DOMAIN System Call Reference
(Volume 2, I0S - VFMT)
Update 1

Order No. 008857
Revision 00
Software Release 9.2

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824



Copyright © 1986 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: February, 1986

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, DOMAIN/VACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER. )

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

r'/ i \\

l\.\_ %



Preface

This manual is part of a two-volume set that describes the DOMAIN®system calls. Each volume
consists of a section that introduces the system calls followed by sections that describe a separate
operating system manager (e.g., the process manager, stream manager, and variable formatting
package). The sections that describe the managers are in alphabetical order by manager

name and consist of a description of the data types used by the manager, the syntax of the
manager’s programming calls, and the error messages generated by the manager.

For easy organization, we have numbered the pages of this two volume reference set by system
manager. For example, the third page in the ACLM section is page ACLM-3.

Volume 1 includes descriptions of the following managers:

ACLM
CAL
EC2
ERROR
GM
GMF
GPR

Volume 2 includes descriptions of the following managers:

IPC PROC1
MBX PROC2
MsS RWS
MTS SIO
MUTEX SMD
NAME STREAM
PAD TIME
PBUFS TONE
PFM TPAD
PGM VEC
PM : VFMT

You should use this manual with the programming handbooks listed under Related Documents.
These programming handbooks give detailed instructions about using these programming calls.

PREFACE=1



Audience

This manual is intended for programmers who are writing application programs using DOMAIN
system calls. Readers of this manual should be familiar with FORTRAN, Pascal, or C and the
operating system as described in the DOMAIN System User’s Guide. This manual is not
intended as a tutorial document, but as a reference for programmers who need to use operating
system services.

Related Documents

The Programming With General System Calls handbook, order no. 005506, documents how to
write programs that use standard DOMAIN system calls including the ACLM, CAL, EC2,
ERROR, MTS, NAME, PAD, PBUFS, PFM, PGM, PM, PROC1, PROC2, RWS, SIO, STREAM,
TIME, TONE, TPAD, and VFMT calls.

The Programming With System Calls for Interprocess Communication handbook, order no.
005696, documents how to write programs that use the DOMAIN interprocess facilities including
the MBX, MS, IPC, MUTEX, and EC2 calls.

The Programming With DOMAIN 2D Graphics Meta file Resource handbook, order no. 005097,
documents how to write programs that use the DOMAIN 2D Graphics Metafile Resource.

The Programming With DOMAIN Graphic Primitives handbook, order no. 005808, documents
how to write graphics programs that use the DOMAIN Graphics Primitive Resource.

PREFACE~2

\\

4/A ‘



Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE Uppercase words or characters in formats and command
descriptions represent keywords that you must use
literally.

lowercase Lowercase words or characters in formats and command

descriptions represent values that you must supply.

[ ] Square brackets enclose optional items.
{ } Braces enclose a list from which you must choose an
item.

I A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the
keyboard.
CTRL/Z The notation CTRL/ followed by the name of a key

indicates a control character sequence. Hold down
<CTRL> while you type the character.

Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.

Vertical ellipsis points mean that we have omitted
irrelevant parts of a figure or example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System

Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader’s Response form is located at the back of each manual.

PREFACE=3






INTRODUCTION

108

IPC

MBX

MS

MTS

MUTEX

NAME

PAD

PBUFS

PFM

PGM

PM

PROC1

PROC2

RWS

SIO

SMD

STREAM

TIME

TONE

TPAD

VFMT

CONTENTS=-1

INTRO-1

I0S-1

IPC-1

MBX-1

MS-1

MTS-1

MUTEX-1

NAME-1

PAD-1

PBUFS-1

PFM-1

PGM-1

PM-1

PROC1-1

PROC2-1

RWS-1

SIO-1

SMD-1

STREAM-1

TIME-1

TONE-1

TPAD-1

VEC-1

VFMT-1



O

)




Introduction

This introductory section describes the DOMAIN system insert files and the format of the
information found in the sections that follow. Each of these sections consist of a description of
the data types used by a system manager, the syntax of the manager’s programming calls, and
the error messages generated by the system manager. We have arranged the sections of this

manual alphabetically, by system manager name.

DOMAIN Insert Files

The DOMAIN system provides insert files that define data types, constants, values, and routine
declarations. The insert files also define the exact form of each system call or routine. (Even the
FORTRAN version does this using comments, although the FORTRAN compiler doesn’t check
the forms that you use.)

The DOMAIN system routines are divided, by function, into several subsystems. Each subsystem
is controlled by a system manager. The routines of each subsystem are prefixed for easy
indentification. A subsystem prefix consists of a number of identifying characters followed by the
special underscore and dollar-sign characters, " _$." For example, the routines that perform
stream functions are prefixed with STREAM _$. These subsystem prefixes are also used to
distinguish DOMAIN data types and constants that are used by the subsystem routines.

Insert files are located in the directory /SYS/INS/. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program, you include the insert file,
/SYS/INS/ERROR.INS.PAS. Using the same routines in a FORTRAN program, you include
/SYS/INS/ERROR.INS.FTN. All insert files are specified using the syntax

/SYS/INS /subsystem-prefix.INS.language-abbreviation

where the language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). The listing on
the next page shows all the available insert files. '

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. You specify BASE insert files using the syntax

/SYS/INS/BASE.INS.language-abbreviation

These files contain some basic definitions that a number of subsystem routines use.

INTRO=1



Summary of Insert Files

Insert File

Operating System Component

/SYS/INS/BASE. INS.1lan

/SYS/INS/ACLM.INS.1lan
/SYS/INS/CAL.INS.lan
/SYS/INS/ERROR . INS.lan
/SYS/INS/EC2.INS.1lan
/SYS/INS/GM.INS.lan
/SYS/INS/GMF .INS.1lan
/SYS/INS/GPR.INS.1lan
/SYS/INS/IPC.INS.lan
/SYS/INS/KBD.INS.lan
/5YS/INS/MBX.INS.lan
/SYS/INS/MS.INS.1lan
/SYS/INS/MTS.INS.lan
/SYS/INS/MUTEX.INS.1lan
/SYS/INS/NAME. INS.lan
/SYS/INS/PAD.INS.lan
/SYS/INS/PBUFS.INS.1lan
/SYS/INS/PFM.INS.lan
/SYS/INS/PGM.INS.lan
/SYS/INS/PM.INS.lan
/SYS/INS/PROC1.INS.PAS
/SYS/INS/PROC2.INS.lan
/SYS/INS/RWS.INS.lan
/SYS/INS/SIO.INS.1lan
/SYS/INS/SMDU.INS.lan
/SYS/INS/STREAMS.INS.lan

Base definitions —-- must always be included

Access control list manager
Calendar

Error reporting

Eventcount

Graphics Metafile Resource
Graphics Map Files

Graphics Primitives
Interprocess communications datagrams
[Useful constants for keyboard keys]
Mailbox manager

Mapping server
Magtape/streams interface
Mutual exclusion lock manager
Naming server-

Display Manager

Paste buffer manager

Process fault manager

Program manager

User process routines

Process manager (Pascal only)
User process manager
Read/write storage manager
Serial I/0

Display driver

Stream manager

®

™

N\

/SYS/INS/TIME.INS.lan Time
/SYS/INS/TONE. 1lan Speaker
/SYS/INS/TPAD.INS.lan Touchpad manager
/SYS/INS/VEC.INS.lan Vector arithmetic
/SYS/INS/VFMT.INS.lan Variable formatter

The suffix *.]an* varies with the high-level language that you’re using; it is either *".FTN*",
* PAS", or ".C".

Organizational Information

This introductory section is followed by sections for each subsystem. The material for each
subsystem is organized into the following three parts:

1. Detailed’ data type information (including illustrations of records for the use of

FORTRAN programmers).

2. Full descriptions of each system call. Each call within a subsystem is ordered
alphabetically.

3. List of possible error messages.

INTRO=-2



Data Type Sections

A subsystem’s data type section precedes the subsystem’s individual call descriptions. Each data
type section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME_$REL_ABS_T = 4-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type’s purpose.
Where applicable, any predefined values associated with the type are listed and described.

Following is an example of a data type description for the TIME _$REL_ ABS _ T type.

TIME_$REL_ABS_T A 2-byte integer. Indicator of type of time. One of
the following pre-defined values:

TIME _$RELATIVE
Relative time.

TIME_$ABSOLUTE
Absolute time.

In addition, the record data types are illustrated in detail. Primarily, we have geared these
illustrations to FORTRAN programmers who need to construct record-like structures, but we’ve
designed the illustrations to convey as much information as possible for all programmers. Each
record type illustration:

e Clearly shows FORTRAN programmers the structure of the record that they must
construct using standard FORTRAN data type statements. The illustrations show the
size and type of each field.

o Describes the fields that make up the record.

e Lists the byte offsets for each field. These offsets are used to access fields
individually.

o Indicates whether any fields of the record are, in turn, predefined records.

INTRO=3



The following is the description and illustration of the CAL _$TIMEDATE _REC _ T predefined
record:

CAL_$TIMEDATE REC_ T Readable time format. The
diagram below illustrates the
CAL_$TIMEDATE_REC_T data type:

f’y';?é"’f'"ed Dyte: field name
0: integer year
2: integer month
4. integer day
6: integer hour
8: integer minute
10: integer second

Field Description:
year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour
(24 nr. format).

minute
Integer representing the minute.

second
Integer representing the second.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations.

INTRO~4

-

,

-



System Call Descriptions

We have listed the system call descriptions alphabetically for quick reference. Each system call
description contains:

o An abstract of the call’s function.

e The order of call parameters.

e A brief description of each parameter.

e A description of the call’s function and use.
These descriptions are standardized to make referencing the material as quick as possible.
Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase " in
XXX format* where XXX is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.
FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. The second sentence describes the data type in atomic terms that you can use, such as
*This is a 2-byte integer." In complex cases, FORTRAN programmers are referenced to the

respective subsystem’s data type section.

The rest of a parameter description describes the use of the parameter and the values it may

hold.

The following is an example of a parameter description:

access
New access mode, in MS_$ACC_MODE T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS_$R Read access.
MS_$WR Read and write access.
MS_$RIW Read with intent to write.

An object which is locked MS_$RIW may not be changed to MS $R.

INTRO=5



Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:

e Predefined constant for the status code.

o Text associated with the error.

INTRO=6

()



—_

O

I10S

This section describes the data types, the call syntax, and the error codes for the IOS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

10s-1 I0S



10S DATA TYPES

CONSTANTS

10S_$MAX
I0S__$NO_ STREAM
VARIABLES

XOID _$NIL

DATA TYPES

10S_$ABS_REL_T

10S_$CONN_FLAG_T

108

127

164£7FFF

Highest possibe number in stream ID.

Placeholder for stream ID.

A variable whose value is the NIL XOID and
doesn’t change. Used for comparisons and
assignments of XOID _ $T variables.

A 2-byte integer. Specifies whether seek is relative
or absolute. One of the following predefined values:

10S _$RELATIVE
Seek from the current position.

10S_$ABSOLUTE )
Seek from the beginning of the object (BOF).

A 2-byte integer. Attributes associated with a
stream connection. One of the following predefined
values:

10S_$CF_TTY
Connection behaves like a terminal.

I0S_$CF_IPC
Connection behaves like an interprocess
communication (IPC) channel.

I0S_$CF_VT
Connection behaves like a DOMAIN Display
Manager pad.

I0S_$CF_ WRITE
Connection can be written to.

I10S__$CF_ APPEND
Connection’s stream marker can be positioned
to the end of the object before each put call.

10S_$CF _UNREGULATED
Other processes can read and write to the

connection.

10S_$CF_READ INTEND _WRITE
Connection open for read access, and can later

105-2

C




I0S_$CONN_FLAG_ SET

10S_$CREATE_MODE_T

10S_$DIR_TYPE_T

I0S_$EC_KEY_T

10S DATA TYPES

be open for write access. Other processes can

have read access.

A 4-byte integer. A set of connection attributes, in
I0S _$CONN_FLAG _T format, indicating which
attributes of the specified connection are set. For a

list of options, see IOS_$CONN_FLAG_T
above.

A 2-byte integer. Specifies the action to be taken if

the name already exists or specifies creation of

umnamed objects. One of the following predefined

values:

I0S_$LOC_NAME_ONLY_MODE
Create a temporary unnamed object, uses

pathname to specify location of object, and

locates it on the same volume.

10S_$MAKE_BACKUP_MODE

Create a backup (.bak) object when closed.

10S_$NO_PRE_EXIST _MODE
Return an error if object already exists.

10S_$PRESERVE_ MODE
Save contents of object, if it exists, opens

object, and positions stream marker at the

beginning of the object (BOF').

10S_ $RECREATE_ MODE

Delete existing object and creates new one of

same name.

I0S_$TRUNCATE_MODE
Open object, then truncates the contents.

A 2-byte integer. Specifies type of directory. One

of the following predefined values:

10S_$WDIR
Current working directory.

10S_ $NDIR
Current naming directory

A 2-byte integer. Specifies eventcount key type.

One of the following predefined values:

10S_$GET_EC_KEY
Key that is advanced with each get call.

10S_$PUT_EC_KEY
Key that is advanced with each put call.

108-3

108



10S DATA TYPES

I0S_$ID_T

I0S_$MGR_FLAG_T

108

A 2-byte integer, ranging in value from 0 to 7N
I0S _$MAX. The stream ID.

A 2-byte integer. Object attributes associated with
an object’s manager. One of the following
predefined values:

I0S_$MF_ CREATE
Manager permits type to create objects.

10S_$MF_CREATE_BAK
Manager permits type to create backup (.bak)
objects.

10S_$MF _IMEX
Manager permits type to export streams to
new processes.

10S_$MF_FORK (\

Manager permits type to pass streams to
forked processes.

I0S_$MF_FORCE_WRITE

Manager permits type to force-write object
contents to stable storage (for most object
types, this is the disk).

10S_$MF_ WRITE
Manager permits objects to be written to.

()

10S_$MF_SEEK_ABS
Manager permits objects to perform absolute
seeks.

10S_ $MF__ SEEK _ SHORT
Manager permits objects to seek using short

(4-byte) seek keys. C

10S_$MF_SEEK_FULL
Manager permits objects to seek using full
(8-byte) seek keys.

I0S_$MF_SEEK_BYTE
Manager permits objects to seek to byte
positions.

10S_$MF_SEEK_REC
Manager permits objects to seek to record
positions.

10S_$MF_SEEK_ BOF
Manager permits objects to seek to the
beginning of the object.

®

10S_$MF_REC_TYPE

10S-4




O

10S_$MGR_FLAG_SET

10S_$NAME_TYPE_T

I0S DATA TYPES

Manager supports different record type
formats.

I0S_ $MF_ TRUNCATE
Manager permits objects to be truncated.

10S_$MF _ UNREGULATED
Manager permits objects to have shared
(unregulated) concurrency mode.

I0S_$MF_SPARSE
Manager permits objects to be as sparse.

I0S_$MF_READ_ INTEND _ WRITE
Manager permits objects to have
read-intend-write access.

A 4-byte integer. A set of object manager
attributes, in IOS _$MGR _ FLAG __T format,
indicating which attributes of the specified object’s
manager are set. For a list of options, see
I0S_$MGR_FLAG _T above.

. A 2-byte integer. Specifies format of pathname.

One of the following predefined values:

10S_$ROOT _NAME

Absolute pathname relative to the network
root directory (//); for example,
//node/sid/file.

10S_$WDIR_ NAME

Leaf name if object’s name is a name in
current working directory; otherwise, specifies
absolute pathname.

I0S_$NDIR_ NAME

Leaf name if object’s name is a name in
current naming directory; otherwise, specifies
absolute pathname.

I0S_$NODE__ NAME

Name relative to the node’s entry directory
(/) if object is a name in boot volume;
otherwise, specifies absolute pathname; for
example, /sid/file.

I0S_$NODE_DATA_FLAG

Leaf name if object’s name is a name in
current ‘node__data directory; otherwise,
specifies absolute pathname.

10S_$LEAF _NAME
Leaf name regardless of object’s name.

10S=5 10S



10S DATA TYPES

I0S_$0BJ_FLAG_T

I0S_$OBJ_FLAG_SET

10S_$OPEN_ OPTIONS_ T

108

I0S_ $RESID _NAME
Residual name if object is defined using
extended naming.

A 2-byte integer. Attributes associated with an
object. One of the following predefined values:

10S_$OF_DELETE_ON_ CLOSE
Object can be deleted when all its associated
connections are closed.

I0S_$OF _SPARSE_ OK
Object can be written as a sparse object.

I0S_$OF _ASCIl
Object contains ASCII data.

10S_$OF_FTNCC
Object uses FORTRAN carriage control
characters.

10S_$OF _ COND

Object performs get or put calls conditionally,
as if the IOS_$COND _ OPT was specified.

A 4-byte integer. A set of object attributes, in
I0S_$0BJ_FLAG_ T format, indicating which
attributes of the specified object are set. For a list
of options, see IOS_$OBJ _FLAG _ T above.

A 2-byte integer. Specifies options for an
IOS _$OPEN. Any combination of the following
predefined values: '

I0S_$NO_ OPEN_DELAY_OPT
Return immediately instead of waiting for
open to complete.

I0S_$WRITE_OPT
Permit writing data to a new object.

I10S__ $UNREGULATED _ OPT
Permit concurrency (unregulated read and
write access.) to the object

I0S_$POSITION _TO _EOF_OPT
Position stream marker to the end of the
object at open.

I0S__$INQUIRE_ ONLY _OPT
Open object for attribute inquiries only.

I0S_$READ _INTEND _WRITE _OPT
Object has read-intend-write access, other
processes can have read but not write access.

105-6

)




10S DATA TYPES

10S_$POS_OPT_T A 2-byte integer. Specify position to return when
Q inquiring about object position. One of the
following predefined values:

I10S_$CURRENT
Return key for the current stream marker.

10S_$BOF
Return key for beginning of the object (BOF)
marker.

10S_$EOF
- Return key for end of the object (EOF)
marker.

I0S_$PUT_GET_OPTS_T A 2-byte integer. Specifies options for put and get
operations. Any combination of the following

O predefined values:

10S_$COND _OPT
Read or write data conditionally. If call fails,

returns
I0S _$xxx__ CONDITIONAL _ FAILED,
where xxx is either GET or PUT.

| I0S_$PREVIEW _ OPT
O Write data but do not update the stream

marker.

I0S_$PARTIAL RECORD_ OPT
Write a portion of a record but do not
terminate it.

10S_$NO_REC_BNDRY_OPT
Ignore record (line) boundries.

— I0S_$RTYPE_T A 2-byte integer. Specifies the record type format.
One of the following predefined values:

10S_$V1
Variable-length record with count fields.

10S_$F2
Fixed-length records with count fields.

I0S_$UNDEF
No record structure.

10S_$EXPLICIT _F2
Fixed-length records that IOS__ $PUT cannot
implicitly change to IOS_ $V1.

10S_ $F1
O Fixed-length records without count fields.

10S=7 I0S



10S DATA TYPES

10S_$SEEK_KEY T

10S_$SEEK_TYPE_T

STATUS_$T

I0S

byte:

The full seek key. This is an 8-byte integer value.

A 2-byte integer. Specifies the type of seek to
perform. One of the following predefined values:

10S_ $REC_ SEEK
Record-oriented seek.

10S__$BYTE_ SEEK
Byte-oriented seek.

A status code. The diagram below illustrates the
STATUS _$T data type:

offset 31 0 field name
0: integer all
or
31
0: _I fail
24
subsys
16
1: modc
0
2: integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys .
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

105-8

)

o~




O

UID_$T

XOID_$T

predefined
type

uid_$t

byte:
offset

12:

I0S DATA TYPES

An object type identifier. This is an 8-byte integer

value.

Unique identifier of an object. Used by type
managers only. The diagram below illustrates the

XOID _$T data type:

31

integer

integer

integer

integer

Field Description:
rful

Reserved for future use.

rfu2

Reserved for future use.

UID

field name

rfut

rfu2
uiD

Unique identifier for an object.

108=9

108



10S_$CHANGE__PATH__NAME

I0S_$CHANGE _PATH_NAME S~
Changes the pathname of an object. K,/
FORMAT

I0S_$CHANGE _PATH NAME (stream-id, new-pathname, new-namelength, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS_$ID _ T format. “This is a
2-byte integer. '

new-pathname

New name of the object, in NAME _$PNAME _ T format. This is an array of up to 256

characters.

(‘ N

new-namelength ~_

Length of "new-pathname." This is a 2-byte integer.
OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS

Data Types section for more information. (\
USAGE

IOS _$CHANGE _PATH__NAME changes the pathname of an existing object. The

stream ID of the object remains the same.

I0S _$CHANGE _PATH_NAME permits you to assign a name to a previously unnamed

object and, conversely, to remove a name from a previously named object. (To remove a

name, specify a null pathname.) C

Note that this call can change the delete-on-close object attribute. For example, if you
assign a name to an unnamed object, the operation implicitly changes the delete-on-close
attribute to FALSE. Likewise, if you specify a null pathname for a previously named
object, the operation implicitly changes the delete-on-close attribute to TRUE. Be aware
that this behavior can cause unexpected results in cases where you explicitly change the
delete-on-close attribute, and then make an unnamed-to-named name change.

108 10S8=10




10S__$CLOSE

I0S_$CLOSE

Closes a stream.

FORMAT

I0S_$CLOSE (stream-id, status)

INPUT PARAMETERS

stream-id
Number of the stream to be closed, in IOS _$ID _ T format. This is a 2-byte integer.

Once I0S _$CLOSE closes the stream, the number used for this stream ID becomes
available for reuse. If the object is open on more than one stream, IOS_ $CLOSE closes
only “stream-id."

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

IOS _$CLOSE closes the stream so that you can no longer use the stream ID to operate on
the object. Closing a stream to an object releases any locks maintained by the stream
connection, thus making the object available to other users.

A program can close only the streams that it has opened at the current or lower program
levels (that is, streams opened by programs that the calling program has invoked).
IOS_$CLOSE returns an error status code if you try to close a stream that was opened at
a higher program level.

If an object has the delete-on-close attribute (IOS__$OF _ DELETE _ ON_ CLOSE),

I0S _$CLOSE deletes the object. However, the object is not deleted until all streams to it
are closed. (For details on object attributes, see the IOS_ $INQ_ $OBJ _FLAGS and
I0S_$SET _OBJ_FLAG calls.)

108-11 108



I0S_ $CREATE

IOS__$CREATE

Creates an object and opens a stream to it.

FORMAT

I0S_$CREATE (pathname, namelength, type-uid, create-optioms,
open-options, stream-id, status)

INPUT PARAMETERS

pathname
Name of the object to be created, in NAME _$PNAME _ T format. This is an array of up
to 256 characters. To create a temporary object, see the section "Creating an Object in
Backup Mode" below.

namelength ‘
Length of "pathname," in bytes. This is a 2-byte integer. To create a temporary object,
see the section "Creating an Object in Backup Mode" below.

type-uid
UID of the type to be created, in UID _ $T format. This data type is 8 bytes long. See the
I0S Data Types section for more information.

If you specify the predefined UID _$NIL, IOS__ $CREATE creates an object of the default
type, which is currently unstructured ASCII (UASC). You can also specify any of the
system’s predefined type UIDs listed below, or any valid user-created type UID.

DOMAIN currently supports a set of standard object types which include the following
types. (Note that objects created by type managers return manager-specific type UIDs.)

Type UID Object

UASC__$UID UASC object

RECORDS _ $UID Record-oriented object

HDR _UNDEF _ $UID Nonrecord-oriented object

OBJECT _FILE__$UDD Object module object (compiler or binder output)
SIO_$UID Serial line descriptor object

MT_s$UID Magnetic tape descriptor object

PAD _$UID Saved Display Manager transcript pad

INPUT _PAD_s$UID Display Manager input pad

MBX _$UID Mailbox object

108 ' 10S=-12

®




10S_ $CREATE

Type UID Object

DIRECTORY _ $UID ~ Directory

NULLDEV _ $UID Null device
create-options

Specifies the action to be taken if the object already exists, or specifies the creation of an
unnamed object, in IOS_ $CREATE_MODE _ T format. This is a 2-byte integer. Specify
one of the following predeﬁned values:

IOS_$NO_PRE__EXIST__MODE Return the IOS__ $ALREADY _ EXISTS error
status code if an object with the specified
name already exists.

IOS _$PRESERVE_MODE Preserve the contents of the object if an
object with the specified name already exists.
Then open the object and position the stream
marker to the beginning of the object (BOF)
unless you set the
I0S _$POSITION _ TO_EOF open option.
Use this mode to append data to an existing
object.

I0S _$RECREATE _MODE Recreate the object if an object with the
specified name already exists. Essentially, this
option deletes the existing object and creates a
new one. The new object will have the default
set of attributes for that object type.

I0S _$TRUNCATE _MODE Open the object and delete the contents if an
object with the specified name already exists.
Use this mode to create an object to preserve
the attributes of the specified object.

I0S_$MAKE_BACKUP _MODE Create a temporary object with the same type
and attributes as the object specified in the
pathname if an object with the specified name
already exists. Use this mode to create a
backup object. (See below for detailed
description.)

IOS__$LOC_NAME__ONLY_MODE Create a temporary unnamed object. Use the
pathname to specify the location of the object.
I0S _$CREATE will locate the temporary
object on the same volume as the object
specified in the pathname.

105-13 108




10S_ $CREATE

open-options
Open options, in IOS_$OPEN_ OPTIONS _ T format. This is a 2-byte integer. Specify a
combination of the following set of predefined values: ’

I0S_$NO_OPEN__DELAY_OPT Return immediately, instead of waiting for the
open call to complete.

I0S _$WRITE _OPT Permit writing data to a new object. If a
program tries to write on a stream for which
you have not specified this option, it returns
an error status. Note that when creating an
object, the IOS manager automatically sets
this value because it assumes that when you
create an object, you will want to write to it.

I0S_$UNREGULATED _ OPT Permit shared (unregulated) concurrency
mode.
I0S _$POSITION _TO_ EOF _OPT Position the stream marker at the end of the

object (EOF). Use this to append data to an
existing object.

10S _$INQUIRE _ONLY _ OPT Open the object for attribute inquiries only;
do not permit reading or writing of data.

I0S_$READ _INTEND _WRITE _OPT  Open the object for read access with the
intent to eventually change the object’s access
to write access. This allows other processes to
read the object; but they cannot have write or
read-intend-write access.

OUTPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

Subsequent IOS calls use this number to identify the stream opened by this call.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

I0S 10S-14




I0S_ $CREATE

USAGE

If the pathname specifies an object that does not exist, IOS__$CREATE creates a new
object of the specified type using that pathname and opens a stream to it. If the object

already exists, the create mode option specified in the call determines which action
I0S _$CREATE will perform.

Both IOS_ $CREATE and IOS_ $OPEN open a stream to an object. However,
IOS_$CREATE creates the object if it does not exist, whereas IOS__ $OPEN returns an
error if the object does not exist.

Inquiring about Object Attributes

When IOS__$CREATE creates an object, the object has a default set of attributes (the
default attributes depend on the type created). These attributes fall into three categories:
manager, object, and connection attributes. To determine which attributes the newly
created object has, you can use the following calls:

I0S __s$INQ_MGR __FLAGS
Returns the attributes that the object’s type manager defines.

I0S _$INQ__OBJ_FLAGS
Returns the attributes of the object.

I0S _$INQ__ CONN_FLAGS
Returns the attributes of the stream connection.

To change object or connection attributes, use the IOS_$SET _ OBJ_ FLAGS, and
IOS _$SET_ CONN_ FLAGS calls, respectively. The attributes that you can change
depend on the object type. Note that you cannot change manager attributes because the

type manager determines them. For details on writing a type manager, see the Extending
the DOMAIN Streams Facility manual.

Creating a Temporary Object

I0S _$CREATE allows you to create a temporary object two ways. To create a temporary
object on your boot volume, specify a null value in "pathname" and a value of 0 in
“namelength." To create a temporary object on another volume, specify the pathname of
an existing object on that volume with the IOS_$LOC_NAME __ONLY_ MODE option in
“create-options." IOS__$CREATE creates a temporary unnamed object on the same
volume (node) as the object you specify in "pathname."

Creating an Object in Backup Mode

You can create a new, unnamed temporary object by specifying the create mode option,
IOS_$MAKE _BACKUP _ MODE. The call creates the new object with the same type and
attributes as the object specified by "pathname" (if it exists), and it is created on the same
volume (node). .

I0S _$CREATE does not open or modify the object specified by "pathname," it merely
examines the object to extract its attributes. Even though IOS_ $CREATE does not
modify the "pathname," it conceptually replaces the object, so this operation requires write
access to the object.

10S=15 108



10S__$CREATE

108

When IOS_$CLOSE closes the stream created with this call, it changes the object specified
by "pathname" to "pathname.bak.” It changes the new object (formerly the temporary,
unamed object) to "pathname," and makes the object permanent.

If a ".bak" version of the object already exists, IOS_ $CLOSE deletes it. (The caller must
have either D or P rights to delete the object.) If the ".bak" object is locked at the time
IOS _$CLOSE is called, the object will be deleted when it is unlocked.

If "pathname" does not exist at the time that IOS_$CREATE is called, then
I0S _$CREATE performs the ordinary functions.

10S=-16

o

"~




O

I10S_$DELETE

I0S_ $DELETE

Deletes an object and closes the associated stream.

FORMAT

I0S_$DELETE (stream-id, status)

INPUT PARAMETERS

stream-=-id
Number of a stream on which the object is open, in IOS _$ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS

Data Types section for more information.
USAGE

IOS _$DELETE deletes the object, then closes the specified stream.

This call actually sets the object attribute IOS__$OF _ DELETE _ ON_ CLOSE to TRUE,
then closes the stream. So, if the type manager does not allow an object to set the
delete-on-close attribute, the delete call fails. In this case, the call closes the stream, but
does not delete the object.

If the object is open on more than one stream, I0OS__$DELETE marks the objéct for
deletion, but the object still exists until all streams to that object are closed.

108=-17 108



10S_ $DUP

I0S_$DUP

Creates a copy of a specified stream ID.

FORMAT

return_stream id = IOS_$DUP (stream_id_to_duplicate, copy_stream_id, status)

RETURN VALUE

return__stream _ id

Number of the new stream created, in IOS__$ID_ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream _id_to__duplicate

Number of the stream to duplicate, in IOS__$ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after IOS__$DUP completes
successfully.

copy _stream _id

Number of the stream to use as the newly created copy, in IOS_$ID __ T format. This is a
2-byte integer.

If “copy_ stream _id" is free, IOS__$DUP returns that value in "return_ stream _id." If
“copy __stream _id" is in use, IOS_ $DUP begins searching from that number upward
(higher numbers) until it finds a free stream number and returns that number in
"return__stream _ id."

If the actual number of "copy_ stream __id" is insignificant, specify the value 0. This value
causes IOS_$DUP to begin searching from the lowest possible stream number and return
the first free stream number it finds.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

108

Use I0S_$DUP to create a copy of an existing stream ID. The new stream ID refers to the
same connection as the existing stream ID. Note that you must close both streams with
IOS _$CLOSE before the stream connection actually closes.

You can use IOS_$DUP to keep a stream connection open when passing it to a subroutine.
Use I0S _ $DUP to create a copy of the stream ID before passing it. This way, the
subroutine cannot close the connection to the object because all copies of the stream
connection must be closed before the connection itself closes.

105-18

)




O

10S_ $DUP

I0S _$DUP is identical to IOS__ $REPLICATE except that IOS__$DUP looks for a free
stream number in ascending order from the specified stream ID, while IOS_ $REPLICATE
looks in descending order. Note that you use IOS_$DUP or I0S_ $REPLICATE to copy
existing stream ID’s, both the existing and new stream ID’s remain valid connections.
However, you use IOS_ $SWITCH to replace stream IDs; you "switch" the connection from
the existing stream ID to the new stream ID.

105-19 108



10S_ $EQUAL

10S_$EQUAL

Determines whether two stream IDs refer to the same object.

FORMAT

same IOS_$EQUAL (stream id, stream_id_too, status)
RETURN VALUE

same

Boolean value that indicates whether the specified stream IDs refér to the same object.
#Same" is TRUE if the streams refer to the same object, it is FALSE if they do not.

INPUT PARAMETERS

stream __id

Number of a stream being compared, in IOS__$ID__ T format. This is a 2-byte integer.

stream _ id_ too

Number of a stream being compared, in IOS_$ID _ T format. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS

Data Types section for more information.

USAGE

Use I0S _$EQUAL to determine whether two stream IDs refer to the same object. An
application program can use this call to avoid using two streams when one is sufficient.

(O] 10S=20

)




O

I0S_$FORCE_ WRITE _FILE

IOS _$FORCE_ WRITE _FILE

Forcibly writes an object to permanent storage.

FORMAT
I0s_$FORCE WRITE FILE (stream-id, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS__ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

IOS _$FORCE _ WRITE _FILE forcibly writes the object to stable storage. Stable storage
depends on the object’s type, however, in most cases, it is the disk. For example, stable
storage for a magnetic tape descriptor is the tape.

Use I0OS_ $FORCE _ WRITE _ FILE before closing the stream to ensure that the object is
stored safely in the event of a system crash.

10S=21 108



10S_$GET

10S_$GET

Moves data from a stream into a buffer.

FORMAT

ret-length = IOS_$GET (stream-id, get—options, buffer, buffer-size, status)

RETURN VALUE

ret-length
Amount of data moved, in bytes. This is a 4-byte integer.

"Ret-length" equals the amount of data read; "ret-length" equals 0 if IOS_$GET does not
return any data.

If the length of the data read exceeds the amount specified in "data-size," I0S__$GET
performs the following:

e Reads enough data to fill the requested size
® Sets "ret-length" equal to "data-size"
o Positions the stream marker to the first unread byte

e Returns the IOS_ $BUFFER _ TOO _ SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling
JIOS_$INQ__REC_ REMAINDER.

INPUT PARAMETERS

stream-=-id

Number of the stream on which the object is open, in IOS _$ID _ T format. Thisis a
2-byte integer.

get-options
Options that control how IOS__$GET performs the get operation, in

I0S__$PUT_GET _OPTS _ T format. This is a 2-byte integer. Specify a combination of
the following set of predefined values:

’

I0S_$COND _ OPT Reads data, if available. (For example, data
on an SIO line is not always available
immediately.) If the data is not available,
IOS_$GET returns the
I0S_$GET _ CONDITIONAL _FAILED
status code and sets the return value of
"ret-length" to 0.

I0S_$PREVIEW _ OPT Reads data but does not update the stream
marker.

108 ' 10S-22

\
()

—




10S_$GET

I0S_$NO_REC_BNDRY_OPT Ignores record boundaries whilé reading data.
For example, it ignores NEWLINE characters
in a UASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this option.

I0S _$PARTIAL_RECORD _OPT Not meaningful for this call.

buffer-size
Maximum number of bytes to be moved to the buffer. This is a 4-byte integer.

OUTPUT PARAMETERS

buffer
Buffer to store the data. This is a character array.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

You can use either of IOS_ $LOCATE or IOS_ $GET to read data from system objects.
IOS _$GET copies the data into a buffer, while IOS_$LOCATE returns the virtual
address of the data.

In most cases, use the IOS_$LOCATE call to read data because it is faster
(IOS_$LOCATE does not perform a copy).

You will want to use IOS_$GET when you need to read more data than can be obtained in
one call, because the pointer remains valid for only one call. For example, use IOS_$GET
when you need to read and rearrange a number of lines from an object.

105-23 108




I0S_$GET_DIR

I0S_$GET_DIR

Gets the current working or naming directory.

FORMAT

I0S_$GET_DIR (pathname, namelength, dir_type, status)

INPUT PARAMETERS

dir __type
Option specifying which type of directory to get, in IOS__$DIR_ TYPE _ T format.
Specify one of the predefined values:

I0S_$WDIR Name of the current working directory.

I0S_$NDIR Name of the current naming directory.

OUTPUT PARAMETERS

pathname .

Name of the directory to get, in NAME _$PNAME __ T format. This is an arra,}'\r of up to
256 characters.

namelength ;
Length of "pathname." This is a 2-byte integer.

status

Completion status, in STATUS _‘$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE
Use this call to get the current working or naming directory. It returns the name of the

directory in the "pathname" parameter. If you want to change the current working or
naming directory, use IOS_ $SET _ DIR.

10§ 105-24




I0S__$GET_EC

I0S_$GET_EC

Gets a pointer to an eventcount for a stream event.

FORMAT

I0S_$GET_EC (stream-id, stream-—key, eventcount-pointer, status)

INPUT PARAMETERS

stream-id .
Number of stream on which the eventcount is waiting, in IOS_ $ID __ T format. This is a
2-byte integer.

stream=-key
The key that specifies which type of eventcount to get a pointer to, in IOS_$EC_KEY_T
format. This is a 2-byte integer. Specify one of the following predefined values:

IOS_$GET_REC_EC_KEY An eventcount that advances when the stream
contains data for you to get. This eventcount
advances whenever there is anything to get from an
open stream.

I0S_$PUT_REC_EC_KEY An eventcount that advances when a previously
ufull" stream might now be able to accept data. A
full stream is a stream that IOS__$PUT will block.

OUTPUT PARAMETERS

eventcount-pointer
A pointer to the eventcount, in EC2__$PTR _ T format. This is a 4-byte integer address
that points to an array of eventcounts. See the EC2 Data Types section for more
information.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

IOS_$'GET_EC is valid for all streams, including those open to objects, pads, mailboxes,
and devices. After you use this call to get a stream event, use EC2 calls to read eventcount
values and wait for events.

You can wait for two types of events on a stream:

e The IOS-get eventcount indicates that there might be input to get from an open
stream.

e The IOS-put eventcount indicates that a previously "full," or blocked, stream
might now have enough room to accept the data.

An example of using the I0S-get eventcount is to wait for keyboard input. Whenever the

105=25 108



10S_$GET _EC

user types data, the system advances the eventcount associated with the user’s input pad. If
input pad is in normal (or cooked) mode, the eventcount advances after each carriage
return, if the input pad is in raw mode, the eventcount advances after each keystroke. (For
details on cooked and raw mode, see the Display Manager chapter in the Programming
with General System Calls manual.)

An example of using the IOS-put eventcount is to wait on an MBX channel that might get
blocked. That is, IOS__$PUT blocks streams associated with MBX channels if a server is
not ready for the data from the channel. When it’s possible to write data without blocking,
the system advances the IOS-put eventcount.

For more information on eventcounts, see the Programming with General System Calls
and the Programming with System Calls for Interprocess Communication manuals.

108 105-26

(\\

@




10S_$GET _HANDLE

I0S_$GET _HANDLE

Converts a stream ID to a handle pointer.

FORMAT
handle = IOS_$GET_HANDLE (stream-id, type-uid, status)

RETURN VALUE

handle
Pointer to the handle associated with the stream connection, in UNIV_PTR format. This is
a 4-byte integer.

INPUT PARAMETERS

stream=id

Number of the stream that identifies an open stream, in IOS_$ID __ T format. Thisis a
2-byte integer.

type-uid
Type UID of the object that the type manager handles, in UID __$T format. Specify the
type UID of the manager you are writing. This data type is 8 bytes long. See the IOS Data
Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

NOTE: This call is generally of interest to type manager writers only.

Type manager writers use this call to access an object when implementing an operation that
is not, predefined by the system. When the type manager implements such an operation, it
is referred to as a direct manager call because the I/O switch does not route the call
between the client call and the manager. Without switching, the manager receives a stream
ID from a client. To access the object, the manager must then call I0OS_$GET _HANDLE
to obtain the object handle associated with the stream ID.

I0S _$GET _HANDLE returns an error if the stream ID is not associated with an object of
the type UID specified by "type. uid." Specify the type UID of the manager you are

writing so that the manager can be sure it has a stream to an object of its type.

See the Using the Open System Toolkit to Extend the Streams Facility manual for more
information.

108=27 10S



10S_$INQ_BYTE_POS

10S_$INQ_BYTE_POS

Returns the byte position of the stream marker.

FORMAT
byte-position = IO0S_$INQ BYTE POS (stream-id, position-option, status)

RETURN VALUE

byte-position

Byte position of the stream marker. This is a 4-byte integer. Note that byte positions are
zero-based; consequently the byte position of the beginning of an object (BOF) is 0.

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS _$ID _ T format. This is a
2-byte integer.

position-option

Value specifying the byte position to return, in IOS_$POS_OPT _ T format. Thisis a
2-byte integer. Specify one of the following predefined values:

IOS_$CURRENT Returns the byte position of the current stream marker.

I0S _$EOF Returns the byte position of the stream marker at the end of
the object (EOF). This is the number of bytes in the object.

I0S _ $BOF Return the byte position of the stream marker at the beginning
of the object (BOF). This value is always 0.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the 10S
Data Types section for more information.

USAGE

108

To obtain the offset of the stream marker, use IOS_$INQ _ BYTE _POS. (Use
I0S_$INQ_REC _POS if your object is record-oriented. )

To get the offset of the stream marker at the beginning or end of the object, specify
IOS_$BOF or IOS_$EOF, in the "position-option" parameter. Specify

IOS _ $CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by

calling IOS__ $SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it.

105-28




10S_$INQ_BYTE_POS

Whether you perform a nonkeyed or keyed seek depends on how the object’s data is
represented. For example, programs that need to perform "arithmetic" on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations.

108=-29 10S




10S_$INQ_ CONN_FLAGS

I0S__$INQ_ CONN_FLAGS

Returns the attributes associated with a connection.

FORMAT
conn_flags = IOS_$INQ_CONN_FLAGS (stream-id, status)

RETURN VALUE

conn_ flags
A set (bit mask) indicating which attributes of the specified connection are set, in
IOS_$CONN_ FLAG _ SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS_ $CONN _ FLAG _ T format, can be returned. If
the set contains the value, the connection has the attribute.

I0OS_$CF_TTY Connection behaves like a terminal.

IOS_$CF_TIPC Connection behaves like an interprocess
communication (IPC) channel. '

IOS_$CF_ VT Connection behaves like a DOMAIN Display
Manager pad. ’

JOS_$CF _WRITE Connection can be written to.

IOS _$CF_ APPEND Connection’s stream marker will be positioned
at the end of the object (EOF) before each put
call. '

I0S _$CF_ UNREGULATED Connection is open fqr unregulated (shared)

concurrency mode.

IOS_$CF_READ _INTEND _ WRITE Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-intend-write access.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

108 108=30

)




O

I0S_$INQ_CONN_FLAGS

USAGE

Use this call to determine which connection attributes are in effect for the specified stream.
To change object or connection attributes, use the IOS_ $SET_ OBJ__FLAGS, and

IOS _$SET_ CONN__FLAGS calls respectively. Which attributes you can change depends
on the object type.

108-31 108



I0S_$INQ_CUR_REC_LEN

10S_$INQ__CUR_REC_LEN

Returns the length of the record at the current stream marker.

FORMAT
rec-length = IOS_$INQ_CUR_REC_LEN (stream-id, status)

RETURN VALUE

rec-length
Length of the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS__$ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use IOS_$INQ__ CUR_REC _LEN to determine the length of the record at the current
stream marker of the specified stream.

The object specified must be record-oriented (for example, RECORDS __$UID); otherwise,
IOS _$INQ__ CUR_ REC_ LEN returns an error.

108 ' 105-32




10S_$INQ_FILE_ATTR

I0S_$INQ_FILE_ATTR

Returns object usage attributes including date and time created, date and time last used,
date and time last modified, number of blocks in the object.

FORMAT
I0S_$INQ_FILE ATTR (stream id, dt-created, dt-modified, dt-used, blocks, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS_ $ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

dt-created ‘
Date and time the object was created, in TIME _$CLOCKH _ T format. This is a 4-byte
integer.

dt-modified
Date and time the object was last modified, in TIME _$CLOCKH _ T format. This is a
4-byte integer. '

dt-used

Date and time the object was last used, in TIME _$CLOCKH _ T format. This is a 4-byte
integer.

blocks
The number of 1024-byte blocks that the object occupies. This is a 4-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use IOS__$INQ_FILE_ ATTR to obtain a time stamp for an object and to determine the
amount of space that an object occupies.

108-33 108



10S_$INQ_FULL_KEY

I0S_$INQ_FULL_KEY

Returns a full seek key.

FORMAT
I0S_$INQ_FULL_KEY (stream-id., position-option, full-key, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS_ $ID _ T format. Thisis a
2-byte integer. :

position-option
Value specifying the position to return a full seek key for, in IOS__$POS_ OPT _ T format.
This is a 2-byte integer. Specify only one of the following predefined values:

I0S_$CURRENT Return the full seek key of the current marker.

I0S _$EOF Return the full seek key of the end of the object (EOF) marker.

I0S _$BOF Return the full seek key of the beginning of the object (BOF)
marker.

OUTPUT PARAMETERS

full-key
Full seek key to be used in subsequent seeks, in IOS__$SEEK _KEY _ T format. This data
type is 8 bytes long. See the IOS Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

I0S_$INQ__FULL _KEY returns a seek key based on the position option you specify, the
current stream marker position, beginning or end of the object.

Use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later point in time, position the stream marker by calling the

IOS_$SEEK _FULL _KEY call with the stored seek key, and get the data with an 108 get
operation (IOS__$GET or 10S_ $LOCATE).

Use seek keys merely as an index -- do not rely on the contents of the keys. The contents of
seek keys remain private to the IOS manager, which guarantees only that the seek key
returns to the position it describes.

Some object types support seek key positioning, but do not support record or byte
positioning. Use seek keys for repositioning if your application does not need the
"arithmetic" properties of record- or byte-positioning (that is, the ability to compute
positions given positions).

108 - 10S-34

)




10S_$INQ_ FULL_KEY

~ The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

~_

O

105-35 108



10S__$INQ_MGR_FLAGS

I0S_$INQ_ MGR _FLAGS

Returns the attribute set of an object’s manager.

FORMAT
mgr_flags = I0S_$INQ_MGR_FLAGS (stream-id. status)

RETURN VALUE

mgr_flags
A set (bit mask) indicating the attributes of the specified object’s manager, in
I0S_$MGR_FLAG__SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS__$MGR _ FLAG _T format, can be returned. If
the set contains the value, the manager has the attribute and can perform the following

I0S

operations:

I0S__$MF _ CREATE

I0S_$MF_CREATE _BAK
10S_$MF_ IMEX
IOS_$MF_FORK
I0S_$MF _FORCE_ WRITE
10S_$MF _ WRITE
I0S_$MF_SEEK _ABS
I0S_$MF _SEEK _ SHORT
I0S_$MF_SEEK_ FULL
I0S_$MF_ SEEK _BYTE
I0S_$MF _SEEK _REC
I0S_$MF _SEEK _BOF

I0S_$MF_REC_TYPE

Manager permits type to create objects.

Manager permits type to create backup (.bak)
objects.

Manager permits type to export streams to
new processes.

Manager permits type to pass streams to
forked processes.

Manager permits type to force-write object
contents to stable storage (for most types, this
is the disk).

Manager permits objects to be written to.

Manager permits objects to perform absolute
seeks.

Manager permits objects to perform seeks
using short (4-byte) seek keys.

Manager permits objects to perform seeks
using full (8-byte) seek keys.

Manager permits objects to perform seeks to
byte positions.

Manager permits objects to perform seeks to
record positions.

Manager permits objects to perform seeks to
the beginning of the object.

Mahager supports different record type
formats.

105-36




O

O

10S_$INQ_MGR_FLAGS

I0S_$MF_TRUNCATE Manager permité objects to be truncated.

I0S_$MF_UNREGULATED Manager permits objects to have unregulated
(shared) concurrency mode. '

I0S _$MF _SPARSE Manager perinits objects to be written as
sparse objects.

IOS_$MF _READ_INTEND _ WRITE Manager permits objects to have
read-intend-write access.

INPUT PARAMETERS

stream~id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS _$INQ_MGR _ FLAGS to determine what operations an object’s type manager
can perform.

Depending on the nature of the object, a type manager permits some of the operations
identified by “mgr-flags." A manager usually will not support operations that are
irrelevant for the object type. For example, if you called IOS_$INQ_MGR _FLAGS
specifying a stream open on an SIO line, the set returned would not include any
IOS__$MF _ SEEK attributes, since serial lines do not support seeking.

Note that even if an object’s manager permits an operation, the object itself can prevent the
operation because the object’s object and connection attributes must permit the operation
as well. For example, a manager’s attribute set might contain the attribute that permits
writing to a file (IOS_$MF _ WRITE), but a specific object’s connection attribute set
might not include the IOS _$CF _ WRITE attribute, which permits writing on the
connection. In this case, you cannot write to that particular object. However, you could
possibly write to another object of the same type if the object’s IOS_$CF_ WRITE
attribute is set for its stream connection.

To change object or connection attributes, use the IOS_$SET_OBJ __FLAGS and
IOS__$SET_ CONN_FLAGS calls, respectively. Which attributes you can change
depends on the object type. Note that you cannot change manager attributes because the

type manager determines them. For details on writing a type manager, see the Fztending
the DOMAIN Sireams Facility manual.

108=37 108




10S_$INQ_OBJ_FLAGS

I0S_ $INQ_ OBJ_FLAGS

Returns the attribute set associated with an object.

FORMAT
" obj-flags = IOS_$INQ OBJ_FLAGS (stream-id, status)

RETURN VALUE

obj-flags
A set (bit mask) indicating the attributes of the specified object, in
I0S_$0BJ_FLAG _SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS__$0BJ__FLAG__ T format, can be returned. If
the set contains the value, the object has the attribute and can perform the following

operations:

I0S_$OF _DELETE_ON_ CLOSE Object will be deleted when all its associated
streams close.

I0S _$OF _SPARSE_OK Object can be written as a sparse object.

I0S _$OF _ASCI Object contains ASCII data.

I0S_$OF _FTNCC Object uses FORTRAN carriage control
characters. '

I0S__$OF _ COND Get or put calls to the object will be

performed conditionally, as if the
I0S _$COND _ OPT was specified on a get or
put call.

INPUT PARAMETERS

stream-~-id :
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a

'2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S

Data Types section for more information.
USAGE

Use this call to determine which object attributes are in effect for the object on the specified
stream.

To change object or connection attributes, use the I0OS__$SET . OBJ_FLAGS, and
IOS_$SET_ CONN_FLAGS calls respectively. The attributes that you can change
depends on the object type.

108 10S-38

‘)

)



I0S_$INQ_PATH_ NAME

10S_$INQ__PATH_ NAME

Returns the pathname of the object open on a specified stream.

FORMAT

10S_$INQ_PATH_NAME (stream-id, name-type, pathname, namelength, status)

INPUT PARAMETERS

stream~id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

name-type .
Format of the returned pathname, in I0OS_$NAME _TYPE _ T format. Specify one of the
following predefined values:

I0S _$ROOT_ NAME
Return the absolute pathname, relative to the network root directory
(//)- For example, "//node/sid/file."

I0S_$WDIR_ NAME
Return just the leaf name if the object’s pathname is a name in the
current working directory. Otherwise, return the absolute pathname.

I0S_$NDIR_ NAME
Return just the leaf name if the object’s pathname is a name in the
current naming directory. Otherwise, return the absolute pathname.

I0S__$NODE_ NAME
Return a name relative to the node’s entry directory (/) if the object’s
pathname is a name in the boot volume. Otherwise, return the absolute
pathname. For example, * /sid/file."

I0S_$NODE_DATA_FLAG _
Return just the leaf name if the object’s pathname is a name in the
‘node__data directory. Otherwise, return the absolute pathname.

IOS _$LEAF _ NAME
Return just the leaf name regardless of the object’s pathname. For
example, if the object’s pathname is "/a/b/c," it returns "c."

IOS _$RESID _NAME
Return the residual part of a pathname if the stream is open using
extended naming. (Extended naming allows you to add additional text to
the end of a pathname.)

OUTPUT PARAMETERS
pathname

Name of the object associated with the stream ID, in NAME _ $PNAME _ T format. This
is an array of up to 256 characters.

10S=39 ' 108




10S_$INQ_PATH_NAME

namelength
Length of the pathname. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS

Data Types section for more information.

USAGE

Use this call to determine the pathname of an object associated with the specified stream
ID. Generally, use this call in cases where a program has been passed a stream ID and needs
the associated pathname.

I0S I10S=-40

0



O

10S_$INQ_REC_POS

10S_$INQ_REC_POS

Returns the record position of the stream marker.

FORMAT _
record_position = IOS_$INQ REC_POS (stream-id, position-option, status)

RETURN VALUE

record-position
Record position of the stream marker. This is a 4-byte integer. Note that record positions
are zero-based; consequently, the record position of the beginning of the object is 0.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID__ T format. Thisis a
2-byte integer.

position~-option :
Value specifying the record position to return, in IOS__$POS__OPT _ T format. Thisis a
2-byte integer. Specify one of the following predefined values:

I0S__$CURRENT Return the record position of the current stream marker.

I0S_$EOF Return the record position of the end of the object (EOF)
stream marker. This is the number of records in the object.

I0S _$BOF Return the record position of the beginning of the object (BOF)
stream marker. This value is always 0.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

To obtain the offset of the stream marker for record-oriented objects, use
I0S_$INQ_REC_ POS. (UseIOS _$INQ__BYTE _POS if your object is not
record-oriented.)

To get the offset of the stream marker at the beginning or end of the object, specify
I0S_$BOF or IOS_$EOF, in the "position-option" parameter. Specify

IOS_ $CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by
calling I0S_ $SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it.

108=41 ' I0S



10S_$INQ_REC_POS

Whether you perform a nonkeyed or keyed seek depends on how the object’s data is
represented. For example, programs that need to perform "arithmetic" on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations.

I0S 108=-42

C.




10S_$INQ_REC_ REMAINDER

10S_ $INQ_ REC_ REMAINDER

Returns the number of bytes remaining in the current record.

FORMAT
bytes = IOS_$INQ_REC_REMAINDER (stream-id, status)

RETURN VALUE

bytes
Number of bytes remaining in the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the file is open, in IOS _$ID __ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use I0S_$INQ_REC_ REMAINDER with the IOS_ $GET or IOS_$LOCATE calls. If
I0S__$GET or IOS__$LOCATE fills the specified buffer, but has not yet finished reading a
record, it returns the I0S _$BUFFER _ TOO _ SMALL error status code. At this point,
use IOS__$INQ_REC_REMAINDER to determine the number of bytes in the record that
remain to be read. If the entire record has been read, the value of "bytes" is undefined.

105-43 - 10s



10S_$INQ_REC_TYPE

10S_$INQ_REC_TYPE

Returns the record type of an object.

FORMAT

record-type = IOS_$INQ REC_TYPE (stream-id., status)
RETURN VALUE
record-type

Type of record format used in the specified object, in IOS_$RTYPE _ T format. Thisis a
2-byte integer. Returns one of the following predefined values:

10S_$V1 Variable-length records with count fields.
I0S _$F1 Fixed-length records without count fields.
IOS _$F2 Fixed-length records with count fields.

I0S __$EXPLICIT _F2 Fixed-length records that IOS__ $PUT cannot implicitly change
to variable-length records.

I0S_$UNDEF No record structure.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use IOS _$INQ_REC _TYPE to determine how records within an object are formatted.

You can change the record type of a record-oriented object by calling
I0S_$SET_REC_ TYPE.

By default, a record-oriented object has fixed-length records (I0S_$F2). They remain
fixed-length records until IOS_ $PUT writes records of different lengths. At this point,

I0S _$PUT implicitly changes the objects to variable-length type (I0S_$V1). In some
cases, you might want to explicitly set the record type to IOS_ $EXPLICIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use the

corresponding call, IOS_ $SET_REC_ TYPE.

108 105-44

(




I0S_$INQ_SHORT _KEY

10S_$INQ__SHORT _KEY

Returns a short seek key.

FORMAT
short-key = IOS_$INQ_SHORT SEEK (stream-id, position-option, status)

RETURN VALUE

short-key
Short seek key to be used in subsequent seeks. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

position-option

Value specifying the position to return, in I0OS__$POS_OPT _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

I0S_$CURRENT Return the short seek key of the current marker.

I0S_$EOF Return the short seek key of the end of the object (EOF)
marker.

IOS _$BOF Return the short seek key of the beginning of the object (BOF)
marker.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

IOS _$INQ__SHORT _KEY returns a seek key based on the position option you specify --
the current stream marker position, beginning or end of the object.

You use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later time, position the stream marker by calling the IOS_$SEEK _SHORT _KEY
call with the stored seek key, and get the data with an IOS get operation (I0S_$GET or
I0S _$LOCATE).

Use seek keys merely as an index -- do not count on the contents of the keys. The contents
of seek keys remain private to the IOS manager, which guarantees only that the seek key
returns to the position it describes.

10S-45 10§




I0S_$INQ__SHORT _KEY

108

Some object types support seek key positioning, but not record or byte positioning. Use 7
seek keys for repositioning if your application does not need the "arithmetic" properties of K P
record- or byte-positioning (that is, the ability to compute positions given positions).

The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

10S=-46




Q I0S_$INQ_TYPE_UID

I0S_$INQ_TYPE_UID

Returns the type UID of an object.

FORMAT

I0S_$INQ_TYPE UID (stream-id, type-uid, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS__$ID _ T format. This is a

2-byte integer.

OUTPUT PARAMETERS

Q type-uid
Type UID of the object, in UID _$T format. This data type is 8 bytes long. See the JOS
Data Types section for more information.

DOMAIN currently supports a set of predefined standard object types which include the

following types. (Note that users can also define their own type UIDs by writing a type

manager. See the Using the Open System Toolkit to Extend the Streams Facility manual

for details. )
Q Type UID
UASC_ $UID
RECORDS _$UID
HDR_UNDEF_ $UID
OBJECT _FILE _$UID
Q SIO__$UID
MT_ $UID
PAD _$UID
INPUT _PAD _$UID
MBX _$UID
DIRECTORY _ $UID

NULLDEV _$UID

status

Object

UASC object

Record-oriented object
Nonrecox.‘d-oriented object

Object module object (compiler or binder output)
Serial line descriptor object

Magnetic tape descriptor object
Saved display manager transcript pad
Display manager input pad

Mailbox object

Directory

Null device

Q Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

10S=-47

108



10S_$INQ_TYPE_UID

USAGE
Use this call to determine the object’s current type UID given its stream ID. You can use

the type UID returned by this call as a parameter in the I0OS_$CREATE call to create
another object of the same type.

I0S 108-48

C




0

10S_ $LOCATE

I0S_$LOCATE

Reads data from a stream, and returns a pointer to the data.

FORMAT

ret~length = IOS_$LOCATE (stream-id, get-options, data-ptr, data-size,
status)

RETURN VALUE

ret-length
Amount of data read, in bytes. This is a 4-byte integer.

"Ret-length" equals the amount of data read; "ret-length" equals 0 if IOS__ $LOCATE does
not return any data.

If the length of the data read exceeds the amount specified in "data-size," I0S__ $LOCATE
performs the following:

e Reads enough data to fill the requested size
e Sets “"ret-length" equal to "data-size"
o Positions the stream marker to the first unread byte

o Returns the IOS__ $BUFFER _ TOO _ SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling
I10S _$INQ__REC_ REMAINDER.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID __ T format. Thisis a
2-byte integer.

get-options :
Options that control how I0S__ $LOCATE performs the get operation, in
I0S_$PUT_GET _OPTS_ T format. This is a 2-byte integer. Specify a combination of
the following set of predefined values:

I0OS_$COND _ OPT Reads data, if available. (For example, data
on an SIO line is not always available
immediately.) If the data is not available,
IOS _$GET returns the
I0S _$GET _ CONDITIONAL _ FAILED
status code and sets the return value of
“ret-length" to 0.

I0S_$PREVIEW _OPT Reads data but does not update the stream
marker.

105=-49 108



I0S_ $LOCATE

IOS_$NO_REC_BNDRY_OPT Ignores record boundaries while reading data.
For example, it ignores NEWLINE characters
in a UASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this call.

I0S _$PARTIAL _RECORD_ OPT Not meaningful for this call.

data-size

Maximum amount of data to be read, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS

data-ptr

A pointer to the located data, in UNIV_PTR format. This is a 4-byte integer. Note that
this pointer remains valid only until the program invokes the next I0S call.

If IOS _$LOCATE is unable to return a pointer to the location of the data, it copies the
data into a system buffer and then returns the address of the buffer in "data-ptr." (See the
USAGE Section below for more details.)

status

Completion status, in STATUS_$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information. :

USAGE

108

You can use either IOS_ $LOCATE or I0S_$GET to read data from system objects.
IOS _$LOCATE returns a pointer to the data, while IOS__$GET copies the data into a
buffer.

In most cases, use the IOS_$LOCATE call to read data because it is faster
(IOS_$LOCATE does not perform a copy).

You will want to use I0S__$GET when you need to read more data than can be obtained in
one call, because the pointer remains valid for only one call. For example, when you need
to read and rearrange a number of lines from an object.

Normally, IOS_$LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for IOS_ $LOCATE to work this
way. In these cases, IOS_$LOCATE will not be able to return a pointer to the data.

Instead, IOS_$LOCATE actuaily creates a buffer and then calls IOS__$GET to perform
the get call. In this case, IOS__ $LOCATE is no more efficient than IOS_$GET. The size

of the buffer that IOS_ $LOCATE creates is either the length you specify in "data-size," or
1024 bytes, whichever is the smaller.

Use IOS_$SET _LOCATE _ BUFFER _ SIZE to specify a buffer larger than 1024 bytes, if
necessary. In this case, IOS__$LOCATE is no more efficient than I0OS_ $GET.

See the IOS_$SET _ LOCATE _ BUFFER __SIZE call description for more information.

105=50"




10S_ $OPEN

10S_ $OPEN

Opens a stream to an existing object.

FORMAT

stream-id = IOS_$OPEN (pathname, namelength, open-options, status)

RETURN VALUE

stream-id ,
Number of the stream on which the object is open, in IOS_$ID_ T format. Thisis a
2-byte integer.

INPUT PARAMETERS

pathname :
Name of the object to be opened, in NAME _ $PNAME _ T format. This is an array of up
to 256 characters.

namelength
Length of the pathname. This is a 2-byte integer.

open-options
Options available at open time, in I0S__ $OPEN_ OPTIONS __T format. This is a 2-byte
integer. Specify a combination of the following set of predefined values:

IOS_$NO_OPEN_DELAY_OPT Return immediately, instead of waiting for the
' open call to complete.

IOS_$WRITE _OPT Permit writing data to a new object. If a
program tries to write on a stream for which
you have not specified this option, it returns
an error status.

IOS _$UNREGULATED _ OPT Permit shared (unregulated) concurrency
mode.
[0S _$POSITION __TO_EOF _OPT Position the stream marker at the end of the

object (EOF). Use this to append data to an
‘existing object.

IOS _$INQUIRE _ONLY__OPT Open the object-for attribute inquiries only;
do not permit reading or writing of data.

I0S_$READ_INTEND _WRITE_OPT  Open the object for read access with the
intent to eventually change the object’s access
to write access. This allows other processes to
read the object; but they cannot have write or
read-intend-write access.

105-51 108



I0S_ $OPEN

OUTPUT PARAMETERS

status

Completion status, in, STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

This routine opens a stream to the named object. It returns the stream ID to be used in
subsequent stream activity with the object. An error occurs if the object does not exist. If
the object already exists, IOS__$OPEN does not change its attributes.

IOS _$OPEN does not return information about the object’s attributes. To get information

about an object, use the calls with the prefix IOS _ $INQ. To change an object’s attributes,
use the calls with the prefix IOS__$SET.

I0S 10S8=52




O

I0S_$PUT

10S__$PUT

Writes data into an object.

FORMAT

I0S_$PUT (stream-id, put-options, buffer, buffer-size, status)

INPUT PARAMETERS

stream=-id '
Number of the stream on which the object is open, in IOS_$ID __ T format. Thisis a
2-byte integer.

put-options
Options that control how I0S__$PUT performs the put operation, int
I0S_$PUT_GET_ OPTS_ T format. This is a 2-byte integer. Specify any combination
of the following set of predefined values:

I0S_$COND _ OPT Write a record only if it can be done without
blocking. If the call would block, it returns
the IOS__$PUT_ CONDITIONAL _ FAILED

error status.

IOS_$PREVIEW _ OPT Write data but do not update the stream
marker.
I0S_$PARTIAL _RECORD_ OPT Write a portion of a record but do not

terminate it. IOS__$PUT terminates the
record when you call IOS__$PUT without
specifying this option. If you do not specify
this option, IOS _ $PUT writes a full record.
You can use this option with record-oriented
objects only. IOS__$PUT ignores this option
if you specify it with any other type of
objects.

IOS _$NO_REC_BNDRY __OPT Not meaningful for this call.

buffer
Buffer to contain the data. This is a character array.

buffer-size
Size of the buffer containing the data, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the 10S
Data Types section for more information.

105-53 108



10S_$PUT

USAGE

108

IOS_$PUT writes data into an object. Use "put-options," which is in the
I10S_$PUT _GET _OPTS_ T format, to write the data to the object in different ways.

If the object is record-oriented, you can write data to it record by record. This is the
default action (for record-oriented objects) when you specify the default ([]) value in
“"put-option.*"

To write a single record with more than one put operation (for example, to write one field
at a time), use the IOS_ $PARTIAL _RECORD _ OPT option. If you specify this option,
IOS __$PUT writes the data, but does not terminate the record. I0S_ $PUT terminates the
record when you call it without specifying this option.

To write to objects which might not always be immediately available (for example, an MBX
channel), you perform conditional put operations with the I0OS__$COND _ OPT option.

105=54

7N




I0S _$REPLICATE

I0S _$REPLICATE

Creates a copy of a specified stream ID.

FORMAT

return_stream _id = I0S_$REPLICATE (stream_id_to_replicate, copy_stream id,
status)

RETURN VALUE

return_stream _id
Number of the new stream created, in IOS_ $ID __ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream _id _to__replicate
Number of the stream to replicate, in IOS__$ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after IOS_ $REPLICATE
completes successfully.

copy _stream __id
Number of the stream to use as the copy for "stream _id_to__replicate,” in IOS_$ID T
format. This is a 2-byte integer. '

If "copy _stream __id" is free, JIOS _ $REPLICATE returns that number in .
“return _stream _id." If "copy-stream-id" is in use, IOS_ $REPLICATE begins searching
from that number downward (lower numbers) until it finds a free stream number, and
returns that number in "return__stream __id."

If the actual number of the copy stream is ihsignificant, specify the predefined constant
I0OS _$MAX. This value causes IOS__$REPLICATE to begin searching at the highest
possible stream number and return the first free stream number it finds.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use I0S _ $REPLICATE to create a copy of an existing stream ID. The new stream ID
refers to the same connection as the existing stream ID. Note that you must close both
streams with IOS _ $CLOSE before the stream connection actually closes.

I0S __$REPLICATE is identical to IOS_ $DUP except that I0S__ $REPICATE looks for a
free stream in descending order from the specified stream ID, while IOS_ $DUP looks in
ascending order. Note that you use IOS_ $DUP or IOS_ $REPLICATE to copy existing
stream ID’s, both the existing and new stream ID’s remain valid connections. However, you
use JOS _ $SWITCH to replace stream IDs; you "switch" the connection from the existing
stream ID to the new stream ID.

10S=55 108



10S_$REPLICATE

You can use IOS__$REPLICATE to keep a stream connection open when passing it to a
subroutine. Use IOS_$REPLICATE to create a copy of the stream ID before passing it.
This way, the subroutine cannot close the connection to the object because all copies of the
stream connection must be closed before the connection itself gets closed.

I0S _$RELPLICATE is analagous to UNIX DUP.

108 105-56




I0S__$SEEK

10S_$SEEK

Performs an absolute or relative seek using byte or record positioning.

FORMAT

I0S_$SEEK (stream-id, abs-rel, seek-type, offset, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS__$ID__ T format. Thisis a
2-byte integer.

abs-rel
Value specifying the base for the seek operation, in IOS _$ABS_REL _ T format. This is
a 2-byte integer. Specify one of the following predefined values:

I0S _$RELATIVE The seek is relative to the current position.
IOS _ $ABSOLUTE The seek is relative to the beginning of the object (BOF').
seek-type

The type of seek to be performed, in IOS_$SEEK _TYPE _ T format. This is a 2-byte
integer. Specify one of the following predefined values:

I0S_$REC_SEEK Record-oriented seek.
I0S_$BYTE_ SEEK Byte-oriented seek.
offset

A signed integer offset value indicating the number of records or bytes from the seek base
to position the stream marker. This is a 4-byte integer.

If the integer is a positive number, IOS__ $SEEK uses BOF as the seek base and searches
forward. If the integer is a negative number, IOS_ $SEEK uses EOF as the seek base and
searches backward. Whether the offset 1nd1cat,es bytes or records depends on the type of
seek you specified in "seek-type."

You can get an offset number to use in an absolute seek with the calls
IOS_$INQ_BYTE_ POS and IOS__$INQ_REC_ POS.

Note that both byte and record positions are zero-based; consequently, the first byte or
record number is 0.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS.
Data Types section for more information.

10S=57 ' 108



10S_$SEEK

USAGE

Use I0S_$SEEK to seek to an absolute or relative byte or record position within an object.

You can use this call with the IOS_$INQ _BYTE__POS and IOS_$INQ_REC_POS
calls to perform absolute position seeks.

(O}] 108=-58

,
o




I0S_$SEEK_FULL_KEY

10S__$SEEK _FULL_KEY

Performs a seek using a full (8-byte) seek key.

FORMAT
I0S_$SEEK FULL KEY (stream-id, full-key, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

full-key
A full seek key, in IOS__ $SEEK _KEY _ T format. This data type is 8 bytes long. See the
IOS Data Types section for more information.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Before performing a full key seek, you must first obtain a full seek key by using the

I0S _$INQ_FULL _KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling the IOS__ $SEEK _ FULL _ KEY call with the stored seek key,
and then get the data with an IOS get call (IOS_$GET or I0S_ $LOCATE).

105-59 I0S



10S_ $SEEK_ SHORT _KEY

10S_$SEEK _SHORT _KEY

Performs a seek using a short (4-byte) seek key.

FORMAT
I0S_$SEEK SHORT _KEY (stream-id, short-key, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID. T format. This is a
2-byte integer.

short-key
A short seek key. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Before performing a short key seek, you must first obtain a short seek key by using the
IOS__$INQ__SHORT _KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling I0OS__$SEEK _SHORT _ KEY with the stored seek key, and
then get the data with an IOS get call (I0OS_$GET or I0S_$LOCATE).

108 105-60




10S__$SEEK_TO_BOF

J0S_$SEEK _TO _BOF

Positions the stream marker to the beginning of an object.

FORMAT
I10S_$SEEK_TO_BOF (stream-id, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS_ $SEEK _ TO__BOF to position the stream marker to the beginning of an object
(BOF). Use this call when performing a nonkeyed seek on an object.

105=-61 108



I0S_$SEEK_ TO_EOF

I0S_$SEEK_TO_EOF

Positions the stream marker to the end of an object.

FORMAT

I10S_$SEEK_TO_EOF (stream-id, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a

2-byte integer.
OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use IOS_ $SEEK __ TO __EOF to position the stream marker to the end of an object (EOF).
Use this call when performing a nonkeyed seek on an object.

108 105-62

)




I0S_$SET_ CONN_ FLAG

I0S_$SET_CONN_FLAG

Changes the set of connection attributes associated with a stream connection.

FORMAT

IOS_$SET_CONN_FLAG (stream-id, conn-flag, on-off, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS__$ID __ T format. This is a

2-byte integer. .

conn-flag

Flag indicating which attribute of the specified connection ybu want to change, in
IOS_$CONN_FLAG_ T format. This is a 2-byte integer. Specify one of the following

predefined values:

10S_$CF _TTY

I0S__$CF_IPC

I0S_$CF_VT

I0S_$CF_ WRITE

I0S_$CF_ APPEND

I0S_$CF _ UNREGULATED

I0S_$CF_READ _INTEND WRITE

on-off

Connection behaves like a terminal.

Connection behaves like an interprocess
communication (IPC) channel.

Connection behaves like a DOMAIN Display
Manager pad.

Connection can be written to.

Connection’s stream marker will be positioned
at the end of the object (EOF) before each put
call.

Connection is open for unregulated (shared)
concurrency mode.

Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-intend-write access.

Boolean value indicating whether the specified attribute should be included in the set (on),

or removed from the set (off).

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S

Data Types section for more information.

105-63 108



I0S_$SET_ CONN_ FLAG

USAGE

Use IOS _$SET _ CONN_FLAG to change the attributes of a connection. Note that

objects do not support all connection attributes. To determine the connection’s current set
of attributes, use IOS_$INQ__CONN __ FLAGS before using this call.

To change the set of attributes, you must call IOS__$SET _ CONN _ FLAG for each
connection attribute you want to change. To add an attribute to the set, call
IOS_$SET _ CONN_ FLAG, specifying the desired attribute, and set the "on-off"
parameter to TRUE. To remove an attribute from the set, use this call, specifying the
attribute to remove, and set the "on-off" parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object’s manager
and connection attributes must permit the operation as well. For example, a manager’s
attribute set might contain the attribute that permits writing to an object
(IOS_$MF _ WRITE), but a specific object’s connection attribute set might not include the
IOS_$CF _ WRITE attribute, which permits writing to the object. In this case, you
cannot write to that particular object.

108 105=-64




10S_$SET_DIR

I0S_$SET_DIR

Changes the current working or naming directory.

FORMAT

I0S_$SET_DIR (pathname, namelength, dir_type, status)

INPUT PARAMETERS

pathname
Name of the directory to set, in NAME _$PNAME T format. This is an array of up to
256 characters.

namelength /
Length of "pathname." This is a 2-byte integer.

dir _type

Option specifying which type of directory to set, in I0S__$DIR__ TYPE _ T format.
Specify one of the predefined values:

I0S _$WDIR Name of the current working directory.

I0S_$NDIR Name of the current naming directory.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use this call to change the current working or naming directory. You can use
I0S_$GET_DIR to get the name of the current working or naming directory.

10S=65 108



I0S_$SET_LOCATE _BUFFER _SIZE

I0S_$SET__LOCATE_BUFFER _SIZE
Sets the size of the buffer that IOS__ $LOCATE allocates.

FORMAT ,
I0S_$SET_LOCATE BUFFER SIZE (stream-id, buffer-size, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID __ T format. This is a
2-byte integer.

buffer-size _
Size of the buffer you want to allocate. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Normally, IOS__$LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for IOS_ $LOCATE to work this
way. In these cases, IOS_$LOCATE will not be able to return a pointer to the data.

Instead, IOS_$LOCATE actually creates a buffer and then calls IOS__ $GET to perform
the get call. In this case, IOS__$LOCATE is no more efficient than IOS__$GET. The size
of the buffer that IOS_ $LOCATE creates is either the length you specify in "data-size," or
1024 bytes, whichever is the smaller.

Use IOS _$SET_LOCATE _BUFFER _SIZE to specify a buffer larger than 1024 bytes, if

necessary.

For example, if you are using IOS_ $LOCATE with a data-size parameter of 2000 bytes,
and the manager of the object from which you are reading does not support internal
buffering, the IOS_ $LOCATE call, by default, will copy as much of the requested data as
it can into a 1024-byte-long buffer and return a pointer to that buffer.

However, if you precede the IOS_$LOCATE call with a call to
I0OS_$SET__LOCATE _BUFFER _SIZE, specifying a buffer-size of 2000, the

IOS _3$LOCATE call will use a 2000-byte-long buffer and will be able to copy all the
requested data into the buffer. This new buffer size will be valid as long as the stream
exists. |

108 105-66

/
l\




I0S_$SET_OBJ_FLAG

I0S_$SET _OBJ_FLAG

Changes the set of object attributes associated with an object.

FORMAT
I0S_$SET _OBJ_FLAG (stream-id, obj-flag, on-off, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

obj-flag
Flag indicating which attribute of the specified object you want to change, in
IOS_$OBJ_FLAG _ T format. This is a 2-byte integer. Specify one of the following
predefined values:

I0S_$OF _DELETE_ON__ CLOSE Object will be deleted when all its associated

streams close.

I0S_$OF _SPARSE_ OK Object can be written as a sparse object.

IOS_$OF _ASCII Object contains ASCII data.

IOS _$OF _FTNCC Object uses FORTRAN carriage control
characters.

IOS _$OF _ COND - Get or put calls to the object will be

performed conditionally, as if the
I0S_$COND __ OPT was specified on a get or
put call. :

on-off

Boolean value indicating whether the specified attribute should be included in the set (on),
or removed from the set (off).

OouUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

10S=-67 108



I0S_$SET_OBJ_FLAG

USAGE

108

Use IOS_$SET _ OBJ_FLAGS to change the attributes of an object. Note that objects do
not support all object attributes. To determine the object’s current attribute set, use the

I0S_$INQ_OBJ_FLAGS call.

To change an object’s attribute set, you must call IOS__$SET__ OBJ__FLAG once for each
object attribute you want to change. To add an attribute to the set, call
IOS_$SET _ OBJ__FLAG, specifying the desired attribute, and set the "on-off* parameter
to TRUE. To remove an attribute from the set, use this call, specifying the attribute to
remove, and set the "on-off" parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object’s manager
and object attributes must permit the operation as well. For example, a manager’s
attribute set might contain the attribute that allows the object to perform put and get calls
conditionally (IOS_$MF _ COND), but a specific object’s object attribute set might not

“include the IOS_$OF _ COND attribute. In this case, you cannot make conditional put or

get calls to that particular object.

105-68

0




10S_$SET_REC_TYPE

I0S_$SET_REC_TYPE

Sets the record type format and (optionally) record length of a file.

FORMAT
I0S_$SET_REC_TYPE (stream-id, record-type, record-length, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

record-type
Type of record format to change for the specified object, in IOS__$RTYPE _ T format.
This is a 2-byte integer. Specify one of the following predefined values:

IOS_$V1 Variable-length records with count fields.
IOS _$F1 Fixed-length records without count fields.
IOS _$F2 Fixed-length records with count fields. However, IOS__ $PUT

can change the IOS_ $F2 type to IOS_$V1 implicitly. (See
Usage section below.)

IOS _$EXPLICIT _F2 Fixed-length records that IOS__$PUT cannot implicitly change
to variable-length records. (IOS_ $PUT can change the
IQS_$F2 to IOS_$V1 implicitly. See Usage section below.)

IOS_$UNDEF No record structure.

record-length ‘
Length to set for the fixed-length records of the object. This is a 4-byte integer. Specify
this value only if the object is empty.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

By default, a record-oriented object has fixed-length records (IOS__$F2). They remain
fixed-length records until IOS__$PUT writes records of different lengths. At this point,

I0S _$PUT implicitly changes the objects to variable-length type (IOS__$V1). In some
cases, you might want to explicitly set the record type to IOS__$EXPLICIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use this call.

105-69 108



10S_ $SWITCH

IOS_$SWITCH

Switches a stream from one stream ID to another stream ID.

FORMAT

ret-stream-id = IOS_$SWITCH (stream-id-to-switch, new-stream-id, status)

RETURN VALUE

ret-stream=-id

Number of the new stream ID that replaces the existing stream ID, in IOS _$ID _ T format.
This is a 2-byte integer.

INPUT PARAMETERS

stream=id=to-switch
Number of the stream to switch, in IOS__$ID T format. This is a 2-byte integer.

This stream number becomes ¢nvalid after the IOS_ $SWITCH call completes sucessfully.

new-stream=-id

Number of the stream to use as the new stream ID, in IOS_$ID _ T format. This is a
2-byte integer.

If *new-stream-id" is free, IOS_ $SWITCH returns this value in "ret-stream-id." If
"new-stream-id" is in use, IOS_ $SWITCH begins searching from that value downward

(lower numbers) until it finds a free stream number and returns that number in
"ret-stream-id."

If the actual number of the replacement stream is insignificant, specify the predefined
constant IOS _$MAX. This value causes IOS _$SWITCH to begins searching at highest
possible stream number and return the first free number it finds. '

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use I0OS_ $SWITCH to switch one stream ID for another. The new stream ID refers to the
same connection as the old stream ID, making the old stream ID invalid.

Note that you use IOS_ $SWTICH to replace stream IDs; you "switch" the connection
from the existing stream ID to the new stream ID. However, you use IOS _ $DUP or
IOS _$REPLICATE to copy existing stream IDs, both the existing and new stream IDs
remain valid connections.

108 1058=70

()

®

)




10S_$TRUNCATE

I0S_$TRUNCATE

Deletes the contents of an object following the current stream marker.

FORMAT
I0S_$TRUNCATE (stream-id, status)

INPUT PARAMETERS

stream-id
Number of a stream on which the object is open, in I0OS__$ID __ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

I0S_ $TRUNCATE decreases the value of the object’s length attribute to match the
stream marker. (Writing data to a stream that lengthens the object implicitly increases this
attribute’s value.) This call sets the stream marker to the end of the object (EOF),
effectively deleting any data in the object past the stream marker. If the stream position is

already at EOF, IOS_ $TRUNCATE has no effect.

Truncating an object does not close the stream.

105=71 108



10S ERRORS

"ERRORS

I0S__$ALREADY_ EXISTS

Object already exists; detected by IOS_ $CREATE with I0S_ $NO _ PREXIST
option.

10S_$BAD _CHAR_SEEK

Attempted character seek before start of current (variable-length) record.

I0S_$BAD COUNT _FIELD IN_FILE

Count field for current record is wrong.

IOS_$BAD _FILE_HDR

Wrong stream file header.

I0S_$BAD _ LOCATION

Bad location parameter on I0S__$CREATE call..

IOS_$BAD_ OPEN_ XP

OPEN _ XP must reference a stream that is already open in this process.

I0S__$BAD _ SHARED __ CURSOR _ REFCNT

Reference count on a shared object cursor went below zero.

I0S_$BOF _ERR

Attempted seek beyond beginning of object (BOF).

I0S_$BUFFER_TOO _ BIG

Buffer size too large on IOS_ $GET or IOS_ $LOCATE call.

10S_$BUFFER _TOO _SMALL

Buffer too small on I0S_$GET or IOS_$LOCATE call, warning.

IOS_$CANT _ CHANGE _TYPE

Cannot change the type as requested, detected by IOS_$CREATE.

JOS_$CANT_DELETE _OLD _NAME

Added new name, but cannot delete old name.

I0S _ $CANT __INITIALIZE

Cannot initialize an object of this type.

I0S_$CANT _SET_ ADVISORY__LOCK

Advisory lock already set on this object.

I0S_ $CONCURRENCY _ VIOLATION

Requested access violates concurrency constraints, object is in use.

I0S _$DEVICE . MUST _ BE_ LOCAL

Cannot open stream to remote device.

I0S_$DIR_NOT _FOUND

Couldn’t find directory in pathname on I0S__$CREATE.

I0S_$END _OF _FILE

End of file.

I0S_$FILE_ NOT _EMPTY

108

Object not empty.

108-72




O

10S ERRORS

I0S_$FLAG _NOT_SUPPORTED
Flag not supported for this object type.

I0S_$FROM_ID_NOT_OPEN
Stream ID to switch not open on I0S_ $SWITCH.

I0S_$FULL_ REC_UNAVAIL ‘
I0S_$GET or IOS__ $LOCATE requested a full record, but only part of the record
was available. The call returns the part that is available along with this warning that
there is still more room in the buffer.

I0S_$GET _ CONDITIONAL _ FAILED
Cannot read any data because the stream is empty; detected by IOS__$COND _ OPT
option. -

IOS_$ID_ OOR
Stream ID is out-of-range or invalid.

I0S _$ILLEGAL _NAME _ REDEFINE
Attempted name change would require object to be moved, detected by
I0S_$CHANGE _ PATH_NAME.

I0S_$ILLEGAL _ OBJ_ TYPE
Cannot open a stream for this type of object. “

10S_ $ILLEGAL _OPERATION

Operation illegal on named stream.

I0S_$ILLEGAL _PAD_ CREATE_TYPE
Cannot perform this operation on a pad type.

I0S_$ILLEGAL _PARAM__COMB
Illegal parameter combination for this operation.

10S _$ILLEGAL_W_VAR__LGTH_RECS
Operation illegal with variable-length records.

10S_$INQ_ONLY_ERROR

Can only open this operation for inquiries only.

I0S_$INSUFFICIENT _ RIGHTS
Insufficient rights for requested access to object.

IOS _$INSUFF_ MEMORY
Not enough address space.

I0S_$INTERNAL _FATAL _ERR
Internal fatal error on table re-verify operation.

10S_$INTERNAL MM _ERR

Internal fatal error in stream memory management (windowing).

IOS _$INVALID _DATA
Cannot write this data to object.

I0S_$NAME _NOT_FOUND
Name not found.

I0S_$NAME _REQD
Must specify name on I0S__$OPEN.

108=-73 108



10S ERRORS

I0S_$NEED_MOVE_MODE
IOS _ $LOCATE operation refused, try I0S__$GET.

I0S_$NEVER_ CLOSED
System (or process) crash prevented complete close of object.

I0S _$NO__ADVISORY _LOCK _SET
No advisory lock to unlock.

JOS _$NO_ AVAIL__ TARGET
No available target stream to switch to on I0S__ $SWITCH.

I0S _$NO_MORE_ STREAMS
No more available stream IDs.

I0S_$NO_RIGHTS
No rights to access object.

I0S_$NO_TABLE _SPACE

Internal error.

I0S_$NOT_A_ DIRECTORY
Name specified is not a directory detected by IOS_$GET _DIR or _ $SET_DIR.

I0S_$NOT_AT_REC_BNDRY
Cannot perform operation with short key -- must be at a record boundary.

I0S_$NOT_ OPEN

Operation attempted on unopened stream.

I0S_$OBJ_DELETED
Object has been deleted while open on this stream.

I0S _$OBJECT _NOT _FOUND
Object associated with this name not found even though name exists.

I0S_$OBJECT _READ _ ONLY
Cannot open this object for writing.

IOS_$OUT _OF _SHARED _ CURSORS
Internal error.

[0S _$PART_REC_ WARN _
Partial record at EOF on IOS_ $CLOSE -- warning only.

IOS _$PERM _FILE _NEEDS_NAME
Only temporary objects can be unnamed, you must name a permanent object.

IOS_$PUT_BAD_REC_LEN
Attempted an IOS_$PUT on a record of the wrong length.

I0S_ $PUT _ CONDITIONAL _ FAILED

Cannot write any data because the stream is full, detected by I0S_ $COND _ OPT
option.

I0S_$READ _ONLY ERR

Attempted to write to read-only stream.

I0S _ $RESOURCE _ LOCK _ERR
Unable to lock resources required to process request.

J(O}] 105-74




10S ERRORS

I0S _$SIO_NOT_LOCAL v
No stream found in conditional put, or cannot open a remote SIO line.

10S _ $SOMETHING _ FAILED
Cannot locate attribute set inquiring about manager, connection or object attributes;
or cannot change the connection or object attribute requested.

I0S_$TARGET _ INUSE
Target ID already in use on IOS_ $SWITCH, no available stream IDs.

I0S_$XP_BUF_TOO_SMALL
Buffer supplied to I0S_ $EXPORT too small.

I0S=75 10S



)

()




S

IPC

This section describes the data types, the call syntax, and the error codes for the IPC
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

IPC-1 _ IPC



IPC DATA TYPES

DATA TYPES

IPC_$DATA_T

IPC_$HDR_INFO_T

IPC__$SOCKET_HANDLE_T

NAME_$PNAME_ T

STATUS _$T
byte:
offset
0:
0:
1:
2:
IPC

An array of up to 1024 characters. The data
portion of an IPC datagram.

An array of up to 128 characters. The header
portion of an IPC datagram.

An array of 20 characters. A handle for an IPC
socket.

An array of up to 256 characters. A DOMAIN
pathname.

A status code. The diagram below illustrates the
STATUS _$T data type:

field name
31 0
integer all
or
31
_l fail
24
subsys
16
modc
0
integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc

The module that encountered the error (bits 16 -
23).

IPC=2

=

)



O

IPC DATA TYPES

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

IPC-3 IPC



IPC_$CLOSE

IPC__$CLOSE
Closes an IPC socket.

FORMAT

IPC_$CLOSE (pathname, length, status)

INPUT PARAMETERS

pathname
Pathname for the file where the socket handle is stored, in NAME_ $PNAME _ T format.
This is an array of up to 256 characters. Specify a file that was created by a previous

IPC_$CREATE call.
length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC

Data Types section for more information.
USAGE
IPC_$CLOSE closes a socket and removes its handle from the file where the handle is

stored. IPC_$CLOSE does not, however, delete the socket handle file. To delete this file,
use IPC__$DELETE.

IPC IPC=4

-
/7



A

O

IPC_$CREATE

IPC_ $CREATE

Creates a file where an IPC socket handle can be stored.

FORMAT

IPC_$CREATE (pathname, length, status)

INPUT PARAMETERS

pathname
Pathname for a file where a socket handle can be stored, in NAME _ $PNAME__ T format.
This is an array of up to 256 characters.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$CREATE creates a special type of DOMAIN system object that is used only for
socket handles. When you open a socket, the system obtains a handle for the socket and

stores this handle in the file that you specify. You can open a socket only if you have
previously used IPC__$CREATE to create a file for the handle.

IPC=5 IPC



IPC__$DELETE

IPC_ $DELETE

Deletes a file that was used to store an IPC socket handle.

FORMAT

IPC_$DELETE (pathname, length, status)

INPUT PARAMETERS

pathname

Pathname for the file where the socket handle was stored, in NAME _ $PNAME _ T format.
This is an array of up to 256 characters.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$DELETE deletes a file that the system used to store a handle for an open socket.
You must call IPC__$CLOSE to close the socket before you can delete the file containing
the socket’s handle:

IPC PC-6



IPC_$GET_EC

IPC_$GET _EC

Gets a pointer to the eventcount associated with an IPC socket.

FORMAT

IPC_$GET_EC (handle, ec-ptr, status)

INPUT PARAMETERS

handle
Handle for the socket whose eventcount you are getting, in IPC__ $SOCKET _ HANDLE _ T
format. This is an array of 20 characters.

OUTPUT PARAMETERS

ec-ptr
Pointer to the eventcount, in EC2__ $PTR _ T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$GET _EC gets a pointer to the eventcount associated with an IPC socket. You can
use this eventcount to wait for incoming datagrams. Use EC2 system calls to read the
eventcount value and wait for datagrams.

IPC_$GET _EC is useful when you want to wait for messages arriving in more than one
socket. To wait for messages from only one socket, use IPC__$WAIT or IPC__$SAR.

IPC~7 IPC



IPC_ $OPEN

IPC_$OPEN

Opens an available IPC socket, obtains its handle, and places the handle in a file.

FORMAT

IPC_$OPEN (pathname, length, depth, handle, status)

INPUT PARAMETERS

pathname
Pathname for the file in which to store the handle, in NAME _$PNAME _ T format. This
is an array of up to 256 characters. Specify a file that you have created with a previous
IPC__$CREATE call.

length
Length of the pathname. This is a 2-byte integer.

depth
Depth of the socket. The depth defines how many datagrams a socket can hold. Allowable
values are one through four.

OUTPUT PARAMETERS

handle |
Handle for the open socket, in IPC__$SOCKET _ HANDLE __ T format. This is an array of
20 characters.

status .
. Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$OPEN opens an available IPC socket on your program’s local node. In addition,
IPC_$OPEN places the socket’s handle in the file you specify. After opening a socket, you
can receive datagrams in it. A program must use your socket’s handle to send you a
message.

User programs running on a node can open a maximum of eight sockets on that node. Only
one program at a time can open any socket.

You must use IPC_ $CREATE to create a file for the socket handle before you can open a
socket.

IPC IPC=-8



IPC_$RCV

IPC_$RCV

Gets a datagram that has been received in an IPC socket. This call copies the datagram to
the buffers that you specify.

FORMAT

IPC_$RCV (handle, hdr-buflen, data-buflen, from-handle,
hdr-buf, hdr-length, data-buf, data-length, status)

INPUT PARAMETERS

handle
Handle for the socket that received the datagram, in IPC__$SOCKET _HANDLE _T
format. This is an array of 20 characters.

hdr-buflen
Length of the buffer where the datagram header will be copied. This is a 2-byte integer.
This value defines the maximum number of header bytes that [PC_$RCV will get. An IPC
datagram can contain up to 128 header bytes. Specify a length that can accommodate the
longest header you expect to receive.

data-buflen
Length of the buffer where the data portion of the datagram will be copied. Thisis a
2-byte integer. This value defines the maximum number of data bytes that IPC_ $RCV
will get. The data portion of an IPC datagram can contain up to 1024 bytes. Specify a
length that can accommodate the longest data you expect to receive.

OUTPUT PARAMETERS

from-handle
Handle for the socket where the datagram originated, in IPC__$SOCKET _HANDLE__ T
format. This is an array of 20 characters. Use this handle to send a reply to the datagram
you are currently getting.

hdr-buf
Buffer where the datagram header is copied. This buffer can contain up to 128 bytes.

hdr-~length
Length, in bytes, of the header that is copied. This is a 2-byte integer.

data-buf
Buffer where the data portion of the datagram is copied. This buffer can contain up to 1024
bytes.

data-length
Length, in bytes, of the data that is copied. This is a 2-byte integer.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

IPC=9 IPC



IPC_$RCV

IPC

IPC_$RCV gets datagrams that have been received in a socket and copies them to your
buffers. This call returns only the number of header and data bytes that you specify, even
if the actual datagram (in the socket) contains more bytes.

IPC _$RCV gets datagrams in the order in which they arrive in the socket queue. If the
socket queue is full when an incoming datagram arrives, the datagram is lost. You can use

IPC_3$RCV to get datagrams only from a socket that you have previously opened with
IPC_$OPEN.

Usually, you wait for a datagram to arrive in a socket, and then call IPC__$RCV to get the
datagram. If you call IPC__$RCV when the socket is empty, the call returns immediately
with the status IPC__ $SOCKET _ EMPTY.

IPC-10




O

IPC__$RESOLVE

IPC_ $RESOLVE

Obtain the handle for an open socket.

FORMAT

IPC_$RESOLVE (pathname, length, handle, status)

INPUT PARAMETERS

pathname
Pathname for the file containing the socket handle, in NAME _$PNAME _ T format. This
is an array of up to 256 characters. Specify a file that was created by a previous
IPC_$CREATE call.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

handle
Handle for the socket, in IPC_$SOCKET _HANDLE _ T format. This is an array of 20
characters.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$RESOLVE returns the handle associated with an open socket. Use this call if you
know a socket’s pathname, but you need the socket handle to send a datagram.

IPC_$RESOLVE returns the error IPC_ $SOCKET _NOT _ OPEN if the handle file does
not contain the handle for an open socket.

IPC-11 IPC



IPC_$SAR

IPC_$SAR

Performs a single send/await-reply operation. This call sends a datagram, waits a specified
amount of time for a reply, and copies the reply to the buffers you specify.

FORMAT

IPC_$SAR (retry-time, to-handle, in-hdr-buf, in-hdr-length, in-data-buf,
in-data~length, out-hdr-buflen, out-data-buflen, out-hdr-buf,
out-hdr-length, out-data-buf, out-data-length, status)

INPUT PARAMETERS

retry-time
Number of quarter-seconds to wait for a reply. This is a 2-byte integer.

to~-handle
Handle for the destination socket, in IPC_$SOCKET _HANDLE _ T format. This is an
array of 20 characters. The destination socket is where you are sending the datagram.

in-hdr-buf

Buffer that contains the header for the datagram you are sending. This buffer can contain
up to 128 bytes.

in-hdr-length
Length, in bytes, of the header you are sending. This is a 2-byte integer.

in-data=buf ‘
Buffer that contains the data portion of the datagram you are sending. This buffer can
contain up to 1024 bytes.

in-data-length
Length, in bytes, of the data you are sending. This is a 2-byte integer.

out-hdr-buflen
Length of the buffer where the reply datagram header will be copied. This is a 2-byte
integer. This value defines the maximum number of header bytes that IPC_ $SAR will get
from the reply datagram. The reply can contain up to 128 header bytes. Specify a length
that can accommodate the longest header you expect to receive.

out-data-buflen
Length of the buffer where the data portion of the reply datagram will be copied. This is a
2-byte integer. This value defines the maximum number of data bytes that IPC_$SAR
will get from the reply datagram. The data portion of a reply can contain up to 1024
bytes. Specify a length that can accommodate the longest data you expect to receive.

OUTPUT PARAMETERS
out~hdr-buf
Buffer where the header for the reply datagram is copied. This buffer can contain up to

128 bytes.

out-hdr-length
Length, in bytes, of the header that is copied. This is a 2-byte integer.

IPC IPC-12

.

)



IPC_$SAR

out-data-buf
Buffer where the data portion of the reply datagram is copied. This buffer can contain up
to 1024 bytes.

out-data-length
Length, in bytes, of the data that is copied. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

Use IPC_$SAR to send a datagram to another process and wait a specified time for a
reply. If the reply datagram does not arrive within the specified time, IPC__$SAR returns
the status code IPC__ $TIMEOUT.

IPC_$SAR returns only the number of header and data bytes that you specify, even if the
actual datagram (in the socket) contains more bytes.

When you send a datagram that contains less than 128 bytes of information, you can place

all the information in the header buffer. Then specify the data length as zero. It takes less
time to send a datagram that contains only a header.

IPC-13 PC



IPC__$SEND

IPC_$SEND

Sends a datagram to an IPC socket.

FORMAT

IPC_$SEND (to-handle, reply-handle, hdr-buf, hdr-length,
data-buf, data-length, status)

INPUT PARAMETERS

to-handle
Handle for the destination socket, in IPC__$SOCKET _HANDLE _ T format. This is an
array of 20 characters. The destination socket is where you are sending the datagram.

reply-handle
Handle for the reply socket, in IPC__$SOCKET _HANDLE __ T format. This is an array of
20 characters. The reply socket is where you can receive a reply.

hdr-buf
Buffer that contains the header for the datagram you are sending. This buffer can contain
up to 128 bytes.

hdr-length
Length, in bytes, of the datagram header. This is a 2-byte integer.

data=-buf
Buffer that contains the data portion of the datagram you are sending. This buffer can
contain up to 1024 bytes.

data~length
Length, in bytes, of the data portion of the datagram. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$SEND sends a datagram to the socket that you specify. To obtain a socket handle
from a pathname, use IPC__ $RESOLVE.

Even if IPC__$SEND completes successfully, there is no guarantee that the datagram will
be received by the process you are sending it to. The programs using IPC datagrams are

responsible for verifying that datagrams are successfully received. Note that you can use

IPC_ $SAR to perform a send/await reply operation with a single call.

When you send a datagram that contains less than 128 bytes of information, you can place

all the information in the header buffer. Then specify the data length as zero. It takes less
time to send a datagram that contains only a header.

IPC IPC~14



C

IPC_$WAIT

IPC_ $WAIT

Waits for a specified amount of time to receive a datagram in an IPC socket.

FORMAT

IPC_$WAIT (handle, wait-time, status)

INPUT PARAMETERS

handle
Handle for the socket that you are waiting to receive data in, in
IPC_$SOCKET _HANDLE _ T format. This is an array of 20 characters.

wait-time
Number of quarter-seconds to wait for a reply. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC_$WAIT waits for a specified amount of time to receive a datagram in a socket. If a
datagram is received before the time elapses, the call returns with the status
STATUS _$OK. To get the datagram, use IPC_$RCV.

If IPC_$WAIT times out before a datagram is received, the call returns with the status
IPC_$TIMEOUT. If you call IPC__$WAIT and there is a datagram already in the socket,
the call returns immediately with a success status.

Note that you can use IPC__$SAR to perform a send/await reply operation with a single
call. Also, if you want to wait for datagrams in more than one socket, use
IPC_$GET _EC to get pointers to the appropriate eventcounts. Then use eventcount calls
(EC2) to wait for datagrams.

IPC-15 IPC



IPC ERRORS

ERRORS

IPC__$0K
: Successful completion.

IPC_ $NOMORE _ SOCKETS
All the sockets are in use.

IPC_$NOT_IPC_OBJ
The specified pathname does not belong to an IPC object.

IPC_$NOT_OWNER
You did not open the socket so you cannot close it.

IPC_$RANGE_ERROR
Supplied socket number is outside legal range.

IPC_$SOCKET _ ALREADY _ OPEN
Specified socket is already open.

IPC_$SOCKET _EMPTY
There are no datagrams in the socket.

IPC_$SOCKET _NOT_ OPEN

The specified socket is not open.

IPC_$TIMEOUT
The call timed out before a datagram was received.

IPC_$TOO__DEEP
Supplied socket depth is too big.

IPC_$TOO_MUCH _DATA
The data is too long to send.

STATUS _$O0K
Successful completion.

IPC IPC=16

2



O

MBX

This section describes the data types, the call syntax, and the error codes for the MBX
programming calls. Refer to the Introduction at the beginning of this manual for a descrlptlon of
data-type diagrams and call syntax format.

MBX-1 MBX



MBX DATA TYPES

CONSTANTS

MBX_ $CHN_ MAX

MBX_ $FIL_ MAX
MBX_ $MIN_CHN_SIZE
MBX_ $MSG_ MAX

MBX_ $MSG_ TN

MBX_ $MSG_ WMAX

MBX__$MSG_ WTN

MBX_$REC_DATA_MAX

MBX_$REC_ MSG_ MAX

MBX_ $SERV__MSG_HDR_LEN

MBX_ $SERV_ MSG_ MAX

MBX_ $VERSION

DATA TYPES

EC2_$PTR_T

MBX_ $CHAN _NUM_T

255

257*32768
64
1024

1023

512

511

32760

32766

1030

Maximum number of channels that can be open to
a mailbox.

Maximum mailbox size.
The minimum size of a channel buffer.
A mailbox message that is 1024 bytes long.

For use when declaring a zero-based array that is

MBX_$MSG_ MAX bytes long.
A mailbox message that is 512 words long.

For use when declaring a zero-based array that is
MBX_$MSG _ WMAX words long.

The maximum length of the data portion of a
mailbox message.

The maximum length of a server message, including

the header and data portions.

Length of the mailbox header for a server message.

A server message that contains 1024 bytes of data
plus a 6-byte header.

Current version of MBX.

A 4-byte integer. A pointer to an eventcount.

A channel number. Possible values are integers
from 0 through MBX _$CHN_ MAX.

MBX=2



()

O

MBX_$CHAN_SET_ T

MBX_$EC_KEY_T

MBX_$MTYPE_T

MBX_$NAME_T

MBX DATA TYPES

A set of channel numbers of type
MBX__$CHAN_NUM __T. The following Pascal
example specifies channels 1, 4, and 7:

VAR
chan_set : mbx_$chan_set_t

chan set := [ 1, 4, 7]

In a FORTRAN program, declare an 8-element
array of 4-byte integers to indicate a channel set.
Use the array as a mask in which the bits represent
mailbox channels.

A 2-byte integer. A mailbox eventcount. One of
the following pre-defined values:

MBX_$GETREC_EC_KEY
An eventcount that advances when the
mailbox contains messages for you to get.

MBX_$PUTREC_EC_KEY

An eventcount that advances when enough
room exists in the channel to hold the last
message you unsuccessfully tried to put there.

A 2-byte integer. A message type. One of the
following pre-defined values:

MBX_ $ACCEPT_OPEN__MT
A response from a server to accept a client’s
open request.

MBX_$CHANNEL OPEN_MT
A request from a client to open a channel to a
mailbox.

MBX_$DATA_MT
A data transmission.

MBX_ $DATA_PARTIAL MT
A partial data transmission.

MBX_$EOF _MT
An end of transmission notice.

MBX_$REJECT _OPEN_ MT
A response from a server to reject a client’s

open request.

An array of up to 256 characters. A mailbox name.

MBX=3 MBX



MBX DATA TYPES

MBX_$MSG_HDR_T A mailbox message header. The diagram below

illustrates the MBX _$MSG _HDR __ T data type:

predefined byte:
type offset

0: integer

mbx_$mtype_t 2: integer

4: integer

field name

cnt
mt

chan

Field Description:

cnt

The total number of bytes in the message,
including the header.

mt

A value representing a message type. This value

is one of the predefined values of type

MBX_$MTYPE _T.

chan

The channel of the client that sent the message,

or that should receive the message.

MBX MBX=4

N

l/,
!

&



MBX_ $SERVER_MSG T

predefined
type

mbx_$mtype_t

MBX DATA TYPES

A server message with up to 1024 data bytes. The
diagram below illustrates the
MBX_ $SERVER _ MSG__ T data type:

byte:
offset field name
0: integer cnt
2: integer mt
integer chan
data
up to
§ 1024
bytes

Field Description:

cnt
The total number of bytes in the message,
including the header.

mt

A value representing a message type. This value
is one of the predefined values of type
MBX_$MTYPE_T.

chan
The channel of the client that sent the message,
or that should receive the message.

data
The data portion of the message. This field can
contain up to 1024 bytes.

MBX=5 MBX



MBX DATA TYPES

STATUS _$T

byte:
offset

0:

A status code. The diagram below illustrates the

STATUS _$T data type:

)

field name
31 0
integer all
or
31
—l fail
24
subsys
16
modc
0
integer code

Field Description:

all
All 32 bits in the status code.

fail s
The fail bit. If this bit is set, the error was not L

within the scope of the module invoked, but ~
occurred within a lower-level module (bit 31).

subsys

The subsystem that encountered the error (bits

24 - 30).

modc -
The module that encountered the error (bits 16 - <
23). B
code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

MBX=6



MBX_ $CLIENT_ WINDOW

MBX_ $CLIENT _WINDOW

Returns the buffer size for the mailbox that a client is using.

FORMAT

size = MBX_$CLIENT WINDOW (handle, status)

RETURN VALUE

size
Buffer size for the mailbox. This is a 4-byte integer.

This value defines a2 window size when a client sends messages to a remote server. That is,
the client cannot send messages that are larger than the mailbox’s buffer.

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX __ $CREATE_ SERVER.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

When a client sends a message, the message is stored in a channel buffer until the server
gets the message. The buffer size defines the maximum number of message bytes that the
channel can hold at one time.

A client can use MBX _ $CLIENT _ WINDOW to get the size of the channel buffer. To get
the size, MBX _ $CLIENT _ WINDOW queries the MBX _HELPER on the server’s node.
Note that MBX _ $CLIENT _ WINDOW returns the actual buffer size, not the number of
unused bytes in the buffer.

MBX _$CLIENT _ WINDOW only works correctly when the server you are inquiring about
is on a node with SR9 or later software. If you call MBX _$CLIENT _WINDOW and the
server is on a node with pre-SR9 software, MBX _$CLIENT _ WINDOW returns the value
1158. This value is returned, even if the mailbox’s actual buffer size is smaller. Therefore,
this call does not provide a reliable way to determine the window size when sending
messages to a server that is running on a node with pre-SR9 software.

MBX _ $CLIENT _ WINDOW is for use only by mailbox clients. A server should use
MBX__$SERVER _WINDOW.

MBX=7 MBX



MBX__ $CLOSE

MBX_ $CLOSE

Closes a mailbox or a channel.

FORMAT
MBX_ $CLOSE (handle, status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV__PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE__ SERVER or MBX _ $OPEN.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

Both clients and servers can use MBX _$CLOSE. When called from a client,
MBX __$CLOSE tells the server that the client is no longer using the channel. When called
from a server, MBX __$CLOSE closes the mailbox.

After a client calls MBX _ $CLOSE, the server should call MBX _$DEALLOCATE to
deallocate the channel and free it for use by other clients. No other client can use the
channel until it has been deallocated by the server.

If a server closes a mailbox while there are still active clients, the clients get errors on
subsequent attempts to use the mailbox.

MBX=8



O

O

MBX_$COND _GET _REC_ CHAN

MBX_ $COND_GET_REC__ CHAN

Attempts to get a mailbox message from a specified channel.

FORMAT

MBX_$COND_GET_REC_CHAN (handle, channel, bufptr, buflen, retptr, retlen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
you obtained from MBX__$CREATE _ SERVER.

channel

Channel to read from. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls MBX__ $OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen

The number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will
never return more than 32766 bytes. For a client, MBX will never return more than 32760
bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen

Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_$COND_ GET__REC_ CHAN can get as many bytes as you specify in buflen. If
the message is less than or equal to buflen, then the call gets the entire message and retlen
specifies the message length. If the message is greater than buflen, then the call gets the
number of bytes specified in buflen. If this occurs, then retlen contains a negative value,
the absolute value of which is the number of bytes remaining in the message. Get the
remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=-9 ‘MBX



MBX_ $COND_ GET _REC_ CHAN

USAGE

MBX_ $COND _ GET _REC__ CHAN requests a message from a specified channel. If there
is no message, the call returns immediately with the status MBX__$CHANNEL _EMPTY.
You can use an eventcount to tell when the status of the mailbox has changed. You get a
mailbox eventcount with MBX _$GET _ EC.

Only a server can use MBX _$COND _ GET_REC__ CHAN. To perform a conditional get
operation from a client, use MBX_$GET _ CONDITIONAL.

MBX MBX=10

./< 4



MBX_ $COND_GET _REC_ CHAN_SET

MBX_$COND_GET_REC_ CHAN_SET

Q Attempts to get a mailbox record from a set of clients.
FORMAT
MBX_$COND_GET_REC_CHAN_SET (handle, chan-set, bufptr, buflen, retptr, retlen,
status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV__PTR format. This is a 4-byte integer. Use the handle
returned by MBX _ $CREATE _ SERVER.

chan-set
Set of channels to read from, in MBX_ $CHAN _SET _ T format. This is an 8-element
O array of 4-byte integers. See the MBX Data Types section for more information.

The mailbox manager assigns a channel number to a client when the client calls
MBX _$OPEN. The channel number can range from 1 through MBX _$CHN_MAX.

bufptr
Pointer to a data buffer whe\re the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
Q copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
&-) Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_$COND_GET_REC_CHAN_SET can get as many bytes as you specify in
buflen. If the message is less than or equal to buflen, then the call gets the entire message
and retlen specifies the message length. If the message is greater than buflen, then the call
gets the number of bytes specified in buflen. If this occurs, then retlen contains a negative
value, the absolute value of which is the number of bytes remaining in the message. Get
the remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Q Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=-11 MBX



MBX_ $COND_GET_REC_ CHAN_SET

USAGE

MBX

MBX_$COND _ GET_REC_ CHAN__SET requests a message from a specified set of
channels. If there is no message, the call returns immediately with the status

MBX_ $CHANNEL_EMPTY. You can use an eventcount to tell when the status of the
mailbox has changed. You get a mailbox eventcount with MBX _$GET _EC.

Only a mailbox server can use this call. To perform a conditional get operation from a
client, use MBX_ $GET_ CONDITIONAL.

MBX=12

-



O

MBX__$CREATE__SERVER

MBX_ $CREATE_ SERVER

Creates and opens a server’s mailbox.

FORMAT
MBX_$CREATE_SERVER (name, namelen, bufsize, maxchan, handle, status)

INPUT PARAMETERS

name '
Name of the mailbox, in MBX_$NAME T format. This is an array of up to 256
characters. Specify the name as a pathname to the mailbox file. If you use the name of a
file that already exists, this call deletes the contents of the file. If the file already exists and
it is in use, then the call returns an error.

namelen
Number of characters in the name. This is a 2-byte integer.

bufsize
Number of message bytes that the server and client can each store in a channel. Thisis a
2-byte integer. You must specify a buffer size of at least MBX_ $MIN_ CHN _ SIZE (64
bytes). This allocates 128 bytes for each channel -- 64 bytes apiece for the server and the
client buffers. The maximum buffer size is 32767.

The buffer size should be large enough to store the largest message you plan to send from a
server or a client. Note that the maximum message length is MBX _$REC_MSG_MAX
(32767), which includes 32761 data bytes plus a 6-byte header. If you specify a buffer size
of less than MBX _$REC_MSG _MAX, you impose a lower limit on the total length of
messages that pass through the mailbox.

Note that if you specify a buffer size that is greater than 1158, and the server is
communicating with clients on remote nodes, the length of the transmitted messages may be
limited by the MBX HELPER on the client node. When a server puts a message into the
mailbox and the message is intended for a remote client, the message passes through the
system mailbox maintained by the remote node’s MBX HELPER. By default, this
mailbox has a buffer size of 1158 bytes. To allow the remote node’s mailbox to handle
larger messages, use the -DATASIZE option to specify a larger buffer size when you start
the MBX _HELPER. Specify a value that is at least as large as the largest message the
server will send.

maxchan
Maximum number of channels that can be simultaneously open to the mailbox. This is a
2-byte integer. You can allow up to MBX__ $CHN_ MAX (255) channels.

OUTPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Subsequent
calls use this handle to send and receive messages.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=13 MBX



MBX_ $CREATE__SERVER

USAGE

A server-uses MBX__$CREATE _ SERVER to create a mailbox. Once the mailbox is open,
clients use MBX __ $OPEN to open communications channels to the mailbox.

In a secure network, a mailbox gets an access control list (ACL) that is determined by the
ACL of the directory in which the mailbox is created. If servers and clients on different

nodes use the mailbox, be sure that the server’s MBX__HELPER has read and write access
to the mailbox.

\\\\\

MBX MBX~-14



MBX__$DEALLOCATE

MBX_ $DEALLOCATE

Releases a channel for use by another client.

FORMAT
MBX_$DEALLOCATE (handle, channel, status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX_ $CREATE _ SERVER.

channel
Channel to deallocate. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls MBX_ $OPEN.

OUTPUT PARAMETERS

status .
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE
Only a server can call MBX _$DEALLOCATE. A client uses MBX _ $CLOSE to indicate

the end of transmission over a channel. However, the server must deallocate the channel
before another client can use it.

A server can deallocate a channel while a client is still using it; this both closes and
deallocates the channel. The next time the client tries to use the channel, the client receives
the error MBX _ $CHANNEL _ NOT _ OPEN.

MBX=15 MBX



MBX_ $GET__ CONDITIONAL

MBX__ $GET _ CONDITIONAL

Attempts to get a mailbox message. \
FORMAT
MBX_$GET_CONDITIONAL (handle, bufptr, buflen, retptr, retlen, status)
INPUT PARAMETERS
handle
Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX__$CREATE_ SERVER or MBX _ $OPEN.
bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.
Your program must allocate a data buffer, although the mailbox manager does not always (\
copy messages to this buffer. Use the output parameter retptr to reference the message. .
buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.
OUTPUT PARAMETERS
retptr f \
Pointer to the buffer where the message is copied. This is a 4-byte integer. ~

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_$GET_ CONDITIONAL can get as many bytes as you specify in buflen. If the

message is less than or equal to buflen, then the call gets the entire message and retlen

specifies the message length. If the message is greater than buflen, then the call gets the f ~
number of bytes specified in buflen. If this occurs, then retlen contains a negative value, .
the absolute value of which is the number of bytes remaining in the message. Get the

remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX MBX=-16



O

)

N

MBX_ $GET_ CONDITIONAL

USAGE

MBX _$GET_ CONDITIONAL gets a message if one is waiting. Otherwise, the call
returns immediately with a completion status of MBX _$CHANNEL _EMPTY. You can
use an eventcount to tell when the status of the mailbox has changed. You get a mailbox
eventcount with MBX _$GET _EC.

Both servers and clients can use MBX__ $GET _ CONDITIONAL. When a server calls
MBX_$GET _ CONDITIONAL, the mailbox manager uses a scheduling algorithm to
determine the channels to search for the next message. This algorithm guarantees fair
service to each open channel.

MBX=17 MBX



MBX_$GET _EC

MBX_ $GET_EC

Gets a pointer to an eventcount for a mailbox event.

FORMAT

MBX_$GET_EC (mbx-handle, mbx-key, eventcount-pointer, status)

INPUT PARAMETERS

mbx=-handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX__$CREATE _ SERVER or MBX _ $OPEN.

mbx-key

Type of eventcount to get a pointer to, in MBX _$EC__KEY _ T format. This is a 2-byte
integer. Specify one of these predefined values:

MBX _$GETREC_EC_KEY
An eventcount that advances when the mailbox may contain
messages for you to get. For a server, this eventcount may
advance whenever there is anything to get from any open
channel.

MBX_$PUTREC__EC_KEY
An eventcount that advances when there may be enough room
in the channel to hold the last message you unsuccessfully tried
to put there. A mailbox server sees only one
MBX _$PUTREC_EC__KEY eventcount for the entire
mailbox. If puts fail with
MBX_ $NO__ROOM__IN_ CHANNEL on two channels of the
same mailbox, the event’s completion simply says that at least
one channel may now take the message. One or both channels
may now be capable of taking the respective message.

OUTPUT PARAMETERS

eventcount-pointer
A pointer to an eventcount, in EC2__$PTR __ T format. This is a 4-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

After you use MBX__$GET _EC to get a mailbox eventcount, use EC2 calls to read
eventcount values and wait for events.

MBX MBX-18

e

!



0

MBX_ $GET _REC

MBX_$GET _REC

Gets a message from a mailbox.

FORMAT

MBX_$GET_REC (handle, bufptr, buflen, retptr, retlen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE _ SERVER or MBX _$OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX _$GET _REQC can get as many bytes as you specify in buflen. If the message is less
than or equal to buflen, then the call gets the entire message and retlen specifies the
message length. If the message is greater than buflen, then the call gets the number of
bytes specified in buflen. If this occurs, then retlen contains a negative value, the absolute
value of which is the number of bytes remaining in the message. Get the remaining data
with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=19 MBX



MBX_$GET _REC

USAGE

MBX _$GET _REC gets a mailbox message. If there is no message in the mailbox, the call
waits for one.

Both servers and clients can use MBX_$GET __REC. When a server calls
MBX__$GET _REC, the mailbox manager uses a scheduling algorithm to determine the
channel to search for the next message. This algorithm guarantees fair service to each open

7

channel.

MBX=20

-

o

I'/fv



MBX_$GET_REC_ CHAN

MBX_$GET _REC_CHAN

Gets a mailbox message from a specified channel.

FORMAT

MBX_$GET_REC_CHAN (handle, channel, bufptr, buflen, retptr, retlen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE _ SERVER.

channel

Channel to read from. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls MBX _ $OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX _$GET_REC__ CHAN can get as many bytes as you specify in buflen. If the message
is less than or equal to buflen, then the call gets the entire message and retlen specifies the
message length. If the message is greater than buflen, then the call gets the number of
bytes specified in buflen. If this occurs, then retlen contains a negative value, the absolute
value of which is the number of bytes remaining in the message. Get the remaining data
with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=-21 MBX



MBX_ $GET _REC_ CHAN

USAGE
MBX_ $GET_REC_ CHAN requests a message from the specified mailbox and channel.

If there is no message, the call waits for one. Only a mailbox server can use this call. To
perform a get operation from a client, use MBX _$GET _ REC.

MBX MBX=22

&

-

™



O

MBX_$GET _REC_ CHAN _SET

MBX_ $GET _REC_ CHAN _SET

Gets a mailbox message from a specified set of channels.

FORMAT

MBX $GET_REC_CHAN_SET (handle, chan-set, bufptr, buflen, retptr, retlen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE _ SERVER.

chan-set

Set of channels to read from, in MBX _$CHAN _SET __ T format. This is an 8-element
array of 4-byte integers. See the MBX Data Types section for more information.

The mailbox manager assigns a channel number to a client when the client calls
MBX__$OPEN. The channel number can range from 1 through MBX __$CHN_ MAX.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen

Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_$GET_REC__CHAN_ SET can get as many bytes as you specify in buflen. If the
message is less than or equal to buflen, then the call gets the entire message and retlen
specifies the message length. If the message is greater than buflen, then the call gets the
number of bytes specified in buflen. If this occurs, then retlen contains a negative value,
the absolute value of which is the number of bytes remaining in the message. Get the
remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX=23 MBX



MBX_$GET_REC_ CHAN_SET

USAGE

MBX_$GET_REC_ CHAN _ SET requests a message from the specified mailbox and set
of channels. If there is no message, the call waits for one. Only a mailbox server can use
this call. To perform a get operation from a client, use MBX _ $GET_ REC.

MBX MBX=24



MBX_ $OPEN

MBX_ $OPEN

Opens a client channel to a mailbox.

FORMAT

MBX_$OPEN (name, namelen, bufptr, buflen, handle, status)

INPUT PARAMETERS

name
Name of the mailbox, in MBX__$NAME __ T format. This is an array of up to 256
characters. Specify the name as a pathname to the mailbox created by the server.

namelen
Number of characters in the name. This is a 2-byte integer.

bufptr
Pointer to a buffer containing data to be sent with the open request. This is a 4-byte
integer. If you are not sending data, specify a nil pointer.

buflen

Number of bytes of data you are sending. This is a 4-byte integer. If you are not sending
data, specify a length of 0.

The maximum amount of data you can send with MBX _ $OPEN is MBX _ $MSG_ MAX
(1024) bytes, even if the mailbox message buffer is larger.

OUTPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Subsequent
calls use this handle to send and receive messages.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX__$OPEN opens a channel from a client to an existing mailbox. Only a client can use
this call.

This call makes the mailbox manager send the server a channel open request. The server
must respond by accepting or rejecting the request. After the server responds,

MBX_ $OPEN returns a status code indicating whether the call was successful. The client
does not see the acceptance or rejection as a message, but as the completion status of the
MBX _$OPEN call. '

MBX=-25 MBX



MBX_ $PUT__CHR

MBX_$PUT _ CHR

™~
Sends a partial message from a client. (

FORMAT

MBX_$PUT_CHR (handle, bufptr, buflen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX _ $OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen (\

Length of the message, in bytes. This is a 4-byte integer. For a client, the buffer can
contain up to 32760 bytes.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information. C

USAGE

MBX _$PUT_ CHR is equivalent to MBX __$PUT _ REC, except that MBX _$PUT_ CHR
informs the server that the message is a partial message. If the mailbox is full, this call
waits until the mailbox has room for the message.

Only a client can call MBX _$PUT_ CHR. A server can send a partial data message by o
using MBX __$PUT_REC or MBX _$PUT_ REC__COND, and specifying a message type {
of MBX _$DATA_PARTIAL _MT. When the client gets such a message, the get call

returns a status of MBX__$PARTIAL _RECORD to the client.

o

MBX MBX=-26



MBX_ $PUT_ CHR_ COND

MBX_ $PUT _CHR__COND

Attempts to send a partial message from a client.

FORMAT

MBX_$PUT_CHR_COND (handle, bufptr, buflen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX __$OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen

Length of the message, in bytes. This is a 4-byte integer. For a client, the buffer can
contain up to 32760 bytes.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX __$PUT_CHR__COND is equivalent to MBX__$PUT_REC__ COND, except that
MBX _$PUT_CHR _ COND informs the server that the message is a partial message.

If the client’s buffer is full, MBX_$PUT__CHR _ COND returns immediately with a
completion status of MBX _$NO__ROOM __IN__CHANNEL. You can use an eventcount

to tell when the status of the mailbox eventcount has changed. You get a mailbox
eventcount with MBX _$GET __EC.

Only a client can call MBX _$PUT_CHR_COND. A server can send a partial data
message by using MBX _$PUT_REC or MBX_$PUT_REC__ COND, and specifying a
message type of MBX _$DATA _PARTIAL_MT. When the client gets such a message,
the get call returns a status of MBX _ $PARTIAL _ RECORD to the client.

MBX=27 MBX



MBX_$PUT_REC

MBX_ $PUT_REC

Puts a record in the mailbox.

FORMAT

MBX_$PUT_REC (handle, bufptr, buflen, status)

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE _SERVER or MBX _ $OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen
Length of the message, in bytes. This is a 4-byte integer. For a server, the message can
contain up to 32766 bytes. For a client, the buffer can contain up to 32760 bytes.

If a server puts a message that is larger than 1158 bytes, and the client is on a remote node,
the client node’s MBX _ HELPER must be able to handle the message. To handle the
message, the client node’s MBX _HELPER must have a queue data size that is at least as
large as the message. Use MBX _ $SERVER _ WINDOW to determine the client node’s
queue data size.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

This call can be used by either servers or clients. Note, however, that servers and clients
have different message formats. A server must include the 6-byte message header when
sending a message. In contrast, a client sends only data.

If the channel is full, this call waits until there is room for the message.

MBX : MBX~-28

1/3



(

..

MBX_ $PUT_REC_ COND

MBX_ $PUT_REC__ COND

Attempts to put a message into a mailbox.

FORMAT

MBX_$PUT_REC_COND (handle, bufptr, buflen, status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV_ PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE _ SERVER or MBX _ $OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen
Length of the message, in bytes. This is a 4-byte integer. For a server, the message can
contain up to 32766 bytes. For a client, the buffer can contain up to 32760 bytes.

If a server puts a message that is larger than 1158 bytes, and the client is on a remote node, .
the client node’s MBX__HELPER must be able to handle the message. To handle the
message, the client node’s MBX __HELPER must have a queue data size that is at least as
large as the message. Use MBX_$SERVER _ WINDOW to determine the client node’s

queue data size.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX _$PUT_REC _COND can be used by either servers or clients. Note, however, that
servers and clients have different message formats. A server must include the 6-byte
message header when sending a message. In contrast, a client sends only data.

If the channel is full, MBX_$PUT_REC__ COND returns immediately, with a completion
status of MBX _$NO _ROOM_IN__CHANNEL. You can use an eventcount to tell when
the status of the mailbox eventcount has changed. You get a mailbox eventcount with

MBX_ $GET _EC.

MBX~29 MBX



MBX _$SERVER_ WINDOW

MBX_ $SERVER_ WINDOW

Returns the buffer size for the mailboﬁc maintained by the MBX _HELPER on a remote
client’s node.

FORMAT

size = MBX_$SERVER_WINDOW (handle, channel, status)

RETURN VALUE

size
Buffer size for the mailbox maintained by the MBX __HELPER on the remote client’s node.
This is a 4-byte integer.

This value defines a window size when a server sends messages to a remote client. That is,
the server cannot send messages that are larger than the buffer for the remote

MBX__HELPER’s mailbox.

INPUT PARAMETERS

handle

Identifier for the mailbox, in UNIV_PTR format. This is a 4-byte integer. Use the handle
returned by MBX _$CREATE_ SERVER.

channel
Channel belonging to the client whose window size you are inquiring about. This is a

2-byte integer. The mailbox manager assigns a channel number to a client when the client
calls MBX _ $OPEN.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

When a server puts a message into a mailbox and the message is intended for a client on a
remote node, the message must pass through a system mailbox maintained by the client
node’s MBX _HELPER. Thus, the largest message that a server can send depends on the
buffer size for the remote client’s system mailbox. This buffer size was defined when the
client node’s MBX _ HELPER was started. (The MBX_ HELPER'’s -DATASIZE option
defines a buffer size for the system mailbox.)

A server can use MBX _$SERVER _ WINDOW to determine the buffer size for the remote
client’s system mailbox. To get this value, MBX _$SERVER _ WINDOW queries the
MBX _HELPER on the client’s node. Note that MBX __$SERVER _ WINDOW returns the
actual buffer size, not the number of unused bytes in the buffer.

MBX MBX=30




O

MBX_ $SERVER_ WINDOW

Note that if a server is communicating with clients on different nodes, the buffer size can
differ on each node. Therefore, the server must use MBX _ $SERVER _ WINDOW to
obtain the buffer size on each node.

MBX _$SERVER _ WINDOW correctly returns the buffer size for clients on nodes with
SR or later software. However, if you call MBX_$SERVER_ WINDOW and the specified
client is on a pre-SR9 node, then the call always returns the value 1158. 1158 is the
minimum buffer size for mailboxes maintained by pre-SR9 MBX __HELPERs.

MBX__$SERVER_ WINDOW is for use only by mailbox servers. A client should use
MBX _$CLIENT _WINDOW.

MBX=31 MBX



MBX ERRORS

ERRORS

MBX __$BAD _KEY
Bad key.

MBX_$BUFFER_TOO_SMALL
A server requested a message using a buffer smaller than 6 bytes. There must be
enough room for the message header in all server message requests.

MBX __$CHANNEL _EMPTY
There are no messages waiting in the channel. Received in response to an

MBX_$GET _COND or MBX_ $COND_ GET__ CHAN request.

MBX_$CHANNEL _NOT _ OPEN
For a server, the channel number given referred to a channel that is not presently
open; for a client, the server has deallocated the client’s channel.

MBX _ $CLIENT _NO_ RIGHTS
The client can’t access the local MBX _HELPER’s SYSMBX.

MBX$CLIENT _ SERVER _DEADLOCK
A server tried to open a channel to itself; this is illegal.

MBX_ $EOF
The client has sent a message of type MBX_ $EOF _ MT. Received in response to an
MBX_$GET _REC or MBX _$GET_ COND request.

MBX_$FILE__IN_USE
An MBX _$CREATE__ SERVER or MBX _ $OPEN request was made giving a
mailbox pathname that is the pathname for a file presently in use.

MBX_$HANDLE _NOT _ VALID

The handle given does not point to a mailbox.

MBX_ $HELPER _ NO _ RIGHTS
- The MBX _ HELPER on the server’s node can’t access the server’s mailbox.

MBX _$ILL _HANDLE
The handle given is not a legal handle.

MBX _$MSG__TOO _BIG_FOR__CHANNEL
An MBX _$PUT__ CONDITIONAL or MBX_ $PUT _ REC request tried to send a
message bigger than the maximum specified when the server created the mailbox.

MBX _$NO__MORE _ CHANNELS
An MBX _$OPEN was made to a mailbox with no free channels.

MBX _$NO_MORE __RESOURCES
An MBX _$CREATE _SERVER or MBX _ $OPEN request was made, and the
process has insufficient resources (for example, address space) left to open the mailbox
or the channel.

MBX _$NO__ROOM __IN__ CHANNEL
There is not enough room in the channel for the message. Received in response to an
MBX_$PUT _ CONDITIONAL request.

MBX __$NO _ SERVERS
An MBX_$OPEN was made to a mailbox without an active server.

MBX MBX=32

5

;/f

™)



O

MBX ERRORS

MBX_ $OPEN_ REJECTED
The server rejected an MBX _ $OPEN request.

MBX_$PARTIAL _RECORD
Returned data does not contain a complete record.

MBX_$REM__RCV_TIMOUT
A remote operation was attempted, and the network has failed.

MBX_$REM__SEND _ FAILED
A remote operation was attempted, and the network has failed.

MBX_$REM_SERVICE _UNAVAILABLE
An MBX _$OPEN open request was made from a remote node when the
MBX _HELPER program was not running on that node or the server’s node.

MBX__$REMOTE _ SERVICE _DENIED
An MBX_ $OPEN request was made from a remote node, and there are not enough
network services free to handle the request.

MBX _$SEQUENCED _ SEND _ FAILED
An internal error occurred while sending a message that is larger than 1158 bytes.

MBX _$SIZE__TOO_LARGE
MBX_ $CREATE_ SERVER request asked for a mailbox larger than the maximum.

MBX_ $SIZE__TOO _SMALL
An MBX_$CREATE _ SERVER request was made with a buffer size smaller than
the minimum.

MBX__$TOO_MANY _ CHANNELS
An MBX__$CREATE _ SERVER request was made asking for more than the
maximum number of channels.

MBX__ $UNEXPECTED _ CNTL _MSG
Received by a client when the last message the server sent on that channel had a
message type of MBX__$ACCEPT _ OPEN__MT, MBX _$REJECT_OPEN_ MT,
or MBX _$CHANNEL _OPEN__MT when such a message type was inappropriate.
(MBX_$CHANNEL _ OPEN_ MT should never be used. The other two message
types are only used in response to a message of type
MBX_ $CHANNEL _ OPEN_MT.) Received in response to an MBX _ $GET _REC
or MBX _$GET_ COND request.

MBX_$UNKNOWN _RQST
The client and server are using different versions of the mailbox manager (although
the two versions have the same version number), and one of them made a request not
recognized by the other manager.

MBX__ $WRONG _ VERSION _ NUMBER
An MBX _$OPEN request was made using a mailbox manager with a different
version number than the one used to create the mailbox.

STATUS _$OK
Successful completion.

MBX=-33 MBX



a
O

t/\



A

MS

This section describes the data types, the call syntax, and the error codes for the MS
programming calls. Refer to the Introduction at the beginning of this manual for a description of

data-type diagrams and call syntax format.

MS=1

MS



MS DATA TYPES

CONSTANTS
MS_ $EXTEND TRUE
MS_ $NO_EXTEND FALSE

DATA TYPES

MS_$ACC_MODE_T

MS_ $ACCESS_T

MS_$ADVICE_ OPT_T

MS_$ADVICE_T

MS

The object can be extended.

The object cannot be extended.

A 2-byte integer. Access mode for an object. One
of the following predefined values:

MS_$R
Read access.

MS_$RX
Read and execute access.

MS_$WR
Read and write access.

MS_ $WRX
Write and execute access.

MS_ $RIW
Read with intent to write.

A 2-byte integer. Usage patterns for accessing a
file. One of the following predefined values:

MS_ $NORMAL
Normal use.

MS_ $RANDOM
Random access use.

MS_ $SEQUENTIAL
Sequential access use.

Reserved for future use.

Four bytes that are reserved for future use.

MS=2

)



MS DATA TYPES

MS_S$ATTRIB_T An attribute record. The diagram below illustrates
the MS_$ATTRIB_ T data type:

byte:
offset field name
0: permanent
1: immutable
2: integer cur_len
6: integer blocks_used
time_$clockh_t 10: | integer dtu
time_$clockh_t 14: integer dtm
time_$clockh_t 18: integer dter

Field Description:

permanent

A boolean value that indicates whether the
object is permanent (TRUE) or temporary
(FALSE)

immutable

A boolean value that indicates whether the
object can be modified. The value TRUE means
that the object is immutable. The value FALSE
means that the object is not immutable and can
therefore be modified.

cur_len
Current length, in bytes, of the object.

blocks _used
The number of blocks used for the object.

dtu
Date-time used, in TIME _ $CLOCKH__ T

format.

dtm
Date-time modified, in TIME _ $CLOCKH _T
format.

dter
Date-time created, in TIME__ $CLOCKH _T

format.

MS=3 ' MS



MS DATA TYPES

MS_$CONC_MODE_T

STATUS _$T

MS

A 2-byte integer. Concurrency mode for an object.
One of the following predefined values:

MS_$NR_XOR_1W
Allows one writer or any number of readers.

MS__$COWRITERS
Allows any number of readers and/or writers.

A status code. The diagram below illustrates the
STATUS _$T data type:

byte: .
field nam
offset 34 0 e
0: integer all
or
31
0: —[ fail
24
subsys
16
1: modc
0
2: integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

MS=4



XOID_$T

predefined byte:
type offset
0:

4.

uid_$t 8:
12:

MS DATA TYPES

Unique identifier of an object. Used by type
managers only. The diagram below illustrates the

XOID _3$T data type:

31

integer

integer

integer

integer

Field Description:

rful

Reserved for future use.

rfu2

Reserved for future use.

UID

field name

rfut

rfu2

uiD

Unique identifier for an object.

MS=4.1

MS



MS=4.2

MS



MS_ $ADVICE

MS_ $ADVICE

Provides the operating system with information on how you plan to access an object. This
information helps the system optimize performance when managing the object.

FORMAT

MS_$ADVICE (address, length, access, options, record-length, status)

INPUT PARAMETERS

address

Pointer to the first byte to provide advice for, UNIV__PTR format. This is a 4-byte
integer. Use the pointer returned by the most recent call to MS_ $CRMAPL,
MS_$MAPL, or MS_ $REMAP.

length
Number of bytes to provide advice for. This is a 4-byte integer.

access

Method of accessing the object, in MS__ $ACCESS _ T format. Specify only one of the
following predefined values:

MS__$NORMAL You do not have a predicted manner for accessing the object. This is the
default if a program never uses MS _ $ADVICE.

MS_ $RANDOM You access the object randomly.

MS__$SEQUENTIAL

You access the object sequentially. ’

options
Reserved for future use, in MS__ $ADVICE _ T format. This is a 4-byte integer. In Pascal,

specify this parameter using the empty set [|. In C and FORTRAN, declare a variable and
initialize it to 0.

record-length

Number of bytes in a record in the mapped object. This is a 4-byte integer. If you do not
know the record length, or if the object is not record-structured, specify 0.

OUTPUT PARAMETERS

status

Completi»n status, in STATUS _$T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

MS _$ADVICE provides the operating system with information on how you plan to access
an object. When you work with a mapped object, the system brings pages into memory as
needed. By using MS__ $ADVICE, you can change the number of pages that the system
gets when a page fault occurs. This helps the system provide better performance when
managing the object on your behalf.

MS=5 MS



MS_ $ADVICE

MS

Although it is not required that you use MS _ $ADVICE, you should use it whenever you
have a predicted type of file access. In addition, you can use MS__$ADVICE more than
once to change the advice for a mapped object.

If you remap an object with MS_ $REMAP, the advice in effect for the first part of the
currently mapped section is propagated to the newly mapped section.

MS-6

)

Vs
/



O

MS__$ATTRIBUTES

MS__$ATTRIBUTES

Returns the selected attributes of a mapped object.

FORMAT

MS_$ATTRIBUTES (address, attrib-buf, attrib-len, attrib-max, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNIV_PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

OUTPUT PARAMETERS

attrib-buf
Buffer in which to receive the attributes, in MS_ $ATTRIB_ T format. This data type is
22 bytes long. See the MS Data Types section for more information.

attrib-len
Length of the attributes returned in the attributes buffer. This is a 2-byte integer.

INPUT PARAMETERS

attrib-max
Length of the attributes buffer. This is a 2-byte integer. Specify the length of the

attributes buffer in the attrib__buf parameter. This value defines the maximum amount
of information that MS__ $ATTRIBUTES can return.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE
Use MS_ $ATTRIBUTES to get information about selected attributes of a mapped object.

MS=7 MS



MS_ $CRMAPL

MS_ $CRMAPL -
Creates, maps, and locks an object. C .
FORMAT

address = MS_$CRMAPL (name, name-length, start, desired-length,
concurrency, status)

RETURN VALUE

address

Pointer to the first mapped byte of the object, in UNIV_PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

‘

INPUT PARAMETERS

name

Pathname of the object to be mapped, in NAME_ $PNAME __ T format. This is an array
of up to 256 characters.

name-length
Length of the pathname. This is a 2-byte integer.

start (

First byte to be mapped. This is a 4-byte positive integer. To specify the first byte in an
object, provide a start value of 0.

desired-length
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

concurrency
Concurrency mode for the object, in MS_ $CONC _MODE _ T format. This is a 2-byte Y
integer. Specify only one of the following predefined values: N

MS_$NR_XOR_1W
Allows one writer or any number of readers.

MS_ $COWRITERS
Allows any number of readers and/or writers.

MS MS=8




MS_ $CRMAPL

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _$0OK Object created.

MS_$BAD _ACCESS Illegal concurrency value.
MS_$IN__USE Object is currently locked.

MS_$NO _SPACE Insufficient virtual address space to map.

NAME _$ALREADY _EXISTS Name given already exists.

Other naming server errors See the NAME __$ error codes.

USAGE

MS _$CRMAPL creates a file only if the name you specify does not already exist. The call
implicitly uses an MS manager access mode of MS__ $WR. Thus the object is always
mapped for write access. You can get an exclusive write lock (if you specify a concurrency
of MS_$WR_XOR _1W) or you can get a shared write lock (if you specify a concurrency
of MS__ $COWRITERS.) See the description of MS__ $MAPL for more information on
locks.

MS_$CRMAPL always uses an extend value of TRUE. Thus you can extend the object to
the length you specify in the desired-length parameter.

MS=-9 MS



MS_$FW_FILE

MS_$FW_FILE

Forces the system to write a mapped file onto disk.

FORMAT

MS_$FW_FILE (address, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNIV__PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

When you work with mapped objects, the system uses a predefined set of conditions to
determine when to write information (stored in memory) onto the disk. However, if you
need to supplement the system’s actions, you can use MS_$FW _ FILE to force the system
to write an object onto disk.

When you use MS_$FW _ FILE, the system force writes the entire object, even if the
currently mapped portion does not begin at byte 0. However, the system writes only the

changed portions of the object onto the disk.

When you force-write a permanent object, the system also force-writes the directory where
the object is cataloged.

MS MS=10

N



-
\

MS_ $MAPL

MS_ $MAPL

Maps the specified portion of a file-system object into an available region of the process
address space. This call also locks the object.

FORMAT

address = MS_$MAPL (name, name-length, start, desired-length, concurrency,
access, extend, length-mapped, status)

RETURN VALUE

address
Pointer to the first mapped byte of the object, in UNIV_PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

INPUT PARAMETERS

name
Pathname of the object to be mapped, in NAME _ $PNAME _ T format. This is an array
of up to 256 characters.

name-length
Length of the pathname. This is a 2-byte integer.

start
First byte to be mapped. This is a 4-byte positive integer. To specify the first byte of an
object, provide a start value of 0.

desired-length
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

concurrency
Concurrency mode for the object, in MS_ $CONC_MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS_$NR_XOR _1W

Allows one writer or any number of readers.

MS_ $COWRITERS

Allows any number of readers and/or writers.

MS-11 MS



MS_$MAPL

access

The access mode desired, in MS_$ACC_MODE _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS_$R Read access.

MS_$RX Read and execute access.
MS_$WR Read and write access.
MS_$WRX Write and execute access.
MS__$RIW Read with intent to write.

The access requested must be a subset of the access permitted by the protection for the
object.

extend

A Boolean value that indicates whether the object can be extended. The value TRUE
indicates that the length given in the desired-length parameter should be mapped, even if
the object is shorter. Writing beyond the end of the object, but within the space mapped,
extends the object. FALSE indicates that the amount mapped should be no greater than
the actual length of the file.

OUTPUT PARAMETERS

length-mapped

Number of bytes actually mapped. This is a 4-byte positive integer.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS_$OK Object created.

MS_$BAD__ACCESS
Access type is illegal.

MS_$IN__USE Object could not be locked.

NAME _$NOT_FOUND
No object exists with the given name.

Other naming-server errors
See the NAME _$ error codes.

USAGE

MS

Use MS_ $MAPL to map files that contain data in a user-defined format. For example,
font files are a case where MS__ $MAPL is appropriate. Do not use MS__$MAPL to access
DOMAIN record structured files; use STREAM _$ calls to access these files.

MS=12



MS_ $MAPL

MS _$MAPL locks a file, in addition to mapping it. The lock is determined by the
concurrency and access modes that you specify. MS_$MAPL can obtain the following

types of locks:

Lock

Concurrency Mode

Access Mode

Protected Read

Protected RIW

Shared Read

Exclusive Write

Shared Write

MS_$NR_XOR_1W
MS_$NR_XOR_1W
MS_$COWRITERS
MS_$NR_XOR_1W

MS_$COWRITERS

MS_$R or MS_$RX

MS_$RIW

MS_$R or MS_$RX or MS_$RIW

MS_$WR or MS_$WRX

MS_$WR or Ms

Once you have locked a file, the MS manager allows other processes to map the file only if
these processes request a lock that is compatible with your lock. The following lock
combinations are allowed and prohibited. (Y means that the combination is allowed; N
means that the combination is prohibited.)

Ezxisting Lock Requested Lock

Protected | Protected | Shared | Exclusivd Shared

Read RIW Read Write Write
Protected Read Y Y Y N N
Protected RIW Y N Y N N
Shared Read Y Y Y N Y *
Exclusive Write N N N N N
Shared Write N N Y * N Y *

* These locks are allowed only if the processes are on the same node.

MS=13 MS



MS_ $MAPL_ STREAM

MS__$MAPL _ STREAM

Maps the specified filesystem object, given its xoid, into an available region of the process
address space. This call also locks the object and protects the mapping on a UNIX EXEC
call. For type managers only.

FORMAT

address-ptr := MS_$MAPL, STREAM (xoid, start, desired-length, concurrency,
access, extend, length-mapped, status)

RETURN VALUE

address=-ptr
Pointer to the first mapped byte of the object, in UNIV_PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

INPUT PARAMETERS

xoid
Xoid, or unique identifier of an object in XOID __ $T format. This data type is 16-bytes
long. See the MS Data Types section for details.

start :
First byte to be mapped. This is a 4-byte positive integer. To specify the first byte of an
object, provide a start value of 0.

desired-length ‘
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

MS MS=13.1



MS__$MAPL_ STREAM

concurrency
Concurrency mode for the object, in MS__ $CONC_MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS_$NR_XOR_1W

Allows one writer or any number of readers.

MS__ $COWRITERS

Allows any number of readers and/or writers.

access
The access mode desired, in MS_$ACC_MODE __ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS_$R Read access.
MS_$RX Read and execute access.
MS_$WR Read and write access.
MS_$WRX Write and execute access.
MS_$RIW Read with intent to write.
The access requested must be a subset of the access permitted by the protection for the
object.
extend

A Boolean value that indicates whether the object can be extended. The value TRUE
indicates that the length given in the desired-length parameter should be mapped, even if
the object is shorter. Writing beyond the end of the object, but within the space mapped,
extends the object. FALSE indicates that the amount mapped should be no greater than
the actual length of the file.

OUTPUT PARAMETERS

length-mapped
Number of bytes actually mapped. This is a 4-byte positive integer.

MS5S-13.2 MS



MS_ $MAPL_ STREAM

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS_$OK Object created.

MS _$BAD _ ACCESS
Access type is illegal.

MS_$IN_USE Object could not be locked.

USAGE

MS

Use MS_$MAPL _ STREAM to map objects that you access through a type manager.
Note that you use MS_ $MAPL _ STREAM only through a type manager. For details, see
the Extending the DOMAIN Streams Factlity manual.

MS_$MAPL _ STREAM protects the mapping on a UNIX EXEC call. Conversely, with
MS_$MAPL, the UNIX EXEC call unmaps any objects on any open streams.

MS _$MAPL _ STREAM also locks the object. The lock is determined by the concurrency
and access modes that you specify. MS__ $MAPL _ STREAM can obtain the following types
of locks:

Lock Concurrency Mode Access Mode

Protected Read MS_$NR_XOR_1W MS_$R or MS_$RX

Protected RIW MS_$NR_XOR_1W MS_$RIW

Shared Read MS_$COWRITERS MS_$R or MS_$RX or MS_$RIW
Exclusive Write MS_$NR_XOR_1W MS_$WR or MS_$WRX

Shared Write MS_$COWRITERS MS_$WR or Ms

MS=13.3

~




0

MS_$MAPL_ STREAM

Once you have locked an object, the MS manager allows other processes to map the object
only if these processes request a lock that is compatible with your lock. The following lock
combinations are allowed and prohibited. (Y means that the combination is allowed; N

means that the combination is prohibited.)

Ezisting Lock Requested Lock

Protected | Protected | Shared | Exclusivd Shared

Read RIW Read | Write  Write
Protected Read Y Y Y N N
Protected RIW Y N Y N N
Shared Read Y Y Y N Y *
Exclusive Write N N N N N
Shared Write N N Y * N Y *

* These locks are allowed only if the processes are on the same node.

MS=13.4

MS



MS_ $RELOCK

MS_$RELOCK

Changes the lock on an object.

FORMAT

MS_$RELOCK (virtual-address, access, status)

INPUT PARAMETERS

virtual-address
Pointer to the first mapped byte of the object whose lock you want to change, in
UNIV_PTR format. This is a 4-byte integer. Use the pointer returned by an earlier call
to MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

access
New access mode, in MS_$ACC_MODE _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

MS_$R Read access.
MS_$WR Read and write access.
MS_$RIW Read with intent to write.

If you specify an access mode of MS__ $RIW when you first lock an object, you cannot
relock the object with MS_ $R access.

OUTPUT PARAMETERS

status .
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _$OK Completed successfully.
MS_$NOT_MAPPED No object is mapped at the supplied virtual address.
MS_$BAD_ ACCESS Access mode given is incorrect.

FILE _$ILLEGAL _LOCK _RQST
Illegal lock request (file server); the access mode given is
incorrect.

USAGE

MS_$RELOCK changes the lock on an object. With MS__ $RELOCK, you specify a new
access type. This new access, in combination with the current concurrency mode, forms a
new lock. You can relock a file in the following ways:

MS MS=14




MS_ $RELOCK

Current Lock

Changes

Protected read

Protected RIW

Shared read

Exclusive write

Shared write

Change to exclusive write by specifying
the access mode MS_$WR or MS_$WRX.

Change to protected RIW by specifying
the access mode MS_$RIW.

Change to exclusive write by specifying
the access mode MS_$WR or MS_$WRX.

Cannot change to protected read by
specifying the access mode MS_$R.

Change to shared write by specifying
the access mode MS_$WR or MS_$WRX.

Change to protected read by specifying
the access mode MS_$R.

Change to protected RIW by specifying
the access mode MS_$RIV.

Change to shared read by specifying
MS_$R or Ms_S$RIW.

See the description of MS_ $MAPL for a list of the concurrency/access combinations for

each lock.

MS=15

MS



MS_ $REMAP

MS_ $REMAP

Maps a different portion of a previously mapped object.

FORMAT

address = MS_$REMAP (old-address, start, desired-length,
remapped-length, status)

RETURN VALUE

address

Pointer to the first byte of the new mapped section, in UNIV_PTR format. Thisis a
4-byte integer.

INPUT PARAMETERS

old-address
Pointer to the first byte of the currently mapped portion of the object, in UNIV_PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

start
First byte to be mapped. This is a 4-byte integer.

desired-length
Number of bytes to remap. This is a 4-byte integer.

OUTPUT PARAMETERS

remapped=-length
Number of bytes remapped. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS_$0OK Completed successfully.

MS_$NOT _MAPPED
No object is mapped at the given virtual address.

MS_$BAD _LENGTH
' Desired-length is invalid.

MS MS=-16

)

2



MS_ $REMAP

USAGE

This call maps a different portion of an already mapped object and unmaps the previously
mapped portion. This call is useful for moving a sliding window over a big file.

When you remap a file, certain attributes of the mapping (extend, access, concurrency) are
left the same as in the original mapping. If you used MS_$ADVICE to provide file access
advice, the advice in effect for the first part of the currently mapped section is propagated
to the newly mapped section. Also, MS_ $REMAP does not change the lock mode of the
object.

MS=17 MS



MS__ $TRUNCATE

MS _$TRUNCATE
Truncates a mapped object to the specified length.

FORMAT

MS_$TRUNCATE (address, length, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNIV_PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

length
Number of bytes to keep in the mapped object, starting at the first byte in the object. This
is a 4-byte integer. Everything after this length is truncated.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

MS _$TRUNCATE shortens a mapped file to the length that you specify. In addition, you
can use MS_ $TRUNCATE to define a length for a file, even if you are not throwing away
data. For example, when you unmap a file, the system may set the file length to a
page-aligned value. (That is, the length will be a multiple of 1024.) However, you can use
MS_$TRUNCATE to shorten the file to a nonpage-aligned value.

For example, if a file contains only 20 bytes of data, you can use MS_ $TRUNCATE to set

the file length to 20. When you unmap the file, the length will be 20 rather than 1024. Use
MS_ $ATTRIBUTES to determine the current file length and number of blocks used.

MS MS=~18

......



O

MS_ $UNMAP

MS_$UNMAP

Unmaps a previously mapped object.

FORMAT
MS_$UNMAP (address, length, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNIV_PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_ $CRMAPL, or MS_ $REMAP.

length
Number of mapped bytes. This is a 4-byte integer. Use the length you requested in the
most recent call to MS_ $MAPL, MS_ $CRMAPL, or MS_ $REMAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _$OK Completed successfully.

MS_$NOT_MAPPED
Address and length given do not refer to an object mapped with
MS_$MAPL.

USAGE

MS _$UNMAP unmaps and unlocks an object mapped and locked with MS__ $MAPL or
MS _$CRMAPL. You cannot unmap a subset of the object.

If the original object is on a remote node, changes made in the mapped version are written
back to the original object when MS__ $UNMAP is executed. If the original object is on the
local node, changes made in the mapped version of the object will be written back to the
original object when the space they occupy in memory is needed.

If the object was mapped with the extend parameter equal to TRUE, and your program
modified part of the extension space, the original object is extended to include those
modifications. Parts of the extension space beyond the last modification are not added to
the original object.

An object locked by several calls to MS__ $MAPL by different processes will remain locked
until all the processes have unmapped the object.

MS=-19 MS



MS ERRORS

ERRORS

MS_$BAD_ ACCESS
Unsupported access rights requested.

MS__$BAD_LENGTH
Bad length.

MS_$IN__USE

Object is locked by another process or in an incompatible mode.

MS_ $INSUFFICIENT _RIGHTS

You have some access rights to the object, but not the ones you requested.

NAME _$NAME__NOT_FOUND
No object exists with the given name.

MS _$NO _RIGHTS
You do not have any access rights to the object.

MS_$NO__SPACE

No space.

MS_$NOT_MAPPED
No object mapped at the virtual address supplied.

MS_ $OBJECT_NOT _FOUND

The object does not exist, or it is not accessible over the network.

MS_$WRONG _ LEVEL
Attempt to release segment mapped by previous level.

STATUS _$0K

Successful completion.

Other naming server errors.

See the NAME _ $ error codes.

MS MS=20



O

MTS

This section describes the data types, the call syntax, and the error codes for the MTS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

MTS=1 i MTS



MTS DATA TYPES

'CONSTANTS
MTS__$CURRENT_FILE_SEQ File sequence number for current file.
MTS_$END_FILE_SEQ File sequence number for last tape file.
MTS__$FIRST _A MTS_$UNIT _A

First attribute in MTS_$ATTR _T.
MTS__$LAST_A MTS_$BUFFER_ OFFSET _A

Last attribute in MTS _$ATTR _T.
DATA TYPES
MTS__$ATTR_T A 2-byte integer. THE User-modifiable tape file

attributes. One of the following pre-defined values:

MTS_$UNIT_A
Tape unit number.

MTS__$LABELED_A
Labeled volume.

MTS_$REOPEN _VOL_A
Reopen volume.

MTS_$CLOSE_VOL_A
Close file and volume.

MTS_$SAVE_VOL_POS_A
Save position on close.

MTS_$VOL_DEVICE_ A
Device type.

MTS_$VOL_ID_A
Volume ID.

MTS_$VOL__ACCESS_A
Volume accessibility.

MTS_$OWNER_ID_A
Owner ID.

MTS _$FILE_ SEQUENCE _A
File sequence number.

MTS_$RECORD _FORMAT _A
Record format.

MTS_$BLOCK_LENGTH_A
Block length.

MTS MTS=-2



MTS DATA TYPES

MTS_$RECORD _LENGTH_A
Maximum record length.

MTS_$ASCII_NL_A
ASCII newline head-length

MTS_$FILE_ SECTION_A
File section number.

MTS_$FILE_ID_A
File ID.

MTS_$FILE_SET_ID_A
File set ID.

MTS_$GENERATION A
Generation number.

MTS_$GENERATION_VERSION_A
Generation version number.

MTS_$CREATE_DATE_A
Creation date.

MTS_$EXP_DATE_A
Expiration date.

MTS_$FILE_ ACCESS_A
File accessibility.

MTS_ $SYSTEM_ CODE_ A
System code.

MTS_$SYSTEM_USE_A
System use.

MTS_ $BUFFER _OFFSET_A
Buffer offset.

MTS_$ATTR_VALUE_T Attribute values. The diagram below illustrates the
MTS_$ATTR_VALUE_ T data type:

MTS=3 MTS



MTS DATA TYPES

redefined byte: ]
g/pe offset 31 0 field name

0: integer i

0: boolean) b

0: char s

n: char

Field Description:

i
An integer value.

b

A Boolean value.

s
A character string.

MTS_ $DEVICE _T A 2-byte integer. Type of device. One of the
following pre-defined values:

MTS__$MT
Magtape device.

MTS_$NOT_REALLY
- Not currently supported.

MTS_$CT
Cartridge tape device.

MTS_$HANDLE _T A 4-byte integer. A handle to a tape descriptor file.

MTS_$RW_T A 2-byte integer. Read or write status. One of the
following pre-defined values:

MTS_ $READ
Read operation.

MTS_ $WRITE
Write operation.

STATUS _$T A status code. The diagram below illustrates the
STATUS _$T data type:

MTS MTS=-4

)



—

byte:
offset

0:

MTS DATA TYPES

31 0 field name
integer all
or
31
-I fail
24
subsys
16
modc
0
integer code
Field Description:
all

All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

MTS=5 MTS



MTS__$CLOSE_ DESC

Table MTS-1. Magnetic Tape Volume and File Attributes

Mnemonic

Type

Default

De finition

MTS_$UNIT_A

MTS_$LABELED A

MTS_$REOPEN_VOL_A

MTS_$CLOSE_VOL_A

MTS_$SAVE_VOL_POS_A

MTS_$VOL_COMMENT_A

MTS_$VOL_ID A

MTS_$VOL_ACCESS_A

MTS_$VOL_OWNER_ID_ A

MTS_$FILE_SEQUENCE A

MTS_$RECORD_FORMAT A

MTS_$BLOCK_LENGTH A

MTS_$RECORD_LENGTH_A

int

v/f

t/f

t/f

t/f

int

char

char

char

int
veur®
"end"

char

int

int

0

true

false

true

false

—auto

—auto

2048

2048

magtape unit number
(normally 0)

true = ANSI labeled volume
false = unlabeled volume

true = reopen previously used
volume (suppresses
rewind)

false = do not reopen

true = volume closed when file
is closed
false = leave volume open

true = saves volume position
when volume is closed
(for reopen)
false = rewind volume when
closed

type of device:
tfp_$mt=0 for magtape
tfp_$ct=3 for cartridge

volume identifier (labeled
volumes) (Automatically
generated.) Six-character
string maximum.

volume accessibility (labeled
volumes only). The default
is the space character.

volume owner (labeled volumes)
Maximum string length is 14.

file sequence number. Possible

values are an integer, "cur" for
current file, "end" for new file
at end of labeled volume.

record format. Possible values:
"F" fixed length

"D" variable length

nge spanned

wy" undefined

block length, in bytes

maximum record length, in bytes

MTS

MTS=6

/



O

MTS_ $CLOSE_ DESC

Table MTS~1. Magnetic Tape Volume and File Attributes (Continued)

Mnemonic Type | Default | Definition
MTS_$ASCII_NL A t/f true true = ASCII newline handling.
Strip newlines on write,
supply them on read
false = no newline handling
MTS_$FILE_SECTION_A int 1 file section number
(labeled volumes)
MTS_$FILE ID A char | » ® file identifier
(labeled volumes)
MTS_$FILE SET ID_A char v file set identifier
(labeled volumes)
MTS_$GENERATION_A int 1 generation of file
(labeled volumes)
MTS_$GENERATION VERSION_A|int 1 generation version of file
(1abeled volumes)
MTS_$CREATE DATE A date -auto creation date of file
(labeled volumes)
MTS_$EXP_DATE_A date —auto expiration date of file
(labeled volumes)
MTS_$FILE_ACCESS_A char “om file accessibility
(labeled volumes)
MTS_$SYSTEM_CODE_A char v system code (labeled volumes)
MTS_$SYSTEM_USE_A char “on system use (labeled volumes)
MTS_$BUFFER_OFFSET_A int 0 buffer offset (labeled volumes)

Must be zero.

MTS=7

MTS



MTS_ $CLOSE_ DESC

MTS__$CLOSE _DESC

Closes a magtape descriptor file.

FORMAT
MTS_$CLOSE_DESC (handle, update, status)

INPUT PARAMETERS

handle
Pointer to the open magtape descriptor file, in MTS _$HANDLE _ T format. This is a
4-byte integer. Specify the handle returned by MTS_$OPEN _ DESC,
MTS _$COPY _DESC, or MTS _ $CREATE _DESC.

update
Boolean value that determines whether or not the magtape descriptor file is to be modified
to reflect the attribute changes specified by calls to MTS _$SET _ ATTR. If TRUE, the
changes are made.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

Programs must close magtape descriptor files before calling stream manager routines; an
open magtape descriptor file cannot be used by the stream manager.

Closing a magtape descriptor file invalidates its handle.

MTS MTS-8

.-/‘ A



MTS_ $COPY_DESC

MTS_$COPY _DESC

Copies a magtape descriptor file and opens the destination file.

FORMAT

handle = MTS_$COPY DESC (src-pathname, src-namelen, dst-pathname,
dst-namelen, status)

RETURN VALUE

handle
Pointer to the open magtape descriptor file, in MTS_$HANDLE _ T format. This is a
4-byte integer.

INPUT PARAMETERS
src-pathname
The pathname of the magtape descriptor file to be copied, in NAME _$PNAME _ T

format. This is an array of up to 256 characters.

src-namelen
Length of the source pathname, in bytes. This is a 2-byte integer.

dst-pathname
The pathname to which the file is to be copied, in NAME _$PNAME _T format. This is

an array of up to 256 characters.

The destination file must not exist before this function is called. To replace a destination

file, call the routine NAME _$DELETE _ FILE before calling MTS__$COPY _ DESC.

dst-namelen
Length of the destination pathname, in bytes. This is a 2-byte_integer.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

This routine copies the specified magtape descriptor file, opens the destination file and
returns a pointer to it.

" This routine does not affect the source file.

MTS=9 MTS



MTS_$CREATE_DEFAULT _DESC

MTS_$CREATE _DEFAULT _DESC

Creates a magtape descriptor file with the default volume and file attributes.

FORMAT
handle = MTS_$CREATE_DEFAULT DESC (pathname, namelen, status)

RETURN VALUE

handle
A pointer to the open magtape descriptor file, in MTS _$HANDLE _ T format. Thisis a
4-byte integer.

INPUT PARAMETERS

pathname
The pathname of the descriptor file to be created, in NAME_$PNAME _ T format. This
is an array of up to 256 characters.

namelen
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS __$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

This routine opens a magtape descriptor file with the default volume and file attribute
values and returns a pointer to it. The file must not exist before this routine is called. See
the Table in the MTS Data Types section for a list of volume and file attributes and their
defaults.

MTS MTS=10

TN



MTS_ $GET _ATTR

MTS_$GET_ATTR

Retrieves a given attribute from a magtape descriptor file.

FORMAT
MTS_$GET_ATTR (handle, attribute, value, status)

INPUT PARAMETERS

handle
A pointer to the open magtape descriptor file, in MTS_$HANDLE _ T format. This is a
4-byte integer. Specify a handle returned by MTS_ $OPEN _ DESC,
MTS_$COPY _DESC, or MTS _$CREATE__DESC.

attribute
The attribute to be retrieved, in MTS_$ATTR __T format. This is a 2-byte integer.
Specify only one of the following predefined values:

mts_$unit_a mts_$labeled a mts_$reopen_vol_a
mts_$close_vol_a mts_$save_vol pos_a mts_$vol _device_a
mts_$vol_id a mts_$vol_access_a mts_$owner_id_a
mts_$file_sequence_a mts_$record_format_a mts_$block_length_a
mts_$record_length a mts_$ascii_nl a mts_$file_resvi_a
mts_$file_section_a mts_$file_id a mts_$file_set_id_a
mts_$generation_a mts_$generation_version _a mts_$create_date_a
mts_$exp_date_a mts_$file_access_a mts_$system_code_a
mts_$system_use_a mts_$buffer offset_a

See the Table in the MTS Data Types section for a description of volume and file attributes
and their defaults.

OUTPUT PARAMETERS

value
The current value of the specified attribute, in MTS_$ATTR _VALUE _ T format.
Possible values are a 4-byte integer, a Boolean value, or a string, depending upon the
attribute requested. See the Table in the MTS Data Types section for a list of volume and
file attributes and their corresponding values.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

Programs must call this routine once for each attribute they wish to get.

You can change the attributes within a magtape descriptor file using the
MTS __$SET_ ATTR system call.

MTS=11 MTS



MTS_ $LABEL

MTS_ $LABEL

Labels the magtape volume described by the given magtape descriptor file.

FORMAT
MTS_$LABEL (pathname, namelen, status)

INPUT PARAMETERS

pathname

The pathname of the magtape descriptor file, in NAME_ $PNAME _ T format. This is an
array of up to 256 characters.

The descriptor file must describe a labeled volume.

namelen
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS _$LABEL causes the volume described by the descriptor file to be labeled accordmg
to ANSI x3.27-1978.

The tape volume must not be open (by previous calls to the stream manager).

MTS MTS=12

&



MTS_$OPEN_DESC

MTS_ $OPEN_DESC

Opens the specified magtape descriptor file and returns a pointer to it.

FORMAT
handle = MTS_$0PEN_DESC (pathname, namelen, read-write, status)

RETURN VALUE

handle
A pointer to the open magtape descriptor file, in MTS_ $HANDLE _ T format. This is a
4-byte integer.

INPUT PARAMETERS
pathname .
The pathname of the magtape descriptor file, in NAME_ $PNAME _ T format. This is an

array of up to 256 characters.

namelen
Length of the name, in bytes. "This is a 2-byte integer.

read-write
Read or write status, in MTS _$RW __ T format. This is a 2-byte integer. Specify only one
of the following predefined values:

MTS_$READ  Open for reading.

MTS _$WRITE Open for writing.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS_$OPEN _DESC opens the specified magtape descriptor file for reading or writing
and returns a pointer to it.

MTS=-13 ' MTS



MTS_$SET_ATTR

MTS_$SET _ATTR

Sets an attribute within the specified magtape descriptor file.

FORMAT
MTS_$SET_ATTR (handle, attribute, value, status)

INPUT PARAMETERS

handle
A pointer to an open magtape descriptor file, in MTS_$HANDLE _ T format. Thisis a
4-byte integer. Specify a handle returned by MTS _$OPEN _ DESC,
MTS _$COPY _DESC, or MTS _$CREATE _ DESC.

attribute
The volume or file attribute to be set, in MTS_ $ATTR _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

mts_$unit_a mts_$labeled_a ‘mts_$reopen_vol_a
mts_$close_vol_a mts_$save_vol_pos_a mts_$vol_device_a
mts_$vol_id_a mts_$vol_access_a mts_$owner_id_a
mts_$file_sequence a mts_$record_format_a mts_$block_length a
mts_$record_length_a mts_$ascii_nl_a mts_$file_resvi_a
mts_$file_section_a mts_$file_id_a mts_$file_set_id_a
mts_$generation_a mts_$generation_version_a mts_$create_date_a
mts_$exp date_a mts_$file_access_a mts_$system_code_a
mts_$system_use_a mts_$buffer offset_a '

See the Table in the MTS Data Types section for a description of volume and file attributes
and their defaults.

value
The value to assign to the attribute, in MTS_$ATTR_ VALUE _ T format. Possible
- values are a 4-byte integer, a Boolean value, or a string, depending upon the attribute to be
changed. See the Table in the MTS Data Types section for a list of volume and file
attributes and their corresponding values.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

Programs must call this routine once for each attribute to be set.

You can change the attributes within a magtape descriptor file using the Shell command
EDMTDESC. See the DOMAIN System Command Reference for details.

MTS MTS=-14

)



ERRORS

STATUS _$0K
Successful completion.

MTS_$BAD_BLOCK_LENGTH
Bad block length.

MTS _$BAD _BUFFER _ OFFSET
Bad buffer offset.

MTS_$BAD_DATA
Descriptor contains bad data.

MTS_$BAD _FILE_ SECTION

Bad file section number.

MTS __$BAD _FILE_ SEQUENCE
Bad file sequence number.

MTS_$BAD_ GENERATION

Bad generation number.

MTS_$BAD _ GENERATION_ VERSION
Bad generation version number.

MTS _$BAD _RECORD_ FORMAT

Bad record format attribute.

MTS__$BAD_RECORD _LENGTH
Bad record length.

MTS_$BAD_ UNIT
Bad tape unit number.

MTS _$INVALID _ ATTR
Invalid attribute to GET _ ATTR/SET _ ATTR.

MTS __$INVALID _DATE
Invalid date text string.

MTS _$NOT _LABELED
Attempt to label unlabeled volume.

MTS_$READ _ ONLY
SET _ATTR on read-only file.

MTS_$VOL _IN_USE

Volume in use.

MTS_$WRONG __TYPE
Object is not type MT __$UID.

MTS=15

MTS ERRORS

MTS



5



O

MUTEX

This section describes the data types and the call syntax for the MUTEX programming calls.
The MUTEX calls do not produce unique error messages. Refer to the Introduction at the
beginning of this manual for a description of data-type diagrams and call syntax format.

MUTEX=-1 ’ MUTEX



MUTEX DATA TYPES

CONSTANTS
//‘\
MUTEX_ $WAIT _FOREVER integer32(-1) ‘
A value that tells MUTEX _$LOCK to wait forever
without timing out.
DATA TYPES
MUTEX_$LOCK_REC_T A mutual exclusion lock record. The diagram
below illustrates the MUTEX _$LOCK_REC_T
data type:
predefined byte:
type offset field name N
1\»_ |
0: integer lock_byte
integer lock_ec.value
ec2_S$eventcount _t
6: integer lock_ec.awaiters
:/ h
Field Description:
lock _byte
A Boolean value that indicates whether any
programs currently hold a MUTEX lock.
lock _ec
An eventcount for programs waiting for the I
MUTEX lock. The lock _ ec field is in .
EC2_$EVENTCOUNT format and has two
subfields:
lock _ec.value The value of the

eventcount.

lock _ec.awaiters Used internally by the EC2
manager.

MUTEX MUTEX=2



O

O

TIME_ $CLOCK_T

predefined
record

time_$clockh_t

predefined
record

MUTEX DATA TYPES

Internal representation of time. The diagram below
illustrates the TIME _ $CLOCK _ T data type:

field name

high

low

byte:
offset
0: integer
4: integer
Field Description:
high
High 32 bits of the clock.
low
Low 16 bits of the clock.
byte:
offset

0: |pos. integer

2: positive integer

Field Description:

high16

field name

high16

low32

High 16 bits of the clock.

low32

Low 32 bits of the clock.

MUTEX=-3

MUTEX



MUTEX_ $INIT

MUTEX_ $INIT

Initializes a mutual exclusion lock record.

FORMAT

MUTEX_$INIT (lock-record)

OUTPUT PARAMETERS

lock=-record
Lock record, in MUTEX _$LOCK _REC_ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

USAGE

Use this call to initialize a mutual exclusion (MUTEX) lock record. This lock record allows
a program to obtain a MUTEX lock on a file. A MUTEX lock allows a program to get
exclusive access to a shared resource.

Initialize a MUTEX lock record within a file. First, map the file with a concurrency mode

of MS_$COWRITERS and an access type of MS__$WR. Then use MUTEX _ $INIT to
initialize the MUTEX lock record.

MUTEX MUTEX=4

)



MUTEX_ $LOCK

MUTEX_ $LOCK

Obtains a mutual exclusion lock on a file.

FORMAT

lock-status = MUTEX $LOCK (lock-record, wait-time)

RETURN VALUE

lock-status
A Boolean value that indicates whether you obtained the lock. TRUE means that you got
the lock; FALSE means that the call timed out before obtaining the lock.

INPUT/OUTPUT PARAMETERS

lock=record

Lock record, in MUTEX _$LOCK_REC _ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

INPUT PARAMETERS

wait-time
The amount of time to wait for the lock, in TIME _$CLOCK _ T format. This data type
is 6 bytes long. See the MUTEX Data Types section for more information.

If MUTEX _$LOCK cannot obtain the lock within the time you specify, the call will time
out and return control to your program. Specify the waiting time as a relative time. Use
the CAL routines to convert time values to TIME _$CLOCK _ T format.

If you specify the waiting time using the constant MUTEX _$WAIT _ FOREVER, the
MUTEX _ $LOCK call wait indefinitely to obtain the lock.

USAGE

Use MUTEX _ $LOCK to obtain a mutual exclusion (MUTEX) lock on a file. A MUTEX
lock lets you have exclusive access to a shared resource.

MUTEX _ $LOCK uses the information in a lock record to determine whether you can
obtain the lock. (Use MUTEX _$INIT to initialize a lock record.) If another program
already has the lock, MUTEX _ $LOCK waits for the amount of time you specify. When
MUTEX _$LOCK returns, it indicates whether you obtained the lock.

Before calling MUTEX _ $LOCK, you must map the file containing the lock record. Map

the file with a concurrency mode of MS__ $COWRITERS and an access mode of MS__$WR.
All programs that map the same MUTEX lock record must be on the same node.

Note that a MUTEX lock is a convention that cooperating programs use to control access to

a resource. If a program does not use MUTEX _ $LOCK and accesses the resource directly,
you cannot guarantee mutual exclusion.

MUTEX=5 MUTEX



MUTEX_$UNLOCK

MUTEX _$UNLOCK

Terminates a program’s mutual exclusion lock on a file.

FORMAT

MUTEX_$UNLOCK (lock-record)

INPUT/OUTPUT PARAMETERS

lock=record

Lock record, in MUTEX _$LOCK _REC_ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

USAGE

MUTEX _ $UNLOCK terminates a program’s mutual exclusion lock on a file. A waiting
program can then obtain the lock.

MUTEX MUTEX=6



NAME

This section describes the data types, the call syntax, and the error codes for the NAME
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

NAME-1 NAME



NAME DATA TYPES

CONSTANTS

NAME_ $COMPLEN_ MAX 32
NAME _$FILE 1
NAME_ $LINK 3
NAME__ $PNAMLEN_ MAX 256
DATA TYPES

NAME_ $DIR_ENTRY _T

Maximum length of an entry name.

The file type value for the enttype field of the
DIR _ENTRY __ T record.

The link type value for the enttype field of the
DIR _ENTRY __T record.

Maximum length of a pathname.

The directory entry returned by
NAME _ $READ _ DIR. The diagram below
illustrates the NAME _ $DIR_ ENTRY __T data

type:

predefined byte: )
type offset field name
0: integer enttype
2: integer entlen
4: | char entname
name_$name_t § §
260: integer unused1
264: integer unused?2

NAME

Field Description:

enttype
Type of the directory entry. Either
NAME _ $FILE or NAME _ $LINK.

entlen
Length of the directory entry name.

entname
Name of the directory entry.

unusedn
Reserved for future use by Apollo.

NAME-2



NAME_$DIR_LIST_T

NAME_ $NAME_T

NAME_ $PNAME _T

STATUS_$T

byte:

offset

0:

NAME DATA TYPES

A 1300-element array of

NAME _$DIR _ ENTRY _ T record structures.
The diagram below illustrates a single element:

An

array of up to NAME _ $COMPLEN _ MAX

(32) characters.

An

array of up to NAME _ $PNAMLEN _ MAX

(256) characters.

A status code. The diagram below illustrates the
STATUS _$T data type:

field name
31
integer all
or
31
_] fail
24
subsys
16
modc
0
integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

NAME-3 NAME



NAME_ $ADD _LINK

NAME _$ADD _LINK

Creates a link.

FORMAT

NAME_$ADD_LINK (linkname, name-length, link-text, text-length, status)

INPUT PARAMETERS

linkname

Name of the link, in NAME _$PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the object is placed in the entry directory of the local node.

name-length
Length of the linkname, in bytes. This is a 2-byte integer.

link-text

Pathname to which the link refers, in NAME _$PNAME _ T format. This is an array of
up to 256 characters.

The link text replaces the linkname when the linkname is used as part of a pathname. For
example, suppose a link named YEATS had a link text //MAN/IN/MASK. Using the

object name YEATS is exactly equivalent to using the pathname //MAN/IN/MASK
directly.

The link text must be a valid filename or pathname. It does not, however, have to refer to
an existing object.

text-length
Length of the link-text pathname, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME

Data Types section for more information.
USAGE

A link is an object within a directory that points to another object. That is, the link is
associated with a pathname that refers to another object. The associated pathname is
refered to as the link text. When the link is referenced, the naming server acts as if the link
text were given in place of the link name.

To delete a link, you must use the naming server call NAME_ $DROP _ LINK, or the Shell
command DELETE _ LINK (DLL).

This system call corresponds to the CRL Shell command.

NAME NAME~-4

7N

.



@

P

O

NAME_$CNAME

NAME _ $CNAME

Changes the last element of a pathname.

FORMAT
NAME_$CNAME (old-pathname, old-length, new-leaf, leaf-length, status)

INPUT PARAMETERS

old-pathname
The current pathname, in NAME _$PNAME __ T format. This is an array of up to 256
characters.

old-length
The length of the current pathname, in bytes. This is a 2-byte integer.

new-leaf
The name that replaces the right-most element of the current pathname, in
NAME _$NAME _ T format. This is an array of up to 256 characters.

leaf-length
The length of the new-leaf name, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _ $CNAME changes the right-most element of the old-pathname to the string
specified by the new-leaf argument.

NAME=~5 NAME



NAME_ $CREATE_ DIRECTORY

NAME _$CREATE_DIRECTORY

Creates a directory.

FORMAT
NAME_$CREATE_DIRECTORY (directory-name, name-length, status)

INPUT PARAMETERS

directory-name
Name of the directory, in NAME_$PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the object is placed in the entry directory of the local node.

name-length
Length of directory name, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE
NAME _$CREATE _DIRECTORY creates a directory using the specified pathname and

name length.

This system call corresponds to the CRD Shell command.

NAME NAME-6

_____



o

NAME_ $CREATE_ FILE

NAME _ $CREATE _FILE

Creates a permanent file.

FORMAT
NAME_$CREATE FILE (filename, name-length, status)

INPUT PARAMETERS

filename
Name of the file, in NAME _$PNAME _ T format. This is an array of up to 256
characters.

name-length

Length of the filename, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The filename given is treated in the same way as any pathname given to the naming server.
For example, a filename beginning with a slash (/) is placed in the entry directory of the
local node.

NAME=~7 NAME



NAME

NAME _$DELETE_ DIRECTORY

NAME _$DELETE _ DIRECTORY
Deletes a directory. (\ )

FORMAT
NAME_$DELETE_DIRECTORY (directory-name, name-length, status)

INPUT PARAMETERS

directory-name
Name of the directory, in NAME_$PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the object is placed in the entry directory of the local node.
Yan
name-length NG
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _ $DELETE_ DIRECTORY deletes the specified directory. The directory must be
empty for a deletion to succeed.

")

NAME=-3g



NAME_ $DELETE_FILE

NAME _ $DELETE_ FILE

Deletes a file.

FORMAT
NAME $DELETE FILE (filename, name-length, status)

INPUT PARAMETERS

filename
Name of the file, in NAME_$PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the object is placed in the entry directory of the local node.
name-length
Length of the filename, in bytes. this is a 2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE
NAME _$DELETE _FILE deletes the specified file.

This system call corresponds to the DLF Shell command.

NAME-9 NAME



NAME_ $DROP _ LINK

NAME_ $DROP_LINK

Deletes a link.

FORMAT
NAME_$DROP_LINK (linkname, name-length, status)

INPUT PARAMETERS

linkname

Name of the link, in NAME _ $PNAME _ T format. This is an array of up to 256

characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the object is placed in the entry directory of the local node.

name-length
Length of the link name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE
NAME _$DROP _ LINK deletes the specified link to an associated object.

This system call corresponds to the DLL Shell command.

NAME NAME=-10

a



O

NAME_ $EXTRACT _DATA

NAME _$EXTRACT _ DATA

Extracts data from a directory entry read by NAME __ $READ _ DIR. (Intended primarily
for use in FORTRAN programs.)

FORMAT
NAME_$EXTRACT_DATA (dir-entry, entry-type, entry-length, entry-name)

INPUT PARAMETERS

dir-entry

The directory entry for which you wish to extract data, in NAME _ $ENTRY _ T format.
This data type is 44 bytes long. See the NAME Data Types section 1 for more information.

In FORTRAN programs, NAME _ $READ _DIR returns the directory entries in a (22,n)
INTEGER*2 array, where n is the maximum number of directory entries your program is
prepared to accept. Each column in this array corresponds to an entry in the specified
directory and contains information about that entry.

Specify the first element of the column that corresponds to the entry for which you wish to
extract data.

OUTPUT PARAMETERS

entry-type
Object type of the entry. This is a 2-byte integer with one of the following predefined
values:
1- NAME_$FILE
the object is a file. A "file" can be either a streams file or a directory.

2 - NAME _ $LINK
the object is a link.

entry-length
Length of the object’s name, in bytes. This is a 2-byte integer.

entry-name
The entry name, in NAME _$NAME _ T format. This is an array of up to 32 characters.

USAGE

This call extracts the description of a single directory entry from the directory entry array
(the dir-list parameter) returned by NAME _ $READ _ DIR. It is intended prlmanly for use
in FORTRAN programs.

In FORTRAN programs, NAME _$READ _ DIR returns the directory entries in a (22,n)
INTEGER*2 array, where n is the maximum number of directory entries your program is
prepared to accept. Each column in this array corresponds to an entry in the specified
directory and contains information about that entry.

The dir-entry parameter for NAME _ $EXTRACT _ DATA should be one of the array
columns. To reference a single column, give the first element of that column.

NAME=-11 NAME



NAME_ $GET _NDIR

NAME _ $GET _ NDIR

Returns the full pathname of the naming directory.

FORMAT

NAME_$GET_NDIR (name, name-length, status)

OUTPUT PARAMETERS

name

Pathname of the naming directory, in NAME _$PNAME _ T format. This is an array of
up to 256 characters.

name-length
Length of the name, in bytes. This is a 2-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The naming directory is set through the NAME _ $SET _ NDIR call or the "ND
directory-name" Shell command. This system call corresponds to the ND Shell command.

NAME NAME=-12

7



NAME _ $GET_PATH

NAME _$GET _PATH

Converts a partial pathname into a full pathname.

FORMAT

NAME _$GET_PATH (in-name, in-len, out-name, out-len, status)

INPUT PARAMETERS

in-name
The relative pathname of an object, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

in-len
Length of the relative pathname, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

out-name

The full (absolute) pathname of the object, in NAME _$PNAME _ T format. This is an
array of up to 256 characters.

out-len
Length of the relative pathname, in bytes. This is a 2-byte integer.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _ $GET _ PATH converts a partial pathname into a full pathname. For example, if
you have been using file FOO, you can call NAME _$GET _PATH to find out that the full
pathname of FOO is //FLYNN/PHL/FOO.

NAME=13 NAME



NAME_ $GET _ WDIR

NAME__$GET _WDIR

Returns the full pathname of the working directory.

FORMAT
NAME $GET_WDIR (name, name-length, status)

OUTPUT PARAMETERS

name

Pathname of the working directory, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

name-length
Length of the name, in bytes. This is a 2-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The working directory is set through the NAME _ $SET_ WDIR call or the *"WD
directory-name" Shell command.

NAME NAME=-14

Ve



O

O

O

NAME_ $READ _DIR

NAME _$READ _DIR
Reads a directory.

FORMAT

NAME $READ DIR (dir-name, name-length, dir-list, index, max-count,
read-count, status)

INPUT PARAMETERS

dir-name ‘

Name of the directory, in NAME _$PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the entry directory of the local node is searched for the

" directory.

Specifying a null character (”’) defaults to the current working directory.

name-length
Length of the name, in bytes. This is a 2-byte integer.

If you specify a null character for the directory name, specify zero as the length.

OUTPUT PARAMETERS

dir-list
A list of directory entries, in NAME _ $DIR _LIST _T format. This is an array of
NAME_ $DIR _ ENTRY _T data types. See the NAME Data Types section for more
information.

The number of NAME _ $DIR _ ENTRY __T data types in the array must equal or exceed
max-count.
INPUT/OUTPUT PARAMETERS

index
Key indicating the directory entry at which to begin reading. This is a 4-byte integer.

On input This number indicates the entry at which to begin reading.

On output This number is adjusted by NAME_$READ _DIR to a number suitable
for a subsequent call to NAME _ $READ _ DIR.

To read from the start of the directory, initialize the index to 1 on your first call to
NAME _$READ_ DIR.

Because NAME _ $READ _ DIR adjusts the index parameter to a suitable value for a
subsequent call, you do not need to change the value yourself.

- NAME=-15 NAME



NAME_ $READ_DIR

If after the first call:

Entries remain to be read
the value of max-count is added to the index parameter, so that the next
entry will be read on a subsequent call.

)

End of directory is encountered
the index parameter is set to 0. A subsequent call returns a status of

NAME_ $NO_MORE_ ENTRIES.

If max-count is identical to the number of directory entries remaining, the call to

NAME _$READ _DIR does not reach the end of the directory and does not set the index
parameter to 0. A subsequent call to NAME_ $READ _ DIR returns a status of

NAME _$NO_ MORE__ENTRIES.

INPUT PARAMETERS

max~count
Maximum number of directory entries to read. This is a 2-byte integer. ' .

OUTPUT PARAMETERS

read-count
Number of directory entries actually read. This is a 2-byte integer.

If READ _ DIR reaches the end of the directory before finding the requested number of o
entries, it returns a read-count smaller than your requested max-count .

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

Possible values are:

STATUS _$0OK Completed successfully.

NAME_$NO_MORE _ENTRIES .

All entries in the directory have been read.

USAGE

NAME _$READ _DIR reads a directory and stores entry names, the length of each entry
name, and the type of each entry. Pascal and C programs can access this information
directly through the directory entry record structure. FORTRAN programs use the
NAME _$EXTRACT _DATA system call to access this information.

The index argument pemits a program to make several calls to NAME _$READ _ DIR to
ensure reading all entries. However, to get an accurate snapshot of a directory, make only
one call to NAME _$READ _ DIR, using a sufficiently large max-count, because the
contents of a directory can change between calls to NAME _$READ _ DIR if the directory
is not locked.

NAME NAME-16



O

NAME _ $READ __LINK

NAME_$READ _LINK

Returns the link text associated with a link name.

FORMAT
NAME_$READ LINK (linkname, name-length, link-text, text-length, status)

INPUT PARAMETERS

linkname
Name of the link, in NAME _$PNAME _ T format. This is an array of up to 256
characters. '

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (/), the entry directory of the local node is searched for the link.

name-length
Length of the linkname, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS

link-text
Text associated with the linkname, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

text~length
Length of the text, in bytes. This is a 2-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

When you use a linkname, the naming server replaces the link name with the associated
link text. NAME__$READ _ LINK returns the text associated with a specified link name.

NAME=-17 NAME



NAME_$SET_NDIR

NAME __$SET__NDIR
Sets the naming directory. ( ‘

FORMAT
NAME_$SET_NDIR' (name, name-length, status)

INPUT PARAMETERS

name
Pathname of the desired naming directory, in NAME _$PNAME _ T format. This is an
array of up to 256 characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. A directory name beginning
with a period (.) indicates a directory within the working directory. You may also specify a

period by itself, which sets the naming directory equal to the working directory. (/\ )
. N
name-~length
Length of the pathname, in bytes. This is a 2-byte integer.
OUTPUT PARAMETERS
status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME L
Data Types section for more information. ‘
USAGE
NAME __$SET _NDIR sets the naming directory to the specified directory. See the
DOMAIN System Command Reference for a description of naming directories.
This system call corresponds to the "ND directory-name" Shell command.
/'/\
\\. .

(

NAME NAME-18



A

NAME_$SET_ WDIR

NAME _$SET_ WDIR

Sets the working directory.

FORMAT
NAME_$SET_WDIR (name, name-length, status)

INPUT PARAMETERS

name
Pathname of the desired working directory, in NAME__$PNAME _ T format. This is an
array of up to 256 characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. A directory name beginning
with a period (.) indicates a directory within the working directory.

name~length
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _$SET__NDIR sets the naming directory to the specified directory. See the
DOMAIN System Command Reference Manual for a description of working directories.

This system call corresponds to the *"WD directory-name" shell command.

NAME~-19 ' NAME



NAME ERRORS

ERRORS

STATUS _$0OK
Successful completion.

NAME _$ALREADY _EXISTS
Name already exists.

NAME _$BAD_ DIRECTORY
Bad directory.

NAME _$BAD _LEAF
Invalid leaf.

NAME _$BAD_ LINK
Invalid link.

NAME _ $BAD _ PATHNAME

Invalid pathname.

NAME _$DIRECTORY _ FULL
Directory is full.

NAME _$DIRECTORY _NOT _EMPTY
Directory is not empty.

NAME _$FILE__ NOT_DIRECTORY
Branch is not a directory.

NAME _$ILL_LINK__OP
Invalid link operation.

NAME _$INSUFFICIENT _ RIGHTS
) Insufficient rights.

NAME _$IS_ SYSBOOT

Unable to delete system bootstrap (sysboot).

NAME _$NO_RIGHTS
No rights.

NAME _ $NODE_ UNAVAILABLE

Node is unavailable.

NAME _$NOT _FILE
Name is not a file.

NAME _$NOT_ FOUND

Name not found.

NAME _$NOT_LINK
Name is not a link.

NAME

NAME=-20

/

/‘H

a

~

)



)

PAD

This section describes the data types, the call syntax, and the error codes for the PAD
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PAD=-1 PAD



PAD DATA TYPES

CONSTANTS

MNEMONIC Value Explanation

PAD _$BS 8 Moves the cursor one character position to the left
if there is any room in the window.

PAD _$CPR_ALL 2 Cursor position report: Reports on each
raw keystroke.

PAD_ $CPR_ CHANGE 1 Cursor position report: Reports only the changed
position since the last output call or position report.

PAD_ $CPR_DRAW 4 Cursor position report: Reports on all

touchpad data.

PAD_ $CPR_FLAG 164FF Cursor position report: Indicates that the next 5
bytes is a report.

PAD_ $CPR__NONE 0 Cursor position report: Does not report any
cursor positions.

PAD_ $CPR_PICK 3 Cursor position report: Reports after cursor is
settled when it has been moved by the touchpad.

PAD_ $CR 13 Returns cursor to the left edge of the pad at the
same line it was on.

PAD_ $ESCAPE 27 For control characters: Tells Display Manager not
to interpret the next character as a control
character. This precedes ANSI escape sequences.

PAD _$FF 12 Makes output start at the top of the window or
window pane.

PAD_$LEFT _WINDOW 16#FD  Cursor position report: Indicates that the cursor
accompanying the report is outside the window.

PAD_ $MAX_TABSTOPS 100 Defines the maximum number of tabstops allowed
to be set.

PAD__$NEWLINE 10 Marks end of an input or output line, makes next
text start on a new line.

PAD_$NO_KEY 16#FE Cursor position report: Indicates that no keystroke
accompanies the report.

PAD_ $TAB 9 Moves cursor to next tab stop.

DATA TYPES

PAD_ $COORDINATE T 2-byte integer for x and y bitmap coordinates.

PAD PAD=2

o

N



PAD_$CRE_OPT_T

PAD_$DISPLAY _TYPE_T

PAD_$KEY_DEF_T

PAD_ $KEY NAME_T

PAD DATA TYPES

A 2-byte integer. Options of a pane. Any
combination of the following pre-defined values:

PAD_$ABS_SIZE
Size parameter is absolute, rather than
relative to the size of the existing pad.

PAD_$INIT _RAW
Input pad is initially raw, rather than normal
(cooked) processing mode.

A 2-byte integer. Type of display associated with
the specified stream id. This is a 2-byte integer.
One of the following pre-defined values:

PAD _$BW_ 15P
Black and white portrait display.

PAD_$BW_19L
Black and white landscape display.

PAD_$COLOR_ DISPLAY
Color display (1024 x 1024 pixels).

PAD_$800_ COLOR
Color display (1024 x 800 pixels).

PAD_$NONE
No display.

An array of up to 256 characters. Display Manager
command to be defined on a program- function key
using PAD _$DEF _ PFK.

An array of up to 4 characters. Name of the

program-function key to be defined using
PAD _$DEF _ PFK.

PAD=3 PAD



PAD DATA TYPES

PAD _$POSITION_T

predefined byte:
type offset
0:
2:

PAD _$REL_ABS_T

PAD

X and y coordinates of a point on the display. The
diagram below illustrates the
PAD_$POSITION__T data type:

integer

integer

field name
x_coord

y_coordv

Field Description:

y__coord

The y coordinate of the point on the display.

x_ coord

The x coordinate of the point on the display.

A 2-byte integer. Indicates whether cursor
movement is relative to the last location, or
absolute. X and y are scaled. One of the following
pre-defined values:

PAD_ $ABSOLUTE

X and y are absolute values. Within a frame,
movement is relative to the top left corner of
the frame. Outside a frame, x is relative to
the left end of the current line, and y is
undefined.

PAD_$RELATIVE

Cursor movement is relative to the last
location. X and y denote positive or negative
offsets to the current cursor position.

PAD=-4

e



O

PAD DATA TYPES

PAD_$SIDE_T A 2-byte integer. Side of a transcript pad that a
new pane occupies. One of the following
pre-defined values:

PAD_$BOTTOM
Bottom of transcript pad.

PAD _$LEFT
Left side of transcript pad.

PAD _$RIGHT
Right side of transcript pad.

PAD _$TOP
Top of transcript pad.

PAD_$STRING_T An array of up to 256 characters. String argument
to some functions.

PAD=5

PAD



PAD DATA TYPES

PAD__$TABSTOP_BUF_T A 100-element array of 2-byte integers. Columns
for tab stop settings. Each element contains a /
column number at which a tab stop will be set.
Column numbers are scaled.

I

PAD_$TYPE_T A 2-byte integer. A type of pad. One of the
following pre-defined values:

PAD_ $EDIT
An edit pad.

PAD_ $INPUT
An input pad.

PAD_$TRANSCRIPT
A transcript pad.

PAD_$READ _EDIT —
A read/edit pad. “

PAD_ $WINDOW_DESC_T Position of window on display screen. The diagram
below illustrates the PAD _ $WINDOW _DESC _ T
data type:

predefined byte:
type offset field name

0: integer top r

o

2: integer left

4: integer width

6: integer height

Field Description: |

top
The x coordinate of the top left corner of the
window, in raster units.

left
The y coordinate of the top left corner of the
window, in raster units.

width
The width of the window, divided by the current
x scale factor.

height

The height of the window, divided by the .
current y scale factor. ( ‘

PAD PAD=-6




O

PAD DATA TYPES

PAD_$WINDOW_LIST_T A 10-element array of

PAD_ $WINDOW _ DESC _ T record structures.
The diagram below illustrates a single element:

predefined byte:
type offset field name
15 0
0: integer top
2: integer left
4: integer width
8: integer height
Field Description:
top

The x coordinate of the top left corner of the
window, in raster units.

left
The y coordinate of the top left corner of the
window, in raster units.

width
The width of the window, divided by the current
x scale factor.

height

The height of the window, divided by the
current y scale factor.

PAD=7 PAD



PAD DATA TYPES

STATUS_ $T

byte:
offset

0:

PAD

A status code. The diagram below illustrates the
STATUS _$T data type:

: field name
31
integer all
or
31
—I fail
24
subsys
16
modc
0
integer code
Field Description:
all

All 32 bits are in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modec
The module that encountered the error (bits 16 -
23). '

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PAD=-8



PAD_ $CLEAR_FRAME

PAD _$CLEAR _FRAME

Clears the current frame, leaving it active.

FORMAT
PAD_$CLEAR FRAME (stream-id, seek-key, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the pad is open, in STREAM _$ID _ T format. This is a
2-byte integer.

seek~-key
Unique value identifying the record where clearing begins, in STREAM _ $ID _ T format.
This is a three element array of 4-byte integers. See the STREAM Data Types section for
more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4-bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to clear information from the frame that you created with the call,

PAD _$CREATE _FRAME. Programs that use frames often overwrite text at random
points within the frame. You should periodically call PAD _$CLEAR _FRAME to remove
this discarded data. By doing so, you prevent data from accumulating in the transcript pad
file. You also prevent the Display Manager from invoking the time-consuming
frame-rewrite operation.

Clearing begins at the record indicated by the seek-key and continues to the end of the
frame. If the first four bytes of the seek-key are O, the entire frame is cleared. The seek-key
is returned by STREAM _ $PUT _ REC and STREAM _ $PUT __ CHR. See the
STREAM __$ Calls section for more information.

PAD=9 PAD



PAD _ $CLOSE_ FRAME

PAD _$CLOSE_FRAME
Closes a frame, leaving its contents in the pad, and returns to line-oriented processing on

the input pad.

FORMAT
PAD_$CLOSE_FRAME (stream-id, status)

INPUT PARAMETERS

stream~-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a

2-byte integer.
OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4-bytes long. See the PAD

Data Types section for more information.
USAGE
After the frame is closed, you can view the frame by scrolling the transcript window

backwards. Once the frame is closed, all frame operations except

PAD_ $CREATE _ FRAME are invalid.

PAD PAD=-10

&



O

PAD_$COOKED

PAD _ $COOKED

Disables raw mode input or output to a pad.

FORMAT
PAD_$COOKED (stream-id, status)

INPUT PARAMETERS

stream _id
Number of the stream on which the pad is open, in STREAM _$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This call returns the pad to normal (cooked) processing if it is currently in raw mode due to
a call to the PAD_ $RAW procedure. PAD _ $COOKED has no effect if called when the
pad is not currently in raw mode. After you execute this procedure, the input window
reappears and is empty.

PAD-11 PAD



PAD

PAD_$CPR_ENABLE

PAD _$CPR__ENABLE

Enables reporting of the keyboard cursor position for an input pad in raw mode. (You can
only get keyboard cursor position reports on pads in raw mode).

FORMAT
PAD_$CPR_ENABLE (stream-id, report-cpr-type, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the input pad is open, in STREAM _ $ID _ T format. This
is a 2-byte integer.

report-cpr-type
Type of cursor position report. This is a 2-byte integer. Specify one of the following
predefined values:

PAD _$CPR_NONE
Requests no cursor position reports (the default).

PAD _$CPR__CHANGE
Requests cursor position reports only when the cursor has moved through
keystrokes since the last output call or the last position report.

PAD_$CPR_ALL

Requests a cursor position report with every character.

PAD _ $CPR_ PICK
Requests a cursor position report after the cursor has settled after being
moved by the touchpad, bitpad, or mouse.

PAD _$CPR_ DRAW
Requests a cursor position report for all cursor positions during cursor
movement from the touchpad, bitpad, or mouse.

PAD_ $CPR_PICK and PAD _ $CPR_ DRAW also report new cursor positions resulting
from Display Manager commands; for example, arrow keys, tabs, TR, TL, TB.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-12

e



PAD_$CPR__ENABLE

' USAGE

You get cursor position reports in response to a STREAM _ $GET _REC call, intermixed
with raw character data. The Display Manager uses a single byte to represent a raw

keystroke. It uses a 6-byte sequence to give you a cursor position report. The sequence looks
like this:

1 byte —— PAD_$CPR_FLAG, indicating that the next 5
bytes are a cursor position report.

2 bytes —-— The X coordina.te of the cursor position.

2 bytes -- The y coordinate of the cursor position.

1 byte —— The raw keystroke or PAD_$NO_KEY if there

is no keystroke accompanying this cursor
position report, or PAD_$LE'.FT__WINDOW if
the cursor moved outside the window.

The x and y coordinates are scaled according to the scaling factors in effect at the time of
the PAD _ $CPR__ ENABLE call (see PAD _ $SET _ SCALE). The x and y coordinates are
relative to the upper left corner of the frame. (If the cursor is not inside a frame, the x

coordinate is relative to the start of the current line, and the y coordinate is meaningless.)

In raw mode, the Display Manager does not automatically echo typed keystrokes nor move
the cursor. If your program requests PAD _ $CPR _ ALL but does not act to move the
cursor (typically by displaying typed keystrokes), each keystroke produces a cursor position
report, usually describing the same cursor position. If you don’t intend to echo keyboard
input, request PAD _ $CPR__ CHANGE instead to avoid redundant cursor position reports.

PAD _$CPR__ CHANGE compares the present keyboard cursor with the last output cursor
position. In raw mode, the position of the output cursor is under program control.
Therefore, if your program does not move the output cursor to follow the input cursor
(which you can move) you may receive a stream of cursor position reports, all showing the
same position, as long as the keyboard cursor is not in the same position as the output
cursor.

PAD=13 PAD



PAD_ $CREATE

PAD _ $CREATE

Creates a new pad and a window pane to view it.

FORMAT
PAD_$CREATE (pathname, name-length, pane-type, related-stream-id, side,

pane_options, pane-size, pane-stream-id, status)

INPUT PARAMETERS

pathname

Pathname to a file to display in the window pane, in NAME _ $PNAME _ T format. This is
an array of up to 256 characters.

If the specified pathname refers to an existing file, the Display Manager positions the new
window pane at the beginning of the file, and displays any existing data. If the given
pathname does not refer to an existing file, a permanent file with that name is created.
You usually use a null pathname when creating a transcript pad. You must specify a null
pathname when creating an input pad.

name-length

Length of the pathname in bytes. This is a 2-byte integer. A value of 0 creates a temporary
file for the pad. You must specify 0 when creating an input pad.

pane-type

The window pane type in PAD _$TYPE _ T format. This is a 2-byte integer. Specify one of
the following predefined values:

PAD _$EDIT Creates a pad in which you can view and modify the associated file.
PAD _$INPUT Creates an input pad.

PAD_$READ _EDIT

Creates a pad in which you can view but not modify the associated file.

PAD _ $TRANSCRIPT

Creates a transcript pad.

related-stream=-id

PAD

The stream ID of a transcript pad, in STREAM _ $ID _ T format. This is a 2-byte integer.
The related-stream-id for an input window pane (PAD __$INPUT) must refer to an open
transcript window pane that has no other input window pane associated with it.

PAD-14

7

7

/_\\._



PAD_$CREATE

side
Q The side of the transcript pad that the new window occupies, in PAD _$SIDE _ T format.
This is a 2-byte integer. Specify one of the following predefined values:

PAD_$LEFT
PAD_$RIGHT
PAD_$TOP

PAD_$BOTTOM

You must specify PAD _$BOTTOM when creating an input window pane for a transcript
window pane.

pane-options
Attributes of the pane. This is a 2-byte integer. In Pascal, specify any combination of the
Q following set of predefined values:

PAD_ $ABS__SIZE
Specifies an absolute pane-size. If not given, the pane-size parameter is a
relative value.

PAD __$INIT_RAW
Indicates that a new input pad is initially in raw rather than cooked
mode. This is for input pads only, it is invalid for any other pad types.

In FORTRAN, specify either 0, to indicate that the pane-size is relative, or give the sum of
the desired options.

pane-size
Size of the pane. This is a 2-byte integer. A window pane always takes up one full side of
the related window. The size refers only to the depth of the window.

You can express the pane size either as a percentage relative to the existing transcript
window, or as an absolute value in terms of the current scale factor.

f\) If you specify the pane-size as an absolute size, the Display Manager attempts to keep the
- window pane at that size. However, the window pane can never be larger than the related
window, so that, if the related window shrinks below the size requested, the window pane
also shrinks.

In addition, if you specify the pane size as an absolute size, the value given is multiplied by
the current scale factors to yield raster units. The default scale factors are the current font
size so that, unless you change the scale, you should express the pane-size in terms of lines
or characters.

An input window pane will normally be one line deep, but can grow and shrink depending
on how many lines of input are waiting for action. You should specify a size that
accommodates this because the size parameter determines the mazimum number of lines
that the input window pane can occupy. The size of an input window pane can never be
less than 1. (A common relative size is 20. )

PAD=-15 PAD



PAD_ $CREATE

OUTPUT PARAMETERS

pane-stream=~id
Number of the stream on which the new window pane is open, in STREAM _$ID_ T
format.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types for more information.

USAGE
Use this call to create a new pad and window pane on a related stream. The related stream

can be either the stream ID of a transcript pad that you previously created with a call to
PAD _ $CREATE or PAD _ $CREATE_ WINDOW. For transcript pads, the stream ID

can be a standard output stream such as STREAM __$STDOUT, or STREAM _ $ERROUT.

You can create any number of window panes on top of the original transcript pad up to the
maximum of 40 pads and 60 windows.

You must use PAD_$CREATE to create an input pad for an existing transcript pad.

PAD PAD=16

/"\

2



PAD_$CREATE_ FRAME

PAD _ $CREATE _ FRAME

Creates a frame in a pad.

FORMAT
PAD_$CREATE FRAME (stream-id, width, height, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the input pad is open, in STREAM _ $ID __ T format. This
is a 2-byte integer.

width
Width of the new frame in pixels. This is a 2-byte integer. Value can be up to 32767 raster
units. Width is scaled according to the current scale factors.

height
Height of the new frame in pixels. This is a 2-byte integer. Value can be up to 32767 raster
units. Height is scaled according to the current scale factors.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a frame on an existing transcript pad. Because you can move the
cursor anywhere within the frame, create frames when you want to have more control over
the cursor position in a given area of the screen.

Your program must either close the frame with PAD _ $CLOSE_ FRAME or delete the

frame with PAD__ $DELETE__ FRAME before exiting. (Note that you can review a closed
frame by scrolling the transcript window backwards, but a deleted frame no longer exists.)

PAD=-17 PAD



PAD_ $CREATE_ ICON

PAD _$CREATE_ICON

Creates a new pad and associated window in icon format.

FORMAT

PAD_$CREATE_ICON (pathname, name-length, type, unit, icon-pos, icon-char,
window, stream-id, status)

INPUT PARAMETERS

pathname

Pathname to a file to display in the pad, in NAME _ $PNAME __ T format. This is an array

of up to 256 characters.

If the specified pathname refers to an existing file, the Display Manager positions the new
window pane at the beginning of the file, and displays any existing data. If the given
pathname does not refer to an existing file, a permanent file with that name is created.
You usually create a null pathname when creating a transcript pad.

name-~length

Length of the pathname string. This is a 2-byte integer. A value of 0 creates a temporary
file for the pad.

type
Pad type in PAD _$TYPE _ T format. This is a 2-byte integer. Specify one of the following
predefined values:

PAD _$TRANSCRIPT
Creates a transcript pad.

PAD _ $EDIT Creates a pad in which you can view and modify the associated file.

PAD _$READ _EDIT
Creates a pad in which you can view but not modify the associated file.

unit
Display unit number associated with the stream-ID. This is a 2-byte integer. Usually, there
is only one display per node so this value is often 1.

icon-pos
X- and y-coordinates of the upper left corner of the icon window, in PAD_ $POSITION _ T
format. This data type is four bytes long. See the PAD _$ Data Types section for more
information.

icon-char
Icon font character to be displayed in the icon window. This character must reside in the
current icon font file. A null character value () causes the Display Manager to select the
default icon character for this pad type.

PAD PAD~18

7

2



PAD _$CREATE_ICON

window
Window descriptor giving the position on the screen that the new window will occupy when
expanded to full size (the icon window size is fixed by the the font character selected), in
PAD _$WINDOW _DESC_ T format. This data type is 8 bytes long. See the PAD Data
Types section for more information.

The window specified is the usable part of the displayed window. The displayed window is
larger by the size of the border and the legend. If you specify either the width or the height

as zero, the window is created using the same rules as for Display Manager commands (see
the DOMAIN System Command Re ference).

OUTPUT PARAMETERS

stream-id
Number of the stream on which the new window is open, in STREAM _ $ID __ T format.
This is a 2-byte integer.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a new pad and window in icon format. To change this window from
icon format to a full-sized window, use PAD _ $SELECT _ WINDOW. To change an
existing window into icon format, use PAD _$MAKE__ICON.

PAD-19 PAD



PAD_$CREATE_ WINDOW

PAD _$CREATE_ WINDOW

Creates a new pad and a window to view it.

FORMAT

PAD_$CREATE WINDOW (pathname, name-length, pad-type, unit, window,
stream-id, status)

INPUT PARAMETERS

pathname
Pathname to a file to display in the pad, in NAME__$PNAME _ T format. This is an array
of up to 256 characters. When creating an edit or read/edit pad, this is the pathname of
the permanent file for use as the pad. If a file with this name exists, the Display Manager
positions the new window at the top of the pad. If such a file doesn’t exist, a new file with
that name is created. You usually use a null pathname when creating a transcript pad.

name-length

Length of the pathname string. This is a 2-byte integer. When creating an edit or read/edit
pad, a value of 0 creates a temporary file as the pad.

pad-type
Pad type in PAD_$TYPE T format. This is a 2-byte integer. Specify one of the following
predefined values:

PAD _ $TRANSCRIPT
Creates a transcript pad.

PAD_ $EDIT Creates a pad in which you can view and modify the associated file.

PAD_$READ _EDIT
Creates a pad in which you can view but not modify the associated file.

unit
Display unit number to use. This is a 2-byte integer. Usually there is only one node per
display so this value is often 1.

window

Window descriptor giving the position on the screen that the new window will occupy, in
PAD _$WINDOW _ DESC __ T format. This data type is 8 bytes long. See the PAD Data

Types section for more information.

The window specified is the usable part of the displayed window. The displayed window is
larger by the size of the border and the legend. If you specify either the width or the height

as zero, the window is created using the same rules as for Display Manager commands (see
the DOMAIN System Command Re ference).

OUTPUT PARAMETERS

stream=~-id

Number of the stream on which the new window is open, in STREAM __ $ID _ T format.
This is a 2-byte integer.

PAD PAD=20

N



O

O

PAD__$CREATE_ WINDOW

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a new pad and window to view it. Use PAD__$CREATE to create a
new pad and window pane on an existing transcript pad. To create an input pad, you must
use PAD _ $CREATE.

PAD=21 PAD



PAD_$DEF_PFK

PAD _$DEF_PFK

Defines a program function key for use by a program.

FORMAT

PAD_$DEF_PFK (stream-id, key-name, definition, def-len, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

key-name
Name of the key to be defined. This is a 4-byte character array. Use the key name exactly
as it appears in the DOMAIN System Command Reference. Use uppercase letters (for
example, F1) except when you are redefining a lowercase letter key (such as x). Do not use
quotes in this character array (except to redefine the quote key).

definition

Display Manager command you want executed whenever the specified key is pressed. This is
an array of up to 128 characters.

def-len

Length of the definition in bytes. This is a 2-byte integer. A value of 0 (zero) returns the
key to its original definition.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _ $DEF _ PFK defines a program function key for use by a program. When you press
a defined key, the definition string is entered as a Display Manager command.

Program function keys defined by PAD _ $DEF _ PFK behave like keys defined through the
Display Manager, except that the definition is only effective within windows viewing the
associated pad.

Definitions remain in effect after the program finishes executing, but only within windows
viewing the pad associated with the program. '

The Display Manager command string you specify as the key definition is often the ES
command, which contains a text string and lets the program function key simulate the
typing of that text. You may specify the ER command, which introduces a two-digit
hexadecimal number and feeds that value directly to the program when the user presses the
key. The ER command essentially enables raw-mode input of the specified value, with no
echoing or other processing by the Display Manager. The DOMAIN System Command
Re ference contains more details on these commands.

PAD PAD=22

/7



PAD_ $DEF_PFK

The rules for naming keys in PAD _ $DEF _ PFK differ from the rules for naming keys in
, the KD (key definition) Display Manager command. That command implicitly converts
Q letters to uppercase and allows the use of single quotes.

O

PAD=23 PAD



PAD_$DELETE_ FRAME

PAD _$DELETE_ FRAME

Deletes and clears the current frame.

FORMAT
PAD_$DELETE FRAME (stream-id, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _$DELETE_FRAME removes the current frame from the pad. After executing this
procedure, the pad returns to line-oriented processing. You cannot perform further frame
operations until you create another frame with a call to PAD _ $CREATE _ FRAME.

PAD PAD=-24

/.
/



PAD_ $DM_ CMD

PAD__$DM_ CMD

Executes a Display Manager command.

FORMAT

PAD_$DM_CMD (stream-id, command, command-length, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which a pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

command
Display Manager command, in PAD _ $STRING _ T format. This is an array of up to 256
characters.

command-length
Length of the command string in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this procedure with caution since it performs actions that you normally perform with
the keyboard. Because of this, PAD_$DM__CMD may produce unexpected results.

You can find a list of Display Manager commands in the DOMAIN System Command
Reference.

PAD=25 PAD



PAD_$EDIT _ WAIT

PAD _$EDIT _ WAIT

Suspends program execution until you close an edit window pane, then converts the stream
so that the program can access the new input.

FORMAT
PAD $EDIT WAIT (pane-stream-id, status)

INPUT PARAMETERS

pane-stream=-id
Number of the stream on which the edit window is open, in STREAM $ID T format.

This is a 2-byte integer.
OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Your program suspends execution until you close the edit window pane with a CTRL/Y
(PW; WC -Q command) or a CTRL/N (WC -Q command).

If you close the edit window pane with a CTRL/N, and the file did not exist before the edit
window pane was created, PAD_ $EDIT_ WAIT returns an error, usually indicating that
the file was deleted while open.

You must use this procedure before reading a file edited through an edit window pane.

PAD PAD=26

B



O

O

PAD _$ICON_ WAIT

PAD _$ICON_ WAIT

Waits until a window is expanded from an icon format to a full-window size or until the
icon window moves.

FORMAT

PAD_$ICON_WAIT (stream-id, window-no, icon-moved, icon-pos, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

window~no
Index into the window list returned by PAD _ $INQ _ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

icon-moved
A Boolean value indicating icon-window movement. It returns a value of TRUE if the icon
window has moved.

icon-pos )
New position of the moved icon window in PAD _ $POSITION __ T format. This data type
is 4 bytes long. See the PAD _$ Data Types section for more information.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE
This call may be used on any type of pad.

If the window is not currently in icon format, this call returns immediately.

PAD=27 PAD




PAD_$INQ_DISP_ TYPE

PAD_$INQ_DISP _TYPE

Returns the type of display associated with the given stream ID.

FORMAT
PAD_$INQ_DISP_TYPE (stream-id, display-type, unit, status)

INPUT PARAMETERS

stream=-id
Number of the stream associated with an input or transcript pad, in STREAM _$ID__ T
format. This is a 2-byte integer.

OUTPUT PARAMETERS

display-type ‘
Type of display associated with the specified stream ID, in PAD _ $DISPLAY _TYPE_T
format. This is a 2-byte integer. Returns one of the following predefined values:

PAD _$NONE No display

PAD _$BW _ 15P
Black and white portrait

PAD _$BW_ 19L
Black and white landscape

PAD _ $COLOR _ DISPLAY
Color display (1024 x 1024)

PAD _$800__ COLOR
Color display with fewer pixels (1024 x 800)

PAD_ $COLOR2_ DISPLAY
Color display (1280x1024x8)

PAD _ $COLOR3_ DISPLAY
Color display (1024x800x8)

PAD _ $COLOR4 _ DISPLAY
Color display (1024x800x4)

unit
Display unit number. This is a 2-byte integer. This parameter is reserved for future use, it
will always have the value of 1.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD PAD=-28

®

-



PAD_$INQ_DISP_TYPE

(‘\ USAGE
K) PAD _$INQ_ DISP__ TYPE returns the display type and unit number associated with the

stream ID. The display unit number can be used as an argument to

PAD _$CREATE_ WINDOW.

PAD=-28.1 PAD



PAD

PAD=28.2



PAD _$INQ_FONT

PAD _$INQ_FONT

Returns information about the current font.

FORMAT

PAD_$INQ_FONT (stream-id, font-width, font-height,
font-name, font-size, font-len, status)

INPUT PARAMETERS

stream-id
The number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is
a 2-byte integer.

font-size
The number of bytes available in the "font-name" string buffer. This is a 2-byte integer.
PAD _$INQ__FONT fills the "font-name" output parameter with this many characters of
information. If you do not want to know the pathname, you can specify O (zero) as the
value of "font-size."

OUTPUT PARAMETERS

font-width
Width of the font in raster units. This is a 2-byte integer. For fonts in which different
characters have different widths, "font-width" describes the width of the space character.

font-height
Height of the font in raster units. This is a 2-byte integer. The height includes any interline
spacing specified in the font file.

font-name .
Full pathname of the font, up to the node entry directory (/), in PAD _ $STRING_ T
format. This is an array of up to 256 characters. The pathname is returned with the
correct character case (i.e., upper-case characters in the pathname are returned as
upper-case; lower-case as lower-case).

font-len
Length of the "font-file" pathname. This is a 2-byte integer. If this value is greater than the
input parameter "font-size," the Display Manager truncates the returned pathname.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to determine which font your program is currently using. Your program can
use up to 100 different character fonts as long as you initially load all the fonts that you
intend to use with PAD_ $LOAD _ FONT. When you want your program to use a specific
font, call PAD _$USE_ FONT to invoke a previously loaded font. Each time you want to
change a loaded font, use PAD _ $USE_ FONT.

PAD=-29 PAD



PAD_$INQ_ FULL_ WINDOW

PAD _$INQ_FULL_ WINDOW

Returns information about the entire window specified, including the border and legend.

FORMAT
PAD_$INQ_FULL_WINDOW (stream-id, window-no, window, status)

INPUT PARAMETERS

stream~-id
Number of the stream on which the pad is open, in STREAM _ $ID __ T format. This is a
2-byte integer. '

window-no
Window number of the window open on the pad. This is a 2-byte integer. Window number
one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

window
Window descriptor giving the position on the screen that the window occupies, including the
border and legend, in PAD _ $WINDOW _ DESC __ T format. This data type is 8 bytes
long. See the PAD Data Types section for more information.

The window gives the position of the top left corner, width and height of the window. The -
values appear in the following order: top, left, width, height. Top and left are expressed in
raster units. Width and height are divided by the current scale factors.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to determine exactly how much screen space your window uses, including the
border and legend. A call to PAD _ $INQ_ WINDOWS returns similar information about
the usable part of the display windows (not including the border and legend).

Note that if the specified stream-id and window-no refer to a window pane, the information
returned is for the outermost containing window.

PAD PAD=30

&




PAD_$INQ__ICON

PAD _$INQ_ ICON

Returns information about a window in icon format.

FORMAT

PAD_$INQ_ICON (stream—id, window-no, icon-pos, icon—char, status)

INPUT PARAMETERS

stream-=-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a
2-byte integer.

window=-no
Index into the window list returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

icon-pos
Position of the icon, in PAD _ $POSITION _ T format. This data type is 4 bytes long. See
the PAD Data Types section for more information.

icon-char
Character currently displayed in the icon window.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window is not currently in icon format, the information returned describes its
previous icon status, if any, and its future icon status, should the Display Manager
command ICON or the PAD _$MAKE __ICON call be issued with the default setting for
icon-pos and icon-char.

PAD=31 PAD



PAD_$INQ_ICON_FONT

PAD _$INQ__ICON_ FONT

Returns information about the current icon font.

FORMAT

PAD_$INQ_ICON FONT (stream-id, window-no,font-name
font-buf-size, font-len, status)

INPUT PARAMETERS

stream=-id :
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a
2-byte integer.

window-no
Window for which information is wanted. Window-no is an index into the window list
returned by PAD _ $INQ__ WINDOWS. This is a 2-byte integer. Window number one
always refers to the first window created to view the pad.

font-buf-size
Number of bytes available in the font-name buffer string. This is a 2-byte integer.
PAD _$INQ__FONT fills the output parameter, font-name, with this many characters of
information.

OUTPUT PARAMETERS

font-name
Pathname the font from the node entry directory (/), in NAME_ $PNAME _ T format.
This is an array of up to 256 characters. The pathname is returned with the correct
character case (i.e., upper-case characters in the pathname are returned as upper-case;
lower-case as lower-case).

font-len
Length of the font file pathname. This is a 2-byte integer. If this value is greater than the
input parameter font-size, the Display Manager truncates the returned pathname to fit in
the smaller number of characters.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to get the pathname of the icon font in use. You can change the icon font in
use with the call, PAD _$SET__ICON_FONT.

The default icon font file is /SYS/DM/FONTS/ICONS. You can create a new icon font file

to contain your own icons by using the font editor EDFONT. See the DOMAIN System
Command Reference for a complete description of EDFONT.

PAD PAD=-32

@

C



PAD_$INQ_ KBD

PAD _$INQ_KBD

Returns information about the keyboard currently in use.

FORMAT
PAD_$INQ_KBD (stream-id, buffer-size, kbd-suffix, length, status)

INPUT PARAMETERS

stream=-id
Number of the stream associated with an input or transeript pad, in STREAM _$ID_ T
format. This is a 2-byte integer.

buffer-size
Number of bytes available in the “kbd-suffix" string buffer. This is a 2-byte integer.

OUTPUT PARAMETERS

kbd=-suffix ‘
Suffix to be appended to Display Manager pathnames to locate a key definition file, in
PAD _$STRING _ T format. This is an array of up to 256 characters. Suffixes used by
standard DOMAIN software are:

Null string Corresponds to the 880 keyboard.
Value of “2* Corresponds to the low-profile keyboard.
Value of "3* Corresponds to the low-profile keyboard with numeric keypad.

(Display Manager pathnames for key definitions are /SYS/DM/STD _ KEYS and
USER _DATA/KEY _DEFS.)

length
Actual length of the string. This is a 2-byte integer. If the length parameter is greater than
"kbd-suffix,* it truncates "kbd-suffix.*

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to determine which keyboard is in use. For example, you might want to set up
program definition keys according to the type of keyboard in use.

PAD=-33 PAD



PAD_$INQ_ POSITION

PAD _$INQ_ POSITION

Returns the position of the output cursor.

FORMAT

PAD_$INQ POSITION (stream-id, x, y, status)
INPUT PARAMETERS

stream=-id

Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

x
X position of the output cursor. This is a 2-byte integer.
y ;
Y position of the output cursor. This is a 2-byte integer.
status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.
USAGE

X and y are divided by the current scale factors.
If this procedure is executed when the cursor is inside a frame, x and y are relative to the

upper left corner of the frame. If the cursor is not in a frame, x represents the position on
the line and y is undefined.

PAD , , PAD-34

<\\
o




PAD_$INQ_VIEW

PAD _$INQ_VIEW

Returns information about the position of a window relative to a pad.

FORMAT

PAD_$INQ_VIEW (stream-id, window-number, line, eof-linenum, x-offset,
y-offset, status)

INPUT PARAMETERS

stream~-id
Number of the stream associated with an input or transcript pad, in STREAM _$ID_ T
format. This is a 2-byte integer.

window-number
Index into the window list returned by PAD__ $INQ _ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

line
Number of the line being viewed. This is a 4-byte integer.

eof-linenum
Last line or frame on the pad. This is a 4-byte integer.

x-offset
Distance the pad is horizontally scrolled. This is a 2-byte integer.

y-offset
Distance the pad is vertically scrolled. This is a 2-byte integer. Only frames can be
vertically scrolled.

status .
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this routine in conjunction with PAD _$SET __ VIEW to control the display of graphic
images that are larger than the window. PAD _$INQ__ VIEW describes the pad element
currently being viewed through the given window, usually a transcript pad element.

If the element currently in view is a frame, x-offset and y-offset describe how the window is
positioned in relation to the frame. If you are viewing the current frame and not some

previous part of the pad, the value of eof-linenum will be equal to the line parameter.

If the element currently in view is not a frame, the line parameter is the number of the top
line in the window.

PAD=35 PAD



PAD _

$INQ__ WINDOWS

PAD_$INQ_ WINDOWS

Returns information about windows viewing the current pad.

FORMAT
PAD_$INQ_WINDOWS (stream-id, windowlist, window-list-size,

window-no, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the pad is open, in STREAM _$ID _ T format. Thisis a
2-byte integer.

window=list=size

Maximum number of windows on which information is desired. This is a 2-byte integer.

OUTPUT PARAMETERS

windowlist

Information describing a window, in PAD _ $WINDOW _ LIST _ T format. This data type
is an array of up to 10 elements, each of which is in PAD _$WINDOW _ DESC__T format
(four 2-byte integers). See the PAD Data Types section for more information.

Windowlist indicates the top left corner and the width and height of each window open on
the pad, up to wlistsize. The values appear in the following order: top, left, width, height.
Top and left are expressed in raster units, but width and height are divided by the current
scale factors.

window=no

The number of windows open on the pad. This is a 2-byte integer. Window number one
always refers to the first window created to view the pad. Use this parameter in calls that
require a window number.

status

PAD

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-36

4



PAD_$LOAD_FONT

PAD _$LOAD _FONT

Loads a character font.

FORMAT
PAD_$LOAD_FONT (stream-id, font-pathname, name-length, font-id, status)

INPUT PARAMETERS

stream=-id )
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

font-pathname
Pathname of the file containing the character font, in PAD _ $STRING _ T format. This is
an array of up to 256 characters.

name-length -
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font-id
Font identifier, to be used in later calls to PAD_ $USE _FONT. This is a 2-byte integer.

status , .
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Your program can use up to 100 different character fonts as long as you initially load all
the fonts that you intend to use with PAD _ $LOAD _FONT. When you want your
program to use a specific font, call PAD_$USE_FONT to invoke a previously loaded
font. Each time you want to change a loaded font, use PAD _$USE_FONT. To
determine which font your program is currently using, call PAD _$INQ_FONT.

The Display Manager first attempts to find the font file using the pathname directly, with
the normal defaults. If it fails to find the file, it searches in /SYS/DM/FONTS.

PAD _$LOAD _FONT does not switch fonts. It merely loads the font into the invisible
portion of display memory and returns a font ID. After loading the font, your program can

call PAD_ $USE_ FONT to use it.

You can load up to 100 fonts in a given pad.

PAD=-37 PAD



PAD_$LOCATE

PAD _$LOCATE

Returns the position of the keyboard cursor in response to a keystroke.

FORMAT

PAD_$LOCATE (stream-id, X, y, character, status)
INPUT PARAMETERS

stream-id

Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

x
X position of the input cursor. This is a 2-byte integer.
Yy
Y position of the input cursor. This is a 2-byte integer.
character
Value of the key pressed.
status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.
USAGE

This procedure returns the cursor position only when a raw character is entered. If the pad
is in raw mode, any keystroke will do. In cooked mode, the ER command must be used.
This command is usually entered through a function key definition.

The keyboard cursor position must be within the transcript pad.

X and y are divided by the current scale factors.

PAD PAD-38

N\
)

o



C

O

C

)

)

PAD_$MAKE_ICON

PAD _$MAKE_ICON

Changes an existing window into icon format.

FORMAT
PAD_$MAKE ICON (stream-id, window-no, icon-char, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _$ID _ T format. Thisis a
2-byte integer.

window=-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

icon~-char
Icon font character to be displayed in the icon window. This character must reside in the
current icon font. A 0 (zero) causes the Display Manager to select the default icon character
for this pad type.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This call changes an existing full-size window into icon format. (If the window is invisible at
the time of the call, it first becomes visible and then becomes an icon.) To create a
completely new pad and window in icon format, use PAD _ $CREATE _ ICON.

If the window is already an icon, this call has no effect.
Specify the display position for the new icon using the PAD _ $SET_ICON_POS routine
before executing this call. If you do not do this, the Display Manager assigns a default icon

position descriptor and font character.

The size of the icon window is not user-definable. It is determined automatically by the size
of the font character specified.

PAD=39 PAD



PAD_$MAKE_INVISIBLE

PAD _ $MAKE _ INVISIBLE

S
Makes a visible window invisible. {
FORMAT
PAD_$MAKE INVISIBLE (stream-id. window-no, status)
INPUT PARAMETERS
stream~id
Number of the stream on which the pad is open, in STREAM _ $ID__ T format. This is a
2-byte integer.
window=no
Index into the window list returned by PAD _ $INQ__ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad. N
(/‘
OUTPUT PARAMETERS N
status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.
USAGE ,
‘/
The effect of this call is the same as if the window were completely obscured by other -
windows on the screen, except that no amount of pushing, popping, moving, or growing can
make it reappear. Only a subsequent call to PAD _ $SELECT_ WINDOW will restore it to
visibility in its full-size format.
If the window is currently invisible, this call has no effect.
If the window is currently in icon format, it will first be made into a full-size window and
then turned invisible. —
\
f/f\

PAD PAD=-40



PAD_ $MOVE

PAD_$MOVE

Moves the output cursor.

FORMAT
PAD_$MOVE (stream-id, rel-abs, x, y, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the pad is open, in STREAM _$ID_ T format. Thisis a
2-byte integer.

rel-abs
Indicates whether cursor movement is to be relative or absolute. This is a 2-byte integer in
PAD __$REL _ABS_ T format. Specify one of the following predefined values:

PAD _$RELATIVE
Movement is relative to the last cursor position. X and y denote positive
or negative offsets to the current cursor position, scaled according to the
current scale factors.

PAD _$ABSOLUTE
X and y are absolute, within the frame. X and y must be positive.
Within a frame, movement is relative to the upper left corner of the
frame. Outside a frame, x is relative to the left end of the current line
and y is not used. In both cases, x and y are scaled according to the
current scale factors.

Change to the x-coordinate of the cursor position. This is a 2-byte signed integer.

Change to the y-coordinate of the cursor position. This is a 2-byte signed integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _$MOVE changes the position of the output cursor, which marks the place where the
next program output will appear.

The cursor can move vertically only within a frame, not on a line. The Display Manager
uses the y value only when a frame is active, and ignores it otherwise.

PAD=41 PAD



PAD_$POP_PUSH_ WINDOW

PAD_$POP_PUSH_WINDOW

Pops or pushes a window.

FORMAT
PAD_$POP_PUSH_WINDOW(stream-id, window-no, flag, status)

INPUT PARAMETERS

stream-~-id
Number of the stream on which the pad is open, in STREAM _ $ID_ T format. Thisis a
2-byte integer.

window=-no
The index into the window list returned by PAD __ $INQ_ WINDOWS. This is a 2-byte
integer. Window number one always refers to the first window created to view the pad.

flag
Indicates if the window is to be pushed or popped. This is a Boolean variable. A value of
TRUE pops the specified window to the top of the screen, ensuring that no portion of the
window is hidden by another window. A value of FALSE pushes the specified window to
the bottom of the screen, allowing other windows to cover it wherever possible.

OUTPUT PARAMETERS

status .
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD PAD=-42



O

PAD_$RAW

PAD _$RAW

Places an input or transcript pad in raw mode.

FORMAT
PAD_$RAW (stream-id, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a

2-byte integer. The stream-id given should refer to an input stream, usually standard input
(STREAM _$STDIN). PAD_ $RAW has no effect on output.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _ $RAW puts the pad into raw mode, and has no effect if it is already in raw mode.
PAD _ $COOKED returns the pad to normal processing.

In raw mode, the Display Manager sends keyboard input directly to the program without
echoing or processing it in any way. ASCII control characters are also sent to the program,
but the Display Manager still handles its function keys.

The Display Manager immediately displays every character it receives, unless the window is
in HOLD mode. If the window is in HOLD mode, new characters do not appear until the
keyboard user scrolls the window or releases HOLD.

When it executes this procedure, the Display Manager clears the input pad and shrinks its
window size to zero. The keyboard cursor moves to the current output cursor position in
the transcript pad. While the pad is in raw mode, the keyboard and output cursors usually
move together.

NOTE: A program using PAD _ $RAW must execute PAD _ $COOKED before

termination. Most system utilities, including the Shell, will not work correctly in raw
mode.

PAD~-43 PAD



PAD _ $SELECT _ WINDOW

PAD _ $SELECT _ WINDOW

Makes an invisible window visible and/or changes an icon-format window into a full-sized
window.

FORMAT
- PAD_$SELECT_WINDOW (stream-id, window-no, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a
2-byte integer.

window-no

Index into the window list returned by PAD _$INQ__ WINDOWS. This is a 2-byte integer.

Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE
Use PAD _ $MAKE _ INVISIBLE to make windows invisible.

If this call is used to expand an icon to full-size format, the position and dimensions of the
large window are the same as those it had when it was last full size. If it was never full-size,
its position and dimensions are those specified (or defaulted) when the icon was created
(either by PAD _ $CREATE _ ICON, or by the Display Manager commands CP, CV, CE,
or CPB with the -I option specified).

PAD PAD=-44

2



PAD_$SET_AUTO_ CLOSE

PAD _$SET_AUTO_ CLOSE

Sets a window to close automatically when its pad closes.

FORMAT

PAD_$SET_AUTO_CLOSE (stream-id, window-no, auto-close, status)

INPUT PARAMETERS

stream~id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a
2-byte integer.

window=-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

auto-close
Indicates whether the window is to close automatically. This is a Boolean value. If TRUE,
the window disappears when the pad onto which it opens is closed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

When a program first makes this call and then does a STREAM _ $CLOSE, the window
specified is closed and deleted from the screen. This is equivalent to specifying the Display
Manager command WC -A for a window.

PAD=45 PAD



PAD_ $SET_BORDER

PAD _$SET_BORDER

Adds a border to, or removes the border from, a full window.

FORMAT
PAD_$SET_BORDER(stream-id, window-number, flag, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a
2-byte integer.

window=-number
Index into the window list returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

flag
Indicates whether to add or remove a border. This is a Boolean variable. If TRUE, the
window appears with a border around its edges and a legend at the top. If FALSE, any
border and legend are removed from the window, making the window’s usable area equal to
the amount of space the window occupies on the screen.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this procedure to remove or add a border to a full window that has no other panes
associated with it. To get a full window without any panes, you can either create a
transcript pad and never make a PAD_ $CREATE call to add panes, or create a transcript
pane that covers the entire window. Another way to get a full window is to make an input
pane invisible by using the PAD _ $RAW call.

PAD PAD=-46

1/

-



O

PAD_$SET_FULL_ WINDOW

PAD _$SET_FULL_ WINDOW

Moves a window or sets a window position for future use.

FORMAT

. PAD_$SET_FULL_WINDOW (stream-id, window-no, window, status)

INPUT PARAMETERS

stream=-id v
Number of the stream on which the pad is open, in STREAM _ $ID __ T format. This is a
2-byte integer.

window=no
Index into the window list returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

window
Window descriptor giving the position on the screen that the new window will occupy when
expanded to a full-sized window, in PAD _ $WINDOW _ DESC _ T format. This data type
is 8 bytes long. See the PAD _$ Data Types section for more information.

The window specified is the entire window, including the border, legend, and usable part of
the window. The call, PAD _$INQ__FULL_WINDOW returns information about the
entire window. '

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window specified is currently in icon format or is invisible, this call establishes a
full-size window position for future use (i.e., when your program calls

PAD _$SELECT _ WINDOW to expand the icon into a full-size window, or you issue the
Display Manager commands ICON or WI).

If the window specified is currently full-size, then the window is repositioned to the location
given by window.

PAD=47 PAD



PAD_$SET_ICON_FONT

PAD_$SET__ICON_FONT

e

Sets the current icon font to a specified font name. s

~..
FORMAT
PAD_$SET_ICON FONT (stream-id, window-no, font-name,
font-len, status)

INPUT PARAMETERS
stream-id

Number of the stream on which the pad is open, in STREAM _ $ID _ T format. Thisis a

2-byte integer.
window=no

Window whose icon font you want to change. Window-no is an index into the window list

returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer. Window number one (\ )

always refers to the first window created to view the pad. ~_
font-name

Full pathname of the font, up to the node entry directory (/), in NAME_ $PNAME _ T

format. This is an array of up to 256 characters.
font-len

Length of the font file pathname. This is a 2-byte integer.

'z

OUTPUT PARAMETERS -
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD

Data Types section for more information.
USAGE

Use this call to change the icon font in use. This call changes the font of the specified ( o

windowonly.
When a window is created either as a full window or an icon, the Display Manager assigns

it an icon from “active icon font.* The default active icon font is in

/SYS/DM/FONTS/ICONS. You can specify another font to be the active icon font by

using the FL. command with the -I option.

You can create a new icon font file to contain your own icons by using the font editor
EDFONT. See the DOMAIN System Command Reference for a complete description of
EDFONT.

If the window is in icon format at the time of this call, the icon in the display changes to
the new font immediately.

PAD=-48



PAD_$SET_ICON_POS

PAD _$SET_ICON_POS

Moves an icon or sets an icon position for future use.

FORMAT

PAD_$SET_ICON_POS (stream-id, window-no, icon-pos, icon-char, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _$ID_ T format. Thisis a
2-byte integer.

window=no

Index into the window list returned by PAD _$INQ__ WINDOWS. This is a 2-byte integer.
Window number one always refers to the original transcript pad.

icon~pos
New position (x and y coordinates) of the icon, in PAD__$POSITION _ T format. This data
type is 4 bytes long. See the PAD Data Types section for more information.

icon~char
Character to be displayed in the icon window.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window specified is currently in full-size format, this call establishes an icon position
for future use (i.e., when your program calls PAD_$MAKE__ICON to turn the window
into icon format, or you use the Display Manager command ICON).

If the window specified is already in icon format, then the icon is repositioned to the
location given by icon-pos, and the specified icon-char replaces the current one.

Compare this call to PAD_$SET_FULL_ WINDOW, which performs the same operations
for full-size windows.

The size of the icon window is not user-definable. It is determined automatically by the size
of the font character specified.

PAD=49 PAD



PAD_ $SET_ SCALE

PAD_$SET _SCALE

Sets a scale factor for cursor operations.

FORMAT

PAD_$SET_SCALE (stream-id, x-factor, y-factor, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the pad is open, in STREAM _$ID _ T format. Thisis a
2-byte integer.

x-factor
Scale factor for the x-coordinate. This is a 2-byte integer.

y=-factor
Scale factor for the y-coordinate. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Specify a scale factor of zero to use the scale of the current character font. This is the
default.

Specify a nonzero scale factor to use that number as a multiplier for raster units. One
raster unit is equal to one bit in the display. ‘

The scale factor is used to convert between raster units and numbers supplied in routines
such as PAD _$MOVE. When using the scale of the current font, you express dimensions
in terms of characters and lines. In any case, the numbers you enter are multiplied by the
scale factor to yield raster units, and raster units are divided by the scale factor before
being returned.

The scale factor is used to process input or output for PAD _$CPR__ENABLE,
PAD_$CREATE__FRAME, PAD _$INQ__ POSITION, PAD _ $LOCATE,
PAD _ $MOVE, and PAD _ $INQ__ WINDOWS. In PAD__$INQ__ WINDOWS, height and
width are scaled, but top and left are not. PAD_$INQ__FONT always returns dimensions
in terms of raster units.

The scale factors set with this call apply to the specified stream until specifically reset, even
after the calling program ends. Your program should not depend on the scale factors being
correctly set, but should call PAD_ $SET _ SCALE to explicitly set the scale factors as
desired.

PAD PAD=350

)

n

/

)



PAD _$SET_ TABS

PAD__$SET_ TABS

Sets tab stops within a pad.

FORMAT
PAD_$SET_TABS (stream-id, tab-stop-array, no-of-tabs, status)

INPUT PARAMETERS

stream~-id
Number of the stream on which the pad is open, in STREAM _ $ID __ T format. Thisis a
2-byte integer.

tab=-stop-array
Columns for tab stops. This is an array of up to 100 2-byte integers. Each element in the
array contains a column number at which a tab stop will be set. Column numbers are
scaled according to the PAD _ $SET _ SCALE procedure.

For example, assume that the current vertical and horizontal scale factors are both equal to
one. A three-element array containing the integers 100, 300, and 500 would specify tab
stops at bit positions 100, 300, and 500 on the screen. Because the display contains
approximately 100 bits per inch, these tab stops would be set about 1, 3, and 5 inches (2.54,
7.62, and 12.70 cm) from the left edge of the screen.

no-of-tabs
Number of tab stops set. This is a 2-byte integer.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This procedure sets tabs ohly for the pad open on the specified stream. Tab stops for all
other pads are unchanged.

The default tab setting has tabs every 4 columns.

PAD=-51 : PAD



PAD_$SET_ VIEW

PAD_$SET_ VIEW

Positions a window to establish a given view.

FORMAT

PAD_$SET_VIEW (stream-id, window-no, line, x-offset,
y-offset, status)

INPUT PARAMETERS

stream-id
Number of the stream ssociated with a transcript pad, in STREAM_ $ID _ T format. This
is a 2-byte integer.

window=no
Index into the window list returned by PAD _ $INQ__ WINDOWS. This is a 2-byte
integer.Window number one always refers to the first window created to view the pad.

line
Line number to view. This is a 4-byte integer.

x~offset
Distance to seroll the pad horizontally. This is a 2-byte integer.

y-offset
Distance to scroll the pad vertically (for frames only). This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This routine repositions a window to establish a particular view of a transcript pad.
Programs can call this routine after a call to PAD_$INQ__ VIEW and in conjunction with
calls to PAD _$INQ _ WINDOWS to control the display of graphic images that are larger
than the window.

PAD PAD=52

)

8



PAD_ $USE_FONT

PAD _$USE_FONT
Invokes a loaded font.

FORMAT
PAD_$USE_FONT (stream-id, font-id, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the pad is open, in STREAM _ $ID_ T format. Thisis a
2-byte integer.

font-id
Font identifier returned by PAD _$LOAD _ FONT. This is a 2-byte integer.

OUTPUT PARAMETERS

status :
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to change your program’s current character font.

Your program can use up to 100 different character fonts as long as you initially load all
the fonts that you intend to use with PAD _ $LOAD _FONT. When you want your
program to use a specific font, call PAD_ $USE_ FONT to invoke a previously loaded
font. Each time you want to change a loaded font, use PAD _$USE__ FONT. To
determine which font your program is currently using, call PAD _$INQ__FONT.

NOTE: Use PAD_$USE_FONT only to change the current font in use. You will get
erroneous results if the call specifies the font that is already currently in use.

PAD=-53 PAD



PAD ERRORS

ERRORS

STATUS _$0OK
Successful completion.

PAD _ $2MNY _ CLIENTS
Operation illegal with more than one client process.

PAD _$2MNY_ INPUT _PADS
Only one input pad per transcript.

PAD_$BAD_KEY_NAME

Key name not found.

PAD _$EDIT _ QUIT
User quit (WC -Q) out of edit pane.

PAD _$FONT_FILE__ERR
Could not access font file.

PAD_s$ID_OOR
Stream id out of range.

PAD _$ILL_PARAM_ COMB
Conflict in PAD _$CREATE call.

PAD_$ILL_PTYPE
Cannot do operation on this type of pad.

PAD _ $NO_SUCH_ WINDOW
Bad window number in INQ/SET _ VIEW.

PAD _$NO_ WINDOW

Window no longer exists.

PAD _$NOT__ ASCII
Existing pad in PAD _$CREATE is not ASCII.

PAD_$NOT_INPUT
Operation valid on input pads only.

PAD_$NOT_RAW
Operation requires pad be in raw mode.

PAD _$NOT_ TRANSCRIPT
Operation valid on transcript pads only.

PAD _$STREAM__NOT _OPEN
No stream open on this SID.

PAD _$STREAM__NOT _PAD
Preferred stream is not a pad.

PAD _$TOO_MANY__FONTS
Too many fonts loaded in this pad.

PAD_ $VOOR
Value out of range.

PAD PAD=54




PBUF'S

O

This section describes the error messages and the call syntax for the PBUFS programming calls.
The PBUFS calls do not use unique data types. Refer to the Introduction at the beginning of this
manual for a description of call syntax format.

PBUFS-1 PBUFS



PBUFS__ $CREATE

PBUFS_ $CREATE

Creates a paste buffer.

FORMAT
PBUFS_$CREATE (buffer-name, type, stream-id, status)

INPUT PARAMETERS

buffer-name
Name of the paste buffer you want to create (not a pathname), in NAME _$NAME _ T
format. This is an array of up to 32 characters. This array must be a full 32 bytes, padded
with blanks. See the NAME _$ Data Types section for more information.

type
Indicates whether the paste buffer is to hold text or pictures. This is a Boolean value.
TRUE designates a text buffer. FALSE designates a GMF buffer that can hold images.

OUTPUT PARAMETERS

stream-id
Number of a stream with which to refer to the new paste buffer, in STREAM_$ID_ T
format. This is a 2-byte integer.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the
PAD _$ Data Types section for more information.

USAGE

This call creates a paste buffer of the specified name and type in the directory
‘node __data/paste _buffers. An error occurs if the named paste buffer already exists in
/sys/node__data/paste__buffers.

The file has the temporary attribute, STREAM _$IRM_ TEMPORARY. The system will

delete this file when you close the stream, unless you call STREAM _$REDEFINE to
change the file’s attributes first.

Calling PBUFS_ $CREATE opens the stream for overwrite access
(STREAM _ $OVERWRITE).

You can call STREAM _ $CREATE, specifying a pathname in
/sys/node__data/paste __buffers to achieve the same effect.

PBUFS PBUFS~-2

N



@

O

PBUFS_ $OPEN

PBUFS_ $OPEN

Opens a pre-existing paste buffer.

FORMAT
PBUFS_$OPEN (buffer-name, type, stream-id, status)

INPUT PARAMETERS

buffer-name
Name of the paste buffer you want to open (not a pathname), in NAME _ $NAME _ T
format. This is an array of up to 32 characters. This array must be a full 32 bytes, padded
with blanks. See the NAME _ $ Data Types section for more information.

type
Indicates whether the paste buffer is to hold text or pictures. This is a Boolean value.
TRUE designates a text buffer. FALSE designates a GMF buffer that can hold images. The
value you specify must match the value used when creating the paste buffer, or the paste
buffer manager returns the completion status PBUFS_$WRONG _ TYPE.

OUTPUT PARAMETERS

stream=~-id :
Number of the stream with which to refer to the paste buffer, in STREAM_$ID__ T
format. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
PAD _$ Data Types section for more information.

USAGE

This call open a pre-existing paste buffer of the specified name and type in the directory
‘node__data/paste__buffers.

An error occurs if the named paste buffer does not already exist in
/sys/node__data/paste_buffers. Use PBUFS__ $CREATE to create a buffer.

You can call STREAM__ $OPEN, on a file in /sys/node__data/paste__buffers, to achieve
the same effect.

PBUFS-3 PBUFS



PBUFS ERRORS

ERRORS

PBUFS_$WRONG_ TYPE
The actual buffer type differs from the type specified.

PBUFS PBUFS=4

()

N

M



O

PFM

This section describes the data types, the call syntax, and the error codes for the PFM
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PFM-1 PFM



PFM DATA TYPES

CONSTANTS

PFM_$ALL_FAULTS

DATA TYPES

PFM_ $CLEANUP_REC

predefined byte:
type offset
0:
4:

PFM_$FAULT_FUNC_P_T

PFM

Specified when establishing a handler to catch
all faults.

Cleanup routine information. The diagram below

illustrates the PFM_ $CLEANUP _ REC data type:

field name
integer magicp
integer checkp

Field Description:

magicp
A pointer used by the fault manager.

checkp
A pointer used by the fault manager.

A 4-byte integer. A pointer to a fault handler
function.

PFM=2

P

e

;-

7))



PFM_$FAULT_REC_T

predefined byte:
type offset
0:
2:

PFM_$FH_FUNC_VAL_T

PFM_$FH_HANDLE_T

PFM_$FH_OPT_SET_T

integer

PFM DATA TYPES

Parameter to fault handler function. The diagram
below illustrates the PFM_ $FAULT _REC_T
data type:

field name

pattern

integer status

Flield Description:

pattern
Reserved for PFM use.

status
The returned status in STAUTS _ $T format.

A 2-byte integer. Specifies action to be taken when
handler completes. One of the following pre-defined
values:

PFM_ $CONTINUE_FAULT _HANDLING
Specifies that the fault be passed to next
handler.

PFM__$RETURN_ TO_FAULTING__CODE
Specifies that control be returned to the
program.

A 4-byte integer. Pointer to a fault handler.

A 2-byte integer. Options for type of handler to
establish. Any combination of the following
pre-defined values:

PFM_$FH_BACKSTOP
specifies that the handler should be called
after all other handlers.

.

PFM_ $FH_ MULTI_LEVEL
Specifies that handler applies to faults on its
program level, and all subordinate levels.

PFM=3 PFM



PFM DATA TYPES

STATUS_$T

byte:
offset

0:

PFM

A status code. The diagram below illustrates the
STATUS__$T data type:

field name
31 0
integer all
or
31
-| . fail
24
subsys
16
modc
0
integer code
Field Description:
all

All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

PFM=-4

/



O

PFM_ $CLEANUP

PFM _ $CLEANUP

Establishes a clean-up handler for faults.

FORMAT
status = PFM_$CLEANUP (clean-up-record)

RETURN VALUE

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

When initially called to establish a clean-up handler, PFM_ $CLEANUP returns the status
PFM _ $CLEANUP _ SET. After a fault occurs, PFM_ $CLEANUP returns the status of
the fault, or the status signaled by PFM__$SIGNAL or PFM_ $ERROR _ TRAP.

OUTPUT PARAMETERS

clean-up-record
A record uniquely identifying the clean-up handler, in PFM _$CLEANUP _ REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

This parameter is passed as input to the PFM_$RLS_ CLEANUP and
PFM _ $RESET _ CLEANUP procedures in order to specify a particular handler. Your
program cannot modify or copy this value.

USAGE

PFM__ $CLEANUP establishes a clean-up handler that is executed when a fault occurs.
Clean-up handlers let the program "clean up" a task, possibly notifying you of the error
condition and leaving any open files in a known and stable state.

You may establish more than one clean-up handler. Multiple cleanup handlers are executed
consecutively, starting with the most recently established handler and continuing backward
in time (LIFO). A built-in clean-up handler is always established when you invoke your
program. This built-in handler is always called last. It closes any files that are still open
and returns control to the invoking Shell.

The initial call to PFM_ $CLEANUP establishes the clean-up handler and returns a status
value of PFM_$CLEANUP _ SET. When a fault occurs, execution returns to the most
recent PFM_ $CLEANUP call. The clean-up handler The associated with that call is then
removed from the stack and executed.

PFM=5 PFM



PFM_ $ENABLE

PFM_ $ENABLE

Enables asynchronous faults.

FORMAT
PFM_$ENABLE

USAGE

PFM _$ENABLE enables asynchronous faults after they have been inhibited by a call to
PFM_ $INHIBIT. PFM__$ENABLE causes the operating system to pass asynchronous
faults on to the program.

While faults are inhibited, the operating system holds at most one asynchronous fault. So,
as soon as a PFM__ $ENABLE executes, your program receives one asynchronous fault. If
more than one fault occurred while faults were inhibited, the program receives the first
asynchronous fault.

Since a user cannot terminate a program while PFM _ $INHIBIT is in effect, it is good

programming practice to inhibit asynchronous faults only during critical intervals, or enable
faults occasionally to allow users to exit.

PFM PFM=6

)



PFM_$ERROR_ TRAP

PFM_ $ERROR _ TRAP

Simulates a fault with a given status code, storing traceback information.

FORMAT
PFM_$ERROR_TRAP (status)

INPUT PARAMETERS

status
Error code, in STATUS _$T format. This data type is 4 bytes long. See the PFM Data
Types section for more information.

USAGE

Use this procedure to force an error exit with the specified status code, or in a fatal error
situation where no status code otherwise returns. One possible use is in defining your own
error condition.

This procedure differs from PFM_ $SIGNAL in that traceback information is stored, so
that it is possible to determine where the fault occurred.

PFM=7 PFM



PFM__$ESTABLISH_FAULT _HANDLER

PFM_ $ESTABLISH__FAULT _HANDLER
Establishes a fault handler.

FORMAT

handler-id = PFM_$ESTABLISH FAULT HANDLER (target-status, options,
function-pointer, status)

RETURN VALUE

handler-id

A value uniquely identifying the established handler, in PFM__$FH__HANDLE _ T format.
This is a 4-byte integer.

You pass this value to the PFM_$RELEASE _FAULT _ HANDLER call when you want to

release the handler.

INPUT PARAMETERS

target-status

A value specifying the type of fault that COMMENTS this handler takes effect. This is a
4-byte integer.

To establish a fault handler for all faults produced by a certain DOMAIN module, use any
error status code returned by that module, with the fault code field set to 0. To establish a
fault handler that handles all faults, use the constant PFM__ $ALL _ FAULTS.

options
A value specifying the type of handler you want to establish, in
PFM_$FH_OPT_SET_ T format. This is a 2-byte integer. Specify any combination of
the following set of predefined values:

PFM_$FH__MULTI__LEVEL
To declare a multilevel fault handler that handles faults for its own
program level and all subordinate levels.

PFM_ $FH_ BACKSTOP

To establish a backstop fault handler that takes effect after all nonbackstop handlers have
taken effect.

(In FORTRAN, you can combine these options by adding the constants.)

function-pointer
The address of the fault handler for the specified type(s) of faults, in
PFM__$FAULT _FUNC_P_ T format. This is a 4-byte integer.

~OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

PFM PFM=-8



PFM_ $ESTABLISH_FAULT _HANDLER

This call establishes a fault handler, making it take effect for all the faults of the specified
type or types that occur after the time of the call.

The fault handler remains in effect until you release it using
PFM _$RELEASE__ FAULT _ HANDLER or until the program ends.

PFM=9 PFM



PFM__$INHIBIT

PFM _ $INHIBIT

Inhibits asynchronous faults.

FORMAT
PFM_$INHIBIT

USAGE

PFM __$INHIBIT prevents asynchronous faults from being passed to the program. Use this
call when an interval of your program cannot be interrupted, for example, when performing
I/O. Use the complementary PFM _ $ENABLE call to re-enable asynchronous faults.

Asynchronous faults are produced from outside your program and are unrelated to anything
within your program. They can occur at any point during your program’s execution. A
common example of an asynchronous fault is the Display Manager quit (DQ) command that
occurs when someone types a CTRL/Q to stop a program.

Since a user cannot terminate a program while PFM _ $INHIBIT is in effect, it is good
programming practice to inhibit asynchronous faults only during critical intervals.

While faults are inhibited, the operating system holds at most one asynchronous fault. So,
as soon as a PFM_ $ENABLE executes, your program receives one asynchronous fault. If
more than one fault occurred while faults were inhibited, the program receives the first
asynchronous fault.

Inhibiting asynchronous faults has no effect on the processing of synchronous faults such as
floating-point overflow errors, access violations, address errors, and so on.

PFM PFM=10




PFM__$RELEASE_ FAULT_HANDLER

PFM_$RELEASE _FAULT _ HANDLER

Releases a fault handler.

FORMAT
PFM_$RELEASE FAULT_HANDLER (handler-id, status)

INPUT PARAMETERS

handler-id
A value uniquely identifying the handler, in PFM_ $FH__HANDLE _ T format. This is a
4-byte integer.

A unique value is returned by PFM_ $ESTABLISH_FAULT _HANDLER each time you
establish a handler.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

USAGE

This call COMMENTS the specified fault handler ceasing to have effect for faults that occur
after the time of the call.

To establish a fault handler, use the PFM_ $ESTABLISH__FAULT _ HANDLER call.

PFM=11 PFM



PFM_ $RESET_ CLEANUP

PFM__$RESET _ CLEANUP

Returns a clean-up handler to the top of the handler stack.

FORMAT
PFM_$RESET_CLEANUP (clean-up-record, status)

INPUT PARAMETERS

clean-up-record

A record uniquely identifying the clean-up handler, in PFM_$CLEANUP _ REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

A unique record is returned by PFM_ $CLEANUP each time a cleanup handler is
established. The clean-up-record that is input must not have been altered or copied. If it

has been, or if for some other reason the record is invalid, the procedure will fail with the
status PFM_ $INVALID _ CLEANUP _ REC.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

USAGE

This procedure re-establishes the clean-up handler identified by the clean-up-record at the
top of the stack, so that any subsequent errors invoke it first.

This procedure can only be used within a clean-up handler.

PFM PFM=12

e



PFM_ $RLS__ CLEANUP

PFM_ $RLS_ CLEANUP

Releases a specified clean-up handler and any other clean-up handlers above it on the stack.

FORMAT
PFM_$RLS_CLEANUP (clean—up-record, status)

INPUT PARAMETERS

clean-up-record
A record uniquely identifying the clean-up handler, in PFM_ $CLEANUP _ REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

A unique record is returned by PFM_ $CLEANUP each time a clean-up handler is
established. The clean-up-record that is input must not have been altered or copied. If it
has been, or if for some other reason the record is invalid, the procedure will fail with the

status PFM _ $INVALID _ CLEANUP _REC.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

Possible status values are:

PFM_ $INVALID _$CLEANUP _REC

The clean-up-record has been altered or copied and is therefore invalid.

PFM_ $BAD _RLS_ORDER
Program attempting to release a clean-up handler before releasing all
handlers established after it. This status is only a warning; the handler ic
successfully released, and all handlers above it on the stack are also
released.

USAGE

PFM _$RLS_ CLEANUP releases the specified clean-up handler and all other clean-up
handlers above it on the stack.

PFM=-13 ) PFM



PFM_ $SIGNAL

PFM_ $SIGNAL
/_’\ N
Exits from the current procedure and signals a status for the clean-up handler on the top of /\
the stack. -
FORMAT
PFM_$SIGNAL (status)
INPUT PARAMETERS
status
Status code, in STATUS _$T format. This data type is 4 bytes long. See the PFM Data.
Types section for more information. ,
USAGE
/'f" .
PFM _$SIGNAL can be called from within a clean-up handler or from normal code. |
If invoked from within a clean-up handler, PFM _ $SIGNAL exits from the current clean-up
handler and invokes the clean-up handler on the top of the stack, if there is one. If invoked
from outside a clean-up handler, this routine invokes the top clean-up handler on the stack,
with the status code given in the PFM _ $SIGNAL call.
Typically, PFM _ $SIGNAL is called at the end of one clean-up handler to invoke the next
handler, and the status parameter is normally assigned the error status originally received
from PFM_$CLEANUP. When no more clean-up handlers from the current program are (/
on the stack, PFM__ $SIGNAL causes the program to exit to the invoking program (which .
may be the Shell) with the status code set to the value given in the status parameter.
Traceback information (see the DOMAIN System Command Re ference) is not stored when
PFM _ $SIGNAL is called. When a fault occurs, however, the operating system
automatically stores traceback information.
Unlike most subroutines, PEM _$SIGNAL does not return to the place from which it was
called. I
o

PFM PFM=-14



ERRORS

STATUS_$0K
Successful completion.

PFM_$BAD_RLS__ ORDER
Cleanup handler released out of order.

PFM_$CLEANUP _NOT _FOUND
Static cleanup handler not found.

PFM_ $CLEANUP _SET
Cleanup handler established successfully.

PFM_ $CLEANUP _SET _ SIGNALLED
PFM _$CLEANUP _ SET was signalled.

PFM_$FH__NOT_FOUND
Attempt to release non-existent fault handler.

PFM_ $FH_ WRONG _ LEVEL
Attempt to release fault handler at wrong level.

PFM_$INVALID _ CLEANUP _REC
Invalid clean-up record.

PFM_ $NO_ SPACE

No RWS space to create static clean-up handler.

PFM=15

PFM ERRORS

PFM



)
{

2



O

O

PGM

This section describes the data types, the call syntax, and the error codes for the PGM
programming calls. Refer to the Introduction at the beginning of this manual for a description of

data-type diagrams and call syntax format.

PGM-1

PGM



PGM DATA TYPES

CONSTANTS

PGM_ $ERROR
PGM_$FALSE

PGM_ $INTERNAL_FATAL
PGM_$MAX_ SEVERITY
PGM_ $0K

PGM__$OUTPUT _INVALID
PGM_$PROGRAM_ FAULTED
PGM_$TRUE

PGM_ $WARNING

DATA TYPES

EC_$PTR_T

EC2_ $EVENTCOUNT _T

predefined byte:
type offset
0:
4:

PGM

3 The error severity level.

1 A test severity level.

5 The fatal severity level.

15 The highest severity level.

0 The success severity level.

4 A conditional s;everity level.

6 The program fault severity level.

0 A test severity level.

2 The warning severity level.
A 4-byte integer. Pointer to an eventcount.
User eventcount. The diagram below illustrates the
EC2_$EVENTCOUNT _T data type:

field name
integer value
integer awaiters

Field Description:

value
Current EC value.

awaiters
First process waiting.

PGM=~2

e

)



O

PGM_$ARG

predefined
type

PGM_ $ARGV

PGM_$ARGV_PTR

PGM_ $CONNV

PGM_ $EC_KEY

PGM_ $MODE

PGM_ $NAME

byte:
offset

PGM DATA TYPES

An argument returned by PGM _ $GET _ ARGS.
The diagram below illustrates the PGM _ $ARG
data type:

field name
integer len
char chars
R R
char

Field Description:

len
Length of the argument.

chars
The text of the argument, a character array of
up to 128 elements.

A 128-element array of 4-byte integers. An array of
pointers to returned arguments.

A 4-byte integer. The address of a returned
argument.

A 128-element array of 2-byte integers. An array of
stream IDs.

A 2-byte integer. Key specifying process
eventcount. One of the following pre-defined
values:

PGM__$CHILD_PROC
Currently the only valid key.

A 2-byte integer. Specifies the mode in which to
invoke a program. Any combination of the

following pre-defined values:

An array of up to 128 characters. The text of a
retrieved argument.

PGM=3 PGM



PGM DATA TYPES

PGM__$OPTS A 2-byte integer. Options for the mode in which to
invoke a program. One of the following pre-defined
values:

PGM_ $WAIT
Specifies synchronous operation of the invoked
program.

PGM_ $BACKGROUND
Specifies parallel operation of the invoked
process.

PGM_$PROC Process handle record. The diagram below
illustrates the PGM__$PROC data type:

predefined byte:

type offset field name
31 0

univ_ptr 0: integer p

Field Description:

P
The process pointer.

PGM PGM=-4

-
Y
]\ //



O

STATUS_$T

UID_$T

PGM DATA TYPES

A status code. The diagram below illustrates the.
STATUS _ 8T data type: ’

byte:

‘ field name
offset 31 0

0: integer all

or

31
0: —l fail
24
subsys
16
1: modc
0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

A type UID. The diagram below illustra,tes. the
UID __$T data type:

PGM=~5 PGM



PGM DATA TYPES

predefined byte:

type offset
0: integer
4: " integer

Field Description:
high

The high four bytes of the UID.

high

The low four bytes of the UID.

PGM PGM-6

\/\ \
field name o
high
low
1/\\
.
(’/
NG
.



O

O

PGM_$DEL_ ARG

PGM_ $DEL_ ARG

Deletes a command line argument.

FORMAT
PGM_$DEL_ARG (arg-number)

INPUT PARAMETERS

arg-number
Number indicating the argument to delete. This is a 2-byte integer.

USAGE

PGM _$DEL _ ARG deletes the specified argument from the argument vector whose
address is returned by PGM _ GET _ ARGS. After execution of PGM_ $DEL _ ARGS, the
previously returned address refers to the newly changed argument vector.

Arguments in the argument vector are numbered 0 through n, where 0 is the program
name, and n is the final argument. Because PGM__$DEL _ ARGS changes the argument
vector, arguments following deleted arguments change in number. For example, say the
argument vector contains six arguments (including the program name). After you delete
the third argument, arguments 4, 5, and 6 must be referenced as arguments 3, 4, and 5.

PGM=7 PGM



PGM_ $EXIT

PGM_$EXIT

Exits from a program to its caller.

FORMAT
PGM_$EXIT

USAGE

PGM

PGM _$EXIT can be used to exit from a program at any point and return to the program’s
caller.

PGM _$EXIT differs from a simple exit (for example, via FORTRAN’s END statement) in
that PGM __$EXIT is valid in a subroutine. Execution in a subroutine terminates the main
program. FORTRAN’s STOP statement, which can be used in main programs and
subprograms, calls PGM__ $EXIT.

When PGM _ $EXIT is executed, any files left open by the program are closed, any storage
acquired is released, and the inhibit count is reset to its value when the program was
invoked.

PGM _ $EXIT calls PFM__$SIGNAL with a status code equal to the last severity level set
by a call to PGM__$SET _ SEVERITY. If no PGM_$SET _ SEVERITY calls have been
made, the status code is PGM_$0K. PFM_ $SIGNAL signals this severity to any
established clean-up handlers, which normally execute in response to any status code other
than PFM _ $CLEANUP __ SET. Therefore, any established clean-up routines are normally
executed after PGM_ $EXIT is called.

PGM=-8

VAR



0

.

PGM_$GET_ ARG

PGM_$GET_ARG

Returns one argument from the command line.

FORMAT

arg-length = PGM_$GET_ARG (arg-number, argument, status, maxlen)

RETURN VALUE

arg-length
Length, in bytes, of the returned argument. This is a 2-byte integer.

INPUT PARAMETERS

arg-number
Number of the argument to return. This is a 2-byte integer.

OUTPUT PARAMETERS

argument

String of length arg-length, containing the requested argument, in PGM_ $NAME format.
This is an array of up to 128 characters.

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

INPUT PARAMETERS

maxlen
Maximum length of the argument, in bytes. This is a 2-byte integer.

FORTRAN automatically passes the length of a character string following the string itself.
Therefore, to return a character string argument to a FORTRAN program, omit the
maxlen parameter. Use the following format for the call:

arg-length = PGM_$GET_ARG (arg-number, argument, status)

This format applies to character strings only. For an argument of any other type, use the
standard call.

If the value of maxlen is less than the returned argument length, the program manager
truncates the returned argument to maxlen bytes and returns the status
PGM _$ARG_ TOO_BIG.

PGM=9 PGM



PGM_$GET _ARG

USAGE

PGM_ $GET _ ARG returns one argument from the program’s caller. The argument is in
character string format. '

Argument numbers on the command line range from 0 to n. Argument O is the program
name.

PGM PGM-10



O

PGM_$GET_ARGS

PGM_ $GET__ARGS

Returns the address of the argument vector.

FORMAT _
PGM_$GET_ARGS (argument-count, arg-vector-addr)

OUTPUT PARAMETERS

argument-count
Number of arguments in the argument vector. This is a 2-byte integer.

arg-vector-addr
Address of the argument vector, in PGM_ $ARGV _PTR format. This is a 4-byte integer.

USAGE
PGM _$GET _ ARGS returns the address of the argument vector.

The argument vector is an array of addresses pointing to the arguments. This array can be
up to 128 elements.

The addresses are in PGM _ $ARGYV format. This is a 4-byte integer. See the PGM Data
Types section for more information.

PGM=11 PGM



PGM_ $GET_EC

PGM_$GET _EC

Gets an eventcount to wait for completion of a child process.

FORMAT

PGM_$GET_EC (process-handle, process-key, eventcount-pointer, status)

INPUT PARAMETERS

process-handle
Process handle of the child process for which to wait, in PGM_ $PROC format. This data
type is 4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM_$INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

process-key

Key specifying which process eventcount the system should return, in PGM_ $EC_ KEY
format. This is a 2-byte integer.

Currently the only allowable value is PGM__ $CHILD _ PROC.

OUTPUT PARAMETERS

eventcount-pointer
The eventcount address to be obtained, in EC2_$PTR _ T format. This is a 4-byte
integer.

EC2_$PTR_T is a pointer to an EC2_ $EVENTCOUNT _ T record. See the EC2 Data
Types section for more information. '

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE

PGM __$GET _EC returns a pointer to an eventcount that advances when a child process
terminates. This eventcount address can be passed to EC2__ $WAIT to wait for a specific
child process to complete. You identify the child process by passing the process handle as
an input parameter.

When a child process is created, the process eventcount value is 0. When a child process

terminates, the process eventcount value is 1. To wait on a specific child process, you
might use:

PGM_$PROC_EC (....gets process event count ....)
EC2_$WAIT (....waits until eventcount is 1 ....)

See the Managing Programs Chapter of the Programming With General System Calls
manual for more information.

PGM PGM=12

D

S




S

PGM_$GET _PUID

PGM_$GET_PUID

Gets the process UID of a process.

FORMAT
PGM_$GET_PUID (process-handle, puid, status)

INPUT PARAMETERS

process-handle
Process handle of the child process for which you want a UID, in PGM _ $PROC format.
This data type is 4 bytes long. See the PGM Data Types section for more information.
The process handle is returned by PGM _ $INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

puid
Process UID, in UID _ $T format. This data type is 8 bytes long. See the PGM Data Types
section for more information. '

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE
PGM _$GET _ PUID, which returns the process UID of a child process.

PGM _$GET _ PUID, which is used in conjunction with other system calls. These calls are:

¢ PROC2 _$GET _INFO, which returns information about a process given a
PUID.

e PROC2 _$LIST, which returns a list of the PUIDs of all active user processes.

o PGM _ $SMAKE __ORPHAN, which returns the PUID of the orphaned process.

PGM=-13 PGM



PGM_ $INVOKE

PGM _$INVOKE

Invokes a program.

FORMAT

PGM_$INVOKE (pathname, namelength, arg-count, arg-vector, stream-count,

connection-vector, mode, process-handle, status)

INPUT PARAMETERS

pathname

Pathname of the program to invoke, in NAME. $PNAME T format. This is an array of
up to 256 characters.

The specified pathname must be an absolute pathname; the Shell’s search rules do not
apply.

namelength

Length of the pathname, in bytes. This is a 2-byte integer.

arg-count

Number of arguments to pass to the invoked program. This is a 2-byte integer.

This number corresponds to the number of elements in the argument vector.

arg-vector

Array containing the addresses of the arguments to pass to the invoked program, in
PGM __$ARGYV format. This is an array of 4-byte integers.

A program can pass any number‘of arguments to a program it is invoking. However, when
passing arguments to a Shell, the Shell’s syntax limits the number of arguments to 10
(including the program name). Each argument must be preceded by a 2-byte integer
indicating the number of bytes in the argument. The first argument must be the name of
the program; the simple name, not the absolute pathname (that is, date, not
//desperado/com/date). Note that if the invoked program calls PGM__$DEL_ ARG, the
argument vector changes. See the description of PGM _$DEL _ ARG for details.

stream-count

Number of streams to pass to the invoked program. This is a 2-byte integer.

You are permitted to pass up to 32 streams. In the invoked program these streams are
numbered 0 to 31.

connection-vector

PGM

Array containing stream IDs to pass to the invoked program, in PGM_ $CONNYV format.

Each stream ID is a 2-byte integer, in STREAM _$ID _ T format. Up to 128 elements are
permitted.

By default, every program is invoked with four streams, numbered 0 through 3. Stream 0

is standard input, stream 1 is standard output, Stream 2 is error input, stream 3 is error
output.

Stream IDs refer to objects already opened by the calling program, using

PGM=-14

()



PGM_ $INVOKE

STREAM _ $CREATE or STREAM_ $OPEN. The first element in the connection-vector
array becomes stream 0 in the invoked program, the second element becomes stream 1, and
SO on.

You may leave "holes" in the connection vector by setting a stream ID equal to the
predefined constant STREAM _ $NO_ STREAM.

mode
Mode in which to invoke the program, in PGM _ $MODE format. This is a 2-byte integer.
Specify a null set, or one of the following predefined values:

PGM _$WAIT The program executes as a separate program within the same process as
the invoking program.

PGM _$BACK _ GROUND
The program executes as a separate process that runs to termination
independently of the invoking process.

If you pass a null set (default), the program executes as a separate process that
communicates its termination status to the invoking program. To specify a null set in C
and FORTRAN, declare the variable and initialize it to 0.

OUTPUT PARAMETERS

process-handle
Process handle of the process in which the invoked program runs, in PGM_ $PROC
format. This data type is 4 bytes long. See the PGM Data Types section for more
information.

The process handle is used as an input parameter in the PGM_ $GET _EC,
PGM__$PROC_ WAIT, PGM_ $GET _ PUID, and PGM_ $MAKE _ ORPHAN calls to

identify an invoked program.

Note that the process handle is valid only after creating a process in default mode. You
will get an error (for example, 'reference to illegal address’) if you attempt to use the
process handle of a process created in background mode. The following calls use the process
handle: PGM__$GET _EC, PGM_ $GET _PUID, PGM _ $MAKE _ORPHAN or

PGM _$PROC_ WAIT.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PGM

Data Types section for more information.

Possible values are:

STATUS _$0OK Success status.

PGM __$BAD _ CONNV
Stream vector too large (>32).

Severity level values returned by the program:

PGM_$TRUE Value of tested condition is true.

PGM=15 PGM



PGM__$INVOKE

PGM__$FALSE Value of tested condition is false.

PGM__$WARNING
Unusual, but not fatal condition detected.

PGM_$ERROR Syntactic or semantic errors in input; output is structurally sound.

PGM _ $INVALID _ OUTPUT
Syntactic or semantic errors in input; output is not structurally sound.

PGM_SINTERNAL _FATAL
Internal fatal error detected.

Any status returned by the invoked program.

Any status returned by modules that PGM _ $INVOKE calls.

USAGE

PGM

PGM _ $INVOKE invokes a program in the specified mode, and passes that program any
parameters that it needs. The addresses of arguments are passed to the invoked program
by way of the arg-vector, which is an array of those addresses. The invoked program uses
the system routines, PGM _$GET _ ARGS, PGM_ $GET _ ARG, and PGM_ $DEL_ ARG
to access the arguments. See the documentation of those routines for details.

You can change standard input for the invoked program by opening the desired input file
and passing its stream ID as the first element of the connection vector. The same is true for

standard output, standard error input, and standard error output.

When the invoked program finishes executing, files it has opened are closed, storage it has
acquired 1is released, and the inhibit count is the same as it was upon entry.

The behavior of an invoked program differs depending on the mode in which the program is
invoked.

Invoking a Program in Wait Mode

When you invoke a program this way, the invoking program executes the program and
waits for it to complete before continuing.

A program invoked in wait mode calls PGM_ $SET _SEVERITY to indicate its completion
status to the invoking program.

A program ends when one of the following takes place:

¢ A language defined termination statement is executed

e An unhandled fault occurs

PGM=-16




PGM_$INVOKE

e You call PGM_ $EXIT

Normal termination returns execution to the calling program. An unhandled error either
terminates the program with an error status or invokes a clean-up handler. PGM__ $EXIT
invokes any established clean-up handlers, then exits to the calling program. Any severity
levels set during program execution are returned in the status parameter.

Invoking a Program in Default Mode

When you invoke a program specifying a null set, the invoking program creates a new
process in which to run the program. The invoking process may wait for the child process
to complete and determine its termination status by calling PGM _ $PROC _ WAIT.

When a process invokes another process, the invoking process is referred to as the parent
process and the invoked process is referred to as the child process. Executing a program in
a child process is useful if you wish to perform concurrent processing or if your program
requires a large amount of address space.

Waiting for a Child Process

The PGM _ $GET _EC call permits you to get a process eventcount that is advanced when
a specified process terminates. By using this call in conjunction with the system calls
EC2_$READ and EC2__ $WAIT, a parent process can wait for the completion of a child
process (or a list of event counts).

Getting the Completion Status of a Child Process

Once a child process has completed, examine its completion status. To obtain the
completion status of a default mode process, call PGM_$PROC_ WAIT in the parent
process. PGM_ $PROC_ WAIT takes the process handle of the invoked program as an
input parameter and returns its completion status. If the child process has not completed
execution at the time of the PROC _ WAIT call, execution of the parent process suspends
until a completion status is available.

A certain amount of resources in a parent process are used to keep track of a child process.
When a call to PGM _$PROC_ WAIT is completed those resources are released. If you
invoke a number of child processes without ever calling PROC _ WAIT, the parent process
may run out of resources. If you are not interested in the completion status of the invoked
program, invoke it using background mode.

PGM=17 ‘ PGM



PGM_ $INVOKE

Invoking a Program in Background Mode

When you invoke a program specifying PGM _ $BACK _ GROUND, the invoking program
creates a new process in which to run the program. Background mode differs from default
mode in that a background mode process runs completely independently of the parent.
That is, there is no communication of the completion status.

Background mode is useful for performing processing that has no further dependence on the
parent process. For example, a parent process may perform interactive data collection,
invoke a program in a background process to manipulate the data, and then return to
further data collection. This permits you to collect and manipulate the data concurrently.

Because a background mode process has no dependence on the parent, it is referred to as an
orphan process. You can change a default child process into an orphan process by calling

PGM_$MAKE _ORPHAN.

Note that the process handle is valid only after creating a process in default mode. You
will get an error (for example, 'reference to illegal address’) if you attempt to use the
process handle of a process created in background mode. The following calls use the process
handle: PGM_$GET _EC, PGM_ $GET _PUID, PGM _ $MAKE _ ORPHAN or
PGM__$PROC_ WAIT.

()

PGM

PGM=-18

M




PGM_ $MAKE_ ORPHAN

PGM_ $MAKE_ ORPHAN

Changes a normal child process into an orphan process.

FORMAT
PGM_$MAKE_ORPHAN (process-handle, puid, status)

INPUT PARAMETERS

process-handle
Process handle of the child process to orphan, in PGM_ $PROC format. This data type is
4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM__$INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

puid
Process UID, in UID _ $T format. This data type is 8 bytes long. See the PGM Data Types
section for more information.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE

PGM _$MAKE_ ORPHAN changes the specified child process into an orphan process.
An orphan process is one that is run in PGM_ $BACKGROUND mode. An orphan process

runs independently of the parent process and no termination status is returned to the
parent.

PGM=19 PGM



PGM_ $PROC_ WAIT

PGM_ $PROC_ WAIT

Waits for a process that has been created with PGM _ $INVOKE to terminate and returns
a completion status for the process.

FORMAT

PGM_$PROC_WAIT (proéess—handle, status)

INPUT PARAMETERS

process-handle

Process handle of the child process for which to wait, in PGM_ $PROC format. This data
type is 4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM _ $INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

status

The child process completion status, in STATUS _$T format. This data type is 4 bytes
long. See the PGM Data Types section for more information.

USAGE

PGM

PGM _$PROC_ WAIT suspends the execution of a parent process until the completion of a

specified child process. This call permits a child process to pass a completion status to the
parent upon termination.

Using PGM_INVOKE in default mode (the empty set) and then calling
PGM _$PROC __WAIT is equivalent to using PGM_ $INVOKE in PGM _ $WAIT mode.

PGM=20

N

k/’




e

PGM_ $SET_ SEVERITY

PGM_ $SET _SEVERITY

Sets the severity level for a program.

FORMAT
PGM_$SET_SEVERITY (severity-level)

INPUT PARAMETERS

severity-level

The severity level returned to the caller. This is a 2-byte integer. Specify only one of the
following predefined values:

PGM_ $0OK The program completed successfully and performed the requested action.

PGM_$TRUE The program completed successfully; its purpose was to test a condition,
and the value of that condition was TRUE.

PGM_$FALSE The program completely successfully; its purpose was to test a condition,
and the value of that condition was FALSE.

PGM_$WARNING
The program completed successfully and performed the requested action.
However, an unusual (but nonfatal) condition was detected.

PGM__$ERROR The program could not perform the requested action because of syntactic
or semantic errors in the input. The output is structurally sound,
however.

PGM__$OUTPUT _INVALID
The program could not perform the requested action because of syntactic
or semantic errors in the input, and the output is not structurally sound.

PGM_$INTERNAL _FATAL

The program detected an internal fatal error and ceased processing. The
state of the output is neither defined nor guaranteed.

PGM _ $PROGRAM _ FAULTED
The program detected and handled a fault.

Severity levels are a subset of the general system status codes.

USAGE

Every program returns a severity level to its caller. By default, the severity level is
PGM_$OK. Use PGM _$SET _ SEVERITY in the invoked program to change the level to
another value.

The following are examples of appropriate changes to the severity level:

PGM _$TRUE or PGM _ $FALSE would be returned by an "equal" program that
compares its two arguments to see if they are equal.

PGM=-21 PGM



PGM__$SET_ SEVERITY

PGM__$WARNING would be returned by DLF (DELETE _ FILE) if the file to be deleted
did not exist.

PGM__$ERROR would be returned by a compiler if the input program contained an error
that prevented a correct translation, but the output object module format was correct.

PGM__$OUTPUT _INVALID would be returned by a compiler if an error in the input
program caused the object module format to be invalid.

PGM _$INTERNAL _FATAL would be returned if the program could not proceed because
it detected that its data structures were corrupted.

PGM_ $PROGRAM _ FAULTED would be returned if the program signaled a fault and
wishes to inform the invoking program without resignalling the fault.

PGM PGM=22

N



PGM ERRORS

ERRORS

STATUS _$0K

Successful completion.

PGM_ $ERROR
The program could not perform the requested action because of syntactic or semantic
errors in the input. The output is structurally sound, however.

PGM _$FALSE
The program completely successfully; its purpose was to test a condition, and the

value of that condition was FALSE.

PGM_ $INTERNAL _FATAL
The program detected an internal fatal error and ceased processing. The state of the
output is neither defined nor guaranteed.

PGM_ $0K

The program completed successfully and performed the requested action.

PGM__$OUTPUT _INVALID
The program could not perform the requested action because of syntactic or semantic
errors in the input, and the output is not structurally sound.

PGM _$PROGRAM_ FAULTE
The program faulted.

PGM_ $TRUE

The program completed successfully; its purpose was to test a condition, and the value
of that condition was TRUE.

PGM_ $WARNING
The program completed successfully and performed the requested action. However, an
unusual (but non-fatal) condition was detected.

PGM=-23

PGM



=
!

7

)



PM

This section describes the data types and the call syntax for the PM programming calls. The PM
calls do not use produce unique error messages. Refer to the Introduction at the beginning of this
manual for a description of data-type diagrams and call syntax format.

PM-~1 PM



PM DATA TYPES

CONSTANTS

NAME_$PNAMLEN _MAX

DATA TYPES

NAME_ $PNAME _T

STATUS _$T

byte:
offset

PM

256 Maximum length of a pathname.
An array of up to NAME_ $PNAMLEN _ MAX
(256) characters.
A status code. The diagram below illustrates the
STATUS _ $T data type:
field name
31
integer all
or
31
—I fail
24
subsys
16
modc
0
integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc :
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PM=2

‘‘‘‘‘

S



O

PM_$GET_HOME_ TXT

PM_$GET_HOME_ TXT

Returns the home directory of the calling process as a string.

FORMAT
PM_$GET_HOME_TXT (maxlen, home, len)

INPUT PARAMETERS
maxlen

Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 256.

OUTPUT PARAMETERS

home
Pathname of the home directory for the SID (log-in identifier) of this process. This is an
array of up to 256 characters.

len

Number of characters returned in the home parameter. This is a 2-byte positive integer.

USAGE

The home directory is obtained from the network registry when you log in and is inherited
by all your processes.

PM=3 PM



PM_$GET_SID_TXT

PM__$GET_SID_ TXT
Returns the SID (log-in identifier) of the calling process as a string. ( )

FORMAT
PM_$GET_SID_TXT (maxlen, sid, len)

INPUT PARAMETERS

maxlen
Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 140.

OUTPUT PARAMETERS
sid T

String containing the person, project, organization and node ID of the SID (log-in identifier) \
of this process, in the form:

person.group.project.nodeid

This is an array of up to 140 characters.

len
Number of characters returned in the log-in identifier. This is a 2-byte positive integer. e
|
\\
USAGE
Your SID is the full identifier obtained from the network registry when you log in and is
inherited by all your processes.
T
{
AN

YN

PM PM=4



PROC1

This section describes the data types and the call syntax for the PROCI1 programming calls. The
PROCI calls do not produce unique error messages. Refer to the Introduction at the beginning of
this manual for a description of data-type diagrams and call syntax format.

PROCI1~1 PROC1



PROC1 DATA TYPES

DATA TYPES

TIME_$CLOCK_T
predefined

record

time_$clockh_t

predefined
record

PROC1

Internal representation of time. The diagram below
illustrates the TIME _ $CLOCK _ T data type: -

field name

high

low

byte:
offset
0: integer
4: integer
Field Description:
high
High 32 bits of the clock.
low
- Low 16 bits of the clock.
byte:
offset

0: |pos. integer

2: positive integer

Field Description:
high16

field name

high16

low32

High 16 bits of the clock.

low32

Low 32 bits of the clock.

PROC1-2



PROC1_$GET _ CPUT

PROC1_$GET_ CPUT
Returns the CPU time used by this process.

FORMAT
PROC1_$GET_CPUT (clock)

OUTPUT PARAMETERS

clock
The amount of CPU time used by this process since its creation, in TIME _ $CLOCK _T

format. This data type is 6 bytes long. See the TIME Data Types section for more
information.

USAGE

PROC1 _$GET _ CPUT returns the amount of CPU time that the calling process has used
since its creation. The returned clock value has a resolution of 4 microseconds.

CPU time is the time during which the process is running in the CPU. This includes the

time that the operating system is performing services for the process, but does not include
the time that the process spends waiting for I/O transfers to complete.

PROC1=3 PROC1



)



PROC2

This section describes the data types, the call syntax, and the error codes for the PROC2
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data~type diagrams and call syntax format.

PROC2-1 PROC2



PROC2 DATA TYPES

DATA TYPES ]
PROC2_$INFO_T Process information record. The diagram below '
illustrates the PROC2_$INFO _ T data type:
predefined byte:
type offset field name
0: integer stack_uid.high
uid_$t -
4: integer stack_uid.low
8: integer stack_base
proc_$state_t 12; integer state
14: integer usr “‘/\ \
16: integer we
20: integer usp
24; integer usb
28: integer cpu_total. high
time_$clock_t e
32: integer » cpu_total.low [\\
34: integer priority
Field Description:
stack _uid
Uid of tack.
1d Ol user stac /_ )

stack _base p
Base address of user stack.

state
Process state - ready, waiting, etc..

usr
User status register.

upe
User program counter.

usp
User stack pointer.

usb
User stack base pointer (A6).

/ ﬂ

PROC2 PROC2=2



PROC2 DATA TYPES

cpu__total
Cumulative cpu time used by process.

priority
Process priority.

PROC2_$UID_LIST_T An array of UIDs (in UID__$T format) of up to 24
elements.
PROC2__$STATE_T A 2-byte integer. State of a user process. Any

combination of the following pre-defined values:

PROC2__$WAITING
Process is waiting.

PROC2_ $SUSPENDED
Process is suspended.

PROC2_$SUSP_ PENDING
Process suspension is pending.

PROC2_ $BOUND
Process is bound.

STATUS _$T A status code. The diagram below illustrates the
STATUS _$T data type:

gf)f,;g:t a1 field name
0: integer all
or
31
0: ‘| fail
24
subsys
16
1: modc
0
2. integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

PROC2-3 PROC2 .



PROC2 DATA TYPES

subsys
The subsystem that encountered the error (bits C\
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

8

PROC2 PROC2-4




PROC2_$GET_ INFO

PROC2_$GET_INFO

Returns information about a process.

FORMAT
PROC2_$GET_INFO (process-uid, info, info-buf-length, status)

INPUT PARAMETERS

process-uid
The UID of the process for which you want information, in UID _ $T format. This data
type is 8 bytes long. See the PROC2 Data Types section for more information.

You can get process UIDs by calling PROC2_$WHO _AM_I and PROC2_ $LIST.

If the process-uid in the call is the caller’s own process, the only information returned is the
stack UID and virtual address. If you want to find out the amount of CPU time used by
the caller’s process, use PROC1__$CPU__ TIME.

info-buf-length

Length of the information buffer allotted for returned information, in bytes. This is
normally 36 bytes.

OUTPUT PARAMETERS

info
Information about the process, in PROC2_ $INFO _ T format. This data type is 36 bytes
long. See the PROC2 Data Types section for more information.
status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
PROC2 Data Types section for more information. Possible values are:
STATUS _$OK Completed successfully.
PROC2__$IS__ CURRENT
Specified calling process UID (success).
PROC2__$UID_NOT_FOUND
Specified UID is not on node.
USAGE

GET _$INFO returns information about a process when supplied with a process UID. The
information returned consists of the following:

e The program state (ready, waiting, suspended, SUSP__ PENDING, bound).
e The User Status Register (USR).

e The User Program Counter (UPC).

PROC2=5 PROC2



PROC2_$GET_ INFO

e The user stack pointer (A7).

)

e The stack base pointer (A6).
e The amount of CPU time used.

e The CPU scheduling priority.

PROC2 PROC2=6



PROC2_ $LIST

PROC2_S$LIST

Returns a list of existing level 2 (user) processes in the caller’s node.

FORMAT :
PROC2_$LIST (uid-list, max-num-uids, number-uids)

OUTPUT PARAMETERS
uid-list
The UIDs of the active level 2 processes on the system, in PROC2__$UID_ LIST_T

format. This is a 24-element array of UIDs. Each UID is a 4-byte integer in UID _ $T
- format.

INPUT PARAMETERS
max-num=uids

Maximum number of process UIDs to be returned. (At most, the size of the buffer you
assign for uid-list. This is a 2-byte integer.

OUTPUT PARAMETERS
number-uids

Number of active level 2 processes on the node, even if that number is greater than
max-num-uids. This is a 2-byte integer.

USAGE

The UIDs of all level 2 processes (user processes) on the caller’s node, up to max-num-uids,
are returned.

PROC2=7 PROC2



PROC2_$WHO _AM_I

PROC2_$WHO_AM_I

Returns the UID of the calling prccess.

FORMAT
PROC2_$WHO_AM_I (my-uid)

OUTPUT PARAMETERS

my-uid

The UID of the calling process, in UID__$T format. This data type is 8 bytes long. See the
PROC2 Data Types section for more information.

USAGE

You can use a UID obtained through this call to find out information about your process

through the PROC2_ $GET _INFO call.

PROC2

PROC2=8

7N

S

-



ERRORS

STATUS_$0K

Successful completion.

PROC2__$BAD _STACK _BASE
Bad stack base.

PROC2_$IS_ CURRENT

Request is for current process.

PROC2_$NOT_LEVEL_ 2
Not a level two process.

PROC2__$UID _ NOT_FOUND
Process not found.

PROC2-9

PROC2 ERRORS

PROC2






RWS

This section describes the data types, the call syntax, and the error codes for the RWS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

RWS=-1 RWS



RWS DATA TYPES

DATA TYPES

RWS_$POOL_T

STATUS__$T

Total
Size: 4

RWS

A 2-byte integer. Types of pools from which to
allocate read/write or heap storage. One of the
following predefined values:

RWS_$STD_POOL
Standard pool makes storage accessible to
calling process only.

RWS__$STREAM_ TM_ POOL
Stream pool makes storage accessible to

calling program and to a program invoked
with the UNIX EXEC system call.

RWS_$GLOBAL__POOL
Global pool makes storage accessible to all
processes.

A status code. The diagram below illustrates the
STATUS _$T data type:

:byte
offset field name
31 15
integer :0 all
or
—| 0 fail
124 subsys
16 modc
integer 131 code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys

The subsystem that encountered the error (bits

24 - 30).

RWS=2

C




©

RWS DATA TYPES

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

UNIV_PTR A 4-byte integer. A pointer to allocated storage.

RWS=3 RWS



RWS_ $ALLOC

RWS_$ALLOC

Allocates read/write storage for C, FORTRAN or Pascal programs.

FORMAT
RWS_$ALLOC (storage_sz, storage_ptr)

INPUT PARAMETERS
storage sz
The number of bytes of storage needed. This is a 4-byte integer.
OUTPUT PARAMETERS
storage_ ptr
The address of the new storage space, in UNIV_PTR format. This is a 4-byte integer. A

returned address of zero (NIL) means that RWS__$ALLOC could not allocate the desired
storage.

USAGE

RWS _ $ALLOC allocates the specified number of bytes of read/write storage to the calling
process and returns the address of the storage area.

This routine is useful for alloca.t.ing different quantities of dynamic storage, depending on a
run-time factor.

FORTRAN programmers: due to FORTRAN calling conventions, this is currently the only
RWS call you can use to allocate read/write storage.

Pascal and C programmers can use other RWS calls to allocate read/write or heap
(releaseable read/write) storage. See the calls, RWS__$ALLOC_RW _ POOL and
RWS _$ALLOC_HEAP _POOL for details.

C programmers might want to use the C library routine MALLOC to allocate storage.

RWS RWS=4




RWS_ $ALLOC _HEAP

RWS_$ALLOC_HEAP

Allocates heap (releaseable read/write) storage for Pascal and C programs.

FORMAT
storage_ptr = RWS_$ALLOC_HEAP (storage_sz)

RETURN VALUE

storage ptr .
The address of the new storage space, in UNIV_PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS_ $ALLOC _ HEAP could not allocate the
desired storage.

INPUT PARAMETERS

storage sz
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

Note that RWS_$ALLOC_HEAP _POOL replaces this obsolete call, which we include for
maintenance purposes only. For current and future development, use

RWS _$ALLOC _HEAP__POOL:

RWS_$ALLOC_HEAP allocates the specified number of bytes of releaseable read/write
storage to the calling process and returns the address of the storage area. It allocates
storage from the standard RWS pool, which makes the storage accessible to the calling
program only. Use RWS_$RELEASE _HEAP to release storage allocated with this call.

FORTRAN programmers: due to FORTRAN calling conventions, RWS_ $ALLOC is
currently the only RWS call you can use to allocate read/write storage.

C programmers might want to use the C library routine MALLOC to allocate storage.

RWS=5 RWS



RWS_$ALLOC_HEAP_POOL

RWS_$ALLOC_HEAP _POOL

Allocates heap (releasable read/write) storage from a specified pool.

FORMAT
storage_ptr = RWS_$ALLOC_HEAP_POOL(alloc_pool, storage sz )

RETURN VALUE

storage_ ptr

The address of the new storage space, in UNIV_PTR format. This is a 4-byte integer. A

returned address of zero (NIL) means that RWS_ $ALLOC_HEAP _ POOL could not
allocate the desired storage.

INPUT PARAMETERS

alloc__pool

Pool from which the storage will be allocated, in RWS_ $POOL _ T format. This is a
2-byte integer. Specify one of the following predefined values:

RWS_$GLOBAL _POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the tdentical portion of
address space.

RWS __$STD_POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS_$STREAM_TM_ POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information across a UNIX EXEC system
call.

storage_ sz

Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS

RWS_$ALLOC _HEAP _POOL allocates a specified number of bytes of heap storage to
the calling process and returns the address of the storage area.

When you no longer need the storage, call RWS;_ $RELEASE _HEAP _POOL to return
the storage to the pool from which it was allocated.

Whether you allocate heap (releaseable read/write) storage with this call or read/write
storage with RWS__$ALLOC _RW _ POOL depends on how long you want to keep the
storage. Once you allocate read/write storage, the storage exists until the program
terminates. However, you can explicitly release heap storage once you have finished using
it. The heap requires more system overhead initially to keep track of allocated storage.
Read/write storage does not require any system overhead.

RWS=6

C




O

RWS _$ALLOC_HEAP_POOL

(Currently, the overhead for RWS__$ALLOC_HEAP _POOL is between 4 to 16 bytes --
The exact amount of call overhead is subject to change.)

Typically, you allocate heap storage if your program requires a substantial amount of
storage for a limited time, or if you want to keep your working set as small as possible.
You allocate read/write storage if you do not need to release storage before terminating a
program, or if the amount of overhead for a heap is unacceptable.

When allocating heap or read/write storage, you control how your program accesses storage
by specifying the type of storage pool to use:

e The standard pool (RWS_$STD _ POOL) permits access to the calling process
only.

e The global pool (RWS_ $GLOBAL _ POOL) permits access to all processes.

e The stream pool (RWS_$STREAM _ TM_ POOL) permits access to the calling
program and a program invoked with a UNIX EXEC system call.

The global pool allows you to share information among processes. For example, you might
want to create a global queue to pass messages between processes. Note that pointers are
valid in all processes because all processes reserve an identical portion of address space.

The stream pool allows you to make storage accessible between a calling process and an
overlay process. For example, the IOS manager uses a stream pool to pass an open stream
to a program invoked with an EXEC call. It stores information about that stream in a
stream pool.

The following table summarizes the aspects of each type of storage allocation.

Summary of Types of Storage Allocation

Read/Write Storage Heap Storage

Standard Storage kept until program Storage kept until you
Pool exits or until it invokes release it with
a program with a UNIX RWS_$RELEASE HEAP, the
EXEC system call. program exits, or the

program invokes a program
with a UNIX EXEC call.

No system overhead. About 16 bytes of
) system overhead.

Storage available to local process only.

Global Storage kept until reboot. Storage kept until

Pool you release it with
RWS_$RELEASE_HEAP or reboot.

About 4 bytes of system About 4 bytes of system
overhead. overhead.

Storage available to all processes.

RWS=7 RWS



RWS_$ALLOC_HEAP_POOL

Summary of Types of Storage Allocation, Cont.

Read/Write Storage Heap Storage
Stream Storage kept until Storage kept until
Pool program exits. you release it with

RWS_$RELEASE HEAP.

No system overhead. About 16 bytes of
system overhead.

Storage available to the local process or to a
program invoked with a UNIX EXEC system call.

NOTE: Do not depend on the exact amount of system overhead
used in RWS system calls. The amount of overhead is
subject to change.

Note that this call replaces the obsolete RWS__$ALLOC_HEAP call, which we include for
maintenance purposes only. For current and future development, use

RWS_$ALLOC_HEAP__POOL.
FORTRAN programmers: due to FORTRAN calling conventions, RWS_ $ALLOC is

currently the only RWS call you can use to allocate read/write storage. C programmers
might want to use the C library routine MALLOC to allocate storage.

RWS RWS=8

‘)




RWS_$ALLOC_RW

RWS_ $ALLOC_RW

Allocates read/write étorage for Pascal and C programs.

FORMAT
storage_ptr = RWS_$ALLOC RW (storage_sz)

RETURN VALUE

storage_ptr
The address of the new storage space, in UNIV_PTR format This is a 4-byte integer. A
returned address of zero (NIL) means that RWS_ $ALLOC_RW could not allocate the
desired storage.

INPUT PARAMETERS

storage _ sz
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

Note that RWS__$ALLOC_RW _ POOL replaces this obsolete call, which we include for
maintenance purposes only. For current and future development, use

RWS_$ALLOC_RW _POOL.

RWS _$ALLOC _RW allocates the specified number of bytes of read /write storage to the
calling process and returns the address of the storage area. It allocates storage from the
standard RWS pool, which makes the storage accessible to the calling program only. This

call does not require any system overhead.

FORTRAN programmers: due to FORTRAN calling conventions, RWS _$ALLOC is
currently the only RWS call you can use to allocate read/write storage.

C programmers might want to use the C library routine MALLOC to allocate storage.

RWS=-9 RWS



RWS__$ALLOC_RW_ POOL

RWS_$ALLOC_RW _POOL

Allocates read/write storage from a specified pool.

FORMAT
storage_ptr = RWS_$ALLOC_RW POOL(alloc_pool, storage_sz )

RETURN VALUE

storage ptr
The address of the new storage space, in UNIV_PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS_ $ALLOC_RW _ POOL could not
allocate the desired storage.

INPUT PARAMETERS

alloe _pool
Pool from which storage will be allocated, in RWS_$POOL _ T format. This is a 2-byte
integer. Specify one of the following following predefined values:

RWS _$GLOBAL _POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the identical portion of
address space.

RWS__$STD_POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS_$STREAM_TM__POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information across a UNIX EXEC system
call.

storage sz
Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS_$ALLOC_RW _POOL allocates a specified number of bytes of read/write storage
to the calling process and returns the address of the storage area.

Whether you allocate read/write storage with this call or heap (releaseable read/write)
storage with RWS_$ALLOC_HEAP _POOL depends on how long you want to keep the
storage. Once you allocate read/write storage, the storage exists until the program
terminates. However, you can explicitly release heap storage once you have finished using
it. The heap requires more system overhead initially, to keep track of allocated storage.
Read/write storage does not require any system overhead.

RWS RWS=10




RWS_$ALLOC_RW_POOL

Typically, you allocate read/write storage if you do not need to release storage before
terminating a program, or if the amount of overhead for a heap is unacceptable. You
allocate heap storage if your program requires a substantial amount of storage for a limited
time, or if you want to keep your working set as small as possible.

When allocating read/write or heap storage, you control how your program accesses storage
by specifying the type of storage pool to use:

e The standard pool (RWS__$STD_ POOL) permits access to the calling process
only.

e The global pool (RWS_$GLOBAL _ POOL) permits access to all processes.

e The stream pool (RWS_$STREAM_ TM_ POOL) permits access to the calling
program and a program invoked with a UNIX EXEC system call.

The global pool allows you to share information among processes. For example, you might
want to create a global queue to pass messages between processes. Note that pointers are
valid in all processes because all processes reserve an tdentical portion of address space.

The stream pool allows you to make storage accessible between a calling process and an
overlay process. For example, the IOS manager uses a stream pool to pass an open stream
to a program invoked with an EXEC call. It stores information about that stream in a
stream pool.

The following table summarizes the aspects of each type of storage allocation.

Summary of Types of Storage Allocation

Read/Write Storage Heap Storage
Standard Storage kept until program Storage kept until you
Pool exits or until it invokes release it with
a program with a UNIX RWS_$RELEASE HEAP, the
EXEC system call. program exits, or the

program invokes a program
with a UNIX EXEC call.

No system overhead. About 16 bytes of
system overhead.

Storage available to local process only.

Global Storage kept until reboot. Storage kept until

Pool you release it with
RWS_$RELEASE_HEAP or reboot.

About 4 bytes of system About 4 bytes of system
overhead. overhead.

Storage available to all processes.

RWS=-11 RWS



RWS_ $ALLOC_RW_ POOL

Summary of Types of Storage Allocation, Cont.

Read/Write Storage Heap Storage
Stream Storage kept until Storage kept until
Pool program exits. you release it with

RWS_$RELEASE HEAP.

No system overhead. About 16 bytes of
system overhead.

Storage available to the local process Or to a
program invoked with a UNIX EXEC system call.

NOTE: Do not depend on the exact amount of system overhead
used in RWS system calls. The amount of overhead is
subject to change.

Note that this call replaces the obsolete RWS_$ALLOC _RW call, which we include for
maintenance purposes only. For current and future development, use
RWS _$ALLOC_RW _POOL. '

FORTRAN programmers: due to FORTRAN calling conventions, RWS_ $ALLOC is
currently the only RWS call you can use to allocate read/write storage. C programmers
might want to use the C library routine MALLOC to allocate storage.

RWS RWS=12

TN

e




RWS_ $RELEASE _HEAP

RWS _$RELEASE _HEAP
Releases storage allocated by the RWS_ $ALLOC _ HEAP call.

FORMAT
RWS_$RELEASE_HEAP (storage ptr. status)

INPUT PARAMETERS

storage_ ptr
The address heap storage space, in UNIV_PTR format. This is a 4-byte integer. This
must be the pointer returned by a call to RWS_ $ALLOC_HEAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the RWS
Data Types section for more information.

USAGE

Note that RWS_ $RELEASE _ HEAP _ POOL replaces this less efficient call, which we
include for maintenance purposes only. For current and future development, use

RWS_ $RELEASE _HEAP_ POOL.

Use this call to release the storage that you previously allocated with
RWS_$ALLOC_HEAP.

RWS=13 RWS



RWS_

$RELEASE_HEAP_POOL

RWS_$RELEASE _HEAP_POOL

Releases storage to the pool from which it was allocated.

FORMAT
RWS_$RELEASE HEAP POOL (storage_ptr, alloc_pool, status)

INPUT PARAMETERS

storage _ ptr i :

Pointer to the address heap storage space, in UNIV_PTR format. This is a 4-byte integer.
This must be the pointer returned by a call to RWS_$ALLOC _HEAP _POOL.

alloc__pool

Pool where storage will be returned to, in RWS_$POOL _ T format. This is a 2-byte
integer. Specify the same value you specified in the RWS_ $ALLOC_HEAP_POOL call,

which is one of the following predefined values:

RWS_ $GLOBAL _POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the identical portion of
address space.

RWS_$STD_POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS_$STREAM_TM_ POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information invoked with a UNIX EXEC
system call.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the RWS
Data Types section for more information.

USAGE

RWS

Use RWS_ $RELEASE __ HEAP _ POOL to release storage to the pool from which it was
allocated. You allocate storage to a specific pool with the RWS__$ALLOC_HEAP _POOL

call.

RWS_$ALLOC_HEAP _POOL dynamically allocates storage from one of the three types
of storage pools, and returns a pointer to the new storage. When you no longer need the

storage, you release it by passing the "storage__ptr" and "alloc_ pool” to
RWS _$RELEASE _HEAP_POOL. RWS_$RELEASE _HEAP__POOL returns the
storage to the pool from which it was allocated.

RWS=14




)

RWS_$RELEASE_HEAP_POOL

Note that this call replaces the less efficient RWS_$RELEASE_ HEAP call, which we
include for maintenance purposes only. For current and future development, use

RWS_ $RELEASE_HEAP _POOL.

RWS=15 RWS



RWS ERRORS

ERRORS C\

RWS_$SLEVEL_FAILURE
User program wrote over the storage where the system stored the program level
information.

RWS_$NOT_HEAP__ENTRY
Argument to RWS_$RELEASE _HEAP did not refer to storage allocated with
RWS_ $ALLOC_HEAP.

RWS_ $SCRIBBLED _ OVER

User program wrote over the storage where the system stored the heap’s process
information.

RWS_$WRONG__LEVEL
Attempted to release storage that was allocated by a program at a superior (lower)
program level. This error can occur when using RWS_$STD _POOL or
RWS _$STREAM_TM _ POOL. C
g

RWS RWS-16




—_

SIO

This .section describes the data types, the call syntax, and the error codes for the SIO
programming calls. Refer to the Introduction at the beginning of this manual for a description of

data-type diagrams and call syntax format.

SIO=-1

SI1I0



SIO DATA TYPES

CONSTANTS

SIO_ $50
SIO_$75

SIO_ $110

SIO__$134

SIO_$150

SIO_ $300

SIO_ $600

SIO_ $1200

SIO_ $2000

SIO_ $2400
SIO_$3600

SIO_ $4800
SIO_$7200

SIO_ $9600
SIO_$19200
SIO_$EVEN _PARITY
SIO_$MAX_LINE
SIO_$NO_PARITY
SIO_$ODD_ PARITY

SIO_$STOP_1

SIO_$STOP_1_POINT _5

SIO_$STOP_2
SIO_$5BPC
SIO_ $6BPC
SIO_$7BPC

SIO_$8BPC

sIo

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Baud rate.

Possible parity value.
Maximum number of SIO lines.
Possible parity value.
Possible parity value.
Possible stop bit value.
Possible stop bit value.
Possible stop bit value.
Bits per character value.
Bits per character value.
Bits per character value.

Bits per character value.

SIO=2

2

o

7

/’\



SIO DATA TYPES

DATA TYPES

SIO_$ERR__ENABLES_T A 2-byte integer. Determines which errors are
enabled. Any combination of the following
pre-defined values:

SIO_$LINE_T A 2-byte integer. SIO line number. Possible values
are integers from 0 through SIO_ $MAX _LINE
(3).

SIO _$OPT_T A 2-byte integer. An SIO option. One of the

following pre-defined values:

SIO__$ERASE
Set erase character.

SIO_$KILL
Set kill character.

SIO_$EOFCHR
Set EOF character.

SIO_$RAW
Transparent input and output.

SIO_$NO_ECHO
Do not echo input.

SIO_$NO_NL
Do not special case newlines.

SIO_ $SPEED
Set bit rate.

SIO_$HOST _SYNC
Use xoff/xon to synchronize with host.

SIO__$NLC_ DELAY
Constant delay for newlines.

SIO_$QUIT_ENABLE
Enable quits from this line to calling process.

SIO_$INPUT_SYNC
Respond xoff/xon on receive side.

SIO_$LINE
Return line number (inquire only).

SIO_$RTS
Set/clear RTS bit.

SIO__$DTR
Set/clear DTR bit.

SIO=3 SIO



SIO DATA TYPES

SI0

SI0_$DCD
Read DTR bit (inquire only).

SIO_$DCD_ENABLE
Enable fault on DCD loss.

SIO_$CTS
Read CTS bit (inquire only).

SIO__$CTS_ENABLE
Enable CTS gating of output.

SIO _$PARITY
Control parity setting/processing.

SIO_$BITS_PER_ CHAR
Number of bits per character.

SIO__$STOP_ BITS
Number of stop bits.

SIO_$ERR_ENABLE
Enable error reporting.

SIO_$SEND _BREAK
Establish break condition on line.

SIO _$QUITCHR
Set quit character.

SIO_$BP__ENABLE
Enable bit pad processing on line.

SIO_$INT_ENABLE
Enable interrupts in this process.

SI0_$INTCHR
Set interrupt character.

SIO_$SUSP_ ENABLE
Enable process suspension character.

SIO _$SUSPCHR
Set process suspension character.

SIO_$RAW_NL

Display NL/CR on NL output in raw mode.

SIO _$UNUSED
Unused.

SIO_$HUP _ CLOSE
Set hangup-on-close.

SIO_$RTS_ENABLE
Enable RTS flow control.

SIO=4

‘)

/N

8



S

SIO DATA TYPES

SIO__$SPEED_FORCE
Set bit rate, even if disturbs partner channel.

SIO__$FLUSH_IN
Flush input buffer.

SIO_$FLUSH_ OUT
Flush output buffer.

SIO_$DRAIN _OUT
Wait for output buffer to drain.

SIO_$VALUE_T Value corresponding to SIO options. The diagram

below illustrates the SIO__$VALUE __ T data type:
redefined byte: ]
?ype offset field name
0: char c
or
0: Integer i
or
0: boolean b
or
0: integer ’ es
Field Description:

c
A character value.

i
A 2-byte integer value.

b
A Boolean value.

es
A set of enabled errors. This is a 2-byte field.

STATUS_$T A status code. The diagram below illustrates the
STATUS _$T data type:

S1I0=5 sIO



SIO DATA TYPES

byte:
offset

0:

sIo

field name
31 0
integer all
or
31
—] fail
' 24
subsys
16
modc
0
integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

SI0=-6

7

/'/\



SIO_ $CONTROL

SIO __ $CONTROL

Obtains current settings of serial line options and values.

FORMAT

SIO_$CONTROL (stream-id, option, value, status)

INPUT PARAMETERS

stream=-id

~ Stream ID of a stream attached to a serial line. This is a 2-byte integer.

The stream specified by stream-id must be attached to a serial line. Any other attachment
results in an error.

option

The attribute that is to be set, in SIO_$OPT _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

SIO _$ERASE

SIO _ $KILL

SIO _$EOFCHR

SIO _$RAW

Sets the erase character, which erases the character immediately before
the current cursor position. This option takes a character value. The
default is <BACKSPACE>.

Sets the kill character, which deletes characters from the cursor position
to the end of the line. This option takes a character value. The default
is CTRL/X.

Sets the end-of-file character. This option takes a character value. The
default is CTRL/Z.

Sets whether raw mode is on or off. This option takes a Boolean value.
The default is FALSE (off). In raw mode, full 8-bit bytes are transmitted
in both directions, without any interpretation. Each

STREAM _$GET _REC call returns as many bytes as have been

received since the last call.

When raw mode is turned on or off, any input that your program has
received, but has not yet read, is flushed from the input buffer.

SIO__$NO _ECHO

SIO_$NO__NL

Sets whether NO_ ECHO mode is on or off. In NO__ ECHO mode, input
characters are not automatically echoed as output. This mode may be
used to support a half-duplex connection. NO_ECHO mode is off by
default.

Sets whether NO_NL mode is on or off. This option takes a Boolean
value. The default is FALSE (off).

Normally, newline characters (decimal 10) are transmitted as a
carriage-return, line-feed. In NO_ NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO=7 SI0



SIO_$CONTROL

SIO _$HOST_SYNCH
Sets whether HOST _ SYNCH mode is on or off. This option takes a
Boolean value. The default is TRUE (on).

In HOST _ SYNCH mode, the node sends XOFF (CTRL/S) when its
input buffer begins to fill, and XON (CTRL/Q) when its input buffer
begins to empty again. This allows for synchronization of high-speed
data transfer from computer to computer.

SIO__$INPUT _ SYNC
Sets whether the incoming synch mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

It is like HOST _ SYNCH except it controls processing of incoming XON
(CTRL/Q) or XOFF (CTRL/S). It works in raw or cooked mode.

SIO _$SPEED  Sets the baud rate of the line. This option takes a predefined 2-byte
integer value. The default is SIO__$9600.

Possible values are:

SIO_$50, SIO $75, SIO_$110, SIO $134, SIO_$150,
SIO_$300, SIO $600, SIO_$1200, SIO_$2000, SIO_$2400,
SIO_$3600, SIO_$4800, SIO_$7200, SIO_$9600, SIO_$19200.

If you attempt to set a partnered line to an incompatible baud rate, you
receive the error status, SIO_ $INCOMPATIBLE _ SPEED. You may
override this error using the SIO__$SPEED _ FORCE option. See the
USAGE section for details about partnered lines and incompatible speeds.

SIO _$SPEED _ FORCE
Sets the baud rate of the line even if the partner line’s speed is
incompatible. This option takes a predefined 2-byte integer value.

Possible values are the same as for SIO_ $SPEED:

SI0_$50, SIO $75, SIO_$110, SIO_$134, SIO_$150,
SIO_$300, SIO $600, SIO_$1200, SIO_$2000, SIO_$2400,
SIO_$3600, SIO_$4800, SIO_$7200, SIO_$9600, SIO_$19200.

When you use SIO__$SPEED FORCE to set the speed of a line, and the
new speed is incompatible with the partner, the speed of the partner is
changed to 9600 baud, See the USAGE section for details about partnered
lines and incompatible speeds.

SIO_$NLC_DELAY
Sets the value of a time delay to be used following transmission of a line
feed character, to allow for carriage motion, scrolling time, and so on.
This option takes a 2-byte integer value, specifying the number of
milliseconds of delay. The default is zero.

SIO __$QUIT _ENABLE

SIO SI0-8

7
i



SIO_$RTS

SIO__$CONTROL

Sets whether THE quit__enable mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

In quit__enable mode, the node responds to CTRL/| and to the
<BREAK> key, if any. The response is a quit fault in the process using
SIO_$QUIT ENABLE. If SIO_$QUIT _ENABLE is FALSE, then
neither the <BREAK > key nor the CTLR/| sequence has any effect. In
raw input mode, only the <BREAK> and CTRL/| sequence causes a
quit fault.

Sets the state of the RTS (Request to Send) line. This option takes a
Boolean value. The default is TRUE (on).

The RTS line is an outgoing line.

SIO _$RTS_ENABLE ’

SIO_$DTR

Enables/disables the RTS (Return to Send) Line. This is a Boolean
value. The default is FALSE (off).

If TRUE, the operating system handles flow control. For this to work
properly the CTS line must also be enabled.

Sets the state of the outgoing DTR (Data Terminal Ready) line. This
option takes a Boolean value. The default is TRUE (on).

On most modems the DTR line controls whether the modem will answer
incoming calls (i.e., when DTR is TRUE.) When it is reset it causes the
modem to hang up the phone line.

SIO _$DCD _ENABLE

Sets whether the DCD_ ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

If the connection is broken (i.e., the remote modem hangs up) the DCD
line becomes FALSE. If SIO__$DCD__ENABLE is TRUE then a fault
with status FAULT _ $STOP will occur at the time of the transition of
DCD from TRUE to FALSE.

SIO__$CTS_ENABLE

SIO _$PARITY

Sets whether the CTS__ ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

Some devices use one of the RS-232 control lines for flow control instead
of XON/XOFF. If such a line is wired to the CTS line on the connector
and if SIO_$CTS__ ENABLE is TRUE, then transmission will be
inhibited whenever CTS is FALSE.

Sets the state of parity detection or parity generation. This option takes
a predefined 2-byte integer value. The default is SIO_ $NO _ PARITY.
Possible choices are: SIO__$0DD _ PARITY, SIO_ $SEVEN_ PARITY,
and SIO__$NO__ PARITY.

SIO-9 SIO



SIO _ $CONTROL

If parity is enabled (whether odd or even) then one bit is added to each
character. The parity bit is checked by the hardware on received
characters and errors are reported, subject to the SIO__$ERR_ ENABLE
option. If the number of bits per character is fewer than 8, then the
parity bit is delivered with the data in raw mode and is stripped in
cooked mode.

SIO__$BITS__PER_ CHAR

Sets the number of bits per character. This option takes a predefined
2-byte integer value. The default is SIO _$8BPC, which is 8 bits per
character. Possible choices are: SIO__$xBPC, where x may be 5, 6, 7, or
8.

SIO_$STOP_BITS

Sets the number of stop bits. This option takes a predefined 2-byte
integer value. The default is SIO__$STOP _1. Possible values are:
SIO __$STOP _ x where x may be 1, 1_POINT __5, or 2.

SIO _$ERR_ENABLE

Sets which kinds of errors can be reported in calls to

STREAM _$GET _REC on this stream. This option takes a set of
values, in SIO_ $ERR_ ENABLES __T format. Specify any combination
of the following predefined 2-byte integer values:

SIO _$CHECK _ PARITY
Report received parity errors.

SIO_ $CHECK _ FRAMING
Report received framing errors.

SIO _$CHECK _DCD_ CHANGE
Report an "error® when DCD line changes state.

SIO _$CHECK _ CTS_ CHANGE
Report an "error" when CTS line changes state.

SIO _$CHECK _ FRAMING is set by default.

SIO_$SEND _ BREAK

SIO_$QUITCHR

Causes a break condition on the line. This option takes a 2-byte integer
value, specifying the duration of the break, in milliseconds. The default
is ...? A reasonable value is 200.

Sets the quit character This option takes a character value. The default
is CTRL/.

SIO__$BP _ ENABLE

SIO

Enables/disables processing of bit pad input from a graphics tablet. This
option takes a Boolean value. The default is FALSE (disabled).

When enabled, data received on the SIO line is not delivered through
STREAM _$GET _REC. Instead, the SIO driver interrupt routine

SI0=10

25

)



SIO_$CONTROL

accumulates data and passes it a point at a time to the display driver.
During this processing, subsequent points within plus or minus two in
both x and y dimensions are ignored.

SIO _$INT _ENABLE
Enables/disables interrupts for the current process. This option takes a
Boolean value. The default is FALSE (disabled).

SIO _$INTCHR Sets the process interrupt character. (This option is used primarily by
DOMAIN/IX.) This option takes a character value. The default is
FALSE (CRTL/C).

SIO _$SUSP _ ENABLE
Enables/disables suspend faults for the current process. This option
takes a Boolean value. The default is FALSE (disabled).

SIO _ $SUSPCHR Sets the process suspend character. (This option is used primarily by
DOMAIN/IX.) This option takes a character value. The default is
CRTL/P.

SIO _$RAW__NL
Sets whether NO _NL mode is on or off in raw mode.(i.e., when
SIO _$RAW is TRUE). This option takes a Boolean value. The default
is FALSE (off).

Normally, newline characters (decimal 10) are transmitted as a
carriage-return, line-feed. In NO _ NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO _$HUP _ CLOSE
Causes the modem to be hung up on the last close (STREAM _ $CLOSE)
of the SIO line. The hangup is performed by dropping DTR for 3/4
second.

SIO__$FLUSH__IN
Causes the input buffer of an SIO line to be flushed. This option takes a
Boolean value. The default is FALSE (off).

SIO _$FLUSH _OUT
Causes the output buffer of an SIO line to be flushed. This option takes
a Boolean value. The default is FALSE (off).

SIO __$DRAIN_ OUT
Causes the process to wait until all the characters in the output buffer
have been transmitted before returning. This option takes a Boolean
value. The default is FALSE (off).

value
Each of the SIO __$CONTROL options accepts a corresponding value. For the character
options, the value is simply the character. For the mode-setting options, the value is a
Boolean (LOGICAL) data item. For most of the remaining options, the value is a 2-byte
integer. In one case, you may specify a set of values. The type of value required for each
option is described along with the option, above.

SIO=-11 SIo



SIO__$CONTROL

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the SIO
Data Types section for more information.

Possible values are:

STATUS _$OK The operation completed successfully.

STREAM _ $NOT _ OPEN
No stream is open on the specified stream ID.

SIO _$STREAM _NOT _SIO
The specified stream ID is not connected to a serial line.

SIO _$BAD _ OPTION
The call specified an invalid option name.

SIO __$INCOMPATIBLE _ SPEED
The specified speed is incompatible with the speed of the line’s partner.

USAGE
To poll the serial line for unread input, use STREAM _$GET _ CONDITIONAL.

The hardware configuration for some machine types is such that certain SIO lines are
“partnered" with each other. Below is a list of machine types and the SIO lines that are
partnered on them.

Machine Type Partnered Lines

DN40O No

DN420 Partners
DN600

DN300 1,2

DSP80 1,2

DN460 0,1

DN660 2,3

DN550 1.2

A characteristic of partnered lines is that some baud rates are incompatible. That is,
certain combinations of baud rates can not be held by partnered lines. Below are two lists
of baud rates.

SIO SIo=-12



Incompatible Rates A

Incompatible Rates B

SI0_$50
SI0_$7200

SI0_$75
SI0_$150
SI0_$2000
SI0_$19200

SIO _$CONTROL

If one partner is set to a baud rate in the A list, attempting to set the other partner to a
baud rate in the B list (using the SIO__ $SPEED option) will result in the error,

SIO _ $INCOMPATIBLE _ SPEED. The same is true for the reverse (having a partnered
line set to a rate in the B list and attempting to set its partner to a rate in the A list).

Speeds other than those in the two lists have no compatibility issues.

You may choose to set an incompatible baud rate by force, using the

SIO _$SPEED _ FORCE option. This will change the specified line to the specified speed;
however, it will change the speed of the partnered line to SIO_$9600 (which is always a

compatible speed).

SIO=13

SIO



SIO _$INQUIRE

SIO _ $INQUIRE
. N
Obtains current settings of serial line options and values. K
FORMAT
SIO_$INQUIRE (stream-id, option, value, status)
INPUT PARAMETERS
stream~-id
Stream-id of a stream attached to a serial line. This is a 2-byte integer.
option
The attribute that is to be reported, in SIO_$OPT _ T format. This is a 2-byte mteger
One of the following predefined values:
SIO _$ERASE Returns the erase character, which erases the character immediately
before the current cursor position. This option takes a character value. -
The default is <BACKSPACE>.
SIO__$KILL Returns the kill character, which deletes characters from the cursor
position to the end of the line. This option takes a character value. The
default is CTRL/X.
SIO _$EOFCHR Returns the 