
Order No. 005506
Revision 00

Software Release 9.0

Programming With General System Calls
Update 1

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 008858
Revision 00

Software Release 9.2

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: March, 1986

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, D OMAIN/VAC CESS , D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIDED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIDILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRIDED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Programming With General System Galls describes the general-purpose DOMAIN system calls
you can use to perform services for your programs.

Audience

This manual is intended for programmers who write applications and wish to make use of the
system calls provided by DOMAIN . Before using this manual, you should be familiar with
programming concepts and terminology, and should also understand the DOMAIN
implementation of the programming language you are using.

This manual describes how to use system calls to perform programming tasks, and makes
extensive use of programming examples to clarify explanations. However, the manual does not
provide complete reference information for each call that it demonstrates. For complete reference
information, see the DOMAIN System Gall Reference manual.

Organization of this Manual

This manual contains nine chapters:

• Chapter 1 describes the predefined data type scheme used with system calls, and
provides necessary data type information for C and FORTRAN programmers.

• Chapter 2 describes how to handle errors and faults.

• Chapter 3 describes how to invoke programs and how to obtain process information.

• Chapter 4 describes how to perform 110 using the lOS manager.

• Chapter 5 describes how to program the Display Manager.

• Chapter 6 describes how to use system-defined eventcounts.

• Chapter 7 describes how to manipulate time.

• Chapter 8 describes a variable formatting package for Pascal programmers.

• Chapter 9 describes how to access DOMAIN object types using lOS calls.

This manual uses excerpts of Pascal programs to illustrate the narrative descriptions. Most
excerpts begin with the name of the program from which they were taken. To see the C
translation, find the corresponding program in Appendix A.

You can also view the programs on-line, as described in the next section.

iii Preface

On-Line Sample Programs

The programs from this manual are stored on-line, along with sample programs from other
DOMAIN manuals. We include sample programs in Pascal and C. All programs in each language
have been stored in master files (to conserve disk space). There is a master file for each language.

In order to access any of the on-line sample programs you must create one or more of the
following links:

(For Pascal examples) $ crl -com/getpas /domain_examples/pascal_examples/getpas

(For C examples) $ crl -com/getcc /domain_examples/cc_examples/getcc

To extract a sample program from one of the master files, all you have to do is execute one of the
following programs:

(To get a Pascal program) $ getpas

(To get a C program) $ getcc

These programs prompt you for the name of the sample program and the pathname of the file to
copy it to. Here is a demonstration:

$ getpas
Enter the name of the program you want to retrieve -- stream sio access
What file would you like to store the program in? -- siol.pas

Done.
$

You can also enter the information on the command line in the following format:

For example, here is an alternate version of our earlier demonstration:

$ getpas stream_sio_access siol.pas

GETP AS and GETCC warn you if you try to write over an existing file.

For a complete list of on-line DOMAIN programs in a particular language, enter one of the
following commands:

(for Pascal)
(for C)

$ getpas help
$ getcc help

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following conventions:

UPPERCASE

Preface

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

iv

lowercase Lowercase words or characters in formats and command descriptions represent
values that you must supply.

[]

{ }

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in format and
command descriptions. In simple Pascal statements, braces assume their Pascal
meanings.

A vertical bar separates items in a list of choices.

<> Angle brackets enclose the name of a key on the keyboard.

CTRLjZ The notation CTRLj followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL > key while typing the
character.

Horizontal ellipsis points indicate that the preceding item can be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have
been omitted.

Suggested Reading Paths

Before you read this manual, you should be familiar with the following:

• Getting Started With Your DOMAIN System. This manual provides general
information about using your node .

• DOMAIN System Call Reference (Volumes 1 and 2). These manuals give complete
reference information on all DOMAIN system calls.

In addition, you should be familiar with the DOMAIN language manuals for your programming
language.

Pro blems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UOR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UOR by consulting the DOMAIN System
Command Reference manual. Refer to the ORUOR (Oreate User Ohange Request) Shell
command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader's Response form is located at the back of each manual.

v Preface

Contents

Chapter 1 Using DOMAIN Predefined Data Types

1.1. Why DOMAIN Uses Predefined Data Types
1.2. How to Use Insert Files
1.3. How to Use Predefined Constants and Values
1.4. How to Use DOMAIN Predefined Data Types

1.4.1. Enumerated Types
1.4.2. Sets
1.4.3. Records
1.4.4. Variant Records
1.4.5. Arrays

1.4.5.1. Arrays of Records
1.5. Basic Data Types
1.6. How to Use Data Type Reference Material

1.6.1. Data Types Sections
1.6.2. System Call Descriptions

1.6.2.1. Parameter Descriptions
1.6.3. Error Sections

1.7. Data Type Information for FORTRAN Programmers
1.7.1. Boolean Type
1. 7 .2. Pointers
1. 7.3. Enumerated Types
1.7.4. Sets

1.7.4.1. Setting Bits
1. 7.4.2. Testing Bits
1.7.4.3. Emulating Large Sets

1.7.5. Records
1.7.6. Variant Records
1.7.7. Passing Parameters to System Calls

1. 7.7.1. Passing Integer Parameters
1. 7.7.2. Passing Integer Constants

1.8. Data Type Information for C Programmers
1.8.1. Boolean Type
1.8.2. Sets

1.8.2.1. Setting Bits
1.8.2.2. Testing Bits
1.8.2.3. Emulating Large Sets

1.8.3. Records
1.8.4. Variant Records
1.8.5. Passing Parameters to System Calls

1.8.5.1. Passing Character Arrays
1.8.5.2. Passing Integer Parameters
1.8.5.3. Passing Integer Constants

vii

1-1

1-1
1-1
1-3
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-9
1-9

1-10
1-12
1-12
1-12
1-13
1-13
1-14
1-16
1-18
1-18
1-19
1-21
1-22
1-24
1-29
1-29
1-30
1-30
1-30
1-30
1-31
1-32
1-34
1-36
1-36
1-37
1-37
1-38
1-40

Contents

Chapter 2 How to Handle Errors and Faults

2.1. System Calls, Insert Files, and Data Types
2.2. Status Structure

2.2.1. Accessing Fields of the Status Code with FORTRAN
2.3. Testing for Errors
2.4. Printing Error Messages
2.5. Standardized Error Reporting
2.6. Testing for Specific Errors

2.6.1. Setting a Severity Level
2.7. Faults

2.7.1. Synchronous Faults
2.7.2. Asynchronous Faults

2.8. Handling Faults with Clean-Up Handlers
2.8.1. Establishing a Clean-Up Handler
2.8.2. Releasing a Clean-Up Handler
2.8.3. Multiple Clean-Up Handlers
2.8.4. Exiting a Clean-Up Handler

2.8.4.1. Resignaling Passing the Fault Status
2.8.4.2. Resignaling Passing a Severity Level
2.8.4.3. Re-establishing the Handler and Returning to the Program
2.8.4.4. Returning to the Program

2.8.5. Handling Errors With Clean-Up Handlers
2.9. Handling Faults with Fault Handlers

2.9.1. Establishing a Fault Handler
2.9.1.1. Writing the Fault-Handling Function
2.9.1.2. Establishing the Function as a Handler
2.9.1.3. Setting Target Faults
2.9.1.4. Specifying Handler Types

2.10. Inhibiting Asynchronous Faults

Chapter 3 Managing Programs

3.1. System Calls, Insert Files, and Data Types
3.2. Invoking External User Programs

3.2.1. Invoking a Program in Wait Mode
3.2.1.1. Setting Severity Levels

3.2.2. Invoking a Program in Default Mode
3.2.2.1. Waiting for a Child Process

3.2.3. Invoking a Program in Background Mode
3.3. Passing Arguments to Invoked Programs
3.4. Accessing Arguments from an Invoked Program

3.4.1. Accessing Arguments with PGM_ $GET _ARG
3.4.2. Accessing Arguments with PGM_ $GET _ARGS

3.5. Deleting Arguments
3.6. Passing Streams to an Invoked Program
3.7. Getting Process Information

3.7.1. Getting Information About Your Process
3.7.2. Getting Information About Other Processes

Contents viii

2-1

2-1
2-1
2-2
2-3
2-3
2-4
2-6
2-8
2-8

2-11
2-11
2-12
2-12
2-14
2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-21
2-21
2-21
2-22
2-23
2-24
2-25

3-1

3-1
3-1
3-2
3-3
3-6
3-7

3-11
3-18
3-20
3-20
3-21
3-22
3-24
3-27
3-27
3-29

Chapter 4 Performing I/O with lOS Calls

4.1. System Calls, Insert Files, and Data Types
4.2. Overview of the lOS Manager

4.2.1. Stream Connections
4.2.2. Stream IDs
4.2.3. Default Stream IDs
4.2.4. Stream Markers
4.2.5. lOS Calls for Manipulating Streams

4.3. Creating and Opening Objects
4.3.1. Specifying an Object's Type
4.3.2. Controlling how lOS Creates Objects
4.3.3. Creating a Backup Object
4.3.4. Creating Temporary Objects
4.3.5. Examples of Opening and Creating Objects
4.3.6. Controlling how lOS Opens Objects
4.3.7. Controlling a Stream's Access and Concurrency
4.3.8. Example of Controlling an Object's Access and Concurrency

4.4. Reading and Changing Object Attributes
4.4.1. Inquiring about and Changing Object Attributes
4.4.2. Example of Inquiring about and Changing Attributes
4.4.3. Example of Changing Attributes
4.4.4. Getting Additional Information about Objects and Directories

4.5. Closing and Deleting Objects
4.6. Writing to Objects

4.6.1. Example of Writing to Objects
4.7. Reading Objects
4.8. Reading Objects Sequentially
4.9. Performing Random Access

4.9.1. Nonkeyed Seeking
4.9.2. Keyed Seeking
4.9.3. Example of Using Seek Keys

4.10. Handling Record-Oriented Object Types
4.10.1. Writing Fixed-Length Records
4.10.2. Writing Variable-Length Records
4.10.3. Reading Fixed-Length Records with Seek Keys
4.10.4. Record Formats

Chapter 5 Using the Display Manager

5.1. System Calls, Insert Files, and Data Types
5.2. Overview of the Display Manager
5.3. Starting Out

5.3.1. Creating a New Pad in a New Window
5.3.2. Creating a New Pad in a Window Pane

5.4. Creating Subsequent Pads in Window Panes
5.4.1. Creating Input Pads in Window Panes
5.4.2. Creating Transcript Pads in Window Panes
5.4.3. Creating Edit Pads in Window Panes
5.4.4. Creating Read-Only Edit Pads in Window Panes

ix

4-1

4-1
4-2
4-3
4-3
4-3
4-4
4-5
4-5
4-6
4-7
4-8
4-9
4-9

4-11
4-12
4-15
4-16
4-18
4-19
4-21
4-24
4-24
4-25
4-25
4-27
4-29
4-31
4-31
4-32
4-32
4-35
4-36
4-38
4-41
4-44

5-1

5-1
5-2
5-4
5-4
5-5
5-6
5-7
5-8
5-9

5-10

Contents

5.4.5. Closing Windows and Window Panes 5-10
5.4.6. Sample Program: Creating and Closing Windows and Window Panes 5-11

5.5. Manipulating Windows 5-14
5.5.1. Specifying a Window Number with PAD _ $INQ_ WINDOWS 5-14
5.5.2. Getting Window Positions with PAD _$INQ_ WINDOWS 5-14
5.5.3. Getting Position of Winaow Borders with PAD _$INQ_FULL_ WINDOW 5-17
5.5.4. Changing How Windows Look 5-18
5.5.5. Inquiring About the User's Display and Keyboard 5-21
5.5.6. Specifying Character Fonts 5-23
5.5.7. Changing Scale Factors 5-25
5.5.8. Getting Current Scale Factors with PAD_$INQ_FONT 5-27
5.5.9. 'Sample Program: Creating a Window to Run a Clock 5-29

.5.6. Using Icons 5-34
5.6.1. Creating an Icon 5-34
5.6.2. Positioning an Icon 5-36
5.6:3. Creating Your Own Icon Font 5-38
5.6.4. Sample Program: Using Icons 5-38

5.7. Handling Graphics Input with Frames 5-42
5.7.1. Creating the Frame 5-42
5.7.2. Clearing the Frame 5-43
5.7.3. Sample Program: Creating and Writing to Frames 5-43

5.8. Sending and Receiving Program Input 5-49
5.8.1. Processing System Input in Cooked Mode 5-49
5.8.2. Bypassing System Input Processing with Raw Mode 5-49
5.8.3. Controlling System Output with Cursors 5-52
5.8.4. Writing to an Output Stream: Control Codes and Escape Sequences 5-56

5.9. Using Paste Buffers 5-57
5.9.1. Reading and Writing to Paste Buffers 5-57
5.9.2. Sample Program: Using Paste Buffers 5-58

5.10. Using the Touchpad Manager 5-61
5.10.1. Absolute Mode 5-61
5.10.2. Relative Mode 5-62
5.10.3. Absolute/Relative Mode 5-62
5.10.4. Changing Touchpad Sensitivity with Scale Factors 5-63
5.10.5. Timing Factors for the Touchpad or Bitpad in Relative Mode 5-63
5.10.6. Changing the Origin in Absolute Mode with TP AD _ $SET _MODE 5-63
5.10.7. Setting the Origin in Relative Mode with TPAD _$SET _ CURSOR 5-64
5.10.8. Hysteresis Factor 5-64

Chapter 6 Using Eventcounts 6-1

6.1. EC2 System Calls, Insert Files, and Data Types 6-1
6.2. Overview of Eventcounts 6-2
6.3. How the System Uses Eventcounts 6-4
6.4. Getting and Reading Eventcounts 6-5
6.5. Waiting for Events 6-7
6.6. Responding to Events and Incrementing the Trigger Value 6-9
6.7. Handling Asynchronous Faults during Eventcount Waits 6-13

6.7.1. Disabling Asynchronous Faults with EC2_$WAlT 6-14
6.7.2. Disabling Asynchronous Faults with EC2_$WAlT _SVC 6-16

Contents x

Chapter 7 Manipulating Time

7.1. CAL and TIME System Calls, Insert Files, and Data Types
7.2. How the System Represents Time
7.3. Getting System Time

7.3.1. Getting Local Time
7.3.2. Timezone Offsets

7.4. Converting from System Time to Readable Time
7.5. Converting from Readable Time to System Time
7.6. Manipulating Time

7.6.1. Relative Time
7.6.2. Adding Times
7.6.3. Subtracting Times
7.6.4. Comparing Times

7.7. Suspending Process Execution
7.8. Using the Time Eventcount

Chapter 8 Formatting Variables with VFMT

8.1. VFMT System Calls, Insert Files, and Data Types
8.2. Data Types That Can Be Formatted with VFMT
8.3. Routine Syntax
8.4. Simple Examples
8.5. Building Control Strings

8.5.1. Format Directive Overview
8.5.2. Inserting Literal Text
8.5.3. Repeating Control Strings

8.6. Format Directive Usage
8.6.1. Formatting ASCII Data: The %A Directive
8.6.2. Formatting Floating Point Data: The %F and %E Directives
8.6.3. Formatting Integer Data: The %0, %D, and %H Directives
8.6.4. Special Control String Directives
8.6.5. Format-Related Directives

8.7. Examples
8.7.1. Building a Character Table
8.7.2. Parsing an Input Line
8.7.3. Reading Strings Using a Variety of Formats

Chapter 9 Accessing DOMAIN Types with lOS Calls

9.1. Overview of DOMAIN Object Types
9.2. Accessing Mailboxes

9.2.1. Opening a Mailbox with lOS _ $OPEN
9.2.2. Performing I/O on Mailboxes with lOS Calls
9.2.3. Example of Accessing a Mailbox with lOS Calls

9.3. Accessing Serial Lines
9.3.1. Opening a Stream to a Serial Line
9.3.2. Setting Serial Line Object Characteristics
9.3.3. Performing I/O across a Serial Line

xi

7-1

7-1
7-1
7-2
7-2
7-4
7-6
7-7
7-9
7-9

7-10
7-11
7-13
7-16
7-18

8-1

8-1
8-2
8-2
8-2
8-4
8-4
8-5
8-5
8-5
8-5
8-8

8-10
8-12
8-13
8-14
8-14
8-15
8-19

9-1

9-2
9-3
9-4
9-4
9-5
9-8
9-8
9-8
9-9

Contents

9.3.4. Example of Accessing an SIO Line
9.4. Accessing Files on Magnetic Tape

9.4.1. Creating and Opening a Magtape Descriptor Object
9.4.2. Reading and Changing Magtape Descriptor Attributes
9.4.3. Closing a Magtape Descriptor Object
9.4.4. Example of Writing to a Magtape File
9.4.5. Example of Reading from a Magtape File

Appendix A Sample Programs in C

A.l. PFM_CLEAN_UP.C
A.2. PGM_SHELL.C
A.3. PGM INVOKE.C
A.4. PGM_ OPEN.C
A.5. PGM_EC.C
A.6. PGM INVOKE DIVIDE.C
A.7. PGM_DNIDE.C
A.8. PGM ZERO HANDLER.C - -
A.9. PGM_ORPHAN.C
A.I0. PGM_PASS_ARGS.C
A.ll. PGM_PASSEE_ARG.C
A.12. PGM_PASSEE.C
A.13. PGM_DEL_INV.C
A.14. PGM_PASS_STREAMS.C
A.15. PGM_ YOUR_PROC.C
A.16. PGM_ CHILD _INFO.C
A.17. STREAM_INQ_REC_LEN.C
A.18. STREAM_CHANGE_EXP.C
A.19. STREAM_PUT _FIXED.C
A.20. STREAM_PUT_ VAR.C
A.21. STREAM_PUT_ VAR_UASC.C
A.22. STREAM_GET_ VAR.C
A.23. STREAM GET VAR UASC.C - -
A.24. STREAM UPDATE.C
A.25. STREAM_ WRITE_ TAPE.C
A.26. STREAM_READ _ TAPE.C
A.27. STREAM_SIO_ACCESS.C
A.28. STREAM_MBX_ CLIENT.C
A.29. STREAM_LIST _LINKS.C
A.30. PAD _MAKE_ WINDOWS.C
A.31. PAD_INQ_ WINDOW _SIZE.C
A.32. PAD_FULL_ WINDOW _SHOW.C
A.33. PAD _ WINDOW _SHOW.C
A.34. PAD_INQ_DISP _KBD.C
A.35. PAD SCALE.C
A.36. PAD _INQ_FONT.C
A.37. PAD DIGCLK.C
A.38. PAD_MAKE_ICON.C
A.39. PAD_CREATE_ICON.C
A.40. PAD FILENAME.C
A.4l. PAD RAW MODE.C

Contents xii

9-10
9-12
9-12
9-13
9-13
9-14
9-18

A-I

A-6
A-8
A-9

A-I0
A-II
A-14
A-17
A-18
A-19
A-20
A-22
A-23
A-24
A-26
A-28
A-30
A-32
A-34
A-37
A-39
A-41
A-43
A-45
A-48
A-52
A-56
A-60
A-62
A-64
A-66
A-69
A-71
A-73
A-77
A-80
A-83
A-85
A-89
A-92
A-96

A-I02

A.42. PAD_PASTE_BUFFER.O
A,43. EO _ TIME _KBD _EVENTS.C
A,44. EO_ WAIT_FOR_TIME.C
A,45. CAL_DECODE LOCAL.C
A,46. TIME_ZONE.O
A,47. CAL _ADD _ TIMES.C
A,48. CAL _ SUB _ TIMES.C
A,49. TIME_COMPARE.C
A.50. TIME_WAIT _ABS.C
A.51. TIME_WAIT OR DEFADLT.C

Index

xiii

A-I05
A-I08
A-Ill
A-114
A-lIS
A-117
A-118
A-120
A-123
A-125

Index-l

Contents

Illustrations

Figure 1-1. The Pointer/Data Relationship 1-15

Figure 2-1. The Structure of the Status Data Type 2-2

Figure 3-1. Argument Vector/Argument Configuration 3-19

Figure 4-1. Record-Oriented Object with Count Fields 4-45

Figure 4-2. Record-Oriented Object without Count Fields 4-46

Figure 4-3. Unstructured Record-Oriented Object 4-46

Figure 5-1. The DEBUG Display with the -SRC Option 5-3

Figure 6-1. Relationship Between a Process and an Eventcount 6-3

xiv Contents

Table 1-1.
Table 2-I.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-I.
Table 4-I.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-1I.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 5-I.
Table 5-2.
Table 5-3.
Table 5-4.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 8-I.
Table 8-2.
Table 8-3.
Table 8-4.
Table 9-I.
Table A-I.

Summary of Insert Files

Summary of Faults

Synchronous Program Faults

Synchronous System Faults

Types of Fault Handlers

Severity Levels

Default Streams

Tables

lOS Calls to Manipulate Stream Connections

Object Types

Controlling lOS _ $CREATE when a Name Refers to an Existing Object

Options That Control how to Open Streams

los Options for Specifying Access Types and Concurrency Modes

Access/Concurrency Combinations for Shared Streams

Object Attributes

FORTRAN Carriage Control Characters

Stream Connection Attributes

Type Manager Attributes

Getting Additional Information about an Object

Options to Control an lOS _ $PUT call

Options to Control an lOS Get Call

Available Record Formats

PAD System Calls to Create and Manipulate Icons

Control Codes to Format Output to Windows and Panes

Escape Sequences

Touchpad Scale Factor Values for Display

Summary of EC2 System Calls

EC2 Calls for Obtaining Pointers to Eventcounts

Wait Actions When Asynchronous Faults are Enabled

Wait Actions When Asynchronous Faults are Inhibited

Program Results if a Fault Occurs During a Wait

Summary of Format Directives

%A: Format ASCII Data

%F and %E: Format Floating Point Data

%0, %D, and %H: Format Integer Data

Default SIO Descriptor Objects Pathnames

Summary of C Programs in Appendix A

xv

1-2

2-9

2-11

2-11

2-24

3-4

4-4

4-5

4-7

4-8

4-11

4-13

4-14

4-16

4-16

4-17

4-18

4-24

4-25

4-28

4-45

5-34

5-56

5-57

5-63

6-2

6-5

6-13

6-14

6-18

8-6

8-7

8-9

8-11

9-8

A-I

Contents

Example 2-1.

Example 2-2.

Example 2-3.
Example 2-4.

Example 2-5.
Example 2-6.

Example 2-7.

Example 3-1.

Example 3-2.

Example 3-3.

Example 3-4.

Examples

A Simple Error-Handling Procedure

Formatting Error Messages with System Calls

Testing for Specific STREAM Errors
Establishing A Clean-Up Handler

Invoking a Clean-Up Handler for an Error

Writing a Fault-Handling Function

Establishing a Fault Handler
Invoking an Existing Shell Command

Returning a Severity Level from an Invoked Program

Using an Eventcount to Wait for a Child Process

Invoking a Program in Background Mode
Example 3-5. Converting a Child Process to an Orphan Process

Example 3-6. Passing Arguments to an Invoked Program

Example 3-7. Accessing Arguments with PGM_$GET _ARG

Example 3-8. Accessing Arguments with PGM_ $GET _ARGS
Example 3-9.

Example 3-10.

Example 3-11.
Example 3-12.
Example 4-1.
Example 4-2.

Example 4-3.

Example 4-4.
Example 4-5.

Example 4-6.

Deleting an Argument from the Argument Vector

Passing Streams to an Invoked Process

Getting Information About Your Process

Getting Information About an Invoked Process
Creating an Object

Opening an Existing Object
Checking for Compatible Access Type and Concurrency Modes

Inquiring About an Object
Changing an Object from RIW to Write Access

Writing to a UASC Object Line by Line

Example 4-7. Reading Sequentially From an Object

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys

Example 4-9. Writing Fixed-Length Records

Example 4"'10. Writing Variable-Length Records

Example 4-11.

Example 5-1.
Example 5-2.

Example 5-3.

Example 5-4.
Example 5-5.

Example 5-6.
Example 5-7.

Example 5-8.

Example 5-9.

Example 5-10.

Example 5-11.

Example 5-12.

Seeking Fixed-Length Records
Creating a New Pad with PAD _ $CREATE _ WINDOW

Creating a New Pad with PAD _$CREATE

Creating an Input Pad in a Window Pane
Creating a Transcript Pad in a Window Pane

Creating an Edit Pad in a Window Pane
Creating and Closing Windows and Window Panes
Getting Size and Position of Windows
Using PAD Calls to Manipulate a Full Window

Changing How a Window Looks
Inquiring About User's Display and Keyboard

Selecting a Character Font File
Setting Scale Factors to Raster Units with PAD _ $SET _ SCALE

xvi

2-3

2-5

2-7

2-13

2-19

2-22

2-24

3-3

3-5

3-8

3-13

3-17

3-19

3-21

3-22

3-23

3-25

3-28

3-30

4-9

4-10

4-15

4-19

4-21

4-26

4-29

4-33

4-36

4-39

4-41

5-5

5-5

5-7

5-8

5-9

5-11

5-15

5-17

5-19

5-21

5-24

5-26

Contents

Example 5-13.

Example 5-14.

Example 5-15.

Example 5-16.

Example 5-17.

Example 5-18.

Example 5-19.

Example 5-20.

Example 5-21.

Example 5-22.

Example 5-23.

Example 6-1.

Example 6-2.

Example 6-3.

Example 6-4.

Example 6-5.

Example 7-1.

Example 7-2.

Example 7-3.

Example 7-4.

Example 7-5.

Example 7-6.

Example 7-7.

Example 7-8.

Example 7-9.

Example 7-10.

Example 7-11.

Example 8-1.

Example 8-2.

Example 8-3.

Example 8-4.

Example 8-5.

Example 9-1.

Example 9-2.

Example 9-3.

Example 9-4.

Contents

Using PAD_$INQ_FONT

Using PAD Calls to Create a Clock

Changing a Window to an Icon

Creating an Icon

Changing Icon Position and Character

Using Icons

Creating a Frame

Displaying a Filename at the Top of a File

Using Raw Mode

Using PAD_$CPR_ENABLE to Report Cursor Positions

Using Paste Buffers

Getting and Reading System-Defined Eventcounts

Waiting for System-Defined Eventcounts

Responding to System-Defined Eventcounts

Handling Asynchronous Faults with A Time Eventcount

Handling Asynchronous Faults with EC2 _ $W AIT _ SVC

Getting Local Time Using an Offset

Getting Local Time in Readable Format

Getting Timezone Offset and Name

Converting from System Format to Readable Format

Converting Time from ASCII strings to System Format

Adding a Relative Time to an Absolute Time

Subtracting Two Times

Comparing Two File Creation Times

Suspending Process Execution for a Relative Time

Suspending Process Execution Until an Absolute Time

Using a Time Eventcount to Repeat a Prompt

Writing (Encoding) a Variable to Output using VFMT _ $WRITE

Decoding a Variable using VFMT _ $READ

Building a Character Table of ASCII Characters

Parsing an Input Line

Reading Strings Using a Variety of VFMT Formats

Writing to and Reading from a Mailbox

Accessing a Serial Line

Writing to a Magtape File

Reading from a Magtape File

xvii

5-28

5-30

5-35

5-35

5-36

5-39

5-42

5-44

5-50

5-53

5-58

6-6

6-8

6-10

6-15

6-17
7-3

7-3

7-5

7-7
7-8

7-10

7-11
7-13

7-16
7-17
7-19

8-3

8-3

8-14

8-15

8-20

9-5

9-10
9-15

9-19

Chapter 1
Using DOMAIN Predefined Data Types

DOMAIN provides predefined data types, constants, and values to make using the DOMAIN
system calls easier. This chapter describes how to use these predefined types and values. It
includes sections that address the special needs of FORTRAN and C programmers.

1.1. Why DOMAIN Uses Predefined Data Types

The DOMAIN system provides predefined data types to use when calling system routines to
facilitate passing arguments between your program and the system. Using a predefined data type
lets you declare in a single line of code a complex data type that would otherwise require a
lengthy declaration.

Predefined data types are especially useful when using a programming language that supports
user-defined data types; C and Pascal are two such languages.

FORTRAN, however, does not support user-defined data types. A FORTRAN programmer must
declare each data type using standard FORTRAN data types. This makes the declaration of
some DOMAIN data types more involved for FORTRAN programmers. For this reason, Section
1. 7 describes in detail how FORTRAN programmers should declare each DOMAIN data type.

1.2. How to Use Insert Files

The DOMAIN system routines are divided, by function, into several subsystems. The routines of
each subsystem are prefixed for easy indentification. A subsystem prefix consists of a number of
identifying characters followed by the special characters 11_$11. For example, the routines that
perform stream functions are prefixed with STREAM_ $. These subsystem prefixes are also used
to distinguish DOMAIN data types and constants that are used by the subsystem routines.

The DOMAIN predefined data types for each subsystem are declared in a separate file, known as
an insert file. When you use a. routine belonging to a certain subsystem, you must include that
subsystem's corresponding insert file. For some languages, the insert files define the required
number and type of each system call parameter.

Insert files are located in the directory jSYSjINSj. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program,You include the insert file
jSYSjINSjERROR.lNS.PAS. Using the same routines in a FORTRAN program, you include
jSYSjINSjERROR.lNS.FTN. All insert files are specified using the syntax:

jSYSjINSjsubsystem-prefix.lNS.language-abbreviation

where language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). Table 1-1 shows a
list of all the available insert files.

1-1 Domain Data Types

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. When specifying more than one insert file, the
BASE insert file should be specified first.

BASE insert files are specified using the syntax:

/SYS /INS /BASE.lNS .language-abbreviation

These files contain some basic definitions that are used by a number of subsystem routines. See
Section 1.5 for details about the BASE file.

Table 1-1. Summary of Insert Files

Insert File Operating System Component

/SYS /INS /BASE.lNS.lan Base definitions -- must always be included
/SYS /INS / ACLM.lNS.lan Access control list manager
/SYS/INS/CAL.lNS.lan Calendar
/SYS /INS /ERROR.lNS.lan Error reporting
/SYS /INS /EC2 .INS.lan Eventcount
/SYS /INS /F AUL T .INS .Ian Fault status codes
/SYS /INS / GM.lNS.lan Graphics Metafiles Resource
/SYS /INS / GMF .INS.lan Graphics Map Files
/SYS/INS/GPR.INS.lan Graphics Primitives
/SYS/INS/IPC.INS.lan Interprocess communication datagrams
/SYS /INS /KBD .INS.lan [Useful constants for keyboard keys]
/SYS /INS /MBX.INS.lan Mailbox manager
/SYS /INS /MS.INS Jan Mapping server
/SYS /INS /MTS.INS.lan Magtape/streams interface
/SYS /INS /MUTEX.lNS.lan Mutual exclusion lock manager
/SYS /INS /NAME.lNS.lan Naming server
/SYS/INS/P AD.lNS.lan Display Manager
/SYS/INS/PBUFS.lNS.lan Paste buffer manager
/SYS /INS /PFM.INS.lan Process fault manager
/SYS /INS /PGM.lNS.lan Program manager
/SYS /INS /PM.lNS.lan User process routines
/SYS/INS/PROCl.INS.PAS Process manager (Pascal only)
/SYS /INS /PROC2.INS.lan User process manager
/SYS /INS /RWS .INS.lan Read/write storage manager
/SYS /INS /SIO .INS.lan Serial I/O
/SYS /INS /SMDU .INS.lan Display driver
/SYS /INS /STREAMS.lNS.lan Stream manager
/SYS /INS /TIME.lNS.lan Time
/SYS /INS /TONE.lan Speaker
/SYS /INS /TP AD .INS.lan Touchpad manager
/SYS /INS /VEC .INS.lan Vector arithmetic
/SYS /INS /VFMT .INS Jan Variable formatter

The suffix tt .lan tt varies with the language you're using; it is either tt .FTN", ... PAS", or ... C".

In some cases, you may find insert files to be a useful on-line reference. Be aware, though, that
the way in which insert files are written is not completely consistent. For complete and
consistent information, use the DOMAIN System Call Reference manual.

Domain Data Types 1-2

1.3. How to Use Predefined Constants and Values

In addition to predefined data types, DOMAIN provides predefined values and constants that are
used when calling system routines. The insert files define the values of all predefined constants,
such as completion status codes.

Predefined values correspond to specific predefined data types. That is, if you have declared a
variable to be of a certain predefined data type (an enumerated type or a set, see Section 1.4),
then the values that the variable can have are limited to a number of predefined values.
(However, not all predefined data types have predefined values.)

For example, in the third parameter of the PAD_$CREATE_ WINDOW call, you must specify
which type of pad you are creating. The predefined data type of the parameter is
PAD _$TYPE_ T (INTEGER*2 for FORTRAN). You can specify one of three predefined
values, PAD_$EDIT, PAD_$READ_EDIT, PAD_$TRANSCRIPT. Of course, the program
must include the PAD insert file to reference the PAD routines, data types, and values.

%include ·sys/ins/base.ins.pas·;
%include ·sys/ins/pad.ins.pas·;
%include ·sys/ins/streams.ins.pas·;

VAR
{ Delare variables. }
type pad_$type_t;
display_unit integer;
window pad_$window_desc_t;
stream win stream_$id_t;
status status_$t;

BEGIN
{ Load window values. }

{ Load the parameter with predefined value. }
type := pad_$transcript;

display_unit := 1;

pad_$create_window(' .
0,
type,
display_unit,
window,
stream_win,
status);

{ Null pathname for transcript pad }
{ Null name length for transcript pad }
{ Type of pad }
{ Number of unit}
{ pad_$window_desc_t }
{ stream ID of the new window }
{ Completion status }

You can specify predefined constants for input parameters in a call directly; you do not need to
declare a variable to hold them. (The same is true for non-predefined constants, although, in this
case, the call must expect a scalar type.) However, you must declare a variable to hold output
and input/output parameters. The example above may be written:

1-3 Domain Data Types

%include ·Sys/inS/base.ins.pas·;
%include ·sys/ins/pad.ins.pas·;'
%include ·sys/ins/streams.ins.pas·;

VAR
{ Delare variables. }
window pad $window desc t;
stream win stream_$id_t;-
status status_$t;

BEGIN
{ Load window values. }

pad_$create_windowC' '. {
O. {
pad_$transcript. {
1. {
window.
stream_win.
status);

{
{
{

Null pathname for transcript pad }
Null name length for transcript pad }
Type of pad }
Number of unit}
pad_$window_desc_t }
stream ID of the new window }
Completion status }

The Data Types sections of the DOMAIN System Call Reference manual list any predefined
values that a data type may have.

Note that although FORTRAN programs cannot use predefined data types, they can reference
predefined constants and values. See Section 1.7 for details.

1.4. How to Use DOMAIN Predefined Data Types

Because the DOMAIN operating system is predominantly written in Pascal, the predefined data
types reflect the data types available in that language. The following sections describe the
different kinds of predefined data types, in Pascal terms. Each section contains the following
information:

• The purpose of the data type.

• How to recognize the data type in the insert files.

• A program segment showing how to declare and load a variable of that data type.

The fact that C also supports user-defined data types permits C programs to use the predefined
data types. For this reason, C programmers should find this section useful. However, C and
Pascal are not completely compatible; some data type differences exist, and certain circumstances
require C programmers to employ special programming techniques. Section 1.8 describes these
differences and techniques in order to make programming on DOMAIN easier for C programmers.
If you are a C programmer, read Section 1.8 before reading this section.

FORTRAN does not support user-defined data types. A FORTRAN programmer must declare
all data types using standard FORTRAN data type statements. Section 1. i describes how
FORTRAN programmers should declare each DOMAIN data type.

Domain Data Types 1-4

1.4.1. Enumerated Types

Enumerated types are used by DOMAIN when an argument may contain one of a number of
constant values. For example, the following is the insert file data type declaration of the mapped
segment (MS) access mode parameter:

ms_$acc_mode_t =
(ms $r. { Read }

mS=$rx. { Read and execute }

ms_$wr. { Read and write}
ms_$wrx. { Read. write. and execute }

ms_$riw); { Read with intent to write}

The following program segment declares and loads a parameter of this type, in Pascal:

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ms.ins.pas';

VAR
{ Declare parameter. }
access ms_$acc_mode_t;

BEGIN
{ Load parameter with predefined value. }
access - ms_$r;

1.4.2. Sets

A set type is used by DOMAIN when an argument can contain a combination of constant values.
For example, the following is the insert file data type declaration of the Process Fault Manager
(PFM) options parameter.

(pfm $fh backstop.
pfm=$fh=multi_level);

The following program segment declares and loads a parameter of this type, in Pascal:

%include '/sys/ins/pfm.ins.pas';

VAR
{ Declare parameter. }
options : pfm_$fh_opt_set_t;

BEGIN
{ Load parameter with both predefined values. }
options : = [pfm_ $fh _ b'ackstop. pfm _ $fh _ mul ti _level] ;

1-5 Domain Data Types

1.4.3. Records

A record type is used by DOMAIN when an argument contains multiple pieces of information
that may be accessed separately.

For example, the following is the insert file data type declaration of the calendar (CAL) readable
time format.

cal_$timedate_rec t = PACKED RECORD { Returned from cal_$decode_time }
year:
month:
day:
hour:
minute:
second:
END ;

integer
integer
integer
integer
integer
integer

The following program segment declares and loads a parameter of this type, then accesses one
field in it:

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';

VAR
d clock

BEGIN

{ Get decoded local time -- load d clock. }
cal_$decode_local_time (d_clock);

{ Access the year. }
writeln ('the year is ' ,d_clock.year);

1.4.4. Variant Records

A variant record type is used by DOMAIN when an argument contains multiple pieces of
information that may be typed differently, depending on usage.

For example, the following is the insert file data type declaration of the status parameter.

TYPE status_$t = PACKED RECORD CASE integer OF
1: (fail: boolean; { TRUE if module couldn't handle error }

sUbsys: o .. 127; { SUbsystem code }

modc: o .. 255; { Module code }
code: integer); { Module specific error }

2: (all: integer32); { Used for testing for specific value }
END

Domain Data Types 1-6

The following program segment declares and loads a parameter of this type, in Pascal:

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status

BEGIN

open (a_file_variable,
file_name,
'NEW' ,
status); {Returns status in one form}

IF status.all <> status $ok THEN
writeln ('STATUS CODE IS :', status.code) {Writes it in another}

1.4.5. Arrays

An array type is used by DOMAIN when an argument contains a large number of smaller,
identical data types. That is, an array of characters, an array of pointers, etc. The most
commonly encountered array is the character array.

For example, the following is the insert file data type declaration of the pathname data type:

CaNST name_$pnamlen_max = 256; { Max length of pathname }

To declare and load the pathname parameter in Pascal, write:

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/name.ins.pas';

VAR
pathname : name_$pname_t;

BEGIN

writeln ('Input File Name: ');
readln (pathname);

1.4.5.1. Arrays of Records

Arrays of records are used by DOMAIN when an argument contains a number of record
structures. The graphics interface to DOMAIN (the GPR and GM subsystems) uses arrays of
records to pass information.

1-7 Domain Data Types

One of the more complicated data types is the GPR_ $WINDOW _LIST _ T data type. It is an
array of GPR _ $WINDOW _ T records. A GPR _ $WINDOW _ T record is made up of two
fields that are, in turn, records made up of two fields.

The following is the insert file data type declaration of the GPR _ WINDOW _LIST _ T and all
the declarations that make up a window record:

{ Lists of windows }
gpr_$window_list_t = ARRAY[l .. 10] OF gpr_$window_t;

{ Windows on a bitmap}
gpr $window t = RECORD

-Window_base: gpr_$position_t;
window size: gpr_$offset_t
END;

{ Bitmap positions}
gpr_$position_t = RECORD

x_coord. y_coord: gpr_$coordinate_t
END;

{ Bitmap offsets}
gpr $offset t = RECORD

-x_size.-y_size: gpr $coordinate t;
END;

{ Bitmap coordinates}
gpr_$coordinate_t = integer16;

The following program declares a window list and loads it by calling GPR _ $INQ _ VIS _ LIST.
It then writes the coordinates of the returned windows to standard output.

%include 'sys/ins/base.ins.pas';
%include ·sys/ins/gpr.ins.pas';

VAR

BEGIN

num of windows
total windows
visible list

integer; { Number of subwin to return}
integer; { Number of subwin that exist}
gpr_$window_list_t; { List of visible subwindows }

num of windows := 2
{ Returns list of visible subwindows when a window is obscured. }
gpr_$in~vis_list(num_of_windows. { Number of subwindows to return}

total_windows. {Returns number of subwin that exist}
Visible_list. {Returns list of visible subwindows }
status);

{ Print the visible window coordinates. }
writeln ('VISIBLE WINDOW COORDINATES');

n = 1;

Domain Data Types 1-8

DO WHILE (n <= num of windows) BEGIN
WITH visible listEn] DO
writeln (n);
writeln ('x-coordinate', window_base.x_coord);
writeln ('y-coordinate', window base.y coord);
writeln ('length', window_size.X_size);
writeln ('height', window_size.y_size);
n = n + 1;
writeln 0;

END;

1.5. Basic Data Types

There are a number of data types that are used by more than one subsystem. They are defined
in the BASE insert file. These data types include:

STATUS $T

NAME $PNAME T

STREAM $ID

TIME $CLOCK T

UID $T

Describes a status code. The value of the status code tells
whether a system call succeeded or failed. A detailed
description of how to use the return status appears in Chapter
2.

Describes a DOMAIN pathname. A pathname IS used to
specify a system object.

Describes a unique identifier for an I/O connection. The
stream ID is used in most I/O system calls.

Describes the internal clock representation of time.

Describes the unique identifier for a file type.

C programmers, note that the C BASE insert file predeclares a Boolean type to be an unsigned
character type, and also declares a II true" and "false" value to test Booleans. See Section 1.8.1
for more information.

1.6. How to Use Data Type Reference Material

In addition to this task-oriented handbook, DOMAIN provides you with the DOMAIN System
Gall Reference manual. The reference is arranged alphabetically. The subsystems are ordered
alphabetically, and each call within a subsystem is ordered alphabetically.

The material for each subsystem is organized into the following three parts:

1. Detailed data type information (including illustrations of records for the use of
FORTRAN programmers).

2. Full descriptions of each system call.

3. List of possible error messages.

1-9 Domain Data Types

1.6.1. Data Types Sections

A subsystem's Data Types section precedes the subsystem's individual call descriptions. Each
Data Types section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME _ $REL _ABS _ T = 2-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type's purpose.
Where applicable, any predefined values associated with the type are listed and described. Below
is an example of a data type description for the TIME _ $REL _ABS _ T type.

A 2-byte integer. Indicator of
type of time. One of the following
predefined values:

TIME_$RELATIVE - relative time

TIME_$ABSOLUTE - absolute time

In addition, the record data types are illustrated in detail. These illustrations are primarily
intended to assist FORTRAN programmers in constructing record-like structures, but have been
designed to convey as much information as possible for all programmers. Each record type
illustration:

• Clearly shows FORTRAN programmers the structure of the record that they must
construct using standard FORTRAN data type statements. The illustrations show the
size and type of each field. (How to declare predefined records using FORTRAN is
described in Section 1.7.)

• Describes the fields that make up the record.

• Lists the byte offsets for each field. These offsets are used to access fields
individually.

• Indicates whether any fields of the record are, in turn, predefined records.

The following is the description and illustration of the CAL _ $TIMEDATE _ REC _ T predefined
record:

Domain Data Types 1-10

CAL $TIMEDATE REC T Readable time format. The
diagram below illustrates the
CAL $TIMEDATE REC T
data type:

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

integer

integer

integer

integer

integer

integer

field name

year

month

day

hour

minute

second

Field Description:
year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour
(24 hr. format).

minute
Integer representing the minute.

second
Integer representing the second.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations. See Section 1.7.6 for details
on how to handle variant records.

1-11 Domain Data Types

1.6.2. System Call Descriptions

The system call descriptions are listed alphabetically for quick reference. Each system call
description contains:

• An abstract of the call's function.

• The order of call parameters.

• A brief description of each parameter.

• A description of the call's function and use.

These descriptions are standardized to make referencing the material as quick as possible.

1.6.2.1. Parameter Descriptions

Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase II ,in
xxx: format u, where xxx: is the predefined data type. Pascal· or C programmers, look for this
phrase to determine how to declare a parameter.

FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. It describes the data type in atomic terms that you can use, such as, "This is a 2-byte
integer". In complex cases, FORTRAN programmers are referenced to the respective subsystem's
data type section. FORTRAN programmers should read Section 1.7 to learn how to construct
complex DOMAIN data types in FORTRAN.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access
New access mode, in MS _ $ACC _MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS $R Read access.

MS $WR Read and write access.

MS $RIW Read with intent to write.

An object which is locked MS _ $RIW may not be changed to MS _ $R.

1.6.3. Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error: ~

• Predefined constant for the status code .

• Text associated with the error.

Domain Data Types 1-12

The following is a portion of the NAME Error Section:

NAME _ $DffiECTORY _FULL
NAME _ $ALREADY _EXISTS
NAME $BAD PATHNAME

The directory has no room for any more objects.
The pathname given is not unique.
The pathhname given is not a valid pathname.

See Chapter 2 for details on how to use status codes.

I

1.7. Data Type Information for FORTRAN Programmers

As stated above, DOMAIN predefined data types reflect the data types available in Pascal.
FORTRAN programmers must emulate these data types using standard FORTRAN data type
statements. You do not need to know Pascal to emulate these data types, but understanding the
purpose of the Pascal data types is useful.

The following sections are organized by the data type to be emulated. Each section explains:

• The purpose of the data type.

• How to recognize the type in the reference material.

• How to emulate the type using FORTRAN.

• How to reference a variable of this type.

1.7.1. Boolean Type

Boolean types are variables that evaluate to either TRUE or FALSE. A . Boolean value is
described in the reference material and the insert files as a Boolean.

There are two ways to emulate a Boolean type in FORTRAN. Which way you use depends on
the way the Boolean is used by the system. DOMAIN uses a Boolean either as a separate data
type or as a field in a record structure.

If the system uses a Boolean as a separate type, emulate the Boolean type by using the LOGICAL
type. A Pascal Boolean is one byte long and a LOGICAL is four bytes long. However, they both
evaluate to TRUE or FALSE and a Boolean value returned from the system may be loaded into a
logical parameter.

The following program segment declares a LOGICAL variable into which the system loads a
Boolean value. The program then writes the value to output, using logical formatting.

1-13 Domain Data Types

* Declare SIO_$ variables
I NTEGER *4 status

stream id I NTEGER * 2
LOGICAL value b {Boolean value }

* INQUIRE CTS ENABLE
CALL sio $inquire (stream id.

2 SiO_$cts_enable.
2 value b.
2 status)

IF (status .NE. status $ok) THEN
CALL error_$print (status)

END IF

{ Option }
{ Returned by system }

* Print whether Boolean is TRUE (T) or FALSE (F)
write (*.40) value_b

40 format ('The CTS_ENABLE is '.LS)

If the system uses a Boolean as a field in a record structure, declare the field to be a CHAR type.
Although the fact that a Pascal Boolean is one byte long and a LOGICAL is four bytes long when
the Boolean type stands alone, in a record structure, the Boolean must be one byte long.

To test the Boolean for TRUE and FALSE:

1. Use the ICHAR transfer function to convert the CHAR value to an integer.

2. Test for equivalence to o. If the value is equivalent to 0, the Boolean value is FALSE.

See Section 1.7.5 for information about record structures.

1. 7.2. Pointers

Throughout the documentation you will see references to a data type known as a pointer. A
pointer is an address; it "points" to another data structure. A pointer is four bytes long. Many
system calls return pointers as parameters. A common example is a call that returns a pointer to
an array.

In the reference material a pointer may be described in one of three ways:

• With the phrase "in UNN _PTR format".

• As being a pointer.

• As the address of a structure.

DOMAIN FORTRAN provides the POINTER statement as an extension to the ANSI standard, in
order to make using returned pointers easier.

Domain Data Types 1-14

The POINTER statement permits you to access the data to which an address points. The syntax
IS:

POINTER / pointer-variable /based-variable-list

Where:

pointer-variable

based-variable-list

Must be defined as an INTEGER*4 before you refer to it in the POINTER
statement. (A pointer is a 32-bit address.)

Lists variable{s) pointed to by the pointer-variable. If the pointer-variable
points to a record structure, you specify all the variables that make up the
record structure, in low byte to high byte order. (Section 1.7.5 describes
how to emulate record structures.) The pointer refers directly to the
variable listed first. Subsequent variables in the list are offset by the sum
of the sizes of the previous variables, so that once the pointer variable is
loaded, you may directly access any listed variable.

If the pointer points to an array, you may dimension the array in the POINTER statement.

PGM $GET ARGS is an example of a system call that returns a pointer.
PGM_ $GET _ARGS retrieves command line arguments. It places each argument in a record,
preceded by the length of the argument. PGM_ $GET _ARGS then loads an array with pointers
to each record. PGM_ $GET _ARGS returns two parameters, the number of arguments it has
retrieved, and a pointer to the array of pointers.

Figure 1-1 illustrates the GET _ARG pointer arrangement:

Returned Array of Retrieved Argument
Pointer Pointers Records

Index

pointer ~ 0: pointer argJen arg_text

1 : pointer
argJen arg_text

n: pointer ~ L-1_a_r_g ___ le_n--Jl....-a_rg ___ t_e_x_t ...J

Figure 1-1. The Pointer/Data Relationship

The argument record structure consists of a 2-byte integer in the low end and a character string
of up to 128 characters in the high end. The character string is the text of the argument, and the
integer is the length of the argument.

The following program example uses the PGM_ $GET _ARGS call to illustrate how to handle
pointers in FORTRAN.

1-15 Domain Data Types

%include "/sys/ins/base.ins.ftn"
%include "/sys/ins/pgm.ins.ftn"

CHARACTER*128 arg_text
* Declare pointers as 4-byte integers

INTEGER*4 argv_ptr. { Pointer to array of args }
2 arg_ptr. {Pointer to record}

*

2 argv
INTEGER*2 arg_count.

2 arg_len.
2 i
Associate pointer and based list
POINTER /argv_ptr/argv(0:127)
POINTER /arg_ptr/arg_len. arg_text

{ Pointer to array }
{ Pointer to record }

* Load argument records and pOinter array
CALL pgm_$get_args (arg_count.

2 argv_ptr)

* Print out commmand line arguments
DO 10 i = O. arg_count-1

* Associate ptr variable and ptrs in array
arg_ptr = argv(i)
write(*.*) "argument" .i. " is '. arg_text(l:arg_len)

10 CONTINUE

END

Once a value has been assigned to a pointer, you can reference its based variables. In the
example, the system assigns the address of the array to argv _ ptr, which allows you to reference
argv. You must explicitly assign each address in the array to the argument pointer, arg_ptr:

This permits you to reference the variables in the argument record.

1. 7 .3. Enumerated Types

Pascal implements a data type known as an enumerated type, in which the type is associated
with a list of values. A variable defined to be of this data type can only take one of these values.

In the reference material, the parameter description for an enumerated type ends with the
sentence:

Specify only one of the following predefined values: (for input parameters)

or

One of the following predefined values: (for output parameters)

This sentence is followed by a list of the predefined values that a variable of this type may hold.
These values are defined by the subsystem insert file, and each corresponds to the ordinal position
of the value in the data type definition.

Domain Data Types 1-16

To use an enumerated type in FORTRAN, define the parameter variable as a 2-byte integer, and
load the variable using the predefined values listed in the parameter description.

The following is the description of the weekday parameter to the CAL _ $WEEKDA Y call:

weekday

The computed day of the week, in CAL_$WEEKDAY _ T format.
This is a 2-byte integer. One of the following predefined values:

CAL_$SUN
CAL_$MON
CAL_$TUE
CAL $WED
CAL $THU
CAL_$FRI
CAL $SAT

The following program example calls CAL _ $WEEKDAY to determine what day of the week a
specific date falls on. It uses the predefined values to determine what has been returned.

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/cal.ins.ftn'

*

10

INTEGER*2 year.
2 month.
2 day.
2 weekday

Get the input
print *. 'What year? '
read (*.10) year
print *. 'What month? '
read (*.10) month
print *. 'What day? '
read (*.10) day
format (BN.I3)
weekday = cal_$weekday

2
(year.
month.
day) 2

IF (weekday .EQ. cal_$mon) THEN
print *. 'The day of the week is Monday'
ELSE IF (weekday .EQ. cal_$tue) THEN
print *. 'The day of the week is Tuesday'
ELSE IF (weekday .EQ. cal_$wed) THEN
print!*. 'The day of the week is Wednesday'
ELSE IF (weekday .EQ. cal_$thu) THEN
print *. 'The day of the week is Thursday'
ELSE IF (weekday .EQ. cal_$fri) THEN
print *. 'The day of the week is Friday'
ELSE IF (weekday .EQ. cal_$sat) THEN
print *. 'The day of the week is Saturday'
ELSE IF (weekday .EQ. cal_$sun) THEN
print *. 'The day of the week is Sunday'

END IF

1-17 Domain Data Types

1.7.4. Sets

Another Pascal data type you must emulate is a set. A set is a bit field. In the reference
material, the parameter description for a set ends with the sentence:

Specify any combination of the following predefined values:

This sentence is followed by a list of predefined bit values to be used in setting the bit field.
These values are defined by the subsystem insert file, and each corresponds to the position of a
bit.

In FORTRAN, the bit field is always an integer variable. The parameter description will
explicitly state whether it is a 2-byte or 4-byte integer.

There are some exceptions to this case. One is the MBX_$CHANNEL_SET _ T data type, used
to indicate channel numbers in a call to MBX_ $GET _REC _ CHAN _SET, and another is the
GPR $KEYSET T data type, used to specify a set of keys in a call to
GPR _ $ENABLE _ INPUT. These exceptions can be handled using set emulation calls supplied
in the FTNLIB library. See Section 1.7.4.3 for information about the set emulation calls.

1. 7 .4.1. Setting Bits

In some cases you must set bits in a field that you pass to the system. The following is the
description of the options parameter to the PGM_$ESTABLISH_FAULT _HANDLER call.

options

A value specifying the type of handler you want to establish,
in PFM_$FH_ OPT _SET _ T format. This is a 2-byte integer.
Specify any combination of the following set of predefined
values:

PFM $FH_MULTI LEVEL
To declare a multi-level fault handler which handles faults
for its own program level and all subordinate levels.

PFM $FH BACKSTOP
To establish a backstop fault handler which takes effect
after all non-backstop handlers have taken effect.

In this case, you declare the options parameter to be an INTEGER*2, and assign a value to it by
adding the predefined values:

Domain Data Types 1-18

%include '/sys/ins/pfm.ins.ftn'

* Declare the variable
INTEGER*2 options

* Set both bits
options = pfm_$fh_multi_level + pfm_$fh_backstop

* Use the parameter in a (function) call
handle = pfm_$establish_fault_handler (t_status.

options,
func_p.
status)

1. 7 .4.2. Testing Bits

In some cases the system returns a bit field that you must test to determine which bits are set.
SIO _ $INQUffiE returns an option parameter that may return the SIO _ $ERR _ ENABLE
option. This option is a 2-byte bit field that may have the predefined values:

SIO $CHECK_PARITY
SIO $CHECK_FRAMING
SIO $CHECK_DCD _ CHANGE
SIO $CHECK CTS CHANGE

To test a single bit (or test each bit separately):

1. AND the returned value and the predefined bit value.

2. If the result is 0, the bit is not set.

The following program segment calls SIO _ $INQUIRE, asking which types of errors are enabled.
SIO _ $INQUIRE returns a bit field, which the program tests bit-by-bit to determine the types of
errors that are enabled.

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/streams.ins.ftn'
%include '/sys/ins/sio.ins.ftn'

I NTEGER * 4
INTEGER * 2

status
value_m.
stream id

* OPEN an SIO line w/ STREAM_$OPEN

* INQUIRE enabled errors
CALL sio_$inquire (stream_id.

2 sio_$err_enable.
2 value_m.
2 status)

IF (status .NE. status_$ok)
2 GO TO ERROR

1-19

{ Bit field}

{ Option }
{ Specify bit mask}

Domain Data Types

* Test each bit and print enabled errors
IF (AND(value_m.sio_$check_parity) .NE. 0)

2 print *. 'Parity errors enabled'

IF (AND(value_m.sio_$check_framing) .NE. 0)
2 print *. 'Framing errors enabled'

IF (AND(value_m.sio_$check_dcd_change) .NE. 0)
2 print *. 'DCD line changes reported'

IF (AND(value_m.sio_$check_cts_change) .NE. 0)
2 print *. 'CTS line changes reported'

To test a number of specific bits:

1. Create a mask and set the bits you wish to test, using the predefined values.

2. AND the mask and the returned value. The AND results in a bit field in which the
bits you set in the mask are either set or not, depending on the state of the
corresponding returned value bits. That is, if bit 5 of the returned value was set, bit 5
in the result is set.

3. Test the bits using the predefined constants. If you want to test a bit for being set,
add the predefined value to the value against which you test the result. If you want
to test a bit for being not set, simply omit it from the test value.

The following program segment again calls SIO _ $INQUffiE, asking which types of errors are
enabled. In this case, it tests two bits for two specific conditions:

1. Both bits set.

2. One bit set, one bit not set.

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/streams.ins.ftn'
%include '/sys/ins/sio.ins.ftn'

I NTEGER* 4 status
I NTEGER * 2 mask
INTEGER*2 value_m.

stream id

* OPEN an SIO line w/ STREAM_$OPEN

* INQUIRE enabled errors
CALL sio_$inquire (stream_id.

{ Bit mask}

2 sio_$err_enable. { Option}
2 value_m. { Specify bit mask}
2 status)

* Create the mask
mask = sio_$check_parity + sio_$check_framing

Domain Data Types 1-20

* Test for both bits set

IF (AND(mask.value m) .EQ.

2 (Sio_$CheCk_parity + Sio_$check_framing)
2 print *. "Parity and Framing enabled"

* Test for parity off. framing on

IF (AND(mask.value_m) .EQ. sio_$check_framing)
2 print *. "Parity not enabled - Framing enabled"

1.7.4.3. Emulating Large Sets

Two cases exist for which the set emulation techniques described above will not work; the
MBX _ $ CHANNEL _ SET _ T data type (used to indicate channel numbers in a call to
MBX_ $GET _ REC _ CHAN _ SET), and the GPR _ $KEYSET _ T data type (used to specify a
set of keys in a call to GPR_$ENABLE_INPUT).

In both cases, there are no predefined values for the bits. :MBX _ $ CHANNEL _ SET _ T is a set
of integers from 0 to 255. GPR_$ENABLE_INPUT is a set of characters not exceeding 256.

To initialize, set, clear, and test these sets, use the set emulation calls supplied in the FTNLIB
library.

To initialize a set, use the Lm _ $INIT _ SET call with the following syntax:

Lm _ $INIT _ SET(name-of-set, number-of-elements-in-set)

A set should be initialized before using it.

To set a bit in a set, use the Lm _ $ADD _ TO _ SET call with the following syntax:

Lm _ $ADD _ TO _SET(name-of-set,number-of-elements-in-set,new-element)

Lm _ $ADD _ TO _ SET must be called once for each element you wish to add to the set.

To clear a bit from a set, use Lm_$CLR_FROM_SET call with the following syntax:

Lm _ $CLR _ FROM _ SET(name-of-set,number-of-elements-in-set,element-to-clear)

Lm _ $CLR _ FROM _ SET must be called once for each element you want to clear from the set.

To test a bit in a set, use the Lm _ $MEMBER _ OF _ SET call with the following syntax:

boolean = Lm _ $ME:MBER _ OF _ SET(name-of-set,number-of-elements-in-set,
element-to-test)

The Boolean value returns TRUE if the tested element is in the set.
The following program example declares the channel set as an 8-element INTEGER*4 array.
This creates a bit field of 255 bits -- each bit corresponds to a channel number. The program
uses the set emulation calls to specify that messages be accepted from two channels - 2 and 4.

1-21 Domain Data Types

%INCLUDE ·/sys/ins/base.ins.ftn·
%INCLUDE ·/sys/ins/mbx.ins.ftn·

INTEGER*4 handle, status, retptr, retlen
INTEGER*2 buffer(4) , returned_buffer(4),open_channels
POINTER /retptr/returned_buffer
INTEGER*4 chanset(8) {Declare channel # set (265 bits) }

{ Initialize the set. }
CALL lib_$init_set(chanset, { Set name }

2 int2(256)) { Number of elements }

{ Set channel 2. }
CALL lib_$add_to_set(chanset, {Set name}

2 int2(256) , { Number of elements}
2 int2(2» {Element to set -- channel 2}

{ Set channel 4. }
CALL lib $add to set(chanset,

2 - - - int2(256) ,
2 int2(4» {Element to set -- channel 4}

* Create the mailbox -- ten communication channels, 100 bytes in
* the queue.

open_channels = 0
CALL mbx $create server('mailbox',

2 - - int2(7) ,
2 int2(100) ,
2 int2(10) ,
2 handle,
2 status)

CALL error('mbx $create_server' ,status)
write(*,*) 'Mailbox opened.'

* Get the messages

100 CALL mbx_$get_rec_chan_set(handle.
2 chanset, { Channel set}
2 iaddr (buffer) ,
2 int4 (8).
2
2
2

1.7.5. Records

retptr.
retlen.
status)

A record is a complex data structure encoded into a single variable. A record may be composed
of several "fields" of information that can be referenced separately. Records are of differing
sizes, depending on the information being transferred.
The reference material is useful in determining how to emulate records.

The parameter description for a record will end with the sentence: II This data type is X bytes
long. See the XXX Data Types for more information. II This sentence tells you the length of the
record, in bytes, and references you to the appropriate subsystem Data Types section.

Domain Data Types 1-22

AB described in Section 1.6.1, each record is illustrated in the Data Types section, in order to
make it easier for you to understand what it is you wish to emulate.

The illustrations show the size and type of each field, and describe the fields that make up the
record. The following is the illustration of the CAL _ $TTh1EDATE _ REC _ T predefined record:

CAL $TTh1EDATE REC T

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

integer

integer

integer

integer

integer

integer

Readable time format. The
diagram below illustrates the
CAL $TTh1EDATE REC T
data type:

field name

year

month

day

hour

minute

second

This record may be passed to the system using the CAL _ $ENCODE _ TTh1E call, or returned
from the system using the CAL _ $DECODE _ TTh1E call.

Typically, you use an array to emulate a record, and you use EQUIVALENCE statements to
access the record's fields as separate variables.

The following program segment accepts the six fields of the CAL $TTh1EDATE REC T
record as separate input variables, and passes the full record to CAL _ $ENCODE _ TTh1E as a
6-element 2-byte integer array. It does so by equivalencing each field to an element of the array.

1-23 Domain Data Types

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/time.ins.ftn'
%include '/sys/ins/cal.ins.ftn'

* Emulate cal $timedate rec t
INTEGER*2 c=C10Ck(6).- -{ Array -- full record}

2 year. { Six separate fields}
2 month.
2 day.
2 hour.
2
2

minute.
second

* Equivalence each element with a field
EQUIVALENCE (c_clOCk(l).year).

2 (c_clock(2).month).
2 (c_cloCk(3).day).
2 (c clock(4) ,hour) ,
2 (C=ClOCk(5) ,minute),
2 (c_clock(6).second)

* Emulate time $clock t
INTEGER*2 clOCk(3) -

* Get input variables
WRITE (*.*) 'Input year in integer format: '
READ (*.10) year

WRITE (*.*) 'Input second in integer format: '
READ (*.60) second

10 FORMAT (BN.I3)

* Convert TIMEDATE REC T to CLOCK T
CALL cal_$encode_time-(c clock.

2 clock)

1.7.6. Variant Records

Pascal implements a special type of record, the variant record, in which the definition of the
record may differ, depending on the value of a field in the record or the record's usage. An
example of this is the SIO _$VALUE_ T predefined type.

This record may alternately be a character, a positive 2-byte integer, a Boolean value, or a set
(bit field).

In the Data Types section of the reference material, all possible variations are illustrated.

One way to emulate a variant type is to declare the parameter to be whichever form you wish to
reference. In cases where you wish to reference the parameter in more than one form, declare
more than one variable and use each form where appropriate.

Below is the data type description of the variant record SIO _ $V ALUE _ T.

Domain Data Types 1-24

predefined
type

byte:
offset

0: EJ
or

0: Integer

or

0: Ibo~e4
or

0: Integer

Field Descriptions

c
A character value.

1

An integer value.

b
A boolean value.

es
A set of enabled errors.

field name

c

b

es

The following program segment uses the SIO _ $INQUffiE call to determine several options for a
serial line. The value returned by this call is in the format SIO _ $V ALUE _ T and may be a
2-byte integer, a Boolean value, a character value, or a bit field, depending on which option is
being inquired. The program declares variables of all four types and uses whichever is
appropriate to the specific call.

* This program inquires and changes attributes of a serial line

~1nclude ·/sys/ins/base.1ns.ftn·
~1nclude ·/sys/ins/streams.ins.ftn·
~include ·/sys/ins/sio.ins.ftn·
~include ·/sys/ins/error.ins.ftn·

* $OPEN variables
INTEGER*4 status
CHARACTER*256 pathname
INTEGER * 2 name length,

2 stream_id,
2
2

access,
conc

1-25 Domain Data Types

* Declare 4 forms of the parameter
LOGICAL value b { Boolean value }

CHARACTER*l value c { Character value
I NTEGER * 2 value_i, { Integer value

2 value m { Bit field}

* Get pathname as input
print *, 'Input the pathname'
read (*,10) pathname

10 format (BN,ABO)
namelength = LEN(pathname)

CALL stream_$open (pathname,
2 name length,

}
}

2 stream $write, { Access}
2 stream=$no_conc_write, { Concurrency}

*

2 stream id,
2 status)

IF (status .NE. status_$ok)
2 GO TO ERROR

INQUIRE serial line # (INTEGER)
CALL sio_$inquire (stream_id,

2 sio_$line,
2 value_i,
2 status)

IF (status .NE. status_$ok)
2 GO TO ERROR

write (*,30) value i
30 format ('The serial line is ' ,I3)

* INQUIRE if CTS is enabled (BOOLEAN)
CALL sio_$inquire (stream_id,

2 sio_$cts_enable,
2
2

value b,
status)

IF (status .NE. status_$ok)
2 GOTO ERROR

write (*,40) value b
40 format ('The CTS ENABLE is ' ,L5)

* INQUIRE the KILL char (CHARACTER)
CALL sio_$inquire (stream_id,

2 sio_$kilL,
2 value_c,
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

Domain Data Types 1-26

{ Option }

{ Option }

{ Option }

* Test for -X using hex value

*

IF (ICHAR(value_c) .EQ. 16#18) THEN
print *. 'The KILL character is control X'

ELSE
GOTO ERROR

END IF

INQUIRE which errors are enabled (MASK)
CALL sio_$inquire (stream_id.

2 sio_$err_enable. { Option }
2 value_m.
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

* Test each bit and print if set
IF (AND(value_m. sio_$check_parity) .NE. 0)

2 print *. "Parity errors enabled"

IF (AND (value_m. Sio_$check_framing) .NE. 0)
2 print *. "Framing errors enabled"

IF (AND(value_m. Sio_$check_dcd_change) .NE. 0)
2 print *. "DCD line changes reported"

IF (AND(value_m. Sio_$check_cts_change) .NE. 0)
2 print *. "CTS line changes reported"

You may also equivalence the variants. The status returned from system calls is a variant type.
Typically, after each call you test the status. all form (the full four bytes) against the success
status, STATUS _ $OK. However, when checking for a STREAM_ $END _ OF _FILE status,
you test against the status. code form of the record.

Below is the data type description of the STATUS _ $T type.

byte: field name offset 31 0

0: integer all

or

0: fail

subsys

1 : mode
0

2: integer eode

1-27 Domain Data Types

all
All 32 bits in the status code.

code
A signed number that identifies the
type of error that occurred (bits 0 - 15).

modc
The module that encountered the
error (bits 16 - 23).

subsys
The sUbsystem that encountered the
error (bits 24 - 30) .

fail
The fail bit. If ~his bit is set, the error
was not within the scope of the module invoked,
but occurred within a lower-level module (bit 31) .

The program segment below equivalences both variants and accesses whichever form of the status
it needs.

* Declare status
INTEGER*2 status(2)
INTEGER*4 status all
INTEGER*2 status code

* Declare GET REC variables

* Open a file

* Read a record
Call STREAM_$GET_REC (stream_id,

IADDR(info rec), {
LEN (info_rec), {

* Test the returned status

retptr,
retlen,
seek_key,
status);

IF (status all .NE. status $ok) THEN

{
{
{
{

Address of buffer }
Length of buffer }
Pointer to returned data }
Length of returned }
Returned seek key }
Returned status }

IF (status_code .EQ. stream_$end_of_file) THEN
GOTO CLOSE

END IF
GOTO ERROR

ENDIF

Domain Data Types 1-28

1.7.7. Passing Parameters to System Calls

DOMAIN requires that integer variables and integer constants be of a particular length,
depending on the usage of the parameter.

1.7.7.1. Passing Integer Parameters

When passing integer parameters to system calls, it is important to pass an integer that is the
size that the call expects.

In the reference material, the second sentence of a parameter description informs you whether the
expected integer is a 2-byte or 4-byte integer.

If you declare all your integer data types as INTEGER*4, it is important to note that some call
parameters expect a 2-byte integer value; for example, pathname lengths.

To pass an integer to a system call that expects a 2-byte integer, either explicitly declare the
parameter variable to be INTEGER*2, or typecast the parameter to be INTEGER*2 with the
INT2 intrinsic function.

The two following examples show both ways of passing an integer properly. The
NA11E _ $SET _DIR call permits you to set a naming directory by passing the pathname of the
directory and the length of the pathname. The length parameter is expected to be a 2-byte
integer. Example A declares the length parameter as a 2-byte integer. Example B declares the
length parameter as a 4-byte integer, and typecasts the parameter in the call.

EXAMPLE A

INTEGER*4 status
. CHARACTER*256 pathname

INTEGER * 2 namelength

CALL name_$set_ndir (pathname.
2 name length.
2 status)

EXAMPLE B

INTEGER *4 status
CHARACTER*256 pathname
INTEGER*4 name length

CALL name_$set_ndir (pathname.
2 INT2(namelength).
2 status)

1-29 Domain Data Types

1. 7.7.2. Passing Integer Constants

DOMAIN system calls permit you to specify integer constants as parameters where applicable.
Again, it is important that when you do so, you are careful to pass a constant of the expected
length.

In FORTRAN, integer constants have the same length as the default integer type (INTEGER*4).
To pass a constant to a call that expects a 2-byte integer value, type cast the constant with the
intrinsic function INT2.

1.8. Data Type Information for C Programmers

As stated above, DOMAIN predefined data types reflect the data types available in Pascal.
However, you can use standard C programming statements to emulate the data types that are not
supported.

In addition, the way that parameters are passed also reflects Pascal. That is, parameters are
passed by reference rather than by value. In the C insert files, each system call is declared using
the .. std _ $call il keyword that informs the compiler that your program will pass parameters to
system calls by reference. Obviously, this will effect the way you specify parameters. Section
1.8.5 describes how to avoid problems when passing parameters to system calls.

The following four sections describe data types to be emulated. Each section explains:

• The purpose of the data type.

• How to recognize the type in the reference material.

• How to emulate the type using C.

• How to reference a variable of this type.

1.8.1. Boolean Type

Boolean types are variables that evaluate to either TRUE or FALSE. A Boolean value IS

described in the reference material and the insert files as a Boolean.

The C BASE insert file predeclares a boolean type, to emulate a Pascal Boolean type. It also
declares a true and false value for use with the boolean type.

1.8.2. Sets

Another Pascal data type you must emulate is a set. A set is a bit field.

In the reference material, the parameter description for a set ends with the sentence:

Specify any combination of the following predefined values:

Domain Data Types 1-30

This sentence is followed by a list of predefined bit values to be used in setting the bit field.
These values are defined by the subsystem insert file, and each corresponds to the position of a
bit.

In C, the bit field is usually an integer variable. However, the insert files predefine the bit field
types so that you may use the predefined types listed in the parameter descriptions.

There are some exceptions to this case. One is the MBX_$CHANNEL_SET _ T data type, used
to indicate channel numbers in a call to MBX _ $GET _ REC _ CHAN _ SET, and another is the
GPR $KEYSET T data type, used to specify a set of keys in a call to
GPR _ $ENABLE _ INPUT. These exceptions can be handled using set emulation calls supplied
in the FTNLIB library. See Section 1.8.2.3 for information about the set emulation calls.

1.8.2.1. Setting Bits

In some cases, you must set bits in a field that you pass to the system. The following is the
description of the options parameter to the PGM_$ESTABLISH_FAULT _HANDLER call.

options

A value specifying the type of handler you want to establish,
in PFM_$FH_ OPT _SET _ T format. This is a 2-byte integer.
Specify any combination of the following set of predefined
values:

PFM $FH_MULTI LEVEL
To declare a multi-level fault handler which handles faults
for its own program level and all subordinate levels.

PFM $FH BACKSTOP
To establish a backstop fault handler which takes effect
after all non-backstop handlers have taken effect.

In this case, you declare the options parameter using the predefined type
PFM_$FH_ OPT _SET _ T, and assign a value to it by adding the predefined bit values:

#include <stdio.h>
#include "/sys/ins/pfm.ins.c"

1* Declare the variable. *1
pfm_$fh_opt_set_t options;

/* Set both bits. */
options = pfm_$fh_multi_level + pfm_$fh_backstop;

1* Use the parameter in a (function) call. *1
handle = pfm_$establish_fault_handler (t_status,

options,
func_p,
status);

1-31 Domain Data Types

1.8.2.2. Testing Bits

,1

In some cases, the system returns a bit field that you must test to determine which bits are set. i~
SIO _ $INQUffiE returns an option parameter that may return the SIO _ $ERR _ ENABLE
option. This option is a 2-byte bit field that may have the predefined values:

SIO _ $CHECK PARITY
SIO _ $CHECK_FRAMING
SIO _ $CHECK_DCD _ CHANGE
SIO $CHECK_ CTS CHANGE

To test a single bit (or test each bit separately):

1. AND the returned value and the predefined bit value.

2. If the result is 0, the bit is not set.

The following program segment calls SIO _ $INQUffiE, asking which types of errors are enabled.
SIO _ $INQUffiE returns a bit field (value.es), which the program tests bit-by-bit to determine
the types of errors that are enabled.

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/sio.ins.C"
#include "/sys/ins/error.ins.c"

status;

/* SIO_$ variables */
sio_$value_t value;
stream_$id stream_id;

/* Open an SIO line with STREAM OPEN. */

/* INQUIRE enabled errors. */
sio_$inquire (stream id,

sio_$err_enable,
value.es,
status);

if (status.all != status_$ok)
error_$print (status);

if «value.es t sio $check parity) != 0)
printf ("Parity ;rrors ;nabled \n");

if «value.es t sio $check framing) != 0)
printf ("Framing-errors-enabled \n");

/* Option */

/* Bit set */

/* Bit set */

if «value.es t sio $check dcd change) != 0) /* Bit set */
printf ("DCD lin; chang;s r;ported \n");

Domain Data Types 1-32

if «value.es ~ s10 $check cts change) != 0) /* Bit set */
pr1ntf ("CTS line changes reported \n");

To test a number of specific bits:

1. Create a mask and set the bits you wish to test, using the predefined values.

2. AND the mask and the returned value. The AND results in a bit field in which the
bits you set in the mask are either set or not, depending on the state of the
corresponding returned value bits. That is, if bit 5 of the returned value was set, bit 5
in the result is set.

3. Test the bits using the predefined constants. If you want to test a bit for being set,
add the predefined value to the value against which you test the result. If you want
to test a bit for being not set, simply omit it from the test value.

The following program segment again calls SIO _ $INQUIRE, asking which types of errors are
enabled. In this case, it tests two bits for two specific conditions:

1. Both bits set.

2. One bit set, one bit not set.

#1nclude <std10.h>
#include "/sys/ins/base.ins.c"
#include II /sys/1ns/streams. ins. C"

#1nclude "/sys/ins/s1o.1ns.c"
#1nclude "/sys/ins/error.ins.c"

status;

/* SIO $ variables */
sio $value t value;
stream_$id- stream_1d;

/* Open an SIO line with STREAM OPEN. */

/* INQUIRE enabled errors. */
sio_$inqu1re (stream 1d.

sio_$err_enable.
value.es.
status);

if (status.all != status_$ok)
error_$pr1nt (status);

/* Create a mask. */

/* Option */

mask = s1o_$check_par1ty + Sio_$check_framing;

/* Test for both bits set. */
if «value.es ~ mask) ==

(s10 $check parity + s10 $check framing))
printf (Ilparity and Framing enabled \n");

1-33 Domain Data Types

1* Test for parity off. framing on. *1
if «value.es t mask) == sio_$check_framing);
printf (llparity enabled - Framing not enabled \nll);

1.8.2.3. Emulating Large Sets

Two cases exist for which the set emulation techniques described above will not work; the
MBX_$CHANNEL_SET _ T data type (used to indicate channel numbers in a call to
MBX_ $GET _ REC _ CHAN _ SET), and the GPR _ $KEYSET _ T data type (used to specify a
set of keys in a call to GPR_$ENABLE_INPUT).

In both cases, there are no predefined values for the bits. MBX _ $CHANNEL _ SET _ T is a set
of integers from 0 to 255. GPR_$ENABLE_INPUT is a set of characters not exceeding 256.

To initialize, set, clear, and test these sets, use the set emulation calls supplied in the FTNLIB
library.

To initialize a set, use the LIB _ $INIT _ SET call with the following syntax:

LIB _ $INIT _SET(name-of-set, number-of-elements-in-set)

A set should be initialized before using it.

To set a bit in a set, use the LIB _ $ADD _ TO _ SET call with the following syntax:

LIB _ $ADD _ TO _ SET(name-of-set,number-of-elements-in-set,new-element)

LIB _ $ADD _ TO _ SET must be called once for each element you wish to add to the set.

To clear a bit from a set, use LIB_$CLR_FROM_SET call with the following syntax:

LIB _ $CLR _ FROM _ SET(name-of-set,number-of-elements-in-set,element-to-clear)

LIB_$CLR_FROM_SET must be called once for each element you wish to clear from the set.

To test a bit in a set, use the LIB _ $MEMBER _ OF _ SET call with the following syntax:

boolean = LIB_$MEMBER_ OF _SET(name-of-set,number-of-elements-in-set,
element-to-test)

The Boolean value returns TRUE if the tested element is in the set.

The following program example declares the channel set in the usual way, using the predefined
MBX_$CHANNEL_SET _ T type. This creates a bit field of 255 bits - each bit corresponds to
a channel number. The program uses the set emulation calls to specify that messages be accepted
from two channels -- 2 and 4.

Domain Data Types 1-34

#include </sys/ins/base.ins.c>
#include </sys/ins/mbx.ins.c>
#include </sys/ins/error.ins.c>

/* Declare channel set. */
mbx_$chan_set_t chan_set;

maine) /* Program server */
{

initO;

/* Create the mailbox. */
mbx_$create_server(mbx_name,

mbx_namelen,
mbx_chansize,
mbx_maxchan,
mbx_handle,
status);

if(status.all != 0)
{ error $print name(status, "error creating ma.ilbox" , 22);

eXit(l); -
}

printf(IIMailbox %s was successfully opened.\n",mbx_name);

/* Initialize set. */
lib_$init_set(chan_set, /* Name */

256); /* Number of elements */

/* Set channel 2. */
lib_$add_to_set(chan_set, /* Name */

256, /* Number of elements */
2) ; /* Channel # to set */

lib $add_to_set(chan_set,
256,
4);

/* Keep getting messages until there are no more clients. */
do
{ mbx_$get_rec_chan_set(

mbx_handle,
chan_set, /* Channel set */

ctsrv_msg_buf,
srv_msg_Ien,
mbx_retptr.
mbx_retlen,
status);

if (status.all != 0)
{ error $print name(status, "error getting record ll

, 20);
return(!); -

}

printf (IiMessage received from channel %4d\n ll ,mbx_retptr->mbx_hdr. chan);

1-35 Domain Data Types

1.8.3. Records

A Pascal record is analogous to a C structure. Both may be composed of several "fields" of
information that can be referenced separately.

The C insert files predefine structures to emulate the records required by system calls.

In the reference material, if a parameter has a predefined record type, the first sentence of the
description ends with the phrase, "in XXX format II , where XXX is the predefined type.

For example, the CAL $DECODE LOCAL TIME system call has one parameter,
decoded clock. The following is the parameter description:

decoded clock

The local time. in CAL_$TlMEDATE_REC_T format. This is a 6-element
array of 2-byte integers. The first element represents the year.
the second the month. and so on.

The following program segment declares and loads this record, then accesses one field in it:

#include "/sys/ins/base.ins.c";
#include "/sys/ins/cal.ins.c";

/* Get decoded local time -- load d clock. */
cal_$decode_local_time (d_cloCk);

/* Access the year. */
printf ("The year is %s \n".d_clock.year);

To determine the field names of predefined records, see the illustrations in the appropriate Data
Types section, or read the appropriate insert file.

1.8.4. Variant Records

A Pascal variant record permits a single field of a record to contain anyone of several data types,
depending on usage. A Pascal variant record can be emulated by using C unions.

The C insert files predefine structures to emulate the variant records required by system calls. In
the reference material, if a parameter has a predefined variant record type, the first sentence of
the description ends with the phrase, "in XXX format II , where XXX is the predefined type.

For example, the status parameter returned by most system calls is a variant record, in
STATUS _ $T format. The following program declares status parameter, loads it by calling the
system call, then accesses it in two different forms.

Domain Data Types 1-36

#include "/sys/ins/base.ins.c";
#include "/sys/ins/error.ins.c";

name_$pname_t name;
short len;
status_$t status;

name_$get_ndir(name.
length.
status);

/* Check status. */
if (status.all != status $ok) 1* Access one form */

printf(" status code-is: %d". status.code) 1* Access another form */

To determine the field names of predefined records, see the illustrations in the appropriate Data
Types section, or read the appropriate insert file.

NOTE: DOMAIN C permits you to reference members of structures
or unions that are inside other structures or unions
without specifying all of the member names.

1.8.5. Passing Parameters to System Calls

As discussed above, parameters are passed to DOMAIN system calls by reference. Because of
this, you must pay particular attention to the way you declare and pass character arrays.

In addition, DOMAIN requires that integer variables and integer constants be of a particular
length, depending on the usage of the parameter.

NOTE: If a call has no parameters. you must specify
an empty set of parentheses for the call to
work properly.

1.8.5.1. Passing Character Arrays

The way that you pass a character array to a system routine depends on how the array was
declared. In C, a character array may be declared two ways:

1. As a II true II array, using the following syntax:

char example_array[25];

2. As a pointer to a character array, using the following syntax:

char *example _ array;

In the insert files, all character arrays are declared as II real II arrays. For example, the following
definition of the NAME _ $PNAME _ T data type appears in the BASE insert file:

#define name_$pnamlen_max 256 /* Max pathname length */
typedef char name_$pname_t[name_$pnamlen_max];

1-37 Domain Data Types

If you declare a pathname using the predefined type, specify the parameter as follows:

short
status;
len;

name_$set_ndir (pathname.
len.
status);

1* Declared using predefined type *1

1* Passed by reference *1

If you declare a pathname using the pointer syntax, you must dereference the pointer before you
pass it. Specify the parameter as follows:

status_$t
short
char

status;
len;
pathname; 1 Pointer syntax *1

name_$set_ndir (*pa.thname. 1* De-reference the pointer *1
len.
sta.tus);

Because the system call is a Ilstd_ $call'l, it expects the parameter to be passed by reference. If
you do not dereference the pointer before you pass it, an extra (incorrect) level of indirection is
introduced.

NOTE: When the system returns a character array. it may not be
null-terminated. If you intend to use it as a string. you
must explicitly null-terminate it or use the length that
the system returns as well.

1.8.5.2. Passing Integer Parameters

When passing integer parameters to system calls, it is important to pass an integer that is the
size that the call expects.

In the reference material, the second sentence of a parameter description informs you whether the
expected integer is a 2-byte or 4-byte integer.

If you declare all your integer data types as lIint ll , it is important to note that an Ilintil type on
the DOMAIN system is a 32-bit integer -- not a 16-bit integer.

To pass an integer to a system call that expects a 2-byte integer, either explicitly declare the
parameter variable to be a IIshorVI type, or type cast the IlinVI parameter to be short. The two
following examples show both ways of passing an integer properly. The N.A1-1E_$SET _Dffi call
permits you to set a naming directory by passing the pathname of the directory and the length of
the pathname. The length parameter is expected to be a 2-byte integer. Example A declares the
length parameter as a 2-byte integer. Example B declares the length parameter as a 4-byte
integer, and typecasts the parameter in the call.

Domain Data Types 1-38

EXAMPLE A

status_$t status;
short len; 1* Declared to expected size *1
name_$pname_t pathname;

name_$set_ndir (pathname.
len.
status);

EXAMPLEB

status_$t status;
int len;
name_$pname_t pathname;

name_$set_ndir (pathname.
(short) len. 1* Type cast to expected size *1
status);

There is a third case to consider. If you use the II strlen II function to load the length of a
character array, note that it always returns a 4-byte integer. Again, you must either type cast
this returned value or declare the returned value as a short integer and force strlen to load the
4-byte value into a 2-byte variable. Example A typecasts the value that strlen returns as the
length of the pathname. Example B forces strlen to load the returned value in a short integer.

EXAMPLE A

status $t status;
name_$pname_t pathname;

name_$set_ndir (pathname.
(short)strlen(pathname).
status);

EXAMPLE B

status_$t status;
short len; 1* Declared to expected size *1
name_$pname_t pathname;

1* Force strlen to return into 2 bytes. *1
len = strlen(pathname)

name_$set_ndir (pathname.
len.
status);

1-39 Domain Data Types

1.8.5.3. Passing Integer Constants

DOMAIN system calls permit you to specify integer constants as parameters, where applicable.
Again, it is important that when you do so, you are careful to pass a constant of the expected
length.

Normally, the C compiler considers all constants as 4-byte entities. However, in DOMAIN system
calls, any constant between the values -32768 and 32767 is passed as a 2-byte entity. This is done
because DOMAIN system calls most commonly expect 2-byte values where constants can be used
(i.e, the length of names).

If you are passing a constant to a call that expects a 4-byte integer value, you must type cast the
constant to be long. Use a long constant (Le., 20L) to typecast a constant to be long.

Domain Data Types 1-40

Chapter 2
How to Handle Errors and Faults

Any serious programming effort should include a method of handling runtime errors. Runtime
errors take two forms:

System errors Error condition returned from system calls and detected by the algorithms of
your program. For example, passing an invalid parameter to a system call
results in a system error.

Faults Error condition detected (usually) by the hardware. For example, an attempt
to access protected memory results in an access violation fault.

The first half of this chapter describes how to detect system errors, and how to format and print
the corresponding error messages, using the ERROR system calls. The second half of the chapter
describes how to handle faults, using the PFM system calls.

2.1. System Calls, Insert Files, and Data Types

To format and print errors, use system calls with the prefix ERROR. In order to use ERROR
system calls, you must include the appropriate insert file in your program. The ERROR insert
files are:

jSYS JINS jERROR.lNS. C
jSYS JINS jERROR.lNS.FTN
jSYS JINS jERROR.lNS.P AS

for C programs.
for FORTRAN programs.
for Pascal programs.

To handle faults, use the system calls with the prefix PFM. You must also include the
appropriate insert file. The PFM insert files are:

jSYS JINS jPFM.lNS.C
jSYS JINS jPFM.INS.FTN
jSYSjINSjPFM.lNS.PAS

for C programs.
for FORTRAN programs.
for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data type
and system call descriptions in it are not necessarily comprehensive. For complete information on
the data types and system calls in these insert files, see the DOMAIN System Call Reference.

2.2. Status Structure

Most DOMAIN system calls return a 32-bit integer status code. A status code indicates the
condition in which the call completed. If a call succeeds, the value of the status code is o. If the
call fails, the returned status will vary, depending on the nature of the failure.

The structure of a status code permits it to convey several pieces of information. A status code is
a variant record, in STATUS _ $T format. Figure 2-1 shows a diagram of this data type:

2-1 Errors and Faults

byte: field name offset 31 0

0: integer all

or

0: fail

subsys

1 : modc
0

2: integer code

Figure 2-1. The Structure of the Status Data Type

If a call fails, each of the fields contains the following:

all

fail

subsys

modc

code

The full status - usually used to test for successful completion.

The fail bit -- if this bit is set, the error was not within the scope of the module
invoked, but occurred within a lower-level module.

The subsystem code -- a number identifying the subsystem that encountered
the error.

The module code -- a number identifying the module that encountered the
error. (Some subsystems, such as STREAMS, are made up of several modules.)

The error code -- a signed number identifying the type of error that occurred.
Each type of error is associated with a unique number.

The subsystem code, module code, and error code are all associated with text strings. The text
associated with the error code explains the nature of the error, while the text associated with the
module and subsystem are the names of each. You use a number of the DOMAIN ERROR
subsystem calls to access these text strings.

2.2.1. Accessing Fields of the Status Code with FORTRAN

Four ERROR routines exist specifically for FORTRAN users to access each of the fields that
make up a status code. They are:

code = ERROR_ $CODE (status)
fail = ERROR_$FAIL (status)
module = ERROR_$MODULE (status)
subsys = ERROR_$SUBSYS (status)

CODE, MODULE, and SUBSYS take a status code as an input parameter and return the
respective piece of the code as a 2-byte integer. FAIL takes a status code as an input parameter
and returns a LOGICAL value indicating whether the fail bit is set.

Errors and Faults 2-2

2.3. Testing for Errors

When a system call returns a status to your program, you should always examine the returned
status. In general, when testing a status code you should test the full 32-bit code. For Pascal
and C users, that is status. all; FORTRAN users should declare status to be an INTEGER*4
variable and test the full value.

The insert file for a subsystem declares a mnemonic constant for each of the status codes that the
subsystem may return. For example, the BASE insert file declares the constant STATUS _ $OK
to be equivalent to the success status o. Always use the mnemonic constants when referencing
status codes.

Typically, you test the returned status for success and, if the call failed, print an explanatory
error message before exiting. Below is a program segment that tests the STREAM:_ $DELETE
call for the success status:

STREAM_$DELETE (stream-id,
status);

{ Test the returned staus. }
IF status.all <> status $ok THEN
{ Print an error message. }

Printing error messages is described in the next section.

2.4. Printing Error Messages

The simplest way of printing an error message is to use ERROR_ $PRINT. This call takes the
status as input and prints out the text associated with the error code, along with the subsystem
and module names.

Example 2-1 demonstrates a simple error-handling procedure. (It is the error-handling procedure
invoked in many of the examples in this book.) Note that the procedure uses PGM_ $EXIT to
exit. PGM_ $EXIT will exit from within a subroutine (if necessary), close any open files, release
any acquired storage, and call PGM_ $SIGNAL (to invoke any clean-up handlers) before exiting.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/streams.ins.pas·;
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;

VAR
status : STATUS_$T;
{ Declare CREATE variables }

Example 2-1. A Simple Error-Handling Procedure

2-3 Errors and Faults

{ Declare procedure for error_handling. }
PROCEDURE error_routine;

BEGIN
error_$print (status);
pgm_$exit;

END; {error_routine}

BEGIN { Main Program }

{ Create a file. }
stream_$create (pathname,

name length,
access,
cone,
stream_id,
status);

{ Test the returned staus. }
IF status.all <> status $ok THEN

{ Invoke error handling procedure.}
error_routine;

Example 2-1. A Simple Error-Handling Procedure (Cont.)

This program produces the following error message format:

file already exists (stream _ $write specified on create) (stream manager/open)

The last section of the error indicates that the error status was passed from the open module of
the stream manager.

2.5. Standardized Error Reporting

DOMAIN-supplied software follows these standards for error reporting:

• Reports all errors on STREAM _ $ERROUT.

• Uses a question mark as a prefix character.

• Prints any filenames in lowercase surrounded by double quotation marks.

For example, the following is an error returned from the OPF Shell command.

?(cpf) IIfile.dat ll
- name not found (OS/naming server)

By using the system calls ERROR_$INIT _STD _FORMAT, ERROR_$STD _FORMAT, and
ERROR_$PRINT _FORMAT, you may standardize the format of your error reporting along
the same lines. These routines permit you to specify:

Errors and Faults 2-4

• The stream on which to report errors.

• A prefix character.

• A program name to appear in parentheses.

• Text of the error message.

ERROR_$PRINT _FORMAT permits you to specify all of the above with one system call.
ERROR_$INIT_STD_FORMAT and ERROR_$STD_FORMAT work in conjunction with
each other to specify the same type of error message. Calling
ERROR _ $INIT _ STD _ FORMAT and ERROR _ $STD _ FORMAT is equivalent to calling
ERROR $PRINT FORMAT. However, for programs that use common subroutines, the
former method provides more flexibility. For example, if an application's command level sets the
command name with ERROR _ $INIT _ STD _ FORMAT, it automatically provides the common
lower-level modules with the correct command name for their error messages. Also, because
ERROR _ $STD _FORMAT has fewer parameters, it is easier to code using the pair of calls
instead of using ERROR_$PRINT_FORMAT. ERROR_$STD_FORMAT uses a VFMT­
style control string (see Chapter 8 for information about how to construct a control string).

The program in Example 2-2 uses ERROR $INIT STD FORMAT and
ERROR _ $STD _ FORMAT to print an error message that simulates standard error format.
The program prints the error message in the main program to avoid passing parameters to the
error procedure.

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status : status_$t;

{ Declare CREATE variables. }

{ Declare procedure for error_handling. }
PROCEDURE error_routine;

BEGIN
pgm_$set_severity (pgm_$error);
pgm_$exit;

END; {error_routine}

BEGIN {Main Program }

{ Initialize standard error format. }
error_$init_std_format (stream_$errout,

'PROGl ' ,
5);

{ Error output stream }
{ Prefix character }
{ Command name }
{ Namelength }

Example 2-2. Formatting Error Messages with System Calls

2-5 Errors and Faults

{ Create a file. }
stream_$create (pathname,

name length,
access,
conc,
stream id,
status);

IF status.all <> status $ok THEN BEGIN
{ Print error message. }

END;

error_$std_format (status,
'Error creating file "%la" %$',
file_name,
name_length);

{ Invoke error handling procedure. }
error_routine;

Example 2-2. Formatting Error Messages with System Calls (Cont.)

If the user attempts to open an existing file, this program produces the following error message:

1(format) Error creating file "file.dat" - file already exists (stream_ $write specified on creat.e) (stream manager/open)

2.6. Testing for Specific Errors

In some cases, you will wish to test for specific errors. A number of system calls return status
codes that require special handling. The following is a nonexhaustive list of such status codes,
and the calls that return them.

STREAM $END OF FILE
Returned by the STREAM_$GET calls when an end of file is encountered (for
example, a CTRL/Z from a keyboard).

EC2 _ $W AIT _ QUIT
Returned by the EC2 _ $W AIT _ SVC call when an asynchronous fault occurs
while faults are inhibited.

PFM $CLEANUP SET
Returned by the PFM_ $CLEANUP call when a clean-up handler is
successfully established.

The following program segment shows how a clean-up handler tests for the
PFM $CLEANUP SET status code.

Errors and Faults 2-6

{ Clean-up handler code. }
status := PFM_$CLEANUP (handler_id); { Establish clean-up handler}

{ Check for est. status. }
IF (status.all <> PFM_$CLEANUP_SET) THEN BEGIN

{ End of clean-up handler. }
ELSE BEGIN

When testing for a specific error from the STREAM subsystem, testing stat:us.all is not sufficient.
You must test two fields of the status record:

• Test the subsys field against the predefined value STREAM_ $SUBS .

• Test the code field against the predefined error code.

The program segment in Example 2-3 shows a loop that reads records from a file. After each
read, it tests for the STREAM_$END _ OF _FILE error.

{ Enter loop to get and print records. }
WHILE (status.all = status_$ok) DO BEGIN

{ Get a record. }
stream_$get_rec(stream_id,

addr(info_rec),
sizeof(info_rec).
retptr,

{ Test for EOF. }

retlen,
seek_key,
status);

IF (status.code = stream $end of file) AND
(status.subsys = stream_$subs) THEN
EXIT;

IF (status.all <> status_$ok) THEN
error routine

ELSE BEGIN
{ Assign returned pointer to buffer. }
info rec retptr-;

{ Print the name and id fields. }
writeln('name: " info rec.name:info rec.namelen);
writeln('id: ',info_rec.emp_id); -

END; {if}
END; {while}

Example 2-3. Testing for Specific STREAM Errors

2-7 Errors and Faults

2.6.1. Setting a Severity Level

In addition to -exiting a program at the end of an error handling procedure, you may wish to set a
severity level for your program, if your program:

• Is invoked by another program; for example, the Shell.

• Has a single, well-defined function.

• Is not interactive.

A severity level informs an invoking program of the completion status of an invoked program.
You can use various features of the Shell, such as the ABTSEV command, to control the
execution of Shell scripts based on the severity code. You set a severity level by calling
PGM_$SET_SEVERITY. The error routine in Example 2-2 sets a severity level. See Chapter
3 for details about how to set a severity level.

2.7. Faults

While an error is detected by the algorithms of a system call and returned as a status code, a
fault is detected (usually) by the hardware of the machine, and is not detected until the actual
machine instructions are executed.

Depending on the exact nature of a fault, you may be able to IIhandle ll the fault and continue
processing. A fault that permits you to continue processing is referred to as restartable.
(Restarting is highly application-dependent, and is beyond the scope of this manual.)

There are three ways to handle faults:

• Establishing clean-up handlers, described in Section 2.8.

• Establishing fault handlers, described in Section 2.9.

• Inhibiting asynchronous faults, described in Section 2.10.

The different types of faults you may encounter are described in this section. Every fault is
either synchronous or asynchronous. Sections 2.7.1 and 2.7.2 describe synchronous and
asynchronous faults, respectively.

Table 2-1 lists the predefined mnemonic constants for each of the faults that may be encountered
on the system, along with a brief explanation of what causes the fault. These mnemonic constants
are defined in the F AUL T insert files, and are used by fault handlers to target specific faults.

Errors and Faults 2-8

Table 2-1. Summary of Faults

Fault

FAULT_$ADDRESS_ERROR

F AUL T _ $ILLEGAL _ INST

F AUL T _ $ZERO _ DIVIDE

FAULT_$CHK_INST

FAULT_$TRAPV _INST

FAULT_$PRN _VIOLATION

FAULT_$ILLEGAL_SVC_CODE

FAUL T $ILLEGAL SVC NAME

FAUL T _ $UNDEFINED _ TRAP

FAUL T $UNlMPLEMENTED INST

FAULT $PROT VIOLATION

FAUL T _ $BUS _ TIMEOUT

FAULT $ILLEGAL USP

FAULT $ECCC

FAULT $ECCU

FAUL T _ $QUIT

FAUL T _ $ACCESS _ VIOLATION

FAUL T $NOT VALID

FAULT $NULLPROC ONB

FAULT _$DISPLAY _ QUIT

F AUL T $SINGLE STEP

F AUL T $INV ALID USER F AUL T

FAULT $PBU USER INT FAULT

Explanation

Used odd address.

Executed illegal instruction.

Divided by zero.

CHK instruction trapped, index out of range?

Arithmetic overflow occurred.

Privileged instruction violation.

Executed unrecognized SVC instruction.

Not currently used.

Executed undefined TRAP instruction (6 thru 13).

Executed unimplemented instruction.

Protection boundary violation.

Bus time-out occurred.

Invalid user stack pointer detected.

Correctable memory error detected, (DN420,
DN460, DN600, DN660 only).

Uncorrectable memory error detected, (DN420,
DN460, DN600, DN660 only).

Executed process quit (CTRL/Q).

Attempted to access protected memory or write
read-only memory.

Hardware crash status (DN420, DN600 only).

Hardware crash status (DN420, DN600 only).

OS-internal quit (with display return).

Executed instruction with trace bit on.

Invalid user-generated fault.

Fault in interrupt handler for PBU device.

2-9 Errors and Faults

Table 2-1. Summary of Faults (Cont.)

Fault

FAULT $STOP

FAULT $BLAST

F AUL T $CACHE PARITY

FAULT $WCS PARITY

FAUL T $NOT IMPLEMENTED

F AUL T $INV ALID STACK

F AUL T $P ARITY

F AUL T $INTERRUPT

FAULT _$WHILE_LOCK_SET

F AUL T $SPURIOUS PARITY

F AUL T $FP INEXACT

FAULT $FP DN ZERO

FAULT $FP UNDFLO

F AUL T $FP OP ERR

F AUL T $FP OVRFLO

F AUL T $FP BSUN

F AUL T $FP SIG NAN

F AUL T $SUSPEND PROC

FAULT _$SUSPEND _PROC _KBD

F AUL T $SUSPEND PROC

FAULT _ $SUSPEND _PROC

FAULT $CONTINUE PROC

FAULT $FAULT LOST

Errors and Faults

Explanation

Executed process stop instruction (dq -s).

Executed process blast (dq -b).

PEB cache parity error detected.

WCS parity error detected.

Issued unimplemented SVC instruction.

Invalid stack format detected.

Memory parity error detected.

Executed process interrupt.

Fault occurred while resource lock{s) set.

Spurious parity error detected.

Floating point inexact result.

Floating point divide by zero.

Floating point underflow.

Floating point operand error.

Floating point overflow.

Floating point branch/ set on an unordered
condition.

Floating point signaling not-a-number.

Process suspend fault.

Process suspend from keyboard.

Process suspend due to background read.

Process suspend due to background write.

Process continue fault.

Fault{s) lost; process suspended or inhibit count
problem.

Executed illegal coprocessor instruction.

2-10

2.7.1. Synchronous Faults

Synchronous faults occur as the result of an instruction executed by your program. The following
two tables list specific types of synchronous faults and whether or not they are restartable. Table
2-2 lists program faults. Program faults are caused directly by an action of your program.

Table 2-2. Synchronous Program Faults

Program Faults Description

Unimplemented instruction Restartable.

Odd address error Not restartable.
(Typically caused by a bad pointer.)

Reference to an invalid address Not restartable.

Access violation Not restartable.

Reference to an unresolved global Not restartable.

Guard fault Restartable.

Table 2-3 lists system faults. System faults are triggered by a program instruction, but occur
because of a failure on the part of the system.

Table 2-3. Synchronous System Faults

System Faults Description

Network failure Not restartable.
(Typically, occurs during paging
across the network.)

Disk full Not restartable.
(Use the Alarm Server to avoid
disk full errors.)

Disk error Not restartable.

2.7.2. Asynchronous Faults

Asynchronous faults are produced from outside of your program. They can occur at any point in
your program and are unrelated to anything your program did. A common example is the .. quit
fault, II caused by the Display Manager's DQ command (usually when someone types CTRL/Q to
stop a program).

You may choose to handle asynchronous faults, or you may choose to inhibit the delivery of
asynchronous faults. Section 2.10 describes how to inhibit asynchronous faults.

2-11 Errors and Faults

2.8. Handling Faults with Clean-Up Handlers

Typically, you use a clean-up' handler in programs when you wish to deal with faults by
terminating normal processing. A cleanup handler, like its name implies, is used to clean up a
process before the program exits. Before exiting, the clean-up handler might restore disk files or
in-memory tables to a known or stable state, or restore other things the program has changed.
When a fault occurs, the process fault manager automatically calls the PFM _ $SIGNAL system
call as part of the fault handling process. PFM_ $SIGNAL invokes the clean-up handler on the
top of the stack, passing the fault status.

You may also use clean-up handlers to let the program continue processing after a fault occurs.
However, a clean-up handler effects a nonlocal GOTO when a fault occurs. Control passes to the
clean-up handler code, and the context in which the fault occurred is destroyed, so it is not
possible to return to the point in the code at which the fault occurred. If you choose to continue
processing after handling a fault, control passes to the point after the clean-up code.

Note that there is a built-in clean-up handler. This handler is established when PGM_ $INVOKE
was called to invoke your program. The built-in handler always closes any files that are still
open and returns control to the invoking program, such as the Shell.

Because of the way in which the clean-up handlers are invoked, you should not establish clean-up
handlers to work across program levels. That is, if you perform an operation that requires clean­
up in a subroutine or function, the handler should be established and released within the
subroutine or function.

Once a clean-up handler handles a fault, the process fault manager releases the handler; it will
not handle future faults unless you re-establish it. Re-establishing clean-up handlers is described
in Section 2.8.4.3.

Asynchronous faults are inhibited during the execution of a clean-up handler, so that the program
cannot be interrupted while it is trying to clean up.

2.8.1. Establishing a Clean-Up Handler

To establish a clean-up handler:

1. Call PFM _ $ CLEANUP . The initial call to PFM _ $CLEANUP returns a status of
PFM_ $CLEANUP _SET (indicating that the handler has been established). It also
returns a unique identifier for the handler (referred to as the handler-ID) that permits
you to identify specific clean-up handlers when using more than one.

2. Construct an IF -THEN-ELSE block that tests the status returned by
PFM $CLEANUP. If the status is equal to PFM_$CLEANUP _SET, branch to
the beginning of normal operations. If the status is not equal to
PFM_$CLEANUP _SET, a fault is assumed and the clean-up operations should be
performed.

3. Write the clean-up operation. What operations are performed as part of the clean-up
depends on what the program does. If files are opened and created in the program,
you may want to close or delete them in the clean-up handler to ensure a stable state.

Errors and Faults 2-12

If your program contains a clean-up handler, it is invoked when a fault occurs or when
PFM_ $SIGNAL is invoked. (PFM_ $SIGNAL invokes the topmost clean-up handler on the
stack (if there is one), passing it a status code; it can be called from any point in a program.) At
that point, control immediately returns to the place in your program where you call
PFM_ $ CLEANUP . In this case, the status test fails and the clean-up code is executed.

The program segment in Example 2-4 creates a file and performs 110 on it. It establishes a
clean-up handler that deletes the file and exits, if a fault occurs during the processing of the file.
Note that the variable stream _ open is used to indicate that a stream has been opened to the file.
The clean-up handler checks the state of this variable to determine whether it should delete the
file. This prevents the handler from attempting to delete the file if a fault occurs before the file is
created.

PROGRAM pfm_clean_up (input.output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/pfm.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/vfmt.ins.pas';

VAR
status status_$t;
stream_open boolean; {State variable }
count integer; {VFMT parameter}
{ $CREATE variables }
pathname name_$pname_t;
namelength : integer;
stream id : stream $id t;
{ $CLEANUP variable} -
handler id : pfm_$cleanup_rec;

PROCEDURE error_routine;
BEGIN

error $print(status);
END; {error_routine}

BEGIN {Main Program }

{ for error handling }

{ Initialize state variable. }
stream_open := FALSE; { Not open yet}

{ Clean-up handler code. }
status := pfm_$cleanup (handler_id); { Establish clean-up handler}

{ Check for established status. }
IF (status.all <> pfm_$cleanup_set) THEN BEGIN

{Delete file if open while fault occurs. }
IF stream_open THEN

stream $delete (stream id,
- status);

pgm $exit;
END; - {of clean-up handler}

Example 2-4. Establishing A Clean-Up Handler

2-13 Errors and Faults

{ Begin normal operations. }

{ Get the filename. }
writeln ('Input pathname: ');
readln (pathname);

{ Calculate namelength. }
namelength := sizeof(pathname);
WHILE (pathname[namelength] = ' ,) AND

(name length > 0) DO
namelength := namelength - 1;

stream_$create (pathname,

IF

{

status.code

namelength,
stream_$write,
stream_$controlled_sharing,
stream_id,
status);

<> status $ok THEN -error_routine;

Set state variable. }

stream_open := TRUE; { File is open }

{ Get the input. }

{ Finish processing the file. }
{ Release the clean-up handler. }
pfm_$rls_cleanup (handler_id,

status);

{ Access }
{ Concurrency }

Example 2-4. Establishing A Clean-Up Handler (Cont.)

2.8.2. Releasing a Clean-Up Handler

Note that the program segment in Example 2-4 releases the handler when it finishes processing
the file. When a clean-up handler is no longer needed, it should be released. Releasing a handler
removes it from the stack that the process fault manager uses to keep track of handlers.

You release handlers to prevent invoking clean-up code when it is not appropriate. Often, a
clean-up handler applies to only one section of a program, and should not take effect if a fault
occurs later in the program. For instance, in Example 2-4, the file might have been properly
processed and closed, leaving it in a stable state. Yet, had the handler not been released, a fault
might have occurred before the program completed, and the file would be needlessly deleted.

To release a clean-up handler, call PFM_ $RLS _ CLEANUP, specifying the handler ID of the
handler you want to release. The call to PFM $CLEANUP returns the handler ID when you
establish the handler.

Errors and Faults 2-14

A procedure, function, or subroutine must release all the clean-up handlers it established before
returning to its caller.

After a clean-up handler handles a fault, the process fault manager releases it, unless it is
explicitly re-established. A clean-up handler that has been released by the process fault manager
may be placed back on the stack by re-establishing it. See Section 2.8.4.3.

NOTE: When a handler is released. all handlers established more recently than
that handler are also released.

2.8.3. Multiple Clean-Up Handlers

More than one clean-up handler can be in effect at once. The process fault manager invokes
clean-up handlers on a last-in-first-out (LIFO) basis. The last clean-up handler that gains control
is the built-in clean-up handler (as it is the first to be established).

When you have a number of clean-up handlers, it is important that each handler be invoked only
when appropriate. One way to help ensure this is to release clean-up handlers when you no
longer need them, as stated above. In addition, you may wish to use state variables to ensure
that a handler is not invoked be fore it is needed.

For example, if you establish a clean-up handler to clean up a file that you modify, declare a
Boolean variable that you set to TRUE when you open the file. Write the clean-up handler so
that it tests the Boolean before trying to clean up the file. If the file has been opened, the
handler cleans up. If the file has not been opened, the handler does not attempt the clean-up.
Example 2-4 uses the variable stream_ open as a state variable.

2.8.4. Exiting a Clean-Up Handler

There are four ways to exit a clean-up handler:

• Resignaling passing the fault status.

• Resignaling passing a severity level.

• Re-establishing the handler and returning to the program.

• Returning to the program.

2.8.4.1. Resignaling Passing the Fault Status

Resignaling is the act of passing the signaled fault to the next handler in the process fault
manager's stack. Typically, a handler resignals a fault when you want to invoke a number of (or
all) established clean-up handlers.

To resignal a fault status, a handler calls PFM_ $ SIGNAL , specifying the status returned to it by
the PFM $CLEANUP call.

If you resignal and your program has no more clean-up handlers, control passes to the built-in
clean-up handler, and eventually your program exits to the invoking program. When this occurs,
your program returns the fault status as its severity code.

2-15 Errors and Faults

2.8.4.2. Resignaling Passing a Severity Level

If another program invokes your program, the invoking program may expect your program to
return a severity level instead of a fault status. Every program starts with the severity level set
to PGM_ $OK (successful completion). When a fault occurs, you may change the severity level
by calling PGM _ $SET _ SEVERITY.

To resignal a fault by passing a severity level:

1. Call PGM_$SET _SEVERITY to set the severity to the chosen level.

2. Call PGM $EXIT.

PGM_ $EXIT resignals the next clean-up handler, but instead of passing the fault status code, it
passes a status code that translates to the severity level.

The following is a clean-up handler that sets the severity level to PGM _ $ERROR, then
resignals.

{ Clean-up handler code. }
status := pfm_$cleanup (handler_id); { Establish clean-up handler}

{ Check for est. status. }
IF (status.all <> pfm $cleanup set) THEN BEGIN

{ Delete file if fault occurs. }
stream_$delete (stream_id,

status);
pfm $set severity(pgm $error);
pgm-$exit; -
END { of clean-up handler }

See Chapter 3 for more information about setting severity levels.

2.8.4.3. Re-establishing the Handler and Returning to the Program

Once a clean-up handler is invoked, it is released and will not be invoked again, unless you
specifically re-establish it.

You re-establish a handler if you are restarting after the fault and there will still be a need for
the handler. Consider, as an example, a program that processes files based on commands that the
user input. This program needs a clean-up handler to clean up a file if a fault occurs, but can
easily continue processing by getting the next command. The program can simply establish one
handler that re-establishes itself.

To re-establish a clean-up handler, call PFM_ $RESET _ CLEANUP, specifying the handler ID.
When you re-establish a handler, fault handling stops (no other handlers on the stack are
invoked). The re-established handler is now the most-recently-established clean-up handler and
will be the first clean-up handler to handle the next fault. The program can now continue
running, but cannot return directly to the point where the fault occurred.

Errors and Faults 2-16

The following is a clean-up handler that resets itself and re-enables asynchronous faults.

{ Clean-up handler code. }
status := pfm_$cleanup (handler_id); { Establish clean-up handler}

{ Check for est. status. }
IF (status.all <> pfm_$cleanup_set) THEN BEGIN

{ Delete file if fault occurs. }
stream $delete (stream id.

- status);
pfm_$reset_clean_up (handler_id.

status);
END { of clean-up handler }

2.8.4.4. Returning to the Program

In some cases, you may wish to simply handle a fault and return to the program, without re­
establishing a clean-up handler. One example is a program that is performing a number of
loosely connected tasks. Your program may abort one task and continue by processing the next
task on the list.

No special action is required to return to the program. However, because asynchronous faults are
disabled when a clean-up handler is invoked, you should re-enable them before returning. To
re-enable asynchronous faults, call PFM_ $ENABLE.

The following is a clean-up handler that re-enables asynchronous faults and returns to the
program.

{ Clean-up handler code. }
status := pfm_$cleanup (handler_id); { Establish clean-up handler. }

{ Check for est. status. }
IF (status.all <> pfm $cleanup set) THEN BEGIN

{ Delete file if fault occurs. }
stream_$delete (stream_id.

status);
pfm $enable;
END- {of clean-up handler}

2.8.5. Handling Errors With Clean-Up Handlers

You can also use clean-up handlers to handle error conditions. However, unlike fault conditions,
error conditions do not automatically call PFM_ $SIGNAL to pass to a clean-up handler.

To invoke a clean-up handler for an error condition, your program must:

• Detect the error condition .

• Oall PFM_ $SIGNAL, passing the error status to the clean-up handler on the top of
the stack.

2-17 Errors and Faults

The program in Example 2-5 creates a file and calls a procedure to write to it. The main program
declares a clean-up handler that deletes the file before exiting. If an error occurs while writing
data to the file the procedure invokes the clean-up handler by explicitly calling PFM_ $SIGNAL.

PROGRAM pfm_clean_error (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/pfm.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR
status
stream_open
count

status_$t;
boolean; {State variable }
integer; {VFMT parameter}

{ $CREATE variables }
pathname name_$pname_t;
namelength integer;
stream id stream_$id_t;

{ $CLEANUP variable }
handler id : pfm_$cleanup_rec;

{**}

PROCEDURE error_routine; { for error handling}
BEGIN

error_$print(status);
END; {error_routine}

{**}
{ Procedure to write to file }
{**}

PROCEDURE write to file (str_id

VAR
line
seek_key
buflen

ARRAY[l .. 80] OF char;
stream_$sk_t;
integer32;

BEGIN
{ Get a line of input. }
writeln ('Input data (or CTRL/Z to stop): ');
WHILE NOT eof DO
BEGIN

readln(line);
buflen := SIZEOF(line);
WHILE (line[buflen] = ' ') AND (buflen > 0) DO

buflen := buflen - 1;

{ Terminate line with newline character. }
buflen := buflen + 1;
line [buflen] : = CHR (10) ;

Example 2-5. Invoking a Clean-Up Handler for an Error

Errors and Faults 2-18

{ Write the line to a file. }
stream_$put_rec (str_id,

ADDR(line),
buflen,
seek_key,
status);

{ Invoke clean-up handler if error occurs. }
IF status.code <> status $ok THEN

pfm_$signal(status);

writeln ('Record written');
writeln ('Input more info (or CTRL/Z to stop): ');

END; {while}

{**}

BEGIN {Main Program }

{ Initialize state variable. }
stream_open := FALSE;

{ Clean-up handler code }

{ Not open yet' }

status := pfm_$cleanup (handler_id); { Establish clean-up handler}

{ Check for established status. }
IF (status.all <> pfm_$cleanup_set) THEN BEGIN

{ Delete file if open while fault occurs. }
IF stream_open THEN

stream_$delete (stream_id,
status);

writeln ('Output file deleted - write error occurred');
pgm_$exit;

END; { of clean-up handler}

{ Begin normal operations. }

{ Get the filename. }
writeln ('Input pathname of file to be written: .);
readln (pathname);

{ Calculate namelength. }
namelength := sizeof(pathname);
WHILE (pathname[namelength] = ' ') AND

(namelength > 0) DO
namelength := namelength - 1;

stream_$create (pathname,
name length,
stream_$write,
stream_$controlled_sharing,
stream_id,
status);

{ Access }
{ Concurrency }

Example 2-5. Invoking a Clean-Up Handler for an Error (Cont.)

2-19 Errors and Faults

IF status.code <> status_$ok THEN
error_routine;

{ Set state variable. }
stream_open := TRUE; {File is open. }

{ Call procedure to write to the file. }
write_to_file (stream_id);

{ Finished processing the file. }
{ Release the clean-up handler }
pfm_$rls_cleanup (handler_id.

status);
END. { pfm_clean_error }

Example 2-6. Invoking a Clean-Up Handler for an Error (Cont.)

2.9. Handling Faults with Fault Handlers

A fault handler is a procedure that is called when a fault occurs; unlike a clean-up handler, it is
capable of returning to the point at which the fault occurred.

A fault handler might handle faults where you want to respond to the fault by taking some
corrective action and continuing normal processing.

2.9.1. Establishing a Fault Handler

To establish a fault handler:

1. Write a function that performs the actual fault handling.

2. Call PFM $ESTABLISH F AUL T HANDLER to establish the function as a fault
handler.

2.9.1.1. Writing the Fault-Handling Function

You must write a fault handler as a function.

Each fault-handling function takes one input parameter, the fault record. The fault record is a
data type, in PFM_$FAULT _REO _ T format. One field of this record contains the fault
status. When a fault occurs, the process fault manager loads this record and invokes the handler.

The value that a fault-handling function returns determines the action taken after the fault is
handled. The return value for a fault handler must be in PFM $FH FUNC VAL T format
(a 2-byte integer), and must be set to one of the following two p;;defin;d values~

Errors and Faults 2-20

PFM $CONTINUE FAUL T HANDLING
Indicates that the program should invoke any other established fault handlers.
If no more handlers exist, clean-up operations are invoked.

PFM $RETURN TO FAULTING CODE
Indicates that control should return to the program. No further fault handling
is performed. The program restarts after the instruction that took the fault.

In Pascal, the fault handling function must be in a Pascal MODULE (as opposed to a
PROGRAM). The call that establishes the fault handler passes the system the address of the
function -- this cannot be done from within a Pascal PROGRAM.

Example 2-6 is a module in which a fault-handling function named "zero_fault_handler" is
declared. The return value is set to PFM_$CONTINUE_FAULT _HANDLING, specifying
that any other established handlers should be invoked.

MODULE pgm_zero_handler; (input,output);

{ This is a fault handling function that prints }
{ a line and continues to fault handle. }

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/pfm.ins.pas·;

FUNCTION zero_fault_handler (IN f status : pfm $fault rec t { Fault record}
): pfm_$fh_func_val_t ; - - {Return value}

BEGIN
{ Write a message to the error log. }
error_$print (f_status.status);

{ Load the return value. }
zero_fault_handler := pfm_$continue_fault_handling;

Example 2-6. Writing a Fault-Handling Function

2.9.1.2. Establishing the Function as a Handler

Before a fault-handling function can be used by a program, it must be established as a fault
handler. To establish a function as a fault handler, call the
PFM_$ESTABLISH_FAULT_HANDLER function. The following is the syntax for
PFM $ESTABLISH FAULT HANDLER:

handler id - pfm_$establish_fault_handler (target_fault,
type_options,
address_of_function,
status);

2-21 Errors and Faults

You pass PFM_ $ESTABLISH_ F AUL T _HANDLER three input parameters:

• A target fault, as a 4-byte integer.

• An option describing the type of handler you are establishing, III

PFM $FH OPT SET T format.

• The address of the fault handling function, in PFM $F AUL T FUNC P T
format.

PFM $ESTABLISH F AUL T HANDLER uses this information to establish the handler and
returns a handler ID that uniquely identifies the handler. The call also returns a completion
status.

You can specify the address of the function using the ADDR extension to DOMAIN Pascal, or the
IADDR special function of DOMAIN FORTRAN.

2.9.1.3. Setting Target Faults

PFM_$ESTABLISH_FAULT_HANDLER's target fault parameter permits you to specify the
fault(s) to which you want a handler to respond. You can specify one specific fault, a group of
faults, or all faults. The target fault parameter expects a 4-byte integer value.

• To specify a specific fault, simply specify the parameter to be the specific fault status
code.

• To specify all the faults in a DOMAIN module, specify any status code returned by
that module, with the fault code field set to zero. The following program example
sets the target fault to be all faults in the SMD module:

VAR

{ Declare other variables. }

BEGIN
{ Load the target fault. }
target_fault := smd_$illegal_unit;
target_fault. code := 0;

{ Establish the fault handler. }
handler id pfm_$establish_fault_handler (target. all. {integer32}

options.
ADDR(my_fault_handler).
status);

• To specify all faults, specify the predefined constant PFM_$ALL_FAULTS.

Errors and Faults 2-22

2.9.1.4. Specifying Handler Types

You can establish fault handlers to be of three types. Table 2-4 lists them.

Table 2-4. Types of Fault Handlers

Fault Handler

Default

Backstop handlers

Multilevel handlers

Description

By default, if a number of fault handlers are responding to a
fault, they are invoked in reverse order of establishment (LIFO)
and applies to the program level in which it is established. To
specify a default handler, specify the null set.

If you specify a handler to be a backstop handler, the
process fault manager does not invoke it until all the
nonbackstop handlers have been invoked.

If you specify a handler to be a multilevel handler, it applies to
the program level at which it is established and all subordinate
program levels. This means that the fault handler will be
executed for the program that establishes the fault handler and
for any programs that the program invokes (even though they
do not establish a fault handler).

Backstop and multilevel types are not exclusive of each other; a handler can be both a backstop
and multilevel fault handler.

The program segment in Example 2-7 establishes the function shown in Example 2-6 as a default­
type handler that responds to the FAULT_$ZERO_DIVIDE fault. Note that the program
includes the F AUL T insert file that defines this fault.

PROGRAM pgm_divide (input. output);

{ Program to divide two numbers. }

%include '/sys/ins/base.1ns.pas';
%include '/sys/ins/pfm.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/fault.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
numberl integer;
number2 integer;

status status_$t;
handler id pfm_$fh_handle_t;

Example 2-7. Establishing a Fault Handler

2-23 Errors and Faults

{ Declare external fault handling function. }
FUNCTION zero fault handler (IN f status : pfm $fault rec t

- -): pfm_$fh_func_val_t; EXTERN;

BEGIN {Main Program }

{ Establish the zero divide handler. }
{ Load the target fault -- first parameter. }
handler id pfm_$establish_fault_handler (fault_$zero divide.

IF (status.all <> status $ok) THEN
error $print (status);

[J. { Default type}
ADDR(zero_fault_handler).
status);

Example 2-7. Establishing a Fault Handler (Cont.)

2.10. Inhibiting Asynchronous Faults

During part or all of your program, you can inhibit asynchronous faults. Inhibiting asynchronous
faults defers the effect of the CTRL/Q key in stopping the program. This is appropriate when
there are intervals during which your program must not be interrupted. For instance, your
program may perform some I/0 that would be left in an inconsistent state if the user were
allowed to interrupt execution. However, it is good programming practice to only inhibit
asynchronous faults during these critical intervals, so that a user may terminate the program at
some point, if necessary.

To inhibit asynchronous faults, call PFM _ $ INHIBIT . This call has no parameters.

To re-enable asynchronous faults, call PFM_ $ENABLE. This call also has no parameters.

If a fault occurs while asynchronous faults are inhibited, the system holds the fault for delivery
when faults are re-enabled. However, the system will only hold one fault; all others are ignored.

The operating system keeps track of inhibits by incrementing and decrementing an inhibit

count. Asynchronous faults are only delivered when the inhibit count is o. Each time an inhibit
occurs (either explictly called by you, or implicitly called by the system - as during a clean-up
handler) the count is incremented. It is decremented any time a call is made that re-enables
asynchronous faults, such as PFM _ $ENABLE. This is why clean-up handlers that return to the
invoking program must call PFM _ $ENABLE before returning.

Inhibiting asynchronous faults has no effect on the delivery of synchronous faults.

Errors and Faults 2-24

Chapter 3
Managing Programs

Programs are normally divided into a number of smaller program units, which perform specific
tasks. Program units may take three forms:

1. Subroutines, procedures, and functions that you write.

2. DOMAIN system calls. System calls are procedures and functions that can be called
to perform specific predefined tasks. The DOMAIN System Gall Reference
alphabetically lists all the available system calls and describes what each of them does.

3. Other programs. DOMAIN permits you to invoke other programs from within your
program. You can invoke other programs you have written, or you can invoke
system-provided programs (Le., DOMAIN Shell commands).

This chapter describes how to invoke programs with the PGM system calls and how to obtain
process information with the PROa and PM system calls.

3.1. System Calls, Insert Files, and Data Types

To invoke and manage programs, use system calls with the prefix PGM. In order to use PGM
system calls, you must include the appropriate insert file in your program. The PGM insert files
are:

jSYSjINSjPGM.INs.a
jSYSjINS jPGM.INS.FTN
jSYSjINSjPGM.INS.P AS

for a programs.
for FORTRAN programs.
for Pascal programs.

To obtain process information, use the system calls with the prefix PROal, PRoa2, or PM,
depending on what inmformation you want. You must also include the appropriate insert file.
The insert files are:

jSYS JINS jprefix.lNS. a
jSYS JINS j prefix.INS.FTN
jSYSjINSjprefix.INS.PAS

for a programs.
for FORTRAN programs.
for Pascal programs.

where prefix is the desired subsystem prefix.

This chapter is intended to be a guide for performing certain programming tasks; the data type
and system call descriptions in it are not necessarily comprehensive. For coniplete information on
the data types and system calls in these insert files, see the DOMAIN System C'all Reference.

3.2. Invoking External User Programs

Invoking programs from within a program avoids having to duplicate the work of existing
programs. It also provides a way of performing concurrent processing.

3-1 Managing Programs

To invoke the execution of another program, use PGM_$INVOKE. PGM_$INVOKE permits
you to pass arguments and stream connections to the invoked program. How to pass arguments
to an invoked program is described in Section 3.3. How to pass streams to an invoked program is
described in Section 3.6.

PGM _ $INVOKE returns two parameters: the process handle and the completion status. The
process handle uniquely identifies the invoked program and is used as an input parameter to
other system calls; for example, PGM _ $PROa _ WAIT. This completion status is slightly
different from the completion status of other system calls because it is interpreted differently
depending on the mode in which a program is invoked. How to interpret the completion status is
described, along with the invoke modes, in the following sections.

When you call PGM _ $INVOKE, you have three options for the mode III which the invoked
program will execute: .

Wait mode

Default mode

Background mode

The program executes as a separate program within the same process as
the invoking program. The invoking program 'waits' until the invoked
program is completed before resuming execution. (Described in Section
3.2.1.)

The program executes as a separate process that communicates its
termination status to the invoking program. (Described in Section 3.2.2.)

The program executes as a separate process that runs to termination
independently of the invoking process. (Described in Section 3.2.3.)

The mode in which you choose to run a program depends on the task performed by the program.

3.2.1. Invoking a Program in Wait Mode

To invoke a user program in wait mode, call PGM _ $INVOKE, with the mode option set to
PGM $W AlT. When you invoke a program this way, the invoking program executes the
program and waits for it to complete before continuing. In this respect, calling PGM_ $INVOKE
with the WAIT option is similar to calling a subroutine.

Executing a program within your own process avoids the overhead associated with process
creation.

The DOMAIN Shell is an example of using INVOKE with the PGM_$WAIT option. Each Shell
command is a program, and the options to the command are arguments. The Shell invokes the
specified program passing any arguments, and waits for the program to complete.

You may also wish to invoke an existing Shell command from within a program. The program
segment in Example 3-1 invokes the "date" Shell command, using PGM_$WAIT mode. Note
that the invoking program passes the invoked program the four standard streams. It is good
programming practice to pass an invoked program the standard streams. Section 3.6 describes
how to pass streams. The "date" program writes the date to the standard output stream.

Managing Programs 3-2

PROGRAM pgm_shell;

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
handle
status

pgm_$proc;
status_$t;

{declare and load the standard streams}
connv pgm $connv :=

[stream_$stdin, stream_$stdout,
stream_$errin, stream_$errout];

PROCEDURE check_status; {for error_handling}

BEGIN
IF status.all <> status_$ok THEN BEGIN

error $print (status);
pgm $;Xit;

END;
END;

BEGIN
pgm_$invoke('/com/date' ,

9,
0, 0,
4,

{ no args }

connv, { std. streams}
[pgm_$wait] ,
handle,
status)

check_status;
END.

Example 3-1. Invoking an Existing Shell Command

A program that you invoke in wait mode is said to be running at a higher program level. The
invoking program is at program level n, while the invoked program is at program level n+ 1. If
the invoked program were, in turn, to invoke a third program, the third program would be at
program level n+2, and so on. The context of an invoking program level is preserved while an
invoked program is executing. The context is restored when an invoked program terminates.

3.2.1.1. Setting Severity Levels

Typically, an invoked program returns a severity level when returning from a higher program
level. A severity level indicates the completion status of an invoked program. To set a severity
level, call PGM_ $SET _SEVERITY, passing it one of the predefined severity levels listed in
Table 3-1. Then call PGM_ $EXIT to exit the current program level.

For a program invoked in wait mode, PGM_ $EXIT returns the severity level in the status of the
PGM _ $INVOKE call. Of course, the return status may also indicate that the PGM _ $INVOKE
call failed to invoke the specified process.

Using the severity levels requires coordination between the invoking program and the invoked

3-3 Managing Programs

Table 3-1. Severity Levels

Severity Level Description

PGM - $OK The program completed successfully and performed the
requested action. This is the default severity level.

PGM - $ TRUE The program completed successfully; its purpose was to
test a condition, the value of that condition was TRUE.

PGM - $FALSE The program completed successfully; its purpose was to
test a condition, the value of that condition was FALSE.

PGM - $WARNING The program completed successfully and performed the
requested action. However, an unusual (but nonfatal)
condition was detected.

PGM - $ERROR The program could not perform the requested action
because of syntactic or semantic errors in the input. The
output is structurally sound, however.

PGM - $ OUTPUT - INVALID The program could not perform the requested action
because of syntactic or semantic errors in the input, and
the output is not structurally sound.

PGM - $INTERNAL - FATAL The program detected an internal fatal error and ceased
processing. The state of the output is neither defined nor
guaranteed.

PGM - $PROGRAM - FAULTED The program detected a fault.

program. An invoked program may interpret status codes as belonging to a specific severity level.
However, this interpretation is strictly determined by how the invoked program is written. For
example, one program may interpret a STREAM_$INVALID _PATHNAME code as an error,
while another may interpret it as a warning.

Depending on the severity level returned from a program, an invoking program may continue
processing, take an appropriate action, or signal the severity level and exit.

Example 3-2 contains two programs: PGM_INVOKE.PAS and PGM_OPEN.PAS. INVOKE
invokes the program OPEN in wait mode. OPEN opens a file and sets the severity level to
PGM_$ERROR, if any status other than STATUS_$OK is returned. INVOKE signals the
error and exits. Note that INVOKE's error-handling routine distinguishes between an error and a
warning so that other programs it invokes may return a warning severity.

Managing Programs 3-4

PROGRAM pgm_invoke;

%include '/sys!ins/base.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/error.ins.p~s';

VAR
handle
status

pgm_$proc;
status_$t;

{ declare and load the standard streams }
connv pgm $connv :=

[stream $stdin, stream $stdout,
stream=$errin, stream=$errout];

PROCEDURE check_status; {for error_handling}

BEGIN
IF status.all <> status_$ok THEN BEGIN

CASE status.all OF
pgm_$error
pgm_$warning

END; {case}
pgm_$exit;

writeln ('Invoked program ended with error status');
writeln ('Invoked program ended with warning status');

END; {if}
END; {procedure}

BEGIN
pgm_$invoke('pgm_open.bin' ,

12,
0, 0,
4,

{no arguments}

connv, {std. streams}
[pgm_$wait],
handle,
status)

check status;
END. {pgm invoke}

PROGRAM pgm_open (input,output);

%include '/sys/ins/base.ins.pas';
%include ·/latest/us/ins/pgm.ins.pas';
%include '/sys/ins/streams.ins.pas·;
%include '/sys/ins/error.ins.pas';

VAR
status
pathname
name length

status_$t;
name_$pname_t;
integer;

Example 3-2. Returning a Severity Level from an Invoked Program

3-5 Managing Programs

{ $open variable }
stream id : stream_$id_t;

PROCEDURE check_status; {for error_handling}

BEGIN

END;

IF status.all <> status $ok THEN BEGIN
pgm_$set_severity (pgm_$error);
pgm_$exit;

END;

BEGIN

{ open the file }

END.

stream_$open ('file.out',
9,

check_status;

stream $read, {access}
stream=$controlled_sharing, {concurrency}
stream id,
status);

Example 3-2. Returning a Severity Level from an Invoked Program (Cont.)

3.2.2. Invoking a Program in Default Mode

To invoke a user program in default mode, call PGM_ $INVOKE, with the mode option set to a
null parameter. When you invoke a program this way, the invoking program creates a new
process in which to run the program. A default mode process communicates its termination
status to the invoking program through the PROC _ $W AIT system call.

When a process invokes another process, the invoking process is referred to as the parent

process, and the invoked process is referred to as the child process. Executing a program in a
child process is useful \ if you wish to perform concurrent processing or if your program requires a
large amount of address space (each process gets its own address space).

There are a number of things that should be considered before invoking a program in a child
process:

• Creation of a new process is more expensive in terms of processor overhead. Unless
you need the additional address space or are performing concurrent processing, it is
recommended that you invoke programs in wait mode.

• A child process has its own process address space. This permits you the advantage of
more address space. However, because private libraries are stored in the parent's
address space, the child process has no acc'ess to the private libraries loaded in the
parent process.

• A child process inherits some environment from the parent. A child process inherits
the working directory of its parent, and also inherits any stream locks its parent may
have.

Managing Programs 3-6

• A parent process can pass any streams it holds to a child process, with the exception
of magtape streams. It is a good practice to always pass the standard streams to a
child process. Section 3.6 describes how to pass streams.

• Only some operations taken by a child process are permanent. For example, if a child
process creates a file, the file exists even after the process terminates. However, if a
child process performs a GPR _ $INIT to initialize the graphics environment, when
the child process terminates, the program exits the graphics environment, even if the
invoked program does not call GPR $ TERMINATE. (This is true of all invoked
programs.)

3.2.2.1. Waiting for a Child Process

If you are performing concurrent processing, you may wish to wait for a child process to complete
before executing a specific piece of a program. For example, you may wish to add the results of
calculations performed by both the parent and child processes.

There are two ways to wait for completion of a child process:

• Waiting on a process eventcount, using PGM_$GET _EC.

• Calling PGM_$PROC_ WAlT.

The PGM_ $GET _EC call permits you to get a process event count that is advanced when the
process terminates. Generally speaking, you cannot depend on the actual value of an eventcount.
However, you can depend on the value of the process eventcount. When a process is invoked, its
eventcount value is set to o. When a process terminates, its eventcount value is set to 1. These
are the only two values a process eventcount can have. Because of this, you can explicitly set the
satisfaction values of the process eventcounts to 1.

By using this call in conjunction with the system calls EC2 _ $READ and EC2 _ $W AlT, a parent
process can wait for the completion of a child process (or a list of eventcounts). For general
information about using eventcounts, see Chapter 6 of this manual.

PGM_ $PROC _ WAlT waits for a specified child process to terminate, and returns its
completion status. (Typically, a child process returns severity levels in the same way that a
program invoked in wait mode does.) PGM _ $PROC _ WAlT takes the process handle as an
input parameter, and returns the completion status of the invoked process. If the child process
has not completed execution at the time of the PROC _ WAIT call, execution of the parent
process suspends until a completion status is available. The process handle is only valid between
the time a default mode process is invoked and the time the PGM $PROC WAlT mode
completes.

A certain amount of resources in a parent process are used to keep track of a child process.
When a call to PGM _ $PROC _ WAlT is completed, those resources are released. If you invoke
a number of child processes without ever calling PROC _ WAlT, the parent process may run out
of resources. Once a child process has completed, you should call PGM _ $PROC _ WAIT to
release these resources, whether you are interested in its completion status or not. That is, if you
wait on a process using an eventcount, you must still call PGM_$PROC_ WAIT.

3-7 Managing Programs

If you are NOT interested in when or how an invoked program completes, invoke it using
background mode (see Section 3.2.3).

The progr~m in Example 3-3 invokes two child processes and gets an eventcount for each one. It
then waits for each to complete, and processes the results. (Assume that the programs
communicate results by mapping files - see the Programming With S1l8tem Oa1l8 lor
Interproce88 Oommunication manual for information about mapping files.)

When the child processes terminate, their resources are released with a call to
PGM _ $PROC _ WAIT. Note that handling process eventcounts diCfers Crom other eventcounts
in the following ways:

• You explicitly initialize the eventcount satisfaction (trigger) value to 1. An
eventcount of 1 indicates that a process has terminated.

• When you release the resources of the terminated process, its process eventcount (and
the eventcount pointer) becomes invalid. This requires that you create a valid
eventcount and eventcount pointer to take its place in the eventcou~t pointer array,
while you wait for the other eventcounts to be satisfied. Otherwise, the EC2 _ $W AIT
call will reference an illegal address. To do so, declare the replacement eventcount to
be a variable in EC2_$EVENTCOUNT format, and load it with a valid eventcount
by calling EC2 _ $INIT. In the example, this eventcount is the variable
• replace _ ec· .

• You explicitly set the created eventcount value to 1. This guarantees that the
eventcount will not be'selected again.

• You replace the invalid pointer in the eventcount pointer array with a pointer to the
eventcount you created.

PROGRAM pgm_ec;

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/ec2.ins.pas·;

CONST
calc1 ec = 1;
calc2 ec = 2;

VAR
eC2_ptr
ec2 val
replace_ec
which
status
dead count
handle1
handle2

array [1 .. 2] of ec2_$ptr_t;
array [1 .. 2] of integer32;
eC2_$eventcount_t;
integer;
sta.tus_$t;
integer;
pgm_$proc;
pgm_$proc;

Example 3-3. Using an Eventcount to Wait for a Child Process

Managing Programs 3-8

{declare and load the standard streams}
conny pgm $connv :=

[stream_$stdin. stream $stdout.
stream_$errin. stream=$errout];

PROCEDURE check_status; {for error_handling}

BEGIN

END;

IF status.all <> status $ok THEN BEGIN
error_$print (status);
pgm_$exit;

END;

BEGIN

{invoke 1st process}
pgm_$invoke(·calcl.bin· •

9.
O. O.
4.
conny.
[L
handlel.
status)

check_status;

{invoke 2nd process}
pgm_$invoke(·calc2.bin· .

9.
O. O.
4.
conny.
[L
handle2.
status)

check_status;

{get ec for 1st process}

{program name}
{name length}
{no args}
{number of streams}
{std. streams}
{default mode}
{process handle}

pgm_$get_ec (handlel. {process handle}
pgm $child proc. {ec key}
eC2=ptr[calcl_ec].{ec_ptr}
status);

{get ec for 2nd process}
pgm_$get_ec (handle2. {process handle}

pgm $child proc. {ec key}
eC2-ptr[calc2 ec].{ec ptr}
status); - -

{map results files}

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

3-9 Managing Programs

{initialize the replacement event count}
ec2_$init (replace_ec);

{initialize counter}
dead_count := 0;

{initialize satisfaction values to 1}
ec2 val [calc1 ec] 1;
eC2=val[calc2=ec] := 1;

{ NOW GO INTO A LOOP PROMPTING FOR INPUT }
REPEAT

{determine which event count
which := ec2_$wait (ec2_ptr.

eC2_val.

reaches satisfaction first}
{ec pointer array}
{ec value array}

2.
status);

{number of ec's}

IF status.all <> status_$ok THEN RETURN;

CASE which OF

calc1 ec: {when process 1 completes ... }

BEGIN

END;

writeln ('Processing Process 1 results');

{get the termination status of calc1}
pgm_$proc_wait (handle1.

status);

{load the pointer array with a valid pointer}
ec2_ptr[calc1_ec] - addr(replace_ec);

{set the ec value to be 1 (process terminated)}
ec2_val[calc1_ec] - 1;

{process the results of CALC1}

calc2 ec: {if the process 2 completes ... }

BEGIN

writeln ('Processing Process 2 results');

{get the termination status of calc2}
pgm_$proc_wait (handle2.

status);

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

Managing Programs 3-10

{load the pointer array with a valid pointer}
ec2_ptr[calc2_ec] := ADDR(replace_ec);

{set the ec value to be 1 (process terminated)}
ec2_val[calc2_ec] 1;

{process the results of CALC21}

END;
END; {case}

{advance the dead count}
dead_count := dead_count + 1;

{repeat until both processes complete }
UNTIL (dead_count = 2) ;

END. {program}

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

3.2.3. Invoking a Program in Background Mode

To invoke a user program in background mode, call PGM _ $ INVOKE , with the mode option set
to PGM $BACK GROUND. When you invoke a program this way, the invoking program
creates a new process in which to run the program. Background mode differs from default mode
in that a background mode process runs independently of the parent; that is, there is no
communication of the completion status. If you attempt to obtain the return status of a
background mode process using PGM_$PROC _ WAIT, you will get an error, because the
process handle is not valid for a background process.

Because a background mode process has no dependence on the parent, it is referred to as an
orphan process. Background mode is useful for performing processing that has no further
dependence on the parent process. For example, a parent process may perform interactive data
collection, invoke a program in a background process to manipulate the data, then return to
further data collection. This permits the data collection and data manipulation to be performed
concurrently.

Example 3-4 contains two programs and a module. One program (PGM_INVOKE_DIVIDE)
does the following:

• Creates an II input II file and an II error II file for use by a child process, using
STREAM_$CREATE. The INVOKE_DIVIDE program will load the input file with
data for the child process to use as input. The error file is for use as an error log by
the child process.

• Collects data interactively -- (gets two numbers to be divided).

• Writes the data to the input file, using STREAM_ $PUT _REC.

3-11 Managing Programs

Resets the stream pointer to the beginning of the file when finished writing to the file,
using STREAM _ $SEEK. This is done because the stream will be passed to a child
process that will read from the file. If the pointer is not RESET, the child will
immediately encounter end of file.

• Invokes a program (PGM_DIVIDE) in background mode to process the information,
using PGM_$INVOKE.

• Passes the background process the open stream to the input file as standard input,
and passes lihe open stream to the error file as standard error output. (It also passes
the default standard output and standard error input.)

• Oontinues processing.

The other program (DIVIDE) does the following:

• Establishes a fault handler to trap the divide-by-zero fault, using
PFM $ESTABLISH F AUL T HANDLER. A fault handler must be established if
you wish to log the fault before the process is terminated. The actual fault handler
must be written as a separate module, and declared external. You specify the targeted
fault by using the predefined fault constants in the F AUL T insert file. See Ohapter 2
for details about how to establish a fault handler.

• Reads the two numbers it is to divide from the standar"d input stream, which is the
input file created and passed by INVOKE_DIVIDE.

• Divides the numbers and writes the result to standard output.

The module (PGM_ZERO _HANDLER) is the fault handler established by DIVIDE. It is
invoked if the user attempts to divide by zero. It writes the fault message text to the standard
error output stream, which is the error file created and passed by the parent. You must bind
ZERO _HANDLER and DIVIDE befor attempting to invoke the program. See Ohapter 2 for
details about how to establish a fault handler.

Managing Programs 3-12

* PGM INVOKE DIVIDE * - -

PROGRAM pgm_invoke_divide (input. output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas·;

VAR
status

{ $CREATE
error name
error len
input_name
input_len
error id
input_id
seek_key
number
number len

variables }
name_$pname_t;
integer;
name_$pname_t;
integer;
stream $id t;
stream-$id-t;
stream-$sk-t;
ARRAY [1. .20]
integer32;

{ PGM_$INVOKE variables }

OF char;

handle pgm_$proc;
connv pgm_$connv;

{process_handle}
{connection vector}

arg_count pinteger;

PROCEDURE check_status; {for error handling}

BEGIN
IF status.all <> status $ok THEN BEGIN

error $print(status);
pgm_$exit;

END;
END; {check_status}

BEGIN {main}

{ get standard error pathname for program to be invoked }
writeln ('Input the filename to be opened as standard'

'error in background process DIVIDE: ');
readln (error name);
error_len := SIZEOF(error_name);

{ calculate the name length }
WHILE «error_name[error_len] = ' ') AND (error_len> 0)) DO

error_len := error_len - 1;

Example 3-4. Invoking a Program in Background Mode

3-13 Managing Programs

{ create error file - get stream }
stream_$create (error_name.

error_len.
stream_$write.
stream_$unregulated.
error_id.
status);

{access}
{cone}
{stream ID}

{ get standard input pathname for program to be invoked }
writeln ('Input the filename to be opened as standard'

'input in background process DIVIDE: .);
readln (input_name);

{ calculate the name length }
input len := SIZEOF(input name);
WHILE-«input_name[input_len] = • .) AND (input_len> 0)) DO

input_len := input_len - 1;

{create standard input file - get stream }
stream_$create (input_name.

input_len.
stream $write. {access}
stream=$unregulated. {cone}
input_id. {stream ID}
status);

{ Get numbers to be divided by invoked program and }
{ write them to the created standard input file. }
writeln('input an integer to be divided: .);
readln(number);

{ calculate record length }
number len := SIZEOF(number);
WHILE (number[number_len] = • .) AND (number_len> 0)) DO

number len := number len - 1;

{ add one for the newline }
number len := number_len +1;
number [number_len] := CHR(10); { terminate wI newline}

{write the number to the file}
stream_$put_rec (input id. {stream to write to}

ADDR(number). {address of data buffer}
number_len. {length of data}
seek_key.
status);

writeln('input an integer'. number: (number_len -1).
• is to be divided by: .);

readln(number);

Example 3-4. Invoking a Program in Background Mode (Cont.)

Managing Programs 3-14

END.

{ calculate record length }
number_len := SIZEOF(number);
WHILE «number[number_len] = • .) AND (number_len> 0» DO

number len := number len - 1;

{ add one for the newline }
number len := number len +1;
number [number_len] :; CHR(10); { terminate wi newline}

{write the number to the file}
stream_$put_rec (input id.

ADDR(number).
number_len.
seek key.
status);

{ reset stream pOinter to the beginning of the }
{ input file before passing stream to the program }
stream_$seek(input_id. {stream ID}

stream_$rec. {seek-base}
stream_$absolute. {seek-type}
1. {record number}
status);

{ load $INVOKE connection vector}
connv[O] - input_id; { set stream IDto be created stdin
conny [1] - stream $stdout; { set stream ID to be STD OUTPUT
connv[2] - stream=$errin; { set stream ID to be STD ERRIN
conny [3] - error_id; { set stream ID to be created errout

{ invoke program }

}
}
}
}

pgm_$invoke (·pgm_divide·. { pathname of program to invoke }
10. { length of pathname }
O. { number of arguments to be passed }
O. { no arguments }
4. { number of streams to be passed }
conny. { array of stream IDS to be passed }
[pgm_$back_ground].{ mode in which to invoke program }
handle. { not used in background mode }
status) ; { status }

{continue processing}

Example 3-4. Invoking a Program in Background Mode (Cont.)

3-15 Managing Programs

* PGM DIVIDE *

PROGRAM pgm_divide (input. output);

{Program to divide two numbers}

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pfm.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/fault.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
number1
number2

status
handler id

integer;
integer;

status_$t;
pfm $fh handle t; - - -

{declare external fault-handling function}
FUNCTION zero fault handler (IN f_status : pfm_$fault_rec_t

): pfm_$fh_func_val_t; EXTERN;
BEGIN {main}

{establish the zero divide handler }
{load the target fault - 1st parameter}
handler id - pfm_$establish_fault_handler (fault_$zero_divide.

IF (status.all <> status_$ok) THEN
error_$print (status);

[]. {default type}
ADDR(zero_fault_handler).
status);

{read from standard input - (file passed by parent)}
readln(numberl);
readln(number2);

{calculate and write the result}
write (number1:1. ' divided by '.number2:1.' is '.(number1 DIV number2) :1);
writeln (' with a remainder of '.(number1 MOD number2) :1);

END.

* ZERO HANDLER *

MODULE pgm_zero_handler; {(input.output);}

{ This is a fault-handling function that prints }
{ a line and continues to fault handle. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pfm.ins.pas';

Example 3-4. Invoking a Program in Background Mode (Cont.)

Managing Programs 3-16

FUNCTION zero_fault_handler (IN f status : pfm $fault rec t
): pfm_$fh_func_val_t ; - -

BEGIN
{write a message to the error log}
error_$print (f_status.status);
zero_fault_handler := pfm_$continue_fault_handling;

Example 3-4. Invoking a Program in Background Mode (Cont.)

You can change a default child process into an orphan process by calling
PGM_$MAKE_ ORPHAN from the parent process. This option may be used for child processes
that need to communicate with the parent process initially, but at some point can run
independently.

PGM _ $MAKE _ ORPHAN takes the process handle of the child process as an input parameter.
It returns a process UID that can be used to obtain information about the process (see Section
3.7). Once you convert a child process to an orphan process, the process handle is no longer valid.

The program segment in Example 3-5 demonstrates how to convert a child process into an orphan
process.

PROGRAM pgm_orphan (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/error.ins.pas·;

VAR
puid
status
handle

uid $t;
status_$t;
pgm_$proc;

{declare and load the standard streams}
conny pgm_$connv:=

[stream $stdin, stream_$stdout,
stream=$errin, stream_$errout];

PROCEDURE check_status; {for error_handling}

BEGIN
IF status.all <> status_$ok THEN BEGIN

error_$print (status);
pgm_$exit;

END;
END; {check_status}

Example 3-5. Converting a Child Process to an Orphan Process

3-17 Managing Programs

BEGIN {main}

{invoke child process}

END.

pgm~$invoke(·test5.bin· ,
9,
0, 0,
4,
connv,
[],
handle,
status)

check_status;

{communicate with child}

{cut the child loose}

{program name}
{name length}
{no args}

{std. streams}
{default mode}
{process handle}

pgm $make orphan (handle , {process handle}
- - puid, {process uid}

status);

Example 3-5. Converting a Child Process to an Orphan Process (Cont.)

3.3. Passing Arguments to Invoked Programs

In addition to specifying the mode in which an invoked program is to run, PGM_ $INVOKE
permits the passing of arguments to the. invoked program. The third and fourth parameters of
the PGM _ $INVOKE call are the argument count and argument vector, respectively. The
argument count is a 2-byte integer specifying the number of arguments being passed. The
argument vector is an array of pointers to the arguments being passed. The argument vector is
of the type PGM _ $ARGV, which is an array of UNIV _ PTR types.

A program can pass any number of arguments to a program it is invoking. However, when
passing arguments to a Shell, the Shell's syntax limits the number of arguments to 10 (including
program name). Each argument must be preceded by a 2-byte integer indicating the number of
bytes in the argument. The first argument mu~t be the name of the program -- the simple name,
not the full pathname (i.e., date, not / /deedle/com/date).

DOMAIN provides a predefined record type, PGM_ $ARG, which is a 128-byte character array
preceded by a 2-byte integer. Whether you choose to use the predefined argument type, or
declare a argument type of your own, will depend on the length of the passed arguments and how
critical storage is to your program.

Figure 3-1 illustrates the argument vector/argument arrangement.

Managing Programs 3-18

Returned Array of Retrieved Argument
Pointer Pointers Records

index

pointer ~ 0: pointer argJen arg_text

1 : pointer
argJen arg_text

n: pointer ~I L-_ar_g ___ le_n_L--a_r_g __ t_e_x_t...J

Figure 3-1. Argument Vector/Argument Configuration

The program in Example 3-6 invokes a program (in a child process) and passes two arguments:
the invoked program name and a text string. (Remember, the name of the invoked program
must be passed as the first argument.)

PROGRAM pgm_pass_args (input.output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status : status_$t;

{argument variables}
name.
argument : pgm_$arg;

{INVOKE variables}
argv pgm_$argv;
handle : pgm_$proc;

{declare and load the standard streams}
conny pgm $connv :=

[stream $stdin. stream $stdout.
stream=$errin. stream=$errout];

PROCEDURE check_status; {for error_handling}

BEGIN

END;

IF status.all <> status_$ok THEN BEGIN
error $print (status);
pgm $exit;

END;

Example 3-6. Passing Arguments to an Invoked Program

3-19 Managing Programs

BEGIN {main program}

END.

{load the arguments}
name.chars := 'pgm_passee.bin';
name. len := 14;
argument.chars := 'test';
argument. len := 4;

{load the argument vector wi addresses}
argv[O] := ADDR(name);
argv[l] := ADDR(argument);

pgm_$invoke('pgm_passee.bin' ,
14
2.
a.rgv,
4.
connY,
[J.
handle,
status)

{process name}
{name length}
{arg count - name ~ arg}
{arg vector}
{stream count}
{std. streams}
{mode}
{process handle}

pgm_$proc_wait (handle, {process handle}
status);

Example 3-6. Passing Arguments to an Invoked Program (Cont.)

3.4. Accessing Arguments from an Invoked Program

An invoked .program can access the arguments passed to it in two ways:

• Calling PGM_ $GET _ARG, which returns one argument at a time .

• Calling PGM_ $GET _ARGS, which returns a pointer to an array containing all the
passed arguments.

3.4.1. Accessing Arguments with PGM_ $GET _ARG

PGM_$GET _ARG is a function that returns an argument and its length. To access an
argument with it, specify the argument vector index number of the pointer to the argument, and
the maximum length of the argument. For example, to index the program name, which is the first
argument, specify the index number as 0 and a maximum length that will accommodate the
name.

Example 3-7 shows a program that could be invoked by a program similar to the one in Example
3.3. This program accesses the second argument in the argument array. (Typically, the program
name is ignored by an invoked program.)

Managing Programs 3-20

PROGRAM pgm_passee_arg (input. output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR
status_$t;
pinteger; {returned argument length}

status
arg_Iength
arg_num
argument
max len

pinteger; {ordinal # of desired argument}
array [1 .. 256] of char; {argument buffer}
pinteger := 256; {maximum length of returned arg}

BEGIN

{access 2nd argument}
arg_num := 1; {2nd arg #. 0 is 1st}

pgm_$get_arg (arg_num. {arg number}
argument. {arg buffer}
status.
max_len);

writeln ('this is the second argument: ' argument:arg_Iength);

END.

IF status.all <> status_$ok THEN
error_$print (status);

{process the argument}

Example 3-7. Accessing Arguments with PGM_$GET _ARG

3.4.2. Accessing Arguments with PGM_ $GET _ARGS

PGM_ $GET _ARGS returns a pointer to the argument vector, and the number of pointers in
the vector (the number of arguments passed).

The program in Example 3-8 may also be invoked by. a program similar to the one in Example
3.3. It accesses both arguments passed to it.

Note that the argument vector is a PGM_ $ARGV data type. This is an array of addresses in
UNN PTR format. You cannot dereference a UNN PTR. So, to access the argument you
must:

1. Declare an explicit type pointer for the arguments.

2. Typecast the UNN _PTRs to be explicit pointers.

3. Dereference the explicit pointers.

The program segment in Example 3-8 accesses arguments with PGM_ $GET _ARGS, and writes
them to output.

3-21 Managing Programs

PROGRAM pgm_passee (input, output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas';

TYPE
{declare an explicit argument pointer}
pgm_arg_ptr = -pgm_$arg;

VAR

arg_count
arg_vec_addr
i

pinteger; {argument count}
pgm_$argv_ptr; {argument vector}
pinteger; {index}

{declare array to hold arguments}
arguments array [0 .. 127] of pgm_arg_ptr;

BEGIN

END.

{get a pointer to the argument array}
pgm_$get_args Carg_count, {number of arguments}

arg_vec_addr); {returned pointer}

FOR i := 0 TO Carg_count - 1) DO BEGIN

{typecast the pointer and load into argument array}
arguments[i] := pgm_arg_ptrC arg_vec_addr-[i]);

{write argument to output (dereference explicit pointer)}
writeln ('Argument', i:1,' is " arguments[I]-.chars:arguments[I]-.len);

END;

Example 3-8. Accessing Arguments with PGM_ $GET _ARGS

3.5. Deleting Arguments

DOMAIN provides the call PGM_$DEL_ARG to delete arguments from the argument vector.
PGM_$DEL_ARG is useful in the case of invoking a program (for example, PROG_A) that
invokes another program (PROG _B). In this instance, you can pass PROG _A the arguments
needed for both programs. PROG_A uses PGM_$DEL_ARG to delete the arguments it uses
from the argument vector, then uses the modified vector to invoke PROG _B.

The DOMAIN Language Level Debugger (DEBUG) is an example of such a program. Consider
the following Shell command:

debug -src taxes.bin income

This command invokes the debugger with an argument vector that contains pointers to all four
elements of the command. All four elements are arguments to the DEBUG program. However,
before invoking the user program taxes.bin, the debugger deletes II debug II and II-srC II from the
argument vector.

Managing Programs 3-22

To delete an argument from the argument vector, call PGM_ $DEL_ARG specifying the index
number of the argument pointer in the argument vector. For example, to delete the first
argument, specify 0 as the index number.

The program in Example 3-9 is passed an argument vector that contains two arguments, its name
and the name of a program it invokes. The example accesses the argument vector using
PGM _ $GET _ ARGS, deletes the name argument, then invokes the other program, using the
same argument vector. In a more complex program, you might read each argument, searching
for a flag that separates the arguments of the two programs.

PROGRAM pgm del inv (input. output);
%include ,/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas';

TYPE
{construct a pointer to arguments}
pgm_arg_ptr = -pgm_$arg;

VAR
arg_count
arg_vec_addr

pinteger;
pgm_$argv_ptr;

{declare array to hold~arguments}
i integer;
arguments array [0 .. 127] of pgm_arg_ptr;

{INVOKE variables}
status : status $t;
handle : pgm_$proc;
{declare and load the standard streams}
conny pgm_$connv:=

[stream_$stdin. stream $stdout.
stream_$errin. stream=$errout];

PROCEDURE check_status; {for error_handling}

BEGIN

END;

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;

END;

BEGIN {main}

writeln ('In del_inv');

pgm_$get_args (arg count. {number of arguments}
arg-vec addr); {pointer to argument vector}

writeln('passed folowing arguments: ,);

Example 3-9. Deleting an Argument from the Argument Vector

3-23 Managing Programs

FOR i := 0 TO (arg_count - 1) DO BEGIN
arguments[i] pgm arg ptr(arg vec addr-[i]);
writeln('ARG '. i:1~ , ~. arguments[1]-.chars : arguments[i]-.len);

END;

{delete program name argument}
writeln;
writeln('deleting ARG 0');
'pgm_$del_arg (0);

END.

{GET_ARGS passes UNIV pointer to the argument array. To }
{reference arguments. you must typecast to pgm_$arg pointers}

FOR i := 0 TO Carg_count - 1) DO BEGIN
arguments[i] pgm_arg_ptr(arg_vec_addr-[i]);

END;

wri teln(' invoking '. arguments [0] -. chars: arguments [0] - .len.' (now arg 0)');
writeln;

{invoke second program wI modified arg vector}

pgm_$invoke(arguments [O]-.chars.
arguments [0]-. len.
1.

check_status;

arg_vec_addr-.
4.
connv.
[pgm _ $wai t] .
handle.
status)

{process name}
{name length}
{arg count - name}
{arg vector}
{stream count}
{std streams}
{mode}
{process handle}

Exam~le 3-9. Deleting an Argument from the Argument Vector (Cont.)

3.6. Passing Streams to an Invoked Program

PGM_ $INVOKE also permits the passing of streams to the invoked program. The fifth and
sixth parameters of the INVOKE call are the stream count and connection vector, respectively.
The stream count is a 2-byte integer specifying the number of streams being passed. The
connection vector is an array of stream IDS, in PGM_ $CONNV format. Stream IDS refer to
objects already opened by the calling program, using STREAM $ CREATE or
STREAM _ $OPEN. The first element in the connection-vector array becomes stream 0 in the
invoked program, the second element becomes stream 1, and so on.

By default, every program is invoked with four streams, numbered 0 through 3. Stream 0 is
standard input, stream 1 is standard output, stream 2 is error input, stream 3 is error output.
To invoke a program with these four streams, pass the predefined standard stream constants.

You may also leave U holes II in the connection vector, by setting a stream ID equal to the
predefined constant, STREAM_ $NO _STREAM. (The STREAMS insert file must be included
to use this constant.)

Managing Programs 3-24

The program in Example 3-10 opens a file and passes the stream ID of the file as standard
output. Note that the STREAM_ $NO _ STREAM constant is used to pass a null stream as the
standard input.

PROGRAM pgm_pass_streams (input.output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status : status $t;
{argument variables}
name pgm_$arg;
argument : pgm_$arg;

{INVOKE variables}
argv pgm_$argv;
connv pgm_$connv;
handle pgm_$proc;

{CREATE variables}
pathname name_$pname_t;
namelength integer;
stream id stream_$id_t;

PROCEDURE check_status; {for error_handling}
BEGIN

END;

IF status.all <> status $ok THEN BEGIN
error_$print (status);
pgm_$exit;

END;

BEGIN {main program}

{get the input}
writeln ('Enter the output file pathname: ');
readln (pathname);

{ calculate the length of pathname }
namelength := SIZEOF(pathname);
WHILE (pathname[namelength] = ' ') AND (namelength > 0) DO

namelength := namelength - 1;

{open w/ $CREATE}
stream_$create (pathname.

namelength.
stream $write.
stream=$controlled_sharing.
stream_id.
status);

{access}
{cone}

Example 3-10. Passing Streams to an Invoked Process

3-25 Managing Programs

END.

{load the arguments}
name.chars := 'pgm_passee.bin';
name. len := 14;
argument.chars := 'test';
argument. len := 4;

{load the argument vector wI addresses}
argv[O] ADDR(name);
argv[l] := ADDR(argument);

{load connection vector}
connv[O] stream $no stream;
connv[l] stream=id;-
connv[2] stream $errin;
connv[3] stream=$errout;

pgm_$invoke('pgm_passee.bin' .
14.

check_status;

2,
argv.
4.
conny.
[L
handle.
status)

{null stream}
{pass stream ID as stdout}

{process name}
{name length}
{arg count - name ~ arg}
{arg vector}
{stream count}
{connection vector}
{mode}
{process handle}

{get process termination status}
pgm_$proc_wait (handle. {process handle}

status);
check_status;

Example 3-10. Passing Streams to an Invoked Process (Cont.)

Managing Programs 3-26

3.7. Getting Process Information

You can obtain information about your process and other processes on your node by using calls
from the PGM, PM, PROC1, and PROC2 subsystems.

3.7.1. Getting Information About Your Process

The following calls return information about the process that calls them:

PM_$GET _HOME_ TXT Returns the home directory as a string.

PM_$GET _SID _ TEXT Returns the SID (login identifier) as a string.

PROCI $GET CPUT Returns the CPU time used by the process.

PROC2 $GET INFO Returns a record containing the following information:

• The program state (ready, waiting, suspended, susp _pending,
bound).

• The User Status Register (USR).

• The User Program Counter (UPC).

• The user stack pointer (A7).

• The stack base pointer (A6).

• The amount of CPU time used.

• The CPU scheduling priority.

To obtain either the home directory or SID, call PM _ $GET _ HOME _ TEXT or
PM_ $GET _SID _ TEXT, respectively, specifying a maximum length for the string buffer to
hold the returned data. The calls return the requested string along with the actual length of the
string.

To obtain the CPU time used by your process, call PROC1_ $GET _ CPUT, specifying an
output parameter in TIME _ $CLOCK_ T format.

To obtain the information record for your process, you must pass PROC2 _ $GET _ INFO the
UID of your process and the buffer length for the record. Your process UID is obtained by calling
PROC _ $WHO _AM_I, which has one parameter -- the returned process UID. Specify a length
of 36 bytes for the information record buffer.

The program in Example 3-11 gets the home directory text, the process SID, the total.CPU time,
and the information record, and prints the information to standard output.

3-27 Managing Programs

PROGRAM pgm-your_proc (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';
%include '/sys/ins/procl.ins.pas';
%include '/sys/ins/proc2.ins.pas';
%include '/sys/ins/pm.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/type_uids.ins.pas';

VAR
home
home len
sid

string;
pinteger;
string;

sid len
uid
info
status
total time
d clock

BEGIN

pinteger;
uid_$t;
proc2_$info_t;
status_$t;
time $clock t;
cal_$timedate_rec_t;

pm_$get_home_txt (30, {maxI en}
{dir} home,

home_len);

writeln ('home directory', home home_len);

pm_$get_sid_txt (40, {maxlen}
sid, {dir}
sid_len);

writeln ('sid " sid: sid_len);

writeln ('uid " uid.high, uid.low);

proc2_$get_info (uid, {process uid}
infO,
36, {info buffer length}
status);

IF (status.all <> proc2 $is current) THEN
error_$print (status); -

{write the information}
writeln ('stack uid " info.stack uid.high);
writeln ('stack uid " info.stack-uid.IOW);
writeln ('stack base " info.stack_base);

Example 3-11. Getting Information About Your Process

Managing Programs 3-28

END.

IF proc2_$waiting IN info.state THEN
writeln ('state: waiting');

IF proc2_$suspended IN info.state THEN
writeln ('state: suspended');

IF proc2_$susp_pending IN info.state THEN
writeln ('state: susp_pending');

IF proc2 $bound IN info.state THEN
writeln ('state: bound');

writeln (" user sr , info.usr);
writeln ('user pc , info.upc);
writeln ('user stack pointer info.usp);
writeln ("sb ptr info.usb);

{decode the time}
cal_$decode_time (info. cpu_total,

d_clock);

writeln ('cum cpu: ',d_clock.hour:l,' ,
d_clock.minute:l,' ,
d_clock.second:l,' ');

writeln ('priority', info.priority:l);
writeln

{decode the time}
cal_$decode_time (total_time,

d_clock);

writeln ('GET_CPU total time: ',d_clock.hour:l,' .,
d_clock.minute:l,· •
d_clock.second:l,· .);

Example 3-11. Getting Information About Your Process (Cont.)

3.7.2. Getting Information About Other Processes

You can also obtain process information about:

• Processes invoked by your process .

• All other user processes on the same node as your process.

To obtain process information about a process invoked by your process:

1. Call PGM _ $GET _ PUID specifying the process handle of the child process as an
input parameter. (The process handle is returned when you invoke a process using
PGM _ $INVOKE.) PGM -'- $GET _ PUID returns the UID of the specified process.

2. Call PROC2_$GET _INFO, using the returned UID.

3-29 Managing Programs

To obtain information about all user processes running on the same node as your process:

1. Call PROC2 _ $LIST, specifying a maximum number of UIDS you want returned.
PROC2 _ $LIST returns the UIDS of all the user processes running on the same node
as the calling process, in an array of PROC2 _ $UID _ LIST _ T format.

2. Call PROC $GET INFO once for each returned UID.

The program in Example 3-12 invokes a program in a child process, gets the information record
of the invoked process, and writes the accumulated CPU time of the process (a field in the
information record) to standard output.

PROGRAM pgm_child_info (input.output);

{ This program gets the amount of time the child has used}

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;
%include ·/sys/ins/cal.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%include ·/sys/ins/proc2.ins.pas·;
%include ·/sys/ins/error.ins.pas·;

VAR
status
proc uid
info
total time
d clock
reI time
handle

status_$t;
uid $t;
proc2 $info t;
time $clock-t;
cal $timedate rec t;
time $clock t; -
pgm $proc; -

{process uid}
{information record}
{encoded time}
{decoded time}
{relative amount of time}
{process handle}

{declare and load the standard streams}
connv pgm $connv :=

[stream $stdin. stream_$stdout.
stream=$errin. stream_$errout];

PROCEDURE check_status; {for error_handling}

BEGIN

END;

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;

END;

Example 3-12. Getting Information About an Invoked Process

Managing Programs 3-30

(

BEGIN
pgm_$invoke('calc.bin' ,

8,
0,0,
4,
connY,
[L
handle,
status)

check_status;

{wait 10 seconds}

{process name}
{name length}
{no args}
{stream count}
{std streams}
{default mode}
{process handle}

{convert # of seconds to UTC value}
cal_$sec_to_clock (10,

reI_time);

time_$wait (time_$relative,
reI_time,
status);

{perform other processing}

{pre-defined}
{time to wait}

{get the process uid}
pgm_$get_puid (handle,

proc_uid,
status);

{process handle}
{process uid}

{get process information}
proc2_$get_info (proc_uid, {process uid}

info,
36, {info buffer length}
status);

check_status;

{decode the cpu time}
cal_$decode_time (info. cpu_total,

d_clock);

vfmt_$write5 ('Accumulated CPU time of Child
d_clock.hour,

%2ZWD:%2ZWD:%2ZWD %.',

END.

d_clock.minute,
d clock. second,
o~o); {dummy arguments}

{get child's terminaton status}
pgm_$proc_wait (handle, {process handle}

status);
check_status;

Example 3-12. Getting Information About an Invoked Process (Cont.)

Managing Programs 3-31 Managing Programs

Chapter 4
Performing I/O with IDS Calls

The lOS interface consists of lOS system calls that allow you to create, read, write, and delete

objects by opening stream connections to them. A stream connection is a pathway from the
program that is manipulating the object to the disk file or I/O device where the object is
physically located. You can read and change the attributes of an object and its stream
connection. This allows you to control what operations can be performed on an object, and how
your program and other programs can access it.

Usually, you can perform I/O operations using statements and functions in your high-level
language. And, in fact,. you want to use high-Ievellangauge I/O if you are most concerned about
transporting your programs to other operating systems.

However, DOMAIN provides this lOS interface to perform I/O operations if your high-level
language does not provide a way, is less convenient to use, or if using it would introduce
undesirable peculiarities on certain devices.

lOS calls can sometimes be more efficient than language I/O. For example, the lOS manager
provides a call that allows you to read data without having to copy the data into a buffer.
Standard UNIX I/O does not provide a comparable feature.

This chapter describes the most common calls in the lOS interface. It describes how to create,
open, close, read, write, and delete various types of objects using lOS calls.

4.1. System Calls, Insert Files, and Data Types

To perform system I/O, use system calls with the prefix lOS. In order to use lOS system calls,
you must include the appropriate insert file in your program. The lOS insert files are:

/SYS/INS/IOS.INS.C
/SYS /INS /IOS.INS .FTN
/SYS/INS/IOS.INS.PAS

for C programs.
for FORTRAN programs.
for Pascal programs.

Note that some lOS system calls require that you specify a type UID. To use standard DOMAIN
types, you must include the appropriate type UID insert file for your program:

/SYS/INS/TYPE _ UIDS.lNS.C
/SYS /INS /TYPE _ UIDS.lNS.FTN
/SYS/INS/TYPE _ UIDS.lNS.PAS

for C programs.
for FORTRAN programs.
for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data type
and system call descriptions in it are not comprehensive. For complete information on the data
types and system calls in these insert files, see the DOMAIN System Call Reference manual.

4-1 Performing I/O with lOS Calls

4.2. Overview of the lOS Manager

The lOS interface is actually part of a larger facility that DOMAIN provides to perform stream
I/O. The Streams facility allows DOMAIN programs to perform I/O on various' types of
objects. Among the object types that DOMAIN defines is the unstructured ASCII (VASC) type,
serial I/O line (SIO) type, and the record (REC) type. (See Section 4.3 for a more complete list.)

The Streams facility is designed so that it can insulate the I/O operation from the type of object
it is operating on. For example, a program can use the same I/O statement to write to an object,
regardless of whether the object's type is VASC or :MBX. Whenever a program performs an I/O
operation, the Streams facility recognizes the object type being manipulated and calls a
corresponding type manager. The type managers define how the I/O operations can be
performed on that particular object type. The managers actually perform the I/O operation by
making calls to more primitive (or device-dependent) managers. For example, the VASC type
manager uses MS calls to perform an I/O operation on a VASC object while the :MBX type
manager uses :MBX calls to perform an I/O operation on an :MBX object. This layered approach
allows application programmers to use various object types without having to know the details of
how I/0 for each type is implemented.

Another advantage of having the Streams facility comprised of various type managers is that
users, as well as DOMAIN, can define new object types and write new type managers as the need
arises. For information on writing a type manager see the Using the Open System Toolkit to
Extend the Streams Facility manual.

Generally, when using lOS calls, you need not be concerned about the other parts of the Streams
facility. The Streams facility does the work for you. Whenever a program performs an I/O
operation, (either by using a language I/O statement such as Pascal's writeln, DOMAIN/IX's
write, or by an lOS call such as lOS _ $PVT) the Streams facility recognizes the object type being
manipulated and calls the appropriate type manager for that type.

You can use lOS calls as a way of making your program generic or less dependent on any specific
device, or manager . You can do so because most of the lOS calls perform the same way,
regardless of the object type you are using. This chapter describes the basic lOS calls
independent of any objects. Chapter 9 describes how to use lOS calls to access the object types
that DOMAIN supports.

Before we describe how to use lOS calls to perform system I/0, we must first define a few terms.
The following sections define some of the basic features of the lOS interface:

• Stream connections

• Stream IDs

• Default Stream IDs

• Stream markers

Performing I/O with lOS Calls 4-2

4.2.1. Stream Connections

A stream connection, often referred to as simply a stream, is a pathway to an object such as
a disk file or I/O device. This is how your program connects to the object. Whenever a program
wants to perform I/O on an object, the program must first make one or more stream connections
to that object. You establish a stream connection when you open the object using
lOS $OREATE or lOS $OPEN.

4.2.2. Stream IDs

You make a connection when you create or open an object, specifying the pathname of the

desired object. If the call succeeds, it returns an identification number or stream ID. The
stream ID identifies the stream connection to the calling program. You use the returned stream
ID as an input parameter to any system calls requiring a stream ID. (lOS, SIO, PAD, and some
GPR system calls require that you specify a stream ID.)

Once a program makes a stream connection, the program uses the stream ID, not the pathname,
to perform I/O on the associated object. The program terminates the stream connection when it
performs a close operation (for lOS calls, lOS _ $OLOSE closes the specified stream connection).

Note that stream IDs are not the same as FORTRAN logical unit numbers, which are channel
numbers that the programmer selects. In contrast, stream IDs are assigned by the Streams
facility.

4.2.3. Default Stream IDs

Typically, a program's runtime environment requires a specific set of stream connections, so the
lOS manager provides these by default. Each time you create a process, lOS opens these default
streams for program input and output:

• Standard input

• Standard output

• Error input

• Error output

Standard input and standard output are streams that channel normal input and output
between a user and a process. By default, standard input is an input pad. Standard output is a
transcript pad.

Shell commands use input and output streams when processing command line data. When a user
specifies a command in the Shell input pad, standard input passes data from the command line to
the command program. Standard output passes data from the program to the transcript pad.

Error input and error output are streams that handle additional program input and output.
By default, error input is an input pad. Error output is a transcript pad.

4-3 Performing I/O with lOS Oalls

An error input stream has nothing to do with errors; it is simply an additional input stream to
pass data to a program. For example, when a command queries a user to verify wildcard names,
error input passes the user's response to the command program. Error output is the stream that
passes program error messages to the process transcript pad.

Table 4-1 lists the default streams by their predefined names, and actual stream number. These
constants are defined in the BASE insert files for each programming language.

Table 4-1. Default Streams

Stream lOS Defined Value Number

Standard input lOS - $STDIN (0)

Standard output lOS - $STDOUT (1)

Error input lOS - $ERRIN (2)

Error output lOS - $ERROUT (3)

In some cases, you may want to redirect standard input and output to read input from and write
data to locations other than the process input and transcript pads. For example, your program
might expect data from a disk file rather than from a user at the keyboard. The Shell allows
users to redirect standard input and output with the I/O control characters such as < and>.

You can redirect standard input and standard output stream connections by assigning a different
stream ID to the. stream connection. You can also redirect any standard stream using
PGM $INVOKE. For details, see Chapter 3 of this manual. A single process can have a
maximum of 127 stream IDs open at one time.

Note that when you redirect standard input or standard output, the error input and error output
keep their original connection. Some programs use error input and error output as interactive
connections, and standard input and standard output for the remaining data I/O. For example, if
a user has redirected standard input to a disk file, the program uses error input to get
information from the user (the keyboard) rather than from the file.

4.2.4. Stream Markers

Every open stream has a stream marker that points to the current position in an object. When
you open a stream to an object, the stream marker usually starts at the beginning of the object
(BOF). However, if your program wants to add data at the end of an existing object, you can
specify that the stream marker's initial position be at the end of the object (EO F).

The stream marker moves as you perform read or write operations on the object. When you read
from the object, the stream marker always moves so that it points to the data item you would
read next. The lOS manager returns an error if you try to read data when a stream marker is
pointing to EOF.

Many stream operations refer to the stream marker to complete the operation. Your programs
can inquire about, and explicitly move the stream marker, by using the lOS _ $SEEK calls. (For
details, see Section 4.9).

Performing I/O with lOS Calls 4-4

For some types of objects, like UASC objects, the stream marker keeps track of the current
stream position. For other types of objects, like an SIO line, the stream marker is irrelevant.

4.2.5. lOS Calls for Manipulating Streams

The lOS manager provides a few calls that allow you to to manipulate stream IDs or make copies
of stream connections. Table 4-2 lists the calls you can use.

Table 4-2. lOS Calls to Manipulate Stream Connections

lOS Call Description

lOS _ $EQUAL Determines whether two stream IDs refer to the
same object. (Useful to avoid using two streams
when one is sufficient.)

lOS $SWITCH

lOS $DUP

Switches a stream connection from one stream ID to
another stream ID. The new stream ID refers to
the same connection as the old stream ID, making
the old stream ID invalid.

Creates a copy of a specified existing stream ID .
The new stream ID refers to the same connection as
the existing stream ID.

lOS $REPLICATE Creates a copy of a specified existing stream ID .
The new stream ID refers to the same connection as
the existing stream ID.

Note that lOS _ $DUP is identical to lOS _ $REPLICATE except that lOS _ $DUP looks for a
free stream number in ascending order from the specified stream ID, while lOS _ $REPLICATE
looks in descending order. lOS _ $DUP is analogous to UNIX's DUP function.

You use either lOS _ $DUP or lOS _ $REPLICATE to copy existing stream IDs -- both the
existing and new stream IDs remain valid connections. Typically, you copy a stream to keep the
connection open when passing it to a subroutine. By copying the stream before passing it, you
prevent the subroutine from closing your connection to the object. Even if the subroutine closes
its connection, you will still have a valid stream ID for an open stream.

You use lOS _ $SWITCH to replace stream IDs; you switch the connection from the existing
stream ID to the new stream ID.

4.3. Creating and Opening Objects

The lOS manager provides two calls to open objects:

lOS $CREATE Creates an object if it does not exist, or opens an existing object.

lOS $OPEN Opens an object only if it exists. The call returns an error if the object you
specify does not exist.

4-5 Performing I/0 with lOS Calls

lOS _ $CREATE allows you to create an object of any type defined by a user or DOMAIN (for
example, VASC, record, or MBX objects). An object's type determines how lOS calls work for
that object. For example, lOS calls can support seek operations if you create a VASC object, but
not if you create an MBX object.

You can specify various actions to take if your program tries to create an object with a name
that already refers to an existing object. For example, you can create temporary or backup
versions of existing objects. You control how lOS $CREATE opens existing objects by
specifying appropriate create modes.

When opening the object using either lOS _ $ CREATE or lOS _ $OPEN, you can control certain
aspects of the open stream connection. For example, you can specify how your program can
access the object and whether other programs can access the object at the same time. You
control how to open an object by specifying the appropriate open options.

The following sections describe the create and open calls in detail:

• Section 4.3.1 describes how to create an object of a particular type with
lOS $ CREATE.

• Section 4.3.2 describes how to use the create modes to control how lOS $CREATE
opens an object if it already exists.

• Section 4.3.6 describes the open options that you can specify with either
lOS $CREATE and lOS $OPEN.

4.3.1. Specifying an Object's Type

The lOS manager allows you to operate on many types of objects. As an application
programmer, you will see that most of the lOS calls work the same way regardless of the object
type you are using (unless the type manager does not support the lOS operation). This allows
you to design your program independent of any implementation details specific to a particular
object type.

To handle the specifics of each type, the lOS manager directs each lOS call to the appropriate
type manager for that type. The type manager actually performs the I/O operation according to
its implementation. For example, when your program uses lOS _ $ CREATE to create a VASC
object, the lOS manager directs the call to the VASC type manager. The VASC type manager
creates the VASC object by making subsequent MS calls. In contrast, if the program uses
lOS _ $CREATE to create a mailbox object, the lOS manager directs the call to the MBX type
manager.

The lOS manager recognizes the object's type by checking its type UID. A type VID is a
number that uniquely identifies a class of objects. You can specify the type of object that you
want to operate on when you create the object. You supply the object type, in VID _ $T format,
of a system object in the third parameter of the create call. Table 4-3 lists some of the object
types defined by DOMAIN with their predefined constants. Chapter 9 describes the types of
objects defined by DOMAIN in detail.

Note that the following is only a partial list of type VIDs because users, as well as DOMAIN, can
add a new object type whenever the need arises by writing a type manager. DO~ I. \ IN provides
the Open System Toolkit to help you define your own I/O operations. See the U"lng the Open
System Toolkit to Extend the Streams Facility manual for details.

Performing I/O with lOS Calls 4-6

When using any lOS calls that require you to specify a type UID, you might need to include a
type UID insert file. The standard DOMAIN types are defined in the TYPE_ UIDS.lNS.xxx insert
file, where xxx stands for the language extension,. C, .FTN, or .PAS.

Currently, the only lOS call that requires you to specify a type UID is lOS _ $CREATE. Even
then, you don't have to specify the type UID insert file in programs that use lOS _ $CREATE
when you create an object of the default type. You specify the default type, which is currently
the UASC object type, by specifying the predefined value, UID _ $Nll... UID _ $Nll.. is declared in
the BASE insert file.

Most of the examples in this chapter manipulate this default type. See Chapter 9 for information
on using lOS calls to access other types of objects such as mailboxes, serial lines, and magnetic
tapes.

Table 4-3. Object Types

Type UID Object

UASC $UID UASC object

RECORDS $UID Record-structured object

HDR UNDEF $UID N onrecord-structured 0 b j ect

OBJECT - Fll..E - $UID Object module object (compiler or binder output)

SIO - $UID Serial line descriptor object

MT - $UID Magnetic tape descriptor object

PAD - $UID Saved Display Manager transcript pad

INPUT - PAD $UID - Display Manager input pad

MBX - $UID Mailbox object

DIRECTORY - $UID Directory

NULL $UID Null device -

4.3.2. Controlling how lOS Creates Objects

You can specify various actions to take if your program tries to create an object with a name
that already refers to an existing object. For example, a user of your program might specify a
name of an object not knowing it already exists. Your program can either create a new version of
that object, open a stream to the existing object, or return an error indicating that the object
already exists.

You control how lOS _ $ CREATE creates an object by specifying one or more of the create
modes in the fourth parameter of your call. Table 4-4 lists the modes, in
10S_$CREATE_MODE_ T format, that control how 10S_$CREATE creates new objects if
the name specified refers to an object that already exists. If a name does not refer to an existing
object, lOS _ $CREATE just creates a new object, ignoring any create modes.

4-7 Performing I/O with lOS Calls

Table 4-4. Controlling IOS_$CREATE when a Name Refers to an Existing Object

lOS $NO PRE EXIST MODE

lOS $PRESERVE MODE

lOS $RECREATE MODE

lOS $TRUNCATE MODE

lOS $MAKE BACKUP MODE

Returns the lOS $ALREADY EXISTS error
status code, if an object with the specified name
already exists.

Preserves the contents of the object, if an object
with the specified name already exists. It then
opens the object and positions the stream marker to
the begining of the object (BOF) unless you set the
lOS _ $POSITION _ TO _ EOF open option. Use
this mode to change or add data to an existing
object. (See Section 4.3.6 for details on open
options.)

Recreates the object if an object with the specified
name already exists. Essentially, this option deletes
the existing object and creates a new one. Use this
mode to create the object as if the name never
existed. The object created will have the default set
of attributes for that object type.

Opens the object and deletes the contents, if an
object with the specified name already exists. Use
this mode to create an object that has the same
attributes as the object with the specified name.

Creates a temporary object with the same type and
attributes as the object specified in the pathname, if
an object with the specified name already exists.
Use this mode to create a backup object.

Section 4.3.3 describes how to create a backup version of an existing object in detail. Section
4.3.4 describes how to use an additional create mode, lOS _ $LOC _NAME _ ONLY _MODE,
which determines how lOS _ $CREATE creates a temporary object.

4.3.3. Creating a Backup Object

To create a backup version of a specified object, use lOS $CREATE with the
lOS $MAKE BACKUP MODE create mode. The new object is the same as the object
specified by IIpathname ll (if it exists) in that it has the same type and other attributes, and it is
created on the same volume (node).

10S_$CREATE (with 10S_$MAKE_BACKUP _MODE) does not open or modify the object
specified by the pathname, but it examines the object to extract its attributes. Even though the
call doesn't modify the object, it conceptually replaces the object, so this operation requires write
access to object.

Performing I/O with lOS Calls 4-8

When you close this stream with an lOS _ $CLOSE, lOS _ $CLOSE changes the object specified
by Ilpathname" to "pathname.bak. 11 It changes the new (formerly the temporary, unnamed)
object to "pathname, II and makes the object permanent. If a II .bak" version of the object
already exists, lOS _ $CLOSE deletes it. (The caller must have either D or P rights to delete the
object.) If the ".bak" object is locked at the time lOS _ $CLOSE is called, the object will be
deleted when it is unlocked.

If the object doesn't exist, lOS _ $CREATE creates the object specified by "pathname, II and
lOS $MAKE BACKUP _MODE has no effect.

4.3.4. Creating Temporary Objects

lOS _ $ CREATE allows you to create a temporary object two ways. To create a temporary
object on your boot volume, specify a null value for a pathname and a value of 0 in namelength.
To create a temporary object on another volume, specify the pathname of an existing object on
that volume and the lOS $LOC NAME ONLY MODE create mode. lOS $CREATE
creates a temporary unnamed object on the same node as the object you specify in "pathname."

4.3.5. Examples of Opening and Creating Objects

Example 4-1 is a program segment that calls lOS _ $CREATE to create a VASC object, or open
one if it already exists. The program calls lOS _ $ CREATE with the
lOS _ $PRESERVE_MODE create mode to save the contents of the object (if it exists) and the
lOS _ $POSITION _ TO _ EOF _ OPT open option to position the stream marker at the end of
the object. This causes lOS _ $PVT to append data to the end of the object. Since we use
lOS _ $CREATE, the object is automatically open for write access. See Section 4.3.7 for more
information about controlling an object's read and write access.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/ios.ins.pas·;
%include ·/sys/ins/error.ins.pas·;

VAR

status
count

status_$t;
integer;

{$CREATE variables}

pathname
name length
type_uid
stream id

name_$pname_t;
integer;
uid_$t;
ios_$id_t;

PROCEDURE check_status; {for error handling}

Example 4-1. Creating an Object

4-9 Performing I/O with lOS Calls

BEGIN {main}

{ Get the pathname. }
writeln;
writeln ('Type the pathname of object to create or open: .);
namelength := SIZEOF(pathname);

{ Convert pathname to internal format using VFMT_$READ. }
vfmt_$read2 (.%" U%eka% .. ,

count,
status,
pathname,
namelength);

{ Create the object, or open an existing object for appending input. }
ios_$create (pathname,

name length,
uid_$nil, { Default type UID (UASC) }
ios_$preserve_mode, { Open object if exists}
[ioS_$position_to_eof_opt], { Append data at end}
stream_id,
status);

check_status;

Example 4-1. Creating an Object (Concluded)

The program segment in Example 4-2 asks the user to specify an existing object. It then opens
the object using lOS _ $OPEN with write access and sets the stream marker to EOF to append
data. If it opened the object for write access without specifying
lOS _ $POSITION _ TO _EOF _ OPT, the data would be overwritten. The next section
describes the lOS $OPEN call in detail. See Section 4.3.7 for more information about
controlling a stream's read and write access.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/ios.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;
%include ·/sys/ins/error.ins.pas·;

VAR
status
count

status_$t;
integer;

{$OPEN variables}
pathname name_$pname_t;
namelength integer;
open_opt ios $open options t;
stream id iOS=$id_t; -

BEGIN {main}

{Get the pathname. }
writeln ('Type the name of the existing Object you want to open: ');

Example 4-2. Opening an Existing Object

Performing I/O with lOS Calls 4-10

{ Convert pathname to internal format using VFMT_$READ. }
namelength := sizeof(pathname);
vfmt_$read2 C'1'1I'lekal. • ,

count.
status,
pathname,
namelength);

{ Open the object.}
stream id .- IOS_$OPEN (pathname,

name length,
[ios $write opt. { Open with write access}
ios-$position to eof opt]. { Append data at end}

stat~s)~ - - -

Example 4-2. Opening an Existing Object (Conelu,ded)

4.3.6. Controlling how lOS Opens Objects

You control how lOS opens stream connections to objects by specifying various open options in
your lOS _ $CREATE or lOS _ $OPEN system call. For example, you can open an object
permitting write access to the stream by specifying lOS _ $WRITE _ OPT. Most of these options
determine how your program can access an object, and how programs from other processes can
access an object. Section 4.3.7 describes these options in detail.

Table 4-5 lists the lOS _ $OPEN _ OPTIONS _ T option set that control how lOS _ $CREATE or
lOS _ $OPEN opens streams to objects.

Table 4-5. Options That Control how to Open Streams

Specifying this open option:

lOS _ $NO _ OPEN _DELAY _ OPT

lOS $WRITE OPT

lOS _ $UNREGULATED _ OPT

lOS _ $POSITION _ TO _ EOF _ OPT

Causes the open call to:

Return immediately, instead of waiting for the call
to complete.

Permit writing data to a new object. If a program
tries to write on a stream for which you have not
specified this option, it returns an error status. Note
that when creating an object, this value IS

automatically set because the lOS manager assumes
that when yot!. create an object, you will want to
write to it. Therefore, you do not need to specify
this option on an lOS _ $CREATE call.

Permit unregulated (shared) concurrency mode. See
Section 4.3.7 for details.

Position the stream marker at the end of the object
(EOF). Use this to append data at the end of an
object.

4-11 Performing I/O with lOS Calls

Table 4-5. Options That Control how to Open Streams

Specifying this open option:

lOS _ $INQUffiE _ ONLY _ OPT

lOS _ $READ _INTEND _ WRITE _ OPT

Causes the open call to:

Open the object for attribute inquiries only; do not
permit reading or writing of data.

Open the object for read access, with the intent
that it can later be changed to write access. This
allows other processes to read the object; but they
cannot have write or read-intend-write access. See
section 4.3.7 for details.

4.3.7. Controlling a Stream's Access and Concurrency

When you open a stream to an object, you determine how your program can use that object by
specifying the stream's access type. At the same time, you determine how other processes can

use the object by specifying the stream's concurrency mode. (You control a stream's access
type and concurrency mode by specifying the appropriate open options in
lOS _ $OPEN _ OPTIONS _ T format.)

A stream's access type can be either read, write, or read-intend-write (RIW). Read and write
access mean, respectively, that you allow your program to read from the object and write to the
object. RIW access means that you currently allow your program to read from the object stream,
and that you intend to change your program's access to write access in the future.

A stream's concurrency mode can be either regulated (protected) or unregulated (shared).
Regulated concurrency mode means that you do not allow other programs read or write access to
the object at the same time. Unregulated concurrency mode means that other programs can
access the object at any time.

Together, the access type and concurrency mode allow you to determine how the object can be
used. For example, if you open a stream to an object with write access and regulated
concurrency mode (by specifying the lOS _ $WRITE _ OPT open option) only your program can
access the object. Other processes that try to open a stream to the object will get the error,
"Requested object is in use. II However, if you open a stream to an object with write access, and
unregulated concurrency mode, another process will be able to open a stream to the object, and
can have any kind of access.

By specifying different combinations of access types and concurrency modes, you have a variety
of ways to control how an object is used. Some DOMAIN managers refer to the combination of

access type and concurrency mode as a lock. Also, some managers refer to the concurrency mode

as being either protected or shared. That is, the object is either protected from other
processes, or it is shared by other processes. The terms are analogous to the lOS manager's
regulated and unregulated concurrency mode.

How you specify the type of access and concurrency mode when opening an object depends on
how you expect to use the object. The following are some guidelines for determining access type
and concurrency mode. Table 4-6 tells you which open options you can specify to get these
combinations. Use read access and regulated concurrency mode when you expect several
programs to read the object, but no program will write to the object.

Performing I/O with lOS Calls 4-12

Use read-intend-write (RIW) access and regulated concurrency mode when you want to read
an object, and expect that you will write to it later. By doing this, you do not block other
processes from reading the object, but they cannot write to the object. You can change the access
to write when no other programs are reading it.

The Display Manager uses regulated RIW when it allows a user to edit an object. It opens the
object for RIW, which allows the user to make edits to the object. At this time, other programs
can read the object in its pre-modified form. When the user types CTRL/Y to close the object,
the Display Manager changes the stream to write access and writes the changes to the disk.

Use read access and unregulated concurrency mode when you want to read an object, but also
allow other programs on your node to write to the object (by getting shared write locks). You
must synchronize the programs to handle reading and writing to the same object.

Use write access and regulated concurrency mode when you want to write to an object, and you
want to deny any programs access to the object while you are writing.

Use write access and unregulated concurrency mode when you want to allow many programs to
read from and write to an object. Note that you must synchronize the programs to handle
concurrent reading and writing to the same object. (For details on synchronization techniques,
see the Programming with System Calls for Interprocess Communication manual.)

Only programs on the same node can have unregulated write access to the same object, because
they share the same physical memory for the object. When programs on different nodes share the
same object, each node stores the object in its own memory. For this reason, programs on
different nodes can have only unregulated read access, not unregulated write access.

Table 4-6 shows the predefined values that you can specify to get the type of control you want.
These values are in lOS _ $OPEN _ OPTIONS _ T format. The first column lists the combination
(or lock) that you want. The second column lists the option (or options) you would specify on the
open call to get the corresponding access type and concurrency mode. Note that the lOS manager
assumes that most programs open objects using read access and protected concurrency mode. So,
you don't need to specify these values in the open call.

Table 4-6. lOS Options for Specifying Access Types and Concurrency Modes

COIIlbination lOS Options to Specify

Regulated Read The empty set, []
(Protected Read)

Regulated RIW [lOS _ $READ _ INTEND _ WRITE _ OPT]
(Protected RIW)

Regulated Write [lOS _ $WRITE _ OPT]
(Exclusive Write)

Unregulated Read [lOS _ $UNREGULATED _ OPT]
(Shared Read)

Unregulated Write [lOS _ $WRITE _ OPT, lOS _ $UNREGULATED _ OPT]
(Shared Write)

4-13 Performing I/O with lOS Calls

Just as you set the concurrency mode to control how other processes can access the object you
open, other processes will try to control how your program accesses the objects that it opens. If
another process has already opened a stream to an object, and you try to open the same object
with an incompatible access type and concurrency mode, then your open call will fail with the
error, lOS _ $CONCURRENCY _VIOLATION.

Refer to the following rules to determine whether the object you plan to open has compatible
access types and concurrency modes with an existing open stream to the object.

If another process has opened the object for:

• Read access, regardless of the concurrency mode, you can open another stream for
read or read-intend-write (lOS _ $READ _INTEND _ WRITE _ OPT) access.

• Write access (lOS _ $WRITE_ OPT), and regulated (protected) concurrency, you
cannot open another stream to the object.

• Write access (IOS_$WRITE_OPT), and unregulated (IOS_$UNREGULATED)
concurrency, you can open another stream to the object for unregulated concurrency,
regardless of the access type.

• Unregulated (lOS _ $UNREGULATED) concurrency, regardless of the access, you can
open another stream for unregulated concurrency -- as long as you open the object on
the 8ame node.

Table 4-7 summarizes the various access type and concurrency mode combinations that you can
have.

Table 4-7. Access/Concurrency Combinations for Shared Streams

If another process opened You can open a stream to that

a stream with: same object with:

Combination Access Type Concurrency Mode

Regulated Read Read or RIW Either mode

Regulated RIW Read Either mode

Unregulated Read Read or RIW Either mode
or Write Shared only

Unregulated RIW Read Either mode
or RIW or Write Shared only

Regulated Write Cannot open another stream.

Unregulated Write Read, RIW, or Write Shared only

Performing I/O with lOS Calls 4-14

4.3.8. Example of Controlling an Object's Access and Concurrency

Example 4-3 is a sample Pascal program that shows how to make sure that an object has
compatible access and concurrency modes. Since the above rules state that only one object can be
open with write access, the program must anticipate that its open call can fail if another process
has an open stream to the object. Therefore, it tests for this error.

{ Open the Object with write access. }
done := FALSE;
WHILE (done = FALSE) DO
BEGIN

stream id ios_$open (pathname.
name length.
[ios $wri te.
iOS_$position_to_eof_opt].
status);

IF status.all = status_$ok THEN
done := TRUE

ELSE IF (status.all = ios_$concurrency_violation) THEN
BEGIN

writeln;

{ Append data }

writeln (, Can"t get Object for write access.');
writeln (, Type YES if you want to try again. ');
writeln (, Type NO to terminate program. ');
readln (ans);

END

IF (ans = 'NO') OR (ans = 'no') THEN
BEGIN

END;

done := TRUE;
writeln;
writeln (' Terminating program. ');
pgm_$exit;

ELSE IF (status.all <> status_$ok) THEN
BEGIN

END;

error_$print(status);
pgm_$exit;

END; { while not done}

Example 4-3. Checking for Compatible Access Type and Concurrency Modes

4-15 Performing I/O with lOS Calls

4.4. Reading and Changing Object Attributes

When you create or open an object, the object has an associated set of attributes. These
attributes fall into three categories: object, connection, and manager.

Object attributes describe an object's characteristics. For example, an object can contain
ASCII data, or use FORTRAN carriage control characters. Table 4-8 lists the attributes
associated with an object. Table 4-9 listes the FORTRAN carriage control characters.

Table 4-8. Object Attributes

Attribute The object:

lOS $OF DELETE ON CLOSE Will be deleted when all its associated streams close. - - - -

lOS - $OF - SPARSE - OK Can be written as a sparse object.

lOS $OF ASCII Contains ASCII data. - -

lOS - $OF - FTNCC Uses FORTRAN carriage control characters. *

lOS - $OF - COND Has get or put calls performed conditionally, as if
the lOS _ $COND _ OPT was specified on a get or
put call.

* In the FORTRAN carriage control format, the first character of each record is a carriage
control character. The characters listed in Table 4-9 are recognized as FORTRAN carriage
control characters; all others are ignored. Each line must end with a NEWLINE character.

Table 4-Q. FORTRAN Carriage Control Characters

Character Effect

space Go to beginning of next line.

0 Skip one line.

1 Skip to beginning of next page.

+ Overprint: go to beginning of current line.

Performing I/O with lOS Calls 4-16

Connection attributes describe the characteristics of a specific stream connection. For
example, a stream can behave like a Display Manager pad, or it can be written. Stream
connection attributes affect the behavior of a single stream only, so two streams open to the same
object can have different connection attributes. Table 4-10 lists the attributes associated with a
stream connection.

Table 4-10. Stream Connection Attributes

Attribute The connection:

lOS $CF TTY Behaves like a terminal. - -

lOS - $CF - IPC Behaves like an interprocess communication (IPC)
channel.

lOS - $CF - VT Behaves like a DOMAIN Display Manager pad.

lOS $CF WRITE Can be written. - -

lOS - $CF - APPEND Positions its stream marker to the end of the object
(EOF) before each put call.

lOS - $CF - UNREGULATED Is open for unregulated (shared) concurrency mode.

lOS - $CF - READ - INTEND - WRITE Is open for read access, and can later change to
write access.

Manager attributes describe the operations that a type manager will allow to be performed on
that type of object. For example a type manager might allow programs to create objects of this
type or use different record formats. Table 4-11 lists the attributes associated with a type
manager.

Even if the type manager permits an operation, a specific object of that type might not be able to
perform the operation. Consider, for example, the write operation that allows writing to sparse
objects. (A sparse object is an object that can contains gaps created when a program seeks past
EOF and then writes to the object.) Both the type manager's and the object's attribute set must
contain the appropriate attribute to permit writing to sparse objects before the operation can
actually be allowed.

You set some of the object attributes when you create an object. You set connection attributes
by specifying certain open options in the create or open call. For example, if you open an object
specifying the lOS _ $WRITE _ OPT, the object's stream connection set will contain the
lOS $CF WRITE attribute.

You can add attributes to either the object or stream connection set after opening the object with
the lOS $SET CONN _FLAG or lOS $SET OBJ _FLAG calls. Section 4.4.1 describes how
to use these calls. Section 4.4.2 is a program segment using the lOS _ $INQ ... and lOS _ $SET ...
calls.

4-17 Performing I/O with lOS Ca.lls

Table 4-11. Type Manager Attributes

Attribute The type manager can:
--t--

lOS - $MF - CREATE Create other objects.

lOS - $MF - CREATE - BAK Create backup (.bak) objects.

lOS - $MF - Th1EX Export streams to new processes.

lOS - $MF - FORK Pass streams to forked processes.

lOS - $MF - FORCE - WRITE Force-write object contents to disk.

lOS - $MF - WRITE Perform write operations.

lOS $MF SEEK ABS Perform absolute seeks. - - -

lOS - $MF - SEEK - SHORT Perform seeks using short (4-byte) seek keys.

lOS - $MF - SEEK - FULL Perform seeks using full (8-byte) seek keys.

lOS - $MF - SEEK - BYTE Perform seeks to byte positions.

lOS - $MF - SEEK - REC Perform seeks to record positions.

lOS - $MF - SEEK - BOF Perform seeks to the beginning of the object.

lOS - $MF - REC - TYPE Support various record type formats.

lOS - $MF - TRUNCATE Truncate object.

lOS - $MF - UNREGULATED Have unregulated (shared) concurrency mode.

lOS - $MF - SPARSE Support sparse objects.

lOS $MF READ INTEND WRITE Have RIW access. - - - -

4.4.1. Inquiring about and Changing Object Attributes

You can use the following lOS calls to determine an object's current object, connection and
manager attribute sets: lOS _ $INQ_ OBJ _FLAGS, lOS _ $INQ_ CONN _FLAGS, and
lOS _ $INQ _ MGR _ FLAGS.

Typically, you would use these calls directly after opening an object to determine what types of
operations can be performed on that object. If the object, connection, or manager set has the
attribute, the set contains the value.

You initially set object or connection attributes when you create or open an object. A type
manager sets the attributes for the manager set when it implements the type operations. You can
change the initial object or connection attribute set by using the lOS _ $SET _ OBJ _FLAG or
lOS _ $SET _ CONN _FLAG, respectively.

Performing I/O with lOS Calls 4-18

Note that the attribute set does not list the read access or regulated concurrency as values in the
set. Rather, all stream connections have these two qualities, so the lOS manager does not consider
them as attributes that you can add or subtract from a set.

Add attributes to the object or connection attribute set with the lOS _ $SET _ OBJ _FLAG or
lOS _ $SET _ CONN _FLAG, respectively. Specify the desired attribute in the second parameter
of either call, and a value of TRUE in third parameter. To remove attributes from either set,
specify the attribute and a value of FALSE. Note that you must make a separate call to add or
remove each attribute from its respective set.

After changing the attribute set, you can perform another lOS _ $INQ to see the full attribute
set. Note that you might have what appears to be conflicting values in the set. For example, if
you open the object with RIW access, and then change the access to write, the attribute set will
contain both RIW and write attributes (unless you explicitly removed RIW from the set).

If the object connection set contains both the RIW and write access attributes, the stream
connection has write access.

This is useful when you want the object to be available for read access most of the time, and you
plan to write to the object for only short intervals. You can open the object for RIW access, and
then change it to write access by setting lOS _ $CF _ WRITE to TRUE when writing to the
object. You can change the access back to RIW by simply setting lOS _ $CF _WRITE to FALSE.
Since the RIW attribute is still in the set, the object has RIW access.

4.4.2. Example of Inquiring about and Changing Attributes

The program in Example 4-4 uses the lOS _ $INQ calls to get the object and manager set of
attributes for an object. This program uses the DOMAIN Pascal functions FIRSTOF and
LASTOF (which are extensions to ISO/ANSI Standard Pascal) to get the first and last possible
value in each set of object attributes.

PROGRAM ios_in~attributes;

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/type_uids.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR

status
count
ans

status_$t;
integer;
string;

Example 4-4. Inquiring About an Object

4-19 Performing I/O with lOS Calls

{$CREATE variables}
pathname name_$pname_t;
namelength integer;
type_uid Uid_$t;
create mode ios $create mode t;
open_opt ios-$open options t;
stream id iOS=$id_t; -

{INQ_FLAGS
conn_flags
obj_flags
mgr_flags
c_flg
o_flg
m_flg

variables}
ios_$conn_flag_set;
ios_$obj_flag_set;
ios_$mgr_flag_set;
ios_$conn_flag_t;
ios_$obj_flag_t;
ios_$mgr_flag_t;

PROCEDURE check_status; {for error handling}
BEGIN {main}

{ Ask user for pathname and convert it to internal format using VFMT. }

{ Create the object. }
ios_$create (pathname,

name length,
uasc_$uid,
ios $no pre exist mode,
[ios_$write=opt, -
ios_$unregulated_opt],

stream_id,
status);

{ Unstructured ASCII Type UIO }
{ Return error if exists }
{ Permit write access}
{ Permit concurrent users}

{ Get object attributes with IOS_$INQ_OBJ_FLAG. }

obj_flags := ios_$in~Obj_flags (stream_id,
status);

check_status;

writeln;
writeln ('Object Attributes of Created Object: ');
writeln;

{ Write each attribute in the set. }
FOR 0 flg := firstof(ios $obj flag t) TO

LASTOF(iOS_$obj_flag=t) DO -
IF o_flg IN obj_flags THEN

writeln(' " o_flg);

Example 4-4. Inquiring About an Object (Cont.)

Performing I/O with lOS Calls 4-20

{ Get manager attributes with lOS $INQ MGR FLAG. }
mgr_flags := ios_$in~mgr_flags (stream_id~

status);
check_status;

writeln;
writeln ('Manager Attributes of Created Object: ');

{ Write each attribute in the set. }
FOR m_flg := FIRSTOF(ios_$mgr_flag_t) TO

LASTOF(ios_$mgr_flag_t) DO
IF m_flg IN mgr_flags THEN

writeln(' '. m_flg);

{ Get connection attributes with lOS $INQ CONN FLAG. }
conn_flags := ios_$in~conn_flags (stream=id.

status);

Example 4-4. Inquiring About an Object (Concluded)

4.4.3. Example of Changing Attributes

Example 4-5 is a sample Pascal program that changes an object attribute set from RIW to write
access. The program opens an object with RIW access so that other programs can read the object
until it needs to write to the object.

Since the program cannot change the access to write until no other processes have the object
open, the program keeps trying until it can. The program uses lOS _ $SET _ CONN _FLAG to
add write access to the object's attribute set. Note that the set still contains RIW access, because
the program did not explicitly remove this attribute. This way, the program allows other
processes to read the object by simply removing the write access attribute from the set as soon as
it finishes writing to the object.

%1nclude '/sys/ins/base.1ns.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/e.rror.ins.pas';
%include '/sys/ins/vfmt.ins.pas·;
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/time.ins.pas';
%include '/sys/ins/cal.ins.pas';

Example 4-5. Changing an Object from RIW to Write Access

4-21 Performing I/O with lOS Calls

VAR
status
count
ans
reI time
done

status_$t;
integer;
string;
time_$clock_t;
boolean;

{$OPEN variables}
pathname name_$pname_t;
namelength integer;
open_opt ios_$open_options_t;
stream id ios_$id_t;

{INQ_FLAGS variables}
conn_flags
c_flg

ios_$conn_flag_set;
: ios_$conn_flag_t;

{ OPEN variables }
msg : string 'Writing to the object.

BEGIN {main}

{ Ask user for filename convert it to internal format using VFMT. }

{ Open the object with RIW access. }

stream id ios_$open (pathname,
namelength,
[ios_$read_intend_write_opt,
ios_$position_to_eof_opt],

status);
{ Append data }

{ Add write access to the object's connection attribute set so it
can write to the object. If it cannot change the object's access,
it keeps trying until it does, or until user types NO.
Try locking object, if it can't, send messsage to user. }

, Example 4-5. Changing an Object from RIW to Write Access (Cont.)

Performing I/O with lOS Calls 4-22

done := FALSE;
WHILE (done = FALSE) DO
BEGIN

ios_$set_conn_flag Cstream_id.
ios_$cf_write.
TRUE. { Add write access to set}
status);

IF status.all = status_$ok THEN
done := TRUE

ELSE BEGIN
writeln;
writeln (, Cant lock object for writing.');
writeln (, Type YES if you want to try again. ');
writeln (, Type NO to terminate program. ');
readln (ans);

END;

IF (ans = 'NO') OR (ans = 'no') THEN
BEGIN

END;

done := TRUE;
writeln;
writeln (' Terminating program. ');
pgm_$exit;

END; { while not done}

{ Write message to the object. }

{ Stream ID }
{ Default put options}

ios_$put C stream_id.
[ios_$cond_optJ.
msg.
SIZEOF(msg).
status);

{ Buffer to hold message }
{ Length of message }

check_status;

{ Write message to user. }

IF status.all = status $ok THEN
writeln ('Wrote m;ssage to object. ');

{ Remove write access from set. so other processes can open the
object for read access again. }

ios_$set_conn_flag Cstream_id.
ios_$cf_write.
FALSE,
status);

check_status;
END. { ios riw to write}

{ Remove write access}

Example 4-5. Changing an Object from RIW to Write Access (Concluded)

4-23 Performing I/O with lOS Calls

4.4.4. Getting Additional Information about Objects and Directories

The lOS manager provides a few calls to get additional information about an object. Table 4-12
lists these calls.

Table 4-12. Getting Additional Information about an Object

lOS Call Description

10S_$INQ_FILE_ATTR Returns an object's usage attributes: date and time
created, date and time last used, date and time last
modified, and number of blocks in the object.

lOS _ $INQ _ TYPE _ UID

Returns the pathname of an object open on a
specified stream. The pathname can be in anyone
of the following formats: absolute pathname from
the root U /) directory; name relative to the root,
working, naming or "node_ data II directory; or the
or residual name if stream was opened using
extended naming.

Returns the type UID of an object.

The lOS manager also provides a call to determine or set your current working or naming
directory. lOS $GET Dill returns the current working or naming directory.
lOS _ $SET _Dill changes the current working or naming directory to the pathname you specify
in the first parameter of the call.

4.5. Closing and Deleting Objects

Although the system automatically closes the streams your program opens when the program
terminates, it is good practice to close the streams explicitly with lOS _ $CLOSE. This way you
can also report any errors that occur during the close operation.

To close a stream to an object, call lOS _ $CLOSE and specify the stream ID of the open stream.
Your program can close only those streams that it has opened at the current or lower program
levels (that is, streams opened by programs that the calling program invoked). lOS _ $CLOSE
returns an error if you try to close a stream in the current program that was opened by its
invoker.

You can make a permanent copy of the object without closing the stream by calling
lOS _ $FORCE _ WRITE _FILE. Use this call to ensure that the object is stored safely in the
event of a system crash. Safe storage depends on the object type. For most object types, safe
storage is the disk. Safe storage for a magnetic tape descriptor object is the tape.

If you have completed processing an object and have no further need for it, you should delete it.
To delete an object, call lOS _ $DELETE, specifying the stream ID of the open object. If more
than one stream is open to the object, lOS _ $DELETE marks the object for deletion, but the
object still exists until all streams to the object are closed.

Performing I/O with lOS Calls 4-24

The lOS _ $DELETE call actually sets the delete-on-close object attribute
(lOS _ $OF _DELETE _ ON _ CLOSE) to TRUE, then closes the stream. So, if the type
manager does not allow the object to have the delete-on-close attribute, the delete call fails. In
this case, the call closes the stream but does not delete the object.

You can also use lOS _ $TRUNCATE to delete the contents of an object following the current
stream marker.

4.6. Writing to Objects

Use the lOS _ $PUT call to write data to any kind of object. Specify the stream ID of the open
stream you want to write the data to, a buffer containing the data, and the size of the buffer.
You can also specify various put options, in lOS _ $PUT _ GET _ OPTS _ T format, depending
on the type of object you are writing to.

Table 4-13 lists the put options in lOS _ $PUT _ GET _ OPTS _ T format that you can specify in
an lOS $PUT call.

Table 4-13. Options to Control an lOS _ $PUT call

Put Option Description

lOS $COND OPT

lOS $PREVIEW OPT

lOS _ $PARTIAL_RECORD _ OPT

4.6.1. Example of Writing to Objects

Writes data only if it can be done without waiting.
If the put call must wait, it returns the
lOS _ $PUT _ CONDITIONAL _ FAILED error
status. A call would have to wait if the receiver
was full, for example, a mailbox couldn't hold any
more messages.

Writes data but does not update the stream
marker.

Writes a portion of a record but does not terminate
it. lOS _ $PUT terminates the record when you
call lOS _ $PUT without specifying this option. If
you do not specify this option, lOS _ $PUT writes a
full record. You can use this option with record­
oriented objects only. Type managers that do not

support records ignore this option. For information
on record-oriented objects, see Section 4.10.

The program in Example 4-6 shows how to write data using lOS _ $PUT. The program writes to
a UASC object type, line by line. To store and retrive data by lines, the program explicitly
embeds NEWLINE characters at the end of each line of input. To embed a NEWLINE character
in a UASC object, use the Clffi Pascal function to assign the ASCII NEWLINE character value
(which is 10) to a byte at the end of the line buffer array. (You can also use the
PAD _ $NEWLlNE constant instead of Clffi.)

4-25 Performing I/O with lOS Calls

This program asks the user to type data into a VASC object line by line. It then performs the
following:

• Defines an input buffer, II line, II as a character array. This buffer holds the data that
you want to write.

• Calls 10S_$CREATE to create a new, or open an existing VASC object.

• Loads the buffer, using input from the user.

• Calculates the length of the line.

• Terminates the line with a NEWLINE character.

• Writes the line, using IOS_$PVT.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/ios.ins.pas·;
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/vfmt.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;

VAR
status
count

status_$t;
integer;

{ $CREATE variables }
pathname name_$pname_t;
namelength integer;
stream id ios_$id_t;

{ $PUT variables }
line string;
linelen : integer;

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }

{ Create the object. or open an existing object for appending input. }
ios_$create (pathname.

name length.
uid $nil. { UAse type UID }
ios-$preserve mode. { Open object if exists}
[iOS_$position_to_eof_opt]. { Append data }.
stream_id.
status);

Example 4-6. Writing to a UASe Object Line by Line

Performing I/O with lOS Calls 4-26

{ Get a line of input from keyboard. }
writeln ('Type in a line or CTRL/Z to stop: ');
WHILE NOT eof DO
BEGIN

{ Load keyboard input into buffer. }
readln(line);
linelen := SIZEOF(line);

WHILE (line[linelen] = ' ,) AND (linelen > 0) DO
linelen := linelen - 1;

{ Terminate line with NEWLINE character. }
linelen := linelen + 1;
line [line len] : = CHR (10) ;

{ Write the line to a
ios_$put (stream_id,

[J.

object. }
{ Stream ID }
{ Default put options}

line,
linelen,
status);

{ Buffer to hold input line }
{ Length of line }

check_status;

writeln ('Type in another line or CTRL/Z to stop: ');
END;{ while not EOF }

END. { ios_put_uasc_newline }

Example 4-6. Writing to a VASC Object Line by Line (Concluded)

4.7. Reading Objects

The lOS manager supplies the following two calls for reading data from objects:

lOS $LOCATE Reads data from a stream and returns a pointer to the data.

lOS $GET Reads data from a stream and copies the data into a buffer.

Regardless of whether you use lOS _ $LOCATE or lOS _ $GET, we refer to this as the get call.

In most cases, use lOS _ $LOCATE to read data because it is faster, since it does not perform a
copy operation while reading. One drawback to using lOS _ $LOCATE is that the pointer that
lOS _ $LOCATE returns is valid only until the next lOS call. If you cannot tolerate this
drawback, use lOS _ $GET. For example, you would use lOS _ $GET when you need to read
more data than can be obtained in one call -- like when you need to read and rearrange a number
of lines from an object.

Normally, lOS _ $LOCATE locates data and returns a pointer to the data. However, not all
managers support the internal buffering necessary for lOS _ $LOCATE to work this way. In
these cases, lOS _ $LOCATE will not be able to return a pointer to the data. Instead,
lOS _ $LOCATE actually creates a buffer and then calls lOS _ $GET to perform the get call. If
this occurs, lOS _ $LOCATE is no more efficient than lOS _ $GET. The size of the buffer that
lOS _ $LOCATE creates is either the length you specify in II data-size, II or 1024 bytes, whichever
is the smaller . You can use the lOS _ $SET _ LOCATE _ BUFFER _ SIZE call to specify a buffer
larger than 1024 bytes, if necessary.

4-27 Performing I/O with lOS Calls

You can control how the lOS get call reads data by specifying any of the get options listed in
Table 4-14.

Table 4-14. Options to Control an lOS Get Call

Get Option Description

lOS $COND OPT

lOS $PREVIEW OPT

lOS _ $NO _REC _BNDRY _ OPT

Reads data, if available. Use this option to read
data from places where it might not be available
immediately, for example, SIO lines, mailboxes, and
input pads. lOS _ $GET returns the
lOS $GET CONDITIONAL FAILED status
code if data is not available, and sets the return
value of II ret-length II to O.

Reads data but does not update the stream marker.

Ignores record boundaries while reading data. For
example, it ignores NEWLINE characters m a
UASC object, which guarantees that the call fills
the specified buffer.

When an lOS get call returns either a pointer to the data (lOS _ $LOCATE) or a buffer
containing the data (lOS _ $GET), it also returns the amount of data read, in the return value,
"return-Iength." You can specify how much data to read with the input parameter, IIbuffer­
size. II If the get call reads the data successfully, the II return-length II equals the amount of data
read. If the get call does not return any data, II return-length II equals the value, O.

If you did not specify a large enough buffer for the returning data, the get call:

• Reads enough data to fill the requested size

• Sets II ret-length II equal to "buffer-size"

• Positions the stream marker to the first unread byte

• Returns the lOS $BUFFER SIZE TOO SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remam to be read in the current record by calling
lOS _ $INQ_REC _REMAINDER.

There are two methods for accessing data from objects: sequential access and random access. In
sequential access, multiple get calls read an object from beginning to end of the object. That is,
a program using sequential access reads the first line, then the second, and so on.

In random access, the get call reads objects from a object in random fashion. For example, a
program using random access might read byte position 12, then byte position 7, and so on.

The following sections describe how to get data from an object using both methods.

Performing I/O with lOS Calls 4-28

4.8. Reading Objects Sequentially

Sequential access occurs when the get call reads an object from the beginning to the end. Each
get call reads a specified amount of data at a time, for example, one line, or one record or 4
bytes. You specify the amount of data you want to read in the fourth parameter of the get call.
Since the get call returns a fixed amount of data per call, you can simply use it within a loop to
read more data. In most cases, the loop reads data until it reads the end of object (EOF) marker.

The program in Example 4-7 asks the user to specify an existing VASC object, and then reads the
object sequentially. The program does the following:

• Declares a constant to indicate how much data you want to read. If this is smaller
than the amount of data to read, the get call returns the
lOS $BUFFER TOO SMALL error.

• Declares a pointer to the string that contains the data to be read.

• Opens the existing object that the user specified with lOS _ $OPEN.

• Enters a loop that:

1. Reads a line from the object using lOS _ $LOCATE.

2. Tests for the lOS _ $END _ OF _FILE, and other get call errors.

3. Writes the line to standard output by specifying values returned by
lOS _ $LOCATE: the amount of data read, and the pointer that points to
the data. Note that it must dereference the pointer variable.

• Exits the loop when the get call reads an EOF.

PROGRAM ios_locate;

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/type uids.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';

CONST
data size = 1024; { Amount of data to read }

VAR
status

integer; count
pathname
name length
open_opt
stream id

name_$pname_t;
integer;
ios_$open_options_t;
ios_$id_t;

Example 4-7. Reading Sequentially From an Object

4-29 Performing I/O with lOS Calls

{ $GET variables }
ret_length integer32; { Amount of data read }
line string; { String containing line read }

{ POinter to returned data } data_ptr -string;

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }

{ Open the object. }
stream_id - ios_$open (pathname.

namelength.
[ios_$read_intend_write_optJ. { RIW access}
status);

WHILE (status.all = status_$ok) DO
BEGIN

{ Read data until an EOF is encountered. Set the lOS $COND OPT
option. in case data is not available immediately.-} -

ret_length := ios_$locate (stream id.
[ios_$cond_optJ.
data_ptr.
data_size.
status);

{ Test for read errors. }
IF status.all = ios $end of file THEN

writeln (' End of file reached. ');
IF status.all = ios $buffer too small THEN

vfmt_$write2 ('%d byte buffer too small on stream %wd%. ' .
data size. stream 1d)

ELSE IF (status.all =-ios_$get_conditional_failed) THEN
writeln (' No data available. ')

ELSE IF (status.all <> status_$ok) THEN
cb,eck_status;

{ Write data 'to standard output by dereferencing
the pointer that points to the line read. }

10s_$put (ios_$stdout.
[].
data_ptr-. {Dereference pointer}
ret length. { Amount returned by IOS_$LOCATE }
status);

check status;
END; { While not EOF }

{ Close the stream of the open object before terminating. }
i06 $close (stream id.

- status-);
END. { ios_locate }

Example 4-7. Reading Sequentially From an Object (Concluded)

Performing I/O with lOS Calls

4.Q. Performing Random Access

RandoID access is the method by which an object is read (and processed) nonsequentially. For
example, a get call can read starting at byte position 12, then byte postion 7, then byte position
41.

To access an object randomly, you perform one of the lOS _ $SEEK calls to reposition the stream
marker to a specified location. Then, you perform a get call.

The lOS manager provides t:wo kinds of seek operations: nonkeyed and keyed. In a nonkeyed
seek a program moves the stream marker to:

• The beginning or end of the object

• A specified byte position

• A specified record position

In a keyed seek, a program stores and retrieves information by identifying positions on a seek

key.

Whether you perform a nonkeyed or keyed seek depends on how the object's data is represented.
For example, programs that need perform II arithmetic" on the data (such as comparing two
positions) will use nonkeyed seek operations. Programs that require only the ability to move from
one position to another in an object will use keyed seek operations.

The following sections describe the two types of seeks.

4.9.1. Nonkeyed Seeking

You can perform a nonkeyed seek on an object by specifying the beginning or end of the object,
or any offset from the beginning of the object.

To move the stream marker to the beginning of the object, call lOS $SEEK TO BOF. To
move the stream marker to the end of the object, call 10S_$SEEK_ TO_EOF.

To obtain the offset of the stream marker, use 10S_$INQ_BYTE_POS or
10S_$INQ_REC_POS. (Use the latter if your object is record-oriented.) These calls return
the current position of the stream marker from the beginning of the object. The calls can also
return the position of the stream marker at the beginning of the object (which is always 0), or the
end of the object (which indicates the length of the object in bytes or records).

Once you have the returned offset, you can move the stream marker to the desired location by
calling lOS _ $SEEK. You can continue to move the stream marker to offsets from the
beginning, or end of the object -- this is called absolute seeking. Or you can move the stream

marker to offsets from the current position -- this is called relative seeking.

4-31 Performing I/O with lOS Calls

4.9.2. Keyed Seeking

Keyed seeking is based on positioning information that the lOS manager provides with a seek
key. You get a seek key by using either 10S_$INQ_FULL_KEY or
lOS _ $INQ_SHORT _KEY. These calls return a value that represents the position of the
stream marker at the time of a call. By storing this returned seek key, you can return to the
position at a later time.

Whether you get a full seek key or short seek key depends on your application program. A full
seek key is 8-bytes long and represents an exact stream position. A short seek key is 4 bytes long
and represents a stream position up to a record boundary. Since short seek keys require half the
storage space as full seek keys, you might want to use short seek keys if your application program
stores a large number of seek keys. However, short seek keys are limiting in that you can only
indicate record boundary positions, while full seek keys allow you to indicate any position.

Use seek keys merely as an index -- do not depend on their contents. The contents of a seek key
remains private to the lOS manager, which guarantees only that the seek key returns to the
position it describes.

4.9.3. Example of Using Seek Keys

The program in Example 4-8 uses seek keys to access lines (by line number) randomly in a VASe
object. Note that a line number is not the same thing as a record number.

The program does the following:

• Declares a seek-key vector to store seek key values. Since it is using short seek keys,
this is an array of 4-byte integers.

• Opens a UASe object.

• Enters a loop to read the object sequentially. The program:

1. Gets a seek key by calling 10S_$INQ_SHORT _KEY.

2. Reads a line.

3. Stores the returned seek key in the array of seek keys. Note that by doing
this, the vector is indexed by line number.

• Prompts the user for a line number.

• Moves the stream marker to the desired line by calling
lOS $SEEK SHORT KEY. This call associates the seek key with the line number
that the user specified.

• Reads the line by calling lOS _ $LOeATE.

• Writes the line to output and continues to prompt the user until the user types a
eTRL/Z to stop.

Performing I/O with lOS Calls 4-32

%include '/sys/ins/base.ins.pas'~

%include '/sys/ins/ios.ins.pas' ~
%include '/sys/ins/error.ins.pas' ~
%include '/sys/ins/vfmt.ins.pas' ~
%include '/sys/ins/pgm.ins.pas' ~

CONST
max lines = 1024~ { Maximum number of lines in object}

VAR
status
count

status_$t~

integer~

{$OPEN variables}
pathname name_$pname_t~

namelength integer~

stream id : ios_$id_t~

{ $GET variables }
line
ret len
choice line
no of lines

string~

integer32;
integer;
integer;

{ $SEEK variables }
short_key : integer32;

{ Declare vector to hold seek keys }
seek vector: ARRAY[l .. max_lines] OF integer32;

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }
{ Open the object for reading. }
{ Read the object and fill the seek vector with seek keys. }

no of lines := 0;
WHILE status.all = status_$ok DO
BEGIN { while there is data in object}

{ Get a short seek key. }
short_key := ios_$in~short_key (stream_id,

check_status;

ios_$current, {position}
status);

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys

4-33 Performing I/O with lOS CaBs

{ Read a line. }
ret len ios_$get (stream id.

[]. -

{ Test for EOF. }

line.
SIZEOF (line) .
status);

{ put-get options }

IF (status.all = ios_$end_of_file) THEN
EXIT;

check_sta.tus;

{ Increment the vector index. }
no of lines := no of lines + 1;

{ Test for maximum number of lines. }
IF no of lines <= max lines THEN

{-Load vector with the returned seek key. }
seek_vector [no_of_lines] short_key

ELSE
BEGIN

writeln('Maximum number of lines exceeded. ');
EXIT;

END; {.IF no_of_lines <= max_lines}

END; { while there is data in object}

{ Prompt the user for a line number. }
write('Type the number line you want to see: ');
writeln(' (1 - '. no_of_lines:1. ' or CTRL/Z to stop: ');

WHILE NOT eof DO BEGIN { while user wants more }

readln(choice_line);
{ Test to see if the chosen line is in range. }
WHILE (choice_line <= 0) OR (choice line > no of lines) DO
BEGIN

write ('Line number is out of range. Enter a number');
writeln(' between 1 and' no_of_lines:1. ': ');
readln(choice_line);

END;

{ Load the seek key using the vector. }
short_key := seek_vector [choice_line] ;
ios_$seek_short_key (stream_id.

{ Read the line. }
ret len - ios_$get

short_key. {4-byte integer}
status);

stream_id.
[].
line.
SIZEOF (line) .
status);

{ put-get options }

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys (Cont.)

Performing I/O with lOS Calls 4-34

{ Write the line to output. }
writeln(line : ret_len);

{ Prompt for next line. }
write('Type the next number line you want to'see: ')
writeln(' (1 no_of_lines:1, . or CTRL/Z to stop: ');

END; {while}

END. {ios seek_uasc }

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys (Concluded)

4.10. Handling Record-Oriented Object Types

The UASC object type thinks of data as flowing in a continuous stream. In contrast, the record­
oriented object type thinks of data as being broken into discrete groups, or records. A record
boundary marks the end of each record.

Get and put calls recognize these record boundaries. So, when using get and put calls on record­
oriented objects, the calls return the data contained in a single record at a time, even if you
request more data than is contained in the record.

For example, you have a record-oriented object whose first three records are 12-bytes, 16-bytes,
and 32-bytes long. If you specify a buffer size of 16 bytes, three successive put calls would
perform the following:

• The first put call returns the first record (12 bytes) because the record is smaller than
the size of the buffer.

• The second put call returns the second record (16 bytes) because the record is equal to
the buffer size.

• The third put call returns the error lOS _ $BUFFER _ SIZE _ TOO _ SMALL because
the buffer is too small to hold the next record, which is 32-bytes long. (If this
happens, you might use 10S_$INQ_REC_REMAINDER to determine the number
of bytes in the record left to be read.)

You can use most lOS calls to operate on record-oriented objects. Some calls provide options
particular to record-oriented objects. For example, the lOS _ $P ARTIAL _RECORD _ OPT
option on a put call allows you to write portions of a record without terminating it. Currently,
DOMAIN supports the REC object type. Users can implement their own record-oriented object
types by writing a type manager.

The following sections describe how to perform I/O using the two most common record formats,
variable-length and fixed-length records. Section 4.10.1 describes how to write to fixed-length
record objects. Section 4.10.2 describes how to write to variable-length record objects. Section
4.10.3 shows how to read data from fixed-length record objects using seek keys. Section 4.10.4
describes the possible record formats that a record-oriented type can have.

4-35 Performing I/O with lOS Calls

4.10.1. Writing Fixed-Length Records

To write to a object containing records you open an object specifying a type UID that handles
records, such as DOMAIN's RECORDS _ $Um.

The program in Example 4-9 asks the user to type data into a record-oriented object that
contains employee records. It performs the following:

• Defines an employee information record II info rec" containing fields for employee
name, number, and address.

• Creates a record-oriented object, using lOS $CREATE. (To handle fixed-length
records, this program declares the record data type with fields of the same length.)

• Loads the record, using input from the user .

• Writes the record to the object, using lOS _ $PUT.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/ios.ins.pas·;
%include ·/sys/ins/type_uids.ins.pas·;
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/vfmt.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;

TYPE
info rec t = RECORD {Employee record }

END;

emp_id
address
name

integer;
string;
string;

VAR
status
count

status_$t;
integer;

{ $CREATE variables }
pathname name_$pname_t;
namelength integer;
stream id ios_$id_t;

{ $PUT variables }
line
info rec

string;
info_rec_t;

Example 4-9. Writing Fixed-Length Records

Performing I/O with lOS Calls 4-36

BEGIN { main }

{ Get the pathname. }
writeln ('Type the pathname of the object you want to create: ');
namelength := SIZEOF(pathname); { Max namelength }

{ Transfer the pathname into internal format using VFMT. }
vfmt_$read2('%" "%eka%. "

count,
status,
pathname,
namelength);

{ Create the object, or open an existing object for appending input. }
ios_$create (pathname,

namelength,
records $uid, { Record Type UID }
ios $preserve mode, { Open object if exists}
[iOS_$pOSitioo_to_eof_optJ, { Append data}
stream_id,
status);

{ Get a line of input. }
writeln ('Type employee name or CTRL/Z to stop: ');
WHILE NOT EOF DO
BEGIN

readln(info_rec.name);
writeln('Type employee id #: ');
readln(info_rec.emp_id);
writeln('Type address of employee on one line: ');
readln(info_rec.address);

{ Write the record. }

ios_$put (stream_id, {Stream-id of open object}
[J, {Put options}
info rec, {Data buffer}
SIZEOF(info rec), { Length of data buffer}
status); -{ Completion status}

check_status;

writeln;
writeln (, Record written. ');
writeln ('Type the next employee name or type CTRL/Z to stop: ');

END; {while}
END. { ios_put_rec_fixed }

Example 4-9. Writing Fixed-Length Records (Concluded)

4-37 Performing I/0 with lOS Calls

4.10.2. Writing Variable-Length Records

You can write variable-length records to an object in the same way that you write fixed-length
records to an object except, since the data buffer varies, you must calculate its length. A
common way to do implement a variable-length buffer is to write to the variable-length field,
calculate its length, then write the length in a field containing the length. To write to individual
fields of a record, call lOS _ $PUT with the lOS _ $P ARTIAL _RECORD _ OPT put option.
When you want to terminate the record, write the last portion of the record by using lOS _ $PUT
wi thou t specifying the lOS _ $P AR TIAL _ RECORD _ OPT option.

The program in Example 4-10 uses lOS _ $P ARTIAL _RECORD _ OPT to write variable-length
records. Mter the user types an employee name, the subroutine, PUT _NAME_LENGTH,
calculates the length and puts that value in the record's II namelen II field.

Since the name field of this record varies in length, the records are of variable length. Note that,
in Pascal, you must declare the variant portion of a record in the last field. Note also that you
may not be able to handle variable-length records if your object type does not support them. See
Section 4.10.4 for details.

This program performs the following:

• Defines an employee information record lIinfo_rec li containing three fields: length of
the employee name II namelen, II the employee ID number II emp _ id, II and the
employee name II name. II

• Declares a procedure IIput_name_Iength li to calculate the length of the input name,
and writes the result to the output object separately, using the
lOS _ $P ARTIAL _RECORD _ OPT put option.

• Creates a record-oriented object by specifying the RECORDS _ $UID type UID.

• Loads the record, using input from the user.

• Calls the II put _ name _length II procedure to calculate the length of the employee's
name and write the length into the first field of the record II namelen. II

• Writes the second field lIemp _id ll of the record, using
lOS $PARTIAL RECORD OPT.

• Writes the last field of the record II name, II using lOS $PUT. This terminates the
record because the program did not specify lOS _ $P AR TIAL _ RECORD _ OPT.

Performing I/O with lOS Calls 4-38

{ This program uses partial records. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/type_uids.ins.pas';

TYPE

info rec t = RECORD { Employee record } -
name len
emp_id
name

END;

integer;
integer;
string; { Variable-length field at end }

VAR
status
count

status_$t;
integer;

{ $CREATE variables }
pathname
namelength
stream id

name_$pname_t;
integer;
ios_$id_t;

{ $PUT variables }
line string;
info rec : info_rec_t;

PROCEDURE put_name_length;

{ This procedure calculates the length of the employee name
and puts the value into the namelen field. }

BEGIN

{ Calculate the length of info_rec.name. }
info_rec.namelen := SIZEOF(info_rec.name);
WHILE (info rec.name[info rec.namelen] = . ,) AND

(info=rec.namelen >-0) DO
1nfo_rec.namelen := info_rec.namelen - 1;

{ Put the value of namelength into the record. }
ios $put (stream id, { Stream ID of open object}

- [ios $partial record opt], { Put options}
info-rec.namelen, - { Data buffer}
SIZEOF(info_rec.namelen), {Length of data buffer}
status);

check_status;

Example 4-10. Writing Variable-Length Records

4-39 Performing I/O with lOS Calls

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }

{ Create the object. }
ios_$create (pathname.

name length.
records_$uid. { Type UID }
ios $no pre exist mode,
[ioS_$write=opt].­
stream_id.

{ Error if exists }
{ Write access}

status);

{ Get record information. }
writeln ('Tye employee name or CTRL/Z to stop): ');
WHILE NOT eof DO
BEGIN

readln(info_rec.name);

{ Call internal procedure to calculate the name length of
employee name and put in namelen field. }

put_name_length;

writeln('Type employee id #: ');
readln(info_rec.emp_id);

{ Put employee ID field into the record. }

ios_$put (stream_id.
[ios_$partial_record_opt].
info_rec.emp_id.
SIZEOF(info_rec.emp_id,
status);

check_status;

{ Stream ID of open object}
{ Put options }
{ Data buffer }
{ Length of data buffer }

{ Write name field and terminate record. }
buflen := info_rec.namelen; {Record length varies with

length of name field }

ios_$put (stream id, { Stream ID of open object}
[]. - {Put options}
info_rec.name, { Data buffer}
buflen, { Length of data buffer }
sta.tus);

check_status;

writeln ('Type the next employee name or CTRL/Z to stop: ');
END; {while}

END. { ios_partial_rec}

Example 4-10. Writing Variable-Length Records (Concluded)

Performing I/O with lOS Calls 4-40

4.10.3. Reading Fixed-Length Records with Seek Keys

Example 4-11 is a program that opens a stream to an object containing fixed-length records. This
program reads the records sequentially, and then numbers them so it can later use lOS _ $SEEK
to seek to the record that the user specifies randomly.

This program performs the following:

• Declares a Pascal record containing the same fields as the program that created the
record object, (in this case, ios_$put_rec_fixed.pas).

• Declares a seek key that corresponds with the record that you want to seek to.

• Reads the record-oriented object, and writes each record to the screen. It numbers
each record beginning with zero (since records are zero-based).

• Asks the user to specify the number of the record to update, and assigns the number
to .. choice _ rec. Choice _ rec" serves as the seek key for the record.

• Moves the stream marker to,the requested record using lOS _ $SEEK. This is an
absolute seek because we want the offset to be calculated from the beginning of the
object (which is record number 0). Since the user specifies the number of the desired
record, it corresponds to the beginning of the object.

%include ·/sys/ins/base.ins.pas·~

%include '/sys/ins/ios.ins.pas' ~
%include '/sys/ins/error.ins.pas' ~
%include '/sys/ins/vfmt.ins.pas' ~
%include '/sys/ins/pgm.ins.pas' ~

TYPE {Define the record type }
info rec t = RECORD

emp_id integer~

address string;
name string~

END~

VAR
status
count

status_$t;
integer;

{ $OPEN variables }
pathname name_$pname_t;
namelength integer;
stream id ios_$id_t;

{ $GET variables }
line
ret len
info rec

string;
integer32;
info_rec_t~

Example 4-11. Seeking Fixed-Length Records

4-41 Performing I/O with lOS Calls

{ $SEEK variable }
choice rec

no of recs
response

integer32; { Record number user wants changed }
{ This serves as the seek key }

integer; {Number of records in object}
char;

BEGIN { main }

{ Get the pathname of a record-oriented object. }
writeln;
writeln ('Type pathname of a fixed-length record object to update: ');

{ Convert pathname to internal format using VFMT. }
namelength := sizeof(pathname); { Maximum'namelength }

vfmt_$read2('%""%eka%. ' .
count.
status.
pathname.
namelength);

{ Open the object. }
stream id - ios_$open (pathname.

check_status;

name length.
[ios_$write_opt].
status);

{ Write access}

no of recs := O' { Initialize to zero. }

{ Read and print the records and record numbers contained in the object}
{ until you read the entire object. or encounter an error. }

WHILE status.all = status_$ok DO BEGIN

ret len - ios_$get (stream_id.
[J.
info_rec,
SIZEOF(info_rec).
status);

IF (status.all = ios_$end_of_file) THEN
EXIT

ELSE
check_status;

{ Get options }

Example 4-11. Seeking Fixed-Length Records (Cont.)

Performing I/O with lOS Calls 4-42

{ Print and increment the record number. }
{ Note that record numbers are zero-based. }
writeln;
writeln('Reeord Number: ',no~of_recs:l);
no_of_rees := no_of_rees + 1;

{ Print the employee ID, name and address. }

writeln('Employee Number: " info_ree.emp_i4:1);
writeln('Name: " info_ree.name);
writeln('Address: ' info~ree.address);
writeln;

END; {WHILE}

{ Update the addresses. }

write('Type the number of the record you would like to update: ');
writeln(' (0 - " no_of_rees-1:1, ,) or type CTRL/Z to stop: ');

WHILE NOT eof DO BEGIN
readln(choice~rec);

{ Test record choice }
WHILE (choice_rec < 0) OR (choice_ree > no_of_recs) DO
BEGIN

write ('Record number is out of range. Enter a number');
writeln(' between 0 and' no_of_recs:1, ': ');
readln(choice_rec);

END;

{ Move to the specified record ~- using absolute record seek. }

ios_$seek (stream id,
ios $absolute, { Seek base}
ios=$rec_seek, { Seek_type}
choice_ree, { Offset }
status);

check_status;

{ Read the record. }
ret len ios_$get (stream_id,

[]. { Get options }
info_rec,
SIZEOF(info_rec),
status);

{ Print the employee rD, name and address. }
wri teln ('Employee Number: " info rec. emp id: 1) ;
writeln('Name: " info rec.name);- -
writeln('Address: ' infO_rec.addresS);
writeln;

E~ample 4-11. Seeking Fixed-Length Records (Cont.)

4-43 Performing I/0 with lOS Calls

{ Prompt for confirmation. }
write('Would you like to update the address?');
writeln(' (Y or N): ');
readln(response);
IF (response = 'Y') OR (response = 'y') THEN
BEGIN

writeln('Type the new address on one line: ');
readln(info_rec.address);

{ Reposition stream marker to beginning of the record.}
ios $seek (stream id,

- ios_$absolute, { Seek base }
ios_$rec_seek, { Seek_type}
choice_rec, { Offset }
status);

check_status;

{ Update the record. }
ios_$put (stream_id,

[L
info_rec,
SIZEOF(info_rec),
status);

check_status;

writeln('Record updated to contain the following: ');
writeln('Address: ' info_rec.address);

END;{if }

{ Prompt for next record to be updated. }
writeln;
write('Type the number of the record you would like to update: ');
writeln(' (0 - " no_of_recs-l:l, ') or CTRL/Z to stop: ');

END; {while}
END. { ios seek fixed_rec }

Example 4-11. Seeking Fixed-Length Records (Concluded)

4.10.4. Record Formats

Usually, an application program using record-oriented objects need only know that a record­
oriented object exists so that the program can perform I/O operations that recognize record
boundaries. Users will rarely need to know how a type manager implements the record format.

However, should the need arise, you can inquire about a record's format using the
lOS _ $INQ_REO _ TYPE call. You can change the record format or change the size of a fixed­
length record with the lOS _ $SET _REO _ TYPE call.

Any type manager can implement some or all of the following record formats. The DOMAIN
record-oriented type (REC) supports most of the following record formats. Another type
manager may ch00se to implement a different subset. Because of this, some of the record types
described in this section may not be applicable for your specific object type.

Performing I/O with lOS Calls 4-44

Table 4-15 lists of the various record formats with their predefined value.

Table 4-15. Available Record Formats

Predefined Value Record Format

lOS - $F2 Fixed-length records
~

lOS - $V1 Variable-length records

lOS $UNDEF Unstructured records -

lOS - $F1 Fixed-length records without a count field

lOS - $EXPLICIT - F2 Fixed-length records that cannot be changed to
variable-length records

A fixed-length record object contains any number of records of the same length. A variable­
length record object contains any number of records that vary in length.

In lOS _ $F2, lOS _ $V1, and lOS _ $EXPLICIT _F2 formats, a record begins with a count field
indicating the the number of bytes of data in the record. (Only the type manager ever reads or
writes to a record's count field.)

Since fixed-length records have the same length, the count field at the beginning of each record in
the object has the same value. Although this seems redundant, managers that implement
lOS _ $F2 typically maintain a count field so the object can be eventually handle variable-length
records. For example, the DOMAIN REC type allows applications to change a fixed-length
record object to variable-length records simply by writing records whose size differs.

An applic~tions program can prevent the lOS manager from implicitly changing a fixed-length
object to variable-length by specifying the lOS _ $EXPLICIT _F2 record format. In this case,
the type manager returns an error if a user tries to write variable-sized records to a fixed-record
object.

A type manager can implement a fixed-length record format in a different manner. It can keep
track of the size of the fixed-length records at the beginning of the object, rather than repeating
the size of the record at the beginning of each record. In this case, the type manager uses the
lOS $F1 format.

Figure 4-1 illustrates how record-oriented objects with count fields are stored.

COUTFie'd I
HEADER I N11 DATA3 1· ..

Figure 4-1. Record-Oriented Object with Count Fields

4-45 Performing I/O with lOS Calls

Figure 4-2 shows how a record object without a count field could be stored. (Just how it is stored
depends on how the type manager implements it.)

~H_E_A_D_E_R~I _______________ DA_T_A ____________ ~I •••

Figure 4-2. Record-Oriented Object without Count Fields

Figure 4-3 shows how a record object without any structure could be stored. (Just how it is stored
depends on how the type manager implements it.)

DATA DATA DATA •••

Figure 4-3. Unstructured Record-Oriented Object

Performing I/0 with lOS Calls 4-46

Chapter 5
Using the Display Manager

The DOMAIN operating system has three components that affect the appearance of the display.
You can use the following:

• The Display Manager to display text by manipulating pads and frames with PAD
system calls. Use the Display Manager when you want to create windows, window
panes, and manipulate text.

• The Graphics Primitives Resource (GPR) to perform graphics operations on DOMAIN
displays. Use graphics primitives when you want to use graphics or mix graphics and
text within windows and window panes.

• The black-and-white display driver (SMD) to gain more direct control over black-and­
white displays. SMD calls do not work on color displays. You will rarely need to use
this driver directly since both the Display Manager and the graphics primitives use
this lower-level component. Also, there is a graphics primitive that corresponds to
most SMD calls.

This chapter provides an overview of the Display Manager and describes how to use the system
calls with the PAD prefix. It also describes calls to the paste buffer manager (PBUFS), which
maintains buffer files; and calls to the touchpad manager (TPAD), which handles the touchpad
and mouse. The graphics primitives are described in the Programming with DOMAIN Graphics
Primitives manual. The SMD calls are described in DOMAIN System Call Reference manual.

DOMAIN has a separate graphics package, the DOMAIN 2D Graphics Metafile Resource (2D
GMR) for graphics applications programming. For more information on the 2D GMR package,
see the Programming With DOMAIN 2-D Graphics Metafile Resources manual.

5.1. System Calls, Insert Files, and Data Types

To manipulate the Display Manager, use system calls with the prefix PAD. In order to use PAD
system calls, you must include the appropriate insert file in your program. The PAD insert files
are:

/SYS/INS/P AD.INS.C
/SYS IINS /P AD .INS.FTN
/SYS /INS/P AD .INS.P AS

for C programs.
for FORTRAN programs.
for Pascal programs.

To use paste buffers within your program, use the system calls with the prefix PBUFS. You
must also include the appropriate insert file. The PBUFS insert files are:

/SYS /INS/PBUFS.lNS.C
/SYS/INS/PBUFS.INS.FTN
/SYS /INS /PBUFS.lNS.P AS

for 0 programs.
for FORTRAN programs.
for Pascal programs.

5-1 Using the DM

To manipulate the touchpad or mouse in your program, use the system calls with the prefix
TP AD. You must also include the appropriate insert file. The TP AD insert files are:

/SYS /INS /TP AD .INS.C
/SYS/INS/TPAD.INS.FTN
/SYS/INS/TPAD.INS.PAS

for C programs.
for FORTRAN programs.
for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DO MAIN System Call Re ference
manual.

5.2. Overview of the Display Manager

You use the Display Manager to manipulate the video display or screen, create and edit files, and
monitor ongoing processes. By using PAD system calls, you can manipulate the appearance of
the screen in many ways. This chapter describes how to

• Create windows and window panes through which the user can view part or all of a
pad.

• Change window position and appearance, such as making them invisible, borderless,
and having different character fonts.

• Create icons, change windows into icons, and change icon characters.

• Create and manipulate a frame to handle two-dimensional character I/O.

• Prevent user input from echoing on the screen with raw mode processing.

To start, we need to define a few terms used to describe the different components of your node's
display . You are familiar with most of these terms already; this section merely summarizes them.
For more information, see the DOMAIN System User's Guide.

Windows are the areas on the screen through which you view files and processes. With PAD
calls, you can change a window's size and position on the screen and its position over the pad.
Note that windows are not objects that any program recognizes; a program recognizes pads.
Think of windows as the user's perspective. Most graphics applications refer to the Display
Manager window as a viewport.

Pads are files that contain text and graphics. You can see material within a pad by looking
through windows open into the pad. Note that the attributes that control the appearance and
use of the text and graphics in a window are associated with the pad, not the window. Window
attributes only control what parts of the pad are visible, and where on the screen they appear.

There are three types of pads: transcript, input, and edit pads.

Input pads accept keyboard input and transfer input to a program one line at a time. For
example, the Shell input pad is the pad with the $ prompt. Your programs can read from, but
not write to, an input pad.

Using the DM 5-2

Transcript pads are associated with each input pad. The transcript pad contains a record (or
transcript) of the program's dialogue with the user. That is, your program writes its output to
the transcript pad after reading input from the input pad. Because it is a record, you can scroll
the transcript pad backwards to view previous dialogue.

Edit pads are files that your program's users can edit, using the Display Manager . You can
create. edit window panes to let your program's users use the Display Manager's edit functions to
format input to the program.

Read-only edit pads are edit files that the Display Manager opens for the users' viewing, but
they cannot modify them. Note that once your program creates a read-only edit pad, it cannot
be modified. Neither your program nor the keyboard user can execute a Display Manager
command to turn a read-only edit pad into an edit pad, if your program created it as a read-only
edit pad.

A line is the most common way ~o input information to a pad. Lines can contain text and a
few control characters (such as TAB, BACKSPACE, and NEWLINE).

A frame is another way to write information to a pad. Instead of sending information line by
line, a frame displays information from a two-dimensional area of any size. It can contain a
broad range of text and graphic information. Within the frame, a program can move the cursor
both horizontally and vertically, and write at any point. Frames are useful for simple graphics
applications.

Window panes are separate areas of a window devoted to separate activities. Each pane acts
as a window. The DOMAIN Language Level Debugger (DEBUG) is a good example of using
window panes. When you invoke the debugger with the -SRC option, it runs in a window that is
divided into five window panes, containing: the transcript of the debugging session, the
debugger's input pad, input and transcript pads of the program you are debugging, and a copy of
the program. Figure 5-1 shows the DEBUG display with the -SRC option.

Debug Transcript
Target Program Name Frame

Window Pane ~
51

Target Program > Debug Input Window Pane Source Code

Read/Edit
Target Program Transcript

Window Pane
Window Pane

Target Program Input Pane

t Target Program Line Numbers F~ame

Figure 5-1. The DEBUG Display with the -SRC Option

The next few sections describe how you can use the Display Manager system calls to create and
manipulate these pads.

5-3 Using the DM

5.3. Starting Out

Usually, you run most of your user programs in the user's Shell process, using the input and
transcript pads already created by the Display Manager command, create process (CP). In most
cases, these pads will suit your program's needs.

In some cases though, your program may need to create new pads, and windows or window panes
to view them. You will want to create new pads when your program:

• Does not inherit any pads from the user. (When the program runs by a create process
only (CPO) command, or by PGM_ $INVOKE.)

• Needs to perform I/O in multiple contexts, or windows.

This section describes how to create a new transcript pad, and, if necessary, a window through
which you can view it.

You can either create the transcript pad in a window pane and have your program run in the
user's Shell window, or you can create a separate window and have your program run in its own
window. Once you create the new transcript pad, you can create additional panes and frames to
further subdivide the window.

Whether you create a pane or separate window depends mainly on your application, and its users.
By creating your process within a window pane, you allow the user to have more control over the
display itself. When your process runs within a window pane, it can create additional panes and
frames within that pane. But it doesn't have anything to do with other areas of the user's
display. This approach is often the best for experienced technical users. For example,
programmers in a development environment often use multiple processes, and usually like to have
control over the display.

If you create separate windows, your user has less control over the display, because your process
chooses where to locate its windows on the display. This approach is useful when the user is
mainly interested in the application. For example, in a process control application, users are
usually interested in surveying the process statistics running in separate windows on the display;
they don't want to change the display itself.

If your program creates windows, you should try to consider how much control you want to give
to the users. For example, the DOMAIN system's alarm server creates windows in a controlled
way -- it allows users to move the windows, and change their size. You can also use PAD calls to
"remember" how the user set up the display, so you can position icons and windows according to
where the user wants them.

5.3.1. Creating a New Pad in a New Window

To create a new transcript pad in a new window, use the PAD $CREATE_ WINDOW call.
Example 5-1 shows how you can create a transcript pad, using PAD _ $ CREATE _ WINDOW.
An explanation of the arguments follows this example.

You can also create a window in icon format. It is the same as creating a full-sized window, but
it first appears in icon format. For more information on icons, see Section 5.6.

Using the DM 5-4

{ Set the size and position of the future window. }

window. top
window. left
window. width
window. height

:= 300;
300;
300;

- 300;

pad_$create_window(' " { Null pathname for transcript pad. }
0,
pad_$transcript,
display_unit,
window,
stream_win,
status);

{ Null namelength for transcript pad. }
{ Type of pad. }
{ No. of unit, usually 1. }
{ pad_$window_desc_t }
{ stream $id t of the new window }
{ completion-status}

Example 5-1. Creating a New Pad with PAD_$CREATE_ WINDOW

The arguments for pathname and namelength both have null values, because the transcript
pad is normally a temporary pad that the Display Manager deletes when you close the pad.

The argument, PAD _ $TRANSCRIPT, indicates that the pad created is a transcript pad.

Display _ unit indicates the unit number of the display on which the window will appear. This

parameter is reserved for future use; you should always pass the value 1. Window indicates the
position the new window will have on the display . You can set the window position by assigning
values to window prior to the call.

Stream_ win is the stream ID of the new window, in STREAM_$ID _ T format, returned by

this caL Status is the completion status returned by this call.

5.3.2. Creating a New Pad in a Window Pane

When you create a new transcript pad within a window pane, you associate your process with an
existing window on the user's screen. To create the pad in a window pane, use the system call
PAD _$CREATE. With PAD _$CREATE, you specify the stream to which you are relating this
new window pane. Since you are associating your process with the user's standard output stream,
you can either specify STREAM_$STDOUT or STREAM_$ERROUT.

Example 5-2 creates an original transcript pad from the user's standard output stream. An
explanation of the arguments follow this figure.

0,
pad_$transcript,
stream $stdout,
pad_$left,
[].
100,
stream out,
status-);

{ Null pathname for transcript pad }
{ Null name length for transcript pad }
{ Type of pad }
{ Relate to standard output stream pad }
{ Side of pad new pad will take up }
{ Size is relative to related pad}
{ New pad takes up 100 % of related pad }
{ Stream ID of new pad }
{ Completion status }

Example 5-2. Creating a New Pad with PAD_$CREATE

5-5 Using the DM

The first two arguments indicate the pathname and namelength, respectively. As in
PAD _$CREATE_ WINDOW described above, you need not specify values if you are creating
transcript pads. If you do not, they are temporary files, which go away when the stream closes.

PAD _ $TRANSCRIPT indicates the type of window pane you are creating. You must specify
PAD _ $TRANSCRIPT when creating a transcript pad.

STREAM_ $STDOUT is the stream ID, in STREAM_ $ID _ T format, of a pad to which this
new pad is related. Since you want to relate your original transcript pad to the user's standard
output, you can either specify STREAM _ $STDOUT or STREAM _ $ERROUT.

PAD _ $LEFT indicates where the new window pane will be positioned, in relation to its related
transcript pad. You can specify anyone of the following positions:

• PAD _ $LEFT for the left side of the transcript pad.

• PAD _ $RIGHT for the right side of the transcript pad.

• PAD _ $TOP for the top of the transcript pad.

• PAD _ $BOTTOM for the bottom of the transcript pad.

An empty set of brackets, [], is the default pane _ options attribute. The value of this argument
determines, among other things, the interpretation of the next argument, pane _ size.
Pane _size specifies the height of the new window pane. When creating a new transcript pane,
you must specify the default relative value (with empty brackets, [D.

Relative value means that the value of pane _ size given in the next argument is relative to the
size of its related window. In this case, the height of the new pad takes up the entire (100%)
window.

Stream _ out is the stream ID of the new window pane, in STREAM _ $ID _ T format, returned

by this call. Status is the completion status returned by this call.

5.4. Creating Subsequent Pads in Window Panes

Once you have started your process on the user's display (either by associating your process with
the user's pads, or creating your own pads, as described in Section 5.3), you can associate other
pads, window panes and frames with it. This section describes how to create window panes.
Section 5.7 describes how to create frames.

Most often, you will want to associate an input pad with your program's transcript pad. You
might also want to divide your window into separate window panes, or you might want to create
a frame to hold two-dimensional output.

You can have any number of window panes associated with the original transcript window, up to
the Display Manager's limit of 40 pads and 60 windows. Just how many pads and panes you want
depends on how many different kinds of output you want displayed concurrently.

You create subsequent pads and window panes within a window with the PAD _$CREATE
system call, which we described in Section 5.3.2. You can create a pane of anyone of the
following types:

Using the DM 5-6

• PAD $INPUT

• PAD $EDIT

• $PAD $READ EDIT

• PAD $ TRANSCRIPT.

The following sections describe how to use PAD _ $CREATE to create the three types of window
panes.

5.4.1. Creating Input Pads in Window Panes

You will want to create an input pad to get input from the keyboard user. To create an input
pad, use the PAD _ $ CREATE call, specifying PAD _ $INPUT as the third argument. This call
creates an input pad (and a window pane to view it), and associates it with a previously created
transcript pad. (You must create a transcript pad before the associated input pad.)

NOTE: You do NOT need to create an input pad if you are using
the transcript pad for GPR direct mode graphics only.

You can have only one input pad for each transcript pad, and it must be located on the bottom
of the pad. Example 5-3 shows how to create an input pad with PAD $CREATE. An
explanation of each argument follows the example.

pad $create (' { Null pathname for input pad }
0, { Null namelength for input pad }

pad_$input. { Type of pad }
stream_out, { Stream ID of related transcript pad }

pad_$bottom, { Input pads always go on bottom }
[L { Pane size is relative to transcript pad }

20, { New pad takes up 20% of related window }
input_stream, { Stream ID of this input pad }
status); { Completion status }

Example 5-3. Creating an Input Pad in a Window Pane

You must specify a null pathname and namelength when creating an input pad.

PAD _ $INPUT indicates that the type of window pane you are creating is an input pad.

Stream_ out is the stream ID, in STREAM_ $ID _ T format, of a previously created transcript
pad to which this pad is related. (In this case, the transcript pad is stream_ out.)

PAD _ $BOTTOM indicates that the new window pane will be positioned at the bottom of its
related transcript pad. You ~ specify the bottom when creating an input pad. If you create
additional transcript and edit window panes in a transcript window pane, the input window
remains at the bottom of its associated transcript pane.

An empty set of brackets, [], indicates the default pane _ options attribute. The value of this
argument determines, among other things, the interpretation of the next argument, pane _ size.
Pane size specifies the height of the new window pane. The value of pane_size is the

5-7 Using the DM

maximum height the input window pane will ever be. All input pads start out to hold a single
line of text in the current font. However, in cases where the user types input before the program
is ready to read it, there may be more lines of input waiting for action. To accommodate this,
you specify a larger window pane size for an input pad. A common value for the pane size is 20.

When PAD _ $CREATE creates an input pad, it returns the stream ID of an input stream. Your
program can read any keyboard input the user types into this pane. The Display Manager
usually echoes the input into the related transcript pad. If you do not want the input to be
echoed, you can specify the pane _ options attribute [PAD _ $INIT _ RAW] . PAD _ $INIT _ RAW
indicates that the input will be processed in raw mode, which prevents the system from
preprocessing the input. Raw mode processing is described in the section below, 5.8.2.

Input _ stream is the stream ID of the new window pane, in STREAM _ $ID _ T format,

returned by this call. Status is the completion status returned by this call.

5.4.2. Creating Transcript Pads in Window Panes

You can associate other transcript window panes on top of the original transcript pad. To create
a transcript pane, use the PAD $CREATE call, specifying PAD $TRANSCRIPT as the
third argument.

Example 5-4 shows how to create a transcript pad with PAD _$CREATE. An explanation of
each argument follows the example.

('transpathname' •
namelength.
pad_$transcript.
stream_out.
pad_$right.
[pad_$abs_size] •
30.
trans_stream.
status);

{ Pathname }
{ Namelength}
{ Type of pad }
{ Stream IO of related transcript pad }
{ Side of original pad that new pad is located }
{ Pane size is absolute value }
{ New pad is 30 lines high (scaled) }
{ Stream IO of this transcript pad }
{ Completion status }

Example 5-4. Creating a Transcript Pad in a Window Pane

You can specify either null, or a pathname and namelength when creating a transcript pad
and pane. If you specify null, the transcript pad is a temporary file, which goes away when the
program ends.

If you specify the pathname of an existing file for a transcript pad, the Display Manager positions
the pad at the beginning of the file, but scrolls down to the bottom of the file the first time the
user writes to the pad. Creating a transcript window pane whose pad is an existing file is a
convenient way for your program to display prepared text or graphics, such as menus. The
Display Manager can call an existing file to the screen faster than your program can create it.

If you create a transcript window pane with a pathname that does not refer to an existing pad,
the Display Manager creates a new permanent file. Thus, the program dialogue is a permanent
record that you can refer to after the program terminates.

PAD _ $RIGHT indicates that the new pad will be at the right side of the associated pad. You
can place the transcript pad anywhere on the original transcript pad, so you can specify any of
the following options: PAD _ $TOP , PAD _ $BOTTOM, PAD _ $RIGHT or PAD _ $LEFT.

Using the DM 5-8

PAD _ $ABS _ SIZE indicates that the next argument, pane_size, will be an absolute value,
according to the current scale factor. That is, pane_size will be 30 lines high in the current font,
if the scale factors are set to the default, 0,0. For details on scale factors, see Section 5.5.7. By
specifying an absolute size, the Display Manager attempts to keep the pane at that size, even if its
related window grows or shrinks. However, the window pane can never be larger than its related
window, so that if the window shrinks below the size of the window pane, the window pane must
also shrink. You can also specify the default relative value with empty brackets, []. This makes
the new pad's size a percentage of the original pad.

Trans_stream is the stream ID of the new window pane, in STREAM $ID T format,

returned by this call. Status is the completion status returned by this call.

5.4.3. Creating Edit Pads in Window Panes

An edit window pane is a window pane where the user can type or edit text with the usual
Display Manager text-editing commands. If your program requires a large amount of input from
them, you can create an edit window pane for users to enter their data.

To create an edit pad, use the PAD _ $CREATE call, specifying PAD _ $EDIT as the third
argument. This call creates an edit pad (and a window pane to view it) and associates it with a
previously created transcript pad.

Example 5-5 shows how to create an edit pad with PAD _ $CREATE. An explanation of each
argument follows the example.

(' edi tpathname' .
namelength.
pad_$edit.
stream out.
pad $top.
[pad_$abs_size] .
30.
edit_stream.
status);

{ Pathname }
{ Namelength}
{ Type of pad }
{ Stream ID of related transcript pad }
{ Side of original pa.d that new pad is located }
{ Pane size is absolute value }
{ New pad is 30 lines high (scaled) }
{ Stream ID of this transcript pad }
{ Completion status }

Example 6-6. Creating an Edit Pad in a Window Pane

You can specify a pathname and name length when creating an edit pad. If you give a
pathname of an existing file, the user sees and can edit that file. If you give anew pathname, the
user's input goes into anew, permanent file. If you supply no pathname for the edit file, the
user's input goes away when the stream closes.

PAD _ $TOP indicates that the edit pad is located at the top of the associated pad. You can
place the edit pad anywhere on the pad, and can specify any of the following sides:
PAD_$TOP, PAD_$BOTTOM, PAD_$RIGHT, PAD_$LEFT.

5-9 Using the DM

PAD _ $ABS _ SIZE indicates that the next argument, pane _size, will be an absolute value,
according to the current scale factor. (That is, pane_size will be 30 lines high.) By specifying
an absolute size, the Display Manager attempts to keep the pane at that size, even if its related
window grows or shrinks. However, the window pane can never be larger than its related window,
so that if the window shrinks below the size of the window pane, the window pane must also
shrink. You can also specify the default relative value with empty brackets, []. This makes the
new pad's size a percentage of the original pad.

Edit _ stream is the stream 10 of the new window pane, in STREAM _ $10 _ T format, returned

by this call. Status is the· completion status returned by this call.

Mter you create an edit window pane, you can then call PAD _$EDIT _ WAIT. This suspends
the process until the user terminates the edit session in the edit pane with a CRTL/Y, CTRL/N,
EXIT, or ABORT (WC or WC -Q) command. The process then gains control, closes the
window, thereby allowing your program to access the information.

Mter an editing session, the program has different access privileges to the edited file depending
on when the file was created. If the file is a temporary file, specified by a null pathname in
PAD _ $ CREATE , the program has read and write access to it. However, if the file is a pre­
existing file, specified as the pathname in PAD _ $ CREATE , your program has only read access
to it. You can change the file access, if necessary by using the STREAM _ $REDEFlNE system
call described in Chapter 4.

5.4.4. Creating Read- Only Edit Pads in Window Panes

A read-only edit pad is a file that users can read but not modify. To create a read-only edit pad,
use the PAD _ $CREATE call, specifying PAD _ $READ _EDIT as the third argument. This
call creates a read-only edit pad (and a window pane to view it) and associates it with a
previously created transcript pad. For a description of the call, see Section 5.4.3, Creating Edit
Window Panes.

Note that once you create an edit pad as read-only, the user cannot change it into an edit pad.
The Display Manager command that turns a read-only edit pad into an edit pad does not work
when the window pane is created with PAD _ $ CREATE. A read-only edit pad must refer to an
existing file.

5.4.5. Closing Windows and Window Panes

A pad closes when its associated stream closes; the stream closes when your program makes a
STREAM _ $CLOSE system call, or when your program terminates, regardless of whether the
termination is normal or unexpected. It is good practice to use the STREAM_$CLOSE system
call to close any opened I/O streams before you conclude your program.

You should close the streams in the reverse order that you created them, so that you close the
original transcript pad last. You can close an edit pad stream while the user is still editing. This
denies your program further access to the file, but allows the user to· finish editing it. Even
though a pad closes when your program ends, some types of windows or window panes associated
with these pads do not close automatically when their associated streams close. These include

Using the DM 5-10

• Transcript windows (not panes).

• Edit windows and panes.

• Read/edit windows (not panes).

If you want these windows or panes to close when their related streams close, use the
PAD _ $SET _ AUTO _ CLOSE call. Usually, you would include this call soon after you create
the window or window pane in case your program terminates unexpectedly. (A user can type the
Display Manager WC -A command to achieve the same results as a
PAD _$SET _AUTO _ CLOSE.)

You do not need to use PAD _ $SET _ AUTO _ CLOSE with input pads, transcript panes, or
read/ edit panes, because they go away automatically when their associated streams close.

5.4.6. Sample Program: Creating and Closing Windows and Window Panes

Example, 5-6 is a program that shows how to use PAD calls to create an original transcript pad
and subsequent window panes. It also shows how to use the PAD _ $SET _AUTO _ CLOSE and
STREAM_ $CLOSE system calls.

{ This program makes a new transcript pad and window. and aSSOCiates
other window panes. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/vfmt.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

CONST
display_unit
window count
auto close

VAR
source stream
input_stream
edit stream
seek_key

window
window list
window size

status
pathname
namelength
count

=
=
=

1;
1;
TRUE;

stream_$id_t;
stream_$id_t;
stream_$id_t;
stream_$sk_t;

pad $window desc t; - --
pad $window list t; - --
integer;

status $t;
name_$pname_t;
integer;
integer;

Example 5-6. Creating and Closing Windows and Window Panes

5-11 Using the DM

{* *** *}
{* Procedure CHECK_STATUS to check for errors. It prints an error message, *}
{* and exits on bad status. *}

{* *** *}

PROCEDURE check_status;

BEGIN
IF status.all <> status $ok THEN BEGIN

error $print(status);
pgm $exit;

END;
END; {check_status}

{* *** *}
{* Procedure HOLD_DISPLAY to suspend program to demonstrate how calls work. *}

{* *** *}

{ This internal procedure calls TIME $WAIT to suspend the process for 3 seconds
so you can see how each call works~ }

PROCEDURE hold_display;

VAR
rel time

BEGIN { hold display}
cal $sec-to clock (3, rel_time); {Convert secs to UTC value}
time_$wait (time_$relative,

rel time,
status);

check status;
, END; {hold display }

{ Time to wait}

{* *** *}

BEGIN {Main}

{ Set position of future window. }

window. top - 150;
window. left - 150;
window. width - 450;
window. height - 450;

{ Create original transcript pad and window. }

0,
pad_$transcript,
display_unit,
window,
source_stream,
status);

{ No pathname for transcript pad }
{ No namelength for transcript pad }
{ Type of pad }
{ Number of display unit}
{ Position of window}
{ Returns stream ID }
{ Completion status }

Example 5-6. Creating and Closing Windows and Window Panes (Cont.)

Using the DM 5-12

{ Close window when stream closes. }

pad_$set_auto_close (source_stream,
window_count,
auto_close,
status);

{ Stream ID }
{ Number of window }
{ Flag -- set to TRUE }
{ Completion status }

{ Make an input pane at the bottom of the window. }

pad_$create ({ Null pathname for input window }
0, { Null name length }
pad_$input, { Type of pad }
source_stream, { Same stream ID as window }
pad_$bottom, { New pane position on original pad}
[J, { Pane height relative to original pad
20, { Height maximum is 20% of original pad
input_stream, { Returns stream ID of window pane }
status); { Completion status }

check_status;

}
}

{ Get pathname from keyboard and set values of pathname, namelength. }

WRITELN ('Type in the pathname of the file: ');

vfmt_$read2('%'II'%eka%.' ,
count,
status,
pathname,
namelength);

check_status;

{ Make an edit pane for the rest of the window above the input pad and
associate it with specified file. }

pad_$create (pathname,
name length,
pad $edit,
source_stream,
pad $top,

{ Same stream ID as window }
{ New pane position on original pad}

[J,-

60,
edit_stream.
status);

{ Pane height relative to original pad}
{ Height = 60% of pad minus input pad }
{ Returns stream ID of window pane }

{ Close edit pad when stream closes. }

pad_$set_auto_close (edit_stream,
Window_count,
auto_close,
status);

check_status;
hold_display;

{ Stream ID }
{ Number of window }
{ Boolean -- set to TRUE }
{ Completion status }

Example 5-6. Creating and Closing Windows and Window Panes (Cont.)

5-13 Using the DM

{ Close the streams. }

stream_$close(edit_stream. status);
cheek_status;

stream_$close(input_stream. status);
check_status;

stream_$close(source_stream. status);
check_status;

Example 5-6. Creating and Closing Windows and Window Panes (Cont.)

5.5. Manipulating Windows

There are many Display Manager calls that tell you about the display, and allow you to change
it. For example, if you run your process in the user's Shell process, you can use various Display
Manager calls to find out about the display.

The following sections describe how to inquire about window positions and change them, pop
windows to the foreground of the screen, push them to the background, make them invisible,
re-appear, and borderless. It also describes how to change character fonts and scale factors.

5.5.1. Specifying a Window Number with PAD_$INQ_ WINDOWS

Most of the PAD calls that manipulate windows require that you specify the stream ID and
number of the desired window. You must specify a window number because a user might have
more than one window viewing the same pad. This occurs any time a user and a program or two
programs make a window on the same object. Typically, this can happen when the program calls
PAD _ $CREATE on an edit window that the user already has open on the display . Your
program opens a second window, so it must refer to the number, 2, when it manipulates that
window.

Assuming that you want to change the most current window viewing the pad, call
PAD _ $INQ _ WINDOWS first. Since PAD _ $INQ _ WINDOWS returns the number of
windows open to the pad, the number equals the latest window viewing the pad. In subsequent
calls requiring a specific window number, use the number returned by PAD _ $INQ_ WINDOWS.

5.5.2. Getting Window Positions with PAD _ $INQ_ WINDOWS

PAD _ $INQ _ WINDOWS also tells you the size and position of each window viewing the pad.
This is useful, for example, if your program display depends on whether the user's window is
vertical or horizontal in shape, or if it needs to scale its output to fit in the window.

PAD _ $INQ _ WINDOWS returns the position of the window viewed to the pad in the order of
top, left, width, and height, excluding the window's border and legend. If more than one window
is open to the pad, you can get information about any number of windows.

Using the DM 5-14

Note that the values of top and left are expressed in raster units, but width and height are
divided by the current scale factors. If you need to know the width and height in raster units,
you can convert them using the system call PAD _ $SET _ SCALE prior to using
PAD _$INQ_ WINDOWS. Example 5-7 shows how to convert the width and height to raster
units by using the call PAD _ $SET _ SCALE. The call changes the value of width and height to
raster units when you specify x and y factors to be 1. See Section 5.5.7 for details on
PAD $SET SCALE.

{This program gets information about size of windows open to pad. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;

CONST
max windows
font size

VAR
window info
n windows
width scale
height_scale
font name
font len
bottom, right
status
i

= 10;
= 0; { No need for font pathname }

pad_$window_list_t;
integer;
integer;
integer;
pad_$string_t;
integer;
integer;
status_$t;
integer;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6) . *}

{* *** *}

BEGIN { Main Program }

{ Set scale to 1,1 to get width and height in raster units. }

pad_$set_scale (stream_$stdout,
1,
1,
status);

{ Standard output (display) }
{ x factor in raster units}
{ y factor in raster units}
{ Completion status }

Example 5-7. Getting Size and Position of Windows

5-15 Using the DM

{ Get window information about user's standard output stream. }

pad_$in~windows (stream_$stdout.
window_info.
max_windows.
n_windows.
status);

{ Standard output (display) }
{ Current position of window}
{ Maximum no. of windows desired}
{ Number of windows open to pad }
{ Completion status }

{ Write window information to screen. }

writeln;
writeln(' ==');
writeln;

IF (n windows = 1) THEN
writeln (' One window is open to this pad. ')
ELSE writeln (' There are'. n_windows:1.

, windows are open to this pad. ');
writeln;

{ Write window information for each window open to current pad. }

FOR i := 1 to n windows DO
WITH window_info[i] DO

BEGIN

top + height;
.- left + width;

bottom .­
right

{ Write positions to display: }

writeln (' Window' .i:1);
writeln ('----------');
writeln;
writeln (' Upper left corner is at position ('.

left: 1. ' . ' . top: 1. ') ');
writeln (' Lower right corner is at position ('.

right: 1.'. '. bottom: 1. ') ');
writeln (' Width of window = '.width:1.

, (raster units) ');
writeln (' Height of window = '.height:1.

, (raster units) ');
writeln ; '\

END; {with}

writeln (' ==,);

Example 5-7. Getting Size and Position of Windows (Cont.)

Using the DM 5-16

5.5.3. Getting Position of Window Borders with PAD _$INQ_FULL_ WINDOW

While PAD _ $INQ _ WINDOWS returns information about the screen space available to your
program, PAD_$INQ_FULL_ WINDOW returns information about an entire window in
relation to the user's display . PAD _ $INQ _ FULL _ WINDOW returns information that tells
you how much of the display a window uses -- including its legend and border. Even if you
specify a window pane, PAD _ $INQ _ FULL _ WINDOW returns information about the
outermost window related to the specified window pane. You might use this information if you
want to position a window on the user's display so that it will not overlap an existing window.
To do so, use PAD_$INQ_FULL_ WINDOW to get the dimensions of the existing windows to
calculate where to make the new window.

You can also use PAD_$INQ_FULL_ WINDOW in programs that want to remember where the
user last placed a window. Use PAD_$INQ_FULL_ WINDOW to find out where the user
positions the window, and then, if the window is recreated at some future time, you can call
PAD _ $SET _ FULL _ WINDOW to position the window in the same place. You can also use
PAD _ $SET _ FULL _ WINDOW to grow and move full windows.

Due to a current implementation restriction, if you use PAD_$SET_FULL_ WINDOW on an
invisible window, the call makes the window visible. You will have to use another
PAD _ $MAKE _ INVISIBLE to make the window invisible again. Example 5-8 is an example of
setting the position of a full window.

{ This program uses PAD calls to manipulate full windows. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;

CONST
no border = FALSE;

VAR
stream one
status
window
windowlist
winlistsize
window no
full window

stream_$id_t;
status_$t;
pad_$window_desc_t;
pad_$window_list_t;
integer;
integer;
pad_$window_desc_t;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

Example 5-8. Using PAD Calls to Manipulate a Full Window

5-17 Using the DM

BEGIN { Main Program }

{ Set original position of windows.
Create a window with pad_$create_window. }

pad_$in~windows (stream_one,
windowlist,
winlistsize,
window_no,
status);

pad_$make_inVisible(stream_one,

{ Stream ID }
{ Array of windows }
{ Number of windows to get info }
{ Returns number of windows }
{ Completion status }

window_no, {Returned by PAD_$INQ_WINDOWS }
status);

pad_$in~full_window (stream_one,
window_no,
full window, { Returns full window position}
status);

pad_$set_full_window (stream_one,
window_no,
full_window,
status);

check_status;
hold_display;

pad_$make_inVisible (stream_one,
window_no,
status);

Example 5-8. Using PAD Calls to Manipulate a Full Window (Cont.)

5.5.4. Changing How Windows Look

You call PAD _ $MAKE _ INVISIBLE to make the specified window disappear; you call
PAD_$SELECT_ WINDOW to make it re-appear. The PAD_$POP _PUSH_WINDOW and
PAD _ $SET _ BORDER calls use Boolean arguments to allow you to change the window
appearance. For example, if the program sets the Boolean argument in PAD _$SET _BORDER
to FALSE, PAD _ $SET _ BORDER removes the border from a window. If it is TRUE,
PAD $SET BORDER adds the border. (By default, all windows have borders;
PAD _ $SET _ BORDER adds the border only to windows made borderless by a previous call to
PAD _ $SET _BORDER.)

Example 5-9 is a sample program using these calls. Note that PAD $SET _BORDER works
only with full windows. You cannot create a borderless window pane or frame. If you create a
borderless window and associate a window pane with that window, the border re-appears.

Using the DM 5-18

{ This program shows how to pop and push windows. make a
window visible and invisible. and remove a window border. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

CONST
display_unit
auto close
no border
pop

VAR

push

stream one
stream two
stream three
pane_stream

window one
window two
window three

window no1
window no2
window no3
window list
status

= 1;
= TRUE;
= FALSE;
= TRUE;
= FALSE;

stream $id t;
stream-$id-t;
stream-$id-t;
stream=$id=t;

pad_$window_desc_t;
pad $window desc t;
pad=$Window=desc=t;

integer;
integer;
integer;
pad_$window_list_t;
status_$t;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6) . *}

{* ***~************* *}

BEGIN { Main Program }

{ Set the original positions of the windows. }
{ Create 3 transcript pads with full windows using pad_$create_window. }
{ Make windows close when stream closes using pad $set auto close. }
{ Get value of window no1. window no2. and window-no3 for n;xt calls}
{ using pad_$in~WindOWs. } - -

{ Remove border from the last window. }

pad_$set_border (stream_three. { Stream ID }
window_no3. { Window number }

no border. { Set no border }

status); { Completion status }

check_status;

Example 5-g. Changing How a Window Looks

5-19 Using the DM

{ Push the last window open to the bottom. }

pad_$pop_push_window (stream_three,
window_n03,
push,
status);

{ Push window }

{ Pop the last window open to the top. }

pad_$pop_push_window (stream_three,
window_n03,
pop,
st,atus) ;

{ Make the second window invisible. }

{ Pop window }

{ Stream IO }
{ Window number }

pad_$make_invisible (stream_two,
window_n02,
status); { Completion status }

{ Make the first window invisible. }

pad_$make_invisible (stream_one,
window_nol,
status);

{ Make the first window visible again. }

pad_$select_window (stream_one,
window nOl,
status);

{ Stream IO }
{ Window number }
{ Completion status }

{ Create pad and window pane on borderless window, note that
in doing so, the border re-appears. }

pad_$create ({ Null pathname }
0, { Null name length }
pad_$input, { Type of pad }
stream three, { Stream IO of related pad }
pad_$bottom, { Location on pad }
[L { Relative size }
20, { Height of pane (scaled) }
pane_stream, { Stream IO }
status);

check_status;

{ Close streams before terminating program using stream_$close. }

Example 5-9. Changing How a Window Looks (Cont.)

Using the DM 5-20

5.5.5. Inquiring About the User's Display and Keyboard

You can use the system PAD _$INQ_DISP _ TYPE call to find out about the user's display, and
tailor your program's action according to it. For example, you can set up the position of your
windows according to the type of display in use. Example 5-10 checks for the user's type of
display.

NOTE: If you are using graphics through GPR or GMR, it is better
to use the several GPR inquire calls to determine the specific
display attributes (such as the x and y dimensions). This
way, your program will be less device-dependent, and will
continue to work when new display types are introduced.

You can use the system call PAD _$INQ_KBD to find out about a user's keyboard. For
example, you might want to set up program definition keys according to the type of keyboard in
use. Example 5-10 checks for the keyboard in use, and responds accordingly.

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/vfmt.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;

CaNST
max windows
font size
buffer

VAR
status
display_type
unit number
kbd suffix
suffix_length

=
=
=

10;
O·
256;

status_$t;
pad_$display_type_t;
integer;
pad_$string_t;
integer;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Find out which type of display is in use. }
pad_$in~disp_type (stream $stdout, { Standard output stream - display}

display_type, {Returns type of display}
unit number, { Returns unit number, always 1 }
status); { Completion status}

check_status;

Example 5-10. Inquiring About User's Display and Keyboard

5-21 Using the DM

writeln;
writeln (, == ');
writeln (, Number of display units: ');

IF unit number = 1 THEN
writeln (, There is one display unit connected to this node. ,)
ELSE

BEGIN
writeln (, There are' ,unit number,' display units')
writeln (, connected to thi; node. ');

END;
writeln;
writeln (, == ');
writeln (, Type of display: ');

CASE display_type OF

pad_$bw_15p : writeln (, This is a black-and-white portrait. ');
pad_$bw_191 : writeln (, This is a black-and-white landscape. ');
pad $color display : writeln

- - (, This is a color display (1024 x 1024 pixels). ');
pad_$800_color : writeln

(, This is a color display (1024 x 800 pixels). ');
pad $none : writeln (, There is no display. ');

END; { case}

{ Find out which keyboard is in use. }

pad_$in~kbd (stream_$stdout,
buffer,
kbd_sUffix.
suffix length.
status-);

{ Standard output stream }
{ Size of string buffer }
{ Returns keyboard suffix string }
{ Returns keyboard suffix length }
{ Completion status }

writeln (, == ');
IF suffix_length = 0

THEN BEGIN

writeln (, The keyboard suffix is 0 ');
writeln (, User has the 880 keyboard. ');
END

ELSE IF kbd_suffix[SUffix_length] = '2'
THEN BEGIN

vfmt_$write2 (, The keyboard suffix is: "%A" %. '.
kbd_suffix. suffix_length);

writeln (, User has the low-profile keyboard. ');
END

ELSE writeln (, Not sure which keyboard is in use. ');

Example 5-10. Inquiring About User's Display and Keyboard (Cont.)

Using the DM 5-22

{ Redefine the keyboard function keys. }
IF (SUffix_length = 0) OR (kbd_suffix[suffix_length] = '2')

THEN BEGIN

writeln;
writeln (, Redefining low-profile function keys. ');

pad_$def_pfk (stream $stdout, {Stream IO }
'Fl', - { Keyname }
'TT', {OM command -- to top of window}

check_status;
hold_display;

END;

2, { Length of OM command }
status);

Example 5-10. Inquiring About User's Display and Keyboard (Cont.)

5.5.6. Specifying Character Fonts

You can specify different styles of character fonts that your program uses by changing the font
file. A font file contains binary data that defines the size and shape of each character. Different
font files define different typefaces (such as Times Roman or Old English), fonts (such as boldface
or italic), and size (such as5x9 or 7x13).

Traditionally, a typeface has various attributes such as size and font. However, the Display
Manager font files do not make these distinctions. Instead, any variations of a typeface, font or
size constitutes a different font file, and no relationships exist between font files.

Most font files reside in the directory jSYSjDMjFONTS. You can tell the type of font by its
name. Fixed-width fonts begin with the letter f, and contain the size of the font in raster units.
Some have an extension indicating that the file is a variant of a standard file. For example,
II f5x9.b II is the boldface version of Ilf5x9 11

• The extenstion, II.ill is the italics version, and II.iv ll is
the inverted (reverse-video) version of the font.

You can specify anyone of the fonts listed in that file in your program. A pad can use up to 100
fonts at the same time. Before you use a font, you must call PAD _ $LOAD _FONT to inform
the Display Manager that you intend to use this font at some future time. Then you call
PAD _$USE_FONT to specify the current font for your program to use. You can use
PAD _$USE_FONT to switch between loaded fonts as often you want. The Display Manager
displays a character in a window by copying the character's image from the current font to a
specified location in the window.

For more information about font files, see the description of the font editor, EDFONT in the
DOMAIN System Oommand Reference manual. This manual also lists the fonts available in
jSYSjDMjFONTS in the section describing the font load (FL) command.

5-23 Using the DM

Example 5-11 shows how to use PAD _$LOAD _FONT and PAD _$USE_FONT to specify a
font file. For another example of using fonts, see Example 5-20.

PROGRAM pad_font;

{ This program loads and uses fonts. It creates a transcript window. and
writes out a message. using the inverted font. f5x9.iv. The user
can put the keyboard cursor inside the pad to see the message. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/vfmt.ins.pas';
%INCLUOE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';

= 1;
= 1;
= TRUE;
= ' This is a transcript pad. ';

CONST
display_unit
window no
auto close
trans_message
new font name = 'f5x9.iv'; {Fixed width inverted font}

VAR
source stream
pane_stream
seek_key
status
window
new font id

stream_$id_t;
stream_$id_t;
stream_$sk_t;
status_$t;
pad_$window_desc_t;
integer;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Set position of future window. }
{ Create original transcript pad and window. }
{ Close window when stream closes. }

{ Load the standard inverted font. f5x9.iv. for transcript window. }

PAD_$LOAD_FONT (source_stream. { Stream IO }

new font name. { Font name f5x9.iv }

SIZEOF(new_font_name). { Length of font_name }

new_font_id. { Returns font IO }
status); { Completion status }

check_status;

Example 5-11. Selecting a Character Font File

Using the DM 5-24

{ Use PAD_$USE_FONT to have program use the desired font. }

PAD_$USE_FONT (source_stream.
new font id.
status);

check_status;

{ Stream ID }
{ Font ID loaded above }

{ Write name of file in transcript pad. }

vfmt_$ws2 (source stream.
'%A% .• -: { Add newline after string using VFMT }
trans_message.
SIZEOF(trans_message));

check_status;
hold_display;

Example 5-11. Selecting a Character File File (Cont.)

5.5.7. Changing Scale Factors

Most system calls deal with screen locations by using absolute pixel (raster unit) coordinates.
Some PAD calls require the size of the current font to describe the location of text in terms of
lines and characters, rather than absolute locations or sizes.

These calls are:

• PAD $CPR ENABLE

• PAD_$CREATE (with the PAD_$ABS_SIZE option)

• PAD_$INQ_POSITION

• PAD $LOCATE

• PAD $MOVE

• PAD_$INQ_ WINDOWS

For example, if you specify a five as the horizontal size in a PAD _ $MOVE call, you do not mean
five pixel locations, but rather five times the horizontal scale factor.

By default, the scale factor depends on the size of the font currently iif-use. You can change the
scale factors to be in raster units by using the PAD _ $SET _ SCALE call. Normally, you specify
one for x and y when you use PAD _ $SET _ SCALE, meaning the values of x and y will be in
pixels rather than lines and columns. Note that a column starts at one, so when scale factors are
according to lines and columns, the edge of the window is at column one. However, when scale
factors are in raster units, the edge of the window is zero.

To restore the default font-size scaling, use PAD _ $SET _ SCALE, specifying zero as the value of
the x and y scale factors.

5-25 Using the DM

Example 5-12 shows the difference between a pad created with the default scale factor, and a pad
created after setting the scale to raster units with PAD _ $SET _ SCALE. Note that scaling
factors are in effect because it specifies the PAD _ $ABS _ SIZE option when creating this pad.

PROGRAM pad_scale;

{ This program is a sample of using PAD_$SET_SCALE. The first
window creates a transcript pad that is 5 lines high. The second
window creates a transcript pad that is 20 raster units high. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;

CaNST
display_unit = 1;
auto close = TRUE;
window no = 1;

VAR
seek_key
stream one
stream four
pane_stream_one
pane_stream_four
status
window one
window two

stream_$sk_t;
stream $id t;
stream=$id=t;
stream_$id_t;
stream_$id_t;
status $t;
pad $window desc t; - --
pad_$window_desc_t;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Set position of future windows. }
{ Open the window as a transcript pad. }

pad_$create_window (• •
O.
pad_$transcript.
display_unit.
Window_one.
stream_one.
status);

Example 5-12. Setting Seale Factors to Raster Units with PAD_$SET_SCALE

Using the DM 5-26

O.
pad_$transcript.
stream one.
pad_$top.
[pad_$abs_size] .
5.
pane_stream_one.
status);

{ Pad is absolute value }
{ 5 lines high }

{ Open the window as a transcript pad. }

pad $create window (- -
O.
pad_$transcript.
display_unit.
window_two.
stream_two.
status);

{ Set scale of window height and width to be in raster units. }

pad_$set_scale (streamlfour.
1.

check_status;

1.
status);

O.
pad_$transcript.
stream_two.
pad_$top.
[pad_$abs_size] .
20.
pane stream two.
status); -

{ Scale factor for x-coordinate }
{ Scale factor for y-coordinate }

{ Pad absolute size }
{ Raster units }

Example 5-12. Setting Seale Factors to Raster Units (Cont.)

5.5.8. Getting Current Seale Factors with PAD _$INQ_FONT

If you set the scale factor to raster units, you might want to know the scale factor of the current
font for another call. To do so, use PAD _ $INQ_FONT. Example 5-13 sets the scale to raster
units before creating a frame. To put the output cursor in the frame, it uses PAD _ $MOVE. In
PAD _ $MOVE, the x and y coordinates indicate where to locate the character on the display.
The y coordinate must be large enough to handle the height of the character font. To find out
the height, it uses a call to PAD._$INQ_FONT. For details on frames, see Section 5.7.

5-27 Using the DM

{ This program creates a frame at the top of the user's standard output pad.
and writes the prompt "#" inside the frame. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';

CONST
display_unit = l'
auto close = TRUE;
prompt_str = ('# ');
max windows

VAR
seek_key
pane stream
status
window info
n windows
font len
font_height
font width

= 1;

stream_$sk_t;
stream_$id_t;
status $t;
pad_$window_list_t;
integer;
integer;
integer;
integer;

{* *** *}
{* Procedure CheCk_status for error handling. (See Example 5-6) . *}

{* *** *}
{* Procedure HOld_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Get the size of the current window. }

pad_$in~windows (stream_$stdout.
WindOW_info.
maX_Windows.
n_windows.
status);

{ Current position of window}
{ Maximum no. of windows desired}
{ Number of windows open to pad }

{ Get the width and height of current font. }

pad_$in~font (stream_$stdout.
font_width.
font_height.

O.
font_len.
status);

{ No need to know name }
{ No need to know name }

Example 5-13. Using PAD_$INQ_FONT

Using the DM 5-28

{ Set scale of window height and width to raster units. }

pad_$set_scale (stream_$stdout.
L
1.
status);

{ Scale factor of x-coordinate }
{ Scale factor of y-coorindate }

pad_$create_frame (stream $stdout.
Window=info[1] .width. { Same size as window}
font_height. { Same height as font height }
status);

pad_$move (stream_$stdout.
pad_$absolute.
5.
font_height.
status);

check_status;

{ Raster units}
{ Height of font }

{ Put the prompt 11#11 in the input window with STREAM_$PUT_CHR. }

stream $stdout.
{ Pointer to buffer } ADDR(prompt_str).

SIZEOF(prompt_str).
seek_key.

{ Number of bytes to read }

check_status;
hold_display;

status);

Example 5-13. Using PAD_$INQ_FONT (Cont.)

5.5.9. Sample Program: Creating a Window to Run a Clock

Examaple 5-14 uses miscellaneous PAD calls to create a digital clock. By default, it places the
clock in the top left corner of the screen. The user can specify another position for the clock by
specifying the x,y coordinates when the user executes the program.

This program also creates and uses a frame. For details on frames, see Section 5.7.

5-29 Using the DM

PROGRAM pad_digclk;

{ This program displays a digital clock on the screen. The user
executes the program with the OM CPO command. The user can optionally
add the x,y coordinates on the command line to specify its location.
Otherwise the clock runs in the top left corner of the screen. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/vfmt.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/pfm.ins.pas';

CONST
font name = 'f9x15. iv' ; - { Font file located in /sys/dm/fonts }
window num
as time len - -border size
close
no border -

VAR
status
window

stream
font id
font_height
font width
hunoz
hukairz
one second

now
last minute
as time
key

=
=
=
=
=

1 ;
8;
5;
TRUE;
FALSE;

status $t;
pad_$window_desc_t

[0, 0, 10, 10];
stream_$id_t;
integer;
integer;
integer;
integer;
integer;
time_$clock_t :=
[high16 := 0,

10w32 := 250000];
cal_$timedate_rec_t;

integer := -1;

{ Default window location }

ARRAY[1 .. as_time_Ien] OF char; {ASCII time}
stream_$SK_t;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}

{* *** *}
{* Procedure Get num arg checks to see if user provided arguments to specify *}
{* the x,y coordinates of the clock. PGM_$GET_ARG returns a string, so convert *}
{* it to an integer. If all goes well, the result is assigned to arg_val. *}

{* *** *}

Example 5-14. Using PAD Calls to Create a Cloek

Using the DM 5-30

PROCEDURE get_num_arg (arg_num: integer;
OUT arg_val: integer);

VAR
arg
argl
hunoz
hukairz
anyway
number

string;
integer;
integer;
integer;
integer;
integer;

BEGIN

{ Get argument from command line and
argl := pgm_$get_arg (arg_num,

assign its length to argl. }
{ Number of argument }

arg,
status,
SIZEOF(arg)

{ Returns argument string }
{ Completion status }

); { Max length of argument}

IF status.all = status_$ok THEN
BEGIN

{ Convert string to integer and assign to variable, hunoz }
hunoz := vfmt_$decode2('%wd%.', {String}

arg, { Text buffer }
argl, { Size of text buffer}
hukairz, {No need to know value }
status, {Completion status }
number, {Decoded data}
anyway); { Decoded data}

IF status.all = status_$ok THEN
arg_val := number;

END;
END; { get_num_arg }

BEGIN { Main Program }

{ Get window left coordinate, if user supplies it. }
get_num_arg (1, window.left);

{ Get window top coordinate, if user supplies it. }
get_num_arg (2, window.top,);

{ Create the window -- note that the size is 10x10 pixels, we
will change it to after we know the font size. }

pad_$create_window ({ Null pathname }
0,
pad_$transcript,
1.
window,
stream,
status);

{ Null name length }
{ Type of pad }
{ Number of display unit}
{ Position of window}
{ Stream ID }
{ Completion status }

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5-31 Using the DM

check_status;

{ Load the font and use it. }

pad_$load_font (stream.

check_status;

font_name.
SIZEOF(font_name).
font id.
status);

pad_$use_font (stream. font_id. status);
check_status;

{ Get the size of the font in use. }
pad_$in~font (stream.

{ Returns font ID }

font_width, { Returns width of font }
font_height, { Returns height of font }
hunoz. { No need to know
O. { No need to know
hukairz. { No need to know
status);

check_status;

{ Adjust window width and height to font size. }

window.width
window. height

font width *as time len + border_size;
font_height + border_size;

{ Make window borderless. }

pad_$set_border (stream, window_num. no_border. status);
check_status;

{ Set scale to pixel values. }

pad_$set_scale (stream. 1. 1. status);
check_status;

{ Set window to new size. }

value
value
value

pad_$set_fuII_window (stream. window_num. window. status);
check_status;

{ Create a frame the same size as the window. }

}
}
}

pad_$create_frame (stream. window.width. window. height. status);
check_status;

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

Using the DM 5-32

WHILE TRUE DO
BEGIN { Translate a system clock value into time value. }

cal_$decode_local_time (now);
IF now.minute <> last minute THEN
BEGIN

{ If a minute has passed, clear the frame and write the
minute and second value. Note that this happens the
first time through. }

pad_$clear_frame (stream, 0, status);
check_status;

vfmt_$encode5 ('%2wd:%2zwd:%2zwd%$', as_time, as_time_Ien,
hunoz, now. hour, now.minute, now. second, 0, 0);

END

{ Put the output cursor at the left side of the frame. }
pad $move (stream,

pad_$absolute,
border_size,
font_height, { Must be at least font_height }
status);

check_status;

stream_$put_rec (stream,
ADDR(as time),
SIZEOF(as_time),
key,
status);

ELSE BEGIN {Just write the seconds value. }

END;

vfmt_$encode2 ('%2zwd%$', as time, SIZEOF(as_time),
hunoz, now. second, 0);

{ Move the output cursor to the 6th character position.
Note that this only works with a fixed-sized font. }

pad_$move (stream,
pad_$absolute,
border_size+6*font_width,
font_height,
status);

check_status;

stream_$put_rec (stream,
ADDR(as_time),
2,
key,
sta.tus);

check_status;

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5-33 Using the DM

last_minute := now.minute;

time_$wait (time_$relative. one_second. status);
check_status;

END;

END. { pad_digclk }

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5.6. Using Icons

The DOMAIN system allows users to represent a window in icon format so they can set a window
aside without having to close its pad. You can use PAD calls to create a window in icon format,
change a full-sized window to icon format, set the position of icons, and change the icon character
displayed in the icon window.

Table 5-1 lists the PAD calls that create and manipulate icons.

Table 5-1. PAD System Calls to Create and Manipulate Icons

System Call Operation

PAD - $ CREATE - ICON Creates a pad and window in icon format.

PAD - $MAKE - ICON Changes an existing window into icon format.

PAD_$INQ_ICON Returns information about a window in icon format.

PAD _$INQ_ICON_FONT Returns information about the current icon font.

PAD - $ICON - WAIT Waits until window is expanded from icon-format to
full-window size, or until icon moves.

PAD - $SET - ICON - FONT Sets the current icon font to a specified font name.

PAD - $SET - ICON - POSITION Moves or sets an icon position for future use.

5.6.1. Creating an Icon

To get an icon, your program can either create a window in icon format, or change an existing
window to icon format. To change a full-sized window into an icon, use the
PAD _ $MAKE _ ICON system call. To create a window III icon format, use the
PAD $CREATE ICON call.

Using the DM 5-34

Example 5-15 shows how to change a full-sized window into an icon using the
PAD _ $MAKE _ ICON system call. The argument stream _ win is the stream ID, In

STREAM _ $ID _ T format, of the window you want to change to icon format. Window _ no IS

the number of the specified window returned by PAD _ $INQ _ WINDOWS as described In

Section 5.5.1.

Icon _ char is the icon font character to be displayed in the window . You can either specify a.
character (such as "*") to get a specific icon character, or a blank character (' ') to use the
default icon character for the type of pad. You can also specify a character from your own icon
font by making a previous call to PAD _ $SET _ ICON _ FONT, which is described in Section
5.6.3. Status is the completion status returned by the call.

pad_$make_icon (stream_win,
window_no,

status);

Example 5-15.

{ Stream of existing window }
{ Window number }
{ Default icon character}
{ Completion status }

Changing a Window to an Icon

To create a new pad and window in icon format, use the PAD _$CREATE_ICON call.
Example 5-16 shows how to create a new pad and window in icon format using this system call.
You supply the pathname and namelength, and type of the pad you want to create. For
details on these arguments, see Section 5.3.1.

Icon_pos is the location of the icon on the display, in PAD _$POSITION_ T format. You set
the values of the x and y coordinates before making this call, if you want to specify the icon's
location on the display.

Icon _ char is the icon font character to be displayed in the window . You can either specify a
character (i.e., "*") to get a specific icon character, or a blank character (' ') to use the default
icon character for the type of pad. You can also specify a character from your own icon font by
making a call to PAD_$SET_ICON_FONT first. (See Section 5.6.3.)

Window indicates the size and position of the future window, in PAD _$WINDOW _DESC _ T

format. You set the values of window before making this call. Stream _ win is the stream ID,

in STREAM_ $ID _ T format, of the window you are creating. Status is the completion status
returned by the call.

{ Set the position of the icon to the upper right corner. }
icon_pos.x_cood .- 1020;
icon_pos.y_cood := 24;

{ Set location of future window. }

window. top - 500;
window. left - 500;
window. width - 500;
window. height - 500;

Example 5-16. Creating an Icon

5-35 Using the DM

{ Create a new window in icon format. }

pad_$create_icon (pathname.
name length.
pad $edit.
display_unit.
icon_pos.
icon_char.
window.
stream edit.
status-);

{ Pathname of pad }
{ Length of pathname }
{ Type of pad }
{ Number of display unit}
{ Location of icon on display }
{ Icon font character displayed }
{ Location of future window }
{ Stream ID }
{ Status code }

Example 5-16. Creating an leon (Cont.)

Once you have created an icon, you can change the icon to its associated window with the
PAD $SELECT WINDOW call.

5.6.2. Positioning an leon

Oftentimes, a user has a particular place on the display for icons. Your program can check to see
if the user moved the icon, then places the icon in this same position the next time it is created.
The PAD _ $ICON _ WAIT system call automatically checks to see if the icon has been moved.

You can also change the position of the icon, or replace the current icon character, by using the
PAD_$SET_ICON_POSITION call. If the window specified is already in icon format, then
the call moves the icon to the new location. If you want to change either the position or the icon
character without changing the other, use PAD _ $INQ_ICON first to determine the information
that is not changing.

Example 5-17 is a program that uses these system calls to place the icon where the user wants it.
It also uses PAD_$SET_ICON_POSITION to change the icon character in use.

{ This program is a sample of using icons. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';

CONST
display_unit = 1;
auto close = TRUE;

Example 5-17. Changing leon Position and Charaeter

Using the DM 5-36

VAR
stream win
pane_stream
seek_key
status

stream_$id_t;
stream_$id_t;
stream_$sk_t;
status_$t;

window
wlndow no
window list
window size

pad_$window_desc_t;
integer;

{ Position. height. width of window}
{ Number of windows open to a pad }

pad $window list t; - -- { Array of up to 10 windows }
integer; { Maximum no. of windows desired}

icon_pos
icon char
icon moved

pad_$position_t;
char;
boolean := FALSE;

{ Position of icon}

{ Checks if icon moved }

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Set postion of future windows. }

{ Set position of icon to upper right corner. }
icon_pos.x_coord - 1020;
icon_pos.y_coord := 24;

{ Create a new transcript window using pad_$create~window. }
{ Get window statistics for next calls with pad_$in~windows. }
{ Make window close when stream closes with pad_$set_auto_close. }
{ Do work in window ... }

{ Change window into an icon. }

icon char := '
pad_$make_icon (stream_win.

window_no,
icon char,
status);

{ Stream ID }
{ Window number }
{ Default character icon}
{ Completion status }

{ Move position of icon and change the icon character. }

icon_pos.x_coord
icon_pos.y_coord
icon char

-
-
-

950;
710;
'*' ;

pad_$set_icon_pos (stream_win,
window_no,
icon_pos,
icon_char,
status);

check_status;

{ Stream ID }
{ Window number }
{ Position of icon}
{ Icon character }
{ Completion status }

Example 5-17. Changing leon Position and Character (Cont.)

5-37 Using the DM

{ Suspend process until user expands window from icon format. }

pad_$icon_wait (stream_win.
window_no.
icon_moved.
icon_pos.
status);

check_status; .
hold_display;

{ TRUE if icon moved }
{ Returns new position of icon}

{ Turn transcript window into an icon. }

pad_$make_icon (stream_win.
window_no.
icon_char.
status);

check_status;
hold_display;

{ Close stream with stream_$close. }

Example 5-17. Changing leon Position and Character (Cont.)

5.6.3. Creating Your Own Icon Font

You can determine which icon character will be displayed in the icon window by using the active
icon character set or supplying your own character set.

If you use the active icon character set, you can either specify which character you want, or
specify the blank character to get the default character for the type of window pad specified.

The default icon character set is contained in the font file /SYS/DM/FONTS/ICONS. You can
edit this font file to create your own icon characters by using the font editor, EDFONT.

You can also use EDFONT to create your own icon font file, and then use the
PAD $SET _ICON_FONT call to supply its pathname. You can use
PAD _$INQ_ICON_FONT to get the pathname of the current icon font before replacing it
with your own font's pathname, so that you can restore the original font before terminating your
program. For a complete description of EDFONT, see the DOMAIN System Command
Re ference manual.

5.6.4. Sample Program: Using Icons

Example 5-18 is a sample program using various PAD calls to create and manipulate icons. It
creates a new window with an input pad in icon format. It uses STREAM_ $PUT _ CRR to put
a prompt in the input pad, and a STREAM_ $GET _REC to get input from the keyboard.

Using the DM 5-38

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas·;
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';

CONST
display_unit = 1;
prompt_str = ('# ');
auto close = TRUE;

VAR
stream win
pane_stream
seek_key
status

window
window no
window_list
window size

icon_pos
icon char
icon moved

buffer
return_ptr
return len

stream $id t;
stream-$id-t;
stream-$sk-t;
status=$t;-

pad_$window_desc_t;
integer;
pad_$window_list_t;
integer;

pad_$position_t;
char;
boolean;

string;
.... string;
integer32;

{
{
{
{

{

{

{

Position. height. width of window }

Number of windows open to a pad }
Array of up to 10 windows }
Maximum no. of windows desired }

Position of icon }

Indicates whether user moved icon }

Buf~er to hold keyboard input }

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Set position of future windows. }

window. top - 10;
window. left - 10;
window. width - 300;
window. height - 300;

{ Set position of icon to upper right corner. }

icon_pos.x_coord
icon_pos.y_coord

1020;
.- 24;

Example 5-18. Using Ieons

5-39 Using the DM

{ Create a new transcript window in icon format. The icon will have
the Shell icon character from the default icon font. }

pad $create icon (- - { No pathname for transcript pad }
{ No name length } O.

pad_$transcript.
display_unit.
icon_pos,
icon_char.
window.
stream win.
status-);

{ Type of pad }
{ Which display unit -- 1 }
{ Location -- x and y coordinates }
{ Icon font displayed }
{ Location of future window }
{ Stream IO of new window }
{ Completion status. }

{ Create an input pad for the new transcript pad. This is a
window pane associated with the same window. }

pad $create (
O.
pad_$input.
stream win.
pad $bottom,
[].-

20.
pane stream,
status);

{ No pathname for input pad }
{ No name length for input pad }
{ Type of pad }
{ Stream IO of related transcript pad }
{ Input pads always go on bottom }
{ Pane size is relative }
{ New pad takes up 20~ of related window }
{ Stream IO of this input pad }
{ Completion status }

{ Get window statistics for next calls. }

pad_$in~windows (stream_win.
Window_list.
window_size,
Window_no.
status);

{ Stream IO }
{ Location. size of window }
{ Max number of windows desired }
{ Number of windows open to pad }
{ Status code }

{ Make window close when stream closes. }

pad_$set_auto_close (stream_win.
Window_no.
auto close.
status);

{ Suspend process until user opens icon. It checks to see if icon
has moved. If it has. it moves the icon to the new position
when it returns to an icon. }

writeln ('Process suspended until user turns icon into window. ');
writeln ('or until user moves the icon. If user turns icon into');
writeln ('a window. it waits for input. After user types input,');
writeln ('it waits 3 seconds. then turns the window into an icon. ');

Example 5-18. Using Ieons (Cont.)

Using the DM 5-40

{ TRUE if icon moved. }

pad_$icon_wait (stream_win.
window_no.
icon_moved.
icon_pos.
status);

{ If TRUE. new position of icon. }

{ Put the prompt "#". in the input window with STREAM_$PUT_CHR. }

stream win.
ADOR(prompt str).
SIZEOF(prompt str).
seek_key.
status);

{ Stream of transcript pad }
{ Pointer to buffer }
{ Number of bytes to read }

{ Get information from input pad with STREAM_$GET_REC. }

stream_$get_rec (pane_stream.

check_status;
hold_display;

ADOR(buffer).
SIZEOF(buffer).
return_ptr.
return_len.
seek key.
status);

{

{
{
{
{

{ Turn transcript window into an icon. }

pad_$make_icon (stream_win.
window_no.
icon char.
status);

check_status;
hold_display;

Buffer holding input}

Return pointer }

Return length }
Seek key }
Completion status }

{ Now. program turns window from icon format to full-sized window. }

writeln ('The program will now automatically turn the window');
writeln ('from icon format to full-sized window. and then terminate. ·);

pad_$select_window (stream_win.
window no.
status-);

check_status;
hold_display;

stream_$close (stream_win.
status);

check_status;

Example 5-18. Using Ieons (Cont.)

5-41 Using the DM

5.7. Handling Graphics Input with Frames.

Usually, your program output can be displayed on single lines of text. In this case, the program
can reposition the output cursor only horizontally from the beginning to the end of the line. In
some cases though, you may need to display more information than can fit on a line, and you
may want to move the cursor up and down as well as right to left. You can have this control
when you create a frame with the PAD _$CREATE_FRAME system call.

A frame is an area within a transcript pad where the cursor can move anywhere. As Example 5-1
illustrates, the debugger uses two frames in its display: one holds the pathname of the target
program, the other holds the source line numbers and an arrow pointing to the current line.

The most common reason for creating frames is for handling two-dimensional text output, in the
style of a dumb terminal. You can also get two-dimensional input in a frame. For more complex
graphics using I/0, see the Programming with DOMAIN Graphics Primitives manual.

NOTE: If you use GPR in frame mode for graphics input.
GPR uses PAD calls to create and manipulate frames.
Therefore. you cannot use the following PAD calls
in the sa.me program: PAD $CREATE FRAME. PAD $CLEAR FRAME.
PAD $CLOSE FRAME • PAD $DELETE FRAME. PAD $SET SCALE-:-
PAD=$LOAD_FONT or PAD=$USE_FONT. --

If you use GPR in direct mode. there are even more
restrictions on using PAD system calls. For details. see
the Programming with DOMAIN Graphics Primitives manual.

5.7.1. Creating the Frame

You can create a frame in any transcript pad. If you create a frame on a new transcript pad, it
fills the entire transcript window. (The user can still scroll back to see the previous contents of
the transcript pad.) If your application is mostly graphics, you are more likely to use the original
pad.

Example 5-19 shows how to create a frame. You specify the stream ID of an existing transcript
pad, and the width and height of the new frame, scaled according to current scale factors.

Note that the Display Manager clips output to the frame size you specify . You will get the error
"value out of range" if you try to position the cursor outside the frame. Since there are no
efficiency penalties related to the size of the frame, you can simply create the maximum size
frame available (32767 x 32767 raster units), if you want.

CaNST
max_frame_sz = 32767;

pad_$create_frame (stream_trans. { Stream ID of existing transcript pad}
max_frame_sz. { Width of new frame in pixels (scaled) }
max frame sz. { Height of new frame in pixels (scaled) }
status);- { Completion status}

Example 5-19. . Creating a Frame

Using the DM 5-42

If you create a frame of the maximum size, you can use the calls PAD _ $INQ _ VIEW and
PAD _ $SET _ VIEW to position the pad over the part of the frame you want.

For example, your program may create a frame larger than the entire display to contain a large
picture, such as a mechanical drawing. You can allow the user to view pieces of the picture at a
time. If you want the user to have easy access to a particular part of the picture, such as the
title block, you can use PAD _ $SET _ VIEW to move the window over the title block.

The DOMAIN Language Level Debugger is another example of using PAD _ $INQ _ VIEW and
PAD _$SET _VIEW. If the user directs the debugger to a specified line number, the debugger
checks to see if the line number is already in view with PAD.:...- $INQ _ VIEW. If not, it uses
PAD $SET _ VIEW to move the window over the desired line number.

You can control output in a frame by using PAD calls that manipulate the output cursor. For
details, see Section 5.8.3.

5.7.2. Clearing the Frame

When you move the cursor to a certain position in the frame and write text there, you can make
the old text seem to disappear. But it doesn't actually go away; it is still underneath the new
text. For example, when a user debugs a program, the arrow moves up and down the frame to
point to the current line. Each time the arrow moves, the Display Manager merely overwrites the
frame with the arrow's new location; its previous locations still exist underneath.

If your program frequently overwrites text in a frame, you should use the
PAD _ $ CLEAR _FRAME call. This deletes all the text ever written, up to a point specified in
the call. If you specify zero, it deletes all the text. If you do not clear the frame yourself, and
the window needs to be redrawn (for example, due to popping windows), the redraw procedure
will be quite lengthy.

When you are finished with the frame, you call PAD _ $CLOSE _ FRAME. This closes the
frame, leaving the final image of the frame in the transcript pad, and returns the pad to line
mode. If you do not want this image on your transcript pad, you can call
PAD _$DELETE_FRAME instead. Note that this deletes the frame from the transcript pad
altogether, so you have no record of the text within the frame.

5.7.3. Sample Program: Creating and Writing to Frames

Example 5-20 is a program example that uses PAD calls to create and clear a frame. It also uses
other PAD calls described previously in this chapter.

This program creates a frame at the top of a window, and displays the name of a file in the
inverted version of the current font. It uses PAD _$INQ_FONT to get the name of the font,
and adds the .iv extension with the stringcopy function. Then it creates an edit pad under the
frame.

5-43 Using the DM

PROGRAM pad_filename;

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/vfmt.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;

CONST
display_unit
window count
auto close
pane_size
max frame size - -

=
=
=
=
=

1;
1;
TRUE;
1·
32767;

TYPE
bufstring = ARRAY [1 .. 512] OF CHAR;

VAR
source stream
pane stream
pane_edit_stream
seek_key

window
window list
window size
frame width
frame_height

status
pathname
namelength
count

stream $id t;
stream=$id=t;
stream_$id_t;
stream_$sk_t;

pad $window desc t;
pad=$window=list=t;
integer;
integer;
integer;

-1;

{ String buffer }

source name font
inverted font name

status $t;
name_$pname_t;
integer;
integer;
static integer
pad_$string_t;
integer;
integer;
integer;
PAD_$STRING_T;
integer;

{ Buffer to make inverted name. } - -
font_heigth
font width
font len
font name
i

{ Size of font returned }

{* *** *}
{* Function stringcopy copies a given string to a buffer. and returns the *}
{* number of characters to be copied. It stops at the character pair. %$. *}

{* *** *}

FUNCTION stringcopy (IN src
OUT dst

VAR
i. j integer;

UNIV bufstring;
UNIV bufstring) integer;

{ Indexes to src and dst strings }

Example 5-20. Displaying a Filename at the Top of a File

Using the DM 5-44

BEGIN { stringcopy }

i
j

1 ;
1 ;

{ Initialize the indexes }

WHILE (src[i] <> '%') OR (src[i+1] <> '$') DO
BEGIN

dst [j] : = src [i] ;
i - i + 1;
j

END;

stringcopy

RETURN;

j + 1;

j - 1;

END; { stringcopy }

{ The number of characters copied. }

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Set position of future window. }

window. top - 10;
window. left - 10;
window. width - 500;
window. height - 500;

{ Get pathname from keyboard and set values of pathname. namelength. }

writeln ('Type in the pathname of the file: ');

vfm~ $read2 C'%'II'%eka%. • .
count.
status.
pathname.
namelength);

check_status;

{ Create original transcript pad and window. }

O.
pad_$transcript.
display_unit.
window.
source_stream.
status);

{ No pathname for transcript pad }
{ No namelength for transcript pad }
{ Type of pad }
{ Number of display unit}
{ Position of window}
{ Returns stream ID }
{ Completion status }

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

5-45 Using the DM

{ Close window when stream closes. }

pad_$set_auto_close (source_stream,
window_count,
auto close,
status);

{ Stream ID }
{ Number of window }
{ Flag -- set to TRUE }
{ Completion status }

{ Make a transcript pad and window pane for the name of file. }

pad_$create ({ No pathname }
0, { No name length }
pad_$transcript, { Type of pad }
source stream, { Same stream ID as window above
p ad_$ top , { Location of new window pane }
[pad_$abs_size] , { Pane size is absolute value }
pane_size, { Pane height is 1 line }
pane stream, { Stream ID of window pane }
status); { Completion status }

check_status;

{ Close window when stream closes. }

pad_$set_auto_close (pane_stream,
window_count,
auto_close,
status);

{ Now make frame in above pad to hold inverted pathname. }

frame width
frame_height

max_frame_size;
pane_size;

pad_$create_frame (pane_stream,
frame_width,
frame_height,
status);

check_status;
hold_display;

{ Same as window pane }
{ Same as window pane }
{ Same as window pane }

}

{ Before printing the filename, find out the inverted font name of
the font name in use. }

pad_$inCLfont (source_stream, { Stream ID of original transcript
font_width, { Returns width of font }
font_height, { Returns height of font }
font_name, { Returns name of font }
SIZEOF(font_name),{ Size, of buffer for font name }
font_len, { Length of font_name }
status); { Completion status }

inverted font name := font_name; {Copy to working buffer}

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

Using the DM 5-46

pad }

{ Assume font is not bold, try loading the bold inverted
version of the same font by adding the extension (".b.iv")
to the font name with the stringcopy function. }

i font len +

stringcopy('.b.iV%$', inverted_font_name[font_len + 1]);

pad_$load_font (pane stream, { Stream of frame }

inverted font name, { Font name + H .b.iv" -
1. { Length of font_name
source name font, { Returns font ID }
status); - { Completion status }

{ If the font is already bold, it returns an error, so try
adding the inverted extension (".iv") only. }

IF status.all <> 0 THEN
BEGIN

i := font len +

}
}

stringcopy (' .iv%$', inverted_font_name[font_len + 1]);

END;

pad_$load_font (pane stream.
inverted font_name,
i.
source_name_font,
status);

IF status.all <> 0 THEN
BEGIN

source name font := 0; { Use the default font. }
status.all status_$ok;

END;

{ Now clear the frame to erase any old filenames. and
write the new name. }

pad_$clear_frame (pane stream,
0,
status);

{ Clear entire frame }

{ Use PAD_USE_FONT to have program use the desired font. }

BEGIN

END;

pad_$use_font (pane_stream,
source_name_font,
status);

status. all - status_$ok;

{ Stream of frame }
{ Font ID returned above }

Example 6-20. Displaying a Filename at the Top of a File (Cont.)

5-47 Using the DM

{ Put output cursor in frame. }

pad_$move (pane_stream.
pad_$absolute.
5.

{ Move relative to top left of frame }
{ x coordinate relative to frame }

1. { y coordinate relative to frame }
status);

check_status;

{ Write name of file in frame. }

check_status;
hold_display;

pane stream.
ADDR(pathname).
name length.
seek key.
status);

{ Make an edit pane for the rest of the window below the frame. and
associate it with specified file. }

pad $create (pathname.
name length.
pad $edit.
source_stream. { Same stream ID as window}
pad $bottom. {New pane position on original pad}
[].- { Pane height relative to original pad}
100. { Height = 100% of original pad. minus frame. }
pane_edit_stream. {Returns stream ID of window pane }
status);

{ Close edit pad when stream closes. }

pad_$set_auto_close (pane_edit_stream.
window_count.
auto_close.
status);

{ Close the streams. }

stream_$close(pane_edit_stream. status);
check_status;

stream_$close(pane stream. status
check_status;

stream_$close(source_stream. status);
check_status;

END. {pad_filename}

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

Using the DM 5-48

5.S. Sending and Receiving Program Input

To handle input and output, most programs use an input pad and the STREAM system calls
described in Chapter 4. In this case, the operating system reads text from the keyboard, buffers
it in the input pad (so the user can edit the line), and then copies it to the transcript pad (when
the user hits <RETURN». Your program reads from the input pad.

Sometimes, you might want to bypass any system processing, for example, to prevent the system
from echoing any input on the display. Your program can read the keyboard input directly if you
put the input pad in raw mode. Section 5.8.1 describes getting and receiving input in the normal,
cooked mode. Section 5.8.2 describes how to bypass system input in raw mode.

5.8.1. Processing System Input in Cooked Mode

Normally, when your program receives keyboard input, it buffers it in the input pad to allow the
user to edit it before submitting it to the program by pressing <RETURN>. This is called
cooked mode processing because the display manager cooks (or preprocesses) the keyboard input
by displaying each keystroke in the input pad. Cooked mode allows the user to edit the input
before signaling the program to read it by pressing <RETURN>. It then copies the text from
the input pad to the transcript pad.

Every input pad starts out in cooked mode unless you create the input pad with the
[PAD _ $INIT _ RAW] option to initialize it in raw mode.

When you exchange data with the Display Manager, you usually do it in terms of stream records.
A stream record is usually a string of visible text with the NEWLINE character marking its
end. Stream records can contain any character, including control characters (such as NEWLINE
or form feed) at any character position. The Display Manager limits stream records to 256
characters in length.

Some stream calls deal with incomplete records or single characters. When your program sends
partial data to the Display Manager through stream calls to standard output, the Display
Manager buffers the partial text. It becomes visible in the transcript pad only when you issue a
stream call to complete the record.

For example, if you write an incomplete record to the transcript pad and then ask for an input
record, the Display Manager moves the incomplete record to the input pad as a prompt that tells
the user what to type. When the user types a record and presses RETURN, the Display Manager
moves the complete record (your prompt and the user's response) to the transcript pad. The
user's response becomes the input record for your program.

5.8.2. Bypassing System Input Processing with Raw Mode

In raw mode, the Display Manager does not buffer keystrokes in the input pad, nor does it echo
them in the transcript pad. Actually, the input window goes away, and the keyboard cursor is
tied to the transcript pad's output cursor when the cursor is in the transcript window. A
common use for raw mode is to ask for a user's password without recording it in the transcript
pad.

The program can also read the keyboard cursor position at each keystroke if you use the
PAD _$CPR_ENABLE call. This is most useful for graphics input. (However, in most cases, you
will want to use GPR rather than PAD calls for graphics input.)

5-49 Using the DM

In raw mode, you can call STREAM_$GET_REC or STREAM_$GET_BUF to get the
characters that the user typed at the time of the call. It gets as many characters as the limit you
specified in the call.

Example 5-21 is a program that uses the PAD _ $RA W call to request the user's password
without having it echo in the transcript pad. When you are done using raw mode, be sure to
return the pad to normal, or cooked mode.

{ This program shows how to use raw mode. It asks for your
password but does not echo the input to the screen. After
you type in your password, it replies, II Thank you. II }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pad.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

CONST
display_unit
auto close -
message
reply
window no

VAR
stream one
pane stream
seek_key
status

window one
window list

=
=
=
=
=

1 ;
TRUE;
(, Enter your
(, Thank you.
1;

stream_$id_t;
stream_$id_t;
stream $sk t;
status_$t;

password:
');

pad $window desc t;
pad=$window=list=t;

');

move char
buffer
return_ptr
return len
i

integer;
string;
"'string;
integer32;
integer;

{ Buffer to hold keyboard input }

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}

Example 5-21. Using Raw Mode

Using the DM 5-50

BEGIN { Main Program }

{ Create an input pad and initialize it in raw mode. }

pad $create (
O.
pad_$input.
stream one.
pad $bottom.
[pad_ $ini t _raw] .
20.
pane stream.
status);

{ Write message to the transcript pad. }

stream_$put_rec (stream_one.
ADDR(message).
SIZEOF(message).
seek key.
status);

{ Get input from keyboard. It gets each character until it
reaches a carriage return. }

i := 1;

REPEAT

stream_$get_rec (pane stream.
ADDRe buffer[i]).
SIZEOF(buffer) -i
return_ptr.
return_len.
seek_key.

{ Standard input -- keyboard }
{ Buffer holding input}

status);

check_status;
i := i + return_len;

UNTIL buffer[i - 1] = CHR(pad_$cr);

+ 1.
{ Return pointer }
{ Return length }
{ Seek key }
{ Completion status }

{ Move output cursor to where the message text ends. }

move char

pad $move

sizeof (message) + 1;

(stream one.
pad_$absolute.
move_char.
1.
status);

Example 5-21. Using Raw Mode (Cont.)

5-51 Using the DM

{ Write reply in window. }

stream one,
ADOR(reply),
SIZEOF(reply),
seek_key,
status);

{ Return to normal cooked processing before closing stream. }

pad_$cooked (pane stream, status);
check_status;

stream_$close
check_status;

stream_one, status);

Example 5-21. Using Raw Mode (Cont.)

5.S.3. Controlling System Output with Cursors

To control output in a frame, you can use PAD calls that manipulate the output cursor. Each
transcript pad has an invisible output cursor that points to the position where the next
program output will appear . You control the position of the output cursor with the
PAD _ $MOVE system call.

You can also have indirect control over the keyboard cursor if your input pad is in raw mode.
Each display has a visible keyboard cursor that indicates where the next typed character will
appear. The keyboard cursor is a blinking rectangle, or in touch pad mode, a small arrow. The
user controls the position of the keyboard cursor with Display Manager commands. If the user
moves the keyboard cursor to the corresponding transcript pad, the keyboard cursor follows the
output cursor each time the program sends output to the transcript pad.

In raw mode, your program can use the PAD _$LOCATE and PAD _$CPR~ENABLE calls to
get the location of the keyboard cursor each time the user types a character. Example 5-22 shows
how to use PAD _ $CPR _ ENABLE to report cursor positions in raw mode.

{ This program turns the user's standard input into raw mode, waits for
user to type a character, then reports the character position. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/vfmt.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

Example 5-22. Using PAD_$CPR_ENABLE to Report Cursor Positions

Using the DM 5-52

CONST
display_unit = l'

32767; max frame size = - -
TYPE

{ Use this record to receive input. Normally. you would get
cursor position reports by finding the flag in a stream of
data from the keyboard. This record allows for efficient
handling of a single CPR. }

report = PACKED RECORD
flag O .. 255;
xhi. xlo O .. 255;
yhi. ylo O .. 255;
text char;

END; { type }

VAR

{ Should be 16#FF }
{ Integer }
{ Integer }

stream in
stream out
seek_key
status

stream $id t := stream $stdin;
strea.m=$id=t := stream=$stdout;
stream_$sk_t;

return len
bufptr
return_ptr
report_buf
ix
iy
outbuf

status_$t;

integer32;
.... report;
.... report;
report;
integer;
integer;
array [1 .. 2] of char;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6). *}

{* *** *}

BEGIN { Main Program }

{ Create a frame on user's transcript pad to read cursor position
reports. }

pad_$create_frame (stream_out.
max_frame_size.
max_frame_size.
status);

check_status;

{ Change input pad to raw mode to get cursor position reports. }

pad $raw (stream in. status);
check_status;

{ Get a cursor position report for each keystroke. }

pad_$cpr_enable (stream_in. PAD_$CPR_ALL. status);
check_status;

Example 5-22. Using PAD_$CPR_ENABLE to Report Cursor Positions (Cont.)

5-53 Using the DM

{ Get input from keyboard. }

stream in.
ADDR(report buf).
SIZEOF(report_buf).
return_ptr.
return_len.
seek key.
status);

{ Standard input -- keyboard }
{ Buffer holding input}
{ Size of buffer }
{ Return pointer }
{ Return length }
{ Seek key }
{ Completion status }

{ X and Y must be integers aligned on word boundaries. Since they follow
a Boolean in the record. they are not aligned. X and yare defined as an
array of 255 integers so they can be aligned. }

WITH return_ptr- DO
BEGIN

ix .- xhi
iy yhi

END;

* 256 + xlo;
* 256 + ylo;

{ Move the output cursor to where the user put the input cursor. }

pad $move (stream_out.
pad_$absolute.
ix.
iy.
status);

{ This is the character the user entered. The NEWLINE character marks
the end of the display record. }

outbuf [1]
outbuf[2]

return ptr-.text;
CHR(pad $newline);

{ Write to the keyboard the character that the user typed. }

stream_$put_rec (stream_out.
ADDR (outbuf).
SIZEOF (outbuf).
seek key.
status);

{ Close frame and return to cooked mode before program exits. }

pad_$close_frame (stream_out. status);
check_status;

pad_$cooked (stream_in. status);
check_status;

Example 5-22. Using PAD _$CPR_ENABLE to Report Cursor Positions (Cont.)

Using the DM 5-54

You can also control the cursor's position by redefining the arrow keys (with
PAD _ $DEF _ PFK) on the user's keyboard, so that they can signal your program rather than
invoke Display Manager commands. H your program is in raw mode, your program can respond
to these keystrokes by moving the cursors. The user can still move the cursor by using the mouse
or touchpad.

5.8.4. Writing to an Output Stream: Control Codes and Escape Sequences

When your program writes to an output stream under the control of the Display Manager, ASCII
characters (codes from 32 to 126 decimal) instruct the Display Manager to produce the visible
character that corresponds to the code. The Display Manager refers to the current character font
to determine the appearance of the visible character.

Some ASCII characters (codes from 0 to 31 decimal) do-not correspond to a particular character,
but rather to a control code. A control code tells the Display Manager to take a formatting
action on the window or window pane in which they are sent. Table 5-2 lists these special
actions.

Table 5-2. Control Codes to Format Output to Windows and Panes

Name ASCn Character Description

(Deeimal)

PAD $CR 13 Moves the cursor to the start of the same -
line it is on.

PAD - $ESCAPE 27 Introduces a literal: the Display
Manager does not interpret the next character.

PAD - $FF 12 Makes subsequent output start at the top
of the window or window pane.

PAD - $NEWLINE 10 Marks the end of an input or output line;
makes subsequent text start on a new line.

PAD - $ TAB 9 Moves the cursor to the next tab stop.

PAD - $BS 8 Moves the cursor one character position to
the left, if there is room in the window. (This
is meaningful only if the current font has
characters of the same width.)

To prevent the Display Manager from interpreting a control code literally, it can be preceded
with the PAD $ESCAPE character. Instead of performing the control code, the Display
Manager writes the control code literally (if the current font has a character corresponding to
that control code).

In certain cases, the PAD _ $ESCAPE character introduces a multi character sequence. The
Display Manager supports certain escape sequences, according to the ANSI standard. When you
write such an escape character to a stream controlled by the Display Manager, it takes a special
effect on the line or frame where the output Gursor is located. These are useful alternatives to
some Display Manager calls.

5-55 Using the DM

When you use escape sequences in lines instead of frames, the Display Manager ignores the line
parameter, and the action occurs on the current line (pointed to by the output cursor).

Table 5-3 lists the multicharacter escape sequences. The *ESC* stands for the character
PAD $ESCAPE.

Table 5-3. Escape Sequences

Control Sequence Description

ESC [line;columnH Moves the cursor to the specified line and column.
If used outside a frame, the Display Manager ignores
the line parameter, and moves the cursor to the
specified column of the current line.

ESC[OK Erases characters in the current line, from the output
cursor to the end of the line.

ESC[lK Erases characters in the current line, from the
start of the line to the output cursor.

ESC[2K Erases the entire curent line.

ESC[OJ Erases character positions in the frame, from the
output cursor to the end of the line.

ESC[lJ Erases character positions in the frame, from the
start of the line to the output cursor.

ESC[2J Erases the entire frame.

5.9. Using Paste Buffers

Paste buffers are stream files located in the directory 'NODE_DATA/PASTE_BUFFERS.
During your program's execution, you can use paste buffers to hold text or graphic images that a
user cuts from one part of the pad, and intends to paste into the same or different pad. You can
think of them as clipboards for your users to hold information temporarily.

5.9.1. Reading and Writing to Paste Buffers

Users gain access to paste buffers by using the Display Manager commands for copy (XC), cut
(XD), and paste (XP). Programs gain access to paste buffers by using the system calls
PBUFS _ $CREATE and PBUFS _ $OPEN, then reading or writing the contents of the file using
stream calls.

Programs can also use the PAD _ $DM_ CMD to invoke a keyboard-style Display Manager
command that cuts or pastes text, specifying a particular paste buffer.

When you create a paste buffer, you must refer to it by name. The name of the paste buffer is
the object name of the buffer file in the directory 'NODE_DATA/PASTE_BUFFERS. Since
the paste buffers always reside in this directory, paste buffer calls do not allow you to specify a

Using the DM 5-56

full pathname as the name of the paste buffer. The name must be 32 characters, padded with
blanks.

Each paste buffer can hold either text or image data. Text paste buffers are simply UASC
stream files, and can be read with stream calls. Image paste buffers are essentially graphics map
files (GMF). For details on GMF files, see the Programming with DOMAIN Graphics
Primitives manual. When you create the paste buffer, you must specify whether it contains type
or graphic images. Once created, you must use the buffer according to its type.

All paste buffers (that is, all files in 'NODE_DATA/PASTE_BUFFERS) are temporary, and go
away when your program terminates, or when the user logs out.

5.0.2. Sample Program: Using Paste Buffers

Example 5-23 is an example of a program using PBUFS calls. It asks the user to supply the
name of the paste buffer. If it exists, it writes the contents of the buffer. If it does not exist, it
reads lines of input from the keyboard until the user types CTRL/Z. It repeats the sequence,
asking the user to supply names of paste buffers until the user types STOP.

PROGRAM pbufs_paste_buffer(input. output);

{ This program manipulates paste buffers. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE ·/sys/ins/error.ins.pas';
%INCLUDE ·/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/name.ins.pas';
%INCLUDE '/sys/ins/pbufs.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas';

CONST
text

VAR
stream buf
status
info
buffer name
seek_key
buflen
retptr
retlen
done

= TRUE;

stream $id t;
status=$t;­
name_$pname_t;
name_$pname_t;
stream_$sk_t;
integer32;

: name_$pname_t;
integer32;

: boolean;

{* *** *}
{* Procedure Check_status for error handling. (See Example 5-6) . *}

{* *** *}

Example 5-23. Using Paste Buffers

5-57 Using the DM

PROCEDURE error_routine; { for error handling }

BEGIN
pgm $set severity(pgm $error);
pgm-$exit; -

END; {-error_routine}

{* *** *}

BEGIN {MAIN PROGRAM }

{ Write initial prompt}

done := FALSE;

writeln (, ================== ');
writeln (, Type the name of the paste buffer: ');
writeln (, Or type STOP to quit. ');
writeln;

readln (buffer_name);
IF (buffer_name = 'STOP') OR (buffer name = 'stop')

THEN done := TRUE;

WHILE NOT done DO

BEGIN

{ Open existing paste buffer and write contents to screen. }

pbufs_$open (buffer_name.
text.
stream_buf.
status);

{ Name of existing buffer }
{ Text buffer }
{ Returns stream ID }
{ Completion status }

IF status.all = status_$ok THEN
BEGIN

Using the DM

{ Read data from existing paste buffer. }

writeln (, ================== .);
writeln ('This is the contents of paste buffer '.buffer_name. ': .);
writeln;

WHILE status.all = status_$ok DO
BEGIN

{ Read a line and write it to screen. }

stream_$get_rec (stream_buf.
ADDR(info).
SIZEOF(info).
retptr.
retlen.
seek_key.
status);

{ Stream ID }
{ Address of input line }
{ Length of input line }
{ Returns pointer to input }
{ Returns length of input }
{ Seek key }
{ Completion status }

Example 5-23. Using Paste Buffers (Cont.)

5-58

IF status.code = stream_$end_of_file THEN {Test for EOF }
EXIT;
{ Write buffer line to screen}
writeln (' ',retptr~: retlen);

IF (status.all <> status_$ok) THEN
error routine;

END; {While there is input}

END { if }

ELSE IF status.code = stream_$name_not_found THEN
BEGIN

{ Input data in new paste buffer }

pbufs $create (buffer_name, { Name of buffer
text, { Text buffer }

}

stream_buf, { Returns\stream ID of buffer }
status); { Completion status }

check_status;

{ Get information from keyboard for paste buffer } ,

writeln (, ================== ') ;
writeln;
writeln (' Type information for paste buffer, one line ');
writeln (' at a time. Or type CTRL/Z to stop.');

WHILE NOT eof DO
BEGIN { User has input. }

readln(info);
buflen := SIZEOF(info);
WHILE (info[buflen] = ' ') AND (buflen > 0) DO
buflen := buflen - 1; { Get rid of trailing blanks}
buflen := buflen + 1;
{ Terminate line with NEWLINE character: }
info [buflen] := CHR(pad_$newline);

{ Stream ID } stream_$put_rec (stream_buf,
ADDR(info) ,
buflen,
seek key,
status);

{ Address of input line }
{ Length of input line }
{ Seek key }
{ Completion status }

writeln;
writeln (' Type another line, or CTRL/Z to stop. ');

END; {while not eof }

writeln (, ================== ');
writeln ('Information is now in the paste buffer: ',buffer_name);
writeln;

END { else if }

Example 5-23. Using Paste Buffers (Cont.)

5-59 Using the DM

ELSE WRITELN (, Cannot read or write to paste buffer. ');
RESET (INPUT); {Reset INPUT to set EOF to TRUE. }

{ Repeat prompt }

writeln (, ================== ');
writeln (, Type the name of the paste buffer: ');
writeln (, Or type STOP to quit. ,);

readln (buffer name) ; -
IF (buffer name = 'STOP') OR (buffer name = 'stop')
THEN done := TRUE;

END; { while not done}
END. { pbufs_paste_buffer }

Example 5-23. Using Paste Buffers (Cont.)

5.10. Using the Touchpad Manager

You can control how the system processes the touchpad or mouse input by using system calls
with the prefix TP AD. These calls let you

• Control touchpad mode using TP AD _ $SET _ MODE.

• Inquire about the mode using TP AD _ $INQUIRE.

• Re-establish the touchpad raw data range using TPAD _$RE_RANGE.

• Re-origin the touchpad or mouse in relative mode using TP AD _ $SET _ CURSOR .

In addition to these calls, there are several display driver interface (SMD) calls for using a
customer-provided tablet or other locator device. For details on SMD calls, see the DOMAIN
System Call Reference manual.

You can operate a touchpad or bitpad in absolute mode, relative mode, or absolute/relative
mode. The mouse operates. only in relative mode. The mode of operation determines how the
touchpad corresponds to the display screen. You can change the mode of operation with the
TPAD $SET_MODE call.

You can also affect the operation of the touchpad or mouse by setting the origins, scaling
parameters, and the hysteresis factor. All of these are described below.

5.10.1. Absolute Mode

Absolute mode makes the touchpad correspond directly to the absolute point on the screen.
That is, whenever you touch the pad, the cursor jumps to the corresponding location on the
screen. Moving your finger across the touchpad moves the cursor across the screen in the same
direction.

Absolute mode maps the touchpad to a part of the screen dictated by the scaling factor and the
origin value.

Using the DM 5-60

By default, the ongm value is 0,0; so the top left edge of the touchpad repres~nts the cursor
positions at the top left edge of the screen. This means that the touchpad maps rc>ughly onto the
full screen.

You can change the mode of operation with the TP AD _ $SET _ MODE call. You can also
change the origin value with TP AD _ $SET _ MODE, so that the touchpad manager sets the
origin to a location other than the top left edge of the screen. For details, see Section 5.10.7.

5.10.2. Relative Mode

Relative mode makes the touchpad respond only to finger movement, relative to the current
position. That is, it does not respond when the finger first touches the pad, but rather, when it
starts moving from the initial point of contact.

You typically use the touchpad in relative mode to push the cursor across the screen by rubbing
the touchpad. Note that this is the only meaningful mode for a mouse: all mouse movement
begins from the current cursor position.

Relative mode is useful when you want the cursor to have a fine resolution in a small area. To get
finer resolution, you can call TP AD _ $SET _MODE with smaller scale factors. For details, see
Section 5.10.4.

When the touchpad or mouse maps to a smaller area of the screen, the user can reach distant
areas of the screen by stroking the touchpad or mouse. Each stroke moves the cursor closer to
the desired area.

You can also change the speed of the cursor movement, so that quick strokes make the cursor
move more rapidly . .As a result, a quick movement across the pad will move the cursor further
than a slow, more deliberate move that covers the same distance .

.As the user moves a finger across the touchpad, the pad produces points that are offset from the
first point of origin by the distance and direction the finger has moved. For details on the point
of origin, see Section 5.10.7.

5.10.3. Absolute/Relative Mode

Absolute/relative mode makes the touchpad respond to the first touch (as in absolute mode),
and then in relation to the current position (as in relative mode). In absolute/relative mode, the
effect of lifting your finger from the touchpad depends on how long you break contact. If you lift
and replace your finger quickly (within half a second) the cursor does not move. But if you lift
your finger longer than half a second, the cursor jumps to a new absolute position when you place
your finger on the pad again.

Absolute/relative mode is useful for iumping the cursor from one place to another, and then
carefully positioning it in the new area. For example, this mode is commonly used to move the
cursor from one window to another, and then point to a character in the second window.

In absolute/relative mode, the first point the touchpad 'produces during any use is based on
scaling factors that make the touchpad describe the full screen. (For example, x=800, y=1024).
Further points are offset from the first point, based on your finger's movement across the pad.
The scaling factors you specify in TP AD _ $SET _ MODE determine how coarse or fine your
control is during the relative part of absolute/relative mode.

5-61 Using the DM

5.10.4. Changing Touchpad Sensitivity with Scale Factors

The touchpad manager scales the data into raster units. The manager then multiplies scale
factors by the prescaled data, to get the raster unit values that the Display Manager understands.
You can change scale factors with the call, TP AD _ $SET _ MODE, to determine how much
control the touchpad will have in relative mode. (Scale factors have no meaning in absolute
mode.)

The default scale factors map the touchpad to the entire screen. Table 5-4 shows how the x and
y factors for the display are divided by the prescaled data, to result in values for x and y in
raster units.

Table 5-4. Touchpad Scale Factor Values for Display

X Factor Y Factor Display X Value Y Value

(Raster Units) (Raster Units)

800 1024 Portrait 0- 799 0-1023

1024 800 Landscape 0-1023 0- 799

You can specify smaller scale factors with the TPAD _$SET _MODE call, so that the touchpad
maps to a smaller area of the screen. This allows you to make the touchpad or mouse more finely
tuned.

5.10.5. Timing Factors for the Touchpad or Bitpad in Relative Mode

If you lift your finger from the touchpad for less than one-eighth of a second, the touchpad
manager ignores it. If you lift your finger for longer than one-eighth of a second, the touchpad
manager automatically re-origins the pad (as if you had called TPAD _$SET _ CURSOR) to the
last point the pad produced.

If the cursor movement is tied to relative mode, you can make the cursor go to the right by
lifting your finger for longer than one-eighth of a second, and touching the pad again on the left
edge. By doing so, you re-origin the pad, and make it produce the same data it was producing
when you lifted your finger. By repeatedly stroking the touchpad to the right, you keep moving
the cursor to the right. Since you can re-origin the touchpad, you typically use relative mode
with lower scale factors, to produce more precise cursor control.

In absolute/relative mode, the touchpad manager ignores finger movement that lasts less than
one-eighth of a second. If your finger leaves the pad longer, the touchpad manager re-origins the
pad to let you put your finger down somewhere else on the pad. If your finger leaves the pad for
more than half a second, the touchpad manager concludes that this use of the pad has ended, and
the next time you touch the pad will be an absolute point.

5.10.6. Changing the Origin in Absolute Mode with TP AD _ $SET _MODE

In absolute mode, the point of origin normally corresponds to the upper left corner of the screen
(0,0). You can change the point of origin so that it corresponds to another part of the screen
with the TP AD $SET MODE call.

Using the DM 5-62

This is useful for applications that need to move the cursor within a fixed window rather than the
entire screen. For example, your program might display a menu in one window. You can reset
the origin of the touchpad so that it resolves to a point in the menu window.

5.10.7. Setting the Origin in Relative Mode with TP AD _ $SET _ CURSOR

The system II remembers II the last cursor position delivered by a locator device. When a new data
point comes from the mouse, or from the touchpad or bitpad in relative mode, a displacement
is computed and applied to the last locator position. The TP AD _ $SET _ CURSOR call makes
the system forget the last locator position, and use the value passed in the call instead. The next
locator data will then start from this new position instead of its former position. You will rarely
need to make this call, as GPR and the Display Manager make the call at appropriate times.

5.10.8. Hysteresis Factor

The hysteresis factor prevents the touchpad manager from responding to any minor
movements your finger makes unintentionally. The factor effectively defines a box around your
finger's current position on the touchpad. The touchpad manger does not move the cursor if your
finger stays within the box.

Whenever the touchpad manager senses that your finger has moved from the point last reported,
it substracts the hysteresis factor from the absolute value of the change. If the result is zero, or a
negative value, the touch pad manager does not move the cursor. If the result is positive, the
touchpad manager subtracts the hysteresis factor from the distance moved, and moves the cursor
the remaining distance.

You can specify the hysteresis factor with the TP AD $SET MODE call. The units of the
hysteresis factor refer to screen coordinates. Therefore, the value of the hysteresis factor in terms
of physical distance across the screen, depends on the pad's scaling factors. The default hysteresis
factor is five.

5-63 Using the DM

Chapter 6
Using Eventcounts

The DOMAIN system provides routines to synchronize some events that are external to your
program. These events are associated with objects that the system or an external device manages
such as:

• A mailbox.

• A stream.

• A peripheral device.

• Graphics input.

• The clock.

To keep track of the above objects, the system increments a number, or eventcount, when its
associated event occurs. By using these system-defined eventcounts, a program can wait for
events without using computer processing time.

This chapter describes how you can use eventcounts to synchronize external system events. For
example, when your program waits for input from a mailbox or a serial I/O line.

You can use another type of eventcount, called a user-defined eventcount, to synchronize
activities within your programs. For example, you might want to send data from one program to
another, or control access to a file shared by many users. These user-defined eventcounts are
described in detail in the Programming with System Calls for Interprocess Communication
manual.

6.1. EC2 System Calls, Insert Files, and Data Types

To work with eventcounts, use system calls with the prefix EC2. Table 6-1 summarizes the EC2
calls.

To use EC2 calls, you must include the appropriate EC2 insert file for the language in which your
program is written. These insert files define constants, data types, and system routines for the
EC2 subsystem. The EC2 insert files are:

/SYS/INS/EC2.INS.C
/SYS /INS /EC2.1NS.FTN
!SYS /INS /EC2.INS.P AS

for C.
for FORTRAN.
for Pascal.

Most of the EC2 calls described in this chapter require that you specify eventcounts using
pointers. For these calls, specify an eventcount using a variable in EC2 _ $PTR _ T format.
EC2 _ $PTR _ T is a pointer to an eventcount. In FORTRAN, use the following declaration:

INTEGER*2 eventcount
INTEGER*4 ec2_pointer
POINTER /ec2_pointer/ eventcount (1:3)

6-1 Using Eventcounts

Table 6-1. Summary of EC2 System Calls

Call Operation

EC2 $READ Reads the current value of an eventcount. -

EC2 - $WAIT Waits until an eventcount reaches a trigger
EC2 - $WAIT - SVC value.

EC2 $INIT* Creates and advances user-defined -
EC2 $ADVANCE* eventcounts. -

* Use these calls only when you work with user-defined eventcounts.
For more information on these eventcounts. see the
Programming with System Calls for Interprocess Communication manual.

Some EC2 calls require that you specify an eventcount directly. In these cases, specify a variable
in EC2 _ $EVENTCOUNT _ T format. The data type EC2 _ $EVENTCOUNT _ Trequires six
bytes of storage. In FORTRAN, define this as an array of three INTEGER*2 elements.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DOMAIN System Call Reference
manual.

6.2. Overview of Eventcounts

When you use eventcounts to synchronize events in a DOMAIN program, you identify the events
you want to watch. The system suspends your process, but continues to increment the eventcount
until it reaches a trigger value that you also specify. When the eventcount reaches its trigger
value, the system wakes your process. Your process then checks for, and responds to the event.
(In this sense, the term process means an executing program.)

To use an eventcount in a DOMAIN program, you must specify:

• A pointer to the eventcount associated with the event you are waiting for .

• An eventcount trigger value that, when reached, "triggers· the system to wake your
process.

Using Eventcounts 6-2

Figure 6-1 shows how the system handles eventcounts during program execution.

Process Sets
Eventcount

Trigger Value
to n

(t = n)

Process
Initializes

Eventcount
with call

EC2_$WAIT

Process
Waits for

Eventcount
to reach
trigger

Process
Suspends

Activity

Process

System
Executes
Program

System
Increments
Eventcount

(ec = ec + 1)

Eventcount
Reaches
Trigger
(ec = t)

Checks and
Respondstol~----------------------~

Events

Figure 8-1. Relationship Between a Process and an Eventcount

You can specify several eventcounts to watch for different events, so that the process can respond
according to which eventcount reaches its trigger value first.

Note that eventcounts exist in shared memory. Therefore, only programs running on the same
node can use the same eventcount.

6-3 Using Eventcounts

An alternative (but less efficient) method to wait for events is called busy-waiting. When you use
a busy-wait, your program polls for events in a loop. When the event occurs, the program
responds to it. A busy-wait is less efficient because it causes the program to monopolize the
central processing unit (CPU). This constant use of CPU resources may even delay the events the
program is waiting for. Therefore, you should use eventcounts, rather than busy-waits, to wait
for events.

6.3. How the System Uses Eventcounts

As stated previously, a system-defined eventcount is one that the system creates and advances.
The system automatically creates event counts when you:

• Create a mailbox.

• Open a stream.

• Acquire a device.

• Enable graphics input.

It also creates eventcounts for your node's clock. The system uses system-defined eventcounts
when managing the associated objects listed above. You can use these eventcounts in your
programs, as long as you keep in mind that the system -- not your program -- controls these
eventcounts.

The system might not handle eventcounts as you would expect because the system might:

• Advance an eventcount more than once when a single event occurs.

• Advance an eventcount even though the event that the user program is waiting for
has not yet occurred.

• Not advance the event count for every event that is visible to a user program.

Therefore, your program cannot determine when, or the value by which, the system will advance
an eventcount.

To use system-defined eventcounts, a program should use the eventcount as a way to determine
when to check for events. Mter the eventcount wait is satisfied, the program should check to see
if the desired event has occurred.

Generally, the best use for system-defined eventcounts is when your program must handle
multiple events. That is, when your program is waiting for a number of events, and you want to
respond when any of the eventcounts reaches its trigger.

Using Eventcounts 6-4

To wait for multiple events, you can use the EC2 calls to create the following cycle:

1. Use the appropriate GET _ EC calls to get pointers to the eventcounts.

2. Use EC2 $READ to read the current values of these eventcounts.

3. Establish a loop that uses EC2 _ $W AlT or EC2 $W AlT SVC to wait for
eventcounts to reach their trigger values.

4. Branch to the code that increments the trigger value and polls for events when an
eventcount is satisfied, then return to the wait loop. (Step 3 above.)

The following sections show how to perform each of the above steps to use system-defined
eventcounts: Section 6.4 shows how 'to get and read eventcounts; Section 6.5 shows how to wait
for eventcounts; Section 6.6 shows how to respond to events and increment the trigger value; and
Section 6.7 shows how to handle asynchronous faults that can occur during this cycle.

Note that each section uses examples from the same sample program. The program waits for two
types of events: standard input events (from the input pad) and serial line events. When there is
a record in either place, the program gets the record and writes the record to standard output
(the transcript pad).

6.4. Getting and Reading Eventcounts

To get pointers for system-defined eventcounts, use any of the GET _ EO calls listed in Table 6-2
below.

Table 6-2. EC2 Calls for Obtaining Pointers to Eventeounts

Call Gets a pointer associated with:

STREAM - $GET - EO A stream, such as input pad or serial I/O line.
Used with stream I/O calls. (Most common.)

MBX - $GET - EO A mailbox. Used with calls to the mailbox manager.

IPC - $GET - EC Interprocess communications socket events.

PGM - $GET - EC A process.

PBU - $GET - EC A peripheral device. Used when writing GPIO
device drivers.

GPR - $GET - EO Graphics events.

TIME - $GET - EC The quarter-second clock. (The system increments
the time eventcount about every 0.25 seconds.)

When you make your GET _ EO calls, place the returned eventcount pointer into an array. The
first element in the array is the pointer to the first eventcount, the second element is the pointer
to the second eventcount, and so on.

6-5 Using Eventcounts

Alter you obtain pointers to the eventcounts, use E02 _ $READ to read the current value of each
eventcount into an array of trigger values. In doing so, use the same indexes that you use for
your event count pointer array. That is, the first element is the value of the first eventcount, the
second element is the value of the second eventcount, and so on.

Note that GET EO and E02 $W AIT take or return pointers. E02 $READ uses a
dereferenced pointer, as Example 6-1 shows.

NOTE: You must use EC2_$READ to read eventcount values; if you attempt to
refer to the eventcount directly. you may obtain an incorrect value.
or you may incur a fault such as "odd address error," "access violation,"
or "reference to illegal address."

Example 6-1 uses STREAM_ $GET _EO to get eventcounts for two streams: standard input
(usually the keyboard) and a serial input line. The STREAM_$GET _EO calls place the
eventcount pointers into an array. Then the example reads the current value of each eventcount
into an array of trigger values by dereferencing the pointer to E02 _ $READ.

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/ec2.ins.pas·;

CONST { Define indexes for arrays }
kbd ec = 1;
sio ec = 2'

{ The first element is for keyboard events.}

ec2 val

sio strm
status
seek_key

{ The second element is for serial line events.}

ARRAY [1 .. 2] OF eC2_$ptr_t; { Array of pointers to two
eventcounts. First element points to keyboard EC,
second element points to serial line EC. }

ARRAY [1 .. 2] OF integer32; {Array of eventcount trigger
values. First element is trigger for keyboard event;
second element is trigger for serial line event. }

stream $id t;
status=$t;­
stream_$sk_t;

{ Stream ID }
{ Status code }
{ Seek key }

BEGIN { Main program }

{ Get the standard input eventcount. Store the ec pointer, returned by the
call, in the first element of pointer array. }

stream_$get_ec(stream_$stdin,
stream_$getrec_ec_key,
ec2 ptr[kbd ec],
status); -

check_status;

{ Stream ID }
{ Type of event count }
{ Returns event count pointer }
{ Completion status }

Example 6-1. Getting and Reading System-Defined Eventeounts

Using Eventcounts 6-6

{ Open a stream to the serial line you'll be reading from
and get its eventcount. Store eventcount pointer in the
second element of pointer array.}

stream_$open('/dev/sio2'. { Pathname }
9. { Namelength }

{ Type of access }
{ Type of concurrency }

stream_$write.
stream_$no_conc_write.
sio_strm. { Stream IO returned }
status);

check_status;

stream_$get_ec(sio_strm.
stream_$getrec_ec_key.
ec2_ptr[sio_ec].

status);

check_status;

{ Stream IO }
{ Type of eventcount }
{ Eventcount pointer

returned by call }
{ Completion status }

{ Read the current values of each eventcount and store the values
in the respective elements of the trigger value array. Note that
you must dereference the pointer to EC2_$REAO. }

ec2 val [kbd ec]
eC2=val[sio=ec]

ec2_$read(ec2 ptr[kbd ec]-);
ec2_$read(eC2=ptr[sio=ec]-);

Example 6-1. Getting and Reading System-Defined Eventeounts (Cont.)

6.S. Waiting for Events

Mter creating eventcounts, set up a loop to wait for, and respond to, events. At the beginning of
the loop, use either EC2 _ $W AIT or EC2 _ $W AIT _ SVC to wait for events. The only
difference between the calls is in the way they respond to asynchronous faults. See Section 6.7 for
more information. The EC2 _ $W AIT calls have the following format:

Where:

• Ec satisfied IS the number returned by the call, indicating which eventcount IS

satisfied.

• Ec_Iist is the array of pointers to the eventcounts you are waiting for.

• Ec _ vlist is the array of trigger values for each of the eventcounts. The order of the
trigger values must correspond to the order of the eventcount pointers.

• Ec _ count is the number of eventcount pointers in the array.

• Status is the status code returned by the call.

6-7 Using Eventcounts

When an eventcount in the Dec_list" reaches its trigger value, the EC2_$WAIT call returns an
ordinal number, indicating the array subscript of the eventcount that is satisfied. Therefore, a
return value of 1 indicates that the first eventcount is satisfied, a return value of 2 indicates that
the second eventcount is satisfied, and so on. If more than one eventcount is satisfied, the call
returns the one with the smallest subscript.

Branch to the code that responds to the event when the EC2 _ $W AIT call returns a value.
Section 6.6 describes how to respond to the event. Mter processing the event, return to the top
of the loop to wait for more events.

When you first enter the wait loop, use the current eventcount values as your trigger values, as
described in Secition 6.4. If you use these trigger values, EC2_$WAIT[_SVC] will indicate that
each eventcount is satisfied. By doing this, the program tests for any pre-existing input before
waiting for input from each source.

NOTE: You usually want to force eventcounts to be satisfied when you
begin a wait loop. Otherwise, you may miss events that occurred
before you entered the loop.

Example 6-2 uses an EC2 _ $W AIT loop to wait for two eventcounts. The first eventcount
changes when there is new input from the standard input (usually the keyboard); the second
event count changes when there is new input from a serial line.

If EC2 _ $W AIT returns aI, the program branches to the code that gets a record from standard
input. If EC2 _ $W AIT returns a 2, the program branches to the code that gets a record from a
serial line. When the program enters the wait loop for the first time, both eventcounts are
satisfied. Thus, the first time through the loop, the program tests for any pre-existing input from
standard input. The second time through the loop, the program tests for pre-existing input from
the serial line. The third time through the loop, the program waits for new input from each
source.

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/ec2.ins.pas·;

CaNST { Define indexes for arrays }
kbd ec = 1;
sio ec = 2·

{ The first element is for keyboard events.}
{ The second element is for serial line events.}

VAR
ec2_ptr ARRAY 1 .. 2] OF ec2_$ptr_t; { Array of pointers to

two event counts }
ec2 val ARRAY 1 .. 2] OF integer32; { Array of eventcount

trigger values }
which integer; { Number returned by

EC2 $WAIT }
status status_$t; { Status code }

Example 6-2. Waiting tor System-Defined Eventeounts

Using Eventcounts 6-8

BEGIN { Main Program }

{ Get event count pointers for standard and serial line input
and place pointers into the EC2 PTR array. Satisfy the
eventcount by reading the values of each eventcount into
the EC2 VAL array. }

{ Go into an infinite loop to wait for input from the two sources.
The first time through. both eventcounts are satisfied. }

REPEAT
which { List of pOinters }

{ List of triggers }
eC2_$wait(ec2_ptr.

eC2_val.
2. { Number of eventcounts }
status);

CASE which OF
kbd ec:

{ If WHICH is 1. handle keyboard events
and return to EC2_$WAIT. }

sio ec:

{ If WHICH is 2. handle serial input events
and return to EC2_$WAIT. }

END; {case}

UNTIL FALSE;

Example 6-2. Waiting for System_Defined Eventcounts (Cont.)

6.6. Responding to Events and Incrementing the Trigger Value

When EC2 _ $W AIT or EC2 _ WAIT _ SVC returns a value, branch to the code that processes
the event. Within this code, you must first increment the trigger value. To increment most
triggers, read the current eventcount value and add 1. To increment the time eventcount trigger,
read the current eventcount value and add a number of seconds. (The time eventcount gets
incremented every 0.25 seconds, so + 4 means + 1 second.)

6-9 Using Eventcounts

Next, create an inner loop to poll for and process events. Remember that, although you are
responding to an eventcount that is satisfied, the event you are waiting for may not have
occurred, so you must check if an event occurred. (In this case, we use the
STREAM_$GET _ CONDITIONAL system call.) If there is an event, process it and repeat the
inner loop. Otherwise, return to the EC2_$WAIT[_SVC] loop.

NOTE: You must increment the trigger value before you check for events.
Otherwise. you may return to the EC2_$WAIT[_SVC] loop with a trigger
value that is too high. If this occurs, you will continue waiting
for the eventcount to increment. even though there is an event you
could be processing.

You must use a repeat loop to process all the events. because
the program may process many events before reaching the trigger
value.

Example 6-3 responds to standard input and serial line input. After incrementing the trigger
value, the program uses the system call STREAM_$GET _ CONDITIONAL to see whether there
is any input. If there is input, the program writes it to the screen. If there is no input,
STREAM_ $ GET _ CONDITIONAL returns with a line length of zero, and the program returns
to the EC2_$WAIT loop.

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas·;

CONST { Define indexes for arrays }
kbd ec = 1;
sio ec = 2'

{ The first element is for keyboard events.}
{ The second element is for serial line events.}

VAR
eC2_ptr ARRAY 1. .2 OF ec2_$ptr_t; { Array of pOinters to

two eventcounts }
ec2 val ARRAY [1 .. 2 OF integer32; { Array of eventcount

trigger values }
which integer; { No of satisfied eventcount
sio strm stream $id t; { Stream ID }
status - . status-$t;- { Status code }
seek_key stream=$sk_t; { Seek key }
line string; { Buffer where record

may be read }

}

linep -string; { POinter to buffer where line
is read }

linelen integer32; { Length of record }

Example 6-3. Responding to System-Defined Eventeounts

Using Eventcounts 6-10

BEGIN

{ Get eventcount pointers for standard and serial line input
and place pointers into the EC2_PTR array. Read the
value of each eventcount into the EC2_VAL array. }

{ Go into an infinite loop to wait for input from the two sources.
The first time through. both eventcounts are satisfied. }

REPEAT
which ec2_$wait(ec2_ptr.

eC2_val.
2.
status);

{ List of pointers }
{ List of triggers }
{ Number of eventcounts }

check_status;

CASE which OF

kbd ec: {If WHICH is 1. enter keyboard loop. }

BEGIN

{ Read the current eventcount. increment it.
and save it as the new trigger. }

{ Get and write records. When there are
no more. return to the outer loop. }

REPEAT
stream_$get_conditional(stream $stdin.

ADDR(line).
{ Stream ID }
{ Buffer to

read line }
SIZEOF (line).{ Bufferlen }

IF line len > 0 THEN

linep. { Pointer to
returned
data }

linelen. { Length of

seek_key.
status);

data }

writeln('*KBD*' linep-:linelen);

UNTIL linelen = 0; { No more records to read. }
END; {kbd_ec section}

Example 6-3. Responding to System-Defined Eventeounts (Cont.)

6-11 Using Eventcounts

sio ec: { If WHICH is 2, enter serial line loop.}

BEGIN

{ Read the current eventcount, increment it,
and save it as the new trigger. }

{ Get and write records. When there are
no more, return to the outer loop. }

REPEAT
stream_$get_conditional(sio_strm,

ADDR(line), { Buffer to
read line }

SIZEOF(line), { Bufferlen }
linep, { Pointer to

linelen, {

seek_key,
status); {

check_status;
IF linelen > 0 THEN

writeln('*SIO*' linep~:linelen);

UNTIL linelen = 0; { No more records to read. }
END; { sio_ec section}

returned
data }
Length of
data }

Completion
status }

END; {case}

UNTIL FALSE; { Program continues until a CTRL/Q is typed at keyboard. }
END. { sample_use_of_eventcounts }

Example 6-3. Responding to System-Defined Eventeounts (Cont.)

Using Eventcounts 6-12

6.7. Handling Asynchronous Faults during Eventcount Waits

This section describes what to do when an asynchronous fault occurs during an EC2 _ $W AIT
system call. For a more detailed description of fault handling, see Chapter 2.

When you use EC2_$WAIT or EC2_$WAIT_SVC, you cause a program to wait until the
eventcount reaches its trigger value. During that wait, though, an asynchronous fault can occur.
An asynchronous fault is a fault generated outside your program, such as when someone types a
CTRLjQ sequence at the keyboard to terminate a program.

If a program does not use any fault-handling techniques to handle asynchronous faults, then the
system aborts the program when an asynchronous fault occurs. You can use any of these
techniques to handle a fault in the following ways:

• Declare a clean-up handler with PFM _ $CLEANUP to perform clean-up operations.
The clean-up handler aborts normal processing and destroys the program's context, so
it cannot return to the place where the fault occurred.

• Declare a fault handler with PFM $ESTABLISH FAUL T HANDLER to handle
the fault. You can respond to a fault by providing the fault handler with any
corrective actions. The fault handler can return to the program where the fault
occurred and continue normal processing.

• Disable asynchronous faults with PFM _ $INHIDIT. This causes the program to
ignore asynchronous faults until you reenable the faults by calling PFM _ $ENABLE.
At this time, the system reports the first fault (if any) that occurred while faults were
inhibited.

You can control your program's response to an asynchronous fault differently, depending on
which of the above techniques you use, and whether you use the EC2 _ $W AIT or
EC2 _ $W AlT _ SVC call. Table 6-3 shows how EC2 _ $W AIT and EC2 _ $W AIT _ SVC respond
to an asynchronous fault, if faults are enabled. Table 6-4 shows how EC2 $W AIT and
EC2 _ $W AIT _ SVC act when asynchronous faults are disabled.

Table 6-3. Wait Actions When Asynchronous Faults are Enabled

Call Error-Handling Technique

Clean-Up Handler Fault Handler

EC2 - $WAlT Executes clean-up Executes fault handler.
handler. If fault handler

returns control to
the interrupted code,
it continues waiting.

EC2 - $WAIT - SVC Executes clean-up Executes fault handler.
handler. If the fault handler

returns control to the
interrupted code, it returns
the error EC2 - $WAIT _QUIT.

6-13 Using Eventcounts

Table 6-4. Wait Actions When Asynchronous Faults are Inhibited

Call Error-Handling Technique

Clean-Up Handler Fault Handler

EC2 $WAIT Defers fault and Defers fault and -
continues waiting. continues waiting.

EC2 - $WAIT - SVC Does not handle fault, Does not handle fault,
but returns the error but returns the error
EC2_$QUlT. EC2_$WAIT_QUlT.

When you use EC2 _ $W AIT or EC2 _ $W AIT _ SVC, you need to understand how your program
will respond if an asynchronous fault occurs. You must ensure that the program performs any
required clean-up actions if a fault occurs.

At times, you want to be sure that your program handles the event it is waiting for without being
interrupted. You can do so using either the EC2 _ $W AIT or the EC2 _ $W AIT _ SVC call.
Section 6.7.1 shows how you can inhibit asynchronous faults during EC2 _ $W AIT calls with the
time eventcount. Section 6.7.2 shows how you can inhibit these faults using
EC2 $WAIT SVC.

6.7.1. Disabling Asynchronous Faults with EC2 _ $W AIT

You might want to disable asynchronous faults to prevent your program from being interrupted
during the wait cycle. If you disable faults, you must ensure that your program does not wait
indefinitely.

You can disable asynchronous faults using EC2 _ $W AIT, as long as you know that the wait can
be satisfied in a short period of time. To make sure, you can include a time eventcount as your
final event. This way, even though your program ignores faults, it continues waiting for only the
time specified by the time eventcount. You will want to list the time event last, in case another
event gets satisfied at the same time. (If more than one eventcount gets satisfied simultaneously,
the call returns the smallest subscript.)

Example 6-4 shows how to disable asynchronous faults. It uses a time eventcount to make sure
your program does not wait indefinitely.

Using Eventcounts 6-14

{ This program inhibits asynchronous faults from occuring while waiting for
input. If no input occurs within 20 seconds. the time eventcount will
be satisfied. and the program will enable asynchronous faults. }

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/streams.ins.pas·;
%include ·/sys/ins/ec2.ins.pas·;
%include ·/sys/ins/time.ins.pas";
%include ·/sys/ins/error.ins.pas·;
%include ·/sys/ins/pfm.ins.pas·;
%include ·/sys/ins/pgm.ins.pas·;

CONST
kbd_ec = 1;
time ec = 2;

VAR
ec2_ptr
ec2 val
which
status
seek_key
line
linep
line len
name
time_enough

array [1 .. 2] of ec2_$ptr_t;
array [1 .. 2] of integer32;
integer;
status_$t;
stream_$sk_t;
string; {return buffer}
.... string;
integer32;
string;
boolean;

{ ** CHECK STATUS error reporting procedure ************************** }

BEGIN {MAIN}

{ Get any other eventcounts. }
{ Get a time event count to wait an amount of time. }

time_$get_ec (time $clockh key.
eC2_ptr[time=ec].
status);

{ time-key }
{ returned pointer to ec }

{ Prime the eventcount trigger values. except the time eventcount. }
{ Immediately advance the time eventcount so that it will not be

satisfied before other eventcounts get satisfied. }

ec2_val[time_ec] := eC2_$read (ec2_ptr[time_ec]-) + 80;
time_enough := FALSE;

{ Disable CTRL/Q sequence while waiting for input or until the
time limit is reached. }

pfm $inhibit;
writeln(' Faults inhibited .•);

Example 6-4. Handling Asynehronous Faults with A Time Eventeount

6-15 Using Eventcounts

REPEAT {Until time eventcount satisfied. }

{ Determine which event count reaches satisfaction first. You force
all eventcounts to be satisfied except time. }

which ec2_$wait (ec2_ptr.
eC2_val.
2.
status);

CASE which OF

{ ec pointer array }
{ ec value array }
{ number of ec's }

{ Process other eventcounts. This code executes if
other eventcounts are satisified. Asynchronous faults
cannot interrupt processing. }

time ec: {This code executes if the time limit is reached
before any other eventcounts get satisfied. }

BEGIN

{ Immediately advance the satisfaction value - 20 sec.}

eC2_val[time_ec] := ec2_$read(ec2_ptr[time_ec]-) + 80;
pfm_$enable; {OK to interrupt now.}
time_enough TRUE;
writeln (• No action for 20 seconds ..);

END; {time ec}
END; {case} -

UNTIL time_enough = TRUE;

pfm $enable;
writeln(' Faults enabled .•);

{ Continue program. }

Example 6-4. Handling Asynchronous Faults with A Time Eventcount (Cont.)

6.7.2. Disabling Asynchronous Faults with EC2 _ $W AIT _ SVC

The above example uses the EC2 _ $W AIT call and a time eventcount to disable asynchronous
faults for a specified time. Should a fault occur during that time, it will not respond until after
the time limit as specified by the time eventcount. The next example uses EC2 _ $W AIT _ SVC
to disable asynchronous faults. An advantage to using this call is that, should a fault occur while
asynchronous faults are disabled, you will receive the completion status, EC2 _ $W AIT _ QUIT,
immediately.

Example 6-5 shows how to disable asynchronous faults using EC2 $W AIT _ SVC within a
REPEAT loop. If an asynchronous fault occurs during the wait, EC2 _ $W AIT _ SVC returns an
error. The program either exits the loop, if a clean-up handler is in effect, or repeats the loop, if
a fault handler that returns control to the program is in effect.

Note that this loop responds differently, depending on whether faults were previously disabled.
This example assumes that asynchronous faults were not disabled before the loop. (Following this
example is a description of how this loop responds if they were disabled.)

Using Eventcounts 6-16

BEGIN { main program }

REPEAT {Until no faults occur}

{ Set up the code that you want to protect from
asynchronous faults here. }

{ Use EC2 $WAIT SVC to receive the error status.
EC2_$WAIT_QUIT. if an asynchronous fault occurs.}

IF status.all = status_$ok
THEN

{ Handle event }

ELSE { status.all = EC2_$WAIT_QUIT. }

{ Return things to the state before the wait. For
example. if you opened a serial line. close it. }

PFM_$ENABLE;

{ Fault handler or condition takes over here if a
fault occurs. then returns control to the UNTIL
condition. }

{ If fault occurred during EC2_$WAIT_SVC. repeat loop and
try again. Otherwise. drop through loop and continue.}

UNTIL status.all <> EC2_$WAIT_QUIT;

Example 6-5. Handling Asynchronous Faults with EC2 _ $W AIT _ SVC

If an asynchronous fault occurs and you use a fault handler, the fault handler takes over when
PFM_ $ENABLE re-enables faults. Thus, the asynchronous fault occurs before the fault handler
returns control to the UNTIL condition. Since the completion status is EC2_$WAIT _ QUIT,
the loop is repeated. The loop will continue to repeat until the process completes without any
faults.

You can, however, prevent the fault from occurring before repeating the loop by preventing the
fault handler from taking control after the PFM _ $ENABLE call. To do so, the above program
can disable faults by including an extra PFM_ $INHIBIT call be/ore entering the REPEAT loop.

6-17 Using Eventcounts

When a fault occurs during the loop, the PFM_$ENABLE cannot enable faults because there is
an outstanding PFM _ $INHIBIT call. So the fault remains disabled, but the completion status
returns the completion code, EC2_$WAIT_QUIT. Thus, the loop gets repeated, but the fault
does not occur. The loop will continue until the process completes without any faults.

In other words, the system increments an inhibit count at each PFM _ $INHIBIT call, and
decrements the count at each PFM_ $ENABLE call. It transfers control to the fault handler only
if the inhibit count is zero. In this case, the PFM_ $ENABLE within the loop decrements the
count to one. When the loop is repeated, the PFM_ $INHIBIT call increments the count again, so
the inhibit count never reaches zero within the loop.

Table 6-5 below summarizes how the above program would respond, depending on whether you
use a clean-up or fault handler, and whether or not you disable asynchronous faults before
entering the loop.

Table 6-5. Program Results if a Fault Occurs During a Wait

Asynchronous
Faults Inhibited

Before REPEAT loop?

No

No

Yes

Using Eventcounts

Fault Handler Results if a fault occurs

Used? during the wait.

No

Yes

No

6-18

The ELSE clause restores items that
were set before the wait. When the
loop re-enables faults with
PFM _ $ENABLE, the fault occurs. The
clean-up handler handles the fault,
and the program exits.

The ELSE clause restores items that
were set before the wait. When the
loop re-enables faults with
PFM_ $ENABLE, the fault occurs. The
fault handler handles the fault, and
returns control to the UNTIL condition.
Since STATUS.ALL returns
EC2 _ $W AIT _ QUIT, the loop is repeated.

The ELSE clause restores items that
were set before the wait. The
PFM _ $ENABLE call decrements the inhibit
count. This does not re-enable faults,
because the inhibit count is not zero.
Since STATUS.ALL returns
EC2_$WAIT _ QUIT, the UNTIL condition
is FALSE and the loop is repeated.

Chapter 7
Manipulating Time

The DOMAIN system provides a number of system routines to manipulate time. These routines
are prefixed with the letters OAL (calendar routines) and TIME (time routines).

This chapter describes the ways the system represents time, how to get the time from the system,
and how to manipulate times.

7.1. CAL and TIME System Calls, Insert Files, and Data Types

In order to use OAL and TIME system calls, you must include the appropriate insert files for the
language in which your program is written. These insert files define constants, data types, and
system routines for the OAL and TTh1E subsystems.

The OAL insert files are:

jSYS JINS IOAL.INS.O
jSYS/INS jOAL.lNS.FTN
jSYS IINS jOAL.INS.P AS

The TTh1E insert files are:

ISYS IINS ITTh1E.lNS.O
ISYS IINS ITTh1E.lNS.FTN
ISYS IINS ITTh1E.INS.P AS

for O.
for FORTRAN.
for Pascal.

for O.
for FORTRAN.
for Pascal.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DO MAIN System Call Reference
manual.

7.2. How the System Represents Time

The DOMAIN system routines use two representations of time: a system-readable representation
and a user-readable representation.

The DOMAIN system internally represents time as the number of 4-microsecond units that have
elapsed since midnight (00:00) on January 1, 1980, Greenwich Mean Time (a microsecond is a
millionth of a second). Time represented in this fashion is referred to as Universal Ooordinated
Time (UTO). Throughout this chapter it is referred to as UTO.

DOMAIN uses the predefined data type TTh1E _ $OLOOK _ T to store internal time values. This
data type is a 48-bit integer value. In this chapter, a system routine argument that stores a value
in this way will be referred to as being in TTh1E _ $OLOOK_ T format. To obtain a local time,
an offset must be added to a UTO time, see Section 7.3.2.

7-1 Manipulating Time

In order to manipulate times (add, subtract, compare) using system routines, both absolute times
and relative times must be represented as TTh-1E $CLOCK _ T values. However,
TIME _ $CLOCK_ T values are not readily deciphered as time by people.

To permit users to read time, the DOMAIN system also represents time in a six-integer format, in
which the six integers represent year, month, day, hours, minutes, and seconds, respectively.

DOMAIN uses the predefined data type CAL_$TIMEDATE_REC_ T to store these integer
values. It consists of six 2-byte integers. In this chapter, a system routine argument that stores a
value in this way will be referred to as being in CAL_$TIMEDATE_REC_T format.

Times stored in CAL $TIMEDATE REC T format must be converted to
TIME~$CLOCK_ T format before any time manipulation can occur. Conversely, if you wish to
print the result of a time manipulation, it must be converted from TIME_$CLOCK_ T to
CAL _ $TIMEDATE _REC _ T format. How to convert internal values into readable form, and
how to convert readable representations of time into internal values is described in Sections 7.4
and 7.5.

7.3. Getting System Time

To get the current UTC time in TIME _ $CLOCK _ T format, use the TIME _ $CLOCK system
routine. This routine returns one argument -- the current UTC value. Note that this UTC value
represents Greenwich Mean Time.

7.3.1. Getting Local Time

There are three ways to get the local time. The way you choose will depend on the format you
want.

To get the current local time III TTh-1E $CLOCK T format, use the
CAL $GET LOCAL TIME routine.

You may also compute the current local time from the UTC by using the
CAL $APPL Y LOCAL OFFSET routine. The offset value is the number of minutes
difference between the local timezone and UTC (Greenwich Mean Time). The
CAL_$APPLY _LOCAL_OFFSET routine adds the local timezone offset to the UTC value
that you pass it. This routine takes one argument that upon input is the UTC, and upon output
is the computed local time. Example 7-1 illustrates this computation:

Manipulating Time 7-2

%include '/sys/ins/baSe.inS.pas';
%include '/sys/ins/time.inS.pas';
%include '/sys/ins/cal.ins.pas';

VAR
clock time_$clock_t;

BEGIN

{get the UTC}
time_$clock (clock);

{apply offset}
cal_$apply_local_offset (clock); {in UTC out UTe + offset}

Example 7-1. Getting Local Time Using an Offset

You can also obtain the local time in CAL _ $TIMEDATE _ REC _ T format (year, month, day,
etc.), by using the CAL_$DECODE_LOCAL_ TIME routine. Example 7-2 obtains the local
date and time in CAL $TIMEDATE REC T format, and writes it to the screen {using a
VFMT formatting routine -- see Chapter 8.

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';
%include '/sys/ins/vfmt.ins.pas';

VAR
d clock

BEGIN

{get decoded local time}
cal_$decode_local_time (d_clock);

{write it to the screen}
vfmt_$writel0 ('date: %2WD/%2WD/%4WD time: %2ZWD:%2ZWD:%2ZWD %.'.

d_clock.month.
d_clock.day.
d_clock.year.
d_clock.hour.
d_clock.minute.
d clock. second.
O~O.O.O); {dummy arguments}

END. {program}

Example 7-2. Getting Local Time in Readable Format

The output to the screen from this program would appear as follows:

date: 11/16/1984 time: 08:04:34

7-3 Manipulating Time

7.3.2. Timezone Offsets

The time for any given timezone is calculated by adding a timezone offset value to the UTC.

In the previous section, CAL _ $APPL Y _LOCAL _ OFFSET added the local timezone offset to
the UTC . You may also remove the local offset from the local time to result in the UTC, by
using CAL $REMOVE_LOCAL_ OFFSET. See Example 7-10 for an example of
CAL $REMOVE LOCAL OFFSET.

To obtain the local timezone name and the local timezone offset, use the CAL $GET INFO
:routine. This routine returns one argument that contains both the offset and the name.
DOMAIN uses the predefined data type CAL _ $TIMEZONE _REC _ T to store the information
in this argument. It consists of a 2-byte integer containing the offset, and a 4-byte character
string containing an abbreviation of the timezone name.

The following program segment gets timezone information, and writes the timezone name and
offset.

VAR
{declare GET_INFO variables}
tz info cal_$timezone_rec_t;

BEGIN
{ get local tz info }
cal_$get_info (tz_info);

writeln ('timezone " tz info.tz name);
writeln ('offset', tZ_info.utc_delta);

To obtain the offset values for the eight standard U.S. timezones, the Greenwich Mean Time or
UTC timezone, use the CAL _ $DECODE _ASCII_ TZDIF routine. This routine returns both
the timezone name and the timezone offset. You can pass this routine a character string
containing the timezone name to determine the offset, or you can pass it a character string
containing the time difference, in '-1+ hr:min' format, to determine the offset.

The program in Example 7-3 illustrates both ways to use CAL_$DECODE_ASCII_ TZDlF.
First, it gets the offset using the timezone name, then it gets the offset using the time difference.

PROGRAM time_zone (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status : status_$t;

{TZDIF variables}
time zone string;
tzn_Iength pinteger;
tz dif integer;
tz name cal_$tz_na~e_t;

{name/diff}
{name length}
{tz difference}
{tz name}

Example 7-3. Getting Timezone Offset and Name

Manipulating Time 7-4

PROCEDURE check_status; {for error handling}
BEGIN

IF (status.all <> status_$ok) THEN BEGIN
error_$print(status);
pgm_exit;
END;

END; {check_status}

BEGtN

END.

{get offset using timezone name }
writeln ('What time zone do you want the difference of? ');
readln (time_zone);-
tzn_Iength := 4;
cal_$decode_ascii_tzdif (time_zone,

check_status;

tzn_Iength.
tZ_dif.
tz_name.
status);

{write timezone offset to screen}
writeln ('The time zone offset is: ' tz_dif);

{ get timezone offset using time difference}
writeln ('Input time difference ([+1-] HR:MIN) ');
readln (time_zone);
tzn_Iength := 6;
cal_$decode_ascii_tzdif (time_zone.

tzn_Iength.
tZ_dif.
tz_name.
status);

{write time zone offset to screen}
writeln ('The time zone offset is: ' tz_dif);

Example 7-3. Getting Timezane Offset and Name (Cant.)

7.4. Converting from System Time to Readable Time

To convert a value in TIME _ $CLOCK _ T format to a readable integer format, use the
CAL $DECODE TIME routine. This routine has two arguments; you input the time in
TIME _ $CLOCK _ T format, and it returns the time in CAL _ $TIMEDATE _ REC _ T format.

The program segment in Example 7-4 gets the current time, manipulates it, converts it to a
readable format, and writes it to output:

7-5 Manipulating Time

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';

VAR
clock
d clock

time $clock t; {internal format}
cal_$timedate_rec_t; {readable format}

BEGIN
{get local time in TIME $CLOCK T format}
cal_$get_local_time (clock);

{manipulate the time}

cal_$decode_time (clock.
d_cloCk);

{write the time to the screen or file}

Example 7-4. Converting from System Format to Readable Format

7.5. Converting from Readable Time to System Time

DOMAIN permits you to input the date and time in ASCll format and convert it to
CAL _ $TIMEDATE _REC _ T format. For the purposes of instruction, this section will describe
how to convert ASCll strings into readable format, as well as how to convert readable format
into system format.

To convert the ASCII strings to CAL _ $TIMEDATE _ REC _ T format, you must use two system
routines, CAL_$DECODE_ASCll_DATE and CAL_$DECODE_ASCll_TIME. As their
names suggest, one converts the date and the other converts the time.

The ASCll string you input to CAL_$DECODE_ASCll_DATE must be in the format,
year/month/day, for example, 1185/3/23 11

• The routine takes this string and puts the
corresponding integer values into the date half of the CAL _ $TIMEDATE _ REC _ T data type.

The ASCll string you input to CAL_$DECODE_ASCll_ TIME must be in the format,
hour:minutes:second -- in 24-hour format; for example, "17:54:44". The routine takes this string
and puts the corresponding integer values into the time half of the
CAL _ $TIMEDATE _REC _ T data type.

Once you have converted the time from ASCII to CAL_$TIMEDATE_REC_ T format, you
may wish to convert to TIME $CLOCK T format. To convert a value in
CAL_$TIMEDATE_REC_ T format to TIME $CLOCK T format, use the
CAL $ENCODE TIME routine. This routine has two arguments; you input the time in
CAL = $TIMEDATE _REC _ T format, and it returns the time in TIME _ $CLOCK -.:T format.

Manipulating Time 7-6

The program segment in Example 7-5 does the following:

• Gets ASCII input for the date and time.

• Converts it to CAL $TIMEDATE REC T format.

• Converts CAL $TIMEDATE REC T format to TIME $CLOCK T format.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/cal.ins.pas·;
%include ·/sys/ins/error.ins.pas·;

VAR

{ DATE variables }
date string; {input date}
d_Ien : pinteger;

{ TIME variables }
time string; {input time}
t_Ien : pinteger;

{ ENCODE variables }
c clock cal $timedate rec t; {readable time}
clock : time_$clock_t; {internal time}

PROCEDURE check_status; {for error handling}
BEGIN

IF (status.all <> status $ok) THEN
error_$print(status-);

END; {check_status}

BEGIN

{get the date input}
writeln ('what date (yr/month/day)1 .);
readln (date);
d_Ien := 8;
cal_$decode_ascii_date (date,

c_clock.year, {load year. month, and day}
c_clock.month, {directly into first half}
c_clock.day, {of variable}
status);

Example 7-5. Converting Time from ASCII strings to System Format

7-7 Manipulating Time

{get the time input}
writeln ('what time (hr:min:sec - 24 hr format)? ');
readln (time);
t len := 8;
cil_$decode_ascii_time (time,

c_clock.hour,
c_clock.minute,
c clock. second,
status);

{convert readable format to internal format}
cal $encode time (c clock,

- - clock);

Example 7-5. Converting Time from ASCII strings to System Format (Cont.)

7.6. Manipulating Time

DOMAIN provides three system routines with which to manipulate time:
CAL_$ADD_CLOCK, CAL_$SUB_CLOCK, and CAL_$CMP _CLOCK. These routines add
two time values, subtract two time values, and compare two time values, respectively. All time
values that you pass to these routines must be in TIME_$CLOCK_ T format.

7.6.1. Relative Time

Up to this point in the chapter, only absolute time values have been discussed. Absolute time
is a specific point in time, for example, 8:15:23 on 4/8/58. This section discusses relative time.
Relative time is an amount of time, for example, five minutes. Some time manipulations result
in relative time values, while others require relative time values in order to work properly.

DOMAIN provides two system routines to convert relative time values from
TIME _ $CLOCK_ T format into a number of seconds. They differ in the precision of the result;
one truncates any fractional portion of the result, the other doesn't.

To convert a relative time value from TIME $CLOCK_ T format to an integer value
representing the number of seconds, use the CAL $CLOCK TO SEC routine.
CAL_$CLOCK_ TO _SEC converts the time into an integer value representing the number of
whole seconds the fractional portion is truncated. Example 7-7 uses a
CAL $CLOCK TO SEC call.

To convert a relative time value from TTh1E _ $CLOCK _ T format to a floating point value
representing the number of seconds, use the CAL $FLOAT CLOCK routine.
CAL _FLOAT _ CLOCK converts the time into a floating point value that represents the number
of seconds, including the fractional portion. Example 7-8 uses a CAL_ $FLOAT _ CLOCK call.

Remember, the TIME_$CLOCK_ T format represents the amount of time in 4-microsecond
units. To convert to seconds, the system simply multiplies the number of 4-microsecond units by
the number of seconds per 4-microsecond unit (0.0000004 sec.).

Manipulating Time 7-8

DOMAIN also provides a system routine to convert a number of whole seconds (specified as an
integer) into TIME_$CLOCK_ T format. To convert a number of seconds into a relative time
value in TIME_$CLOCK_T format, use the CAL_$SEC_TO_CLOCK routine. Example 7-6
uses a CAL $SEC TO CLOCK call.

7.6.2. Adding Times

DOMAIN provides the system routine CAL _ $ADD _ CLOCK to add two times. Use
CAL _ $ADD _ CLOCK to do the following:

• Add two relative times to result in a third relative time .

• Add a relative time to an absolute time to result in a new absolute time.

The program in Example 7-6 adds a number of seconds (relative time) to the current local time
(absolute time). Remember, to manipulate times they must be in TIME_$CLOCK_ T format.

PROGRAM cal_add_times (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';
%include '/sys/ins/Vfmt.ins.pas';

VAR
seconds
reI time
clockl
d clock

linteger;
time $clock t;
time=$clock=t;
cal_$timedate_rec_t;

BEGIN

{input number of seconds to add to time}
writeln ('How many seconds to add? ');
readln (seconds);

{convert number of seconds to internal value}
cal_$sec_to_clOCk (seconds, {# of secs}

reI_time); {internal format}

{get local time}
cal_$get_local_time (clockl);

{add the times}
cal $add clock (clockl, {in/out}

- - reI_time);

{get the result in readable form}
cal_$decode_time (clockl. {internal format}

d_ClOCk); {readable format}

Example 7-6. Adding a Relative Time to an Absolute Time

7-9 Manipulating Time

{write it to the screen}
vfmt_$write5 ('time resulting from add: %2ZWD:%2ZWD:%2ZWD %.'.

d_Clock.hour.
d_clock.minute.
d clock. second.
o~o); {dummy arguments}

END.

Example 7-6. Adding a Relative Time to an Absolute Time (Cont.)

7.6.3. Subtracting Times

DOMAIN provides the system routine CAL $SUB CLOCK to subtract two times. Use
CAL _ $SUB _ CLOCK to do the following:

• Subtract two relative times to result in a third relative time.

• Subtract a relative time from an absolute time to result in a new absolute time.

• Subtract an absolute time from an absolute time to result in a relative time.

CAL _ $SUB _ CLOCK is a function that returns a Boolean value indicating whether the result of
the subtraction is positive or negative. If the Boolean value returns as TRUE, the result of the
subtraction is greater than or equal to zero. If the Boolean returns as FALSE, the result is
negative and will not be useful.

The program in Example 7-7 subtracts an input absolute time from the current time. It checks
the Boolean return value, and prints an error message if the result is negative. Remember, to
manipulate times they must be in TIME_$CLOCK_ T format.

PROGRAM cal_sub_times (input.output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/cal.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
status : status_$t;

{ DATE and TIME . ENCODE. SUB variables}
date
time
c clock
clock
curr time
sub check
num of sec

string;
string;
cal $timedate rec t;
time $clock t;
time=$clock=t;
boolean;
linteger;

Example 7-7. Subtracting Two Times

Manipulating Time 7-10

PROCEDURE check_status; {for error_handling}

BEGIN
IF status.all <> status_$ok THEN BEGIN

error_$print (status);
pgm_$exit;
END;

END;

BEGIN {main}

{get the input}
writeln ('Enter date to subtract (yr/month/day)? ');
readln (date);

{convert ASCII string to system readable date}
cal_$decode_ascii_date (date.

8. {length of date}
c_clock.year.
c_clock.month.
c_clock.day.
status);

{get the input}
writeln ('Enter time (hr:min:sec -- 24 hr format)? ');
readln (time);

{convert ASCII string to system-readable time}
cal_$decode_ascii_time (time.

8.
c_clock.hour.
c_clock.minute.
c clock. second.
status);

{convert readable format to internal format}
cal_$encode_time (c_clock.

clock);

{get local time}
cal_$get_Iocal_time (curr_time);

{subtract input time from the current time}
sub check cal_$sub_clock (curr_time.

clock);

Example 7-7. Subtracting Two Times (Cont.)

7-11 Manipulating Time

{convert difference to seconds}
num_of_sec := cal_$clock_to_sec (curr_time);

{check if result is negative - print error}
IF NOT (sub_check)

THEN writeln ('Subtraction resulted in negative value')
ELSE

writeln ('seconds difference' num_of_sec);

END.

Example 7-7. Subtracting Two Times (Cont.)

7.6.4. Comparing Times

DOMAIN provides the system routine CAL _ $CMP CLOCK to compare two times. Use
CAL _ $CMP _ CLOCK to determine which of two times is greater.

You specify the two times, in the format:

return value = CAL_$CMP_CLOCK(clockl,
clock2)

CAL _ $CMP _ CLOCK is a function that returns an integer value that indicates the result of the
compare.

• If the integer returns as 1, clockl > clock2.

• If the integer returns as 0, clockl = clock2.

• If the integer returns as -1, clockl < clock2.

Remember, to manipulate times they must be in TIME_$CLOCK_ T format.

Example 7-8 determines which file was modified most recently by reading the modified time
attribute of each file and comparing the times. It writes the most recent modification time to
output.

PROGRAM time_compare (input,output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/type uids.ins.pas';
%include ·/sys/ins/cal.1ns.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/streams.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR
status
pathnamel, pathname2
namelengthl, namelength2

status_$t;
name_$pname_t;
integer;

Example 7-8. Comparing Two File Creation Times

Manipulating Time 7-12

{ INQUIRE variables }
input_mask
inquiry_type
attributes

stream_$inquire_mask_t;
stream_$ir_opt;
stream $ir rec t;
stream=$inquire_mask_t; error mask

{ time variables }
time1, time2
most recent time

time_$clock_t;
time_$clock_t;
integer;
cal_$timedate_rec_t;

- -
cmp_check
decoded time

PROCEDURE check_status;
BEGIN

END;

IF (status.all <> status_$ok) THEN
BEGIN

error $print(status);
pgm_$exit;

END;

BEGIN {main}

{ get the first pathname -- calculate its length}
writeln ('Input the first pathname: ');
readln (pathname1);
namelength1 := SIZEOF(pathname1);
WHILE (pathname1[namelength1] = ' ,) AND

(namelength1 > 0) DO
namelength1 := namelength1 - l'

{ get the second pathname -- calculate its length}
writeln ('Input the second pathname');
readln (pathname2);
namelength2 := sizeof(pathname2);
WHILE (pathname2[namelength2] = ' ,) AND

(namelength2 > 0) DO
namelength2 := namelength2 - l'

{ initialize inquire variables}
input mask := [stream $dtm];
inquiry_type := stream_$name_unconditional;
attributes.obj_name := pathname1;
attributes.obj_namlen := namelength1;

{ date/time modified }
{ get by name even if not open }

{ get date/time modified on pathname1 }
stream_$inquire (input_mask,

inquiry_type,
attributes,
error_mask,
st~tus);

check_status;
time1.high := attributes.dtm;
time1.low - 0;

Example 7-8. Comparing Two File Creation Times (Cont.)

7-13 Manipulating Time

{ get date/time modified on pathname2 }
attributes.obj_name := pathname2;
attributes.obj_namlen := namelength2;

stream_$inquire (input_mask.
inquiry_type.
attributes.
error mask.
status) ;

check_status;
time2.high
time2.low .-

attributes.dtm;
0;

{ compare times and assign most_recent_time }
cmp_check cal $cmp clock (timel,

- - time2);

END.

CASE cmp check OF
o : { times are equal }
BEGIN

writeln(pathnamel:-l. " and" pathname2:-1. " are the same age");
most recent_time timel; {could be time2 -- no difference}

END;

1: {1 is older than 2 }
BEGIN

END;

writeln(pathnamel:-l. " is newer than" pathname2:-1);
most recent_time .- timel;

-1: {2 is older than 1 }
BEGIN

END;

writeln(pathname2:-1, " is newer than" pathnamel:-l);
most_recent_time := time2;

OTHERWISE writeln("ERROR BAD RETURN VALUE FROM CAL_$CMP_CLOCK");
END; {case}

{ decode most recent dtm }
cal_$apply_local_offset(most_recent_time);

cal_$decode_time(most recent time,
decoded_time);

write("DATE/TIME MODIFIED: ");
wri te (decoded time. mo.nth: 1. "/" • decoded time. day: 1) ;
write("/" . (decoded time.year MOD 100) :1);
write(" ",decoded time.hour:l. ": ",decoded time.minute:l);
writeln(":",deCoded=time.second:l); -

Example 7-8. Comparing Two File Creation Times (Cont.)

Manipulating Time 7-14

7.7. Suspending Process Execution

Suspending the execution of a process may be useful when attempting to access system resources
that are locked. A process can detect that the resource is locked, suspend itself for a short period
of time, then retry the operation.

To suspend the execution of a process, use the system routine TIME _ $W AIT . You must specify
two input parameters. One parameter is the time. This can be either a relative or absolute time.
The other parameter is a predefined value indicating whether the time you specified is relative or
absolute.

If you specify a relative time, the calling process suspends execution for the specified amount of
time. If you specify an absolute time, the calling process suspends execution until the specified
time is reached. In either case, the time must be in TIME _ $CLOCK _ T format.

The program segment in Example 7-9 shows how to suspend process execution for a relative
amount of time. The program attempts to read a locked file, and re-attempts the read every five
seconds.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%include ·/sys/ins/cal.ins.pas·;
%include ·/sys/ins/error.ins.pas~;

VAR
status
reI time

status $t;
time_$clock_t;

BEGIN

{Attempt a READ from a locked file}
{Check the status for a file-locked message}

{If file is locked. WAIT a RELATIVE}
{amount of time -- S seconds}

{convert # of seconds to internal format}
cal_$sec_to_clock (S. {number of seconds}

reI_time);

time_$wait (time_$relative.
reI time.
status);

check_status;

{predefined}
{time to wait}

Example 7-9. Suspending Process Execution for a Relative Time

7-15 Manipulating Time

In some cases, you may wish to suspend process execution until a specific point in time. For
example, you may want to invoke a program that prints a reminder at a specific time.

The program segment in Example 7-10 shows how to suspend process execution until an absolute
time is reached. The program takes a reminder message and input time from the user, and prints
the reminder when the specified time arrives. Note that TllvIE _ $W AIT expects a UTC time, so
the program uses CAL _ $REMOVE _ LOCAL _ OFFSET to remove the local time offset, before
calling TllvIE _ $W AIT.

PROGRAM time_wait_abs (input. output);

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/time.ins.pas';
%include '//bs/latest/sys/ins/cal.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR
status
reminder

status_$t;
string;

{ DATE and TIME variables }
date STRING;
time STRING;

{ ENCODE. WAIT variables}
c clock cal $timedate rec t;
abs time time $clock t;
curr time time=$clock=t;
sub check boolean;
num of sec linteger;

PROCEDURE check_status; {for error_handling}

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error $print (status);
pgm $exit;
END;

END;

BEGIN

{input the reminder text}
writeln ('Input reminder text ');
readln (reminder);

{get the input}
writeln ('When do you wish to be reminded?');
writeln ('Date: (yr/month/day)? ');
readln (date);

Example 7-10. Suspending Process Execution Until an Absolute Time

Manipulating Time 7-16

cal_$decode_ascii_date (date.
8. {date length}
c_clock.year.
c_clock.month.
c_clock.day.
status);

{get the input}
writeln ("Time: (hr:min:sec -- 24 hr format)? ");
readln (time);
cal_$decode_ascii_time (time.

8. {time length}
c_clock.hour.
c_clock.minute.
c_clock.second.
status);

{Convert TlMEDATE REC T to TIME $CLOCK}
cal_$encode_time (c_clock. {input}

abs_time); {result}

{ remove local offset to a time $clock t }
cal_$remove_local_offset (abs_t1me); -

{WAIT for an ABSOLUTE time}
time_$wait (time_$absolute.

abs time.
status);

check_status;

writeln (reminder);

END.

{predefined}
{time to wait until}

Example 7-10. Suspending Process Execution Until an Absolute Tim,e (Cont.)

7.8. Using the Time Eventcount

Eventcounts are discussed in detail in Chapter 6. Read that chapter for a full understanding of
eventcount concepts and techniques. This section describes steps that should be taken when
specifically using the time eventcount.

TIME _ $GET _ EC returns an event count that is incremented approximately every 0.25 second
(it varies slightly with system load). Using TIME_ $GET _EC in conjunction with the
EC2 _ $READ and EC2 _ $W AIT routines permits you to wait for a specific amount of time to
elapse. This is useful, for instance, in a case where you are prompting for keyboard input, but
will use a default value if no response to the prompt occurs within a certain amount of time.

The program in Example 7-11 prompts the user to input a program name. If the user does not
respond, the program prompts two more times, at ten-second intervals.

7-17 Manipulating Time

Note that when the prompting loop is entered, both eventcounts will immediately be satisfied.
The loop will immediately be executed twice: once for the keyboard eventcount, once for the time
eventcount. Because of this behavior, the prompt count is advanced once when no prompt is
output (when the keyboard eventcount is first satisfied); the test for the prompt count is adjusted
to take this into account.

Note also that to advance the satisfaction (trigger) value for the EC2 _ $W AIT routine, you must
add a value to the result of the EC2 $READ call. This value represents the number of
incrementations you wish to wait before the value is satisfied. Because the time eventcount is
incremented every 0.25 second, each four incrementations is equivalent to one second. Thus,
adding 40 to the EC2 _ $READ value tells the system to wait ten seconds.

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/streams.ins.pas·;
%include ·/sys/ins/ec2.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%include ·/sys/ins/cal.ins.pas·;
%include ·/sys/ins/error.ins.pas·;

CONST

VAR

time_ec = 1; {ec array indices}
kbd_ec = 2;

status
ec2_ptr
ec2 val
which

status $t;
array [i .. 2] of eC2_$ptr_t;
array [1 .. 2] of integer~2;
integer;

{GET CONDITIONAL variables}
seek=key: stream_$sk_t;
line string; {return buffer}
linep -string;
linelen integer32;

name
p_count

string;
integer;

PROCEDURE check_status; {for error handling}
BEGIN

IF (status.all <> status $ok) THEN
error $print(status-);

END; {check_status}

BEGIN

{Get an event count to wait on for input
stream_$get_ec (stream_$stdin.

stream_$getrec_ec_key.
eC2_ptr[kbd_ec].
status);

from standard in (usually the kbd)}
{stream ID}
{stream-key}
{returned pointer to ec}

Example 7-11. Using a Time Eventeount to Repeat a Prompt

Manipulating Time 7-18

{Get a time eventcount to wait an amount of time}
time_$get_ec (time_$clockh_key. {time-key}

eC2_ptr[time_ec]. {returned pointer to ec}
status);

check_status;

{ Prime the eventcount trigger values }
{ Get the current value of both eventcounts }

ec2 val[kbd ec] := ec2 $read (ec2 ptr[kbd ec]-);
eC2=val[time_ec] eC2_$read (ec2_ptr[time_ec]-);

{ NOW GO INTO A LOOP PROMPTING FOR INPUT }
linelen 0;
p_count O·

REPEAT
{determine which eventcount reaches satisfaction first}
which := ec2_$wait (ec2_ptr. {ec pointer array}

eC2_val. {ec value array}
2. {number of ec's}
status);

CASE which OF

kbd ec: {if the keyboard ec value is reached first ... }

BEGIN {REPEAT}
{immediately advance the satisfaction value}
ec2_val[kbd_ec] := eC2_$read (ec2_ptr[kbd_ec]-) + 1;

{get keyoard input}
stream_$get_conditional

check_status;
IF linelen > 0 THEN

name := linep-;

END;

(stream $stdin.
addr(line).
sizeof(line).
linep.
linelen.
seek_key.
status);

{stream ID}
{pointer to buffer}
{# of bytes requested}
{returned ptr to buffer}
{returned buffer length}

time_ec: {if the time ec value is satisfied first ... }
BEGIN

{immediately advance the satisfaction value - 10 sec.}
ec2_val[time_ec] := eC2_$read (ec2_ptr[time_ec]-) + 40;

Example 7-11. Using a Time Eventeount to Repeat a Prompt (Cont.)

7-19 Manipulating Time

{prompt again}
IF (p_count < 4) THEN

writeln ('Input a program name: ,)
ELSE

writeln ('The default program name is being used .•);
END; {time manipulation}

END; {case}

{advance the prompt count}
p count := p count + 1;
{repeat until input is received or 3 prompts have occured}
UNTIL «linelen > 0) OR (p_count = 5» ;

END. {program}

Example 7-11. Using a Time Eventeount to Repeat a Prompt (Cont.)

Manipulating Time 7-20

Chapter 8
Formatting Variables with VFMT

At various points during program execution, you may find it desirable to transform the data
currently (or soon to be) stored in program variables from one format to another. For instance,
you may have a variable containing a hexadecimal value and wish to prompt your user with its
ASCII equivalent. Or you might want to tabulate results in fixed columns using scientific
notation. Or you might need to parse an input line without worrying about whether the user
separates the arguments with spaces or semicolons. What you really need is a set of tools for
converting data representations between formats.

Certain high-level programming languages (like FORTRAN and C) provide internal facilities for
performing many such operations, and you will no doubt prefer to use those when they are
available. But the language may not do everything you want (or, if you are using Pascal, much
of anything at all!). In that case, you may find the VFMT routines to be useful.

VFMT performs two classes of operations (named using the program's point of view): encoding

and decoding. Encoding means taking program-defined variables and producing strings of
human-readable text that represent the values of the variables, in a format that you specify.
These encoded values are then often written to output for viewing. Decoding means taking
human-readable text (typically typed by the user), interpreting it in a way that you specify, and
storing the apparent data values in program-defined variables. There are routines that perform
these operations on data:

• In internal program buffers (VFMT _ $ENCODE and VFMT _ $DECODE).

• Fro~ standard input or to standard output (VFMT _ $WRITE and VFMT _ $READ).

• From streams (VFMT _$WS and VFMT _$RS).

All function in the same general manner, as described below.

8.1. VFMT System Calls, Insert Files, and Data Types

To use the VFMT formatter, use system calls with the VFMT prefix. In order to use VFMT
system calls, you must include the appropriate insert file in your program. This insert file defines
constants, data types, and the system routines for the VFMT subsystem. The VFMT insert files
are:

/SYS /INS /VFMT .INS.C
/SYS /INS /VFMT .INS.FTN
/SYS /INS /VFMT .INS.P AS

for C programs.
for FORTRAN programs.
for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DOMAIN System Call Reference
manual.

8-1 Formatting with VFMT

8.2. Data Types That Can Be Formatted with VFMT

The VFMT routines mentioned above allow you to format the following kinds of data:

• ASCII characters.

• 2-byte or 4-byte integers interpreted as signed or unsigned integers in octal, decimal,
or hexadecimal bases.

• Single- and double-precision reals in floating point and scientific notations.

This includes the following data types for the languages indicated:

Pascal CHAR, INTEGER, INTEGER16, INTEGER32, BINTEGER, PINTEGER, LINTEGER, REAL,

DOUBLE

FORTRAN CHARACTER, INTEGER*2, INTEGER*4, REAL*4, REAL*8

C char, short, int, float, double

8.3. Routine Syntax

Each of the VFMT routines has the following general form. For the specific syntax of the
routines, see the DOMAIN System Gall Reference manual.

VFMT_$WRlTE2 ('control-string'. argl. arg2)

Call name J t J
Version ~
Formatting instructions
Arguments for this version

Each routine has three versions that differ only in the number of arguments which they accept
(and thus the number of variables that they can format at one time): either two, five, or ten. Use
the version that best suits your needs, filling any unnecesary arguments with dummy values.

Many formatting instructions in the control string II look II to the arguments later in the calling
sequence for information about where to read and write data. The first instruction that needs
more information will consume the first argument, the second instruction the second argument,
and so on, until the instructions are exhausted. Unused arguments are ignored and must be
present only to satisfy the compilers (hence, the dummy arguments mentioned above). The
remainder of this chapter shows you how to construct the control string and apply the VFMT
routines to common tasks.

8.4. Simple Examples

First, let's look at a few short examples to get the flavor of VFMT. Example 8-1 takes a variable
inside a program and writes (encodes) it to standard output, doing some simple conversion along
the way.

Formatting with VFMT 8-2

Source:

i := 65;
vfmt_$write5 ('%d%m1a%h%.' .i.i.i.O.O);

{Print 'i' ~n decimal (%d). ascii (%a). and hexadecimal (%h) form.
Each of these instructions consumes one of the 'i' arguments.
The 'm l' indicates that the ascii string has length 1.
The '%.' indicates the end of the control string and causes a
newline in the output.
Zeros fill dummy argument slots since this version requires 5.}

Result:

65A41

The answer is right, but it is pretty hard to read. A few intervening spaces should help.

Source:

i := 65;
vfmt_$write5 ('%d%7X%m1a%10X%h%.' .i.i.i.O.O);
{'%nX' inserts n blanks in the output.}

Result:

65 A 41

Example 8-1. Writing (Encoding) a Variable to Output using VFMT _ $WRITE

As you can see, the control string can appear pretty complicated, even for a simple operation.
Example 8-2 is a short decoding example.

Source:

length := 0;
write ('Enter 5-character ID: .);

{Read the ID and get its length.}
vfmt_$read2('%m 5a%.·. count. st. id. length);

{Check for errors.}
if st.all <> 0 then error_$print (st);

{Write a header.}
vfmt_$write2 ('Length String%.'. O. 0);

{Echo the test.}
vfmt_$write2 ('%2x%wd%6x%m5a%.'. length. id);

Result:

Enter 5-character ID: ABCDE
Length String

5 ABCDE

Example 8-2. Decoding a Variable using VFMT _$READ

8-3 Formatting with VFMT

A more complicated decoding example that reads variable-width input fields appears later in this
chapter.

8.5. Building Control Strings

VFMT control strings are generally built from literal text strings and special format directives.
Since they may contain literal text, control strings must always be enclosed in single quotation
marks inside the routine's calling sequence, as demonstrated in the examples above.

8.5.1. Format Directive Overview

Every VFMT format directive is preceded by the percent sign character %. Each ends with a
character indicating the type of the directive. Between the % and the type character, you may
specify options that change the directive's effect. You can enter directives in lowercase or
uppercase, and place spaces within directives, without changing their effects. For example, the
following two control strings are equivalent:

'%125m125ZuA'

'%125 m125 Z u A'

'% 125M 125zUa'

Directives tell VFMT how to behave:

• Numerical format directives force VFMT to consider the next variable argument as a
floating point or scientific floating point number, or as an integer octal, decimal, or
hexadecimal number.

• The ASCII format directive forces VFMT to consider the next variable argument as
an ASCII character string.

Numerical and ASCII format directives refer to arguments that must appear later in
the calling sequence. As VFMT interprets the control string, each time it comes to a
numerical or ASCII format directive, it goes to the next variable argument provided
with the call and encodes or decodes that argument in the way specified by that
directive.

• Miscellaneous format directives produce a field of spaces, insert a newline character
into the buffer, and tab to a particular position in the buffer for reading or writing.

• End-of-string directives, %$ and %., mark the end of the control string. If you use
II %. II in an encoding operation, it also generates a newline character in the output.
Otherwise, the two are identical.

Formatting with VFMT 8-4

8.5.2. Inserting Literal Text

Control strings for encode (write) operations can insert literal text between the directives. VFMT
copies this text literally to the destination in the specified position between the encoded items.
This is not true, however, for decode (read) operations. In this case, the control string can
contain only directives.

To make VFMT copy a percent sign to the destination of an encode operation (instead of
interpreting it as a directive), specify two percent signs in a row: %%.

8.5.3. Repeating Control Strings

You can make VFMT interpret part of the control string repeatedly by using the %(and %) .
directives:

%repeat-count(%)
I I
I portion of control string to be repeated I

The repeat-count is an integer value between 1 and 65536, indicating the number of times the
text between the directives is to be repeated. You cannot nest repeat directives.

8.6. Format Directive Usage

There are 15 VFMT format directives. These fall logically into three groups of approximately
equal size (Table 8-1). The first group of directives declares the type of data to be formatted.
The second group enables special features within the control string itself. The third group applies
principally to the format of the output produced. All of these directives can appear intermingled
within a single control string, plus literal text if you are encoding.

8.6.1. Formatting ASCII Data: The %A Directive

The %A directive formats ASCII text. You may include a variety of options between the I. % I.
and the •• A" to modify the formatting operation, as described in Table 8-2. A bullet in the E

column of the table means that the option is permissible when encoding. A bullet in the D
column means that the option is permissible when decoding. If there are differences in the
option's behavior between encoding and decoding, those differences are described in the
Function column.

8-5 Formatting with VFMT

Table 8-1. Summary of Format Directives

Data-Related

% [fw] [M length] [E] [z] [K] [UIL] A encode/decode ASCII
% [fwl fw, dr] [E] [z] [J] [Sip] [WIL] F encode/decode floating point
% [fwl fw, dr] [z] [J] [sip] [WIL] E encode sCientific floating
% [fw] [E] [z] [J] [UISIP] [WIL] 0 encode/decode integer octal
% [fw] [E] [z] [J] [UIS Ip] [WIL] D encode/decode integer decimal
% [fw] [E] [z] [J] [Uls Ip] [WIL] H encode/decode integer hex

Control String-Related

%11" ,II declare characters to be used as field
delimiters

%$ end control string
%, end control string. inserting newline

character
%n(begin repeat range
%) end repeat range

Format-Related

%% output a single %
%/ insert new line character
%nT tab to certain column for read or write
%nX insert blank

Formatting with VFMT 8-6

Table 8-2. %A: Format ASCn Data

Usage:% [fw] [M length] [Z] [UIL] A (Encode)
(Decode) % [fw] [M length] [E] [K] [Z] [UIL] A

Option E D

fw • •

M length • •

E •

Function

An integer between 1 and 65536 inclusive, indicating the field
width for this item.
Encoding: If present, write exactly this number of characters to
output. If absent, output only non blank characters, and then
stop (unless the Z option is present).
Decoding: If present, read exactly this number of characters
and, then stop (unless some other ending criterion is in force
with the E or M options).

Alternative string length specifier. II Length II IS an integer
number (from 1 to 65536 inclusive) of characters. If this option
is present, it specifies the length of the ASCII text string (passed
as the variable argument) to be written or read. If you omit this
option, then VFMT looks for a second variable argument
immediately following the string argument III the routine's
argument list. This variable argument, which can be a 2-byte or
a 4-byte integer, specifies the string's length. (You must use a
4-byte integer if its value could be zero.)
Decoding: The M option is meaningful only if you don't specify
a field width ("fw"). II Length II tells VFMT the total number of
characters to read, including any delimiters present. (If you also
specify E, early termination may take effect.) If you don't use
M, VFMT looks at the routine's next argument to determine the
string length. In this case, the original value of this integer
variable tells VFMT how many characters to read. (Early
termination may still take effect. If this happens, VFMT
changes the value of the integer variable before returning,
indicating the number of meaningful characters it stored in the
string variable.)

Specify early termination (decode only). This option forces
VFMT to stop reading when it encounters a delimiter (declared
with the %il ... 11 directive). Default delimiters are blank and
comma. If a field width (lIfwll) is also specified, VFMT will stop
reading when the first of either of the terminating conditions is
met.

8-7 Formatting with VFMT

Table 8-2. %A: Format ASen Data (cont.)

Usage:~ [fw] [M length] [Z] [UIL] A (Encode)
(Decode) ~ [fw] [M length] [E] [K] [Z] [U I L] A

Option E D Function

K • Ignore leading spaces; i.e., spaces that occur to the left of visible

text in the input field (decode only). If K forces VFMT to skip
over leading spaces, they don't cause early termination, even if
you specified E.

Z • • Include trailing spaces (spaces that occur to the right of visible
text in the input field) in the string variable. Omitting Z makes
VFMT ignore trailing spaces.
Encode: Specifying Z causes trailing blanks in the variable to be
written to output.
Decode: Specifying Z causes trailing blanks in the input to be
read into the variable.

L • • Convert all letters read or written to lowercase. Not valid if
IIUII is specified.

U • • Convert all letters read or written to uppercase. Not valid if
IILII is specified.

8.6.2. Formatting Floating Point Data: The %F and %E Directives

The %F and %E directives format floating point data: %F in regular (FORTRAN IIFII) format,
and %E in scientific notation (FORTRAN IIEII) format. Note that %E is valid only for
encoding (write) operations, while %F is valid for both encoding and decoding. The various
options available are described in Table 8-3. A bullet in the E column means that the option is
permissible when encoding. A bullet in the D column means that the option is permissible when
decoding. If there are differences in the option's behavior between encoding and decoding, those
differences are described in the Function column.

Formatting with VFMT 8-8

Table 8-3. %F and %E: Format Floating Point Data

Usage: I [fw I fw. dw] [Z] [J] [S I P] [W I L] {F I E} (Encode)
(Decode)

Option

fw

dw

E

z

J

I [fw] [E] [S] [W I L] F

E D

• •

•

•

•

•

Function

An integer between 1 and 100 inclusive, indicating the total field
width for the number to be read or written, including decimal
point, sign, etc.
Encoding: If the number to be written exceeds the specified
field width, a field overflow occurs, and VFMT returns a field
filled with asterisks (*). If no field width is specified, VFMT
uses as few characters as it can, with two digits after the decimal
point.
Decoding: If no field width is specified, VFMT uses early
termination (see the IIEII option), and stops reading at the first
delimiter that it encounters.

An integer specifying that portion of the field width to be

occupied by digits to the right of the decimal point (encode

only). This number should be less than the field width Ilfw II . If
II dw II is not specified, the default value is two digits.

Specify early termination (decode only). If you specify E or
omit the field width, VFMT reads the input only until it
encounters a delimiter (declared with the % II ... II directive).
Default delimiters are blank and comma. If you specify E and
also specify a field width, VFMT reads until it encounters a
delimiter or exhausts the input field, whichever comes first.

Add zeros (O) to the left of the number to fill the field width

specified by II fw II (encode only). This option is only valid if
II fw II is also specified.

Left-justify the number within the field whose width you

specified (encode only). If "JII is not specified, the number is
right-justified within the field.

8-9 Formatting with VFMT

Table 8-3. %F and %E:Format Floating Point Data (cont.)

Usage: % [fw I fw.dw] [Z] [J] [s Ip] [WIL] {F I E} (Encode)

% [fw] [E] [s] [WIL] F (Decode)

Option E D Function

S • • Specify that the number to be read or written has a minus sign
if it is negative and no sign if it is positive. This is the default
setting. Not valid if liP"~ is specified.
Decode: This option IS redundant since all floating point
numbers being read will be signed.

P • Specify that the number to be written has a minus sign if it is
negative and a plus sign if it is positive (encode only). If liP"
is not specified, 'I S II is the default.

W • • Specify single precision. This means data of type real, single
(Pascal), REAL*4 (FORTRAN), or float (C). If "W" is not
specified, ilL II is the default.

L • • Specify double precision. This means data of type double
(Pascal and C), or REAL *8 (FORTRAN). This is the default
setting. Not valid if "W" is specified.

8.6.3. Formatting Integer Data: The %0, %D, and %H Directives

The %0, %D, and %H directives format integer data: %0 in octal format, %D in decimal
format, and %H in hexadecimal format. The various options available are described in Table
8-4. A bullet in the E column means that the option is permissible when encoding. A bullet in

the D column means that the option is permissible when decoding. If there are differences in the
option's behavior between encoding and decoding, those differences are described in the
Function column.

Formatting with VFMT 8-10

Table 8-4. %0, %D, and %HI Format Integer Data

Usage:1 [fw] [Z] [J] [UlsIP] [WIL] {O I D I H} (Encode)
(Decode)

Option

tw

E

z

J

U

s

I [fw] [E] [Uls] [WIL] {O I D I H}

E D

• •

•

•

•

• •

• •

Function

An integer between 1 and 65536 inclusive, indicating the
minimum field width Cor the number to be read or written.
Encode: If the number to be written exceeds the specified field
width, VFMT expands the field to the size necessary to display
the number. If no field width is specified, VFMT uses as Cew
characters as it can to display the number.
Decode: If no field width is specified, VFMT uses early
termination (see the -E- option), and stops reading at the first
delimiter that it encounters.

SpeciCy early termination (decode onl),,). If you speciCy -E- or
omit the field width, VFMT reads the input only until it
encounters a delimiter (declared with the %-... - directive).
DeCault delimiters are blank and comma. If you speciCy -E- and
also speciCy a field width, VFMT reads until it encounters a
delimiter or exhausts the input field, whichever comes first.

Add zeros (0) to the ·leCt oC the number to fill the field width
specified by -Cw- (encode onl),,). This option is only valid iC
-Cw- is also specified.

LeCt-justiCy the number within the field whose width you
specified (encode onl),,). If -J- is not specified, the number is
right-justified within the field.

Specify that the number to be read or written is unsigned. This
is the deCault setting.
Encode: -U- causes VFMT to write an unsigned positive
integer, even if the original value was negative. (This is usually
what you want Cor octal or hexadecimal encoding.)
Decode: -U- causes VFMT to ignore any -+- or -.- signs that
may appear in the input being read.

SpeciCy that the number to be read or written has a minus sign
iC it is negative, and no sign if it is positive. Not valid iC -U- or
-p- is specified. If neither -S- Inor -P- is specified, -U- is the
default.
Decode: If a -.- appears in the number being read, VFMT
makes the value negative beCore assigning it to the variable
argument.

8-11 Formatting with VFMT

Table 8-4. %0, %D, and %H: Format Integer Data (cont.)

Usage: ~ [fw] [z] [J] [UIS IP] [WIL] {O I D I H} (Encode)
~ [fw] [E] [UIS] [WIL] {O I D I H} (Decode)

Option E D Function

p • Specify that the number to be written has a minus sign if it is

negative, and a plus sign if it is positive (encode only). If "pll
is not specified, "U" is the default.

W • • Specify that the number being read or written is a word (2-byte)
integer. Not valid if "L" is specified. If "W" is not specified,
"L" is the default.

L • • Specify that the number being read or written is a longword (4-
byte) integer. This is the default setting.

8.6.4. Special Control String Directives

The directives described in this section allow you to control the operation of the various other
directives inside a control string. Each directive is valid whether you are using the control string
for encoding or decoding.

%' •... "

%$

%.

Define early termination delimiters.

The %" directive lets you redefine the characters (represented by' ... ') that
VFMT uses when you specify the "E" (early termination) option with any
directive. VFMT considers the appearance of any of the delimiters you specify
as the end of a field. After the first double quotation mark, enter the list of
delimiters you want to specify. End the list with a second double quotation
mark. To include a double-quote chara-cter as one of the delimiters, specify
two double-quote characters in a row. Here are some examples; assume these
all appeared within control strings:

%"."";"

%", "

Declare periods, double-quotes, and semicolons to be valid
delimiters.

By default, only a comma and a space are legal delimiters for
early termination. This sets VFMT back to its normal state.

Mark the end of the control string.

Mark the end of the control string.

For encoding operations, II %. II also causes VMFT to write a newline character

in the output. For decoding operations, H%. H is identical to H%$".

Formatting with VFMT 8-12

%n(

%)

Begin repeat loop.

The II %(II directive marks the beginning of a portion of the control string to be
repeated Un II times. N is required and must be an integer between 1 and 65536
inclusive. See Section 8.5.3.

End repeat loop.

The "%)" directive marks the end of a repeat loop.

8.6.5. Format-Related Directives

The directives described in this section allow you to control miscellaneous properties related to
the format of the data being read or written. Each directive is valid for encoding; "%Tu and
U %X" are also valid for decoding.

%%

%/

%nT

%nX

Write a literal "%" to output.

The '%%' directive causes VFMT to write a literal percent sign to output.
This directive is valid for encoding only.

Write a newline to output.

The "%/" directive causes VFMT to write a newline character to output. This
makes subsequent text appear on the next line down. This directive is valid for
encoding only.

Tab to column II n II before next operation.

The "%T" directive causes VFMT to "tab" to column lin II before reading or
writing the next piece of data. N is an integer between 1 and 65536 inclusive,
with 11111 representing the leftmost column. If you do not specify n (i.e., just
II %T II), VFMT uses the next available argument in the calling sequence to
determine the desired tabbing value.

This directive is valid for both encoding and decoding. If you are encoding,
VFMT tabs to the right by depositing spaces in the buffer, or writing spaces to
the stream, whichever applies. If you are decoding, VFMT skips to the
specified column, without storing intervening characters anywhere.

Skip II n II spaces before next operation.

The II %X" directive causes VFMT to skip .. n II spaces before reading or writing
the next piece of data. N is an integer between 1 and 65536 inclusive. If you
do not specify "n" (Le., just "%XU), VFMT skips one space.

This directive is valid for both encoding and decoding. If you are encoding,
VFMT moves to the right by depositing spaces in the buffer, or writing spaces
to the stream, whichever applies. If you are decoding, VFMT skips over the
specified number of characters without storing them anywhere.

8-13 Formatting with VFMT

8.7. Examples

This section contains examples showing you how to format variables using VFMT.

8.7.1. Building a Character Table

Example 8-3 uses VFMT to build a table of ASCII characters with their associated decimal and
hexadecimal values:

Source Code

PROGRAM vfmt_table;

{ This program builds a table of ASCII characters with associated
decimal and hexedecial values. }

%nolist;
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%list;

VAR
i integer32;
c char;

BEGIN {Main Program }

{ Write out the header and skip a line. }

vfmt_$write2 C'%3xDecimal%3xASCII%3xHexadecimal%/%.'. { Ccontrol string}
0.0); { Dummy arguments}

{ Write the decimal. ASCII. and hex values. skipping
non-printing control characters. }

FOR i := 0 to 127 DO BEGIN

END;

IF i <= 32 THEN
c :=

ELSE c:= chrCi);

vfmt_$write5 C'%5x%3d%7x%lm la%10x%2h%.'. { Control string}
i. { Decimal integer }
c. { Character value }
i. { Hex integer}
0.0) ; { Dummy arguments }

END. { vfmt table}

Example 8-3. Building a· Character Table of ASCII Characters

Formatting with VFMT 8-14

Output from Example 8-3

$ table. bin
Decimal

0
1
2
3
4

34
35
36
37
38
39
40

119
120
121
122
123
124
125
126
127

ASCII

$
%
j;

(

w
x
Y
z
{

I
}

Hexadecimal

0
1
2
3
4

22
23
24
25
26
27
28

77
78
79
7A
78
7C
7D
7E
7F

8.7.2. Parsing an Input Line

Example 8-4 takes an input line and breaks it into tokens (nonblank strings). It then returns a
table containing each token and its character count:

Source Code

PROGRAM vfmt_parse;

{ This program tests string parsing routines under "friendly"
circumstances. }

%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/vfmt.ins.pas·;
%include ·/sys/ins/streams.ins.pag·;
%include ·/sys/ins/error.ins.pas·;

Example 8-4. Parsing an Input Line

8-15 Formatting with VFMT

CaNST
max_keyword_string_len = 256;

TYPE

keyword_string_t = array [1 .. max_keyword_string_len] of char;
token_ptr_t = ~token_t;
token t = record

VAR
st.
status
n tokens
in_string
i.
n_fields.
in len
retlen
token list
key
junk
retptr

text
len

array [1 .. 80] of char;
integer;

next one
end;

token_ptr_t;

status_$t;
integer;
keyword_string_t;

integer;
integer32;
token list t;
stream_$sk=t;
keyword_string_t;
-keyword_string_t;

{ ** }
{ Declare a procedure that takes a string as input. and returns the }
{ number of tokens in the string and a list of pointers to them. }
{ Procedure parse_string uses VFMT to peel tokens off a string. }
{ Tokens within the string must be separated by spaces or commas. }
{ ** }

PROCEDURE parse_string (IN string_of_tokens
IN len

keyword_string_t;
integer;

OUT n tokens integer;
OUT token_ptr_list token list_t);

VAR

temp keyword_string_t; { String buffer }
i.
j .
k.
n fields integer;
templen integer;

BEGIN {parse_string}

n tokens - 0;
n fields 0;

{
{
{
{
{

Last decoded position in string }
Pointer list index }
String position index }

Number of decoded fields }

Length off string buffer }

Example 8-4. Parsing an Input Line (Cont.)

Formatting with VFMT 8-16

{ Copy the input string. }

temp := string_of_tokens;
templen len - 1; { Strip off newline}

j - 1;
k - 1;
i - 0;

REPEAT

{ Advance position in token pointer list. }

{ Break string into tokens. one field at a time. }
{ Load decoded field into pointer list variables. }
{ Space and comma are both valid delimiters. }

i - vfmt_$decode2 (> %em256kzla%. ' • { Control string }
temp [k] • { String buffer }
templen. { Buffer length }
n_fields. { Number of decoded
st. { Status }
token_ptr_list[j] text. { Load text }
token_ptr_list[j] len); {

IF (st. all <> 0) THEN
error_$print_name (st. 'vfmt parse string

{ Decrement string length by amount decoded. }
templen := templen - i;

Load length

, .18);

{ Increment string position index by amount decoded. }
k := k + i;

{ Increment number of tokens. }
n tokens := n_tokens + n_fields;

{ Increment pointer list position. }
j := j + 1;

UNTIL templen = O·

END; {parse_string}

}

{ *** }

BEGIN {Main Program }

in len - 256;

REPEAT

writeln
writeln ('Type string to parse: ');

Example 8-4. Parsing an Input Line (Cont.)

fields }

8-17 Formatting with VFMT

{ Get the input string. }
stream_$get_buf (stream_$stdin.

ADDR(jUnk).
256.
retptr.
retlen.
key.

{ Standard input stream }
{ Buffer address }

{ Pointer to ret. data}

in_string
in len

st);
retptr ;

retlen;

{ Call the procedure to parse the string. }

parse_string (in_string. { Input string }

in_len. { Length of string
n_tokens. { Number of tokens

}
}

tOken_list); { Pointers to tokens

writeln ;
vfmt_$write2 ("The string you typed was "%a".%.".

in_string.
in_Ien-i);

writeln

{ Write the number of tokens.}

}

vfmt_$write2 ("The parser returned %wd substring(s): %.".
n tokens.
0);

vfmt_$write2 ("Length Substring%.". O. 0);

FOR i := 1 TO n tokens DO

{ Write each token and its length}
vfmt_$write5 ("%3t%wd%10t%a%.".

token list[i] len.
token-list [i] text.
token-list[i] len.
O. 0);

UNTIL FALSE;

END. {vfmt_parse}

{ Control string }
{ Length to write}
{ Text to write }
{ Length of text }

Example 8-4. Parsing an Input Line (Cont.)

Formatting with VFMT 8-18

Output from Example 8-4

$ parse.bin

Type string to parse
Joe is a genius.

The string you typed was "Joe is a genius.".

The parser returned 4 substring(s):
Length Substring

3 joe
2 is
1 a
7 genius.

Type string to parse
This is enough of this. I'm getting pretty tired.

The string you typed was "This is enough of this. I'm getting pretty tired.".

The parser returned 9 substring(s):
Length Substring

4 this
2 is
6 enough
2 of
5 this.
3 i 'm
7 getting
6 pretty
6 tired.

Type string to parse { CTRL/Q to stop the program. }
?(sh) "parse.bin" - process quit (as/fault handler)
In routine " PFM_$ENABLE " line 363.
$

8.7.3. Reading Strings Using a Variety of Formats

Example 8-5 uses the same VFMT _ $WRITE routine with a variety of control string options to read
an input line. It demonstrates the subtleties of slightly varying combinations of control string
options. In particular, it shows how using early termination, defining an early termination
delimiter, and including trailing spaces effects the string length returned by VFMT. Note that
when early termination (e) is not specified the defined delimiter character is treated as just
another character.

8-19 Formatting with VFMT

Source Code

{ This example shows how to use VFMT to read fixed-length strings
that may include spaces. but are not followed by trailing spaces.}

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/error.ins.pas';

VAR
xlen.
ylen.
count
x.

integer := 0;

y array [1 .. S] of char;
st status_$t;

BEGIN

writeln (, Type 2 character fields. S per field. separated by a comma. ');

{ Read the two fields.
{ Set the only delimiter to
{ Use early termination.

II II

}

and set the field width to S. }
}

vfmt_$readS('%11. lI%mSea%mSea%. '. { Control string}
count. { Number of fields decoded }
st. { Status }
x. { First field }
xlen. { Field length }
y. { Second field}
ylen. { Field length }
0); { Dummy}

IF st.all <> 0 THEN
error_$print (st);

{ Echo the test.}
{ Write headers. }

vfmt_$write2 ('Control string was mSea - early termination/delimiter.%.'.
0.0);

vfmt_$write2 ('Length String%.'.
0.0);

{ Write the two fields. }

vfmt_$writeS ('%3t%wd%10t%za%.'.
xlen.
x.
xlen.
0.0);

Example 8-5. Reading Strings Using a Variety of VFMT Formats

Formatting with VFMT 8-20

vfmt_$write5 ('%3t%wd%10t%za%/%.'.
ylen.
y.
ylen.
O. 0);

{ Reinitialize field lengths. }
xlen 0;
ylen := 0;

writeln (, Type characters. 5 per field. separated by a comma. ');

{ Read the two fields. }
{ Set the only delimiter to "." and set the field width to 5. }

vfmt_$read5('%I."%m5a%m5a%.' .
count.
st.
x.
xlen.
y.
ylen.
0);

IF st. all <> 0 THEN
error_$print (st);

{ Echo the test. }
vfmt_$write2 ('Control string was m5a - default/no delimiter. %.'.

0.0);
vfmt_$write2 ('Length String%.'.

O. 0);
vfmt_$write5 ('%3t%wd%10t%za%.'.

xlen.
x.
xlen.
0.0) ;

vfmt_$write5 ('%3t%wd%10t%za%I%.'.
ylen.
y.
ylen.
0.0);

{ Reinitialize field lengths. }
xlen 0;
ylen := o·

writeln (, Type characters. 5 per field. separated by a comma. ');

Example 8-5. Reading Strings Using a Variety of VFMT Formats (Cont.)

8-21 Formatting with VFMT

{ Read the two fields. }
{ Set the only delimiter to U, II and set the field width to S. }
{ Include 'trailing spaces. }
vfmt_$readS('%N.U%mSza%mSza%. "

count,
st,
x,
xlen,
y,
ylen,
0) ;

IF st.all <> 0 THEN
error_$print (st);

{ Echo the test.}
vfmt $write2 ('Control string was mSza - trailing spaces/no delimiter .. %.',

- 0,0);
vfmt_$write2 ('Length String%. ' ,

0, 0);
vfmt_$writeS ('%3t%wd%10t%za%.',

xlen,
x,
xlen,
0, 0);

vfmt_$writeS ('%3t%wd%10t%za%/%.',
ylen,
y,
ylen,
0,0) ;

{ Reinitialize the field lengths. }
xlen - 0;
ylen := o·

writeln (, Type characters, S per field, separated by a comma. ');

{ Read the two fields. }
{ Set the only delimiter to U,II and set the field width to S. }
{ Use early termination and include trailing spaces }

vfmt_$readS('%11, II%mSeza%mSeza%. ' ,
count,
st,
x,
xlen,
y,
ylen,
0) ;

IF st.all <> 0 THEN
error_$print (st);

Example 8-5. Reading Strings Using a Variety of VFMT Formats (Cont.)

Formatting with VFMT 8-22

{ Echo the test.}
vfmt_$write2 ('Control string was m5eza - trailing spaces/delimiter.%.·,

0,0) ;
vfmt_$write2 ('Length String%.',

0, 0);
vfmt_$write5 ('%3t%wd%10t%za%.',

xlen,
x,
xlen,
0,0) ;

vfmt_$write5 ('%3t%wd%10t%za%/%.',
ylen,
y,
ylen,
0,0) ;

Example 8-5. Reading Strings Using a Variety of VFMT Formats (Cont.)

Output from Example 8-5

$ vfmt_example.bin

Type 2 character fields, 5 per field, separated by a comma.
a b , cd e
Control string was m5ea - early termination/delimiter.
Length String

3 a b

5 cd e

Type characters, 5 per field, separated by a comma.
a b , cd e
Control string was m5a - default/no delimiter.
Length String

3 a b
4, cd

Type characters, 5 per field, separated by a comma.
a b , cd e
Control string was m5za - trailing spaces/no delimiter.
Length String

5 a b
5 , cd

Type characters, 5 per field, separated by a comma.
a b , cd e
Control string was m5eza - trailing spaces/delimiter.
Length String

5 a b .
5 cd e

8-23 Formatting with VFMT

Chapter 9
Accessing DOMAlN Types with lOS Calls

The Streams facility allows DOMAIN programs to perform input/output (I/O) on various types
of objects. Among the object types that DOMAIN defines is the unstructured ASOII type (UASO),
the record type (REO), the serial I/O line descriptor type (SIO), the magtape descriptor type
(MT), and the mailbox (MBX) type.

Each object type that the Streams facility supports has an associated type manager. A type
manager defines the operations that can be performed on its particular object type. To perform
I/O, the type managers call more primitive (or device-dependent) managers. However, these
lower-level calls are transparent to the application program because the types have the same I/O
interface, the lOS manager. This allows programs to use the same language statements or lOS
calls to perform I/O regardless of the object it is manipulating. For example, a program can open
an object without having to know what kind of object it opening.

Whenever a program performs an I/O operation, the Streams facility recognizes the object type
being manipulated and calls its corresponding type manager. The type manager then performs
the I/O operation according to its implementation. For example, the UASO type manager uses
MS calls to perform an I/O operation on a UASO object while the MBX type manager uses MBX
calls to perform an I/O operation on an MBX object.

Type managers support most lOS calls. However, a manager might not support an lOS call that
is not meaningful for its type. For example, the SIO manager does not support such lOS calls as
lOS _ $DELETE, lOS _ $TRUNOATE, or lOS _ $SEEK.

The Streams facility is comprised of various type managers that users, as well as DOMAIN, can
define. For information on writing your own type manager to implement an object type, see the
Using the Open System Toolkit to Extend the Streams Facility manual.

This chapter describes how to use lOS calls to access the following object types:

• Mailbox

• Serial line descriptor

• Magtape descriptor

Ohapter 4 describes how to use the lOS calls and provides details on the UASO and REO object
types. Ohapter 5 describes how to write programs using pad object types.

9-1 Accessing DOMAIN Types with lOS Ca.lls

9.1. Overview of DOMAIN Object Types

The following list defines many of the object types that DOMAIN supports:

Unstructured ASCII (UASC)

Record (REO)

UASC objects contain text, commands, listings, program source code, or similar
information, represented by ASCII code. They are understood by spoolers, text
editors and formatters, shells, and language compilers. Although the data in
UASC files is not structured into records, the get and put calls consider the
NEWLINE character to be a record (line) delimiter, unless you specify the
lOS _ $NO _REC _BNDRY option. Many programs arbitrarily write binary
data to a UASC object. For example, UNIX programs might write binary data
to a UASC object since conventional UNIX does not support types. If your
program does, you should use the HDRU type instead. Or, you can set the
UASC object attribute (lOS _ $OF _ASCII) to FALSE, indicating that the
object contains something other than ASOII data. The lOS $OF ASOII
object attribute is initially set to TRUE when you create the UASO object.

REC objects contain data that is retrieved in discrete groups, or records. A
record boundary marks the end of each record. Get and put calls recognize
these record boundaries, so programs can count on getting data from a single
record at a time. DOMAIN's REO type implements several record formats.
These formats keep track of how to store the data, so the record
implementation does not depend on any data. In contrast, UASO objects
depend on NEWLINE characters to mark the end of the record. The
10S_$OF _ASOII object attribute is initially set to FALSE when you create a
REO object.

Header Undefined (HDRU)
A HDRU object is similar to a UASO object except that get and put calls
ignore NEWLINE characters. If the HDRU object is created with the
10S_$NO_REC_BNDRY option (as it is in the UNIX read call), then the
HDRU object is almost completely identical to a UASO object. The only
difference is that the initial value of the lOS _ $OF _ASOII object is set to
FALSE when you create a HDRU object. You can set this attribute to TRUE
to indicate that the object contains ASOII data. (Still, many programs that
work with UASe objects will give unexpected results because get and put calls
do not recognize the NEWLINE characters as record delimiters.)

Object or Binary (OBJ)
Binary objects generally contain executable code or program data. They are
interpreted only by the processor or another program.

Directory (DIR) A directory is a system object that keeps track of related objects.

Input and Transcript Pad (IPAD, PAD)
Pads are special disk files that contain text and graphics, which users view
through windows on the screen. An input pad (IPAD) object accepts user's
input from the keyboard and transfers the input to the program line by line. A
transcript pad (PAD) object contains a record of the program's dialogue with
the user. The program writes its output to the transcript pad after reading
input from its input pad.

Accessing DOMAIN Types with lOS Oalls 9-2

Mailbox (MBX) A mailbox is an object that two programs use to exchange information. To
read or write using mailboxes, you generally use the MBX system calls,
described in detail in the mailbox chapter of the Programming With System
Calls for interprocess Communication manual. You can also access mailboxes
using lOS calls.

Serial Line Descriptor (SIO)
A serial line descriptor object is the way in which a program communicates
with another device via a serial port. (Each node has a number of serial ports
to which a serial line can be physically attached to connect the node and a
peripheral device.) A program must open a stream to the serial port by
specifying the name of a predefined SIO descriptor object, set the serial line's
characteristics, and call the lOS manager to perform I/O across the serial line.

Magnetic Tape Descriptor (MT)
A magnetic tape descriptor object is the way in which a program communicates
with a magnetic tape device. To read to or write from an object on magnetic
tape, the program first creates a magnetic tape descriptor object that
establishes the volume and object attributes for the magnetic tape. It then
calls the lOS manager to perform I/O to and from objects on the tape.

9.2. Accessing Mailboxes

The lOS manager allows you to access mailboxes created with the MBX interface. This feature is
useful if you want to write a program that performs I/O independent of whether the object is a
mailbox or another type of object.

This section assumes some knowledge of the mailbox (MBX) system calls. For details, see the
mailbox chapter of Programming with System Calls for interprocess Communication.

The following is a brief review of the MBX interface:

• The MBX interface is asymmetric. There are two distinct sides to a conversation -­
the client side and the server side. While some MBX calls are available and useful to
both sides, many of the MBX routines are either client-specific or server-specific.

• The MBX server always creates and initializes the MBX object using the
MBX_$CREATE_SERVER call. Once this call is made, the MBX object is "open
for business" and clients can make connections to the server through it.

• MBX clients initiate connections by calling MBX_ $OPEN, which identifies a specific
MBX object. The server of the specified MBX object is notified of this client's desire
to connect, and the server then accepts or reiects the client's open request. In either
case, the client waits in the MBX_ $OPEN call until the server responds to the open
request.

• After the server has accepted the client's open request, the two parties can exchange
data until the client closes the channel or the server deallocates it.

9-3 Accessing DOMAIN Types with lOS Calls

Once you understand the "MBX interface, it can be useful to know that the client side of an MBX
session can be written completely with lOS calls, rather than MBX calls. You can use most lOS
calls on an MBX object. (However the MBX type manager does not support some lOS calls such
as 10S_$SEEK, 10S_$DELETE, or 10S_$TRUNCATE.)

The following sections describe how to write a client using lOS calls.

Note: Only MBX clients can access mailboxes through
the lOS manager. MBX servers cannot use the lOS
manager to access mailboxes.

9.2.1. Opening a Mailbox with lOS _ ~OPEN

To open a mailbox with the lOS manager, call lOS _ $OPEN specifying the name of the mailbox
in the pathname parameter. If the MBX server accepts the open request, the lOS $OPEN call
succeeds and all subsequent I/O will be over the MBX channel. If the server re~cts the open
request (or if no server currently controls the MBX object), the lOS _ $OPEN call will fail.

Calling lOS _ $OPEN is equivalent to calling MBX_ $OPEN with one exception: MBX_ $OPEN
normally allows the client to specify a block of data that should be sent along with the open
request. The server evaluates this data before it accepts or rejects the open request. When the
open is triggered by a call to lOS _ $OPEN, no data accompanies the open request.

9.2.2. Performing I/O on Mailboxes with lOS Calls

To understand how to write to and read from mailboxes you must know how data is stored in a
mailbox. Mailboxes have two kinds of data messages: data and partial-data. You can send and
receive any number of partial-data messages as long as the sequence terminates with a data
message. A mailbox record is any number of partial-data messages followed by a data message.
Examples of mailbox records are the following:

• data

• partial-data data

• partial-data partial-data partial-data data

To send partial-data messages to the server, use lOS $PUT with the
lOS _ $P ARITAL_RECORD _ OPT. This is equivalent to using the MBX_ $PUT _ CRR call.

To send complete mailbox records to the server, use lOS _ $PUT without the partial record
option. This call is equivalent to the MBX_ $PUT _REC call. lOS _ $PUT (without the partial
record option) causes the client to send as many MBX messages as are necessary to contain the
supplied data. That is, the MBX-server process may see several MBX messages as a result of a
single lOS _ $PUT -- every MBX message but the last will be stamped as partial-data.

If the server's channel is full when you try to send a mailbox message, the program suspends until
there is room to, accept a message. You can specify the lOS _ $COND _ OPT put option, if you
want the call to return immediately. It will return with the
lOS $PUT _ CONDITIONAL _FAILED status code. This IS equivalent to the
MBX_ $PUT _xxx_ COND call (where xxx is either CRR or REC).

Accessing DOMAIN Types with lOS Calls 9-4

Mter sending a message to a server's mailbox, you usually want a response. To get a response use
one of the lOS get calls, IOS_$GET or IOS_$LOCATE.

The get call attempts to return an entire mailbox record, regardless of how many partial-data
messages must be concatenated to form it. If the supplied buffer is not large enough to hold an
entire mailbox record, the call returns enough data to fill the requested size and the error,
lOS $BUFFER _ SIZE _ TOO _ SMALL. You can inquire about the number of bytes that
remain to be read in the current record by calling lOS _ $INQ_REC _REMAINDER. This call
returns the II best guess II as to the remaining length of the mailbox record because the entire MBX
record may not yet be visible to the MBX client.

If the server's response is not immediately available, you can either suspend the client process
until the server's response arrives, or you can have the call return immediately. By specifying
lOS _ $COND _ OPT on the get call, the call returns immediately regardless of whether the
server sent a response. If the server did not return the response, the get call returns the
lOS $CONDITIONAL FAILED error status code.

9.2.3. Example of Accessing a Mailbox with lOS Calls

Note that before you can execute a client MBX program, you must execute a MBX server
program to create the mailbox and handle the messages. The / domain _ examples directory
contains a server program that can handle messages from the client program described in the
following program, Example 9-1.

The program in Example 9-1 does the following:

• Opens a connection to a mailbox by calling lOS _ $OPEN specifying the name of a
mailbox and write access.

• Gets the message from the user using lOS _ $GET.

• Puts the message in the mailbox using lOS _ $PUT.

• Waits for a response from the server using lOS _ $LOCATE. (Since the program
doesn't specify the lOS _ $COND _ OPT, it suspends until the server sends a
message.)

• Closes the stream to the mailbox when the user is done by calling lOS _ $CLOSE.

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/mbx.ins.pas';

Example 9-1. Writing to and Reading from a Mailbox

9-5 Accessing DOMAIN Types with lOS Calls

CONST
mbx name
mbx name len
data size

VAR

status
stream id
buffer
buffer_ptr
ret_length
i
stop

= 'test mailbox' ;
=
=

SIZEOF{mbx_name);
256;

status_$t;
ios_$id_t;
string;
.... string;
integer32;
integer;
boolean;

{ Mailbox name }
{ Length of mailbox name
{ Size of input buffer }

PROCEDURE check_status; {for error handling}
BEGIN

IF (status.all <> status $ok) THEN
error_$print{ status-);

END; {check_status}

BEGIN {main}

writeln;

}

writeln (' This program prompts you for a message to send to the server. ');
writeln (' If the server gets the message, it returns the message, ');
writeln (' "Message Written." ');
writeln;

{ Open the mailbox. }

stream id ios_$open (mbx_name,
mbx name len,
[ios_$write_opt,
ios $unregulated opt],

status); -

{ write}
{ unregulated }

{ Read data from keyboard and put it in the mailbox. }

writeln ('Enter a message for the mailbox or "q" to quit. ');

{ Get message from keyboard. }
stop := FALSE;

ret_length := ios_$get (ios $stdin,
[J,-

check_status;

buffer,
data_size,
status);

IF ({buffer[l] = 'q') OR (buffer[l] = 'Q') AND (ret_length = 1»
THEN stop - TRUE;

Example 9-1. Writing to and Reading from a Mailbox (Cont.)

Accessing DOMAIN Types with lOS Calls 9-6

WHILE NOT stop DO
BEGIN

{ Put message in mailbox. }

ios_$put (stream id,
[J, -

buffer,
ret_length,
status);

check_status;

{ Get response from server. }

- ios_$locate (stream id,
[]. -

{ Write message to stdout. }

ios_$put (ios_$stdout,
[].
buffer_ptr ,
ret_length,
status);

check_status;
writeln;

bUffer_ptr,
data_size,
status);

writeln ('Enter a new message; or "q" to quit. ');

{ Get message from keyboard. }

ret_length := ios_$get (ios $stdin,
[].-

buffer,
data_size,
status);

IF «buffer[l] = 'q') OR (buffer[l] = 'Q') AND (ret_length = 1))
THEN stop := TRUE;

END; { while not stop}

{ Close the channel. }

10s_$close(stream_1d,
status);

check status;
END. {ios_mbx_c11ent}

Example 9-1. Writing to and Reading from a Mailbox (Concluded)

9-7 -A-ccessing DOMAIN Types with lOS Ca.lls

9.3. Accessing Serial Lines

Programs can communicate with peripheral devices (such as printers and dumb terminals) across
a serial line by using the RS-232 protocol standard. Each node has a number of ports to which a
serial line can be physically attached, thereby connecting the node and a peripheral device. To
communicate with another device across a serial line, a program must:

• Open a stream to the serial port by opening the SIO descriptor object

• Set attributes for the serial line

• Use lOS calls to perform input and output on streams open to serial lines

9.3.1. Opening a Stream to a Serial Line

To open a stream to a serial line call lOS _ $OPEN, specifying the pathname of an SIO descriptor
object. The descriptor object is the object that the operating system uses to access the hardware.
Table 9-1 lists the predefined names of SIO descriptor objects for every DOMAIN node:

Table 9-1. Default SIO Descriptor Objects Pathnames

SIO Descriptor Object Serial Line Number

/dev /sio1 serial port 1
/dev/si02 serial port 2
/dev/si03 serial port 3
/dev/sio* Default port (port 1)

* The / dev /sio is the SIO descriptor object of a terminal from which a DSP server is booted.

You can copy and rename SIO descriptor objects without losing their special attributes.
However, the objects must be located in the /dev directory so that lOS _ $OPEN can open them.

All copies of an SIO object are equivalent for the purposes of concurrency control. If two
processes want to share the same SIO line, they must specify lOS _ $UNREGULATED _ OPT in
their lOS _ $OPEN calls. However, multiple users within the same process share the same SIO
line, regardless of the concurrency control.

Note that you can only connect to an SIO line from a node that is physically connected to the
particular line; you cannot connect to SIO lines from remote nodes.

9.3.2. Setting Serial Line Object Characteristics

SIO line objects have a number of attributes that control how the SIO manager interprets data
transfers. These attributes control such things as the baud rate (speed) of the serial line, whether
characters are echoed as output, and whether the modem is hung up when the SIO line closes.
The attributes also define how the SIO manager interprets numerous special characters. For
example, by default, the SIO manager interpets CTRL/Z as the "end-of-file (EOF)" character
and CTRL/X as the "delete-to-end-of-line" character. The SIO section of the DOMAIN System
Call Reference manual lists these attributes along with descriptions and default values.

Accessing DOMAIN Types with lOS Calls 9-8

After opening a stream to an SIO line, your program might need to set attributes for the line.
To do so, the program would:

• Call SIO _ $INQUffiE to determine the current serial line attributes.

• Call SIO _ $CONTROL to change the current serial line attributes.

The SIO attributes that you inquire about and set are in SIO _ $OPT _ T format. You specify
the attribute that you want to inquire about or set in the second parameter. SIO _ $INQUffiE
returns the value (in SIO _ $V ALUE _ T format) of the attribute in the third parameter. If you
want to change the value of the attribute, use SIO _ $CONTROL specifying a new value in the
third parameter.

The value of the third parameter depends on the attribute you specify in the second parameter;
they are listed in the description of each attribute in the DOMAIN System Call Reference
manual. Since these values can be in a variety of forms, the SIO _ $V ALUE _ T is a variant
record that can be one of four values: character, Boolean, integer, or a set of enabled errors. To
assign a value, you must specify the appropriate field: Specify b for attributes that take a
Boolean value; c for character values, i for integer values, and es for a set of enabled errors. (For
a program example, see Section 9.3.4.)

Note that you must make a separate call for each attribute you want to inquire about or change.

9.3.3. Performing I/O across a Serial Line

After opening and setting the attributes of a serial line, the program can then use the standard
lOS calls to send and receive data across the serial line. The program could make the following
calls:

• lOS $PUT to send data to a device.

• lOS $GET or lOS $LOCATE to receive data from a device. (In this case,
lOS _ $LOCATE is no more efficient than lOS _ $GET. Since the SIO manager does
not support internal buffering, lOS _ $LOCATE cannot locate the data and return a
pointer to it. Instead, it creates a buffer and calls lOS _ $GET to get the data.)

• lOS _ $CLOSE to close the stream after completing the data transfer.

To interpret data sent across a serial line, you must use the RS-232 protocol. However, a
description of using this protocol is beyond the scope of this manual. Consult the RS-232
standard for this information.

9-9 Accessing DOMAIN Types with lOS Calls

9.3.4. Example of Accessing an SIO Line

The program in Example 9-2 does the following:

• Opens a stream to an SIO line using lOS _ $OPEN.

• Inquires about whether the HOST _ SYNCH mode attribute is on or off using
SIO _ $INQUffiE. In HOST _SYNCH mode, the node sends XOFF (CTRLjS) when
its input buffer begins to fill, and XON (CTRLjQ) when its input buffer begins to
empty again. This allows programs to synchronize high-speed data transfer from
computer to computer.

• Assigns the value of the HOST _ SYNCH mode attribute. Since this attribute takes a
Boolean value, it assigns a value by specifying the Boolean field (.b) of the variant
record in SIO $V ALUE T format.

• Changes the HOST SYNCH mode to FALSE (if it IS TRUE) using
SIO $CONTROL.

• Closes the stream to the SIO line using lOS _ $CLOSE.

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/sio.ins.pas';
%include '/sys/ins/pgm.ins.pas';
%include '/sys/ins/vfmt.ins.pas';

VAR
{$OPEN variables}
status
pathname
namelength
count
stream id

status_$t;
name_$pname_t;
integer;
integer;
ios_$id_t;

{SIO_$ variables}
value sio_$value_t;

PROCEDURE check_status; {for error handling}

BEGIN {main}

{ Ask user for pathname and convert it to internal format using VFMT. }

writeln (' Input the pathname of an SIO line: ');
namelength SIZEOF(pathname);

Example 9-2. Accessing a Serial Line

Accessing DOMAIN Types with lOS Calls 9-10

vfmt _ $read2 ('% II II %eka%. ' .
count.
status.
pathname.
namelength);

check_status;

stream id ios_$open (pathname.
name length.
[ios_$write_optJ. {Write access}
status); {Regulated concurrency}

check_status;

{ INQUIRE host-synch }
sio_$inquire (stream_id,

sio_$host_sync,
value,

{ Inquired option }
{ Returned value }

status);
check_status;

writeln (. The host_synch value is: . ,value.b);

IF (value.b = TRUE) THEN BEGIN

value.b := FALSE; { Turn off host-synch }

sio_$control (stream_id,
sio_$host_sync.
value,
status);

check_status;

{ INQUIRE new host-synch }
sio_$inquire (stream id,

SiO_$host_sync,
value,
status);

{ Inquired option }
{ Returned value }

IF status.all <> status_$ok THEN
ERROR_$PRINT (status);

writeln (' The host_synch value has been changed to: . ,value.b);

END; {if}

{ Close the channel. }

END.

ios_$close(stream_id,
status);

check_status;

Example 9-2. Accessing a Serial Line (Concluded)

9-11 Accessing DOMAIN Types with lOS Calls

9.4. Accessing Files on Magnetic Tape

You can access files that reside on magnetic tapes by using the lOS calls in conjunction with the
MTS (Magtape Stream) calls. You access the magtape by first creating and editing a magtape

descriptor object (MT) which establishes the volume and object attributes for a given magnetic
tape.

To create the descriptor object, you use MTS calls. Once you have prepared the magtape
descriptor object for the tape you want to access, you can then make lOS calls to read to or write
from files on the tape. (Since we traditionally think of magnetic tapes as containing files indicated
by a file sequence number, this section refers to objects on a tape as files.)

Before your program can make lOS calls to files on a magnetic tape, a magtape descriptor object
for the tape must exist. Once you have created a descriptor object, you can:

• Use MTS calls to change volume and object attributes of the magtape descriptor
object.

• Use lOS calls to read from and write to files on the magtape.

When accessing a magtape, you can use most of the lOS calls. (However the MT type manager
does not support some lOS calls such as lOS _ $SEEK, lOS _ $DELETE, or lOS _ $TRUNOATE.)
Only one process at a time can read from and write to a magtape. The magnetic tape IS

accessible only to programs executing on the node to which the tape is physically attached.

The following sections describe how to:

• Oreate and open a magtape descriptor object

• Set attributes of a magtape descriptor object

• Olose the magtape descriptor object

• Use lOS calls to perform input and output on magtape files

9.4.1. Creating and Opening a Magtape Descriptor Object

To create a magtape descriptor object for a given magnetic tape, call
MTS_$OREATE_DEFAULT _DESO specifying the name and namelength of the descriptor
object. Programs can create a magtape descriptor object in any directory.

The descriptor object holds information that the lOS manager uses to open, read, and write files
on the tape. For example, the file sequence number attribute indicates which file on the tape the
lOS manager is currently operating on. The MTS Data Types section in the DOMAIN System
Gall Reference manual lists the attributes you can control in MTS _ $ATTR _ T format.

To open a magtape descriptor object, call MTS _ $OPEN _DESO specifying the pathname of an
existing magtape object, the length of the pathname, and the read-write access, in
MTS $RW T format. Read-write access indicates whether you want to open the descriptor
object for re~ing or writing. Specify one of the predefined values, MTS _ $READ (for read-only
access) or MTS _ $WRITE (for read and write access). MTS _ $OPEN _DESO returns a pointer
to the opened object, in MTS _ $HANDLE _ T format.

Accessing DOMAIN Types with lOS Oalls 9-12

Note that a magnetic tape descriptor object must be open to read and change the attributes of a
descriptor object. However, the object must be closed before any lOS calls can operate on the
magnetic tape itself.

You can also use MTS_$COPY _DESC to create a descriptor object. MTS_$COPY _DESC
copies a source magtape descriptor object to a destination magtape descriptor object, opens the
destination object, and returns a pointer to it.

9.4.2. Reading and Changing Magtape Descriptor Attributes

Once you have created a descriptor object, you may want to change some of the volume and file
attributes. For example, to specify which file on the tape you want to write to, you must specify
the appropriate file sequence number.

To change the volume and file attributes of a magtape descriptor object you can do the following:

• Call MTS $GET ATTR to determine the current attributes .

• Call MTS_$SET _ATTR to change any attributes.

The attributes you inquire about are in MTS _ $ATTR _ T format. You specify the attribute that
you want to inquire about or set in the second parameter of the call. MTS _ $GET _ATTR
returns the value (in MTS_$ATTR_ VALUE_ T format) of the attribute in the third
parameter. If you're changing the specified attribute with MTS _ $SET _ATTR, you specify the
new value in the third parameter.

The value of the third parameter depends on the attribute you specify in the second parameter;
they are listed in the description of each attribute in the DOMAIN System Call Reference
manual. Since these values can be in a variety of forms, the MTS _ $ATTR _ VALUE _ T is a
variant record that can be one of three values: integer, Boolean or character. To assign a value,
you must specify the appropriate field: Specify i for attributes that take integer values, b for
Boolean values; c for character values. (For a program example, see Section 9.4.4.)

Note that you must make a separate call for each volume or file attribute that you want to
inquire about or change.

You can also edit magtape descriptor objects interactively with the DOMAIN command
EDMTDESC. See the DOMAIN System Command Reference manual for details.

9.4.3. Closing a Magtape Descriptor Object

Before you can perform lOS operations on a magtape, you must close the descriptor object. To
close a magtape descriptor object, call MTS _ $CLOSE_DESC, specifying a pointer to the
descriptor object and a value of TRUE or FALSE in the second (update) parameter. The update
parameter indicates whether you want the descriptor object to reflect changes you made to the
object attributes with MTS _ $SET _ATTR. If the value is TRUE, MTS _ $CLOSE _DESC
makes the changes. If the value is FALSE, MTS _ $CLOSE _DESC closes the descriptor object
but does not update the attributes.

9-13 Accessing DOMAIN Types with lOS Calls

9.4.4. Example of Writing to a Magtape File

Once you close the magtape descriptor object, you can write to files on the tape. To open a
stream to a magtape file call lOS _ $OPEN or lOS _ $CREATE, specifying the pathname of the
magtape descriptor object. Note that when the lOS manager opens the file, it writes to the file
specified by the file sequence number. By default, this file sequence number has the value of 1.
When you are finished processing a tape file, you must close the stream, using lOS _ $CLOSE. To
access other files on the tape, you must first reopen (and close) the descriptor object to change the
file sequence number . You change the sequence number by calling MTS _ SET _ ATTR specifying
a new value for the MTS_$FILE_SEQUENCE_A attribute. To write to a tape file, call
lOS _ $PUT. (Specify an empty set of put options with [], since none of the options are
meaningful for tape descriptor objects.)

The program in Example 9-3 accepts input from the user and writes it to two files on the tape.
The program performs the following steps:

1. Declares a procedure to write to the tape files. This procedure creates a loop to get
data from the user and write it to the tape file using lOS _ $PUT until the user types
CTRL/Z to terminate input. The program resets the stream marker's position after
the user types CTRL/Z so that it no longer points to EOF, which prevents the
program from returning an EOF error the next time it enters this procedure.

2. Creates a magtape descriptor object with the default attributes, using
MTS $CREATE DEFAULT DESC.

3. Sets the magtape NEWLINE-handling attribute (MTS_$ASCII_NL_A) to FALSE.
This prevents the MTS manager from stripping NEWLINE characters as it writes
each line to a tape file. By default, the MTS manager strips NEWLINE characters.

4. Closes the descriptor object, specifying the value of TRUE in the update parameter.
This means that MTS _ $CLOSE _DESC updates the file to reflect the changes made.

5. Opens a stream to the magtape file, using lOS _ $OPEN.

6. Calls the procedure to write to a magtape file. It writes to the first file on the tape
because, by default, the file sequence number has a value of 1.

7. Closes the stream to the magtape file.

8. Advances the file sequence number by:

• Opening the descriptor object, using MTS $OPEN DESC with write
access.

• Getting the current file sequence number, using MTS _ $GET _ATTR,
and incrementing the number by 1.

• Setting the number to the new value, using MTS _ $SET _ATTR.

• Closing the descriptor object, specifying TRUE to update it.

9. Repeats steps 5 - 7 to write to the second file on the tape.

Accessing DOMAIN Types with lOS Calls 9-14

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ios.ins.pas';
%include '/sys/ins/mts.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';

VAR
{$CREATE_DEFAULT_DESC variables}
status status $t;
pathname name_$pname_t;
namelength integer;
handle mts_$handle_t;
count integer;

{$GET_ATTR variables}
value : mts_$attr_value_t;

{STREAM $OPEN variables}
stream 1d : ios_$id_t;

{$PUT_REC variables}
buffer : string;

{=== Procedure to check for errors. Prints error and exits on bad status.== }
PROCEDURE check_status; {for error handling}
BEGIN

END;

IF (status.all <> status_$ok) THEN
BEGIN

END;

error_$print(status);
pgm_$exit;

{=== Procedure to write to a tape file. =================================== }
PROCEDURE write_to_tape_file;
BEGIN

{ Get the input from the keyboard. }

writeln;
wr1teln ('Input data for the tape file: ');
writeln ('Or type CTRL/Z to quit. ');
readln (buffer);

WHILE TRUE DO BEGIN
{Write to tape file with IOS_$PUT. }

ios_$put (stream_id.
[].
buffer.
SIZEOF(buffer).
status);

check_status;

Example g-s. Writing to a Magtape File

9-15 Accessing DOMAIN Types with lOS Calls

END;

writeln;
vriteln ('Input data for the tape file:');
writeln ('Or type CTRL/Z to quit. ');
IF EOF THEN BEGIN

{ Reset the input pointer so that it won't point to EOF. }
RESET (input);
EXIT;
END;

readln (buffer);
END;

BEGIN {=== main ==:======== }
writeln;
writeln ('This program gets input from you and writes it to a tape. ');
writeln;
writeln ('The program first asks you to name a magtape descriptor ');
writeln ('object that the program will create. ");
writeln;
writeln ('The program will then ask you to input data for the first ');
writeln ('file and it will write that data to tape one line at a time. ');
writeln ('It asks you to input data again, which it will write to the ');
writeln ('second file. ');
writeln;
writeln ('To read the data from tape, invoke the corresponding ');
writeln ('program,ios_mts_read.pas, specifying the magtape descriptor');
writeln (, object that you created with this program. ');

{ Create a magtape descriptor object with default values. }

writeln ('Input a new descriptor tape file pathname: ');
namelength := SIZEOF(pathname); { Max namelength }

vfmt_$read2('%""%eka%. ' ,
count,
status,
pathname,
namelength);

check_status;

{ Turn off the NEWLINE handling. }
value.b := FALSE;
mts_$set_attr(handle,

mts_$ascii_nl_a,
value,
status);

pathname,
name length,
status);

Example 9-3. Writing to a Magtape File (Cont.)

Accessing DOMAIN Types with lOS Calls 9-16

mts_$close desc (handle,
TRUE, { Modify descriptor object}
status);

{ Open the first tape file. }

stream id - ios_$open (pathname,
name length,
[ios_$write_optJ, { Write access}
status);

{ Write to the tape file. }
write_to_tape_file;

{ Close the first tape file. }
ios_$close (stream_id,

status);
check_status;

{ Change tape file number by opening the descriptor object for update. }

handle := mts_$open_desc (pathname,
name length,
mts_$write, { Write access}
status);

{ Get the current file number. }
mts_$get_attr (handle,

mts_$file_sequence_a, { File sequence number }
value,
status);

{ Increment the tape file sequence number. }
value.i := value.i + 1;

{ Set new file sequence number. }
mts_$set_attr (handle,

mts_$file_sequence_a, { File sequence number }
value,
status);

check_status;

{ Close the descriptor object, modifying it to reflect the changes. }

mts_$close_desc (handle,
TRUE,
status);

Example 9-3. Writing to a Magtape File (Cont.)

9-17 Accessing DOMAIN Types with lOS Calls

{ Open a second tape file. }

stream id - ios_$open (pathname,
namelength,
[ios_$write_opt], { Write access}
status);

{ Write to the tape file. }
write_to_tape_file;

{ Close second tape file. }

ios $close (stream id,
- status);

check_status;

END. { ios mts write}

Example 9-3. Writing to a Magtape File (Concluded)

9.4.5. Example of Reading from a Magtape File

To read from a tape file, use the lOS get calls, lOS _ $GET or lOS _ $LOCATE. Before you
attempt to read from magtape ofile, you must set the file sequence number attribute to the
number of the file that you want to read, using MTS _ $SET _ATTR. The number of the first
file on a tape is 1.

The program in Example 9-4 does the following:

1. Declares a procedure to read from files on a magtape using lOS _ $GET.

2. Opens an existing magtape descriptor object specifying read access.

3. Sets the file sequence number to the first file on the tape which is number 1.

4. Closes the descriptor object, specifying a value of TRUE in the update parameter to
update the changes.

5. Opens a stream to the tape file using lOS _ $OPEN, specifying the pathname of the
descriptor object.

6. Calls the procedure to read the tape. It asks the user for the number of lines to read
from the magtape file.

7. Closes the stream to the magtape file, using lOS _ $CLOSE.

8. Advances the file sequence number by reopening the tape descriptor object, changing
the value of the MTS _ $FILE _ SEQUENCE _A attribute, and then closing the
descriptor object.

9. Repeats steps 5 - 7 to read from the second file on the tape.

Accessing DOMAIN Types with lOS Calls 9-18

PROGRAM ios_mts_read (input,output);

%include ·/ins/base.ins.pas·;
%include ·/sys/ins/ios.ins.pas';
%include '/sys/ins/mts.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';
%include '/sys/ins/pgm.ins.pas';

CONST
buffer size = 256;

VAR
{$OPEN_DESC variables}
status
pathname
name length
handle
count

status_$t;
name_$pname_t;
integer;
mts_$handle_t;
integer;

{$CLOSE_DESC variables}
update boolean;

{$OPEN variables}
stream id : ios_$id_t;

{$GET_ATTR variables}
value : mts_$attr_value t;

{GET variables}
buffer
ret_length

get
number of recs

string;
integer32;

integer;
integer;

{ == Procedure to check for errors. Prints error and exits on bad status.== }
PROCEDURE check_status;
BEGIN

END;

IF (status.all <> status_$ok) THEN
BEGIN

END;

error_$print(status);
pgm_$exit;

{ == Procedure to read tape files. == }
PROCEDURE read_from_tape_file;
BEGIN

writeln ('Input the number of lines to read from the magtape file: ');
readln(number_of_recs);

Example 9-4. Reading from a Magtape File

9-19 Accessing DOMAIN Types with lOS Ca.lls

{ Get records from tape file. }

FOR get := 1 TO number_of_recs DO BEGIN

ret_length := ios_$get (stream id,
[L -
buffer,
buffer_size,
status);

{ Write the record to standard output. }

writeln (buffer: ret_length);
writeln;

END; {do}
END; { procedure}

BEGIN { == main === }
writeln;
writeln ("This program reads data from two tape files. ");
writeln;
writeln ("The program first asks you for to name the magtape descriptor ');
writeln ("object of the tape you want to read data from. Specify the ");
writeln ("name of the object that you created with the corresponding ');
writeln ("program. ios_mts_write.pas. ");
writeln;
writeln ("The program will then ask you to specify the number of lines ');
writeln ("you want to read data from the first file, and then writes ');
writeln ("the data to the screen. It repeats the prompt for you to read ");
writeln ("data from the second file. If you specify a number greater ');
writeln ("than the number of lines in the file, the program terminates ");
writeln (" with the end-of-file error status. ");
writeln;

writeln ("Input the magtape descriptor object pathname: ");
namelength := SIZEOF(pathname); { Max namelength }

vfmt_$read2('%III1%eka%." ,
count,
status,
pathname,
namelength);

check_status;

{ Set the file sequence number to the first file on the tape. }
{ Open the descriptor object for reset. }

handle mts_$open_desc (pathname,
namelength,
mts_$write, { Write access}
status);

check_status;

Example 9-4. Reading from a Magtape File (Cont.)

Accessing DOMAIN Types with lOS Calls 9-20

{ Set file sequence number to 1. }
mts_$set_attr (handle,

mts_$file_sequence_a,
1,
status)~

{ File number}
{ Value}

{ Close the descriptor object, keeping the changes. }
mts_$close_desc (handle,

TRUE,
status)~

check_status~

{ Open the first file on the tape with read access. }

stream id - ios_$open (pathname,
namelength,
[L
status);

{ Read from the tape file. }
read_from_tape_file~

{ Close the file. }

ios_$close (stream_id,
status);

check_status;

{ Advance the tape file sequence number by opening }
{ the tape descriptor object for update. }
handle := mts_$open_desc (pathname,

namelength,
mts_$write, { Write access}
status);

{ Get the current file sequence number. }
mts_$get_attr (handle,

mts_$file_sequence_a, { File sequence number}
value,
status);

check_status;

{ Increment the tape file sequence number. }
value.i := value.i + 1;

{ Set new file number. }
mts $set attr (handle,

- - mts_$file_sequence_a, { File number }
value,
status);

Example 9-4. Reading from a Magtape File (Cont.)

9-21 Accessing DOMAIN Types with ros Calls

{ Close the descriptor object. keeping the changes. }
mts_$close_desc (handle.

TRUE.
status);

{ Open the second file on the tape with read access. }
stream_id ios_$open (pathname.

check_status;

name length.
[L
status);

{ Read from the tape file. }
read_from_tape_file;

{ Close the tape file. }
ios_$close (stream_id.

status);
check_status;

END.{ ios mts read}

Example 9-4. Reading from a Magtape File (Concluded)

Accessing DOMAIN Types with lOS Calls 9-22

Appendix A
Sample Programs in C

Appendix A contains C translations of the Pascal examples that appear throughout this manual.
You can also see these programs on-line. For details, see the Preface of this book.

Table A-I summarizes the programs that appear in this appendix.

Table A-I. Summary of C Programs in Appendix A

Program Name

PFM CLEAN UP.C

PGM SHELL.C

PGM INVOKE.C

PGM OPEN.C

PGM EC.C

PGM INVOKE DIVIDE.C

PGM DIVIDE.C

PGM ORPHAN.C

PGM PASSEE ARG.C

Description

Establishes a clean-up handler that
deletes a file.

Invokes the DATE Shell command
using PGM_$INVOKE.

Invokes PGM OPEN.BIN in wait
mode.

Page

A-6

A-8

A-9

Invoked by PGM_INVOKE.C. It fails A-IO
to open a file and passes a severity
level indicating that an error occurred.

Invokes two programs as child processes A-II
and uses eventcounts to wait for them.

Invokes PGM_DIVIDE as a background A-14
process, passing an input and error stream.

Divides two numbers and establishes a A-17
fault handler for the divide-by-zero
fault. You must bind with the module,
PGM ZERO HANDLER.

Handles faults in a separate module
for PGM_DIVIDE.

Converts a child process into an orphan
process.

Invokes a child process and passes two
arguments to it.

Accesses the second argument in a
passed argument list using
PGM_$GET _ARG. May be used
with PGM PASS ARGS.

A-I8

A-I9

A-20

A-22

A-I Sample Programs in C

Table A-I. Summary of C Programs in Appendix A (Cont.)

Program Name

PGM PASSEE.C

PGM DEL INV.C

PGM PASS STREAMS.C

PGM YOUR PROC.C

PGM CHILD INFO.C

STREAM_INQ_REC _LEN.C

STREAM CHANGE EXP.C

STREAM PUT FIXED.C

STREAM PUT VAR.C

Description Page

Accesses the arguments in a passed A-23
argument list using
PGM_$GET_ARGS. May be used
with PGM_PASS_STREAMS.

Invoked by PASS_DEL.PAS. It A-24
retrieves arguments with GET _ARGS,
deletes one with DEL_ARG, and invokes
another program using the arg _ vector.

Opens a file and passes its stream ID A-26
to PGM _ P ASSEE as standard output.

Obtains process information about its A-28
own process.

Invokes CALC .BIN as a child process
and gets process information about it.

Inquires about the record length and
type of a user-specified file. If the
the file is fixed length, it opens
the file.

Opens a user-specified file, inquires
about the explicit type attribute
and sets it to TRUE if it is
already TRUE.

Creates and writes a file of
fixed-length employee records.

Creates and writes a file of
variable length employee records.

A-30

A-32

A-34

A-37

A-39

STREAM_PUT _ V AR_ UASC.C Creates a UASC file and writes
ASCII data to it.

A-41

STREAM_GET_ VAR.C Retrieves variable length records
from the file created with
STREAM_PUT_ VAR.

STREAM_ GET _ VAR_ UASC.C Retrieves variable length records
(lines) from the file created with
STREAM PUT VAR UASC.

Sample Programs in C A-2

A-43

A-45

Table A-I. Summary of C Programs in Appendix A (Cont.)

Program Name

STREAM UPDATE.C

STREAM WRITE TAPE.C

STREAM_READ _ TAPE.C

STREAM_:MBX_ CLIENT.C

STREAM_LIST _LINKS.C

PAD_MAKE_ WINDOWS.C

Description Page

Permits you to update the address of A-48
the employee records in the file created
with STREAM PUT FIXED. It
writes each record with its record
number. Then you indicate the record
you want to update by record number.

Creates a magtape descriptor A-52
file and writes two files to tape.

Reads two files from tape. A-56

Opens an SIO line, inquires about A-60
the host-synch attribute, and changes
it to FALSE, if necessary.

Opens a stream to a mailbox, writes A-62
to it, and waits for a message -- all
using the stream manager.

Reads a directory and lists the A-64
links in it, using the stream manager.

Creates and closes windows and A-66
window panes.

PAD _INQ_ WINDOW _SIZE.C Gets information about the size A-69
and position of windows open to
the pad.

PAD FULL WINDOW SHOW.C Uses PAD calls to handle full A-71

PAD WINDOW SHOW.C

windows. It returns the position
of a window, including its border
and legend.

Uses PAD calls to pop and push
windows, make a window visible and
invisible, and remove a window
border.

Gets the user's type of display
and keyboard. It also redefines
function keys.

A-73

A-77

A-3 Sample Programs in C

Table A-I. Summary of C Programs in Appendix A (Cont.)

Program Name

PAD SOALE.O

PAD DIGOLK.C

PAD MAKE ICON.O

PAD OREATE ICON.O

PAD FILENAME.C

PAD RAW MODE.O

PBUFS PASTE BVFFER.O

Sample Programs in 0

Description Page

Creates two windows -- one by A-80
specifying line numbers, another by
specifying raster units.

Creates a frame at the top of A-83
the user's standard output pad, and
writes a prompt inside the frame.

Displays a digital clock. You run A-85
this program with the DM OPO
command. You can specify, in raster
units, where you want the clock to
be; otherwise, it appears in the upper
left corner.

Demonstrates PAD calls that use A-89
. icons.

Demonstrates PAD calls that create
pads in icon format.

Oreates a frame at the top of a
window, and displays a filename in the
inverted version of the current font.

Demonstrates using the input
pad in raw mode. It asks for
keyboard input, but does not echo
the input to the screen.

Asks the user to supply the name
of a paste buffer. If it exists, the
program displays the contents of
the buffer. If it does NOT exist,
the program creates a new paste
buffer, and asks the user to
write to it.

A-4

A-92

A-96

A-I02

A-I05

Table A-I. Summary or C Programs in Appendix A (Cont.)

Program Name

EC _ TIME _KBD _EVENTS.C

EC WAIT FOR TIME.C

CAL_DECODE_LOCAL.C

TIME ZONE.C

CAL _ADD _ TIMES.C

CAL SUB TIMES.C

TIME COl\1PARE.C

TIME_ WAIT_ABS.C

TIME WAIT OR DEFAULT.C

Description

Uses time and keyboard eventcounts.

Inhibits asynchrounous faults
using a time eventcount.

Gets the local date and time in
readable format and writes it to
the standard output.

Gets a timezone offset by using the
timezone name, then by using the
time difference.

Adds a specified number of seconds
to the current local time.

Subtracts an input absolute
time from the current time.

Compares the modification times of
two files to determine which was
changed recently.

Suspends execution until a
specified time.

Uses the time eventcount to cause
a prompt to be output at 100second
intervals and II times out II after three
prompts occur.

Page

A-I08

A-Ill

A-114

A-115

A-117

A-118

A-120

A-123

A-125

A-5 Sample Programs in C

A.I. PFM CLEAN UP.C

/* PROGRAM pfm_cleanup */

#include <stdio.h>
#include
#include
#include
#include
#include
#include

"/sys/ins/base.ins.c"
"/sys/ins/error.ins.c"
"/sys/ins/streams. ins. c"
"/sys/ins/pfm.ins.c"
"/sys/ins/pgm.ins.C"
"/sys/ins/vfmt.ins.c"

status; status_$t
boolean
short

stream_open; /*state variable*/
count; /*VFMT parameter*/

/* $CREATE variables */
name_$pname_t pathname;
short name length;
stream_$id_t stream_id;

/* $CLEANUP variable */
pfm_$cleanup_rec handler_id;

/**/
error_routine (status) /* for error handling */

status $t
{ -

status;

error_$print(status);
pgm_$exitO;

}

/**/
mainO
{

/* initialize state variable */
stream_open = false; /* not open yet */

/* Clean-up handler code */
status = pfm_$cleanup (handler_id); /* establish clean-up handler */

/* check for established status */
if(status.all != pfm $cleanup set)
{ --

/* delete file if open while fault occurs */
if (stream_open)

}

stream_$delete (stream id.
status);

exit(l);;

/* end of clean-up handler */

/* begin normal operations */

/* get the filename */
printf("Input pathname: \n");
gets(pathname);
namelength = strlen(pathname);

Sample Programs in C A-6

stream_$create (pathname.
namelength.
stream $write.
stream=$controlled_sharing.
stream_id.
status);

if(status.code != status $ok)
error_routine (status);

1* set state variable *1
stream_open = true; 1* file is open *1

I*get the input *1

1* finished processing the file *1
1* release the clean-up handler *1

}

pfm_$rls_cleanup (handler id.
status);

A-7

1* access *1
1* concurrency *1

Sample Programs in C

A.2. PGM SHELL.C

/* PROGRAM pgm_shell.c */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

pgm_$proc
status_$t

handle;
status;

/* declare and load the standarrd streams */
pgm_$connv conny = { stream_$stdin, stream $stdout,

stream_$errin, stream=$errout };

mainO
{

pgm _ $invoke (11/ com/ date II ,
(short)9,
(short)O, OL, /* no args */
(short)4,
connY,
pgm_$wait,
handle,
status) ;

check_status(status);

/* std. streams */

}/* end main *1
/**/
check_status (status) /* for error_handling */

status $t status;
{ if(status.all!= status $ok)

}

{ error $print(status);
pgm $exitO;

}

Sample Programs in C A-8

A.3. PGM INVOKE.C

/* PROGRAM pgm_invoke.c */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

pgm_$proc
status_$t

handle;
status;

/* declare and load the standarrd streams */
pgm_$connv conny = { stream_$stdin. stream_$stdout.

stream_$errin. stream_$errout };
/***/
mainO
{

pgm _ $invoke (II pgm _open. bin" .
(short) 12.
(short)O. OL. /* no args */
(short)4.
conny.
pgm_$wait.
handle.
status) ;

check_status(status);

/* std. streams */

}/* end main */
/***/
check_status(status) /* for error handling */

status $t status;
{ if(status.all!= status $ok)

{ switch(status.all)
{ case pgm_$error :

printf (II Invoked program ended with an error status\n II) ;
break;

case pgm_$warning :
printf(IIInvoked program ended with an warning status\n ll

);

break;
}/* end switch */
pgm_$exitO;

}/* end if */
}/* end check_status() */

A-9 Sample Programs in C

A.4. PGM OPEN.C

/* PROGRAM open.c */

/* This program fails to open a non-existent file and */
/* returns an PGM_$ERROR severity */

#include <stdio.h>
#include u/sys/ins/base.ins.c u
#include u/sys/ins/pgm.ins.cu
#include II /sys/ins/streams. ins. c U

#incluJe u/sys/ins/error.ins.c·

status_$t
name_$pname_t
short

status;
pathname;
namelength;

/* $open variable */
stream_$id_t stream_id;

mainO
{

/* open the file */

}

stream_$open ("file.out",
(short)9,
stream $read.
stream=$controlled_sharing.
stream_id.
status);

check_status(status);

/* access */
/* concurrency */

/**/
check_status (status) /* for error_handling */

status_$t
{

status;

if(status.all != status_$ok)
{

}

pgm_$set_severity (pgm_$error);
pgm_$exitO;

}/* end check status */

Sample Programs in C A-tO

A.5. PGM EC.C

#include <stdio.h>
#include "/sys/ins/base.ins.C"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/ec2.ins.c"

#define calc1 ec
#define calc2 ec

ec2_$ptr_t
long
eC2_$eventcount_t
short
status_$t
short
pgm_$proc
pgm_$proc

o
1

ec2_ptr[2];
ec2_val[2];
replace_ec;
which;
status;
dead_count;
handle1 ;
handle2;

/* declare and load the standard streams */
pgm_$connv conny = { stream_$stdin, stream_$stdout,

stream_$errin, stream_$errout };
/***/
mainO
{

/* invoke 1st process */
pgm_$invoke("calcl.bin",

(short)9,
(short)O, OL,
(short)4,
connY,
(short)O,
handle1,
status) ;

check_status(status);

/* invoke 2nd process */
pgm_ $invoke (II calc2 . bin II ,

(short)9,
(short)O, OL,
(short)4,
connY,
(short)O,
handle2,
status) ;

check_status(status);

/* get ec for 1st process */

/*
/*
/*
/*
/*
/*
/*

program name */
namelength */
no args */
number of streams */
std. streams */
default mode */
process handle */

pgm_$get_ec (handlel,
pgm_$child_proc,
ec2 ptr[calc1 ec],
status); -

/* process handle */
/* ec key */
/* ec_ptr */

check_status(status);

A-II Sample Programs in C

1* get ec for 2nd process *1
pgm_$get_ec (handle2.

pgm_$child_proc.
ec2_ptr[calc2_ec].
status);

check_status(status);

1* process handle *1
1* ec key *1
1* ec_ptr *1

1* initialize the never ready event count *1
ec2_$init (replace_ec);

1* initialize counter *1
dead_count = 0;

1* initialize satisfaction values to 1 *1
ec2 val[calcl ec] = 1;
eC2=val[calc2=ec] = 1;

1* NOW GO INTO A LOOP PROMPTING FOR INPUT *1

1* repeat until both processes complete *1
while(dead count != 2)
{ whiCh; ec2_$wait (ec2_ptr.

ec2 val.
(short)2.
status);

check_status(status);

1* ec pointer array *1
1* ec value array *1
1* number of ec's *1

1* decrement which to adjust for initial array index of 0 in C *1
which--;

switch (which)
{ case calcl ec: 1* when process 1 completes ... *1

printf1"proCessing Process 1 results\n");

1* get the termination status of calcl*1
pgm_$proc_wait (handlel.

status);
check_status(status);

1* load the pointer array with a valid pointer*1
ec2_ptr[calcl_ec] = &replace_ec;

1* set the ec value to be 1 (process terminated)*1
ec2_val[calcl_ec] = 1;
break;

case calc2 ec:
printf1"proCessing Process 2 results\n");

1* get the termination status of calc2 *1
pgm_$proc_wait (handle2.

status);

check_status(status);

1* load the pointer array with a valid pointer *1
eC2_ptr[calc2_ec] = &replace_ec;

Sample Programs in C A-12

1* set the ec value to be 1 (process terminated) *1
ec2_val[calc2_ec] = 1;
break;

}/* end switch *1

1* advance the dead count *1
dead count++;

}/* end while *1
}/* end maine) *1
1***1
check_status(status) 1* for error handling *1

status $t status;
{ if(status.all!= status $ok)

}

{ error $print(status);
pgm_$exitO;

}

A-13 Sample Programs in C

A.6. PGM INVOKE DIVIDE.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include II /sys/ins/streams. ins. c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.C"

status;

/* $CREATE variables */

name_$pname_t
short
name_$pname_t
short
stream_$id_t
stream $id t
stream=$sk=t
char
long

error_name;
error_len;
input_name;
input_len;
error_id;
input_id;
seek key;
number[20];
number_len;

/* PGM_$INVOKE variables */
pgm_$proc handle; /* process handle */
pgm_$connv connv; /* connection vector */
pinteger arg_count;

mainO
{

/* get standard error pathname for program to be invoked */
printf (" Input the filename to be opened as standard II);
printf("error in background process DIVIDE:\n");
gets(error_name);
error len = strlen(error_name);

/* create error file - get stream */

stream_$create (error_name,
error_len,
stream_$write,
stream_$unregulated,
error id,
status);

check_status(status);

/* access */
/* conc */
/* stream-id */

/* get standard input pathname for program to be invoked */
printf("Input the filename to be opened as standard H);
printf("input in background process DIVIDE:\n");
gets(input name);
input_len; strlen(input_name);

Sample Programs in C A-14

1* create standard input file -- get stream *1

stream_$create (input_name.
input":len.
stream_$write.
stream_$unregulated.
input id.
status);

1* access *1
1* conc *1
1* stream-id *1

check_status(status);

1* Get numbers to be divided by invoked program and *1
1* write them to the created standard input file. *1

printf("input an integer to be divided:\n");
gets(number);
number len = strlen(number);

1* add one for the newline *1
number[++number_len] = '\n';

1* write the number to the file *1

1* terminate wi newline*1

stream_$put_rec (input_id. 1* stream to write to *1
~number. 1* address of data buffer *1
number_len. 1* length of data *1
seek_key.
status);

check_status(status);

printf("input an integer %.*s is to be divided by:\n".
(number len-i). number);

gets(number);-
number_len = strlen(number);

1* add one for the newline *1
number[++number_len] = '\n';

I*write the number to the file *1
stream_$put_rec (input_id.

~number.

number_len.
seek_key.
status);

check_status(status);

1* terminate wi newline*1

1* reset stream pointer to the beginning of the *1
1* input file before passing stream to the program *1

stream_$seek(input_id.
stream_$rec.
stream_$absolute.
iL.
status);

check_status(status);

1* stream-id *1
1* seek-base *1
1* seek-type *1
1* record number *1

A-15 Sample Programs in C

1* load $INVOKE connection vector*1
connv[O] = input_id; 1* set stream id to be created stdin *1
conny [1] = stream $stdout; 1* set stream id to be STD OUTPUT *1
connv[2] = stream=$errin; 1* set stream id to be STD ERRIN *1
connv[3] = error_id; 1* set stream id to be created errout *1

1* invoke program *1
pgm_$invoke (lIpgm_divide ll

, 1* pathname of program to invoke
(short) 10, 1* length of pathname
(short)O, 1* number of arguments to be passed
OL, 1* no arguments
(short)4, 1* number of streams to be passed
connY, 1* array of stream ids to be passed
pgm_$back_ground, 1* mode in which to invoke program
ha.ndle, 1* not used in background mode
status); 1* status

check status(status); -
}

1**1
check_status (status)

status $t status;
{ -

}

if(status.all != status $ok)
{ error $print(status);

pgm $exitO;
}

Sample Programs in C A-16

*1
*1
*1
*1
*1
*1
*1
*1
*1

A. 7. PGM DIVIDE.C

/* PROGRAM pgm_divide */

/* Program to divide two numbers */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pfm.ins.c"
#include "/sys/ins/pgm.ins.C"
#include "/sys/ins/fault.ins.c"
#include "/sys/ins/error.ins.c"

short number1;
short number2;
status_$t
pfm_$fh_handle_t

status;
handler_id;

/* declare external fault handling function */
extern pfm_$fh_func_val_t zero_fault_handler();

mainO
{

/* establish the zero divide handler */

/* load the target fault - 1st parameter */
handler id = pfm_$establish_fault_handler (fault $zero divide.

(short)o. - /* default type */
zero fault handler. /* This sends

the ADDRESS of our fault handler! */- -

if(status.all != status $ok)
error_$print(status);

status);

/* read from standard input - (file passed by parent) */
scanf (lI%hd II. tlnumber1) ;
scanf(l%hd".tlnumber2);

/* calculate and write the result */
printf("%d divided by %d is %d".number1. number2.(number1 / number2»;
printf(" with a remainder of %d\n". (number1 % number2»;

}

A-17 Sample Programs in C

A.8. PGM ZERO HANDLER.C

/* This is a fault handling function that prints */
/* a line and continues to fault handle. */

#include "/sys/ins/base.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pfm.ins.c"

/* VERY IMPORTANT NOTE! The DOMAIN fault handler system code is
I I going to c~ll the following routine when a fault occurs. Now,
I I that call will be done in "std_$call" format, because, of course,
I I that is the only kind of call it can make. But our fault
I I handler is REALLY a C function and therefore NOT created in
I I "std_$call" format. Since the DOMAIN code will push the address
I I of the 'pfm_$fault_rec_t', we, in C, must be prepared to accept
I I that pass-by-reference. So, notice that we declare OUR parameter
I I here as a pOinter. */

pfm_$fault_rec_t *f_status_p;
{

/* write a message to the error log */

error $print(f status p->status);
return (pfm_$Return_to=pey ton_Place);

Sample Programs in C A-IS

A.9. PGM ORPHAN.C

/* PROGRAM pgm_orphan.c */

#include <stdi0.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

Uid_$t
status $t
pgm $proc

puid;
status;
handle;

/* declare and load the standard streams */
pgm_$connv conny = { stream $stdin. stream $stdout.

stream=$errin. stream=$errout };

/***/
mainO
{

/* invoke child process */
pgm_$invoke("pgm_shell.bin".

(short) 13.
(short)O. OL.
(short)4.
conny.
(short)O.
handle.
status) ;

check_status(status);

/* communicate with child */

/* cut the child loose */

/ * program name
/* name length

1* no args

/* std. streams
/* default mode
/* process handle

pgm_$make_orphan(handle. /* process handle */
pUid. /* process uid */
status);

check status(status);
}/* end main() */

*1
*/

*1

*1
*1
*1

/***1
check_status(status) /* for error handling */

status $t status;
{ if(status.all!= status $ok)

{ error_$print(status);
pgm_$exitO;

}
}

A-19 Sample Programs in C

A.IO. PGM PASS ARGS.C

/* This program passes a text string and the output stream */
/* to the program passee.pas */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.C"
#include "/sys/ins/error.ins.c"

status;

/* argument variables */
pgm_$arg name. argument;

/* INVOKE variables */
pgm_$argv argv;
pgm_$proc handle;

/* declare and load the standarrd streams */
pgm_$connv conny = { stream_$stdin. stream $stdout.

stream_$errin. stream=$errout };

mainO
{

/* load the arguments */
strcpy(name. chars. "pgm_passee. bin II) ;
name. len = strlen(name.chars);
strcpy(argument.chars ."test");
argument. len = strlen(argument.chars);

/*load the argument vector w/ addresses*/
argv[O] = (int *)&name;
argv[l] = (int *)&argument;

pgm_$invoke("pgm_passee.bin". /* process name
(short) 14. /* name length
(short)2. /* arg count - name
argYl /* arg vector
(short)4. /* stream count
conny. /*std. streams
(short)O. /* mode
handle. /* process handle
status)

check_status(status);

pgm_$proc_wait (handle. /*process handle*/
status);

check_status(status);
}/* end main */

Sample Programs in C A-20

& arg

*/
*/
*/
*/
*/
*/
*/
*/

1***1
check_status(status) 1* for error handling *1

status $t status;
{ if(status.all!= status $ok)

{ error_$print(status);
pgm_$exit() ;

}
}

A-21 Sample Programs in C

A.II. PGM P AS SEE ARG.C

/* This program is invoked by PASSER.PAS. it retrieves */
/* argument w/ GET_ARG and writes to output */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"

status; status_$t
pinteger
pinteger
char
pinteger

arg_length; /* returned argument length */
arg_num; /* ordinal # of desired argument */
argument[256]; /* argument buffer */
max len = 256; /* maximum length of returned arg */

mainO
{

/* access 1st argument */
arg_num = 0; /* 1st arg */

arg_length = pgm_$get_arg (arg_num. /* arg number */
argument. /* arg buffer */
status.
max_len);

check_status(status);

/* Null terminate the string */
argument[arg length] = '\0';
printf ("ThiS-iS the first argument %s\nl'. argument);

/* access 2nd argument */
arg_num = 1; /* 2nd arg #. 0 is 1st */

arg_length = pgm_$get_arg (arg_num. /* arg number */
argument. /* arg buffer */
status.
max_len);

check_status(status);

/* Null terminate the string */
argument[arg length] = '\0';
printf("ThiS-iS the second argument %s\n". argument);

}/* end maine) */
/***/
ch~ck_status(status) /* for error handling */

status $t status;
{ if(status.all!= status $ok)

}

{ error $print(status);
exit(l);

}

Sample Programs in C A-22

A.12. PGM P ASSEE.C

/* PROGRAM pgm_passee.c */

/* This program is invoked by PASSER.PAS, it retrieves */
/* arguments w/ GET_ARGS and writes to output */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"

/* declare an explicit argument pointer */
typedef

pgm_$arg *pgm_arg_ptr;

pinteger
pgm_$argv_ptr
pinteger

arg_count; /* argument count */
arg_vec_addr; /* argument vector */
i; /* index */

/* declare array to hold arguments */
pgm_arg_ptr arguments[128];

mainO
{

/* get a pointer to the argument array */

pgm_$get_args (arg_count, /* number of arguments */
arg_vec_addr); /* returned pointer */

for(i=O; i<arg count; i++)
{ -

/* typecast the pointer and load into argument array */
arguments[i] = (pgm_arg_ptr) (*arg_vec_addr) [i];

/* write argument to output (dereference explicit pointer) */

/* null terminate string */
arguments[i]->chars[arguments[i]->len] = '\0';
printf("Argument %d is %s\n", i, arguments[i]->chars);

}/* end for */
}/* end main */

A-23 Sample Programs in C

A.13. PGM DEL INV.C

/* This program is invoked by PASS_DEL.PAS. it retrieves */
/* arguments w/ GET_ARGS deletes one w/ DEL_ARG and invokes */
/* another program using the arg_vector */

#include <stdio.h>
#include "/sys/ins/base.1ns.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"

/* construct a pOinter to arguments */
typedef

pgm_$arg *pgm_arg_ptr;

pinteger arg_count;
pgm_$argv_ptr arg_vec_addr;

/* declare array to hold arguments */
pgm_arg_ptr arguments[128];

short i;
/* INVOKE variables *1
status_$t status;
pgm_$proc handle;

/* declare and load the standrrd streams */
pgm_$connv conny = { stream $stdin. stream $stdout.

stream=$errin. stream=$errout };

mainO
{

printf("In del_inv\n");

pgm_$get_args (arg_count. /* number of arguments */
arg_vec_addr); /* pointer to argument vector *1

printf("paSSed folowing arguments:\n");

for(i=O; i<arg count; i++)
{ -

arguments[i] = (pgm_arg_ptr) (*arg_vec_addr) [1];
arguments[i]->chars[arguments[1]->len] = '\0';
printf("ARG %d %s\n". i. arguments[1]->chars);

}

printf("\n");
printf("deleting arg O\n");

1* delete program name argument *1
pgm_$del_arg(O);

1* get_args passes integer pointers. To reference you must */
1* type cast the integer pointers to pgm_$arg pointers. *1

for(i=O; i<arg count; i++)
arguments[1] = (pgm_arg_ptr) (*arg_vec_addr) [i];

Sample Programs in C A-24

1* returned strings must be null terminated *1
arguments[O]->chars[arguments[O]->len] = '\0';
pr1ntf(N1nvoking %s (now arg O)\n". arguments[O]->chars);

1* invoke second program wI modified arg vector *1

pgm_$invoke(arguments [O]->chars. 1* process name *1
arguments [O]->len. 1* name length *1
(short) 1. 1* arg count - name *1
arg_vec_addr. 1 arg vector *1
(short)4. 1* stream count *1
connv. 1* std streams *1
pgm_$wait. 1* mode *1
handle. 1* process handle *1
status);

check_status(status);
}/* end main() *1
1***1
check_status (status) 1* for error_handling *1

status $t status;
{ if(status.all!= status $ok)

}

{ error $print(status);
pgm_$exitO;

}

A-25 Sample Programs in C

A.14. PGM PASS STREAMS.C

/* This program passes a stream to an invoked program */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.c"
#include II /sys/ins/streams . ins. c ll

#include "/sys/ins/error.ins.c"

status;

/* argument variables */
pgm_$arg name. argument;

/* INVOKE variables */
pgm_$argv argv;
pgm $connv connv;
pgm-$proc handle;

/* CREATE variables */
name_$pname_t pathname;
short name length;
stream_$id_t stream_id;

mainO
{

/* get the input */
printf("Enter the output file pathname:\n");
gets(pathname);
namelength = strlen(pathname);

/* open w/ $CREATE */

stream_$create(pathname.
namelength.
stream_$write.
stream_$controlled_sharing.
stream_id.
status);

check_status(status);

/* load the arguments */
strcpy(name.chars. "pgm passee.bin");
name.len = strlen(name.chars);
strcpy(argument.chars ."test");
argument. len = strlen(argument.chars);

/* load the argument vector w/ addresses */
argv[O] = (int *)~name;
argv[l] = (int *)~argument;

Sample Programs in C A-26

/* access */
/* conc */

1* load connection vector *1
connv[O] = stream_$no_stream; 1* null stream *1
conny [1] = stream id; 1* pass stream-id as std out *1
connv[2] = stream=$errin;
connv[3] = stream_$errout;

pgm_$invoke(Apgm_passee.bin M
, 1* process name *1

(short) 14, 1* name length *1
(short)2, 1* arg count - name I; arg *1
argv, 1* arg vector *1
(short)4, 1* stream count *1
connY, 1* connection vector *1
(short) 0, 1* mode *1
handle, 1* process handle *1
status)

check_status(status);

1* get process termination status *1
pgm_$proc_wait(handle, 1* process handle *1

status);

check status(status); -

}/* end mainO *1
1***1
check_status (status) 1* for error handling *1

status_$t status;
{ if(status.all!= status_$ok)

}

{ error $print(status);
pgm $exitO;

}

A-27 Sample Programs in C

A.IS. PGM YOUR PROC.C

/* This program gets the home directory. SID and UID of */
/* the calling process and gets the information record of */
/* calling process. It also gets the total CPU time it uses.*/

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/procl.ins.C"
#include "/sys/ins/proc2.ins.c"
#include "/sys/1ns/pm.ins.c"
#include "/sys/1ns/error.ins.C"
#include "/sys/ins/type_uids.ins.c"

char
pinteger
char
pinteger
uid $t
proc2 $info t
status $t -
time $ClOCk t
cal_$timedate_rec t

mainO

home[80];
home len;
Sid[80];
sid_len;
uid;
info;
status;
total_time;
d_cloCk;

{ pm_$get_home_txt «short)30.
home.
home_len);

/* maxlen */
/* dir */

/* null terminate returned strings before printing */
home[home_len] = '\0';
printf("home directory %s\n". home);

pm_$get_sid_txt «short)40.
sid.
sid_len);

/* maxlen */
/* dir */

/* null terminate returned strings before printing */
sid[sid len] = '\0';
printf(~sid %s\n". sid);

printf("uid %d %d\n". uid.high. uid.low);

/* process uid
info.
(short)36. /* info buffer length */
status);

if(status.all != proc2 $is current)
error $print(status); -

Sample Programs in C A-28

1* write the information *1
printf("\nstack uid %d\n". info.stack Uid.high);
printf("stack uid %d\n". info.stack uld.low);
printf("stack base %d\n". info.stack base);

if(proc2 $waiting ~ info.state)
printf("state : waiting\n");

if(proc2_$suspended ~ info.state)
printf("state : suspended\n");

if(proc2_$susp_pending ~ info. state)
printf("state : susp_pending\n");

if(proc2_$bound ~ info.state)
printf("state : bound\n");

printf("user sr %d\n". info.usr);
printf("User pc %d\n". info.upc);
printf("user stack pointer %d\n". infO.usp);
printf("sb ptr %d\n". info.usb);

I*decode the time*1
cal_$decode_time (info.cpu_total.

d_clock);

printf ("cum cpu: %d %d %d\n". d_clock.hour.
d_clock.minute.
d_Clock.second);

printf("priority %d\n\n". info.priority);

I*decode the time*1
cal_$decode_time (total_time.

d_Clock);

printf ("GET_CPU total time: %d %d %d\n". d_clock.hour.
d_clock.minute.
d_clock.second);

}/* end main *1

A-29 Sample Programs in C

A.I6. PGM CHILD INFO.C

/* This program gets the amount of time the child has used */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/cal.ins.C"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/proc2.ins.c"
#include "/sys/ins/error.ins.c"

status_$t status;
uid $t proc_uid;
proc2 $info t info; - -
time $clock t total_time;
cal $timedate rec t d_clock;
tim;_$cloCk_t- reI_time;
pgm_$proc handle;

/* process uid
/* information record
/* encoded time
/* decoded time
/* relative amount of time
/* process handle

/* declare and load the standard streams */
pgm_$connv conny = { stream $stdin. stream $stdout.

stream=$errin. stream=$errout };

*/
*/
*/
*/
*/
*/

/***/
mainO
{

pgm_$invoke("calc.bin". /* process name
(short)8. /* name length
(short)O.OL. /* no args
(short)4. /* stream count
conny. /* std streams
(short)O. /* default mode
handle. /* process handle
sta.tus)

check_status(status);

/* wait 10 seconds */

/* convert # of seconds to UTe value *1
cal_$sec_to_clock (10L.

reI_time);

*/
*/
*/
*/
*/
*/
*/

time_$wait (time_$relative.
reI time.
status);

/* pre-defined */
/* time to wait */

check_status(status);

/* resume */

Sample Programs in C A-30

1* get the process uid *1

pgm_$get_puid (handle.
proc uid.
status);

1* process handle *1
1* process uid *1

check_status(status);

1* get process information *1

proc2_$get_info (proc uid.
info.
(short)36.
status);

check_status(status);

1* decode the cpu time *1

1* process uid *1

I*info buffer length *1

cal_$decode_time (info.cpu_total.
d_clock);

printf("Accumulated CPU time of Child %d %d %d\n ll
• d_clock.hour.

d_clock.minute.
d_Clock.second);

1* get child's terminaton status *1

pgm_$proc_wait (handle.
status);

check status(status);
}/* end maine) *1

1* process handle *1

1***1
check_status (status) 1* for error handling *1

status_$t status;
{ if(status.all!= status $ok)

{ error $print(status);
pgm_$exitO;

}

}/* end check status *1

A-31 Sample Programs in C

A.17. STREAM_INQ_REC _LEN.C

/* This program inquires about the attributes of a file. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include II /sys/ins/streams . ins. C"

#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

#define SETSIZE (short)32

status $t
name $pname t - -
short
short

/* INQUIRE variables */
stream_$inquire_mask_t
stream $ir opt
stream-$ir-rec t
stream=$inquire_mask_t

/* $OPEN variables */
stream_$opos_t
stream $omode t
stream=$id_t -

status;
pathname;
name length;
rec_len;

input_mask;
inquiry_type;
attributes;
error_mask;

access;
conc;
stream_id;

error routine 0
{ -

/* for error handling */

}

pgm_$set_severity(pgm_$error);
pgm~$exitO ;

/***/
test_error_mask(error_mask)

stream_$inquire_mask_t error_mask;
{

if(lib $member of set(error mask. SETSIZE. stream_$rec_lgth))
{ - - - -

}

printf("stream $rec 19th in error mask\n");
error_routine(); -

if (lib_$member_of_set(error_mask. SETSIZE. stream_$rec_type))
{

}

printf("stream $rec type in error mask\n");
error_routine(); -

}/*test error mask*/
/***/
mainO
{

/* get the filename */
printf("Input the pathname\n");
gets(pathname);
namelength = strlen(pathname);

Sample Programs in C A-32

I*load name and length into attribute record*1
strcpy(attributes.obj_name , pathname);
attributes.obj_namlen = namelength;

I*get file info by pathname, even though not open*1
inquiry_type = ~tream_$name_unconditional;

I*set attribute bits in mask*1
lib_$init_set(input_mask, SETSIZE);

1* length of largest or fixed record *1
lib_$add_to_set(input_mask, SETSIZE, (short)stream_$rec_lgth);

1* record type, fixed, variable, or undef *1
lib_$add_to_set(input_mask, SETSIZE, (short)stream_$rec_type);

I*inquire by name*1

stream_$inquire (input_mask,
inquiry_type,
attributes,
error mask,
status) ;

if(status.all != status_$ok)
error_routine 0 ;

1* check the error mask *1
test_error_mask(error_mask);

1* test the record type for fixed length *1
if«stream_$rtype_t)attributes.rec_type -- stream_$f2)

rec_Ien = attributes.rec_lgth;
else

error_routine 0 ;

I*open the file*1

}

access = stream_$read;
conc = stream_$controlled_sharing;

stream_$open(pathname,
name length ,
access,
conc,
stream id,
status);

if(status.all != status_$ok)
error_routine 0 ;

stream_$close(stream id,
status);

if(status.all != status_$ok)
error_routine 0 ;

A-33 Sample Programs in C

A.1S. STREAM CHANGE EXP.C

/* This program inquires about the attributes of a file. */
/* redefines an attribute and and inquires to check that */
/* the change took place. */

#include <stdio.h>
#include "/sys/ins/base.ins.c·
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

#define SETSIZE (short)32

status $t status;
name_$pname_t pathname;
short namelength;

/* INQUIRE variables */
stream_$inquire_mask_t
stream_$ir_opt
stream_$ir_rec_t
stream_$inquire_mask_t

/* $OPEN variables */
stream_$opos_t
stream $omode t
stream=$id_t -

/* REDEFINE variables */

input_mask;
inquiry_type;
a.ttributes;
error_mask;

access;
conc;
stream_id;

stream_$redef~mask_t redef_mask;
stream $redef mask t redef error mask;
/***/
mainO
{

/* get the filename */
printf("Input the 'pathname\n");
gets(pathname);
namelength = strlen(pathname);

/* open the file */
access = stream_$write;
conc = stream_$controlled_sharing;

stream_$open (pathname.
name length.
access.
conc.
stream id.
status);

if(status.all != status_$ok)
error_routine 0 ;

Sample Programs in C A-34

1* set proper INQUIRE arguments *1

1* set info bits in mask *1
I*set attribute bits in mask*1

lib_$init_set(input_mask. SETSIZE);

I*explicit type bit*1
lib_$add_to_set(input_mask, SETSIZE, (short)stream_$explicit_type);

inquiry_type = stream_$use_strid; 1* get info by stream *1
attributes.strid = stream_id; 1* provide the stream id *1

1* inquire by stream *1

stream_$inquire (input_mask,
inquiry_type,
attributes,
error mask,
status);

if«status.all != status_$ok) I I
(lib $member of set(error mask, SETSIZE, stream_$explicit_type »)
error_routine(); -

printf
(UExpliCit type was Is\n", (attributes. explici t_type) ? IITRUE" IIFALSE11) ;

I*test returned explicit type*1
if(! attributes.explicit_type)
{

I*set redefinition mask*1
lib $init set(redef mask, SETSIZE);
lib=$add_to_set(redef_mask, SETSIZE, (short)stream_$explicit_type);

1* redefine explicit type *1
attributes.explicit_type = true;

1* change the type *1

stream_$redefine(stream_id,
redef_mask,
attributes,
redef error_mask,
status);

if«status.all != status $ok) I I
(lib $member of set(redef error mask, SETSIZE, stream_$explicit_type »)

-error_routine(); - -

A-35 Sample Programs in C

1* inquire by stream *1

stream_$inquire (input_mask,
inquiry_type,
attributes,
error mask,
status);

if«status.all != status $ok) I I
(lib $member of set(error mask, SETSIZE, stream_$explicit_type)))
error_routine(); -

printf
("Explicit type is now Is\n", (attributes. explicit_type) ? II TRUE"

}

1***1
error routine 0
{ -

pgm_$set_severity(pgm_$error);
pgm_$exitO;

}/* end error routine *1

Sample Programs in C A-36

"FALSE") ;

A.19. STREAM PUT FIXED.C

/* This program creates a file using stream_$create_bin and */
/* prompts for .input to be vri tten as fixed length records. */
/* The address field can be modified using the program update. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"

typedef struct
{ short emp id;

char address[80];
char name[80];

}info_rec_t;

status $t
name_$pname_t
short

status;
pathname;
namelength;

info rec t
char

info_rec; /*data_buffer*/
c;

/* create variables */
stream_$opos_t access;
stream $omode t conc;
stream=$id_t - stream_id;

/* put variables */
stream_$sk_t seek_key;
long buflen;
/***/
mainO
{

/* get the filename */
printf("Input the pathname file to be created:\n");
gets(pathname);

namelength = strlen(pathname);

/* create the file */
access = stream $write;
conc = stream_$controlled_sharing;

stream_$create_bin (pathname.
namelength.
access.
conc.
stream id.
status);

check_status(status);

A-37 Sample Programs in C

1* get record info *1
printf("Input employee name (or ctl z to stop) :\n");
while (gets (info rec.name) != NULL)
{ -

printf("Input employee id #:\n");
scanf("%hd". ~info_rec.emp_id);
for(c = getchar(); c != "\n"; c = getchar());
printf("Input address of employee:\n");
gets(info_rec.address);

1* write record *1
buflen = sizeof(info_rec); 1* Record length is fixed *1

stream_$put_rec (stream_id.
~info_rec.

buflen.
seek_key.
status);

check status(status);
printf("Record written\n");

1* stream-id of open file *1
1* pointer to data buffer *1
1* length of data buffer *1
1* returned seek key *1

printf("Input next employee name (or ctl z to stop) :\n");
}/*while*1

}

1***I
check_status (status) 1* for error handling *1

status $t status;
{ -

if(status.all != status $ok)
{ error_$print(status);

pgm_$exitO;
}

}/* end check status *1

Sample Programs in C A-38

A.20. STREAM PUT V AR.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/error.ins.c"

/* define employee record */
typedef struct
{ short name len;

short emp id;
char name[80];

}info rec_t;

status_$t
name_$pname_t
short
info rec t
char

status;
pathname;
namelength;
info_rec;
c'

/* $OPEN variables */
stream $opos t access;
stream-$omodc. t conc;
stream=$id_t - stream_id;

/* put variables */
stream_$sk_t seek_key;
long buflen;
/***/
mainO
{

/* get the filename */
printf("Input the pathname file to be created:\n H

);

gets(pathname);

namelength = strlen(pathname);

/* create a record-oriented file */
access = stream_$write;
conc = stream_$controlled_sharing;

stream_$create_bin(pathname.
name length.
access.
conc.
stream_id.
status);

check_status(status);

/* get record info */
printf("Input employee name (or ctl z to stop) :\n");
while «gets(info_rec.name» != NULL)
{

put name length();
printf("Input employee id #:\n");
scanf("%hd". ctinfo_rec.emp_id);

A-39 Sample Programs in C

1* eat the newline *1
for(c = getchar(); c != '\n'; c = getchar());

1* put employee id field in the record *1
buflen = sizeof(info_rec.emp~id);
stream_$put_chr (stream_id, 1* id of open stream *1

ainfo_rec.emp_id, 1* pointer to buffer *1
buflen, 1* length of buffer *1
seek_key, 1* returned key *1
status);

1* write name field and terminate record *1

}

buflen = info_rec.namelen; 1* Record length varies with*1
1* length of name field *1

stream_$put_rec (stream_id,
ainfo_rec.name,
buflen,
seek key,
status);

check_status(status);
printf("record written\n");
printf("Input next employee name (or ctl z to stop) :\n");

}/* end while *1

1***1
1* Procedure to calculate the length of the name and put *1
1* the namelen field into the record using STREAM_$PUT_CHR *1
1***1
put name length()
{- -
1* calculate the length of info rec.name *1

info_rec.namelen = strlen(info_rec.name);

buflen = sizeof(info_rec.namelen);

1* put the name length in the record *1

stream_$put_chr (stream_id, I*id of open file*1
ainfo_rec.namelen, I*pointer to buffer*1
buflen, I*length of buffer*1
seek_key, I*returned key*1
status);

check status(status);
}/*put name length*1
1***1
check_status (status)

status_$t status;
{

}

if(status.all != status $ok)
error_$print(status);

Sample Programs in C A-40

A.21. STREAM PUT V AR UASC.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include II Isys/ins/streams. ins. c"
#include "/sys/ins/error.ins.c"

status $t
name_$pname_t
short
char

status;
pathname;
namelength;
line[80];

1* $OPEN variables */
stream_$opos_t access;
stream $omode t conc;
stream=$id_t - stream_id;

/* put variables */
stream_$sk_t seek_key;
long buflen;

mainO
{

/* get the filename */
printf("Input the pathname file to be created:\n");
gets(pathname);

1* calculate the length of pathname */
namelength = strlen(pathname);

/*create the file*/
access = stream_$write;
conc = stream_$controlled_sharing;

stream_$create (pathname.
namelength.
access.
conc.
stream id.
status);

check_status(status);

/* get a line of input */
printf("Input data (or ctl z to stop) :\n");
while(gets(line) != NULL)
{

buflen = strlen(line);
/*terminate line with newline character*/

line[buflen] = '\n';
buflen++;

A-41 Sample Programs in C

I*write the line to a file*1

stream_$put_rec (stream_id.
aline.
buflen.
seek_key.
status);

check status(status);
printf(NRecord written\nN);
printf(Nlnput more info (or ctl z to stop) :\nN);

}/* end while *1
}/* end main *1

check_status (status)

status $t status;
{ -

}

if(status.all != status $ok)
error_$print(status);

Sample Programs in C A-42

A.22. STREAM GET V AR.C

#include <stdio.h>
#include R/sys/ins/base.ins.c R
#include R/sys/ins/streams.ins.c R
#include R/sys/ins/pgm.ins.c"
#include R/sys/ins/error.ins.c"

/* define record buffer */
typedef struct
{ short namelen;

short emp_id;
char name[80];

}info_rec_t;

status_$t
name_$pname_t
short
info rec t
info rec t
long

status;
pathname;
namelength;
info_rec;

*retptr;
retlen;

/* $OPEN variables */
stream_$id_t stream_id;

/* $GET variables */
stream_$sk_t seek_key;
long buflen;

mainO
{

/* get the filename *1
printf(Rlnput the pathname of record structured file to be read:\n");
gets(pathname);
namelength = strlen(pathname);

/* open the file for reading *1

stream_$open (pathname.
name length.
stream_$read.
stream_$controlled_sharing.
stream id.
status);

if(status.all != status_$ok)
error_routine 0 ;

A-43

1* access *1
1* cone *1

Sample Programs in C

1* Enter loop to get and print records *1
while(status.all -- status_$ok)
{

1* get a record *1

stream_$get_ree(stream_id.
ctinfo ree.

(long)sizeof(info_ree).
retptr.
retlen.
seek key.
status);

1* test for EOF *1
if((status.eode == stream_$end_of_file) ctct

(status.subsys == stream_$subs»
break;

if(status.all != status $ok)
error_routine(); -

1* assign returned pointer to buffer *1
info ree = *retptr;

1* print the name and id fields *1
printf("\nname: %.*s\n". info_ree.namelen. info_ree.name);
printf("id: %d\n ll

• info_ree.emp_id);
}/* end while *1

}

error_routine 0
{

pgm $set severity(pgm $error);
pgm=$exit(); -

}

Sample Programs in C A .. 44

A.23. STREAM GET V AR UASC.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams. ins. C ll

#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

#define max lines 1024 /* maximum number of lines */

typedef
char striug[80];

status $t
name_$pname_t
short
string
string
long
char

status;
pathname;
namelength;
line;

*retptr;
retlen;
c;

/* $OPEN variables */
stream_$id_t stream_id;

/* $GET variables */
long
short
short

buflen;
choice_line;
no_of_lines;

/* $SEEK variables */
stream_$sk_t seek_key;
stream $parm1 t seek_base;
stream=$parm2=t seek_type;

/* declare vector to hold seek keys */
stream $sk t seek vector[max lines];
1**1
mainO
{

1* get the filename */
printf("Input the pathname of uasc file to be read:\n");
gets(pathname);
namelength = strlen(pathname);

1* open the file for reading *1

stream_$open (pathname.
name length.
stream_$read.
stream_$controlled_sharing.
stream id.
status);

if(status.all != status_$ok)
error_routine 0;

A-45

1* access */
1* conc *1

Sample Programs in C

1* read the file and fill the seek vector with seek keys *1

no of lines = 0;
wh1le(status.all -- status_$ok) 1* while there is input *1
{

1* read a line *1
stream_$get_rec (stream_id,

.tline,
(long)sizeof(line) ,
retptr,
retlen,
seek key,
status);

1* test for EOF *1
if«status.code == stream $end of file) .t.t

(status.subsys = stream_$subs»)
break;

if(status.all != status $ok)
error_routine(); -

1* increment the vector index *1
no_of_lines++;

1* test for maximum nuber of lines *1
if(no_of_lines <= max_lines)

I*load vector with the returned seek key*1
seek_vector[no_of_lines - 1] = seek_key;

else
{

}

printf("maximum number of lines exceeded\n");
break;

}/* end while*1

1* prompt the user for a line number *1
printf("What number line would you like to see ll

);

printf(" (1 - ~d) (ctl z to stop):\n", no_of_lines);

while«scanf("~hd", .tchoice_line» != EOF)
{

1* eat the newline *1
for(c=getchar(); c != '\n'; c = getchar(»;

1* test to see if the chosen line is in range *1
while«choice_line <= 0) I I (choice_line> no_of_lines»
{

printf("line number out of range enter a number");
printf(" between 1 and ~d:\nH, no_of_lines);
scanf("~hd", .tchoice_line);

1* eat the newline *1
for(c = getchar(); c != '\n'; c = getchar(»;

}/* end while *1

Sample Programs in C A-46

I*load the seek key using the vector*1
seek_key = seek_vector[choice_line - 1];

stream_$seek (stream_id.
stream $key.
stream=$absolute.
seek key.
status);

if(status.all != status_$ok)
error_routine 0 ;

1* seek base *1
1* seek_type *1

1* read the line *1
stream_$get_rec (stream_id.

i:line.
(long)sizeof(line).
retptr.
retlen.
seek_key.
status);

if(status.all != status $ok)
error_routine 0 ;

1* print the line *1
printf("%.*s\n".retlen. retptr);

1* prompt for next line *1
printf("What number line would you like to see");
printf(" (1 - %d) (ctl z to stop) :\n". no_of_lines);

}/* end while *1
}/* end main *1
1**1
error_routine() 1* for error handling *1
{

}

pgm_$set_severity(pgm_$error);
pgm_$exitO;

A-47 Sample Programs in C

A.24. STREAM UPDATE.C

/* PROGRAM stream_update.c */

/* This program opens a stream to a file of fixed length records */
/* created by the program put_fixed. The records are sequentially */
/* counted and written. The user is given the option of randomly */
/* modifying the address of any employee. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.C"
#include "/sys/ins/error.ins.c"

#define SETSIZE (short)32

/* define the record buffer */
typedef struct
{ short emp id;

char address[80];
char name[80];

}info rec_t;

status_$t
name_$pname_t
short
info rec t
info rec t
long
stream_$id_t

/* $GET variables */
stream_$sk_t
long

status;
pathname;
namelength;
info_rec;

*retptr;
retlen;
stream_id;

seek_key;
buflen;

/* INQUIRE/REDEFINE variables*/
stream $inquire mask t input_mask;
stream-$ir opt - - inquiry_type;
stream_$ir_rec_t attributes;
stream_$inquire_mask_t error_mask;
long choice_rec; /* the record number user wants changed */
short no_of_recs; /* # of records in file */
char response; /* Y to modify record. N to leave as is */
char

mainO
{

/* get the filename */

c·

printf("Input pathname of record structured file to be updated:\n");
gets(pathname);
printf("\n");
namelength = strlen(pathname);

Sample Programs in C A-48

1* open the file *1

stream_$open (pathname,
name length ,
stream_$update, 1* update access *1
stream_$no_conc_write, 1* no other writers *1
stream id,
status);

check_status(status);

1* set explicit move mode *1

attributes.explicit_ml = true;

stream_$redefine (stream_id,
input_mask,
attributes,
error mask,
status);

check_status(status);

1* Read and print records and record numbers*1
1* while there is input and no problems *1

while(status.all == status $ok)
{ buflen = sizeof(info_rec); 1* Record length is fixed *1

stream_$get_rec (stream_id,
.tinfo rec,

(long)sizeof(info rec) ,
retptr,
retlen,
seek_key,
status);

if«status.code == stream $end of file) .t.t
(status.subsys -- stream $subs)
break;

else
check_status(status);

1* increment and print the record number *1
no of recs++;
pr1ntf(URecord # ~d\nU, no_of_recs);

1* load the record buffer *1
info rec = *retptr;

1* print the employee id, name and address *1
printf("employee # ~d\nU ,info_rec.emp_id);
printf (" name : ~s\nll, info_rec. name) ;
printf (iladdress: ~s\n\n·I, info_rec. address);

A-49 Sample Programs in C

1* update the addresses *1

printf(UWhat number record would you like to updateU);
printf(" (1 - %d) (ctl z to stop):\n u • no_of_recs);

while(scanf(U%d R
• &ChoiCe_rec) != EOF)

{

1* eat the newline *1
for(c = getchar(); c != '\n'; c = getchar(»;

1* test record choice *1
while«choice rec <= 0) I I (choice_rec > no_of_recs»
{ -

printf(lIrecord number out of range enter a number");
printf(H between 1 and %d :\n". no_of_recs);
scanf("%d", &choice_rec);

1* eat the newline *1
for(c = getchar(); c != '\n'; c = getchar(»;

}/* end while *1

1* position to specified record - absolute record seek *1

stream_$seek (stream_id.
stream_$rec. I*seek base*1
stream_$absolute. l*seek=type*1
choice_rec. I*offset *1
status);

check_status(status);

1* read the record *1
stream_$get_rec (stream_id.

&info rec.
(long)sizeof(info_rec).
retptr.
retlen.
seek_key,
status);

check_status(status);

1* load the record buffer *1
info rec = *retptr;

1* print the employee id. name and address *1
printf("employee # %d\n".info_rec.emp_id);
printf("name: %s\n". info rec.name);
printf("address: %s\n\n".-info_rec.address);

1* prompt for confirmation *1
printf("Would you like to update the address?U);
printf(U (Y or N): \n");
response = getchar();

Sample Programs in C A-50

1* eat the newline *1
for(c = getchar(); c != '\n'; c = getchar(»;

if«response == ,y,) I I (response == 'y'»
{

printf("Enter the new address (on one line): n);
gets(info_rec.address);

1* reposition to beginning of the record *1

stream..:.$seek (stream id.
stream=$rec. 1* seek base *1
stream $absolute.l* seek_type *1
choice=rec. 1* offset *1
status);

check_status(status);

1* update the record *1

stream_$replace (stream_id.
Atinfo rec.

(long)sizeof(info rec).
seek key.
status);

check status(status);
printf(Hrecord updated\n H);

}/* end if *1

1* prompt for next record to be updated *1

}

printf("What number record would you like to update ll
);

printf(" (1 - Id) (ctl z to stop) :\nH. no_of_recs);

} 1* end while *1

1**1
check_status (status)

status_$t status;
{

}

if(status.all != status$ok)
error_$print(status);

A-51 Sample Programs in C

A.2S. STREAM WRITE TAPE.C

/* This program creates a magtape descriptor file */
/* and accesses thru STREAM calls */

#include <stdio.h>
#include H/sys/ins/base.ins.c H
#include "/sys/ins/streams.ins.cH
#include "/sys/ins/error.ins.c·
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/mts.ins.c"

typedef
char string[80];

/* $CREATE DEFAULT DESC variables */
status $t - -status;
name_$pname_t pathname;
short namelength;
mts_$handle_t handle;

/* $CLOSE variables */
boolean update;

/* $GET_ATTR variables */
mts_$attr_value_t value;

/* STREAM $OPEN variables */
stream~$id_t stream_id;

/* $PUT_REC variables */
string buffer;
string *buf_pointer;
long buf_length;
stream_$sk_t seek_key;

mainO,'
{
/*load CRE_DEF_DESC variables*/

printf("Input a. new descriptor file pathname:\n");
gets(pathname);
name length = strlen(pathname);

handle = mts_$create_default_desc (pathname.
namelength.
status);

check_status(status);

/* turn off the newline handling */
value.b = false;
mts $set attr(handle.

- - mts_$ascii_nl_a.
value.
status);

check_status(status);

Sample Programs in C A-52

I*indicate an update parameter*1
update = true; 1* modify *1

mts_$close_desc(handle.
update.
status);

check_status(status);

1* open the first tape file *1

stream_$open (pathname.
namelength.
stream_$write.
stream_$controlled_sharing.
stream id.
status);

check_status(status);

1* write to the tape file *1
wr1te_to_tape_file();

1* close first tape file wI $CLOSE *1

stream $close (stream id.
- status);

check_status(status);

1* access *1
1* concurrency *1

1***1

1* change the tape file number*1

1* open the descriptor file for modification *1
handle = mts_$open_desc (pathname.

name length.
mts $write. l*access*1
status);

check_status(status);

1* get the current file number *1

mts_$get_attr (handle.
mts_$file_sequence_a. I*file number*1
value.
status);

check_status(status);

1* increment the tape file number *1
(value.i)++;

1* set new file number *1

mts_$set_attr (handle.
mts_$file_sequence_a. I*file number*1
value.
status);

cheCk_status(status);

A-53 Sample Programs in C

I*close the descriptor file wI modifications *1
update = true;

mts_$close_desc (handle.
update.
status);

check_status(status);

1***1
1* open the second tape file *1

stream_$open (pathname.
name length.
stream_$write.
stream_$controlled_sharing.
stream id.
status);

check_status(status);

1* write to the tape file *1
write_to_tape_file();

I*close second tape file wI $CLOSE*I

stream_$close (stream_id.
status);

check status(status);
}/* end main *1

1********************************1
write_to_tape_file()
{

1* get the input *1
printf(IIInput data\n ll

);

gets(buffer);
while (true)
{

I*write to file wI $PUT REC*I
buf length = strlen(buffer);
bUf-pointer = (string *)~buffer;

stream_$put_rec (stream_id.
buf_pointer.
buf_length.
seek key.
status);

check_status(status);

printf (11\nlnput data\n lJ
);

if(gets(buffer) == NULL)
break;

}/* end while *1
}/* end write_to_tape_file *1

Sample Programs in C A-54

l*access*1
l*concurrency*1

1***I
check_status (status) 1* for error handling *1

status_$t status;
{

if(status.all != status $ok)
{ error $print(status);

pgm_$exitO;
}

}/* end check status *1

A-55 Sample Programs in C

A.26. STREAM READ TAPE.C

/* This program opens a magtape descriptor file */
/* and reads thru STREAM calls */

#include <stdio.h>
#include "/sys/ins/base.ins.C"
#include II /sys/ins/streams. ins. c"
#include "/sys/ins/error.ins.C"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/mts.ins.c"

typedef
char string[80];

/* $OPEN_DESC
status $t
name_$pname_t
short
mts_$handle_t

variables */
status;
pathname;
namelength;
handle;

/* $CLOSE_DESC variables */
boolean update;

/* $OPEN variables */
stream_$id_t stream_id;

/* $GET_ATTR variables */
mts_$attr_value_t value;

/* GET variables */
string
string
short
string
long
stream_$sk_t
short
short
char

buffer;
*buf_pointer;

buf_length;
*ret_pointer;
ret_length;
seek_key;
get;
number_of_recs;
c;

/***/
mainO
{

printf("Input the descriptor file pathname:\n ll
);

gets(pathname);
namelength = strlen(pathname);

/***/

/* set the file number to the beginning of the file */

/* open the descriptor file for reset */
handle = mts_$open_desc (pathname.

name length,

check_status(status);

Sample Programs in C

mts $write, /* access */
status);

A-56

1* set file number to 1 *1
mts_$set_attr (handle.

mts_$file_sequence_a.
lL.
status);

check_status(status);

1* file number *1
1* value *1

I*close the descriptor file wI modifications *1
update = true;

mts_$close_desc (handle.
update.
status);

check_status(status);

1***/

I*open the first tape file*1

stream_$open (pathname.
namelength.
stream $read.
stream=$controlled_sharing.
stream id.
status);

check_status(status);

1* read from the tape file*1
read_from_tape_file();

1* 'close file wI $CLOSE *1
stream_$close(stream_id.

status);

check_status(status);

1* access *1
1* concurrency *1

1***1

I*advance the tape file number*1

1* open the descriptor file for modification *1
handle = mts_$open_desc (pathname.

namelength.

check_status(status);

mts_$write. 1* access *1
status);

1* get the current file number *1

mts_$get_attr (handle.
mts_$file_sequence_a. 1* file number *1
value.
status);

check_status(status);

A-57 Sample Programs in C

1* increment the tape file number *1
(value.i)++;

1* set new file number *1
mts_$set_attr (handle.

mts_$file_sequence_a. I*file number*1
value.
status);

check_status(status);

I*close the descriptor file wI modifications *1
update = true;

mts_$close_desc (handle.
update.
status);

check_status(status);

1***1

I*open the second tape file*1

stream_$open (pathname.
name length.
stream_$read.
stream_$controlled_sharing,
stream_id.
status);

check_status(status);

1* read from the tape file*1
read_from_tape_file();

1* close file wi $CLOSE *1
stream $close (stream id.

- status);

check status(status);
}/* end main *1

1* access *1
1* concurrency *1

1***I
read_from_tape_file() 1* for reading from tape files *1
{

printf("Input the number of records to read\n");
scanf(l%hd".Atnumber of recs);
while«c = getchar(» != '\n');

1* get records *1
buf_pointer = (string *)Atbuffer;
buf_length = 256;

Sample Programs in C A-58

for(get = 1; get<= number_of_recs; get++)
{

stream_$get_rec (stream_id.
buf_pointer.
buf_length.
ret_pointer.
ret_length.
seek_key.
status);

check_status(status);

1* write the record to std output *1
printf ("".*s\n\n ll

• ret_length. *ret_pointer);

}/* end for *1
}/* end read_from_tape_file() *1

1***I
check_status (status) 1* for error handling *1

status $t status;
{ -

if(status.all != status $ok)
{ error $print(status);

pgm $;xitO;
}

}/* end check status *1

A-59 Sample Programs in C

A.27. STREAM SIO ACCESS.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/sio.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"

/* $OPEN variables */
status $t status;
name_$pname_t pathname;
short name length;
stream_$id_t stream_id;

/* SIO_$ variables */
sio_$value_t value;

/**/
mainO
{

printf("Input the SIO line pathname\n");
gets(pathname);
namelength = strlen(pathname);

stream_$open (pathname.
name length.
stream_$write. /* access *1
stream_$no_conc_write. /* concurrency */
stream id. 1* stream id */
status);

check_status(status);

/* INQUIRE host-synch */

sio_$inquire (stream_id.
sio_$host_sync. /* inquired option */
value. /* returned value *1
status);

check_status(status);

Sample Programs in C A-60

printf("The host synch value is %s\n". (value.b) ? "TRUE"
if(value.b == true)
{

value.b = false; 1* turn off host-synch *1

Sio_$control (stream_id.
Sio_$host_sync.
value,
status);

check_status(status);

1* INQUIRE new host-synch *1

sio_$inquire(stream_id,
Sio_$host_sync, 1* option *1
value,
status);

if(status.all != status_$ok)
error_$print(status);

printf("The host_synch value has been changed to: %s\n" ,
(value. b) ? "TRUE" : "FALSE");

}/* end if *1
}/* end main *1
1**1
check_status (status)

status $t status;
{ -

if(status.all != status $ok)
{ error $print(status);

pgm $exitO;
}

}

"FALSE") ;

A-61 Sample Programs in C

A.2S. STREAM MBX CLIENT.C

#include <stdio.h>
#include u/sys/ins/base.ins.c u
#include II /sys/ins/streams. ins. c N

#include u/sys/ins/error.ins.c u

status_$t
stream_$id_t
stream_$sk_t
short
short
long
short

mainO
{

status;
stream_id;
seek_key;
buffer;

*retptr;
retlen;
i;

/* Open the mailbox. */

stream_$open ("mailboxu•
(short)7.
stream $append.
stream=$unregulated.
stream_id.
status);

check_status(status);

/* Transmit some data. */
for(i=l; i<=3; i++)
{

buffer = i;
printf(USending %d\n u. buffer);

stream_$put_rec (stream_id.

/* access */
/* concurrency */

ctbuffer.
(long)sizeof(buffer).
seek key.
status);

check_status(status);
}/* end for */

/* Make the client wait with an open channel */

stream_$get_rec (stream_id.
ctbuffer.

(long)sizeof(buffer).
retptr.
retlen.
seek_key.
status);

check_status(status);

Sample Programs in C A-62

1* Close the channel. *1
stream_$close(stream id,

status);

check status(status);
}/* end main *1

check_status (status)

status_$t status;
{

}

if(status.all != status $ok)
error_$print(status);

A-63 Sample Programs in C

A.2D. STREAM LIST LINKS.C

/* reads a directory and extracts entry names using streams */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/streams.ins.c"

status $t status;
name_$pname_t dir_name;
short name length;
stream $id t stream_id;
stream=$sk=t seek_key;
stream $dir entry t buffer;
stream=$dir=entry=t *retptr;
long retlen;
/***/
MainO
{

printf("FOr which directory do you wish to list links?\n");
gets(dir_name);

namelength = strlen(dir_name);

stream_$open(dir_name.
name length.
stream_$read.
stream_$unregulated.
stream id.
status);

printf("The links in %s are;\n". dir_name);

while(status.all == status $ok) /* while there is input */
{ -

stream_$get_rec (stream_id.
I;buffer.

stream_$dir_entry_size.
retptr.
retlen.
seek key.
status);

/* test for EOF */
if«status.code -- stream $end of file) 1;1;

(status.subsys -- stream_$subs))
break;

check_status(status); /* test for other errors */

Sample Programs in C A-64

/* test for link - write the name */
if(retptr->enttype == stream_$dir_enttype_link)

printf(UI.*s\nN.retptr->entlen. retptr->entname);
}/* end while */

}/* end main */

check status(status)
/***/
status $t status;
{ -

if(status.all != status $ok)
error_$print(status);

}/* end check_status */

A-65 Sample Programs in C

A.30. PAD MAKE WINDOWS.C

/* This program makes an original transcript pad and window. and */
/* associates other window panes with it. */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.C"
#include "/sys/ins/error.ins.c·
#include "/sys/ins/streams. ins. cit
#include "/sys/ins/cal.ins.C"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/time.1ns.c"
#list

#define display_unit
#define window count
#define auto close

stream_$id_t
stream $id t
stream=$id=t
stream_$sk_t
pad_$window_desc_t
pad_$window_list_t
short
status_$t
name_$pname_t
short
short

(short) 1
1
true

source_stream;
input_stream;
edit_stream;
seek_key;
window;
window_list;
window_size;
status;
pathname;
namelength;
count;

/* == Internal Procedure == */
check status(status)
status $t status;
{ 1f(status.all!= status_$ok)

{ error_$print(status);
pgm_$exitO;

}

}/* end check_status() */
/* -- Internal Procedure == */

/* This internal procedure is added only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

hold_display 0
{

time_$clock_t
status_$t

reI_time;
status;

Sample Programs in C A-66

time_$wait (time_$relative.
reI time.
status);

check_status(status);
}/* end hold_display() *1

1* Time to wait

1* == MAIN PROGRAM === *1
mainO
{

1* Set position of future window. *1

window. top = 150;
window. left = 150;
window.width = 450;
window. height = 450;

1* Create original transcript pad and window. *1

pad_$create_window((char *)NULL.
(short)O.
pad_$transcript.
display_unit.
window.

1* No pathname for transcript pad *1
1* No name length for transcript pad *1
1* Type of pad *1
1* Number of display unit *1
1* Position of window *1

source stream.
status);

1* Returns stream id *1
1* Completion status *1

check_status(status);

1* Close window when stream closes. *1

pad_$set_auto_close (source_stream.
window_count.
auto close.
status);

check_status(status);

1* Stream id *1
1* Number of window *1
1* Flag -- set to true *1
1* Completion status *1

1* Make an edit pane at the bottom of the window. *1

pad $create ((char *)NULL. 1* Null pathname for input window
(short)O. 1* Null name length
pad_$input. 1* Type of pad
source stream. 1* Same stream id as window
pad_$bottom. 1* New pane position on original pad
(short)O. 1* Pane height relative to original pad
(short)20. 1* Height maximum is 20% of original pad
input_stream. 1* Returns stream id of window pane
status); 1* Completion status

check_status(status);

1* Get pathname from keyboard and set values of pathname. namelength. *1
printf(IIType in the pathname of the file:\nll);
gets(pathname);
namelength = (short)strlen(pathname);

*1
*1
*1
*1
*1
*1
*1
*1
*1

A-67 Sample Programs in C

1* Make an edit pane for the rest of the window below *1
1* the frame and associate it with specified file. *1

pad_$create (pathname.
name length.
pad $edit.
source stream.
pad $top.
(short)O.
(short)60.
edit stream.
status);

check_status(status);

1* Same stream id as window *1
1* New pane position on original pad *1
1* Pane height relative to original pad *1
1* Hght: 60% of original pad minus input pad *1
1* Returns stream id of window pane *1

1* Close edit pad when stream closes. *1

pad_$set_auto_close(edit_stream.
window_count.
auto close.
status);

check status(status);
hOld_displayO;

1* Close the streams. *1
stream $close(edit stream.

}

- status);
check_status(status);

stre,am_$close (input_stream.
status);

check_status(status);

stream $close(source stream.
- status-);

check_status(status);

Sample Programs in C A-68

A.31. PAD_INQ_ WINDOW _SIZE.C

/* This program gets information about size of windows to open pad. */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c·
#include "/sys/ins/pad.ins.c·
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/error.ins.c"
#list

10 #define max windows
#define font size (char *)NULL /* No need for font pathname */

pad_$window_list_t
short
short
short
pad_$string_t
short
short
status_$t
short

window_info;
n_windows;
width_scale;
height_scale;
font_name;
font_len;
bottom, right;
status;
i;

/* == Internal Procedure == */
check status(status)
status $t status;
{ if(status.all!= status $ok)

{ error $print(status);
pgm_$exitO;

}

}/* end check_status() */

mainO
{

/* Set scale to 1,1 to get width and height in raster units. */

pad_$set_scale (stream $stdout,
(short) 1,
(short) 1,
status);

check_status(status);

/* Get window information about user's standard output stream. */

pad_$in~windows (stream_$stdout,
window_info,
max_windows,
n windows.
status);

check_status(status);

/* Standard output (display) */
/* Current position of window */
/* Maximum no. of windows desired */
/* Number of windows open to pad */
/* Completion status */

A-69 Sample Programs in C

printf("\n === \n");
if(n windows == 1)

printf(" One window is open to this pad.\n\n");
else

printf(" There are Id windows open to this pad.\n\n", n_windows);

1* Write window information for each window open to current pad. *1
for(i=O; i<n windows; i++)

}

{ bottom =-window_info[i] . top + window info[i] . height;
right = window_info[i] .left + window=info[i] .width;
printf(U Window Id\n u , i+1);
printf(H----------\n\nU);

}

printf(" Upper left corner is at positionH);
printf(" (ld,ld)\n", window_info[i] .left, window_info[i] .top);
printf(H Lower right corner is at position");
printf(" (ld,ld)\n", right, bottom);
printf
(H Width of window = Id (raster units)\n", window_info[i] .width);
printf
(" -Height of window = Id (raster units)\n\n", window_info[i] .height);

printf(" == \n");

Sample Programs in C A-70

A.32. PAD FULL WINDOW SHOW.C

/* This program uses PAD calls to manipulate full windows. */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/pgm.ins.C"
#include "/sys/~ns/error.ins.C"
#list

#define no border

stream_$id_t
status $t
pad_$w1ndoW_desc_t
pad_$window_list_t
short
short
pad_$window_desc_t

false

stream_one;
status;
window;
windowlist;
winlistsize;
Window_no;
newwindow;

/* == Internal Procedure == */
check status(status)
status $t status;
{ if(status.all!= status $ok)

{ error $print(status);
pgm_ $exi to;

}

}/* end check_status() */

/* -- Internal Procedure == */

/* This internal procedure is added only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

hold_display 0
{

time $clock t
status_$t -

reI_time;
statu~;

time_$wait (time_$relative,
reI_time,
status);

check status(status);
}/* end hOld_display() */

/* Convert secs to UTC value */

/* Time to wait */

A-71 Sample Programs in C

1* == MAIN PROGRAM == *1
mainO
{

1* Set original position of windows. *1
window. top = 25;

}

window. left = 600;
window.width = 600;
window.height = 300;

pad_$create_window ((char*) NULL.
(short)O.
pad_$transcript.
stream_$stdout.
window.
stream_one.
status);

check status(status);
hold_display 0 ;

pad_$in~windows (stream_one.
window1ist.
win1istsize.
window no.
status-);

check_status(status);

pad_$make_invisib1e(stream_one.
window no.
status-);

check_status(status);

pad_$in~fu11_window (stream_one.
window_no.
newwindow.
status);

check_status(status);

pad_$set_fu11_window (stream_one.
window_no.
newwindow.
status);

check status(status);
hold display 0 ;

pad_$make_inVisib1e (stream_one.
window no.
status-);

check_status(status);

Sample Programs in C A-72

A.33. PAD WINDOW SHOW.C

/* This program shows how to pop and push windows. *1
/* make a window visible and invisible. and remove *1
/* a window border. *1

#include <stdio.h>
#include u/sys/ins/base.ins.c u
#include u/sys/ins/pad.ins.c u
#include u/sys/ins/error.ins.c u
#include "/sys/ins/streams.ins.c"
#include u/sys/ins/pgm.ins.c u

#define display_unit
#define auto close
#define no border
#define pop
#define push

stream_$id_t
stream_$id_t
stream_$id_t
stream $id t
pad $window desc t
pad-$window-desc-t
pad=$window=desc=t
short
short
short
pad $window list t
status_$t - -

(short) 1
true
false
true
false

stream_one;
stream_two;
stream_three;
pane_stream;
window_one;
window_two;
window_three;
window_no 1 ;
window_no2;
window_no3;
window_list;
status;

/* == INTERNAL PROCEDURE == */
check_status (status)
status $t status;
{ if(status.all!= status $ok)

{ error $print(status);
pgm_$;xitO;

}

}/* end check_status() */

/* == MAIN PROGRAM == */
mainO
{

/* Set the original positions of the windows. */

window_one. top = 10;
window one. left = 550;
window one.width = 300;
window_one.height = 300;

window_two. top = 350;
window two. left = 175;
window two. width = 300;
window_two.height = 300;

A-73 Sample Programs in C

window_three. top = 300;
window three. left = 300;
window three.width = 300;
window_three.height = 300;

1* Create three transcript pads with full windows. *1

pad_$create_window((char *)NULL,
(short)O,
pad_$transcript,
display_unit,
window_one,
stream one,
status);

check_status(status);

pad_$create_window((char *)NULL,
(short)O,
pad_$transcript,
display_unit,
window_two,
stream two,
status);

check_status(status);

pad_$create_window((char *)NULL,
(short)O,
pad_$transcript,
display_unit,
window_three,
stream three,
status);

check_status(status);

1* Get value of window nol window_no2 and window_no3 for next calls. *1

pad_$in~windows(stream_one,
window list,
(short)O,
window_nol,
status);

check_status(status);

pad_$in~windows(stream_two,
window list,
(short)O,
window_no2,
status);

check_status(status);

Sample Programs in C

1* Stream id *1
1* Location, size of window *1
1* No need for position info *1
1* Returns no of windows *1
1* Status code *1

1* Stream id *1
Location, size of window *1
No need for position info *1
Returns no of windows *1

1*
1*
1*
1* Status code

A-74

*1

pad_$in~windows(stream_three. 1* Stream id *1
window list. 1* Location. size of window *1
(short)O. 1* No need for position info *1
window_no3. 1* Returns no of windows
status); 1* Status code

check_status(status);

1* Make windows close when stream closes. *1

pad_$set_auto_close(stream_one.
window_no!.
auto_close.
status);

check_status(status);

pad_$set_auto_close(stream_two.
window_no2.
auto close.
status);

check_status(status);

pad_$set_auto_close(stream_three.
window_no3.
auto_close.
status);

check_status(status);

1* Remove border from the last window. *1

pad_$set_border(stream_three.
window_no3.
no_border.
status);

1* Push the last window open to the bottom. *1

pad_$pop_push_Window(stream_three.
window_no3.
push.
status);

check_status(status);

1* Pop the last window open to the top. *1

pad_$pop_push_window(stream_three.
window_no3.
pop.
status);

check_status(status);

A-75

*1
*1

Sample Programs in C

1* Make the second window invisible. *1

pad_$make_invisible(stream_two.
window n02.
status);

check_status(status);

1* Make the first window invisible. *1

pad_$make_invisible(stream_one.
window nOl.
status);

check_status(status);

1* Make the first window visible again. *1

pad_$select_window(stream_one.
window nOl.
status);

check_status(status);

1* Create pad on borderless window. note that *1
1* in doing so. the border re-appears. *1

pad $create((char *)NULL.
(short)O.
pad_$input.
stream three.
pad_$bottom.
(short)O.
(short) 20.
pane_stream.
status);

check_status(status);

1* Close streams before terminating program. *1

}

stream_$close(stream one.
status);

check_status(status);

stream_$close(stream two.
status);

check_status(status);

stream_$close(stream three.
status);

check_status(status);

Sample Programs in C A-76

/*Thls program gets lnformatlon about the user's dlsplay type and keyboard. */

#nollst
#lnclude "/sys/lns/base.lns.c"
#lnclude "/sys/lns/pad.lns.c"
#include "/sys/lns/error.lns.c"
#lnclude "/sys/lns/vfmt.lns.c"
#lnclude "/sys/lns/pgm.lns.c"
#lnclude "/sys/lns/cal.lns.c"
#lnclude "/sys/lns/tlme.lns.c"
#llst

#deflne max wlndows
#deflne font slze
#deflne buffer

status_$t
pad_$dlsplay_type_t
short
pad_$strlng_t
short

10
o
256

status;
dlsplay_type;
unit_number;
kbd_sUffix;
sUffix_length;

/* == INTERNAL PROCEDURE ====================================== */
check_status (status)
status $t status;
{ if(status.all!= status_$ok)

{ error $print(status);
pgm_$exl t O;

}

}/* end check_status() */
/* -- Internal Procedure == */

/* This internal procedure is added only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

hold_display 0
{
tlme_$clock_t

time_$wait (tlme_$relative.
reI time.
status);

check status(status);
}/* end hOld_display() */

/* Convert secs to UTC value */

/* Time to walt

A-77 Sample Programs in C

1* == MAIN PROGRAM === *1
mainO
{

pad_$in~disp_type (stream_$stdout. 1* Standard output stream - display *1
display_type. 1* Returns type of display *1
unit number. 1* Returns unit number. always 1 *1
status); 1* Completion status *1

check_status(status);

printf (II \n == \n II) ;
printf(1I Number of display units: \n\n");

if(unit_number == 1)
printf (II There is one display unit connected to this node. \n II);

else
printf(" %d display units are connected to this node\n",unit_number);

prin tf (II == \n II) ;
printf(" Type of display: \n\n");
switch (display_type)
{ case pad_$bW_15P:

printf(" This is a black and white portrait. \n");
break; .

case pad_$bW_19L:
printf(" This is a black and white landscape. \n");
break;

case pad_$color_display:
printf(" This is a color display (1024 x 1024 pixels) .\nll);
break;

case pad_$800_color:
printf("This is a color display (1024 x 800 pixels) .\n");
break;

case pad $none:
printf(" There is no display. \nll);
break;

default:
printf ("ERROR - UNKNOWN DISPLAY TYPE\nll);
break;

}/* end switch *1

1* Find out which keyboard is in use. *1

pad_$in~kbd (stream_$stdout, 1* Standard output stream
buffer, 1* Size of string buffer
kbd_suffix. 1* Returns keyboard suffix
suffix_length. 1* Returns keyboard suffix
status); 1* Completion status

check status(status);

string
length

prin tf (II == \n II) ;

Sample Programs in C A-78

*1
*1
*1
*1
*1

if(suffix leng~h == 0)
{ prin~f(IIThe keyboard sufffix is O\nH);

prin~f(IIUser has ~he low-profile keyboard.\nH);
}

else
{

if(kbd suffix[suffix leng~h - 1] == '2')
{ prin~f("Keyboard-suffiX is \"%.*s\"\n" .sUffix_leng~h.kbd_SUffix);

prin~f(II\n User has ~he 880 keyboard.\n");
}

else
prin~f(1I No~ sure which keyboard is in use.\n");

}/* end else *1
1* Redefine ~he keyboard func~ion keys. *1

if«sUffix_leng~h == 0) I I (kbd_suffix[SUffix_leng~h - 1] == '2'»
{ prin~f(II\n Redefining low-profile func~ion keys. \n");

"F1
"TT "
(shor~)2.
s~a~us);

check_s~a~us(s~a~us);

hold_display 0 ;
}/* end if *1

1* S~ream id *1
1* Keyname *1
1* DM command -- ~o ~op of window *1
1* Leng~h of DM command *1

prin~f("\n === \n");
}/*end maine) *1

A-79 Sample Programs in C

A.35. PAD SCALE.C

/* PROGRAM pad_scale.c */

/* This program is a sample of using PAD_$SET_SCALE. */
/* It creates window one with a transcript pad that is 5 lines high.*/
/* The second window created has a transcript pad that is 20 raster */
/* units high. */

#include <stdio.h>
#include </sys/ins/base.ins.c>
#include </sys/ins/pad.ins.c>
#include </sys/ins/error.ins.c>
#include </sys/ins/streams.ins.c>
#include </sys/ins/pgm.ins.c>
#include </sys/ins/cal.ins.c>
#include </sys/ins/time.ins.c>

#define display_unit
#define auto close
#define window no

(short) 1
true
(short) 1

seek_key;
stream_one;

stream_$sk_t
stream $id t
stream=$id=t
stream_$id_t
stream_$id_t
status_$t
pad_$window_desc_t
pad_$window_desc_t
pad_$window_list_t
short

stream_two;
pane_stream_one;
pane_stream_two;
status;
window_one;
window_two;
window_list;
window_size;

/* Array of up to 10 windows */
/* Maximum no. of windows desired */

/* == INTERNAL PROCEDURE == */
check status(status)
status $t status;
{ if(status.all!= status_$ok)

{ error_$print(status);
pgm_ $exi to;

}

}/* end check_status() */

/* -- INTERNAL PROCEDURE == */

/* This internal procedure is used only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

hold_display 0
{

time_$clock_t

cal_$sec_to_clock (3L.
reI_time);

Sample Programs in C

/* Convert secs to UTC value */

A-80

time_$wait (time_$relative,
rel time,
status);

check_status(status);

}/* end hold_display() *1

1* Time to wait

1* == MAIN PROGRAM == *1
mainO
{

window_one. top
window one.left
window one.width
window_one.height

window_two. top
window two. left
window two.width
window_two.height

= 100;
= 100;
= 300;
= 300;

= 550;
= 550;
= 300;
= 300;

1* = ONE == *1

1* Open the window as a transcript pad. *1

pad_$create_window ((char *) NULL ,
(short)O,
pad_$transcript,
display_unit,
window_one,
stream one,
status);

check_status(status);

pad_$create ((char *)NULL,
(short)O,
pad_$transcript,
stream one,
pad_$top,
pad_$abs_size,
(short)5,
pane_stream_one,
status);

check_status(status);

1* Pad is absolute value *1
1* 5 lines high *1

1* = TWO == *1

1* Open the window as a transcript pad./ *1

pad_$create_window ((char *) NULL ,
(short) 0,
pad_$transcript,
display_unit,
window_two,
stream two,
status);

A-81 Sample Programs in C

check_status(status);

1* Set scale of window two height and width to be in raster units. *1

}

pad_$set_scale (stream_two.
(short) 1.
(short) 1.
status);

check_status(status);

pad $create ((char *)NULL.
(short)O.
pad_$transcript.
stream two.
pad_$top.
pad_$abs_size.
(short)20.
pane_stream_two.
status);

check_status(status);

hold_display 0 ;

pad_$set_auto_close (stream_two.
window_no.
auto close.
status);

check_status(status);

pad_$set_auto_close (stream_one.
window_no.
auto close.
status);

check_status(status);

stream_$close(stream one.
status);

check_status(status);

stream_$close(stream two.
status);

check_status(status);

Sample Programs in C

1* Pad absolute size *1
1* Raster units *1

A-82

A.36. PAD INQ FONT.C - -

/* This program is a sample of using PAD_$SET_SCALE, and PAD_$INQ_FONT. */
/* It creates a window and frame and writes the prompt, #, within the */
/* frame. It uses PAD_$INQ_FONT to find out how high to make the frame. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/streams. ins. C ll

#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/time.ins.c"

#define display_unit
#define max windows
#define prompt_str
#define auto close

stream $sk t
stream=$id=t
status $t
pad_$wlndow_list_t
short
short
short
short

(short) 1
1
"# "
true

seek_key;
pane_stream;
status;
window_info;
n_windows;
font_len;
font_height;
font_width;

/* == Internal Procedure == */
check status(status)
status $t status;
{ if(status.all!= status $ok)

{ error $print(status);
pgm $exitO;

}

}/* end check_status() */
/* -- Internal Procedure == */

/* This internal procedure is added only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

hold_display 0
{
time_$clock_t

time_$wait (time_$relative,
reI time,
status);

check status(status);
}/* end hOld_display() */

/* Convert secs to UTC value */

/* Time to wait */

A-83 Sample Programs in C

1* == MAIN PROGRAM == *1
mainO
{

1* Get the size of the current window. *1

pad_$in~windows (stream_$stdout.
window_info.
max_windows.
n windows.
status);

check_status(status);

1* Current position of window *1
1* Maximum no. of windows desired *1
1* Number of windows open to pad *1

1* Get the width and height of current font. *1

pad_$in~font (stream_$stdout.
font_width.
font_height.
(char *)NULL.
(short)O.
font_len.
status);

check_status(status);

1* No need to know name *1
1* No need to know name *1

1* Set scale of window height and width to raster units. *1

pad_$set_scale (stream $stdout.
(short) 1.
(short) 1.
status);

check_status(status);

pad_$create_frame (stream_$stdout.
window_info [0] .width.
font height.
status);

check_status(status);

1* Same size as window *1
1* Same height as font height *1

pad_$move (stream $stdout.
pad $absolute.
(short) 5.
font height.
status);

1* Raster units *1
1* Height of font *1

check_status(status);

1* Put the prompt. #. in the input window with STREAM_$PUT_CHR. *1

}

stream_$put_chr (stream_$stdout.
cltprompt_str.

(long)strlen(prompt_str).
seek key.
status);

check status(status);
hold display 0 ;

stream $close(stream $stdout.
- status);

check_status(status);

1* POinter to buffer *1
1* Number of bytes to read *1

Sample Programs in C A-84

A.37 . PAD DIGCLK.C

/* PROGRAM pad_digclk.c */

/* This program displays a digital clock on the screen. The user */
/* executes the program with the DM command. CPO. The user can optionally */
/* and the x.y coordinates on the command line to specify its location. */
/* Otherwise the clock runs in the top left corner of the screen. */

#nolist
#include <stdio.h>
#include H/sys/ins/base.ins.C"
#include "/sys/ins/streams.ins.cH
#include "/sys/ins/pad.ins.cH
#include "/sys/ins/time.ins.cH
#include H/sys/ins/cal.ins.C"
#include H/sys/ins/vfmt.ins.c"
#include H/sys/ins/pgm.ins.c"
#include "/sys/ins/pfm.ins.c"
#list

#define font name Hf9x15.ivH
1

/* Font file located in /sys/dm/fonts */
#define window num
#define as time len -#define border size
#define close
#define no border

8
5
true
false

status; status $t
pad_$window_desc_t
stream_$id_t

window = { o. O. 10. 10 }; /* default window location *1
stream;

short
short
short
short
short
time $clock t
cal_$timedate_rec t
short
char
stream_$sk_t

font_id;
font_height;
font_width;
hunoz;
hukairz;
one second = {0.0.0.250000};
now;
last minute = -1;
as_time[as_time_lenJ; 1* ascii time */
key;

/* == INTERNAL PROCEDURE === */
/* Status checking internal procedure *1

check status(status)
status $t status;
{ if(status.all!= status $ok)

pfm_$error_trap(status);
}

/* -- INTERNAL PROCEDURE == *1
/* Internal procedure to see if user provided cursor location. */
/* PGM_$GET_ARG returns a string. so convert it to an integer. */
/* If all goes well. the result is assigned to arg_val. */

get_num_arg(arg_num. addr_arg_val)
short arg_num;
short *addr_arg_val;

A-85 Sample Programs in C

{

char arg[80];
short argl;
short hunoz;
short hukairz;
short anyway;
short number;

1* Get argument from command line and assign its length to argl. *1

argl = pgm_$get_arg (arg_num, 1* Number of argument *1
arg, 1* Returns argument string *1
status, 1* Completion status *1

(short)sizeof(arg)); 1* Max length of argument *1

if(status.all -- status_$ok)
{

1* Convert string to integer and assign to variable, hunoz *1
hunoz = vfmt_$decode2("%wd%.", 1* String *1

arg, 1* Text buffer *1
argl, 1* Size of text buffer *1
hukairz, 1* Number of fields decoded *1
status, 1* Completion status *1
number, 1* Decoded data *1
anyway);1* Decoded data *1

if(status.all == status_$ok)
*addr_arg_val = number;

}/* end if *1
}/* end get_num_arg() *1
1* == MAIN PROGRAM == *1
mainO
{

1* Get window left coordinate, if user supplies it. *1
get_num_arg(1, ~(window.left));

1* Get window top coordinate, if user supplies it. *1
get_num_arg(2, ~(window.top));

1* Create the window -- note that the size is 10xl0 pixels, we *1
1* will change it to after we know the font size. *1

pad_$create_window ((char *)NULL,
(short)O,
pad_$transcript,
(short) 1,
window,
stream,
status);

check_status(status);

pad_$set_auto_close(stream,
window_num,
close,
status);

check_status(status);

Sample Programs in C A-86

1* Null pathname *1
1* Null name length *1
1* Type of pad *1
1* Number of display unit *1
1* Position of window *1
1* Stream id *1
1* Completion status *1

1* Load the font. seven_seg. and use it. *1

pad_$load_font(stream.
font_name.
(short)strlen(font_name).
font_id. 1* Returns font id *1
status);

check_status(status);

pad_$use_font(stream. font_id. status);
check_status(status);

1* Get the size of the font in use. *1
pad_$in~font(stream.

font_width.
font_height.
hunoz.
(char)O.
hukairz.
status);

1*
1*

Returns
Returns

width of font *1
height of font *1

1* no
1* No
1* no

need
need
need

to know value *1
to know font name *1
to know value *1

check_status(status);

1* Adjust window width and height to font size. *1
window.width = font_width * as_time len + border_size;
window.height = font_height + border_size;

1* Make window borderless. *1
pad $set border(stream. window_num. no_border. status);
cheCk_status(status);

1* Set scale to pixel values. *1
pad_$set_scale(stream.

(short) 1.
(short) 1.
status);

check_status(status);

1* Set window to new size. *1
pad_$set_full_window(stream. window_num. window, status);
check_status(status);

1* Create a frame the same size as the window itself. *1
pad_$create_frame(stream. window.width. window. height. status);
check_status(status);

while (true)
{

1* Translate a system clock value into time value. *1
cal_$decode_local_time(now);
if(now.minute != last_minute)
{

1* If a minute has passed. clear the frame and *1
1* write the minute and second value. *1

pad_$clear_frame(stream.
OL.
status);

check_status(status);

A-87 Sample Programs in C

vfmt_$encode5(H%2wd:%2zwd:%2zwd%$-. as_time. as_time_1en.
hunoz. now. hour. now.minute. now. second. OL. OL);

1* Put the output cursor at the left side of the frame. *1

pad_$move(stream.
pad $abso1ute.
border_size.
font height. 1* Must be at least font_height *1
status);

check_status(status);

stream_$put_rec(stream.
~as time.

(long)siZeof(as_time).
key.
status);

check_status(status);

}/* end if *1
else
{

1* Just write the second value. *1

vfmt_$encode2(H%2zwd%$". as time. sizeof(as time).
hunoz. now. second. OL);

1* Move the output cursor to the 6th character position. *1
pad $move(stream.

pad $abso1ute.
(short) (border_size + 6 * font_width).

font height.
status);

check_status(status);

stream_$put_rec(stream.
~as_time.

2L.
key.
status);

check status(status);
}/* end else *1

last minute = now.minute;

time $wait(time $re1ative. one_second. status);
check_status(sta~us);

}/* end while *1
}/* end main *1

Sample Programs in C A-88

A.3S. PAD MAKE ICON.C

/* This program is a sample of using icons. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/time.ins.c"

#define display_unit
#define auto close

stream $id t
stream=$id=t
stream $sk t
status=$t -
pad_$window_desc_t
short
pad_$window_list_t
short
pad_$position_t
char

(short) 1
true

stream_win;
pane stream;
seek_key;
status;
window;
Window_no;
window_list;
window_size;
icon_pos;
icon_char;

/* Position. height. width of window */
/* Number of windows open to a pad */
/* Array of up to 10 windows */
/* Maximum no. of windows desired */
/* Position of icon */

boolean icon moved = false; /* Checks if icon moved */

/* == Internal Procedure == *1
check_status (status)
status_$t status;
{ if(status.all!= status_$ok)

{ error $print(status);
exit (1) ;

}

}/* end check_status() */

/* -- Internal Procedure == *1

/* This internal procedure is used only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you *1
/* can see how each call works. *1

hold_displayO
{

time_$clock_t reI_time;

time_$wait (time_$relative.
reI time.
status);

check status(status);
}/* end hOld_display() */

/* Time to wait

A-89 Sample Programs in C

1* == MAIN PROGRAM == *1
mainO
{

1* Set postion of future windows. *1

window. top = 10;
window. left = 10;
window.width = 300;
window. height = 300;

1* Set position of icon to upper right corner. *1

icon_pos.x_coord = 1020;
icon_pos.y_coord = 24;

1* Create a new transcript window in icon format. *1

pad_$create_window ((char *)NULL, 1* No pathname for transcript pad
(short) 0, 1* No name length
pad_$transcript, 1* Type of pad
display_unit, 1* Which display unit -- 1
window, 1* Location of future window
stream_win, 1* Stream id of new window
status); 1* Completion status.

check_status(status);

1* Get window statatics for next calls. *1

pad_$in~windows (stream_win, 1* Stream id
window_list, 1* Location, size of window
window_size, 1* Max number of windows desired
window_no, 1* Number of windows open to pad
status); 1* Status code

check_status(status);

1* Make window close when stream closes. *1

pad_$set_auto_close (stream_win,
window_no,
auto close,
status);

check_status(status);

1* Do work with window ... *1

1* Change window into an icon. *1
icon_char = . ';

pad_$make_icon (stream_win,
window_no,
icon_char,
status);

1* Stream id *1

check_status(status);
hold_display 0 ;

Sample Programs in C

1* Window number *1
1* Default character icon *1
1* Completion status *1

A-90

*1
*1
*1
*1
*1

*1
*1
*1
*1
*1
*1
*1

1* Move position of icon and change the icon character. *1
icon_pos.x_coord = 950;
icon_pos.y_coord = 710;
icon char = '*';

pad_$set_icon_pos (stream_win, 1*
window_no,
iconJos,
icon char,
status);

check_status(status);

1*
1*
1*
1*

Stream id *1
Window number *1
Position of icon *1
Icon character *1
Completion status *1

1* Suspend process until user expands window from icon format. *1

pad_$icon_wait (stream_win,
window_no,
icon_moved,
icon_pos,
status);

check_status(status);
hOld_displayO;

1* TRUE if icon moved *1
1* Returns new position of icon *1

1* Turn transcript window into an icon. *1

pad_$make_icon (stream_win,
window_no,
icon_char,
status);

check_status(status);
hold_display 0 ;

stream_$close (stream_win,
status);

check status(status);
}/*end maine) *1

A-91 Sample Programs in C

A.ag. PAD CREATE ICON.C

/* This is sample program on using icons. */

/* It creates a new window with an input pad in icon format. */
/* It uses STREAM_$PUT_CHR to put a prompt in the input window. and */
/* STREAM_$GET_REC to get input from the keyboard. */

/* Note the internal procedure. HOLD DISPLAY uses a TIME_$WAIT call to */
/* suspend the program's activity. so that someone running this program */
/* can see how the different stages work. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/time.ins.c"

#define display_unit 1
#define prompt_str "# "
#define auto close true

stream_win;
pane stream;
seek_key;
status;
window; /*
Window_no; /*
window_list; /*
window_size; /*

Position. height. width of window */
Number of windows open to a pad */
Array of up to 10 windows */
Maximum no. fof windows desired */

stream $id t
stream-$id-t
stream-$sk-t
status=$t -
pad_$window_desc_t
short
pad_$window_list_t
short
pad_$position_t
char

icon_pos; /* Position of icon */
icon_char;

boolean
char

icon moved; /* Indicates whether user moved icon */
buffer[80]; /* Buffer to hold keyboard input */

char
long

*return_ptr[80];
return_len;

/* == INTERNAL PROCEDURE == */
check_status (status) /* for error handling */

status_$t status;
{ if(status.all!= status $ok)

}

{ error $print(status);
exit (i) ;

}

/* -- INTERNAL PROCEDURE === */

/* This internal procedure is used only to demonstrate this program. */
/* It calls TIME_$WAIT to suspend the process for 3 seconds so you */
/* can see how each call works. */

Sample Programs in C A-92

hOld_displayO
{

time_$clock_t reI_time;

reI_time.
status); 1* Time to wait *1

check status(status);
}/* end hold display *1

1* == MAIN PROGRAM == *1
mainO
{

1* Set postion of future windows. *1

window. top = 10;
window. left = 10;
window.width = 300;
window. height = 300;

1* Set position of icon to upper right corner. *1

icon_pos.x_coord = 1020;
icon~os.y_coord = 24;

1* Create a new transcript window in icon format. The icon will have *1
1* the shell icon character from the default icon font. *1

icon char = '*';

pad_$create_icon ((char)O.
(short)O.
pad_$transcript.
display_unit.
icon_pos.
icon_char.
window.
stream win.
status-);

check_status(status);

1*
1*
1*
1*
1*
1*
1*
1*
1*

No pathname for transcript pad
No namelength
Type of pad
Which display unit -- 1
Location -- x and y coordinates
Icon font displayed
Location of future window
Stream id of new window
Completion status.

1* Create an input pad for the new transcript pad. This is a *1
1* window pane associated with the same window. *1

*1
*1
*1
*1
*1
*1
*1
*1
*1

pad $create«char*)O. 1* No pathname for input pad *1
(short)O. 1*
pad_$input. 1*
stream_win. 1*
pad_$bottom. 1*
(short)O. 1*
(short)20. 1*
pane_stream.
status);

check_status(status);

1*
1*

No name length for input pad *1
Type of pad *1
Stream id of related transcript pad */
Input pads always go on bottom *1
Next argument. size parameter is relative *1
New pad takes up 20% of related window *1
Stream id of this input pad *1
Completion status *1

A-93 Sample Programs in C

1* Get window statatics for next calls. *1

pad_$in~windows (stream_win. 1* Stream id
window_list. 1* Location. size of window
window_size. 1* Max number of windows desired
window_no. 1* Number of windows open to pad
status) ; 1* Status code

check_status(status);

1* Make window close when stream closes. *1

pad_$set_auto_close (stream_win.
window_no.
auto close.
status);

check_status(status);

1* Suspend process until user opens icon. It checks to see if icon *1
1* has moved. if it has. it moves the icon to the new position *1
1* when it returns to an icon. *1

printf (" *** \n") ;

*1
*1
*1
*1
*1

printf("process suspended until user turns icon into window.\n");
printf("or until user moves the icon. If user turns icon into\n");
printf("a window. it waits for input. After user types input.\n");
printf("it waits 3 seconds. then turns the window into an icon.\n");
printf (II *** \n II);

pad_$icon_wait (stream_win.
window_no.
icon_moved.
icon pos.
status);

check_status(status);

1* TRUE if icon moved. *1
1* If TRUE. new position of icon. *1

1* Put the prompt. #. in the input window with STREAM_$PUT_CHR. *1

stream_$put_chr (stream_win.
~prompt str.

(long)strlen(prompt str).
seek_key.

1* Stream of transcript pad *1
1* Pointer to buffer *1
1* Number of bytes to read *1

status);
check_status(status);

1* Get information from input pad with stream_$get_rec. *1

stream_$get_rec (pane_stream.
~buffer.

(long)sizeof(buffer).
return_ptr.
return_len.
seek_key.
status);

check_status(status);

1* Buffer holding input*1

1* Return pointer *1
1* Return length *1
1* Seek key *1
1* Completion status *1

1* After user turns icon into window. this *1

Sample Programs in C A-94

1* program returns it to an icon in 5 seconds. *1

hold_display 0 ; 1* Internal procedure to suspend action. *1

1* Turn transcript window into an icon. *1

pad_$make_icon (stream_win.
window_no.
icon char.
status);

check_status(status);
hold_displayO;

1* Now. program turns window from icon format to full-Sized window. *1

printf("The program will now automatically turn the window\n");
printf (lifrom icon format to full-sized window and then terminate.\n");

pad_$select_window (stream_win.
window_no.
status);

check_status(status);
hold_displayO;

stream_$close (stream_win.
status);

check status(status);
}/* end main *1

A-95 Sample Programs in C

A.40. PAD FILENAME.C

/* PROGRAM pad_filename.c */

/* This program will display a file and print the filename at the top.*/

/* First it creates a new pad and a window to view the file. It then */
/* creates a transcript pad and window pane to hold frame. It creates */
/* frame to hold the filename. and lastly it creates an edit pad for */
/* the rest of the pad. */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.C"
#include "/sys/ins/error.ins.C"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/vfmt.ins.C"
#include "/sys/ins/cal.ins.C"
#include "/sys/ins/pgm.ins.C"
#include "/sys/ins/time.ins.C"
#list

#define display_unit 1
#define window count (short) 1
#define pane size (short) 1
#define max frame size 32767 - -
typedef

char bufstring[512]; /* String buffer */

stream_$id_t
stream_$id_t
stream_$id_t
stream_$sk_t

pad $window desc t
pad=$WindoW=list=t
short
short
short

status $t
name_$pname_t
short
short

static short
pad_$string_t
short
short
short
pad_$string_t
short
boolean

Sample Programs in C

source_stream;
pane stream;
pane_edit_stream;
seek_key;

window;
window_list;
window_size;
frame_width;
frame_height;

status;
pathname;
name length;
count;

source_name_font = -1;
inverted_font_name; /* Buffer to make inverted name. */
font_height;
font_width;
font_len;
font_name;
i;
auto close = true;

/* Size of font returned

A-96

1* == FUNCTION == *1

1* This function copies a given string to a buffer. and returns the number *1
1* of characters to be copied. It stops when at the character pair '%$'. *1

stringcopy(src. addr_dst)
bufstring src;
bufstring *addr_dst;
{

short i. j; 1* Indexes to src and dst strings *1

}

i = 0; 1* Initialize the indexes *1
j = 0;
while((src[i] != '%') II (src[i+1] != '$'»

(*addr dst) [j++] = src[i++];
return(j);-I* The number of characters copied. *1

1* -- Internal Procedure == *1
check_status (status)
status $t status;
{ if(status.all!= status $ok)

{ error_$print(status);
pgm_$exitO;

}

}/* end check_status() *1

1* -- Internal Procedure == *1

1* This internal procedure is added only to demonstrate this program. *1
1* It calls TIME_$WAIT to suspend the process for 3 seconds so you *1
1* can see how each call works. *1

hold_display 0
{

time_$clock_t
status_$t

reI_time;
status;

time_$wait (time_$relative.
. reI time.
status);

check status(status);
}/* end hold display() *1

mainO
{

1* Set position of future window. *1
window. top = 10;
window. left = 10;
window. width = 500;
window.height = 500;

1* Convert secs to UTC value *1

1* Time to wait

A-97 Sample Programs in C

1* Get pathname from keyboard and set values of pathname. namelength. *1
printf("Type in the pathname of the file: \n");
gets(pathname);
namelength = (short)strlen(pathname);

1* Create original transcript pad and window. *1

pad_$create_window«char *)NULL. 1* No pathname for transcript pad *1
No name length for transcript pad *1 (short)O. 1*

pad_$transcript. 1* Type of pad *1
display_unit. 1* Number of display unit *1
window. 1* Position of window *1
source stream.
status);

check_status(status);

1* Close window when stream closes. *1

pad_$set_auto_close(source_stream.
window_count.
auto close.
status);

check_status(status);

1*
1*

Returns stream id *1
Completion status *1

1* Stream id *1
1* Number of window *1
1* Flag -- set to true *1
1* Completion status *1

1* Make a transcript pad and window pane for the name of file. *1

pad $create«char *)NULL. 1* No pathname *1
(short)O. . 1* No namelength *1
pad_$transcript. 1* Type of pad *1
source stream. 1* Same stream id as window above *1
pad_$top. 1* Location of new window pane *1
pad_$abs_size. 1* Pane size is asbsolute value *1
pane_size. 1* Pane height is 1 line *1
pane_stream. 1* Stream id of window pane *1
status); 1* Completion status *1

check_status(status);

1* Close window when stream closes. *1

pad_$set_auto_close(pane_stream.
window_count.
auto close.
status);

check_status(status);

1* Now make frame in above pad to hold inverted pathname. *1

frame width = max_frame_size;
frame_height = pane size;

pad_$create_frame(pane_stream.
frame_width.
frame_height.
status);

Sample Programs in C

1* Same as window pane *1
1* Same as window pane *1
1* Same as window pane *1

A-98

check_status(status);

1* Before printing the filename. find out the *1
1* inverted font name of the font name in use. *1

pad_$in~font(source_stream. 1* Stream id of original transcript pad *1
font_width. 1* Returns width of font *1
font_height. 1* Returns height of font *1
font name. 1* Returns name of font *1

(short)sizeof(font name).I* Size of buffer for font name *1
font len. - 1* Length of font_name *1
status); 1* Completion status *1

1* Assume font is not bold. try loading the bold inverted *1
1* version of the same font by adding the extension (.b.iV) *1
1* to the font_name with the function. stringcopy. *1

i = font_len + stringcopy(".b.iv%$II. inverted_font_name + font_len);

pad_$load_font(pane_stream. 1* Stream of frame *1
Font name + .b.iv *1
Length of font_name *1
Returns ID of font *1
Completion status *1

inverted_font_name. 1*
i.
source name font.
status); -

1*
1*
1*

1* If the font is already bold. it returns an error. so *1
1* try adding the inverted extension (.iv) only. *1

if(status.all != status_$ok)
{ i = font_len + stringcopy (lI.iv%$II. inverted_font_name + font_len);

pad_$load_font(pane_stream.
inverted font_name.
i.
source name font.
status); -

if(status.all != status_$ok)
{ source name font = 0; 1* Use the default font. *1

status~all ; status_$ok;
}

}

1* Now clear the frame to erase any old filenames. and write the new name. *1

pad_$clear_frame(pane_stream.
OL. 1* Clear entire frame *1
status);

check_status(status);

A-99 Sample Programs in C

1* Use pad_use_font to have program use the desired font. *1
if(source name font != 0)
{ pad_$use_font(pane_stream.

source name font.
status-); -

status.all = status_$ok;
}

1* Put output cursor in frame. *1
pad_$move(pane_stream.

1* Stream of frame *1
1* Font id returned above *1

pad $absolute. 1* Move relative to top left of frame *1
(short) 5. 1* x-coordinate relative to frame *1
(short) 1. 1* y coordinate relative to frame *1
status);

check_status(status);

1* Write name of file in frame. *1
vfmt $ws2(pane stream.

- 11~~~n.

pathname.
namelength);

hold_display 0 ;

1* Make an edit pane for the rest of the window below *1
1* the frame and associate it with specified file. *1

pad_$create(pathname.
namelength.
pad $edit.
source stream.
pad $bottom.
(short)o.
(short) 100.
pane edit stream.
status);-

check_status(status);

1* Same stream id as window *1
1* New pane position on original pad *1
1* Pane height relative to original pad *1
1* Height = 100~ of original pad minus frame.*1
1* Returns stream id of window pane *1

1* Close edit pad when stream closes. *1

pad_$set_auto_close(pane_edit_stream.
window_count.
auto close.
status);

check_status(status);

Sample Programs in C A-IOO

1* Close the streams. *1

stream_$close(pane_edit_stream.
status);

check_status(status);

stream $close(pane stream.
- status);

check_status(status);

stream $close(source stream.
- status);

check status(status);
}/* end main *1

A-lOl Sample Programs in C

A.41. PAD RAW MODE.C

/* This program shows how to use raw mode. It asks for your */
/* password but does not echo the input to the screen. After */
/* you type in your password, it replies,"Thank you. II */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/pad.ins.c"
#include "/sys/ins/error.ins.c"
#include II /sys/ins/streams. ins. c"
#include "/sys/ins/pgm.ins.c"

#define display_unit
#define auto close
#define message
#define reply
#define window no

stream $id t
stream=$id=t
stream_$sk_t
status_$t
pad_$window_desc_t
pad_$window_list_t
short

(short) 1
true
II Enter your
II Thank you.

1

stream_one;
pane_stream;
seek_key;
status;
window_one;
window_list;
move char;

password: II

II

char
char

bUffer[80]; /* Buffer to hold keyboard input */
*return_ptr;

long return_len;
short i'

/* == Internal Procedure == */
check status(status)
status $t status;
{ if(status.all!= status_$ok)

{ error $print(status);
pgm $exitO;

}

}/* end check_status() */

/* == MAIN PROGRAM
mainO

== */

{ window_one.top
window one.left
window one.width
window_one.height

= 10;
= 550;
= 300;
= 300;

/* Create an original transcript pad and a window. */

pad_$create_window «char*)NULL,
(short)O,
pad_$transcript,
display_unit,
window_one,
stream one,
status);

Sample Programs in C A-I02

check_status(status);

1* Make windows close when stream closes. *1

pad_$set_auto_close(stream_one.
window_no.
auto_close.
status);

check_status(status);

1* Create an input pad and initialize it in raw mode. *1

pad $create «char *)NULL.
(short)O.
pad_$input.
stream_one.
pad_$bottom.
pad_$init_raw.
(short)20.
pane stream.
status);

check_status(status);

1* Write message in window. *1

stream_$put_rec (stream_one.
~message.

(long)strlen(message).
seek_key.
status);

check_status(status);

1* Get input from keyboard. It gets each *1
1* character until it reaches a carriage return. *1

i=O;
do
{

stream_$get_rec(pane_stream.
~buffer[i].

(long) sizeof (buffer)
return_ptr.
return_len.
seek key.
status);

check_status(status);
i += return_len;

}while(buffer[i - 1] != pad_$cr);

-i +

A-I03

Standard input -- keyboard *1
Buffer holding input *1

Return pointer
Return length
Seek key
Completion status

Sample Programs in C

1* Move output cursor to where the message text ends. *1

move_char = sizeof(message) + 1;

stream one.
pad_$absolute.
move_char.
(short) 1.
status);

. check_status(status);

1* Write reply in window. *1

stream_$put_rec (stream_one .
.treply.

(long)strlen(reply).
seek_key.
status);

check_status(status);

1* Return to normal cooked proceSSing. *1

}

pad $cooked (pane stream.
status);

check_status(status);

stream_$close(stream_one.
status);

check_status(status);

Sample Programs in C A-I04

A.42. PAD PASTE BUFFER.C

1* This program manipulates paste buffers. It asks for user to supply the name */
/* of the paste buffer. If it exists, it writes the contents of the buffer. */
/* If it does not exist, it reads lines of input from the keyboard until the */
/* user types CTRL/Z. It repeats the sequence, asking the user to supply */
/* names of paste buffers until the user types STOP. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.c"
#include "/sys/ins/name.ins.c"
#include "/sys/ins/pbufs.ins.c"
#include "/sys/ins/pad.ins.c"

#define text

stream $id t
status=$t -
name_$pname_t
name_$pname_t
short
stream_$sk_t
long
name_$pname_t
long
boolean
short

true

stream_buf;
status;
info;
bUffer_name;
buffer_namelen;
seek_key;
buflen;

*retptr;
retlen;
done;
i'

/* == INTERNAL PROCEDURE === */
check_status (status)

status $t status;
{ , -

}

if(status.all != status $ok)
error $print(status);-

/* == INTERNAL PROCEDURE === */
error_routine 0
{

}

pgm_$set_severity(pgm_$error);
pgm_$exit;

/ * == MAIN PROGRAM ==============================.=================== * /
mainO
{

/* Write initial prompt */

A-I05 Sample Programs in C

done = false;
printf(" ================== \n");
printf(" Type the name of the paste buffer (Or type STOP to qUit.) :\n\n ");
gets(buffer name);
if«! strcmp(buffer_name, "stop")) I I (! strcmp(buffer_name, "STOP")))

done = true;
while (! done)
{

1* pbufs_open needs blank padded array so store name length and pad wI blanks *1
buffer namelen = strlen(buffer name);
for (i=O; buffer name[i++];); -
bUffer_name[--i] = • ';

1* find the null terminator *1
1* pad with blanks *1

while(i < sizeof(buffer name) -1)
buffer_name[i++] = .-

1* buffer_name is no longer null terminated at the end of the string. *1
1* When printing buffer name, specify a maximum precision or padded *1
1* blanks will be printed. *1

1* just in case.

1* Open existing paste buffer and write contents to screen. *1

pbUfs_$open (buffer_name, 1* Name of existing buffer *1
text, 1* Text buffer *1
stream buf, 1* Returns stream id *1
status-); 1* Completion status *1

if(status.all -- status_$ok)
{

1* Read data from existing paste buffer. *1
printf(" ================== \n");
printf'

("This is the contents of paste buffer %.*s:\n\n", buffer_namelen. buffer_name);

while(status.all == status_$ok)
1* Read a line and write it to the screen. *1
{

stream_$get_rec(stream_buf,
I;info,

(long)strlen(info).
retptr,
retlen,
seek_key.
status);

1* Stream id *1
1* Address of input line *1
1* Length of input line *1
1* Returns pointer to input *1
1* Returns length of input *1
1* Seek key *1
1* Completion status *1

if(status.code == stream_$end_of_file) 1* Test for EOF *1
break;

(*retptr) [retlen] = '\0'; 1* null terminate returned buffer *1
printf(II %s\n". *retptr);I* Write buffer line to screen *1

if(status.all != status $ok)
error routine(); -

}/* while there is input *1
}/* if *1

Sample Programs in C A-I06

else
{ if(status.code == stream_$name_not_found)

1* Input data in new paste buffer *1
{

pbufs $create (buffer_name. 1* Name of buffer *1
text. 1* Text buffer *1
stream buf. 1* Returns stream id of buffer *1
status-); 1* Completion status *1

check_status(status);

1* Get information from keyboard for paste buffer *1
printf(" ==================
printf (II Type information for paste buffer.

one line at a time.");
printf(" (Or type CTRL/z to stop.) :\n");

while (gets (info) != NULL) 1* User has input *1
{ buflen = strlen(info);

\n\n");

1* Terminate line with NEWLINE character *1
info[buflen] = '\n';

.linfo.
buflen.
seek_key.
status);

check_status(status);

1* Stream id *1
1* Address of input line *1
1* Length of input line *1
1* Seek key *1
1* Completion status *1

printf("\n Type another line. or CTRL/z to stop. ");
}/* while *1

prin tf (" ================== \n ") ;
printf(" Information is now in the paste buffer: %.*s\n\n".

buffer_namelen. buffer name);
}/* if *1
else

printf(" Cannot read or write to paste buffer.\n");
}/* end else *1

1* Repeat prompt *1

}

printf(" ================== \n");
printf(" Type the name of the paste buffer: ");
printf(" (Or type STOP to quit.) \n");
gets(buffer_name);
if«! strcmp(buffer_name. "stop"» I I (! strcmp(buffer_name. "STOP"»)

done = true;
} 1* WHILE NOT done *1

A-I07 Sample Programs in C

A.43. EC TIME KBD EVENTS.C

/* This program waits for keyboard input and time. If user types input.*/
/* it echoes the input. It writes out the date and time every 10 */
/* seconds. The program continues until the user types CTRL/Z. */

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdi0.h>
"/sys/ins/base.ins.c"
"/sys/ins/streams.ins.c"
l/sys/ins/ec2.ins.c"
"/sys/ins/time.ins.c"
"/sys/ins/cal.ins.c"
"/sys/ins/vfmt.ins.c"
"/sys/ins/error.ins.c"
"/sys/ins/pgm.ins.c"

/* Define indexes for arrays */
#define kbd ec 0 /* Fist element in array for keyboard events. */
#define time ec 1 /* Second element in array for time events. */

long

stream $id t
status-$t -
stream=$sk_t
short
char
char
long
time_$clock_t
cal_$timedate_rec t
short

ec2_ptr[2]; /* Array of pointers to two */
/* eventcounts. First element */
/* points to keyboard eventcount; */
/* second element points to time */
/* eventcount. */

ec2_val[2]; /* Array of eventcount trigger */

sio_strm;
status;
seek_key;
which;
line[80];

*linep[80];
1inelen;
clock;
d_clock;
dummy;

/* values. First element is trigger */
/* for keyboard event; second is */
/* trigger for time event. */

/* Stream id */
/* Status code */
/* Seek key */
/* Number returned by EC2_$WAIT */

/* == MAIN === */
mainO
{

printf ("\nThis program uses eventcounts to wait for keyboard input. \n ") ;
printf("If you type a line of input. it will echo the input.\n");
printf("It will also write the date and time every 10 seconds.\n\n");
printf("\nType input or CTRL/Z to qUit.\n\n");

/* Get the EC for standard input to the keyboard. Store the */
/* eventcount pointer in the first element of the pointer array. */

Sample Programs in C A-lOS

stream $get ec(stream $stdin. 1* Stream id *1
- - stream-$getrec ec key. 1* Type of eventcount *1

eC2_ptr[kbd_ec). - 1* Returns Eventcount pointer *1
status); 1* Completion status *1

check_status(status);

1* Get the EC for time. Store the event count pointer *1
1* in the second element of the pointer array. *1

time_$get_ec (time_$clockh_key. 1* Time key *1
eC2_ptr[time_ecL 1* Eventcount pointer returned by call *1
status) ; , 1* Completion status *1

check_status(status);

1* Prime the event count trigger values. Read the value of the *1
1* keyboard EC and store it in the first element of the trigger *1
1* value array. Read the value of the time EC and store it in *1
1* the second element of the trigger value array. *1

ec2 val[kbd ec] = ec2 $read (*(ec2 ptr[kbd ec]));
eC2=val[time_ec] = eC2_$read (*(ec2_ptr[time_ec]));

1* Go into an infinite loop to wait for input from the two sources. *1
1* The first time through the loop. both eventcounts are satisfied. *1

do
{

1* Determine which event count reaches satisfaction first. *1

which = ec2_$wait (ec2_ptr. 1* EC pointers *1
eC2_val. 1* EC triggers *1
(short)2. 1* Number of eventcounts *1
status); 1* Completion status *1

check_status(status);

1* decrement which to adjust for initial array index of 0 in C *1
which--;

switch (which)
{ case kbd ec: 1* If WHICH is O. enter keyboard loop *1

do
{

1* Read the current eventcount. increment it. and save it as the new trigger. *1
ec2_val[kbd_ec] = ec2_$read(*(ec2_ptr[kbd_ec])) + 1;

1* Get keyboard input until no more data. then return to outer loop. *1

stream_$get_conditional (stream_$stdin. 1* Stream id *1
~line. 1* Buffer to read line *1

(long)sizeof(line). 1* Bufferlen *1
linep.l* POinter to returned data *1
linelen. 1* Length of data *1
seek key.l* Seek key *1
status); 1* Completion status *1

check_status(status);

A-lOg Sample Programs in C

if(linelen > 0)
{ (*linep) [linelen] = '\0';

}

printf(u* Keyboard Input: * Is\n". *linep);
printf("\nType input or CTRL/z to quit.\n\n");

}while(linelen != 0);1* end do *1
break;

case time ec:

1* Read the current eventcount. increment it *1
1*10 seconds. and save it as the new trigger. *1

1* Get time clock and print it. *1
time $clock(clock);
cal_$decode_local_time(d_cloCk);

vfmt $write10
(11* Date: * 12WD/12WD/14WD 12X * Time: * 12ZWD:12ZWD:12WD I.".

d_clock.month.
d_clock.day.
d_clock.year.
d_clock.hour.
d_clock.minute.
d_clock.second.
dummy. dummy. dummy. dummy);

break;
}/* end switch *1

1* repeat until user types CTRL/z *1
}while«status.code != stream $end of file) ~~

(status.subsys != stream_$subs)); 1* end do *1
}/* end main *1

1* == INTERNAL PROCEDURE == *1

check_status (status)
status_$t status;
{ if(status.all!= status $ok)

if«status.code != stream $end of file) ~~
(status.subsys != stream $SUbS))

{ error $print(status);
exit (1) ;

}

}/* end check_status() *1

Sample Programs in C A-IIO

A.44. EC WAIT FOR TIM:E.C

/* This program inhibits asynchronous faults from occuring while waiting for */
/* input. If no input occurs within 20 seconds. the time eventcount will */
/* be satisfied. and the program will enable asynchronous faults. */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include II /sys/ins/streams . ins. c"
#include "/sys/ins/ec2.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pfm.ins.C"
#include "/sys/ins/pgm.ins.C"

#define kbd ec 0
#define time ec 1

eC2_$ptr_t
long
short
status_$t
stream_$sk_t
char
char
long

'char

ec2_ptr[2];
ec2_val[2];
which;
status;
seek_key;
line[80]; /*return buffer*/

*linep[80];
linelen;
name[80];

boolean time_out;
/* == MAIN == */
mainO
{

printf("This program requests a program name. If you do not\n");
printf("supplyone in 20 seconds. the program will terminate.\n");
printf("Faults are inhibited while the program waits for input.\n\n");

/* Get an eventcount to wait for input from standard in (usually the

stream_$get_ec (stream $stdin. /* stream-id
stream-$getrec ec key. /* stream-key - - -
eC2_ptr[kbd_ec]. /* returned pOinter to ec
status);

check_status(status);

/* Get a time eventcount to wait an amount of time */

time_$get_ec (time_$clockh_key.
ec2_ptr[time_ec].
status);

check_status(status);

/* time-key */
/* returned pointer to ec */

kbd!)

*/
*/
*/

*/

A-Ill Sample Programs in C

1* Prime the eventcount trigger values. except the time eventcount. *1

1* Immediately advance the satisfaction value - 20 sec.*1

time_out = false;

1* Disable CTRL/Q sequence while waiting for input or *1
1* until time limit reached. *1

pfm $inhibitO;
printf("Faults inhibited.\n");
while(ltime out)
{ -

1* Determine which event count reaches satisfaction first. *1
1* You force all event counts to be satisfied except time. *1

which = ec2_$wait (ec2_ptr.
ec2 val.
(short)2.
status);

check_status(status);

1* ec pointer array *1
1* ec value array *1
1* number of ec's *1

1* decrement which to adjust for initial array index of 0 in C *1
which--;
switch (which)
{ case kbd ec: 1* This value is reached first .. . *1

1* Immediately advance the satisfaction value*1
ec2_val[kbd_ec] = eC2_$read (*(ec2_ptr[kbd_ec]» + 1;

1* get keyboard input *1

stream $get conditional(stream $stdin. 1* stream-id *1
- - ~line. - 1* pointer to buffer *1

(long)sizeof(line). 1* # of bytes requested *1
linep. 1* returned pOinter to buffer *1
linelen. 1* returned length off buffer *1
seek_key.
status);

check_status(status);
if(linelen > 0)
{ (*linep) [linelen] = '\0';

strcpy(name. *linep);
printf("Input File name: %Sll. name);
time out = true;

}
break;

case time ec: 1* If the time ec value is satisfied first ... *1

Sample Programs in C A-112

1* immediately advance the satisfaction value -- 20 sec. *1
ec2 val [time ec] = ec2_$read(*(ec2_ptr[time_ec])) + 80;
pfm=$enable(); 1* OK to interrupt now. *1
time out = true;
printf("NO action for 20 seconds.\n");
break;

}/* end switch *1
}/* end while *1
pfm $enable 0 ;
printf("Faults enabled.\n");
printf ("Terminating program. \nll) ;

}/*end main *1
1**1
check_status (status) 1* for error handling *1

status $t status;
{ if(status.all!= status_$ok)

{ error_$print(status);
exit(l);

}
}

A-113 Sample Programs in C

A.4S. CAL DECODE LOCAL.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/cal.ins.c"

mainO
{

/* This program decodes local time and prints it */

}

/* get decoded local time */
cal $decode local time (d_Clock);

/* write it to the screen */

printf ("date: %2d/%2d/%4d time %2d:%2d:%2d\n".
d_clock.month.
d_clock.day.
d_clock.year.
d_clock.hour.
d clock.minute.
d=Clock.second);

Sample Programs in C A-114

A.46. TIME ZONE.C

/* PROGRAM time_zone.c */

#include <stdio.h>
#include -/sys/ins/base.ins.c­
#include -/sys/ins/cal.ins.c­
#include -/sys/ins/error.ins.c-

/* == Internal Procedure
check status(status)
status $t status;
{ if(status.all!= status $ok)

{ error_$print(status);
exit(l);

}

}/* end check_status() */

-====================== *1

/* == MAIN PROGRAM ==--====- -====================== */
main 0
{

/* This program gets local time zone information (offset a name)*/
/* determines the TZ difference in min. by name and by hr:min */

}

status_$t status;

/* GET INFO variables */
cal_$timezone_rec_t tz_info

/* TZDIF variables */
char time_zone[4];
short tzn_length;
short tZ_dif;
cal_$tz_name t tz_name;

A-lIS Sample Programs in C

}

1* get offset using time zone name *1
printf ("What time_zone do you want the difference of? H);
scanf ("%S". time zone);
tzn length = strlen(time zone);
cal=$decode_ascii_tzdif (time_zone.

check_status (status);

tzn_length.
tZ_dif.
tz_name.
status);

1* write time zone offset to screen *1
printf (liThe time zone offset is: %4d\n" • tz_dif);

1* get timezone offset using time difference *1

printf (IIInput time difference ([+1-] HR:MIN): \n");
scanf ("%s". time_zone);
tzn length = strlen(time zone);
cal=$decode_ascii_tzdif (time_zone.

check_status (status);

tzn_length.
tZ_dif.
tz name.
status);

1* write time zone offset to screen *1
printf ("The time zone offset is: %4d\n". tz_dif);

Sample Programs in C A-ll6

A.47. CAL ADD TIMES.C

#include <stdio.h>
#include "/sys/ins/base.ins.C"
#include "/sys/ins/cal.ins.c"

mainO
{

linteger
time_$clock_t

seconds;
reI_time.
clockl ;
d_clock;

}

/* input number of seconds to add to time */
printf("How many seconds to add? \n");
scanf("%d". ~seconds);

/* convert number of seconds to internal value */
cal $sec to clock(seconds. /* # of seconds */

- - - reI_time); /* internal format */

/* get local time */
cal_$get_Iocal_time(clockl);

/* add the times */
cal $add clock(clockl. /* in/out */

- - reI_time);

/* get the result in readable form */
cal $decode time (clockl. /* internal format *1

- - d_CloCk); /* readable format *1

/* write the result to the screen *1
printf("time resulting from add: %02d:%02d:%02d\n".

d_clock.hour.
d clock.minute.
d=Clock.second);

A-117 Sample Programs in C

A.4S. CAL SUB TIMES.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/error.ins.c"

/* == Internal Procedure == */
check_status (status)
status_$t status;
{ if(status.all!= status $ok)

{ error $print(status);
eXit(l);

}

}/* end check_status() */

/* == MAIN PROGRAM == */
mainO
{

status_$t status;
char date[8].

time[8];
cal $timedate rec t c_clock;
time_$clock_t- clock.

boolean
long

curr_time;
sub_check;
num_of_sec;

/* get the input */
printf (1lEnter date to subtract (yr/month/day)? \n");
scanf ("%s".date);

/* convert ASCII string to system readable date */
cal_$decode_ascii_date (date.

check_status(status);

/* get the input */

8.
c_clock.year.
c_clock.month.
c_clock.day.
status);

printf ("Enter time (hr:min:sec - 24 hr format)? \n");
scanf ("%s".time);

cal_$decode_ascii_time (time.

check_status(status);

Sample Programs in C

8.
c_clock.hour.
c_clock.minute.
c_clock.second.
status);

A-lIS

}

1* convert readable format to internal format *1
cal $encode time (c clock,

- - clock);

1* get local time *1
cal_$get_local_time (curr_time);

1* subtract input time from the current time *1
sub check = cal $sub clock (curr time,

- - clock);

1* convert difference to seconds *1
num of sec = cal_$cloCk_to_sec (curr_time);

1* check if result is negative - print error *1
if (sub_check != true)

printf ("Subtraction resulted in negative value \n");
else

printf ("Seconds difference %d\n", num_of_sec);

A-119 Sample Programs in C

A.49. TIME COMP ARE.C

/* PROGRAM time_compare.c */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/type uids.ins.c"
#include II /sys/ins/cal. ins. c"
#include "/sys/ins/error.ins.c"
#include II /sys/ins/streams . ins. C"

#include "/sys/ins/pgm.ins.c"

#define SETSIZE (short)32

status; status $t
name_$pname_t
short

pathnamel. pathname2;
namelengthl. namelength2;

/* INQUIRE variables */
stream $inquire mask t
stream=$ir_opt - -
stream $ir rec t
stream=$inquire_mask_t

/* time variables */
time $clock t
time=$clock=t
short
cal_$timedate_rec t

mainO
{

input_mask;
inquiry_type;
attributes;
error_mask;

timel, time2;
most_recent_time;
cmp_check;
decoded_time;

/* get the first pathname -- and its length */
printf("Input the first pathname:\n");
gets(pathnamel);
namelengthl = strlen(pathnamel);

/* get ithe second pathname -- and its length */
pri1ntf("Input the second pathname\n");
gets (pathname2);
namelength2 = strlen(pathname2);

/* initialize inquire variables */
lib_$init_set(input_mask, SETSIZE);

/* date/time modified */
lib_$add_to_set(input_mask, SETSIZE, (short)stream_$dtm);

/* get by name even if not open */
inquiry type = stream $name unconditional;
strcpy(attributes.obj-name ~ pathnamel);
attributes.obj_namlen = namelengthl;

Sample Programs in C A-120

/* get date/time modified on pathname1 */
stream_$inquire (input_mask.

inquiry_type.
attributes.
error_mask.
status);

check_status(status);
time1.high = attributes.dtm;
time1.1ow = 0;

/* get date/time modified on pathname2 */
strcpy(attributes.obj_name. pathname2);
attributes.obj_namlen = namelength2;

stream_$inquire (input_mask.
inquiry_type.
attributes.
error_mask.
status);

check_status(status);

time2.high = attributes.dtm;
time2.1ow = 0;

/* compare times and assign most_recent time */
cmp_check = cal_$cmp_clock (time1.

time2);

printf("Cmp_check: %d\n". cmp_check);

switch(cmp check)
{ -

case 0 : /* times are equal */
printf("%s and %s are the same age.\n". pathname1. pathname2);
most_recent_time = time1; /* could be time2 -- no difference */
break;

case 1: /* 1 is older than 2 */
printf("%s is newer than %s.\n". pathname1. pathname2);
most_recent_time = time1;
break;

case -1: /* 2 is older than 1 *1
printf("%s is newer than %s.\n". pathname2. pathname1);
most_recent_time = time2;
break;

default :
printf("ERROR

}/* switch */
BAD RETURN VALUE FROM CAL _ $CMP _ CLOCK\n ,,) ;

A-121 Sample Programs in C

/* decode most recent dtm */
cal_$apply_local_offset(most_recent_time);

cal_$decode_time(most_recent_time.
decoded_time);

printf("DATE/TIME MODIFIED: ");
printf("%d/%d".decoded_time.month .decoded_time.day);
printf("/%d". (decoded_time.year % 100));
printf(" %d:%d H

, decoded time.hour. decoded time.minute);
printf (II : %d\n II, decoded time. second) ; -

}/* end main *1 -

check_status (status)

status $t status;
-<; -

}

if(status.all != status $ok)
{ error_$print(status);

pgm_$exitO;
}

Sample Programs in C A-122

A.50. TIME WAIT ABS.C

/* This program waits an absolute time to send a reminder */

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pgm.ins.C"

status_$t status;
char reminder[80];

/* DATE and TIME variables */
char date[80];
char time[80];

/* ENCODE. WAIT variables */
cal $timedate rec t c_clock;
time $clock t- - abs_time;
time=$clock=t curr_time;
boolean SUb_check;
linteger num_of_sec;

mainO
{

/*input the reminder text*/
printf("Input reminder text:\n");
gets(reminder);

/*get the input*/
printf("When do you wish to be reminded?\n");
printf (IiDate: (yr/month/day)?:\n");
gets(date);

cal_$decode_ascii date (date.

check_status(status);

/* get the input */

(short)8. /* date length */
c_clock.year.
c_clock.month.
c_clock.day.
status);

printf("Time: (hr:min:sec - 24 hr format)? \n");
gets(time);

cal_$decode_ascii time (time.
(short)8.
c_clock.hour.
c_clock.minute.
c_clock.second.
status);

/* time length */

A-123

--~~-----~-

Sample Programs in C

check_status(status);

cal_$encOde_time(c_clock. 1* input *1
abs_time); 1* result *1

1* remove local offset to a time $clock t *1
cal_$remove_local_offset (abs=time);-

1* WAIT for an ABSOLUTE time *1
time_$wait (time_$absolute.

abs time.
status);

check_status(status);

printf("%s\n".reminder);
}

1* pre-defined *1
1* time to wait until *1

1***1
check_status (status)

status $t status;
{ -

}

if(status.all != status $ok)
{ error $print(status);

pgm_exitO;
}

Sample Programs in C A-124

A.51. TIME WAIT OR DEFAULT.C

#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include II /sys/ins/streams. ins. C"
#include "/sys/ins/ec2.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/cal.ins.c"
#include "/sys/ins/error.ins.c"

#define time ec
#define kbd ec

o /*ec array indices*/
1

typedef
char string[80];

status $t
ec2 $ptr t - -
long
short

status;
ec2 ptr[2];
eC2=val[2];
which;

/* GET CONDITIONAL variables */
stream=$sk_t seek_key;
string line; /*return buffer*/
string *linep;
long linelen;
string name;
short p count;

mainO
{

/* Get an eventcount to wait on for input from standard in (usually the kbd!) *1

stream_$get_ec(stream $stdin,
stream=$getrec_ec_key,
ec2_ptr[kbd_ec],
status);

1* stream-id */
1* stream-key *1
/* returned pointer to ec *1

check_status(status);

1* Get a time eventcount to wait an amount of time *1

time_$get_ec (time $clockh key, 1* time-key */
ec2 ptr[time-ec], 1* returned pointer to ec */
status); -

check_status(status);

/* Prime the event count trigger values *1
1* Get the current value of both event counts *1

eC2_val[kbd_ec] = eC2_$read (*(ec2_ptr[kbd_ec]»;
ec2_val[time_ec] = eC2_$read (*(ec2_ptr[time_ec]»;

A-125 Sample Programs in C

1* NOW GO INTO A LOOP PROMPTING FOR INPUT *1
linelen = 0;
p_count = 0;

do
{

I*determine which event count reaches satisfaction first*1
I*ec pointer array*1
I*ec value array*1
I*number of eC's*1

which = ec2_$wait (ec2_ptr.
ec2 val.
(short) 2.
status);

check_status(status);

1* decrement which to adjust for initial array index of 0 in C *1
which--;

switch (which)
{

case kbd ec: I*if the keyboard ec value is reached first .. . *1

I*immediately advance the satisfaction value*1
eC2_val[kbd_ec] = eC2_$read (*(ec2_ptr[kbd_ec]» + 1;

I*get keyoard input*1

stream_$get_conditional (stream $stdin. 1* stream-id *1
~line. - 1* pOinter to buffer *1

(long)sizeof(line). 1* #of bytes requested *1
linep. 1* returned pointer to buffer *1
linelen. 1* returned length off buffer *1
seek_key.

check_status(status);
if(linelen > 0)

strcpy(name. *linep);
break;

status);

1* if the time ec value is satisfied first ... *1
case time ec:

1* immediately advance the satisfaction value - 10 sec. *1
ec2_val[time_ec] = eC2_$read (*(ec2_ptr[time_ec]» + 40;

1* prompt again *1
if(p count < 4)

printf (II Input a program name: \n II) ;
else

printf("The default program name is being used.\n");
break;

}/* end switch *1

1* advance the prompt count *1
p_count++;

1* repeat until input is received or 3 prompts have occured *1
}while«linelen <= 0) ~~ (p_count != 5»;

}

Sample Programs in C A-126

1**1
check_status (status)

status_$t status;
{

}

if(status.all != status_$ok)
error_$print(status);

A-127 Sample Programs in C

I/O

stream ID 4-3

%%, VFMT format directive 8-13

%, VFMT format directive 8-4, 8-12

%/, VFMT format directive 8-13

%A, VFMT format directive 8-2,8-5

%D, VFMT format directive 8-2,8-10

%dw, VFMT format directive 8-9

%E, VFMT format directive 8-7, 8-8, 8-9,

8-11,8-12

%F, VFMT format directive 8-8

%fw, VFMT format directive 8-7, 8-9,

8-11

%H, VFMT format directive 8-2,8-10

%J, VFMT format directive 8-9, 8-11

%K, VFMT format directive 8-8

%L, VFMT format directive

8-12

8-8, 8-10,

%M, VFMT format directive 8-7

%0, VFMT format directive 8-10

%P, VFMT format directive 8-10,8-12

%S, VFMT format directive 8-10, 8"11

%T, VFMT format directive 8-13

%U, VFMT format directive 8-8, 8-11

%W, VFMT format directive 8-10, 8-12

%X, VFMT format directive 8-13

%Z, VFMT format directive 8-8, 8-9, 8-11

/dev directory 9-8

/dev/sio 9-8

/SYS /DM/FONTS

font files 5- 23

/SYS /DM/FONTS /ICON

default icon set 5-38

/SYS/INS/ 1-1

[], default pane size attribute 5-6

$ 1-1

'NODE _ DATA/P ASTE _ BUFFERS

direc~ory 5- 57

Aborting process 5-10

Index

Index-l

and continuing program 2-17

Absolute mode for TP AD calls

definition 5-61

Absolute seeking

definition 4-31

Absolute time, definition 7-9

Absolute /Relative mode for TP AD calls

definition 5-62

Access type

compatible 4-14

definition 4-12

guidelines 4-12

Accessing

arguments from an invoked program

3-20

arguments from child process 3- 20

locked system resoures 7-16

magtape files 9-12

mail boxes 9-3

objects, DOMAIN 9-1

objects, how lOS manager controls

4-12

protected memory (fault) 2-1

serial lines 9-8

ADDR, Pascal function 2-23

Address

fault reported 2-9

Address space

getting more by creating a child process

3-6

tlsing predefined

argument type 3-18

Alarm server

PGM $ARG

giving user control over the display

5-4

Argument count

definition 3-18

Argument vector

accessing argument in UNIV PTR

format 3-21

definition 3-18

deleting arguments from 3- 22

index number of argument pointer

3-23

Arguments

C sample program A-20, A-22,

A-23, A-24

deleting arguments when invoking a

child program 3-22

passing predefined data types 1-1

passing to invoked programs 3-18

Returning all from child process 3-21

Returning from child process one at a

time 3-20

See also Parameters, passing

Arrays

DOMAIN predefined data types 1-7

of eventcount pointers 6-5

of records, DOMAIN predefined 1-7

of trigger values 6-6

passing character arrays in C 1-37

ASCII

creating table of associated hexadecimal

and decimal values 8-15

object type UID 9-2

See also UASC object type

ASCII character strings

building a character table with VFMT

(example) 8-14

converting to system time 7-7

formatting 8-4

ASCII data

converting to hexadecimal 8-1

ASCII format

converting time to system time 7-7

Asynchronous faults 6-7

C sample program A-111

continuing program after 6-13

definition 6-13

disabled during clean- up handler

2-17

disabling with EC2 $W AIT 6-14

disabling with EC2 $WAIT SVC

6-16

during eventcounts 6-13

error message 2- 6

handling with EC2 $WAIT SVC

Index-2

(example) 6-17

ignoring with PFM _ $INHIDIT 6-13

inhibiting 2-12, 2-25

keeping track of inhibited 2-25

previously disabled faults 6-16, 6-17

program response when enabled,

disabled 6-13

reenabling 2-16

summary of how program responds

(table) 6-18

using a time eventcount with 6-14

See also Faults

Background mode

creating a new process 3-11

Background process

C sample program A-14

BACKSPACE

control character 5-3

Backup objects

creating 4-8

Based variables

referencing in FORTRAN 1-16

Binary files

Bits

object type UID 9-2

setting in C 1-31

setting the bit field 1-30

setting, in FORTRAN 1-18

testing a group of 1-20, 1-33

testing bits one-by-one 1-19,1-32

testing in C 1-31

testing in FORTRAN 1-19

BOF 4-4

Boolean data type

as a separate data type 1-13

emulating in C 1-30

emulating in FORTRAN 1-13

in a record 1-13

Building a character table

with VFMT format directives (example)

8-14

Busy-waiting, alternative to eventcounts

6-3

C

Boolean type 1-9

clearing a bit from set in 1-34

emulating Boolean data type in 1-30

emulating large sets in 1-34

emulating predefined data types in

1-30

emulating records in 1-35

emulating set data type in 1-30

emulating variant records in 1-36

passing character arrays in 1-37

passing integer constants 1-39

passing integer paramters in 1-38

passing parameters to system calls

1-37

predefined Boolean type 1-30

referencing structure members in 1-37

setting bits in 1-31

testing bits in 1-31

testing return status of system call

2-3

unions 1-36

using predefined data types 1-4

C sample programs

emulating a large set 1-34

emulating a record 1-36

emulating status code variant record

with C union 1-36

passing integer parameters 1-38

passing parameters as character arrays

1-37

Cache

setting bits in 1-31

testing a number of bits in 1-33

testing bits one-by-one 1-32

fault reported 2-10

CAL _ $ADD _ CLOCK 7-9, 7-10

CAL _ $APPL Y _ LOCAL _ OFFSET 7- 2

CAL $CLOCK TO SEC 7-9

CAL $CMP CLOCK 7-9, 7-13

CAL $DECODE ASCII DATE 7-7

CAL $DECODE ASCII IZDIF 7-4

CAL $DECODE ASCII TIME 7-7

CAL $DECODE LOCAL TIME 1-36,

5-33,7-3

CAL $DECODE TIME 7-6

Index-3

CAL $ENCODE TIME 7-7

CAL $FLOAT CLOCK 7-9

CAL _ $GET _ INFO 7-4

CAL $GET LOCAL TIME 7- 2

CAL $REMOVE LOCAL OFFSET

7-4,7-17

CAL _ $SEC _ TO _ CLOCK 5-12, 7-10

CAL_$SUB_CLOCK 7-9,7-11

CAL $TIMEDATE REC T 1-23, 7-2,

7-3,7-7

CAL _ $TIMEZONE REC T 7-'4

CAL $WEEKDAY 1-17

Calendar

See also time

Carriage control characters

FORTRAN 4-16

Changing window display

specifying character fonts 5-23

CHAR

as a Boolean field in a record 1-14

Character arrays 1-37

passing in C 1-37

Character fonts

PAD system calls requiring font size

5-25

See also font files

Check status

procedure to check call completion

5-12

Checking for input with

STREAM $GET CONDITIONAL

6-10

Child process

C sample program A-11, A-19,

A-20, A-22, A-30

communicating with parent only

initially 3-17

converting to orphan process 3-17

definition 3-5

deleting arguments before invoking

3-22

getting process information about

3-29

getting streams from parent 3- 6

handling process eventcount 3-8

inherits environment from parent 3-6

own address space 3-6

passing program name to program in a

3-19

permanent operations 3-7

program name 3-20

releasing resources after completed

3-7

setting a severity level 2-7

severity levels 3-7

using an eventcount to wait for

(example) 3-8

waiting for 3-7

Clean-up handlers

applying to specific program section

2-14

C sample program A-6

establishing 2-12

exiting 2-15

exiting by passing a fault status 2-15

exiting by passing a severity level

2-15

handling faults with 2-12

multiple 2-15

passing control 2-12

reestablishing handler, returning to

program 2-15

releasing 2-14

releasing mUltiple handlers 2-15

returning to the program 2-17

testing for PFM $CLEANUP SET

2-6

testing state before clean up 2-15

Cleaning Up after asynchronous fault 6-13

Clock

C sample program A-85

Closing

frames 5-43

windows and window panes 5-10

Completion status

severity level 3-3

Concurrency mode

compatibility 4-14

definition 4-12

guidelines 4-12

Index-4

Concurrent processing

performing 3-1,3-6

waiting for a child process 3-7

Connection

See also stream connection

Connection attributes

definition 4-17

Connection vector

definition 3-24

Control code

definition 5-56

Controlling

system output with cursors 5- 52

access to objects 4-12

the mouse 5-61

the touchpad 5-61

Controlling file access with eventcounts 6-1

Converting

child process to orphan process 3-17

data with VFMT system calls 8-1

internal time values to readable output

7-2

readable time to system time 7-7

relative system time to floating point

value 7-9

relative system time to integer value

7-9

relative time to TIME $CLOCK T

format 7-9

system time to readable time 7-6

Cooked mode processing

definition 5-49

CPU

getting time used by process 3- 27

scheduling priority, getting 3- 27

CPU scheduling priority

getting process,

PROC2 $GET INFO 3- 27

CPU time

getting process,

with

with

PROC2 $GET INFO 3- 27

monopolizing with busy-waits 6-3

used by process 3- 27

waiting for events without using 6-1

Creating

your own icon font file 5-38

a new process during program execution

3-6

a new window in icon format 5-4

a window in icon format 5-34

backup objects 4-8

icons 5-34

magtape descriptor object, a 9-12

new pads and windows, alternatives to

5-4

new pads and windows, when to 5-4

new transcript pads, when to 5-4

objects 4-5

paste buffers 5-1

temporary objects 4-9

windows and window panes 5- 2

CTRL/N 5-10

CTRL/Q 2-25,6-12,6-13,8-19

fault reported, process quit 2-9

CTRL/Y 5-10

CTRL/Z 2-6

Current font size

specifying current height in

PAD $MOVE 5- 27

Current scale factors

PAD_$INQ_ WINDOWS

5-15

positions

Cursor position reports

aligning on word boundaries 5- 55

defining a packed record 5-54

Cursors

in raw mode 5-49

reading keyboard cursor position 5-49

vertical moves (frames) 5-3

vertical moves within frames 5-42

Cutting and pasting text and graphics

paste buffers 5-57

Data types

array of records 1-7

arrays 1-7

basic 1-9

declaring DOMAIN predefined data

types in FORTRAN 1-1

emulating predefined in C 1-30

Index-5

Date

enumerated types 1-4

FORTRAN 1-13

how to use 1-4

listed in insert files 1-1

records 1-6

sets 1-5

using DOMAIN predefined 1-1

using reference material 1-9

variant records 1-6

See also time

DEBUG

display with the - SRC option (figure)

5-3

example of frames 5-43, 5-42

example of PAD _ $INQ_ VIEW 5-43

example of PGM_$DEL_ARG 3-22

example of window panes 5-3

Decoding

definition 8-1

Defining program keys

example of 5- 21

Deleting an argument from the argument

vector 3-23

Deleting arugments with PGM _ $DEL _ ARG

3-22

Dereferenced pointer

EC2 $READ 6-6

Determining which file modified recently

7-13

DIR object type

definition 9-2

Directories

C sample program A-54

getting and setting 4-24

no room for objects, error 1-12

object type UID 9-2

DIRECTORY $UID 4-7

Disabling asynchronous faults

EC2 $WAIT 6-14

Disabling asynchronous faults

EC2 $ WAIT SVC 6-16

Disk files

object type UID 9-2

Display

with

with

C sample program A-77

Display driver

See also SMD display driver

Display Manager

bypassing system input processing with

raw mode 5-49

changing display appearance with PAD

calls 5-1

changing how windows look 5-18

changing scale factors 5-25

closing windows and window panes

5-10

controlling system output with cursors

5-52

controlling user's display with

PAD_$INQ_FULL_ WINDOW 5-17

creating a new pad in a new window

5-4

creating a new pad in a window pane

5-5

creating and closing windows, sample

program 5-11

creating edit window panes 5-9

creating icons 5-34

creating input pads in window panes

5-7

creating new pads and windows 5-4

creating read-only edit pads 5-10

creating subsequent pads in window

panes 5-6

creating transcript pads 5-8

displaying text with PAD system calls

5-1

exchanging data with stream records

5-49

formatting window or window pane

5-56

getting current scale factors 5-27

giving user control over the display

5-4

handling graphic input with frames

5-42

inquiring about the user's display and

keyboard 5-21

manipulating windows 5-14

Index-6

overview of 5- 2

running programs in user's Shell 5- 4

sending and receiving program input

5-49

writing to an output stream 5-56

Display manager commands

copy (XC) 5-57

create process (CP) 5-4

create process only (CPO) 5-4

cut (XD) 5-57

Debug_ Quit (DQ) 2-11

font load (FL) 5-23

paste (XP) 5-57

Display unit, value 5-5

DOMAIN Language Level Debugger

See also DEBUG

DOMAIN System Call Reference

data type sections 1-9

error descriptions 1-12

explanation of record ill ustrations

1-10

explanation of variant

ill ustrations 1-11

parameter descriptions 1-12

system call descriptions 1-11

using 1-9

DSP server 9-8

Dumb terminal

handling text output as if 5-42

DUP, UNIX function 4- 5

EC2 system calls

data types 6-1

insert file 6-1

program examples 6-5

summary of, table . 6-1

waiting for multiple events 6-4

See also Eventcount

EC2 $EVENTCOUNT 3-8

EC2 $EVENTCOUNT T 6-1

EC2 $INIT 3-8

EC2 $PTR T 6-1

EC2_$READ 6-4

EC2 $READ 3-7, 7-18

array of trigger values 6-6

record

dereferenced pointer 6-6

example 6-7

invalid use of 6-6

EC2 $WAIT 3-7, 6-4,7-18

example 6-9

format 6-7

handling asynchronous faults 6-13

responding to events 6-7

returning values of satisfied events

6-7

EC2_ $WAIT _ QUIT 2-6,6-16, 6-17

EC2_$WAIT~SVC 2-6,6-4

example of 6-16

handling asynchronous faults 6-13

preventing faults from occurring 6-17

responding to events 6-7

EDFONT

creating your own icon font file 5-38

font editor 5-23

Edit pads

creating 5-9

creating new permanent files 5-9

definition 5-3

example of 5-9

file access privileges 5-10

formatting program input 5-3

getting user input with

PAD $EDIT WAIT 5-10

specifying existing pathnarne and

namelength 5-9

EDMTDESC, DOMAIN comma.nd 9-13

Efficiency

avoiding duplication of existing

programs 3-1

creating a new process 3-6

invoking a program within your own

process 3-2

passing invoked programs 3-2

Encoding

definition 8-1

including literal text in directives 8-5

End-of-file 3-12

Enumerated types

DOMAIN predefined data types 1-4

emulating in FORTRAN 1-16

Index-7

internal representation 1-16

reference material explanation 1-16

EOF 4-4

EQUIVALENCE 1-23

Error messages

error creating file 2-6

file already exists 2-4, 2-6

name not found 2-4

Error stream 4- 4

ERROR $CODE 2-2

ERROR_$FAIL 2-2

ERROR $INIT STD FORMAT 2- 4

ERROR $MODULE 2-2

ERROR $PRINT 2-3

ERROR $PRINT FORMAT 2-4

ERROR $STD FORMAT 2-4

ERROR $SUBSYS 2- 2

Errors

accessing status code fields with

FORTRAN 2-2

explanation of reference material 1-12

FORTRAN error routines 2- 2

insert files 2-1

interpreting the status code 2- 2

lOS $BUFFER SIZE TOO

SMALL 4-35

lOS $BUFFER SIZE TOO

SMALL 4-28

lOS $CONCURRENCY

VIOLATION 4-14

lOS $END OF FILE 4-29

lOS $PUT CONDIONAL FAILED

4-25

NAME, error section 1-12

printing an error message in standard

error format 2-5

printing error messages 2-3

setting a severity level 2-7

simple error handling procedure 2-3

standardized error reporting 2- 4

status code structure 2-1

testing for 2-3

testing for specific STREAM errors

2-7

See also error messages, faults

Eventcount

alternative to, busy-waiting 6-3

best use for 6-4

C sample program A-ll

checking if an event occurred 6-9

common errors 6-6

controlling file access with 6-1

declaring replacement, for terminated

process 3-8

definition 6-1

FORTRAN declarations 6-1

handling mUltiple events 6-4

incrementing the trigger value 6-9

incrementing time 6-9,7-19

overview of 6-2

preventing interruption during wait

cycle 6-14

process eventcounts, how they differ

from others 3-8

processing the event 6-9

reading current value of 6-6

relationship between process and

(figure) 6-2

returning number of satisfied 6-7

satisfying before wait loop 6-8

specifying, with pointers 6-1

summary of program response after

fault occurs 6-18

system constraints 6-4

system-defined 6-1

testing for pre-existing input 6-8

trigger value 6-2, 6-10

unexpected results 6-4

user- defined 6-1

waiting for processes

PGM $GET EC 3-7

Eventcounts

C sample program A-108

Exchanging data with stream records

PAD system calls 5-49

EXIT 5-10

Fail bit, status code 2-2

FALSE, Boolean value 1-13

Fault handler

with

Index-8

C sample program A-17

Fault handlers

backstop ~ 24

default 2- 24

determining action to take 2-21

establishing 2-21

establishing function as a 2- 22

fault record 2- 21

function 2-21

ignoring with PFM _ $INHmIT 6-13

invoking process in background mode

3-12

multi-level 2-24

performing ciean- up 6-13

PFM _ $ CLEANUP 6-13

PFM $EST ABLISH

FAULT HANDLER 6-13

PFM $INHmIT 6-13

responding to faults 6-13

responding to specified faults 2- 23

summary of 6-18

types of 2-24

See also Faults

Fault hanlder

C sample program A-18

Fault record

definition 2-21

FAULT _ $ACCESS _ VIOLATION 2-9

FAULT $ADDRESS ERROR 2-9

FAULT $BLAST 2-10

FAULT _$BUS_ TIMEOUT 2-9

FAULT $CACHE PARITY 2-10

FAULT $CHK INST 2-9

FAULT $CONTINUE PROC 2-10

FAULT $DISPLAY QUIT 2-9

FAULT _$ECCC 2-9

FAULT $ECCU 2-9

FAULT $FAULT LOST 2-10

FAULT _$FP _BSUN 2-10

FAULT $FP DIY ZERO 2-10

FAULT _ $FP _ INEXACT 2-10

FAULT $FP OP ERR 2-10

FAULT $FP OVRFLO 2-10

FAULT _$FP _SIG_NAN 2-10

FAULT $FP UNDFLO 2-10

FAULT _ $ILLEGAL_ CORPROC 2-10

FAULT $ILLEGAL INST 2-9

FAULT _$ILLEGAL_SVC_CODE 2-9

FAULT $ILLEGAL SVC NAME 2-9

FAULT $ILLEGAL USP 2-9

FAULT $INTERRUPT 2-10

FAULT _$INVALID _STACK 2-10

FAULT $INVALID USER FAULT 2-9

FAULT $NOT IMPLEMENTED 2-10

FAULT $NOT VALID 2-9

FAULT $NULLPROC ONB 2-9

FAULT $PARITY 2-10

FAULT $PBU USER INT FAULT

2-9

FAULT $PRIV VIOLATION 2-9

FAULT _$PROT _ VIOLATION 2-9

FAULT _$QUIT 2-9

FAULT $SINGLE STEP 2-9

FAULT _ $SPURIOUS _ PARITY 2-10

FAULT $STOP 2-10

FAULT _ $ SUSPEND _ PROC 2-10

FAULT $SUSPEND PRoe KBD 2-10

FAULT $TRAPV INST 2-9

FAULT _ $UNDEFINED _ TRAP 2-9

FAULT $UNIMPLEMENTED INST 2-9

FAULT $WCS PARITY 2-10

FAULT $WHILE LOCK SET 2-10

FAULT $ZERO DIVIDE 2-9

Faults

asynchronous 2-11

correcting before continuing process

2-21

definition 2-1

handling 2-8

handling, with clean-up handlers

2-12

handling, with fault handlers 2-21

inhibiting asynchronous faults 2-25

insert files 2-1, 2-8

keeping track of inhibited asynchronous

faults 2-25

listing of (table) 2-8

responding to specified 2-23

restarting 2-8

restoring disk files before exiting

Index-9

program 2-12

synchronous 2-11

See also Clean-up handlers, errors,

fault handlers, synchronous

File access

performing sequential 4-29

random 4-31

See also random access

File access privileges

after editing session 5-10

changing with STREAM _ $REDEFINE

5-10

File acess

controlling with eventcounts 6-1

File already exists 2-4

File attributes

inquiring about 4-24

pad 5-2

File attributes, changing

e sample program A-34

File sequence number

See also

object

Magnetic tape descriptor

Files

accessing magtape 9-12

C sample program A-37, A-39, A-43

See also objects

Files, UASC

e sample program A-41, A-45

Files, updating

e sample program A-48

Floating point

faults reported 2-10

Font file

in directory /SYS/DM/FONTS 5-23

Font files

bold (.b extension) 5-23

Changing character fonts with

EDFONT 5-23

definition 5-23

inverted (.iv extension) 5-23

italics (.i extension) 5-23

maximum number in use (100) 5-23

reverse-video (inverted fonts) 5-23

standard 5-23

variations of typefaces, fonts, size

5-23

Font size

adjusting window size according to

5-32

Fonts

C sample program A-83, A-96

Format directive

definition 8-4

Formatting

ASCII character strings 8-4

ASCII data with %a 8-5

ASCII data with %a (table) 8-7

floating point data 8-8

integer data with %0, %d, %h format

directives 8-10

numbers 8-4

producing spaces, new lines, tabs 8-4

program input with edit pads 5-3

special control string directives 8-12

time 7-7

variables with VFMT 8-1

Formatting variables

See also VFMT

FORTRAN

accessing fields of status code with

2-2

array 1-23

Boolean data type 1-13

carriage control characters 4-16

clearing a bit from a large set 1-21

constructing record-like structures

1-10

declaring DOMAIN predefined data

types 1-1

declaring eventcounts 6-1

determining which bits are set 1-19

emulating a Boolean value in a record

structure 1-14

emulating a Boolean value with

LOGICAL 1-13

emulating large sets 1-21

emulating predefined data types in

1-13

emulating records 1-22

Index-IO

emulating variant records 1-24

enumerated types 1-16

EQUIVALENCE 1-23

equivalences, variant arrays 1-28

error routines 2- 2

ICHAR transfer function 1-14

logical unit numbers 4-3

parameter descriptions 1-12

passing integer constants as parameters

1-29

passing parameters to system calls

1-29

pointers 1-14

referencing based variables 1-16

set emulation calls in FTNLIB library

1-21

setting a bit in a large set 1-21

setting bits 1-18

special cases for emulating sets 1-21

stream ID 4-3

testing a bit in a large set 1-21

testing a group of bits 1-20

testing bits 1-19

testing for TRUE and FALSE 1-14

testing return status of system call

2-3

using predefined constants and values

1-4

using predefined sets 1-18

using set emulation calls in FTNLIB

library 1-18

See also FORTRAN sample

programs

FORTRAN sample programs

declaring a Boolean value with

LOGICAL variable 1-13

emulating a record 1-23

emulating a variant record 1-25

emulating status code variant record

1-28

handling pointers 1-15

passing an integer parameter

setting bits 1-18

testing a group of bits

testing bits one- by-one

1-20

1-19

1-29

using enumerated types 1-17

using set emulation calls in FTNLID

1-21

Frames

C sample program A-96

clearing 5-43

closing 5-43

common error 5-42

controlling output in with cursor 5-52

creating 5-42

definition 5-42

deleting frames 5-43

destroying transcript pad 5-43

filling entire transcript pad with 5-42

handling graphic input with 5-42

making re- draw operation efficient

5-43

maximum size 5-42

restrictions with graphics primitives

5-42

specifying height of 5-42

two-dimensional program input 5-3

using PAD _$INQ_FONT, program

example 5-27

using, program example 5-29

FTNLID library 1-18, 1-34

Functions

copying a string to a buffer 5-44

establishing clean-up handler within

2-12

fault handler operation 2-21

releasing clean-up handler 2-14

setting a severity level 2-7

Get call

definition 4- 27

GET _EC system call 6-4

pointers to eventcounts (table) 6- 5

returned pointer array 6-5

Get _ num _ arg

internal procedure 5-30

Getting and reading eventcounts 6- 5

Getting and reading system- defined

eventcounts 6-6

Getting information about your process

Index-II

3-27

Getting process information

PGM, PM, PROC1, PROC2 system

calls 3-27

Getting system time 7-2

GMF

See also graphic map files

GPR

See also Graphics primitives

GPR $ENABLE INPUT 1-21

GPR_$GET_EC 6-5

GPR $INIT 3-7

GPR_$INQ_ VIS_LIST 1-8

GPR $KEYSET T 1-21

GPR $TERMINATE 3-7

GPR $WINDOW LIST T 1-7

Graphic Map files (GMF)

paste buffers 5-58

Graphics

viewport 5- 2

Graphics input

synchronizing events with eventcounts

6-1

Graphics primitives

child process restrictions 3-7

inquiring about display attributes

5-21

mixing graphics and text in windows

5-1

more complex graphics than frames

5-42

performing graphic operations with

5-1

restrictions with frames 5-42

without input pads 5-7

Greenwhich Mean Time 7-1

Growing windows

with PAD $SET FULL WINDOW

5-17

Handling

asynchronous faults during eventcount

waits 6-13

asynchronous faults with a time

eventcount 6-15

asynchronous faults with

EC2 $ WAIT SVC 6-17

faults with PFM

$ESTABLISH FAULT HANDLER

6-13

faults, techniques to 6-13

pointers in FORTRAN (example)

1-15

runtime errors 2-1

the touchpad and mouse 5-1

HDR UNDEF $UID 4-7

HDRU object type

definition 9- 2

Hexadecimal data

converting to ASCII 8-1

Hold _ display

internal procedure to suspend process

5-12

How the system represents time 7-1

Hysteresis factor

I/O

changing value 5-64

default value (5) 5-64

definition 5-64

access type and concurrency mode

4-12

changing record formats 4-45

current position marker 4-4

determining operations for types 4-18

device- dependent 4-1

error I/O 4-3

insert files 4-1

interactive 4-4

lOS interface 4-1

overview 4-2

predefined streams 4-3

reading and changing object attributes

4-16

redirecting standard I/O 4-4

referring to stream by number 4-3

seek keys 4-4

standard streams 4-4

writing to an object 4-25

See also accessing DOMAIN objects,

Index-12

lOS Calls

IADDR, FORTRAN function 2- 23

ICHAR transfer function 1-14

Icons

C sample program A-89, A-92

changing position of 5-36

creating a new window in icon format

5-4

creating your own 5-35

creating your own icon font 5-38

PAD system calls to manipulate (table)

5-34

positioning 5-35

remembering position of 5-36

replacing icon character 5-36

specifying icon character displayed

5-35

Ignoring asynchronous

PFM $INHIBIT 6-13

Inhibit count, definition 2-25

Input pads

faults

creating, in window panes 5-7

definition 5- 2

specifying maximum height 5-7

specifying null pathname

namelength 5-7

with

and

specifying PAD _ $INIT _ RAW 5-8

INPUT PAD $UID 4-7

Insert files

BASE 1-1, 1-9,4-4

CAL(calendar) 7-1

EC2 6-1

ERROR 2-1

FAULT 2-8

how to use 1-1

lOS 4-1

PAD 5-1

PBUFS 5-1

PFM 2-1

PGM 3-1

PM 3-1

predefined constants and values 1-3

PROC1 3-1

PROC2 3-1

summary of (table) 1-2

TIME 7-1

TPAD 5-2

type UID 4-1,4-6

VFMT 8-1

Integers

formatting 8-4

Interactive I/O 4-4

Interpreting

the status code 2-2

Invoking

a child process, things to consider

3-6

a program in background mode 3-13

an independent process 3-11

clean-up handlers 2-3

mUltiple clean-up handlers 2-15

other programs within a program' 3-1

system-defined programs within a

program 3-1

Invoking a program in default mode

creating a new process 3-6

knowing when program is done 3-7

waiting for a child process 3-7

Invoking external programs

coordinating programs through severity

levels 3-3,3-4

in wait mode 3-2

invoking a Shell command 3-3

severity levels 3-3

Invoking programs

PGM $INVOKE 5-4

setting a severity level 2-7

lOS calls

accessing DOMAIN objects with 9-1

accessing magtape files with 9-12

accessing mailboxes with 9-3

accessing serial lines with 9-8

controlling access type, concurrency

4-12

controlling open call 4-11

creating, opening objects 4-5

implementing object types 4-2

manipulating streams 4- 5

performing system I/O 4-1

specifying an object's type 4-6

Index-13

using with SIO type objects 9-9

See also I/O

lOS $BUFFER _ TOO SMALL 4- 28

lOS $CF APPEND 4-17

10S_$CF _IPC 4-17

lOS $CF READ INTEND WRITE

4-17

lOS $CF TTY 4-17

lOS $CF UNREGULATED 4-17

lOS $CF VT 4-17

lOS _ $CF _ WRITE 4-17

lOS $CLOSE 4- 24

lOS $CONCURRENCY VIOLATION

4-14

lOS _ $COND _ OPT 4-25, 4-28, 9-4, 9-5

10S_$CREATE 4-5

lOS $DELETE 4-24,9-1

lOS _ $DUP 4-5

10S_$EQUAL 4-5

lOS $ERRIN 4-4

lOS $ERROUT 4-4

lOS $EXPLICIT F2 4-45

lOS _ $Fl 4-45

lOS $F2 4-45

lOS $FORCE WRITE FILE 4- 24

lOS $GET 4-27

10S_$GET _DIR 4-24

10S_$INQ_BYTE_POS 4-31

10S_$INQ_CONN_FLAGS 4-18

IOS_$INQ_FILE_ATTR 4-24

IOS_$INQ_FULL_KEY 4-32

10S_$INQ_MGR_FLAGS 4-18

lOS _ $INQ _ OBJ _FLAGS 4-18

IOS_$INQ_PATH_NAME 4-24

IOS_$INQ_REC_POS 4-31

IOS_$INQ_REC _REMAINDER 4-28

10S_$INQ_REC _ TYPE 4-44

IOS_$INQ_SHORT _KEY 4-32

lOS _ $INQ _ TYPE _ UID 4- 24

10S_$INQUIRE_ ONLY _ OPT 4-12

lOS $LOC NAME ONLY MODE 4-8,

4-9

lOS $LOCATE 4- 27

lOS $MAKE BACKUP MODE 4-8

lOS $MF CREATE 4-18

lOS $MF CREATE BAK 4-18

lOS $MF FORCE WRITE 4-18

lOS $MF FORK 4-18

lOS $MF lMEX 4-18

lOS $MF READ INTEND WRITE

4-18

lOS _ $MF _ REC TYPE 4-18

lOS $MF SEEK ABS 4-18

lOS $MF SEEK BOF 4-18

lOS $MF SEEK BYTE 4-18

lOS $MF SEEK FULL 4-18

IOS_$MF _SEEK_REC 4-18

lOS $MF SEEK SHORT 4-18

lOS $MF SPARSE 4-18

lOS _ $MF _ TRUNCATE 4-18

lOS $MF UNREGULATED 4-18

lOS $MF WRITE 4-18

lOS $NO OPEN DELAY OPT 4-11

lOS $NO PRE EXIST MODE 4-8

lOS $OF ASCII 4-16

IOS_$OF _COND 4-16

lOS $OF DELETE ON CLOSE 4-16

lOS _ $OF _ FTNCC 4-16

lOS $OF SPARSE OK 4-16

lOS $OPEN 4-5

lOS $PARTIAL RECORD OPT 4-25,

4-38

lOS _ $POSITION _ TO EOF OPT 4-11

lOS $PRESERVE MODE 4-8

lOS _ $PREVIEW _ OPT 4-25, 4-28

lOS _ $PUT 4-25

lOS $PUT CONDIONAL FAILED

4-25

lOS $READ INTEND WRITE OPT

4-12

lOS $REC BNDRY OPT 4-28

lOS $RECREATE MODE 4-8

lOS $REPLICATE 4-5

IOS_$SEEK 4-41,9-1,9-18

lOS $SEEK TO BOF 4-31

IOS_$SEEK_TO_EOF 4-31

lOS $SET CONN FLAG 4-18

lOS $SET DIR 4-24

lOS _ $SET _ OBJ _ FLAG 4-18

lOS $SET REC TYPE 4-44

Index-14

lOS $STDIN 4-4

lOS $STDOUT 4-4

lOS $SWITCH 4-5

lOS $TRUNCATE 4-25,9-1

lOS $TRUNCATE MODE 4-8

lOS $UNDEF 4-45

lOS _ $UNREGULATED OPT 4-11

lOS _ $Vl 4-45

lOS $WRITE OPT 4-11

IP AD object type

definition 9-2

IPC sockets

synchronizing events with eventcounts

6-1

IPC $GET EC 6- 5

Keyboard

C sample program A-77

definitions,redefining 5-21

type, getting user's 5-21

Key board cursor

definition 5- 52

Lm $ADD TO SET 1-21, 1-34

Lm_$CLR_FROM_SET 1-21,1-34

Lm_$INIT _SET 1-21,1-34

Lm $MEMBER OF SET 1-21,1-34

Line, definition 5-3

Local time

C sample program A-114, A-123,

A-125

computed from UTC 7-2

getting local time in readable format

7-3

in TIME $CLOCK T format 7-2

removing local offset 7-4

Locator device

changing speed of cursor movement

5-62

corresponding to absolute position on

screen 5-61

jumping cursor 5-62

making it less sensitive to slight

movement (hysteresis factor) 5- 64

making system forget last position

5-64

responding to current position only

(relative mode) 5-62

responding to initial position and

current positions 5-62

scale factors 5- 63

stroking 5- 62

See also mouse or touchpad

Locked resources

suspending process during 7-16

LOGICAL type 1-13

Machine instructions

fault detection 2-8

Magnetic tape descriptor object

closing 9-13

definition 9-12

file sequence number 9-12,9-14

object type UID 9-3

Magtapes

accessing files on 9-12

C sample program A-52, A-56

closing a descriptor object 9-13

creating, opening descriptor object

9-12

descriptor object 9-12

reading from 9-18

reading, changing descriptor object

9-13

restrictions 3-6

retrieving volume or object attributes

9-13

stripping newlines from files 9-14

writing to 9-14

Mailbox

synchronizing events with eventcounts

6-1

Mailbox record

definition 9-4

Mailboxes

C sample program A-52

data messages, types of 9-4

getting response from server 9-4

how data is stored 9-4

MBX interface, overview of 9-3

opening 9-4

Index-I5

program example using lOS calls 9-5

server program 9-5

See also MBX interface

Mailboxes, object type UID 9-2

Manager attributes

definition 4-17

Managing programs

accessing arguments from an invoked

program 3- 20

deleting arguments 3-22

getting information about other

processes 3- 29

handling process eventcount 3-8

invoking a program in background

mode 3-11, 3-13

invoking external user programs 3-1

invoking programs with PGM, PROC,

PM system calls 3-1

passing arguments to invoked programs

3-18

passing correct number of arguments

using PGM_$DEL ARG 3-22

passing streams to an invoked program

3-24

process faults detected 2-10

program level 3-3

See also invoking a child process,

invoking a program in default mode,

invoking external programs,

PGM_ $ INVOKE, Process information

ManipUlating tme 7-1

Mapping files 3-8

MBX interface

client, server relationship 9-3

exchanging data 9-3

initializing MBX object 9-3

making connections to an MBX object

9-3

writing client program with lOS calls

9-4

See also mailboxes

MBX object type 9-1

definition 9-2

MBX server program 9- 5

MBX $CHANNEL SET T 1-21

MBX_$CREATE SERVER 9-3

MBX $GET EC 6-5

MBX $GET REC CHAN SET 1-21

MBX_$OPEN 9-3,9-4

MBX _ $PUT _ CHR 9-4

MBX $PUT REC 9-4

MBX $UID 4-7

MODULE 3-11

Pascal fault-handling function 2-22

Mouse

operates only in relative mode 5-61

system calls to control (TP AD) 5-1

See also locator device

Moving windows

with PAD $SET FULL WINDOW

5-17

MS calls

implementing UASC type 4-2

MS $ACC MODE T 1-5

MT object type 9-1

definition 9-3

MT_$UID 4-7,9-12

MTS system calls

creating magtape descriptor with

9-12

See also magtapes

MTS $ASCII NL A 9-14

MTS $CLOSE DESC 9-13

MTS _ $COPY _ DESC 9-13

MTS $CREATE DEFAULT DESC

9-12

MTS_$FILE_SEQUENCE_A 9-14,9-18

MTS $GET ATTR 9-13

MTS $HANDLE T 9-12

MTS $OPEN DESC 9-12

MTS $RW T 9-12

MTS $SET ATTR 9-13, 9-18

MTS $WRITE 9-12

MUltiple events

handling with EC2 calls 6-4

NAME system calls

error section 1-12

NAME $BAD PATHNAME 1-12

NAME $DIRECTORY FULL 1-12

Index-16

NAME_$PNAME_T 1-9,1-37

NAME $SET DIR 1-29,1-38

Namelength

creating temporary pad with null value

5-5

specifying null for input pads 5-7

NEWLINE 4-25, 4- 28

control character 5-3

writing to output, with %/ 8-13

Node

getting information about processes on

same 3-29

Nonlocal GOTO 2-12

NULL $UID 4-7

OBJ object type

definition 9-2

Object

accessing DOMAIN 9-1

Object attributes

changing 4-17

definition 4-16

Object types

and the lOS interface 4-2

determining I/O operations for 4-18

type of files 9-2

OBJECT FILE $UID 4-7

Objects

changing attributes 4-16

closing and deleting 4- 24

compatible access types

concurrency 4-14

controlling creation of 4-7

controlling object access 4-12

creating 4- 5

creating backups 4-8

and

creating new, if name exists 4-7

getting additional information on

4-24

guidelines for access, concurrency

4-12

locking 4-12

options to control reading 4-28

options to COlli 1"01 writing 4-25

protected n ,,·1 shared concurrency

4-12

random access 4-31

reading from 4- 27

reading sequentially 4- 29

record 4-35

sequential access 4-28

sharing, on different nodes 4-13

writing to 4-25

writing to fixed-length records 4-36

writing to variable-length records

4-38

writing, NEWLINE characters 4-25

See also Object attributes, record­

oriented objects

Opening a stream to the serial line 6-7

Origin value for TP AD calls

definition 5- 61

Orphan process

creating 3-17

definition 3-11

See also Child process

Output cursor, definition 5-52

Overwriting text in frames

using PAD _ $ CLEAR _FRAME 5-43

PAD object type

definition 9-2

PAD system calls

changing the appearance of the display

5-14

control codes 5- 56

data types 5-1

handling graphic input with frames

5-42

inquiring about window positions 5-14

insert files 5-1

requiring size of current font 5-25

specifying a window number 5-14

using icons 5-34

PAD_$800_DISPLAY 5-22

PAD $ABS SIZE 5- 25

PAD $BOTTOM 5-6,5-7

PAD $BS control code 5-56

PAD $BW 15P 5- 22

PAD $BW 19L 5-22

Index-17

PAD $CLEAR FRAME 5-33,5-43

PAD $CLOSE FRAME 5-43

PAD _$COLOR_DISPLAY 5-22

PAD $CPR ALL 5-54

PAD $CPR ENABLE 5-54

locating keyboard cursor 5-52

reading keyboard cursor position in raw

mode 5-49

requiring current font size 5- 25

See also cursor position reports

PAD $CR control code 5-56

PAD $CREATE 5-5,5-6,5-13

specifying absolute size

PAD $ABS SIZE 5-8

with

PAD _$CREATE_FRAME 5-25,5-29

moving cursor vertically by creating

frames 5-42

PAD $CREATE ICON 5-34, 5-35,

5-36,5-40

PAD $CREATE WINDOW 5-4, 5-5,

5-12

PAD $DEF PFK 5-23,5-56

PAD $DM CMD 5-57

PAD $EDIT 5-9

PAD $ESCAPE control code 5- 56

PAD $FF control code 5- 56

PAD _$ICON WAIT 5-34,5-36,5-38

PAD $INIT RAW 5-51

PAD _$INPUT 5-7

PAD _$INQ_DISP _TYPE 5-21

PAD _$INQ_FONT 5-27,5-28,5-32

PAD _$INQ_FULL_ WINDOW 5-18,

5-33

getting position of window borders with

5-17

PAD_$INQ_ICON 5-34,5-36

PAD _SINQ_ICON_FONT 5-34,5-38

PAD_SINQ_POSITION 5-25

PAD _SINQ_ WINDOWS 5-15

getting window positions on display

5-14

order of returned positions 5-14

program example 5-16

requiring current font size 5- 25

specifying a window number with

5-14

PAD $LEFT 5-6

PAD $LOAD FONT 5-23, 5-24, 5-32

PAD _$LOCATE 5-25,5-52

PAD_$MAKE_ICON 5-34,5-37

PAD $MAKE INVISmLE 5-18, 5-20

resctriction 5-17

PAD _$MOVE 5-29,5-33,5-51

requiring current font size 5-25

specifying 'Y' factor as height of

current font 5-27

PAD $NEWLINE control code

5-56,5-60

PAD $NONE 5-22

PAD $POP PUSH WINDOW

5-20

PAD $POSITION T 5-35

PAD_$RAW 5-50,5-54

PAD $READ EDIT 5-10

PAD _ $RIGHT 5-6

PAD $SELECT WINDOW 5-18

5-55,

5-18,

PAD $SET AUTO CLOSE 5-n,5-13

when not to use 5-11

PAD $SET BORDER 5-18,5-19

restriction 5-18

PAD $SET FULL WINDOW

5-18

5-17,

implementation restriction 5-17

PAD_$SET_ICON_FONT 5-34,5-35

PAD $SET ICON POS 5-37

PAD $SET ICON POSITION 5-34

PAD_$SET_SCALE 5-15,5-25

program example 5-15, 5-27, 5-29,

5-32

PAD $TAB control code 5-56

PAD _ $TOP 5-6

PAD $TRANSCRIPT 5- 5

PAD $UID 4-7

PAD $USE FONT 5-23, 5-25

Pads

closing original pad last 5-10

closing pads automatically 5-10

definition 5-2

object type UID 9-2

types of 5-2

Index-18

See also PAD system calls

Panes

See also Window panes

Parameters

explanation of reference material 1-12

passing by reference 1-37, 1-38

passing in C 1-37

passing in FORTRAN 1-29

passing integer constants 1-29, 1-39

passing integer parameters in C 1-38

See also passing

Parent process

definition 3-6

keeping track of child process 3-7

passing streams to child 3-6

running out of resources 3-7

Parity

fault reported 2-10

Parsing an input line

with VFMT format directives 8-15

Partial data mailbox messages 9-4

Pascal

CHR function 4-25

fault- handling function 2-22

FIRSTOF function 4-19

formatting data with VFMT 8-1

LASTOF function 4-19

testing return status of system call

2-3

variant records 4-38

writeln 4-2

Passing

a program name to an invoked program

3-18

arguments from a Shell 3-18

arguments to an invoked program

3-18

streams to an invoked program 3- 24

Paste buffer manager

using paste buffers 5-57

Paste buffers

C sample program A-105

definition 5-57

Image (graphic map) files 5- 58

names 5-57

reading and writing 5-57

sample program 5-58

temporary files 5- 58

text (UASC) files 5-58

using 5-57

Pathname

creating a new permanent file 5-8

creating temporary pad with null value

5-5

not unique, error 1-12

not valid, error 1-12

specifying exiting file 5-8

specifying null for input pads 5-7

PBU $GET EC 6-5

PBUFS system calls

insert files 5-1

PBUFS $CREATE 5-57,5-60

PBUFS $OPEN 5-57, 5-59

Peripheral devices

accessing 9-8

synchronizing events with eventcounts

6-1

See also serial lines

PFM $ALL F AUL TS 2- 23

PFM_$CLEANUP 2-6,2-12,2-17,6-13

PFM_$CLEANUP _SET 2-6,2-12

PFM $CONTlNUE FAULT HANDLING

2-22

PFM $ENABLE 6-17

PFM $ENABLE 2-17, 2- 25

reenabling faults 6-13

PFM $EST ABLISH F AUL T HANDLER

2-21, 2-22, 2-23, 3-12, 6-13

PFM $FAULT REC T 2-21

PFM_$FG_OPT _SET _ T 1-18

PFM $FH BACKSTOP 1-31

PFM_$FH_BACKSTP 1-18

PFM $FH FUNC VAL T 2-21

PFM $FH MULTI LEVEL 1-18, 1-31

PFM $FH OPT SET T

2-23

PFM $FUNC P T 2- 23

1-5, 1-31,

PFM $INHmIT 2- 25, 6-13, 6-18

PFM $RESET CLEANUP 2-16

PFM $RETURN TO FAULTING

Index-19

CODE 2-22

PFM $RLS CLEANUP 2-14

PFM $SIGNAL 2-15

PGM calls

completion status 3-2

waiting for program to finish before

invoking 3-2

See also PGM $INVOKE

PGM $ARG 3-18

PGM $ARGV 3-21

PGM_$ARV 3-18

PGM $BACK GROUND 3-11

PGM $CONNV 3-24

PGM $DEL ARG 3-22

PGM_$ERROR 3-3

PGM $ESTABLISH FAULT HANDLER

1-18,1-31

PGM_$EXIT 2-3,2-16,3-3

PGM $FALSE 3-3

PGM_$GET _ARG 3-20,5-31

PGM_$GET_ARGS 1-15,3-20

PGM_$GET _EC 3-7,6-5

PGM_$GET _PUID 3-29

PGM_$INTERNAL FATAL 3-3

PGM $INVALID 3-3

PGM $INVOKE 2-12,4-4

accessing argument in UNIV PTR

format 3-21

accessing arguments 3-20

argument vector,

configuration 3-19

background mode 3-2,3-11

argument

C sample program A-8, A-9, A-to,

A-14, A-24, A-26

default mode 3- 2

deleting arguments 3- 22

getting information about invoked

process 3- 29

invoking a Shell command within a

program 3-3

invoking another program with 3-1

invoking programs with 5-4

passing arguments to invoked programs

3-18

passing streams to an invoked program

3-24

Returning arguments from child process

3-21

setting severity levels 3-3

standard streams 3-24

wait mode 3-2

See also Managing programs, process

execution

PGM $MAKE ORPHAN 3-17

PGM_$OK 2-16,3-3

PGM_$PROC_ WAIT 3-2,3-7

PGM $SET SEVERITY 2-8, 2-16,3-3

PGM $SIGNAL 2-3

PGM $TRUE 3-3

PGM_ $WAIT 3-2

PGM $W ARNING 3-3

PM_$GET_HOME_TXT 3-27

PM $GET SID TEXT 3-27

Pointers

definition 1-14

dereferencing pointers before passing

1-38

DOMAIN FORTRAN extension syntax

1-14

handling in FORTRAN 1-15

illustration of 1-15

referencing its based variables in

FORTRAN 1-16

synchronous fault reported 2-11

using array dimension in FORTRAN

1-15

Popping windows 5-18

Predefined constants

FORTRAN 1-4

using 1-2

Predefined values

using 1-2

Preventing

Display Manager from interpreting a

contol code 5-56

faults from occurring with

EC2 $WAIT SVC 6-17

your program from being device­

dependent 5- 21

your program from being interrupted

Index-20

2-25

your program from being interrupted

during wait cycle 6-14

PROC1 $GET CPUT 3-27

PROC2 $GET INFO 3-27, 3-29

PROC2 $LlST 3-30

PROC2_$UID_LlST T 3-30

PROC $WAIT 3-6

PROC $WHO AM 3-27

Procedures

releasing clean- up handlers 2-14

Process

faults detected 2-10

terminating normal with clean- up

handler 2-12

Process execution

correcting fault before continuing

2-21

invoking a separate process 3-2

invoking a separate process and getting

status when terminated 3-2

invoking a separate program in same

process 3-2

suspending process for a specified time

7-18

suspending with TIME $WAIT 7-16

terminating process after fault 2-12

See also Managing programs,

PGM_ $INVOKE, suspending a process

Process handle 3-2, 3-7

creating an orphan process 3-17

getting information about child process

3-29

invalid 3-11

Process information

C sample program A-28, A-30

getting amount of CPU time used

3-27

getting CPU scheduling priority 3-27

getting CPU time used by process

3-27

getting home directory 3- 27

getting information about an invoked

process 3-30

getting information about other

processes 3-29

getting process state 3-27

getting process UID 3- 27

getting SID log-in identifier 3-27

getting User Program Counter (UPC)

3-27

getting user stack pointer 3-27

getting User Status Register (USR)

3-27

stack base pointer 3-27

Process manager

See also Managing programs, PGM

calls, PGM $INVOKE

Process state

getting, with PROC2 $GET INFO

3-27

Process UID

with PROC $WHO AM I 3- 27

Processing an event with eventcounts 6-9

Program development

avoiding duplication of existing

programs 3-1

error reporting for common subroutines

2-5

finding size and shape of user's window

5-14

giving user more control over display

5-4

handling runtime errors 2-1

inhibiting asynchronous faults sparingly

2-25

inquiring about the user's display and

keyboard 5-21

invoking other programs within a

program 3-1

knowing whether to scale output to fit

in window 5-14

moving cursor origin to a menu window

with TP AD $SET MODE 5- 63

performing concurrent processing 3-1

preventing your program from being

device-dependent 5-21

running programs in user's Shell 5-4

suspending a process 7-16

task-oriented units 3-1

Index-21

See also efficiency, Program units

Program examples

MODULE zero fault function 3-16

PROGRAM invoke.pas 3-5

PROGRAM invoke divide 3-13

PROGRAM pad_ cpr _ enable 5-52

PROGRAM pad _ create _ icon 5-39

PROGRAM pad_ digclk 5-30

PROGRAM pad_filename 5-44

PROGRAM pad_font 5-24

PROGRAM pad_full_ window 5-17

PROGRAM pad_inq_disp_kbd

5-21

PROGRAM pad_inq_font 5-28

PROGRAM pad inq_ window _ size

5-15

PROGRAM pad _ make _ icon 5- 36

PROGRAM pad _ make _ windows

5-11

PROGRAM pad_raw _mode 5-50

PROGRAM pad_scale 5-26

PROGRAM pad _ window _ show

5-19

PROGRAM parse 8-15

PROGRAM p bufs _ paste _ buffer

5-58

PROGRAM table 8-14

PROGRAM test _ vfmt _ example

8-19

Program execution

running a program independently

3-11

Progra.m input

allowing user to edit input 5-49

by lines 5-3

control characters 5-3

converting time input to system time

7-7

converting to program variables,

example 8-3

cutting and pasting with paste buffers

5-57

decoding a variable,

VFMT $READ 8-3

handling in input pads 5-7

using

handling input (common way) 5-49

handling large amount of input with

edit pads 5-9

handling with input pads 5-2

parsing an input line with VFMT

(example) 8-15

preprocessing input in input pad 5-49

preventing input from echoing on

display 5-8, 5-49

processing in cooked mode 5-49

reading strings using a variety of

formats with VFMT (example) 8-19

sending and receiving 5-49

specifying PAD _$INIT _RAW 5-8

translating

variables 8-1

in program- defined

two-dimensional (frames) 5-3

using incomplete stream records as

prompts 5-49

Program level, definition 3-3

Program log

recording dialogue with transcript pads

5-3

Program output

control codes 5-56

converting system time to readable

time 7-6

escape sequences 5-56

formatting data for (VFMT) 8-1

formatting output with escape

sequences 5-57

handling two-dimensional with frames

5-42

writing a newline to output with %/

8-13

writing a TAB with %nT 8-13

writing a variable to, using

VFMT $WRITE 8-3

Program response

when asynchronous faults are enabled

or disabled 6-13

Program results if fault occurs during wait

cycle 6-18

Program units

definition 3-1

Index-22

DOMAIN system calls 3-1

Protected concurrency mode 4-12

Pushing windows 5-18

Random access

definition 4- 28

with seek keys 4-32

See also Seek operations

Raster units

converting window width and height to

5-15

Raw mode

bypassing system input processing with

5-49

o sample program A-I02

controlling keyboard cursor with 5-52

definition 5-49

Read access 4-12

Read-intend-write access 4-12

Read-only edit pads

definition 5-3

displaying files that cannot be modified

5-10

for user viewing only 5-3

refers to existing files only 5-10

restriction 5-10

Reading

from magtape files 9-18

from mailboxes 9-4

from objects 4-27

from serial lines 9-9

objects sequentially 4-29

objects, options to control 4-28

records 4-41

See also Seek operations

Reading strings using a variety of formats

with VFMT format directives (example)

8-19

REO object type 9-1

definition 9-2

Record formats

fixed-length 4-44

implementing fixed-length 4-45

kinds of 4-44

structure of record with count fields

4-45

structure of record without count fields

4-46

unstructured record 4-46

variable-length 4-45

Record length

C sample program A-32

Record-oriented objects

definition 4-35

lOS calls to operate on 4-35

reading from fixed-length 4-41

record formats 4-44

writing to fixed-length 4-36

writing to variable-length 4-38

See also record formats

Recording program dialogue

transcript pads 5-3

Records

changing from fixed- to variable-

length 4-45

DOMAIN predefined data types 1-6

emulating in C 1-35

emulating in FORTRAN 1-22

illustration 1-10

reference material explanation 1-22

See also record-oriented objects,

variant records

RECORDS $UID 4-7

Redrawing display efficiently

PAD $CLEAR FRAME 5-43

Reestablishing eIean-up handlers

example 2-16

Relative mode for TP AD calls

definition· 5-62

getting finer resolution with small seale

factors 5-62

timing factors 5-63

Relative seeking

defintion 4-31

Relative time, definition 7-9

Relative value

default size of new window pane 5-6

Releasing a clean-up handler 2-14

Repeat loop, for processing events 6-10

Reporting errors 2-4

Index-23

Resignaiing, definition 2-15

Responding to

asynchronous faults with EC2 _ $W AIT

6-i3

events 6-7, 6-9

user keystrokes in raw mode 5-56

Responding to system-defined eventcounts

(example) 6-10

Restartable faults, definition 2-8

Restoring disk files before exiting program

2-12

Returning a severity level from an invoked

program 3-5

Returning to program after fault occurred

6-13

Reverse-video characters

See also inverted font file

RIW

See also read-intend-write access

RS-232 protocol standard 9-8,9-9

Runtime errors

See also errors

Sample programs

accessing a single argument from child

program 3-20

accessing an object with seek keys

4-33

accessing arguments with

PGM $GET ARGS 3- 21

adding seconds to current time 7-10

building a character table with VFMT

8-14

changing object attributes 4-21

changing window appearance 5-19

checking compatible access,

concurrency 4-15

converting child process to orphan

process 3-17

converting system time to readable

time 7-7

converting time from ASCII input to

system time 7-8

coordinating external programs through

severity levels 3-4

creating a UASe object 4-9

creating a window to run a clock 5-29

creating and closing windows and

window panes 5-11

creating and writing frames 5-43

deleting arguments before invoking

child process 3-23

determining most recent time 7-13

establishing a backstop fault handler

2-24

establishing a clean-up handler 2-13

establishing function as fault handler

2-22

fault handling function 2-22

finding out about user's display and

keyboard 5-21

getting current height of font 5-28

getting cursor position reports 5-52

getting information about a child

process 3-30

getting information about process

3-27

getting information about windows

open to pad 5-15

getting local time from UTe value

7-2

getting local time in readable format

7-3

getting timezone name and offset 7-4

in e A-I

inquiring about object attributes 4-19

invoking a background process 3-11

invoking a Shell command within a

program 3-3

invoking child processes with

eventcounts 3-8

loading and using fonts 5- 24

manipulating full windows 5-17

opening a stream to an SIO line 9-10

opening existing object 4-10

parsing an input line with VFMT

8-15

passing output stream to an invoked

program 3-25

passing program name and string to

Index-24

invoked program 3-19

PGM_$GET ARG 3-21

preventing input from echoing in input

pad 5-50

printing an error message in standard

error format 2- 5

processing information in background

mode 3-12

reading sequentially 4- 29

reading from a magtape 9-19

reading strings using a variety of

formats VFMT 8-19

reenabling asynchronous faults 2-17

reestablishing clean- up handler 2-16

responding to specified faults 2- 23

seeking fixed-length records 4-41

setting severity level on a clean-up

handler 2-16

subtracting seconds from current time

7-11

suspending a process for a number of

seconds 7-16

suspending a process until a specified

time 7-17

testing return status of system call

2-3

using a clean-up handler 2-6

using icons 5-36, 5-38

using PAD _ $SET _ SCALE 5-26

using paste buffers 5-58

using time eventcount to wait for user

input 7-18

using TIME _ $WAIT 7-16, 7-17

writing fixed-length records 4-36

writing messages to a mailbox 9-5

writing to a magtape 9-15

writing to UASe line by line 4-26

writing variable-length records 4-39

See also C sample programs,

FORTRAN sample programs

Scale factors

C sample program A-80

changing in TP AD calls 5-63

column numbers 5-25

default factors for touchpad 5-63

getting current 5-27

restoring default 5-25

Scientific notation

tabulating results using 8-1

Seconds

representing time in 7-9

Seek key

definition 4-4

Seek operations

absolute and relative 4"'31

accessing an object with seek keys

4-33

full and short seek keys 4-32

keyed 4-31

nonkeyed 4-31

seeking fixed-length records 4-41

Sequential access 4-29

definition 4- 28

Serial lines

accessing 9-8

communicating with another device

across 9-8

concurrency control 9-8

copying 9-8

determining current line attributes

9-9

eventcount 6-7

eventcount, example of 6-8

HOST SYNCH mode attribute 9-10

object type UID 9-3

opening streams to 9-8

performing I/O across 9-9

predefined serial line pathnames 9-8

serial port 9,":, 3

setting attributes 9-8

setting baud rate 9-8

Serial port

Sets

definition 9-8

DOMAIN predefined data types 1- 5

emulating in C 1-30

emulating large sets in C 1-34

internal representation 1-18

reference material explanation 1-18

Setting a window aside without closing it

Index-25

icons 5-34

Setting the bit field 1-30

Severity level

definition 2-8

exiting clean- up handler with 2-15

returning from higher program level

3-3

returning, from an invoked program

3-5

setting, in errors 2-7

Shared concurrency mode 4-12

Shared memory, eventcounts 6-3

Sharing objects

on different nodes 4-13

Shell commands

ABTSEV 2-8

example of PGM_ $WAIT 3-2

invoking system- provided programs

3-1

invoking within a program 3- 2

SID, login identifier 3-27

SIO access

C sample program A-60

SIO object type 9-1

definition 9-3

SIO $CONTROL 9-9

SIO _$ERR_ENABLE 1-19,1-31

SIO $INQUIRE 1-19, 1-31,9-9

SIO $UID 4-7, 9-8

SIO $VALUE T 1-24

SMD display driver

black-and-white display driver 5-1

handling a customer- provided locator

device 5-61

system calls 5-1

Spaces

skipping between, for output 8-13

Sparse object, definition 4-17

Stack base pointer

getting user's 3-27

Stack pointer

fault reported 2-9

getting user's 3-27

Standard I/O

redirecting 4-4

Standard input 4-3

See also Keyboard, Program input

Standard input eventcount 6-6

Standard output 4-3

See also Program output

Standard output streams

STREAM _ $STDOUT,

STREAM $ERROUT 5-5

Status code

accessing fields with FORTRAN 2-2

definition 2-1

explanation of reference material 1-12

i~formation contained in each field

2-2

structure 2-1

testing for specific STREAM errors

2-7

Status.all 2-2, 2-3

STATUS_$OK 1-27,2-3

STATUS_$T 1-9,2-1

diagram of 2-2

Stream

marker, definition 4-4

Stream connection

attributes 4-17

changing attributes 4-18

default attributes 4-18

definition 4-3

lOS calls for manipulating 4-5

Stream count, definition 3-24

Stream I/O

repositioning seek key 4-32

Stream ID 4-3

definition 4-3

Stream records

control characters 5-49

definition 5-49

exchanging data with 5-49

using incomplete records as prompts

5-49

STREAM $CLOSE 5-14

closing pads with 5-10

STREAM _ $CREATE 3-11

STREAM $DELETE 2-3

STREAM $END OF _FILE 1-27, 2-6,

Index-26

2-7

STREAM_$ERROUT 2-4,5-5

STREAM_ $GET 2-6

STREAM_ $ GET _ BUF 5-50

STREAM $GET CONDITIONAL

checking if event occurred 6-9

example 6-11

STREAM_$GET _EO 6-5,6-6

STREAM_ $GET REC 5-50

STREAM_$ID 1-9

STREAM_ $INV ALID PATHNAME 3-4

STREAM_ $NO _ STREAM 3-24

STREAM_ $PUT CHR 5-29

STREAM _ $PUT REC 5-33

STREAM $REDEFlNE S-10

STREAM $SEEK 3-12

STREAM_$STDOUT 5-5

STREAM $SUBS 2-7

STREAM $UNREGULATED 9-8

Streams

C sample program A-32, A-34,

A-37, A-39, A-41, A-43, A-45, A-48,

A-S2,A-S6,A-60,A-62,A-64

copying 4-S

passing a null value as standard input

3-25

passing to an invoked program 3-24

replacing 4-S

standard streams invoked with every

program 3-24

synchronizing events with eventcounts

6-1

testing for specific STREAM errors

2-7

Streams facility

definition 4-2

Stringcopy

function copying strings to a buffer

5-44

Subroutines

establishing clean-up handler within

2-12

flexible error reporting 2-5

releasing clean-up handler 2-14

Summary of EC2 system calls, table 6-1

Supplying your own icon characters 5-38

Suspending a process

for a number of seconds 7-16

until a specified time 7-16

with eventcounts 6-2

See also eventcount, time

Synchronizing events with eventcounts 6-1

Synchronizing programs

PGM $INVOKE 3-2

with shared writing 4-13

Synchronous faults

types of program (table) 2-U

types of system (table) 2-U

System calls

as program units 3-1

CAL (calendar) 7-1

descriptions 1-11

EC2 6-1

ERROR 2-1

error descriptions 1-12

formatting error messages (example)

2-5

how to use insert files 1-1

lOS 4-1

PAD 5-1

parameter descriptions 1-12

PBUFS 5-1,5-57

PFM 2-1

PGM 3-1

PM 3-1

PROC1 3-1

PROC2 3-1

reference material 1-9, 1-U

returning a character array 1-38

returns system error condition 2-1

specifying input parameters 1-3

system prefixes 1-1

testing return status 2-3

TIME 7-1

TPAD 5-1,5-61

using DOMAIN predefined 1-1

using predefined constants and values

1-2

VFMT 8-1

why DOMAIN uses predefined data

Index-27

types 1-1

See also data types

System e~rors, definition 2-1

System-defined eventcounts 6-4

TAB

control character 5-3

writing to output with %nT 8-13

Temporary objects

creating 4-9

Terminating a program 6-13

Terminating normal procesing 2-12

Testing for errors 2-3

Testing for pre-existing input before

eventcount 6-8

Time

absolute, definition 7-9

adding seconds to current time 7-10

adding time values 7-9

C sample program A-23, A-U4,

A-U5, A-U7, A-U8, A-120, A-123,

A-125

CAL $APPL Y _ LOCAL _ OFFSET

7-2

CAL $GET LOCAL _ TIME 7- 2

CAL $TlMEDATE_REC _ T 7-3

calculating time zone offsets 7-4

comparing time values 7-9

comparing times 7-13

Converting from ASCII to

converting from

CAL $TlMEDATE_REC _ T

TIME $CLOCK_ T 7-7

to

converting internal values to readable

output 7-2

converting readable time to system

time 7-7

converting relative system value to

floating point 7-9

converting relative system value to

integer 7-9

converting relative time value to

system value 7-9

converting system time to readable

time 7-6

converting whole seconds

TIME _ $CLOCK T 7-10

determining most recent 7-13

getting local 7-2

to

getting relative time value in fractions

of a second 7-9

getting relative time value in whole

seconds 7-9

getting timezone name 7-4

getting timezone name and offset 7-4

getting timezone offset 7-4

how the system represents 7-1

incrementing system time 7-18

internal representation 7-1

local offset 7-4

manipulating 7-1

obtaining local time 7-1

relative, definition 7-9

representing time in seconds 7-9

subtracting time values 7-9

sUbtracting time, checking for negative

value 7-11

sUbtracting times 7-11

suspending process execution with

TIME $WAIT 7-16

user-readable 7-2

using a time eventcount 7-18

See also local time

Time eventcount

C sample program A-108, A-HI

incrementing eventcount value 6-9

system increments 6-5

TIME _ $CLOCK system routine 7- 2

TIME_$CLOCK T 1-9

converting relative time to 7-9

converting whole seconds to 7-10

internal (system) time value 7-1

TIME $GET _ EC 6- 5, 7-18

TIME $RELATIVE 5-12

TIME $WAIT 5-12,7-16

Timezone

C sample program A-U5

Timezones

getting local offset 7-4

Index-28

getting U.S. standard time zones 7-4

Touchpad

making it less sensitive to slight

movement (hysteresis factor) 5-64

system calls to control (TP AD) 5-1

See also

system calls

locator device, TP AD

Touchpad manager, using 5-61

TP AD system calls

changing origin in absolute mode 5-63

changing touchpad sensitivity . with

scale factors 5-63

hysteresis factor 5-64

insert files 5-2

setting origin in relative mode 5- 64

timing factors for touchpad or bitpad in

relative mode 5-63

TPAD $SET CURSOR

changing origin with 5-63

setting origin in relative mode with

5-64

TP AD $SET MODE

changing mode of locator device

operation 5-62

changing origin in absolute mode 5- 63

fine-tuning relative mode resolution

with 5-62

making touch pad less sensitive to slight

movement 5-64

specifying small scale factors 5-63

Transcript pads

creating a new permanent file 5-8

creating new windows or panes 5-4

creating, in window panes 5-8

definition 5-3

displaying menus with existing files

5-8

size 5-8

specifying existing file 5-8

specifying null pathname and

namelength 5-8

temporary 5- 5

Trigger value

incrementing 6-9

mUltiple eventcounts satisfied 6-8

process eventcount 3-8

returned number of satisfied eventcount

6-7

TRUE, Boolean value 1-13

Truncating unnecessary arguments with

PGM $DEL ARG 3-22

Type manager

implementing object types 9-1

Type managers

defining new types 4-2

implementing I/O operations 4-2

object attributes 4-17

performing I/O operations 4-6

Type UID

default, UID _ $NIL 4-7

definition 4-6

inquiring about 4- 24

Types of fault handlers 2-24

UASC object type 9-1

definition 9-2

I/O implementation 4-2

retrieving lines 4-25

UASC_$UID 4-7

UID $NIL 4-7

UID $T 1-9

UNIV PTR 1-14

UNIV _PTR format 3-21

accessing an argument in 3-21

typecast to make explicit pointers

3-21

UNIV _PTR types 3-18

Universal Coordinated Time

See also UTC

User Program Counter (UPC)

getting with PROC2 $GET INFO

3-27

User Status R~gister (USR)

getting with PROC2 $GET INFO

3-27

Using a time eventcount 7-18

Using icons

PAD system calls to (table) 5-34

UTC

definition 7-1

Index-29

getting current value 7-2

Variables

fqrmatting for output 8-1

interpreting user input for program use

8-1

Variant record

status code 2-1

Variant records

DOMAIN predefined data types 1-6

emulating in C 1-36

emulating in FORTRAN 1-24

illustration 1-11

VFMT

building co~trol strings 8-4

control instructions 8-2

decoding example 8-3

decoding, definition 8-1

encoding, definition 8-1

error message output 2-5

examples 8-14

format directive, definition 8-4

formatting instructions 8-2

formatting variables with 8-1

insert files 8-1

simple examples 8-2

syntax 8-2

using dummy values to fill argument

list 8-2

See also formatting variables, VFMT

control strings, VFMT format directives

VFMT control strings

end-of-string directive 8-4

including literal text for encode

operations 8-5

marking the end of a 8-12

repeating control directive sequence

8-5

special format directives 8-12

VFMT format directives

ASCII data (%A) options 8-7

controlling operation of other directives

8-12

floating point data 8-9

formatting ASCII data 8- 5

formatting integer data 8-10

in repeat loops 8-13

including a literal percent sign (%)

8-13

marking the end of a control string

8-12

redefining characters specified by E

with % 8-12

skipping spaces between output data

8-13

special control string directives 8-12

summary of (table) 8-5

types of 8-5

writing a newline character to output

8-13

writing a TAB character to output

8-13

VFMT $DECODE 5-31, 8-1

VFMT _ $ENCODE 8-1

VFMT $READ 8-1

VFMT _$READ2 5-13

VFMT $RS 8-1

VFMT _ $WRITE 8-1

VFMT $WRITE2 5-22

VFMT $WRITE5 8-2

VFMT $WS 8-1

VFMT _ $WS2 5-25

VFMT WRITE2 8-3

Viewport, definition 5-2

Waiting

for a child process 3-7

for a specified amount of time 7-18

for events with eventcounts 6-7

for PGM invoked program to finish

3-2

for system-defined eventcounts 6-8

for two eventcounts 6-8

Window panes

associating additional panes 5- 6

creating edit 5-9

creating input 5-7

creating new pad in 5- 5

creating read-only edit pads 5-10

definition 5-3

Index-30

determining size of with [I 5- 6

example of 5-3

giving user more control over display

5-4

keeping size constant

PAD $ABS SIZE 5-8

maximum number allowed 5-6

specifying position of 5-6

when to create 5-4

Windows

attributes 5-2

with

C sample program A-66, A-69,

A-71,A-73,A-85,A-96

Changing the appearance of 5-18

changing the most current window

viewing the pad 5-14

changing to icons 5-34

closing 5-10

controlling screen display 5-4

creating in icon format 5-34

definition 5-2

getting information about entire display

5-17

getting position of window borders

5-17

getting window positions on display

5-14

growing and moving windows 5-17

legends, borders, getting position of

5-17

making borderless 5-18

making windows disappear 5-18

popping windows to the foreground

5-18

pushing windows to the background

5-18

remembering last position 5-17

setting future position of 5-5

specifying window number 5-14

when to create 5-4

Write access 4-12

Writing

a fault handling function 2- 22

a newline to output 8-13

fixed-length records 4-36

out control codes literally 5-56

to an object 4-25

to magtape objects 9-14

to mailboxes 9-4

to serial lines 9-9

variable-length records 4-38

variables to standard output 8-2

See also program output

Index-31

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: Programming with General System Calls Update 1
Order No.: 008858 Revision: 00 Date of Publication: March, 1986

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional.
__ System Administrator Technical Proressional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? _____________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to include? _____________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.) ____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U. S.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o
c ..
o ., -o
c:
I»
0'
:J
Ie
Q.

2
i
c..

:J
co

FOLD

I ~ 111111111111

