 1)

FPIADDR Floating-Point Instruction ADDRess register (TERN, 68881)

FPCONTROL Floating-Point CONTROL register (TERN, 68881)

FPSTATUS Floating-Point STATUS register (TERN, 68881)

Names denote values. A value can be a simple number, but it can also be more complex. The following
types of values are recognized. Refer to Chapter 4 for descriptions of the pseudo-ops used in the
examples.

Absolute - a simple number

limit equ 1440 *The value of 'limit' is the absolute number 1440

Section Relative - consists of a section and offset. The value of an instruction or data label is a
section-relative value.

count

*
ds.1 1 *The value of 'count' is the value of the location

counter where it is defined.

3-5 DOMAIN Assembly Language

o

o

o

External - the location of an external symbol.

extern.p spline

*
·The value of 'spline' is the location of the
external symbol of that name.

Addressing - names can be equated to addressing expressions, which are described in the section
"Addressing Modes" later in this chapter.

argl

*
equ

3.3.3 Numbers

8(a6) ·The value of 'argl' is 8 bytes past the location
pointed to by address register A6.

Numbers can be represented in either decimal or hex format. Decimal numbers begin with a digit (0-9).
Hex numbers begin with a $ and use digits (0-9) or letters (A through F, uppercase or lowercase) for the
remaining characters.

Decimal numbers must be within a range that fits into a 4-byte range, as shown below:

o to 4294967295 or -2147483648 to 2147483647

The assembler does not generate an error for decimal values that exceed the 4-byte range.

DOMAIN assembly language allows hex numbers to be up to 8 bytes. Unlike the 4-byte decimal limit for
decimal numbers, hex numbers allow for immediate double precision floating-point constants.

3.3.4 Strings

Strings use single quotation marks (') to delimit literal information. Limit strings to four characters,
unless you use strings in the DA pseudo-op variable field. Refer to Chapter 4 for complete information
on the DA pseudo-op. If the string contains fewer than four characters, the assembler right-justifies the
string and fills in the remaining spaces with zeros. For example, the literal string 'a' is equivalent to $61
in hex, as shown.

01 0/ 01 0\ 01 01 61

3.3.5 Register Lists

Register lists enable you to operate on multiple registers. The register list appears in the source or
destination fields of the MOVEM instruction. DOMAIN assembly language uses the standard 68000
syntax for register lists. in which Rn is a single register and Rn-Rm is a range of registers (where n is less
than m). Use the slash (I) to list more than one register list. For example.

DO-D7/AO-A7

Refer to the appropriate 68000 manual for more information.

DOMAIN Assembly Language 3-6

o

0

3.3.6 Expressions

Names, numbers, strings, and addressing expressions (described above) can be combined into compound
expressions using assembly-time operators. DOMAIN assembly language recognizes four types of
operators:

• Arithmetic

• Conditional

• Shift

• Logical

These sections introduce the operators. Before we begin, we look at the rules of operator precedence.

The rules of operator precedence in algebra apply to any expression you write in DOMAIN assembly
language. The processor prioritizes operations from high to low and evaluates operations equally from left
to right. The following chart illustrates operator precedence from high to low. Parentheses override
operator precedence and can be used to control the order of expression evaluation.

HIGH * I

+, -

«, »

<, <=, >, >=, =, <>

&

LOW

Arithmetic Operators
Arithmetic operators enable you to perform mathematical functions. To use arithmetic operators, follow
these rules:

• All operands must be 32-bit integers. Therefore, 16-bit integers are extended to 32-bits before
the operation.

• All operands, except those used in addition and subtraction, must have an absolute expression
type.

• When both operands are absolute expression types, the result is an absolute expression type.

Table 3-3 lists the arithmetic operands, illustrates the operand format, and describes each operand. Refer
to the section" Addressing Modes" later in this chapter for more information on the role expression types
play in addressing modes.

3-7 DOMAIN Assembly Language

o

0

---_._ .. _ _-_ .. ------------ ---- --.--~--

Operand

+ (Oprl + Opr2)

- (Oprl - Opr2)

* (Opr1· Opr2)

/ (Opr1 / Opr2)

Conditional Operators

Table 3-3. Arthimetic Operands

Description

Adds two operands. One of the operands can be absolute,
section-relative, external, or an addressing expression. The
other operand must be absolute. The result of the two dif
ferent operand types is the same type as the non-absolute
operand.

Subtracts Opr1 from Opr2. One of the operands can be
absolute, section-relative, external, or an addressing expression.
The result of the two different operand types is the same type
as the non-absolute operand. Also, both operands can be
section-relative or external. If so, both operands must refer
to the same section or an external. The result type of section
relative or external operands is absolute.

Multiplies two absolute expression type operands.

Divides two absolute expression type operands.

Conditional operators test for specific conditions in operands. Table 3-4 lists and describes the
conditional operators. Note that the result of all conditional operators is 1 if the condition is true. If the
condition is false, the result is O.

Table 3-4. Conditional Operators

Operand Description

< (Opr 1 <Opr2) Determines if Opr1 is less than Opr2.

<= (Opr 1 <=Opr2) Determines if Opr1 is less than or equaL to Opr 2.

> (Oprl>Opr2) Determines if Opr1 is greater than Opr2.

>= (Oprl>=Opr2) Determines if Opr1 is greater than or equal to Opr2.

= (Oprl=Opr2) Determines if Opri is equal to Opr2.

<> (Oprl<>Opr2) Determines if Opr1 is not equal to Opr2.

DOMA.IN Assembly Language 3-8

,/

Shift Operators
Shift operators shift data a specified number of bits either to the right or to the left. Table 3-5 lists and

/"'-"\ describes the shift operators.
\.JJ

o

Operator

« (Oprl«Opr2)

» (Oprl»Opr2)

Logical Operators

Table 3-5. Shift Operators

Description

Shift left Oprl by the number in Opr2. For example, A«2
means shift A left 2.

Shift right Oprl by the number in Opr2. For example, B»3
means shift Bright 3.

Logical operators, or bitwise operators, compare and manipulate bits within the operands. Table 3-6
lists and describes the operators.

Operator

& (Oprl&Opr2)

(Oprl !Opr2)

3.4 Instructions

Table 3-6. Logical Operators

Description

The logical function AND (&) sets the destination bit to 1 if the
source bits (in both operands) are set to 1. Otherwise, AND sets
the destination bit to O.

The logical function OR (!) sets the destination bit to 1 if either
or both of the source bits (in the operands) is 1. If both source
bits are 0 the destination bit is O.

A line of source code consists of one or more fields depending on the type of statement you use. A field
is defined here as a subdivision of a source line that requires specific information. A source line can
contain up to 256 characters. The three kinds of assembly source line statements are:

• Op-codes

• Pseudo-ops

• Directives

An example of an instruction is as follows:

3-9 DOMAIN Assembly Language

o

(~
"-..)

TRANSP MOVE 00,01 *Move contents of register DO to 01.

Let' s discuss each field in the above format example.

Labels are optional. If you use a label, follow the rules outlined at the beginning of this chapter. If you
do not use a label, start the op-code in column two or beyond. Separate the op-code from the operands
(in source/destination) with at least one space.

Depending on the type of op-code, an instruction can have both a source and destination operand, only a
source operand. or neither a source nor a destination operand. If the instruction has neither, a space
following the op-code terminates the op-code field and the assembler regards the rest of the line as a
comment. Refer to the "Comments" section later in this chapter for more information.

If the instruction requires both a source and destination operand, separate the operands with a comma
(,). Do not allow spaces between the operands. Remember that a space following an operand indicates
that the rest of the line is a comment. For example.

PAKIT MOVE CONT,OO

STREM MOVE CONT. DO

3.4.1 Instruction Op-codes

*Correct format.

*Incorrect format -- Space before DO makes it a
*comment.

DOMAIN assembly language uses the op-codes defined in the appropriate Motorola processor manuals.
Also. for full details on the instruction set. refer to the appropriate Motorola manual.

Variants
Some 68000 instructions use Q(uick). A(ddress). and I(mmediate) variants. such as ADDQ. CMPA.
and OR!. With these instructions. DOMAIN assembly language allows you to use the root of the
instruction. such as ADD. CMP. and OR to obtain the same results. When you use the root of these
instructions. the assembler automatically generates the proper variant if the instruction operands fit the
requirements of the variant. For example,

MOVE.L #5,01

is assembled into a MOVE.Q(UICK) instruction.

Extensions
Many 68000 instructions, such as ADD. operate on byte (.B). word (.W), and long (.L) operands. The
extensions •. B, .W. and .L select the operand length of the instruction. -Some examples are: ADD.B,
SUB.L. and OR.W. If you do not specify an extension. the default is .W. Appendix B provides a list of
68000 series instructions and legal extensions.

Branch Length Determination
Branch instructions. such as BRA and BGT, can have .S or .L extensions. For example. BRA.S is a legal
instruction. If the extension is .S. the assembler generates a one word branch instruction. If the
extension is .L, the assembler generates a two word branch instruction. If the branch instruction has no
extension, the assembler generates a two word instruction for destinations that are forward references.
However, if the destination is not a forward reference. the assembler generates a one word branch
instruction only if the destination is within a short branch range (-128 bytes to 127 b}1es of the branch
instruction) .

DOMAIN Assembly Language 3-10

--------------------._---------

3.4.2 Pseudo-ops

,"'--"\ A pseudo-op is a DOMAIN assembly language defined operator that can generate code or data, or can
\...~ control certain aspects of assembly. Pseudo-ops have a format similar to the instruction format described

above. The format for a pseudo-op is:

[label] <pseudo-op> [<variable field>] <comments>

. To use pseudo-ops, follow these rules:

• If you use a label, start the label in column one.

• Use one or more spaces between each field.

• If a pseudo-op has no variable field, DOMAIN assembly language considers everything beyond
the pseudo-op field to be a comment.

• If a pseudo-op has a variable field, separate each item in the variable field with a comma.

Refer to Chapter 4 for more information on pseudo-ops.

3.4.3 Directives

Assembler directives provide information to the assembler about include files and conditional assembly.
Directives do not generate machine instruction in assembled code. The format of the directive is:

%<directive> <directive dependent operands>

___ j A percent sign (%) in column one precedes all directives. Skip one or more spaces between the directive
~.,.. and the operands. For more information on directives, refer to Chapter 4.

o

3.5 Addressing Modes
The addressing modes used in instructions are sometimes specified explicitly by the programmer and
sometimes selected by the assembler. For example,

move.l (a2) ,dl

explicitly specifies address register indirect addressing, but

move.l flag,dl

only refers to a label and leaves the selection of the appropriate address mode to the assembler. To
effectively use the assembler, you need to know the syntax for explicitly specifying addressing modes and
to understand the rules which the assembler uses to select implicit addressing modes.

3.5.1 Syntax

DOMAIN assembly language does not always use the addressing mode syntax defined in the Motorola
processor manuals. In fact, some addressing modes (PC-relative, for example) cannot be explicitly
specified. Table 3-7 lists the DOMAIN assembly language syntax for each of the 68000-family
addressing modes. No syntax is listed for those modes that cannot be explicitly specified; the example for
those modes illustrate typical instructions for which the mode might be generated by the assembler.

3-11 DOMAIN Assembly Language

Table 3-7. Addressing Modes Summary

Addressing Mode Syntax Example

Data register direct Dn move.! Dl,D2

Address register direct An move.! Al,A2

Address register indirect (An) move.l (Al),Dl

with postincrement (An) + move.b (A3)+, (AO)+

with pre decrement -(An) elr.w -(A3)

with displacement 1 d 1s(An) or move.! 6(AO),DB

(d 1&An) move.! (6,AO),DB

with index (8-bit disp.) 2 ds(An,Xn.SIZE*SCALE) or tst.w 12(A2,D1.L *4)

(ds ,An,Xn.SIZE * SCALE) tst.w (A2,D3)

with index (base disp.)3 bd(An,Xn.SIZE*SCALE) or elr.! 500(A2,D3.L *4)
(bd,An,Xn.SIZE * SCALE) elr.! (A2,D3.W)

elr.! 500 (A2)

o

Memory indirect 3

post-indexed ([bd,An] ,Xn.SIZE * SCALE,od) tst.w ! 20,A2j,D1.L>2,4)
tst.w 20,A2 ,4)
tst.w A2) ,Dl,4)
tst.w 20,A2])
tst.w A2])

pre-indexed ([bd,An,Xn.SIZE*SCALE] ,ad) elr.! H20,A2,D1.L],4)
elr.! A2,Dl],4)

PC-indirect

with displacement Not explicitly specified. beq.s loop
with index (8-bit disp.) See Section 3.5.2 move.s edcidc (D 1. W) ,DO
with index (base disp.) 3

PC memory indirect3 Not supported.

Absolute short Not explicitly specified.

Absolute long See Section 3.5.2 jmp.! testSproc

Immediate #<data> move.! #3,D1

Syntax Symbols for Table 3-7
Dn data register

An address register

o Xn index register (data or address)

SIZE index register size, ".W" or ".L"

DOMAIN Assembly Language 3-12

-----_. __ ._---_ _ __ ... _.-----_ ... -_." _ ---

,..-\
(,J

(J

(J
'''''''/

SCALE index register scale, 1, 2, 4, or 8

dB 8-bit (disp)lacement

d'8 16-bit (disp)lacement

bd base displacement (up to 32-bits)

od outer displacement (up to 32-bits)

Notes for Table 3-7
(1] On a 68020, this syntax can be used with a 32-bit displacement. This will assemble into an

address register indirect (base displacement) mode with a suppressed index.

[2] Index scale factors permitted on 68020 only. The default is 1. The default index size is word
(.W).

[3] Mode valid on 68020 only.

3.5.2 Address Mode Determination

The assembler determines the proper address mode during its two passes through your program. In the
first pass, ASM determines the length of all instructions. This enables ASM to define the values of all the
labels in your program. During the first pass, if ASM encounters an instruction operand with an
expression containing a forward reference, ASM assumes that the addressing mode for that particular
operand requires one word of address extension. During the second pass, if ASM determines that the
operand in question requires an address extension other than one word, it displays the error message:

ILLEGAL FORWARD REFERENCE

The following table illustrates how ASM determines each addressing mode. To use the table, locate the
proper expression type in column one. Next, decide whether the expression type meets the conditions
described in column two. If the conditions are true, ASM uses the addressing modes listed in column
three. For example, if the expression type is absolute and a current USING pseudo-op has an absolute
expression, then ASM uses either address register direct or address register indirect with displacement.

3-13 DOMAIN Assembly Language

. _ ... _-_._._._ .. _ .. -.... , __ -_ _.---_ .• _- ---

Table 3-8. Addressing Mode Determination

If the expression Then ASM uses this type is ... And if ... mode ...

68000 addressing It uses specific address mode Specified mode.
mode

Section relative The section is the same PC-relative
as the section of the (unless mode is not allowed
instruction for instruction operand).

A current USING Address register

references the same section indirect

as the operand or

Indirect with
displacement.

Otherwise Long absolute.

o
External The current USING is the Address register

the same as the external indirect

or

Indirect with
displacement.

Otherwise Long absolute.

Absolute The current USING is an Address register

absolute expression indirect
or

Indirect with
displacement.

The value of the absolute

expression is > -32769 Short absolute.

< 32678

Otherwise Long absolute.

DOMAIN Assembly Language 3-14

(J 3.5.3 Additional Notes

o

o

1. If you use the JMP.L instruction, ASM uses long absolute addressing mode. However, the
expression type of the operand must be absolute, section-relative, or external.

2. Labels can be indexed, for example:

move.w table (Dl. w) ,D2

3. Indexed expressions must resolve either to address register indirect or program counter
indirect with index mode. Therefore, the reference must be within the same section (in order for
ASM to use the program counter with index), or a current USING must reference the section.

4. ASM does not allow instructions that require relocation in read only sections. Instructions need
relocation in the following situations:

• A section-relative operand referenced with absolute mode.

• An external operand referenced with absolute addressing mode.

• Immediates with section-relative or external expressions such as #FINDER where
FINDER is an external reference.

S. The normal defaults for ASM address mode determination are shown in Table 3-9.

Table 3-9. Normal Case Defaults for Addressing Mode Determination

If the symbol is And is Then the
Defined in Reference from Models. ..

PROC PROC PC-relative

DATA PROC AS-relative

PROC DATA absolute

DATA DATA PC-relative or AS-relative
(depends on conditions described in Table

3-8).

3-15 DOMAIN Assembly Language

C)

o

Chapter 4

Pseudo-Ops and Directives

This chapter provides a description of each DOMAIN assembly language pseudo-op. The chapter con
cludes with descriptions of two types of assembler directives: the include file directive, and the condi
tional assembly directives.

4.1 Pseudo-Ops
In this section, we describe the DOMAIN assembly language pseudo-ops. Pseudo-ops are DOMAIN as
sembly language implementations of instructions that provide the assembler with special information.
Pseudo-ops can be used in conjunction with any MC68000 series instruction set.

4-1 Pseudo-Ops and Directives

C)

o

---_._------------_.

AC -- Define address constant

FORMAT

[<label>]

FIELDS

label

AC[.L]

expression

DESCRIPTION

AC[.L] <expression>

An optional name that refers to the address constant.

The pseudo-op for Address Constant. The.L extension is the default. No
other extension is allowed.

The address constant containing the value of the expression. For example:

where vfmt_Swri te2 is a system service routine.

The assembler creates an address constant CAC) at the current value of the location counter. An
address constant is a 4-byte quantity that contains the value of the expression. The expression
must be absolute, section-relative, or external. If the expression is section-relative or external, the
address constant requires relocation. Therefore, the location counter must be set to a read/write
section. The AC advances the location counter by 4.

If necessary, the assembler automatically advances the location counter to an even-byte boundary
before defining the label and processing the pseudo-op.

Normally, you put AC pseudo-ops in the data frame. Code in the procedure frame loads the ad
dress constant into an address register" and uses the address register to reference an external symbol
or data in another section. The following example illustrates this:

PROC
PEA
MOVE.L

DATA
print_8c AC

Pseudo-Ops and Directives

ctrl_str
printf_8C,AO

printf

4-2

o

o

--_._ _ _ ... _--_._-_ __ ._--------------

CPU -- Define specific hardware requirements

FORMAT

CPU

FIELDS

CPU

[68000168010168020], [TERNI68881], [68851]

The CPU pseudo-op. This pseudo-op tells the assembler which instruction
set to use to interpret the floating-point instructions that follow.

68000168010168020 The hardware variable field option. You must choose the appropriate option

TERNI68881

68851

DESCRIPTION

to assemble instructions that are specific to a processor. The default is
68010.

The FPP (Floating-Point Processor) variable field option. You must choose
the appropriate floating-point hardware to properly interpret the in-line float
ing-point code that follows. The default is TERN. If you are using TERN.
you do not have to use this pseudo-op. Because TERN is a processor. it ig
nores a selection of 68000, '010, or '020.

The PMMU variable field option. You must specify this option to assemble
instructions for the PMMU board.

The CPU pseudo-op can be used anywhere in the source file after the MODULE or PROGRAM
pseudo-op. The CPU pseudo-op defaults are

CPU 68010 ,TERN

Thus, if you do not specify the appropriate processors and coprocessors for the source code that
follows the CPU pseudo-op, the assembler will either incorrectly interpret the instructions or will
not assemble the code. For example, if you write a block of code that uses the 68881 coprocessor
instruction set but neglect to use the CPU pseudo-op before that block, the assembler incorrectly
interprets the instructions using the default TERN instruction set.

NOTE: In some cases, TERN floating-point instructions use the same assembler op-codes as
the 68881, but they assemble into different binary codes.

In a DOMAIN system, it is generally desirable to minimize hardware dependencies so that pro
grams can run on any workstation in the network. This is usually accomplished by restricting the in
struction set to the lowest common denominator, typically a 68010 with no floating-point hardware.
Note that the floating-point library described in Chapter 7 provides a hardware independent inter
face for floating-point computations.)

4-3 Pseudo-Ops and Directives

o

o

This portability can exact a performance penalty. For maximum performance, you may want to
generate multiple versions of the program tailored to different hardware configurations. The CPU
pseudo-op is frequently used in conjunction with conditional assembly so that the different versions
can share the same source code. Here is a typical example:

%var mc68020

%IF mc68020 %THEN if assembling for a 68020
CPU 68020
bfextu (a3){15:2},dl use bit field instruction, otherwise ...

%ELSE
CPU 68010
move.l (a3),dl shift and mark
move.l #15,dO
1sr.1 dO,dl
and.l #$3,dl

%ENDIF

If you specify -config mc68020 on the command line, the MC68020 version assembles; other
wise. the MC68010 assembles. See the discussion of conditional assembly later in this chapter.

NOTE: Unlike the -CPU option of DOMAIN compilers. the CPU pseudo-op does not
cause the object module to be marked as requiring specific hardware. Thus, the
loader will not detect an attempt to run on inappropriate hardware.

Pseudo-Ops and Directives 4-4

/~

\'-0) DA -- Define ASCII constant

C)

o

FORMAT

1<label>1

FIELDS

label

DA

'<string>'

DESCRIPTION

DA[.SI. WI.L] '<string>' {, '<string>'}

Optional name of character string.

The Define ASCII pseudo-op. The extension .W is the default. The exten
sion of the DA pseudo-op determines alignment. If the extension is . W or . L
and the location counter is on an odd boundary. the location counter ad
vances to an even-byte boundary before defining the label and processing the
pseudo-op. If the extension is .B, the ASCII string may start on an odd-byte
boundary. The extension on the pseudo-op only affects the first string align
ment in the variable field. Note that after processing the DA pseudo-opt the
location counter can be on an odd-byte boundary regardless of the suffix.

Character strings are enclosed within single quote delimiters. A character
string must terminate before the end of the line. If this is not possible. use
multiple DA pseudo-op lines. A quote character is represented by two adja
cent quote characters. For example. to specify , ABCDEF' use
, , , ABCDEF' , '. Also. the variable field can contain more than one string if
you use commas between the strings. For example. to print ABCDEF. use
, ABC' • 'DEF' in the string variable. Do not skip a space after the comma;
the assembler interprets any space in the variable field as the end of the data.

The DA (Define ASCII) pseudo-op sets memory that begins at the current value of the location
counter to the ASCII value of the character string. For example:

PEA p_string
PEA c_string

c_string DA.B '%a%. ,

p_string DA.B 'ABCDEFGH'

4-5 Pseudo-Ops and Directives

-------------_._-- -

o DATA -- Place subsequent code In the DATA section

C)

FORMAT

DATA

FIELDS

DATA

DESCRIPTION

Sets the location counter to the start of the predefined data section the first
time the DATA pseudo-op appears. Any subsequent DATA pseudo-op sets
the location counter to the current end of the predefined data section. After
a DATA pseudo-op, the location counter is always on an even-byte bound
ary. The DATA pseudo-op is equivalent to a SECT pseudo-op with the sec
tion name of the predefined data section (normally DA T AS) .

The DATA pseudo-op places subsequent code in the data section, which is a read/write, concate
nate section.

Pseudo-Ops and Directives 4-6

o

o

DC -- Define constant

FORMAT

1<label>1 DC{.BI·WI·L} [<count>@] <value>{, ••• }

FIELDS

label

DC

count@value

DESCRIPTION

Optional name used to reference the constant.

The Define Constant pseudo-oPe The extension .W is the default and causes
each value to be put into successive words of memory. If the extension is .B,
each value is put into successive bytes of memory. If the extension is . L, each
value is put into successive long words of memory. The location counter ad
vances to an even-byte boundary, if necessary, before defining a label and
processing a DC pseudo-op with a .W or .L extension. If the extension is .B,
the location counter may be left on an odd-byte boundary after processing the
DC pseudo-oPe

A repeat count and value. The repeat count indicates the number of locations
to set to the corresponding value in the variable field. The at sign (@) sepa
rates a repeat count from a value. The expression type of the repeat count
and value must be absolute. Use commas to separate multiple items in the
variable field. Do not skip a space after the comma because the assembler in
terprets a space in the variable field as the stan of a comment.

The DC (Define Constant) pseudo-op sets memory that begins at the current location counter to
the values in the variable field.

The following example defines p_len as 8 and references p_len when the address of the con
stant (8) is pushed onto the stack.

DC.W 8

The following example defines a 256-byte table initialized to zero:

DC.B 256@O

4-7 Pseudo-Ops and Directives

---- _.-.. - - --------- ._----- - ----_.-------------_ .. --------_._-_.,--_._ .. -,,-.------.---~---

C)

o

DEFDS -- Define symbols in descending order

FORMAT

DEFDS

FIELDS

DEFDS

expression

DESCRIPTION

<expression>

The DEFOS pseudo-op block defines values for names used to reference
fields in a modeled data structure. The OEFOS pseudo-op can be used to
model a data structure such as a Pascal record or the runtime stack. The
DEFOS block does not reserve storage for the data structure and does not al
ter the value of the location counter.

The expression in the variable field can be any type except a register or imme
diate value. The expression cannot contain any forward references. The
OEFOS expression affects the definition of labels on DS pseudo-ops within
the OEFOS block. Also, the OEFOS expression can affect the label on an
EQU pseudo-op if the expression in the variable field of the EQU pseudo-op
references the location counter.

The DEFOS pseudo-op block spans a number of source lines. The block starts with a OEFOS
pseudo-op and extends to an ENOS pseudo-op. Only EQU, OS, ENTRY pseudo-ops and com
ments can occur between a OEFOS pseudo-op and its matching ENOS pseudo-op. No instructions
or other pseudo-ops are permitted.

When the assembler encounters the OEFOS pseudo-opt it saves the current value of the location
counter and sets the location counter to the value of the expression in the variable field. Within the
block, OOMAIN assembly language processes EQU pseudo-ops normally by defining the label with
the value in the expression field. Labels attached to the OS pseudo-op are defined with the value
of the location counter minus the number of bytes specified by the OS pseudo-op. After processing
the DS pseudo-op, the location counter is decremented by the specified number of bytes. When
the assembler encounters the corresponding ENOS pseudo-op, it restores the location counter with
the value saved at the DEFOS pseudo-op. For instance. the symbol CORE, in the following exam
ple, is defined with the value of -4(SB) and Y with the value of -6(SB).

CORE
y

DEFDS
DS.L
DS.W
ENDS

Pseudo-Ops and Directives

O(SB)
1
1

4-8

-------------------_._---_. __ ._._-

o DEFS -- Define symbols in ascending order

o

FORMAT

DEFS

FIELDS

DEFS

expression

DESCRIPTION

<expression>

The DEFS pseudo-op block, like the DEFDS pseudo-op, defines values for
names used to reference fields in a modeled data structure.

The expression in the variable field can be any type except a register or imme
diate value. The expression cannot contain any forward references.

The DEFS pseudo-op block spans a number of source lines. The block starts with a DEFS
pseudo-op and extends to an ENDS pseudo-op. Only EQU, DS, and ENTRY pseudo-ops and
comments can occur between a DEFS pseudo-op and its matching ENDS pseudo-op. No instruc
tions or other pseudo-ops are permitted.

The difference between the DEFS pseudo-op and the DEFDS pseudo-op is the method the assem
bler uses to compute the value of DS pseudo-op labels within a DEFS block. The assembler sets
the DS label to the value of the location counter. Then, the location counter increments by the
number of bytes specified in the DS pseudo-op.

The following dummy block models a record used as an element of a linked list:

DATA
PRED
SUCC

DEFS
DS.W
DS.L
DS.L
ENDS

(al)
1
1
1

al points to record

DATA is equivalent to O(a2), PRED to 2(al), SUCC to 6(al).

4-9 Pseudo-Ops and Directives

.. _ ---------. _ .. _ ------------_.- _.--_._-_._ -_._-_ .. _--_ _-_ __ ... _---

o

o

DFSECT -- Define section

FORMAT

<name>

FIELDS

<name>

DFSECT

attributes

DESCRIPTION

DFSECT [(overlay,] [readonly,] [instruction,] [zero)]

The label, or name, of the section. Note that in the DFSECT pseudo-op, the
section name appears in the label field while section names appear in the vari
able field of SECT, MODULE, and PROGRAM pseudo-ops. The DFSECT
pseudo-op must appear be/ore the first SECT pseudo-op that references that
section. The section name in the DFSECT pseudo-op cannot be the same as
the names used in the predefined procedure frame or the predefined data
frame. However, the section name can have the same name as a label or ex
ternal.

The DFSECT pseudo-op defines a section.

The variable field of the DFSECT pseudo-op can contain any of the following
section attributes: overlay, readonly, instruction, and zero. Use commas to
separate attributes. If you do not specify the overlay attribute, the section is a
concatenate section. If you do not specify the read-only attribute, the section
is read/write. For more information on attributes, refer to Appendix F, The
Object Module.

The DFSECT pseudo-op defines a section. Two sections are predefined in a DOMAIN assembly
language module and thus do not need a DFSECTpseudo-op: PROC and DATA. You can define
additional sections to reference FORTRAN COMMON blocks from assembly language or to control
working set. Use one DFSECT pseudo-op per section.

The DFSECT pseudo-op has no effect on the location counter. The SECT pseudo-op positions
the location counter on a section.

Pseudo-Ops and Directives 4-10

<J

o

-----.-------.. -~"--- .. -.--" ------ -------

DROP -- Discontinue use of base address register

FORMAT

DROP An

FIELDS

DROP

An

DESCRIPTION

The DROP pseudo-op ends the effect of the corresponding USING
pseudo-op in the address mode detennination of instruction operands.

The variable field contains the name of an address register. The DROP
pseudo-op matches the previous USING pseudo-op with the same address
register.

The DROP pseudo-op ends the effect of the corresponding USING pseudo-op in the address mode
determination of instruction operands. DOMAIN assembly language sets up an implicit USING of
AS to start the predefined data frame. You can counteract this by using a DROP DB (reserved
name for AS).

program sample, commence
*The following example program runs entirely in the data section. The DROP
*pseudo-op is used to force the assembler to use PC-relative addressing
*instead of the default DB-relative addressing.

operandI
operand2
sum
commence

DATA
DROP DB
ds.l
ds.l
ds.l
move.l
move.l
move.l
move.l
add.l
move.l
rts
END

1
1
1
#5,operandl
#3,operand2
operandl,dO
operand2,dl
dI,dO
dO,sum

4-11 Pseudo-Ops and Directives

o

o

os -- Define uninitialized storage

FORMAT

1<label>1

FIELDS

label

DS

expression

DESCRIPTION

OS[.81. WI.L] <expression>

Optional name used to reference the defined storage.

The DS pseudo-op reserves storage. The extension on the DS pseudo-op and
the expression in the variable field determine the amount of storage reserved.
If the extension is . W or . L, the location counter advances to an even-byte
boundary (if necessary) before defining the label and processing the
pseudo-op. The amount of reserved storage depends on the extension and
the expression. If the extension is . B, the amount of reserved storage is the
value of the expression. If the extension is . W, the amount of storage is twice
the value of the expression. If the extension is .L, the amount of storage is
four times the value of the expression.

The expression type must be absolute. Also, the expression cannot contain
any forward references.

The DS pseudo-op reserves storage. Unlike the DC pseudo-op, which reserves and initializes stor
age, the DS pseudo-op has no effect on the contents of storage. DOMAIN assembly language ad
vances the location counter over the reserved storage. A DS pseudo-op with a .B extension may
leave the location counter on an odd-byte boundary.

The following example defines 32 bits of storage for CAPRICORN and moves the absolute value of 4
into that space.

CAPRICORN DS.L 1

MOVE.L #4,CAPRICORN

Pseudo-Ops and Directives 4-12

.................... _-_._---_._._------- .. __ .. _ _-_ _----

o

o

o

EJECT -- Begin new page in listing

FORMAT

EJECT

FIELDS

EJECT

DESCRIPTION

The EJECT pseudo-op. Causes the assembler to eject the current forms and
begin printing on a new page. The EJECT pseudo-op can precede the PRO
GRAM or MODULE pseudo-op.

After the printer completes printing a full page of code, it automatically ejects to the top of the next
page. To control printing output, use the EJECT pseudo-op in the operation field where you want
the printer to eject the current page and begin printing on the next page. In the following example,
EJECT causes the procedure push_em to start on a new page in the listing file:

RETURN
EJECT

push_em PROCEDURE #12,02-03

4-13 Pseudo-Ops and Directives

-----_._---------_._-_ .. _ _._-------------------_._-

0

o

END -- Signal the end of an assembly language module

FORMAT

END

FIELDS

END The END pseudo-op marks the end of an assembly language module.

DESCRIPTION

The END pseudo-op must be the last statement in a program. DOMAIN assembly language does
not allow multiple modules per source file. Thus, DOMAIN assembly ianguage ignores anything
written after the END pseudo-opt as shown in the following example.

start jmp code_start
ac start
dc.w 0

vfmt_ac ac vfmt_$write2
END

continue_rtn Any code following END is ignored.

Pseudo-Ops and Directives 4-14

/'\
~ ENDS -- End 8 DEFDS or OEFS

FORMAT

ENDS

FIELDS

ENDS

DESCRIPTION

The ENDS pseudo-op marks the end of a DEFDS or a DEFS block.

The ENDS pseudo-op must match a previous DEFDS or DEFS pseudo-op, as shown below.

o

o

core
defs
ds 1

y ds 2
ends

.... --- _._ _---_._---

(AD)

4-15 Pseudo-Ops and Directives

·0

o

o

ENTRY -- Declare a global symbol definition

FORMAT

ENTRY[.DI·PI·F)

FIELDS

ENTRY

name

DESCRIPTION

<name>

The ENTRY pseudo-op makes a name defined in the assembly language mod
ule accessible to other assembly language modules or high-level language
modules. The.D extension indicates data, .P indicates procedure, and, .F
indicates function. The extension affects the use code field of the global defi
nition in the object module.

The name in the variable field of the ENTRY pseudo-op must be defined in
the assembly language module with either an absolute or section-relative
value. The assembler makes the name a global definition in the object mod
ule.

The ENTRY pseudo-op defines data, procedures, or functions that outside modules can use. To
make a name an entry point, include the name in the variable field of the EI\TTRY pseudo-op. For
example,

ENTRY. F SUB 1 *Entry point for function called SUBI.
SUBl EQU *

NOTE: The use code (.D, .P, or .F) does not currently affect binding or execution.

Pseudo-Ops and Directives 4-16

o

o

o

Eau -- Define a symbol to equate with the value of the expression

FORMAT

<label>

FIELDS

<label>

EQU

expression

DESCRIPTION

Eau <expression>

Name of the symbol to contain the value of the expression.

The EQU pseudo-op assigns to the label the value of the expression that fol
lows.

The value you want to assign to the label. The expression can be any type;
however, DOMAIN assembly language does not allow the expression to be a
forward reference. To reference the location counter, use an asterisk in this
field. The location counter is not affected by the EQU pseudo-op.

The EQU pseudo-op equates the label with the value contained in the expression field. For exam
ple,

AAA
BBB

EQU
EQU

O(SB)
AAA+20

equates AAA to O(A6). Then, EQU equates BBB.to the contents of AAA+20, or 20(SB). Addi
tionally, consider the following example, which equates code_start with the current location of
the location counter.

EQU *

4-17 Pseudo-Ops and Directi\'es

o

o

EXTERN -- Declare a name as a global defined outside the module

FORMAT

EXTERN[.DI·PI·F] <name>

FIELDS

EXTERN

name

DESCRIPTION

The EXTERN pseudo-op allows the assembly language module to reference
global names defined in other modules written in assembly language or in a
high-level language. The.D extension indicates data, .P indicates procedure,
and, .F indicates function. The extension affects the use code field of the
global definition in the object module.

The name in the variable field declares the global defined outside the module.
This name must not be defined within the module.

The EXTERN pseudo-op references data, a procedure, or a function outside the module. The
EXTERN pseudo-op generates a global reference in the object module. If the DOMAIN assembly
language module defines data, a procedure, or a function, the module contains an El\TTRY pseudo
op along with a name. However, if the DOMAIN assembly language module uses outside data, pro
cedures, or functions, the module contains an EXTER.~ pseudo-op along with a name. For exam
ple, PROG! contains:

ENTRY.F MATH_CALCULATIONS

PROG2, which calls Math_Calculations I contains:

EXTERN. F MATH_CALCULATIONS

A program that references an external symbol usually defines an address constant for it. For exam
ple,

AS CALC DA MATH_CALCULATIONS

Pseudo-Ops and Directives 4-18

------------------------------_ .. _ ... _-_ .. __ ... _---

o

o

o

LIST -- Enable listing

FORMAT

LIST

FIELDS

LIST The LIST pseudo-op allows the current line and subsequent lines below the
pseudo-op to print in the listing file.

DESCRIPTION

The LIST pseudo-op allows the current line and subsequent lines below the pseudo-op to print in
the listing file. This pseudo-op counteracts the effect of the NOLIST pseudo-op. Use the LIST
and the NOLIST pseudo-ops together to inhibit the listing of insen files. The following example il
lustrates how to use the LIST pseudo-op.

MODULE INVERT
NOLIST

%INCLUDE 'FPP.INS.ASM'
LIST

You can nest NOLIST and LIST pseudo-ops.

4-19 Pseudo-Ops and Directives

o

o

MODULE -- Begin a module

FORMAT

MODULE

FIELDS

MODULE

name

procname

dataname

DESCRIPTION

<name> [,<procname>, <dataname>]

The MODULE pseudo-op is the heading for an assembly language module.
Every DOMAIN assembly language compilation unit must begin with either a
MODULE or PROGRAM heading.

The assembler puts this name into the name field of the global information
header in the object module. The name has no relationship to other names in
the module; therefore, you can use this name as a section name or a label
name elsewhere in the program.

Section name for the predefined procedure frame. The name must not be the
same as the name in a DFSECT pseudo-op. If you do not use this option, the
assembler names the section PROCEDURES.

Section name for the predefined data frame. The name must not be the same
as the name in a DFSECT pseudo-op. If you do not use this option, DAT AS
is the default name for the section.

The MODULE pseudo-op is the heading for DOMAIN assembly language modules which contain
only subroutines. Every DOMAIN assembly language program must contain either one MODULE
or PROGRAM heading. Except for comments, EQU, and EJECT, no code can appear before the
MODULE or PROGRAM pseudo-op in the source file.

Pseudo-Ops and Directives 4-20

------- -_._--_._---_._------------------------

o

o

NOLIST -- Suppress a listing

FORMAT

NOLIST

FIELDS

NO LIST The NOLIST pseudo-op prevents the lines following the pseudo-op from
printing in the listing file.

DESCRIPTION

The NOLIST pseudo-op inhibits the lines following the pseudo-op from printing in the listing file.
This pseudo-op counteracts the effect of the LIST pseudo-op. Use the LIST and the NOLIST
pseudo-ops together to inhibit the listing of insert files. The following example illustrates how to
use the NOLIST pseudo-op.

MODULE INVERT
NOLIST

%INCLUDE 'FPP.INS.ASM'
LIST

When you invoke the assembler, the code under the LIST pseudo-op prints in the listing (.1st) file.
However, the code beneath the NOLIST pseudo-op does not print.

4-21 Pseudo-Ops and Directives

/" -"'\

U

o

o

ORG -- Set location counter

'FORMAT

ORG

FIELDS

ORG

expression

DESCRIPTION

<expression>

The ORG pseudo-op reoriginates the value of the location counter during as
sembly.

The expression type in the variable field must be absolute or section-relative.
If the expression is' absolute, the assembler sets the offset field of the location
value to the offset field value. If the expression is section-relative, the section
of the location counter must be the same as the section of the expression.
Forward references are not allowed.

The ORG pseudo-op changes the offset part of the location counter to the value of the expression.
The ORG pseudo-op does not change the section of the location counter but changes the position
within the section. Other pseudo-ops, such as DATA, PROC, and SECT change the value of the
location counter to a different section.

Pseudo-Ops and Directives 4-22

o

o

--"-~ .. - ... --------.- ---------.-----

PROC -- Place subsequent code In the PROCEDURE section

FORMAT

PROC

FIELDS

PROC The PROC pseudo-op sets up the procedure section of the assembly program.

DESCRIPTION

The PROC pseudo-op sets the location counter to the current end of the predefined procedure sec
tion. The assembler automatically sets the location counter to the start of the predefined procedure
section at the start of an assembly language module. After the PROC pseudo-op, the location
counter is always on an even-byte boundary. The PROe pseudo-op is equivalent to a SECT
pseudo-op with the section name of the predefined procedure frame. The following is an example
of the PROC pseudo-op.

MODULE

DATA switch to DATA section

PRoe switch back to PRoe section

4-23 Pseudo-Ops and Directives

/'"""""\
;,,-) PROCEDURE - Generate standard procedure entry sequence

o

o

FORMAT

<label> PROCEDURE ['<debug-name>' I" <debug-name>"]
[,#-<Iocal-size>]
[,<saved-regs>]
[,NOCODE]
[,STANDARDINONSTANDARD]
[.NOSTACK]
[,NOXEP]
[,AL TENTRY]

NOTE: The arguments can be listed in any order.

FIELDS

label

#-<Iocal-size>

saved-regs

NOCODE

A label is required. In addition to labeling the generated code, the label links
the PROCEDURE pseudo-op to corresponding RETURN pseudo-ops and
provides the default procedure name in debugging information.

The name to be placed in the debug information generated for this procedure.
This is the name that appears in tracebacks. The name can be an arbitrary
string of up to 32 characters; the single and double quoted forms are identical.
If omitted, <label> is used.

Bytes of local variable storage to allocate in the stack frame. This becomes
the argument to the generated LINK instruction. The value must be an even,
negative number. If omitted, zero is assumed.

List of registers to be saved, in the same format that is used in a MOVEM in
struction. This does not include floating-point registers. If omitted, no regis
ters are saved.

Suppresses code generation. This allows the pseudo-op to be used to
specify debugging information only.

NOTE: The remaining arguments affect debugging information only.

NONSTANDARD Specifies that this procedure does not adhere to standard stack frame conven
tions. More specifically, it usually means that the procedure does not LINK.
This flag is set by default if you specify NOCODE.

STANDARD Specifies that this procedure adheres to standard stack conventions. This is
the default if you let PROCEDURE generate the entry sequence. However, if
you specify NOCODE but manually code a standard prologue, you should use
this option.

NOSTACK Specifies that the procedure does not use the stack at all. This is a special
case of nonstandard stack usage. In effect, this indicates that the return ad
dress will remain at the top of the stack during the procedure's execution.
Debugging and traceback tools can exploit this knowledge.

NOXEP Specifies that the procedure does not have an external entry prologue. An ex
ternal entry prologue is the DATA section code that sets the DB register be
fore jumping to the pure code.

Pseudo-Ops and Directives 4-24

ALTENTRY Specifies that this procedure has alternate entry points.

o DESCRIPTION

o

o

The PROCEDURE pseudo-op generates a standard procedure entry sequence and specifies debug
ging information to be associated with it.

The PROCEDURE pseudo-op generates the following code sequence:

<label> link sb,#-<local_size>
movem.l <saved-regs>,-(sp)

A RETURN pseudo-op referencing the label generates a standard procedure exit sequence corre
sponding to the entry:

movem.l -n(sb) ,<saved_regs>
unlink sb
rts

The SB offset n in the MOVEM instruction is calculated as

n = <local_size> + 4*(number of saved registers)

Refer to the entry for the RETURN pseudo-op for more information.

The assembler generates a minimal set of debugging information so that DEBUG, TB, and related
tools can determine which procedure a program is executing. Information about variable names,
line numbers, etc., is not available to debuggers.

In assembly language, a procedure is not always well-defined. All code between a PROCEDURE
pseudo-op and the next PROCEDURE pseudo-op (or the end of the file) is treated as a part of the
procedure in the debugging information. If no PROCEDURE pseudo-ops are present in a module,
the assembler constructs a dummy procedure for each pure section and names it module-name:sec
tion-name. If you use any PROCEDURE pseudo-ops, you should ensure that all pure code is cov
ered by a procedure definition.

Procedure entry and exit sequences are discussed in Chapter 6, which contains examples of the use
of PROCEDURE and RETURN.

4-25 Pseudo-Ops and Directives

.'~)
~-- PROGRAM -- Begin a program

o

o

FORMAT

PROGRAM

FIELDS

PROGRAM

name

start

procname

dataname

DESCRIPTION

<name>,<start>[,<procname>,<dataname>]

The PROGRAM pseudo-op is the heading for an assembly language main pro
gram module. Every DOMAIN assembly language file must begin with either
a PROGRAM or MODULE heading. PROGRAM identifies the file as con
taining a main program.

The assembler puts the program name into the name field of the global infor
mation header in the object module. The name has no relationship to other
names in the module; therefore, you can use this name as a section name or a
label name elsewhere in the program.

The stan name is a section-relative expression. It indicates where to begin
the execution of the program. This name is separated from the program name
by a comma. The value is put into the object module stan address.

Section name for the predefined procedure frame. The name must not be the
same as the name in a DFSECT pseudo-op. If you do not use this option,
PROCEDURES is the default name for the section.

Section name for the predefined data frame. The name must not be the same
as the name in a DFSECT pseudo-op. If you do not use this option, DA TAS
is the default name for the section.

The PROGRAM pseudo-op is the heading for the main program in DOMAIN assembly language.
Every DOMAIN assembly language program must contain either a MODULE or PROGRAM head
ing. Except for comments, EQU, and EJECT, no code can appear before the MODULE or PRO
GRAM pseudo-op in the source file. Below is an example of a DOMAIN assembly language pro
gram pseudo-op.

PROGRAM ABC,START_HERE
PROC

code_start equ *
link

DATA
START_HERE lea

jmp.l

sb,#O

start_here,aO
code_start

Note that the program name is ABC. Also note that the stan name is START_HERE. When the
program runs, it begins at START_HERE.

Pseudo-Ops and Directives 4-26

o

RETURN - Generate standard procedure exit sequence

FORMAT

[<label>] PROCEDURE <procedure-label>

FIELDS

label Optional label for the exit code.

proced ure-Iabel The label of a PROCEDURE pseudo-op in the same source file.

DESCRIPTION

The RETURN pseudo-op generates a standard procedure exit sequence corresponding to the entry
sequence generated by a PROCEDURE pseudo-op. See the description of PROCEDURE for fur
ther details.

4-27 Pseudo-Ops and Directives

o

()

o

SECT -- Set location counter to end of named section

FORMAT

SECT

FIELDS

SECT

name

DESCRIPTION

<name>

The SECT pseudo-op changes the value of the location counter to a different
section.

This is the section name. The section name must also appear in a DFSECT
pseudo-op preceding the SECT pseudo-op or must be the name of a
predefined procedure or data frame.

When the assembler encounters a SECT pseudo-opt it changes the location counter to the current
end of the named section. Subsequent code and data are assembled into the new section.

The PROC and DATA pseudo-ops are equivalent to SECT pseudo-ops referencing the predefined
procedure and data sections.

Subsequent lines of code within each section increment the value of the offset. The following ex
ample illustrates the SECT pseudo-op.

MODULE COMMON
ENTRY

abc dfsect overlay
SECT abc

a ds.l 2
b ds.l 1
c ds.l 1

data
common move.l #-5,c

rts
end

Pseudo-Ops and Directives 4-28

-----------_._---_ .. _._-_._-------_.- ----

o USING -- Specify base register address of expression

(j

o

FORMAT

USING

FIELDS

USING

An

expression

DESCRIPTION

An,<expression>

The USING pseudo-op tells the assembler which base register to use. It af
fects the address mode determination of instruction operands. USING affects
all instructions that follow it until the assembler encounters a DROP pseudo
op with the same address register. Then, the DROP pseudo-op counteracts
the USING address mode determination.

The name of an address register.

The expression must be external, section-relative, or absolute. The USING
pseudo-op tells the assembler to assume the address register contains the ex
pression when determining the address mode of instructions. Thus, if the ex
pression is the name of an external, and the instruction following USING ref
erences that external, DOMAIN assembly language assumes that the address
register in USING contains the address of the external. Then, the assembler
selects an address mode using the specified address register.

The USING pseudo-op generates no instructions and simply tells the assembler which base register
to use. You must load the base register using the appropriate instructions to ensure that the address
register described in the USING pseudo-op contains the value of the expression when the instruc
tions within the range of the USING pseudo-op are executed. The assembler sets up an implicit
USING of AS (DB) to the start of the predefined data frame. You can counteract this with a
DROP DB. A DROP pseudo-op must appear before another USING pseudo-op that specifies the
same address register.

4-29 Pseudo-Ops and Directives

o 4.2 Directives

0

o

DOMAIN assembly language directives in the source program enable the assembler to perform certain
tasks without generating code. We introduce the directives in this section and provide some examples.
The topics are:

• Include files

• Conditional assembly

4.2.1 Include Files

The %INCLUDE directive allows the assembler to insert source text from another file into the assembling
module. This enables you to access other files without having to bind them into your source program.
Thus, you can easily access common files for many of your DOMAIN assembly language programs. The
%INCLUDE directive format is:

%INCLUDE 'pathname'

The pathname is the name of the file from which the assembler inserts source statements. You must en
close the pathname in single quotation marks (') as shown in the format above. The assembler inserts the
contents of the file at the point where the %INCLUDE directive appears. We demonstrate how an in
clude file operates in the following example. The main program uses the %INCLUDE directive to retrieve
data from a data file called /programs/asm_programs/stringdata.

PROGRAM CALLSTRING,START
EXTERN vfmt_Swrite2
PROC

set_up equ *
link sb,#O
move.l db,-{sp)
move.l aO,db
pea p_len
pea p_string
pea c_string
move.l vfmt_ac,al
jsr {all
addi.w #12,sp
move.l {sp)+,db
unlk sb
rts

%include '/programs/asm-programs/stringdata'
DATA

start lea start,AO
jmp.l set_up

vfmt_ac ac vfmt_Swrite2
END

Pseudo-Ops and Directives 4-30

o

o

o

When the main program reaches the include directive, it accesses the data from the stringdata data
file, shown below.

(STRINGDATA data file)

c_string
p_string
p_len

da.b
da.b
dc.w

'%8.%.'
'DATA OK!'
8

NOTE: Each time you modify text in the data file, you must reassemble the main pro
gram before executing it again.

You can nest insert files up to a 16 level limit; that is, your program can access an insert file that contains
other %INCLUDE file directives. The -IDIR command line option establishes search rules for insert
files. The option enables you to select alternate pathnames at assembly time. Refer to "Invoking ASM"
in Chapter 1 for detailed information.

4.2.2 Conditional Assembly

Conditional assembly allows you to mark sections of code for conditional processing, and later select the
marked sections at assembly time with the -CONFIG command line option. The -CONFIG option in
vokes conditional processing. In conditional processing, you begin by declaring valid attributes (in your
source program) with the %VAR directive. Then, depending on the evaluation of the attribute name or
conditional expression (called the predicate), the assembler determines whether to assemble or ignore
marked sections of code.

Invoking Conditional Assembly
DOMAIN assembly language supports conditional processing in the same manner as the DOMAIN com
pilers. To invoke conditional processing in DOMAIN assembly language, use the following format:

$ asm sourcefile_name -CON FIG name1 name2 ...

An attribute is set to TRUE if it appears as an argument to the -CONFIG option, or is enabled by the
%ENABLE directive. Otherwise, the attribute is FALSE. Therefore, depending on whether a specific
predicate evaluates TRUE or FALSE, the assembler determines whether the text following an %IF predi
cate %THEN condition or the text following an %ELSEIF predicate %THEN condition assembles.

For example, we have expanded the program shown in the Include File section to allow conditional proc
essing based on whether the predicate string is TRUE or FALSE. First, the %VAR directive declares
string as a valid attribute. Then, selection of either the stringda ta data file or the nostringda ta
data file occurs, depending on whether we declare string in the -CONFIG option list at assembly time.

%VAR string
%IF string %then
%include '/programs/asm-programs/stringdata'
%ELSE
%include '/programs/asm-programs/nostringdata'
%ENDIF

4-31 Pseudo-Ops and Directives

o

o

o

{NOSTRINGDA T A data file}

c_string
p_string
p_len

da.b
da.b
dc.w

'%8.%. '
'NO DATA!'
8

If we invoke conditional processing, as shown below,

$ 8sm stringcall.8sm -CONFIG string

string is TRUE. The program includes the stringdata data file and prints DATA OK! However, if
we do not invoke conditional processing (do not use the -CONFIG option at assembly time), string is
FALSE. In this case, the program includes nostringda ta and prints NO DATA!

Forms of Predicates
Several of the directives take a predicate. A predicate can consist of special variables (declared with the
%VAR directive) and the optional Boolean keywords NOT, AND, or OR.

Before introducing the conditional assembly directives. we look at the forms a predicate can take to alter
results. Table 4-1 illustrates the forms.

Table 4-1. Predicate Forms

Predicate Form Meaning

name Attribute name

NOT predicate TRUE if predicate is FALSE

predicate AND predicate TRUE if both predicates are TRUE

predicate OR predicate TRUE if either or both predicates TRUE

(predicate) Grouping

Conditional Assembly Directives
Conditional assembly uses many directives. Table 4-2 lists all the conditional assembly directives and
their meanings. Following the table, we describe each directive in detail.

Pseudo-Ops and Directives 4-32

Tabla 4-2. Assembler Directives

o
Directive Meaning

%IF predicate %THEN Assembles code up to the next %ELSE, %ELSEIF, or %ENDIF
directive, if and only if the predicate is true.

%ELSE Follows an %IF ... %THEN condition. Assembles code up to the
next %ELSEIF or %ENDIF if the predicate is false.

%ELSEIF predicate Assembles code up to the next %ELSE, %ELSEIF, or %ENDIF

%THEN directive, if and only if the predicate is true.

%ENDIF Indicates the end of a program's conditional compilation area.

%IFDEF varname Verifies whether a variable (varname) was previously declared
%THEN with a %VAR directive.

%ELSEIFDEF varname Verifies whether additional variables (varnames) were declared
with a % V AR directive.

%THEN

%VAR varname Declares attribute names that you can use with predicates in the
assembler directive.

%ENABLE varname Sets an assembler attribute name to TRUE.

o %CONFIG Special predicate evaluates to TRUE when you use the -CONFIG
command line option.

%ERROR 'string' Prints string as error message whenever you assemble the code.

%WARNING 'string' Prints string as warning message whenever you assemble the code.

%EXIT Directs the assembler to stop conditionally processing the file.

We describe each of the directives on the pages that follow.

o
4-33 Pseudo-Ops and Directives

o

o

o

%CONFIG

DESCRIPTION

%CONFIG is not a directive but a predeclared attribute name. You can only use the %CONFIG di
rective as a predicate. The assembler sets the %CONFIG directive to TRUE if you use the -CON
FIG option in your assembler command line. If you do not, the assembler sets the %CONFIG di
rective to FALSE.

EXAMPLE

In this example, if we do not set either the average or mode attributes to TRUE, a warning that
we've written into the code displays: This program will find the median of the num
bers.

%VAR average mode

%IF average %THEN

CODE that averages the numbers

%ELSEIF mode %THEN

CODE that finds the mode of the numbers

%ELSEIF not %CONFIG %THEN
%WARNING('This program will find the median of the numbers.')

CODE that finds the median of the numbers

%ENDIF

NOTE: Do not attempt to declare a %CONFIG directive in a %VAR directive.

Pseudo-Ops and Directives 4-34

o %ELSE

o

o

DESCRIPTION

The %ELSE directive is used. in conjunction with the %IF (or %IFDEF) predicate %THEN condi
tion. The %ELSE directive and its subsequent block of code up to next %ENDIF assembles only if
the predicate evaluates to FALSE.

EXAMPLE

Suppose you want to assemble a block of code that calculates the median of a group of numbers if
you do not find the average. In this case, average I the predicate, is FALSE. Indicate the follow
ing in your program:

%VAR average

%IF average %THEN

CODE that averages the numbers

%ELSE

CODE that finds the median of the numbers

%ENDIF

To find the median of the numbers, you can omit the -CONFIG option at assembly time.

4-35 Pseudo-Ops and Directives

~"--"""-"--'-""--'-------'- ., ".- .. -• -._ .. ---_ .. _-_ ... _,."",

o O/OELSE

o

o

DESCRIPTION

The %ELSE directive is used in conjunction with the %IF (or %IFDEF) predicate %THEN condi
tion. The %ELSE directive and its subsequent block of code up to next %ENDIF assembles only if
the predicate evaluates to FALSE.

EXAMPLE

Suppose you want to assemble a block of code that calculates the median of a group of numbers if
you do not find the average. In this case, average, the predicate, is FALSE. Indicate the follow
ing in your program:

%VAR average

%IF average %THEN

CODE that averages the numbers

%ELSE

CODE that finds the median of the numbers

%ENDIF

To find the median of the numbers, you can omit the -CONFIG option at assembly time.

4-35 Pseudo-Ops and Directives

------ .. _._ .. _-_ _ -. __ - __ _ .. _ .. --_ -. __ .--------------_. -------~----.. "._---, ... " •. , ... _--" ... _ "" .. ,

o %ElSEIF predicate %THEN

o

o

DESCRIPTION

The %ELSEIF predicate %THEN directive is used in conjunction with the %IF predicate %THEN
condition. The %ELSEIF predicate %THEN condition is the same as ELSE followed by
IF ... THEN except that ENDIF terminates all IF ... ELSE condition statements.

EXAMPLE

Suppose you want to assemble either a block of code that calculates the mean of a group of num
bers or a block of code that calculates the mode of the group of numbers. If both predicates evalu
ate to FALSE, you still find the median of the numbers. To perform this, make the following state
ments in your program:

%VAR average mode

%IF average %THEN

CODE that averages the numbers

%ELSEIF mode %THEN

CODE that finds the mode of the numbers

%ELSE

CODE that finds the median of the numbers

%ENDIF

At assembly time, you can declare either or both the mean and the mode TRUE using
the -CONFIG option, or you can declare either or both of the attributes TRUE using the %EN
ABLE directive. However, if you declare both TRUE, the assembler assembles the code for aver
age because it satisfies the first condition.

Pseudll-Ops and Directives 4-36

C) %ELSEIFDEF varname % THEN

o

o

DESCRIPTION

The %ELSEIFDEFvarname %THEN condition verifies whether additional variables were previ
ously declared with the %VAR directive. DOMAIN assembly language issues an error message if
you declare a variable more than once. %ELSEIFDEF enables you to avoid the error. Use the
%ELSEIFDEF varname %THEN condition when you are using insert files that may declare the
same variable.

EXAMPLE

The following example uses an insert file that may declare the variables average and mode. To
ensure that you do not define the variables twice, use the %ELSEIFDEF varname %THEN condi
tion, as shown:

%INCLUDE '/stats_calc/basics'

%IFDEF not (average) %THEN
%VAR average
%ELSEIFDEF not (mode) %THEN
%VAR mode
%ENDIF

4-37 Pseudo-Ops and Directives

o

o

%ENABLE varname 1 varname2 ... varnameN

DESCRIPTION

The %ENABLE directive sets an attribute to TRUE. This directive performs the same function as
the -CONFIG command line option. You must declare the attribute with the %VAR directive be
fore using the %ENABLE directive. If you do not use the %ENABLE directive or do not assemble
the code with the -CONFIG option, the attribute is set to FALSE.

EXAMPLE

The following example declares the attributes average and mode as predicates and sets them to
TRUE.

%VAR average mode
%ENABLE average mode

NOTE: The assembler issues the following error message if you attempt to set the same
variable TRUE more than once:

(PreProc) Name "attribute name" is already enabled

Pseudo-Ops and Directives 4-38

o %ENDIF

o

o

DESCRIPTION

The %ENDIF directive stops the conditional processing of a particular area of code. Each condi
tional processing area of code must end with an %ENDIF directive.

EXAMPLE

The following example illustrates the placement of the %ENDIF directive.

%VAR average mode

%IF average %THEN

CODE that averages the numbers

%ELSEIF mode %THEN

CODE that finds the mode of the numbers

%ELSE

CODE that finds the median of the numbers

%ENDIF

4-39 Pseudo-Ops and Directives

o

o

o

%ERROR I string'

DESCRIPTION

The %ERROR directive causes the assembler to print a string as an error message. Also, it does not
generate an executable object. Always place this directive on a line by itself.

EXAMPLE

In our example, if we do not set the average attribute to TRUE, an error that we've written into
the code displays: CANNOT EXECUTE THIS PROGRAM.

%VAR average mode

%IF average %THEN

CODE that averages the numbers

%ELSE
%ERROR 'CANNOT EXECUTE THIS PROGRAM.'

%ENDIF

Thus, when you attempt to assemble this program without the -CONFIG option, the following error
message is displayed:

(0026) %ERROR 'CANNOT EXECUTE THIS PROGRAM'
**** CONDITIONAL PROCESSOR ERROR
** errors, ASM rev 7.18

Pseudo-Ops and Directives 4-40

o

o

DESCRIPTION

The %EXIT directive causes the assembler to stop conditionally processing the file.

EXAMPLE

In this example, from the beginning of an insert file, if the variable graphics_2d is already de
fined. the assembler stops reading the file.

%IFDEF graphics_2d %THEN
%EXIT
%ENDIF
%VAR graphics_2d

4-41 Pseudo-Ops and Directives

o %lF predicate % THEN

o

o

DESCRIPTION

If the predicate is TRUE, the assembler assembles the code up to the next %ELSE, %ELSEIF, or
%ENDIF directive.

EXAMPLE

Suppose you want to assemble a block of code that calculates the mean of a group of numbers.
After choosing the attribute name average as the predicate, you indicate the following in your
program:

%VAR average

%IF average %THEN

CODE that averages the numbers

%ENDIF

To average the numbers, either use the %ENABLE directive within your source program or use the
-CONFIG option at assembly time.

Pseudo-Ops and Directives 4-42

o

(J

()

--------... ---.-~-----------

%IFDEF varname % THEN

DESCRIPTION

The %IFDEF vamame %THEN directive verifies whether a variable was previously declared with
the %VAR directive. The assembler issues an error message if you declare a variable more than
once. %IFDEF enables you to avoid the error. Use the %IFDEF varname %THEN condition
when you are using insert files that may declare the same ,variable.

EXAMPLE

A common use of %IFDEF is to prevent multiple inclusions of the same insert file, which can be a
problem if insert files contain %INCL UDE directives themselves. The following directives inserted
at the beginning of an insert file cause the assembler to ignore the directive if it has already been in
cluded:

%IFDEF graphics_2d %THEN
%EXIT
%ENDIF
%VAR graphics_2d

NOTE: The %IFDEF condition is TRUE if the variable is declared, regardless of
whether it has been enabled through a -CONFIG option or %ENABLE direc
tive. Contrast this to the %IF directive, in which an error occurs if the variable
has not been declared.

4-43 Pseudo-Ops and Directives

o %VAR varname1 varname2 ... varnameN

()

o

DESCRIPTION

The % V AR directive allows you to declare variables and attribute names that are used as predicates
in your source program. You cannot use an attribute as a predicate unless you declare it with the
%VAR directive.

EXAMPLE

The following example declares the attributes average and mode as predicates.

%VAR average mode

NOTE: Do not attempt to declare the same attribute more than once; the assembler will
issue an error. To avoid the error, use the %IFDEF or %ELSEIFDEF directive
conditions.

Pseudo-Ops and Directives 4-44

o %WARNING 'string'

o

o

DESCRIPTION

The %WARNING directive causes the assembler to print a string as a warning message. Unlike the
%ERROR directive. however. assembly continues. Always place this directive on a line by itself.

EXAMPLE

In our example. if we do not set the average attribute to TRUE, a warning message that we've
written into the code displays: USE THE -CONFIG OPTION.

%VAR average mode

%IF average %THEN

CODE that averages the numbers

%ELSEIF mode %THEN
%WARNING 'USE THE -CONFIG OPTION.'

CODE that finds the mode of the numbers

%ENDIF

Thus, when you attempt to assemble this program without the -CONFIG option, the following
warning message is displayed:

(0026) %WARNING 'USE THE -CONFIG OPTION'
**** CONDITIONAL PROCESSOR ERROR
** errors, ASM rev 7.18

4-45 Pseudo-Ops and Directives

o

o

o

Chapter 5

The Listing File

The listing file (.Ist). is one of the two files that ASM automatically generates when you assemble your
source program. In Chapter 2, we introduced the other file: the object module file (. bin or binary file).
Also, we discussed the source file (.asm). The listing file contains your source code along with the off
sets, the hexadecimal code or data assembled, the line numbers, and any error messages that ASM gener
ates during the assembly procedure. The listing file can be helpful when you are debugging your program.

We divide this chapter into three sections:

• Examining the listing file

• Special symbols

• Cross-reference listing

We begin by examining an actual listing of a program. Use the listing for reference throughout the chap
ter.

5.1 Examining the Listing File
The following example illustrates a sample listing. Unless you use the -NL command line option to sup
press the listing, ASM automatically generates a listing when you assemble a program. Suppose you create
a program in a file called abc. asm and you check the directory in which you assemble your source pro
gram abc. asm. You see the following entries:

abc.asm abc. bin abc. 1st

5-1 The Listing File

·. __ .-.. _."-_ _ .. __ ._. ----.---------_ ... _---------_.-........ __ •. _ -.---------------_. __ ... _----_. __ .. -

0

0

o

To display the listing file. read the file with the .Ist extension. In the following example of the listing file,
we have added boldface headers to highlight our discussion of each column within the sample listing:

Offset Object Code Line # Source Code

(00001) PROGRAM ABC,START
(00002) EXTERN vfmt_Swrite2
(00003) PROC

00000000 (00004) code_start equ *
000000: 4E560000 (00005) . link sb,#O
000004: 2FOD (00006) move.l db,-(sp)
000006: 2A48 (00007) movea.l aO,db
000008: 487A0028 (00008) pea p_len
OOOOOC: 487A001B (00009) pea p_string
000010: 487AOO14 (00010) pea c_string
000014: 206DOOOA (00011) move.l vfmt_ac,aO
000018: 4E90 (00012) jsr (aO)
00001A: DEFCOOOC (00013) add.w #12,sp
00001E: 2A6EFFFC (00014) movea.l -4 (sb) ,db
000022: 4E5E (00015) unlk sb
000024: 4E75 (00016) rts
000026: 256125 (00017) c_string da.b· '%a%'
000029: 4142434445 (00018) p_string da.b 'ABCDEFGH'

464748
000032: 0008 (00019) p len dc.w 8

(00020) DATA
000000> 41FAFFFE (00021) start lea start,aO
000004> 4EF900000000 (00022) jmp code_start
OOOOOA> 00000000 (00023) vfmt_ac ac vfmt_$write2

(00024) END
No errors, ASM rev **** X.XX

Figure 5-1. Sample ASM Listing File

5.1.1 Offset

The first column in the listing is the offset column. The offset contains the location or address of the in
struction relative to the start address of the section (for example. PROe or DATA). Note that the offset
begins at location 000000 twice within the listing (PROe and DATA). This is because each section be
gins at location zero. Within a section, you can find the size of an instruction by subtracting the instruc
tion's offset from the offset of the instruction on the next line. For example.

000004: 2FOD
000006: 2A45

(00006)
(00007)

move.l
movea.l

db,-(sp)
aO,db

We find that move.l db. - (Sp) is two bytes long. The entire PROe section is 60 bytes long.

Note the colon (:) following some of the offsets. DOMAIN assembly language uses this symbol to identify
types of sections corresponding to the location counter. Refer to the" Special Symbols" section within this
chapter for more information.

The Listing File 5-2

o

o

o

5.1.2 Object Code

The second column contains the object code. You can get information such as the op-code value, the
length of the operand, the addressing mode, and the data in an instruction. For example,

000029: 4142434445
464748

(00018) p_string da.b 'ABCDEFGH'

The object code represents the string 'ABCDEFGH' in hexadecimal ASCII. Note that the object code
only shows what the object module loads in the location. Also, note that each group of object code digits
provides information on the length of the instruction.

000004: 2FOD
000006: 2A48

(00006)
(00007)

NOTE: DOMAIN assembly language does not include symbols in the object code for
relocatable code and external symbols.

5.1.3 Line Number

The third column contains the line number. When you assemble your program, if an error occurs, DO
MAIN assembly language prints out the source line and error message to standard output. For example,

000018: 4E90 (00012) jsr (aO)
**** ILLEGAL SYMBOL IN ADDRESS FIELD

Also, the listing file contains the error below the source line. In the cross-reference listing, which we de
scribe later in the chapter, DOMAIN assembly language lists the line numbers at which a symbol is de
fined and used.

5.1.4 Source Code

The fourth column contains your source code as you entered it. This enables you to reference your
source code as you read the object code.

5.2 Special Symbols
The following table lists the special symbols that DOMAIN assembly language uses in the offset column to
identify the section of the location counter.

Table 5-1. Special Symbols In Listing File

Symbol Meaning

I Location counter set to non-section-
relative expression.

: Read only section.

> Read/write section.

5-3 The Listing File

o

o

o

-----_._._-_._._._ .. _--

5.3 Cross-Reference Listing
The cross-reference listing provides you with an alphabetical listing of all labels and other symbols that
you use in your program. When you are debugging your program, the cross-reference listing can provide
helpful information about symbols.

To append the cross-reference listing to your listing file, enter the -XREF command line option when you
assemble your program. For example,

$ ASM abc.asm -xref

ASM generates a cross-reference listing and appends it to the bottom of the standard listing. Figure 5-2
illustrates a sample listing. We have added boldface headers as reference points to the discussion of each
column, which follows.

Symbol Offset Section Line Numbers

CODE_START 00000000 PROCEDURE $ 0004D 0022
C_STRING 00000026 PROCEDURE $ 0010 0017D
P_LEN 00000032 PROCEDURE $ 0008 0019D
P_STRING 00000029 PROCEDURE $ 0009 0018D
START 00000000 DATA $ 0001 002lD
VFMT_SWRITE2 00000000 VFMT_SWRITE2 0002D 0023
VFMT_AC OOOOOOOA DATAS 0011 0023D
No errors, ASM rev X.XX

Figure 5-2. Sample Cross-Reference Listing

5.3.1 Symbol

The first column contains the names of the symbols in your program.

5.3.2 Offset

The second column contains the offset of where the symbol is defined from the beginning of the section.

5.3.3 Section

The third column contains the name of the section or the external in which the symbol is defined.

5.3.4 Line Numbers

The fourth column contains all the line numbers on which the symbols occur. Note that the D following
the line number indicates the line number in which each symbol is defined.

The Listing File 5-4

----------- -_._-_._------_._- ---.------ .. ---.---- -- .. -.-----.------... -.- . ---.. -- ---------- ._-----_._-_ .. _-------_._-- ---------------

o

o

o

PART 2:
Run-time

Conventions

Chapter 6: Calling Conventions

Chapter 7: Mathemafical Libraries

o

o

o

Chapter 6

Calling Conventions

Assembly language gives you much greater control over the run-time behavior of a program than you can
obtain through a compiler. However, your freedom is constrained by the program's need to interact with
other software. This chapter describes the calling conventions that you must understand and follow in or
der to write assembly language code that calls or is called by external procedures.

Although calls are the most direct form of interaction between a procedure and its environment, they are
not the only kind. Procedures must not only accept standard calls and leave the machine in a correct
state on return, but they must also maintain a consistent stack and register state throughout execution. To
conclude tl)at a procedure (that is correct at its interfaces) should be free to do whatever it wants inter
nally, is to ignore several considerations, such as stack unwinding and debugging and analysis tools.

STACK UNWINDING. There are several circumstances where programs can make a nonlocal transfer of
control that requires unwinding pan of the call stack. These nonlocal transfers of control include: invo
cation of a cleanup handler, set with pJm_$cleanup, Unix longjmp, and Pascal·non-Iocal goto.

Stack unwinding depends on a known, consistent stack state. An assembler program that uses the stack
or registers in a nonstandard way can cause the unwind operation to fail.

DEBUGGING AND ANALYSIS TOOLS. Several programming tools examine the registers and stack of
an executing program. These include DEBUG, TB, HPC, and DPAT. A program that does not adhere to
standard run-time conventions can cause these tools to produce incorrect or incomplete results.

We provide an overview of the contents of this chapter in Chapter 1. If you have not yet read that mate
rial, you should do so before continuing with this chapter. Also, refer to the examples at the end of this
chapter for additional information.

NOTE: Calling conventions changed at SR9.5; the pre-SR9.5 conventions are described
in Appendix E.

6-1 Calling Conventions

0

o

--------------_. __ _._ ... _-----_.

In this chapter, we discuss the following topics:

• Register usage

• Stack frame

• Argument passing conventions

• Calling a procedure

• Procedure prologue and epilogue

• Addressing the data section

• Floating-point registers

• Examples

6.1 Register Usage
As we noted in Chapter 1, three of the 68000 address registers are assigned special functions:

A 7 is the Stack Pointer (SP), which points to the top of the call stack. The stack grows from high
addresses toward low addresses. Instructions such as JSR and PEA support this conventional
68000 stack usage.

A6 is the Stack Base (SB), which points to a fixed position in the stack frame of the currently active
routine. Access to local variables and arguments is relative to this register.

AS is the Data Base (DB), which points to the start of the impure data section (usually DAT AS) as
sociated with the active routine. Access to static data is relative to DB. Routines that do not re
quire access to a data section need not set this register.

Registers DO and AO are used to return function results. We describe function results in more detail be
low.

Procedures are required to preserve the contents of registers A2-A6 and D2-D7. A 7, the stack pointer.
is also normally preserved. However, it is legal for a procedure to return with an SP less than its value on
entry, that is, with additional data pushed onto the stack. In particular, pfm_Scleanup, builds a cleanup
handler record on the stack (it also adds a dummy argument for its caller to pop). Example 4, at the end
of this chapter, illustrates how to use a cleanup handler. Also, refer to Programming With General System
Calls for more information about cleanup handlers.

Registers AO-A1 and DO-D1 are free-Jor-all registers that do not have to be saved. Shon procedures
can often get by with only these registers and thus avoid saving and restoring registers.

Except for DB, SB, and SP, stack unwinding does not restore the values of the A and D registers. From
the caller's view this is equivalent to saying that the procedures pfm_$cleanup and setjmp do not preserve
registers. Therefore, callers of these routines must save and restore the registers. Note that such a caller
must save and restore all preservable registers, whether or not it uses them itself.

Conventions involving floating-point registers on workstations that have them are described in the section
"Floating-Point Registers" below.

6.2 Stack Frame o Figure 6-1 shows the structure of a procedure stack frame in the most general case. Not all of the fields
are present in every actual stack frame.

Calling Conventions 6-2

o

o

o

A7

Register Save Area

Local Storage

AS
Link

Frame Control Block Pointers

Return Address

Arguments Passed By Caller

•
•
•

Figure 6-1. Stack Frame Format

These are the fields. from bottom to top (the order in which they are pushed):

ARGUMENTS. The caller pushes arguments onto the stack. They are pushed in reverse order. so the
first argument is at the top of the stack. Argument passing conventions are discussed in the next section.

RETURN ADDRESS. The JSR or BSR instruction pushes this address onto the stack and transfers control
to the routine.

FRAME CONTROL BLOCK POINTERS. Frame control blocks (FCBs) provide a place to store supple
mentary control information associated with the frame. If an FCB is present. its address plus 1 is pushed
onto the stack. FCBs must begin at even addresses; therefore. the address plus 1 is odd. This distin
guishes the FCB pointer from the return address. which is always even.

The stack frame format allows any number of FCBs and also permits an FCB pointer to be zero. Cur
rently. an FCB is used only to store information about floating-point registers that the procedure saves.
Therefore. a procedure that saves and restores floating-point registers has one FCB pointer. and a proce
dure that does not save and restore floating-point registers has none. We describe the format of the float
ing-point register FCB itself below in the section "Floating-Point Registers".

LINK. The Stack Base (SB) register (A6) points to this field. which contains the caller's SB register value.
Thus. it provides a link back to the caller's stack frame.

LO.CAL STORAGE. This field provides storage for the procedure's local variables, temporaries, etc.

SAVED REGISTERS. If the procedure changes any of registers A2-A5. D2-D7. or FP2-FP7 the caller's
values are saved here. Note that A6 is saved in the link field. A 7 is not explicitly saved; it is restored
when the stack frame is popped prior to returning.

6-3 Calling Conventions

o

o

o

6.3 Argument Passing Conventions
Procedures pass arguments by value, in which case a copy of the argument value is pushed onto the stack;
or, you can pass procedure arguments by reference, in which case the address of the actual argument is
pushed. The mode is determined by the language and the declared attributes of the procedure, as de
tailed in this section.

6.3.1 Pascal

In Pascal, all arguments of externally called routines are normally passed by reference, regardless of the
declared mode (in, out, in out, or var). Note that this is true even for arguments with call-by-value se
mantics (default). For example, consider the following code fragment:

PROCEDURE dump (size: integer)

if size> maxsize then size .- maxsize;

Pascal semantics require that the change to size not affect the value of the caller's actual parameter. The
called procedure is responsible for ensuring this by making a local copy of the argument that can be modi
fied.

You can specify that a procedure's arguments be passed by value with the valyaram option (see the DO
MAIN Pascal Language Reference for its format). Under this option, arguments that are 4 bytes or less in
size and are not arrays, are passed by value. Arguments larger than 4 bytes and all arrays are passed by
reference.

If you use the compiler option -ALIGN (true by default), padding is added when arguments smaller than
4 bytes are pushed onto the stack. This ensures that every argument begins at a stack address that is a
multiple of 4. For example, passing a 2-byte integer by value generates the following code:

SUBQ.L
MOVE.W

H2,SP
arg,-(SP)

adjust SP
push 2-byte arg

If you specify -NALIGN, padding is not inserted and arguments may not be aligned on long word bounda
ries. Arguments are always aligned to even addresses.

Internal routines can be called only within the same compilation unit in which they are defined. Since the
compiler knows all the calls to the routine, it is free to optimize argument passing as it sees fit. Currently,
internal routines are treated the same as valyaram routines.

6.3.2 FORTRAN

In FORTRAN, all arguments are passed by reference.

6.3.3 C

In C, all arguments are normally passed by value.

The C language specifies that certain conversions are automatically made when passing a value as an argu
ment. Table 6-1 lists the argument type conversions in C.

Calling Conventions 6-4

o

o

o

Table 6-1. Argument Type Conversions In C

Actual Argument Type Converted To

char, short int (= long in DOMAIN C)
unsigned char, unsigned short unsigned int (= unsigned long)
float double
array of T pointer to T

function returning T pointer to function returning T

Note that converting an array to a pointer has the same effect as passing the array by reference, although
C does not view it in those terms.

The -ALIGN and -NALIGN compilation options have the same effect in both C and Pascal. Note, how
ever, that arguments shorter than 4 bytes are rarely passed to C functions due to the above rules. They
are possible, for small structs.

To permit C programs to communicate with procedures written in other languages, the std_Scall attribute
specifies that arguments are passed by reference rather than by value. The std_ScalI attribute applies only
to calls made from C programs to external routines. Routines written in C always expect their arguments
to be passed by value. See the DOMAIN C Language Reference manual for more details about std_$calI.

6.3.4 Function Results

Function results are returned in a register if they are 4 bytes or less in size. In C and FORTRAN, function
results are returned in DO. In Pascal, the result is returned in AO if it is a pointer, and in DO if not. For
cross-language compatibility, the Pascal dO_return option causes pointer results to be returned in both AO
and DO.

Function results larger than 4 bytes are returned via a "hidden" argument. The caller of a function that
returns a result larger than 4 bytes must push an additional argument on the stack. This additional argu
ment is the address of the location where the result is stored. The argument logically precedes all others
(that is, it is the last one pushed onto the stack).

6.3.5 Data Representation

Assembly language routines that communicate with high-level language routines need to know the internal
representation of the compiler-generated data. The DOMAIN compiler reference manuals describe in
ternal data representations for each language.

6.3.6 Library Routines

All arguments of system library routines are generally passed by reference. This allows the routine to be
called from Pascal, FORTRAN, and (by using std_ScalI) C. Alternatively, arguments can be explicitly de
clared as pointers in the C header file. Passing all arguments by reference is sometimes referred to as
standard calling conventions.

If you write routines intended to be called from multiple languages, beware of data types that do not have
direct analogs in all languages, such as Boolean.

6-5 Calling Conventions

---------_.

o

C)

o

6.4 Calling a Procedure
Calling a procedure involves three steps:

1. Push the arguments onto the stack.
2. Transfer control to the procedure. pushing the return address.
3. After the procedure returns, pop the arguments off the stack.

Here is a typical calling sequence for an external routine whose arguments are passed by reference:

* pgm_Sget_args(argc. argv)

*
PEA argv Push 2nd arg address
PEA argc Push 1st arg address
MOVE.L aSpgm_Sget_args.AO Get address of entry point
JSR (AO) Call it
ADD.L 'B,SP Pop args

DATA

EXTERN.P pgm_Sget_args Declare external procedure
a$pgm_$get_args AC pgm_$get_args Address of pgm_$get_args

Note that since this call is to an external routine (in this case, an installed global library routine). it uses
an address constant stored in the data section. The MOVE.L instruction, which fetches the address. as
sembles into a DB-relative address mode. Refer to Example 2. at the end of this chapter, for more a
complete example.

Internal calls usually can be made with a PC-relative BSR instruction. Here is an example of an internal
call that passes some of its arguments by value:

* fill_array (table, size, 10)

*
PEA 10
MOVE.L size,-(SP)
PEA table
BSR fill_array
ADD.W #12,SP

This example illustrates a couple of coding tricks:

Push value 10
Push value of s~ze
Push address of table
Call it
Pop args

• For pushing constant values onto the stack. PEA is often faster and shorter than an equivalent
MOVE.

• Because all address register arithmetic is done in long mode. ADD.W is equivalent to ADD.L. but
is two bytes shorter. If the constant is less than or equal to 8. the assembler assembles an ADDQ
instruction in either case.

6.5 Procedure Prologue and Epilogue
Before a procedure begins its real work, it must do some preparatory housekeeping:

• Build a stack frame

• Save its caller's registers

• Establish the ability to address the data section

Calling Conventions 6-6

o

o

o

We defer discussion of the third point until the next section. For now, assume that the procedure doesn't
need to access static data (true for many routines.)

The following is an example of the standard prologue code that accomplishes point one and two: building
a stack frame and saving its caller's registers:

beth LINK
MOVEM.L

#-20,SB
A2-A3/D2-D5,-(SP)

Build stack frame (20 bytes local storage)
Save registers that will be changed.

At the end of the procedure, the above steps are reversed:

MOVEM.L
UNLK
RTS

-44(SB),A2-A3/D2-D5 Restore saved registers
SB Pop stack frame

Return

Note the use of SB-relative addressing to restore the saved registers. The 44-byte offset is the sum of the
20 bytes of local storage plus the 24 bytes needed to save the six registers. You could use (SP)+ address
ing if you are certain that SP will not change; however, the SB-relative form is safer.

The PROCEDURE and RETURN pseudo-ops generate these standard code sequences automatically. Us
ing these pseudo-ops the above examples reduce to:

beth PROCEDURE #-20,A2-A3/D2-D5

RETURN beth

Some performance-critical assembly language routines omit the LINK and UNLK instructions. If you
want to omit them, please note the following:

• Programs like DEBUG, TB, and DPAT are confused by the lack of a standard stack frame. In a
traceback, usually the caller of a routine with a missing stack frame is skipped. Using the PRO
CEDURE pseudo-op with the NONSTANDARD attribute helps, but may not completely solve the
problem.

• A routine that doesn't LINK should not change SB at all. SB must always point to a valid stack
frame, even if it's not the current one.

• A routine that does not allocate a stack frame must still observe proper stack discipline, that is,
never try to use storage above SP. Space above SP may be overwritten by the operating system
during fault handling.

6.6 Addressing the Data Section
We now consider how a procedure loads the DB (AS) register with the address of its impure data section.
You may recall from Chapter 1 that the complexity in this arises from the combination of

• Position-independent code, which means that the address of the data section is not known until
the program is loaded

• Pure, read-only code, which prevents the loader from writing the data section address into the
pure code section where it is needed

6-7 Calling Conventions

o

o

o

Also, Chapter 1 shows how the problem is solved entering procedures that need to set DB through the
data section. An eXternal Entry Prologue (XEP) in the data section loads the section address into a reg
ister and then jumps to the pure code. Here is a typical entry sequence:

DATA
EQU * Start of data section for module

DATA
ENTRY.P beth Declare entry point for beth

beth EQU * XEP for beth starts here
LEA start_data,AO Load data section address
JMP.L bethSproc Jump to pure code
PROC

bethSproc EQU * start of pure code for beth
LINK #-B,SB Standard entry prologue
MOVEM.L A5/D2-D3,-(SP)
MOVE.L AO,DB Set DB

The XEP cannot load DB directly because the caller's DB has not yet been saved. Thus, AD, which need
not be preserved, temporarily holds the value.

The LEA instruction in the XEP can use either PC-relative or absolute addressing. The JMP instruction
uses an absolute address; the ".L" suffix is required here.

A PROCEDURE pseudo-op can be used to generate the LINK and MOVEM instructions in the prologue.
It does not generate the MOVE.L instruction. For example:

foo$proc PROCEDURE
MOVE.L

'foo' ,#-8,A5/D2-D3
AO,DB

Note that an explicit debug name has been specified, so that tracebacks will show 'foo' rather than
'foo$proc'. Refer to Example 3, at the end of this chapter. Also, for more information about the PRO
CEDURE pseudo-op, refer to Chapter 4.

Procedures in the same module normally share a single data section. Therefore, internal procedures do
not require an XEP. If an externally-callable routine is called internally, the XEP can be shon-circuited
as in the following example:

MOVE.L
BSR

DB,AO
fooSproc

6.7 Floating-Point Registers

Load AO with data address
Call pure code directly

On workstations with hardware floating-point units, procedures are required to preserve floating-point
registers FP2-FP7. Procedures that change any of these registers save them with an FMOVEM instruc
tion before or after the MOVEM instruction, which saves the AID registers. (On TERN workstations,
FMOVEM is not available and an equivalent sequence of FMOVEs is used instead.)

However, there is an imponant difference between the treatment of floating-point and AID registers:
floating-point registers are restored by stack unwinding nonlocal transfers of control. Therefore, routines
that call pJm_$cIeanup or setjmp need not save all the floating-point registers, which would add consider
able overhead as well as introduce machine-dependency problems.

In order to restore the floating-point registers, the stack unwinder needs to know which registers the pro
cedure saved and where it saved them. This information is contained in a Frame Control Block (FCB).
As we discussed in the section "Stack Frame," earlier in this chapter, an FCB pointer (the pointer actu
ally contains the address plus 1) in the stack frame points to this block. The format of the FCB is shown
in Figure 6-2.

Calling Conventions 6-8

----------------------- ----------

o

o

o

o

2

4

15

Type Code (1 or 2)

AS Offset of Saved FP

Register Values

FP Register Mask

Figure 6-2. MC68881 FP Frame Control Block

The FCB contains the following fields:

o

TYPE CODE. This 16-bit word identifies the type of floating-point processor for which register infonna
tion is being saved:

1 - M C 6 8881 floating-point coprocessor
2 - TERN floating-point processor

The remainder of the block format is identical for the two processors.

REGISTER MASK. This field identifies the registers that are saved. Bit 0 (the least significant bit) cor
responds to FP7 and bit 7 to FPO. The high order byte of this word is unused and must be zero.

SAVE AREA OFFSET. This is a 32-bit integer that gives the offset of the beginning (low address) of the
floating-point register save area from SB.

Here is an example of the entry sequence of a procedure that saves some MC68881 floating-point regis
ters:

PEA
LINK
MOVEM.L
FMOVEM.X

fp_reg_info+1
#-8,SB
A2/D2-D5,-(SP)
FP2-FP4, (-SP)

* Floating-point Register FCB

DC.W
DC.W
DC.L

1
$38
-64

Push FCB pointer
Build stack frame
Save AID registers
Save floating-point registers

Type = MC68881
Mask = 2#00111000 (FP2-FP4)
Save area offset

Because the FCB is constant, it can be placed in the procedure section. The save area offset in the FCB
is computed as

8 bytes local storage allocated by LINK
+ 20 bytes for storing the 5 registers A2/D2-D5
+ 36 bytes for storing 3 floating-point registers in extended format

Example 5 in the next section shows how a dummy section modeling the stack frame can ease the chore
of computing stack offsets.

It is necessary to save floating-point registers by pushing them onto the stack, rather than copying into an
already allocated part of the stack frame. This allows a stack unwinder to verify that the registers have ac
tually been saved by comparing SP with SB + offset. Consider, for example, a program that receives a quit
fault after executing the LINK but before the FMOVEM.

6-9 Calling Conventions

o

o

The corresponding exit sequence for this example is:

FMOVEM.X
MOVEM.L
UNLK
ADD.L
RTS

-64(SB),FP2-FP4
-28(SB),A2/D2-D5
SB
#4,SP

Restore floating-point registers
Restore AID registers
Pop stack frame
Pop FCB pointer
Return

Note that the PROCEDURE and RETURN pseudo-ops do not generate this form of prologue/epilogue
code. For more information about these pseudo-ops, refer to Chapter 4.

6.8 Examples
The remainder of this chapter presents some complete examples of assembly language modules.

Note that a useful source of further examples is the expanded listings generated by the compilers. Be
aware, however, that the -syntax of the expanded listing files is a pseudo-assembly language which is not
always legal DOMAIN assembly language input.

Calling Conventions 6-10

o

o

o

EXAMPLE 1 illustrates a simple procedure that does not require register saving or access to the data sec
tion.

MODULE
entry.p

example_l
get_int Declare entry point

*
*
* Convert ASCII string containing decimal value to binary integer. Stops
* at first character which is not a decimal digit. Does not handle signs
* or overflow.

*
*
*

Pascal: function get_int (in str: univ string): integer32;

*
*
*
*
*
*
*

C:

FORTRAN:

* Stack frame:
*

long get_int (str)
char *str;

function get_int (str)
integer*4 get_int
character*(*) str

* +---------------+
* SP--> \ local temp -4 (offset from SB)
*
*
*
*
*
*
*

+---------------+
SB--> I link \ 0

+---------------+
I return addr I +4
+---------------+
I addr(str) I +8
+---------------+

Loop

Done

PROC

equ
link
move.l
clr.l

clr.l
move.b
sub.b
blt.s
cmp.b
bgt.s
add.l
move.l
asl.l
add.l
add. I
bra.s

unlk
rts

END

*
sb,#-4
8(sb) ,ap
dO

dl
(aO)+,dl
#'0' ,dl
Done
#9,dl
Done
dO,dO
dO,-4(sb)
#2,dO
-4 (sb) ,dO
dl,dO
Loop

sb

*** PROCEDURE SECTION ***

Link & allocate local storage
Get arg = address of start of string
Initialize result

Get next character

Convert digit to binary
If result is negative ..
.. or greater than 9 ..
.. then character wasn't a digit
Multiply result so far by 10 ...
temp = result*2
result*8
result*IO
Add in new digit
Back for next character

Pop frame
Exit

6-11 Calling Conventions

o

o

o

EXAMPLE 2 is a procedure that saves registers, accesses the data section, and calls an external library
routine.

MODULE
entrYJ)

example_2
get_int

**
*
*
*
* Stack frame:

*
* +---------------+
* SP--> \ saved D2 \ -8 (offset from SB)
* +---------------+
* \ saved DB \ -4
* +---------------+
* SB--> \ link \ 0
* +---------------+
* I return addr \ +4
* +---------------+
* \ addr(str) I +8
* +---------------+
**

DATA
data_start equ *

* External Entry Prologue (XEP)

*** DATA SECTION ***
DB will point here

Callers enter here
get_int lea data_start,aO Load data section address

Jump to pure code jmp.l get_int$proc

extern.p vfmt_$ws
a$vfmt_$ws ac vfmt_$ws

PROC

get_int$proc equ *
link sb,NO
movem.l d2/db,-(sp)
move.l aO,db
move. I 8(sb),aO
clr.l dO

Loop clr.l dl
move.b (aO)+,dl
sub.b #'0' ,dl
blt.s Done
cmp.b #9,dl
bgt.s Done
add.l dO,dO
bvs.s Overflow
move.l dO,d2
asl.l #2,dO
bvs.s Overflow
add.l d2,dO
bvs.s Overflow
add.l dl,dO
bvc.s Loop

Calling Conventions

Declare external routine
Address constant for external routine

***** PROCEDURE SECTION *****

6-12

Link (no local storage)
Save registers we change
Set DB pointer
Get arg = address of start of string
Initialize result

Get next character

Convert digit to binary
If result is negative ..
.. or greater than 9 ..
.. then character wasn't a digit
Multiply result so far by 10 ...

(check for overflow at each step)
temp = result*2
result*8

result*lO

Add in new digit
Back for next character, unless ...

Continued

o

o

o

Continued

* Result overflowed! Output a message to errout stream and return -1.
* Call vfmt_Sws(stream_Serrout, ,*** (get_int) overflow%');
Overflow pea errmsg Push addr of error message string

Done

pea errout Push addr of stream id
move.l aSvfmt_Sws,aO Get address of vfmt_Sws
j sr (aO) Call it
addq.l #8,sp Pop args
move. I #-l,dO Return -1 result

movem.l
unlk
rts

-8(sb),d2/db
sb

Restore saved registers
Pop frame
Exit

* Constant Data

errout
errmsg

dc.w
da.b
END

3 stream_Serrout
,*** (get_int) overflow%.'

6-13 Calling Conventions

o

o

o

EXAMPLE 3 is identical to example 2 except that it uses PROCEDURE and RETURN pseudo-ops.

MODULE
entry.p

example_3
get_int

**

*
**

DATA *** DATA SECTION ***
data_start equ * DB will point here
* External Entry Prologue (XEP) Callers enter here
get_int lea data_start,aO Load data section address
jmp.l get_intSproc Jump to pure code

extern.p
aSvfmt_Sws ac

PROC

get_intSproc procedure
move.l

Loop

move.l
clr.l

clr.l
move.b
sub.b
blt.s
cmp.b
bgt.s
add.l
bvs.s
move.l
as!. I
bvs.s
add.l
bvs.s
add.l
bvc.s

vfmt_Sws
vfmt_Sws

Declare external routine
Address constant for external routine

***** PROCEDURE SECTION *****

'get_int' ,#0,d2/db
aO,db Set DB pointer

8(sb),aO
dO

dl
(aO)+,dl
#'0' ,dl
Done
#9,dl
Done
dO,dO
Overflow
dO,d2
#2,dO
Overflow
d2,dO
Overflow
dl,dO
Loop

Get arg = address of start of string
Initialize result

Get next character

Convert digit to binary
If result is negative ..
.. or greater than 9 ..
.. then character wasn't a digit
Multiply result so far by 10 ...

(check for overflow at each step)
temp = result*2
result*8

result*10

Add in new digit
Back for next character, unless ...

* Result overflowed! Output a message to err out stream and return -1.
* Call vfmt_Sws(stream_Serrout, ,*** (get_int) overflow%');

Overflow

Done

pea
pea
move.l
jsr
addq.l
move.l

return

* Constant Data

errout
errmsg

dc.w
da.b
END

Calling Conventions

errmsg
errout
aSvfmt_Sws,aO
(aO)
#8,sp
#-l,dO

Push addr of error message string
Push addr of stream id
Get address of vfmt_Sws
Call it
Pop args
Return -1 result

Exit

3 stream_Serrout
,*** (get_int) overflow%.'

6-14

o

o

EXAMPLE 4 illustrates setting a cleanup handler.

MODULE
entry.p

example_4
good_addr

* function good_addr (in va: univ_ptr): boolean; options (val-param)
*
* This function checks the validity of an address, by attempting to access
* it and seeing if it faults.
**
true equ
false equ
pfm_Scleanup_set

SFF
0

equ S03040003

Boolean true
Boolean false
Status code

DATA *** DATA SECTION ***
data_start equ

good_addr lea
jmp.l

cl_rec ds.l
stat ds.l

extern.p
a$pfm_$cleanup ac

extern.p
a$pfm_$rls_cleanup ac

extern.p
a$pfm_$enable ac

*

data_start,aO
good_addr$proc
16
1

pfm_Scleanup
pfm_$cleanup

pfm_Srls_cleanup
pfm_Srls_cleanup

pfm_Senable
pfm_Senable

XEP

Cleanup record
Status code

External references

PROC ***** PROCEDURE SECTION *****

*
* Note that we save all preservable registers

*
good_addr$proc procedure 'good_addr' ,#0,a2-a5/d2-d7

move.l aO,db Set DB pointer

*
* Set a cleanup handler. (Caution: pfm_Scleanup changes SP, so don't make any
* SP-relative references after calling it.)

*

*

pea
move.l
jsr
add.w

cl_rec
aSpfm_Scleanup,aO
(aO)
#4,sp

* Test returned cleanup status
*

*

cmp.l
bne

#pfm_Scleanup_set, dO
Faulted

.* Access given address and see if we fault

*

*

move.l
tst.b

8(sb),aO
(aO)

Get address
Access it

* If get here there was no fault - address is valid. Release cleanup handler
* and return true.

Continued

6-15 Calling Conventions

0

o

o

Continued
pea
pea
move.l
jsr
add.w
move. I
bra.s

*

stat
cl_rec
aSpfm_Srls_cleanup,aO
(aO)
N8,sp
Ntrue,dO result true
Done

* Cleanup handler invoked from fault - address is not valid. Re-enable
* faults and return false. (Actually, we should check that it's not a quit
* fault or something.)
* Note that all registers except DB, SB, & SP may be changed when we get
* here.
*
Faulted

*
Done

move.l
jsr
move.l

return

END

Calling Conventions

aSpfm_Senable,aO
(aO)
Nfalse,dO

6-16

result = false

Exit (restoring all registers)

o

(j

o

----------------_._-_._-_._._ .. _--------

EXAMPLE 5 illustrates the use of floating-point registers.

MODULE
cpu
entry.p

example_5
68020,68881
norm_rand

* •• *.******************** •••• ** •• * ••••••••••• * •• ****.* ••••••••• ** ••• ******* •••
•
•
•
•
•
•
•
•
•
•
•
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

function norm_rand (in mean, std_dev : real): real; options(val-param);

Returns a random variable drawn from an approximately normal distribution
with given mean and standard deviation. Algorithm: sum 12 uniform 0-1
random variables to get an approximately normal variable with mean = 6 and
standard deviation = 1, then adjust to desired mean and std. dev. Exter
nal function 'rand' returns uniform 0-1 random variables.

Stack Frame:

+---------------+
SP--> I saved FP regs I -24 (offset from SB)

I (1 @ 12 bytes) I
I I
+---------------+
I saved regs I -12
I (3 @ 4 bytes) I
I I
+---------------+

SB--> I link I 0
+---------------+
I FeB ptr I +4
+---------------+
I return addr I +8
+---------------+
I mean I +12
+---------------+
I std_dev +16
+---------------+

*** •• ***

* Offset of constant zero in 68881 rom (for fmovecr instruction)
fpzero equ #15

* Define

link
fcbytr
ret_addr
mean
std_dev

a dummy
defs
ds.l
ds.l
ds.l
ds.l
ds.l
ends

block representing the lower part of the stack frame.
(sb)
1
1
1
1
1

* Define a dummy block representing the upper part of the stack frame.
* Note that this is in backwards order.

defds (sb)
ds.l 3
ds.l 3
ends

6-17

saved registers (d2, a2, db)
saved FP registers (fp2)

Continued

Calling Conventions

0

o

o

-----------_._._--_._ .. _-----_._----- ---------------- -.- ... _--_ .. ,-_.,_. __ ., .. _--

Continued

DATA *** DATA SECTION ***
data_start equ *

norm_rand lea data_start,ao XEP
jmp.l norm_rand$proc

*
extern rand External references

a$rand ac rand

PROC ***** PROCEDURE SECTION *****
*
* Frame control block for floating-point registers
*
feb dc.w

dc.w
dc.l

1 Type = MC68881

*

$20
save_fp-link

Reg mask: fp2 saved
Save area offset from (SB)

* Pure code (note that "procedure" doesn't handle FCBs, so need explicit
* prologue)
*
norm_rand$proc procedure 'norm_rand' ,nocode,standard

pea fcb+1 Push FeB for saved fp registers
link sb,#O Link
movem.l d2/a2/db,-(sp) Save registers
fmovem.x fp2,-(sp) Save fp registers
move.l aO,db Set DB pointer

*
* Sum 12 uniform random variables. Note that loop variables are kept in
* registers preserved by the call to rand.
*

move.l #11,d2 Loop counter (12 trips)
fmovecr fpzero,fp2 Sum
move.l a$rand,a2 Addr of 'rand'

loop jsr (a2) Call rand (result in dO)
fadd.s dO,fp2 Accumulate sum
dbra d2,loop Loop

*
* FP2 is now normal(6,l). Adjust to desired mean and standard deviation.

*
fsub.w #6,fp2 normal (0, 1)
fsglmul.s std_dev,fp2 normal(O,std_dev)
fadd.s mean,fp2 normal(mean,std_dev)
fmove.s fp2,dO Return result in DO

*
* Exit
*

fmovem.x save_fp,fp2 Restore FP registers
movem.l save_ad,d2/a2/db Restore A/D registers
unlk sb Pop frame
add.l #4,sp Pop FCB pointer
rts Exit

END

Calling Conventions 6-18

(~

o

o

Chapter 7

Mathematical Libraries

In this chapter, we discuss two software packages that are known as mathematical libraries:

• Integer Arithmetic Library

• Floating-Point Package

The first part of the chapter provides the integer arithmetic library functions in the form of a Pascal insert
file. The second part of the chapter describes the Floating-Point Package.

7.1 Integer Arithmetic Library
The integer arithmetic library implements 32-bit multiplication, division, and related operations not sup
ported by processor hardware.

All arguments are passed by value; the results are returned in register DO. Arguments are not aligned to
long word boundaries. Cases for which there are no explicit functions (for example long· ·shon) are
usually handled by extending shon arguments to long.

NOTE: Although the MC68020 implements most of these functions in hardware, pro
grams that use 68020-specific instructions are constrained to run on
68020-based workstations. Therefore, even on these workstations, it is often
preferable to call the library routines rather than compile separate versions of the
program. The library itself is processor-specific and exploits 68020 instructions
where available, so the performance penalty is just the call overhead.

type unsigned32
unsigned16

O .. 2147483647;
O •• 65535;

{ unsigned 32-bit integer}
{ unsigned 16-bit integer

7-1 Mathematical Libraries

o

o

o

7.1.1 Multiplication

This section lists the multiplication functions.

function mmislll (x: integer32; y: integer32): integer32;
val-param; extern;

function mSmisSllw (x: integer32; y: integer16): integer32;
val-param; extern;

{ x * y }

{ x * y }

function mmiulll (x: unsigned32; y: unsigned32): unsigned32; {x * y }
val-param; extern;

function mmiullw (x: unsigned32; y: unsigned16): unsigned32; {x * y }
val-param; extern;

7.1.2 Division

This section lists the division functions.

function mdislll (x: integer32; y: integer32): integer32;
val_param; extern;

function mdiswwl (x: integer16; y: integer32): integer16;
val-param; extern;

function mdisllw (x: integer32; y: integer16): integer32;
val_param; extern;

{ x / y }

{ x / y }

{ x / y }

function mdiulll (x: unsigned32; y: unsigned32): unsigned32; {x / y }
val_param; extern;

function mdiullw (x: unsigned32; y: unsigned16): unsigned32; {x / y }
val_param; extern;

7.1.3 Modulus

This section lists the modulus functions.

NOTE: The following functions deal with negative arguments using the rule

x mod y = sign(x) * (abs(x) mod abs(y»

where sign (x) = -1 if x is negative and + 1 if x is positive. Example:
-10 mod 3 = -1.

function moislll (x: integer32; y: integer32): integer32;
val_param; extern;

Mathematical Libraries 7-2

{ x mod y }

o

C)

o

-- .. _ .. _ ... _-----

function mSois$wlw (x: integer32; y: integer16): integer16;
val-param; extern;

function moiswwl (x: integer16; y: integer32): integer16;
val-param; extern;

{ x mod y }

{ x mod y }

function m$oiuSlll (x: unsigned32; y: unsigned32): unsigned32; {x mod y }
val-param; extern;

function moiuwlw (x: unsigned32; y: unsigned16): unsigned16; {x mod y }
val-param; extern;

NOTE: The following functions use the ISO Pascal definition of mod, namely

x mod y x - floor(x/y)*y for y > 0

undefined for y < 0

where floor(t) = largest integer less than or equal to t. This differs from the
above functions for negative arguments. Example: -10 mod 3 = 2.

function m$iisSlll (x: integer32; y: integer32): integer32;
val_param; extern;

function mSiisSwlw (x: integer32; y: integer16): integer16;
val_param; extern;

function mSiisSwwl (x: integer16; y: integer32): integer16;
val_param; extern;

7.1.4 Exponentiation

This section lists the exponentiation functions.

function mSeisSlll (x: integer32; y: integer32): integer32;
val_param; extern;

function mSeis$www (x: integer16; y: integer16): integer16;
val_param; extern;

7.2 Floating-Point Package (FPP)

{ x mod y }

{ x mod y }

{ x mod y }

{ x ** y }

{ x ** y }

The Floating-Point Package (FPP) provides a consistent interface to floating-point arithmetic that en
ables floating-point programs to run on any DOMAIN node. The FPP, which is a pan of the global li
brary SYSLIB, uses different implementations of the same interface depending on the hardware. At sys
tem stanup, the system loads the appropriate version of SYSLIB for the model of your node. When you
make calls to the FPP library from your DOMAIN assembly language program, the system makes use of
the available FP hardware.

You can also use in-line floating-point (FP) instructions within your DOMAIN assembly language pro
gram instead of using FPP, if your node has either a PEB, 68881, or TERN (processor for DN460,
DN660, and DSP160) hardware. In-line FP instructions enables your programs to run faster but restricts

7-3 Mathematical Libraries

o

o

o

them to execute on machines with the appropriate hardware. For detailed information on the 68881
floating-point instruction set, refer to the Motorola 68881 manual. For a list of TERN instructions, refer
to Appendix C.

7.2.1 FPP Implementations

The FPP has five implementations that enable you to use the appropriate package for taking advantage of
your hardware configuration. The five implementations are: software, PEE, TERN, 68020, and 68881.
We illustrate these FPP implementations in Figure 7-1.

FPP Implementations

SYSLIB

68020
68020 CPU

.020

PES
Performance

Enhancement Soard

.PEB

68881

TERN 68020 FP
DN 460, 660 coprocessor

DSP 160 processor

.460 .881

Figure 7-1. FPP Implementations and SYSLIB Extension Names

To see how compilers generate code that uses FPP to perform floating-point operations, use the
-CPU ANY option in the command line when compiling a high-level language program containing float

ing-point operations. For example,

$ FTN float_test.ftn -CPU ANY -EXP

The -CPU ANY options instructs the compiler to generate calls to FPP in order to perform floating-point
operations. The -EXP options gives you an expanded listing file (.lst) in which you can see how the com
piler generates code to use FPP.

7.2.2 FPP Library Calling and Exiting Conventions

The FPP model is a single accumulator machine. Depending on the node hardware, such as PEB, TERN,
FP software, etc., the floating accumulator (F AC) resides at various locations. FAC is not preserved
across calls to FPP.

In general, because FPP is a single accumulator, when FPP encounters two operands, such as with float
ing-point add (FPP _SSAV), it performs the next FPP operation in the instruction stream using the accu
mulator and the operand, that is, on top of the stack. Then, FPP places the result in the accumulator be
fore popping the next operand off the stack and advancing to the next FPP operation in the instruction
stream.

Within this section, we present a example of how to use FPP with the equation, A = B + C t where B =
.5 and C = 16.2.

Mathematical Libraries 7-4

Calling FPP
To call FPP from your DOMAIN assembly language program, perform the following steps:

o 1. Declare the appropriate extemal(s) before referencing FPP entry points.

o

o

EXTERN.P
EXTERN.P
EXTERN.P
EXTERN.P

FPP_S
FPP_SESLV
FPP_SESLA
FPP_SESLC

The four FPP entry points shown above are: FPP_S, FPP _SESLV (Single Precision Load
Value), FPP _SESLA (Single Precision Load Address), and FPP _SESLC (Single Precision
Load Constant). The last three entry points load the FAC with a single precision value. To
use FPP for DP operations, use the FPP _S entry point.

2. Push addresses and values of operands onto the stack in reverse order of their use.

PEA
MOVE.L
MOVE.L

A
B,-(SP)
C,-(SP)

3. Call FPP. Note here that JSR does not return from the FPP subroutine until after an FPP exit op
eration. Refer to the "Exiting FPP" section within this chapter.

*

MOVE.L
JSR

FP_START,AO
(AO) *Note that FPP_SESLV causes FAC

to be set to the value of C.

4. List the words representing floating-point operations and constants. Exit FPP using either
FPP _SEXIT or an equivalent operation.

DC.W
DC.W

FPP_$SAV
FPP_SSSTX

*Add the values of C and B
*Store the result of A and EXIT

5. Define the operands in the DATA section.

A
B
C

Exiting FPP

DATA
DS.L
DC.L
DC.L

1
$3FOOOOOO
$4181999A
FPP$_ESLV

*B = .5
*C = 16.2
*Note FPP_$ESLV declared in step 1.

FPP exits on FPP _SEXIT or several other operate and exit codes, such as compare and exit, store and ex
it, and convert to integer and exit. Several store operations can cause an exit from FPP. Some of the op
erations that exit from FPP set the condition codes properly for the result. For example, the floating test
and compare operation (FPP _ STSXT) exits with the condition codes set and with the DO register set to a
value that reflects the condition of the result (- , 0, +).

7-5 Mathematical Libraries

~ you call the FPP, it destroys all register contents except contents of
17 and A2-A6. Also, the contents of D6 and D7 are destroyed if FPP does
omplex operations, such as FPP_SCCA. However, on a DNx60 Or 68881,
,reservr-\,P2 ... FP7. FPP does not follow the standard calling conven
descri(__)n Chapter 6.

:ing-Point Operations

listing from the FPP library insert file. Use these operations (separately or in com
le FPP. The table contains all the floating-point operations, shows the operation's
.1 representation, and provides an explanation for each operation.

Table 7-1 FPP Floating-Point Operations

Meaning

t operations:
ting ACcumulator)
ole Precision)
operations are Single Precision S.P. unless D.P. is specified)

r\
$FF34(3t S.P. or D.P. FAC for -,0,+; set cc's & DO.L then

Yxit
SFF3E Same as FPP_$SSTA but exits when done (sets cc's)
SFF62 Return to caller beginning with instruction in next word
SFF6A FAC :- (SP)+ (Single precision Load Value)
SFF8A FAC :- «SP)+) (Single precision Load ,using Address)
SFFAC FAC := Next four bytes in instruction stream (Constant)
SFFDO «SP)+) := FAC (Single preCISIon STore using Addr)
SOOOO FAC .- FAC + (SP)+ (Single precision Add Value)
S0004 FAC .- FAC + «SP)+)
S0008 FAC .- FAC + Next four bytes (Constant)
SOOOC FAC .- FAC - (SP)+ (Single precision Subtract Value)
SOOIO FAC .- FAC - «SP)+)
S0014 FAC .- FAC - Next four bytes (Constant)
S0018 FAC .- (SP)+ - FAC (Single precision Inverse Subtract

Value)
SOOIC FAC «SP)+) - FAC
S0020 FAC .- Next four bytes (Constant) - FAe
S0024 FAC
S0028 FAC
S002C FAC
S0030 FAC
S0034 FAC
S0038 FAC

o

.- FAC * (SP)+ (Single precision Multiply

.- FAC * «SP)+)

.- FAC * Next four bytes (Constant)

Value)

.- FAC / (SP)+ (Single precision Divide Value)
FAC / «SP)+)

.- FAC / Next four bytes (Constant)

Continued on next page

7-6

lIe 7-1 (Continued)

Inverse Divide

C
hen exit

then exit
DO.L then exit

nteger)
nteger)
nteger)
nteger)
set
set
n)

Ie or Double Preci-

~oad using Address)

STore using Ad

jane (sets cc's)

1t)

It)
:.ract)
i'At

It)

It)

.de)
'AC
DO.L then exit

: ' S & DO, L then

Ii t integer)
lit integer)
lit integer)
lit integer)

ed on next page

Mathematical Libraries

o

o

o

._------------- •..........•.•.... _ ..•. _-----

Operations Hex Meaning

FPP_SSSQR equ SOODC Take square root of FAC
FPP_SDSQR equ SOOEO Take square root of DFAC
fpp_Ssexp equ SOOE4 EXP«FAC»
fpp_Sdexp equ SOOE8 DEXP(<DFAC»
fpp_Sslog equ SOOEC ALOG«FAC»
fpp_Sdlog equ SOOFO DLOG(<DFAC»
fpp_Sssin equ SOOF4 SIN «FAC»
fpp_Sdsin equ SOOF8 DSIN(<DFAC»
fpp_Sscos equ SOOFC COS«FAC»
fpp_Sdcos equ S0100 DCOS(<DFAC»
fpp_Sstan equ S0104 TAN«FAC»
fpp_Sdtan equ S0108 DTAN(<DFAC»
fpp_Ssatan equ S010C ATAN«FAC»
fpp_Sdatan equ SOl10 DATAN(<DFAC»
fpp_Ssatan2a equ SOl14 ATAN2«FAC>, «sp+»
fpp_Ssatan2v equ SOl18 ATAN2«FAC>, (Sp+)
fpp_Ssatan2c equ S011C ATAN2«FAC>,<CONST»
fpp_$datan2a equ S0120 DATAN2(<DFAC>, «sp+»
fpp_Sdatan2c equ S0124 DATAN2(<DFAC>,<CONST»
fpp_e21v equ S0128 E$21 «FAC> , (sp)+)
fpp_e22a equ S012C E$22 «FAC> , «sp)+»
fpp_Se$22v equ S0130 ES22 «FAC> , (Sp)+)
fpp_e22c equ S0134 E$22«FAC>,<CONST»
fpp_e61v equ S0138 E$61 (<DFAC> , (sp)+)
fpp_e62a equ S013C E$62 (<DFAC> , «sp)+»
fpp_Se$62v equ S0140 E$62 (<DFAC> , (sp)+)
fpp_e62c equ $0144 ES62(<DFAC>,<CONST»
fpp_e66a equ S0148 ES66 (<DFAC> , «sp)+»
fpp_e66c equ S014C ES66(<DFAC>,<CONST»
FPP_$STRUNC equ S0150 FAC := Int[FAC]
FPP_SSNINT equ S0154 FAC := Nint[FAC] (Nearest integer)
FPP_$DTRUNC equ S0158 D.P. FAC := Int[FAC]

Table 7-1 (Continued)

FPP_SDNINT equ S015C D.P. FAC := Nint[FAC] (Nearest integer)
FPP_SSMINV EQU S0160 FAC := Min[FAC, (SP)+]
FPP_SSMINA EQU S0164 FAC := Min[FAC, «SP)+)]
FPP_SSMINC EQU S0168 FAC := Min [FAC , Next 4 bytes]
FPP_SSMAXV EQU S016C FAC := Max [FAC, (SP)+]
FPP_$SMAXA EQU S0170 FAC := Max [FAC , «SP)+)]
FPP_SSMAXC EQU S0174 FAC := Max [FAC , Next 4 Bytes]
FPP_SDMINA EQU S0178 D.P. FAC := Min [FAC, «SP)+)]
FPP_SDMINC EQU S017C D.P. FAC := Min [FAC, Next 8 bytes]
FPP_SDMAXA EQU S0180 D.P. FAC := Max [FAC , «SP)+)]
FPP_SDMAXC EQU S0184 D.P. FAC := Max [FAC , Next 8 bytes]
FPP_SCLA EQU S0188 Complex FAC .- «SP)+)
FPP_$CLC EQU S018C Complex FAC := Next 8 bytes (Constant)

Continued on next page

Mathematical Libraries 7-8

---_ .. __ .. _--_ .. __ ._-_ .. _._-- -

o

o

o

Operations

FPP_SCAA
FPP_SCAC
FPP_SCSA
FPP_SCSC
FPP_SCISA
FPP_SCISC
FPP_SCMA
FPP_SCMC
FPP_SCDA
FPP_SCDC
FPP_SCIDA
FPP_SCIDC
FPP_SCSTA
FPP_SCSTX
FPP_SCSWAP
FPP_SCCNV
FPP_SCCONJ
FPP_SSLUV
FPP_SDLUV
FPP_SCCVX
FPP_SCCAX
FPP_SCCCX

Hex Meaning

EQU S0190 Complex FAC .- FAC + «SP)+)
EQU S0194 Complex FAC .- FAC + Next 8 bytes
EQU S0198 Complex FAC .- FAC - «SP)+)
EQU S019C Complex FAC .- FAC - Next 8 bytes
EQU SOlAO Complex FAC .- «SP)+) - FAC
EQU SOlA4 Complex FAC .- Next 8 bytes - FAC
EQU SOlA8 Complex FAC .- FAC * «SP)+)
EQU SOlAC Complex FAC .- FAC * Next 8 bytes
EQU SOlBO Complex FAC .- FAC / «SP)+)
EQU SOlB4 Complex FAC .- FAC / Next 8 bytes
EQU SOlB8 Complex FAC .- «SP)+) / FAC
EQU SOlBC Complex FAC .- Next 8 bytes / FAC
EQU SOlCO Store Complex FAC thru (SP)+

Table 7-1 (Continued)

EQU SOlC4 Store Complex FAC thru (SP)+ and exit
EQU SOlC8 Exchange real and imaginary parts of FAC
EQU SOlCC Convert Single Prec to Complex (Set the imag part to 0)
EQU SOlDO Calc Complex Conjugate (negate imag part of FAC)
EQU SOlD4 FAC := Float[(SP)+] (Float unsigned 32-bit integer)
EQU SOlD8 D.P. FAC := Float[(SP)+] (DP fl unsigned 32-bit integer)
EQU S0028 Complex Compare FAC : (SP)+; set cc's & DO.L then exit
EQU S002c Complex Comare FAC : «SP)+); set cc's & DO.L then exit
EQU S0230 Complex Compare FAC : Next 8 bytes; set cc's & DO.L then

exit

7.2.4 Notes On FPP

The following are important notes on FPP.

• FAC can contain either Single Precision (SP) or Double Precision (DP) values, but not both. Use
these conversion operations to change between the types:

FPP_SSCNV

FPP_SDCNV

Converts DP FAC to SP.

Converts SP FAC to DP.

• Normalize all floating-point operands. The 68881 version of FPP does not return all floating
point numbers normalized. In many cases, certain operations can result in denormalized num
bers. Denormalized numbers occur when the numbers do not fit within the dynamic range of the
precision in which you are working, but are not so far out of range that an overflow or underflow
occurs.

• Zero is represented as either positive or negative zero. To check for 0.0, look at all but the high
bit of the number.

7-9 Mathematical Libraries

---'--------'"'_._-""-------

o

Appendixes

Appendix A: Error Codes and
Messages

Appendix B: Legal Op-code and
Pseudo-Op
Mnemonics

Appendix C: TERN
Floating-Point
Instruction Set

Appendix D: Using Low-Level
Debuggers

Appendix E: Pre-SR9.S Calling
Conventions

Appendix F: The Object Module

C)

o

o

Appendix A

Error Codes and Messages

This appendix contains a list of error codes and messages. In addition, the appendix provides an explana
tion for many of the error messages. Currently. the error code does not appear with the displayed error
message.

Error Code Message

E1 • Assembler Error'

E2 'Symbol Already Defined'

E3 'Illegal Symbol'

E4 'Illegal Suffix'

E5 'Value Out Of Range'

A-I

Meaning

Internal bug. Please submit a UCR.

You defined the symbol more than once in
the program.

The symbol you used in the specified field
was not valid. Refer to Special Characters
Table in Chapter 3.

The suffix you used was illegal for the in
struction. For example, CRK.L Capr,DO
(legal on 68020). Refer to Appendix B for
a list of legal suffixes.

The value you chose was invalid for the
instruction. For example, the value of 16
is out of range for the following link in
struction: link sb, #16. Refer to the ap
propriate instruction set for valid ranges.

Error Codes and Messages

I

I

I C)
:ress'
I
I

I
le'
I
I

::thesis Expected'

Symbol'

:x Size Suffix'

Register'

x Register'

ed rnsation'

:ix for Instruction'

)01 in Address Field'

:l Required'

Field Required'

o
A-2

Meaning

The address you used in the specified field
was not valid. You may have used a data
register instead of an address register.

The addressing mode you used was not
valid for the instruction. For example, you
may have used 6-(aO) instead of 6(aO).
Refer to Chapter 3 for more information.

You forgot the right parenthesis.

The symbol or variable you used was not
defined in the program. Perhaps you
misspelled the symbol name.

The suffix size was illegal for the index in
the specified field. For example:
CLR O(AO,DO.X) where .X is not al
lowed.

(obsolete)

(obsolete)

The instruction in the specified field was
not valid for the instruction set. Consult
Appendix B for a list of valid instructions.

The suffix you used with ~e instruction is
not valid for the instruction set. Consult
Appendix B for the valid suffixes.

The symbol you used in the address field
was not valid. Refer to the Special
Characters Table in Chapter 3.

You forgot to specify any data after the in
struction.

You omitted the data required by the des
tination field in the instruction. Refer to
the "Instruction Format" section in Chapter
3.

---_ ,-_ ..• " _ ..•. ----

lone of
DEFDS,

~ 3 for

. a .L,
:e, you
ample,

It can
er, as
,dO.

~d is not
rmation

)ecified
;,DO.
d within
~ illegal.
mand

I forgot
end of

out a
:0 the
'tions

register
n fields.

~VEM

for

o

o

Error Code

E51

E52

E53

E54

E55

E56

E57

E58

E59

E60

Message

'Register Not in Use'

'Register Already In Use'

'Multiple Program or Module Stmt'

'Unbalanced Conditional Processor
Directive'

'Conditional Processor Warning'

'Conditional Processor Error'

'Conditional Processor Directive
Syntax Error'

'Data Or Address Register Required'

'Floating-Point Register Required'

Meaning

There is no corresponding USING pseudo
op for the register in the variable field of
the DROP pseudo-op.

A DROP pseudo-op must appear be
tween USING pseudo-ops with the same
register. Also, note that there is an implicit
USING of AS at the start of every
module.

Only one PROGRAM or MODULE
pseudo-op may appear in an assembly
language module.

%ELSEIF. %ELSE, or %ENDIF direc
tive encountered with no matching %IF
directive. Refer to the "Conditional
Assembly" section in Chapter 4.

%WARNING directive encountered.
Refer to the "Conditional Assembly"
section in Chapter 4.

%ERROR directive encountered. Refer
to the "Conditional Assembly" section in
Chapter 4.

Refer to the "Conditional Assembly"
section in Chapter 4.

Data or address register required an
instruction operand. Refer to the in
struction description for more infor
mation.

Floating-point register required an
instruction operand. Refer to the descrip
tion of the instruction for more informa
tion.

'Memory Alterable Address Required' Instruction requires memory alterable
operand. Refer to the description of the
instruction for more information.

Error Codes and Messages A-6

o

o

o

------------------------ --------------

Error Code

E61

E62

E63

E64

E65

E66

E67

E68

E69

E70

E71

Message

'FMOVEM Requires Register List Or
Data Reg'

'Relocatable Immediate Requires
Long Word Instruction'

Meaning

FMOVEM instruction requires fIoating
point register list or data register con
taining dynamic bit mask. Refer to the
description of the instruction for more
information.

Op-code of the instruction that contains
relocatable immediate operand must
have implicit size of long or explicit .L
extension.

'Data Address Other Than Immediate An immediate is not allowed as the
Required'

'Decimal Value Not Supported For
Floating- Point'

'Illegal Suffix For Floating-Point
FPr, FPr Instruction'

'Right Bracket Expected'

'Illegal Outer Displacement Value'

'Illegal Bitfield Value'

'Only One Level Of Indirection
Allowed'

'Bitfield Specification Required'

'Bitfield Spec Not Allowed'

A-7

destination of an instruction. Refer to
the instruction description for more
information.

A floating-point op-code with a extension
of .D, .S, or .X cannot have an immediate
operand that is a decimal number.
FPP currently does not support floating
point numbers; only hex numbers are
currently allowed.

The op-code on a floating-point register
to register instruction cannot have a
extension.

You forgot the right bracket.

(obsolete)

The bitfield value exceeded the maximum
bitfield width of 31 in the specified field.
For example, 47 exceeds the maximum:
BFCHG (AO){Dl:47} *<ea>{offset:width}.

You used more than one level of
indirection. Indirection involves the use of
[].

You omitted the bitfield in the specified
field. For example, BFCLR BIT_LESS.

You used a bitfield specification { } where
it is not allowed.

Error Codes and Messages

o

o

o

._-------_. __ - .. _ .. -_ _

Error Code

E72

E73

E74

E75

E76

E77

E78

E79

Message

'Improper Register Pair'

'Register Pair Required'

'Control Register Required'

'Mask Value Required'

'Bad Argument'

'Read Or Write Must Be Specified'

'Level Field Required'

'Nostack Requires Nocode And
Precludes Standard, #-N.
Register List Arguments'

Error Codes and Messages A-8

--------------_ _•.• __ ... -

Meaning

The register pair you used was invalid. For
example. DIVSL kym.dO:kym is invalid.
DIVSL kym.dO:dl is valid.

You need to use a register pair in the
specified field. For example. you used
DIVSL foo,DO instead of foo.DO:Dl.

You need to use a control register in the
specified field. For example,
MOVEC OUT,DO should be
MOVEC #OUT.DO.

The argument for PFLUSH is not absolute.
This is a 68851 error.

The level is not absolute on PTEST.
This is a 68851 error.

Missing READ/WRITE argument on
PLOAD. This is a 68851 error.

Missing level argument on PTEST.
This is a 68851 error.

The NOSTACK argument for PROCE
D URE must be accompanied by
NOCODE and cannot be used with
STANDARD. #-N. or register list argu
ments.

o

o

Appendix

Legal Op-code and
Pseudo-Op Mnemonics

B

This appendix contains information regarding the legal usages of the DOMAIN assembly language in
struction set. We provide the instruction name, the list of valid machine types on which the instruction is
valid, and the legal extensions (suffixes).

To use this appendix, simply look up the instruction. For example, the ADD instruction is valid on ma
chines containing either the MC68000, MC68010, or MC68020 microprocessor. ADDQ, ADD.B,
ADD. \\', and ADD.L are all legal suffixes of the ADD instruction. Note that pseudo-ops are listed in
BOLDFACE TYPE. For complete information on any of the instructions below, consult the Motorola in
struction set in the appropriate Motorola manual. For additional information on pseudo-ops, refer to
Chapter 4 in this manual.

We divide this appendix into the following topics:

• Valid Machine Types

• Legal Suffixes

• Legal Op-code and Pseudo-op Mnemonics

B.1 Valid Machine Types
The following are valid machine types for DOMAIN assembly language. Refer to the appropriate
Motorola manual for information on the Motorola instruction set.

68851 (PMMU) INSTRUCTION -- Motorola
68881 (FPPU) INSTRUCTION -- Motorola
TERN INSTRUCTION DOMAIN
68000 INSTRUCTION -- Motorola
68010 INSTRUCTION -- Motorola
68020 INSTRUCTION -- Motorola

B-1 Legal Op-code and Pseudo-op Mnemonics

,r"'._', B.2 Legal Suffixes
~) The following is a list of legal suffixes for DOMAIN assembly language.

No suffix for example, BRA means use 16-bit displacement.
Q Quick. For example,SUBQ, ADDQ

.B 8 bit byte

.S Short. For example, BRA.S means use 8-bit displacement.

.w 16 bit word

.L 32 bit long word

.D legal

.X legal

B.3 Legal Op-code and Pseudo-op Mnemonics
The following is a list of legal op-code and pseudo-op mnemonics for DOMAIN assembly.

Instruction Valid Machine Types Legal Suffixes

ABCD 68000 68010 68020 .B

AC 68000 68010 68020 .L

ADD 68000 68010 68020 Q .B .w .L

ADDA 68000 68010 68020 .W .L

0 ADD I 68000 68010 68020 .B .W .L

ADDQ 68000 68010 68020 .B .w .L

ADDX 68000 68010 68020 .B .W .L

AND 68000 68010 68020 .B .W .L

AND I 68000 68010 68020 .B .W .L

ASL 68000 68010 68020 .B .W .L

ASR 68000 68010 68020 .B .w .L

BCC 68000 68010 68020 .S .B .W .L

BCHG 68000 68010 68020 .B .L

BCLR 68000 68010 68020 .B .L

BCS 68000 68010 68020 .S .B .w .L

BEQ 68000 68010 68020 .S .B .W .L

BFCHG 68020

0 BFCLR 68020

BFEXTS 68020

Legal Op-code and Pseudo-op Mnemonics B-2

Instruction Valid Machine Types Legal Suffixes

C) BFEXTU 68020

BFFFO 68020

BFINS 68020

BFSET 68020

BFTST 68020

BGE 68000 68010 68020 .S .B .W .L

BOT 68000 68010 68020 .S .B .W .L

BHI 68000 68010 68020 .S .B .W .L

BKPT 68020

BLE 68000 68010 68020 .S .B .W .L

BLS 68000 68010 68020 .S .B .W .L

BLT 68000 68010 68020 .S .B .W .L

BMI 68000 68010 68020 .S .B .W .L

BNE 68000 68010 68020 .S .B .W .L

0 BPL 68000 68010 68020 .S .B .W .L

BRA 68000 68010 68020 .S .B .W .L

BSET 68000 68010 68020 .B .L

BSR 68000 68010 68020 .S .B .W .L

BTST 68000 68010 68020 .B .L

BVC 68000 68010 68020 .S .B .W .L

BVS 68000 68010 68020 .S .B .W .L

CALLM 68020

CAS 68020 .B .W .L

CHK 68000 (. W only) 68020 .W .L

CHK2 68020 .B .W .L

CLR 68000 68010 68020 .B .W .L

CMP 68000 68010 68020 .B .W .L
"~")

U
B-3 Legal Op-code and Pseudo-op Mnemonics

..... __ ._._--_ •... - .. _ .. _-------- --_ --------

Instruction Valid Machine Types Legal Suffixes

/~" CMP2 68020 .B .W .L
~)

CMPA 68000 68010 68020 .W .L

CMPI 68000 68010 68020 .B .W .L

CMPM 68000 68010 68020 .B .W .L

CPU 68000 68010 68020

DA 68000 68010 68020 .B .W .L

DATA 68000 68010 68020

DBCC 68000 68010 68020

DBCS 68000 68010 68020

DBEQ 68000 68010 68020

DBF 68000 68010 68020

DBGE 68000 68010 68020

DBGT 68000 68010 68020

0
DBHI 68000 68010 68020

DBLE 68000 68010 68020

DBLS 68000 68010 68020

DBLT 68000 68010 68020

DBMI 68000 68010 68020

DBNE 68000 68010 68020

DBPL 68000 68010 68020

DBRA 68000 68010 68020

DBT 68000 68010 68020

DBVC 68000 68010 68020

DBVS 68000 68010 68020

DC 68000 68010 68020 .B .W .L

DCNT 68000 68010 68020

0
DEFDS 68000 68010 68020

Legal Op-code and Pseudo-op Mnemonics B-4

Instruction Valid Machine Types Legal Suffixes

(j
DEFS 68000 68010 68020

DFSECT 68000 68010 68020

DIV32S DNx60 TERN .L

DIV32U DNx60 TERN .L

DIVS 68000 68010 68020 .w .L

DIVSL 68020 .L

DIVU 68000 68010 68020 .w .L

DIVUL 68020 .L

DROP 68000 68010 68020

OS 68000 68010 68020 .B .W.L

EJECT 68000 68010 68020

ELSE 68000 68010 68020

END 68000 68010 68020

0
ENDS 68000 68010 68020

ENTRY 68000 68010 68020 .B .W .L

EOR 68000 68010 68020 .B .W .L

EORl 68000 68010 68020 .B .W .L

EQU 68000 68010 68020

EXG 68000 68010 68020 .L

EXT 68000 68010 68020 .W .L

EXTB 68020 .L

EXTERN 68000 68010 68020 .B .W .L

FABS Valid with 68881 68020 68881 .S .B .W .L .D .X

FACOS " " 68020 68881 .S .B .W .L .D .X

FADD " " 68020 68881 .S .B .W .L .D .X

FASIN " " 68020 68881 .S .B .W .L .D .X

FATAN 68000 68010 68020 68881 .S .B .W .L .D .X

0
B-5 Legal Op-code and Pseudo-op Mnemonics

--~~~- ---------------

Instruction Valid Machine Types Legal Suffixes

(~ FATANH 68000 68010 68020 68881 .S .B .W .L .D .X
~)

FBEQ 68000 68010 68020 68881 .S

FBF 68000 68010 68020 68881 .S

FBGE 68000 68010 68020 68881 .S

FBGL 68000 68010 68020 68881 .S

FBGLE 68000 68010 68020 68881 .S

FBGT 68000 68010 68020 68881 .S

FBLE 68000 68010 68020 68881 .S

FBLT 68000 68010 68020 68881 .S

FBNEQ 68000 68010 68020 68881 .S

FBNGE 68000 68010 68020 68881 .S

FBNGL 68000 68010 68020 68881 .S

FBNGLE 68000 68010 68020 68881 .S

0
FBNGT 68000 68010 68020 68881 .S

FBNLE 68000 68010 68020 68881 .S

FBNLT 68000 68010 68020 68881 .S

FBOGE 68000 68010 68020 68881 .S

FBOGL 68000 68010 68020 68881 .S

FBOGT 68000 68010 68020 68881 .S

FBOLE 68000 68010 68020 68881 .S

FBOLT 68000 68010 68020 68881 .S

FBOR 68000 68010 68020 68881 .S

FBSEQ 68000 68010 68020 68881 .S

FBSF 68000 68010 68020 68881 .S

FBSNEQ 68000 68010 68020 68881 .S

FBST 68000 68010 68020 68881 .S

0
FBT 68000 68010 68020 68881 .S

Legal Op-code and Pseudo-op Mnemonics B-6

----_._ .. ------

Instruction Valid Machine Types Legal Suffixes

0 FBUEQ 68000 68010 68020 68881 .S

FBUGE 68000 68010 68020 68881 .S

FBUGT 68000 68010 68020 68881 .S

FBULE 68000 68010 68020 68881 .S

FBULT 68000 68010 68020 68881 .S

FBUN 68000 68010 68020 68881 .S

FCMP 68000 68010 68020 68881 .S .B .w .L .0 .x

FCOS 68000 68010 68020 68881 .S .B .w .L .0 .x

FCOSH 68000 68010 68020 68881 .S .B .w .L .0 .x

FDBEQ 68000 68010 68020 68881

FDBF 68000 68010 68020 68881

FDBGE 68000 68010 68020 68881

FDBGL 68000 68010 68020 68881

0
FDBGLE 68000 68010 68020 68881

FDBGT 68000 68010 68020 68881

FDBLE 68000 68010 68020 68881

FDBLT 68000 68010 68020 68881

FDBNE 68000 68010 68020 68881

FDBNGE 68000 68010 68020 68881

FDBNGL 68000 68010 68020 68881

FOBNGLE 68000 68010 68020 68881

FDBNGT 68000 68010 68020 68881

FDBNLE 68000 68010 68020 68881

FDBNLT 68000 68010 68020 68881

FDBOGE 68000 68010 68020 68881

FDBOGL 68000 68010 68020 68881

0
FOBOGT 68000 68010 68020 68881

B-7 Legal Op-code and Pseudo-op Mnemonics

Instruction Valid Machine Types Legal Suffixes

0
FDBOLE 68000 68010 68020 68881

FDBOLT 68000 68010 68020 68881

FDBOR 68000 68010 68020 68881

FDBSEQ 68000 68010 68020 68881

FDBSF 68000 68010 68020 68881

FDBSNEQ 68000 68010 68020 68881

FOBST 68000 68010 68020 68881

FOBT 68000 68010 68020 68881

FOBUEQ 68000 68010 68020 68881

FOBUGE 68000 68010 68020 68881

FOBUGT 68000 68010 68020 68881

FOBULE 68000 68010 68020 68881

FOBULT 68000 68010 68020 68881

0
FDBUN 68000 68010 68020 68881

FDIV 68000 68010 68020 68881 .S .B .W .L .0 .X

FETOX 68000 68010 68020 68881 .S .B .W .L .0 .X

FETOXMl 68000 68010 68020 68881 .S .B .W .L .0 .X

FGETEXP 68000 68010 68020 68881 .S .B .W .L .D .X

FGETMAN 68000 68010 68020 68881 .S .B .W .L .0 .X

FINT 68000 68010 68020 68881 .S .B .W .L .0 .X

FINTRZ 68000 68010 68020 68881 .S .B .W .L .0 .X

FLOG10 68000 68010 68020 68881 .S .B .W .L .0 .X

FLOG2 68000 68010 68020 68881 .S .B .W .L .0 .X

FLOGN 68000 68010 68020 68881 .S .B .W .L .0 .X

FLOGNP1 68000 68010 68020 68881 .S .B .W .L .0 .X

FMOD 68000 68010 68020 68881 .S .B .W .L .0 .X

FMOVE 68000 68010 68020 68881 .S .B .W .L .0 .X

0
Legal Op-code and Pseudo-op Mnemonics B-8

Instruction Valid Machine Types Legal Suffixes

0 FMOVECR 68000 68010 68020 68881 .X

FMOVEM 68000 68010 68020 68881 .X

FMUL 68000 68010 68020 68881 .S .B .W .L .0 .X

FNEG 68000 68010 68020 68881 .S .B .W .L .0 .X

FNOP 68000 68010 68020 68881 .S

FREM 68000 68010 68020 68881 .S .B .W .L .0 .X

FRESTORE 68000 68010 68020 68881

FSAVE 68000 68010 68020 68881

FSCALE 68000 68010 68020 68881 .S .B .W .L .0 .X

FSEQ 68000 68010 68020 68881 .B

FSF 68000 68010 68020 68881 .B

FSGE 68000 68010 68020 68881 .B

FSGL 68000 68010 68020 68881 .B

0 FSGLDIV 68000 68010 68020 68881 .S .B .W .L .D .X

FSGLE 68000 68010 68020 68881 .B

FSGLMUL 68000 68010 68020 68881 .S .B .W .L .0 .X

FSGT 68000 68010 68020 68881 .B

FSIN 68000 68010 68020 68881 .S .B .W .L .0 .X

FSINH 68000 68010 68020 68881 .S .B .W .L .0 .X

FSLE 68000 68010 68020 68881 .B

FSLT 68000 68010 68020 68881 .B

FSNEQ 68000 68010 68020 68881 .B

FSNGE 68000 68010 68020 68881 .B

FSNGL 68000 68010 68020 68881 .B

. FSNGLE 68000 68010 68020 68881 .B

FSNGT 68000 68010 68020 68881 .B

0 FSNLE 68000 68010 68020 68881 .B

B-9 Legal Op-code and Pseudo-op Mnemonics

.... ---_._._• , ... _----_._--, , __ ---

-----------------------_._._.-- - _._-----

Instruction Valid Machine Types Legal Suffixes

0 FSNLT 68000 68010 68020 68881 .B

FSOGE 68000 68010 68020 68881 .B

FSOGL 68000 68010 68020 68881 .B

FSOGT 68000 68010 68020 68881 .B

FSOLE 68000 68010 68020 68881 .B

FSOLT 68000 68010 68020 68881 .B

FSOR 68000 68010 68020 68881 .B

FSQRT 68000 68010 68020 68881 .S .B .w .L .0 .X

FSSEQ 68000 68010 68020 68881 .B

FSSF 68000 68010 68020 68881 .B

FSSNEQ 68000 68010 68020 68881 .B

FSST 68000 68010 68020 68881 .B

FST 68000 68010 68020 68881 .B

0
FSUB 68000 68010 68020 68881 .S .B .W .L .0 .X

FSUEQ 68000 68010 68020 68881 .B

FSUGE 68000 68010 68020 68881 .B

FSUGT 68000 68010 68020 68881 .B

FSULE 68000 68010 68020 68881 .B

FSULT 68000 68010 68020 68881 .B

FSUN 68000 68010 68020 68881 .B

FTAN 68000 68010 68020 68881 .S .B .W .L .0 .X

FTANH 68000 68010 68020 68881 .S .B .W .L .0 .X

FTENTOX 68000 68010 68020 68881 .S .B .W .L .0 .X

FTEQ 68000 68010 68020 68881

FTEST 68000 68010 68020 68881 .S .B .W .L .D .X

FTGE 68000 68010 68020 68881

0
FTGL 68000 68010 68020 68881

Legal Op-code and Pseudo-op Mnemonics B-IO

----.---_ .. --_ __ ._ __ .- ---

._---------------_ .. ---_._-------

Instruction Valid Machine Types Legal Suffixes

0
FTGLE 68000 68010 68020 68881

FTGT 68000 68010 68020 68881

FTLE 68000 68010 68020 68881

FTLT 68000 68010 68020 68881

FTNE 68000 68010 68020 68881

FTNGE 68000 68010 68020 68881

FTNGL 68000 68010 68020 68881

FTNGLE 68000 68010 68020 68881

FTNGT 68000 68010 68020 68881

FTNLE 68000 68010 68020 68881

FTNLT 68000 68010 68020 68881

FTOGE 68000 68010 68020 68881

FTOGL 68000 68010 68020 68881

0
FTOGT 68000 68010 68020 68881

FTOLE 68000 68010 68020 68881

FTOLT 68000 68010 68020 68881

FTOR 68000 68010 68020 68881

FTPEQ 68000 68010 68020 68881 .W .L

FTPGE 68000 68010 68020 68881 .W .L

FTPGL 68000 68010 68020 68881 .W .L

FTPGLE 68000 68010 68020 68881 .W .L

FTPGT 68000 68010 68020 68881 .W .L

FTPLE 68000 68010 68020 68881 .W .L

FTPLT 68000 68010 68020 68881 .W .L

FTPNE 68000 68010 68020 68881 .W .L

FTPNGE 68000 68010 68020 68881 .W .L

FTPNGL 68000 68010 68020 68881 .W .L

0
B-11 Legal Op-code and Pseudo-op Mnemonics

Instruction Valid Machine Types Legal Suffixes

0 FTPNGLE 68000 68010 68020 68881 .W .L

FTPNGT 68000 68010 68020 68881 .W .L

FTPNLE 68000 68010 68020 68881 .W .L

FTPNLT 68000 68010 68020 68881 .W .L

FTPOGE 68000 68010 68020 68881 .W .L

FTPOGL 68000 68010 68020 68881 .W .L

FTPOGT 68000 68010 68020 68881 .W .L

FTPOLE 68000 68010 68020 68881 .W .L

FTPOLT 68000 68010 68020 68881 .W .L

FTPOR 68000 68010 68020 68881 .W .L

FTPUEQ 68000 68010 68020 68881 .W .L

FTPUGE 68000 68010 68020 68881 .W .L

FTPUGT 68000 68010 68020 68881 .W .L

0 FTPULE 68000 68010 68020 68881 .W .L

FTPULT 68000 68010 68020 68881 .W .L

FTPUN 68000 68010 68020 68881 .W .L

FTST 68000 68010 68020 68881 .S .B .W .L .0 .X

FTUEQ 68000 68010 68020 68881

FTUGE 68000 68010 68020 68881

FTUGT 68000 68010 68020 68881

FTULE 68000 68010 68020 68881

FTULT 68000 68010 68020 68881

FTUN 68000 68010 68020 68881

FTWOTOX 68000 68010 68020 68881 .S .B .W .L .0 .X

ILLEGAL 68000 68010 68020

JMP 68000 68010 68020 .S .L

0 JSR 68000 68010 68020

LEA 68000 68010 68020

Legal Op-code and Pseudo-op Mnemonics B-12

--------- ------_ .. _--_._ ... _--_ __ _----------------

Instruction Valid Machine Types Legal Suffixes

0 LINK 68000 68010 68020 .L

LIST 68000 68010 68020

LSL 68000 68010 68020 .B .W .L

LSR 68000 68010 68020 .B .W .L

MODULE 68000 68010 68020

MOVE 68000 68010 68020 .B .W .L

MOVEA 68000 68010 68020 .W .L

MOVEC 68010 68020 .L

MOVEM 68000 68010 68020 .W .L

MOVEP. 68000 68010 68020 .W .L

MOVEQ 68000 68010 68020 .L

MOVES 68020 .B .W .L

MUL32S TERN .L

0 MUL32U TERN .L

MULS 68000 68010 68020 .W .L

MULU 68000 68010 68020 .W .L

NBCD 68020 .B

NEG 68000 68010 68020 .B .W .L

NEGX 68000 68010 68020 .B .W .L

NOLIST 68000 68010 68020

NOP 68000 68010 68020

NOT 68000 68010 68020 .B .W .L

OR 68000 68010 68020 .B .W .L

ORG 68000 68010 68020

ORI 68000 68010 68020 .B .W .L

PACK 68020

0 PBAC 68000 68010 68020 68851 .W .L

PBAS 68000 68010 68020 68851 .W .L

B-13 Legal Op-code and Pseudo-op Mnemonics

---_._----_ ... _--_ .. _ ... _------

Instruction Valid Machine Types Legal Suffixes

() PBBC 68000 68010 68020 68851 oW oL

PBBS 68000 68010 68020 68851 oW oL

PBCC 68000 68010 68020 68851 oW oL

PBCS 68000 68010 68020 68851 oW oL

PBGC 68000 68010 68020 68851 oW oL

PBGS 68000 68010 68020 68851 oW oL

PBIC 68000 68010 68020 68851 oW oL

PBIS 68000 68010 68020 68851 oW oL

PBLC 68000 68010 68020 68851 oW oL

PBLS 68000 68010 68020 68851 oW oL

PBSC 68000 68010 68020 68851 oW oL

PBSS 68000 68010 68020 68851 oW oL

PBWC 68000 68010 68020 68851 oW oL

0 PBWS 68000 68010 68020 68851 oW oL

PDBAC 68000 68010 68020 68851

PDBAS 68000 68010 68020 68851

PDBBC 68000 68010 68020 68851

PDBBS 68000 68010 68020 68851

PDBCC 68000 68010 68020 68851

PDBCS 68000 68010 68020 68851

PDBGC 68000 68010 68020 68851

PDBGS 68000 68010 68020 68851

PDBIC 68000 68010 68020 68851

PDBIS 68000 68010 68020 68851

PDBLC 68000 68010 68020 68851

PDBLS 68000 68010 68020 68851

0
PDBSC 68000 68010 68020 68851

PDBSS 68000 68010 68020 68851

Legal Op-code and Pseudo-op Mnemonics B-14

.. -_ ... -_ ... -._-_ ... __ ._ --_. __ .. _---

Instruction Valid Machine Types Legal Suffixes

0 PDBWC 68000 68010 68020 68851

PDBWS 68000 68010 68020 68851

PEA 68000 68010 68020

PFLUSH 68000 68010 68020 68851

PFLUSHR 68000 68010 68020 68851

PLOAD 68000 68010 68020 68851

PMOVE 68000 68010 68020 68851 .B .W .L

PRE STORE 68000 68010 68020 68851

PROC 68000 68010 68020

PROGRAM 68000 68010 68020

PSAC 68000 68010 68020 68851 .W .L

PSAS 68000 68010 68020 68851 .W .L

PSAVE 68000 68010 68020 68851

() PSBC 68000 68010 68020 68851 .W .L

PSBS 68000 68010 68020 68851 .W .L

PSCC 68000 68010 68020 68851 .W .L

PSCS 68000 68010 68020 68851 .W .L

PSGC 68000 68010 68020 68851 .W .L

PSGS 68000 68010 68020 68851 .W .L

PSIC 68000 68010 68020 68851 .W .L

PSIS 68000 68010 68020 68851 .W .L

PSLC 68000 68010 68020 68851 .W .L

PSLS 68000 68010 68020 68851 .W .L

PSSC 68000 68010 68020 68851 .W .L

PSSS 68000 68010 68020 68851 .W .L

PSWC 68000 68010 68020 68851 .W .L

0 PSWS 68000 68010 68020 68851 .W .L

PTEST 68000 68010 68020 68851

B-15 Legal Op-code and Pseudo-op Mnemonics

Instruction Valid Machine Types Legal Suffixes

0 PTRAPAC 68000 68010 68020 68851

PTRAPAS 68000 68010 68020 68851

PTRAPBC 68000 68010 68020 68851

PTRAPBS 68000 68010 68020 68851

PTRAPCC 68000 68010 68020 68851

PTRAPCS 68000 68010 68020 68'851

PTRAPGC 68000 68010 68020 68851

PTRAPGS 68000 68010 68020 68851

PTRAPIC 68000 68010 68020 68851

PTRAPIS 68000 68010 68020 68851

PTRAPLC 68000 68010 68020 68851

PTRAPLS 68000 68010 68020 68851

PTRAPSC 68000 68010 68020 68851

0 PTRAPSS 68000 68010 68020 68851

PTRAPWC 68000 68010 68020 68851

PTRAPWS 68000 68010 68020 68851

PVALID 68000 68010 68020 68851 .L

RESET 68000 68010 68020

ROL 68000 68010 68020 .B .W .L

ROR 68000 68010 68020 .B .W .L

ROXL 68000 68010 68020 .B .w .L

ROXR 68000 68010 68020 .B .W .L

RTD 68010 68020

RTE 68000 68010 68020

RTM 68020

RTR 68000 68010 68020

0 RTS 68000 68010 68020

SADD' TERN .S .B .W .L .D .X

Legal Op-code and Pseudo-op Mnemonics B-16

------------------------_ ... __ ... __ .. _--_.----_. -----

Instruction Valid Machine Types Legal Suffixes

,r L) SATAN TERN .S .B .W .L .0 .X

SBeo 68020 .B

see 68000 68010 68020 .B

seas TERN .S .B .W .L .0 .X

ses 68000 68010 68020 .B

SOIV TERN .S .B .W .L .0 .X

SECT 68000 68010 68020

SEQ 68000 68010 68020 .B

SETOX TERN .S .B .W .L .0 .X

SF 68000 68010 68020 .B

SGE 68000 68010 68020 .B

SGT 68000 68010 68020 .B

SHI 68000 68010 68020 .B

0 SLE 68000 68010 68020 .B

SLOGN TERN .S .B .W .L .0 .X

SLS 68000 68010 68020 .B

SLT 68000 68010 68020 .B

SMI 68000 68010 68020 .B

SMOD TERN .S .B .w .L .D .X

SMUL TERN .S .B .w .L .0 .X

SNE 68000 68010 68020 .B

SPI..; 68000 68010 68020 .B

SSIN TERN .S .B .w .L .0 .X

SSQRT TERN .S .B .w .L .0 .X

SSUB 68000 68010 68020 .S .B .w .L .0 .X

ST 68000 68010 68020 .B

0 STAN TERN .S .B .w .L .0 .X

STOP 68000 68010 68020

B-17 Legal Op-code and Pseudo-op Mnemonics

Instruction Valid Machine Types Legal Suffixes

0 SUB 68000 68010 68020 .B .W .L

SUBA 68000 68010 68020 .W .L

SUB I 68000 68010 68020 .B .w .L

SUBQ 68000 68010 68020 .B .W .L

SUBX 68000 68010 68020 .B .w .L

SVC 68000 68010 68020 .B

SVS 68000 68010 68020 .B

SWAP 68000 68010 68020 .W

TAS 68000 68010 68020 .B

TRAP 68000 68010 68020

TRAPCC 68020 .W .L

TRAPCS 68020 .W .L

TRAPEQ 68020 .W .L

C) TRAPF 68020 .W .L

TRAPGE 68020 .W .L

TRAPGT 68020 .W .L

TRAPHI 68020 .W".L

TRAPLE 68020 .W .L

TRAPLS 68020 .W .L

TRAPLT 68020 .W .L

TRAPMI 68020 .w .L

TRAPNE 68020 .W .L

TRAPPL 68020 .W .L

TRAPT 68020 .W .L

TRAPV 68000 68010 68020

TRAPVC 68020 .W .L

0 TRAPVS 68020 .W .L

TST 68000 68010 68020 .B .W .L

Legal Op-code and Pseudo-op Mnemonics B-18

---------------- -----------------

Instruction Valid Machine Types Legal Suffixes

o UNLK 68000 68010 68020

UNPK 68020

USING 68000 68010 68020

C)

o
B-19 Legal Op-code and Pseudo-op Mnemonics

o

o

0

Appendix

TERN Floating-Point
Instruction Set

c

This appendix provides a list of TERN Floating-Point instructions. The first column lists the instruction
by name. The second column lists the format of the instruction. The third column provides an explana
tion of the instruction. Because the first half of this list of TERN instructions is a subset of the 68881 in
struction set, you should use this appendix as a reference in conjunction with the 68881 instruction set
manual. The second half of the list consists of TERN instructions that supercede the 68881 instruction set.
Use the TE&~ instruction whenever the two manuals differ.

Instruction

FMOVE
FMOVE

FMOVE

FABS
FADn
FATAN
FBcc

FCMP
FCOS
FnIV
FETOX
FGETEXP
FGETMAN
FINT

{SlnIBIWIL}
{SlnIBlwIL}

{SlnIBIWIL}
{SlnIBIWIL}
{slnIBIWIL}

{SlnIBIWIL}
{SlnIBIWIL}
{SlnIBIWIL}
{slnIBlwIL}
{SlnIBIWIL}
{slnIBlwIL}
{SlnIB\wIL}

Format

<ea>, FPn
FPn, <ea>

FPn, FPm

<ea> , FPn
<ea> , FPn
<ea> , FPn
<label>

<ea> , FPn
<ea> , FPn
<ea> , FPn
<ea> , FPn
<ea> , FPn
<ea> , FPn
<ea> , FPn

C-l

Meaning

Move data to a floating-point unit.
Move data from a floating-point

unit.
Move data within a floating-point

unit.
Absolute value.
Add.
Arc tangent.
Branch on condition. Conditions
supported are :

T,F,EQ,NEQ,GT,GE,LT,
LE,GL.
Compare.
Cosine.
Divide.
e to the x.
Get exponent.
Get mantissa.
Integer part.

TERN Floating Point Instruction Set

o

o

o

Instruction Format Meaning

FLOGN

FMOD
FMOVE
FMOVE

FMOVE
FMOVE
FMOVE

FMOVE
FMOVE
FMUL
FNEG
FSCALE
FScc

FSGLDIV
FSGLMUL
FSIN
FSQRT
FSUB
FTAN
FTST

{sIDIBIWIL}

{SIDIBIWIL}
{L}
{SIDIBIWIL}

{L}
{L}
{SIDIBlwIL}

{L}
{SIDIBIWIL}
{SIDIBIWIL}
{SIDIBIWIL}

{SIDIEIWIL}
{SIDIBlwIL}
{SIDIBlwIL}
{SIDIBIWIL}
{SIDIBIWIL}
{slnIBlwIL}
{bwlsd}

<ea> , FPn Log to the base e. Note that this
instruction works incorrectly
on 'BBl.

<ea> , FPn Module remainder.
<ea> , FPCONTROL Move to control register.
<ea> , FPn Move - Implicit Convert to Internal

Floating Point Format (IFP)
<ea> , FPSTATUS Move to status regiser.
FPCONTROL, <ea> Move from control register.
FPn, <ea> Move - Implicit Convert of Internal

Floating Point Format to
specified external format

FPn, FPm Move - No conversion.
FPSTATUS, <ea> Move from status register.
<ea> , FPn Multiply.
<ea>, FPn
<ea> , FPn
<ea>

<ea> , FPn
<ea> , FPn
<ea> , FPn
<ea>, FPn
<ea> , FPn
<ea>, FPn
<ea>

Negate.
Scale exponent by integer.
Set according to condition.

Conditions supported are
T,F,EQ,NEQ,GT,GE,LT,LE,GL.

Single Precision divide.
Single Precision multiply.
Sine.
Square root.
Subtract.
Tangent.
Test.

The following instructions supercede the 6BBBI instruction set

SADD
SATAN

SCOS

snIV

SETOX

SSIN
SLOGN

SMOD

SMUL

{SIDIBIWIL}
{SlnIBIWIL}

{SlnIBlwIL}

{SlnIBlwIL}

{SIDIBIWIL}

{SlnIBlwIL}
{SlnIBIWIL}

{SIDIBIWIL}

{SIDIBIWIL}

TERN Floating Point Instruction Set

<ea>, FPn
<ea> , FPn

<ea>, FPn

<ea> , FPn

<ea> , FPn

<ea> , FPn
<ea> , FPn

<ea>, FPn

<ea> , FPn

C-2

Single Precision add. TERN only.
Single Precision arc tangent. TERN

only.
Single Precision cosine. TERN

only.
Single Precision divide. TERN

only.
Single Precision e to the x. TERN

only.
Single Precison sine. TERN only.
Single Precision log to the base e.

TERN only.
Single Precision modulo remainder.

TERN only.
Single Precision multiply. TERN

only.

Instruction Format

0 SSQRT {SIDIBIWIL} <ea> , FPn

SSUB {SIDIBIWIL} I <ea> , FPn

STAN {SIDIBIWIL} <ea> , FPn

o

o

, ... _.,--,--.•.. _ _--------- .. _ ... - , .. "._.,,_ ... --------

C-3

.~ -... ------_ .. _-_. ~----" ._ .. _,._----_

Meaning

Single Precision square root. TERN
only.

Single Precision subtract. TERN
only.

Single Precison tangent. TERN
only.

TERN Floating Point Instruction Set

o

o

o

Appendix

Using the Low-Level
Debuggers

D

This chapter describes how to use DB, the low-level debugger, and MDB, the machine level mode of DE
BUG, the source level debugger. We present the following topics:

• DB invocation

• DB commands

• Machine Level Debugger invocation under DEBUG

• MDB commands

• Additional debug commands

• Hints for debugging assembly routines

The DB Debugger is the DOMAIN debug utility for DOMAIN assembly language programming. Like the
language-level debugger, you can invoke DB from within a Shell. The first part of this chapter describes
how to invoke DB and how to use the DB commands. -

DEBUG, the DOMAIN source level debugger, has a machine-level debugging sub-mode that we do not
document in the DOMAIN Language Level Debugger Reference manual. This machine-level debugger is
called MDB, which is discussed in second half of this chapter.

D-l Using the Low-Level Debuggers

o

C)

D.1 DB Invocation
To invoke DB from a Shell, type the DB command on the command line, in this format:

S DB pathname

where pathname is the pathname of your DOMAIN assembly language program. For example:

S db string.bin

Section Map:
Location Size Name

1 002A447C 0000003A PROCEDURES
2 002A44BB 00000010 DATAS

Start Address = 002A44B8

2A44B8: 4EF9

DB displays a section map by default. The section map provides information such as: the number of sec
tions within a program (there are generally two, by default); the location address of the sections; the size
of the sections; and, the name of the section. DB also displays the address and the hexadecimal represen
tation of the first instruction. For example, 2A44B8: 4EF9 corresponds to the location address of
START in our program and to the hexadecimal representation of the instruction in the listing file, as
sho'WTI below.

(0023)
000000> 4EF900000000 (0024) START

DATA
jmp

Using DB, you can then examine and/or set memory and registers and execute the program by single step
ping or using breakpoints. We describe the basic set of DB commands in the next section. Note that
there are a number of additional DB commands that are are highly specialized and oriented toward oper
ating system debugging and crash analysis.

0.2 DB Commands
Once you invoke DB, you can use the commands in the list below. To use a command, type the com
mand after the prompt (!).

Command

A [<size_spec>] <location>[base_spec]

B [<location>]

C <start> <end> <target>

CA <start>

Using the Low-Level Debuggers

Function

Accesses <location> and prints the address and con
tents according to <size_spec> and <base_spec>.

Sets/clears the breakpoint at the specified location.
Breakpoint is not inserted until the G command is
given. Previous instruction is reinstalled on the
breakpoint entry or vector entry. Only one
breakpoint can be defined at the same time.

Copies memory defined by bounds <start> to <end>
onto memory starting at <target> through
<target>+ «end>-<start».

Calls the subroutine that starts at <start>. All
registers saved from the last entry except AO are
restored immediately prior to the call.

D-2

- ._--------_ ... --_._. __ .. _--_ .. _-_ .. - ----

o

o

o

-------------_ ..•......•.........•....... ------_.

Command

F <start> <end> [<word>]

FA

FC

FP{.sl·d} [<#>]

FPC [<value>]

FPS [<value>]

G [<location>]

HELP

PC

Q

Function

Fills memory defined by the bounds <start> to <end>
with a word value <word>.

Displays last fault address.

Displays last fault code.

Shows any or all floating-point registers.

Sets/Shows the floating-point control register.

Sets/Shows the floating-point status register.

Jumps to <location> after inserting a breakpoint (if
any). restoring all registers and SR.

Prints DB help file.

Displays current program counter.

Exits from DB.

S [<size_spec>] <Start> <end> <value> [<mask>] [<base_spec>]
Searches memory defined by the bounds <start> to
<end> for <value> through an optional <mask>. If
<mask> is not specified, it defaults to SFFFFFFFF.
The <size _spec> controls the item-size to be
searched: byte, word, or long.

SS Performs single step.
TB Performs traceback of current stack.

0.2.1 DB Command Formats

<size_spec> ::= :II:BI:WI:L

<location> ::= <address>IOnIAnICCRISR

<address>

(An) I <num> (An) I <address> (index_spec) I
<num>(An,<index_spec»

<num> \ * \ <address>+<num> I <address>-num>

<num> ::= <simple_number I $<simple_number> I
<base>$<simple_number>I-<num>l<quoted_string>

<base> ::= <simple_number>

<quoted_string> ::= '<letter> ... <letter>' [up to four]

<index_spec> ::= An.WIOn.WIAn.LIOn.L

<base_spec> ::= :01 :01 :HI:A

D-3 Using the Low-Le,'el Debuggers

"••. -_._-------

o

o

o

0.2.2 DB Command Semantics

Locations are evaluated to a memory location or to a saved register, [e.g., Dn, An] or to a location com
puted from a saved register [num(An)}. The meaning of the size_specs are

:I instr-size items, output in mnemonic format.

:B byte-size items, output in numeric format.

:W = word-size items, output in numeric format.

:L = longword-size items, output in numeric format.

The meaning of the base _specs are

:0 numbers and immediate constants printed in octal.

:D numbers and immediate constants printed in decimal.

:H numbers and immediate constants printed in hexadecimal.

:A numbers and immediate constants printed in ASCII.

All numeric input defaults to hexadecimal. Snum implies hexadecimal. <base>$num implies that base is
<base> [8$777 is octal, 2$1001 is binary]. <base_spec> and <size_spec> may be specified anywhere in
the command line as well as anywhere in A command input (except in quoted strings). All addresses and
offsets are printed in hexadecimal regardless of <base_spec>.

0.3 Machine Level Debugger Invocation under DEBUG
To invoke the Machine Level Debugger (MDB), type the mdb command at the DEBUG prompt as
shown:

> mdb
PC

mdb>
000080B8 current PC address is displayed automatically

MDB prompt

MOB has its own set of commands, which we describe below. If MOB doesn't recognize a command, it
passes it back to DEBUG for execution. Thus, most OEBUG commands can be entered from the MDB
prompt. However, a GO command's execution is deferred until after you exit MOB. This can be confus
ing; thus, you should generally avoid using GO from within MOB.

MOB commands are case-insensitive and, like DEBUG commands, can be abbreviated to their first let
ter. Note that MOB commands are similar to a subset of DB commands. However, they are not identi
cal. The following section illustrates their differences.

Using the Low-Level Debuggers D-4

0.4 MOB Commands o The following is a list of MOB commands.

o

o

ACCESS -- Examine or change memory or register value

Format: ACCESS <address-expression>[:<format>] [:<size>]

This is the basic command for examining and changing memory or registers. ACCESS displays 1 byte,
word, or long word, and then waits for input on the same line. At this point, you can use one of the fol
lowing options:

<RETURN> Access next word.

/<RETURN> Terminate access, return to MOB prompt.

<value><RETURN> Replace the value with the· new one and access next word.

<value>/<RETURN> Replace the value with the new one and terminate.

The <address-expression> can be one of the following:

absolute address A hexadecimal number with 8 or fewer digits. The first digit must be 0-9;
append a leading zero if necessary.

register AO-A7, 00-07, OB(=A5), SB(=A6), SP(=A7), PC.

(register) Indirect register. Register must be AO-A 7.

offset (register) Indirect register with hexadecimal offset

By default, ACCESS displays 1 word (2 bytes) of data in hexadecimal format. You can change this for
mat with the format and size modifiers. The format options are

:H hexadecimal (default)
:0 decimal
:0 octal
:A ascii
: I instruction

The size options are

:B byte
: W word (default)
:L long

Although hexadecimal and word are the initial defaults, once you specify a different format and/or size,
subsequent ACCESS commands in the same MOB session use those values.

The instruction format option decodes the value as an assembler-like machine instruction. The size op
tion is ignored in this case.

If you enter a new value for a word, you must enter the value in the same format as it is displayed. You
cannot enter symbolic machine instructions; MOB does not include an assembler.

D-S Using the Low-Level Debuggers

C)

o

ACCESS Examples

mdb> a 100CC
000100CC : 6465 /
mdb> a 100CC:I
000100CC : 64656275 /
mdb> a 100CC:a
000100CC: debu
mdb> a dO:I:h

DO : 03380003 /
mdb> a (Sp)
03386B22 81020338
03386B26 : 00030000
03386B2A : 00000338 /
mdb> a pc:l

PC : 000080FC /
mdb> a (pc):i
E - <addr> specifier
mdb> a 80FC:i
000080FC TST.w
00008100 : BLE.b
00008102 : SUBQ.I
mdb> va x

expected

(8. w, a6)
8llA
#2,a7 /

FOO\BAR\x = l6-bit integer, local.
mdb> a 3386B12:w:d
03386B12 : 2 -1 /
mdb> a 3386B12
03386B12 : -1 /

SS -- Single Step Instruction

Format: SS [<address-expression»

Examine word of memory

Long word at same address

In ASCII format

Examine a register

Look at top of stack
<RETURN> to access next word
Again

Examine PC

Examine next instruction
Unfortunately (PC) is illegal
Try again with address
RETURN> to access next instruction
Again

Get address of variable from DEBUG
VA = 3386B12
Examine it in decimal
Change its value
Check the change
Note :d remembered

This command single-steps one machine instruction, then .decodes and displays the next instruction. If
you specify an address, the PC is set to the address before stepping.

Examples

mdb> a pc:l
PC 000080FC /

mdb> s
00008100
mdb> s
00008102

BLE.b

SUBQ.I
mdb> s 811A
00008104 : MOVE.w

8llA

#2,a7

(8 . w , a6) ,dO

WALK -- Step Multiple Instructions

Format: WALK <n>

This is equivalent to n successive SS commands.

Example

mdb> w 3
0000807E MOVE.w
00008082 MOVE.w
00008086 PEA. I

Using the Low-Level Debuggers

dO, (-A.w,a6)
#7,-(a7)
(24.w,PC)

D-6

Execute instruction at 80FC
This is *next* instruction
Execute it

Force branch to 8lla

()

o

o

-----_ __ ._--

HELP - Display On-Line Help Information

Format: HELP

Displays a summary of MDB commands.

QUIT -- Terminate MOB

Forma t : QUIT

Terminates MDB and returns to DEBUG command level.

D.5 Additional Debugging Commands
Two additional low-level debugging commands are available in DEBUG:

REGS displays all machine registers (except floating-point), plus some additional machine status informa
tion.

FPREGS displays all floating-point registers on workstations that have FP registers. Note that MDB can
not access floating-point registers.

0.6 Hints for Debugging Assembler Routines
DEBUG normally steps over assembler routines when it encounters them. The simplest technique for de
bugging an assembler language procedure is to stop the calling program just before the call, enter MDB,
and single-step into the procedure.

You can set breakpoints in assembler code using the -VA option of the DEBUG BREAKPOINT com
mand. You will probably have to use MDB to find the address at which to break, since DEBUG does not
know about assembler routines by name. (The -SMAP DEBUG stanup option may also be useful.)
When the program stops in assembler code. DEBUG will not be able to establish a valid environment and
many commands will not be available. However MDB can always be invoked.

The DEBUG VA command is useful for determining the addresses of variables, etc., to use with MOB.
For more information about DEBUG, refer to the DOMAIN Language Level Debugger Reference.

D-7 Using the Low-Lel'ef Debuggers

o

o
•

Appendix E

Pre-SR9.S
Calling Conventions

At SR9.5. some of the routine and calling conventions were changed to reduce procedure call overhead
and to permit compilers to take advantage of optimization techniques that require register saving across
calls.

This appendix describes the DOMAIN calling conventions prior to Software Release 9.5 (SR9 .5). Use
this appendix if you need information about pre-SR9.5 modules. .

E.1 The Stack
The stack. an area of temporary data storage. grows from high memory addresses to low memory ad
dresses. The two stack-related registers are A6. the stack frame register. and A7. the stack pointer. Ad
dress register A6. or Stack Base (SB) points to the current stack frame. Address register A 7. or Stack
Pointer (SP) points to the top of the stack. The area of memory between A6 and A 7 constitutes the auto
matic storage. or local variables of the current routine.

E-l Pre-SR9.5 Calling Conventions

--_.-........ _-----_._------_ .. --.. ----_. --_._----

-- -------------_ .. _----------------------

o E.1.1 Stack Format

o

C)

As an example, Figure E-l illustrates how the stack format looks if routine Finder calls routine Seeker.

----A7 Seeker's automatic storage

----AS
Seeker's stack frame

Arguments Finder passes to Seeker

Finder's automatic storage

Finder's stack frame

•
•
•

Figure E-1. Stack Format

E.1.2 Stack Frame Format

Figure E-2 illustrates the component fields of the stack frame. The A6 register points to the stack frame.
Following the illustration, we discuss each field in detail.

Pre-SR9.5 Calling Conventions E-2

------_._ -._ •. _ .. _-_ -----_.---

0

C)

------- -----_ __ -.. _-- .. --------

0
Caller's 58 (AS)

4
EC8 Address

8
0

12

Caller's 08 (Optional)

16
Return PC

Figure E-2. - Stack Frame Format

Caller's 58 Field
The 4-byte Caller's SB field is a pointer to the previous stack frame. Pushing the caller's SB onto the
stack preserves the SB across the call and provides a way for the data to thread back through the stack.

ECB Address Field
The 4-byte ECB (Entry Control Block) address field in Finder's stack frame (refer to our example on the
previous page) is the address of Finder's ECB. Language-level debug commands such as TB and DE
BUG use this field to print a stack trace, which is the routine name and line number. The stack frame
has the address of the ECB, which in turn contains the address of the debug tables.

o Value Field
This 4-byte field is set to zero by the prologue code. Some DOMAIN software checks this field to ensure
it is a valid stack frame.

Caller's 08 (Data Base) Field -- (Optional)
This 4-byte optional field contains the caller's DB or AS register. To determine if the field is present,
look at the flag word of the routine's ECB. If the B bit is reset to zero, the field is present. Refer to the
"ECBs" section within this appendix for more information.

NOTE: The fields described above are set up by the called routine's prologue code.
We discuss both the prologue and the epilogue code in the next section.

Return PC Field
A JSR instruction pushes the Return PC onto the stack and transfers control to the routine. An RTS in
struction returns control when the called routine finishes.

E-3 Pre-SR9.5 Calling Conventions

.- ... ----, " ._--_ .. -_. __ . __ ._._.-_ __ , " .. "., " , ------

o E.1.3 Prologue Code and Epilogue Code

o

C)

This section describes the prologue code and epilogue code.

Prologue Code
Prologue code consists of the instructions that DOMAIN compilers generate at the beginning of a routine
to set up the stack frame. The standard prologue code is shown in Figure E-3.

PROC_STRT MOVE.L DB,-(SP) Save caller's A5 register
CLR.L -(SP) . Push 0 value field.
MOVE.L AO,-(SP) AO contains ECB address.
MOVE.L 6(AO) ,DB Load caller's AS.
LINK SB,#-A_SIZE Save caller's SB, set up

automatic storage area.

Figure E-3. Standard Prologue Code

NOTE: The MOVE instruction that pushes the caller's DB is not present if the B bit in
the ECB flag word is 1.

(DB) .

Note that #-A_SIZE is the size of the automatic storage needed by the routine. The minus sign indicates
that the stack grows downward in memory.

Epilogue Code
Epilogue code consists of instructions that the DOMAIN compilers generate to return from a routine. The
standard code that is used to return from a called routine is shown (with comments) in Figure E-4.

UNLK
ADD.W
MOVE.L
RTS

SB
#8,SP
(SP)+,DB

Restore caller's SB.
Pop ECB address and 0 field.
Restore caller's DB.
Return.

Figure E-4. Standard Epilogue Code

NOTE: The MOVE instruction that restores the caller's DB is not present if the B bit in
the ECB flag word is 1.

Note that registers AO and DO can contain values on function return.

Pre-SR9.5 Calling Conventions E-4

-------_._--_._-----_ .. "._--,._-, ...

(j E.1.4 Calling a DOMAIN Assembly Language Routine

(j

o

The following example is based on the information given in the previous section. Here we see how a
high-level program calls an DOMAIN assembly language routine.

FORTRAN PROGRAM
C common.ftn

common/abc/c
integer c
c = 4
write(*,*) c
call common
write(*,*) c
end

DOMAIN Assembly Language Routine
* common.asm
* Example of accessing FORTRAN
* common.asm uses DFSECT, SECT,

named COMMON in assembly language
and DS pseudo-ops to model

* COMMON/ABC/C is INTEGER
* common.asm sets C to 5
*

module common
entry common

pro equ *
move.l db,-(sp) * Prologue Code
clr.l -(Sp)
move.l aO,-(sp)
move.l 6(aO) ,db
link sb,#O
move.l ac_c,al
move.l #5, (al)
unlk sb * Epilogue Code
add.w #8,sp
move.l (sp)+,db
rts

abc dfsect overlay
sect abc

c ds.l 1 reserve 4 bytes for integer
data

common jmp.l pro * Entry Control Block
ac common
dc.w 0

ac_c ac c
end

The FORTRAN program prints the value of C, which is equal to 4. Then. the program calls the DOMAI!':
assembler routine and prints the value of DOMAIN Assembler's C. which is 5. The ECB is described in
the "ECBs" section.

E-S Pre-SR9.5 Calling Conventions

------------------------_ .. -- ----------- - ---------- .. -"----

C) E.1.S Notes on Register Conventions

o

o

From our discussion at the beginning of the appendix, we know that A 7 points to the top of the stack and
A6 points to the current stack frame. However, AS or Data Base (DB) is also very important in the call
ing sequence. AS is preserved (saved and restored) across function and procedure calls; conversely,
DO-D7 and AO-A4 may not be preserved. When DOMAIN compilers generate code, they use AS to
point to the frame containing static data and linkages to external references. DOMAIN-generated code
expects AO to contain the ECB address on entry to a function or procedure. AO and DO are used to re
turn function results. AS, A6, and A7 are preserved across a function or procedure call.

E.2 EC8s (Entry Control Blocks)
DOMAIN compilers generate an ECB, or Entry Control Block, for every function and procedure defini
tion. The ECB address is the value of the object module global that corresponds to an external function
or procedure. This convention is true for both standard and C calling conventions.

Because ECBs require relocation at load time, they are located in the read/write sections. Figure E-S il
lustrates the ECB format. An assembly language fragment containing an ECB follows the illustration.

Pre-SR9.5 Calling Conventions E-6

------------~.---' . ' .. ""."" .-.,.~ .. _-"", •.. , _-_.-._-_ ... ,.

C)

o

o

0

6

10

12

*

*
SEEKER

JMP Instruction

Data Frame Pointer

A

Debug Table Pointer (optional)

PROC
ENTRY. P SEEKER
EQU *

prologue and epi/ogue code go here.

DATA
EQU *

Entry Control Block starts here.
EQU *
JMP.L PROC_STRT

Entry is ECB.
Prologue Code.

0

AC
DC.W

Data Frame Pointer.

Figure E-5. ECa Format and Example

B

An ECB is an example of code that must reside in a read/write section (because it requires relocation).
The ECB can be either 12 or 16 bytes in length, depending on whether or not the debug table pointer is
present. We discuss each field below.

JMP Instruction Field
This 6-byte field, which contains the JMP instruction, references the prologue code in the procedure
frame associated with the routine, as shown in Figure E-5 above. The JMP instruction uses the long ab
solute addressing mode. Therefore, the first two bytes of the instruction are 4EF9 (hex) and the remain
ing four bytes are the absolute address of the prologue code.

Data Frame Pointer Field
The 4-byte data frame pointer field contains the address of the data frame. The data frame contains
static read/write data, linkages to external data and routines, and the ECB. The prologue code loads the
A5 (DB) register with the data frame pointer (refer to the "Prologue and Epilogue Code" section within
this appendix). The routine uses the DB register to reference the static data and linkage information,
such as address constants, in the data frame.

B Bit
The rightmost bit, or B bit, indicates whether the prologue code for this routine saves the caller's A5 regis
ter in the stack frame. A 0 in this position indicates that the caller's A5 register is saved in the stack
frame. If a 1 is present in this position, the caller's A5 register is not saved.

E-7 Pre-SR9.5 Calling Conventions

C)

o

o

OBit
The D bit indicates whether the next field in the ECB, the debug table pointer field, is present. A 1 in this
position indicates that the debug table pointer field is present; a 0 indicates that the field is absent.

A Bit
The A bit indicates that this routine is a part of DOMAIN-supplied software. The language-level debug
ger uses this to keep DEBUG from stepping into DOMAIN-supplied software.

Debug Table Pointer Field (Optional)
This 4-byte optional field contains the address of the start of the debug tables associated with this routine.
DOMAIN compilers generate the debug tables in a read-only section called DEBUG$ in the object mod
ule. The D bit, described above, indicates whether this field is present.

E.3 Passing Parameters
The conventions for passing parameters are the same for SR9.5 and pre-SR9.5 code. Refer to Chapter 6
for details.

Pre-SR9.5 Calling Conventions E-8

o

o

o

Appendix F

The Object Module

The DOMAIN compilers and the DOMAIN assembler translate your source programs into object module
format. When you use the binder utility to bind one or more object modules, the binder produces a
single object module. Both your input modules and the binder's output module use the same object
module format.

This chapter divides the discussion of object modules into two parts: overview and application. Basically,
the overview provides a theory of operation, in which we discuss the role the loader and binder play, and
how to display and interpret an object module listing. The second part of the chapter uses a sample object
module to illustrate the object module format we discuss in detail. Our example in this chapter is based
on a FORTRAN source file and an DOMAIN assembly language source file. The overview topics are:

• What the binder does

• What the loader does

• Producing an object module listing

• Interpreting the object module listing

After the overview, we explore the object module elements in detail and provide an example object
module listing for reference.

F.1 What the Binder Does
Some of the functions that the binder performs in the output object module are as follows:

• Binds multiple object modules into a single object module.

• Resolves external or global references and definitions.

• Sets the nonreplacable attribute in the section attributes field.

F-l The Object Module

o

o

o

• Modifies the install and look at installed attributes, if necessary, in the section attributes field.

• Satisfies the alignment attribute in the section attributes field by ensuring the read-only sections'
position in the output object module.

• Uses the old global field to select a global definition when multiple definitions of the same global
name occur.

• Copies module information records from input object modules and adds a maker module
information record.

• Combines static resource information from input object modules.

• Prints the information in the" module information maker records if you use the binder option
-MAKER.

• Combines sections with the same name.

We discuss the boldfaced terms and binder implications in greater detail where applicable in this chapter.

F.2 What the Loader Does
The loader loads the object module into memory by performing the following functions:

• Maps read-only sections to memory.

• Allocates space for read/write sections.

• Resolves references to installed libraries using KGT (Known Global Table). When you install
libraries in the address space, their entry points are put into KGT. We discuss this table in greater
detail later at the end of this chapter.

• Initializes data and relocates address in read/write sections.

F.3 Producing an Object Module Listing
Once the assembler, compiler, or binder translates your program into an object module, you can list
information about the object module using the OBJDMP AEGIS Shell command. The format of the
command is:

$ OBJDMP input filename [-option (s)] [outputfile]

where the object module (filename.bin) is the input file and a text file is the output file. The output
filename is optional (except where noted); use an output filename if you want to keep a copy of the object
module listing. If you do not use an output filename, OBJDMP dumps the listing to stdout (standard
output) .

The OBJDMP command options are listed below. If you do not include any options, the OBJDMP
displays all information.

Option

-L[IST]
-H[EADERS]
-SEC [TIONS]
-G[LOBALS]
-SRI
-MAKER
-IMP[URE1
-DEBUG

The Object Module

Meaning

Write information to the indicated file. You must specify an output filename.
Display header information.
Display the section table.
Display the globals table.
Display the SRI records.
Display the maker records.
Display the impure data.
Display debug information.

F-2

---•.... _ ... _._---_ .. _--

o

o

F.4 Interpreting the Object Module Listing
The following examples illustrate a FORTRAN source program and the object module listing. Throughout
the section, "Object Module Elements" section that follows, we refer to the appropriate part of the object
module listing example to illustrate our points.

Example 1 a: FORTRAN Source Program
subroutine try
common /block/iarray(20)
data iarray/20*1000/
call again
end

Example 1 b: Object Module Listing
Apollo Object Module Dumper -- 2.0
*** Object Module Header ***
Identification = Program_Module
Format_Version = 3
Mapped_Size = 00000054

*** Global Information Header ***
Start_Address 0 00000000
Name = TRY
Creation_Time 28FE9802
Time Stamp: 1985/09/17 14:09:08 EDT (Tue)
N_Sections 4
N_SRI 0

2
o

*** Section Index Table ***
ID NAME

1 PROCEDURE$
Long-aligned

2 DATA$
Long-aligned

3 DEBUG$
Long-aligned

4 BLOCK
*** Globals ***

5 (0 00000000) AGAIN

LOCATION
00000020

00000000

0000003C

00000000

SIZE
0000001C R/O Concat Instr

00000014 Concat Data

00000018 R/O Concat Data

00000050 Ovly Data Long-aligned

6 (2 00000004) TRY Marked
*** Static Resource Information ***
*** Impure Data ***

Text_Rec:
Id: 2 Text_Mem_Addr: 00000000 Byte_Count: 20

0000: 00000000 4EF90000 00000000 00140002
0010: 00000000

F-3 The Object Module

o

o

o

-------------------------------------- ------------------------------

ReIoc_Rec: 4
OFFSET RELOC_BASE_ID

1 0000 5
2 0006 1
3 OOOA 2
4 0010 3

Text_Rec:
Id: 4 Text_Mem_Addr: 00000000 Byte_Count: 4

0000: 000003ES
Repeat_Rec: 20
End_Rec

F.S Object Module Elements

The object module is composed of the following standard elements:

• Object module header

• Read-only sections

• Global information header

• Section index table

• Global table

• Read/Write section templates

We discuss each standard element in detail in the sections that follow. Optional elements of the object
module (Module Information records, Static Resource Information records, and Debug Tables) are
discussed later in the chapter. First, we present an illustration of the object module format ..

Within each section, we illustrate the format of the particular element and provide an example from the
actual object module listing shown in Example Ib above. The diagrams presented in .this section contain
numbers to the left of the diagram. These numbers are byte displacements (decimal) of the fields from
the beginning of the element.

The Object Module F-4

o

o

.•.. : Streams Header

Object Module Header

Read-Only Sections

Global Information Table

Section Index Table

Global Table

Read/Write Section Templates

Figure F-1. Object Module Elements Format

NOTE: Object module data is preceded by a 32-byte streams header (shaded area in
illustration) . This header is transparent if you read the file through a read
operation. However, if you map the file, the streams header is included.

F-S The Object Module

-- -_ _-_. __ .-_._----_._ .. _-.-.. _ .. -_._•...... - ---- .- __ ... -

o F.S.1 Object Module Header

o

The object module header is the first element of an object module. The main purpose of the 32-byte
header element is to provide pointers to other elements in the object module. These 4-byte pointers,
which are 32-bit integers that give the position in the file relative to the start of the object module, are
called file pointers. File pointers are offsets from the beginning of the object module header to the
current position in the file. The fields in the object module header are shown below in Figure F-2.

o
2

4

8

12

16

20

24

28

Identifica tion

Format Version

Mapped Size

Pointer to Pure Code

Pointer to Global Information Header

Pointer to Impure Data

Pointer to Module Information Tables

Pointer to Debug Tables

Pointer to END of Object Module

Figure F-2. Object Module Header Fields

We discuss each field below. Use the following example, from the object module listing, for reference as
you read about the fields.

** Object Module Header ***
Identification = Program_Module
Format_Version = 3
Mapped_Size = 00000054

The Object Module F-6

o

o

o

----... _._------_ .. ---_ .. _---------- _._. __ ._ _-----------------_._._-

Identification Field
The identification field is a 2-byte field that contains a value identifying the object module as either a
program module, a library module, or an object module modified by the debugger. Table F-1 lists the
identification value and the object module type.

Table F-1. Identification Field Values

Identification Field Value Object Module Type

1 Program Module. All object modules created by the compilers
and binder. This is an executable object module.

2 Library Module. Library modules are output by lbr and input
to the binder.

4 Object Module Modified by Debugger. Occurs if you set break-
points in a program running under DEBUG with the -NC option.
During normal termination, DEBUG removes any breakpoints and
sets the 10 field value back to 1. Abnormal debug terminations
can cause the value to remain at 4.

NOTE: The loader will not execute object modules that contain identification field
values other than 1.

In our example above, the subroutine is identified as a Program_Module.

Format Version Field
The 2-byte format version field contains a value of 3. For example, Format_version = 3. The
format version number identifies the version; the value 2 indicates pre-SR9. 5 and 3 indicates SR9.5.
Currently, these are the only valid values. We discuss only SR9.5 in this chapter.

Mapped Size Field
The mapped size field is the length in bytes of the read-only sections plus the object module header
(32-bytes). The loader maps the object module from the stan of the object module header to the end of
the read-only sections. The loader uses the mapped size field value as an argument to the mapping call.

In our example, the mapped size is 00000054 bytes (hex).

Pointer to Pure Code Field
The pointer to pure data, pure code, or non-relocatable code, contains the byte displacement of the
read-only sections from the start of the object module. The pointer to pure code should be 32 because
the read-only sections follow the 32-byte object module header in the object module format. However,
we advise using the pointer in case the header size changes.

Pointer to Global Information Header Field
The pointer to global information header contains the byte displacement of the global information header
from the start of the object module. This pointer contains the same value as the mapped size field
because the global information header follows the read-only sections in the object module format.

Pointer to Impure Data Field
The pointer to impure data field points to the start of the read/write section templates. These templates,
described in greater detail in the "Read/Write Section Templates" section later in the chapter, are a series
of records. The read/write templates provide information to the loader about initialization and relocation
required in the read/write sections. In our Example 1b: Object Module Listing, DATA$ and BLOCK are
read/write sections.

F-7 The Object Module

o

o

o

Pointer to Module Information Tables Field

This field contains the pointer to the optional module information tables. If the tables are absent, the
field value is O. Otherwise, the field value is the byte displacement of the module information tables from
the start of the object module.

When the tables are present, the module information can occur anywhere after the section index table.
DOMAIN compilers and the binder put the module information after the read/write templates at the end
of the object module. Refer to the "Module Information Records" section within this chapter for more
information.

Pointer to Debug Table Field
This field points to the debug table header. For more information, refer to the "Debug Table" section
within this chapter. The debug table is separate from the DEBUG$ section, which also contains
debugging information.

Pointer to END of Object Module
The pointer to END of object module contains the value of the length (in bytes) of the object module.

F.S.2 Read-Only Sections

The read-only sections follow the object module header in the object module format. The read-only
sections are one of two types of major sections: read-only and read/write. We describe the read/write
section in more detail later in this chapter.

The read-only element can contain multiple sections. However, because read-only sections cannot be
modified during loading or execution, they can only contain instructions and constant data (pure code,
nonrelocatable or position independent code). The loader maps read-only sections with read and
execute-only rights to ensure that the object module is not modified during loading and execution time.

The advantages to mapping the read-only sections include:

• Protection by ensuring that pure code and data is not modified while the program is executing.

• Faster loading time than read/write sections because the loader does not have to read the
templates in the object module and initialize the data as in the read/write sections.

• Better working set performance when more than one process is running the same program. The
read-only sections of a program can be shared by multiple processes running the same program.

F .5.3 Global Information Header

The global information header follows the read-only sections in the object module format. You will recall
that the object module header (described above) contains a file pointer to this element.

Before introducing the global information header element, we provide an overview of globals. Globals
are intermodule references. Compilers generate object module globals for every external function and
data variable.

An object module global can be either a reference or a definition. As an example, a call to an external
procedure is a global reference. A definition can be illustrated as an external procedure body. One of
the binder functions is to resolve global references and definitions.

The 74-byte global information header contains the fields shown in by Figures F-3.

The Object Module F-8

------_. __ ._ .. -_ .. _--

C)

o

o

--_._. __ ... _ ---_ .. __ ._--

0 Start Address

6
Name

38 Version

42 Creation Time

46
Number of Sections

50
Pointer to Static Resource Information Records

54 Number of Static Resource Information Records

58 Pointer to Global Table

62 Number of Globals

66 Pointer to Shared Libraries

70 Number of Shared Libraries

Figure F-3. Global Information Header

We describe each field below. Use the following example for reference.

*** Global Information Header ***
Start_Address 0 00000000
Name = TRY
Creation_Time 28FE9802
Time Stamp: 1985/09/17 14:09:08 EDT (Tue)
N_Sections 4
N_SRI 0
N_Globals 2
N_Shared_Libraries 0

Start Address Field

The start address field identifies the location of the first executable instruction, where the loader
transfers control to the program after loading the object module. The 6-byte stan address is composed of
two fields: a 2-byte section ID and a 4-byte offset. The section ID is the section's position in the section
table. Refer to the "Section Index Table" section in this chapter for more information. The offset is the
displacement from the stan of the section. In our example the ID is 0; the offset is 00000000. This is
because our example is a subroutine, which means that the object module does not have a stan address.

A program can only have one stan address. At binding time, the binder issues a warning message:
Attempt to respecify start addr if more than one object module contains a stan address. For
example, the FORTRAN compiler creates subroutine object modules without stan addresses. If an object
module does not have a start address, the section ID and offset fields are set to 0, as shown in the
example above.

F-9 The Object Module

()
Name Field
The 32-byte name field identifies the object module. If the name is shorter than 32 characters. the
remaining spaces in the field are blank filled. The name of our example program is TRY.

Version Field
The 4-byte version field identifies the compiler version number. DOMAIN compilers currently set this
field to O.

Creation Time Field
The 4-byte creation time field identifies the time at which the object module is created. DOMAIN
compilers set this field to the most significant 4-bytes that the routine time_$clock returns. OBJDMP
converts the creation time to date/time format using CAL_$ routines and the TS command prints out the
creation time as a time stamp.

Number of Sections Field
The 4-byte number of sections field contains the number of sections (both read-only and read/write)
within the object module.

In our example. N_Sections = 4. Note that this number corresponds to the four sections identified in
the section index table part of the listing shown in the next section.

Pointer to Static Resource Information (SRI) Records Field
Static resource information (SRI) records are an optional element in the object module. The 4-byte file
pointer. which points to optional SRI records, contains the byte displacement of the first static resource
information record from the start of the object module. This field contains a 0 if no static resource
information records exist.

o Number of Static Resource Information (SRI) Records Field

o

The 4-byte number of static resource information records field contains the actual number of static
information records that follow. This field contains a 0 if no static resource information records exist.
For example, N_SRI = O. We explain static information records in the" Static Resource Information
(SRI) Records" section in this chapter.

Pointer to Global Table Field
The 4-byte file pointer to the global table field contains the byte displacement of the start of the global
table from the start of the object module. We explain the global table in more detail later in this chapter.

Number of Globals Field
The 4-byte number of globals field contains the sum of global definitions and references found in the
global table. In our example, the two globals are the subroutine name TRY and the called routine name
AGAIN.

Pointer to Shared Libraries Field
This 4-byte field is currently not used. Its value is set to O.

Number of Shared Libraries Field
This 4-byte field is currently not used. Its value is set to O. For example, N_Shared_Libraries O.

The Object Module F-IO

----_ _--

~---------"-'~----'----'-

(~ __) F .5.4 Section Index Table

o

(j

The section index table immediately follows the global information header. The section index table is an
array of entries consisting of one entry for each section.

Sections have properties called attributes. These attributes are represented as bits in a 2-byte field. One
attribute in the field determines if the section is read-only or read/write. If the bit in this field is 1, then it
is a read-only section; otherwise. it is read/write section.

Sections are referred to elsewhere in object modules using .16-bit integer IDs, as illustrated by the start
address in the Global Information header and by the reloc_id in relocation records. The 10 of a section is
its position in the section table. Each section table entry is 42 bytes long, as shown below in Figure F-4.

0
Location

4
Memory Size

8
Attributes

10

Name

Figure F-4. A Section Table Entry

We describe each field below. Refer to the following example for more information.

*** Section Index Table ***
ID NAME

1 PROCEDURE$
Long-aligned

2 DATA$
Long-aligned

3 DEBUG$
Long-aligned

4 BLOCK

location Field

LOCATION SIZE
00000020 0000001C R/O Concat Instr

00000000 00000014 Concat Data

0000003C 00000018 R/O Concat Data

00000000 00000050 Ovly Data Long-aligned

For read-only sections, the location field is a file pointer, or byte displacement of the section, from the
start of the object module. For read/write sections, this field is set to O. In our example, the location of
PROCEDURES is 00000020 and the location of DEBUGS is 0003C.

F-ll The Object Module

(~)

o

o

----------------.---~-.------.-.

Memory Size Field
The 4-byte memory size field contains the size of the section. Because read-only sections are
represented in memory image format, the size of the read-only sections corresponds to its size in the
read-only section element in the object moqule. For read/write sections, this is the amount of memory
that the loader allocates. In our example, the size of PROCEDURE$ is 0000001C. The size of
DEBUG$ is 00018. The loader uses memory size to determine how much space to allocate during
loading for read/write sections.

Attributes Field
The 2-byte attributes field contains several section attributes. Each bit in the field corresponds to a
section attribute. Figure F-S illustrates each bit in the section attributes field. We discuss each attribute
in detail.

In the example shown above, the attributes of PROCEDURES are written as R/O Concat Instr, which
means that the read-only and Instruction attribute bits are set and the overlay bit is reset. Many of these
bits can be set/reset with binder options. Refer to the "Section Attributes" section in the DOMAIN Binder
and Librarian Reference for more information.

15

Old-----..,
Look At Installed ----.., Mlxed------,

Alignment Instruction __

Zero

Install
Nonreplacable -----'

Absolute ---.....
Overlay

Read Only

NOTE: The shaded bits in the figure are reserved. Therefore, they must be set .to 0 in
each section attribute field.

Figure F-5. Section Attributes Field

o

READ-ONLY BIT. This least significant bit identifies the section as read-only if the bit is 1. If the bit is
0, the section is read/write. You can issue limited control of these attributes by using the
-READONLYSECTION binder option. Refer to the DOMAIN Binder and Librarian Reference for a
description of this binder option.

OLD BIT. This bit indicates old sections. If the bit is 1, the section is old. The binder does not copy old
sections to the output object module. Also, the loader does not load old sections. Currently, you cannot
explicitly mark a section as old.

OVERLA Y BIT. The overlay section attribute determines how the binder combines sections that have
the same name. If the bit is set to 1, then the section is overlay. When the binder combines sections
with the overlay section attribute, the size of the resultant section is the size of the largest individual input
section. You can use an overlay section when several modules define shared data. For example, a
FORTR-\N COMMON block is an overlay section. You have indirect control of these sections through
the source code.

The Object Module F-12

----------------- .. ----------- ---.- ---. - . -- --.-- ----

o

---_ .. ------ ,-

If a section is not overlay (the bit is set to 0), the section is concatenate. When the binder combines a
concatenate section, the size of the resultant section is the sum of the input sections.

MIXED BIT. The binder uses the mixed bit for internal classification. The bit indicates whether a
section is declared concatenate in some input object modules or overlay in others. Only the binder can
set the mixed bit. This enables the binder to repon useful error messages if contradictory declarations
occur in a future attempt to bind object modules. In a mixed case, the binder or librarian assumes that
the section has the overlay attribute.

ABSOLUTE BIT. The assembler generates an absolute section when you define a global with an
absolute address, as illustrated by the following example:

VARl
ENTRY
EQU

VARl
$FE80AB

Defining a global with an absolute address can be useful when you want to symbolically refer to an address
used for memory mapped 1/0. Absolute sections have a size field of O.

The absolute attribute informs the loader to begin the section at a fixed virtual address. In a high-level
language, you have no control over this attribute.

INSTRUCTION BIT. The instruction attribute indicates whether a section contains instructions. If a
section does not contain instructions (bit is set to 0), it is a data section. Read-only and readlwrite
sections can have an instruction attribute. However, instructions normally are found only in the read-only
sections. Currently, only the binder examines the instruction bit. The binder does not set the install or
look at installed attribute in a section that contains the instruction attribute.

NONREPLACABLE BIT. The binder sets this bit if a global is defined as a non-zero offset from the
section start and the binder resolves a reference to that global. The binder sets the nonreplacable
attribute in the output object module for the section in which the global is defined.

NOTE: Currently, sections cannot be replaced.

ZERO BIT. The zero attribute is used only for read/write sections. If this bit is 1, the loader zeros the
section after allocating space for the read/write section and before processing the read/write templates.
However, if the bit is 0, the only initialization is specified by the template, which can leave pans of the
section indeterminate.

INSTALL BIT. The loader examines this bit when it installs libraries. If the bit is set to 1, the loader
enters the section's name, location, and size into the Known Global Table (KGT). Refer to the "Known
Global Table" section at the end of this chapter for more information. To share a section between a
program and an installed library, the section in the installed library must contain an install bit. You can
control the installed attribute with the -MARKSECTION and -NOMARKSECTION binder options.

LOOK AT INSTALLED BIT. The loader examines this bit in your programs. If the look at install bit is
set to 1, the loader checks the Known Global Table (KGT) to see if the section is installed (see above).
An install section and a look at installed section match if they have the same name and if the size of the
install section is equal to or greater than the look at installed section. To share a section between a
program and an installed library, the section in the program must contain the look at installed bit. You
can control the look at installed attribute with the -LOOKSECTION and -NOLOOKSECTION binder
options.

A~IGNMENT BITS. Unlike the single-bit attributes described above, this attribute is composed of two
bits (refer back to Figure F-5 for the proper position of the bit numbers). Depending on the combinations
of setting in the two bits, alignment can vary. Table F-2 lists the combinations and the resultant section
alignment boundaries.

F-13 The Object Module

.. , _.-_ .. _-_._--_ __ ,---... " ,-"._--",.---".,

o

o

Table F-2. Alignment Bits and Section Alignment Boundaries

Bit 1 Bit 2 Section Alignment Section Alignment Description

0 0 4-byte boundary (Default) Long-aligned

0 1 8-byte boundary Quad-aligned

1 0 Reserved for future use N/A

1 1 Page boundary (1024-bytes) Page-aligned

The loader aligns read/write sections according to the alignment attributes shown in Table F-2.

For read-only sections, the binder satisfies the alignment attribute by ensuring the read-only sections'
position in the output object module. The pure code region of the object module is always mapped
page-aligned. You can control these attributes through the -ALIGN binder option. Note that compilers
that generate object modules must be concerned about alignment of read-only sections in the object
module.

Name Field
The 32-byte name field contains the name of the section. Names shorter than 32 bytes are blank filled.
Each section with the object module must have a unique name. Refer to the "Read-Only Section" section
for more information regarding names. Our example has three default name sections. The fourth section
name, BLOCK, is the name of a COMMON block in the program.

F .5.5 Global Table

The global table follows the section index table in the object module format. You will recall that the
global information header contains a pointer to the global table. Like the section index table, the global
table is an array of entries. Each global, like each section, has its own entry. Each entry in the table is 54
bytes in length. Also in the table, global references must precede global definitions. Figure F-6 illustrates
the format of a global entry table.

The Object Module F-14

---_ .. __ _ - ----_ _ ----.... --.. --.-------~

-_.'--- ---------------

()

o

o

0
ID

2
Value

8
Old Global

10
Use Code

12
Type Code

14
Extent

18
Arglist

22

Name

NOTE: The shaded area is currently not used.

Figure F-6. A Global Entry Table

We describe each field below. Use the following example as a reference.

*** Globals ***
5 (0 00000000) AGAIN
6 (2 00000004) TRY

10 Field

Marked

The value in the ID field is used to reference the global in the relocation pan of the read/write section
templates. The value of the ID must be greater than the number of sections because the ID values (from
1 to the number of sections) refer to sections in the section table. Normally, globals are numbered in the
global table sequentially beginning with the number of sections plus one. Like sections, each global has a
unique ID. In the example, the globals AGAIN and TRY are numbered 5 and 6 respectively.

Value Field
The 6-byte value field consists of a 2-byte section ID and a 4-byte section offset. If the global is a
reference, this field is O. In our example, the first global entry, AGAIN I is the global reference.
Therefore, AGAIN contains the ID 0 and the offset 00000000.

However, if the global is a definition, this field contains the value of the section ID and the offset of the
definition. In our example, the second global entry, TRY, is the global definition. TRY contains the ID 2
and the offset 00000004. Thus, TRY is defined at offset 4 from the stan of the DA TA$ section.

F-15 The Object Module

C)

o

C)

Old Global Field
The old global field contains either FF (hex), which equals TRUE, or 0, which equals FALSE. If the
global is a reference, the field always contains a 0. However, if the global is a definition, the old global
field has binder and loader implications. If the global definition is marked, the old global field is set to 0.
However, if the global definition is unmarked, the old global field is set to FF. In our example, the global
definition, TRY, is marked. Thus, its old global field is set to 0.

The loader and the binder use the old global field for different reasons. The following sections describe
the implications of each.

LOADER. The loader uses the old global field to determine whether to enter a global definition in the
Known Global Table (KGT) when it installs a library. If the old global field is 0, the loader enters the
name and address of the global in the KGT. If the value of the old global field is FF (hex), the loader
does not enter the name and address in the KGT. Refer to the Known Global Table section at the end of
this chapter for detailed information.

BINDER. The binder's output object module contains all the global definitions of its input object
modules. When the binder copies the global definitions to the output object module it changes any old
global fields that contain ° to FF (hex). You can use a number of binder options, such as -MARK or
-ALLMARK to override this behavior. Refer to the DOMAIN Binder and Librarian Reference for more
information.

When multiple definitions of the same global name occur, the binder uses the old global field to select the
global definition. If the input object modules contain multiple definitions of the same global name, the
binder resolves all references to the definition with an old global field of 0. If more than one of the
multiply defined global entries contains a global field of 0, the binder issues this warning message:
Mul tiply defined globals and resolves references to the first definition it encounters. On output
object modules, the old global field is always set to FF unless you change it with the binder option
-MARK.

If none of the global definitions contain a global field that is set to ° (they all contain FF (hex)), the
binder resolves references to the first definition it encounters and does not issue a warning. References
resolved in previous bindings remain unchanged. Knowing how the binder treats multiple globals can be
useful information when you are binding disparate groups of modules with conflicting global names.

DOMAIN compilers and ASM set the old global field to ° when they create global definitions in object
modules.

NOTE: The values in the following four fields: use code, type code, extent, and argUst
are not crucial to the binder's and loader's processing of object modules.

Use Code Field
The 2-byte use code field contains one of the values shown in Table F-3.

Table F-3. Use Code Field Values

Value Meaning

° Global defines or references data.

1 Global defines or references a value.

2 Global defines or references a procedure.

3 Global defines or references a function.

DOMAIN compilers set the use field value to the appropriate value.

The Object Module F-16

--_ _._-_._ _-_ -......... - __ ._--_._ - ~--.

o

o

--------_ ... _----_ .. _._--_ -._-_ .. _.

Type Code Field
DOMAIN compilers currently set this 2-byte field to 1.

Extent Field
Some DOMAIN compilers currently set this 4-byte field to the variable size if the global is the name of
the variable; otherwise, they set the field to O.

Arglist Field
Currently, DOMAIN compilers and the binder set this 4-byte field to O.

Name Field
The 32-byte name field contains the name of the global. Each global must have a unique name. For
more information about names, refer to the "Read-Only Sections" section earlier in this chapter.

F.S.6 Read/Write Section Templates

The read/write section template is the last required element of the object module format. However,
optional SRI records or module information records (discussed in the "Static Resource Information (SRI)
Records" section later in this chapter) can follow the templates. A read/write section template consists
of a series of records used to initialize the read/write sections. Read/write sections contain static data and
instructions that need relocation during loading, or that are modified during execution. Unlike the
read-only sections, which are represented by memory image format, read/write sections are represented
in template format. Data in the read/write sections are impure or relocatable.

The zero section attribute causes the loader to set the contents of the section to zero before processing the
templates. If there is no zero section attribute, the contents of the section are indeterminate before
processing the templates. Note that the templates may not initialize the entire section.

Recall that the pointer to impure data of the object module header is a file pointer to the stan of the
read/write section templates. The templates consist of a series of text records, which in turn, can be
augmented by relocation records and/or a repeat record .. An end record marks the end of the
read/write section templates. We discuss each of these records below.

Text Records
Text records, which can vary in size from 12 to 522 bytes, contain the initial data plus the address and
size of the initialized area. Each record is the stan of a sequence that contains a text record and an
optional relocation record and an optional repeat record. Figure F-7 shows the fields in a text record.

F-17 The Object Module

----_ .. _---_._---_." .. --,.,--".,'-_ .. _- ---,_ .. _-_._--

0

()

~ ---------~--- ... ~ ~.-.. --.--"." ---

0 0

2 ID

4
TEXT_MEM_ADDR

8 Byte Count

10

Text

Figure F-7. A Text Record

We describe each field below. Use the following example for reference.

*** Impure Data ***
Text_Rec:

rd: 2 Text_Mem_Addr: 00000000 Byte_Count:
0000: 00000000 4EF90000 00000000 00140002
0010: 00000000

Reloc_Rec: 4
OFFSET RELOC_BASE ID

1
2
3
4

Text_Rec:

0000
0006
OOOA
0010

5
1
2
3

20

rd: 4 Text_Mem_Addr: 00000000 Byte_Count: 4
0000: 000003EB

Repeat_Rec: 20
End_Rec

o VALUE FIELD. This 2-byte field contains the value 0 to identify the record as a text record.

ID FIELD. This 2-byte field contains the ID of the section to initialize. The ID of a section is the
ordinal position of the field's entry in the section table. In our example, 2 refers to the DATAS section.
Refer to the" Section Index Table" section in this chapter for more information.

TEXT_MEM_ADDR FIELD. This 4-byte field contains the byte displacement from the section's
beginning. The ID plus the offset give the location to initialize with text. This field is identified as
Text_Mem_Addr: 00000000 in our example, which means the start of the DATA$ section.

BYTE COUNT FIELD. This 2-byte field contains the size of the text field that follows. Legal values are
between 1 and 512. In our example, the byte count is 20. If the byte count is odd, the assembler, or
creator of the object module, appends a filler byte to the text record to start the next record on an even
boundary.

The Object Module F-18

o

0

o

TEXT FIELD. The text field contains the initial data. The size of the field can vary from 1 to 512 bytes.
The size is set in the byte count field described above.

Relocation Record
A relocation record is an optional augmentation to the previous text record. The loader perfonns
relocation on 4-byte quantities aligned on even-byte addresses. The size of a relocation record can vary
from 8 to 518 bytes. Our example has four entries. You can have as many as 128 relocation entries
(maximum text size = 512 bytes, or 128 4-byte quantities). Figure F-8 illustrates the fonnat of four
relocation entries.

0

2

4

6

8

10

12

14

16

18

2

Count

···.RelocJO

. ,Offset

.: .: Reloc 10

Figure F-8. A Relocation Record with Four Entries

NOTE: The figure above illustrates a relocation record with four entries. Each bordered
entry constitutes one entry, which contains an offset and a reloc ID field.

We describe the fields below. Use the following example for reference.

Reloc_Rec: 4
OFFSET

1 0000
2 0006
3 OOOA
4 0010

RELOC_BASE_ID
5 ·Global Reference AGAIN
1 ·Section PROCEDURES
2 ·Section DATA$
3 • Section DEBUG$

2 VALUE FIELD. This 2-byte field contains the value 2, which identifies the record as a relocation
record.

COUNT FIELD. This 2-byte field contains the number of relocation entries in this record. The count
field value can vary from 1 to 128. In our example, the count value is 4.

OFFSET FIELD. This 2-byte field provides the location of the 4-byte quantity to relocate. The offset is
relative to the stan of the text record.

RELOC BASE ID FIELD. This 2-byte field contains the ID of a section or a global reference. When
the load~r proc~sses the relocation entry, it adds the address of the section or global to the location
identified by the offset.

F-19 The Object Module

--_ .•.. , .. _ _ •..• _----

o

o

o

Repeat Record
The 6-byte repeat record is an optional augmentation of the previous text record. A repeat record
repeats the previous record n times (repeat count). For example. in the following FORTRAN DATA
statement. we initialize each element of a 20-element array called iarray to 1000:

DATA iarray/20 * 1000/

Figure F-9 illustrates the format of a repeat record. Use the example that follows the figure as a
reference.

a

2
Repeat Count

Figure F-9. A Repeat Record

Text_Rec:
rd: 4 Text_Mem_Addr: 00000000 Byte_Count: 4
0000: 000003E8 [3E8 = 1000 decimal]

20

1 VALUE FIELD. This 2-byte field contains the value 1. which identifies the record as a repeat record.

REPEAT COUNT FIELD. This 4-byte field contains the number of times to repeat the initialization
specified in the previous text record. In the above example. 80 bytes (4 *20) are initialized starting at
rd: 4 Text_Mem_Addr: 00000000.

End Record
The end record marks the end of the read/write section templates. There is only one end record for each
object module. Figure F-l0 illustrates the format of an end record.

°1~ ____________ 3 ______________ ~
Figure F-1 O. An End Record

4 VALUE FIELD. This 2-byte field contains the value 3. which identifies the record as an end record.

The Object Module F-20

o F.S Optional Elements of the Object Module

o

o

There are a few optional elements that are important in fully understanding object modules. These
elements are:

• Module information records (MIR)

• Static Resource Information (SRI) records

• Debug tables

We have already referred to these elements in our discussions within the chapter. Here we explain them
in detail.

F.6.1 Module Information Records (MIR)

Module information records supply additional optional information about the object module. Currently,
two types of MIRs are defined: a maker record, which contains module information, and object file
module information record, which we discuss on the following page. As shown in Figure F-ll, module
information begins with a header containing the number of module information records. In the
illustration, two individual module information records follow the header. You will recall that the object
module header contains a pointer to the module information.

o
Number of Module Information Records

4

Module Information Record

Module Information Record

Figure F-11. Module Information Header (with two records)

We describe the field and records below.

Number of Module Information Records Header Field
This 4-byte header field contains the number of records following it. Each record type can have a varying
format; however, all records begin with a 2-byte ID field and a 2-byte size field.

Maker Version Module Information Record
The format of the maker version module information record is shown in Figure F-12.

F-21 The Object Module

............. __ .---- ._--_ --_._--_

0

o

o

._------_

0
ID

2 Size

4
Version

8
Creation Time

12

Name

Figure F-12. A Maker Version Module Information Record

We explain each field below.

ID FIELD. This 2-byte field identifies the object module record's type. An ID of 1 identifies a Maker
record.

SIZE FIELD. This 2-byte field identifies the byte size of the record including the identification and size
field. The byte size of a Maker record is 44.

VERSION FIELD. This field contains the version number displayed at the end of the compiler message,

No errors, no warnings, compiler Rev nn.mm

or displayed in response to the -VERSION option following the compiler invocation command.

The version number displays in an nn.mm format. The number is encoded into the 4-byte version field
by storing nn in the first two bytes and mm in the last two bytes. The binder displays the the version field.
the creation time field, and the name field from the module information record if you use the -MAKER
option when you bind your input modules. Note that you can use the bind command to display this
information for any object module, for example

$ bind test. bin -maker

This object was made by the following:
ftn, Rev 9.04, Date: 1987/01/28 10:01:36 EDT (Wed)

All Globals are resolved.

CREATION TIME FIELD. This 4-byte field identifies the creation time of the Maker. Note that this is
not the creation time of the object module.

NAME FIELD. This 32-byte field identifies the command name of the Maker such as, Jtn, pas, etc.
The field is blank filled if the name has fewer than 32 characters.

Object File Module Information Record
A second type of MIR is called the object file module information record. The record identifies the
object file for a module in a library file. Figure F-13 illustrates the format of the object file module
information record.

The Object Module F-22

----_. - ..•......... --

0

o

o

0
ID

2 Size

4
Hash

8
Name Length

10

Name

Figure F-13. An Object File Module Information Record

We explain each field below.

ID FIELD. This 2-byte field identifies the kind of object module record. An ID of 2 identifies an Object
File MIR.

SIZE FIELD. This 2-byte field identifies the byte size of the record including the identification and size
field. The byte size of an Object File record is 42.

HASH FIELD. This 4-byte field contains the hash value of the name.

NAME LENGTH FIELD. This 2-byte field contains the length of the name.

NAME FIELD. This 32-byte field identifies the name of the Object File. The field is blank filled if the
name has fewer than 32 characters.

F.6.2 Static Resource Information (SRI) Records

Static resource information (SRI) records are a series of optional 8-byte records that mark object modules
with special resource requirements. For example, a program compiled to use a floating-point coprocessor
will record this special requirement in an SRI record.

If the object module contains SRI records, the global header information contains a pointer to the first
SRI record and contains the number of SRI records that follow contiguously. Figure F-14 illustrates the
format of an SRI record.

F-23 The Object Module

.-_._-_.,------_ _-----... _ _. __ ._-

0

o

o

---- -, ,------.. - ------_ .. _----, ,------------- ... ----

0 Kind

2
Combining Rule

4
Value

Figure F-14. An SRI Record

We discuss each field below.

Kind Field
This 2-byte field distinguishes different types of SRI records. The three kinds of SRI records (with
values) are: hardware SRI (1), software SRI (2), and UNIX Version Number SRI (3). The binder
combines SRI records of the same kind according to the combining rule field.

Combining Rule Field
The binder uses this 2-byte field to combine SRI records. The binder combines SRI records with the
same kind field. Table F-4 lists the values of each combining rule and the rule's definition. Following
the value and rule, we provide a detailed description of how the binder interacts with the values from the
kind field and the combining rule field.

Table F-4. Binder's Interaction with Combining Rule

Value Combining Rule Binder's Interaction

0 Take All Does not combine records. Output obj. module contains multi-
ple SRI records with same Kind field.

1 Take Sum Combines SRIs with previous record having the same Kind field
by adding the two values.

2 Take Max Combines SRI with previous record and produces an SRI whose
value is the maximum of the value fields combined.

3 Take Min Combines SRI with previous record and produces an SRI whose
value is the minimum of the value fields combined.

4 Take Or Combines SRIs by performing a logical OR on values.

5 Take First Combines SRIs by setting value to first encountered record.

6 Take Last Combines SRIs by setting value to last encountered record.

7 Take Unique Like Take All, except binder issues a warning and discards an
SRI with alikekind and value fields.

8 Take Special Indicates that special binder code is needed to combine SRls.

The Object Module F-24

o

o

o

---_._--------

Value Field
The interpretation of this 4-byte field depends on the value of the Kind field. The meaning of the value
field depends on the kind of SRI it is. The three kinds of SRI records are:

• Hardware SRI

• Software SRI

• DOMAIN/IX Version Number SRI

We describe these SRI records below.

HARDWARE SRI. DOMAIN compilers put a hardware SRI record in the object module when the
object module execution requires a particular model of node.' Normally, DOMAIN compilers generate
code that runs on any node model. However, when you use the -CPU option (described in Chapter 7) to
use a particular model's features, the loader verifies that the node contains the required hardware before
invoking the object module.

The value of the kind field of the hardware SRI is 1. The combining rule is Take Or (4). Figure F-15
illustrates the value field.

M68881

ONx60 -------:
PEB-----"

NOTE: The bits within the shaded area are unused.

Figure F-15. Hardware SRI Value Field

If the PEB (Performance Enhancement Board) bit is set to 1, the object module requires the
enhancement board (for example, DN320) for execution.

If the DNx60 bit is set to 1, the object module requires a DN460, DN660, or DSP160 for execution. If
the M68020 bit is set to 1, the object module requires a Motorola 68020 microprocessor. If the M68881
bit is set to 1, the object module requires a Motorola 68881 floating-point coprocessor. The DN330,
DN560, and DSP90 have both the M68020 and the M68881.

SOFTWARE SRI. DOMAIN compilers use the software SRI record in the object module to flag the
loader to perform special action during load time.

The value of the kind field of the software SRI is 2. The combining rule is Take Or (4). Figure F-16
illustrates the value field.

F-25 The Object Module

· ----_ .. _---_ .. __ . __ _ .. _ .. -

o

o

o

Save Section Information ------'
C Library ----~

NOTE: The bits within the shaded area are unused.

Figure F-16. Software SRI Value Field

The C compiler generates object modules with software SRIs and sets the C library bit to 1. Then, the
loader causes C library initialization before executing the object module. The LISP compiler generates
object modules with software SRIs and sets the Save Section Information bit. The loader then saves some
information when loading an object module.

DOMAIN/IX VERSION NUMBER SRI. Object modules that require a version of DOMAIN/IX use this
SRI record, with a kind field of 3, to mark the proper version of DOMAINIIX required for the execution
of the object module. This SRI record is necessary because DOMAIN suppons multiple versions of
DOMAIN/IX, which can have system calls with the same name but different semantics or calling
sequences.

The combining rule for a DOMAIN/IX SRI record is take special (8). Take special means that there is
special code in bind to handle DOMAIN/IX SRI records. Bind flags an error when it attempts to combine
two DOMAIN/IX SRI records with different value fields unless one record (or both) has a value field
meaning any version I as shown in Figure F-17. Refer to the description of the -SYSTYPE option in the
DOMAIN C Language Reference and in the DOMAIN Binder and Librarian Reference for more
information.

Figures F-17 through F-21 illustrate the five settings of the value field of a DOMAIN/IX SRI record.

o

o

NOTE: The bits within the shaded area are unused.

Figure F-17. Value Field of DOMAINIIX SRI record (runs on any version of DOMAINIIXj.

The Objec,r Module F-26

.. _-_ .•. _-_. __ •. ,-,.,._--- ,----_., ... , ,_._",-.,,, .. _,-,,_ -._-_ ..• _---

u

o

CJ

-----.-.... -....• -----~--.--~--.--.-

1

o

Figure F-18. Value Field of DOMAINIIX SRI record indicating object module requires DOMAINIIX
version 4.1 BSD.

1

1

Figure F-19. Value Field of DOMAINIIX SRI record (requires DOMAINIIX version 4.2 BSD).

o

o

Figure F-20. Value Field of DOMAINIIX SRI (requires DOMAIN/IX System 11/).

F-27 The Object Module

- - ... " ---- --.. ~--- .. ----- ... --------------. - --.- .--- -.---~~-

C)

o

C)

._-_ ... _--_. __ . ----..... _-- ----- -_.--.. --_._-----_._----------

o

1

Figure F-21. Value Field of DOMAINIIX SRI record (requires DOMAINIIX System V).

F.S.3 Debugging Information

Debugging information is stored in two distinct places in the object module:

• DEBUGS Section

• Debug Index Table

Each is discussed below.

DeBUGS
DEBUGS is an optional read-only section that contains debugging information for each procedure or
function defined in the object module. The amount of information present for a routine depends on the
options under which it was compiled:

-DB

-DBS

-NDB

The debugging information stored for a routine compiled with the -DB option (the
default) includes the name of the routine, a line number table that relate code
locations to source file numbers, and the number and general type of the arguments.

These options add a symbol table describing names, types, and locations of -DBA
all variables, plus information about the source langUage and file, structural relations
among routines, etc.

No information is a present in DEBUGS for routines compiled with this option. If all
routines are compiled with the -NDB option, there is no DEBUGS section.

Note that because DEBUGS is a section, it is loaded along with the rest of the program. The section name
DEBUG$ is treated as special by debuggers and other programs.

The DEBUGS section contains no information about the actual location of routines. Relating code
location to the associated DEBUGS entry is the primary function of the debug index table. We discuss the
debug index table next. .

Oebug Index Table
The debug index table consists of a set of code offset and debug offset pairs that relate the object module
offset at the beginning of the routine's pure code to the object module offset of the corresponding
DEBUGS information. The table entries also contain some additional information, such as registers saved
by the routine. The format and content of a debug index table entry is described in detail below.

All compiled routines have a debug index table entry, even if they were compiled under the -NDB option
and thus have no DEBUGS information. The debug tables are composed of a debug header record and
one or more debug entry records. Note that the debug index table is not in a section and therefore is not
loaded with the program.

The Object Module F-28

---_ ... _• --._.--- ...

o

o

o

Debug Header Record
The Debug Tables field in the object module header points to the debug header record. The debug
header record contains the format version and the number of debug entries that follow it. Figure F-21
illustrates the format of the debug header record.

o
Format Version

2

Size

6

Figure F-22. Debug Header Record.

We discuss each field below.

FORMAT VERSION. The 2-byte format version field identifies the format of the entries that follow it.
The current format, described below, is version 1.

SIZE. The 4-byte field contains the number of debug entries that follows it.

Debug Entry Record
The debug entry record, which is 16 bytes, relates the PC to the debug tables. Each procedure can have
only one debug entry record, and each entry must be located in ascending order of the code off field.
Note that there should only be one debug entry per procedure, even if the procedure has multiple entry
points. Figure F-22 shows the format of a debug entry record.

F-29 The Object Module

,---" .. , .•. ", ,', .. , .. __ ."-,-".,, .. " .. ,,----_._--_ .. "" ,.-,--.... ,----"""-------.-'-~

o

()

o

........ _-_ ...•... _--_ .. _ ... --_.-•. --_.

Code Offset

4~--~
DEBUG Offset

8~--~
Saved Registers Offset

12~--~
Saved Registers

14~--~ :: ... :.. : :U::pE.8UG:infom1~tion:Level :"'::::"':.::.. . •........... ' ..
:;:::::: ::::::::
:':"::' :'::::-:

, .. "

: H<nYOptim1Zat,dn::Lev~i .
0" ••••• ;.:::::::.:::.:::::: •• ":.: :::::::;:::;;,.:::::::::::;:::::

15~--------~--~~----~--------------------------------~--------~~
..... :.: ... :-':: ... ::·:::'.:::"·:·:·;::::POM~INJ:lag .• ...

..

Figure F-23. Debug Entry Record Format

NOTE: The lightly shaded area (between bytes 14 and 16) has been expanded to
illustrate the record format. Figure F-24 illustrates the actual format of each of
the flags word (2 bytes). The darkly shaded area is currently unused.

We discuss each field below.

CODE OFFSET. The code offset field contains the offset of the start of the code for the procedure from
the start of the object module.

DEBUG OFFSET. The debug offset field points to the debug information for the procedure in the
DEBUG$ section. The value in this field is set to 0 if you compile with the -NDB debugger switch.

SAVED REGISTERS OFFSET. The saved registers offset field is a 32-bit offset of the register save area
from the base of the current stack frame.

SAVED REGISTERS. The saved registers field is the set of saved registers. The set consists of A7-AO
and D7-DO. This information enables the debugger to incrementally recover register contents to access
variables in up-stack routines.

DeBUG INFORMATION LEVEL. The debug information field level contains a value that codes the level of
debugging information available. Table F-5 lists those values.

Ext Alt No

Entry Entry Stack

15 db Information opt. level o

Figure F-24. Format of the Debug Entry Record Flag Word.

The Object Module F-30

,. __ •..... , ,•.... "", ... __ ... , - __ ._------_ .. --_ ",._ ..• ,.,."._---------_ ... -------

o

C)

o

~--~.-.. -.----

Table F-S. Oebug Information level Field Values

Value Meaning Debugger Switches/Comments

0 None -NDB; no debug table; DB OFF set to O.

1 Nam~ Line Nos. -DB option

2 Symbol Table -DBS and -DBA options

3-15 Reserved

OPTIMIZATION LEVEL. This field contains the value of the level of optimization. The values are 0-15.
Interpretation of the level is compiler-dependent.

DOMAIN FLAG. The value 1 indicates a DOMAIN-written operating system or library routine.

NON STO FLAG. The value 1 indicates that the routine does not use standard stack frame conventions.

EXT ENTRY. The ext entry flag field is true if the program has an external entry prologue (XEP). XEP is
the data section code that sets DB (AS) and jumps to the pure code.

AL T ENTRY. The value 1 indicates that the routine has more than one entry point, or an alternate entry
point. However, there is only one entry in the debug index for such routines.

NO STACK FLAG. This field indicates that the routine does not use the stack. The flag can only be
TRUE if the non std flag is also TRUE.

How Oebuggers and Related Programs Locate Oebugging Information

Although debugging is not the main topic here, a sketch of the mechanism by which the debugger and
related programs, such as TB (TraceBack), locate debugging information, may be of interest. The key
factor is that when a program is loaded, its pure code is mapped, not copied, into a process address space.
Given a virtual address, the operating system is able to return the identity of the file currently mapped
there and the offset of the address within it. Given this information for a PC address, a debugger can
locate and read the currently executing object module, look up the offset in the Debug Index Table, and
locate and read the DEBUGS information for the current routine.

F.7 Notes on the Known Global Table (KGT)

The known global table (KGT) provides the linkage mechanism between your program and the installed
libraries. The KGTmaintains a list of globals that are defined in the installed libraries. When you load an
object module that references data from an installed library or calls an installed library routine, the loader
checks the KGT to resolve the reference. The old global field in the global table determines whether to
enter a global in the KGT. Refer to the "Global Table" section earlier in this chapter for detailed
information.

In addition to maintaining a list of globals, the KGT also maintains a list of sections. This enables your
programs and installed libraries to share sections. For example, a FORTRAN routine in an installed
library and a FORTRAN routine in your program can reference the same COMMON block.

Two section attributes control section sharing: the installed section attribute and the look at installed
section attribute. Refer to the "Section Index Table" section earlier in this chapter for information about
these section attributes.

F-31 The Object Module

------_." .. _- ------_._ .. -_._--------_." •... ---_

o

o

o

Index

Primary page references are listed first. Definition pages are in boldface. The letter f indicates that the
reference includes a figure. The letter t indicates that the reference includes a table. Symbols are listed at
the beginning of the index.

Symbols

* (asterisk), 2-2, 3-3t, 3-8, See also Comments
(colon) 3-4, 5-3

$
(comma) 3-4t, See also field, source/destination
(dollar sign) 3-3t
(exclamation point) 3-9, 5-3
(greater than) 5-3 >

% (percent sign) 3-4t, 3-11, See also Directives
(single quotation mark) 3-4t, 4-30

/ (slash) 3-4t, 3-8

A

AS, 1-5, 6-2
A6, 1-5, 6-2
A7, 1-5, 6-2
absolute,

long address, 3-12t
shan address, 3-12t

AC (address constant), 4-2
ADD,
address register direct, 3-12t
address register indirect, 3-12t

with displacem~nt, 3-12t
with index, (8-bit displacement) 3-12t,

(base displacement) 3-12t
with postincrement, 3-12t
with predecrement, 3-12t

address space, 1-3
addressing modes, 3-11 to 3-15

determination, 3-13 to 3-14t
direct/Memory, See absolute, program

counter indirect, program counter memory
summary, 3-12t to 3-13

-ALIGN (binder option),
-ALLMARK (binder option), F-16

. analysis tools, 6-1
argument passing conventions, 6-4 to 6-5, See

also C, data representation, FORTRAN,
function results, Pascal

Index-1

-_ __ ... _,--- ----_ .. -_._ _' ,_._ - _--, _ .. , -'

o

o

o

-~-------

Arithmetic operators, 3-8t
ASM,

command line options, 2-
how it operates, 2-1 to ::
invoking, 2-2 to 2-3
using, 2-1 to 2-3

assembly language, DOMAE"
elements, 3-3 to 3-9
introduction to, 1-1 to 1-
routines, calling, E-5
what is, 1-1 to 1-2

attributes, See section
automatic storage, E-1

B

.bin, 2-1 See also Object r-..1(
binder,

implications with object m

interaction, F-24t, See in::
library files, loader

bitwise operators, See Logica:

c
C (language),

argument type conventions
calling conventions, 6-4,

calling conventions, 6-1 to 6-
E-1 to E-7

C, See C calling conventio=
calling a procedure, 6-6
examples of, 6-10 to 6-1S
pre-SR9.5,E1 to E-7
routines, assembler, E-5
standard, 6-5

character set, 3-3

) 3-15

F-16
jraries,

)rs

~9.5) E-7
e-SR9.5)

characters, special, See speci2 :ters
cleanup handler, 6-2
command line options, 2-3t.

-CONFIG, -IDIR
comments, 3-3
COMMON block, in FORTR
conditional assembly, 4-31

directives, See directives
invoking, 4-31
predicate, 4-31, 4-32

conditional operators, 3-8t
conditional processing, 4-31, ~

conditional assembly
-CONFIG command line optic
%CONFIG, 4-34

4-31

-------- ...•

o

o

o

"!;~~~"'>:-"J 4-4, See also TERN
?;~{,~;):~:.~~i\er option), 7-4

:'!l~~. ,
"~,.: ;,-~, 4-6
:C:;,;"~2::.:::>B), 1-5, See also AS
IO."F:;:!!::~::;.tation, 6-5
:'::~<:tz;::~~-+ addressing, 6-7 to 6-8
~~ direct, 3-12t .

'" '"~ .. ""
~4:\~\~:·;;,~-,::i debugger),
,:,~··:':~~;:.i:::;;.I commands, D-7
"!lr':lj:::.:n::-.::s, D-2
7.:_ ,:':::' : -: debugging assembler routines, D-7
~', :';:r.~'::n. D-2
~: :-L~ .. ::e AS

"'!. ::::C : ~guage level), D-1
,1-: -2E.'--, ~ -·4

,~;,;.:':::-;.' 1-1, See also DB, MDB
.~~';~:.,:~resentationt 3-6
r: ~;:;: -.;
~ :;-:~.-

:-. _:-a:'..:,:~~~: numbers, 7-9
~":.;~:7:- :--2, 4-10
~&~~-uc'..:··"):-Y address modes, 3-12t
J!_,.r'.~:;" .::~-11, 4-30 to 4-45

.!l.,: , .. ~:::.:_:.. c)f, 4-33t
!{4· ::L::j .:onditional assembly, include files"
;-:r- ::::"'::';: directive name
'i'tt ,/jt:.:.:~-r:{:ger arithmetic library function)
~~

:Z::<.'.z::::~l::['lersion number SRI, F-26, See
8:::,'"::,;- 5:~~::!
Z'"t-;:,:::~---';::: " .. -• --:-:.:~

!'":::~;~~:i.:-:' Control Block) E-3, E-6 to E-8

3~·,: .. '~ c,:..... ~5

~:'::~:·;.7l"?dicate %THEN, 4-36
~:~:;;::;:<~? predicate %THEN, 4-37
.!4f~~:E.. 4-3 8
_11' ~;.,:,:::-",:,

2i ,crrz= ..;.-39
~<~~.""'::':5

~'.}:/- -16

Index-3

0

o

0

epilogue c~
EQU, 4-1-
%ERROR.
error code
even-byte
%EXIT, 4--

expression
modes de

expressions
exponentia:

function)
EXTERN.
external s:

FAC, (Flo:_
FCB, (Fra:-

6-8
field, varia:
file pointer
files, See .1-

stack, SOL

floating-po:
in-line.
registers
TER1\\ i~

See alsc
FORTRA~

calling c
FP Frame
FPP (Float:

calling.
exiting,
impleme
notes 0:-:

operatic
function re ~

global,
definitic
referenc
Table, f-

arglis
exter_
form:
ID f:~

name
old ~_

type

--_._----

-6 to 6-7, (pre-SR9.5) E-4

messages, A-I to A-8
.:ary, 2-2

3-7 to 3-9, See also address
:lation
operators
(integer arithmetic library

4-18
3-6

;Joint ACcumulator) 7-9
Jntrol Block) pointers, 6-3,

. e e Pseudo-ops

:1clude, library, Listing, .lst,

to 6-10
• tion set, C-l to C-3

:1tions, 6-4
~ol Block, See FCB
oint Package), 7-3 to 7-9

:)ns, 7-4 to 7-6
~

-6 to 7-9t
6-5

-8
-8
tC F-17
::i, F-17
d, F-17
F-15f

::-15
:i. F-15
field, F-16
field. F-17

Index-4

... __ ._-- __ ... _---_ ... _----_._ .. _.--- .. _._-_._----

._-------------_ _ _._._--........ --- .. _--------- ..

US·':;: odd, F-16
val F-15

0
Global ir. .1 header, F-8 to F-10

creatic ield, F-10
forma,
name -10
numb=: Jals field, F-IO
numb,:: :ions field, F-10
numbe .red libraries field, F-10
numbe :ic resource information

reco:- . F-10
pointe - 11s field, F-10
point:: :d libraries field, F-10
point.::: - resource information
rec~ F-10

stan a :=ld, F-9
versio! -::-10

global tab . to F-17
knowr. ::JT

hardware -25, See also Record
hex repre: " 3-6

0 -IDIR, 2 1

%IF pred: fHEN, 4-42
%IFDEF : e %THEN, 4-43
immediatt)-12t
%INCLU:=)0
include di: 4-30
include fil- :; to 4-31
indirect ac: -g modes, 3-12t
insert file. :lude files
installed Ii 1-5
instructi 0 r:

branch determination, 3-10
extenso '0

format -Ie also directives, op-codes,
pseuc

variant
integer ar: library, 7-1 to 7-3, See also

division. ntiation, modulus,
multiplic_

invoking .~ -2 to 2-3

o JMP, 3-1.::
JSR, 1-6.

Index-5

o
K

KGT (Known Global Table), 1-5, F-31

L

label. 3-3
legal suffixes. B-2
libraries.

installed. 1-5
shared. 1-3

library file. F-22
library routines, 6-5
line number. (of listing file) 5-3, (of

cross-reference listing) 5-4
LIST, 4-19
listing file, 5-1 to 5-4

cross-reference, 5-4
sample, 5-4f

examining the, 5-1 to 5-3f
sample, 5-2f
special symbols, 5-3t

loader, F-2
location counter, 2-1
logical operators, 3-9t
low-level debuggers, D-1 to D-7, See also

DB, MDB o .1st, 2-2

o

M

machine types, valid, B-1
-MAKER (binder option), F-22
maker module information records (MIRs),

F-22 to F-23
creation time field, F-22
format of, F-22f
ID field. F-22
name field, F-22
size field, F-22
version field, F-22

mathematical libraries, 7-1 to 7-9, See also
Floating Point Package (FPP) , integer
arithmetic library

-MARK (binder option), F-16
-MARKSECTION (binder option), F-13
mapped files, 1-4
mapping, 1-4
MDB, (Machine Level Debugger),

command formats, D-3
command semantics. D-4
commands, D-2 to D-4
invocation. D-2

Index-6

--------_ _._ __ --_. __ .. __ _---_ -_ .. -

C)

o

o

-------- .. ---~-------------

invocation under DEBUG, D-3
Memory indirect, 3-12t

post-indexed, 3-12t
pre-indexed. 3-12t

MODULE. 3-2, 4-20
module information records, See maker

module information records (MIRs)
modulus. (integer arithmetic library function)

7-2 to 7-3
MOVE, 1-4, E-4
MOVEM, 3-6, 4-25
multiplication, (integer arithmetic library

function) 7-2

N

naming conventions, See assignment, external
reference names, reference names, reserved
names. section names

-NDB (DEBUG option), F-28
-NL, 5-1
NOLIST. 4-21
-NOLOOKSECTION (binder option), F-13
-NOMARKSECTION (binder option), F-13
non-relocatable code, See pure code
numbers. 3-6 See also decimal

representation, denorI'J:lalized, hex
representation

o
OBJDMP (Shell command), F-2
object code, (in listing file) 5-3
object modules, 1-4 to 1-5, F-1 to F-31

binding. F-1 to F-2
elements of, F-4 to F-20
format, F-5t
generating, See producing
header, F-5t to F-8
interpreting, F-3 to F-4
listing, F2, F3
loading, F-2
producing, F-2
read only, See Read only sections
Specifics, See KGT, Record

odd-byte boundaries, 2-2
offset, 2-2, 3-5, (in listing file) 5-2, 5-4

columns, (of listing file) 5-2
cross-reference, 5-4
pseudo-op that changes the, 2-2

op-codes, legal, B-1 to B-19
operator, 3-3
operators, 3-7 to 3-9t

--- ---_._-_ ... - ... _-_._-_._---_ .. __ .-_ _---

Index-7

C)

o

C)

precedence, 3-7
See arithmetic, conditional, logical, shift

ORG, 2-2, 4-22

p

Pascal,
calling conventions, 6-4

pathname, 2-2 to 2-3
of Include file, 4-30

PEB (Performance Enhancement Board), 7-4,
F-25

pfm_$cleanup, 6-2
position independent code, 1-5, See also pure

code
predicate, 4-32

forms, 4-32t
PROC, 2-2, 4-23
PROCEDURE, 4-24 to 4-25, 6-7
PROCEDURESS, 1-4, 3-2
PROGRAM, 3-2, 4-26
program counter indirect,

with displacement, 3-12t
with index, (with displacement) 3-12t,

(8-bit displacement) 3-12t
program counter memory indirect,

post-indexed, 3-12t
pre-indexed, 3-12t
with index, 3-12t

program environment, DOMAIN,
overview, 1-2 to 1-5, See also Address

space, Installed libraries, Mapping, Object
modules, Run-time environment

Programming tools, See binder, DB, DEBUG,
MDB

prologue code, 1-7, 6-6 to 6-7, E-4
pseudo-ops, 3-11, 4-1 to 4-29

mnemonics, B-1 to B-19, See also specific
pseudo-op name

pure code, 1-5, 3-2
pointer to, F-7

pure sections, 1-4, See also, impure sections

R

read only sections, F-8
advantages of, F-8

read/write section templates, F-17 to F-20
record,

end, F-20
format of, F-20f

module information, F-21 to F-23
format of, F-21f

-----_.---------------.. _-.-

Index-8

C)

o

o

maker, See maker module information
record

number of module information records,
header field, F-21

relocation, F-19
format of, F-19f

repeat, F-20
format of, F-20f

Static Resource Information (SRI),F-23 to
F-28

combining rule field, F-24t
kind field, F-24
value field, F-25 to F-28, See also

Hardware SRI, Software SRI, UNIX
version number SRI

text, F-17 to F-19
format of, F-18f

relocation, F-19
register conventions, notes on, E-6
register direct modes. 3-12t
register indirect modes. 3-12t, See also

indirect addressing modes
register lists, 3-6
register preservation, See register usage
register usage, 6-2
reserved names, 3-4 to 3-6
RETURN, 4-27, 6-7
routine,

Calling a DOMAIN assembly language, E-5
RTS. E-3
run-time environment, 1-5, See a/sa Calling

Conventions, Mathematical libraries

s
SB, See A6
SECT, 2-2, 4-28
sections, 1-4

I addressing the data, 6-7 to 6-8
attributes, F-1, F-12 to F-14

absolute bit, F-13
alignment bit, F-2
field, F-l
install bit, F-2, F-13
instruction bit, F-13
look at installed bit, F-13
mixed bit, F-13
nonreplacable bit, F-13
old bit, F-12
overlay bit, F-12
read-only bit, F-12
zero bit, F-13

cross-reference listing, 5-4

Index-9

C)

o

o

o

C)

o

index table, F-11 to F-14
attributes field, F-12, See also section

attributes, F-11
format of, F-12f
location field, F-11
memory size field, F-12
name field, F-14

pseudo-ops that change the offset within,
2-2

names, 3-4 to 3-6
reference, 3-3
-relative, 3-15
See also DATA, PROC, readonly

shared,
~pecial characters, 3-3t to 3-4t
shift operators, 3-9
software SRI, F-25 to F-26, See also Record
source,

code, (in lisitng file) 5-3
line syntax,
program (or file), 2-1, 3-2

format, 3-2f
SP, See A7

stack, E-1

base (SB), 1-5, See also A6
file, 1-4
frame format, 6-3t, E-2 to E-3f
pointer, (SP), 1-5, See also A7
trace, E-3
unwinding, 6-1

stan address, F-9
string, 3-6
suffixes, legal, B2
supervisor space, 1-3
symbol (in cross-reference listing), 5-4
SYSLIB (global library), 7-4
-SYSTYPE (binder option), F-26

T

TB (DEBUG command), E-3
template, F -1 , See also Read/Write section

templates
TERN, (Floating-Point instruction set) C-l to

C-3, See also CPU
text, (of conditional assembly), 4-31
%THEN,

with %ELSEIF, 4-31, 4-33, 4-36
with %ELSEIFDEF, 4-33, 4-37
with %IF, 4-31, 4-33, 4-42
with %IFDEF, 4-33, 4-43

tools,

----.--- ------_ ..

Index-10

o

()

o

analysis, 6-1
programming, See binder, DB, DEBUG,

MDB
two-pass assembler, 2-1

u
user global space, 1-3
user private space, 1-3
USING, 4-29

v
value, 3-5
%VAR,4-44
-VERSION (compiler option), F-22

w
%WARNING, 4-45

x
XEP, (eXternal Entry Prologue), 6-8, See also

da:a section, addressing the
-XREF, 5-4, See also Listing file

Index-11

