
o

o

o

o

o

DOMAIN System Call Reference
(Volume 2, lOS - VFMT)

Update 1

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 008857
Revision 00

Software Release 9.2

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: February, 1986

This document was produced using the SCRmE document preparation system. (SCRmE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, DOMAIN/VACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRmED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSmILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRmED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

c

c

o

0

o

o

o

------ -- --------------------- ------------

Preface

This manual is part of a two-volume set that describes the DOMAIN® system calls. Each volume
consists of a section that introduces the system calls followed by sections that describe a separate
operating system manager (e.g., the process manager, stream manager, and variable formatting
package). The sections that describe the managers are in alphabetical order by manager
name and consist of a description of the data types used by the manager, the syntax of the
manager's programming calls, and the error messages generated by the manager.

For easy Qrganization, we have numbered the pages of this two volume reference set by system
manager. For exa~ple, the third page in the ACLM section is page ACLM-3.

Volume 1 includes descriptions of the following managers:

ACLM
CAL
EC2
ERROR
GM
GMF
GPR

Volume 2 includes descriptions of the following managers:

IPC PROCl
MaX PROC2
MS RWS
MTS SIO
MUTEX SMD
NAME STREAM
PAD TIME
PBUFS TONE
PFM TPAD
PGM VEe
PM VFMT

You should use this manual with the programming handbooks listed under Related Documents.
These programming handbooks give detailed instructions about using these programming calls.

PREFACE-l

Audience

This manual is intended for programmers who are writing application programs using DOMAIN
system calls. Readers of this manual should be familiar with FORTRAN, Pascal, or C and the
operating system as described in the DOMAIN SY8tem U8er'8 Guide. This manual is not
intended as a tutorial document, but as a reference for programmers who need to use operating
system services.

Related Documents

The Programming With General SY8tem Ca1l8 handbook, order no. 005506, documents how to
write programs that use standard DOMAIN system calls including the ACLM, CAL, EC2,
ERROR, MTS, NArv.IE, PAD, PBUFS, PFM, PGM, PM, PROCI, PROC2, RWS, SIO, STREAM,
TIME, TONE, TPAD, and VFMT calls.

The Programming With SY8tem Ca1l8 for interproce88 Communication handbook, order no.
005696, documents how to write programs that use the DOMAIN interprocess facilities including
the MBX, MS, IPC, MUTEX, and EC2 calls.

The Programming With DOMAIN £D Graphic8 Metafile Re80urce handbook, order no. 005097,
documents how to write programs that use the DOMAIN 2D Graphics Metafile Resource.

The Programming With DOMAIN Graphic Primitive8 handbook, order no. 005808, documents
how to write graphics programs that use the DOMAIN Graphics Primitive Resource.

PREFACE-2

-".

. ,.,/

,/-----............,

,r----'
\

(~
I
" 1,-., .. _/

o

o

o

o

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[

{ }

< >

CTRL/Z

Uppercase words or characters in formats and command
descriptions represent keywords that you must use
literally.

Lowercase words or characters in formats and command
descriptions represent values that you must supply.

Square brackets enclose optional items.

Braces enclose a list from which you must choose an
item.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the
keyboard.

The notation CTRL/ followed by the name of a key
indicates a control character sequence. Hold down
<CTRL> while you type the character.

Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.

Vertical ellipsis points mean that we have omitted
irrelevant parts of a figure or example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Oommand Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader's Response form is located at the back of each manual.

PREFACE-3

"- .. /

0 INTRODUCTION INTRO-l

lOS IOS-l

IPC IPC-l

:MJ3X :MJ3X-l

MS MS-l

MTS MTS-l

MUTEX MUTEX-l

NAME NAME-I

0 PAD PAD-l

PBUFS PBUFS-l

PFM PFM-l

PGM PGM-l

0
PM PM-l

PROCI PROCl-l

PROC2 PROC2-l

RWS RWS-l

SIO SIO-l

0 SMD SMD-l

STREAM STREAM-l

TIME TIME-l

TONE TONE-l

TPAD TPAD-l

VEC VEC-l

VFMT VFMT-l

o
CONTENTS-l

o

o

o

o

Introduction

This introductory section describes the DOMAIN system insert files and the format of the
information found in the sections that follow. Each of these sections consist of a description of
the data types used by a system manager, the syntax of the manager's programming calls, and
the error messages generated by the system manager . We have arranged the sections of this
manual alphabetically, by system manager name.

DOMAIN Insert Files

The DOMAIN system provides insert files that define data types, constants, values, and routine
declarations. The insert files also define the exact form of each system call or routine. (Even the
FORTRAN version does this using comments, although the FORTRAN compiler doesn't check
the forms that you use.)

The DOMAIN system routines are divided, by function, into several subsystems. Each subsystem
is controlled by a system manager. The routines of each subsystem are prefixed for easy
indentification. A subsystem prefix consists of a number of identifying characters followed by the
special underscore and dollar-sign characters, II _ $. II For example, the routines that perform
stream functions are prefixed with STREAM_ $. These subsystem prefixes are also used to
distinguish DOMAIN data types and constants that are used by the subsystem routines.

Insert files are located in the directory /SYS/INS/. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program, you include the insert file,
/SYS/INS/ERROR.INS.P AS. Using the same routines in a FORTRAN program, you include
/SYS/INS/ERROR.INS.FTN. All insert files are specified using the syntax

/SYS /INS / subsystem-prefix.lNS .language-ab breviation

where the language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). The listing on
the next page shows all the available insert files.

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. You specify BASE insert files using the syntax

/SYS /INS /BASE.lNS .language-abbreviation

These files contain some basic definitions that a number of subsystem routines use.

INTRO-l

Summary of Insert Files

Insert File

/SYS/INS/BASE.INS.lan

/SYS/INS/ACLM. INS. Ian
/SYS/INS/CAL.INS.lan
/SYS/INS/ERROR. INS. Ian
/SYS/INS/EC2. INS. Ian
/SYS/INS/GM. INS. Ian
/SYS/INS/GMF.INS.lan
/SYS/INS/GPR.INS.lan
/SYS/INS/IPC.INS.lan
/SYS/INS/KBD.INS.lan
/SYS/INS/MBX.INS.lan
/SYS/INS/MS. INS. Ian
/SYS/INS/MTS.INS.lan
/SYS/INS/MUTEX. INS. Ian
/SYS/INS/NAME.INS.lan
/SYS/INS/PAD.INS.lan
/SYS/INS/PBUFS.INS.lan
/SYS/INS/PFM.INS.lan
/SYS/INS/PGM.INS.lan
/SYS/INS/PM.INS.lan
/SYS/INS/PROC1.INS.PAS
/SYS/INS/PROC2. INS. Ian
/SYS/INS/RWS.INS.lan
/SYS/INS/SIO.INS.lan
/SYS/INS/SMDU. INS. Ian
/SYS/INS/STREAMS.INS.lan
/SYS/INS/TlME. INS. Ian
/SYS/INS/TONE.lan
/SYS/INS/TPAD.INS.lan
/SYS/INS/VEC.INS.lan
/SYS/INS/VFMT. INS. Ian

Operating System Component

Base definitions -- must always be included

Access control list manager
Calendar
Error reporting
Eventcount
Graphics Metafile Resource
Graphics Map Files
Graphics Primitives
Interprocess communications datagrams
[Useful constants for keyboard keys]
Mailbox manager
Mapping server
Magtape/streams interface
Mutual exclusion lock manager
Naming server,
Display Manager
Paste buffer manager
Process fault manager
Program manager
User process routines
Process manager (Pascal only)
User process manager
Read/write storage manager
Serial I/O
Display driver
Stream mana.ger
Time
Speaker
Touchpad ma.nager
Vector arithmetic
Variable formatter

The suffix ".Ian" varies with the high-level language that you're using; it is either ".FTN",
".PAS", or ".C".

Organizational Information

This introductory section is followed by sections for each subsystem. The material for each
subsystem is organized into the following three parts:

1. Detailed· data type information (including illustrations of records for the us'e, of
FORTRAN programmers).

2. Full descriptions of each system call.
alphabetically.

3. List of possible error messages.

Each call within a subsystem is ordered

INTRO-2

/'~'
(

\ "

c

o

o

o

o

o

Data Type Sections

A subsystem's data type section precedes the subsystem's individual call descriptions. Each data
type section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME _ $REL _ ABS _ T = 4-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type's purpose.
Where applicable, any predefined values ~ociated with the type are listed and described.

Following is an example of a data type description for the TIME _ $REL _ABS _ T type.

TIME_ $REL_ABS _ T A 2-byte integer. Indicator of type of time. One of
the following pre-defined values:

TIME _ $RELATIVE

Relative time.

TIME _ $ABSOLUTE

Absolute time.

In addition, the record data types are illustrated in detail. Primarily, we have geared these
illustrations to FORTRAN programmers who need to construct record-like structures, but we've
designed the illustrations to convey as much information as possible for all programmers. Each
record type illustration:

• Clearly shows FORTRAN programmers the structure of the record that they must
construct using standard FORTRAN data type statements. The illustrations show the
size and type of each field.

• Describes the fields that make up the record.

• Lists the byte offsets for each field. These offsets are used to access fields
individually.

• Indicates whether any fields of the record are, in turn, predefined records.

INTRO-3

The following is the description and illustration of the CAL _ $TTh1EDATE _REC _ T predefined
record:

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

Readable time format. The
diagram below illustrates the
CAL_$TIMEDATE_REC_T data type:

field name

integer year

integer month

integer day

integer hour

integer minute

integer second

Field Description:
year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour
(24 hr. format).

minute
Integer representing the minute.

second
Integer representing the second.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations.

INTRO-4

o

o

o

o

o

System Call Descriptions

We have listed the system call descriptions alphabetically for quick reference. Each system call
description contains:

• An abstract of the call's function.

• The order of call parameters.

• A brief description of each parameter.

• A description of the call's function and use.

These descriptions are standardized to make referencing the material as quick as possible.

Each parameter description begins with a phrase describing the parameter. H the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase II ,in
XXX format" where XXX is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.

FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. The second sentence describes the data type in atomic terms that you can use, such as
"This is a 2-byte integer. II In complex cases, FORTRAN programmers are referenced to the
respective subsystem's data type section.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access
New access mode, in MS~$ACC_MODE_T format. This is a 2-byte integer.
Specify only one of the following predefined 'values:

MS_$R

MS_$WR

MS_$RIW

Read access.

Read and write access.

Read with intent to write.

An object which is locked MS_$RIW may not be changed to MS_$R.

INTRO-5

Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:

• Predefined constant for the status code .

• Text associated with the error.

INTRO-6

(J

o

o

o

()
"-./.

lOS

This section describes the data types, the call syntax, and the error codes for the lOS
programming calls. Refer to the Introduction at the begimiing of this manual for a description of
data-type diagrams and call syntax format.

10S-1 lOS

lOS DATA TYPES

CONSTANTS

lOS $MAX

lOS $NO STREAM

VARIABLES

XOID $NIL

DATA TYPES

lOS $ABS _ REL T

lOS $CONN FLAG T

lOS

127 Highest possibe number in stream ID.

16#7FFF Placeholder for stream ID.

A variable whose value is the N~ XOID and
doesn't change. Used for comparisons and
assignments of XOID _ $T variables.

A 2-byte integer. Specifies whether seek is relative
or absolute. One of the following predefined values:

lOS $RELA TIVE

Seek from the current position.

lOS _ $ABSOLUTE

Seek from the beginning of the object (BOF).

A 2-byte integer. Attributes associated with a
stream connection. One of the following predefined
values:

lOS $CF TTY

c.onnection behaves like a terminal.

lOS $CF IPC

Connection behaves like an interprocess
communication (IPC) channel.

IOS_$CF _ VT

Connection behaves like a DOMAIN Display
Manager pad.

lOS $CF WRITE

Connection can be written to.

lOS $CF APPEND

Connection's stream marker can be positioned
to the end of the object before each put call.

lOS $CF UNREGULATED

Other processes can read and write to the
connection.

lOS $CF READ INTEND WRITE

Connection open for read access, and can later

IOS-2

c

('
\... -

o
lOS $CONN FLAG SET

lOS $CREATE MODE T

o

o

o lOS $DIR TYPE T

lOS $EC KEY T

o

lOS DATA TYPES

be open for write access. Other processes can
have read access.

A 4-byte integer. A set of connection attributes, in
lOS _ $CONN _FLAG _ T format, indicating which
attributes of the specified connection are set. For a
list of options, see lOS _ $CONN _ FLAG _ T
above.

A 2-byte integer. Specifies the action to be taken if
the name already exists or specifies creation of
umnamed objects. One of the following predefined
values:

lOS $LOC NAME ONLY MODE

Create a temporary unnamed object, uses
pathname to specify location of object, and
locates it on the same volume.

10S_$MAKE_BACKUP _MODE

Create a backup (.bak) object when closed.

lOS $NO PR~_ EXIST MODE
Return an error if object already exists.

lOS $PRESERVE MODE

Save contents of object, if it exists, opens
object, and positions stream marker at the
beginning of the object (BOF).

lOS $RECREATE MODE

Delete existing object and creates new one of
same name.

lOS $TRUNCATE MODE

Open object, then truncates the contents.

A 2-byte integer. Specifies type of directory. One
of the following predefined values:

lOS $WOIR
Current working directory.

lOS $NDIR
Current naming directory

A 2-byte integer. Specifies eventcount key type.
One of the following predefined values:

lOS $GET EC lillY

Key that is advanced with each get call.

lOS _ $PUT _ EC _ KEY

Key that is advanced with each put call.

IOS-3 lOS

lOS DATA TYPES

lOS $ID T

lOS $MGR FLAG T

lOS

A 2-byte integer, ranging in value from 0 to
lOS $MAX. The stream ID.

A 2-byte integer. Object attributes associated with
an object's manager. One of the following
predefined values:

lOS $MF CREATE

Manager permits type to create objects.

10S_$MF _CREATE_BAK

Manager permits type to create backup (.bak)
objects.

lOS $MF lMEX
Manager permits type to export streams to
new processes.

lOS $MF FORK
Manager permits type to pass streams to
forked processes.

lOS $MF FORCE WRITE
Manager permits type to force-write object
contents to stable storage (for most object
types, this is the disk).

lOS $MF WRITE

Manager permits objects to be written to.

lOS $MF SEEK ABS

Manager permits objects to perform absolute
seeks.

lOS $MF SEEK SHORT

Manager permits objects to seek using short
(4-byte) seek keys.

lOS $MF SEEK FULL
Manager permits objects to seek using full
(8-byte) seek keys.

lOS $MF SEEK BYTE

Manager permits objects to seek to byte
positions.

lOS $MF SEEK REC
Manager permits objects to seek to record
positions.

lOS $MF SEEK BOF

Manager permits objects to seek to the
beginning of the object.

lOS $MF REG TYPE

IOS-4

c

o

o lOS $MGR FLAG SET

lOS $NAME TYPE T

C)

o

o

lOS DATA TYPES

Manager supports different record type
formats.

lOS $MF TRUNCATE

Manager permits objects to be truncated.

lOS _ $MF _UNREGULATED

Manager permits objects to have shared
(unregulated) concurrency mode.

lOS $MF SPARSE

Manager permits objects to be as sparse.

lOS $MF READ INTEND WRITE

Manager permits objects to have
read-in tend-write access.

A 4-byte integer. A set of object manager
attributes, in lOS _ $MGR _FLAG _ T format,
indicating which attributes of the specified object's
manager are set. For a list of options, see
lOS $MGR FLAG' T above .

. A 2-byte integer. Specifies format of pathname.
One of the following predefined values:

lOS $ROOT NAME

Absolute pathname relative to the network
root directory U I); for example,
/ /node/sid/file.

lOS $WDIR NAME

Leaf name if object's name is a name in
current working directory; otherwise, specifies
absolute pathname.

lOS $NDIR NAME
Leaf name if object's name is ~ name in
current naming directory; otherwise, specifies
absolute pathname.

lOS $NODE _ NAME

Name relative to the node's entry directory
U) if object is a name in boot volume;
otherwise, specifies absolute pathname; for
example, /sid/file.

lOS $NODE_DATA FLAG

Leaf name if object's name is a name in
current 'node.;.... data directory; otherwise,
specifies absolute pathname.

lOS $LEAF NAME

Leaf name regardless of object's name.

IOS-5 lOS

lOS DATA TYPES

lOS $OBJ_FLAG T

lOS $OBJ_FLAG SET

lOS $OPEN OPTIONS T

lOS

lOS $RESID NAME

Residual name if object is defined using
extended naming.

A 2-byte integer. Attributes associated with an
object. One of the following predefined values:

lOS _ $OF _DELETE_ON _ CLOSE

Object can be deleted when all its associated
connections are closed.

lOS $OF SPARSE OK

Object can be written as a sparse object.

lOS _ $OF _ASCII

Object contains ASCII data.

10S_$OF _FTNCC
Object uses FORTRAN carriage control
characters.

lOS $OF COND
Object performs get or put calls conditionally,
as if the lOS _ $COND _ OPT was specified.

A 4-byte integer. A set of object attributes, in
lOS _ $OBJ _FLAG _ T format, indicating which
attributes of the specified object are set. For a list
of options, see lOS _ $OBJ _FLAG _ T above.

A 2-byte integer. Specifies options for an
lOS _ $OPEN. Any combination of the following
predefined values:

lOS $NO OPEN DELAY OPT

Return immediately instead of waiting for
open to complete.

lOS $WRITE OPT

Permit writing data to a new object.

lOS _ $UNREGULATED _ OPT

Permit concurrency (unregulated read and
write access.) to the object

lOS $POSITION TO EOF OPT

Position stream marker to the end of the
object at open.

lOS _ $INQUIRE _ ONLY _ OPT

Open object for attribute inquiries only.

lOS $READ INTEND WRITE OPT

Object has read-intend-write access, other
processes can have read but not write access.

IOS-6

------------------- --------------------

c

c.~

c'

o lOS $POS OPT T

lOS $PUT GET OPTS T

o

o

o lOS $RTYPE T

o

lOS DATA TYPES

A 2-byte integer. Specify position to return when
inquiring about object position. One of the
following predefined values:

lOS $CURRENT

Return key for the current stream marker.

IOS_$BOF
Return key for beginning of the object (BOF)
marker.

IOS_$EOF

Return key for end of the object (EOF)
marker.

A 2-byte integer. Specifies options for put and get
operations. Any combination of the following
predefined values:

lOS $COND OPT

Read or write data conditionally. If call fails,
returns
lOS _ $xxx_ CONDITIONAL _FAILED,
where xxx is either GET or PUT.

lOS $PREVIEW OPT

Write data but do not update the stream
marker.

lOS $P ARTIAL RECORD OPT

Write a portion of a record but do not
terminate it.

lOS _ $NO _REC BNDRY _ OPT

Ignore record (line) boundries.

A 2-byte integer. Specifies the record type format.
One of the following predefined values:

lOS $Vl

Variable-length record with count fields.

lOS $F2
Fixed-length records with count fields.

lOS $UNDEF

No record structure.

lOS _ $EXPLICIT _ F2

Fixed-length records that lOS _ $PUT cannot
implicitly change to lOS _ $Vl.

lOS $Fl

Fixed-length records without count fields.

IOS-7 lOS

lOS DATA TYPES

lOS $ SEEK _ TYPE T

STATUS $T

lOS

The full seek key. This is an 8-byte integer value.

A 2-byte integer. Specifies the type of seek to
perform. One of the following predefined values:

lOS $REC SEEK
Record-oriented seek.

lOS $BYTE_SEEK
Byte-oriented seek.

A status code. The diagram below illustrates the
STATUS_$T data type:

byte:
offset 31 o

field name

0:

0:

1 :

2:

integer all

or

fail

subsys

mode
t---"----. 0

integer eode

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. H this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

mode
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

IOS-8

c

c'

--------------;--------- ----------------------------.-." '---

o UID $T

XOID $T

o

C)

o

o

predefined
type

byte:
offset

0:

4:

8:

12:

lOS DATA TYPES

An object type identifier. This is an 8-byte integer
value.

Unique identifier of an object. Used by type
managers only. The diagram below illustrates the
XOID_$T data type:

31

integer

integer

integer

integer

Field Description:

rful

0

Reserved for future use.

rfu2
Reserved for future use.

UID

field name

rfu1

rfu2

UID

Unique identifier for an object.

IOS-9 lOS

lOS $CHANGE_PATH NAME

lOS $OHANGE PATH NAlvIE

Ohanges the pathname of an object.

FORMAT

IOS_$CHANGE PATH_NAME (stream-id, new-pathname, new-namelength, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

new-pathname
New name of the object, in NAlvIE _ $PNAlvIE _ T format. This is an array of up to 256
characters.

new-namelength
Length of IInew-pathname. 1I This is a 2-byte integer.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

lOS _ $OHANGE _PATH_NAlvIE changes the pathname of an existing object. The
stream ID of the object remains the same.

IOS_$OHANGE_PATH_NAlvIE permits you to assign a name to a previously unnamed
object and, conversely, to remove a name from a previously named object. (To remove a
name, specify a null pathname.)

Note that this call can change the delete-on-close object attribute. For example, if you
assign a name to an unnamed object, the operation implicitly changes the delete-on-close
attribute to FALSE. Likewise, if you specify a null pathname for a previously named
object, the operation implicitly changes the delete-on-close attribute to TRUE. Be aware
that this behavior can cause unexpected results in cases where you explicitly change the
delete-on-close attribute, and then make an unnamed-to-named name change.

10S-1O

c

o

o

o

o

o

lOS $CLOSE

lOS $CLOSE

Closes a stream.

FORMAT

IOS_$CLOSE (stream-id. status)

INPUT PARAMETERS

stream-id
Number of the stream to be closed, in lOS _ $ID _ T format. This is a 2-byte integer.

Once lOS _ $CLOSE closes the stream, the number used for this stream ID becomes
available for reuse. If the object is open on more than one stream, lOS _ $CLOSE closes
only "stream-id."

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS _ $CLOSE closes the stream so that you can no longer use the stream ID to operate on
the object. Closing a stream to an object releases any locks maintained by the stream
connection, thus making the object available to other users.

A program can close only the streams that it has opened at the current or lower program
levels (that is, streams opened by programs that the calling program has invoked).
lOS _ $CLOSE returns an error status code if you try to close a stream that was opened at
a higher program level.

If an object has the delete-on-close attribute (lOS _ $OF _DELETE _ ON _ CLOSE),
lOS _ $CLOSE deletes the object. However, the object is not deleted until all streams to it
are closed. (For details on object attributes, see the lOS _ $INQ_ $OBJ _FLAGS and
lOS _ $SET _ OBJ _ FLAG calls.)

10S-11 lOS

lOS $CREATE

lOS $CREATE

Creates an object and opens a stream to it.

FORMAT

IOS_$CREATE Cpathname. namelength. type-uid, create-options,
open-options, stream-id, status)

INPUT PARAMETERS

pathname
Name of the object to be created, in NA1v1E_$PNA1v1E_ T format. This is an array of up
to 256 characters. To create a temporary object, see the section "Creating an Object in
Backup Mode" below.

namelength
Length of "pathname, II in bytes. This is a 2-byte integer. To create a temporary object,
see the section II Creating an Object in Backup Mode II below.

type-uid

lOS

UID of the type to be created, in UID _ $T format. This data type is 8 bytes long. See the
lOS Data Types section for more information.

If you specify the predefined UID _ $ NIL , lOS _ $ CREATE creates an object of the default
type, which is currently unstructured ASCII (UASC). You can also specify any of the
system's predefined type UIDs listed below, or any valid user-created type UID.

DOMAIN currently supports a set of standard object types which include the following
types. (Note that objects created by type managers return manager-specific type ~IDs.)

Type UID Object

UASC $UID UASC object

RECORDS $UID Record-oriented object

HDR UNDEF $UID Nonrecord-oriented object

OBJECT FILE $UID Object module object (compiler or binder output)

SIO $UID Serial line descriptor object

MT $UID Magnetic tape descriptor object

PAD $UID Saved Display Manager transcript pad

INPUT PAD $UID Display Manager input pad

MBX $UID Mailbox object

IOS-12

c'

c

o

o

o

o

o

lOS $CREATE

Type UID Object

DIRECTORY $UID Directory

NULLDEV $UID Null device

create-options
Specifies the action to be taken if the object already exists, or specifies the creation of an
unnamed object, in 10S_$CREATE_MODE_ T format. This is a 2-byte integer. Specify
one of the following predefined values:

lOS $NO PRE EXIST MODE

lOS $PRESERVE MODE

lOS $RECREATE_MODE

lOS $TRUNCATE MODE

lOS $MAKE BACKUP MODE

lOS $LOC NAME ONLY MODE

Return the lOS $ALREADY EXISTS error
status code if an object with the specified
name already exists.

Preserve the contents of the object if an
object with the specified name already exists.
Then open the object and position the stream
marker to the beginning of the object (BOF)
unless you set the
lOS _ $POSITION _ TO _EOF open option.
Use this mode to append data to an existing
object.

Recreate the object if an object with the
specified name already exists. Essentially, this
option deletes the existing object and creates a
new one. The new object will have the default
set of attributes for that object type.

Open the object and delete the contents if an
object with the specified name already exists.
Use this mode to create an object to preserve
the attributes of the specified object.

Create a temporary object with the same type
and attributes as the object specified in the
pathname if an object with the specified name
already exists. Use this mode to create a
backup object. (See below for detailed
description.)

Create a temporary unnamed object. Use the
pathname to specify the location of the object.
lOS _ $OREATE will locate the temporary
object on the same volume as the object
specified in the pathname.

IOS-13 lOS

lOS $CREATE

open-options
Open options, in lOS _ $OPEN _ OPTIONS _ T format. This is a 2-byte integer. Specify a
combination of the following set of predefined values:

lOS $NO OPEN DELAY OPT

lOS $WRITE OPT

lOS $UNREGULATED OPT

lOS $POSITION TO EOF OPT

lOS _ $INQUffiE _ ONLY _ OPT

Return immediately, instead of waiting for the
open call to complete.

Permit writing data to a new object. If a
program tries to write on a stream for which
you have not specified this option, it returns
an error status. Note that when creating an
object, the lOS manager automatically sets
this value because it assumes that when you
create an object, you will want to write to it.

Permit shared (unregulated) concurrency
mode.

Position the stream marker at the end of the
object (EOF). Use this to append data to an
existing object.

Open the object for attribute inquiries only;
do not permit reading or writing of data.

lOS $READ INTEND WRITE OPT Open the object for read access with the
intent to eventually change the object's access
to write access. This allows other processes to
read the object; but they cannot have write or
read-intend-write access.

OUTPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

Subsequent lOS calls use this number to identify the stream opened by this call.

status

lOS

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

IOS-14

---------- ----_.

c

c'

C~

c'

()

o

o

o

o

lOS $CREATE

USAGE

If the pathname specifies an object that does not exist, lOS _ $ CREATE creates a new
object of the specified type using that pathname and opens a stream to it. If the object
already exists, the create mode option specified in the call determines which action
lOS _ $ CREATE will perform.

Both 10S_$CREATE and 10S_$OPEN open a stream to an object. However,
lOS _ $CREATE creates the object if it does not exist, whereas lOS _ $OPEN returns an
error if the object does not exist.

Inquiring about Object Attributes

When lOS _ $ CREATE creates an object, the object has adefault set of attributes (the
default attributes depend on the type created). These attributes fall into three categories:
manager, object, and connection attributes. To determine which attributes the newly
created object has, you can use the following calls:

lOS _ $INQ _ MGR _ FLAGS
Returns the attributes that the object's type manager defines.

lOS _ $INQ _ OBJ _FLAGS
Returns the attributes of the object.

lOS _ $INQ_ CONN _FLAGS
Returns the attributes of the stream connection.

To change object or connection attributes, use the lOS _ $SET _ OBJ _FLAGS, and
lOS _ $SET _ CONN _FLAGS calls, respectively. The attributes that you can change
depend on the object type. Note that you cannot change manager attributes because the
type manager determines them. For details on writing a type manager, see the Extending
the DOMAIN Streams Facility manual.

Creating a Temporary Object

lOS _ $ CREATE allows you to create a temporary object two ways. To create a temporary
object on your boot volume, specify a null value in "pathname" and a value of 0 in
"namelength.1I To create a temporary object on another volume, specify the pathname of
an existing object on that volume with the lOS _ $LOC _NAME_ ONLY _MODE option in
II create-options. II lOS _ $ CREATE creates a temporary unnamed object on the same
volume (node) as the object you specify in "pathname."

Creating an Object in Backup Mode

You can create a new, unnamed temporary object by specifying the create mode option,
IOS_$MAKE_BACKUP _MODE. The call creates the new object with the same type and
attributes as the object specified by "pathname" (if it exists), and it is created on the same
volume (node).

lOS _ $CREATE does not open or modify the object specified by "pathname, II it merely
examines the object to extract its attributes. Even though lOS _ $ CREATE does not
modify the II pathname, II it conceptually replaces the object, so this operation requires write
access to the object.

10S-15 lOS

lOS $CREATE

lOS

When lOS _ $CLOSE closes the stream created with this call, it changes the object specified
by "pathname" to "pathname.bak." It changes the new object (formerly the temporary,
unamed object) to "pathname, II and makes the object permanent.

If a ".bak" version of the object already exists, lOS _ $CLOSE deletes it. (The caller must
have either D or P rights to delete the object.) If the ".bak U object is locked at the time
lOS _ $CLOSE is called, the object will be deleted when it is unlocked.

IT Upathname u does not exist at the time that lOS _ $CREATE is called, then
lOS _ $ CREATE performs the ordinary functions.

IOS-16

c

C
--"'""

., •• l

c"

CJ

o

o

o

o

lOS $DELETE

lOS $DELETE

Deletes an object and closes the associated stream.

FORMAT

IOS_$OELETE (stream-id. status)

INPUT PARAMETERS

stream-id
Number of a stream on which the object is open, in lOS _ $ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS _ $DELETE deletes the object, then closes the specified stream.

This call actually sets the object attribute lOS _ $OF _DELETE _ ON _ CLOSE to TRUE,
then closes the stream. So, if the type manager does not allow an object to set the
delete-on-close attribute, the delete call fails. In this case, the call closes the stream, but
does not delete the object.

If the object is open on more than one stream, lOS _ $DELETE marks the object for
deletion, but the object still exists until all,streams to that object are closed.

IOS-17 lOS

lOS $DUP

lOS $DUP

Creates a copy of a specified stream ID.

FORMAT

RETURN VALUE

return _ stream id
Number of the new stream created, in lOS _ $ID _ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream_id_ to _ duplicate
Number of the stream to duplicate, in lOS _ $ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after lOS _ $DUP completes
successfully.

copy _ stream _ id
Number of the stream to use as the newly created copy, in lOS _ $ID _ T format. This is a
2-byte integer.

If "copy _stream_id" is free, lOS _ $DUP returns that value in "return_stream_id." If
II copy _stream_id" is in use, IOS_$DUP begins searching from that number upward
(higher numbers) until it finds a free stream number and returns that number in
II return stream id ...

If the actual number of II copy _stream_id II is insignificant, specify the value o. This value
causes lOS _ $DUP to begin searching from the lowest possible stream number and return
the first free stream number it finds.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use lOS _ $DUP to create a copy of an existing stream ID. The new stream ID refers to the
same connection as the existing stream ID. Note that you must close both streams with
lOS _ $CLOSE before the stream connection actually closes. .

You can use lOS _ $DUP to keep a stream connection open when passing it to a subroutine.
Use lOS _ $DUP to create a copy of the stream ID before passing it. This way, the
subroutine cannot close the connection to the object because all copies of the stream
connection must be closed before the connection itself closes.

IOS-18

c

C~

I~
\ "-_. "

c

o

o

o

o

o

lOS $DUP

lOS _ $DUP is identical to lOS _ $REPLIOATE except that lOS _ $DUP looks for a free
stream number in ascending order from the specified stream ID, while lOS _ $REPLIOATE
looks in descending order. Note that you use lOS _ $DUP or lOS _ $REPLIOATE to copy
existing stream ID's, both the existing and new stream ID's remain valid connections.
However, you use lOS _ $SWITOH to replace stream IDs; you II switch II the connection from
the existing stream ID to the new stream ID.

IOS-19 lOS

lOS $EQUAL

10S_$EQUAL

Determines whether two stream IDs refer to the same object.

FORMAT

RETURN VALUE

same
Boolean value that indicates whether the specified stream IDs refer to the same object.
IISame ll is TRUE if the streams refer to the same object, it is FALSE if they do not.

INPUT PARAMETERS

stream_id
Number of a stream being compared, in lOS _ $ID _ T format. This is a 2-byte integer.

stream _ id _ too
Number of a stream being compared, in lOS _ $ID _ T format. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use lOS _ $EQUAL to determine whether two stream IDs refer to the same object. An
application program can use this call to avoid using two streams when one is sufficient.

IOS-20

---~---------------- .. -------------

c

c

C)

o

o

o

o

lOS $FORCE WRITE FILE

lOS $FORCE WRITE F~E

Forcibly writes an object to permanent storage.

FORMAT

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS _ $FORCE _ WRITE _F~E forcibly writes the object to stable storage. Stable storage
depends on the object's type, however, in most cases, it is the disk. For example, stable
storage for a magnetic tape descriptor is the tape.

Use IOS_$FORCE_ WRITE_F~E before closing the stream to ensure that the object is.
stored safely in the event of a system crash.

IOS-21 lOS

lOS $GET

·IOS $GET

Moves data from a stream into a buffer.

FORMAT

ret-length = IOS_$GET (stream-id, get-options, buffer, buffer-size, status)

RETURN VALUE

ret-length
Amount of data moved, in bytes. This is a 4-byte integer.

II Ret-length II equals the amount of data read; "ret-length" equals 0 if 10S_$GET does not
return any data.

If the length of the data read exceeds the amount specified in II data-size, II lOS _ $GET
performs the following:

• Reads enough data to fill the requested size

• Sets II ret-length II equal to II data-size II

• Positions the stream marker to the first unread byte

• Returns the lOS $BUFFER TOO SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling
lOS _ $INQ_REC _REMAINDER.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

get-options

lOS

Options that control how lOS _ $GET performs the get operation, in
lOS $PUT GET OPTS T format. This is a 2-byte integer. Specify a combination of
the following set of predefined values:

lOS $COND OPT

lOS $PREVIEW OPT

Reads data, if available. (For example, data
on an SIO line is not always available
immediately.) If the data is not available,
lOS _ $GET returns the
lOS $GET CONDITIONAL FAILED
status code and sets the return value of
II ret-length II to O.

Reads data but does not update the stream
marker.

IOS-22

c

o

o

o

o

o

lOS $GET

lOS $NO REC BNDRY OPT Ignores record boundaries while reading data.
For example, it ignores NEWLINE characters
in a VASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this option.

lOS $PARTIAL RECORD OPT Not meaningful for this call.

buffer-size
Maximum number of bytes to be moved to the buffer. This is a 4-byte integer.

OUTPUT PARAMETERS

buffer
Buffer to store the data. This is a character array.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

You can use either of IOS_$LOCATE or IOS_$GET to read data from system objects.
lOS _ $GET copies the data into a buffer, while lOS _ $LOCATE returns the virtual
address of the data.

In most cases, use the lOS _ $LOCATE call to read data because it is faster
(lOS _ $LOCATE does not perform a copy).

You will want to use lOS _ $GET when you need to read more data than can be obtained in
one call, because the pointer remains valid for only one call. For example, use lOS _ $GET
when you need to read and rearrange a number of lines from an object.

IOS-23 lOS

lOS $ GET _DIR

lOS $GET Dffi

Gets the current working or naming directory.

FORMAT

IOS_$GET_DIR (pathname. namelength. dir_type. status)

INPUT PARAMETERS

dir _type
Option specifying which type of directory to get, in lOS _ $Dffi _ TYPE _ T format.
Specify one of the predefined values:

lOS $WDffi Name of the current working directory.

lOS $NDffi Name of the current naming directory.

OUTPUT PARAMETERS

pathname
N arne of the directory to get, in NAlvIE _ $PNA1v1E _ T format. This is an array of up to
256 characters.

namelength
Length of II pathname. 1I This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use this call to get the current working or naming directory. It returns the name of the
directory in the IIpathname ll parameter. If you want to change the current working or
naming directory, use 10S_$SET _Dffi.

IOS-24

-----~ .. -_. __ ._--_ .. --- ._--

c

c

c

o

o

o

o

o

lOS $GET EC

lOS $GET EC

Gets a pointer to an eventcount for a stream event.

FORMAT

IOS_$GET_EC (stream-id. stream-key. eventcount-pointer. status)

iNPUT PARAMETERS

stream-id
Number of stream on which the eventcount is waiting, in lOS _ $ID _ T format. This is a
2-byte integer.

stream-key
The key that specifies which type of eventcount to get a pointer to, in lOS _ $EC _KEY _ T
format. This is a 2-byte integer. Specify one of the following predefined values:

lOS $GET REC EC KEY An event count that advances when the stream
contains data for you to get. This eventcount
advances whenever there is anything to get from an
open stream.

lOS $PUT REC EC KEY An eventcount that advances when a previously
II full II stream might now be able to accept data. A
full stream is a stream that lOS $PUT will block.

OUTPUT PARAMETERS

event count-pointer
A pointer to the eventcount, in EC2 _ $PTR _ T format. This is a 4-byte integer address
that points to an array of eventcounts. See the EC2 Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

IDS _ $GET _EO is valid for all streams, including those open to objects, pads, mailboxes,
and devices. After you use this call to get a stream event, use EC2 calls to read eventcount
values and wait for events.

You can wait for two types of events on a stream:

• The lOS-get eventcount indicates that there might be input to get from an open
stream .

• The lOS-put eventcount indicates that a previously II full, II or blocked, stream
might now have enough room to accept the data.

An example of using the lOS-get eventcount is to wait for keyboard input. Whenever the

IOS-25 lOS

lOS

user types data, the system advances the eventcount associated with the user's input pad. If
input pad is in normal (or cooked) mode, the eventcount advances after each carriage
return, if the input pad is in raw mode, the eventcount advances after each keystroke. (For
details on cooked and raw mode, see the Display Manager chapter in the Programming
with General SY8tem Gall8 manual.)

An example of using the lOS-put eventcount is to wait on an :MBX chamiel that might get
blocked. That is, lOS _ $PUT blocks streams associated with :MBX channels if a server is
not ready for the data from the channel. When it's possible to write data without blocking,
the system advances the lOS-put eventcount.

For more information on eventcounts, see the Programming with General SY8tem Gall8
and the Programming with SY8tem Call8 for Interproce88 Communication manuals.

IOS-26

c

o

o

o

o

o

lOS $GET HANDLE

lOS $GET HANDLE

Converts a stream ID to a handle pointer.

FORMAT

handle = IOS_$GET_HANDLE (stream-id. type-uid. status)

RETURN VALUE

handle
Pointer to the handle associated with the stream connection, in UNN _PTR format. This is
a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream that identifies an open stream, in lOS _ $ID _ T format. This is a
2-byte integer.

type-uid
Type UID of the object that the type manager handles, in UID _ $T format. Specify the
type UID of the manager you are writing. This data type is 8 bytes long. See the lOS Data
Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. 'See the lOS
Data Types section for more information.

USAGE

NOTE: This call is generally of interest to type manager writers only.

Type manager writers use this call to access an object when implementing an operation that
is not predefined by the system. When the type manager implements such an operation, it
is referred to as a direct manager call because the I/O switch does not route the call
between the client call and the manager. Without switching, the manager receives a stream
ID from a client. To access the object, the manager must then call lOS _ $GET _HANDLE
to obtain the object handle associated with the stream ID.

lOS _ $GET _HANDLE returns an error if the stream ID is not associated with an object of
the type UID specified by 1/ type ~ uid. 1/ Specify the type UID of the manager you are
writing so that the manager can be sure it has a stream to an object of its type.

See the Using the Open System Toolkit to Extend the Streams Facility manual for more
information.

IOS-27 lOS

lOS _ $INQ_BYTE _POS

IOS_$INQ_BYTE_POS

Returns the byte position of the stream marker.

FORMAT

byte-position = IOS_$INQ_BYTE_POS (stream-id. position-option. status)

RETURN VALUE

byte-position
Byte position of the stream marker. This is a 4-byte integer. Note that byte positions are
zero-based; consequently the byte position of the beginning of an object (BOF) is O.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

position-option
Value specifying the byte position to return, in lOS _ $POS _ OPT _ T format. This is a
2-byte integer. Specify one of the following predefined values:

lOS $CURRENT

lOS $EOF

lOS $BOF

Returns the byte position of the current stream marker.

Returns the byte position of the stream marker at the end of
the object (EOF). This is the number of bytes in the object.

Return the byte position of the stream marker at the beginning
of the object (BOF). This value is always O.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

To obtain the offset of the stream marker, use lOS _ $INQ_BYTE _pas. (Use
lOS _ $INQ_REC _pas if your object is record-oriented.)

To get the offset of the stream marker at the beginning or end of the object, specify
lOS _ $BOF or lOS _ $EOF, in the .. position-option" parameter. Specify
lOS _ $CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by
calling lOS _ $SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it.

IOS-28

o

o

o

o

Whether you perform a nonkeyed or keyed seek depends on how the object's data is
represented. For example, programs that need to perform lI arithmetic ll on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations.

IOS-29 lOS

lOS _ $INQ_ CONN _ FLAGS

lOS _ $INQ _ CONN _ FLAGS

Returns the attributes associated with a connection.

FORMAT

RETURN VALUE

conn_nags
A set (bit mask) indicating which attributes of the specified connection are set, in
IOS_$CONN_FLAG_SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS_$CONN_FLAG_ T format, can be returned. If
the set contains the value, the connection has the attribute.

lOS $CF TTY

lOS $CF IPC

lOS $CF VT

lOS $CF WRITE

lOS $CF APPEND

lOS $CF UNREGULATED

lOS $CF READ INTEND WRITE

Connection behaves like a terminal.

Connection behaves like an interprocess
communication (IPC) channel.

Connection behaves like a DOMAIN Display
Manager pad.

Connection can be written to.

Connection's stream marker will be positioned
at the end of the object (EOF) before each put
call.

Connection is open for unregulated (shared)
concurrency mode.

Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-in tend-write access.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status

lOS

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

IOS-30

c

c'

o

o

o

o

o

lOS _ $lNQ _ CONN _ FLAGS

USAGE

Use this call to determine which connection attributes are in effect for the specified stream.

To change object or connection attributes, use the lOS _ $SET _ OBJ _FLAGS, and
lOS _ $SET _ CONN _ FLAGS calls respectively. Which attributes you can change depends
on the object type.

10S-31 lOS

lOS _ $INQ_ OUR_REO _LEN

10S_$INQ_ CUR_REC _LEN

Returns the length of the record at the current stream marker.

FORMAT

RETURN VALUE

rec-Iength
Length of the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use 10S_$INQ_CUR_REC_LEN to determine the length of the record at the current
stream marker of the specified stream.

The object specified must be record-oriented (for example, RECORDS _ $UID); otherwise,
lOS _ $INQ _ CUR _REC _ LEN returns an error.

IOS-32

o

o

o

o

o

lOS _ $INQ _ FILE _ ATTR

Returns object usage attributes including date and time created, date and time last used,
date and time last modified, number of blocks in the object.

FORMAT

IOS_$INQ_FlLE_ATTR (stream_id. dt-created. dt-modified. dt-used. blocks. status)

INPUT PARAMETERS

stream.-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

dt-created
Date and time the object was created, in TIME_$OLOOKH_ T format. This is a 4-byte
integer.

dt-modified
Date and time the object was last modified, in TIME_$OLOOKH_ T format. This is a
4-byte integer.

dt-used
Date and time the object was last used, in TIME_$CLOOKH_ T format. This is a 4-byte
integer.

blocks
The number of l024-byte blocks that the object occupies. This is a 4-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use IOS_$INQ_FILE_ATTR to obtain a time stamp for an object and to determine the
amount of space that an object occupies.

IOS-33 lOS

lOS _ $INQ_FVLL_KEY

10S_$INQ_FULL_KEY

Returns a full seek key.

FORMAT

IOS_$INQ_FULL_KEY (stream-id. position-option. full-key. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

position-option
Value specifying the position to return a full seek key for, in lOS _ $POS _ OPT _ T format.
This is a 2-byte integer. Specify only one of the following predefined values:

lOS $CURRENT

lOS $EOF

lOS $BOF

Return the full seek key of the current marker.

Return the full seek key of the end of the object (EOF) marker.

Return the full seek key of the beginning of the object (BOF)
marker.

OUTPUT PARAMETERS

full-key
Full seek key to be used in subsequent seeks, in lOS _ $SEEK_KEY _ T format. This data
type is 8 bytes long. See the lOS Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

lOS _ $INQ_FULL _KEY returns a seek key based on the position option you specify, the
current stream marker position, beginning or end of the object.

Use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later point in time, position the stream marker by calling the
10S_$SEEK_FULL_KEY call with the stored seek key, and get the data with an lOS get
operation (lOS _ $GET or lOS _ $LOCATE).

Use seek keys merely as an index -- do not rely on the contents of the keys. The contents of
seek keys remain private to the lOS manager, which guarantees only that the seek key
returns to the position it describes.

Some object types support seek key positioning, but do not support record or byte
positioning. Use seek keys for repositioning if your application does not need the
II arithmetic II properties of record- or byte-positioning- (that is, the ability to compute
positions given positions).

IOS-34

c

c

C)

o

o

o

10S_$INQ_FULL_KEY

The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

IOS-35 lOS

lOS _ $INQ_MGR _ FLAGS

IOS_$INQ_MGR_FLAGS

Returns the attribute set oran object's manager.

FORMAT

RETURN VALUE

mgr_f1ags

lOS

A set (bit mask) indicating the attributes of the specified object's manager, in
lOS $MGR FLAG SET format. This is a 4-byte integer. Any combination of the
follo;;ing set ~f predefined values, in IOS_$MGR_FLAG_ T format, can be returned. If
the set contains the value, the manager has the attribute and can perform the following
operations:

lOS $MF CREATE

lOS $MF CREATE BAK

lOS $:MF IMEX

lOS $MF FORK

lOS $MF FORCE WRITE

lOS $MF WRITE

lOS $MF SEEK SHORT

lOS $:MF SEEK FULL

lOS $MF SEEK BYTE

lOS $:MF SEEK REC

lOS $MF SEEK BOF

lOS $MF REC TYPE

Manager permits type to create objects.

Manager permits type to create backup (.bak)
objects.

Manager permits type to export streams to
new processes.

Manager permits type to pass streams to
forked processes.

Manager permits type to force-write object
contents to stable storage (for most types, this
is the disk).

Manager permits objects to be written to.

Manager permits objects to perform absolute
seeks.

Manager permits objects to perform seeks
using short (4-byte) seek keys.

Manager permits objects to perform seeks
using full (8-byte) seek keys.

Manager permits objects to perform seeks to
byte positions.

Manager permits objects to perform seeks to
record positions.

Manager permits objects to perform seeks to
the beginning of the object.

Manager supports different record type
formats.

IOS-36

-----~--,---,---" .. -"-,---------"

c

c

/""
(
\"" ,"'

~'
,--'

o

o

o

o

o

lOS $MF TRUNCATE Manager permits objects to be truncated.

lOS $MF UNREGULATED Manager permits objects to have unregulated
(shared) concurrency mode.

lOS $MF SPARSE

lOS $MF READ INTEND WRITE

INPUT PARAMETERS

stream-id

Manager permits objects to be written as
sparse objects.

Manager permits objects to have
read-in tend-write access.

Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

statuB
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use 10S_$INQ_MGR_FLAGS to determine what operations an obiect's type manager
can perform.

Depending on the nature of the object, a type manager permits some of the operations
identified by II mgr-flags. II A manager u~ually will not support operations that are
irrelevant for the object type. For example, if you called lOS _ $INQ_MGR_FLAGS
specifying a stream open on an SIO line, the set returned would not include any
lOS _ $MF _ SEEK attributes, since serial lines do not support seeking.

Note that even if an object's manager permits an operation, the object itself can prevent the
operation because the object's object and connection attributes must permit the operation
as well. For ~xample, a manager's attribute set might contain the attribute that permits
writing to a file (lOS _ $MF _ WRITE), but a specific object's connection attribute set
might not include the lOS _ $CF _ WRITE attribute, which permits writing on the
connection. In this case, you cannot write to that particular object. However, you could
possibly write to another object of the same type if the object's lOS _ $CF _ WRITE
attribute is set for its stream connection.

To change object or connection attributes, use the lOS _ $SET _ OBJ _FLAGS and
lOS _ $SET _ CONN _ FLAGS calls, respectively. Which attributes you can change
depends on the object type. Note that you cannot change manager attributes because the
type manager determines them. For details on writing a type manager, see the Extending
the DOMAIN Streams Facility manual.

IOS-37 lOS

lOS _ $INQ_ OBJ _FLAGS

lOS _ $INQ_ OBJ _FLAGS

Returns the attribute set associated with an object.

FORMAT

obj-flags = IOS_$INQ_OBJ_FLAGS (stream-id. status)

RETURN VALUE

obj-flags
A set (bit mask) indicating the attributes of the specified object, in
lOS _ $OBJ _ FLAG _ SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in lOS _ $OBJ _FLAG _ T format, can be returned. If
the set contains the value, the object has the attribute and can perform the following
operations:

lOS _ $OF _ DELETE _ ON _ CLOSE

lOS $OF SPARSE OK

lOS $OF ASCII

lOS $OF FTNCC

lOS $OF COND

Object will be deleted when all its associated
streams close.

Object can be written as a sparse object.

Object contains ASCII data.

Object uses FORTRAN carriage control
characters.

Get or put calls to the object will be
performed conditionally, as if the
lOS _ $COND _ OPT was specified on a get or
put call.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use this call to determine which obiect attributes are in effect for the object on the specified
stream.

To change object or connection attributes, use the lOS _ $SET _ OBJ _FLAGS, and
lOS _ $SET _ CONN _FLAGS calls respectively. The attributes that you can change
depends on the object type.

IOS-38

c

c

('
"'-_ .. -

o

o

o

o

o

10S_ $INQ_PATH_NAME

Returns the pathname of the object open on a specified stream.

FORMAT

IDS $INQ PATH_NAME (stream-id, name-type, pathname, namelength, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

name-type
Format of the returned pathname, in lOS _ $NAME _ TYPE _ T format. Specify one of the
following predefined values:

lOS $ROOT NAME
Return the absolute pathname, relative to the network root directory
U I). For example, II / /node/sid/file. II

lOS $WDIR NAME
Return just the leaf name if the object's pathname is a name in the
current working directory. Otherwise, return the absolute pathname.

lOS $NDIR NAME
Return just the leaf name if the object's pathname is a name in the
current naming directory. Otherwise, return the absolute pathname.

lOS $NODE NAME
Return a name relative to the node's entry directory U) if the object's
pathname is a name in the boot volume. Otherwise, return the absolute
pathname. For example, II /sid/file. II

lOS $NODE DATA FLAG
Return just the leaf name if the object's pathname is a namein the
'node _ data directory. Otherwise, return the absolute pathname.

lOS $LEAF NAME
Return just the leaf name regardless of the object's pathname. For
example, if the object's pathname is lI/a/b/c,1I it returns IIC.

II

lOS $RESID NAME
Return the residual part of a pathname if the stream is open using
extended naming. (Extended naming allows you to add additional text to
the end of a pathname.)

OUTPUT PARAMETERS

pathname
Name of the object associated with the stream ID, in NAME_$PNAME_ T format. This
is an array of up to 256 characters.

10S-39 lOS

lOS _ $INQ_PATH_NAME

namelength
Length of the pathname. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use this call to determine the pathname of an object associated with the specified stream
ID . Generally, use this call in cases where a program has been passed a stream IDand needs
the associated pathname.

IOS-40

c

o

o

o

o

o

lOS _ $INQ_REC _ POS

Returns the record position of the stream marker.

FORMAT

record_position = IOS_$INQ_REC_POS (stream-id, position-option, status)

RETURN VALUE

record-position
Record position of the stream marker. This isa 4-byte integer. Note that record positions
are zero-based; consequently, the record position of the beginning of the object is O.

INPUT PARAMETERS

stream.-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

position-option
Value specifying the record position to return, in lOS _ $POS _ OPT _ T format. This is a
2-byte integer. Specify one of the following predefined values:

lOS $CURRENT

lOS $EOF

Return the record position of the·current stream marker.

Return the record position of the end of the object (EOF)
stream marker. This is the number of records in the object.

lOS $BOF Return the record position of the beginning of the object (BOF)
stream marker. This value is always O.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

To obtain the offset of the stream marker for record-oriented objects, use
IOS_$INQ_REC_POS. (UseIOS_$INQ_BYTE_POS if your object is not
record-oriented.)

To get the offset of the stream marker at the beginning or end of the object, specify
lOS _ $BOF or lOS _ $EOF, in the II position-option II parameter. Specify
lOS _ $ CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by
calling lOS _ $SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it.

IOS-41 lOS

lOS

Whether you perform a nonkeyed or keyed seek depends on how the object's data is
represented. For example, programs that need to perform" arithmetic" on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations·.

IOS-42

c

c

C~

c

o

o

o

o

o

lOS _ $INQ_REC _REMAINDER

Returns the number of bytes remaining in the current record.

FORMAT

bytes = IOS_$INQ_REC_REMAINDER (stream-id, status)

RETURN VALUE

bytes
Number of bytes remaining in the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the file is open, in lOS _ $ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use lOS _ $INQ_REC _REMAINDER with the lOS _ $GET or lOS _ $LOCATE calls. If
lOS _ $GET or lOS _ $LOCATE fills the specified buffer, but has not yet finished reading a
record, it returns the lOS _ $BUFFER_ TOO _SMALL error status code. At this point,
use IOS_$INQ_REC_REMAINDER to determine the number of bytes in the record that
remain to be read. If the entire record has been read, the value of "bytes" is undefined.

IOS-43 lOS

lOS _ $INQ_REC _ TYPE

lOS _ $INQ_REC _ TYPE

Returns the record type of an object.

FORMAT

record-type = IOS_$INQ_REC_TYFE (stream-id. status)

RETURN VALUE

record-type
Type of record format used in the specified object, in lOS _ $RTYPE _ T format. This is a
2-byte integer. Returns one of the following predefined values:

lOS $Vl

lOS $Fl

lOS $F2

lOS $EXPLICIT F2

lOS $UNDEF

INPUT PARAMETERS

Variable-length records with count fields.

Fixed-length records without count fields.

Fixed-length records with count fields.

Fixed-length records that lOS _ $PUT cannot implicitly change
to variable-length records.

No record ·structure.

stream-id
Number of the stream on which thEt object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use lOS _ $INQ _REO _ TYPE to determine how records within an object are formatted.
You can change the record type of a record-oriented object by calling
lOS $SET REC TYPE.

By default, a record-oriented object has fixed-length records (lOS _ $F2). They remain
fixed-length records until lOS _ $PUT writes records of different lengths. At this point,
lOS _ $PUT implicitly changes the objects to variable-length type (lOS _ $Vl). In some
cases, you might want to explicitly set the record type to lOS _ $EXPLICIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use the
corresponding call, lOS _ $SET _ REC _ TYPE.

IOS-44

c

c

c

o

o

o

o

o

10S_$INQ_SHORT _KEY

Returns a short seek key.

FORMAT

short-key = IOS_$INQ_SHORT_SEEK (stream-id. position-option. status)

RETURN VALUE

short-key
Short seek key to be used in subsequent seeks. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

position-option
Value specifying the position to return, in lOS _ $POS _ OPT _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

lOS $CURRENT

lOS $EOF

lOS $BOF

OUTPUT PARAMETERS

status

Return the short seek key of the current marker.

Return the short seek key of the end of the object (EOF)
marker.

Return the short seek key of the beginning of the object (BOF)
marker.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS _ $INQ _ SHORT _ KEY returns a seek key based on the position option you specify -­
the current stream marker position, beginning or end of the object.

You use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later time, position the stream marker by calling the lOS _ $SEEK_SHORT _KEY
call with the stored seek key, and get the data with an lOS get operation (lOS _ $GET or
IOS_$LOCATE).

Use seek keys merely as an index -- do not count on the contents of the keys. The contents
of seek keys remain private to the lOS manager, which guarantees only that the seek key
returns to the position it describes.

IOS-45 lOS

lOS

Some object types support seek key positioning, but not record or byte positioning. Use
seek keys for repositioning if your application does not need the II arithmetic II properties of
record- or byte-positioning (that is, the ability to compute positions given positions).

The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

IOS-46

c

c

o

o

o

o

o

lOS _ $INQ _ TYPE _ UID

Returns the type UID of an object.

FORMAT

IOS_$INQ_TYPE_UID (stream-id. type-uid. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

type-uid
Type UID of the object, in UID _ $T format. This data type is 8 bytes long. See the lOS
Data Types section for more information.

DOMAIN currently supports a set of predefined standard object types which include the
following types. (Note that users can also define their own type UIDs by writing a type
manager. See the Using the Open System Toolkit to Extend the Streams Facility manual
for details.)

Type UID Object

UASC $UID UASC object

RECORDS $UID Record-oriented object

HDR UNDEF $UID Nonrecord-oriented object

OBJECT FILE $UID Object module object (compiler or binder output)

SIO $UID Serial line descriptor object

MT $UID Magnetic tape descriptor object

PAD $UID Saved .display manager transcript pad

INPUT PAD $UID Display manager input pad

MBX $UID Mailbox object

DIRECTORY $UID Directory

NULLDEV $UID Null device

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

IOS-47 lOS

lOS _ $INQ _ TYPE _ UID

USAGE

lOS

Use this call to determine the object's current type UID given its stream ID. You can use
the type UID returned by this call as a parameter in the lOS _ $CREATE call to create
another object of the same type.

IOS-48 .

- .. --.---.-~------ .. _._-----_._----~~~-~~-~

c

o

o

o

o

o

lOS $LOCATE

lOS $LOOATE

Reads data from a stream, and returns a pointer to the data.

FORMAT

ret-length = IOS_$LOCATE (stream-id, get-options, data-ptr, data-size,
status)

RETURN VALUE

ret-length
Amount of data read, in bytes. This is a 4-byte integer.

IIRet-length ll equals the amount of data read; IIret-length ll equals 0 if 10S_$LOOATE does
not return any data.

If the length of the data read exceeds the amount specified in .. data-size," lOS _ $LOOATE
performs the following:

• Reads enough data to fill the requested size

• Sets II ret-length II equal to .. data-size"

• Positions the stream marker to the first unread byte

• Returns the lOS $BUFFER TOO S:MALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling
lOS _ $lNQ_REO _REMAINDER.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

get-options
Options that control how lOS _ $LOOATE performs the get operation, in
lOS $PUT GET OPTS T format. This is a2-byte integer. Specify a combination of
the following set of predefined values:

lOS $OOND OPT

lOS $PREVIEW OPT

Reads data, if available. (For example, data
on an SlO line is not always available
immediately.) If the data is not available,
lOS _ $GET returns the
lOS $GET OONDITIONAL FAILED
status code and sets the return value of
II ret-length II to o.

Reads data but does not update the stream
marker.

IOS-49 lOS

lOS $LOCATE

lOS $NO REC BNDRY OPT

lOS $PARTIAL RECORD OPT

Ignores record boundaries while rearding data.
For example, it ignores NEWLINE characters
in a UASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this call.

Not meaningful for this call.

data-size
Maximum amount of data to be read, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS

data-ptr
A pointer to the located data, in UNIV _PTR format. This is a 4-byte integer. Note that
this pointer remains valid only until the program invokes the next lOS call.

If lOS $LOCATE is unable to return a pointer to the location of the data, it copies the
data i~o a system bpffer and then returns the address of the buffer in II data-ptr. II (See the
USAGE Section below for more details.)

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

You can use either IOS_$LOCATE or IOS_$GET to read data from system objects.
lOS _ $LOCATE returns a pointer to the data, while lOS _ $GET copies the data into a
buffer.

In most cases, use the lOS _ $LOCATE call to ,read data because it is faster
(IOS_$LOCATE does not perform a copy).

You will want to use lOS _ $GET when you need to 'read more data than can be obtained in
one call, because the pointer remains valid for only one call. For example, when you need
to read and rearrange a number of lines from an object.

Normally, IOS_$LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for lOS _ $LOCATE to work this
way. In these cases, lOS _ $LOCATE will not be able to return a pointer to the data.

Instead, lOS _ $LOCATE actually creates a buffer and then calls lOS _ $GET to perform
the get call. In this case, lOS _ $LOCATE is no more efficient than lOS _ $GET. The size
of the buffer that lOS _ $LOCATE creates is either the length you specify in II data-size, II or
1024 bytes, whichever is the smaller.

Use IOS_$SET_LOCATE_BVFFER_SIZE to specify a buffer larger than 1024 bytes, if
necessary. In this case, IOS_$LOCATE is no more efficient than IOS_$GET.

See the IOS_$SET LOCATE_BVFFER_SIZE call description for more information.

lOS-50

---_._ .. _-_._-----------_.

c

c

c

o

o

o

o

o

lOS $OPEN

lOS $OPEN

Opens a stream to an existing object.

FORMAT

stream-id = IOS_$OPEN (pathname. namelength. open-options. status)

RETURN VALUE

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

INPUT PARAMETERS

pathname
Name of the object to be opened, in NAME_$PNAME_ T format. This is an array of up
to 256 characters.

namelength
Length of the pathname. This is a 2-byte integer.

open-options
Options available at open time, in lOS _ $OPEN _ OPTIONS _ T format. This is a 2-byte
integer. Specify a combination of the following set of predefined values:

lOS $NO OPEN DELAY OPT

lOS $WRITE OPT

lOS $UNREGULATED OPT

lOS $POSITION TO EOF OPT

lOS _ $INQUIRE _'ONLY _ OPT

Return immediately, instead of waiting for the
open call to complete.

Permit writing data to a new object. If a
program tries to write on a stream for which
you have not specified this option, it returns
an error status.

Permit shared (unregulated) concurrency
mode.

Position the stream marker at the end of the
object (EOF). Use this to append data to an
existing object.

Open the object for attribute inquiries only;
do not permit reading or writing of data.

lOS $READ INTEND WRITE OPT Open the object for read access with the
intent to eventually change the object's access
to write access. This allows other processes to
read the object; but they cannot have write or
read-in tend-write access.

lOS-51 lOS /

lOS $OPEN

OUTPUT PARAMETERS

status
Completion status, in ,STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

This routine opens a stream to the named object. It returns the stream ID to be used in
subsequent stream activity with the object. An error occurs if the object does not exist. If
the object already exists, lOS _ $OPEN does not change its attributes.

lOS _ $OPEN does not return information about the object's attributes. To get information
about an object, use the calls with the prefix lOS _ $INQ. To change an object's attributes,
use the calls with the prefix lOS _ $SET.

lOS-52

c

c

u

o

o

o

o

lOS $PUT

lOS $PUT

Writes data into an object.

FORMAT

IOS_$PUT (stream-1d, put-options, buffer, buffer-size, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

put-options
Options that control how lOS _ $PUT performs the put operation, in
lOS $PUT GET OPTS T format. This is a 2-byte integer. Specify any combination
of the following set of predefined values:

lOS $COND OPT

lOS $PREVIEW OPT

lOS $PARTIAL RECORD OPT

lOS $NO REC BNDRY OPT

buffer

Write a record only if it can be done without
blocking. If the call would block, it returns
the lOS $PUT CONDITIONAL FAILED
error status.

Write data but do not update the stream
marker.

Write a portion of a record but do not
terminate it. lOS _ $PUT terminates the
record when you call lOS _ $PUT without
specifying this option. If you do not specify
this option, lOS _ $PUT writes a full record.
You can use this option with record-oriented
objects only. lOS _ $PUT ignores this option
if you specify it with any other type of
objects.

Not meaningful for this call.

Buffer to contain the data. This is a character array.

buffer-size
Size of the buffer containing the data, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

lOS-53 lOS

lOS $PUT

USAGE

lOS

lOS _ $PUT writes data into an object. Use II put-options, II which is in the
lOS _ $PUT _ GET _ OPTS _ T format, to write the data to the object in different ways.

If the object is record-oriented, you can write data to it record by record. This is the
default action (for record-oriented objects) when you specify the default ([]) value in
II put-option. II

To write a single record with more than one put operation (for example, to write one field
at a time), use the lOS _ $P ARTIAL _RECORD _ OPT option. If you specify this option,
lOS _ $PUT writes the data, but does not terminate the record. lOS $PUT terminates the
record when you call it without specifying this option.

To write to objects which might not always be immediately available (for example, an MBX
channel), you perform conditional put operations with the lOS _ $COND _ OPT option.

lOS-54

c

c'

(,r-",

_ .. _/

o

o

o

o

o

lOS $REPLICATE

lOS $REPLICATE

Creates a copy of a specified stream ID.

FORMAT

return stream id = IOS_$REPLICATE (stream_id_to_replicate, copy_stream_id,
status)

RETURN VALUE

return _ stream _ id
Number of the new stream created, in lOS _ $ID _ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream _ id _ to _ replicate
Number of the stream to replicate, in lOS _ $ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after lOS _ $REPLICATE
completes successfully.

copy _ stream _ id
Number of the stream to use as the copy for II stream _ id _ to _ replicate," in lOS _ $ID _ T
format. This is a 2-byte integer.

If II copy _stream_id ll is free, 10S_$REPLICATE returns that number in
IIreturn_stream_id. 1I If IIcopy-stream-id II is in use, lOS _ $REPLICATE begins searching
from that number downward (lower numbers) until it finds a free stream number, and
returns that number in IIreturn stream id. II

If the actual number of the copy stream is insignificant, specify the predefined constant
lOS _ $MAX. This value causes lOS _ $REPLICATE to begin searching at the highest
possible stream number and return the first free stream number it finds.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use lOS _ $REPLICATE to create a copy of an existing stream ID. The new stream ID
refers to the same connection as the existing stream ID. Note that you must close both
streams with lOS _ $CLOSE before the stream connection actually closes.

lOS _ $REPLICATE is identical to lOS _ $DUP except that lOS _ $REPICATE looks for a
free stream in descending order from the specified stream ID, while lOS _ $DUP looks in
ascending order. Note that you use lOS _ $DUP or lOS _ $REPLICATE to copy existing
stream ID's, both the existing and new stream ID's remain valid connections. However, you
use lOS _ $SWITCH to replace stream IDs; you II switch" the connection from the existing
stream ID to the new stream ID.

lOS-55 lOS

lOS $REPLICATE

lOS

You can use lOS _ $REPLICATE to keep a stream connection open when passing it to a
subroutine. Use lOS _ $REPLICATE to create a copy of the stream ID before passing it.
This way, the subroutine cannot close the connection to the object because all copies of the
stream connection must be closed before the connection itself gets closed.

IOS_$RELPLICATE is analagous to UNIX DUP.

lOS-56

c

c

. - -~----.... -------

o

o

o

o

o

lOS $SEEK

lOS $SEEK

Performs an absolute or relative seek using byte or record positioning.

FORMAT

IOS_$SEEK (stream-id, abs-rel, seek-type, offset, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

abs-rel
Value specifying the base for the seek operation, in IOS_$ABS_REL_ T format. This is
a 2-byte integer. Specify one of the following predefined values:

lOS $RELATIVE The seek is relative to the current position.

lOS $ABSOLUTE The seek is relative to the beginning of the object (BOF).

seek-type
The type of seek to be performed, in lOS _ $SEEK_ TYPE _ T format. This is a 2-byte
integer. Specify one of the following predefined values:

lOS $REC SEEK Record-oriented seek.

lOS $BYTE SEEK Byte-oriented seek.

offset
A signed integer offset value indicating the number of records or bytes from the seek base
to position the stream marker. This is a 4-byte integer.

If the integer is a positive number, lOS _ $SEEK uses BOF as the seek base and searches
forward. If the integer is a negative number, lOS _ $SEEK uses EOF as the seek base and
searches backward. Whether the offset indicates bytes or records depends on the type of
seek you specified in IIseek-type. 1I

You can get an offset number to use in an absolute seek with the calls
IOS_$INQ_BYTE_POS and IOS_$INQ_REC_POS.

Note that both byte and record positions are zero-based; consequently, the first byte or
record number is o.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS,
Data Types section for more information.

lOS-57 lOS

lOS $SEEK

USAGE

lOS

Use lOS _ $SEEK to seek to an absolute or relative byte or record position within an object.

You can use this call with the IOS_$INQ_BYTE_POS and IOS_$INQ_REC_POS
calls to perform absolute position seeks.

lOS-58

c

c

r
\'-'--'

c

o

o

o

o

o

lOS $SEEK FULL KEY

lOS $SEEK FULL KEY

Performs a seek using a full (8-byte) seek key.

FORMAT

IOS_$SEEK_FULL_KEY (stream-id, full-key, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

full-key
A full seek key, in lOS _ $SEEK_KEY _ T format. This data type is 8 bytes long. See the
lOS Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Before performing a full key seek, you must first obtain a full seek key by using the
IOS_$INQ_FULL_KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling the lOS _ $SEEK _ FULL _ KEY call with the stored seek key,
and then get the data with an lOS get call (lOS _ $GET or lOS _ $LOCATE).

lOS-59 lOS

lOS $SEEK SHORT KEY

lOS $SEEK SHORT KEY

Performs a seek using a short (4-byte) seek key.

FORMAT

IOS_$SEEK_SHORT_KEY (stream-id. short-key. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

short...; key
A short seek key. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Before performing a short key seek, you must first obtain a short seek key by using the
lOS _ $INQ_SHORT _KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling 10S_$SEEK_SHORT _KEY with the stored seek key, and
then get the data with an lOS get call (lOS _ $GET or lOS _ $LOCATE).

IOS-60

c

c

c

o

o

o

o

o

lOS $SEEK TO BOF

lOS $SEEK TO BOF

Positions the stream marker to the beginning of an object.

FORMAT

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use lOS _ $SEEK_ TO _BOF to position the stream marker to the beginning of an object
(BOF). Use this call when performing a nonkeyed seek on an object.

IOS-61 lOS

lOS $SEEK TO EOF

lOS $SEEK TO EOF

Positions the stream marker to th~ end of an object.

FORMAT

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use lOS _ $SEEK_ TO _EOF to position the stream marker to the end of an object (EOF).
Use this call when performing a nonkeyed seek on an object.

IOS-62

c

c'

C~

c~

u

o

o

o

o

lOS $SET CONN FLAG

lOS $SET CONN FLAG

Changes the set of connection attributes associated with a stream connection.

FORMAT

IOS_$SET_CONN_FLAG (stream-id. conn-flag. on-off. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer ..

conn-flag
Flag indicating which attribute of the specified connection you want to change, in
lOS $CONN FLAG T format. This is a 2-byte'integer. Specify one of the following
predefined values:

lOS $CF TTY

lOS $CF IPC

Connection behaves like a terminal.

Connection behaves like an interprocess
communication (IPC) channel.

lOS $CF VT Connection behaves like a DOMAIN Display
Manager pad.

lOS $CF WRITE

lOS $CF APPEND

lOS $CF UNREGULATED

Connection can be written to.

Connection's stream marker will be positioned
at the end of the object (EOF) before each put
call.

Connection is open for unregulated (shared)
concurrency mode.

lOS $CF READ INTEND WRITE Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-in tend-write access.

on-off
Boolean value indicating whether the specified attribute should be included in the set (on),
or removed from the set (off).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

IOS-63 lOS

lOS $SET CONN FLAG

USAGE

lOS

Use lOS _ $SET _ CONN _FLAG to change the attributes of a connection. Note that
objects do not support all connection attributes. To determine the connection's current set
of attributes, use lOS _ $INQ _ CONN _ FLAGS before using this call.

To change the set of attributes, you must call lOS _ $SET _ CONN _FLAG for each
connection attribute you want to change. To add an attribute to the set, call
lOS _ $SET _ CONN _ FLAG, specifying the desired attribute, and set the II on-off II
parameter to TRUE. To remove an attribute from the set, use this call, specifying the
attribute to remove, and set the II on-off II parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object's manager
and connection attributes must permit the operation as well. For example, a manager's
attribute set might contain the attribute that permits writing to ali object
(lOS _ $:MF _ WRITE), but a specific object's connection attribute set might not include the
lOS _ $CF _ WRITE attribute, which permits writing to the object. In this case, you
cannot write to that particular object.

IOS-64

c

c:

o

o

o

o

o

lOS $SET DIR

lOS $SET Dill

Changes the current working or naming directory.

FORMAT

IOS_$SET_DIR (pathname. namelength. dir_type. status)

INPUT PARAMETERS

pathname
Name of the directory to set, in NA1v1E _ $PNA1v1E _ T format. This is an array of up to
256 characters.

namelength
Length of "pathname." This is a 2-byte integer.

dir _type
Option specifying which type of directory to set, in lOS_$Dill_ TYPE_ T format.
Specify one of the predefined values:

lOS $WDill Name of the current working directory.

lOS $NDill Name of the current naming directory.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

Use this call to change the current working or naming directory. You can use
lOS _ $GET _Dill to get the name of the current working or naming directory.

IOS-65 lOS

lOS $SET LOCATE_BUFFER SIZE

lOS $SET LOCATE BUFFER SIZE

Sets the size of the buffer that lOS $LOCATE allocates.

FORMAT

IOS_$SET_LOCATE_BUFFER_SIZE (stream-id, buffer-size, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

buffer-size
Size of the buffer you want to allocate. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Normally, lOS _ $LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for lOS _ $LOCATE to work this
way. In these cases, lOS _ $LOCATE will not be able to return a pointer to the data.

Instead, lOS _ $LOCATE actually creates a buffer and then calls lOS _ $GET to perform
the get call. In this case, lOS _ $LOCATE is no more efficient than lOS _ $GET. The size
of the buffer that lOS _ $LOCATE creates is either the length you specify in II data-size, II or
1024 bytes, whichever is the smaller.

Use IOS_$SET _LOCATE_BUFFER_SIZE to specify a buffer larger than 1024 bytes, if
necessary.

For example, if you are using lOS _ $LOCATE with a data-size parameter of 2000 bytes,
and the manager of the object from which you are reading does not support internal
buffering, the lOS _ $LOCATE call, by default, will copy as much of the requested data as
it can into a 1024-byte-Iong buffer and return a pointer to that buffer.

However, if you precede the lOS _ $LOCATE call with a call to
IOS_$SET _LOCATE_BUFFER_SIZE, specifying a buffer-size of 2000, the
lOS _ $LOCATE call will use a 2000-byte-Iong buffer and will be able to copy all the
requested data into the buffer. This new buffer size will be valid as long as the stream
exists.

IOS-66

(~
'---_.-'"

c

c

~------- --------

o

o

o

o

o

lOS $SET OBJ FLAG

lOS $SET OBJ FLAG

Changes the set of object attributes associated with an object.

FORMAT

IOS_$SET_OBJ_FLAG (stream-id, obj-flag, on-off, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS ~ $ID _ T format. This is a
2-byte integer.

obj-flag
Flag indicating which attribute of the specified object you want to change, in
lOS _ $OBJ _FLAG _ T format. This is a 2-byte integer. Specify one of the following
predefined values:

lOS $OF DELETE ON CLOSE Object will be deleted when all its associated
streams close.

10S_$OF _SPARSE_OK

lOS $OF ASCII

lOS $OF FTNCC

lOS $OF COND

on-off

Object can be written as a sparse object.

Object contains ASCII data.

Object uses FORTRAN carriage control
characters.

Get or put calls to the object will be
performed conditionally, as if the
lOS _ $COND _ OPT was specified on a get or
put call.

Boolean value indicating whether the specified attribute should be included in the set (on),
or removed from the set (off).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

lOS-57 lOS

lOS $SET OBJ FLAG

USAGE

lOS

Use lOS _ $SET _ OBJ _FLAGS to change the attributes of an object. Note that objects do
not support all object attributes. To determine the object's current attribute set, use the
lOS _ $INQ _ OBJ _ FLAGS call.

To change an object's attribute set, you must call lOS _ $SET _ OBJ _FLAG once for each
object attribute you want to change. To add an attribute to the set, call .
lOS _ $SET _ OBJ _FLAG, specifying the desired attribute, and set the 1I 0n-off ll parameter
to TRUE. To remove an attribute from the set, use this call, specifying the attribute to
remove, and set the "on-offll parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object's manager
and obiect attributes must permit the operation as well. For example, a manager's
attribute set might contain the attribute that allows the object to perform put and get calls
conditionally (lOS _ $11F _ COND), but a specific object's object attribute set might not

. include the lOS _ $OF _ COND attribute. In this case, you cannot make conditional put or
get calls to that particular object.

IOS-68

~,

~.-j'

c

c

C.'~

c

o

o

o

o

o

lOS $SET REC TYPE

lOS $SET REO TYPE

Sets the record type formatand (optionally) record length of a file.

FORMAT

IOS_$SET_REC_TYFE (stream-id. record-type. record-length. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in lOS _ $ID _ T format. This is a
2-byte integer.

record-type
Type of record format to change for the specified object, in lOS _ $RTYPE _ T format.
This is a 2-byte integer. Specify one of the following predefined values:

lOS $Vl Variable-length records with count fields.

lOS $Fl Fixed-length records without count fields.

lOS $F2 Fixed-length records with count fields. However, lOS _ $PUT
can change the lOS _ $F2 type to lOS _ $Vl implicitly. (See
Usage section below.)

lOS $EXPLIOIT F2 Fixed-length records that lOS _ $PUT cannot implicitly change
to variable-length records. (lOS _ $PUT can change the
lOS _ $F2 to lOS _ $Vl implicitly. See Usage section below.)

lOS $UNDEF No record structure.

record-length
Length to set for the fixed-length records of the object. This is a 4-byte integer. Specify
this value only if the object is empty.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

By default, a record-oriented object has fixed-length records (lOS _ $F2). They remain
fixed-length records until lOS _ $PUT writes records of different lengths. At this point,
lOS _ $PUT implicitly changes the objects to variable-length type (lOS _ $Vl). In some
cases, you might want to explicitly set the record type to lOS _ $EXPLIOIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use this call.

IOS-69 lOS

lOS $SWITCH

lOS $SWITCH

Switches a stream from one stream ID to another stream ID.

FORMAT

ret-stream-id = IOS_$SWITCH (stream-id-to-switch, new-stream-id, status)

RETURN VALUE

ret-stream-id
Number of the new stream ID that replaces the existing stream ID, in lOS _ $ID _ T format.
This is a 2-byte integer.

INPUT PARAMETERS

stream-id-to-switch
Number of the stream to switch, in lOS _ $ID _ T format. This is a 2-byte integer.

This stream number becomes invalid after the lOS _ $SWITCH call completes sucessfully.

new-stream-id
Number of the stream to use as the new stream ID, in lOS _ $ID _ T format. This is a
2-byte integer.

If "new-stream-id II is free, lOS _ $SWITCH returns this value in "ret-stream-id." If
"new-stream-id II is in use, lOS _ $SWITCH begins searching from that value downward
(lower numbers) until it finds a free stream number and returns that number in
"ret-stream-id."

If the actual number of the replacement stream is insignificant, specify the predefined
constant lOS _ $MAX. This value causes lOS _ $SWITCH to begins searching at highest
possible stream number and return the first free number it finds.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS

Use lOS $SWITCH to switch one stream ID for another. The new stream ID refers to the
same connection as the old stream ID, making the old stream ID invalid.

Note that you use lOS _ $SWTICH to replace stream IDs; you II switch II the connection
from the existing stream ID to the new stream ID. However, you use lOS _ $DUP or
lOS _ $REPLICATE to copy existing stream IDs, both the existing and new stream IDs
remain valid connections.

10S-70

c

c

o

o

o

o

o

lOS $TRUNCATE

lOS . $TRUNCATE

Deletes the contents of an object following the current stream marker.

FORMAT

IOS_$TRUNCATE (stream-id, status)

INPUT PARAMETERS

stream-id
Number of a stream on which the object is open, in lOS _ $ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the lOS
Data Types section for more information.

USAGE

lOS _ $TRUNCATE decreases the value of the object's length attribute to match the
stream marker. (Writing data to a stream that lengthens the object implicitly increases this
attribute's value.) This call sets the stream marker to the end of the object (EOF),
effectively deleting any data in the object past the stream marker. If the stream position is
already at EOF, lOS _ $ TRUNCATE has no effect.

Truncating an object does not close the stream.

10S-71 lOS

lOS ERRORS

ERRORS

lOS $ALREADY EXISTS
Object already exists; detected by lOS _ $ CREATE with lOS _ $NO _PREXIST
option.

lOS $BAD CHAR SEEK
Attempted character seek before start of current (variable-length) record.

lOS $BAD COUNT FIELD IN FILE
Count field for current record is wrong.

lOS $BAD FILE lIDR
Wrong stream file header.

lOS $BAD LOCATION
Bad'location parameter on lOS _ $ CREATE call..

lOS $BAD OPEN XP
OPEN _XP must reference a stream that is already open in this process.

lOS $BAD SHARED CURSOR REFCNT
Reference count on a shared object cursor went below zero.

lOS $BOF _ERR
Attempted seek beyond beginning of object (BOF).

lOS $BUFFER TOO BIG
Buffer size too large on lOS _ $GET or lOS _ $LOCATE call.

lOS $BUFFER TOO SMALL
Buffer too small on 10S_$GET or 10S_$LOCATE call, warning.

lOS $CANT CHANGE TYPE
Cannot change the type as requested, detected by lOS _ $ CREATE.

lOS $CANT DELETE OLD NAME
Added new name, but cannot delete old name.

lOS $CANT INITIALIZE
Cannot initialize an object of this type.

lOS $CANT SET ADVISORY LOCK
Advisory lock already set on this object.

lOS $CONCURRENCY VIOLATION
Requested access violates concurrency constraints, object is in use.

lOS $DEVICE-LMUST BE LOCAL
Cannot open stream to remote device.

lOS $Dffi NOT FOUND
Couldn't find directory in pathname on lOS _ $CREATE.

lOS $END OF FILE
End of file.

lOS $FILE NOT E:MPTY
Object not empty.

lOS IOS-72

c

c

c

o

o

o

CJ

o

lOS ERRORS

lOS $FLAG NOT SUPPORTED
Flag not supported for this object type.

lOS $FROM ID NOT OPEN
Stream ID to switch not open on lOS _ $SWITCH.

lOS $FULL REC UNA V AIL
lOS _ $GET or lOS _ $LOCATE requested a full record, but only part of the record
was available. The call returns the part that is available along with this warning that
there is still more room in the buffer.

lOS $GET CONDITIONAL FAILED
Cannot read any data because the stream is empty; detected by lOS _ $COND _ OPT
option ..

lOS $ID OOR
Stream ID is out-of-range or invalid.

lOS $ILLEGAL NAME REDEFINE
Attempted name change would require object to be moved, detected by
lOS $CHANGE PATH NAME.

lOS $ILLEGAL OBJ TYPE
Cannot open a stream for this type of object.

lOS $ILLEGAL OPERATION
Operation illegal on named stream.

lOS $ILLEGAL PAD CREATE TYPE
Cannot perform this operation on a pad type.

lOS $ILLEGAL P ARAM COMB
Illegal parameter combination for this operation.

lOS $ILLEGAL W VAR LGTH RECS
Operation illegal with variable-length records.

lOS _ $INQ _ ONLY _ ERROR
Can only open this operation for inquiries only.

lOS $INSUFFICIENT RIGHTS
Insufficient rights for requested access to object.

lOS $INSUFF :MEMORY
Not enough address space.

lOS $INTERNAL FATAL ERR
Internal fatal error on table re-verify operation.

lOS $INTERNAL MM ERR
Internal fatal error in stream memory management (windowing).

lOS $INVALID DATA
Cannot write this data to object.

lOS $NAME NOT FOUND
Name not found.

IOS_$NAME_REQD
Must specify name on lOS _ $OPEN.

IOS-73 lOS

lOS ERRORS

lOS $NEED MOVE MODE
lOS _ $LOCATE operation refused, try lOS _ $GET.

lOS $NEVER CLOSED
System (or process) crash prevented complete close of object.

lOS $NO ADVISORY LOCK SET
No advisory lock to unlock.

lOS $NO AVAIL TARGET
No available target stream to switch to on lOS _ $SWITCH.

lOS $NO MORE STREAMS
No more available stream IDs.

lOS $NO RIGHTS
No rights to access object.

lOS $NO TABLE SPACE
In ternal error.

lOS $NOT A DIRECTORY
Name specified is not a directory detected by lOS _ $GET _DIR or _ $SET _DIR.

lOS $NOT AT REC BNDRY
Cannot perform operation with short key -- must be at a record boundary.

lOS $NOT OPEN
Operation attempted on unopened stream.

lOS $OBJ DELETED
Object has been deleted while open on this stream.

lOS $OBJECT NOT FOUND
Object associated with this name not found even though name exists.

lOS $OBJECT READ ONLY
Cannot open this object for writing.

lOS $OUT OF SHARED CURSORS
Internal error.

lOS $PART REC WARN
Partial record at EOF on lOS _ $CLOSE -~ warning only.

lOS $PERM FILE NEEDS NAME
Only temporary objects can be unnamed, you must name a permanent object.

lOS $PUT BAD REC LEN
Attempted an lOS _ $PUT on a record of the wrong length.

lOS $PUT CONDITIONAL FAILED
Cannot write any data because the stream is full, detected by lOS _ $COND _ OPT
option.

lOS $READ ONLY ERR
Attempted to write to read-only stream.

lOS $RESOURCE LOCK ERR
Unable to lock resources required to process request.

lOS IOS-74

c

o

o

o

o

lOS ERRORS

lOS $SIO NOT LOCAL
No stream found in conditional put, or cannot open a remote SIO line.

lOS $SOMETHING FAILED
Cannot locate attribute set inquiring about manager, connection or object attributes;
or cannot change the connection or object attribute requested.

lOS $TARGET lNUSE
Target ID already in use on lOS _ $SWITCH, no available stream IDs.

lOS $XP BUF TOO SMALL
Buffer supplied to lOS _ $EXPORT too small.

IOS-75 lOS

C'
.-/.

c

c

o

o

o

o

IPC

This section describes the data types, the call syntax, and the error codes for the IPe
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

IPC-l IPC

IPC DATA TYPES

DATA TYPES

IPC $DATA T

IPC $HDR INFO T

NAME_ $PNAME_ T

STATUS $T

IPC

byte:
offset 31

0:

0:

1 :

An array of up to 1024 characters. The data
portion of an IPC datagram.

An array of up to 128 characters. The header
portion of an IPC datagram.

An array of 20 characters. A handle for an IPC
socket.

An array of up to 256 characters. A DOMAIN
pathname.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

mode
t-----'----, 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

IPC-2

(
\,

o

o

o

o

o

IPC DATA TYPES

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

IPC-3 IPC

IPC $CLOSE

IPC $CLOSE

Closes an IPC socket.

FORMAT

IPC_$CLOSE (pathname, length, status)

INPUT PARAMETERS

pathname
Pathname for the file where the socket handle is stored, in NAME _ $PNAME _ T format.
This is an array of up to 256 characters. Specify a file that was created by a previous
IPC $CREATE call.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC

IPC $CLOSE closes a socket and removes· its handle from the file where the handle is
stored. IPC _ $CLOSE does not, however, delete the socket handle file. To delete this file,
use IPC $DELETE.

IPC-4

o

o

o

o

o

IPC _ $ CREATE

IPC $CREATE

Creates a file where an IPC socket handle can be stored.

FORMAT

IPC_$CREATE (pathname. length. status)

INPUT PARAMETERS

pathname
Pathname for a file where a socket handle can be stored, in NANIE _ $PNANIE _ T format.
This is an array of up to 256 characters.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC _ $CREATE creates a special type of DOMAIN system object that is used only for
socket handles. When you open a socket, the system obtains a handle for the socket and
stores this handle in the file that you specify . You can open a socket only if you have
previously used IPC _ $CREATE to create a file for the handle.

IPC-5 IPC

IPC $DELETE

IPC $DELETE

Deletes a file that was used to store an IPC socket handle.

FORMAT

IPC_$DELETE (pathname. length. status)

INPUT PARAMETERS

pathname
Pathname for the file where the socket handle was stored, in NAME _ $PNAME _ T format.
This is an array of up to 256 characters.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC

IPC _ $DELETE deletes a file that the system used to store a handle for an open socket.
You must call IPC _ $CLOSE to close the socket before you can delete the file containing
the socket's handle;

IPC-6

('

o

o

o

o

o

IPC $GET EC

IPC $GET EC

Gets a pointer to the eventcount associated with an IPC socket.

FORMAT

IPC_$GET_EC (handle. ec-ptr. status)

INPUT PARAMETERS

handle
Handle for the socket whose eventcount you are getting, in IPC _ $SOOKET _ HANDLE _ T
format. This is an array of 20 characters.

OUTPUT PARAMETERS

ee-ptr
Pointer to the eventcount, in EC2_$PTR_ T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPO
Data Types section for more information.

USAGE

IPC _ $GET _EC gets a pointer to the eventcount associated with an IPC socket. You can
use this eventcount to wait for incoming datagrams. Use EC2 system calls to read the
eventcount value and wait for datagrams.

IPC _ $GET _EO is useful when you want to wait for messages arriving in more than one
socket. To wait for messages from only one socket, use IPC _ $W AIT or IPC _ $SAR.

IPC-7 IPC

IPC $OPEN

IPC $OPEN

Opens an available IPC socket, obtains its handle, and places the handle in a file.

FORMAT

IPC_$OPEN (pathname. length. depth. handle. status)

INPUT PARAMETERS

pathname
Pathname for the file in which to store the handle, in N.AN.fE _ $PNAME _ T format. This
is an array of up to 256 characters. Specify a file that you have created with a previous
IPC $CREATE call.

length
Length of the pathname. This is a 2-byte integer.

depth
Depth of the socket. The depth defines how many datagrams a socket can hold. Allowable
values are one through four.

OUTPUT PARAMETERS

handle
Handle for the open socket, in IPC _ $SOCKET _HANDLE _ T format. This is an array of
20 characters.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC

IPC _ $OPEN opens an available IPC socket on your program's local node. In addition,
IPC _ $OPEN places the socket's handle in the file you specify. After opening a socket, you
can receive datagrams in it. A program must use your socket's handle to send you a
message.

User programs running on a node can open a maximum of eight sockets on that node. Only
one program at a time can open any socket.

You must use IPC _ $ CREATE to create a file for the socket handle before you can open a
socket.

IPC-8

o

o

o

o

o

IPC $RCV

IPC $RCV

Gets a datagram that has been received in an IPC socket. This call copies the datagram to
the buffers that you specify.

FORMAT

IPC_$RCV (handle. hdr-buflen. data-buflen. from-handle.
hdr~buf. hdr-length. data-buf. data-length. status)

INPUT PARAMETERS

handle
Handle for the socket that received the datagram, in IPC _ $SOCKET _HANDLE _ T
format. This is an array of 20 characters.

hdr-buflen
Length of the buffer where the datagram header will be copied. This is a 2-byte integer.
This value defines the maximum number of header bytes that IPC _ $RCV will get. An IPC
datagram can contain up to 128 header bytes. Specify a length that can accommodate the
longest header you expect to receive.

data-buflen
Length of the buffer where the data portion of the datagram will be copied. This is a
2-byte integer. This value defines the maximum number of data bytes that IPC _ $RCV
will get. The data portion of an !PC datagram can contain up to 1024 bytes. Specify a
length that can accommodate the longest data you expect to receive.

OUTPUT PARAMETERS

from-handle
Handle for the socket where the datagram originated, in IPC _ $SOCKET _ HANDLE _ T
format. This is an array of 20 characters. Use this handle to send a reply to the datagram
you are currently getting.

hdr-buf
Buffer where the datagram header is copied. This buffer can contain up to 128 bytes.

hdr-length
Length, in bytes, of the header that is copied. This is a 2-byte integer.

data-buf
Buffer where the data portion of the datagram is copied. This buffer can contain up to 1024
bytes.

data-length
Length, in bytes, of the data that is copied. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the !PC
Data Types section for more information.

IPC-g IPC

IPC $RCV

IPC

IPC _ $ROV gets datagrams that have been received in a socket and copies them to your
buffers. This call returns only the number of header and data bytes that you specify, even
if the actual datagram (in the socket) contains more bytes.

IPC _ $ROV gets datagrams in the order in which they arrive in the socket queue. If the
socket queue is full when an incoming datagram arrives, the datagram is lost. You can use
IPC _ $ROV to get datagrams only from a socket that you have previously opened with
IPC $OPEN.

Usually, you wait for a datagram to arrive in a socket, and then call IPC _ $ROV to get the
datagram. If you call IPC _ $ROV when the socket is empty, the call returns immediately
with the status IPC $SOCKET EMPTY.

IPC-lO

c

~-------------.----- .. --.---.-

o

o

o

(J

o

IPC $RESOLVE

IPC $RESOL VE

Obtain the handle for an open socket.

FORMAT

IPC_$RESOLVE (pathname. length. handle. status)

INPUT PARAMETERS

pathname
Pathname for the file containing the socket handle, in NAME _ $PNAME _ T format. This
is an array of up to 256 characters. Specify a file that was created by a previous
IPC $CREATE call.

length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

handle
Handle for the socket, in IPC _ $SOCKET _ HANDLE _ T format. This is an array of 20
characters.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPO
Data Types section for more information.

USAGE

IPO _ $RESOL VE returns the handle associated with an open socket. Use this call if you
know a socket's pathname, but you need the socket handle to send a datagram.

IPC $RESOL VE returns the error IPC $SOCKET NOT OPEN if the handle file does
not contain the handle for an open socket.

IPC-ll IPC

IPC $SAR

IPC $SAR

Performs a single send/await-reply operation. This call sends a datagram, waits a specified
amount of time for a reply, and copies the reply to the buffers you specify.

FORMAT

IPC_$SAR (retry-time. to-handle. in-hdr-buf. in-hdr-length. in-data-buf.
in-data-length. out-hdr-buflen. out-data-buflen. out-hdr-buf.
out-hdr-length. out-data-buf. out-data-length. status)

INPUT PARAMETERS

retry-time
Number of quarter-seconds to wait for a reply. This is a 2-byte integer.

to-handle
Handle for the destination socket, in IPC _ $SOCKET _ HANDLE _ T format. This is an
array of 20 characters. The destination socket is where you are sending the datagram.

in-hdr-buf
Buffer that contains the header for the datagram you are sending. This buffer can contain
up to 128 bytes.

in-hdr-Iength
Length, in bytes, of the header you are sending. This is a 2-byte integer.

in-data-buf
Buffer that contains the data portion of the datagram you are sending. This buffer can
contain up to 1024 bytes.

in-data-length
Length, in bytes, of the data you are sending. This is a 2-byte integer.

out-hdr-buflen
Length of the buffer where the reply datagram header will be copied. This is a 2-byte
integer. This value defines the maximum number of header bytes that IPC _ $SAR will get
from the reply datagram. The reply can contain up to 128 header bytes. Specify a length
that can accommodate the longest header you expect to receive.

out-data-buflen
Length of the buffer where the data portion of the reply datagram will be copied. This is a
2-byte integer. This value defines the maximum number of data bytes that IPC _ $SAR
will get from the reply datagram. The data portion of a reply can contain up to 1024
bytes. Specify a length that can accommodate the longest data you expect to receive.

OUTPUT PARAMETERS

out-hdr-buf
Buffer where the header for the reply datagram is copied. This buffer can contain up to
128 bytes.

out-hdr-Iength
Length, in bytes, of the header that is copied. This is a 2-byte integer.

IPC IPC-12

o

o

o

o

o

IPC $SAR

out-data-bur
Buffer where the data portion of the reply datagram is copied. This buffer can contain up
to 1024 bytes.

out-data-Iength
Length, in bytes, of the data that is copied. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

Use IPC _ $SAR to send a datagram to another process and wait a specified time for a
reply. If the reply datagram does not arrive within the specified time, IPC _ $SAR returns
the status code IPC $TIMEOUT.

IPC _ $SAR returns only the number of header and data bytes that you specify, even if the
actual datagram (in the socket) contains more bytes.

When you send a datagram that contains less than 128 bytes of information, you can place
all the information in the header buffer. Then specify the data length as zero. It takes less
time to send a datagram that contains only a header.

IPC-13 IPC

IPC $SEND

IPC $SEND

Sends a datagram to an IPC socket.

FOR~T

IPC_$SEND (to-handle. reply-handle. hdr-buf. hdr-Iength.
data-buf. data-length. status)

INPUT PARAMETERS

to-handle
Handle for the destination socket, in IPC _ $SOCKET _HANDLE _ T format. This is an
array of 20 characters. The destination socket is where you are sending the datagram.

reply-handle
Handle for the reply socket, in IPC _ $SOCKET _HANDLE _ T format. This is an array of
20 characters. The reply socket is where you can receive a reply.

hdr-buf
Buffer that contains the header for the datagram you are sending. This buffer can contain
up to 128 bytes.

hdr-length
Length, in bytes, of the datagram header. This is a 2-byte integer.

data-buf
Buffer that contains the data portion of the datagram you are sending. This buffer can
contain up to 1024 bytes.

data-length
Length, in bytes, of the data portion of the datagram. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC

IPC _ $SEND sends a datagram to the socket that you specify. To obtain a socket handle
from a pathname, use IPC _ $RESOL VE.

Even if IPC _ $SEND completes successfully, there is no guarantee that the datagram will
be received by the process you are sending it to. The programs using IPC datagrams are
responsible for verifying that datagrams are successfully received. Note that you can use
IPC _ $SAR to perform a send/await reply operation with a single call.

When you send a datagram that contains less than 128 bytes of information, you can place
all the information in the header buffer. Then specify the data length as zero. It takes less
time to send a datagram that contains only a header.

IPC-14

I

\ ...

o

o

~ u

o

o

IPC $WAIT

IPC $WAIT

Waits for a specified amount of time to receive a datagram in an IPC socket.

FORMAT

IPC_$WAIT (handle. wait-time. status)

INPUT PARAMETERS

handle
Handle for the socket that you are waiting to receive data in, in
IPC $SOCKET HANDLE T format. This is an array of 20 characters.

wait-time
Number of quarter-seconds to wait for a reply. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IPC
Data Types section for more information.

USAGE

IPC _ $W AIT waits for a specified amount of time to receive a datagram in a socket. If a
datagram is received before the time elapses, the call returns with the status
STATUS_$OK. To get the datagram, use IPC_$RCV.

If IPC _ $W AIT times out before a datagram is received, the call returns with the status
IPC _ $TIMEOUT. If you call IPC _ $W AIT and there is a datagram already in the socket,
the call returns immediately with a success status.

Note that you can use IPC _ $SAR to perform a send/await reply operation with a single
call. Also, if you want to wait for datagrams in more than one socket, use
IPC _ $GET _EC to get pointers to the appropriate eventcounts. Then use eventcount calls
(EC2) to wait for datagrams.

IPC-I5 IPC

IPC ERRORS

ERRORS

IPC_$OK
Successful completion.

IPC _ $NOMORE _ SOCKETS
All the sockets are in use.

IPC $NOT _IPC OBJ
The specified pathname does not belong to an IPC object.

IPC $NOT OWNER
You did not open the socket so you cannot close it.

IPC_$RANGE_ERROR
Supplied socket number is outside legal range.

IPC $SOCKET _ALREADY_OPEN
Specified socket is already open.

IPC $SOCKET _E:MPTY
There are no datagrams in the socket.

IPC $SOCKET NOT_OPEN
The specified socket is not open.

IPC $TIMEOUT
The call timed out before a datagram was received.

IPC $TOO _DEEP
Supplied socket depth is too big.

IPC $TOO _MUCH DATA
The data is too long to send.

STATUS $OK
Successful completion.

IPC IPC-16

('
'''--

o

o

o

o

MBX

This section describes the data types, the call syntax, and the error codes for the :MBX
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

MBX-l MBX

MBX DATA TYPES

CONSTANTS

MBX $CHN MAX

MBX _ $FIL MAX

MBX _ $MIN CHN _ SIZE

MBX_ $MSG MAX

MBX $MSG TN

MBX $MSG WTN

MBX $REC _DATA MAX

MBX_$REC MSG MAX

MBX $SERV _MSG MAX

MBX $VERSION

DATA TYPES

EC2 $PTR T

MBX $CHAN NUM_T

MBX

255 Maximum number of channels that can be open to
a mailbox.

257*32768 Maximum mailbox size.

64

1024

1023

512

511

32760

32766

6

1030

1

The minimum size of a channel buffer.

A mailbox message that is 1024 bytes long.

For use when declaring a zero-based array that is
MBX_$MSG_MAX bytes long.

A mailbox message that is 512 words long.

For use when declaring a zero-based array that is
MBX_$MSG_ WMAX words long.

The maximum length of the data portion of a
mailbox message.

The maximum length of a server message, including
the header and data portions.

Length of the mailbox header for a server message.

A server message that contains 1024 bytes of data
plus a 6-byte header.

Current version of MBX.

A 4-byte integer. A pointer to an eventcount.

A channel number. Possible values are integers
from 0 through :MBX_ $CHN _MAX.

MBX-2

(

\..

c

MBX $CHAN _ SET T o

MBX_$EC KEY_T

o
MBX_ $MTYPE T

o

o MBX $NAME T

MBX DATA TYPES

A set of channel numbers of type
MBX_$CHAN_NVM_ T. The following Pascal
example specifies channels 1, 4, and 7:

VAR
chan set mbx_$chan_set_t

chan set 1. 4. 7]

In a FORTRAN program, declare an 8-element
array of 4-byte integers to indicate a channel set.
Use the array as a mask in which the bits represent
mailbox channels.

A 2-byte integer. A mailbox eventcount. One of
the following pre-defined values:

MBX $GETREC EC KEY

An eventcount that advances when the
mailbox contains messages for you to get.

MBX $PUTREC EC KEY

An eventcount that advances when enough
room exists in the channel to hold the last
message you unsuccessfully tried to put there.

A 2-byte integer. A message type. One of the
following pre-defined values:

MBX $ACCEPT OPEN MT

A response from a server to accept a client's
open request.

MBX $CHANNEL OPEN MT

A request from a client to open a channel to a
mailbox.

MBX $DATA MT

A data transmission.

MBX $DATA PARTIAL MT

A partial data transmission.

MBX $EOF MT

An end of transmission notice.

MBX $REJECT OPEN MT

A response from a server to reject a client's
open request.

An array of up to 256 characters. A mailbox name.

MBX-3 MBX

MBX DATA TYPES

predefined
type

MBX

byte:
offset

0:

2:

4:

A mailbox message header. The diagram below
illustrates the MBX_$MSG_HDR_ T data type:

field name

integer cnt

integer mt

integer chan

Field Description:

cnt
The total number of bytes in the message,
including the header.

mt
A value representing a message type. This value
is one of the predefined values of type
1\1BX $MTYPE T.

chan
The channel of the client that sent the message,
or that should receive the message.

MBX-4

(~,

\ ,,-- '

o

o

o

o

o

MBX_ $ SERVER MSG T

predefined
type

byte:
offset

0:

2:

MBX DATA TYPES

A server message with up to 1024 data bytes. The
diagram below illustrates the
MBX_$SERVER_MSG_ T data type:

field name

integer cnt

integer mt

integer chan

data

~
up to

~ 1024
bytes

I I

Field Description:

cnt
The total number of bytes in the message,
including the header.

mt
A value representing a message type. This value
is one of the predefined values of type
MBX $MTYPE T.

chan
The channel of the client that sent the message,
or that should receive the message.

data
The data portion of the message. This field can
contain up to 1024 bytes.

MBX-5 MBX

MBX DATA TYPES

STATUS $T

MBX

byte:
offset 31

0:

0:

1 :

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
t------'----, 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

MBX-6

('

o

o

o

o

o

MBX $CLIENT WINDOW

MBX_ $OLIENT WINDOW

Returns the buffer size for the mailbox that a client is using.

FORMAT

size = MBX_$CLIENT_WINDOW (handle. status)

RETURN VALUE

size
Buffer size for the mailbox. This is a 4-byte integer.

This value defines a window size when a client sends messages to a remote server. That is,
the client cannot send messages that are larger than the mailbox's buffer.

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNN_PTR format. This is a 4-byte integer. Use the handle
returned by MBX_$OREATE_SERVER.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

When a client sends a message, the message is stored in a channel buffer until the server
gets the message. The buffer size defines the maximum number of message bytes that the
channel can hold at one time.

A client can use MBX_ $OLIENT _ WINDOW to get the size of the channel buffer. To get
the size, MBX_ $OLIENT _ WINDOW queries the MBX_HELPER on the server's node.
Note that MBX_ $OLIENT _ WINDOW returns the actual buffer size, not the number of
unused bytes in the buffer.

MBX_$OLIENT _ WINDOW only works correctly when the server you are inquiring about
is on a node with SR9 or later software. If you call MBX_ $OLIENT _ WINDOW and the
server is on a node with pre-SR9 software, MBX_ $CLIENT _ WINDOW returns the value
1158. This value is returned, even if the mailbox's actual buffer size is smaller. Therefore,
this call does not provide a reliable way to determine the window size when sending
messages to a server that is running on a node with pre-SR9 software.

MBX_ $ CLIENT _ WINDOW is for use only by mailbox clients. A server should use
MBX $SERVER WINDOW.

MBX-7 MBX

MBX_$CLOSE

MBX_$CLOSE

Closes a mailbox or a channel.

FORMAT

MBX_$CLOSE (handle. status)

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by MBX_$CREATE_SERVER or MBX_$OPEN.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX

Both clients and servers can use MBX_$CLOSE. When called from a client,
MBX _ $CLOSE tells the server that the client is no longer using the channel. When called
from a server, MBX_ $CLOSE closes the mailbox.

After a client calls N.lBX_$CLOSE, the server should call MBX_$DEALLOCATE to
deallocate the channel and free it for use by other clients. No other client can use the
channel until it has been deallocated by the server.

If a server closes a mailbox while there are still active clients, the clients get errors on
subsequent attempts to use the mailbox.

MBX-8

c

('
\.

._._-_._-------_._---

o

o

o

o

o

MBX $COND GET_REC CHAN

MBX_$COND GET REC CHAN

Attempts to get a mailbox message from a specified channel.

FORMAT

MBX_$COND_GET_REC_CHAN (handle, channel, bufptr, buflen, retptr, retlen, status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
you obtained from MBX_$CREATE_SERVER.

channel
Channel to read from. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls MBX_ $OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
The number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will
never return more than 32766 bytes. For a client, MBX will never return more than 32760
bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_ $COND _ GET _REC _ CHAN can get as many bytes as you specify in buflen. If
the message is less than or equal to buflen, then the call gets the entire message and retlen
specifies the message length. If the message is greater than buflen, then the call gets the
number of bytes specified in buflen. If this occurs, then retlen contains a negative value,
the absolute value of which is the number of bytes remaining in the message. Get the
remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX-9 ·MBX

MBX $COND GET REC CHAN

USAGE

MBX

:MBX_ $COND _ GET _REC _ CHAN requests a message from a specified channel. If there
is no message, the call returns immediately with the status :MBX_ $ CHANNEL _EMPTY.
You can use an eventcount to tell when the status of the mailbox has changed. You get a
mailbox eventcount with:MBX $GET EO.

Only a server can use :MBX_ $COND _ GET _REC _ CHAN. To perform a conditional get
operation from a client, use :MBX_ $GET _ CONDITIONAL.

MBX-tO

('

o

o

o

o

o

MBX_$COND GET REC CHAN SET

:MBX_ $COND GET REC CHAN SET

Attempts to get a mailbox record from a set of clients.

FORMAT

MBX_$COND_GET_REC_CHAN_SET (handle. chan-set. bufptr. buflen. retptr. retlen.
status)

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by :MBX_$CREATE_SERVER.

chan-set
Set of channels to read from, in :MBX_ $ CHAN _ SET _ T format. This is an 8-element
array of 4-byte integers. See the :MBX Data Types section for more information.

The mailbox manager assigns a channel number to a client when the client calls
:MBX_ $OPEN. The channel number can range from 1 through :MBX_ $CHN _MAX.

bufptr
Pointer to a data buffer whe\re the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

hufIen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, 1v1BX will never
return more than 32766 bytes. For a client, :MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

:MBX_ $COND _ GET _ REC _ CHAN _ SET can get as many bytes as you specify in
buflen. If the message is less than or equal to buflen, then the call gets the entire message
and retlen specifies the message length. If the message is greater than buflen, then the call
gets the number of bytes specified in buflen. If this occurs, then retlen contains a negative
value, the absolute value of which is the number of bytes remaining in the message. Get
the remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the 1v1BX
Data Types section for more information.

MBX-ll MBX

USAGE

MBX

:MBX_$COND_GET_REC_CHAN_SET requests a message from a specified set of
channels. IT there is no message, the call returns immediately with the status
:MBX_$CHANNEL_EMPTY. You can use an eventcount to tell when the status of the
mailbox has changed. You get a mailbox eventcount with :MBX_$GET _EC.

Only a mailbox server can use this call. To perform a conditional get operation from a
client, use :MBX_ $GET _ CONDITIONAL.

MBX-12

('­

l
\.... ...

'\..

o

o

o

o

o

MBX_$CREATE SERVER

Creates and opens a server's mailbox.

FORMAT

MBX_$CREATE_SERVER (name. namelen. bufsize. maxchan. handle. status)

INPUT PARAMETERS

name
Name of themailbox.inMBX_$NAME_Tformat.This is an array of up to 256
characters. Specify the name as a pathname to the mailbox file. If you use the name of a
file that already exists, this call deletes the contents of the file. If the file already exists and
it is in use, then the call returns an error.

namelen
Number of characters in the name. This is a 2-byte integer.

bufsize
Number of message bytes that the server and client can each store in a channel. This is a
2-byte integer. You must specify a buffer size of at least MBX_$MIN_ CHN_SIZE (64
bytes). This allocates 128 bytes for each channel -- 64 bytes apiece for the server and the
client buffers. The maximum buffer size is 32767.

The buffer size should be large enough to store the largest message you plan to send from a
server or a client. Note that the maximum message length is MBX _ $REC _ MSG _ MAX
(32767), which includes 32761 data bytes plus a 6-byte header. If you specify a buffer size
of less than MBX_ $REC _MSG _MAX, you impose a lower limit on the total length of
messages that pass through the mailbox.

Note that if you specify a buffer size that is greater than 1158, and the server is
communicating with clients on remote nodes, the length of the transmitted messages may be
limited by the MBX_HELPER on the client node. When a server puts a message into the
mailbox and the message is intended for a remote client, the message passes through the
system mailbox maintained by the remote node's 1vffiX_HELPER. By default, this
mailbox has a buffer size of 1158 bytes. To allow the remote node's mailbox to handle
larger messages, use the -DATASIZE option to specify a larger buffer size when you start
the MBX_HELPER. Specify a value that is at least as large as the largest message the
server will send.

maxehan
Maximum number of channels that can be simultaneously open to the mailbox. This is a
2-byte integer. You can allow up to MBX_$CHN_MAX (255) channels.

OUTPUT PARAMETERS

handle
Identifier for the mailbox, in UNN_PTR format. This is a 4-byte integer. Subsequent
calls use this handle to send and receive messages.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX-13 MBX

MBX $CREATE_SERVER

USAGE

MBX

A server· uses MBX_$CREATE_SERVER to create a mailbox. Once the mailbox is open,
clients use MBX_ $OPEN to open communications channels to the mailbox.

In a secure network, a mailbox gets an access control list (ACL) that is determined by the
ACL of the directory in which the mailbox is created. If servers and clients on different
nodes use the mailbox, be sure that the server's MBX_HELPER has read and write access
to the mailbox.

MBX-14

(

o

o

o

o

o

MBX $DEALLOCATE

1ffiX_ $DEALLOCATE

Releases a channel for use by another client.

FORMAT

MBX_$DEALLOCATE (handle. channel. status)

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by 1ffiX_ $ CREATE _ SERVER.

channel
Channel to deallocate. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls 1ffiX $OPEN.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the :rvrnX
Data Types section for more information.

USAGE

Only a server can call1ffiX_ $DEALLOCATE. A client uses :rvrnX_ $CLOSE to indicate
the end of transmission over a channel. However, the server must deallocate the channel
before another client can use it.

A server can deallocate a channel while a client is still using it; this both closes and
deallocates the channel. The next time the client tries to use the channel, the client receives
the error :rvrnX_ $ CHANNEL NOT OPEN.

MBX-15 MBX

MBX_ $ GET _ CONDITIONAL

MBX_ $GET CONDITIONAL

Attempts to get a mailbox message.

FORMAT

MBX_$GET_CONDITIONAL (handle. bufptr. buflen. retptr. retlen. status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
returned by MBX_$CREATE_SERVER or MBX_$OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned.. This is a 4-byte integer.

MBX_ $GET _ CONDITIONAL can get as many bytes as you specify in buflen. If the
message is less than or equal to buflen, then the call gets the entire message and retien
specifies the message length. If the message is greater than buflen, then the call gets the
number of bytes specified in buflen. If this occurs, then retlen contains a negative value,
the absolute value of which is the number of bytes remaining in the message. Get the
remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status

MBX

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX-16

C)

o

o

o

MBX_$GET CONDITIONAL

USAGE

:MBX_ $GET _ CONDITIONAL gets a message if one is waiting. Otherwise, the call
returns immediately with a completion status of :MBX_ $ CHANNEL _EMPTY. You can
use an eventcount to tell when the status of the mailbox has changed. You get a mailbox
eventcount with :MBX_ $GET EC.

Both servers and clients can use:MBX $GET _ CONDITIONAL. When a server calls
:MBX_ $GET _ CONDITIONAL, the mailbox manager uses a scheduling algorithm to
determine the channels to search for the next message. This algorithm guarantees fair
service to each open channel.

MBX-17 MBX

MBX $GET_EC

MBX_$GET EO

Gets a pointer to an eventcount for a mailbox event.

FORMAT

MBX_$GET_EC (mbx-handle. mbx-key. eventcount-p01nter. status)

INPUT PARAMETERS

mbx-handle
Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
returned by l\1BX_$CREATE_SERVER or MBX_$OPEN.

mbx-key
Type of eventcount to get a pointer to, in l\1BX_ $EC _KEY _ T format. This is a 2-byte
integer. Specify one of these predefined values:

l\1BX_$GETREO EC KEY
An eventcount that advances when the mailbox may contain
messages for you to get. For a server, this eventcount may
advance whenever there is anything to get from any open
channel.

l\1BX $PUTREO EC KEY
An eventcount that advances when there may be enough room
in the channel to hold the last message you unsuccessfully tried
to put there. A mailbox server sees only one
l\1BX_ $PUTREO _EO _KEY event count for the entire
mailbox. If puts fail with
l\1BX_$NO ROOM IN CHANNEL on two channels of the
same mailbox, the event's completion simply says that at least
one channel may now take the message. One or both channels
may now be capable of taking the respective message.

OUTPUT PARAMETERS

eventcount-pointer
A pointer to an eventcount, in EC2_ $PTR_ T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX

Mter you use l\1BX_ $GET _EO to get a mailbox eventcount, use E02 calls to read
eventcount values and wait for events.

MBX-18

----------_ .•... _-_. __ ._- -----------

o

o

o

o

o

MBX $GET REO

Gets a message from a mailbox.

FORMAT

MBX_$GET_REC (handle. bufptr. buflen. retptr. retlen. status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Use the handle
returned by MBX_$CREATE_SERVER or MBX_$OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX _ $GET _ REC can get as many bytes as you specify in buflen. If the message is less
than or equal to buflen, then the call gets the entire message and retlen specifies the
message length. If the message is greater than buflen, then the call gets the number of
bytes specified in buflen. If this occurs, then retlen contains a negative value, the absolute
value of which is the number of bytes remaining in the message. Get the remaining data
with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX-19 MBX

MBX $GET_REC

USAGE

MBX

MBX_ $GET _REO gets a mailbox message. If there is no message in the mailbox, the call
waits for one.

Both servers and clients can use MBX $GET _REO. When a server calls
MBX_ $GET _REO, the mailbox manager uses a scheduling algorithm to determine the
channel to search for the next message. This algorithm guarantees fair service to each open
channel.

MBX-20

............ , ... '"

o

o

o

o

MBX $GET REC CHAN

:MBX $GET REC CHAN

Gets a mailbox message from a specified channel.

FORMAT

MBX_$GET_REC_CHAN (handle. channel. bufptr. buflen. retptr. retlen. status)

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by:MBX_$CREATE_SERVER.

channel
Channel to read from. This is a 2-byte integer. The mailbox manager assigns a channel
number to a client when the client calls:MBX $OPEN.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, :MBX will never
return more than 32766 bytes. For a client, :MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

:MBX_ $GET _REC _ CHAN can get as many bytes as you specify in buflen. If the message
is less than or equal to buflen, then the call gets the entire message and retlen specifies the
message length. If the message is greater than buflen, then the call gets the number of
bytes specified in buflen. If this occurs, then retlen contains a negative value, the absolute
value of which is the number of bytes remaining in the message. Get the remaining data
with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes lOIig. See the :MBX
Data Types section for more information.

MBX-21 MBX

MBX $GET REC CHAN

USAGE

MBX

11BX_ $GET _REO _ OHAN requests a message from the specified mailbox and channel.
If there is no message, the call waits for one. Only a mailbox server can use this call. To
perform a get operation from a client, use :MBX_$GET _REO.

MBX-22

I

\,

o

o

o

o

o

-------- -_._---_ ...

MBX $GET REC CHAN SET

MBX_$GET REC CHAN SET

Gets a mailbox message from a specified set of channels.

FORMAT

MBX_$GET_REC_CHAN SET (handle. chan-set. bufptr. buflen. retptr. retlen. status)

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by MBX_$CREATE_SERVER.

chan-set
Set of channels to read from, in MBX_ $ CHAN _SET _ T format. This is an 8-element
array of 4-byte integers. See the MBX Data Types section for more information.

The mailbox manager assigns a channel number to a client when the client calls
MBX $OPEN. The channel number can range from 1 through MBX_$CHN_MAX.

bufptr
Pointer to a data buffer where the message can be copied. This is a 4-byte integer.

Your program must allocate a data buffer, although the mailbox manager does not always
copy messages to this buffer. Use the output parameter retptr to reference the message.

buflen
Number of bytes in the data buffer. This is a 4-byte integer. For a server, MBX will never
return more than 32766 bytes. For a client, MBX will never return more than 32760 bytes.

OUTPUT PARAMETERS

retptr
Pointer to the buffer where the message is copied. This is a 4-byte integer.

retlen
Either the number of bytes in the returned message, or the number of message bytes
waiting to be returned. This is a 4-byte integer.

MBX_$GET_REC_CHAN_SET can get as many bytes as you specify in burIen. If the
message is less than or equal to burIen, then the call gets the entire message and retlen
specifies the message length. If the message is greater than burIen, then the call gets the
number of bytes specified in burIen. If this occurs, then retien contains a negative value,
the absolute value of which is the number of bytes remaining in the message. Get the
remaining data with another call.

Note that a server sees the message header each time it gets a piece of the message. The
count field contains the total length of the message -- not the length of the returned piece.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

MBX-23 MBX

MBX $GET_REC CHAN SET

USAGE

MBX

:MBX _ $GET _ REO _ OHAN _ SET requests a message from the specified mailbox and set
of channels. If there is no message, the call waits for one. Only a mailbox server can use
this call. To perform a get operation from a client, use :MBX_$GET _REO.

MBX-24

, ... ~- ..• ",,/

\

'-

o

o

o

()

o

MBX $OPEN

MBX_$OPEN

Opens a client channel to a mailbox.

FORMAT

MBX_$OPEN (name, namelen, bufptr, buflen, handle, status)

INPUT PARAMETERS

name
Name of themailbox.inMBX_$NAME_Tformat.This is an array of up to 256
characters. Specify the name as a pathname to the mailbox created by the server.

namelen
Number of characters in the name. This is a 2-byte integer.

bufptr
Pointer to a buffer containing data to be sent with the open request. This is a 4-byte
integer. IT you are not sending data, specify a nil pointer.

buflen
Number of bytes of data you are sending. This is a 4-byte integer. IT you are not sending
data, specify a length of O.

The maximum amount of data you can send with:MBX $OPEN is MBX $MSG MAX
(1024) bytes, even if the mailbox message buffer is large~ --

OUTPUT PARAMETERS

handle
Identifier for the mailbox, in UNIV _PTR format. This is a 4-byte integer. Subsequent
calls use this handle to send and receive messages.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX_ $OPEN opens a channel from a client to an existing mailbox. Only a client can use
this call.

This call makes the mailbox manager send the server a channel open request. The server
must respond by accepting or rejecting the request. After the server responds,
MBX_ $OPEN returns a status code indicating whether the call was successful. The client
does not see the acceptance or rejection as a message, but as the completion status of the
MBX_$OPEN call.

MBX-25 MBX

MBX_ $PUT CHR

:MBX_$PUT CRR

Sends a partial message from a client.

FORMAT

MBX_$PUT_CHR (handle. bufptr. buflen. status)

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNN_PTR format. This is a 4-byte integer. Use the handle
returned by :MBX_ $OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

bufIen
Length of the message, in bytes. This is a 4-byte integer. For a client, the buffer can
contain up to 32760 bytes.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the :MBX
Data Types section for more information.

USAGE

MBX

:MBX_ $PUT _ CHR is equivalent to :MBX_ $PUT _REC, except that :MBX_ $PUT _ CRR
informs the server that the message is a partial message. If themailboxisfull.this call
waits until the mailbox has room for the message.

Only a client can call :MBX_ $PUT _ CRR. A server can send a partial data message by
using :MBX_ $PUT _REC or :MBX_ $PUT _REC _ COND, and specifying a message type
of :MBX_$DATA_PARTIAL_MT. When the client gets such a message, the get call
returns a status of MBX $P ARTIAL _RECORD to the client.

MBX-26

c

c

o

o

o

o

o

--- - ---

:MBX_ $PUT CIm. COND

Attempts to send a partial message from a client.

FORMAT

INPUT PARAMETERS

handle
Identifier for themailbox.inUNN_PTRformat.This is a 4-byte integer. Use the handle
returned by :MBX_ $OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen
Length of the message, in bytes. This is a 4-byte integer. For a client, the buffer can
contain up to 32760 bytes.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the :MBX
Data Types section for more information.

USAGE

:MBX_$PUT_CIm._COND is equivalent to :MBX_$PUT_REC_COND, except that
:MBX_$PUT _ CIm._ COND informs the server that the message is a partial message.

If the client's buffer is full, :MBX_$PUT _ CIm._ COND returns immediately with a
completion status of :MBX_$NO _ROOM_IN_ CHANNEL. You can use an eventcount
to tell when the status of the mailbox eventcount has changed. You get a mailbox
eventcount with :MBX_ $GET EC.

Only a client can call :MBX_ $PUT _ CHR_ CONDo A server can send a partial data
message by using :MBX_ $PUT _REC or :MBX_ $PUT _REC _ COND, and specifying a
message type of :MBX_$DATA_PARTIAL_MT. When the client gets such a message,
the get call returns a status of :MBX_ $P ARTIAL _RECORD to the client.

MBX-27 MBX

:MBX_$PUT REO

Puts a record in the mailbox.

FORMAT

MBX_$PUT_REC (handle. bufptr. buflen. status)

INPUT PARAMETERS

handle
Identifier for the mailbox, inUNN_PTRformat. This is a 4-byte integer. Use the handle
returned by :MBX_$CREATE_SERVER or :MBX_$OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen
Length of the message, in bytes. This is a 4-byte integer. For a server, the message can
contain up to 32766 bytes. For a client, the buffer can contain up to 32760 bytes.

If a server puts a message that is larger than 1158 bytes, and the client is on a remote node,
the client node's :MBX_HELPER must be able to handle the message. To handle the
message, the client node's :MBX_HELPER must have a queue data size that is at least as
large as the message. Use:MBX $SERVER WINDOW to determine the client node's
queue data size.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the :MBX
Data Types section for more information.

USAGE

MBX

This call can be used by either servers or clients. Note, however, that servers and clients
have different message formats. A server must include the 6-byte message header when
sending a message. In contrast, a client sends only data.

If the channel is full, this call waits until there is room for the message.

MBX-28

r
\
\""".

\

o

o

o

o

MBX_$PUT REC COND

:MBX $PUT REC COND

Attempts to put a message into a mailbox.

FORMAT

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNN_PTR format. This is a 4-byte integer. Use the handle
returned by :MBX_$CREATE_SERVER or :MBX_$OPEN.

bufptr
Pointer to the buffer that contains the message to be sent. This is a 4-byte integer.

buflen
Length of the message, in bytes. This is a 4-byte integer. For a server, the message can
contain up to 32766 bytes. For a client, the buffer can contain up to 32760 bytes.

If a server puts a message that is larger than 1158 bytes, and the client is on a remote node,
the client node's :MBX_HELPER must be able to handle the message. To handle the
message, the client node's :MBX_HELPER must have a queue data size that is at least as
large as the message. Use :MBX_ $SERVER WINDOW to determine the client node's
queue data size.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the :MBX
Data Types section for more information.

USAGE

:MBX_ $PUT _REC _ COND can be used by either servers or clients. Note, however, that
servers and clients have different message formats. A server must include the 6-byte
message header when sending a message. In contrast, a client sends only data.

If the channel is full, :MBX_ $PUT _REC _ COND returns immediately, with a completion
status of :MBX $NO ROOM IN CHANNEL. You can use an eventcount to tell when
the status of the mailbox eventcount has changed. You get a mailbox eventcount with
:MBX $GET EC.

MBX-29 MBX

MBX $SERVER_ WINDOW

1vIBX_$SERVER WINDOW

Returns the buffer size for the mailbox maintained by the 1vIBX_HELPER on a remote
client's node.

FORMAT

size = MBX_$SERVER_WINDOW (handle. channel. status)

RETURN VALUE

size
Buffer size for the mailbox maintained by the MBX_HELPER on the remote client's node.
This is a 4-byte integer.

This value defines a window size when a server sends messages to a remote client. That is,
the server cannot send messages that are larger than the buffer for the remote
1vIBX HELPER's mailbox.

INPUT PARAMETERS

handle
Identifier for the mailbox, in UNN_PTR format. This is a 4-byte integer. Use the handle
returned by 1vIBX_ $CREATE _ SERVER.

channel
Channel belonging to the client whose window size you are inquiring about. This is a
2-byte integer. The mailbox manager assigns a channel number to a client when the client
calls 1vIBX $OPEN.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the MBX
Data Types section for more information.

USAGE

MBX

When a server puts a message into a mailbox and the message is intended for a client on a
remote node, the message must pass through a system mailbox maintained by the client
node's 1vIBX_HELPER. Thus, the largest message that a server can send depends on the
buffer size for the remote client's system mailbox. This buffer size was defined when the
client node's 1vIBX_HELPER was started. (The 1vIBX_HELPER's -DATASIZE option
defines a buffer size for the system mailbox.)

A server can use 1vIBX_ $SERVER_ WINDOW to determine the buffer size for the remote
client's system mailbox. To get this value, MBX_$SERVER_ WINDOW queries the
:MBX_HELPER on the client's node. Note that MBX_$SERVER WINDOW returns the
actual buffer size, not the number of unused bytes in the buffer.

MBX-30

~

(
'_ ..

o

o

o

o

o

MBX $SERVER WINDOW

Note that if a server is communicating with clients on different nodes, the buffer size can
differ on each node. Therefore, the server must use 1\1BX_ $ SERVER _ WINDOW to
obtain the buffer size on each node.

:MBX_$SERVER_ WINDOW correctly returns the buffer size for clients on nodes with
SR9 or later software. However, if you call :MBX_ $SERVER_ WINDOW and the specified
client is on a pre-SR9 node, then the call always returns the value 1158. 1158 is the
minimum buffer size for mailboxes maintained by pre-SR9 :MBX _ HELPERs.

:MBX_ $SERVER_ WINDOW is for use only by mailbox servers. A client should use
:MBX_$CLIENT WINDOW.

MBX-31 MBX

MBX ERRORS

ERRORS

:MBX_$BAD KEY
Bad key.

:MBX_ $BUFFER TOO SMALL
A server requested a message using a buffer smaller than 6 bytes. There must be
enough room for the message header in all server message requests.

:MBX $CHANNEL EMPTY
There are no messages waiting in the channel. Received in response to an
:MBX_ $GET _ COND or :MBX_ $COND _ GET _ CHAN request.

:MBX $CHANNEL NOT OPEN
For a server, the channel number given referred to a channel that is not presently
open; for a client, the server has deallocated the client's channel.

:MBX $CLIENT NO RIGHTS
The client can't access the local:rvmX HELPER's SYS:rvmX.

:MBX$CLIENT SERVER DEADLOCK
A server tried to open a channel to itself; this is illegal.

:MBX $EOF
The client has sent a message of type :MBX_$EOF _MT. Received in response to an
:MBX_ $GET _REC or :MBX_ $GET _ COND request.

:MBX $FILE IN USE
An :MBX_$CREATE_SERVER or MBX_$OPEN request was made giving a
mailbox pathname that is the pathname for a file presently in use.

:MBX $HANDLE NOT _ VALID
The handle given does not point to a mailbox.

:MBX $HELPER NO RIGHTS
The:MBX HELPER on the server's node can't access the server's mailbox.

:MBX_$ILL HANDLE
The handle given is not a legal handle.

:MBX $MSG _ TOO _BIG _FOR _ CHANNEL
An :MBX_$PUT _ CONDITIONAL or :MBX_$PUT _REC request tried to send a
message bigger than the maximum specified when the server created the mailbox.

:MBX $NO MORE CHANNELS
An:MBX $OPEN was made to a mailbox with no free channels.

:MBX_ $NO MORE RESOURCES
An :MBX_$CREATE_SERVER or MBX_$OPEN request was made, and the
process has insufficient resources (for example, address space) left to open the mailbox
or the channel.

:MBX $NO ROOM IN CHANNEL
There is not enough room in the channel for the message. Received in response to an
:MBX_ $PUT _ CONDITIONAL request.

:MBX $NO SERVERS
An:MBX $OPEN was made to a mailbox without an active server.

MBX MBX-32

o

o

o

o

o

MBX ERRORS

:MBX_$OPEN REJECTED
The server rejected an :MBX_ $OPEN request.

:MBX_$PARTIAL RECORD
Returned data does not contain a complete record.

:MBX_$REM RCV _TIM:OUT
A remote operation was attempted, and the network has failed.

:MBX_$REM_SEND FAILED
A remote operation was attempted, and the network has failed.

:MBX_$REM SERVICE UNAVAILABLE
An :MBX_$OPEN open request was made from a remote node when the
:MBX_HELPER program was not running on that node or the server's node.

:MBX_ $REMOTE SERVICE _DENIED
An :MBX_ $OPEN request was made from a remote node, and there are not enough
network services free to handle the request.

:MBX_ $SEQUENCED _ SEND _FAILED
An internal error occurred while sending a message that is larger than 1158 bytes.

:MBX_$SIZE TOO LARGE
:MBX_$CREATE_SERVER request asked for a mailbox larger than the maximum.

:MBX_$SIZE TOO SMALL
An :MBX_ $ CREATE _ SERVER request was made with a buffer size smaller than
the minimum.

:MBX_ $TOO _MANY _ CHANNELS
An :MBX_ $ CREATE _ SERVER request was made asking for more than the
maximum number of channels.

:MBX $UNEXPECTED CNTL_MSG
Received by a client when the last message the server sent on that channel had a
message type of :MBX_$ACCEPT _ OPEN_MT, :MBX_$REJECT _ OPEN_MT,
or :MBX_ $ CHANNEL _ OPEN _MT when such a message type was inappropriate.
(:MBX_$CHANNEL_ OPEN_MT should never be used. The other two message
types are only used in response to a message of type
:MBX_ $ CHANNEL _ OPEN _MT.) Received in response to an :MBX _ $GET _REC
or :MBX_$GET_COND request.

:MBX_ $UNKNOWN _RQST
The client and server are using different versions of the mailbox manager (although
the two versions have the same version number), and one of them made a request not
recognized by the other manager.

:MBX_$WRONG_ VERSION NUMBER
An :MBX_ $OPEN request was made using a mailbox manager with a different
version number than the one used to create the mailbox.

STATUS $OK
Successful completion.

MBX-33 MBX

(
\
,~-.-.

~.-.

----_ .. __ .. _ ..

o

o

o

o

o

MS

This section describes the data types, the call syntax, and the error codes for the MS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

MS-l MS

MS DATA TYPES

CONSTANTS

MS $EXTEND TRUE

MS $NO EXTEND FALSE

DATA TYPES

MS $ACC MODE_ T

MS $ACCESS T

MS $ADVICE _ OPT T

MS $ADVICE_T

MS

The object can be extended.

The object cannot be extended.

A 2-byte integer. Access mode for an object. One
of the following predefined values:

MS $R

Read access.

MS $RX

Read and execute access.

MS $WR

Read and write access.

MS $WRX

Write and execute access.

MS_$RIW
Read with intent to write.

A 2-byte integer. Usage patterns for accessing a
file. One of the following predefined values:

MS $NORMAL

Normal use.

MS $RANDOM

Random access use.

MS _ $ SEQUENTIAL

Sequential access use.

Reserved for future use.

Four bytes that are reserved for future use.

MS-2

------_._---_._-_._.------------

0 MS $ATTRm T

byte:
offset

0:

1 :

2:

6:

time_$clockh_t 10:

0 time_$clockh_t 14:

time _ $clockh _ t 18:

o

o

o

MS DATA TYPES

An attribute record. The diagram below illustrates
the MS _ $ATTRIB _ T data type:

field name

....---

permanent
I-

immutable

integer curJen

integer blocks_used

integer dtu

integer dtm

integer dter

Field Description:

permanent
A boolean value that indicates whether the
object is permanent (TRUE) or temporary
(FALSE)

immutable
A boolean value that indicates whether the
object can be modified. The value TRUE means
that the object is immutable. The value FALSE
means that the object is not immutable and can
therefore be modified.

cur _len
Current length, in bytes, of the object.

blocks used
The number of blocks used for the object.

dtu
Date-time used, in TIME _ $CLOCKH_ T
format.

dtm
Date-time modified, in TIME_$CLOCKH_ T
format.

dtcr
Date-time created, in TIME_$CLOCKH_ T
format.

MS-3 MS

MS DATA TYPES

MS $CONC MODE T

STATUS $T

MS

A 2-byte integer. Concurrency mode for an object.
One of the following predefined values:

MS $NR_XOR lW
Allows one writer or any number of readers.

MS $COWRITERS
Allows any number of readers and/or writers.

A status code. The diagram below illustrates the
STATUS _ $T data type:

byte:
offset 31 0

field name

0: integer all

or

0: fail

subsys

1 : mode
t------'---. 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

MS-4

C _/

C

C"
-_ . .-'

o XOID $T

o

o

o

o

predefined
type

byte:
offset

0:

4:

8:

12:

MS DATA TYPES

Unique identifier of an object. Used by type
managers only. The diagram below illustrates the
XOID _ $T data type:

31

integer

integer

integer

integer

Field Description:

rfu!

0

Reserved for future use.

rfu2
Reserved for future use.

UID

field name

rfu1

rfu2

UID

Unique identifier for an object.

MS-4.1 MS

C'·

MS MS-4.2

o

o

o

o

o

MS $ADVICE

MS $ADVICE

Provides the operating system with information on how you plan to access an object. This
information helps the system optimize performance when managing the object.

FORMAT

MS_$ADVICE (address, length, access, options, record-length, status)

INPUT PARAMETERS

address
Pointer to the first byte to provide advice for, UNIV _PTR format. This is a 4-byte
integer. Use the pointer returned by the most recent call to MS _ $CRMAPL,
MS_$MAPL, or MS_$REMAP.

length
Number of bytes to provide advice for. This is a 4-byte integer.

access
Method of accessing the object, in MS _ $ACCESS _ T format. Specify only one of the
following predefined values:

MS $NORMAL You do not have a predicted manner for accessing the object. This is the
default if a program never uses MS _ $ADVICE.

MS _ $RANDOM You access the object randomly.

MS _ $ SEQUENTIAL
You access the object sequentially.

options
Reserved for future use, in MS _ $ADVICE _ T format. This is a 4-byte integer. In Pascal,
specify this parameter using the empty set []. In C and FORTRAN, declare a variable and
initialize it to o.

record-length
Number of bytes in a record in the mapped object. This is a 4-byte integer. If you do not
know the record length, or if the object is not record-structured, specify O.

OUTPUT PARAMETERS

status
Complet:"')n status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

MS _ $ADVICE provides the operating system with information on how you plan to access
an object. When you work with a mapped object, the system brings pages into memory as
needed. By using MS _ $ADVICE, you can change the number of pages that the system
gets when a page fault occurs. This helps the system provide better performance when
managing the object on your behalf.

MS-5 MS

MS $ADVICE

MS

Although it is not required that you use MS _ $ADVICE, you should use it whenever you
have a predicted type of file access. In addition, you can use MS _ $ADVICE more than
once to change the advice for a mapped object.

If you remap an object with MS _ $REMAP, the advice in effect for the first part of the
currently mapped section is propagated to the newly mapped section.

MS-6

''---

o

o

o

o

o

MS $ATTRffiUTES

MS $ATTRIBUTES

Returns the selected attributes of a mapped object.

FORMAT

MS_$ATTRIBUTES (address, attr1b-buf, attr1b-len, attr1b-max, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNN _PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS _ $MAPL, MS _ $CRMAPL, or MS _ $REMAP.

OUTPUT PARAMETERS

attrib-buf
Buffer in which to receive the attributes, in MS _ $ATTRIB _ T format. This data type is
22 bytes long. See the MS Dat~ Types section for more information.

attrib-Ien
Length of the attributes returned in the attributes buffer. This is a 2-byte integer.

INPUT PARAMETERS

attrib-max
Length of the attributes buffer. This is a 2-byte integer. Specify the length of the
attributes buffer in the attrib _ buf parameter. This value defines the maximum amount
of information that MS $ATTRIBUTES can return.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

Use MS_$ATTRIBUTES to get information about selected attributes of a mapped object.

MS-7 MS

MS $CRMAPL

MS $CRMAPL

Creates, maps, and locks an object.

FORMAT

address = MS_$CRMAPL (name, name-length, start, desired-length,
concurrency, status)

RETURN VALUE

address
Pointer to the first mapped byte of the object, in UNN _PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

INPUT PARAMETERS

name
Pathname of the object to be mapped, in NAME_$PNAME_ T format. This is an array
of up to 256 characters.

name-length

start

Length of the pathname. This is a 2-byte integer.

First byte to be mapped. This is a 4-byte positive integer. To specify the first byte in an
object, provide a start value of o.

desired-length
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

concurrency

MS

Concurrency mode for the object, in MS _ $CONC _ MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS $NR_XOR lW
Allows one writer or any number of readers.

MS $COWRITERS
Allows any number of readers and/or writers.

MS-8

c

o

o

o

o

o

MS $CRMAPL

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _ $OK Object created.

MS $BAD ACCESS lliegal concurrency value.

MS $IN USE Object is currently locked.

MS $NO SPACE Insufficient virtual address space to map.

NAME $ALREADY EXISTS Name given already exists.

Other naming server errors See the NAME $ error codes.

USAGE

MS _ $CRMAPL creates a file only if the name you specify does not already exist. The call
implicitly uses an MS manager access mode of MS _ $WR. Thus the object is always
mapped for write access. You can get an exclusive write lock (if you specify a concurrency
of MS _ $WR _ XOR _1 W) or you can get a shared write lock (if you specify a concurrency
of MS _ $COWRITERS.) See the description of MS _ $MAPL for more information on
locks.

MS _ $CRMAPL always uses an extend value of TRUE. Thus you can extend the object to
the length you specify in the desired-length parameter.

MS-9 MS

MS $FW FILE

MS $FW FILE

Forces the system to write a mapped file onto disk.

FORMAT

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNIV _PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS_$MAPL, MS_$CRMAPL, or MS_$REMAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

MS

When you work with mapped objects, the system uses a predefined set of conditions to
determine when to write information (stored in memory) onto the disk. However, if you
need to supplement the system's actions, you can use MS_$FW _FILE to force the system
to write an object onto disk.

When you use MS _ $FW _FILE, the system force writes the entire object, even if the
currently mapped portion does not begin at byte o. However, the system writes only the
changed portions of the object onto the disk.

When you force-write a permanent object, the system also force-writes the directory where
the object is cataloged.

MS-IO

('
"-.... ,

o

o

o

o

o

MS $MAPL

MS $MAPL

Maps the specified portion of a file-system object into an available region of the process
address space. This call also locks the object.

FORMAT

address = MS_$MAPL (name. name-length. start. desired-length. concurrency.
access. extend. length-mapped. status)

RETURN VALUE

address
Pointer to the first mapped byte of the object, in UNN _PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

INPUT PARAMETERS

name
Pathname of the object to be mapped, in NAME _ $PNAME _ T format. This is an array
of up to 256 characters.

name-length

start

Length of the pathname. This is a 2-byte integer.

First byte to be mapped. This is a 4-byte positive integer. To specify the first byte of an
object, provide a start value of o.

desired-length
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

concurrency
Concurrency mode for the object, in MS _ $CONC _MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS $NR_XOR lW
Allows one writer or any number of readers.

MS $COWRITERS
Allows any number of readers and/or writers.

MS-ll MS

MS $MAPL

access
The access mode desired, in MS_$ACC_MODE_T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS $R Read access.

MS $RX Read and execute access.

MS $WR Read and write access.

MS $WRX Write and execute access.

MS $RIW Read with intent to write.

The access requested must be a subset of the access permitted by the protection for the
object.

extend
A Boolean value that indicates whether the object can be extended. The value TRUE
indicates that the length given in the desired-length parameter should be mapped, even if
the object is shorter. Writing beyond the end of the object, but within the space mapped,
extends the object. FALSE indicates that the amount mapped should be no greater than
the actual length of the file.

OUTPUT PARAMETERS

length-mapped
Number of bytes actually mapped. This is a 4-byte positive integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _ $OK Object created.

MS $BAD ACCESS
Access type is illegal.

MS $IN USE Object could not be locked.

NAME $NOT FOUND
No object exists with the given name.

Other naming-server errors
See the NAME $ error codes.

USAGE

MS

Use MS _ $MAPL to map files that contain data in a user-defined format. For example,
font files are a case where MS _ $MAPL is appropriate. Do not use MS _ $MAPL to access
DOMAIN record structured files; use STREAM _ $ calls to access these files.

MS-12

~,
I

\ ...

o

o

o

o

o

MS $MAPL

MS _ $MAPL locks a file, in addition to mapping it. The lock is determined by the
concurrency and access modes that you specify. MS _ $MAPL can obtain the following
types of locks:

Lock Concurrency Mode Access Mode

Protected Read MS_$NR_XOR_1W MS_$R or MS $RX -

Protected RIW MS_$NR_XOR_1W MS_$RIW

Shared Read MS_$COWRlTERS MS_$R or MS_$RX or MS_$RIW

Exclusive Write MS_$NR_XOR_1W MS_$WR or MS_$WRX

Shared Write MS_$COWRlTERS MS_$WR or MS

Once you have locked a file, the MS manager allows other processes to map the file only if
these processes request a lock that is compatible with your lock. The following lock
combinations are allowed and prohibited. (Y means that the combination is allowed; N
means that the combination is prohibit,ed.)

Existing Lock Requested Lock

Protected Protected Shared Exclusive Shared
Read RIW Read Write Write

Protected Read Y Y y N N

Protected RIW Y N Y N N

Shared Read Y Y Y N IY*

Exclusive Write N N N N N

Shared Write N N Y* N Y*

* These locks are allowed only if the processes are on the same node.

MS-13 MS

MS $MAPL STREAM

MS $MAPL STREAM

Maps the specified filesystem object, given its xoid, into an available region of the process
address space. This call also locks the object and protects the mapping on a UNIX EXEC
call. For type managers only.

FORMAT

address-ptr := MS_$MAPL_STREAM (xoid. start. deSired-length. concurrency.
access. extend. length-mapped. status)

RETURN VALUE

address-ptr
Pointer to the first mapped byte of the object, in UNN _PTR format. This is a 4-byte
integer.

The first mapped byte is not necessarily the first byte of the object; it is the byte you
specify in the start parameter.

INPUT PARAMETERS

xoid

start

Xoid, or unique identifier of an object in XOID _ $T format. This data type is 16-bytes
long. See the MS Data Types section for details.

First byte to be mapped. This is a 4-byte, positive integer. To specify the first byte of an
object, provide a start value of o.

desired-length
Number of bytes to map, including the start byte. This is a 4-byte positive integer.

MS MS-13.1

--------------- .. ,.,'--,-----'-,--'--''''-'

c

c

c

o

0

o

o

o

MS $MAPL STREAM

concurrency
Concurrency mode for the object, in MS_$CONC_MODE_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS $NR_XOR lW
Allows one writer or any number of readers.

MS $COWRITERS
Allows any number of readers and/or writers.

access
The access mode desired, in MS_$ACC _MODE_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS $R Read access.

MS $RX Read and execute access.

MS $WR Read and write access.

MS $WRX Write and execute access.

MS $RIW Read with intent to write.

The access requested must be a subset of the access permitted by the protection for the
object.

extend
A Boolean value that indicates wheth~r the object can be extended. The value TRUE
indicates that the length given in the desired-length parameter should be mapped, even if
the object is shorter. Writing beyond the end of the object, but within the space mapped,
extends the object. FALSE indicates that the amount mapped should be no greater than
the actual length of the file.

OUTPUT PARAMETERS

length-mapped
Number of bytes actually mapped. This is a 4-byte positive integer.

MS-13.2 MS

MS $MAPL STREAM

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _ $OK Object created.

MS $BAD _ACCESS
Access type is illegal.

MS $IN USE Object could not be locked.

USAGE

MS

Use MS_$MAPL_STREAM to map objects that you access through a type manager.
Note that you use MS _ $MAPL _ STREAM only through a type manager. For details, see
the Extending the DOMAIN Streams Facility manual.

MS_$MAPL_STREAM protects the mapping on a UNIX EXEC call. Conversely, with
MS _ $MAPL, the UNIX EXEC call unmaps any objects on any open streams.

MS _ $MAPL _ STREAM also locks the object. The lock is determined by the concurrency
and access modes that you specify. MS _ $MAPL _ STREAM can obtain the following types
of locks:

Lock Concurrency Mode Access Mode

Protected Read MS_$NR_XOR_1W MS_$R or MS_$RX

Protected RIW MS_$NR_XOR_1W MS_$RIW

Shared Read MS_$COWRlTERS MS_$R or MS_$RX or MS_$RIW

Exclusive Write MS_$NR_XOR_1W MS_$WR or MS_$WRX

Shared Write MS_$COWRlTERS MS_$WR or MS

MS-13.3

c

c

o

o

o

o

o

MS $MAPL STREAM

Once you have locked an object, the MS manager allows other processes to map the object
only if these processes request a lock that is compatible with your lock. The following lock
combinations are allowed and prohibited. (Y means that the combination is allowed; N
means that the combination is prohibited.)

Existing Lock Requested Lock

Protected Protected Shared Exclusivt. Shared
Read RIW Read Write Write

Protected Read Y Y Y N N

Protected RIW Y N Y N N

Shared Read Y Y Y N IY*

Exclusive Write N N N N N

Shared Write N N Y* N Y*

* These locks are allowed only if the processes are on the same node.

MS-13,4 MS

MS $RELOCK

MS $RELOCK

Changes the lock on an object.

FORMAT

MS_$RELOCK (virtual-address, access, status)

INPUT PARAMETERS

virtual-address
Pointer to the first mapped byte of the object whose lock you want to change, in
UNN _PTR format. This is a 4-byte integer. Use the pointer returned by an earlier call
to MS_$MAPL, MS_$CRMAPL, or MS_$REMAP.

access
New access mode, in MS _ $ACC _MODE _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

MS $R Read access.

MS $WR Read and write access.

MS $RIW Read with intent to write.

If you specify an access mode of MS _ $RIW when you first lock an object, you cannot
relock the object with MS _ $R access.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS $OK Completed successfully.

MS $NOT MAPPED No object is mapped at the supplied virtual address.

MS $BAD ACCESS Access mode given is incorrect.

FILE_$ILLEGAL_LOCK_RQST
Illegal lock request (file server); the access mode given is
incorrect.

USAGE

MS

MS _ $RELOCK changes the lock on an object. With MS _ $RELOCK, you specify a new
access type. This new access, in combination with the current concurrency mode, forms a
new lock. You can relock a file in the following ways:

MS-14

c

(~

o

o

o

o

o

MS $RELOCK

Current Lock

Protected read

Protected RIW

Shared read

Exclusive write

Shared write

Change8

Change to exclusive write by specifying
the access mode MS_$WR or MS_$WRX.

Change to protected RIW by specifying
the access mode MS_$RIW.

Change to exclusive write by specifying
the access mode MS_$WR or MS_$WRX.

Cannot change to protected read by
specifying the access mode MS_$R.

Change to shared write by specifying
the access mode MS_$WR or MS_$WRX.

Change to protected read by specifying
the access mode MS_$R.

Change to protected RIW by specifying
the access mode MS_$RIW.

Change to shared read by specifying
MS_$R or MS_$RIW.

See the description of MS _ $MAPL for a list of the concurrency/access combinations for
each lock.

MS-15 MS

MS $REMAP

MS $REMAP

Maps a different portion of a previously mapped object.

FORMAT

address = MS_$REMAP (old-address. start. desired-length.
remapped-length. status)

RETURN VALUE

address
Pointer to the first byte of the new mapped section, in UNN _PTR format. This is a
4-byte integer.

INPUT PARAMETERS

old-address

start

Pointer to the first byte of the currently mapped' portion of the object, in UNN _PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS _ $MAPL, MS _ $ORMAPL, or MS _ $REMAP.

First byte to be mapped. This is a 4-byte integer.

desired-length
Number of bytes to remap. This is a 4-byte integer.

OUTPUT PARAMETERS

remapped-length
Number of bytes remapped. This is a 4-byte integer.

status

MS

Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _ $OK Oompleted successfully.

MS $NOT _MAPPED
No object is mapped at the given virtual address.

MS $BAD LENGTH
Desired-length is invalid.

MS-16

~,
I
\

.----------. (.
\
"---

r····

~-- ..

c···

o

o

o

o

o

MS $REMAP

USAGE

This call maps a different portion of an already mapped object and unmaps the previously
mapped portion. This call is useful for moving a sliding window over a big file.

When you remap a file, certain attributes of the mapping (extend, access, concurrency) are
left the same as in the original mapping. If you used MS _ $ADVICE to provide file access
advice, the advice in effect for the first part of the currently mapped section is propagated
to the newly mapped section. Also, MS _ $REMAP does not change the lock mode of the
object.

MS-17 MS

MS $TRUNCATE

MS $TRUNCATE

Truncates a mapped object to the specified length.

FORMAT

MS_$TRUNCATE (address. length. status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNlV _PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS _ $MAPL, MS _ $CRMAPL, or MS _ $REMAP.

length
Number of bytes to keep in the mapped object, starting at the first byte in the object. This
is a 4-byte integer. Everything after this length is truncated.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the MS
Data Types section for more information.

USAGE

MS

MS _ $TRUNCATE shortens a mapped file to the length that you specify. In addition, you
can use MS _ $TRUNCATE to define a length for a file, even if you are not throwing away
data. For example, when you unmap a file, the system may set the file length to a
page-aligned value. (That is, the length will be a multiple of 1024.) However, you can use
MS _ $ TRUNCATE to shorten the file to a nonpage-aligned value.

For example, if a file contains only 20 bytes of data, you can use MS_$TRUNCATE to set
the file length to 20. When you unmap the file, the length will be 20 rather than 1024. Use
MS _ $ATTRmUTES to determine the current file length and number of blocks used.

MS-18

c

,r-~ (,

\
' _.- ,.,~'

c

o

o

o

o

o

MS $UNMAP

MS $UNMAP

Unmaps a previously mapped object.

FORMAT

MS_$UNMAP (address, length, status)

INPUT PARAMETERS

address
Pointer to the first byte of the currently mapped portion of the object, in UNN _PTR
format. This is a 4-byte integer. Use the pointer returned by the most recent call to
MS _ $MAPL, MS _ $CRMAPL, or MS _ $REMAP.

length
Number of mapped bytes. This is a 4-byte integer. Use the length you requested in the
most recent call to MS_$MAPL, MS_$CRMAPL, or MS_$REMAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MS
Data Types section for more information. Possible values are:

STATUS _ $OK Completed successfully.

MS $NOT MAPPED

USAGE

Address and length given do not refer to an object mapped with
MS $MAPL.

MS _ $UNMAP unmaps and unlocks an object mapped and locked with MS _ $MAPL or
MS _ $CRMAPL. You cannot unmap a subset of the object.

If the original object is on a remote node, changes made in the mapped version are written
back to the original object when MS _ $UNMAP is executed. If the original object is on the
local node, changes made in the mapped version of the object will be written back to the
original object when the space they occupy in memory is needed.

If the object was mapped with the extend parameter equal to TRUE, and your program
modified part of the extension space, the original object is extended to include those /
modifications. Parts of the extension space beyond the last modification are not added to
the original object.

An object locked by several calls to MS _ $MAPL by different processes will remain locked
until all the processes have unmapped the object.

MS-19 MS

MS ERRORS

ER~ORS

MS $BAD ACCESS
Unsupported access rights requested.

MS $BAD LENGTH
Bad length.

MS $IN USE
Object is locked by another process or in an incompatible mode.

MS $INSUFFICIENT RIGHTS
You have some access rights to the object, but not the ones you requested.

NAME $NAME NOT _FOUND
No object exists with the given name.

MS $NO RIGHTS
You do not have any access rights to the object.

MS $NO SPACE
No space.

MS $NOT _MAPPED
No object mapped at the virtual address supplied.

MS $OBJECT NOT FOUND
The object does not exist, or it is not accessible over the network.

MS $WRONG LEVEL
Attempt to release segment mapped by previous level.

STATUS $OK
Successful completion.

Other naming server errors.
See the NAME $ error codes.

MS MS-20

\ " "

/
,--- "-

o

o

o

o

o

MTS

This section describes the data types, the call syntax, and the error codes for the MTS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

MTS-l MTS

MTS DATA TYPES

'CONSTANTS

MTS _ $END _ FILE _ SEQ

MTS $FmST A

MTS $LAST_A

DATA TYPES

MTS $ATTR_T

MTS

File sequence number for current file.

File sequence number for last tape file.

MTS $UNIT A
First attribute in MTS $ATTR T.

MTS $BUFFER OFFSET A
Last attribute in MTS $ATTR T.

A 2-byte integer. THE User-modifiable tape file
attributes. One of the following pre-defined values:

MTS $UNIT_A
Tape unit number.

MTS _ $LABELED _ A

Labeled volume.

MTS $REOPEN VOL A
Reopen volume.

MTS $CLOSE _ VOL A

Olose file and volume.

MTS $SA VE VOL POS A

Save position on close.

MTS $VOL DEVICE A
Device type.

MTS_$VOL_ID A
Volume ill.

MTS_$VOL_ACCESS A
Volume accessibility.

MTS $OWNER ID A
Owner ill.

MTS_$FILE_SEQUENCE_A
File sequence number.

MTS $RECORD FORMAT A
Record format.

MTS_$BLOCK_LENGTH A

Block length.

MTS-2

\... ...

\"

o

o

o

MTS $ATTR_ VALUE_T

(j

MTS DATA TYPES

MTS $RECORD_LENGTH_A
Maximum record length.

MTS_$ASCII_NL_A
ASCII newline head-length

MTS $FILE_SECTION_A
File section number.

MTS _ $FILE ID A

File ID.

MTS _ $FILE SET ID A
File set !D.

MTS $ GENERA TION A
Generation number.

MTS $GENERATION VERSION A
Generation version number.

MTS $CREATE DATE_A
Creation date.

MTS $EXP _DATE A
Expiration date.

MTS _ $FILE_ACCESS_A
File accessibility.

MTS $SYSTEM CODE A
System code.

MTS $SYSTEM USE A
System use.

MTS _ $BUFFER OFFSET A
Buffer offset.

Attribute values. The diagram below illustrates the
MTS_$ATTR_ VALUE_ T data type:

MTS-3 MTS

MTS DATA TYPES

predefined byte:
type offset

31

0:

0: IbOOle~

0: EJ
~ ~

n: B

MTS $DEVICE _ T

MTS $HANDLE_T

MTS $RW_T

STATUS $T

MTS

field name
0

Integer

b

s

Field Description:

i
An integer value.

b
A Boolean value.

s
A character string.

A 2-byte integer. Type of device. One of the
following pre-defined values:

MTS $MT
Magtape device.

MTS _ $NOT _REALLY
Not currently supported.

MTS_$CT
Cartridge tape device.

A 4-byte integer. A handle to a tape descriptor file.

A 2-byte integer. Read or write status. One of the
following pre-defined values:

MTS $READ
Read operation.

MTS $WRITE
Write operation.

A status code. The diagram below illustrates the
STATUS _ $T data type:

MTS-4

('
I,

"-.._- -

(-~,-,

'\.-_./

/~---',

\
~"'- .. -

0 byte:
offset 31

0:

0:

1 :

2:

o

o

o

o

MTS DATA TYPES

field name
0

integer all

or

fail

subsys

mode
0

integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

MTS

MTS $CLOSE_DESC

Table MTS-l. Magnetic Tape Volume and File Attributes

Mnemonic Type

int

tlf

tlf

tlf

tlf

int

MTS_$VOL_ID_A char

char

char

int
II cur II
Ilend il

char

int

int

MTS

De/ault

o

true

false

true

false

o

-auto

II II

-auto

1

D

2048

2048

De/inition

magtape unit number
(normally 0)

true = ANSI labeled volume
false = unlabeled volume

true = reopen previously used
volume (suppresses
rewind)

false = do not reopen

true = volume closed when file
is closed

false = leave volume open

true = saves volume position
when volume is closed
(for reopen)

false = rewind volume when
closed

type of device:
tfp_$mt=o for magtape
tfp_$ct=3 for cartridge

volume identifier (labeled
volumes) (Automatically
generated.) Six-character
string maximum.

volume accessibility (labeled
volumes only). The default
is the space character.

volume owner (labeled volumes)
Maximum string length is 14.

file sequence number. Possible
values are an integer, IIcurll for
current file, lIend ll for new file
at end of labeled volume.

record format. Possible values:
IIFII = fixed length
IIDII = variable length
IISII = spanned
IIU II = undefined

block length, in bytes

maximum record length, in bytes

MTS-6

c

o

o

o

o

o

MTS $CLOSE_DESC

Table MTS-l. Magnetic Tape Volume and File Attributes (Continued)

Mnemonic Type

tlf

int

MTS_$FILE_ID_A char

char

int

date

date

char

char

char

int

Default

true

1

.. II

II ..

1

1

-auto

-auto

II II

II II

II ..

o

Definition

true = ASCII newline handling.
Strip newlines on write,
supply them on read

false = no newline handling

file section number
(labeled volumes)

file identifier
(labeled volumes)

file set identifier
(labeled volumes)

generation of file
(labeled volumes)

generation version of file
(labeled volumes)

creation date of file
(labeled volumes)

expiration date of file
(labeled volumes)

file accessibility
(labeled volumes)

system code (labeled volumes)

system use (labeled volumes)

buffer offset (labeled volumes)
Must be zero.

MTS-7 MTS

MTS $CLOSE _DESC

MTS $CLOSE_DESC

Closes a magtape descriptor file.

FORMAT

MTS_$CLOSE_DESC (handle. update. status)

INPUT PARAMETERS

handle
Pointer to the open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer. Specify the handle returned by MTS _ $OPEN _DESC,
MTS_$COPY _DESC, or MTS_$CREATE_DESC.

update
Boolean value that determines whether or not the magtape descriptor file is to be modified
to reflect the attribute changes specified by calls to MTS_$SET _ATTR. H TRUE, the
changes are made.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS

Programs must close magtape descriptor files before calling stream manager routines; an
open magtape descriptor file cannot be used by the stream manager.

Closing a magtape descriptor file invalidates its handle.

MTS-8

/~

\

o

o

C)

o

o

MTS $COPY _ DESC

MTS $COPY DESC

Copies a magtape descriptor file and opens the destination file.

FORMAT

handle = MTS_$COPY_DESC (src-pathname. src-namelen. dst-pathname.
dst-namelen. status)

RETURN VALUE

handle
Pointer to the open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer.

INPUT PARAMETERS

sre-pathname
The pathname of the magtape descriptor file to be copied, in NAME _ $PNAME _ T
format. This is an array of up to 256 characters.

sre-namelen
Length of the source pathname, in bytes. This is a 2-byte integer.

dst-pathname
The pathname to which the file is to be copied, in NAME _ $PNAME _ T format. This is
an array of up to 256 characters.

The destination file must not exist before this function is called. To replace a destination
file, call the routine NAME _ $DELETE _FILE before calling MTS _ $COPY _DESC.

dst-namelen
Length of the destination pathname, in bytes. This is a. 2-brte. integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data. type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

This routine copies the specified magtape descriptor file, opens the destination file and
returns a pointer to it.

This routine does not affect the source file.

MTS-9 MTS

MTS $CREATE_DEFAULT DESC

MTS $CREATE_DEFAULT DESC

Creates a magtape descriptor file with the default volume and file attributes.

FORMAT

handle = MTS_$CREATE_DEFAULT_DESC (pathname. namelen. status)

RETURN VALUE

handle
A pointer to the open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer.

INPUT PARAMETERS

pathname
The pathname of the descriptor file to be created, in NAME _ $PNAME _ T format. This
is an array of up to 256 characters.

namelen
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS

This routine opens a magtape descriptor file with the default volume and file attribute
values and returns a .pointer to it. The file must not exist before this routine is called. See
the Table in the MTS Data Types section for a list of volume and file attributes and their
defaults.

MTS-IO

/

o

o

o

o

MTS $GET ATTR

MTS $GET_ATTR

Retrieves a given attribute from a magtape descriptor file.

FORMAT

MTS_$GET_ATTR (handle. attribute. value. status)

INPUT PARAMETERS

handle
A pointer to the open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer. Specify a handle returned by MTS_$OPEN_DESC,
MTS_$COPY _DESC, or MTS_$CREATE_DESC.

attribute
The attribute to be retrieved, in MTS_$ATTR_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

mts $un1t a
mts-$close vol a
mts-$vol 1(1 a -
mts=$f1le_sequence_a
mts $record length a
mts=$f1le_sect1on_a
mts_$generat1on_a
mts_$exp_date_a
mts_$system_use_a

mts $labeled a
mts=$save_vol_pos_a
mts $vol access a
mts-$record format a
mts-$asc11 nl a -
mts-$f1le 1d a
mts-$generation version a
mts-$f1le access a -
mts=$buffer_offset_a

mts_$reopen_vol_a
mts $vol device a
mts-$owner 1d a-
mts=$block=length_a
mts $f1le resvl a
mts-$f1le-set 1(1 a
mts=$create_date=a
mts_$system_code_a

See the Table in the MTS Data Types section for a description of volume and file attributes
and their defaults.

OUTPUT PARAMETERS

value
The current value of the specified attribute, in MTS _ $ATTR _ VALUE _ T format.
Possible values are a 4-byte integer, a Boolean value, or a string, depending upon the
attribute requested. See the Table in the MTS Data Types section for a list of volume and
file attributes and their corresponding values.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

Programs must call this routine once for each attribute they wish to get.

You can change the attributes within a magtape descriptor file using the
MTS_$SET _ATTR system call.

MTS-ll MTS

MTS $LABEL

MTS $LABEL

Labels the magtape volume described by the given magtape descriptor file.

FORMAT

MTS_$LABEL (pathname. namelen. status)

INPUT PARAMETERS

pathname
The pathname of the magtape descriptor file, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

The descriptor file must describe a labeled volume.

namelen
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.,

USAGE

MTS

MTS _ $LABEL causes the volume described by the descriptor file to be labeled according
to ANSI x3.27-1978.

The tape volume must not be open (by previous calls to the stream manager).

MTS-12

o

o

o

o

o

MTS $OPEN_DESC

MTS $OPEN DESC

Opens the specified magtape descriptor file and returns a pointer to it.

FORMAT

handle = MTS_$OPEN_DESC (pathname. namelen. read-write. status)

RETURN VALUE

handle
A pointer to the open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer. .

INPUT PARAMETERS

pathname
The pathname of the magtape descriptor file, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

namelen
Length of the name, in bytes .. This is a 2-byte integer.

read-write
Read or write status, in MTS_$RW _ T format. This is a 2-byte integer. Specify only one
of the following predefined values:

MTS $READ Open for reading.

MTS $WRITE Open for writing.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS _ $OPEN _DESC opens the specified magtape descriptor file for reading or writing
and returns a pointer to it.

MTS-13 MTS

MTS $SET _ATTR

Sets an attribute within the specified magtape descriptor file.

FORMAT

MTS_$SET_ATTR (handle. attribute. value. status)

INPUT PARAMETERS

handle
A pointer to an open magtape descriptor file, in MTS _ $HANDLE _ T format. This is a
4-byte integer. Specify a handle returned by MTS_$OPEN_DESC,
MTS_$COPY _DESC, or MTS_$CREATE_DESC.

attribute
The volume or file attribute to be set, in MTS _ $ATTR _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

mts $unit a
mts-$close vol a
mts-$vol id a -
mts=$file_sequence_a
mts $record length a
mts-$file section a
mts-$generation a­
mts=$exp_date_a­
mts_$system_use_a

mts $labeled a
mts-$save vol pos a
mts-$vol access a­
mts-$rec~rd format a
mts-$ascii nl a -
mts-$file id a
mts-$generat1on version a - --
mts $file access a
mts=$buf fer_off set_a

mts_$reopen_vol_a
mts $vol device a
mts-$owner id a-
mts=$block=length_a
mts $file resvl a
mts-$file-set id a
mts-$create date-a
mts=$system=code=a

See the Table in the MTS Data Types section for a description of volume and file attributes
and their defaults.

value
The value to assign to the attribute, in MTS_$ATTR_ VALUE_ T format. Possible
values are a 4-byte integer, a Boolean value, or a string, depending upon the attribute to be
changed. See the Table in the MTS Data Types section for a list of volume and file
attributes and their corresponding values.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the MTS
Data Types section for more information.

USAGE

MTS

Programs must call this routine once for each attribute to be set.

You can change the attributes within a magtape descriptor file using the Shell command
EDMTDESC. See the DOMAIN System Command Reference for details.

MTS-14

o

()

o

o

o

ERRORS

STATUS $OK
Successful completion.

MTS $BAD BLOCK LENGTH
Bad block length.

MTS $BAD BUFFER OFFSET
Bad buffer offset.

MTS $BAD DATA
Descriptor contains bad data.

MTS $BAD FILE SECTION
Bad file section number.

MTS _ $BAD _FILE _SEQUENCE
Bad file sequence number.

MTS $BAD GENERATION
Bad generation number.

MTS $BAD GENERATION VERSION
Bad generation version number.

MTS $BAD RECORD FORMAT
Bad record format attribute.

MTS $BAD RECORD LENGTH
Bad record length.

MTS $BAD UNIT
Bad tape unit number.

MTS $INVALID_ATTR
Invalid attribute to GET _ATTR/SET _ATTR.

MTS $INVALID DATE
Invalid date text string.

MTS $NOT LABELED
Attempt to label unlabeled volume.

MTS $READ ONLY
SET _ ATTR on read-only file.

MTS $VOL IN USE
Volume in use.

MTS $WRONG TYPE
Object is not type MT _ $UID.

MTS-15

MTS ERRORS

MTS

r-.'
\.

o

o

o·

o

o

MUTEX

This section describes the data types and the call syntax for the MUTEX programming calls.
The MUTEX calls do not produce unique error messages. Refer to the Introduction at the
beginning of this manual for a description of data-type diagrams and call syntax format.

MUTEX-l MUTEX

MUTEX DATA TYPES

CONSTANTS

MUTEX_$WAIT FOREVER

DATA TYPES

MUTEX_ $LOCK_REC T

predefined byte:
type offset

0:

[2: eC2_$eventcount _t

6:

MUTEX

integer32{-1}

integer

integer

A value that tells MUTEX_$LOOK to wait forever
without timing out.

A mutual exclusion lock record. The diagram
below illustrates the MUTEX $LOOK REO T
data type:

field name

lock_byte

integer lock_ec. value

lock_ec.awaiters

Field Description:

lock_byte
A Boolean value that indicates whether any
programs currently hold a MUTEX lock.

lock ec
An eventcount for programs waiting for the
MUTEX lock. The lock _ ec field is in
E02 $EVENTOOUNT format and has two
subfields:

lock ec.value The value of the
eventcount.

lock ec.awaiters Used internally by the E02
manager.

MUTEX-2

o

o

o

o

o

predefined
record

predefined
record

byte:
offset

0:

4:

byte:
offset

0:

2:

MUTEX DATA TYPES

Internal representation of time. The diagram below
illustrates the TIME_$CLOCK_ T data type:

field name

integer high

integer low

Field Description:

high
High 32 bits of the clock.

low
Low 16 bits of the clock.

field name

pos. integer high16

positive integer low32

Field Description:

high16
High 16 bits of the clock.

low32
Low 32 bits of the clock.

MUTEX-3 MUTEX

MUTEX $INIT

MUTEX_$INIT

Initializes a mutual exclusion lock record.

FORMAT

MUTEX_$INIT (lock-record)

OU'rPUT PARAMETERS

lock-record
Lock record, in MUTEX_ $LOCK_REC _ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

USAGE

Use this call to initialize a mutual exclusion (MUTEX) lock record. This lock record allows
a program to obtain a MUTEX lock on a file. A MUTEX lock allows a program to. get
exclusive access to a shared resource.

Initialize a MUTEX lock record within a file. First, map the file with a concurrency mode
of MS _ $COWRITERS and an access type of MS _ $WR. Then use MUTEX $INIT to
initialize the MUTEX lock record.

MUTEX MUTEX-4

/~"'"

(
.... -...

o

o

o

o

MUTEX_$LOCK

MUTEX_$LOCK

Obtains a mutual exclusion lock on a file.

FORMAT

lock-status = MUTEX_$LOCK (lock-record. wait-time)

RETURN VALUE

lock-status
A Boolean value that indicates whether you obtained the lock. TRUE means that you got
the lock; FALSE means that the call timed out before obtaining the lock.

INPUT/OUTPUT PARAMETERS

. lock-record
Lock record, in MUTEX_ $LOCK_REC _ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

INPUT PARAMETERS

wait-time
The amount of time to wait for the lock, in TIME _ $CLOCK _ T format. This data type
is 6 bytes long. See the MUTEX Data Types section for more information.

If MUTEX_ $LOCK cannot obtain the lock within the time you specify, the call will time
out and return control to your program. Specify the waiting time as a relative time. Use
the CAL routines to convert time values to TIME_$CLOCK_ T format.

If you specify the waiting time using the constant MUTEX_ $W AIT _FOREVER, the
MUTEX_$LOCK call wait indefinitely to obtain the lock.

USAGE

Use MUTEX_$LOCK to obtain a mutual exclusion (MUTEX) lock on a file. A MUTEX
lock lets you have exclusive access to a shared resource.

MUTEX_$LOCK uses the information in a lock record to determine whether you can
obtain the lock. (Use MUTEX _ $INIT to initialize a lock record.) If another program
already has the lock, MUTEX_ $LOCK waits for the amount of time you specify. When
MUTEX_ $LOCK returns, it indicates whether you obtained the lock.

Before calling MUTEX_ $LOCK, you must map the file containing the lock record. Map
the file with a concurrency mode of MS _ $COWRITERS and an access mode of MS _ $WR.
All programs that map the same MUTEX lock record must be on the same node.

Note that a MUTEX lock is a convention that cooperating programs use to control access to
a resource. If a program does not use MUTEX_ $LOCK and accesses the resource directly,
you cannot guarantee mutual exclusion.

MUTEX-5 MUTEX

MUTEX_ $UNLOCK

MUTEX_$UNLOCK

Terminates a program's mutual exclusion lock on a file.

FORMAT

MUTEX_$UNLOCK (lock-record)

INPUT/OUTPUT PARAMETERS

lock-record
Lock record, in MUTEX_ $LOCK_REC _ T format. This data type is 8 bytes long. See
the MUTEX Data Types section for more information.

USAGE

MUTEX_$UNLOCK terminates a program's mutual exclusion lock on a file. A waiting
program can then obtain the lock.

MUTEX MUTEX-6

Q

o

o

o

/--...."

U

NAME

This section describes the data types, the call syntax, and the error codes for the NANIE
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

NAME-l NAME

NAME DATA TYPES

CONSTANTS

NAME_$FILE

NAME_$LINK

NAME_ $PNAMLEN MAX

DATA TYPES

predefined
type

NAME

byte:
offset

0:

2:

[4:

260:

264:

32

1

3

256

integer

integer

chari

~ ~

Maximum length of an entry name.

The file type value for the enttype field of the
Dffi_ENTRY _ T record.

The link type value for the enttype field of the
Dffi_ENTRY T record.

Maximum length of a pathname.

The directory entry returned by
NAME_$READ_Dffi. The diagram below
illustrates the NAME $Dffi_ENTRY _ T data
type:

field name

enttype

entlen

entname

integer unused1

integer unused2

Field Description:

enttype
Type of the directory entry. Either
NAME _ $FILE or NAME _ $LINK.

entlen
Length of the directory entry name.

entname
Name of the directory entry.

unusedn
Reserved for future use by Apollo.

NAME-2

/~
i
\".

NAME_ $Dffi_LIST _ T

NAME_$NAME_T

NAME_$PNAME_T

STATUS $T

byte:
offset

0
0:

0:

1 :

o 2:

o

o

31

NAME DATA TYPES

A l300-element array of
NA1v1E $Dffi ENTRY T record structures.
The diagram below illustrates a single element:

An array of up to NAME _ $CO:MPLEN _ MAX
(32) characters.

An array of up to NAME _ $PNAMLEN_MAX
(256) characters.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

mode
I---~-""'O

integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

NAME-3 NAME

NAME $ADD _LINK

Creates a link.

FORMAT

NAME_$ADD_LINK (linkname. name-length. link-text. text-length. status)

INPUT PARAMETERS

linkname
Name of the link, in NAME_$PNAME_ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (I), the object is placed in the entry directory of the local node.

name-length
Length of the linkname, in bytes. This is a 2-byte integer.

link-text
Pathname to which the link refers, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

The link text replaces the linkname when the linkname is used as part of a pathname. For
example, suppose a link named YEATS had a link text / /MAN/INjMASK. Using the
object name YEATS is exactly equivalent to using the pathname / /MAN/IN/MASK
directly.

The link text must be a valid filename or pathname. It does not, however, have to refer to
an existing object.

text-length
Length of the link-text pathname, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

A link is an object within a directory that points to another object. That is, the link is
associated with a pathname that refers to another object. The associated pathname is
refered to as the link text. When the link is referenced, the naming server acts as if the link
text were given in place of the link name.

NAME

To delete a link, you must use the naming server call NAME _ $DROP _LINK, or the Shell
command DELETE_LINK (DLL).

This system call corresponds to the CRL Shell command.

NAME-4

'

c)

o

o

o

o

NAME_ $CNAME

NAME $CNAME

Changes the last element of a pathname.

FORMAT

NAME_$CNAME (old-pathname. old-length. new-leaf. leaf-length. status)

INPUT PARAMETERS

old-pathname
The current pathname, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

old-length
The length of the current pathname, in bytes. This is a 2-byte integer.

new-leaf
The name that replaces the right-most element of the current pathname, in
NAME $NAME T format. This is an array of up to 256 characters.

leaf-length
The length of the new-leaf name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _ $CNAME changes the right-most element of the old-pathname to the string
specified by the new-leaf argument.

NAME-5 NAME

NAME_ $CREATE_DffiECTORY

NAME $CREATE DffiECTORY

Creates a directory.

FORMAT

NAME_$CREATE_DlRECTORY (directory-name. name-length. status)

INPUT PARAMETERS

directory-name
Name of the directory, in NAME_$PNAME_ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (I), the object is placed in the entry directory of the local node.

name-length
Length of directory name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME_$CREATE_DffiECTORY creates a directory using the specified pathname and
name length.

This system call corresponds to the CRD Shell command.

NAME NAME-6

\

\......

o

o

o

o

o

NAME $CREATE_FILE

Creates a permanent file.

FORMAT

NAME_$CREATE_FlLE (filename. name-length. status)

INPUT PARAMETERS

filename
Name of the file, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name-length
Length of the filename, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The filename given is treated in the same way as any pathname given to the naming server.
For example, a filename beginning with a slash U) is placed in the entry directory of the
local node.

NAME-7 NAME

NAME_ $DELETE_DffiECTORY

NAME $DELETE DffiECTORY

Deletes a directory.

FORMAT

NAME_$DELETE_DlRECTORY (directory-name. name-length. status)

INPUT PARAMETERS

directory-name
Name of the directory, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (I), the object is placed in the entry directory of the local node.

name-length
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME

NAME_$DELETE_DffiECTORY deletes the specified directory. The directory must be
empty for a deletion to succeed.

NAME-S

r~
\ ,/

('
'-- '

o

o

o

NAME _ $DELETE _FILE

NAME $DELETE FILE

. Deletes a file.

FORMAT

NAME_$DELETE_FlLE (filename. name-length. status)

INPUT PARAMETERS

filename
Name of the file, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
begi~n:ing with a slash (J), the object is placed in the entry directory of the local node.

name-length
Length of the filename, in bytes. this is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME _ $DELETE _FILE deletes the specified file.

This system call corresponds to the DLF Shell command.

NAME-9 NAME'

NAME_ $DROP _LINK

NAME $DROP LINK

Deletes a link.

FORMAT

NAME_$DROP_LINK (11nkname. name-length. status)

INPUT PARAMETERS

linkname
Name of the link, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. IT a relative pathname is specified, the rest
of the pathname defaults to the current working directory. IT a pathname is specified
beginning with a slash U), the object is placed in the entry directory of the local node.

name-length
Length of the link name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME_$DROP _LINK deletes the specified link to an associated object.

This system call corresponds to the DLL Shell command.

NAME NAME-lO

./
!

\,

\ ..

o

o

o

o

o

NAME_$EXTRACT DATA

Extracts data from a directory entry read by NAME_$READ _om. (Intended primarily
for use in FORTRAN programs.)

FORMAT

NAME_$EXTRACT_DATA (dir-entry. entry-type. entry-length. entry-name)

INPUT PARAMETERS

dir-entry
The directory entry for which you wish to extract data, in NAME_$ENTRY _ T format.
This data type is 44 bytes long. See the NAME Oata Types section for more information.

In FORTRAN programs, NAME_$READ_Om returns the directory entries in a (22,n)
INTEGER*2 array, where n is the maximum number of directory entries your program is
prepared to accept. Each column in this array corresponds to an entry in the specified
directory and contains information about that entry.

Specify the first element of the column that corresponds to the entry for which you wish to
extract data.

OUTPUT PARAMETERS

entry-type
Object type of the entry. This is a 2-byte integer with one of the following predefined
values:

1 - NAME $FILE
the object is a file. A II file II can be either a streams file or a directory.

2 - NAME $LINK
the object is a link.

entry-length
Length of the object's name, in bytes. This is a 2-byte integer.

entry-name
The entry name, in NAME _ $NAME _ T format. This is an array of up to 32 characters.

USAGE

This call extracts the description of a single directory entry from the directory entry array
(the dir-list parameter) returned by NAME_$READ _om. It is intended primarily for use
in FORTRAN programs.

In FORTRAN programs, NAME_$READ_Om returns the directory entries in a (22,n)
INTEGER*2 array, where n is the maximum number of directory entries your program is
prepared to accept. Each column in this array corresponds to an entry in the specified
directory and contains information about that entry.

The dir-entry parameter for NAME _ $EXTRACT _DATA should be one of the array
columns. To reference a single column, give the first element of that column.

NAME-11 NAME

NAME $GET NDffi

Returns the full pathname of the naming directory.

FORMAT

NAME_$GET_NDIR (name. name-length. status)

OUTPUT PARAMETERS

name
Pathname of the naming directory, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

name-length
Length of the name, in bytes. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The naming directory is set through the NAME_$SET_NDffi call or the liND
directory-name II Shell command. This system call corresponds to the ND Shell command.

NAME NAME-12

----_ .•. _. __•..•.......

\
'-.

o

o

o

o

o

NANIE $GET PATH

Converts a partial pathname into a full pathname.

FORMAT

NAME_$GET_PATH (in-name. in-len. out-name. out-len. status)

INPUT PARAMETERS

in-name
The relative pathname of an object, in NANIE _ $PNAME _ T format. This is an array of
up to 256 characters.

in-len
Length of the relative pathname, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

out-name
The full (absolute) pathname of the object, in NAME_$PNANIE_ T format. This is an
array of up to 256 characters.

out-len
Length of the relative pathname, in bytes. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NANIE _ $GET _PATH converts a partial pathname into a full pathname. For example, if
you have been using file Faa, you can call NANIE_$GET _PATH to find out t~at the full
pathname of Faa is IIFL YNN/PHL/FOO.

NAME-13 NAME

NAME_$GET_ wnm

NAME $GET _ wnffi

Returns the full pathname of the working directory.

FORMAT

NAME_$GET_WDIR (name. name-length. status)

OUTPUT PARAMETERS

name
Pathname of the working directory, in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

name-length
Length of the name, in bytes. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

The working directory is set through the NAME _ $SET _ wnffi call or the "WD
directory-name" Shell command.

NAME NAME-14

/­
\
'\,..

--

o

o

C)

o

o

NAME_$READ_Dm

NAME $READ Dffi

Reads a directory.

FORMAT

NAME_$READ_DIR (dir-name. name-length. dir-list. index. max-count.
read-count. status)

INPUT PARAMETERS

dh-name
Name of the directory, in NAME_$PNAME_ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash U), the entry directory of the local node is searched for the
directory.

Specifying a null character (") defaults to the current working directory.

name-length
Length of the name, in bytes. This is a 2~byte integer.

If you specify a null character for the directory name, specify zero as the length.

OUTPUT PARAMETERS

dir-list
A list of directory entries, in NAME_$Dffi_LIST_ T format. This is an array of
NAME_$Offi_ENTRY _ T data types. See the NAME Oata Types s~ction for more
information.

The number of NAME_$Dffi_ENTRY _ T data types in the array must equal or exceed
max-count.

INPUT/OUTPUT PARAMETERS

index
Key indicating the directory entry at which to begin reading. This is a 4-byte integer.

On input This number indicates the entry at which to begin reading.

On output This number is adjusted by NAME_$READ_Offi to a number suitable
for a subsequent call to NAME_$READ _Dm.

To read from the start of the directory, initialize the index to 1 on your first call to
NAME $READ om.

Because NAME_ $READ _Dill adjusts the index parameter to a suitable value for a
subsequent call, you do not need to change the value yourself.

NAME-1S NAME

NAME_$READ Dm

IT after the first call:

Entries remain to be read
the value of max-count is added to the index parameter, so that the next
entry will be read on a subsequent call.

End of directory is encountered
the index parameter is set to o. A subsequent call returns a status of
NAME $NO_MORE_ENTRIES.

IT max-count is identical to the number of directory entries remaining, the call to
NAME_$READ _Dffi does not reach the end of the directory and does not set the index
parameter to o. A subsequent call to NAME_$READ _Dffi returns a status of
NAME $NO MORE ENTRIES.

INPUT PARAMETERS

Dlax-count
Maximum number of directory entries to read. This is a 2-byte integer.

OUTPUT PARAMETERS

read-count
Number of directory entries actually read. This is a 2-byte integer.

IT READ _Dffi reaches the end of the directory before finding the requested number of
entries, it returns a read-count smaller than your requested max-count

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

Possible values are:

STATUS _ $OK Completed successfully.

NAME $NO _MORE ENTRIES
All entries in the directory have been read.

USAGE

NAME _ $READ _Dffi reads a directory and stores entry names, the length of each entry
name, and the type of each entry. Pascal and C programs can access this information
directly through the directory entry record structure. FORTRAN programs use the
NAME_$EXTRACT _DATA system call to access this information.

NAME

The index argument pemits a program to make several calls to NAME_$READ_DIR to
ensure reading all entries. However, to get an accurate snapshot of a directory, make only
one call to NAME_$READ _Dffi, using a sufficiently large max-count, because the
contents of a directory can change between calls to NAME _ $READ _DIR if the directory
is not locked.

NAME-16

t'

"-.

o

o

o

o

o

NAME $READ _LINK

NAME $READ LINK

Returns the link text associated with a link name.

FORMAT

NAME $READ_LINK (linkname. name-length. link-text. text-length. status)

INPUT PARAMETERS

linkname
Name of the link, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. If a pathname is specified
beginning with a slash (j), the entry directory of the local node is searched for the link.

name-length
Length of the linkname, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

link-text
Text associated with the linkname, in NAME _ $PNA11E _ T format. This is an array of
up to 256 characters.

text-length
Length of the text, in bytes. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

When you use a linkname, the naming server replaces the link name with the associated
link text. NAME_$READ _LINK returns the text associated with a specified link name.

NAME-17 NAME

NAME $SET NDm

Sets the naming directory.

FORMAT

NAME_$SET_NDIR· (name. name-length. status)

INPUT PARAMETERS

name
Pathname of the desired naming directory, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. A directory name beginning
with a period (.) indicates a directory within the working directory . You may also specify a
period by itself, which sets the naming directory equal to the working directory.

name-length
Length of the pathname, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME_$SET _NDm sets the naming directory to the specified directory. See the
DOMAIN System Oommand Reference for a description of naming directories.

This system call corresponds to the liND directory-name II Shell command.

NAME NAME-1S

o

o

o

NAME $SET WDffi

Sets the working directory.

FORMAT

NAME_$SET_WDIR (name. name-length. status)

INPUT PARAMETERS

name
Pathname of the desired working directory, in NAME_$PNAME_ T format. This is an
array of up to 256 characters.

Specify either an absolute or relative pathname. If a relative pathname is specified, the rest
of the pathname defaults to the current working directory. A directory name beginning
with a period (.) indicates a directory within the working directory.

name-length
Length of the name, in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the NAME
Data Types section for more information.

USAGE

NAME_$SET _NDffi sets the naming directory to the specified directory. See the
DOMAIN System Command Reference Manual for a description of working directories.

This system call corresponds to the "WD directory-name II shell command.

NAME-19 NAME

NAME ERRORS

ERRORS

STATUS $OK
Successful completion.

NAME $ALREADY EXISTS
Name already exists.

NAME $BAD _DffiECTORY
Bad directory.

NAME $BAD LEAF
Invalid leaf.

NAME $BAD LINK
Invalid link.

NAME $BAD PATHNAME
Invalid pathname.

NAME $DffiECTORY _FULL
Directory is full.

NAME $DffiECTORY _NOT E~TY
Directory is not empty.

NAME $FILE NOT DffiECTORY
Branch is not a directory.

NAME $ILL LINK OP
Invalid link operation.

NAME $INSUFFICIENT RIGHTS
Insufficient rights.

NAME $IS SYSBOOT
Unable to delete system bootstrap (sysboot).

NAME $NO RIGHTS
No rights.

NAME $NODE UNAVAILABLE
Node is unavailable.

NAME $NOT FILE
Name is not a file.

NAME $NOT FOUND
Name not found.

NAME $NOT LINK
Name is not a link.

NAME NAME-20

--

I~\

U

o

o

o

o

PAD

This section describes the data types, the call syntax, and the error codes for the PAD
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PAD-l PAD

PAD DATA TYPES

CONSTANTS

MNEMONIC Value

PAD $BS 8

PAD $CPR_ALL 2

PAD $CPR CHANGE 1

PAD $CPR DRAW 4

PAD $CPR_FLAG 16#FF

PAD $CPR NONE 0

PAD $CPR_PICK 3

PAD $CR 13

PAD $ESCAPE 27

PAD $FF 12

PAD $LEFT WINDOW 16#FD

PAD $MAX TABSTOPS 100

PAD $NEWLINE 10

PAD $NO KEY 16#FE

PAD $TAB 9

DATA TYPES

PAD $ COORDINATE_ T

PAD

Explanation

Moves the cursor one character position to the left
if there is any room in the window.

Cursor position report: Reports on each
raw keystroke.

Cursor position report: Reports only the changed
position since the last output call or position report.

Cursor position report: Reports on all
touch pad data.

Cursor position report: Indicates that the next 5
bytes is a report.

Cursor position report: Does not report any
cursor positions.

Cursor position report: Reports after cursor is
settled when it has been moved by the touchpad.

Returns cursor to the left edge of the pad at the
same line it was on.

For control characters: Tells Display Manager not
to interpret the next character as a control
character. This precedes ANSI escape sequences.

Makes output start at the top of the window or
window pane.

Cursor position report: Indicates that the cursor
accompanying the report is outside the window.

Defines the maximum number of tabstops allowed
to be set.

Marks end of an input or output line, makes next
text start on a new line.

Cursor position report: Indicates that no keystroke
accompanies the report.

Moves cursor to next tab stop.

2-byte integer for x and y bitmap coordinates.

PAD-2

~ ..

PAD $CRE_ OPT _ T

/~

U

PAD $DISPLAY_TYPE_T

o

o
PAD $KEY _DEF _ T

PAD $KEY NAME_ T

o

o

PAD DATA TYPES

A 2-byte integer. Options of a pane. Any
combination of the following pre-defined values:

PAD $ABS SIZE
Size parameter is absolute, rather than
relative to the size of the existing pad.

PAD $INIT_RAW
Input pad is initially raw, rather than normal
(cooked) processing mode.

A 2-byte integer. Type of display associated with
the specified stream id. This is a 2-byte integer.
One of the following pre-defined values:

PAD_$BW_15P
Black and white portrait display.

PAD_$BW _19L
Black and white landscape display.

PAD _ $COLOR _ DISPLAY

Color display (1024 x 1024 pixels).

PAD _ $800 _ COLOR

Color display (1024 x 800 pixels).

PAD_$NONE
No display.

An array of up to 256 characters. Display Manager
command to be defined on a program- function key
using PAD _ $DEF _PFK.

An array of up to 4 characters. Name of the
program-function key to be defined using
PAD_$DEF _PFK.

PAD-3 PAD

PAD DATA TYPES

PAD $POSITION _ T

predefined
type

PAD $REL_ABS_T

PAD

byte:
offset

0:

2:

X and y coordinates of a point on the display. The
diagram below illustrates the
PAD _ $POSITION _ T data type:

field name

integer

integer y_coord

Field Description:

y _coord
The y coordinate of the point on the display.

x.;,.. coord
The x coordinate of the point on the display.

A 2-byte integer. Indicates whether cursor
movement is relative to the last location, or
absolute. X and yare scaled. One of the following
pre-defined values:

PAD $ABSOLUTE
X and yare absolute values. Within a frame,
movement is relative to the top left corner of
the frame. Outside a frame, x is relative to
the left end of the current line, and y is
undefined.

PAD $RELATIVE
Cursor movement is relative to the last
location. X and y denote positive or negative
offsets to the current cursor position.

PAD-4

(,,-

PAD $SIDE_T

PAD $STRING T

o

o

o

o

PAD DATA TYPES

A 2-byte integer. Side of a transcript pad that a
new pane occupies. One of the following
pre-defined values:

PAD $BOTTOM
Bottom of transcript pad.

PAD $LEFT
Left side of transcript pad.

PAD_$RIGHT
Right side of transcript pad.

PAD_$TOP
Top of transcript pad.

An array of up to 256 characters. String argument
to some functions.

PAD-5 PAD

PAD DATA TYPES

PAD $TABSTOP _BUF _ T

PAD $TYPE_T

PAD $ WIND OW _DESC T

predefined
type

PAD

byte:
offset

0:

2:

4:

6:

A lOO-element array of 2-byte integers. Columns
for tab stop settings. Each element contains a
column number at which a tab stop will be set.
Column numbers are scaled.

A 2-byte integer. A type of pad. One of the
following pre-defined values:

PAD_$EDIT
An edit pad.

PAD_$INPUT

An input pad.

PAD _ $TRANSCRIPT

A transcript pad.

PAD _$READ _EDIT
A read/edit pad.

Position of window on display screen. The diagram
below illustrates the PAD $WINDOW _ DESC T
data type:

field name

integer top

Integer left

integer width

integer height

Field Description:

top
The x coordinate of the top left corner of the
window, in raster units.

left
The y coordinate of the top left corner of the
window, in raster units.

width
The width of the window, divided by the current
x scale factor.

height
The height of the window, divided by the
current y scale factor.

PAD-6

\.

(
I

\

r
I

r
\,-_.

o

o

o

o

predefined
type

byte:
offset

0:

2:

4:

6:

PAD DATA TYPES

A 100element array of
PAD $WINDOW DESC T record structures.
The diagram below illustrates a single element:

field name
15 o

integer top

integer left

integer width

integer height

Field Description:

top
The x coordinate of the top left corner of the
window, in raster units.

left
The y coordinate of the top left corner of the
window, in raster units.

width
The width of the window, divided by the current
x scale factor.

height
The height of the window, divided by the
current y scale factor.

PAD-7 PAD

PAD DATA TYPES

STATUS $T

PAD

byte:
offset 31

0:

0:

1 :

2:

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name
o

integer all

integer

or

fail

subsys

mode

eode

Field Description:

all
All 32 bits are in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PAD-8

r--­
!

o

o

o

o

o

PAD $CLEAR FRAME

PAD $CLEAR FRAME

Clears the current frame, leaving it active.

FORMAT

PAD_$CLEAR_FRAME (stream-1d. seek-key. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

seek-key
Unique value identifying the record where clearing begins, in STREAM_ $ID _ T format.
This is a three element array of 4-byte integers. See the STREAM Data Types section for
more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4-bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to clear information from the frame that you created with the call,
PAD _ $ CREATE _FRAME. Programs that use frames often overwrite text at random
points within the frame. You should periodically call PAD _ $CLEAR _ FRAME to remove
this discarded data. By doing so, you prevent data from accumulating in the transcript pad
file. You also prevent the Display Manager from invoking the time-consuming
frame-rewrite operation.

Clearing begins at the record indicated by the seek-key and continues to the end of the
frame. If the first four bytes of the seek-key are 0, the entire frame is cleared. The seek-key
is returned by STREAM_ $PUT _REC and STREAM_ $PUT _ CIm. See the
STREAM $ Calls section for more information.

PAD-9 PAD

PAD $CLOSE _ FRAME

PAD $CLOSE FRAME

Closes a frame, leaving its contents in the pad, and returns to line-oriented processing on
the input pad.

FORMAT

PAD_$CLOSE_FRAME (stream-id. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4-bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

After the frame is closed, you can view the frame by scrolling the transcript window
backwards. Once the frame is closed, all frame operations except
PAD $CREATE FRAME are invalid.

PAD-IO

c

o

o

o

o

o

PAD $COOKED

PAD $COOKED

Disables raw mode input or output to a pad.

FORMAT

PAD_$COOKED (stream-id, status)

INPUT PARAMETERS

stream_id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This call returns the pad to normal (cooked) processing if it is currently in raw mode due to
a call to the PAD _ $RA W procedure. PAD _ $COOKED has no effect if called when the
pad is not currently in raw mode. After you execute this procedure, the input window
reappears and is empty.

PAD-ll PAD

PAD

PAD $CPR ENABLE

PAD $CPR ENABLE

Enables reporting of the keyboard cursor position for an input pad in raw mode. (You can
only get keyboard cursor position reports on pads in raw mode).

FORMAT

PAD_$CPR_ENABLE (stream-id. report-cpr-type. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the input pad is 'open, in STREAM_ $ID _ T format. This
is a 2-byte integer.

report-cpr-type
Type of cursor position report. This is a 2-byte integer. Specify one of the following
predefined values:

PAD $CPR NONE
Requests no cursor position reports (the default).

PAD $CPR CHANGE
Requests cursor position reports only when the cursor has moved through
keystrokes since the last output call or the last position report.

PAD $CPR_ALL
Requests a cursor position report with every character.

PAD $CPR PICK
Requests a cursor position report after the cursor has settled after being
moved by the touchpad, bitpad, or mouse.

PAD $CPR DRAW
Requests a cursor position report for all cursor positions during cursor
movement from the touchpad, bitpad, or mouse.

PAD _$CPR_PICK and PAD _$CPR_DRAW also report new cursor positions resulting
from Display Manager commands; for example, arrow keys, tabs, TR, TL, TB.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-12

c

c

.r·

o

o

o

o

o

PAD $CPR ENABLE

. USAGE

You get cursor position reports in response to a STREAM_$GET _REC call, intermixed
with raw character data. The Display Manager uses a single byte to represent a raw
keystroke. It uses a 6-byte sequence to give you a cursor position report. The sequence looks
like this:

1 byte PAD_$CPR_FLAG. indicating that the next 5
bytes are a cursor position report.

2 bytes The x coordinate of the cursor position.

2 bytes The y coordinate of the cursor position.

1 byte -- The raw keystroke or PAD_$NO_KEY if there
is no keystroke accompanying this cursor
position report. or PAD_$LEFT_WINDOW if
the cursor moved outside the window.

The x and y coordinates are scaled according to the scaling factors in effect at the time of
the PAD _ $CPR _ ENABLE call (see PAD _ $SET _ SCALE). The x and y coordinates are
relative to the upper left corner of the frame. (If the cursor is not inside a frame, the x
coordinate is relative to the start of the current line, and the y coordinate is meaningless.)

In raw mode, the Display Manager does not automatically echo typed keystrokes nor move
the cursor. If your program requests PAD _ $CPR _ ALL but does not act to move the
cursor (typically by displaying typed keystrokes), each keystroke produces a cursor position
report, usually describing the same cursor position. If you don't intend to echo keyboard
input, request PAD _ $CPR _ CHANGE instead to avoid redundant cursor position reports.

PAD _ $CPR _ CHANGE compares the present keyboard cursor with the last output cursor
position. In raw mode, the position of the output cursor is under program control.
Therefore, if your program does not move the output cursor to follow the input cursor
(which you can move) you may receive a stream of cursor position reports, all showing the
same position, as long as the keyboard cursor is not in the same position as the output
cursor.

PAD-13 PAD

PAD $CREATE

PAD $CREATE

Creates a new pad and a window pane to view it.

FORMAT

PAD_$CREATE (pathname, name-length, pane-type, related-stream-id, side,
pane_options, pane-size, pane-stream-id, status)

INPUT PARAMETERS

pathname
Pathname to a file to display in the window pane, in NAME _ $PNAME _ T format. This is
an array of up to 256 characters.

If the specified pathname refers to an existing file, the Display Manager positions the new
window pane at the beginning of the file, and displays any existing data. If the given
pathname does not refer to an existing file, a permanent file with that name is created.
You usually use a null pathname when creating a transcript pad. You must specify a null
pathname when creating an input pad.

name-length
Length of the pathname in bytes. This is a 2-byte integer. A value of 0 creates a temporary
file for the pad. You must specify 0 when creating an input pad.

pane-type
The window pane type in PAD _ $ TYPE _ T format. This is a 2-byte integer. Specify one of
the following predefined values:

PAD $EDIT Creates a pad in which you can view and modify the associated file.

PAD $INPUT Creates an input pad.

PAD $READ EDIT
Creates a pad in which you can view but not modify the associated file.

PAD $TRANSCRIPT
Creates a transcript pad.

related-stream-id

PAD

The stream ID of a transcript pad, in STREAM_ $ID _ T format. This is a 2-byte integer.
The related-stream-id for an input window pane (PAD _ $INPUT) must refer to an open
transcript window pane that has no other input window pane associated with it.

PAD-14

c

(
'--

(--
I
\

.... ,. ~

o

o

o

o

o

side

------ .. ---•.. -----------.--~~~-

PAD $CREATE

The side of the transcript pad that the new window occupies, in PAD _ $SIDE _ T format.
This is a 2-byte integer. Specify one of the following predefined values:

PAD_$LEFT

PAD_$RIGHT

PAD_$TOP

PAD_$BOTTOM

You must specify PAD _ $BOTTOM when creating an input window pane for a transcript
window pane.

pane-options
Attributes of the pane. This is a 2-byte integer. In Pascal, specify any combination of the
following set of predefined values:

PAD $ABS SIZE
Specifies an absolute pane-size. If not given, the pane-size parameter is a
relative value.

PAD $INIT EU\VV
Indicates that a new input pad is initially in raw rather than cooked
mode. This is for input pads only, it is invalid for any other pad types.

In FORTEU\N, specify either 0, to indicate that the pane-size is relative, or give the sum of
the desired options.

pane-size
Size of the pane. This is a 2-byte integer. A window pane always takes up one full side of
the related window. The size refers only to the depth of the window.

You can express the pane size either as a percentage relative to the existing transcript
window, or as an absolute value in terms of the current scale factor.

If you specify the pane-size as an absolute size, the Display Manager attempts to keep the
window pane at that size. However, the window pane can never be larger than the related
window, so that, if the related window shrinks below the size requested, the window pane
also shrinks.

In addition, if you specify the pane size as an absolute size, the value given is multiplied by
the current scale factors to yield raster units. The default scale factors are the current font
size so that, unless you change the scale, you should express the pane-size in terms of lines
or characters.

An input window pane will normally be one line deep, but can grow and shrink depending
on how many lines of input are waiting for action. You should specify a size that
accommodates this because the size parameter determines the maximum number of lines
that the input window pane can occupy. The size of an input window pane can never be
less than 1. (A common relative size is 20.)

PAD-I5 PAD

PAD $CREATE

OUTPUT PARAMETERS

pane-stream-id
Number of the stream on which the new window pane is open, in STREAM_ $ID _ T
format.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types for more information.

USAGE

PAD

Use this call to create a new pad and window pane on a related stream. The related stream
can be either the stream ID of a transcript pad that you previously created with a call to
PAD _$CREATE or PAD _$CREATE_ WINDOW. For transcript pads, the stream ID
can be a standard output stream such as STREAM_$STDOUT, or STREAM_$ERROUT.

You can create any number of window panes on top of the original transcript pad up to the
maximum of 40 pads and 60 windows.

You must use PAD _ $ CREATE to create an input pad for an existing transcript pad.

PAD-16

(
\

'-.

(~'
'''-..

o

o

o

o

o

PAD $CREATE_FRAME

PAD $CREATE FRAME

Creates a frame in a pad.

FORMAT

PAD_$CREATE_FRAME (stream-id. width. height. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the input pad is open, in STREAM_$ID _ T format. This
is a 2-byte integer.

width
Width of the new frame in pixels. This is a 2-byte integer. Value can be up to 32767 raster
units. Width is scaled according to the current scale factors.

height
Height of the new frame in pixels. This is a 2-byte integer. Value can be up to 32767 raster
units. Height is scaled according to the current scale factors.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a frame on an existing transcript pad. Because you can move the
cursor anywhere within the frame, create frames when you want to have more control over
the cursor position in a given area of the screen.

Your program must either close the frame with PAD _ $CLOSE _ FRAME or delete the
frame with PAD _$DELETE_FRAME before exiting. (Note that you can review a closed
frame by scrolling the transcript window backwards, but a deleted frame no longer exists.)

PAD-17 PAD

PAD $CREATE_ICON

PAD $CREATE ICON

Creates a new pad and associated window in icon format.

FORMAT

PAD_$CREATE_ICON (pathname. name-length. type. unit. icon-pos. icon-char.
window. stream-id. status)

INPUT PARAMETERS

pathname
Pathname to a file to display in the pad, in NAME _ $PNA1\1E _ T format. This is an array
of up to 256 characters.

If the specified pathname refers to an existing file, the Display Manager positions the new
window pane at the beginning of the file, and displays any existing data. If the given
pathname does not refer to an existing file, a permanent file with that name is created.
You usually create a null pathname when creating a transcript pad.

name-length

type

unit

Length of the pathname string. This is a 2-byte integer. A value of 0 creates a temporary
file for the pad.

Pad type in PAD _$TYPE_ T format. This is a 2-byte integer. Specify one of the following
predefined values:

PAD $TRANSCRIPT
Creates a transcript pad.

PAD $EDIT Creates a pad in which you can view and modify the associated file.

PAD $READ_EDIT
Creates a pad in which you can view but not modify the associated file.

Display unit number associated with the stream-ID. This is a 2-byte integer. Usually, there
is only one display per node so this value is often 1.

icon-pos
x- and y-coordinates of the upper left corner of the icon window, in PAD_$POSITION_ T
format. This data type is four bytes long. See the PAD _ $ Data Types section for more
information.

icon-char

PAD

Icon font character to be displayed in the icon window. This character must reside in the
current icon font file. A null character value (") causes the Display Manager to select the
default icon character for this pad type.

PAD-1S

\,

I
I,

(
I
1\,

r

~-

o

o

o

o

o

PAD $CREATE_ICON

window
Window descriptor giving the position on the screen that the new window will occupy when
expanded to full size (the icon window size is fixed by the the font character selected), in
PAD $WINDOW DESC T format. This data type is 8 bytes long. See the PAD Data
Types section for more information.

The window specified is the usable part of the displayed window. The displayed window is
larger by the size of the border and the legend. If you specify either the width or the height
as zero, the window is created using the same rules as for Display Manager commands (see
the DOMAIN SY8tem Command Reference).

OUTPUT PARAMETERS

stream-id
Number of the stream on which the new window is open, in STREAM_ $ID _ T format.
This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a new pad and window in icon format. To change this window from
icon format to a full-sized window, use PAD _ $SELECT _ WINDOW. To change an
existing window into icon format, use PAD_$MAKE_ICON.

PAD-19 PAD

PAD $CREATE WINDOW

PAD $CREATE WINDOW

Creates a new pad and a window to view it.

FORMAT

PAD_$CREATE_WINDOW (pathname. name-length. pad-type. unit. window.
stream-id. status)

INPUT PARAMETERS

pathname
Pathname to a file to display in the pad, in NAN.IE _ $PNAME _ T format. This is an array
of up to 256 characters. When creating an edit or read/edit pad, this is the pathname of
the permanent file for use as the pad. If a file with this name exists, the Display Manager
positions the new window at the top of the pad. If such a file doesn't exist, a new file with
that name is created. You usually use a null pathname when creating a transcript pad.

name-length
Length of the pathname string. This is a 2-byte integer. When creating an edit or read/edit
pad, a value of 0 creates a temporary file as the pad.

pad-type

unit

Pad type in PAD _ $ TYPE _ T format. This is a 2-byte integer. Specify one of the following
predefined values:

PAD $TRANSCRIPT
Creates a transcript pad.

PAD $EDIT Creates a pad in which you can view and modify the associated file.

PAD $READ EDIT
Creates a pad in which you can view but not modify the associated file.

Display unit number to use. This is a 2-byte integer. Usually there is only one node per
display so this value is often 1.

window
Window descriptor giving the position on the screen that the new window will occupy, in
PAD _ $WINDOW _ DESC _ T format. This data type is 8 bytes long. See the PAD Data
Types section for more information.

The window specified is the usable part of the displayed window. The displayed window is
larger by the size of the border and the legend. If you specify either the width or the height
as zero, the window is created using the same rules as for Display Manager commands (see
the DOMAIN System Oommand Reference).

OUTPUT PARAMETERS

stream-id

PAD

Number of the stream on which the new window is open, in STREAM_ $ID _ T format.
This is a 2-byte integer.

PAD-20

r
I

'\...

----- ------------- ------------- - ---------- -------------------------- ----- ---------- -----------

o

o

o

o

PAD $ CREATE_ WINDOW

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to create a new pad and window to view it. Use PAD $CREATE to create a
new pad and window pane on an existing transcript pad. To create an input pad, you must
use PAD $ CREATE.

PAD-21 PAD

PAD $DEF _PFK

PAD $DEF PFK

Defines a program function key for use by a program.

FORMAT

PAD_$DEF_PFK (stream-id. key-name. definition. def-Ien. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

key-name
Name of the key to be defined. This is a 4-byte character array. Use the key name exactly
as it appears in the DOMAIN System Command Reference. Use uppercase letters (for
example, F1) except when you are redefining a lowercase letter key (such as x). Do not use
quotes in this character array (except to redefine the quote key).

definition
Display Manager command you want executed whenever the specified key is pressed. This is
an array of up to 128 characters.

del-len
Length of the definition in bytes. This is a 2-byte integer. A value of 0 (zero) returns the
key to its original definition.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

PAD _$DEF _PFK defines a program function key for use by a program. When you press
a defined key, the definition string is entered as a Display Manager command.

Program function keys defined by PAD _ $DEF _ PFK behave like keys defined through the
Display Manager, except that the definition is only effective within windows viewing the
associated pad.

Definitions remain in effect after the program finishes executing, but only within windows
viewing the pad associated with the program. .

The Display Manager command string you specify as the key definition is often the ES
command, which contains a text string and lets the program function key simulate the
typing of that text. You may specify the ER command, which introduces a two-digit
hexadecimal number and feeds that value directly to the program when the user presses the
key. The ER command essentially enables raw-mode input of the specified value, with no
echoing or other processing by the Display Manager. The DOMAIN System Command
Re ference contains more details on these commands.

PAD-22

~,

(

'"

o

o

o

o

o

------ --- -- ---

The rules for naming keys in PAD _$DEF _PFK differ from the rules for naming keys in
the KD (key definition) Display Manager command. That command implicitly converts
letters to uppercase and allows the use of single quotes.

PAD-23 PAD

PAD $DELETE FRAME

Deletes and clears the current frame.

FORMAT

PAD_$DELETE_FRAME (stream-id. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. S~e the PAD
Data Types section for more information.

USAGE

PAD

PAD _ $DELETE _FRAME removes the current frame from the pad. After executing this
procedure, the pad returns to line-oriented processing. You cannot perform further frame
operations until you create another frame with a call to PAD _ $ CREATE _FRAME.

PAD-24

,/~"

c

(~

" .-'

o

o

o

o

o

PAD $DM CMD

PAD $DM CMD

Executes a Display Manager command.

FORMAT

PAD_$DM_CMD (stream-id, command, command-length, status)

INPUT PARAMETERS

stream-id
Number of the stream on which a pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

command
Display Manager command, in PAD _ $STRING _ T format. This is an array of up to 256
characters.

command-length
Length of the command string in bytes. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this procedure with caution since it performs actions that you normally perform with
the keyboard. Because of this, PAD _ $DM_ CMD may produce unexpected results.

You can find a list of Display Manager commands in the DOMAIN System Command
Reference.

PAD-25 PAD

PAD $EDIT_ WAIT

PAD $EDIT WAIT

Suspends program execution until you close an edit window pane, then converts the stream
so that the program can access the new input.

FORMAT

PAD_$EDIT_WAIT (pane-stream-id. status)

INPUT PARAMETERS

pane-stream-id
Number of the stream on which· the edit window is open, in STREAM _ $ID _ T format.
This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Your program suspends execution until you close the edit window pane with a CTRL/y
(PW; WC -Q command) or a CTRL/N (WC -Q command).

If you close the edit window pane with a CTRL/N, and the file did not exist before the edit
window pane was created, PAD _ $EDIT _ WAIT returns an error, usually indicating that
the file was deleted while open.

You must use this procedure before reading a rile edited through an edit window pane.

PAD-26

c

,~

\
\

'-

C)

o

o

C)

o

PAD $ICON WAIT

PAD $ICON WAIT

Waits until a window is expanded from an icon format to a full-window size or until the
icon window moves.

FORMAT

PAD_$ICON_WAIT (stream-id. window-no. icon-moved. icon-pos. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

icon-moved
A Boolean value indicating icon-window movement. It returns a value of TRUE if the icon
window has moved.

icon-pos _
New position of the moved icon window in PAD _ $POSITION _ T format. This data type
is 4 bytes long. See the PAD _ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This call may be used on any type of pad.

If the window is not currently in icon format, this call returns immediately.

PAD-27 PAD

PAD_$INQ_DISP _TYPE

Returns the type of display associated with the given stream ID.

FORMAT

PAD_$INQ_DISP_TYPE (stream-id. display-type. unit. status)

INPUT PARAMETERS

stream-id
Number of the stream associated with an input or transcript pad, in STREAM_$ID _ T
format. This is a 2-byte integer.

OUTPUT PARAMETERS

display-type

unit

Type of display associated with the specified stream ID, in PAD _ $DISPLA Y _ TYPE _ T
format. This is a 2-byte integer. Returns one of the following predefined values:

PAD $NONE No display

PAD $BW 15P
Black and white portrait

PAD $BW 19L
Black and white landscape

PAD $COLOR DISPLAY
Color display (1024 x 1024)

PAD $800 COLOR
Color display with fewer pixels (1024 x 800)

PAD $COLOR2_DISPLAY
Color display (1280x1024x8)

PAD $COLOR3_DISPLAY
Color display (1024x800x8)

PAD $COLOR4_DISPLAY
Color display (1024x800x4)

Display unit number. This is a 2-byte integer. This parameter is reserved for future use, it
will always have the value of 1.

status

PAD

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-28

c

o

o

o

o

o

PAD _ $INQ_DISP _TYPE

USAGE

PAD _$INQ_DISP _ TYPE returns the display type and unit number associated with the
stream ID. The display unit number can be used as an argument to
PAD $CREATE WINDOW.

PAD-28.1 PAD

c

c
PAD PAD-28.2

o

o

o

o

o

PAD _ $INQ _ FONT

PAD_$INQ_FONT

Returns information about the current font.

FORMAT

PAD_$INQ_FONT (stream-id, font-width, font-height,
font-name, font-size, font-len, status)

INPUT PARAMETERS

stream-id
The number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is
a 2-byte integer.

font-size
The number of bytes available in the "font-name" string buffer. This is a 2-byte integer.
PAD _ $INQ_FONT fills the IIfont-name" output parameter with this many characters of
information. If you do not want to know the pathname, you can specify 0 (zero) as the
value of II font-size. II

OUTPUT PARAMETERS

font-width
Width of the font in raster units. This is a 2-byte integer. For fonts in which different
characters have different widths, II font-width II describes the width of the space character.

font-height
Height of the font in raster units. This is a 2-byte integer. The height includes any interline
spacing specified in the font file.

font-name
Full pathname of the font, up to the node entry directory (I), in PAD _ $STRING _ T
format. This is an array of up to 256 characters. The pathname is returned with the
correct character case (Le., upper-case characters in the pathname are returned as
upper-case; lower-case as lower-case).

font-len
Length of the II font-file II pathname. This is a 2-byte integer. If this value is greater than the
input parameter II font-size, .. the Display Manager truncates the returned pathname.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to determine which font your program is currently using. Your program can
use up to 100 different character fonts as long as you initially load all the fonts that you
intend to use with PAD _ $LOAD _FONT. When you want your pr~gram to use a specific
font, call PAD _ $USE _ FONT to invoke a previously loaded font. Each time you want to
change a loaded font, use PAD_$USE_FONT.

PAD-29 PAD

Returns information about the entire window specified, including the border and legend.

FORMAT

PAD_$INQ_FULL_WINDOW (stream-id. window-no. window. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Window number of the window open on the pad. This is a 2-byte integer. Window number
one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

window
Window descriptor giving the position on the screen that the window occupies, including the
border and legend, in PAD _ $WINDOW _DESC _ T format. This data type is 8 bytes
long. See the PAD Data Types section for more information.

The window gives the position of the top left corner, width and height of the window. The
values appear in the following order: top, left, width, height. Top and left are expressed in
raster units. Width and height are divided by the current scale factors.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Use this call to determine exactly how much screen space your window uses, including the
border and legend. A call to PAD _ $INQ _ WINDOWS returns similar information about
the usable part of the display windows (not including the border and legend).

Note that if the specified stream-id and window-no refer to a window pane, the information
returned is for the outermost containing window.

PAD-30

c

('
'--... ,

o

o

o

o

o

PAD _ $INQ _ ICON

Returns information about a window in icon format.

FORMAT

PAD_$INQ_ICON (stream-id, window-no, icon-pos, icon-char, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

icon-pos
Position of the icon, in PAD _ $POSITION _ T format. This data type is 4 bytes long. See
the PAD Data Types section for more information.

icon-char
Character currently displayed in the icon window.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window is not currently in icon format, the information returned describes its
previous icon status, if any, and its future icon status, should the Display Manager
command ICON or the PAD _$MAKE_ICON call be issued with the default setting for
icon-pos and icon-char.

PAD-3t PAD

PAD _ $INQ _ ICON _ FONT

Returns information about the current icon font.

FORMAT

PAD_$INQ_ICON_FONT (stream-id. window-no. font-name
font-buf-size. font~len. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Window for which information is wanted. Window-no is an index into the window list
returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer. Window number one
always refers to the first window created to view the pad.

font-buf-size
Number of bytes available in the font-name buffer string. This is a 2-byte integer.
PAD _$INQ_FONT fills the output parameter, font-name, with this many characters of
information.

OUTPUT PARAMETERS

font-name
Pathname the font from the node entry directory U), in NAME _ $PNAME _ T format.
This is an array of up to 256 cha.racters. The pathname is returned with the correct
character case (i.e., upper-case characters in the pathname are returned as upper-case;
lower-case as lower-case).

font-len
Length of the font file pathname. This is a 2-byte integer. If this value is greater than the
input parameter font-size, the Display Manager truncates the returned pathname to fit in
the smaller number of characters.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Use this call to get the pathname of the icon font in use. You can change the icon font in
use with the call, PAD _ $SET _ICON _FONT.

The default icon font file is /SYS/DM/FONTS/ICONS. You can create a new icon font file
to contain your own icons by using the font editor EDFONT. See the DOMAIN System
Command Reference for a complete description of EDFONT.

PAD-32

c

c __ ~

o

o

o

o

o

Returns information about the keyboard currently in use.

FORMAT

PAD_$INQ_KBD (stream-id. buffer-size. kbd-suffix. length. status)

INPUT PARAMETERS

stream-id
Number of the stream associated with an input or transcript pad, in STREAM_ $ID _ T
format. This is a 2-byte integer.

buffer-size
Number of bytes available in the "kbd-suffix" string buffer. This is a 2-byte integer.

OUTPUT PARAMETERS

kbd-suffix
Suffix to be appended to Display Manager pathnames to locate a key definition file, in
PAD _ $ STRING _ T format. This is an array of up to 256 characters. Suffixes used by
standard DOMAIN software are:

Null string Corresponds to the 880 keyboard.

Value of "211 Corresponds to the low-profile keyboard.

Value of "3 11 Corresponds to the low-profile keyboard with numeric keypad.

(Display M~nager pathnames for key definitions are /SYS /DM/~TD _ KEYS and
USER_DATA/KEY _DEFS.)

length
Actual length of the string. This is a 2-byte integer. If the length parameter is greater than
"kbd-suffix, II it truncates "kbd-suffix.11

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to determine which keyboard is in use. For example, you might want to set up
program definition keys according to the type of keyboard in use.

PAD-33 PAD

PAD _ $INQ _ POSITION

PAD _ $INQ _POSITION

Returns the position of the output cursor.

FORMAT

PAD_$INQ_POSITION (stream-id. x. y. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

x
X position of the output cursor. This is a 2-byte integer.

y
Y position of the output cursor. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

X and yare divided by the current scale factors.

If this procedure is executed when the cursor is inside a frame, x and yare relative to the
upper left corner of the frame. If the cursor is not in a frame, x represents the position on
the line and y is undefined.

PAD-34

C
----..\

.' -.. ~ ...

C~

o

o

o

o

o

PAD_$INQ_ VIEW

Returns information about the position of a window relative to a pad.

FORMAT

PAD_$INQ_VIEW (stream-id. window-number. line. eof-linenum. x-offset.
y-offset. status)

INPUT PARAMETERS

stream-id
Number of the stream associated with an input or transcript pad, in STREAM_$ID _ T
format. This is a 2-byte integer.

window-number
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

line
Number of the line being viewed. This is a 4-byte integer.

eof-linenum
Last line or frame on the pad. This is a 4-byte integer.

x-offset
Distance the pad is horizontally scrolled. This is a 2-byte integer.

y-offset
Distance the pad is vertically scrolled. This is a 2-byte integer. Only frames can be
vertically scrolled.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this routine in conjunction with PAD _ $SET _ VIEW to control the display of graphic
images that are larger than the window . PAD _ $INQ _ VIEW describes the pad element
currently being viewed through the given window, usually a transcript pad element.

If the element currently in view is a frame, x-offset and y-offset describe how the window is
positioned in relation to the frame. If you are viewing the current frame and not some
previous part of the pad, the value of eof-linenum will b~ equal to the line parameter.

If the element currently in view is not a frame, the line parameter is the number of the top
line in the window.

PAD-35 PAD

PAD_$INQ_ WINDOWS

PAD _ $INQ _ WINDOWS

Returns information about windows viewing the current pad.

FORMAT

PAD_$INQ_WINDOWS (stream-id. windowlist. window-list-size.
window-no. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

window-list-size
Maximum number of windows on which information is desired. This is a 2-byte integer.

OUTPUT PARAMETERS

windowlist
Information describing a window, in PAD _$WINDOW _LIST _ T format. This data type
is an array of up to 10 elements, each of which is in PAD $WINDOW DESC T format
(four 2-byte integers). See the PAD Data Types section fo~ more inform~ion. -

Windowlist indicates the top left corner and the width and height of each window open on
the pad, up to wlistsize. The values appear in the following order: top, left, width, height.
Top and left are expressed in raster units, but width and height are divided by the current
scale factors.

window-no
The number of windows open on the pad. This is a 2-byte integer. Window number one
always refers to the first window created to view the pad. Use this parameter in calls that
require a window number.

status

PAD

Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-36

(
I,
\
'-._-

o

o

o

o

o

PAD $LOAD FONT

PAD $LOAD FONT

Loads a character font.

FORMAT

PAD_$LOAD_FONT (stream-1d. font-pathname. name-length. font-id. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

font-pathname
Pathname of the file containing the character font, in PAD _ $STRING _ T format. This is
an array of up to 256 characters.

name-length
Length of the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font-id
Font identifier, to be used in later calls to PAD _$USE_FONT. This is a 2-byte integer.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD .
Data Types section for more information.

USAGE

Your program can use up to 100 different character fonts as long as you initially load all
the fonts that you intend to use with PAD _$LOAD _FONT. When you want your
program to use a specific font, call PAD _$USE_FONT to invoke a previously loaded
font. Each time you want to change a loaded font, use PAD _$USE_FONT. To
determine which font your program is currently using, call PAD_$INQ_FONT.

The Display Manager first attempts to find the font file using the pathname directly, with
the normal defaults. If it fails to find the file, it searches in /SYS/DM/FONTS.

PAD _ $LOAD _FONT does not switch fonts. It merely loads the font into the invisible
portion of display memory and returns a font ID. Mter loading the font, your program can
call PAD $USE FONT to use it.

You can load up to 100 fonts in a given pad.

PAD-37 PAD

PAD $LOCATE

PAD $LOCATE

Returns the position of the keyboard cursor in response to a keystroke.

FORMAT

PAD_$LOCATE (stream-id, x, y, character, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

x
X position of the input cursor. This is a 2-byte integer.

y
Y position of the input cursor. This is a 2-byte integer.

character
Value of the key pressed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

This procedure returns the cursor position only when a raw character is entered. If the pad
is in raw mode, any keystroke will do. In cooked mode, the ER command must be used.
This command is usually entered through a function key definition.

The keyboard cursor position must be within the transcript pad.

X and yare divided by the current scale factors.

PAD-38

c

c

c

-------------- ----------------------------

o

o

o

PAD $MAKE ICON

PAD $MAKE ICON

Changes an existing window into icon format.

FORMAT

PAD_$MAKE_ICON (stream-id, window-no, icon-char, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

icon-char
Icon font character to be displayed in the icon window. This character must reside in the
current icon font. A 0 (zero) causes the Display Manager to select the default icon character
for this pad type.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This call changes an existing full-size window into icon format. (If the window is invisible at
the time of the call, it first becomes visible and then becomes an icon.) To create a
completely new pad and window in icon format, use PAD_$CREATE_ICON.

If the window is already an icon, this call has no effect.

Specify the display position for the new icon using the PAD _ $SET _ICON _POS routine
before executing this call. If you do not do this, the Display Manager assigns a default icon
position descriptor and font character.

The size of the icon window is not user-definable. It is determined automatically by the size
of the font character specified.

PAD-39 PAD

PAD $MAKE INVISIDLE

PAD $MAKE INVISmLE

Makes a visible window invisible.

FORMAT

PAD_$MAKE_INVISIBLE (stream-id. window-no. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _ $INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

The effect of this call is the same as if the window were completely obscured by other
windows on the screen, except that no amount of pushing, popping, moving, or growing can
make it reappear. Only a subsequent call to PAD _ $SELECT _ WINDOW will restore it to
visibility in its full-size format.

If the window is currently invisible, this call has no effect.

If the window is currently in icon format, it will first be made into a full-size window and
then turned invisible.

PAD-40

\

"

PAD $MOVE

PAD $MOVE o Moves the output cursor.

o

o

o

o

FORMAT

PAD_$MOVE (stream-1d, rel-abs, x, y, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

rel-abs

x

y

Indicates whether cursor movement is to be relative or absolute. This is a 2-byte integer in
PAD _$REL_ABS_ T format .. Specify one of the following predefined values:

PAD $RELATIVE

PAD

Movement is relative to the last cursor position. X and y denote positive
or negative offsets to the current cursor position, scaled according to the
current scale factors.

$ABSOLUTE
X and yare absolute, within the frame. X and y must be positive.
Within a frame, movement is relative to the upper left corner of the
frame. Outside a frame, x is relative to the left end of the current line
and y is not used. In both cases, x and yare scaled according to the
current scale factors.

Change to the x-coordinate of the cursor position. This is a 2-byte signed integer.

Change to the y-coordinate of the cursor position. This is a 2-byte signed integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _$MOVE changes the position of the output cursor, which marks the place where the
next program output will appear.

The cursor can move vertically only within a frame, not on a line. The Display Manager
uses the y value only when a frame is active, and ignores it otherwise.

PAD-41 PAD

PAD $POP _PUSH WINDOW

PAD $POP PUSH WINDOW

Pops or pushes a window.

FORMAT

PAD_$POP_PUSH_WINDOW(stream-id. windo~-no. flag. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no

flag

The index into the window list returned by PAD _ $INQ_ WINDOWS. This is a 2-byte
integer. Window number one always refers to the first window created to view the pad.

Indicates if the window is to be pushed or popped. This is a Boolean variable. A value of
TRUE pops the specified window to the top of the screen, ensuring that no portion of the
window is hidden by another window. A value of FALSE pushes the specified window to
the bottom of the screen, allowing other windows to cover it wherever possible.

OUTPUT PARAMETERS

status

PAD

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

PAD-42

(~

o

o

o

o

o

-----------------------------------_._. __ ._-

PAD $RAW

Places an input or transcript pad in raw mode.

FORMAT

PAD_$RAW (stream-1d. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer. The stream-id given should refer to an input stream, usually standard input
(STREAM_$STDIN). PAD_$RAW has no effect on output.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD _ $RA W puts the pad into raw mode, and has no effect if it is already in raw mode.
PAD _ $COOKED returns the pad to normal processing.

In raw mode, the Display Manager sends keyboard input directly to the program without
echoing or processing it in any way. AScn control characters are also sent to the program,
but the Display Manager still handles its function keys.

The Display Manager immediately displays every character it receives, unless the window is
in HOLD mode. If the window is in HOLD mode, new characters do not appear until the
keyboard user scrolls the window or releases HOLD.

When it executes this procedure, the Display Manager clears the input pad and shrinks its
window size to zero. The keyboard cursor moves to the current output cursor position in
the transcript pad. While tIle pad is in raw mode, the keyboard and output cursors usually
move together.

NOTE: A program using PAD_$RAW must execute PAD_$COOKED before
termination. Most system utilities, including the Shell, will not work correctly in raw
mode.

PAD-43 PAD

PAD $ SELECT _ WINDOW

PAD $SELECT WINDOW

Makes an invisible window visible and/or changes an icon-format window into a full-sized
window.

FORMAT

PAD_$SELECT_WINDOW (stream-id. window-no. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _ $INQ _ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Use PAD $MAKE INVISmLE to make windows invisible.

If this call is used to expand an icon to full-size format, the position and dimensions of the
large window are the same as those it had when it was last full size. If it was never full-size,
its position and dimensions are those specified (or defaulted) when the icon was created
(either by PAD _$CREATE_ICON, or by the Display Manager commands CP, CV, CE,
or CPB with the -I option specified).

PAD-44

(
I .".

o

o

o

o

PAD $SET_AUTO CLOSE

PAD $SET_AUTO CLOSE

Sets a window to close automatically when its pad closes.

FORMAT

PAD_$SET_AUTO_CLOSE (stream-1d. window-no. auto-close. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD_$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

auto-close
Indicates whether the window is to close automatically. This is a Boolean value. If TRUE,
the window disappears when the pad onto which it opens is closed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

When a program first makes this call and then does a STREAM_ $CLOSE, the window
specified is closed and deleted from the screen. This is equivalent to specifying the Display
Manager command WC -A for a window.

PAD-45 PAD

PAD $SET _BORDER

PAD $SET BORDER

Adds a border to, or removes the border from, a full window.

FORMAT

PAD_$SET_BORDER(stream-id. window-number. flag. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

window-number

flag

Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

Indicates whether to add or remove a border. This is a Boolean variable. If TRUE, the
window appears with a border around its edges and a legend at the top. If FALSE, any
border and legend are removed from the window, making the window's usable area equal to
the amount of space the window occupies on the screen.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Use this procedure to remove or add a border to a full window that has no other panes
associated with it. To get a full window without any panes, you can either create a
transcript pad and never make a PAD _ $ CREATE call to add panes, or create a transcript
pane that covers the entire window. Another way to get a full window is to make an input
pane invisible by using the PAD _ $RA W call.

PAD-46

PAD $SET FULL WINDOW

PAD $SET FULL WINDOW o Moves a window or sets a window position for future use.

o

o

o

o

FORMAT

. PAD_$SET_FULL_WINDOW (stream-id, window-no, window, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD_$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the first window created to view the pad.

window
Window descriptor giving the position on the screen that the new window will occupy when
expanded to a full-sized window, in PAD _ $WINDOW _ DESC _ T format. This data type
is 8 bytes long. See the PAD _ $ Data Types section for more information.

The window specified is the entire window, including the border, legend, and usable part of
the window. The call, PAD _$INQ_FULL_ WINDOW returns information about the
entire window.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window specified is currently in icon format or is invisible, this call establishes a
full-size window position for future use (i.e., when your program calls
PAD _ $SELECT _ WINDOW to expand the icon into a full-size window, or you issue the
Display Manager commands ICON or WI).

If the window specified is currently full-size, then the window is repositioned to the location
given by window.

PAD-47 PAD

PAD $SET ICON FONT

Sets the current icon font to a specified font name.

FORMAT

PAD_$SET_ICON_FONT (stream-id. window-no, font-name,
font-len. status)

INPUT PARAMETERS

stream-id

PAD $SET ICON_FONT

Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

window-no
Window whose icon font you want to change. Window-no is an index into the window list
returned by PAD _ $INQ _ WINDOWS. This is a 2-byte integer. Window number one
always refers to the first window created to view the pad.

font-name
Full pathname of the font, up to the node entry directory (I), in NA1v1E _ $PNA1v1E _ T
format. This is an array of up to 256 characters.

font-len
Length of the font file pathname. This is a 2-byte integer.

PAD

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to change the icon font in use. This call changes the font of the specified
window only.

When a window is created either as a full window or an icon, the Display Manager assigns
it ail ico.n from II active icon font. II The default active icon font is in
/SYS/DM/FONTS/ICONS. You can specify another font to be the active icon font by
using the FL command with the -I option.

You can create a new icon font file to contain your own icons by using the font editor
EDFONT. See the DOMAIN System Command Reference for a complete description of
EDFONT.

If the window is in icon format at the time of this call, the icon in the display changes to
the new font immediately.

PAD-48

('"
I
\

'-. -

('
I

c

PAD $SET ICON_pas

PAD $SET ICON POS o Moves an icon or sets an icon position for future use.

o

o

o

o

FORMAT

PAD_$SET_ICON_POS (stream-id, window-no, icon-pos, icon-char, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

window-no
Index into the window list returned by PAD _$INQ_ WINDOWS. This is a 2-byte integer.
Window number one always refers to the original transcript pad.

icon-pos
New position (x and y coordinates) of the icon, in PAD _ $POSITION _ T format. This data
type is 4 bytes long. See the PAD Data Types section for more information.

icon-char
Character to be displayed in the icon window.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

If the window specified is currently in full-size format, this call establishes an icon position
for future use (i.e., when your program calls PAD _$MAKE_ICON to turn the window
into icon format, or you use the Display Manager command ICON).

If the window specified is already in icon format, then the icon is repositioned to the
location given by icon-pos, and the specified icon-char replaces the current one.

Compare this call to PAD_$SET_FULL_ WINDOW, which performs the same operations
for full-size windows.

The size of the icon window is not user-definable. It is determined automatically by the size
of the font character specified.

PAD-49 PAD

PAD $SET _SCALE

PAD $SET SCALE

Sets a scale factor for cursor operations.

FORMAT

PAD_$SET_SCALE (stream-1d. x-factor. y-factor. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM_$ID _ T format. This is a
2-byte integer.

x-factor
Scale factor for the x-coordinate. This is a 2-byte integer.

y-factor
Scale factor for the y-coordinate. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

Specify a scale factor of zero to use the scale of the current character font. This is the
default.

Specify a nonzero scale factor to use that number as a multiplier for raster units. One
raster unit is equal to one bit in the display.

The scale factor is used to convert between raster units and numbers supplied in routines
such as PAD _ $MOVE. When using the scale of the current font, you express dimensions
in terms of characters and lines. In any case, the numbers you enter are multiplied by the
scale factor to yield raster units, and raster units are divided by the scale factor before
being returned.

The scale factor is used to process input or output for PAD _$CPR_ENABLE,
PAD _$CREATE_FRAME, PAD _$INQ_POSITION, PAD _$LOCATE,
PAD _$MOVE, and PAD _$INQ_ WINDOWS. In PAD _$INQ_ WINDOWS, height and
width are scaled, but top and left are not. PAD _$INQ_FONT always returns dimensions
in terms of raster units.

The scale factors set with this call apply to the specified stream until specifically reset, even
after the calling program ends. Your program should not depend on the scale factors being
correctly set, but should call PAD _ $SET _ SCALE to explicitly set the scale factors as
desired.

PAD-50

~,
(

(
'''-

o

o

o

o

o

PAD $SET TABS

PAD $SET TABS

Sets tab stops within a pad.

FORMAT

PAD_$SET_TABS (stream-1d. tab-stop-array. no-of-tabs. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

tab-stop-array
Columns for tab stops. This is an array of up to 100 2-byte integers. Each element in the
array contains a column number at which a tab stop will be set. Column numbers are
scaled according to the PAD _ $SET _ SCALE procedure.

For example, assume that the current vertical and horizontal scale factors are both equal to
one. A three-element array containing the integers 100, 300, and 500 would specify tab
stops at bit positions 100, 300, and 500 on the screen. Because the display contains
approximately 100 bits per inch, these tab stops would be set about 1, 3, and 5 inches (2.54,
7.62, and 12.70 cm) from the left edge of the screen.

no-of-tabs
Number of tab stops set. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

This procedure sets tabs only for the pad open on the specified stream. Tab stops for all
other pads are unchanged.

The default tab setting has tabs every 4 columns.

pAD-51 PAD

PAD $SET _VIEW

PAD $SET _ VIEW

Positions a window to establish a given view.

FORMAT

PAD_$SET_VIEW (stream-id. window-no. line. x-offset.
y-offset. status)

INPUT PARAMETERS

stream-id
Number of the stream ssociated with a transcript pad, in STREAM_$ID _ T format. This
is a 2-byte integer.

window-no

line

Index into the window list returned by PAD_$INQ_ WINDOWS. This is a 2-byte
integer .Window number one always refers to the first window created to view the pad.

Line number to view. This is a 4-byte integer.

x-offset
Distance to scroll the pad horizontally. This is a 2-byte integer.

y-offset
Distance to scroll the pad vertically (for frames only). This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

PAD

This routine repositions a window to establish a particular view of a transcript pad.
Programs can call this routine after a call to PAD _ $INQ_ VIEW and in conjunction with
calls to PAD _ $INQ _ WINDOWS to control the display of graphic images that are larger
than the window.

PAD-52

c

c

()

o

o

o

o

PAD $USE FONT

Invokes a loaded font.

FORMAT

PAD_$USE_FONT (stream-1d. font-1d. status)

INPUT PARAMETERS

stream-id
Number of the stream on which the pad is open, in STREAM _ $ID _ T format. This is a
2-byte integer.

font-id
Font identifier returned by PAD_$LOAD_FONT. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PAD
Data Types section for more information.

USAGE

Use this call to change your program's current character font.

Your program can use up to 100 different character fonts as long as you initially load all
the fonts that you intend to use with PAD_$LOAD_FONT. When you want your
program to use a specific font, call PAD _ $USE _ FONT to invoke a previously loaded
font. Each time you want to change a loaded font, use PAD _$USE_FONT. To
determine which font your program is currently using, call PAD _ $INQ_FONT.

NOTE: Use PAD _ $USE _ FONT only to change the current font in use. You will get
erroneous results if the call specifies the font that is already currently in use.

PAD-53 PAD

PAD ERRORS

ERRORS

STATUS $OK
Successful completion.

PAD $2MNY _ CLIENTS
Operation illegal with more than one client process.

PAD $2MNY _INPUT PADS
Only one input pad per transcript.

PAD $BAD KEY NAME
Key name not found.

PAD _$EDIT _ QUIT
User quit (WC -Q) out of edit pane.

PAD $FONT F~E ERR
Could not access font file.

PAD $ID OOR
Stream id out of range.

PAD $~L_PARAM_COMB

Conflict in PAD $CREATE call.

PAD $~L PTYPE
Cannot do operation on this type of pad.

PAD $NO _ SUCH_ WINDOW
Bad window number in INQ/SET _ VIEW.

PAD $NO WINDOW
Window no longer exists.

PAD $NOT ASCII
Existing pad in PAD _ $CREATE is not ASCII.

PAD $NOT INPUT
Operation valid on input pads only.

PAD $NOT RAW
Operation requires pad be in raw mode.

PAD $NOT TRANSCRIPT
Operation valid on transcript pads only.

PAD $STREAM NOT OPEN
No stream open on this SID.

PAD $STREAM NOT PAD
Preferred stream is not a pad.

PAD $TOO MANY FONTS
Too many fonts loaded in this pad.

PAD $VOOR
Value out of range.

PAD PAD-54

c

c

o

o

o

o

C)

PBUFS

This section describes the error messages and the call syntax for the PBUFS programming calls.
The PBUFS calls do not use unique data types. Refer to the Introduction at the beginning of this
manual for a description of call syntax format.

PBUFS-l PBUFS

PBUFS $CREATE

PBUFS $CREATE

Creates a paste buffer.

FORMAT

PBUFS_$CREATE (buffer-name. type. stream-1d. status)

INPUT PARAMETERS

buffer-name

type

Name of the paste buffer you want to create (not a pathname), in NAME_$N.A1v.1E_ T
format. This is an array of up to 32 characters. This array must be a full 32 bytes, padded
with blanks. See the NAME _ $ Data Types section for more information.

Indicates whether the paste buffer is to hold text or pictures. This is a Boolean value.
TRUE designates a text buffer. FALSE designates a GMF buffer that can hold images.

OUTPUT PARAMETERS

stream-id
Number of a stream with which to refer to the new paste buffer, in STREAM_ $ID _ T
format. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
PAD _ $ Data Types section for more information.

USAGE

This call creates a paste buffer of the specified name and type in the directory
'node _ data/paste _ buffers. An error occurs if the named paste buffer already exists in
/ sys/node _ data/paste _ buffers.

The file has the temporary attribute, STREAM_$ffiM_ TEMPORARY. The system will
delete this file when you close the stream, unless you call STREAM _ $REDEFINE to
change the file's attributes first.

Calling PBUFS _ $ CREATE opens the stream for overwrite access
(STREAM_ $OVERWRITE).

You can call STREAM_$CREATE, specifying a pathname in
/sys/node _ data/paste _ buffers to achieve the same effect.

PBUFS PBUFS-2

(,.

o

o

o

o

c

PBUFS $OPEN

PBUFS $OPEN

Opens a pre-existing paste buffer.

FORMAT

PBUFS_$OPEN (buffer-name. type. stream-id, status)

INPUT PARAMETERS

buffer-name

type

Name of the paste buffer you want to open (not a pathname), in NAME_$NAME_ T
format. This is an array of up to 32 characters. This array must be a full 32 bytes, padded
with blanks. See the NAME _ $ Data Types ~ection for more information.

Indicates whether the paste buffer is to hold text or pictures. This is a Boolean value.
TRUE designates a text buffer. FALSE designates a GlVIF buffer that can hold images. The
value you specify must match the value used when creating the paste buffer, or the paste
buffer manager returns the completion status PBUFS _ $WRONG _ TYPE.

OUTPUT PARAMETERS

stream-id
Number of the stream with which to refer to the paste buffer, in STREAM_$ID _ T
format. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
PAD _ $ Data Types section for more information.

USAGE

This call open a pre-existing paste buffer of the specified name and type in the directory
'node _ data/paste _ buffers.

An error occurs if the named paste buffer does not already exist in
/sys/node_data/paste_buffers. Use PBUFS_$CREATE to create a buffer.

You can call STREAM_$OPEN, on a file in /sys/node_data/paste_buffers, to achieve
the same effect.

PBUFS-3 PBUFS

PBUFS ERRORS

ERRORS

PBUFS _ $WRONG _ TYPE
The actual bufrer type difCers Crom the type specified.

(
~.

r"·
I

PBUFS PBUFS-4

o

o

o

o

o

PFM

This section describes the data types, the call syntax, and the error codes for the PFM
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PFM-l PFM

PFM DATA TYPES

CONSTANTS

DATA TYPES

PFM $ CLEANUP _REC

predefined
type

byte:
offset

0:

4:

PFM_$FAULT FUNC P T

PFM

o Specified when establishing a handler to catch
all faults.

Cleanup routine information. The diagram below
illustrates the PFM_ $CLEANUP _REC data type:

field name

integer magicp

integer checkp

Field Description:

magicp
A pointer used by the fault manager.

checkp
A pointer used by the fault manager.

A 4-byte integer. A pointer to a fault handler
function.

PFM-2

"'-..

o

o

o

PFM_$FAULT REC T

predefined
type

byte:
offset

0:

2:

PFM_ $FH FUNC VAL T

PFM $FH _ OPT SET T

integer

PFM DATA TYPES

Parameter to fault handler function. The diagram
below illustrates the PFM $F AUL T REO T
data type:

field name

pattern

integer status

Field Description:

pattern
Reserved for PFM use.

status
The returned status in STAUTS $T format.

A 2-byte integer. Specifies action to be taken when
handler completes. One of the following pre-defined
values:

PFM $CONTINUE_FAULT _HANDLING

Specifies that the fault be passed to next
handler.

PFM_ $RETURN _ TO _FAULTING CODE

Specifies that control be returned to the
program.

A 4-byte integer. Pointer to a fault handler.

A 2-byte integer. Options for type of handler to
establish. Any combination of the following
pre-defined values:

PFM _ $FH_BACKSTOP

specifies that the handler should be called
after all other handlers.

PFM _ $FH_ MULTI _ LEVEL

Specifies that handler applies to faults on its
program level, and all subordinate levels.

PFM-3 PFM

PFM DATA TYPES

STATUS $T

PFM

byte:
offset 31

0:

0:

1 :

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name o
integer all

or

fail

subsys

mode
t-----'"--___. 0

2:, integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PFM-4

C)

o

o

o

o

---- --- ------------------

PFM $CLEANUP

PFM $CLEANUP

Establishes a clean-up handler for faults.

FORMAT

status = PFM_$CLEANUP (clean-up-record)

RETURN VALUE

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

When initially called to establish a clean-up handler, PFM_ $CLEANUP returns the status
PFM_ $CLEANUP _SET. Mter a fault occurs, PFM_ $CLEANUP returns the status of
the fault, or the status signaled by PFM_$SIGNAL or PFM_$ERROR_ TRAP.

OUTPUT PARAMETERS

clean-up-record
A record uniquely identifying the clean-up handler, in PFM_ $ CLEANUP _REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

This parameter is passed as input to the PFM _ $RLS _ CLEANUP and
PFM _ $RESET _ CLEANUP procedures in order to specify a particular handler . Your
program cannot modify or copy this value.

USAGE

PFM_ $ CLEANUP establishes a clean-up handler that is executed when a fault occurs.
Clean-up handlers let the program II clean up II a task, possibly notifying you of the error
condition and leaving any open files in a known and stable state.

You may establish more than one clean-up handler. Multiple cleanup handlers are executed
consecutively, starting with the most recently established handler and continuing backward
in time (LIFO). A built-in clean-up handler is always established when you invoke your
program. This built-in handler is always called last. It closes any files that are still open
and returns control to the invoking Shell.

The initial call to PFM_ $CLEANUP establishes the clean-up handler and returns a status
value of PFM_ $CLEANUP _SET. When a fault occurs, execution returns to the most
recent PFM_ $ CLEANUP call. The clean-up handler The associated with that call is then
removed from the stack and executed.

PFM-5 PFM

PFM_ $ENABLE

PFM $ENABLE

Enables asynchronous faults.

FORMAT

PFM_$ENABLE

USAGE

PFM

PFM_ $ENABLE enables asynchronous faults after they have been inhibited by a call to
PFM_$INHIBIT. PFM_$ENABLE causes the operating system to pass asynchronous
faults on to the program.

While faults are inhibited, the operating system holds at most one asynchronous fault. So,
as soon as a PFM_ $ENABLE executes, your program receives one asynchronous fault. If
more than one fault occurred while faults were inhibited, the program receives the first
asynchronous fault.

Since a user cannot terminate a program while PFM_ $INHIBIT is in effect, it is good
programming practice to inhibit asynchronous faults only during critical intervals, or enable
faults occasionally to allow users to exit.

PFM-6

c

c.

o

o

o

o

o

PFM $ERROR_ TRAP

PFM_$ERROR_TRAP

Simulates a fault with a given status code, storing traceback information.

FORMAT

PFM_$ERROR_TRAP (status)

INPUT PARAMETERS

status
Error code, in STATUS _ $T format. This data type is 4 bytes long. See the PFM Data
Types section for more information.

USAGE

Use this procedure to force an error exit with the specified status code, or in a fatal error
situation where no status code otherwise returns. One possible use is in defining your own
error condition.

This procedure differs from PFM_ $SIGNAL in that traceback information is stored, so
that it is possible to determine where the fault occurred.

PFM-7 PFM

PFM_ $ESTABLISH_FAULT _HANDLER

PFM_$ESTABLISH_FAULT HANDLER

Establishes a fault handler.

FORMAT

handler-id = PFM_$ESTABLISH_FAULT_HANDLER (target-status, options,
function-pointer, status)

RETURN VALUE

handler-id
A value uniquely identifying the established handler, in PFM_$FH_HANDLE_ T format.
This is a 4-byte integer.

You pass this value to the PFM_$RELEASE_FAULT _HANDLER call when you want to
release the handler.

INPUT PARAMETERS

target-status
A value specifying the type of fault that COMMENTs this handler takes effect. This is a
4-byte integer.

To establish a fault handler for all faults produced by a certain DOMAIN module, use any
error status code returned by that module, with the fault code field set to o. To establish a
fault handler that handles all faults, use the constant PFM_$ALL_FAULTS.

options
A value specifying the type of handler you want to establish, in
PFM $FH_ OPT SET T format. This is a 2-byte integer. Specify any combination of
the following set of predefined values:

PFM_$FH_MULTI LEVEL
To declare a multilevel fault handler that handles faults for its own
program level and all subordinate levels.

PFM_ $FH_BACKSTOP
To establish a backstop fault handler that takes effect after all nonbackstop handlers have
taken effect.

(In FORTRAN, you can combine these options by adding the constants.)

function-pointer
The address of the fault handler for the specified type(s) of faults, in
PFM_$FAULT_FUNC_P _T format. This is a 4-byte integer.

OUTPUT PARAMETERS

status

PFM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

PFM-8

(
I,

C'

o

o

o

o

o

PFM $EST ABLISH FAULT HANDLER

This call establishes a fault handler, making it take effect for all the faults of the specified
type or types that occur after the time of the call.

The fault handler remains in effect until you release it using
PFM_$RELEASE_FAULT _HANDLER or until the program ends.

PFM-9 PFM

PFM $INHmIT

PFM $INHIBIT

Inhibits asynchronous faults.

FORMAT

PFM_$INHIBIT

USAGE

PFM

PFM_ $INHIBIT prevents asynchronous faults from being passed to the program. Use this
call when an interval of your program cannot be interrupted, for example, when performing
I/O. Use the complementary PFM_$ENABLE call to re-enable asynchronous faults.

Asynchronous faults are produced from outside your program and are unrelated to anything
within your program. They can occur at any point during your program's execution. A
common example of an asynchronous fault is the Display Manager quit (DQ) command that
occurs when someone types a CTRL/Q to stop a program.

Since a user cannot terminate a program while PFM_ $INHIBIT is in effect, it is good
programming practice to inhibit asynchronous faults only during critical intervals.

While faults are inhibited, the operating system holds at most one asynchronous fault. So,
as soon as a PFM_ $ENABLE executes, your program receives one asynchronous fault. If
more than one fault occurred while faults were inhibited, the program receives the first
asynchronous fault.

Inhibiting asynchronous faults has no effect on the processing of synchronous faults such as
floating-point overflow errors, access violations, address errors, and so on.

PFM-IO

c

c

o

o

o

o

o

PFM $RELEASE_FAULT HANDLER

PFM $RELEASE FAUL T HANDLER

Releases a fault handler.

FORMAT

INPUT PARAMETERS

handler-id
A value uniquely identifying the handler, in PFM _ $FH _ HANDLE _ T format. This is a
4-byte integer.

A unique value is returned by PFM _ $ESTABLISH _ F AUL T _ HANDLER each time you
establish a handler.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

USAGE

This call COMMENTs the specified fault handler ceasing to have effect for faults that occur
after the time of the call.

To establish a fault handler, use the PFM_$ESTABLISH_FAULT _HANDLER call.

PFM-ll PFM

PFM_ $RESET _ CLEANUP

PFM $RESET CLEANUP

Returns a clean-up handler to the top of the handler stack.

FORMAT

PFM_$RESET_CLEANUP (clean-up-record. status)

INPUT PARAMETERS

elean-up-reeord
A record uniquely identifying the clean-up handler, in PFM_$CLEANUP _REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

A unique record is returned by PFM_$CLEANUP each time a cleanup handler is
established. The clean-up-record that is input must not have been altered or copied. If it
has been, or if for some other reason the record is invalid, the procedure will fail with the
status PFM $INVALID CLEANUP REO.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

USAGE

PFM

This procedure re-establishes the clean-up handler identified by the clean-up-record at the
top of the stack, so that any subsequent errors invoke it first.

This procedure can only be used within a clean-up handler.

PFM-12

c

o

o

o

o

PFM $RLS CLEANUP

PFM $RLS CLEANUP

Releases a specified clean-up handler and any other clean-up handlers above it on the stack.

FORMAT

PFM_$RLS_CLEANUP (clean-up-record. status)

INPUT PARAMETERS

clean-up-record
A record uniquely identifying the clean-up handler, in PFM_ $CLEANUP _REC format.
This data type is 8 bytes long. See the PFM Data Types section for more information.

A unique record is returned by PFM_ $CLEANUP each time a clean-up handler is
established. The clean-up-record that is input must not have been altered or copied. If it
has been, or if for some other reason the record is invalid, the procedure will fail with the
status PFM $INVALID CLEANUP REC.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PFM
Data Types section for more information.

Possible status values are:

PFM $INV ALID $CLEANUP REC
The clean-up-record has been altered or copied and is therefore invalid.

PFM $BAD RLS ORDER

USAGE

Program attempting to release a clean-up handler before releasing all
handlers established after it. This status is only a warning; the handler i~
successfully released, and all handlers above it on the stack are also
released.

PFM_ $RLS _ CLEANUP releases the specified clean-up handler and all other clean-up
handlers above it on the stack.

PFM-13 PFM

PFM_ $SIGNAL

PFM $SIGNAL

Exits from the current procedure and signals a status for the clean-up handler on the top of
the stack.

FORMAT

PFM_$SIGNAL (status)

INPUT PARAMETERS

status
Status code, in STATUS _ $T format. This data type is 4 bytes long. See the PFM Data
Types section for more information.

USAGE

PFM

PFM_$SIGNAL can be called from within a clean-up handler or from normal code.

If invoked from within a clean-up handler, PFM_ $SIGNAL exits from the current clean-up
handler and invokes the clean-up handler on the top of the stack, if there is one. If invoked
from outside a clean-up handler, this routine invokes the top clean-up handler on the stack,
with the status code given in the PFM_ $SIGNAL call.

Typically, PFM_ $SIGNAL is called at the end of one clean-up handler to invoke the next
handler, and the status parameter is normally assigned the error status originally received
from PFM_$CLEANUP. When no more clean-up handlers from the current program are
on the stack,.PFM_$SIGNAL causes the program to exit to the invoking program (which
may be the Shell) with the status code set to the value given in the status parameter.

Traceback information (see the DOMAIN System Command Reference) is not stored when
PFM_ $SIGNAL is called. When a fault occurs, however, the operating system
automatically stores traceback information.

Unlike most subroutines, PFM_ $SIGNAL does not return to the place from which it was
called.

PFM-14

(
\
'-. "

o

o

o

ERRORS

STATUS $OK
Successful completion.

PFM_ $BAD _RLS _ ORDER
Cleanup handler released out of order.

PFM_$CLEANUP _NOT_FOUND
Static cleanup handler not found.

PFM_$CLEANUP _SET
Cleanup handler established successfully.

PFM_$CLEANUP _SET_SIGNALLED
PFM_$CLEANUP _SET was signalled.

PFM_ $FH_NOT _FOUND
Attempt to release non-existent fault handler.

PFM_ $FH_ WRONG _LEVEL
Attempt to release fault handler at wrong level.

PFM_ $INV ALID _ CLEANUP _REC
Invalid clean-up record.

PFM_$NO_SPACE
No RWS space to create static clean-up handler.

PFM-15

PFM ERRORS

PFM

'\

o

o

o

o

o

- ----------------- .. _. ----------------------

PGM

This section describes the data types, the call syntax, and the error codes for the PGM
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PGM-l PGM

PGM DATA TYPES

CONSTANTS

PGM $ERROR

PGM $FALSE

PGM $INTERNAL FATAL -
PGM $ MAX SEVERITY

PGM $OK -
PGM $OUTPUT INVALID -
PGM $PROGRAM FAULTED -
PGM $TRUE

PGM $WARNING -

DATA TYPES

EC $PTR T

EC2 $EVENTCOUNT T

predefined
type

PGM

byte:
offset

0:

4:

3

1

5

15

0

4

6

0

2

integer

The error severity level.

A test severity level.

The fatal severity level.

The highest severity level.

The success severity level.

A conditional severity level.

The program fault severity level.

A test severity level.

The warning severity level.

A 4-byte integer. Pointer to an eventcount.

User eventcount. The diagram below illustrates the
EC2 _ $EVENTCOUNT _ T data type:

field name

integer value

awaiters

Field Description:

value
Current EC value.

awaiters
First process waiting.

PGM-2

r"
"', .. -

f'
i,

'-..

o

o

o

o

o

PGM $ARG

predefined
type

PGM $ARGV

PGM $ARGV PTR

PGM $CONNV

PGM $EC_KEY

PGM $MODE

PGM $NAME

byte:
offset

PGM DATA TYPES

An argument returned by PGM_ $GET _ARGS.
The diagram below illustrates the PGM _ $ARG
data type:

field name

0: len

2: chars

n:

Field Description:

len
Length of the argument.

chars
The text of the argument, a character array of
up to 128 elements.

A 128-element array of 4-byte integers. An array of
pointers to returned arguments.

A 4-byte integer. The address of a returned
argument.

A 128-element array of 2-byte integers. An array of
stream IDs.

A 2-byte integer. Key specifying process
eventcount. One of the following pre-defined
values:

PGM $ CHILD _PROC
Currently the only valid key.

A 2-byte integer. Specifies the mode in which to
invoke a program. Any combination of the
following pre-defined values:

An array of up to 128 characters. The text of a
retrieved argument.

PGM-3 PGM

PGM DATA TYPES

PGM_$OPTS

PGM $PROC

predefined
type

PGM

byte:
offset

0:

31

A 2-byte integer. Options for the mode in which to
invoke a program. One of the following pre-defined
values:

PGM $WAIT
Specifies synchronous operation of the invoked
program.

PGM_ $BACKGROUND
Specifies parallel operation of the invoked
process.

Process handle record. The diagram below
illustrates the PGM_ $PROC data type:

fiefd name
o

integer p

Field Description:

p
The process pointer.

PGM-4

~"
I,

\''-

STATUS $T o

o

o

o

UID $T

o

byte:
offset 31

0:

0:

1 :

PGM DATA TYPES

A status code. The diagram below illustrates the.
STATUS_$T data type:

field name o
integer all

or

fail

subsys

modc
1-----1---. 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

A type urn. The diagram below illustrates the
UID _ $T data type:

PGM-5 PGM

PGM DATA TYPES

predefined byte:
i-'

field name
II

type offset '-

0: integer high

4: integer low

Field Description:

high
The high four bytes of the UID.

high
The low four bytes of the UID.

PGM PGM-6

o

o

o

o

o

PGM_$DEL ARG

PGM $DEL_ARG

Deletes a command line argument.

FORMAT

INPUT PARAMETERS

arg-number
Number indicating the argument to delete. This is a 2-byte integer.

USAGE

PGM_ $DEL _ARG deletes the specified argument from the argument vector whose
address is returned by PGM_ GET _ARGS. After execution of PGM_ $DEL _ARGS, the
previously returned address refers to the newly changed argument vector.

Arguments in the argument vector are numbered 0 through n, where 0 is the program
name, and n is the final argument. Because PGM_$DEL_ARGS changes the argument
vector, arguments following deleted arguments change in number. For example, say the
argument vector contains six arguments (including the program name). After you delete
the third argument, arguments 4, 5, and 6 must be referenced as arguments 3, 4, and 5.

PGM-7 PGM

PGM_$EXIT

PGM $EXIT

Exits from a program to its caller.

FORMAT
PGM_$EXIT

USAGE

PGM

PGM_$EXIT can be used to exit from a program at any point and return to the program's
caller.

PGM_$EXIT differs from a simple exit (for e~ample, via FORTRAN's END statement) in
that PGM $EXIT is valid in a subroutine. Execution in a subroutine terminates the main
program. FORTRAN's STOP statement, which can be used in main programs and
subprograms, calls PGM_$EXIT.

When PGM _ $EXIT is executed, any files left open by the program are closed, any storage
acquired is released, and the inhibit count is reset to its value when the program was
invoked.

PGM_$EXIT calls PFM_$SIGNAL with a status code equal to the last severity level set
by a call to PGM _ $SET _ SEVERITY. If no PGM_ $SET _ SEVERITY calls have been
made, the status code is PGM_ $OK. PFM_ $SIGNAL signals this severity to any
established clean-up handlers, which normally execute in response to any status code other
than PFM_ $ CLEANUP _SET. Therefore, any established clean-up routines are normally
executed after PGM $EXIT is called.

PGM-8

\

o

o

o

o

o

PGM $GET _ARG

Returns one argument from the command line.

FORMAT

arg-length = PGM_$GET_ARG (arg-number. argument. status. maxlen)

RETURN VALUE

arg-length
Length, in bytes, of the returned argument. This is a 2-byte integer.

INPUT PARAMETERS

arg-number
Number of the argument to return. This is a 2-byte integer.

OUTPUT PARAMETERS

argument
String of length arg-Iength, containing the requested argument, in PGM_ $NAME format.
This is an array of up to 128 characters.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

INPUT PARAMETERS

maxlen
Maximum length of the argument, in bytes. This is a 2-byte integer.

FORTRAN automatically passes the length of a character string following the string itself.
Therefore, to return a character string argument to a FORTRAN program, omit the
maxlen parameter. Use the following format for the call:

arg-length = PGM_$GET_ARG (arg-number. argument. status)

This format applies to character strings only. For an argument of any other type, use the
standard call.

If the value of maxlen is less than the returned argument length, the program manager
truncates the returned argument to maxi en bytes and returns the status
PGM $ARG TOO BIG.

PGM-9 PGM

USAGE

PGM

PGM_$GET _ARG returns one argument from the program's caller. The argument is in
character string format.

Argument numbers on the command line range from 0 to n. Argument 0 is the program
name.

PGM-tO

c

o

o

o

PGM $GET ARGS

PGM $GET _ARGS

Returns the address of the argument vector.

FORMAT

PGM_$GET_ARGS (argument-count. arg-vector-addr)

OUTPUT PARAMETERS

argument-count
Number of arguments in the argument vector. This is a 2-byte integer.

arg-vector-addr
Address of the argument vector, in PGM_ $ARGV _PTR format. This is a 4-byte integer.

USAGE

PGM_ $GET _ARGS returns the address of the argument vector.

The argument vector is an array of addresses pointing to the arguments. This array can be
up to 128 elements.

The addresses are in PGM_ $ARGV format. This is a 4-byte integer. See the PGM Data
Types section for more information.

PGM-ll PGM

PGM $GET EO

PGM $GET EC

Gets an eventcount to wait for completion of a child process.

FORMAT

PGM_$GET_EC (process-handle. process-key. eventcount-pointer. status)

INPUT PARAMETERS

process-handle
Process handle of the child process for which to wait, in PGM_ $PROC format. This data
type is 4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM_ $INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

process-key
Key specifying which process eventcount the system should return, in PGM_ $EC _KEY
format. This is a 2-byte integer.

Currently the only allowable value is PGM_ $CHILD _PROC.

OUTPUT PARAMETERS

eventcount-pointer
The eventcount address to be obtained, in EC2 _ $PTR _ T format. This is a 4-byte
integer.

EC2 _ $PTR _ T is a pointer to an EC2 _ $EVENTCOUNT _ T record. See the EC2 Data
Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE

PGM

PGM_ $GET _EC returns a pointer to an eventcount that advances when a child process
terminates. This eventcount address can be passed to EC2 _ $W AIT to wait for a specific
child process to complete. You identify the child process by passing the process handle as
an input parameter.

When a child process is created, the process eventcount value is o. When a child process
terminates, the process eventcount value is 1. To wait on a specific child process, you
might use:

PGM_$PROC_EC (.... gets process event count)
EC2_$WAIT (.... waits until eventcount is 1)

See the Managing Programs Chapter of the Programming With General System Calls
manual for more information.

PGM-12

c'

c'

C .. \

I 0
/

o

o

o

o

PGM $GET PUID

PGM $GET PUID

Gets the process UID of a process.

FORMAT

PGM_$GET_PUID (process-handle. pUid. status)

INPUT PARAMETERS

process-handle
Process handle of the child process for which you want a UID, in PGM_ $PROC format.
This data type is 4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM_$INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

puid
Process UID, in UID _ $T format. This data type is 8 bytes long.Se~ the PGM Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE

PGM_$GET _PUID, which returns the process UID of a child process.

PGM_ $GET _PUID, which is used in conjunction with other system calls. These calls are:

• PROC2_$GET_INFO, which returns information about a process given a
PUID.

• PROC2_$LIST, which returns a list of the PUIDs of all active user processes.

• PGM_ $MAKE _ ORPHAN, which returns the PUID of the orphaned process.

PGM-13 PGM

PGM $INVOKE

PGM $INVOKE

Invokes a program.

FORMAT

PGM_$INVOKE (pathname, namelength, arg-count, arg-vector, stream-count,
connection-vector, mode, process-handle, status)

INPUT PARAMETERS

pathname
Pathname of the program to invoke, in NAME ~ $PNAME _ T format. This is an array of
up to 256 characters.

The specified pathname must be an absolute pathname; the Shell's search rules do not
apply.

namelength
Length of the pathname, in bytes. This is a 2-byte integer.

arg-count
Number of arguments to pass to the invoked program. This is a 2-byte integer.

This number corresponds to the number of elements in the argument vector.

arg-vector
Array containing the addresses of the arguments to pass to the invoked program, in
PGM_ $ARGV format. This is an array of 4-byte integers.

A program can pass any number'of arguments to a program it is invoking. However, when
passing arguments to a Shell, the Shell's syntax limits the number of arguments to 10
(including the program name). Each argument must be preceded by a 2-byte integer
indicating the number of bytes in the argument. The first argument must be the name of
the program; the simple name, not the absolute pathname (that is, date, not
/ /desperado/com/date). Note that if the invoked program calls PGM_$DEL_ARG, the
argument vector changes. See the description of PGM_ $DEL _ARG for details.

stream-count
Number of streams to pass to the invoked program. This is a 2-byte integer.

Y oli. are permitted to pass up to 32 streams. In the invoked program these streams are
numbered 0 to 31.

connection-vector

PGM

Array containing stream IDs to pass to the invoked program, in PGM_ $CONNV format.
Each stream ID is a 2-byte integer, in STREAM_ $ID _ T format. Up to 128 elements are
permitted.

By default, every program is invoked with four streams, numbered 0 through 3. Stream 0
is standard input,. stream 1 is standard output, Stream 2 is error input, stream 3 is error
output.

Stream IDs refer to objects already opened by the calling program, using

PGM-14

c

o

o

o

o

o

PGM $INVOKE

STREAM $OREATE or STREAM $OPEN. The first element in the connection-vector
array becomes stream 0 in the invoked program, the second element becomes stream 1, and
so on.

You may leave II holes II in the connection vector by setting a stream ID equal to the
predefined constant STREAM_$NO _STREAM.

mode
Mode in which to invoke the program, in PGM_ $MODE format. This is a 2-byte integer.
Specify a null set, or one of the following predefined values:

PGM $W AIT The program executes as a separate program within the same process as
the invoking program.

PGM $BAOK GROUND
The program executes as a separate process that runs to termination
independently of the invoking process.

If you pass a null set (default), the program executes as a separate process that
communicates its termination status to the invoking program. To specify a null set in 0
and FORTRAN, declare the variable and initialize it to O.

OUTPUT PARAMETERS

process-handle
Process handle of the process in which the invoked program runs, in PGM_ $PROO
format. This data type is 4 bytes long. See the PGM Data Types section for more
information.

The process handle is used as an input parameter in the PGM_ $GET _EO,
PGM_$PROO_ WAIT, PGM_$GET_PUID, and PGM_$MAKE_ORPHAN calls to
identify an invoked program.

Note that the process handle is valid only after creating a process in default mode. You
will get an error (for example, 'reference to illegal address') if you attempt to use the
process handle of a process created in background mode. The following calls use the process
handle: PGM_$GET_EO, PGM_$GET_PUID, PGM_$MAKE_ORPHAN or
PGM $PROO WAIT.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

Possible values are:

STATUS $OK Success status.

PGM $BAD OONNY
Stream vector too large (> 32).

Severity level values returned by the program:

PGM $TRUE Value of tested condition is true.

PGM-15 PGM

PGM $INVOKE

PGM $FALSE Value of tested condition is false.

PGM $W ARNING
Unusual, but not fatal condition detected.

PGM $ERROR Syntactic or semantic errors in input; output is structurally sound.

PGM $INV ALID OUTPUT
Syntactic or semantic errors in input; output is not structurally sound.

PGM $INTERNAL FATAL
Internal fatal error detected.

Any status returned by the invoked program.

Any status returned by modules that PGM_ $INVOKE calls.

USAGE

PGM

PGM _ $INVOKE invokes a program in the specified mode, and passes that program any
parameters that it needs. The addresses of arguments are passed to the invoked program
by way of the arg-vector, which is an array of those addresses. The invoked program uses
the system routines, PGM_$GET_ARGS, PGM_$GET_ARG, and PGM_$DEL_ARG
to access the arguments. See the documentation of those routines for details.

You can change standard input for the invoked program by opening the desired input file
and passing its stream ID as the first element of the connection vector. The same is true for
standard output, standard error input, and standard error output.

When the invoked program finishes executing, files it has opened are closed, storage it has
acquired is released, and the inhibit count is the same as it was upon entry.

The behavior of an invoked program differs depending on the mode in which the program is
invoked.

Invoking a Program in Wait Mode

When you invoke a program this way, the invoking program executes the program and
waits for it to complete before continuing.

A program invoked in wait mode calls PGM_ $SET _SEVERITY to indicate its completion
status to the invoking program.

A program ends when one of the following takes place:

• A language defined termination statement is executed

• An unhandled fault occurs

PGM-16

c

C"I

- -

o

o

o

o

o

PGM $INVOKE

• You call PGM $EXIT

Normal termination returns execution to the calling program. An unhandled error either
terminates the program with an error status or invokes a clean-up handler. PGM-,$EXIT
invokes any established clean-up handlers, then exits to the calling program. Any severity
levels set during program execution are returned in the status parameter.

Invoking a Program in Default Mode

When you invoke a program specifying a null set, the invoking program creates a new
process in which to run the program. The invoking process may wait for the child process
to complete and determine its termination status by calling PGM_ $PROO _ WAlT.

When a process invokes another process, the invoking process is referred to as the parent
process and the invoked process is referred to as the child process. Executing a program in
a child process is useful if you wish to perform concurrent processing or if your program
requires a large amount of address space.

Waiting for a Child Process

The PGM_ $GET _EO call permits you to get a process eventcount that is advanced when
a specified process terminates. By using this call in conjunction with the system calls
E02 _ $READ and E02 _ $W AlT, a parent process can wait for the completion of a child
process (or a list of event counts).

Getting the Completion Status of a Child Process

Once a child process has completed, examine its completion status. To obtain the
completion status of a default mode process, call PGM_ $PROO _ WAlT in the parent
process. PGM_ $PROC _ WAlT takes the process handle of the invoked program as an
input parameter and returns its completion status. If the child process has not completed
execution at the time of the PROC _ WAlT call, execution of the parent process suspends
until a completion status is available.

A certain amount of resources in a parent process are used to keep track of a child process.
When a call to PGM_ $PROO _ WAlT is completed those resources are released. If you
invoke a number of child processes without ever calling PROC _ WAlT, the parent process
may run out of resources. If you are not interested in the completion status of the invoked
program, invoke it using background mode.

PGM-17 PGM

PGM $INVOKE

PGM

Invoking a Program in Background Mode

When you invoke a program specifying PGM _ $BACK _ GROUND, the invoking program
creates a new process in which to run the program. Background mode differs from default
mode in that a background mode process runs completely independently of the parent.
That is, there is no communication of the completion status.

Background mode is useful for performing processing that has no further dependence on the
parent process. For example, a parent process may perform interactive data collection,
invoke a program in a background process to manipulate the data, and then return to
further data collection. This permits you to collect and manipulate the data concurrently.

Because a background mode process has no dependence on the parent, it is referred to as an
orphan process. You can change a default child process into an orphan process by calling
PGM $MAKE ORPHAN.

Note that the process handle is valid only after creating a process in default mode. You
will get an error (for example, 'reference to illegal address') if you attempt to use the
process handle of a process created in background mode. The following calls use the process
handle: PGM_$GET_EC, PGM_$GET~PUID, PGM_$MAKE_ORPHAN or
PGM $PROC WAIT.

PGM-18

c

/"
(
"-.. ..

C~

o

o

o

o

o

PGM $MAKE ORPHAN

PGM $MAKE ORPHAN

Changes a normal child process into an orphan process.

FORMAT

PGM_$MAKE_ORPHAN (process-handle. pUid. status)

INPUT PARAMETERS

process-handle
Process handle of the child process to orphan, in PGM_ $PROC format. This data type is
4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM_ $INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

puid
Process UID, in UID _ $T format. This data type is 8 bytes long. See the PGM Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PGM
Data Types section for more information.

USAGE

PGM_ $MAKE _ ORPHAN changes the specified child process into an orphan process.

An orphan process is one that is run in PGM_ $BACKGROUND mode. An orphan process
runs independently of the parent process and no termination status is returned to the
parent.

PGM-19 PGM

PGM $PROC WAIT

PGM $PROe WAIT

Waits for a process that has been created with PGM_$INVOKE to terminate and returns
a completion status for the process.

FORMAT

PGM_$PROC_WAIT (process-handle. status)

INPUT PARAMETERS

process-handle
Process handle of the child process for which to wait, in PGM _ $PROe format. This data
type is 4 bytes long. See the PGM Data Types section for more information.

The process handle is returned by PGM _ $INVOKE when you create a process. Note that
the process handle is valid only when you invoke the program in default mode.

OUTPUT PARAMETERS

status
The child process completion status, in STATUS _ $T format. This data type is 4 bytes
long. See the PGM Data Types section for more information.

USAGE

PGM

PGM_ $PROe _ WAIT suspends the execution of a parent process until the completion of a
specified child process. This call permits a child process to pass a completion status to the
parent upon termination.

Using PGM_INVOKE in default mode (the empty set) and then calling
PGM_$PROe_ WAIT is equivalent to using PGM_$INVOKE in PGM_$WAIT mode.

PGM-20

c

C~

c

o

o

o

o

o

PGM_$SET SEVERITY

PGM $SET SEVERITY

Sets the severity level for a program.

FORMAT

PGM_$SET_SEVERITY (severity-level)

INPUT PARAMETERS

severity-level
The severity level returned to the caller. This is a 2-byte integer. Specify only one of the
following predefined values:

PGM $OK The program completed successfully and performed the requested action.

PGM $TRUE The program completed successfully; its purpose was to test a condition,
and the value of that condition was TRUE.

PGM $F ALSE The program completely successfully; its purpose was to test a condition,
and the value of that condition was FALSE.

PGM $W ARNING
The program completed successfully and performed the requested action.
However, an unusual (but nonfatal) condition was detected.

PGM $ERROR The program could not perform the requested action because of syntactic
or semantic errors in the input. The output is structurally sound,
however.

PGM $OUTPUT INVALID
The program could not perform the requested action because of syntactic
or semantic errors in the input, and the output is not structurally sound.

PGM $INTERNAL FATAL
The program detected an internal fatal error and ceased processing. The
state of the output is neither defined nor guaranteed.

PGM $PROGRAM FAULTED
The program detected and handled a fault.

Severity levels are a subset of the general system status codes.

USAGE

Every program returns a severity level to its caller. By default, the severity level is
PGM_ $OK. Use PGM_ $SET _SEVERITY in the invoked program to change the level to
another value.

The following are examples of appropriate changes to the severity level:

PGM _ $TRUE or PGM _ $F ALSE would be returned by an II equal II program that
compares its two arguments to see if they are equal.

PGM-21 PGM

PGM_$SET SEVERITY

PGM

PGM_$WARNING would be returned by DLF (DELETE_FILE) if the file to be deleted
did not exist.

PGM_$ERROR would be returned by a compiler if the input program contained an error
that prevented a correct translation, but the output object module format was correct.

PGM_$OUTPUT _INVALID would be returned by a compiler if an error in the input
program caused the object module format to be invalid.

PGM_$INTERNAL_FATAL would be returned if the program could not proceed because
it detected that its data structures were corrupted.

PGM_$PROGRAM_FAULTED would be returned if the program signaled a fault and
wishes to inform the invoking program without resignalling the fault.

PGM-22

(
\

o

o

o

o

o

PGM ERRORS

ERRORS

STATUS $OK
Successful completion.

PGM $ERROR
The program could not perform the requested action because of syntactic or semantic
errors in the input. The output is structurally sound, however.

PGM $FALSE
The program completely successfully; its purpose was to test a condition, and the
value of that condition was FALSE.

PGM $INTERNAL FATAL
The program detected an internal fatal error and ceased processing. The state of the
output is neither defined nor guaranteed.

PGM_$OK
The program completed successfully and performed the requested action.

PGM_$OUTPUT INVALID
The program could not perform the requested action because of syntactic or semantic
errors in the input, and the output is not structurally sound.

PGM $PROGRAM FAUL TE
The program faulted.

PGM $TRUE
The program completed successfully; its purpose was to test a condition, and the value
of that condition was TRUE.

PGM_$WARNING
The program completed successfully and performed the requested action. However, an
unusual (but non-fatal) condition was detected.

PGM-23 PGM

o

o

o

o

o

PM

This section describes the data types and the call syntax for the PM programming calls. The PM
calls do not use produce unique error messages. Refer to the Introduction at the beginning of this
manual for a description of data-type diagrams and call syntax format.

PM-l PM

PM DATA TYPES

CONSTANTS

DATA TYPES

NAME _ $PNAME _ T

STATUS $T

PM

byte:
offset 31

256 Maximum length of a pathname.

An array of up to NAME_$PNAMLEN_MAX
(256) characters.

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name o
0: integer all

or

0: fail

subsys

1 : mode
10----1---. 0

2: integer eode

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

mode
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PM-2

/~

I

1" ... -

/'
I

\"

o

o

o

o

o

PM $GET HOME TXT

Returns the home directory of the calling process as a string.

FORMAT

INPUT PARAMETERS

maxlen
Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 256.

OUTPUT PARAMETERS

home
Pathname of the home directory for the SID (log-in identifier) of this process. This is an
array of up to 256 characters.

len
Number of characters returned in the home parameter. This is a 2-byte positive integer.

USAGE

The home directory is obtained from the network registry when you log in and is inherited
by all your processes.

PM-3 PM

PM_ $ GET _ SID _ TXT

PM_$GET SID TXT

Returns the SID (log-in identifier) of the calling process as a string.

FORMAT

INPUT PARAMETERS

maxlen
Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 140.

OUTPUT PARAMETERS

sid

len

String containing the person, project, organization and node ID of the SID (log-in identifier)
of this process, in the form:

person.group.project.node1d

This is an array of up to 140 characters.

Number of characters returned in the log-in identifier. This is a 2-byte positive integer.

USAGE

PM

Your SID is the full identifier obtained from the network registry when you log in and is
inherited by all your processes.

PM-4

o

o

o

o

o

PROCl

This section describes the data types and the call syntax for the PROCI programming calls. The
PROCI calls do not produce unique error messages. Refer to the Introduction at the beginning of
this manual for a description of data-type diagrams and call syntax format.

PROCl-l PROCI

PROCI DATA TYPES

DATA TYPES

TIME _ $CLOCK T

predefined
record

predefined
record

PROCI

byte:
offset

0:

4:

byte:
offset

0:

2:

Internal representation of time. The diagram below
illustrates the TIME _ $CLOCK _ T data type:

field name

integer high

integer low

Field Description:

high
High 32 bits of the clock.

low
Low 16 bits of the clock.

field name

pos. integer high16

positive integer low32

Field Description:

high16
High 16 bits of the clock.

low32
Low 32 bits of the clock.

PROCI-2

c

._------------------------ .. - ... ---.... - ... -

o

o

o

o

o

PROCl_ $GET _ CPUT

Returns the CPU time used by this process.

FORMAT

PROC1_$GET_CPUT (clock)

OUTPUT PARAMETERS

clock

PROCl $GET CPUT

The amount of CPU time used by this process since its creation, in TIME_$CLOCK_ T
format. This data type is 6 bytes long. See the TIME Data Types section for more
inCormation.

USAGE

PROCl_ $GET _ CPUT returns the amount of CPU time that the calling process has used
since its creation. The returned clock value has a resolution of 4 microseconds.

CPU time is the time during which the process is running in the CPU. This includes the
time that the operating system is performing services Cor the process, but does not include
the time that the process spends waiting Cor I/O transCers to complete.

PROCl-3 PROCl

('
(

\"-

o

o

o

o

o

PROC2

This section describes the data types, the call syntax, and the error codes for the PROC2
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

PROC2-1 PROC2

PROC2 DATA TYPES

DATA TYPES

PROC2 $INFO T

predefined byte:
type offset

[0:
uid_$t

4:

8:

proc_$state_t 12: integer

14: integer

16:

20:

24:

[28:
time_$clock_t

32: integer

34: integer

PROC2

Process information record. The diagram below
illustrates the PROC2 _ $INFO _ T data type:

field name

integer stack_uid.high

integer stack_uid .Iow

integer stack_base

state

usr

integer upc

integer usp

integer usb

integer cpu_total. high

cpu _ total. low

priority

Field Description:

stack uid
Uid of user stack.

stack base
Base address of user stack.

state
Process state - ready, waiting, etc ..

usr
User status register.

upc
User program counter.

usp
User stack pointer.

usb
User stack base pointer (A6).

PROC2-2

r--.,
',-

;--..

I
\,.

r
'. '.

r
'-

o
PROC2 $UID _ LIST T

PROC2 $STATE_ T

o

STATUS $T

o

o

o

byte:
offset 31

0:

0:

1 :

PROC2 DATA TYPES

cpu_total
Cumulative cpu time used by process.

priority
Process priority.

An array of UIDs (in UID _$T format) of up to 24
elements.

A 2-byte integer. State of a user process. Any
combination of the following pre-defined values:

PROC2 $WAITING
Process is waiting.

PROC2 $SUSPENDED
Process is suspended.

PROC2 $SUSP _PENDING
Process suspension is pending.

PROC2 $BOUND
Process is bound.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
1------'----, 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail hit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

PROC2-3 PROC2 _

PROC2 DATA TYPES

PROC2

subsys
The subsystem that encountered the error (bits
24 - 30).

mode
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PROC2-4

c

c

o

o

o

o

o

PROC2 $GET INFO

PROC2 $GET INFO

Returns inCormation about a process.

FORMAT

PROC2_$GET_INFO (process-uid. info. info-buf-length. status)

INPUT PARAMETERS

process-uid
The UID oC the process Cor which you want inCormation, in UID _ $T Cormat. This data
type is 8 bytes long. See the PROC2 Data Types section Cor more inCormation.

You can get process UIDs by calling PROC2_$WHO_AM_I and PROC2_$LIST.

If the process-uid in the call is the caller's own process, the only inCormation returned is the
stack UID and virtual address. IC you want to Cind out the amount oC CPU time used by
the caller's process, use PROCl_ $CPU _ TIME.

info-buf-Iength
Length oC the inCormation buCCer allotted Cor returned inCormation, in bytes. This is
normally 36 bytes.

OUTPUT PARAMETERS

info
InCormation about the process, in PROC2 _ $INFO _ T Cormat. This data type is 36 bytes
long. See the PROC2 Data Types section Cor more information.

status
Completion status, in STATUS _ $T Cormat. This data type is 4 bytes long. See the
PROC2 Data Types section for more information. Possible values are:

STATUS _ $OK Completed successfully.

PROC2 $IS CURRENT
Specified calling process UID (success).

PROC2 $UID NOT FOUND
Specified UID is not on node.

USAGE

GET _ $INFO returns information about a process when supplied with a process UID. The
inCormation returned consists of the following:

• The program state (ready, waiting, suspended, SUSP _PENDING, bound).

• The User Status Register (USR).

• The User Program Counter (UPC).

PROC2-5 PROC2

PROC2 $GET INFO

• The user stack pointer (A7).

• The stack base pointer (A6).

• The amount of CPU time used.

• The CPU scheduling priority.

c

c

PROC2 PROC2-6

o

o

o

o

o

PROC2 _ $LIST

PROC2 $LIST

Returns a list of existing level 2 (user) processes in the caller's node.

FORMAT

PROC2_$LIST (u1d-11st. max-num-u1ds. number-u1ds)

OUTPUT PARAMETERS

uid-list
The UIDs of the active level 2 processes on the system, in PROC2 _ $UID _ LIST _ T
format. This is a 24-element array of UIDs. Each UID is a 4-byte integer in UID _ $T
format.

INPUT PARAMETERS

max-num-uids
Maximum number of process VIDs to be returned. (At most, the size of the buffer you
assign for uid-list. This is a 2-byte integer.

OUTPUT PARAMETERS

number-uids
Number of active level 2 processes on the node, even if that number is greater than
max-num-uids. This is a 2-byte integer.

USAGE

The UIDs of all level 2 processes (user processes) on the caller's node, up to max-num-uids,
are returned.

PROC2-7 PROC2

PROC2_$WHO_AM_I

PROC2 $WHO _AM I

Returns the UID of the calling precess.

FORMAT

PROC2_$WHO_AM_I (my-u1d)

OUTPUT PARAMETERS

my-uid
The UID of the calling process, in UID _ $T format. This data type is 8 bytes long. See the
PROC2 Data Types section for more information.

USAGE

You can use a UID obtained through this call to find out information about your process
through the PROC2 _ $GET _ INFO call.

PROC2 PROC2-8

o

o

ERRORS

STATUS $OK
Successful completion.

PROC2 $BAD STACK BASE
Bad stack base.

PROC2 $IS CURRENT
Request is for current process.

PROC2 $NOT LEVEL 2
Not a level two process.

PROC2 $UID NOT FOUND
Process not found.

PROC2 ERRORS

PROC2-9 PROC2

."......---._,

o

o

o

()

o

RWS

This section describes the data types, the call syntax, and the error codes for the RWS
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

RWS-l RWS

RWS DATA TYPES

DATA TYPES

RWS $POOL T

STATUS $T

Total
Size: 4

RWS

A 2-byte integer. Types of pools from which to
allocate read/write or heap storage. One of the
following predefined values:

RWS $STD POOL

Standard pool makes storage accessible to
calling process only.

RWS $STREAM TM POOL

Stream pool makes storage accessible to
calling program and to a program invoked
with the UNlX EXEC system call.

RWS $GLOBAL POOL

Global pool makes storage accessible to all
processes.

A status c()de. The diagram below illustrates the
STATUS_$T data type:

: byte
offset field name

31 15 0

integer :0 all

or

:0 fail

:24 subsys

:16 mode

:31 code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

RWS-2

c.

C'

~"

~ .'

c

o

UNN_PTR

o

o

o

o

RWS DATA TYPES

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

A 4-byte integer. A pointer to allocated storage.

RWS-3 RWS

RWS $ALLOC

RWS $ALLOa

Allocates read/write storage for 0, FORTRAN or Pascal programs.

FORMAT

INPUT PARAMETERS

storage_sz
The number of bytes of storage needed. This is a 4-byte integer.

OUTPUT PARAMETERS

storage _ ptr
The address of the new storage space, in UNN _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS _ $ALLOa could not allocate the desired
storage.

USAGE

RWS

RWS _ $ALLOa allocates the specified number of bytes of read/write storage to the calling
process and returns the address of the storage area.

This routine is useful for allocating different quantities of dynamic storage, depending on a
run-time factor.

FORTRAN programmers: due to FORTRAN calling conventions, this is currently the only
RWS call you can use to allocate read/write storage.

Pascal and a programmers can use other RWS calls to allocate read/write or heap
(releaseable read/write) storage. See the calls, RWS _ $ALLOa _RW _POOL and
RWS $ALLOa HEAP POOL for details.

a programmers might want to use the a library routine MALLOa to allocate storage.

RWS-4

. _---_ ------

c

c

c

o

o

o

o

o

RWS $ALLOC HEAP

RWS $ALLOO HEAP

Allocates heap (releaseable read/write) storage for Pascal and 0 programs.

FORMAT

RETURN VALUE

storage _ ptr
The address of the new storage space, in UNIV _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS _ $ALLOO _ HEAP could not allocate the
desired storage.

INPUT PARAMETERS

storage_sz
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

Note that RWS _ $ALLOO _ HEAP _ POOL replaces this obsolete call, which we include for
maintenance purposes only. For current and future development, use
RWS_$ALLOO_HEAP _POOL:

RWS _ $ALLOO _HEAP allocates the specified number of bytes of releaseable read/write
storage to the calling process and returns the address of the storage area. It allocates
storage from the standard RWS pool, which makes the storage accessible to the calling
program only. Use RWS _ $RELEASE _HEAP to release storage allocated with this call.

FORTRAN programmers: due to FORTRAN calling conventions, RWS _ $ALLOO is
currently the only RWS call you can use to allocate read/write storage.

o programmers might want to use the 0 library routine MALLOO to allocate storage.

RWS-5 RWS

RWS $ALLOC _HEAP POOL

RWS $ALLOC HEAP _POOL

Allocates heap (releasable read/write) storage from a specified pool.

FORMAT

RETURN VALUE

storage _ ptr
The address of the new storage space, in UNIV _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS_$ALLOC_HEAP _POOL could not
allocate the desired storage.

INPUT PARAMETERS

alIoe_pool
Pool from which the storage will be allocated, in RWS _ SPOOL _ T format. This is a
2-byte integer. Specify one of the following predefined values:

RWS $GLOBAL POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the identical portion of
address space.

RWS $STD POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS $STREAM TM POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information across a UNIX EXEC system
call.

storage_sz
Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS

RWS _ $ALLOC _HEAP _POOL allocates a specified number of bytes of heap storage to
the calling process and returns the address of the storage area.

When you no longer need the storage, call RWS_$RELEASE_HEAP _POOL to return
the storage to the pool from which it was allocated.

Whether you allocate heap (releaseable read/write) storage with this call or read/write
storage with RWS _ $ALLOC _ RW _ POOL depends on how long you want to keep the
storage. Once you allocate read/write storage, the storage exists until the program
terminates. However, you can explicitly release heap storage once you have finished using
it. The heap requires more system overhead initially to keep track of allocated storage.
Read/write storage does not require any system overhead.

RWS-6

------ ----- -~---.--.. --.-.--.- -------

c

c~

C~

o

o

o

o

o

-------- .-.. --.-------

RWS $ALLOC HEAP POOL

(Currently, the overhead for RWS _ $ALLOC _HEAP _POOL is between 4 to 16 bytes -­
The exact amount of call overhead is subject to change.)

Typically, you allocate heap storage if your program requires a substantial amount of
storage for a limited time, or if you want to keep your working set as small as possible.
You allocate read/write storage if you do not need to release storage before terminating a
program, or if the amount of overhead for a heap is unacceptable.

When allocating heap or read/write storage, you control how your program accesses storage
by specifying the type of storage pool to use:

• The standard pool (RWS _ $STD _POOL) permits access to the calling process
only.

• The global pool (RWS _ $GLOBAL _ POOL) permits access to all processes.

• The stream pool (RWS_$STREAM_ TM_POOL) permits access to the calling
program and a program invoked with a UNIX EXEC system call.

The global pool allows you to share information among processes. For example, you might
want to create a global queue to pass messages between processes. Note that pointers are
valid in all processes because all processes reserve an identical portion of address space.

The stream pool allows you to make storage accessible between a calling process and an
overlay process. For example, the lOS manager uses a stream pool to pass an open stream
to a program invoked with an EXEC call. It stores information about that stream in a
stream pool.

The following table summarizes the aspects of each type of storage allocation.

Standard

Pool

Global

Pool

Summary of Types of Storage Allocation

Read/Write Storage

Storage kept until program

exits or until it invokes
a program with a UNIX
EXEC system call.

No system overhead.

Heap Storage

Storage kept until you

release it with
RWS_$RELEASE_HEAP. the
program exits. or the
program invokes a program
with a UNIX EXEC call.

About 16 bytes of
system overhead.

Storage available to local process only.

Storage kept until reboot.

About 4 bytes of system
overhead.

Storage kept until

you release it with
RWS_$RELEASE_HEAP or reboot.

About 4 bytes of system
overhead.

Storage available to all processes.

RWS-7 RWS

RWS $ALLOC _HEAP _POOL

RWS

Stream
Pool

Summary of Types of Storage Allocation, Cont.

Read/Write Storage

Storage kept until

program exits.

No system overhead.

Heap Storage

Storage kept until

you release ib with
RWS_$RELEASE_HEAP.

About 16 bytes of
system overhead.

Storage available to the local process or to a
program invoked with a UNIX EXEC system call.

NOTE: Do not depend on the exact amount of system overhead
used in RWS system calls. The amount of overhead is
subject to change.

Note that this call replaces the obsolete RWS _ $ALLOC _HEAP call, which we include for
maintenance purposes only. For current and future development, use
RWS $ALLOC HEAP POOL.

FORTRAN programmers: due to FORTRAN calling conventions, RWS _ $ALLOC is
currently the only RWS call you can use to allocate read/write storage. C programmers
might want to use the C library routine MALLOC to allocate storage.

RWS-8

c

o

o

o

o

o

._--_ .. -.-------------------.

RWS $ALLOC RW

RWS $ALLOC RW

Allocates read/write storage for Pascal and C programs.

FORMAT

RETURN VALUE

storage _ptr
The address of the new storage space, in UNN _PTR format This is a 4-byte integer. A
returned address of zero (NIL) means that RWS _ $ALLOC _RW could not allocate the
desired storage.

INPUT PARAMETERS

storage_sz
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

Note that RWS _ $ALLOC _RW _POOL replaces this obsolete call, which we include for
maintenance purposes only. For current and future development, use
RWS $ALLOC RW POOL.

RWS _ $ALLOC _RW allocates the specified number of bytes of read/write storage to the
calling process and returns the address of the storage area. It allocates storage from the
standard RWS pool, which makes the storage accessible to the calling program only. This
call does not require any system overhead.

FORTRAN programmers: due to FORTRAN calling conventions, RWS _ $ALLOC is
currently the only RWS call you can use to allocate read/write storage.

C programmers might want to use the C library routine MALLOC to allocate storage.

RWS-9 RWS

RWS $ALLOC RW _POOL

RWS $ALLOC _RW _POOL

Allocates read/write storage from a specified pool.

FORMAT

RETURN VALUE

storage _ ptr
The address of the new storage space, in UNIV _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS _ $ALLOC _RW _POOL could not
allocate the desired storage.

INPUT PARAMETERS

alloe_pool
Pool from which storage will be allocated, in RWS _ $POOL _ T format. This is a 2-byte
integer. Specify one of the following following predefined values:

RWS $GLOBAL POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the identical portion of
address space.

RWS $STD POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS $STREAM TM POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information across a UNIX EXEC system
call.

storage_sz
Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS

RWS _ $ALLOC _RW _POOL allocates a specified number of bytes of read/write storage
to the calling process and returns the address of the storage area.

Whether you allocate read/write storage with this call or heap (releaseable read/write)
storage with RWS _ $ALLOC _HEAP _POOL depends on how long you want to keep the
storage. Once you allocate read/write storage, the storage exists until the program
terminates. However, you can explicitly release heap storage once you have finished using
it. The heap requires more system overhead initially, to keep track of allocated storage.
Read/write storage does not require any system overhead.

RWS-IO

c

c~

o

o

o

o

o

RWS $ALLOC RW POOL

Typically, you allocate read/write storage if you do not need to release storage before
terminating a program, or if the amount of overhead for a heap is unacceptable. You
allocate heap storage if your program requires a substantial amount of storage for a limited
time, or if you want to keep your working set as small as possible.

When allocating read/write or heap storage, you control how your program accesses storage
by specifying the type of storage pool to use:

• The standard pool (RWS _ $STD _POOL) permits access to the calling process
only.

• The global pool (RWS _ $GLOBAL _ POOL) permits access to all processes.

• The stream pool (RWS_$STREAM_ TM_POOL) permits access to the calling
program and a program invoked with a UNIX EXEC system call.

The global pool allows you to share information among processes. For example, you might
want to create a global queue to pass messages between processes. Note that pointers are
valid in all processes because all processes reserve an identical portion of address space.

The stream pool allows you to make storage accessible between a calling process and an
overlay process. For example, the lOS manager uses a stream pool to pass an open stream
to a program invoked with an EXEC call. It stores information about that stream in a
stream pool.

The following table summarizes the aspects of each type of storage allocation.

Standard

Pool

Global

Pool

Summary of Types of Storage Allocation

Read/Write Storage

Storage kept until program

exits or until it invokes
a program with a UNIX
EXEC system call.

No system overhead.

Heap Storage

Storage kept until you

release it with
RWS_$RELEASE_HEAP. the
program exits. or the
program invokes a program
with a UNIX EXEC call.

About 16 bytes of
system overhead.

Storage available to local process only.

Storage kept until reboot.

About 4 bytes of system
overhead.

Storage kept until

you release it with
RWS_$RELEASE_HEAP or reboot.

About 4 bytes of system
overhead.

Storage available to all processes.

RWS-ll RWS

RWS $ALLOC RW_POOL

RWS

Stream

Pool

Summary of Types of Storage Allocation, Cont.

Read/Write Storage

Storage kept until

program exits.

No system overhead.

Heap Storage

Storage kept until

you release it with
RWS_$RELEASE_HEAP.

About 16 bytes of
system overhead.

Storage available to the local process or to a
program invoked with a UNIX EXEC system call.

NOTE: Do not depend on the exact amount of system overhead
used in RWS system calls. The amount of overhead is
subject to change.

Note that this call replaces the obsolete RWS _ $ALLOC _RW call, which we include for
maintenance purposes only. For current and future development, use
RWS $ALLOC RW POOL.

FORTRAN programmers: due to FORTRAN calling conventions, RWS _ $ALLOC is
currently the only RWS call you can use to allocate read/write storage. C programmers
might want to use the C library routine MALLOC to allocate storage.

RWS-12

-- ------------------- ~-------.

o

o

o

o

RWS $RELEASE_HEAP

RWS _ $RELEASE _HEAP

Releases storage allocated by the RWS _ $ALLOC _HEAP call.

FORMAT

INPUT PARAMETERS

storage _ ptr
The address heap storage space, in UNN _PTR format. This is a 4-byte integer. This
must be the pointer returned by a call to RWS _ $ALLOC _ HEAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the RWS
Data Types section for more information.

USAGE

Note that RWS_$RELEASE_HEAP _POOL replaces this less efficient call, which we
include for maintenance purposes only. For current and future development, use
RWS $RELEASE HEAP._POOL.

Use this call to release the storage that you previously allocated with
RWS $ALLOC HEAP.

RWS-13 RWS

RWS $RELEASE HEAP POOL

RWS $RELEASE HEAP POOL

Releases storage to the pool from which it was allocated.

FORMAT

INPUT PARAMETERS

storage _ ptr
Pointer to the address heap storage space, in UNIV _PTR format. This is a 4-byte integer.
This must be the pointer returned by a call to RWS _ $ALLOC _HEAP _POOL.

aHoe_pool
Pool where storage will be returned to, in RWS _ $POOL _ T format. This is a 2-byte
integer. Specify the same value you specified in the RWS_$ALLOC_HEAP _POOL call,
which is one of the following predefined values:

RWS $GLOBAL POOL
Global pool makes storage accessible to all processes. Note that pointers
are valid in all processes because they reserve the identical portion of
address space.

RWS $STD POOL
Standard pool makes storage accessible to the calling program only. Most
programs use this type.

RWS $STREAM TM POOL
Stream pool makes storage accessible to the calling program and to a
program invoked with a UNIX EXEC system call. Use this type when
your program needs to pass information invoked with a UNIX EXEC
system call.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the RWS
Data Types section for more information.

USAGE

RWS

Use RWS_$RELEASE_HEAP _POOL to release storage to the pool from which it was
allocated. You allocate storage to a specific pool with the RWS_$ALLOC_HEAP _POOL
call.

RWS _ $ALLOC _HEAP _POOL dynamically allocates storage from one of the three types
of storage pools, and returns a pointer to the new storage. When you no longer need the
storage, you release it by passing the "storage_ptr" and "alloc_pool" to
RWS $RELEASE HEAP POOL. RWS $RELEASE HEAP POOL returns the
storage to the pool from which it was allocated.

RWS-14

- ---------------------- --~~-~~--

c

c

o

o

o

o

RWS $RELEASE HEAP POOL

Note that this call replaces the less efficient RWS_$RELEASE_HEAP call, which we
include for maintenance purposes only. For current and future development, use
RWS $RELEASE HEAP POOL.

RWS-15 RWS

RWS ERRORS

ERRORS

RWS $LEVEL FAILURE
User program wrote over the storage where the system stored the program level
information.

RWS $NOT _HEAP ENTRY
Argument to RWS _ $RELEASE _HEAP did not refer to storage allocated with
RWS $ALLOC HEAP.

RWS $SCRIBBLED OVER
User program wrote over the storage where the system stored the heap's process
information.

RWS $WRONG LEVEL

RWS

Attempted to release storage that was allocated by a program at a superior (lower)
program level. This error can occur when using RWS _ $STD _POOL or
RWS $STREAM TM POOL.

RWS-16

c

c

c:~

o

o

o

u

SID

This. section describes the data types, the call syntax, and the error codes for the SIO
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

S10-1 SIO

SIO DATA TYPES

CONSTANTS (-,
"-

SIO $50 Baud rate.

SIO $75 Baud rate.

SIO $110 Baud rate.

SIO $134 Baud rate.

SIO $150 Baud rate.

SIO $300 Baud rate.

SIO $600 Baud rate.

SIO $1200 Baud rate.

SIO $2000 Baud rate.
1('
\"

SIO $2400 Baud rate.

SIO $3600 Baud rate.

SIO $4800 Baud rate.

SIO $7200 Baud rate. r
Baud rate.

II
SIO $9600

SIO $19200 Baud rate.

SIO $EVEN - PARITY Possible parity value.

SIO $MAX LINE Maximum number of SIO lines.

SIO $NO PARITY Possible parity value. r
(
\

SIO $ODD PARITY Possible parity value. "

SIO $STOP 1 Possible stop bit value.

SIO $STOP 1 POINT 5 Possible stop bit value.

SIO $STOP 2 Possible stop bit value.

SIO $5BPC Bits per character value.

SIO $6BPC Bits per character value.

SIO $7BPC Bits per character value.

SIO $8BPC Bits per character value.

('
,-"

SIO SIO-2

---- - -- - .- . __ . __ ._ .•... -

DATA TYPES

o
SIO $ERR ENABLES T

SIO $LINE T

SIO $OPT T

o

o

o

o

SIO DATA TYPES

A 2-byte integer. Determines which errors are
enabled. Any combination of the following
pre-defined values:

A 2-byte integer. SIO line number. Possible values
are integers from 0 through SIO _ $MAX_LINE
(3).

A 2-byte integer. An SIO option. One of the
following pre-defined values:

SIO $ERASE

Set erase character.

SIO $KILL
Set kill character.

SIO _ $EOFCHR

Set EOF character.

SIO $RAW

Transparent input and output.

SIO $NO ECHO
Do not echo input.

SIO $NO NL
Do not special case newlines.

SIO_$SPEED
Set bit rate.

SIO _ $HOST _ SYNC

Use xoff/xon to synchronize with host.

SIO $NLC_DELAY
Constant delay for newlines.

SIO _ $QUIT _ENABLE
Enable quits from this line to calling process.

SIO _ $INPUT _ SYNC

Respond xoff/xon on receive side.

SIO_$LINE
Return line number (inquire only).

SIO_$RTS

Set/clear RTS bit.

SIO_$DTR

Set/ clear DTR bit.

SIO-3 SIO

SIO DATA TYPES

SIO

SIO_$DCD

Read DTR bit (inquire only).

SIO _ $DCD _ENABLE

Enable fault on DCD loss.

SIO_$CTS
Read CTS bit (inquire only).

SIO _ $CTS _ENABLE

Enable CTS gating of output.

SIO _ $P ARITY

Control parity setting/processing.

SIO $BITS _PER _ CHAR

Number of bits per character.

SIO _ $STOP _BITS

Number of stop bits.

SIO _ $ERR _ ENABLE

Enable error reporting.

SIO _ $ SEND _BREAK

Establish break condition on line.

SIO _ $QUITCHR

Set quit character.

SIO_$BP _ENABLE
Enable bit pad processing on line.

SIO $INT _ENABLE

Enable interrupts in this process.

SIO $INTCHR
Set interrupt character.

SIO $SUSP ENABLE
Enable process suspension character.

SIO $SUSPCHR
Set process suspension character.

SIO_$RAW_NL

Display NL/CR on NL output in raw mode.

SIO _ $UNUSED

Unused.

SIO _ $HUP CLOSE

Set hangup-on-close.

SIO _ $RTS _ ENABLE

Enable RTS flow control.

SIO-4

c

o

o

o

o

o

SIO $V ALUE _ T

predefined
type

STATUS $T

SIO DATA TYPES

SIO $ SPEED _FORCE
Set bit rate, even if disturbs partner channel.

SIO _ $FLUSH_ IN

Flush input buffer.

SIO _ $FLUSH_ OUT

Flush output buffer.

SIO _ $DRAIN _ OUT

Wait for output buffer to drain.

Value corresponding to SIO options. The diagram
below illustrates the SIO _ $V ALUE _ T data type:

byte:
offset field name

0: c

or

0: Integer

or

0: Iboo'e4 b

or

0: Integer I es

Field Description:

c
A character value.

1

A 2-byte integer value.

b
A Boolean value.

es
A set of enabled errors. This is a 2-byte field.

A status code. The diagram below illustrates the
STATUS _ $T data type:

SIO-5 SIO

SIO DATA TYPES

SIO

byte:
offset 31

0:

0:

1 :

integer

or

field name o

all

fail

subsys

modc
1-----'--....., 0

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

S10-6

c

o

o

o

o

o

SIO $CONTROL

SIO _ $CONTROL

Obtains current settings of serial line options and values.

FORMAT

SIO_$CONTROL (s~ream-id. option. value. status)

INPU'J.' PARAMETERS

stream-id
Stream II) of a stream attached to a serial line. This is a 2-byte integer.

The stream specified by stream-id must be attached to a serial line. Any other attachment
results in an error.

option
The attribute that is to be set, in SIO _ $OPT _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

SIO _ $ERASE Sets the erase character, which erases the character immediately before
the current cursor position. This option takes a character value. The
default is <BACKSPACE>.

SIO $KILL Sets the kill character, which deletes characters from the cursor position
to the end of the line. This option takes a character value. The default
is CTRLjX.

SIO _ $EOFCHR Sets the end-of-file character. This option takes a character value. The
default is CTRL/Z.

SIO_$RAW Sets whether raw mode is on or ofr. This option takes a Boolean value.
The default is FALSE (off). In raw mode, full 8-bit bytes are transmitted
in both directions, without any interpretation. Each
STREAM_ $GET _REC call returns as many bytes as have been
received since the last call.

When raw mode is turned on or orf, any input that your program has
received, but has not yet read, is flushed from the input buffer.

SIO $NO _ECHO
Sets whether NO _ECHO mode is on or off. In NO _ECHO mode, input
characters are not automatically echoed as output. This mode may be
used to support a half-duplex connection. NO _ECHO mode is off by
default.

SIO _$NO _NL Sets whether NO NL mode is on or off. This option takes a Boolean
value. The default is FALSE (off).

Normally, newline characters (decimal 10) are transmitted as a
carriage-return, line-feed. In NO _NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO-7 SIO

SIO $CONTROL

SIO

SIO $HOST SYNCH
Sets whether HOST SYNCH mode is on or off. This option takes a
Boolean value. The default is TRUE (on).

In HOST _SYNCH mode, the node sends XOFF (CTRL/S) when its
input buffer begins to fill, and XON (CTRL/Q) when its input buffer
begins to empty again. This allows for synchronization of high-speed
data transfer from computer to computer.

SIO $INPUT SYNC
Sets whether the incoming synch mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

It is like HOST _SYNCH except it controls processing of incoming XON
(CTRL/Q) or XOFF (CTRL/S). It works in raw or cooked mode.

SIO $SPEED Sets the baud rate of the line. This option takes a predefined 2-byte
integer value. The default is SIO _ $9600.

Possible values are:

8IO $50. SIO $75. 8IO $110. SIO_$134. 8IO $150.
8IO-$300. 8IO-$600. 8IO=$1200. 8IO $2000. SIO=$2400.
8IO=$3600. SIO=$4800. SIO_$7200. 8IO=$9600. 8IO_$19200.

If you attempt to set a partnered line to an incompatible baud rate, you
receive the error status, SIO_$INCO:MPATffiLE_SPEED. You may
override this error using the SIO _ $SPEED _FORCE option. See the
USAGE section for details about partnered lines and incompatible speeds.

SIO $SPEED FORCE
Sets the baud rate of the line even if the partner line's speed is
incompatible. This option takes a predefined 2-byte integer value.

Possible values are the same as for SIO $SPEED:

8IO $50. 8IO $75. 8IO $110. 8IO_$134. 8IO $150.
8IO=$300. 8IO-$600. 8IO-$1200. 8IO_$2000. 8IO-$2400.
8IO_$3600. 8IO=$4800. 8IO=$7200. 8IO_$9600. 8IO=$19200.

When you use SIO _ $SPEED FORCE to set the speed of a line, and the
new speed is incompatible with the partner, the speed of the partner is
changed to 9600 baud, See the USAGE section for details about partnered
lines and incompatible speeds.

SIO $NLC DELAY
Sets the value of a time delay to be used following transmission of a line
feed character, to allow for carriage motion, scrolling time, and so on.
This option takes a 2-byte integer value, specifying the number of
milliseconds of delay. The default is zero.

SIO _ $ QUIT _ ENABLE

S10-8

..-----
(

\

o

o

o

o

o

-------- .. _-_._. __ ._-----_._.-

SIO $RTS

SIO $CONTROL

Sets whether THE quit _ enable mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

In quit _ enable mode, the node responds to OTRL/] and to the
<BREAK> key, if any. The response is a quit fault in the process using
SIO _ $QUIT _ENABLE. If SIO _ $QUIT _ENABLE is FALSE, then
neither the <BREAK> key nor the OTLR/] sequence has any effect. In
raw input mode, only the <BREAK> and OTRL/] sequence causes a
quit fault.

Sets the state of the RTS (Request to Send) line. This option takes a
Boolean value. The default is TRUE (on).

The RTS line is an outgoing line.

SIO $RTS ENABLE

SIO $DTR

Enables/disables the RTS (Return to Send) Line. This is a Boolean
value. The default is FALSE (off).

If TRUE, the operating system handles flow control. For this to work
properly the OTS line must also be enabled.

Sets the state of the outgoing DTR (Data Terminal Ready) line. This
option takes a Boolean value. The default is TRUE (on).

On most modems the DTR line controls whether the modem will answer
incoming calls (i.e., when DTR is TRUE.) When it is reset it causes the
modem to hang up the phone line.

SIO $DOD _ENABLE
Sets whether the DOD ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

If the connection is broken (i.e., the remote modem hangs up) the DOD
line becomes FALSE. If SIO $DCD _ ENABLE is TRUE then a fault
with status F AUL T _ $STOP will occur at the time of the transition of
DOD from TRUE to FALSE.

SIO $OTS ENABLE
Sets whether the OTS ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

Some devices use one of the RS-232 control lines for flow control instead
of XON/XOFF. If such a line is wired to the OTS line on the connector
and if SIO _ $OTS _ENABLE is TRUE, then transmission will be
inhibited whenever OTS is FALSE.

SIO $P ARITY Sets the state of parity detection or parity generation. This option takes
a predefined 2-byte integer value. The default is SIO _ $NO _PARITY.
Possible choices are: SIO_$ODD_PARITY, SIO_$EVEN_PARITY,
and SIO $NO PARITY.

S10-9 SIO

SIO $CONTROL

SIO

IT parity is enabled (whether odd or even) then one bit is added to each
character. The parity bit is checked by the hardware on received
characters and errors are reported, subject to the SIO _ $ERR_ENABLE
option. IT the number of bits per character is fewer than 8, then the
parity bit is delivered with the data in raw mode and is stripped in
cooked mode.

SIO $BITS_PER CHAR
Sets the number of bits per character. This option takes a predefined
2-byte integer value. The default is SIO _ $8BPC, which is 8 bits per
character. Possible choices are: SIO _$xBPC, where x may be 5, 6, 7, or
8.

SIO $STOP BITS
Sets the number of stop bits. This option takes a predefined 2-byte
integer value. The default is SIO _ $STOP _1. Possible values are:
SIO _$STOP _x where x may be 1, I_POINT _5, or 2.

SIO $ERR ENABLE
Sets which kinds of errors can be reported in calls to
STREAM _ $GET _ REC on this stream. This option takes a set of
values, in SIO _ $ERR_ENABLES _ T format. Specify any combination
of the following predefined 2-byte integer values:

SIO $CHECK_PARITY
Report received parity errors.

SIO _ $CHECK_FRAMING
Report received framing errors.

SIO $CHECK DCD CHANGE
Report an "error" when DCD line changes state.

SIO $CHECK_ CTS CHANGE
Report an "error" when CTS line changes state.

SIO _ $CHECK_FRAMING is set by default.

SIO $SEND BREAK

SIO _ $QUITCHR

Causes a break condition on the line. This option takes a 2-byte integer
value, specifying the duration of the break, in milliseconds. The default
is ... ? A reasonable value is 200.

Sets the quit character This option takes a character value. The default
is CTRLj.

SIO $BP _ENABLE
Enables/ disables processing of bit pad input from a graphics tablet. This
option takes a Boolean value. The default is FALSE (disabled).

When enabled, data received on the SIO line is not delivered through
STREAM $GET REC. Instead, the SIO driver interrupt routine

SIO-1O

(
1"-..

\, -

o

o

o

o

o

SIO $CONTROL

------- -_.- ----------_._----._ __ ._ .. _._. __ ._._----------- ...

accumulates data and passes it a point at a time to the display driver.
During this processing, subsequent points within plus or minus two in
both x and y dimensions are ignored.

SIO $INT ENABLE
Enables/ disables interrupts for the current process. This option takes a
Boolean value. The default is FALSE (disabled).

SIO $INTCHR Sets the process interrupt character. (This option is used primarily by
DOMAIN/IX.) This option takes a character value. The default is
FALSE (CRTL/C).

SIO $SUSP ENABLE
Enables/ disables suspend faults for the current process. This option
takes a Boolean value. The default is FALSE (disabled).

SIO _ $SUSPCHR Sets the process suspend character. (This option is used primarily by
DOMAIN/IX.) This option takes a character value. The default is
CRTL/P.

SIO $RAW NL
Sets whether NO _NL mode is on or off in raw mode.{i.e., when
SIO _ $RA W is TRUE). This option takes a Boolean value. The default
is FALSE (off).

Normally, newline characters {decimal 10) are transmitted as a
carriage-return, line-feed. In NO _NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO $HUP CLOSE
Causes the modem to be hung up on the last close (STREAM_ $CLOSE)
of the SIO line. The hangup is performed by dropping DTR for 3/4
second.

SIO $FLUSH IN
Causes the input buffer of an SIO line to be flushed. This option takes a
Boolean value. The default is FALSE (off).

SIO $FLUSH OUT
Causes the output buffer of an SIO line to be flushed. This option takes
a Boolean value. The default is FALSE (off).

SIO $DRAIN OUT

value

Causes the process to wait until all the characters in the output buffer
have been transmitted before returning. This option takes a Boolean
value. The default is FALSE (off).

Each of the SIO _ $CONTROL options accepts a corresponding value. For the character
options, the value is simply the character. For the mode-setting options, the value is a
Boolean (LOGICAL) data item. For most of the remaining options, the value is a 2-byte
integer. In one case, you may specify a set of values. The type of value required for each
option is described along with the option, above.

SIO-11 SIO

SIO $CONTROL

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the SIO
Data Types section for more information.

Possible values are:

STATUS_$OK The operation completed successfully.

STREAM_$NOT OPEN
No stream is open on the specified stream ID.

SIO $STREAM NOT SIO
The specified stream ID is not connected to a serial line.

SIO $BAD OPTION
The call specified an invalid option name.

SIO $INCO:MPATmLE SPEED
The specified speed is incompatible with the speed of the line's partner.

USAGE

SIO

To poll the serial line for unread input, use STREAM_ $GET _ CONDITIONAL.

The hardware configuration for some machine types is such that certain SIO lines are
"partnered H with each other. Below is a list of machine types and the SIO lines that are
partnered on them.

Machine Type Partnered Linea

DN400 No
DN420 Partners
DN600

DN300 1.2

DSP80 1.2

DN460 0.1
DN660 2.3

DN550 1.2

A characteristic of partnered lines is that some baud rates are incompatible. That is,
certain combinations of baud rates can not be held by partnered lines. Below are two lists
of baud rates.

S10-12

o

o

o

o

o

810 $CONTROL

Incompatible Rates A Incompatible Rates B

SIO $50 SIO $75
SIO=$7200 SIO-$150

SIO-$2000
SIO=$19200

IT one partner is set to a baud rate in the A list, attempting to set the other partner to a
baud rate in the B list (using the SIO _ $SPEED option) will result in the error,
SIO _ $INCO:MP ATIDLE _ SPEED. The same is true for the reverse (having a partnered
line set to a rate in the B list and attempting to set its partner to a rate in the A list).
Speeds other than those in the two lists have no compatibility issues.

You may choose to set an incompatible baud rate by force, using the
SIO _ $SPEED _FORCE option. This will change the specified line to the specified speed;
however, it will change the speed of the partnered line to SIO _ $9600 (which is always a
compatible speed).

810-13 810

SIO _ $INQUIRE

SIO _ $INQUffiE

Obtains current settings of serial line options and values.

FORMAT

SIO_$INQUlRE (stream-id. option. value. status)

INPUT PARAMETERS

stream-id
Stream-id of a stream attached to a serial line. This is a 2-byte integer.

option

SIO

The attribute that is to be reported, in SIO _ $OPT _ T format. This is a 2-byte integer.
One of the following predefined values:

SIO $ERASE Returns the erase character, which erases the character immediately
before the current cursor position. This option takes a character value.
The default is <BAOKSPACE>.

SIO $KILL Returns the kill character, which deletes characters from the cursor
position to the end of the line. This option takes a character value. The
default is OTRL/X.

SIO $EOFOIffi Returns the end-of-file character. This option takes a character value.

SIO $RAW

The default is OTRL/Z.

Returns whether raw mode is on or off. This option takes a Boolean
value. The default is FALSE (off). In raw mode, full 8-bit bytes are
transmitted in both directions, without any interpretation. Each
STREAM_ $GET _REO call returns as many bytes as have been
received since the last call.

When raw mode is turned on or off, any input that your program has
received, but has not yet read, is flushed from the input buffer.

SIO $NO ECHO
Returns whether the NO EOHO mode is on or off. In NO EOHO
mode, input characters are not automatically echoed as output. This
mode may be used to support a half-duplex connection. NO EOHO
mode is off by default.

SIO $NO NL Returns whether the NO NL mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

Normally, newline characters (decimal 10) are transmitted as a
carriage-return, line-feed. In NO _NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO $HOST SYNOH
Returns whether the HOST SYNOH mode is on or off. This option
takes a Boolean value. The default is TRUE (on).

SI0-14

(
'---- .

o

o

o

o

SIO _ $INQUffiE

In HOST _SYNCH mode, the node sends XOFF (cTRL/S) when its
input buffer begins to fill, and XON (CTRL/Q) when its input buffer
begins to empty again. This allows for synchronization of high-speed
data transfer from computer to computer.

SIO $INPUT SYNC

SIO $LINE

Returns whether incoming synch mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

It is like HOST _ SYNcH except it controls processing of {_ incoming _ }
XON (CTRL/Q) or XOFF (CTRL/S). It works in raw or cooked mode.

Returns the serial line number corresponding to the stream ID. This
option returns an integer value from 0 to 3.

SIO $SPEED Returns the baud rate of the line. This option takes a predefined 2-byte
integer value. The default is SIO _ $9600.

Possible values are:

8IO $50, 8IO $75, 8IO $110, 8IO_$134, 8IO_$150,
8IO=$300, 8IO-$600, 8IO-$1200, 8IO $2000, 8IO_$2400,
8IO_$3600, 8IO=$4800, 8IO=$7200, 8IO=$9600, 8IO_$19200.

If you attempt to set a partnered line to an incompatible baud rate, you
receive the error message, SIO _$INc01v1PATmLE_SPEED. You may
override this error using the SIO _ $SPEED _FORCE option. See the
USAGE section for details about partnered lines and incompatible speeds.

SIO $NLC_DELAY
Returns the value of a time delay to be used following transmission of a
line feed character, to allow for carriage motion, scrolling time, and so
on. This option takes a 2-byte integer value, specifying the number of
milliseconds of delay. The default is zero.

SIO _ $ QUIT _ENABLE

SIO_$RTS

Returns whether the QUIT _ENABLE mode is on or off. This option
takes a Boolean value. The default is FALSE (off).

In QUIT _ENABLE mode, the node responds to cTRL/] and to the
<BREAK> key, if any. The response is a quit fault in the process using
SIO _ $QUIT _ENABLE. If SIO _ $QUIT _ENABLE is FALSE then
neither the <BREAK> key nor the CTLR/] sequence has any effect. In
raw input mode only the <BREAK>, and CTRL/] sequence causes a
quit fault.

Returns the state of the RTS (Request to Send) line. This option takes a
Boolean value. The default is TRUE (on).

The RTS line is an outgoing line.

S10-15 SIO

SIO _ $INQUffiE

SIO

SIO $RTS ENABLE

SIO $DTR

SIO $DCD

Enables/disables the RTS (Return to Send) Line. This is a Boolean
value. The default is FALSE (off).

If TRUE, the operating system handles flow control. For this to work
properly the CTS line must also be enabled.

Returns the state of the outgoing DTR (Data Terminal Ready) line. This
option takes a Boolean value. The default is TRUE (on).

On most modems the DTR line controls whether the modem answers
incoming calls (i.e., when DTR is TRUE.) When it is reset it causes the
modem to hang up the phone line.

Reports the state of the DCD (Data Carrier Detect) line. It is an
incoming line, which usually means there is an active modem at the other
end of the phone line.

SIO $DCD ENABLE

SIO $CTS

Returns whether DCD ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

If the connection is broken (Le., the remote modem hangs up) the DCD
line becomes FALSE. If SIO _$DCD _ENABLE is TRUE then a fault
with status F AUL T _ $STOP occurs at the time of the transition of DCD
from TRUE to FALSE.

Returns the state of the CTS (Clear to Send) line. This is an incoming
line.

SIO $CTS ENABLE
Returns whether CTS ENABLE mode is on or off. This option takes a
Boolean value. The default is FALSE (off).

Some devices use one of the RS-232 control lines for flow control instead
of XON/XOFF. If such a line is wired to the CTS line on the connector
and if SIO _ $CTS _ENABLE is TRUE, then transmission will be
inhibited whenever CTS is FALSE.

SIO $PARITY Returns the state of parity detection or parity generation. This option
takes a predefined 2-byte integer value. The default is
SIO_$NO_PARITY. Possible choices are: SIO_$ODD_PARITY,
and SIO_$EVEN_PARITY, and SIO_$NO_PARITY.

If parity is enabled (whether odd or even) then one bit is added to each
character. The parity bit is checked by the hardware on received
characters and errors are reported, subject to the SIO _$ERR_ENABLE
option. If the number of bits per character is fewer than 8, then the
parity bit is delivered with the data in raw mode and is stripped in
cooked mode.

S10-16

o

o

o

o

o

SIO _ $INQUIRE

SIO $BITS PER CHAR
Returns the number of bits per character. This option takes a predefined
2-byte integer value. The default is SIO _ $8BPC, which is 8 bits per
character. Possible choices are: SIO_$xBPC, where x may be 5,6,7, or
8.

SIO $STOP BITS
Returns the number of stop bits. This option takes a predefined 2-byte
integer value. The default is SIO _ $STOP _1. Possible values are:
SIO_$STOP _x where x may be 1, I_POINT_5, or 2.

SIO $ERR_ENABLE
Returns which kinds of errors can be reported in calls to
STREAM_ $GET _REC on this stream. This option takes a set of
values, in SIO _ $ERR _ENABLES _ T format. Specify any combination
of the following predefined 2-byte integer values:

SIO $CHECK PARITY
Report received parity errors.

SIO $CHECK FRAMING
Report received framing errors.

SIO $CHECK DCD CHANGE
Report an "error" when DCD line chan~es state.

SIO $CHECK CTS CHANGE
Report an "error" when CTS line changes state.

SIO _ $CHECK_FRAMING is set by default.

SIO _ $QUITCHR
Returns the quit character. This option takes a character value. The
default is CTRL/.

SIO $BP _ENABLE
Enables/ disables processing of bit pad input from a graphics tablet. This
option takes a Boolean value. The default is FALSE (disabled).

When enabled, data received on the SIO line is not delivered through
STREAM_ $GET _REC. Instead, the SIO driver interrupt routine
accumulates data and passes it a point at a time to the display driver.
During this processing, subsequent points within plus or minus two in
both x and y dimensions are ignored.

SIO $INT ENABLE
Enables/ disables interrupts for the current process. This option takes a
Boolean value. The default is FALSE (disabled).

SIO $INTClffi Returns the process interrupt character. (This option is used primarily
by DOMAIN/IX.) This option takes a character value. The default is
FALSE (CRTL/C).

S10-17 SIO

SIO _ $INQUIRE

SIO $SUSP ENABLE
Enables/ disables suspend faults for the current process. This option
takes a Boolean value. The default is FALSE (disabled).

SIO _ $SUSPCHR Returns the process suspend character. (This option is used primarily by
DOMAIN/IX.) This option takes a character value. The default is
CRTL/P.

SIO $RAW NL
Returns whether the NO _NL mode is on or off in raw mode.(i.e., when
SIO _ $RA W is TRUE). This option takes a Boolean value. The default
is FALSE (off).

Normally, newline characters (decimal 10) are transmitted as a
carriage-return, line-feed. In NO _NL mode, the newline character is
transmitted as is. This mode makes output transparent without going to
raw input.

SIO $HUP CLOSE
Causes the modem to be hung up on the last close (STREAM_$CLOSE)
of the SIO line. The hangup is performed by dropping DTR for 3/4
second. This option takes a Boolean value. The default is FALSE (off).

OUTPUT PARAMETERS

value
Each of the SIO _ $INQUffiE options returns a corresponding value. For the character
options, the value is simply the character. For the mode-setting options, the value is a
Boolean (LOGICAL) data item. For most of the remaining options, the value is a 2-byte
integer. In one case, a set of values may be returned. The type of value returned for each
option is described along with the option, above.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the SIO
Data Types section for more information.

Possible values are:

STATUS _ $OK The operation completed successfully.

STREAM $NOT OPEN
No stream is open on the specified stream ID.

SIO $STREAM NOT SIO
The specified stream ID is not connected to a serial line.

SIO $BAD OPTION
The call specified an invalid option name.

USAGE

SIO

The stream specified by stream ID must be attached to a serial line. Any other attachment
results in an error.

S10-18

\,

(
~-

'"

C)

o

o

o

SIO _ $INQUIRE

When raw mode is turned on or off, any input that your program has received, but has not
yet read, is flushed from the input buffer.

To poll the serial line for unread input, use STREAM_ $GET _ CONDITIONAL.

S10-19 SIO

SIO ERRORS

ERRORS

STATUS $OK
Successful completion.

SIO $BAD OPTION
Bad option parameter.

S10 $ILLEGAL STRID
lllegal stream ID.

SIO $INCO:MPATmLE SPEED
Speed incompatible with partner SIO line.

SIO $STREAM_NOT OPEN
Stream not open.

SIO $STREAM NOT _SIO
Object on this stream is not an S10 line.

SIO S10-2O

c

o

o

u

o

o

SMD

This section describes the call syntax and the error codes for the S:MD programming calls. Refer
to the Introduction at the beginning of this manual for a description of call syntax format. Refer
to the SMD insert files for data-type descriptions.

SMD-l SMD

SMD $BLT_U

S:MD $BLT U

Starts a bit transfer from one area of display memory to another.

FORMAT

SMD_$BLT_U (registers, status)

INPUT PARAMETERS

registers
Values for the BLT register, in S:MD _$BLT _REGS_ T format. This is a thirteen-element
array of 2-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S:MD _$BLT _ U starts the block transfer within display memory.

The BLT register contains values for CS; CD; source and destination Xs, Xe, Ys, and Ye;
and the display mode.

In FORTRAN programs, specify the display mode as the sum of selected variables from
Table S:MD-l.

By default, the display driver waits for the BL T to complete before returning to the calling
program. (This is a "busy" wait, meaning the CPU is active while waiting.) If the display
mode includes IDONE, however, control returns to the caller immediately, and generates
the S:MD event S:MD _ $EVENT _ SCROLL _ BLT _ COMPLETE (see
S:MD _ $EVENT _ WAIT _ U) when it finishes.

If the display mode includes IDONE, control returns to the calling program immediately, as
noted above. However, if display memory is mapped into the process's address space, the
program must not reference display memory or call any of the following vector-drawing
routines, until the BL T completes:

S:MD_$DRAW _ABS_U
S:MD_$DRAW _REL_U
S:MD_$MOVE_ABS_U
S:MD $MOVE REL U

SMD-2

c

o

o

o

(J

o

Mnemonic

SMD_$CLRMODE

SMD_$DECR

SMD_$IDONE

Table SMD-l. Display Mode Values

Meaning

Fill destination with a constant.

Source overlaps destination and x is
being decremented. that is. destination
is to right of source.

Start BLT and immediately return control
to calling program.

SMD_$NONINTERLACE Disable hardware interlacing.

SMD_$BLT Perform bit BLT operation. Required in
all calls to SMD_$BLT_U.

SMD-3 SMD

SMD $BORROW DISPLAY NC_U

S1vID $BORROW _DISPLAY _NC U

Requests use of the display driver and display memory without clearing the screen (black
and white only).

FORMAT

INPUT PARAMETERS

unit
Unit number of the display to be used. This is a 2-byte integer, and must be equal to 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S1vID _ $BORROW _DISPLAY _NC _ U requests the use of the display memory and the
display (S1vID) driver routines. A program must execute this routine (or
S1vID _$BORROW _DISPLAY _ U) before it can call any other display driver routines.

This procedure gains exclusive use of the display for the calling program. The display
manager continues to operate for all other processes and pads, but the screen does not
reflect its actions. Control of the screen returns to the display manager when
S1vID _ $RETURN _ DISPLAY _ U is executed, or when you type CTRL/Q.

To gain access to display memory, call S1vID _$MAP _DISPLAY _ U.

Currently, the only valid unit number is 1.

SMD-4

(
\,

(
" \,.,

o

o

o

o

SMD $BORROW DISPLAY _ U

Requests use of the display driver and display memory, and clears the screen.

FORMAT

INPUT PARAMETERS

unit
Vnit number of the display to be used. This is a 2-byte integer, and must equal 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD _$BORROW _DISPLAY _ V requests the use of the display memory and the display
driver routines. A program must execute this routine (or
SMD_$BORROW _DISPLAY _NC_V) before it can call any other display driver
routines.

The display is cleared when this procedure is executed.

SMD _ $BORROW _DISPLAY _NC _ V performs an identical borrowing operation, but
does not clear the screen.

This procedure gains exclusive use of the Display for the calling program. The Display
Manager continues to operate for all other processes and pads, but the screen does not
reflect its actions. Control of the screen returns to the display manager when
SMD _ $RETURN _DISPLAY _ V is executed, or when you type CTRL/Q.

To gain access to display memory, call SMD _$MAP _DISPLAY_V.

Currently, the only valid unit number is 1.

SMD-5 SMD

SMD $CLEAR_KBD CURSOR~1J

S:MD $CLEAR_KBD CURSOR U

Clears the keyboard cursor from the display.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S:MD _ $ CLEAR ~ KBD _ CURSOR _ U disables the keyboard cursor and removes it from
the display. To re-enable the cursor, call S~ _$MOVE_KBD _ CURSOR_ U.

SMD-6

c~

c

o

o

o

o

o

SMD $CLEAR WINDOW U

SMD $CLEAR WINDOW U

Clears an area on the screen.

FORMAT

INPUT PARAMETERS

boundaries
The x and y coordinates of the destination area to be cleared, in
SMD _ $WINDOW _LIM:ITS _ T format. This data type is 8 bytes long. In FORTRAN,
use a four-element array of 2-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD $CLEAR WINDOW U clears the area of the screen within the boundaries.

This procedure returns control to its caller after the area is clear.

SMD-7 SMD

SMD $COLOR

SNID $COLOR

Sets the color of lines drawn on the display.

FORMAT

SMD_$COLOR (color)

INPUT PARAMETERS

color
Either SNID $WHITE or S:MD $BLACK. This is a 2-byte integer.

USAGE

SMD

The color set with this call is used in all subsequent vector or box drawing calls executed by
the program, until another S:MD _ $COLOR call is executed.

S:MD _$WHITE makes subsequent vectors white or green. S:MD $BLACK makes
subsequent vectors black.

This call does not change the color of the background.

SMD-8

(
\
\

(
I

\ ..

('

o

o

o

o

o

SMD $COND _EVENT _ WAIT U

S:MD _ $COND _EVENT _ WAIT _ U

Checks an S:MD eventcount, but does not wait.

FORMAT

SMD_$COND_EVENT_WAIT_U (event-type. event-data. reserved. status)

OUTPUT PARAMETERS

event-type
The type of event that occurred. This is a 2-byte integer. Possible values are
S:MD_$INPUT, S:MD_$SCROLL_BLT_COMPLETE, S:MD_$TPAD_DATA,
S:MD_$TPAD_AND_INPUT, and S:MD_$NO_EVENT.

event_data
The data associated with the event, in S:MD _ $EVENT _DATA_ T format. This is a
2-byte integer.

reserved
A 2-byte integer; reserved for future use.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

S:MD _ $COND _EVENT _ WAIT _ U causes no suspension of the calling program.
Programs can use this procedure to check for keyboard or touchpad input.

The only difference between SMD _ $COND _EVENT _ WAIT _ U and
S:MD $EVENT WAIT U is that the first checks the eventcount but does not wait. The
second waits for an event.

The S:MD _ $COND _EVENT _ WAIT _ U routine returns one type of event
(S:MD _ $NO _EVENT) that S:MD _ $EVENT _ WAIT _ U does not. When this type is
output, it means nothing happened.

SMD-g SMD

SMD $COND INPUT U

SNID $COND INPUT _ U

Returns a character if one has been typed.

FORMAT

RETURN VALUE

input-flag
Boolean (LOGICAL) value. Contains TRUE if a character has been typed and FALSE
otherwise.

OUTPUT PARAMETERS

char
The character typed at the keyboard. This is a character variable.

USAGE

SMD

If a character has been typed at the keyboard, the value of this function is TRUE. The
function returns the character and removes it from the keyboard input buffer.

If no characters have been typed, the value of the function is FALSE, and the returned char
parameter is undefined.

SMD-IO

\
'~., '"

o

o

o

o

-- --~--~-- ---

SMD $DRAW_ABS_U

Draws a vector given an absolute position.

FORMAT

INPUT PARAMETERS

column

line

The number of the column to which the vector will be drawn. This is a 2-byte integer in
the range 0 to 799.

The number of the line to which the vector will be drawn. This is a 2-byte integer in the
range 0 to 1023.

USAGE

SMD _ $DRAW _ABS _ U draws a vector from the current position to the point specified
by (column, line).

Call SMD _ $VECTOR _ INIT _ U once to initialize the vector drawing package before using
this procedure.

No error checking is performed on the arguments, for optimal performance. Incorrect
program operation occurs if a column or line value is outside the specified range.

The current position is updated to (column, line) upon completion of this procedure. Use
SMD_$MOVE_ABS_U or SMD_$MOVE_REL_U to set the position without drawing
a vector.

SMD-ll SMD

S:MD $DRAW _BOX_ U

Draws a box on the screen.

FORMAT

INPUT PARAMETERS

boundaries
The x and y coordina.tes of the box on the screen, in SMD _ $WINDOW _ LIMITS _ T
format. This data type is 8 bytes long. In FORTRAN this is a four-element array of
2-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format.

USAGE

SMD

SMD _$DRAW _BOX_ U draws lines vertically and horizontally to connect the supplied
endpoints.

The supplied values for Xs and Ys must be less than Xe and Ye, respectively.

SMD-12

I~

/

---------- ----------------- ---------------

c

o

o

o

8MD $DRAW REL U

Draws a vector given a relative position.

FORMAT

INPUT PARAMETERS

column

line

The column number, relative to the current position, to which the vector will be drawn.
This is a two-byte integer.

The line number, relative to the current position, to which the vector will be drawn. This
is a two-byte integer.

USAGE

SMD _ $DRA W _ REL _ U draws a vector from the current position to the point computed
by adding the value of column to the current column and adding the value of line to the
current line.

Call SMD _ $VECTOR _ INIT _ U to initialize the vector drawing package before using this
procedure.

When the value for column is added to the current position column number, the sum must
be between 0 and 799 for portrait displays, or between 0 and 1023 for landscape displays.
Similarly, when the value for line is added to the current position line number, the sum
must be between 0 and 1023 for portrait displays, or 0 and 799 for landscape displays.

No error checking is performed on the arguments, for optimal performance. Incorrect
program operation occurs if a computed column or line value is outside the specified range.

The current position is updated to the computed column and line values by this procedure.
Use SMD _ $MOVE _REL _ U or SMD _ $MOVE _ABS _ U to set the position without
drawing a vector.

SMD-13 SMD

SMD $EVENT _ WAIT U

SMD $EVENT WAIT U

Suspends the calling process until you type characters at the keyboard or until the current
scroll or BL T is complete.

FORMAT

SMD_$EVENT_WAIT_U (event-type. event-data. reserved. status)

OUTPUT PARAMETERS

event-type
The type of event that occurred. This is a 2-byte integer. Possible values are the following:

SMD $INPUT
SMD-$SCROLL BLT COMPLETE
SMD - $TPAD DATA -
SMD=$TPAD=AND_INPUT

event-data
The data associated with the event, in SMD _ $EVENT _DATA_ T format. This is a
2-byte integer.

reserved
A 2-byte integer; reserved for future use.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long.

USAGE

SMD

SMD _ $EVENT _ WAIT _ U suspends the calling process until a display driver event
occurs. Programs can use this procedure to read keyboard input.

An SMD _ $INPUT event occurs when you type a character.

An SMD _ $SCROLL _BLT _ COMPLETE event occurs when a block transfer (BL T) is
complete, or when the last block transfer required as part of a scrolling operation has been
started.

The display driver notifies the calling program of SMD _ $INPUT,
SMD _$SCROLL_BLT _ COMPLETE, S1m _$TPAD _DATA, and
SMD $TP AD AND INPUT events.

SMD-14

~
I.

./'--.

()

o

o

o

o

S:MD $GET EC

Gets the eventcount address of the eventcount that will be advanced upon keyboard input
or when a BL T is done.

FORMAT

SMD_$GET_EC (smd-key, eventcount-pointer, status)

INPUT PARAMETERS

smd-key
This specifies which eventcount to obtain. It is in SMD _ $EC _ KEY _ T format and may
have a value of either S:MD _ $INPUT _EC (for the keyboard) or
S:MD _$SCROLL_BLT _EC (for a user-initiated BLT.) This is a 2-byte integer.

OUTPUT PARAMETERS

event count _pointer
The eventcount address to be obtained, in EC2 _ $PTR _ T format. EC2 $PTR T is a
pointer to an EC2_$EVENTCOUNT _ T. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

The S:MD eventcounter is advanced whenever anything is entered via the keyboard and also
whenever any user-initiated BL T is done.

SMD-15 SMD

SMD_$INQ_DISP _TYPE

SMD_$INQ_DISP _TYPE

Returns the type of the display physically attached to the given unit number.

FORMAT,

RETURN VALUE

display _ type
The display configuration in smd_$display _type_t format. This is a 2-byte integer. It
has one of the following predefined values:

SMD_$NONE No display

SMD_$BW_1SP Black and white portrait

SMD_$BW_19L Black and white landscape

SMD_$COLOR_DISPLAY Color display (1024 x 1024)

SMD_$800_COLOR Color display with fewer pixels (1024 x 800)

SMD_$COLOR2_DISPLAY Color display (1280x1024x8)

SMD_$COLOR3_DISPLAY Color display (1024x800x8)

SMD_$COLOR4_DISPLAY Color display (1024x800x4)

INPUT PARAMETERS

unit

SMD

This parameter has three possible meanings, as follows:

1. The display unit, if the graphics routines are to operate in a borrowed display.
This is a 2-byte integer. Currently, the only valid display unit number for
borrow-display mode is 1.

2. The stream identifier for the pad, if the graphics routines are to operate in
frame or direct mode. Use STREAM_ $ID _ T format. This is a 2-byte integer.

3. Any value, such as zero, if the graphics routines do not use the display. This is
a 2-byte integer.

SMD-15.1

(~
'---._- /

c

o USAGE

Use this call to return the type of the display physically attached to the given unit number.

o

o

o

o
SMD-15.2 SMD

SMD $LOAD FONT F~E_U

S:rvID $LOAD FONT FILE U

Loads a font file.

FORMAT

INPUT PARAMETERS

pathname
Pathname, in NAME _ $PNAME _ T format, of the file containing the font to be loaded.

name-length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font-id
The internal identifier assigned to the font. Font-id is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S:rvID _ $LOAD _ FONT _ FILE _ U loads the font in the named file into display memory
and assigns an identifier to the font. Your program passes the font-id to
S:rvID _ $WRITE _ STRING to identify the font.

The images of all loaded fonts coexist in the invisible 28-K byte portion of display memory.
This area is large enough for about eight small fonts.

If insufficient space is available in either display memory or internal tables to load the font,
S:rvID _$LOAD _FONT _FILE_ U returns an error. In this case, your program must
unload one or more font files to create space for the new font.

To unload fonts loaded with this routine, use S:MD _$UNLOAD _FONT _FILE_ U.

Fonts loaded with this routine are no longer usable when the program exits or aborts. They
are not, however, unloaded from display memory.

SMD-16

c

C~

o

o

o

o

o

SMD $LOAD FONT U

SMD $LOAD FONT U

Loads a font into display memory and returns a font-id.

FORMAT

RETURN VALUE

font-id
The internal identifier assigned to the font. This is a two-byte integer.

INPUT PARAMETERS

table-ptr
Address of the font table. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

This function returns an integer font-id. Use the font-id to identify the font in calls to
SMD $WRITE STRING U.

FORTRAN programs can use the IADDR function to get an address. Pascal programs can
use the ADDR function.

The MS _ $MAP call can be used to map a font file prior to using this call.

The display driver loads the font into any available space in the invisible 28K bytes of
display memory. This area is large enough for about eight small fonts.

If insufficient space remains in invisible display memory or for internal tables, an error
occurs. Your program must then unload one or more fonts to make room for the new one.

To unload the font, use SMD _ $UNLOAD _FONT _ U.

SMD-17 SMD

SMD $MAP DISPLAY U

SMD $MAP DISPLAY U

Maps display memory into the process' address space.

FORMAT

OUTPUT PARAMETERS

display-address
The address of the first byte of the display memory. Display memory is mapped starting at
this address, for the next 128-K bytes. This value is in
SMD $DISPLAY MEMORY PTR T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

SMD _$MAP _DISPLAY _ U creates· an association between the display memory and 128-K
bytes of the calling process' address space. Following this call, your program can directly
access the display memory by references to the mapped portion of the address space.

Be careful not to access display memory while a bit BLT is underway. Doing so causes the
offending program to abort with a hardware bus error fault. To avoid this problem, do not
include IDONE in calls to SMD $BL T U or use SMD $EVENT WAIT U to wait for
BL T completion.

To unmap the display memory, use SMD_$UNMAP _DISPLAY _U. Display memory is
automatically unmapped when SMD _$RETURN_DISPLAY _ U is executed, or when you
type CTRL/Q to exit from the program.

SMD _ $MAP _DISPLAY _ U returns an error status if the display has not been borrowed,
or if the display is already mapped into the calling process' address space.

SMD-18

c

o

o

o

c

o

S:MD_$MOVE_ABS_U

Sets the current position for vector drawing.

FORMAT

INPUT PARAMETERS

column

line

The number of the column to which the position is set. This is a 2-byte integer in the range
o through 799.

The number of the line to which the position is set. This is a 2-byte integer in the range 0
through 1023.

USAGE

S:MD _ $MOVE _ABS _ U sets the current position, from which the next vector will be
drawn.

Call SMD _ $VECTOR _ INIT _ U to initialize the vector drawing package before using this
procedure.

No error checking is perrormed on the arguments, ror optimal perrormance. Incorrect
program operation occurs if a column or line value is outside the speciried range.

SMD-19 SMD

Moves the keyboard cursor to a specified position.

FORMAT

INPUT PARAMETERS

position
X and y coordinates, in SMD _ $POS _ T format, for the cursor position. This data type is
4 bytes long.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long ..

USAGE

SMD

SMD _$MOVE_KBD _ CURSOR_ U moves the keyboard cursor to a new position.

If the cursor was previously removed from the display (via
SMD _$CLEAR_KBD _ CURSOR_ U), this call re-enables it.

In the position parameter, valid line values are 0-1023 for portrait displays, or 0 to 799 for
landscape displays, and valid column values are 0-799 for portrait displays, or 0 1023 for
landscape displays. The values represent the position of the lower left point of the cursor.

The keyboard cursor is 8 bits wide and 13 bits high.

SMD-20

\,

o

o

o

o

o

Sets the current position for vector drawing.

FORMAT

INPUT PARAMETERS

column

line

The column number, relative to the current position, from which the new column position is
computed. This is a 2-byte integer.

The line number, relative to the current position, from which the new line position is
computed. This is a 2-byte integer.

USAGE

SMD _$MOVE_REL_ U computes a new position based upon the current value and the
supplied arguments.

Call SMD _ $VECTOR _ INIT _ U to initialize the vector drawing package before using this
procedure.

When the value for column is added to the current column number, the sum must be
between 0 and 799 for portrait displays, or between 0 and 1023 for landscape displays.
Similarly, when the value for line is added to the current line number, the sum must be
between 0 and 1023 for portrait displays and between 0 and 799 for landscape displays.

No error checking is performed on the arguments for optimal performance. Incorrect
program operation occurs if the computed column or line value is outside the specified
range.

SMD-21 SMD

SMD $OP WAIT _ U

SMD SOP WAIT U

Waits for the current scroll or BLT operation to complete.

FORMAT

USAGE

SMD

SMD _ SOP _ WAIT _ U waits for completion of the current scroll or BL T operation. When
this routine returns, the program can safely reference display memory.

If no scroll or BL T operation is underway, this routine returns immediately.

SMD-22

'\."'.

(
I

'-.

o

o

o

o

o

SMD $RETURN DISPLAY U

SNID $RETURN DISPLAY U

Returns control of the display to the Display Manager.

FORMAT

INPUT PARAMETERS

unit
Unit number of the display to be returned. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SNID _$RETURN_DISPLAY _ U returns control of the display to the Display Manager.
\ After executing this procedure, the calling program can no longer use display driver calls.

If the display was mapped into the process' address space, this procedure unmaps it.

After execution of this procedure, the Display Manager updates the display to reflect all
input, output, and scrolling operations that occurred for all pads and processes while the
screen was under direct program control.

If SNID _$BORROW _DISPLAY _ U has not yet been successfully executed, an error status
is returned.

Currently, the only valid unit number is 1.

SMD-23 SMD

SMD _ $SET _ QUIT _ CHAR

S:MD _ $SET _ QUIT _ CHAR

Defines the quit character.

FORMAT

INPUT PARAMETERS

character
A single character that is the new quit character. This is a character variable.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

The default quit character is CTRL/Q.

SMD SMD-24

------ _._---_._------_ _ .. _-

o

o

o

o

SMD $SET TP CURSOR

SMD $SET TP CURSOR

Changes normal cursor to touchpad cursor and moves it to the indicated position.

FORMAT

SMD_$SET_TP_CURSOR (unit. position. buttons)

INPUT PARAMETERS

unit
A 2-byte integer indicating which display unit to use.

position
The new positio;n of the cursor, in SMD _ $POS _ T format. This data type is 4 bytes long.

buttons
A 2-byte integer containing device dependent information such as a function button code.
If the locator device has no such additional data, then buttons should be zero.

USAGE

This call is for use by programs that process data from a locator device other than the
touch pad, such as a tablet. SMD $SET TP CURSOR should not be used with the
touch pad.

If the keyboard cursor is currently displayed and the touch pad is enabled (see
SMD_$TP _ENABLE and SMD_$MOVE_KBD_CURSOR_U) executing
SMD _ $SET _ TP _ CURSOR removes the keyboard cursor, and displays the touchpad
cursor at the location denoted by position.

Currently, the only valid unit number is 1.

SMD-25 SMD

SMD $SOFT SCROLL U

SMD $SOFT SCROLL U

Starts horizontal or vertical scrolling on the screen, 2 raster lines at a time.

FORMAT

SMD_$SOFT_SCROLL_U (boundaries. direction. displacement. status)

INPUT PARAMETERS

boundaries
The x and y coordinates for the edges of the area to be scrolled, in
SMD _$WINDOW _LIMITS_ T format. This data type is 8 bytes long. In FORTRAN
this is a four-element array of 2-byte integers.

direction
Direction. in which to scroll in SMD _ $DffiECTION _ T format. This is a 2-byte integer.
Possible values are: S}JI)_$UP, SMD_$DOWN, SMD_$LEFT, and SMD_$RIGHT.

displacement
Number of horizontal or vertical raster lines to scroll. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

SMD _ $SOFT _ SCROLL _ U scrolls two raster lines at a time, until the number of lines
scrolled is equal to the displacement.

Scrolling takes place only within the specified area. The rest of the display does not
change.

This procedure starts the scrolling operation, then returns control to the calling program.

Scrolling replicates the two raster lines on the boundary opposite to the direction of
scrolling (for example, if scrolling up, the two raster lines on the bottom of the scrolled
area), and does not clear them. Therefore, if you want the scrolling operation to produce
blank lines, you must make certain the lines that are replicated are blank. You can clear a
section of the display explicitly using SMD _ $CLEAR _ WINDOW.

Lines scrolled beyond the stated boundaries are lost.

SMD-26

,r-- ,
/ '

I

\
,~

o

o

o

o

SMD $SOFT SCROLL U

Because scrolling occurs two lines at a time, the display driver can II interlace II other tasks
with soft scrolling. Thus, the program can call most other display driver routines while
scrolling is underway. The program must not, however, reference display memory, and it
must not call any of the following routines:

8MD $DRAW ABS U
SMD $DRAW BOX_U
SMD_$DRAW REL_U
SMD $MOVE_ABS U
SMD_$MOVE_REL_U
SMD _ $RETURN _DISPLAY _ U
SMD $SOFT SCROLL U

The display driver waits for scrolling to complete before executing one of these procedures.
Calls to SMD _ $BLT _ U are executed only if the display mode does not include IDONE. If
the display mode value includes IDONE, the driver waits for the current scrolling operation
to complete before starting the BL T. Attempting a BL T with any part of its source or
destination in the scrolled area is not recommended.

The program must not reference display memory while scrolling is underway. The program
can call SMD _ $EVENT _ WAIT _ U to find out when the completion of scrolling is
imminent, and can then prepare data for another display operation. After preparing the
data, the program can call SMD _ $OP _ WAIT to wait until references to display memory
are safe.

SMD-27 SMD

SMD $STOP TP CURSOR

S1\ID $STOP TP CURSOR

Turns off the touch pad cursor and puts back the blinking cursor, if the blinking cursor
would otherwise be displayed.

FORMAT

INPUT PARAMETERS

unit
A 2-byte integer indicating which display unit to use.

USAGE

SMD

This call is for use only by programs that process data from a locator device other than the
touchpad. S1\ID _ $SET _ TP _ CURSOR should not be used with the touchpad.

Currently, the only valid unit number is 1.

If the touchpad cursor is currently displayed, it is replaced with the blinking keyboard
cursor.

SMD-28

o

o

o

o

o

SMD $TP DffiECT

S:MD $TP DffiECT

Controls whether locator device data directly controls the touch pad cursor or is sent to the
user program.

FORMAT

INPUT PARAMETERS

on-off
A Boolean (logical) variable indicating whether to send the locator device directly to the
program (TRUE) or to the internal display driver routine that controls the touchpad cursor
(FALSE).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

If the value of on-off is FALSE, (the initial state) locator device (for example, touchpad)
data causes the touchpad cursor to move, as long as the touchpad cursor and keyboard
cursor are enabled (see S:MD _ $TP _DISABLE). Locator device data are delivered through
S:MD_$EVENT_ WAIT as S:MD_$TPAD_AND_INPUT, but only when keystrokes are
also delivered.

If the on-off parameter is TRUE, the touchpad cursor is not displayed in response to locator
device data, and data is delivered in a continuous stream through S:MD _ $EVENT _ WAIT
as S:MD $TPAD DATA.

If the on-off parameter is TRUE, locator data is always delivered, regardless of whether or
not the touchpad cursor or keyboard cursor is enabled.

SMD-29 SMD

SMD $TP DISABLE

SJvID $TP DISABLE

Prevents locator device data from moving the touchpad cursor.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

This call is for programs that modify display memory directly while the keyboard cursor is
displayed. The touchpad cursor can interfere with display memory modifications because
its location is unknown to the user program. S~ _ $TP _DISABLE prevents display of
the touchpad cursor.

This call also prevents display of the keyboard cursor if the touchpad has moved it and the
user program has not yet been given the new position though a
SJvID $EVENT WAIT U call.

The SJvID vector drawing routines modify display memory directly. Therefore,
SMD _ $TP _DISABLE should be called before calling the vector routines, if the keyboard
cursor is displayed at the same time the vectors are drawn.

SMD routines that modify display memory directly, other than the vector drawing routines
(SMD _$DRAW _REL_ U and S~ _$DRAW _ABS_ U), automatically disable the
touchpad cursor when they begin executing and re-enable the cursor when they finish.

In many cases the keyboard cursor is cleared (removed from the display using
SMD _ $ CLEAR _ KBD _ CURSOR _ U) before display modifications are made. This call is
not needed in such cases.

The touchpad cursor is initially di~abled.

SMD-30

r'.
I
\..

I

(
\ ' ...

o

o

o

o

SMD $TP ENABLE

S:MD $TP ENABLE

Allows the touch pad cursor to be displayed and moved around the screen.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

This call enables display of the touchpad cursor. The touchpad cursor can be disabled by
calling S:MD _$TP _DISABLE.

The touchpad cursor is initially disabled.

In order for the touchpad or other locator device to move the cursor, three conditions must
be satisfied:

1. S:MD _ $MOVE _ KBD _ CURSOR must be called to display the cursor in the
first place.

2. S:MD $TP ENABLE must be called to allow the locator device to affect the
cursor.

3. On_off, an input parameter of S:MD _ $TP _DIRECT, must be FALSE. (See
S:MD _$TP _DIRECT.) Your program must make explicit calls to satisfy 1 and
2. The third condition is satisfied by default.

SMD-31 SMD

SMD $UNLOAD_FONT FILE_U

S:MD $UNLOAD _FONT FILE U

Unloads a font file from display memory.

FORMAT

INPUT PARAMETERS

font-id
The internal identifier assigned to the font to be unloaded. This 2-byte value is returned by
S:MD $LOAD FONT _FILE U.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S:MD $UNLOAD _FONT _FILE_ U unloads a font that was loaded with
S:MD $LOAD _FONT _FILE U. Following this call, the font is no longer usable in calls
to S:MD $WRITE STRING.

An error is returned if the font is not loaded in display memory, or if the associated font
file is not mapped into the process' address space.

SMD-32

~'"

(\
'---

--------_._---_. __ _--------_._-_. --_ .. - ----------------------

o

o

o

o

o

SMD $UNLOAD _FONT _ U

S:MD $UNLOAD FONT _ U

Unloads a font from display memory.

FORMAT

INPUT PARAMETERS

font-id
The internal identifier assigned to the font to be unloaded. This 2-byte value is returned by
S:MD $LOAD FONT U.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long.

USAGE

This procedure unloads the specified font, making it unavailable for use. The program
must reload the font before using it again.

Use S:MD _ $UNLOAD _FONT _ U for fonts loaded with SMD $LOAD FONT U. Use
S:MD _ $UNLOAD _ FONT _ FILE _ U for font files loaded with
S:MD $LOAD FONT _FILE U.

SMD-33 SMD

SMD $UNMAP DISPLAY U

S1vID $UNMAP DISPLAY_U

Unmaps display memory from the process' address space.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

SMD

S1vID _ $UNMAP _DISPLAY _ U unmaps the display memory from the calling process'
address space. Following this call, the 128K-byte portion of the address space onto which
the display memory was mapped is no longer usable.

An error status is returned if the display has not been borrowed or if the display memory is
not mapped when this call is made.

SMD-34

o

o

o

o

o

SMD $VECTOR INIT U

SMD $VEOTOR INIT U

Initializes the vector-drawing routines.

FORMAT

INPUT PARAMETERS

display-address
Starting address of the display memory in the program's address space. This is a 4-byte
integer. This value is returned by SMD _$MAP _bISPLAY _ U.

USAGE

SMD _ $VEOTOR _ INIT _ U initializes the vector-drawing routines supplied with the
display driver. These routines are named SMD_$DRAW _ABS_U,
SMD_$DRAW _REL_U, SMD_$MOVE_ABS_U, and SMD_$MOVE_REL_U. You
must use SMD _ $VEOTOR _ INIT _ U once before calling any vector-drawing routines.

The vector-drawing routines operate incorrectly if the value of display-address differs from
that returned by SMD_$MAP _DISPLAY _U.

The current position is set to line 0 and column O. If you call a vector drawing routine
before calling a position moving routine, the display driver draws a vector from the current
position. All position-moving and vector-drawing routines update the current position.

SMD-35 SMD

SMD $ WRITE _ STRING _ U

SMD $WRITE STRING U

Displays a string of text on the screen.

FORMAT

SMD_$WRlTE_STRING_U (position. font_id. string. length. waitflag. status)

INPUT PARAMETERS

position
Rowand column positions for the first character of the string, in SMD _ $POS _ T format.
This data type is 4 bytes long.

font id
Internal font identifier, returned by SMD _ $LOAD _FONT _ U.

string
String of ASCII text to be displayed. This is an array of up to 120 characters.

length
Length, in bytes, of the string to be displayed. This is a 2-byte integer.

waitflag
Boolean (logical) value indicating whether to wait for scrolling to complete before displaying
the string.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long.

USAGE

This procedure displays a character string on the screen.

The ordinal (ASCII) value of each character in the input string is used as an index into the font
denoted by font-id. For instance, the character "AII in the input string causes the output of the
60th character in the font. If no 60th character is defined in the font, the character II A II is
ignored. No error occurs and no graphic character is displayed. The cursor is moved to the right
an amount equal to the size of one space character.

The position parameter defines the base from which the first character is written. For the
standard font, valid line values are 0 to 792 and valid column values are 12 to 1019 for a portrait
display; for a landscape display, valid line values are 0 to 1016 and valid column values are 12 to
795.

The ordinal (ASCII) values of the characters in the string must be in the range 0 through 127.

Set the value of waitflag to TRUE if the string is to be displayed within an area that is being
scrolled (via SMD _ $SOFT _ SCROLL _ U) and FALSE otherwise.

SMD SMD-36

c

c

o

o

o

o

o

SMD $WRITE STRING U

S:MD _ $WRITE _ STRING does not clear characters from the portion of the display where the
string is written. Since characters may not fill the entire character box, pieces of previous
characters may appear along with the string you wish to write. S:MD $CLEAR WINDOW can
be used to clear a section of the display.

SMD-37 SMD

SMD ERRORS

ERRORS

S:MD $ACCESS DENIED
Display borrow request denied by screen manager.

S:MD _ $ALREADY _ACQUffiED
Display already acquired.

S:MD $ALREADY _BORROWED
Display already borrowed by this process.

S:MD $ALREADY _MAPPED
Display memory is already mapped.

S:MD $BORROW ERROR
Error borrowing display from screen manager.

S:MD $CANT BORROW BOTH
Cannot borrow both displays simultaneously.

S:MD_$DISP _ACQD
Pad/stream operations not allowed while display acquired.

S:MD $DISPLAY IN USE
Unable to borrow: display in use.

S:MD $DISPLAY _MAP _ERROR
Error-mapping display memory.

S:MD $FONT NOT LOADED
Specified font is not loaded.

S:MD $FONT NOT _MAPPED
Font associated with specified ID is not mapped.

S:MD $FONT TABLE FULL
Internal font table is full.

S:MD $FONT TOO LARGE
Font too large.

S:MD $HDM FULL
Hidden display memory is full.

S:MD $HDMT _ UNLOAD _ERR
Error unloading internal (HDMT) table.

S:MD $ILLEGAL CALLER
Invalid use of display driver procedure.

S:MD $ILLEGAL DffiECTION
Invalid direction from SM.

S:MD $ILLEGAL UNIT
Invalid display unit number.

S:MD $INV ALID BL T COORD
Invalid screen coordinates in BL T request.

SMD SMD-38

I'
I ', ..

o

o

o

o

S:MD $INV ALID BL T CTL
Invalid BL T control register.

S:MD $INV ALID BL T MODE
Invalid BL T mode register.

S:MD $INV ALID BL TD INT
Invalid BLT-done interrupt.

S:MD $INV ALID BUFFER SIZE
Invalid buffer size.

S:MD $INV ALID CRSR NUMBER
Invalid cursor number.

S:MD $INVALID DffiECTION
Invalid direction argument.

S:MD $INVALID DISPLACEMENT
Invalid scroll displacement argument.

S:MD $INVALID ffi STATE
Invalid interrupt routine state.

S:MD $INVALID KEY
Invalid eventcount key.

S:MD $INVALID LENGTH
Invalid length argument.

S:MD $INV ALID POS
Invalid position argument.

S:MD $INV ALID WID
Invalid DM window ID.

S:MD $INVALID WINDOW
Invalid window limits argument.

S:MD $NO MORE WIDS
No more direct mode window IDs are available.

S:MD $NOT BORROWED
Cannot return: display not borrowed.

S:MD $NOT IMPLEMENTED

----------- _._-----.--_. __ .

SMD ERRORS

Nonconforming and main memory BL Ts are not implemented.

S:MD $NOT MAPPED
Display memory is not mapped.

S:MD $NOT ON COLOR
Operation not implemented on color display.

S:MD $PROCESS NOT FOUND
Process not found.

S:MD $PROTOCOL VIOL
Internal protocol violation.

SMD-39 SMD

SMD ERRORS

S1vID _ $ QUIT _ WHILE _ WAITING
Quit while waiting.

S1vID $RETURN ERROR
Error returning display to screen manager.

S1vID $TOO MANY PAGES
Too many pages to be wired.

S1vID $UNEXP _BLT INUSE
Unexpected BLT in use.

S1vID $UNSUPPORTED FONT VE
Unsupported font version number.

S1vID _ $W AIT _ QUIT
Quit while waiting.

S1vID $WINDOW OBSCURED
Acquire denied because window is obscured.

STATUS $OK
Successful completion.

SMD SMD-40

('

~"

I:
'-.. '

o

o

o

o

o

STREAM

This section describes the data types, the call syntax, and the error codes for the STREAM
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

STREAM-l STREAM

STREAM DATA TYPES

CONSTANTS

STREAM $MAX 127

STREAM $NO STREAM

STREAM _ $SUBS

STREAM $DIR ENTTYPE _ FILE

STREAM $DIR_ENTTYPE LINK

STREAM $DIR_ENTRY SIZE

Maximum number of possible stream IDs.

Place-holder for stream ID when passing streams.

Subsys component of status return
denoting streams.

The file-type value for the enttype field of the
Dffi ENTRY T record.

The link-type value for the enttype field of the
Dffi ENTRY T record.

Size of a directory entry record.

The following are mnemonic definitions used to specify attributes in the inquire and redefine
input mask. The attributes followed by an asterisk (*) are attributes to which a stream must be
open for information to be returned on an inquire. The attributes followed by a plus sign (+) are
attributes which attributes cannot be redefined.

MNEMONIC Bit Explanation

STREAM $STRID 0 Stream ID. + -

STREAM - $OBJ NAME 1 Object name.

STREAM $OBJ NAMLEN 1 Object name length.

STREAM $REC - LGTH 2 Record length.

STREAM - $TEMPORARY 3 Temporary or permanent. *

STREAM $EXPLICIT TYPE 4 Explicit record type.

STREAM $AB FLAG 5 ASCII or binary file.

STREAM $EXPLICIT ML 6 Explicit move mode. *

STREAM - $CC 7 Carriage control.

STREAM $REC TYPE 8 Record type.

STREAM $CONC 9 Object concurrency.

STREAM $OCONC 10 Concurrency at open. *

STREAM - $OPOS 11 Access type. *

STREAM $PRE EXIST 12 Pre-existing object. +

STREAM $HDR LGTH 13 Header length. +

STREAM $FILE LENGTH 14 File length. +

STREAM STREAM-2

'"

STREAM $SEEK KEY 15 o STREAM_$CUR REC LEN 16

STREAM_$CUR REL REC NO 17

STREAM_ $BLKS USED 18

STREAM_ $DTU 19

STREAM_ $DTM 20

STREAM_ $SP ARSE 21

STREAM_ $OTYPE 22

23

o STREAM $NDELAY 24

STREAM $APPEND _MODE 25

STREAM_$FORCED LOCATE 26

DATA TYPES

o STREAM_ $P ARM! T

o

STREAM_ $P ARM2 T

o

STREAM DATA TYPES

Seek key. * +

Current record length. * +

Current relative record number. * +

Number of blocks used. +

Date and time last used. +

Date and time last modified. +

Sparsely written file. * +

Object type.

Close stream on DOMAIN/IX Exec call.

Forced STREAM $GET CONDITIONAL.

File in append mode.

Force locate mode.

A 2-byte integer. Specifies the type of data on
which the seek is being performed. One of the
following pre-defined values:

STREAM_ $KEY

Seek with key returned earlier by stream
manager.

STREAM_ $REC
Record-oriented seek.

STREAM _ $CHR

Character-oriented seek.

STREAM _ $EOF

Seek to the end-of-file.

A 2-byte integer. Specifies the type of seek being
performed. One of the following pre-defined values:

STREAM $RELATIVE
Seek relative to current position.

STREAM_ $ABSOLUTE
Seek relative to BOF or EOF.

STREAM-3 STREAM

STREAM DATA TYPES

STREAM_ $OPOS _ T

STREAM_ $OMODE_ T

STREAM $FCONC _ T

STREAM

A 2-byte integer. Specifies the access type of an
object on open/create. One of the following
pre-defined values:

STREAM_ $READ
Open/ create for read-only access.

STREAM_ $WRITE
Create (new) for write access.

STREAM_ $ OVERWRITE
Write access; truncate file to BOF if it
already exists.

STREAM_ $UPDATE

Write access; file may already exist; position
to start of file on open.

STREAM_ $APPEND

Write access; if file already exists, position to
EOF on open.

STREAM_ $ MAKE _BACKUP
Create new file: rename existing file to .BAK
on close.

A 2-byte integer. Specifies the concurrency at open
of an object. One of the following pre-defined
values:

STREAM $NO CONC WRITE
Allows no concurrent writers to open file
while this stream is open.

STREAM_ $ CONTROLLED _ SHARING
Currently the same as NO _ CONC _ WRITE.

STREAM $REGULATED
Allows unrestricted reading and writing of the
file.

A 2-byte integer. Specifies the object concurrency.
One of the following pre-defined values:

STREAM_ $N OR 1
Allows N readers or 1 writer in file
concurrently.

STREAM $N_AND 1
Allows N readers AND up to 1 writer
concurrently.

STREAM-4

~
r
I

o

STREAM_$CC T

o STREAM $RTYPE_ T

o
STREAM $IR OPT

o

STREAM_ $REDEF MASK_ T

o

STREAM DATA TYPES

STREAM_ $N AND N

Allows any number of writers or readers
con curren tly.

STREAM_$STRICT N OR 1

Disallows multiple writers even when they are
in a process family.

A 2-byte integer. Specifies the type of carriage
control employed in the object. One of the
following pre-defined values:

STREAM _ $CC _ T

ASCII (u Apollo standard II) carriage control.

STREAM_ $F&& _ CC

Fortran-77 standard (column 1) carriage
control.

A 2-byte integer. Specifies the record structure of
the object. One of the following pre-defined values:

STREAM $Vl

Variable length records with count fields.

STREAM $F2
Fixed-length records.

STREAM $UNDEF
No record structure in data.

A 2-byte integer. Specifies method for accessing
attribute record. One of the following pre-defined
values:

STREAM $USE STRID

Use the stream-id to access the attribute
record.

STREAM $ NAME _ CONDITIONAL

Inquire is about the filename; only return
information if file is open.

STREAM_ $ NAME _ UNCONDITIONAL

Use the filename to access the attribute block.

A 2-byte integer. Attributes to inquire. Specify any
combination of the mnemonic constants for object
attributes.

A 2-byte integer. Attributes to redefine. Specify any
combination of the valid mnemonic constants for
object attributes.

STREAM-5 STREAM

STREAM DATA TYPES

STREAM_ $EC _KEY _ T A 2-byte integer. Specifies an eventcount to get.
One of the following pre-defined values:

STREAM_ $GETREC EC _KEY
Stream eventcount key.

STREAM_ $EDIT _ WAIT _EC KEY
Edit pad eventcount key.

{ options avail at open time, through. stream _ $opt _ open }

STREAM_ $OPEN OPTIONS T

STREAM $OPEN OPTIONS SET T

STREAM $ID T

STREAM

A 2-byte integer. Options available at open time ..
One of the following pre-defined values:

STREAM_$NO _DELAY
Do not wait for I/O (currently applies only to
opening pipes).

A 2-byte integer. Options available at open time
with the STREAM _ $OPEN _ OPT call. Currently
the only option available is:

STREAM_$NO _DELAY
Do not wait for I/O (currently applies only to
opening pipes).

Attribute record for INQUIRE and REDEFINE
calls. The streams chapter of the Programming
With General System Calls manual describes how
to use the attribute record. The diagram below
illustrates the STREAM_$IR_REC_ T data type:

A 2-byte integer. Open stream identifier.

STREAM-6

o

o

o

o

o

STREAM $SK _ T

predefined
type

predefined
type

byte:
offset

0:

4:

8:

byte:
offset

0:

31

STREAM DATA TYPES

Seek key returned on most stream calls. The
diagram below illustrates the STREAM_ $SK_ T
data type:

field name

integer

integer

integer flags

Field Description:

rec_adr
The address of the record sought.

byte_adr
The address of the byte sought.

flags
Flags containing seek information.

field name
o

integer offset

Field Description:

offset
The offset of the record or character sought.

STREAM-7 STREAM

STREAM DATA TYPES

predefined byte: type offset field name r-'
0: integer strid ".- , ..

2: integer obj_namlen

4: integer recJgth

8: integer flags1 '"

10: integer flags2'"

12: integer unused

14: integer hdrJgth

16: integer fileJgth (~

{
20:

stream_$sk_t 24:

28:

integer

integer

integer

seek_key.rec_adr
\,_.

seek_key.byte_adr

seek_key. flags

32: integer cur_recJen

36: integer cur _reLrec _no (
',,---

40: integer blks_used

time _ $clockh _ t 44: integer dtu

time_$clockh_t 48: integer dtm

[52:
uid_$t

56:

integer

integer

otype.high
r-

otype.low ~

60: integer flags3'"

62: integer flags4'"

64: chari obLname

n: * see below for field names

strid
The stream ID of the object.

obj_namlen
The length of the object's name.

STREAM STREAM-8

--------------- -"-----------"----""--""-

o

0

0

o

o

STREAM DATA TYPES

rec_Igth
The length of the longest record in the object.

flags!
A bit mask containing predefined or Boolean
values indicating object attributes. The
following table lists the bit numbers within the
mask, the record field names, and a short
decription of each attribute:

Bit # Field Name Description

Bit 0 temporary Temporary
or
permanent
object

Bit 1 explicit_type Explicit
fixed-
length
records

Bit 2 ab_flag ASCII or
binary
file

Bit 3 explicit_ml Explicit
move mode

Bit 4-5 unused1
Bit 6 cc Type of

carriage
control

Bit 7-9 unused2
Bit 10-11 rec_type Record type
Bit 12-13 unused3
Bit 14-15 conc Object

concurrency

flags2
A bit mask containing predefined or Boolean
values indicating object attributes. The
following table lists the bit numbers within the
mask, the record field names, and a short
decription of each attribute:

Bit # Field Name Description

Bit 0-1 unused4
Bit 2-3 oconc Concurrency

at open
Bit 4-5 unused5
Bit 6-8 opos Access type
Bit 9 pre exist Pre-

existing
object

Bit 10-15 unused6

hdr _lgth
The length of the object header.

STREAM-9 STREAM

STREAM DATA TYPES

STREAM

file_Igth
The length of the file.

seek_key
The current seek-key.

cur _ rec _len
The length of the current record.

cur _rel_rec_no
The current record number relative to BOF.

blks used
The number of blocks occupied by the file.

dtu
The date and time of the last use of the object.

dtm
The date and time of the modification of the
object.

otype
Specifies the type of the object.

flags3
A bit mask containing predefined or Boolean
values indicating object attributes. The
following table lists the bit numbers within the
mask, the record field names, and a short
decription of each attribute:

Bit # Field Name Description

Bit 0 sparse File may
contain
Ilholes. II

Bit 1-15 unused7

flags4
A bit mask containing predefined or Boolean
values indicating object attributes. The
following table lists the bit numbers within the
mask, the record field names, and a short
decription of each attribute:

Bit # Field Name Description

Bit 0-12 unused8
Bit 13 close on exec Close stream

on UNIX Exec
call

Bit 14 ndelay Forced

STREAM-tO

(
"'-._-

c

r~
'--- .'

-----------_._-_. __ ._-----._ .. _---_._--_.-

o

STREAM $Dffi_ENTRY T

predefined byte:
type offset

o 0: integer

2: integer

{ 4: chari
name_ $name_t

~ ~
260: o 264:

o

o

STREAM DATA TYPES

Bit 25 append_mode File in
append mode

Bit 26 forced locate Force
locate mode

obj_name
The name of the object.

The directory entry returned by
STREAM,_ $GET _REO. The diagram below
illustrates the STREAM $Dffi ENTRY _ T data
type:

field name

enttype

entlen

entname

integer unused1

integer unused2

Field Description:

enttype
Type of the directory entry. Either
NAME $FILE or NAME $LINK.

entlen
Length of the directory entry name.

entname
Name of the directory entry.

unusedn
Reserved for future use by Apollo.

A 2-byte integer. Options available for force
writing to disk. Any combination of the following
pre-defined values:

STREAM $FW FILE
Specifies that a file should be force-written.

STREAM-11 STREAM

STREAM DATA TYPES

STATUS $T

byte:
offset 31

0:

0:

1 :

2:

STREAM

STREAM_ $FW _DIR
Specifies that the directory of the file should
be force-written.

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name
0

integer all

integer

or

fail

subsys

mode
0

code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

STREAM-12

~,
i

\.--.... /

c

-----------------_._--_ .. __ .-

o

o

o

o

o

STREAM $CLOSE

STREAM $CLOSE

Closes a stream.

FORMAT

STREAM_$CLOSE (stream-id. status)

INPUT PARAMETERS

stream-id
Number of the stream to be closed, in STREAM_$ID _ T format. This is a 2-byte integer.

The number used for stream identification becomes available for reuse. If the object is open
on more than one stream, STREAM_$CLOSE closes only the specified stream.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This is a 4-byte integer.

USAGE

STREAM_ $CLOSE closes the stream, so that you can no longer use the stream-id to
operate on the object. Closing a stream to an object releases any locks maintained for the
current user and may thus make the object available to other users.

If the stream is a disk file opened for any type of write access (STREAM_$WRITE,
STREAM_$OVERWRITE, STREAM_$APPEND, or STREAM_$UPDATE),
STREAM_ $CLOSE updates its header, reflecting any changes made to the file while it was
open, and indicating the date and time of last use and modification.

A program can close only the streams it has opened, and those opened by programs it has
invoked (that is, opened at lower levels). Trying to close a stream opened at a higher level
produces an error status code.

Closing a temporary object deletes it if no other process is using it.

STREAM-13 STREAM

STREAM $CREATE

STREAM $CREATE

Creates an object (if the object does, not already exist) and opens a stream to it.

FORMAT

STREAM_$CREATE (pathname. name-length. access. concurrency. stream-1d. status)

INPUT PARAMETERS

pathname
Name of the object to be created, in NAME_$PNAME_ T format. This is a character
array of up to 256 elements.

name-length
Length of the pathname, in bytes. This is a 2-byte integer. To create a temporary object,
specify a length of O.

access
Type of access requested, in STREAM_ $OPOS _ T format. Possible values are:

STREAM $APPEND
Permits adding data to the end of an object. The stream pointer points
to the end of the object (EOF).

STREAM $MAKE BACKUP
Creates a temporary file, with the same type and attributes as the file
specified in the pathname. This access is used to create a backup file.
(See below for a detailed description.)

STREAM $OVERWRITE
Permits replacing the entire contents of an object. The stream pointer is
positioned at the start of the object data and data is truncated.

STREAM $UPDATE
Permits replacing selected portions of the contents of an object. The
stream pointer is positioned at the start of the object data, just past the
header if it has one.

STREAM $WRITE
Permits writing data to a new object. If writing is attempted on an
existing object, an error status is returned.

If you specify the access option STREAM_$WRITE, the pathname must refer to a new
object; otherwise, an error status is returned.

If you specify the access option STREAM_$MAKE_BACKUP, a new, unnamed
temporary file is created by this call, which has the same type and other attributes as the
file given by the pathname (if it exists). The new file is created on the same volume (i.e.
the same node) as the file given by the pathname. The file given by the pathname is not
opened or modified in this case, but is examined to extract its attributes. Even though the
existing file is not modified, it is conceptually being replaced, so this operation requires
write access to the file.

STREAM STREAM-14

c

o

o

o

o

o

STREAM $CREATE

The application then writes the new file, and when it is closed (by the STREAM_ $CLOSE
call) the name of the file given at create time is changed to pathname.BAK. The new
(formerly unnamed temporary) file gets the old name, and becomes permanent.

If the ".bak" file already exists, it is deleted. (The caller must have either D or P rights to
delete the file.) If the lI.bak l' file is locked at the time STREAM_ $CLOSE is called, it is
deleted when it is unlocked.

If the pathname mentioned in the create call does not exist, then an ordinary
STREAM_ $CREATE is done, as though the access option had been STREAM_ $WRITE
instead of STREAM $MAKE BACKUP.

concurrency
Requested concurrency at open, in STREAM_$OMODE_ T format. Possible values are:

STREAM $CONTROLLED SHARING
No concurrent writing.

STREAM $NO CONC WRITE
No concurrent writing.

STREAM $UNREGULATED
Unregulated read and write access.

OUTPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

status
Completion status, in STATUS _ $T format. This is a 4-byte integer.

USAGE

If the pathname specifies an object that does not exist, the stream manager creates a new
UASC disk file with that pathname and opens a stream to it.

If the pathname specifies an existing object, the stream manager opens a stream to it for
overwrite, update, or append access. If write access is specified for an existing object, an
error status is returned.

STREAM_ $CREATE can open existing objects of any type, but can create only disk files.

Default attributes for a new disk file are listed below:

STREAM-I5 STREAM

STREAM_ $ CREATE

Attribute

Data type

Record type

Location

Concurrency

Default Value

AScn

VASC file format

Lowest level in the directory pathname. If no pathname is specified,
assume the current working directory.

No default.

Object concurrency
One writer or any number of readers.

Carriage control DOMAIN standard.

If the object already exists, its attributes remain the same when it is opened. For streams
to serial lines, however, n cooked II input mode and NO _ WAIT are always in effect when
the stream is opened. To change the object's attributes, call STREAM_$REDEFINE (or
SIO _ $CONTROL) before writing the object.

Both STREAM_ $CREATE and STREAM_ $OPEN open a stream to an object. However,
STREAM_ $ CREATE creates the object if it does not exist, whereas STREAM_ $OPEN
returns an error if the object does not exist.

STREAM STREAM-16

(
'I
\.

c

o

o

o

o

o

STREAM $CREATE BIN

STREAM $CREATE BIN

Creates a binary record-structured file (if the file does not already exist) and opens a stream
to it.

FORMAT

STREAM_$CREATE_BIN (pathname, name-length, access, concurrency, stream-id,
status)

INPUT PARAMETERS

pathname
Name of the object to be created, in NAME _ $PNAME _ T format. This is a character
array of up to 256 elements.

name-length
Length of the pathname, in bytes. This is a 2-byte integer. To create a temporary object,
specify a length of o.

access
Type of access requested, in STREAM_ $OPOS _ T format. Possible values are:

STREAM $APPEND
Permits adding data to the end of an object. The stream pointer points
to the end of the object (EOF).

STREAM $OVERWRITE
Permits replacing the entire contents of an object. The stream pointer is
positioned at the start of the object data and data is truncated.

STREAM $UPDATE
Permits replacing selected portions of the contents of an object. The
stream pointer is positioned at the start of the object data, just past the
header if it has one.

STREAM $WRITE
Permits writing data to a new object. If writing is attempted on an
existing object, an error status is returned.

concurrency
Requested concurrency at open, in STREAM_ $OMODE _ T format. Possible values are:

STREAM $CONTROLLED SHARING
No concurrent writing.

STREAM $NO CONC WRITE
No concurrent writing.

STREAM $UNREGULATED
Unregulated read and write access.

STREAM-17 STREAM

STREAM $CREATE_BIN

OUTPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in STREAM_ $ID _ T format. This is a
2-byte integer.

status
Completion status, in STATUS _ $T format. This is a 4-byte integer.

USAGE

If the named object does not exist, the stream manager creates a binary file of fixed length
records and opens a stream to it.

If the named object already exists, the file attributes remain the same and the stream
manager opens a stream to it for overwrite, update, or append access. If write access is
specified for an existing object, an error status is returned.

To change the file's attributes, call STREAM _ $REDEFINE (or SIO _ $CONTROL) before
writing the object.

Both STREAM_$CREATE_BIN and STREAM_$OPEN open a stream to a file.
However, STREAM_$CREATE_BIN creates the file if it does not exist, whereas
STREAM $OPEN returns an error if the file does not exist.

STREAM_$CREATE_BIN differs from STREAM_$CREATE in that
STREAM_$CREATE creates a UASC file by default.

STREAM STREAM-I8

('
\,- ...

(--..

".

o

o

o

o

o

STREAM $CREATE HERE

STREAM $CREATE HERE

Creates an object at the specified location and opens a stream to it.

FORMAT

STREAM_$CREATE_HERE (pathname. name-length. access. concurrency.
loclen. locname. stream-id. status)

INPUT PARAMETERS

pathname
Name of the object to be created, in NAME _ $PNAME _ T format. This is a character
array of up to 256 elements.

name-length
Length of the pathname, in bytes. This is a 2-byte integer. To create a temporary object,
specify a length of o.

access
Type of access requested, in STREAM_ $OPOS _ T format. Possible values are:

STREAM $APPEND
Permits adding data to the end of an object. The stream pointer points
to the end of the object (EOF).

STREAM $OVERWRITE
Permits replacing the entire contents of an object. The stream pointer is
positioned at the start of the object data and data is truncated.

STREAM $UPDATE
Permits replacing selected portions of the contents of an object. The
stream pointer is positioned at the start of the object data, just past the
header if it has one.

STREAM $WRITE
Permits writing data to a new object. If writing is attempted on an
existing object, an error status is returned.

concurrency
Requested concurrency at open, in STREAM_ $OMODE _ T format. Possible values are:

STREAM $CONTROLLED SHARING
No concurrent writing.

STREAM $NO CONC WRITE
No concurrent writing.

STREAM $UNREGULATED
Unregulated read and write access.

loden
Length of locname, in bytes. This is a 2-byte integer.

STREAM-19 STREAM

STREAM $CREATE HERE

locname
Location at which to create the object, in NAME _ $PNAME _ T format. This is a
character array of up to 256 elements.

The location can be a tree name or a leaf name.

OUTPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in STREAM_$ID _ T format. This is a
2-byte integer.

status
Completion status, in STATUS _ $T format. This is a 4-byte integer.

USAGE

This call creates an object at a specified location. It is especially useful for creating a
temporary file on the same logical volume as an existing object.

If the pathname specifies an object that does not exist, the locname must specify the parent
directory for the new object. If the pathname specifies an existing object, the locname and
loclen are ignored.

If both the object and the location pathnames are valid, the stream manager opens a stream
to the object for overwrite, update, or append access. If write access is specified for an
existing object, an error status is returned.

STREAM_$CREATE_HERE can open existing objects of any type, but can create only
disk files.

Both STREAM_$CREATE_HERE and STREAM_$OPEN open a stream to an object.
STREAM_$CREATE_HERE, like STREAM_$CREATE, creates the object if it does
not exist, whereas STREAM_ $OPEN returns an error if the object does not exist.

STREAM STREAM-20

o

o

o

o

o

~~~---~~---------~ .. - ... -.-•.. 

STREAM $DELETE 

STREAM $DELETE 

Deletes an object and closes the associated stream. 

FORMAT 

STREAM_$DELETE (stream-1d. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

OUTPUT PARAMETERS 

status 
Oompletion status, in STATUS _ $T format. This is a 4-byte integer. 

An error occurs if the stream is open for read access only. 

An error status is returned if the stream is not open. 

USAGE 

STREAM_ $DELETE deletes the object, then closes the specified stream. 

If the object cannot be deleted, an error occurs and all streams associated with the object 
remain open. Input pads cannot be deleted. 

If the object is open on more than one stream, STREAM_$DELETE deletes the object 
causing Ilobject deleted II errors when other streams try to read or write the object. , 

Files or pads are deleted immediately, even if several processes have opened the object. 

For serial lines and magnetic tape files, this call operates exactly like STREAM _ $OLOSE. 

STREAM-21 STREAM 



STREAM_ $FORCE _ WRITE _Fll..E 

STREAM $FORCE WRITE FILE 

Forcibly writes a disk file open on the given stream. 

FORMAT 

STREAM_$FORCE_WRlTE_FlLE (stream-id, options, status) 

INPUT PARAMETERS 

stream-id 
The number of the stream on which the disk file is open, in STREAM_$ID _ T format. 
This is a 2-byte integer. 

options 
The object types to be force-written, in STREAM_ $FORCE _ WRITE _ OPTIONS _ T 
format. Possible values are: 

STREAM $FW FILE 
Forces the file to disk. 

STREAM_,$FW nm 
Forces the file's directory to disk. 

OUTPUT PARAMETERS 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

Programs can call STREAM_ $FORCE _ WRITE _FILE to ensure that the file is stored on 
disk before it is closed. 

If a program is handling a critical file, it can call this routine on the open stream to 
force-write the file's directory, thereby ensuring that the file pointer is saved in the 
directory. 

STREAM STREAM-22 

\ 
,"" 

c 

(~' 

'"" 



o 

o 

o 

o 

o 

STREAM $GET _BUF 

STREAM $GET BUF 

Reads data from an object into a specified buffer. 

FORMAT 

STREAM_$GET_BUF (stream-id. bufptr. buflen. retptr. retlen. seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in 'STREAM_ $ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the buffer into which the data may be read, in UNN _PTR format. This is a 
4-byte integer. 

To obtain a value for bufptr, FORTRAN programs can use the IADDR function. Pascal 
programs can use the ADDR function. The buffer can be aligned on a byte boundary; 
therefore, the value of bufptr can be odd. 

buf1en 
Number of bytes of data to be read. This is a 4-byte integer. 

OUTPUT PARAMETERS 

retptr 
Pointer to the data returned, in UNIV _PTR format. This is a 4-byte integer. 

Address the returned data only by using retptr. The stream manager may use IIlocate 
mode, II in which it doesn't copy the desired data to the location indicated by bufptr. 
FORTRAN programs that call the stream manager in locate mode should use the IIpointer 
variable" FORTRAN extension. 

The value of retptr is meaningful only until execution of the next stream call on this 
stream. 

retlen 
Number of bytes of data returned. This is a 4-byte integer. 

seek-key 
Unique key identifying the location of the data read, in STREAM_ $SK_ T format. This 
is a three-element array of 4-byte integers. 

To obtain a seek-key value for the current stream position, call STREAM_ $GET _BUF 
with a buflen of o. 

If the returned status is nonzero, the seek-key may not be useful. 

status 
Completion status, in STATUS _ $T format. This is.a 4-byte integer. 

STREAM-23 STREAM 



For UASO files, STREAM_ $GET _BUF returns the requested number of bytes, including 
newline characters. UASO file records are delimited by the line-feed character (16#OA). 

For non-UASO files, STREAM_$GET _BUF functions the same as 
STREAM_ $GET _REO. That is, for fixed- or variable-length records 
STREAM _ $GET _ BUF returns one record, and for nonrecord-structured files 
STREAM_$GET _BUF returns the requested number of characters. 

FORTRAN programs using this procedure in locate mode should use the pointer variable 
FORTRAN extension. Otherwise, call STREAM_ $REDEFINE to set move mode before 
using this procedure. 

STREAM STREAM-24 

(" 
\,-. ... 

I 

\ ...... 



----------------------~-----.---~-~.~--

o 

o 

o 

o 

o 

STREAM $GET CONDITIONAL 

STREAM $GET CONDITIONAL 

Reads a record if the record is available; otherwise, it sets the returned record length to 
zero. 

FORMAT 

STREAM_$GET_CONDITIONAL (stream-id. bufptr. buflen. retptr. retlen. 
seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the buffer into which the data may be read, in UNN _PTR format. This is a 
4-byte integer. 

To obtain a value for bufptr, FORTRAN programs can use the IADDR function. Pascal 
programs can use the ADDR function. The buffer can be aligned on a byte boundary; 
therefore, the value of bufptr can be odd. 

buflen 
Number of bytes of data requested. This is a 4-byte integer. 

If the number of bytes remaining in the record is less than burIen, 
STREAM $GET CONDITIONAL returns the remainder of the record. If the number of 
bytes remaining in the record is greater than burIen, the stream manager reads enough data 
to fill the buffer and returns a negative value in retlen. The absolute value of retlen is the 
number of bytes remaining in the record. 

OUTPUT PARAMETERS 

retptr 
Pointer to the data returned, in UNN _PTR format. This is a 4-byte integer. 

Address the returned data only by using retptr. The stream manager may use IIlocate 
mode, II in which it doesn't copy the desired data to the location indicated by bufptr. 
FORTRAN programs that call the stream manager in locate mode should use the IIpointer 
variable II FORTRAN extension. 

Records are aligned on word boundaries. Therefore, if the procedure reads an entire record, 
the value of retptr will be word-aligned and positive. The value of retptr is meaningful 
only until execution of the next stream call for this stream. 

STREAM-25 STREAM 



STREAM $GET CONDITIONAL 

retlen 
Number of bytes of data actually returned. This is a 4-byte integer. 

If the call returned any data, retlen has a value equal to the requested number of bytes. It 
has a value of 0 if the call returned no data. 

seek-key 
Unique key identifying the location of the data returned, in STREAM_$SK_ T format. 
This is a three-element array of 4-byte integers. 

If the returned status is nonzero, the seek-key is not useful. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_ $GET _ CONDITIONAL performs read operations on streams such as SIO lines, 
input pads, and mailboxes, for which data may not yet be available at the time of the call. 
Under these conditions, STREAM_$GET _REC waits for data. 
STREAM $GET CONDITIONAL never waits. If data is not immediately available, it 
returns a length of zero. 

This call is commonly used in conjunction with STREAM _ $GET _ EO and EC2 _ $W AlT. 

Since data from ordinary files is always available, this call is equivalent to 
STREAM $GET REC for files. 

No error occurs if the stream manager cannot find data at the current stream position, 
unless the current position is known to be at EOF. In this case, a zero is returned in, retlen. 

STREAM STREAM-26 

c 

(~ 
\ '_. 



o 

o 

o 

o 

o 

STREAM $GET _EO 

STREAM $GET EC 

Gets the eventcount address of the eventcount to be advanced upon any activity within the 
specified stream. 

FORMAT 

STREAM_$GET_EC (stream-id. stream-key. eventcount-pointer. status) 

INPUT PARAMETERS 

stream-id 
The stream ID, in STREAM_$ID _ T format. This is a 2-byte integer. 

stream-key 
The key that specifies which eventcount to get, in STREAM_ $EC _KEY _ T format. The 
only value allowed is STREAM_$GETREC_EC_KEY. 

OUTPUT PARAMETERS 

eventcount-pointer 
The eventcount address to be obtained, in EC2 _ $PTR _ T format. EC2 $PTR T is a 
pointer to an EC2 _ $EVENTCOUNT _ T array. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

The eventcount is advanced whenever data becomes available through the stream. This call 
is valid for all streams, including those open to files, pads, mailboxes, and C01vflvfENTs. 

If the input pad is in raw mode then an event is counted after each single character stroke; 
if the keyboard is in cooked mode then an event is counted after each carriage return. 

See the description of EC2 _ $W AIT for a description of eventcount data structures. See 
Programming With General System Calls for a discussion of eventcounts. 

STREAM-27 STREAM 



~TREAM $ GET _ PRIOR REC 

STREAM $GET PRIOR REO 

Reads the previous record. 

FORMAT 

STREAM_$GET_PRIOR_REC (stream-1d. bufptr. buflen. retptr. retlen. 
seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_$ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the buffer into which the data may be read, in UNN _PTR format. This is a 
4-byte integer. 

To obtain a value for bufptr, FORTRAN programs can use the IADDR function. Pascal 
programs can use the ADDR function. The buffer can be aligned on a byte boundary; 
therefore, the value of bufptr can be odd. 

buflen 
Number of bytes of data requested. This is a 4-byte integer. 

If the number of bytes remaining in the record is less than buflen, 
STREAM_$GET _PRIOR_REO returns the remainder of the record. The value returned 
in retlen is the number of bytes actually read. If the number of bytes remaining in the 
record is greater than buflen, the stream manager reads enough data to fill the buffer and 
returns a negative value in retlen. The absolute value of the returned retlen is the number 
of bytes remaining in the record. 

OUTPUT PARAMETERS 

retptr 
Pointer to the data returned, in UNN _PTR format. This is a 4-byte integer. 

Address the returned data only by using retptr. The stream manager may use "locate 
mode, II in which it doesn't copy the desired data to the location indicated by bufptr. 
FORTRAN programs that call the stream manager in locate mode should use the IIpointer 
variable" FORTRAN extension. 

Records are aligned on word boundaries. Therefore, if the procedure reads an entire record, 
the value of retptr will be word-aligned and positive. The value of retptr is meaningful 
only until execution of the next stream call on this stream. 

retlen 
Number of bytes of data returned. This is a 4-byte integer. 

If the number of bytes remaining in the record is less than buflen, 
STREAM _ $GET _ PRIOR REO returns the remainder of the record. The value of retlen 
is the number of bytes actually read. 

STREAM STREAM-28 



o 

o 

o 

o 

o 

STREAM $GET PRIOR REO 

If the number of bytes remaining in the record is greater than burIen, the stream manager 
reads enough data to fill the buffer and returns a negative value in retlen. The absolute 
value of the returned retlen is the number of unread bytes remaining in the record. 

seek-key 
Unique key identifying the location of the data returned, in STREAM_ $SK_ T format. 
This is a three-element array of 4-byte integers. 

The seek-key identifies the beginning of the returned data, as it does for 
STREAM_ $GET _REC. Use it in STREAM_ $ SEEK calls followed by 
STREAM_$GET_REC (not STREAM_$GET_PRIOR_REC) calls. 

If the returned status is nonzero, the seek-key is not useful. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_ $GET _PRIOR _REC reads the previous record from the object. The object 
must be open on the specified stream. 

This call operates on file types UASC, PAD, HDR_ UNDEF, and REC with record format 
F2. It will not work on REC files with record format VI, or on nonfile-type streams such 
as SIO lines, input pads, or mailboxes. STREAM $GET PRIOR REC works as 
follows: 

UASC and REC files 
If the seek-key is positioned at the beginning of a record, it is positioned 
to the previous record. If the seek-key is in the middle of a record, then 
its position is not changed. 

HDR UNDEF files 
The seek-key is repositioned by subtracting the caller's buffer size from 
the current position. 

After these respective actions are taken, an ordinary STREAM_ $GET _REC operation is 
done. 

FORTRAN programs using this procedure in locate mode should use the pointer variable 
FORTRAN extension. Otherwise, call STREAM_ $REDEFINE to set move mode before 
using this procedure. 

An error occurs if the stream manager cannot find a record at the current stream position -
- for example, if the current position is beyond EOF or at BOF (beginning of file). 

STREAM-29 STREAM 



STREAM $GET_REC 

STREAM $GET REO 

Reads the next sequential record from an object. 

FORMAT 

STREAM $GET_REC (stream-id. bufptr. buflen. retptr. retlen. seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the buffer into which the record may be read, in UNIV _PTR format. This is a 
4-byte integer. 

To obtain a value for bufptr, FORTRAN programs can use the IADDR function. Pascal 
programs can use the ADDR function. The buffer can be aligned on a byte boundary; 
therefore, the value of bufptr can be odd. 

buflen 
Number of bytes of data to be read. This is a 4-byte integer. 

If the number of bytes remaining in the record is less than buflen, STREAM_$GET _REO 
returns the remainder of the record. If the number of bytes remaining in the record is 
greater than buflen, the stream manager reads enough data to fill the buffer and returns a 
negative value in retlen. The absolute value of retlen is the number of bytes remaining in 
the record. 

OUTPUT PARAMETERS 

retptr 
Pointer to the data returned, in UNIV _PTR format. This is a 4-byte integer. 

Address the returned data only by using retptr. The stream manager may use Illocate 
mode, II in which it doesn't copy the desired data to the location indicated by bufptr. 
FORTRAN programs that call the stream manager in locate mode should use the IIpointer 
variable ll FORTRAN extension. 

Records are aligned on word boundaries. Therefore, if the procedure reads an entire record, 
the value of retptr will be word-aligned and positive. The value of retptr is meaningful 
only until execution of the next stream call for this stream. 

retien 
Number of bytes of data returned. This is a 4-byte integer. 

If the number of bytes remaining in the record is less than buflen, 
STREAM _ $GET _ PRIOR _ REO returns the remainder of the record. The value of retIen 
is the number of bytes actually read. 

If the number of bytes remaining in the record is greater than buflen, the stream manager 

STREAM STREAM-30 



o 

o 

o 

o 

o 

STREAM $GET _REO 

reads enough data to fill the buffer and returns a negative value in retlen. The absolute 
value of the returned retlen is the number of unread bytes remaining in the record. 

seek-key 
Unique key identifying the location of the data read, in STREAM_ $SK_ T format. This 
is a three-element array of 4-byte integers. 

To obtain a seek-key value for the current stream position, call STREAM_$GET _REC 
with a buflen of o. 

Use the seek-key value in STREAM_ $SEEK calls followed by STREAM_ $GET _REC 
calls. 

If the returned status is nonzero, the seek-key is not useful. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM _ $GET _ REC returns at most the requested number of bytes of the next 
sequential record in the object. 

FORTRAN programs using this procedure in locate mode should use the pointer variable 
FORTRAN extension. Otherwise, call STREAM_ $REDEFINE to set move mode before 
using this procedure. 

An error occurs if the stream manag'er cannot find a record at the current stream position -­
for example, if the current position is at EOF. 

STREAM-3t STREAM 



STREAM_ $INQUffiE 

STREAM_$INQUIRE 

Returns information about an object. 

FORMAT 

STREAM_$INQUIRE (input-mask. inquiry-type. attributes. error-mask. status) 

INPUT PARAMETERS 

input-mask 
Integer bit mask indicating the attributes for which information is requested, in 
STREAM_$INQUIRE_MASK_ T format. This is a 4-byte integer. 

The following lists the predefined symbols for each bit position in the mask. 

Bit 0 STREAM_$STRID Stream-id 
Bit 1 STREAM $OBJ NAME Object name 
Bit 1 STREAM=$OBJ=NAMLEN Object name length 
Bit 2 STREAM_$REC_LGTH Record length 
Bit 3 STREAM_$TEMPORARY Temporary or permanent * 
Bit 4 STREAM_$EXPLICIT_TYPE Explicit record type 
Bit 5 STREAM_$AB_FLAG ASCII or binary file 
Bit 6 STREAM $EXPLICIT ML Explicit move mode * 
Bit 7 STREAM=$CC - Carriage control 
Bit 8 STREAM $REC TYPE Record type 
Bit 9 STREAM=$CONC Object concurrency (not implemented) 
Bit 10 STREAM_$OCONC Concurrency at open * 
Bit 11 STREAM_$OPOS Access type * 
Bit 12 STREAM $PRE EXIST Pre-existing Object 
Bit 13 STREAM=$HDR=LGTH Header length 
Bit 14 STREAM_$FILE_LENGTH File length 
Bit 15 STREAM_$SEEK_KEY Seek key * 
Bit 16 STREAM $CUR REC LEN Current record length * 
Bit 17 STREAM-$CUR-REL-REC NO Current relative record number * 
Bit 18 STREAM=$BLKS_USEo - Number of blocks used 
Bit 19 STREAM_$DTU Date and time last used 
Bit 20 STREAM_$DTM Date and time last modified 
Bit 21 STREAM_$SPARSE Sparsely written file * 
Bit 22 S TREAM_$ 0 TYPE Object type 
Bit 23 STREAM_$CLOSE_ON_EXEC Close stream on UNIX Exec call 
Bit 24 STREAM_$NDELAY Forced STREAM_$GET_CONDITIONAL 
Bit 25 STREAM_$APPEND_MODE File in append mode 
Bit 26 STREAM_$FORCED_LOCATE Force locate mode 

* Attributes to which a stream must be open for information to be returned. 

Pascal and C programs specify these predefined values as members of a set. FORTRAN 
programs must add the desired values to each other to result in a correct input-mask value. 

STREAM STREAM-32 

r 
\ 
'-. 

C 

( 
I 
I 
\ 

'" 



o 

o 

o 

STREAM _ $INQUIRE 

inquiry-type 
Type of inquiry, in STREAM_$ffi_ OPT format. Possible values are: 

STREAM $USE STRID 
Specifies an inquiry by stream ID. On input, the attribute record must 
contain the stream-id to which the request applies. On output, the 
attribute record contains the requested information, if the stream is open. 
If the stream is not open, an error is returned. 

STREAM $NAME CONDITIONAL 
Specifies an inquiry by name to be executed only if a stream is open to 
the object. On input, the attribute record must contain the object's 
pathname and name-length. On output, the attribute record contains the 
reqaested information if a stream is open. If no stream is open to the 
object, an error is returned. 

STREAM $NAME UNCONDITIONAL 
Specifies an unconditional inquiry by name. On input, the attribute 
record must contain the object's pathname and name-length. On output, 
the attribute record contains the requested information whether or not a 
stream is open. 

INPUT/OUTPUT PARAMETERS 

attributes 
Record containing attribute information, in STREAM_ $ffi_REC _ T format. On input, 
this record contains a pathname or stream-id that identifies the object. On output, this 
record contains the returned information. 

For serial lines, STREAM_ $INQUffiE returns the default values. 

The attribute parameter is able to convey a large amount of information by passing it in 
many fields of one record (including a number of bit fields). These record fields are listed 
below along with their size and a brief explanation of the information they transmit. 

Stream-id 

Name-length 

Record length 

Flag1 

STREAM_$ID _ T. A 2-byte integer. Specified on input in conjunction 
with the STREAM_$USE_STRID inquiry-type. 

a 2-byte integer. Name-length of the object. Specified on input in 
conjunction with the STREAM_ $NAME _ CONDITIONAL and 
STREAM_ $NAME _ UNCONDITIONAL inquiry-type. 

A longword. If the object has variable-length records, the length of the 
longest record is returned; if fixed-length records, the fixed record length 
is returned. 

A field of 16 bits containing Boolean and enumerated values. Each 
Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one hit depending on the number of possible values. 
The following table lists the bit number(s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

STREAM-33 STREAM 



STREAM_ $INQUffiE 

Bit Number Attribute Data Type Explanation 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Temporary Boolean 

Explicit type Boolean 

ASCII/Binary Boolean 

Force move 
mode 

Boolean 

TRUE if the object is temporary. 

TRUE if record type is explicit. 

TRUE if data is ASCII. otherwise 
it is binary. 

TRUE if move mode is used 
(only applies to open streams). 

Bits 4.5 Unused 1 

Bit 6 

Bits 7-9 

Carriage 
control 

Unused 2 

Either STREAM $F77 cc (FORTRAN) 
or STREAM_$APOLLO_CC (DOMAIN). 

Bits 10.11 Record Type STREAM_$RTYPE_T Either STREAM $F2 (fixed length). 
STREAM_$Vl (variable-length). or 
STREAM_$UNDEF (undefined). 

Bits 12.13 Unused 3 

Bits 14.15 Object 
Concurrency 

STREAM_$FCONC_T Not implemented. Always is 
STREAM_$N_AND_N. 

Flag2 

STREAM 

A word. This is a field of bits containing Boolean and enumerated values. 
Each Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one bit depending on the number of possible values. 
The following table lists the bit number{s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

STREAM-34 

.r--­
/ ' 

(~ 



o 

o 

o 

o 

o 

STREAM_ $INQUffiE 

Bit Number Attribute Data Type Explanation 

Bits 16.17 Unused 4 

Bits 18.19 Concurrency 
at open 

STREAM OMODE_T Either STREAM_$UNREGULATED. 
STREAM_$NO_CONC_WRlTE. or 
STREAM_$CONTROLLED_SHARING. Only 
returned from opened streams. 

Bits 20.21 Unused 5 

Bits 2-24 Access Type STREAM_$OPOS_T Either STREAM $READ. 
STREAM_$WRlTE. STREAM_$UPDATE. 
STREAM_$APPEND. or 
STREAM_$OVERWRlTE. Only returned 
from opened streams. 

Bit 25 pre-existing Boolean TRUE if object already exists. 

Bits 26-31 Unused 5 

Unused 6 

Header length 

File length 

Seek key 

A 2-byte integer. Length of streams header. 

A 4-byte integer. Total file length, in bytes (including header). 

STREAM_$SK_ T. A three-element INTEGER*4 array. Current stream 
position. This attribute is only returned from opened streams. 

Current record length 
A 4-byte integer. Size of current record. This attribute is only returned 
from opened streams. 

Current relative record number 

Blocks used 

A 4-byte integer. Only applies to files with fixed-length records. This 
attribute is only returned from opened streams. 

A 4-byte integer. Number of disk blocks currently used for the file. Only 
applies to pads and disk files. 

Date/Time Used TTh1E_$CLOCKH_ T. A 4-byte integer. Date and time of last use. 
Only applies to pads and disk files. 

Date/Time Modified 
TTh1E_$CLOCKH_ T. A 4-byte integer. Date and time of last 
modification. Only applies to pads and disk files. 

STREAM-35 STREAM 



STREAM _ $INQUIRE 

Object type 

Sparse flag 

Flag3 

STREAM 

UID _ $T. A two-element INTEGER*4 array. Type UID of the object. 
The following table lists valid UID types. 

UASC $UID 
RECORDS $UID 
HDR_$UNDEF_$UID 
OBJECT FILE $UID 
PAD $UID -
INPUT PAD $UID 
SIO $UID -
MBX-$UID 
MT_$UID 

UASC file 
Record-structured file 
Nonrecord-structured file 
Object module file 
Saved transcript pad 
Input pad 
Serial line descriptor file 
Mailbox object 
Magnetic tape descriptor file 

Boolean. When TRUE, file allocation may have II holes. II 

A word. This is a field of bits containing Boolean and enumerated values. 
Each Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one bit depending on the number of possible values. 
The following table lists the bit number(s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

STREAM-36 



o 

o 

o 

o 

o 

STREAM_ $INQUIRE 

Bit Number Attribute Data Type Explanation 

Bits 16-27 Unused 7 

Bit 29 

Bit 30 

Bit 31 

Bit 28 

Unused 8 

Name 

Close on exec Boolean 

No delay mode Boolean 

Append mode Boolean 

Force locate Boolean 
mode 

A 4-byte integer. 

TRUE causes stream to be closed 
upon an AUX exec call. 

When TRUE. any system call that 
reads data from a ~tream will 
act like STREAM $GET CONDITIONAL 
(returns if data not-available). 

When TRUE. any call to 
STREAM_$PUT_REC or 
STREAM_$PUT_CHR does a seek to 
EOF before writing any data. 

Normally. if the force move mode 
bit (bit 6) is not set. streams 
may use either move mode or 
locate mode. If this bit is set. 
streams will only use locate 
mode. the caller need not supply 
a buffer. This option can only 
be set for file-type streams 
(UASC. REC. HDR_UNDEF. and 
CASE_HM) . 

NAME_$PNAME_ T. A character array of up to 256 elements. The 
name of the object. Specified on input with 
STREAM_ $NAME _ CONDITIONAL and 
STREAM_ $NAME _ UNCONDITIONAL inquiry-types. 

The array specified as the attribute parameter need not be large enough for every field, but 
just sufficient to span the required fields. For example, to inquire on explicit move mode, 
only a six-element INTEGER*2 array is required (for a FORTRAN program), because the 
necessary flag is in FLAG!. 

Accessing attribute record bit fields is discussed in detail in the Programming With General 
System Calls. 

OUTPUT PARAMETERS 

error-mask 
Integer bit-mask indicating the requested fields that could not be returned, in 
STREAM_$INQUIRE_MASK_ T format. This is a 4-byte integer. 

This procedure may complete with partial success if it can return some, but not all, of the 
requested attributes. If an attribute is unavailable, STREAM_ $INQUIRE sets the 
corresponding bit in the error mask and continues to inquire about other attributes. In 
cases of partial success, the returned status code is nonzero. The program must check the 
error mask to find out where the error occurred. 

STREAM-37 STREAM 



STREAM_ $INQUIRE 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_ $INQUffiE returns the attributes of the object specified in the mask. To 
receive the information you must specify either the stream ID of the object or the object 
name and name-length. However, some attributes such as access type apply only to objects 
to which a stream is open. These parameters are marked with asterisks in the inquiry mask 
parameter description above. 

The stream position does not change as a result of this call. 

STREAM STREAM-38 

c' 

( 
\'-----



o 

o 

o 

o 

o 

STREAM $OPEN 

STREAM $OPEN 

Opens a stream to an existing object. 

FORMAT 

STREAM_$OPEN (pathname. name-length. access. concurrency. stream-id. status) 

INPUT PARAMETERS 

pathname 
Name of the object to be opened, in NAME _ $PNAME _ T format. This is a character 
array of up to 256 elements. 

name-length 
Length of the pathname. This is a 2-byte integer. 

access 
Type of access requested, in STREAM_ $OPOS _ T format. Possible values are: 

STREAM $APPEND 
Permits adding data to the end of an object. The stream pointer points 
to the end of the object (EOF). 

STREAM $OVERWRITE 
Permits replacing the entire contents of an object. The stream pointer is 
positioned at the start of the object data and data is truncated. 

STREAM $READ 
Permits reading data from an existing object. 

STREAM $UPDATE 
Permits replacing selected portions of the contents of an object. The 
stream pointer is positioned at the start of the object data, just past the 
header if it has one. 

STREAM $WRITE 
Permits writing data to a new object. If writing is attempted on an 
existing object, an error status is returned. 

If you specify the access 'option STREAM_ $WRITE, the pathname must refer to a new 
object, otherwise an error status is returned. 

concurrency 
Requested concurrency at open, in STREAM_$OMODE_ T format. Possible values are: 

STREAM $CONTROLLED SHARING 
Does not allow concurrent read and write access. 

STREAM $NO CONC WRITE 
Does not allow concurrent read and write access. 

STREAM $UNREGULATED 
Allows concurrent read and write access. 

STREAM-39 STREAM 



STREAM $OPEN 

OUTPUT PARAMETERS 

stream-id 
Number of the stream on which the object was opened, in STREAM_ $ID _ T format. This 
is a 2-byte integer. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

This routine opens a stream to the named object and assigns access and concurrency types. 
It returns the stream ID to be used in subsequent stream activity with the object. 

An error occurs if the object does not exist. 

STREAM_ $OPEN does not return information about the object's characteristics. Use 
STREAM_ $INQUffiE to obtain that information. 

If the object already exists, its attributes remain the same when it is opened. For streams to 
SIO lines, however, "cooked" input mode and NO _ WAIT are always in effect when the 
stream is opened. To change the object's attributes, call STREAM_$REDEFINE (or 
SIO _ $CONTROL) before writing to the object. 

STREAM STREAM-40 

c 

(' 
~. 



o 

o 

o 

o 

o 

STREAM_ $PUT CHR 

STREAM $PUT CRR 

Writes data to an object without terminating the current record, if one exists. 

FORMAT 

STREAM_$PUT_CHR (stream-id. bufptr. buflen. seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which an object is open, in STREAM_$ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the data to be written, in UNIV _PTR format. This is a 4-byte integer. 

FORTRAN programs can use IADDR to obtain the buffer address for the bufptr parameter. 
Pascal programs can use ADDR. Alternately, programs in either language can use pointer 
variables. 

buflen 
Number of bytes of data to be written. This is a 4-byte integer. 

OUTPUT PARAMETERS 

seek-key 
Unique key identifying the location of the data written, in STREAM_$SK_ T format. 
This is a three-element array of 4-byte integers. 

The seek key allows random access to the output data by a subsequent STREAM_$SEEK 
call. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_ $PUT _ CRR writes the specified number of bytes to the object, but does not 
terminate a record. 

Use this procedure to write data in nonrecord-structured files or to compose records piece 
by piece. Be sure to call STREAM_$REDEFINE to set STREAM_$UNDEF as the record 
type, and HDR _ UNDEF _ $UID as the object type, before writing any output. 

Records of fixed-length format automatically change to variable-length if this write 
operation extends the current record beyond the length of existing records. In this case, no 
error occurs. For files with explicit fixed-length records, an error occurs if this write 
operation extends the current record beyond the fixed-record size. 

For files with variable-length records, no record length checking is performed. Therefore, 
take care not to alter the count field of the following record. 

STREAM-41 STREAM 



STREAM $PUT CHR 

Record size can increase as a result of this call, but cannot decrease. For instance, after you 
overwrite the first 20 bytes of a 32-byte record, the last 12 bytes still contain the original 
data, and the count field remains the same. To terminate a record and update its count 
field, use STREAM_ $PUT _REO. 

STREAM_ $PUT _ ORR and STREAM_ $PUT _REO operate identically when applied to 
SIO lines, UASO files, and keyboards. 

STREAM STREAM-42 

''---_ ... ' 



o 

o 

o 

o 

o 

STREAM $PUT REO 

STREAM $PUT REC 

Writes data to an object and terminates the current record, if one exists. 

FORMAT 

STREAM_$PUT_REC (stream-1d. bufptr. buflen. seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the data to be written, in UNN _PTR format. This is a 4-byte integer. 

FORTRAN programs can use IADDR to obtain the buffer address for the bufptr parameter. 
Pascal programs can use ADDR. Alternately, programs in either language can use pointer 
variables. 

buf1en 
Number of bytes of data to be written. This is a 4-byte integer. 

For files with explicit fixed-length records, an error occurs if the total record length is not 
equal to the fixed-record length. 

If you specify a buflen of zero, STREAM_ $PUT _REC simply terminates the current 
record and updates its count field. 

OUTPUT PARAMETERS 

seek-key 
Unique key identifying the location of the data in the object, in STREAM_ $SK_ T 
format. This is a three-element array of 4-byte integers. 

The seek key allows random access to the output data by a subsequent STREAM _ $SEEK 
call. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_$PUT _REC queues data for output to the object. It does not necessarily write 
the data on the COMMENT. COMMENT writes may be performed asynchronously. 

Records of default format (implicit fixed-length) automatically change to variable-length if 
the new record differs in length from any existing records. No error occurs. 

Existing data in variable-length records are overwritten if the stream position is not at 
EOF. No error occurs. 

STREAM-43 STR.EAM 



STREAM $PUT _REO 

STREAM_$PUT _REO never inserts ntNline characters in the object on its own. You 
must do this yourself if you want newlines to appear in the object. 

STREAM_ $PUT _ OHR and STREAM_ $PUT _REO operate identically when applied to 
SIO lines, UASO files, and keyboards. 

STREAM STREAM-44 



o 

o 

o 

o 

o 

STREAM $REDEFINE 

STREAM $REDEFlNE 

Changes one or more attributes of an object that is open on a stream. 

FORMAT 

STREAM_$REDEFINE (stream-id, input-mask, attributes, error-mask, status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

input-mask 
An integer bit mask showing which attributes you want to redefine, in 
STREAM_ $REDEF _MASK_ T format. This is a 4-byte integer. 

Bits 4 through 9 are the ones most commonly changed. The following lists the predefined 
symbols for each bit position in the mask. 

Bit 1 STREAM_$OBJ_NAME Object name 
Bit 1 STREAM_$OBJ_NAMLEN Object name length 
Bit 2 STREAM_$REC_LGTH Record length 
Bit 3 STREAM_$TEMPORARY Temporary or permanent 
Bit 4 STREAM_$EXPLICIT_TYPE Explicit record type 
Bit 5 STREAM_$AB_FLAG ASCII or binary file 
Bit 6 STREAM_$EXPLICIT_ML Explicit move mode 
Bit 7 STREAM_$CC Carriage control 
Bit 8 STREAM_$REC_TYPE Record type 
Bit 9 STREAM_$CONC Object concurrency (not implemented) 
Bit 10 STREAM_$OCONC Concurrency at open 
Bit 11 STREAM_$OPOS Access type 

Bit 21 STREAM_$SPARSE Sparsely written file 
Bit 22 STREAM_$ 0 TYPE Object type 
Bit 23 STREAM_$CLOSE_ON_EXEC Close stream on DOMAIN/IX Exec call 
Bit 24 STREAM_$NDELAY Forced STREAM_$GET_CONDITIONAL 
Bit 25 STREAM_$APPEND_MODE File in append mode 
Bit 26 STREAM_$FORCED_LOCATE Force locate mode 

Pascal and C programs specify these predefined values as members of a set. FORTRAN 
programs must add the desired values to each other to result in a correct input-mask value. 

Note that some bit numbers are missing (0, 12 - 20). This is because 
STREAM_ $INQUffiE and STREAM_ $REDEFlNE use the same attribute record, 
however certain attributes that can be inquired upon cannot be redefined. 

attributes 
Record containing new values for attributes, in STREAM_ $ffi_REC _ T format. 

The attribute parameter is able to specify redefinition of a large number of attributes by 
passing information in many fields of one record (including a number of bit fields). These 
record fields are listed below along with their size and a brief explanation of the information 
they transmit. 

STREAM 



STREAM 

Stream-id 

Name-length 

STREAM $REDEFlNE 

STREAM_ $ID _ T. A 2-byte integer. Not redefinable. 

a 2-byte integer. Name-length of the object. Specified on input in 
conjunction with the STREAM_$NAME_ CONDITIONAL and 
STREAM_ $NAME _ UNCONDITIONAL inquiry-type. 

Record length A longword. If the object has variable-length records, the length of the 
longest record is returned; if fixed-length records, the fixed record length 
is returned. 

Flag1 A field of 16 bits containing Boolean and enumerated values. Each 
Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one bit depending on the number of possible values. 
The following table lists the bit number(s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

Bit Number Attribute Data Type Explanation 

Bit 0 Temporary Boolean TRUE if the Object is temporary. 

Bit 1 Explicit type Boolean TRUE if record type is explicit. 

Bit 2 ASCII/Binary Boolean TRUE if data is ASCII. otherwise 
it is binary. 

Bit 3 Force move 
mode 

Bits 4.5 Unused 1 

Bit 6 

Bits 7-9 

Carriage 
control 

Unused 2 

Bits 10.11 Record Type 

Bits 12.13 Unused 3 

Bits 14.15 Object 
Concurrency 

Boolean 

STREAM_$CC_T 

TRUE if move mode is used. 
(only applies to open streams) 

Either STREAM_$F77_CC (FORTRAN) 
or STREAM_$APOLLO_CC (DOMAIN). 

STREAM $RTYPE T Either STREAM $F2 (fixed length). 
- - STREAM $Vl (variable-length). or 

STREAM=$UNDEF (undefined). 

STREAM_$FCONC_T Not implemented. Always 
STREAM_$N_AND_N. 

Flag2 A word. This is a field of bits containing Boolean and enumerated values. 
Each Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one bit depending on the number of possible values. 
The following table lists the bit number(s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

STREAM-46 

(:~\ 

c 



o 

o 

o 

o 

o 

STREAM $REDEFlNE 

Bit Number Attribute Data type Explanation 

Bits 16,17 Unused 4 

Bits 18,19 Concurrency STREAM OMODE T Either STREAM_$UNREGULATED, - -
at open STREAM_$NO_CONC_WRITE, or 

STREAM_$CONTROLLED_SHARING. Only 
returned from opened streams. 

Bits 20,21 Unused 5 

Bits 2 -24 Access Type STREAM_$OPOS_T Either STREAM_$READ, 
STREAM_$WRITE, STREAM_$UPDATE, 
STREAM_$APPEND, or 
STREAM_$OVERWRITE. Only ret.urned 
from opened streams. 

Bit 25 Pre-existing Boolean Not redefinable. 

Bits 26-31 Unused 5 

Unused 6 

Header length A 2-byte integer. Not redefinable. 

File length 

Seek key 

A 4-byte integer. Not redefinable. 

STREAM_$SK_ T. A three-element INTEGER*4 array. Not 
redefinable. 

Current record length 
A 4-byte integer. Not redefinable. 

Current relative record number 
A 4-byte integer. Not redefinable. 

Blocks used A 4-byte integer. Not redefinable. 

Date/Time Used TIME_$CLOCKH_ T. A 4-byte integer. Not redefinable. 

Date/Time Modified 
TIME_$CLOCKH_ T. A 4-byte integer. Not redefinable. 

Object type UID _ $T. A two element INTEGER*4 array. Type UID of the object. 
The following table lists valid UID types. 

UASC_$UID 
RECORDS_$UID 
HDR_$UNDEF_$UID 
OBlECT_FILE_$UID 
PAD $UID 
INPUT_PAD_$UID 
SIO_$UID 
MBX_$UID 
MT_$UID 

UASC file 
Record-structured file 
Nonrecord-structured file 
Object module file 
Saved transcript pad 
Input pad 
Serial line descriptor file 
Mailbox object 
Magnetic tape descriptor file 

STREAM-47 STREAM 



STREAM $REDEFINE 

Sparse flag 

Flag3 

Boolean. When TRUE, file allocation may have II holes II. See the 
Programming With General System Calls manual. 

A word. This is a field of bits containing Boolean and enumerated values. 
Each Boolean value occupies one bit in the flag. Enumerated types may 
occupy more than one bit depending on the number of possible values. 
The following table lists the bit number(s), the corresponding attribute, 
the data type of the attribute, and a brief explanation of possible values. 

Bit Number Attribute Data Type Explanation 

Bits 16-27 Unused 7 

Bit 29 

Bit 30 

Bit 31 

Bit 28 

Unused 8 

Name 

Close on exec Boolean 

No delay mode Boolean 

Append mode 

Force locate 
mode 

Boolean 

Boolean 

A 4-byte integer. 

TRUE causes stream to be closed 
upon an DOMAIN/IX exec call. 

When TRUE, any system call that 
reads data from a stream will 
act like STREAM $GET CONDITIONAL 
(returns if data not-available). 

When TRUE, any call to 
STREAM_$PUT_REC or 
STRE~1_$PUT_CHR does a seek to 
EOF before writing any data. 

Normally, if the force move mode 
bit (bit 6) is not set, streams 
may use either move mode or 
locate mode. If this bit is set, 
streams will only use locate 
mode; the caller need not supply 
a buffer. This option can only 
be set for file-type streams 
(UASC, REC, HDR_UNDEF, and 
CASE HM) . 

NAME _ $PNANIE _ T. A character array of up to 256 elements. The 
name of the object. Specified on input with 
STREAM_$NANIE CONDITIONAL and 
STREAM_ $NANIE _ UNCONDITIONAL inquiry types. 

The array specified as the attribute parameter need not be large enough for every field, but 
just sufficient to span the required fields. For example, to redefine explicit move mode, 
only a six-element INTEGER*2 array is required (for a FORTRAN program), because the 
necessary flag is in FLAG 1. 

Accessing attribute record bit fields is discussed in detail in the Programming With General 
System Calls handbook. 

STREAM STREAM-48 

(\ 



o 

o 

o 

o 

o 

STREAM $REDEFINE 

OUTPUT PARAMETERS 

error-mask 
An integer bit-mask indicating any requested changes that were not made, in 
STREAM_$REDEF _MASK_ T format. This is a 4-byte integer. 

This procedure may complete with partial success if it can redefine some, but not all, of the 
requested attributes. If an attribute is not changed, STREAM_ $REDEFINE sets the 
corresponding bit in the error mask and continues to redefine other attributes. In ,cases of 
partial success, the returned status code is nonzero. The program must check the error 
mask to find out where the error occurred. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_$REDEFINE changes one or more attributes of an object to which you have a 
stream open. Wherever bits are set in the input mask, STREAM_ $REDEFINE tries to 
copy information from the corresponding fields of the attribute record to the object. 
Wherever bits are not set in the input mask, the corresponding attributes of the object do 
not change. 

FORTRAN programs that use the stream manager to read files must call 
STREAM_ $REDEFINE to request explicit move mode. 

You can use STREAM_$REDEFINE only on streams with write access. However, you can 
use it to change read access to write access. 

You cannot use STREAM_$REDEFINE to change the stream position (use 
STREAM_ $SEEK instead), to change the object's length (use STREAM_ $ TRUNCATE 
instead), or to change a serial line's attributes (use SIO __ $CONTROL). 

STREAM-49 STREAM 



STREAM $REPLACE 

STREAM $REPLACE 

Writes data to an object without changing the length of the current record. 

FORMAT 

STREAM_$REPLACE (stream-id. bufptr. buflen. seek-key. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_ $ID _ T format. This is a 
2-byte integer. 

bufptr 
Pointer to the data to be written, in UNIV _PTR format. This is a 4-byte integer. 

FORTRAN programs can use IADDR to obtain the buffer address for the bufptr parameter. 
Pascal programs can use ADDR. Alternately, programs in either language can use pointer 
variables. 

buflen 
Number of bytes of data to be written. This is a 4-byte integer. 

OUTPUT PARAMETERS 

seek-key 
Unique key identifying the location of the output data in the object, in STREAM_ $SK_ T 
format. This is a three-element array of 4-byte integers. 

The seek key allows random access to the output data by a subsequent STREAM_ $SEEK 
call. 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_ $REPLACE replaces a record in the object. Call STREAM $PUT REC to 
add records to an object. 

For record-structured objects, this call terminates the current record. The length of the 
current record must be exactly the same as the length of the record it replaces. An error 
occurs if the record lengths are different. You can use STREAM_$PUT _REC and 
STREAM_ $PUT _ CRR to overwrite existing data in a file or pad with no record length 
checking. 

STREAM STREAM-50 

",,,,--

I 

~. 



o 

o 

o 

o 

o 

STREAM _ $REPLACE 

For nonrecord-structured objects, this call writes the specified number of characters. No 
record-length errors can occur. 

Like STREAM_ $PUT _REC, STREAM_ $REPLACE queues data for output to the 
object. It does not necessarily write the data on the COMMENT. CO:M:MENT writes may 
be performed asynchronously. 

STREAM-51 STREAM 



STREAM_ $ SEEK 

STREAM $SEEK 

Moves the stream position. 

FORMAT 

STREAM_$SEEK (stream-id. seek-base. seek-type. 
{seek-keylsigned-offset}. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_$ID _ T format. This is a 
2-byte integer. 

seek-base 
Type of data on which the seek is based, in STREAM_$PARMl_ T format. Possible 
values are: 

STREAM $Olffi 

STREAM $EOF 

Oharacter-based seek. 

End-of-file based seek. (Any offset specified with STREAM_ $EOF is 
ignored.) 

STREAM $KEY 
Keyed value-based seek. 

STREAM $REO 
Record-based seek. 

seek-type 
Value defining the relationship between the seek-base and the seek-key or signed-offset, in 
STREAM $P ARM2 T format. Possible values are: 

STREAM $RELATIVE 
Moves the stream position relative to the current stream marker. 
Relative positioning is only valid for character (STREAM_ $Olffi) and 
record (STREAM _ $REO) based seeks. Specifying either 
STREAM $EOF or STREAM· $KEY with STREAM $RELATIVE 
results in an error status. A positive offset moves the stream position 
towards EOF and a negative offset moves the stream position towards 
the beginning of the object. Relative seeks start at 0; that is, an offset of 
o denotes the current position. 

STREAM $ABSOLUTE 

STREAM 

Seeks for an absolute position in the object. In absolute seeks, all four 
seek bases are valid. STREAM _ $EOF and STREAM _ $KEY can only 
be used in absolute seeks. Absolute character and record-based seeks 
start from the beginning of the object (past the header) if the offset is 
positive. If the offset is negative, the seek starts at EOF. Absolute seeks 
start at 1. An error occurs if you specify an offset of 0 for an absolute 
seek. 

STREAM-52 

''----



o 

o 

o 

o 

o 

--------- .. _---------_ .. _.-

STREAM $SEEK 

seek-key 
Unique value identifying the data sought, in STREAM_$SK_ T format. This is a 
three-element array of 4-byte integers. 

signed-offset 
Offset to be used in calculating the new stream position. This is a 4-byte integer. 

OUTPUT PARAMETERS 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_$SEEK moves the stream marker to a specific location, or to an offset from a 
known location. It does not move any data. 

An error occurs if the object does not support random access. 

An error occurs if the program attempts to move the stream position beyond the beginning 
or end of the file. 

Character-based seeks in record-structured objects cannot move the stream position beyond 
the current record. . 

Record-based seeks apply only to objects with fixed-length records. For objects with 
variable-length records, save the seek keys returned when the object is written, then 
perform keyed seeks. 

For UASC files, specifying STREAM_ $REC simulates a fixed-length record seek by finding 
the length of the first record in the file and using that as the record length for all records. 
STREAM_ $CHR-seeks work like they do in nonrecord-structured files. 

The stream marker must be aligned on a record boundary when you specify 
STREAM_ $REC. If alignment is incorrect, an error occurs. Similarly, if positioning is 
relative to EOF (that is, a negative offset), the current EOF must be on a record boundary. 

The following examples illustrate the difference between absolute and relative seeks. The 
first example is an absolute seek for the 16th character in the object: 

STREAM $SEEK(stream 1d. STREAM $CHR. STREAM_$ABSOLUTE. 
- 16. status) -

The second example positions the stream marker seven records closer to the beginning of 
the object than it was before the call. 

STREAM_$SEEK(stream_1d. STREAM_$REC. STREAM_$RELATlVE. 
-7. status) 

STREAM-53 STREAM 



STREAM $TRUNCATE 

STREAM $TRUNCATE 

Writes EOF at the current stream position. 

FORMAT 

STREAM_$TRUNCATE (stream-1d. status) 

INPUT PARAMETERS 

stream-id 
Number of a stream on which the object is open, in STREAM_$ID _ T format. This is a 
2-byte integer. 

OUTPUT PARAMETERS 

status 
Completion status, in STATUS _ $T format. This is a 4-byte integer. 

USAGE 

STREAM_$TRUNCATE decreases the value or the rile length attribute to match the 
stream pointer's current position. (Writing data to a stream that lengthens the object 
implicitly increases this attribute's value.) This sets EOF to the stream pointer's position, 
effectively deleting any data in the object past the stream pointer. If the stream position is 
already at EOF, truncating the object has no effect. 

You can only truncate disk files and pads that the Display Manager is not using. Trying. to 
truncate any other type of object returns an error status code. 

Truncating an object does not close the stream. 

STREAM STREAM-54 

c 



o 

o 

o 

o 

o 

._----------- _ .... __ ... _-_._---

STREAM ERRORS 

ERRORS 

STATUS $OK 
Successful completion. 

STREAM_$ALREADY __ EXISTS 
STREAM_$WRITE specified on STREAM_$CREATE. 

STREAM $BAD CHAR SEEK 
Attempted character seek before start of current (variable length) record. 

STREAM $BAD COUNT FIELD IN FILE 
Count field for current record is bad. 

STREAM_ $BAD _FILE _HDR 
File header is no good ( CRC error ). 

STREAM $BAD LOCATION 
Bad location parameter in create call. 

STREAM_ $BAD _ OPEN _xp 
OPEN _XP must reference a stream that is already open on this node. 

STREAM $BAD POS ON REC SEEK 
Relative record seek is not legal unless the reference point is on record boundary. 

STREAM $BAD RELATED PAD 
PAD _ $CREATE attempted with an invalid or unopened related pad. 

STREAM $BAD SHARED CURSOR REFCNT 
Reference count on a shared file cursor went below zero. 

STREAM $BOF ERR 
Attempted seek beyond BOF; e.g., offset=O. 

STREAM $CANT DELETE OLD NAME 
WARNING : New name added but old cannot be deleted. 

STREAM $CANT SWITCH 
Too many mapped objects to perform switch. 

STREAM $CLOSE ANOMALY 
WARNING: Close successful but name of (temporary) object on this stream no longer 
references the same object. 

STREAM $OONOURRENCY VIOLATION 
Requested access violates concurrency constraints. 

STREAM $DEVICE_MUST BE LOCAL 
Cannot open stream to remote device. 

STREAM $Dffi NOT FOUND 
Could not find directory in pathname on create. 

STREAM $END OF FILE 
End of file. 

STREAM $EOF PAD PUT ERR 
PUT _ REO legal only at EOF on pads; EOF has moved. 

STREAM-55 STREAM 



STREAM ERRORS 

STREAM_$FILE_ TROUBLE_ WARNING 
WARNING: (SALVAGER) File trouble bit set in VTOCE. 

STREAM $FROM STRID NOT OPEN 
From stream is not open on switch request. 

STREAM $ID OOR 
Stream ID out-or-range (invalid). 

STREAM $ILL FORCED LOCATE 
Forced locate is only legal for disk files. 

STREAM $ILLEGAL NAME REDEFINE 
Attempted name change requires copying file. 

STREAM $ILLEGAL OBJ TYPE 
Cannot open a stream for this type of object. 

STREAM $ILLEGAL OPERATION 
This operation is illegal on named stream. 

STREAM $ILLEGAL PAD CLOSE 
Illegal to close transcript pad before related input pad. 

STREAM $ILLEGAL PAD CREATE TYPE 
PAD _ CREATE illegal with this type of object. 

STREAM $ILLEGAL P ARAM COMB 
Illegal parameter combination for this operation. 

STREAM $ILLEGAL W VAR LGTH RECS 
Operation illegal with variable length records. 

STREAM_ $INQUIRE _ TYPE _ERR 
Inquire (by name) about object that cannot be opened on a stream because of its type. 

STREAM_ $INQUIRE _ WARNING 
WARNING: Inquire-by-name is returning data only on first of multiple streams on 
which object is currently open. 

STREAM $INSUFF MEMORY 
Not enough virtual memory. 

STREAM $INSUFFICIENT RIGHTS 
Insufficient rights for requested access to object. 

STREAM $INTERNAL FATAL ERR 
I 

Internal fatal error on table reverification. 

STREAM $INTERNAL 11M ERR 
Internal fatal error in stream memory management (windowing). 

STREAM $INVALID DATA 
Bad data in call to VT $PUT. 

STREAM $NAME CONFUSION 
Object already open under another name on another stream. 

STREAM $NAME NOT FOUND 
Name not found. 

STREAM STREAM-56 



(J 

o 

o 

o 

o 

STREAM_$NAME_REQD 
STREAM_$OPEN without a name is illegal. 

STREAM $NEED MOVE MODE 
Forced locate is set and could not do it. 

STREAM $NEVER CLOSED 
System (or process) crash prevented complete close. 

STREAM $NO AVAIL TARGET 
No available target stream to switch to. 

STREAM $NO MORE STREAMS 
No more streams. 

STREAM $NO RIGHTS 
No rights to access object. 

STREAM $NO SUCH_ VERSION 
Specified DSEE version does not exist. 

STREAM $NO TABLE SPACE 
Table space error; cover stream table exhausted. 

STREAM $NOT OPEN 
Operation attempted on unopened stream. 

STREAM $NOT THRU LINK 
Cannot create file though link. 

STREAM $OBJ DELETED 
File has been deleted. 

STREAM $OBJECT NOT FOUND 
Object associated with this name not found (may not exist). 

STREAM $OBJECT READ ONLY 
Cannot open this object for writing. 

STREAM $OUT OF SHARED CURSORS 
Per-mode shared file cursor pool is exhausted. 

STREAM $PART REO WARN 

STREAM ERRORS 

WARNING: Partial record at the end of a file with fixed length records. 

STREAM $PERM FILE NEEDS NAME 
Only temporary files may be unnamed. 

STREAM $PUT BAD REO LEN 
Attempted put of wrong length record. 

STREAM $READ ONLY ERR 
Attempted write to read-only stream. 

STREAM $REDEFINE PAD ERR 
Oannot redefine this attribute of a pad. 

STREAM $REPLAOE LGTH ERR 
Attempted record length change on replace request. 

STREAM-57 STREAM 



STREAM ERRORS 

STREAM $RESOURCE_LOCK ERR 
Unable to lock resources required to process request. 

STREAM_$SIO NOT_LOCAL 
SIO object not in /DEV. 

STREAM $SOMETlllNG FAILED 
Partial or complete failure of inquire or redefine (ERR_MASK is nonempty). 

STREAM $STREAM NOT FOUND 
No stream found in conditional inquire. 

STREAM $XP BUF TOO SMALL 
Buffer supplied to GET _XP too small. 

STREAM STREAM-58 

c 

(' 



[) 

o 

o 

o 

TIME 

This section describes the data types, the call syntax, and the error codes for the TIME 
programming calls. Refer to the Introduction at the beginning of this manual for a description of 
data-type diagrams and call syntax format. 

TIME-l TIME 



TIME DATA TYPES 

CONSTANTS 

TIME $ABSOLUTE 

TIME_$CLOCKH_KEY 

TIME $RELATIVE 

DATA TYPES 

EC2 $PTR T 

STATUS $T 

TIME 

byte: 
offset 31 

0: 

0: 

1 : 

Specifies absolute time. 

Eventcount key value. 

Specifys relative time. 

A 4-byte integer. Address of an eventcount. 

A status code. The diagram below illustrates the 
STATUS_$T data type: 

field name 
o 

integer all 

or 

fail 

subsys 

modc 
t-------'-----, 0 

2: integer code 

Field Description: 

all 
All 32 bits in the status code. 

fail 
The fail bit. If this bit is set, the error was not 
within the scope of the module invoked, but 
occurred within a lower-level module (bit 31). 

subsys 
The subsystem that encountered the error (bits 
24 - 30). 

modc 
The module that encountered the error (bits 16 -
23). 

TlME-2 

c 

( 
\.... 



o 

o 

o 

o 

o 

TIME $CLOCK T 

predefined 
record 

time _ $clockh _ t 

predefined 
record 

TIME _ $I(EY T 

TIME $REL ABS T 

byte: 
offset 

0: 

4: 

byte: 
offset 

0: 

2: 

TIME DATA TYPES 

code 
A signed number that identifies the type of error 
that occurred (bits 0 - 15). 

Internal representation of time. The diagram below 
illustrates the TIME _ $OLOOI(_ T data type: 

field name 

integer high 

integer low 

Field Description: 

high 
High 32 bits of the clock. 

low 
Low 16 bits of the clock. 

field name 

pos. integer high16 

positive integer low32 

Field Description: 

high16 
High 16 bits of the clock. 

low32 
Low 32 bits of the clock. 

A 2-byte integer. An event count key. One of the 
following pre-defined values: 

TIME $CLOCKH KEY 
Only permissible value. 

A 2-byte integer. An indicator of type of time. 
One of the following pre-defined values: 

TIME $RELATIVE 
Relative time. 

TIME $ABSOLUTE 
Absolute time. 

TIME-3 TIME 



TlME_$CLOCK 

TIME $CLOCK 

Returns the current UTC time. 

FORMAT 

TlME_$CLOCK (clock) 

OUTPUT PARAMETERS 

clock 
The current Coordinated Universal Time, in TIME_$CLOCK_ T format. This data type 
is 6 bytes long. See the CAL Data Types section for more information. 

USAGE 

~IME 

TIME _ $CLOCK returns the current time of day, in UTC format. It is represented as the 
number of 4-microsecond periods that have elapsed since January 1, 1980 at 00:00. 

To get the local time, use CAL_$GET _LOCAL_ TIME instead of this procedure. To 
compute the local time from the value returned by TIME _ $CLOCK, use 
CAL $APPLY LOCAL OFFSET. 

TlME-4 



-----------_. __ . __ ._-_._-------_._. 

o 

o 

o 

o 

o 

TIME $GET Ee 

TIME $GET EC 

Gets the address of the time eventcount, which is advanced about every 0.25 second. 

FORMAT 

TlME_$GET_EC (time-key. eventcount-pointer. status) 

INPUT PARAMETERS 

time-key 
The key specifying which time eventcount the system should return, in TIME _ $I<EY _ T 
format. This is a 2-byte integer. 

Currently the only allowable value is TIME _ $CLOCKH_KEY. 

OUTPUT PARAMETERS 

eventcount-pointer 
The eventcount address to be obtained, in EC2 _ $PTR _ T format. This is a 4-byte 
integer. 

EC2 _ $PTR _ T is a pointer to an EC2 _ $EVENTCOUNT _ T array. See the EC2 Data 
Types section for more information. 

status 
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the 
TIME _ $ Data Types section for more information. 

USAGE 

EC2 _ $PTR _ T is a pointer to an EC2 _ $EVENTCOUNT _ T array. See the EC2 Data 
Types section for a description of eventcount data structures. 

TIME _ $GET _EC outputs an eventcount that gets advanced about every 1/4 second. 
Thus, it can be passed to EC2 _ $W AIT to wait for a specific interval of time to elapse. 

The interval between successive advances of the eventcount is nominally 262,144 
microseconds (about 0.25 second). The exact interval changes slightly with system load. 

For a ten-second wait, you might use: 

TlME_$GET_EC ( .... gets time_eventcount .... ) 
EC2_$READ ( .... gets current_eventcount_value .... ) 
EC2_$WAIT ( .... current_eventcount + 40, time_eventcount .... ) 

See Eventcounts Chapter of the Programming With General System Calls manual for more 
information. 

TIME-5 TIME 



TIME $WAIT 

TIME $WAIT 

Suspends the calling process for a specified time. 

FORMAT 

TlME_$WAIT (rel-abs. clock. status) 

INPUT PARAMETERS 

rel-abs 
Type of clock value supplied, in TIME_$REL_ABS_ T format. This is a 2-byte integer. 
Specify only one of the following predefined values: 

TIME $RELATIVE 
Clock specifies the number of 4-microsecond periods to wait before 
resuming process execution. 

TIME $ABSOLUTE 
Clock contains the UTC system time for which to wait before resuming 
process execution. 

clock 
The relative or absolute time for which to wait before resuming process execution, in 
TIME $CLOCK T format. This data type is 6 bytes long. See the CAL Data Types 
section for more information. 

Note that if you specify TIME _ $ABSOLUTE in the rel_ abs parameter, TIME _ $W AIT 
expects a UTC time. (You can remove a local time offset with the 
CAL _ $REMOVE _ LOCAL _ OFFSET call.) 

OUTPUT PARAMETERS 

status 
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CAL 
Data Types section for more information. 

USAGE 

TIME 

TIME _ $W AIT suspends the calling process until a relative time elapses or an absolute 
time occurs. 

A nonzero status is returned if the operating system has insufficient internal table space to 
process the request. 

TIME-6 

\' .... 



._-- ---- ------_ .. __ .. __ .. -

TIME ERRORS 

ERRORS 

o STATUS $OK 
Successful completion. 

TIME $BAD INT 
Bad timer interrupt. 

TIME $BAD KEY 
Bad key to TIME_$GET_EC. 

TIME _ $NO _ Q_ENTRY 
Error from TIME $ADV ANCE. 

TIME $NOT FOUND 
Entry to pe canceled not found. 

TIME_$WAIT _ QUIT 

o Wait interrupted by quit fault. 

o 

o 

o 
TIME-7 TIME 



(~\ 

\, 

( 
\" 



o 

o 

o 

o 

o 

- -- --~~---- ~~~--~~~~~-

TONE 

This section describes the call syntax for the TONE programming calls. The TONE calls do not 
use special data types or produce unique error messages. Refer to the Introduction at the 
beginning of this manual for a description of call syntax format. 

TONE-l TONE 



TONE_$TIME 

TONE $TIME 

Makes a tone. The tone remains on for the time indicated in the call. 

FORMAT 

TONE_$TlME (time) 

INPUT PARAMETERS 

time 
Length of the tone, in TIME_$CLOCK_ T format. This data type in a 48-bit integer 
value. 

USAGE 

Only DOMAIN nodes shipped after April 19, 1982 contain a working speaker. 

TONE TONE-2 



(~ 

u 

o 

o 

o 

o 

TPAD 

This section describes the data types and the call syntax for the TP AD programming calls. The 
TP AD calls do not produce unique error messages. Refer to the Introduction at the beginning of 
this manual for a description of data-type diagrams and call syntax format. 

TPAD-l TPAD 



TPAD DATA TYPES 

DATA TYPES 

TP AD $MODE _ T 

TPAD 

A 2-byte integer. Cursor mode operations for the 
touch pad and mouse. They establish how 
movements of the finger affect the cursor position 
on the display. Note the only meaningful mode for 
a mouse is TPAD $RELATIVE. One of the 
following pre-defined values: 

TP AD _ $ABSOLUTE 

Touchpad corresponds directly to the display. 
When a finger is placed on the touchpad, the 
cursor jumps to the corresponding position on 
the screen. 

TP AD $RELATIVE 
Cursor movement is relative to the current 
position. It moves only when a finger moves 
across the pad, it does not move when a finger 
is placed on touchpad. 

TP AD $REL _ABS 
Cursor moves when finger is placed on the 
touch pad and when a finger moves across the 
pad. It does not move if a finger is lifted and 
replaced quickly. 

TPAD-2 

~ .. 

("-. 

( 
I, 



------------ ... __ ... __ .....•... 

STATUS $T o 

o 

o 

o 

o 

byte: 
offset 31 

0: 

0: 

1 : 

TPAD DATA TYPES 

A status code. The diagram below illustrates the 
STATUS_$T data type: 

field name 
o 

integer all 

or 

fail 

subsys 

modc 
I-------L----. 0 

2: integer code 

Field Description: 

all 
All 32 bits in the status code. 

fail 
The fail bit. If this bit is set, the error was not 
within the scope of the module invoked, but 
occurred within a lower-level module (bit 31). 

subsys 
The subsystem that encountered the error (bits 
24 - 30). 

modc 
The module that encountered the error (bits 16 -
23). 

code 
A signed number that identifies the type of error 
that occurred (bits 0 - 15). 

TPAD-3 TPAD 



TP AD _ $INQUffiE 

TP AD _ $INQUffiE 

Returns information about the current touchpad mode. 

FORMAT 

TPAD_$INQUIRE (mode. x-scale. y-scale. hysteresis. origin) 

INPUT PARAMETERS 
None. 

OUTPUT PARAMETERS 

mode 
Cursor mode, in TP AD _ $MODE _ T format. This is a 2-byte integer. Specify one of the 
following predefined values: 

TPAD_$ABSOLUTE 

TPAD_$RELATlVE 

TP AD _ $REL _ ABS 

x-scale 
Scale factor in the x dimension. This is a 2-byte integer. 

y-scale 
Scale factor in the y dimension. This is a 2-byte integer. 

hyster.esis 
Hysteresis factor, in pixels. This is a 2-byte integer. 

This hysteresis factor prevents the touch pad manager from responding to any minor 
movements you make unintentionally. This value defines a "box" around your finger. The 
touchpad manager does not move the cursor if your finger stays within this box. 

If your finger moves beyond the box, the touchpad manager subtracts the hysteresis value 
from the distance moved, and moves the cursor the remaining distance. The default factor 
is 5. 

origin 
The point of origin for x and y in SMD _ $POS _ T format. This data type is 4 bytes long. 

USAGE 

TPAD 

Use this call to save the touchpad mode for later restoration, or to change one aspect of the 
mode without changing any other aspects. For example, you can use the output from this 
call as the input to the TP AD _ $SET _MODE call. 

TPAD-4 



o 

o 

Cj 

o 

o 

TPAD _$INQ_DTYPE 

TPAD_$INQ_DTYPE 

Returns the name of the last type of locating device used. 

FORMAT 

INPUT PARAMETERS 
None. 

OUTPUT PARAMETERS 
None. 

RETURN VALUE 

device 
Value indicating the last locating device used to provoide input, in 
TP AD _ $DEV _ TYPE _ T format. This data type is two bytes long. Specify one of the 
following predefined values: 

TPAD_$UNKNOWN 

USAGE 

If no locator input has been detected since the node was last booted, this call returns 
TPAD $UNKNOWN. 

TPAD-5 TPAD 



TP AD $RE RANGE 

TPAD $RE RANGE 

Re-establishes the touch pad raw data range. 

FORMAT 

TP AD _ $RE _RANGE 0 

INPUT PARAMETERS 
None. 

OUTPUT PARAMETERS 
None. 

USAGE 

This call re-establishes the touchpad raw data range over the next 1000 data points. This is 
also done for you at system boot. See the section on Touchpad Modes in Programming with 
General System Galls for a description of the touch pad raw data range. 

TPAD TPAD-6 



------_._-_ ... _.------_._--

o 

o 

o 

o 

o 

TP AD $SET CURSOR 

TP AD $SET CURSOR 

Re-establishes the touchpad origin in relative mode. The call to TP AD $SET CURSOR 
can occur at any time and affects subsequent touchpad inputs. 

FORMAT 

INPUT PARAMETERS 

origin 
A screen position that will be the origin for subsequent data points from the touchpad in 
relative mode or in absolute/relative mode, in S11I) _ $POS _ T format. This data type is ·1 
bytes long. 

OUTPUT PARAMETERS 
None. 

USAGE 

The system remember8 the last cursor position delivered by a locator device. When a new 
data point comes from the mouse, or from the touchpad or bitpad in relative mode, a 
displacement is computed and applied to the last locator position. The 
TP AD _ $SET _ CURSOR call makes the system forget the last locator position, and use 
the value passed in the call instead. The next locator data will then start from this new 
position instead of its former position. 

You will rarely need to make this call, as GPR and the display manager make the call at 
appropriate times .. 

The origin is automatically re-established when you take your finger from the touchpad for 
more than one-eighth of a second. One effect of this is that the cursor typically doesn't 
move the next time you touch the pad in relative mode, unless you explicitly call 
TP AD $SET CURSOR before that next touch. 

This call has meaning for relative and absolute/relative mode only. In absolute/relative 
mode_, when you first touch the pad, the pad inputs coordinates in the absolute mode. To 
have effect, the call to TP AD _ $SET _ CURSOR must occur after this first touch, but 
during the relative part of this use of the touchpad (that is, before you lift your finger for 
more than one-half second.) 

TPAD-7 TPAD 



TP AD $SET MODE 

TP AD $SET MODE 

Sets the touch pad mode. 

FORMAT 

TPAD_$SET_MODE (mode, x-scale, y-scale, hysteresis, origin) 

INPUT PARAMETERS 

mode 
Cursor mode, in TP AD _ $MODE _ T format. This is a 2-byte integer. Specify one of the 
following predefined values: 

TPAD_$ABSOLUTE 

TPAD_$RELATlVE 

TPAD_$REL_ABS 

x-scale 
Scale factor in the x dimension. This is a 2-byte integer. 

y-scale 
Scale factor in the y dimension. This is a 2-byte integer. 

hysteresis 
Hysteresis factor, in pixels. This is a 2-byte integer. 

The hysteresis factor prevents the touchpad manager from responding to any minor 
movements you make unintentionally. This value defines a "box" around your finger. The 
touchpad manager does not move the cursor if your finger stays within this box. 

If your finger moves beyond the box, the touchpad manager subtracts the hysteresis value 
from the distance moved, and moves the cursor the remaining distance. The default factor 
is 5. 

origin 
The point of origin for x and y in SMD _ $POS _ T format. This data type is 4 bytes long. 

OUTPUT PARAMETERS 
None. 

USAGE 

TPAD 

Use this call to set to mode, scale factors, and hysteresis factors of locator devices. You can 
also change the origin for relative or absolute/relative mode. This call applies to the 
touchpad, mouse, and bit pad locator devices. Note that the mouse uses only the scale and 
hysteresis factors and ignores the other mode settings, since it is an inherently relative 
device. 

TPAD-8 

./. 
I 

\. 

(~. 

,- -



o 

o 

o 

o 

o 

VEe 

This section describes the call syntax for the VEC programming calls. The VEC calls do not use 
special data types or produce unique error messages. Refer to the Introduction at the beginning 
of this manual for a description of call syntax format. 

The majority of the calls in this section have four versions: single-precision floating-point, 
double-precision floating-point, 16-bit integer (INTEGER*2), and 32-bit integer (INTEGER*4). 
The names of all single-precision vector routines are in the form VEC _ $Iname. Double-precision 
routines are named VEC _ $Dname. 16-bit integer routines are named VEC _ $Iname16. 32-bit 
integer routines are named VEC _ $Iname. For example, VEC _ $DOT and VEC _ $DDOT are 
single- and double-precision versions of DOT product routines. VEC $IDOT and 
VEC _ $IDOT16 are the 32-bit and 16-bit versions, respectively. 

Each type of routine generally requires parameters of the same type. For the double-precision 
routines, all floating-point parameters are double-precision; for the single-precision routines, all 
floating-point parameters must be single precision; for the integer procedures and functions, the 
parameters and returned values are integers, etc. 

Routine names that end in I denote II incremental II routines, which step through vectors at 
increments other than 1. 

When calling any of the vector routines, make sure that the indices you pass are valid. For best 
performance, these routines do not check index values for validity; hence, passing a value of zero 
can cause a variety of errors. 

NOTE: All matrices are assumed to be stored in FORTRAN (column-major) order. Because 
Pascal and C store matrix elements in row-major order, you inay need to transpose or otherwise 
rearrange elements when calling vector routines from C or Pascal programs. 

VEC-l VEC 



VEC $ADD CONSTANT 

VEC $ADD CONSTANT 

Adds a constant to a vector. 

FORMAT 

VEC $ADD CONSTANT (start vec. length. constant. result vec) 
VEC-$DADD CONSTANT (start vec. length. constant. result vec) 
VEC-$IADD-CONSTANT (start-vec. length. constant. result-vec) 
VEC-$IADD-CONSTANT16 (start vee. length. constant. result vec) - - - -

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector to which the value will be added. 

length 
Number of elements to add. This is a 4-byte integer. 

constant 
Value to be added to each element of start_ vec. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the sum. 

USAGE 

VEC 

These routines add a constant to a vector, returning the result in a second vector. The 
routines perform the following operation: 

DO 10 I + 1.LENGTH 
RESULT_VEC(I) = CONSTANT + START_VEC(I) 

10 CONTINUE 

VEC-2 

c· 



o 

o 

o 

o 

o 

---------------------------------------------

VEC $ADD CONSTANT I 

VEC $ADD CONSTANT I 

Adds a constant to a vector, stepping through the vector by increments. 

FORMAT 

VEC_$ADD_CONSTANT_I (start_vee. incl. length. constant. result_vec. ine2) 
VEC_$DADD_CONSTANT_I (start_vec. incl. length. constant. result_vec. inc2) 
VEC_$IADD_CONSTANT_I (start_vec. incl. length. constant. result_vec. inc2) 
VEC_$IADD_CONSTANT16_I(start_vec. incl. length. constant. result_vec. inc2) 

INPUT PARAMETERS 

start_ vec 
Floating-point or integer vector to which the value will be added. 

inc! 
Increment for the index of start vec. This is a 4-byte integer. 

length 
Number of elements to add. This is a 4-byte integer. 

constant 
Value to be added to each element of start vec. 

OUTPUT PARAMETERS 

result_ vec 
Floating-point or integer vector containing the sum. 

INPUT PARAMETERS 

inc2 
Increment for the index of result vec. This is a 4-byte integer. 

USAGE 

These routines add a constant to a vector, stepping through their elements by user-specified 
increments. The routines perform the following 9peration: 

J=l 
K=l 
DO 10 I = 1.LENGTH 

RESULT_VEC(K) = CONSTANT+START_VEC(J) 
K = K+INC2 
J = J+INC1 

10 CONTINUE 

VEC-3 VEC 



VEC $ADD VECTOR 

VEC $ADD VECTOR 

Adds two vectors. 

FORMAT 

VEC $ADD VECTOR (start vee. add vee. length. result vee) 
VEC-$DADD VECTOR (start vee. add vee. length. result vee) 
VEC-$IADD-VECTOR (start-vee. add-vee. length. result-vee) 
VEC=$IADD=VECTOR16 (start_vee. add_vee. length. result_vee) 

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector to which the value will be added. 

add vee 
Floating-point or integer vector to be added. 

length 
Number of elements to add. This is a 4-byte integer. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the sum. 

USAGE 

VEC 

These routines add two vectors, returning the sum in a third vector. The routines perform 
the following operation: 

DO 10 I = 1.LENGTH 
RESULT_VEC(I) = START_VEC(I) + ADD_VEC(I) 

10 CONTINUE 

VEC-4 

c 

~, 

I, 
"'-.. ..... 

,~ 

I\.. 



o 

o 

o 

o 

o 

VEC $ADD VECTOR I 

VEC $ADD VECTOR I 

Adds two vectors, stepping through them by increments. 

FORMAT 

VEC_$ADD_VECTOR_I(start_vee, inel, add_vee, ine2, length, result_vee, ine3) 
VEC_$DADD_VECTOR_I(start_vee. inel, add_vee, ine2, length. result_vee, 

ine3) 
VEC_$IADD_VECTOR_I(start_vee. inel, add_vee, ine2, length, result_vee, 

ine3) 
VEC_$IADD_VECTOR16_I(start_vee, incl. add_vee, ine2, length, result_vee, 

ine3) 

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector to which the value will be added. 

inc! 
Increment for the index of start vec. This is a 4-byte integer. 

add vee 
Floating-point or integer vector to be added. 

ine2 
Increment for the index of add vec. This is a 4-byte integer. 

length 
Length of the vector. This is a 4-byte integer. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the sum. 

INPUT PARAMETERS 

ine3 
Increment for the index of result vec. This is a 4-byte integer. 

VEC-5 VEC 



VEC $ADD _VECTOR I 

USAGE 

VEC 

These routines add two vectors, stepping through their elements by user-specified 
increments. The routines perform the following operation: 

J=l 
K=l 
DO 10 I = 1.LENGTH 

VEC3(J) = VEC1(K) + VEC2(L) 
J = J + INC3 
K = K + INCl 
L = L + INC2 

10 CONTINUE 

vEC-6 

\' ..... ~.,,' 

r-. 
! 

'" 



o 

o 

o 

o 

o 

VEO $OOPY 

VEC $COPY 

Copies elements from one vector to another. 

FORMAT 

VEC $COPY (start vee, result vee, length) 
VEC=$DCOPY (start_vee, result_vee, length) 
VEC_$ICOPY (start_vee, result_vee, length) 
VEC_$ICOPY16 (start_vee, result_vee, length) 

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector from which elements will be copied. 

length 
Number of elements to copy. This is a 4-byte integer. 

OUTPUT PARAMETERS 

result_ vee 
Floating-point or integer vector to which elements will be copied. 

USAGE 

These routines copy elements from one vector to another. The routines perform the 
following operation: 

DO 10 I = l,LENGTH 
RESULT_VEC(I) = START_VEC(I) 

10 CONTINUE 

VEO-7 VEO 



VEC $COPY I 

VEC $COPY I 

Copies elements from one vector to another, stepping through the vectors by increments. 

FORMAT 

VEC_$COPY_I (vecl. incl. vec2. inc2. length) 
VEC_$DCOPY_I (vecl. incl. vec2. inc2. length) 
VEC_$ICOPY_I (vecl. incl. vec2. inc2. length) 
VEC_$ICOPY16_I (vecl. incl. vec2. inc2. length) 

INPUT PARAMETERS 

vee! 
Floating-point or integer vector from which elements will be copied. 

inc! 
Increment for the index of veci. This is a 4-byte integer. 

inc2 
Increment for the index of vec2. This is a 4-byte integer. 

length 
Number of elements to copy. This is a 4-byte integer. 

OUTPUT PARAMETERS 

vec2 
Floating-point or integer vector to which elements will be copied. 

USAGE 

VEC 

These routines copy a vector but use an increment to step through the vector. 
VEC _ $COPY _ I moves 32 bits regardless of data type and VEC _ $DCOPY _ I moves 64 
bits. The routines perform the following operation: 

J = 1 
K = 1 
DO 10 I = 1.LENGTH 

VEC2(J) = VEC1(K) 
J = J+INC2 
K = K+INCl 

10 CONTINUE 

VEC-8 

(' 



r----""" 
U 

o 

o 

o 

VEC $DOT 

Calculates the dot product of two vectors. 

FORMAT 

result = VEC $DOT (veel. vee2. length) 
result = VEC=$DDOT (veel. vec2. length) 
result = VEC_$IDOT (veel. vec2. length) 
result = VEC_$IDOT16 (veel. vee2. length) 

RETURN VALUE 

result 
Floating-point or integer dot product. 

INPUT PARAMETERS 

vee!, vee2 
Floating-point or integer vectors. 

length 
Number of elements to add. This is a 4-byte integer. 

USAGE 

VEC $DOT 

These routines calculate the dot product of two vectors. The routines perform the following 
operation: 

DO 10 I = 1.LENGTH 
TEMP = TEMP + VECl (I) * VEC2(I) 

10 CONTINUE 
VEC_$DOT = TEMP 

VEC-9 VEC 



VEC $DOT I 

VEC $DOT I 

Calculates the dot product of two vectors, stepping through the vectors by increments. 

FORMAT 

result = VEC_$DOT_I (veel, inel, vee2, ine2, length) 
result = VEC_$DDOT_I (veel, inel, vee2, ine2, length) 
result = VEC_$IDOT_I (veel. incl. vee2, ine2, length) 
resuit = VEC_$IDOT16_I (veel, inel, vee2, ine2, length) 

RETURN VALUE 

result 
Floating-point or integer dot product. 

INPUT PARAMETERS 

vecl 
Floating-point or integer vector. 

incl 
Increment for the index of vec!. This is a 4-byte integer. 

vec2 
Floating-point or integer vector. 

inc2 
Increment for the index of vec!. This is a 4-byte integer. 

length 
Number of elements to add. This is a 4-byte integer. 

USAGE 

VEC 

These routines calculate the dot product of two vectors, stepping through the vectors with a 
user-supplied increment. The routines perform the following operation: 

J = 1 
K = 1 
DO 10 I = l,LENGTH 

TEMP = TEMP + VEC 1 (J) * VEC2 (K) 
J = J + INCl 
K = K + INC2 

10 CONTINUE 
VEC_$DOT = TEMP 

VEC-IO 



o 

o 

o 

o 

o 

- ~----.. -.-.. -.--.------

VEC $DP SP 

VEC $DP SP 

Copies a double-precision vector to a single precision vector. 

FORMAT 

INPUT PARAMETERS 

dp_ vee 
Floating-point double-precision vector. 

OUTPUT PARAMETERS 

sp_ vee 
Floating-point single-precision resultant vector. 

INPUT PARAMETERS 

length 
Number of elements to copy. This is a 4-byte integer. 

USAGE 

VEC _ $DP _ SP copies a double-precision vector to a single-precision resultant vector. The 
routine performs the following operation: 

DP 10 1=1, LENGTH 
SP_VEC(I) = SNGL(DP_VEC(I)) 

10 CONTINUE 

VEC-ll VEC 



VEC $DP SP I 

VEC $DP SP I 

Copies a double-precision vector to a single-precision vector, stepping through the vectors 
incrementally. 

FORMAT 

INPUT PARAMETERS 

dp_ vee 
Double-precision floating-point vector. 

inc! 
Increment for the index of dp _ vec. This is a 4-byte integer. 

OUTPUT PARAMETERS 

sp_ vee 
Single-precision floating-point resultant vector. 

INPUT PARAMETERS 

ine2 
Increment for the index of sp _ vec. This is a 4-byte integer. 

length 
Number of elements to copy. This is a 4-byte integer. 

USAGE 

VEC 

VEC _ $DP _ SP _ I copies a double precision vector to a single precision resultant vector, 
stepping through the vectors by user-supplied increments. The routine performs the 
following operation: 

J=l 
K=l 
DO 10 I=l, LENGTH 

SP_VEC(K) = SNGL (DP_VEC(J» 
J = J+INC1 
K = K+INC2 

10 CONTINUE 

VEC-12 

c 



o 

o 

o 

o 

o 

VEe $INIT 

Initializes a vector with a constant. 

FORMAT 

VEC_$INIT (vector. length. constant) 
VEC $DINIT (vector. length. constant) 
VEC-$IINIT (vector. length. constant) 
VEC-$IINIT16 (vector. length. constant) 

INPUT/OUTPUT PARA¥ETERS 

vector 

Upon input Floating-point or integer vector to be initialized. 

VEC $INIT 

Upon output Floating-point or integer vector which has been initialized to a constant. 

INPUT PARAMETERS 

length 
Number of elements to initialize. This is a 4-byte integer. 

constant 
Floating-point or integer constant to be assigned to elements of vector. 

USAGE 

These routines perform the following operation: 

DO 10 I = 1. LENGTH 
VECTOR (I) = CONSTANT 

10 CONTINUE 

VEC-13 VEC 



VEC $MAT MULT 

VEe $MAT_MULT 

Multiplies two 4 x 4 matrices, returning the result in a 4 x 4 matrix. 

FORMAT 

VEC $MAT MULT (matrix1, matrix2, out matrix) 
VEC-$DMAT MULT (matrix1, matrix2, ou~ matrix) 
VEC-$IMAT-MULT (matrix1, matrix2, out-matrix) 
VEC=$IMAT=MULT16 (matrix1, matrix2, out_matrix) 

INPUT PARAMETERS 

matrix! 
A 4 x 4 floating-point or integer matrix to be multiplied. 

matrix2 
A 4 x 4 floating-point or integer matrix to be multiplied. 

OUTPUT PARAMETERS 

out_matrix 
Floating-point or integer matrix containing the product. 

USAGE 

VEC 

These routines multiply two 4 x 4 matrices, returning the result as a third 4 x 4 matrix. 
They are intended for use in graphics applications, and perform the following operation: 

DO 10 J = 1,4 
DO 10 I = 1.4 

CALL VEC_$POST_MULT (MATRIX1,MATRIX2(J,I),OUT_MATRIX(J,I» 
10 CONTINUE 

VEC-14 

c 

"r-" . 
( 



o 

o 

o 

o 

o 

VEC $ MAT _MULTN 

VEO $MAT_MULTN 

Multiplies two variably-dimensioned matrices, returning the result in a third matrix. 

FORMAT 

VEC $MAT MULTN (matrix1. matrix2. m. D. s. out matrix) 
VEC-$DMAT MULTN (matrix1. matrix2. m. D. s. out matrix) 
VEC-$IMAT-MULTN (matrix1. matrix2. m. D. s. out-matrix) 
VEC=$IMAT=MULTN16 (matrix1. matrix2. m. D. s. out_matrix) 

INPUT PARAMETERS 

matrix! 
First floating-point or integer matrix or dimensions m x n to be multiplied. 

matrix2 
Second floating-point or integer matrix or dimensions n x s to be multiplied. 

m, n, s 
The various matrix dimensions. These are 4-byte integers. 

OUTPUT PARAMETERS 

out_matrix 
Floating-point or integer matrix or dimensions m x s containing the product. 

USAGE 

These routines multiply two matrices with dimensions speciried by you, returning the result 
as a third matrix. Note that the matrices are assumed to be stored in FORTRAN 
(column-major) order. These routines perrorm the rollowing operation: 

DO 10 I = 1.M 
DO 10 J = 1.S 

OUT_MATRIX(I.J) = 0.0 
DO 10 K = 1.N 
OUT_MATRIX(I.J) = OUT_MATRIX(I.J) + MATRIX1(I.K) * MATRIX2(K.J) 

10 CONTINUE 

VEC-IS VEC 



VEC $MAX 

VEe $MAX 

Finds the element with the greatest maximum absolute value in a vector and returns its 
value and location. 

FORMAT 

VEC_$MAX (start_vee. length. result. result_loe) 
VEC_$DMAX (start_vee. length. result. result_loe) 
VEC $IMAX (start vee. length. result. result loe) 
VEC-$IMAX16 (start vee. length. result. result loe) - - -

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector to be searched. 

length 
Number of elements to examine. This is a 4-byte integer. 

OUTPUT PARAMETERS 

result 
Floating-point or integer maximum absolute value of all the elements searched. 

result loe 
Location of value within the vector. This is a 4-byte integer. 

USAGE 

VEC 

These routines search through a vector and return the maximum absolute value found and 
its location within the vector. The routines perform the following: 

RESULT = ASS (START_VEC(1» 
RESULT LaC = 1 
DO 10 1=2. LENGTH 

IF (ABS(START_VEC(I» .GT.RESULT) THEN 
RESULT LaC = I 
RESULT-= ABS(START_VEC(I» 

ENDIF 
10 CONTINUE 

VEC-16 

c 



---- -.-----

o 

o 

o 

o 

o 

VEC $MAX I 

VEe $MAX I 

Searches a vector for the maximum absolute value, stepping through the vector by 
increments greater than 1. 

FORMAT 

VEC_$MAX_I (start_vec. inc. length. result. result_loc) 
VEC $DMAX I (start vec. inc. length. result. result loc) 
VEC-$IMAX-I (start-vec. inc. length. result. result-loc) 
VEC=$IMAX16_1 (start_vec. inc. length. result. result_lOC) 

INPUT PARAMETERS 

start_ vee 
Floating-point or integer vector to be searched. 

inc 
Increment used to step through the start_ vec. This is a 4-byte integer. 

length 
Number of elements to examine. This is a 4-byte integer. 

OUTPUT PARAMETERS 

result 
Floating-point or integer maximum absolute value of all the elements searched. 

result loc 
Location of value within given vector. This is a 4-byte integer. 

USAGE 

These routines search through a vector by a positive increment and return the greatest 
absolute value found and its location within the vector. The routines perform the following: 

RESULT = ABS(START_VEC(l» 
RESULT LOC = 1 
J = 1+INC1 
DO 10 I=2.LENGTH 

IF (ABS(START_VEC(J» .G.T.RESULT) THEN 
RESULT LOC = I 
RESULT = ABS(START_VEC(J» 

ENDIF 
J = J+INC1 

10 CONTINUE 

VEC-17 VEe 



VEO $MULT ADD 

VEO $MULT_ADD 

Multiplies a vector by a constant and adds the result to a second vector. 

FORMAT 

VEC_$MULT_ADD (add_vee. mult_vee. length. constant. result_vee) 
VEC_$DMULT_ADD (add_vee. mult_vee. length. constant. result_vee) 
VEC_$IMULT_ADD (add_vee. mult_vee. length. constant. result_vee) 
VEC_$IMULT_ADD16 (add_vee. mult_vee. length. constant. result_vee) 

INPUT PARAMETERS 

add vee 
Floating-point or integer vector to be added. 

mult_ vee 
Floating-point or integer vector to be multiplied by the constant. 

length 
Number of elements to add. This is a 4-byte integer. 

constant 
Floating-point or integer constant to be multiplied by mult _ vec. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the sum. 

USAGE 

VEO 

These routines multiply one vector (input as mult _ vec) by a constant, and add the result 
to a second vector (input as add_ vec). The result is returned in a third vector. The 
routines perform the following operation: 

DO 10 I = 1. LENGTH 
RESULT_VEC(I) = ADD_VEC(I) + CONSTANT*MULT_VEC(I) 

10 CONTINUE 

VEO-18 

c 



o 

o 

o 

o 

o 

---------~~~~~~~-

VEO $MULT ADD I 

VEe $MULT ADD I 

Multiplies a vector by a constant and adds the result to a second vector, stepping through 
both vectors and the result by increments. 

FORMAT 

VEC_$MULT_ADD_I (add_vec. incl. mult_vec. inc2. 
length. constant. result_vec. inc3) 

VEC_$DMULT_ADD_I (add_vec. incl. mult_vec. inc2. 
length. constant. result vec. inc3) 

VEC_$IMULT_ADD_I (add_vec. incl. mUlt_vec.-inc2. 
length. constant. result vec. inc3) 

VEC $IMULT ADD16 I (add vec. incl. mult vee. inc2. 
- length. constant. result_vec. inc3) 

INPUT PARAMETERS 

add vee 
Floating-point or integer vector to be added. 

incl 
Increment for the index of add vec. This is a 4-byte integer. 

mult_ vee 
Floating-point or integer vector to be multiplied by the constant. 

inc2 
Increment for the index of mult vec. This is a 4-byte integer. 

length 
Number of elements on which to operate. This is a 4-byte integer. 

constant 
Floating-point or integer constant to be multiplied by mult _ vec2. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the sum. 

INPUT PARAMETERS 

inc3 
Increment for the index of result vec. This is a 4-byte integer. 

VEO-19 VEO 



VEC $MULT ADD I 

USAGE 

VEC 

These routines multiply one vector by a constant and add the result to a second vector. The 
result is returned in a third vector. The indices to all three vectors are incremented by 
user-specified values. The routines perform the following operation: 

J = 1 
K = 1 
L = 1 
DO 10 I = i,LENGTH 

RESULT(J) = ADD_VEC(K) + CONSTANT*MULT_VEC(L) 
J = J + INC3 
K = K + INC1 
L = L + INC2 

10 CONTINUE 

VEC-20 

(~ 

\ 
\ ........ 



o 

o 

o 

o 

o 

VEC $MULT CONSTANT 

VEC $MULT CONSTANT 

Multiplies a vector by a scalar constant and returns the result in a second vector. 

FORMAT 

VEC_$MULT_CONSTANT (mult_vee, length, constant, result_vee) 
VEC $DMULT CONSTANT (mult vee, length, constant, result vee) 
VEC-$IMULT-CONSTANT (mult-vee, length, constant, result-vee) 
VEC=$IMULT=CONSTANT16 (mult_vee, length, constant, result_vee) 

INPUT PARAMETERS 

mult_ vee 
Floating-point or integer vector to be multiplied. 

length 
Number of elements to multiply. This is a 4-byte integer. 

eonstant 
Floating-point or integer constant to multiply by mult _ vec. 

OUTPUT PARAMETERS 

result_ vee 
Floating-point or integer vector containing the product. 

USAGE 

These routines multiply one vector by a scalar constant, returning the result in a second 
vector. The routines perform the following operation: 

DO 10 I = 1,LENGTH 
RESULT_VEe(I) = CONSTANT * MULT_VEC(I) 

10 CONTINUE 

VEC-21 VEC 



VEC $MULT CONSTANT_I 

VEC $MULT CONSTANT I 

Multiplies a vector by a scalar constant, returns the result in a second vector, and steps 
through the vectors by increments. 

FORMAT 

VEC_$MULT_CONSTANT_I (mult_vec. incl. length. constant. result_vec. inc2) 
VEC $DMULT CONSTANT I (mult vec. incl. length. constant. result vec. inc2) 
VEC-$IMULT-CONSTANT-I (mult-vec. incl. length. constant. result-vec. inc2) 
VEC-$IMULT-CONSTANT16 I(mult vec. incl. length. constant. result vec. inc2) - - - - -

INPUT PARAMETERS 

mult_ vec 
Floating-point or integer vector from which data will be copied. 

incl 
Increment for the index of mult vec. This is a 4-byte integer. 

length 
, Number of elements on which to operate. This is a 4-byte integer. 

constant 
Floating-point or integer constant to multiply by mult _ vec. 

OUTPUT PARAMETERS 

result vec 
Floating-point or integer vector containing the result. 

INPUT PARAMETERS 

inc2 
Increment for the index of result vec. This is a 4-byte integer. 

USAGE 

VEC 

These routines multiply elements of a vector by a scalar constant and store the result in a 
second vector. The routines step through both vectors by increments. The routines 
perform the following: 

J = 1 
K = 1 
DO 10 I=l.LENGTH 

RESULT(J) = MULT_VEC(K) * CONSTANT 
J = J+INC2 
K = K+INCl 

10 CONTINUE 

VEC-22 

( 
\, 



o 

o 

o 

o 

o 

VEC $POSTMULT 

VEC $POSTMUL T 

Postmultiplies a 4 x 4 matrix by a 4 x 1 column vector, returning the result in a second 
vector. 

FORMAT 

VEC $POSTMULT (matrix. col vee. result vee) 
VEC-$DPOSTMULT (matrix. col vee. result vee) 
VEC-$IPOSTMULT (matrix. col-vee. result-vee) 
VEC=$IPOSTMULT16 (matrix. col_vee. resu~t_vee) 

INPUT PARAMETERS 

matrix 
A 4 x 4 floating-point or integer matrix to be postmultiplied. 

col vee 
A 4 x 1 floating-point or integer column vector. 

OUTPUT PARAMETERS 

result vee 
Floating-point or integer vector containing the product. 

USAGE 

These routines postmultiply a 4 x 4 matrix by a 4 x 1 column vector, and return a 4 x 1 
column vector. They are intended for use in graphics applications, and perform the 
following operation: 

DO 10 J = 1.4 
RESULT_VEC(J) = 0.0 
DO 10 I = 1.4 

RESULT_VEC(J) = RESULT_VEC(J) + COL_VEC(I)*MATRIX(J.I) 
10 CONTINUE 

VEC-23 VEC 



VEC $POSTMUL TN 

VEe $POSTMUL TN 

Postmultiplies a variably-dimensioned matrix by an n x 1 vector, returning the result in a 
second vector. 

FORMAT 

VEC $POSTMULTN (matrix. col vee. m. n. result vee) 
VEC-$DPOSTMULTN (matrix. col vee. m. n. resUl~ vee) 
VEC-$IPOSTMULTN (matrix. cOl-vee. m. n. result-vee) 
VEC=$IPOSTMULTN16 (matrix. col_vee. m. n. result_vee) 

INPUT PARAMETERS 

matrix 
An m x n floating-point or integer matrix to be postmultiplied. 

eol vee 
An n x 1 floating-point or integer column vector. 

m, n 
Dimensions. of the matrices. These are 4-byte integers. 

OUTPUT PARAMETERS 

result_ vee 
An m x 1 floating-point or integer vector containing the product. 

USAGE 

-----VEC 

These routines postmultiply a m x n matrix by a n x 1 column vector, and return an m x 1 
column vector. They perform the following operation: 

DO 10 I = 1.M 
RESULT_VEC(I) = 0.0 
DO 10 J = 1.N 

RESULT_VEC(I) = RESULT_VEC(I) + COL_VEC(J) * MATRIX(I.J) 
10 CONTINUE 

VEC-24 

(' 
',,-. 

c 



o 

o 

o 

o 

o 

VEC $PREMUL T 

VEe $PREMUL T 

Premultiplies a 4 x· 4 matrix by a 1 x 4 row vector, returning the result in a second vector. 

FORMAT 

VEC $PREMULT (row vee. matrix. result vee) 
VEC-$DPREMULT (row vee. matrix. result vee) 
VEC-$IPREMULT (row-vee. matrix. result-vee) 
VEC=$IPREMULT16 (row_vee. matrix. result_vee) 

INPUT PARAMETERS 

row_vee 
A 1 x 4 floating-point or integer row vector. 

matrix 
A 4 x 4 floating-point or integer matrix to be premultiplied. 

OUTPUT PARAMETERS 

resuIt_ vee 
Floating-point or integer vector containing the product. 

USAGE 

These routines premultiply a 4 x 4 matrix by a 1 x 4 row vector, and return a 1 x 4 row 
vector. They perform the following operation: 

DO 10 I = 1.4 
RESULT_VEC(I) = 0.0 
DO 10 J = 1.4 

RESULT_VEC(I) = RESULT_VEC(I) + ROW_VEC(J) * MATRIX(J.I) 
10 CONTINUE 

VEC-25 VEC 



VEC $PREMULTN 

VEe $PREMUL TN 

Premultiplies a variably-dimensioned matrix by a 1 x n row vector, returning the result in a 
second vector. 

FORMAT 

VEC $PREMULTN (row vee, matrix, m, n, result vee) 
VEC-$DPREMULTN (ro; vee, matrix, m, n, result vee) 
VEC-$IPREMULTN (row-vee, matrix, m, n, result-vee) 
VEC=$IPREMULTN16 (row_vee, matrix, m, n, result_vee) 

INPUT PARAMETERS 

row _ vee 
A 1 x m floating-point or integer row vector. 

matrix 
An m x n floating-point or integer matrix to be premultiplied. 

m, n 
Dimensions of the matrices. These are 4-byte integers. 

OUTPUT PARAMETERS 

result vee 
One by n floating-point or integer vector containing the product. 

USAGE 

VEC 

These routines premultiply a variably-dimensioned matrix by a 1 x m row vector, and 
return a 1 x n row vector. They perform the following operation: 

DO 10 I = 1,N 
RESULT_VEC(I) = 0.0 
DO 10 J = 1,M 

RESULT_VEC(I) = RESULT_VEC(I) + ROW_VEC(J) * MATRIX(J,I) 
10 CONTINUE 

VEC-26 

~­

i ',-



~~~-.. -----~ .. -........ . ~~~~~~~~--~--.--.-.-.. -- .. -.-.. - .. 

o

o

o

o

o

VEC $SP DP

VEC $SP DP

Copies a single-precision vector to a double-precision vector.

FORMAT

INPUT PARAMETERS

sp_ vee
Single-precision floating-point vector.

OUTPUT PARAMETERS

dp_vee
Double-precision floating-point resultant vector.

INPUT PARAMETERS

length
Number of elements to copy. This is a 4-byte integer.

USAGE

VEC _ $SP _DP copies a single-precision vector to a double-precision resultant vector. The
routine performs the following:

DO 10 1=1. LENGTH
DP_VEC(I) = DBLE (SP_VEC(I»

10 CONTINUE

VEC-27 VEC

VEC $SP _DP I

VEC $SP DP I

Copies a single-precision vector to a double-precision vector, stepping through the vectors
incrementally.

FORMAT

INPUT PARAMETERS

sp_ vee
Floating-point, single-precision vector.

ine!
Increment for the index of sp _ vec. This is a 4-byte integer.

OUTPUT PARAMETERS

dp_ vee
Floating-point double-precision resultant vector.

ine2
Increment for the index of dp _ vec. This is a 4-byte integer.

INPUT PARAMETERS

length
Number of elements to copy. This is a 4-byte integer.

USAGE

VEC

VEC _ $SP _DP _I copies a single-precision vector to a double-precision resultant vector,
stepping through the vectors by user-supplied increments. It does the following:

J = 1
K = 1
DO 10 I=l. LENGTH

DP_VEC(K) = DELE (SP_VEC(J))
J = J+INC1
K = K+INC2

10 CONTINUE

VEC-28

C.'

o

o

o

o

o

VEe $SUB

Subtracts one vector from another.

FORMAT

VEC_$SUB (start_vee. sub_vee. length. result_vee)
VEC_$DSUB (start_vee. sub_vee. length. result_vee)
VEC $ISUB (start vee. sub vee. length. result vee)
VEC=$ISUB16 (start_vee. sub_vee. length. result_vee)

INPUT PARAMETERS

start_ vee
Floating-point or integer vector from which the values will be subtracted.

sub vee
Floating-point or integer vector to be subtracted.

length
Number of elements to subtract. This is a 4-byte integer.

OUTPUT PARAMETERS

result_ vee
Floating-point or integer vector containing the difference.

USAGE

VEC $SUB

These routines subtract one vector from another, returning the result in a third vector. The
routines perform the following operation:

DO 10 I = 1.LENGTH
RESULT_VEC(!) = START_VEC(I) - SUB_VEC(I)

10 CONTINUE

VEC-29 VEe

VEC $SUB I

VEC $SUB I

Subtracts one vector from another, stepping through the vectors by increments.

FORMAT

VEC_$SUB_I (start_vec, incl. sub_vec. inc2. length, result_vec. inc3)
VEC $DSUB I (start vec. incl, sub vec. inc2. length. result vec. inc3)
VEC=$ISUB=I (start=vec. incl. sUb=vec. inc2. length, result=vec. inc3)
VEC_$ISUB16_I (start_vec. incl. sub_vec. inc2, length. result_vec. inc3)

INPUT PARAMETERS

start_ vee
Floating-point or integer vector from which the values will be subtracted.

inc!
Increment for the index of start vec. This is a 4-byte integer.

sub vee
Floating-point or integer vector to be subtracted.

ine2
Increment for the index of sub vec. This is a 4-byte integer.

length
Number of elements to subtract. This is a 4-byte integer.

OUTPUT PARAMETERS

result vee
Floating-point or integer vector containing the difference.

INPUT PARAMETERS

ine3
Increment for the index of result vec. This is a 4-byte integer.

USAGE

VEC

These routines subtract one vector from another, returning the result in a third vector. The
indices to all three vectors are incremented by user-specified values. The routines perform
the following operation:

DO 10 I = 1.LENGTH
RESULT_VEC(J) = START_VEC(K) - SUB_VEC(L)
J = J + INC3
K = K + INCl
L = L + INC2

10 CONTINUE

VEC-30

~,

\,-_.,

r"
~'-'

c

(

o

o

o

o

o

VEe $SUM

Sums the elements of a vector.

FORMAT

sum = VEC_$SUM (vee. length)
sum = VEC_$DSUM (vee. length)
sum = VEC_$ISUM (vee. length)
sum = VEC_$ISUM16 (vee. length)

RETURN VALUE

sum
Floating-point or integer sum of first II length II elements of vec.

INPUT PARAMETERS

vee
Floating-point or integer vector to be summed.

length
Number of elements to sum. This is a 4-byte integer.

USAGE

VEC $SUM

These routines sum the elements of a vector. The routines perform the following operation:

DO 10 I = 1.LENGTH
SUM = SUM + VEC(I)

10 CONTINUE

VEC-31 VEC

VEO SUM_I

VEO SUM I

Sums the elements of a vector, stepping through the vector by increments.

'FORMAT

sum = VEC_$SUM_I (vee, ine, length)
sum = VEC_$DSUM_I (vee, ine, length)
sum = VEC_$ISUM_I (vee, ine, length)
sum = VEC_$ISUM16_I (vee, ine, length)

RETURN VALUE

sum
Floating-point or integer sum of the elements.

INPUT PARAMETERS

vee
Floating-point or integer vector to be summed.

ine
Increment for the index of vec. This is a 4-byte integer.

length
Number of elements to sum. This is a 4-byte integer.

USAGE

VEO

These functions step through a vector incrementally, summing its elements. The sum is
returned as the value of the function. The routines do the following:

J = 1
SUM = 0.0
DO 10 I=l,LENGTH

SUM = SUM+VEC (J)
J = J+INC1

10 CONTINUE

VEO-32

o

o

o

o

o

VEe $SWAP

Swaps the elements of two vectors.

FORMAT

VEC_$SWAP (veel. vee2. length)
VEC_$DSWAP (veel. vee2. length)
VEC_$ISWAP (veel. vee2. length)
VEC_$ISWAP16 (veel. vee2. length)

INPUT/OUTPUT PARAMETERS

vee!, vee2
Floating-point or integer vectors to be swapped.

INPUT PARAMETERS

length
Number of elements to swap. This is a 4-byte integer.

USAGE

VEC $SWAP

These routines swap the elements of two vectors. They perform the following operation:

DO 10 I = 1.LENGTH
TEMP = VECl (I)
VEC1(I) = VEC2(I)
VEC2(I) = TEMP

10 CONTINUE

VEC-33 VEe

VEC $SWAP_I

VEO $SWAP I

Swaps the elements of two vectors, stepping through the vectors by increments.

FORMAT

VEC_$SWAP_I (yeel. inel. yee2. ine2. length)
VEC_$OSWAP_I (yeel. inel. yee2. ine2. length)
VEC_$ISWAP_I (yeel. incl. yee2. ine2. length)
VEC_$ISWAP16_1 (yeel. incl. yee2. ine2. length)

INPUT/OUTPUT PARAMETERS

vecl
Floating-point or integer vector to be swapped.

INPUT PARAMETERS

incl
Increment for the index of vec!. This is a 4-byte integer.

INPUT/OUTPUT PARAMETERS

vec2
Floating-point or integer vector to be swapped.

INPUT PARAMETERS

inc2
Increment for the index of vec2. This is a 4-byte integer.

length
Number of elements to swap. This is a 4-byte integer.

USAGE

VEC

These routines step through two vectors by increments, swapping their elements. They
perform the following operation:

J = 1
K = 1
DO 10 I=l.N

TEMP = VECl (J)
VEC1(J) = VEC2(K)
VEC2 (K) = TEMP
J = J + INCl
K = K + INC2

10 CONTINUE

VEC-34

('
',,--_ ..

(

o

o

o

o

VEe $ZERO

Zeros a vector.

FORMAT

VEC $ZERO (vector. length)
VEC-$DZERO (vector. length)
VEC-$IZERO (vector. length)
VEC=$IZER016 (vector. length)

INPUT/OUTPUT PARAMETERS

vector
Floating-point or integer vector to be zeroed.

INPUT PARAMETERS

length
Number of elements to zero. This is a 4-byte integer.

USAGE

VEC $ZERO

These routines zero the elements of a vector. They perform the following operation:

DO 10 I = 1.LENGTH
VEC(I) = 0.0

10 CONTINUE

VEC-3S VEe

VEC $ZERO I

VEe $ZERO I

Zeros a vector by increments.

FORMAT

VEC_$ZERO_I (vector. inc. length)
VEC_$DZERO_I (vector. inc. length)
VEC_$IZERO_I (vector. inc. length)
VEC_$IZER016_I (vector. inc. length)

INPUT/OUTPUT PARAMETERS

vector
Floating-point or integer vector to be zeroed.

INPUT PARAMETERS

inc
Increment for the index of vector. This is a 4-byte integer.

length
Number of elements to zero. This is a 4-byte integer.

USAGE

VEC

These routines step through a vector by increments, zeroing its elements. VEC $ZERO I
zeros 32 bits regardless of data type and VEC _ $DZERO _I zeros 64 bits. The routines
perform the following:

J = 1
DO 10 I=l.LENGTH

VEC(J) = 0.0
J = J+INC1

10 CONTINUE

VEC-36

(

(
'''--

(
'-

c

o

o

o

o

o

VFMT

This section describes the data types, the call syntax, and the error codes for the VFMT
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data-type diagrams and call syntax format.

VFMT-l VFMT

VFMT DATA TYPES

DATA TYPES

STATUS $T

VFMT $STRING T

VFMT

byte:
offset 31

0:

0:

1 :

2:

A status code. The diagram below illustI:ates the
STATUS_$T data type:

field name
o

integer all

integer

or

fail

subsys

mode

code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

An array of up to 200 characters. Access control
string.

VFMT-2

(
\.,

(
',-

o

o

o

o

o

---------- --_ .. __ .. - .--_._-_ .. - ._ _-_._ ... _ _---_ .. - --------------

VFMT $DECODE

VFMT $DECODE

Decodes data from a text buffer and writes the decoded data into program variables.

FORMAT

return-value = VFMT_$DECODE{215Ii0} (control-string. text-buffer. size.
count. status. ai. a2 ai0)

RETURN VALUE

return-value
Position in the text buffer of the last decoded character. This is a 2-byte integer.

The return-value indicates the position in the text buffer of the last decoded character. The
first buffer position is 1.

INPUT PARAMETERS

control-string
Character string giving instructions for decoding the input data. See the VFMT chapter of
the Programming With General System Calls manual for details about how to construct
control strings.

text-buffer

size

Buffer containing data to be decoded, in VFMT _ $STRING _ T format. This is an array of
up to 200 characters.

Number of bytes of data in the text buffer. This is a 2-byte integer.

OUTPUT PARAMETERS

count
Number of fields successfully decoded. This is a 2-byte integer.

status
.completion status, in STATUS _ $T format. This data type is 4 bytes long. See the VFMT
Data Types section for more information.

aI, a2, .•. a10
Up to ten variables containing decoded data. The number required depends on the number
immediately following VFMT _ $DECODE. The number of variables can not exceed this-·
number. In Pascal programs, you must specify exactly this number of variables, using
dummy variables if necessary.

If you are decoding ASCII text strings, you must provide two variables for each text string:
a character string to contain the decoded string, and a 2-byte integer variable to contain the
length of the decoded string, which is returned by VFMT.

The returned length of the output string depends on what you specify in the control string.
VFMT determines the output string length using the M directive or, if M is omitted, using

VFMT-3 VFMT

VFMT $DECODE

the previous value of the string length variable. In the latter way you may use this integer
variable to input a maximum string length.

If you specify a maximum string length with the M directive, and the length of the string
decodes is less than the maximum, VFMT returns the actual length (the lesser value) in the
string-length variable.

USAGE

This is actually a description of three separate DOMAIN system calls: VFMT _ $DECODE2,
VFMT _ $DECODE5, and VFMT _ $DECODEIO. The number immediately following
VFMT $DECODE indicates the maximum number of variables the call can handle. The
number must follow immediately, with no embedded spaces.

VFMT VFMT-4

'''-..

\,

c

o

o

o

o

o

VFMT $ENCODE

VFMT $ENCODE

Encodes and writes data into a text buffer.

FORMAT

VFMT_$ENCODE{2/5/10} (control-string, text-buffer, capacity, size,
ai, a2 , ... alO)

INPUT PARAMETERS

control-string
Character string giving instructions for encoding the output data. See the VFMT chapter
of the Programming With General System Calls manual for details about how to construct
control strings.

OUTPUT PARAMETERS

text-buffer
Buffer to contain the encoded data, in VFMT _ $STRING _ T format. This is an array of
up to 200 characters.

INPUT PARAMETERS

capacity
Maximum number of characters that may be placed in the text-buffer. This is a 2-byte
integer.

OUTPUT PARAMETERS

size
Number of characters placed in the buffer. This is a 2-byte integer.

INPUT PARAMETERS

aI, a2 , 000 alO
Up to ten variables containing data for encoding. The number required depends on the
number immediately following VFMT _ $ENCODE. The number of variables can not
exceed this number. In Pascal programs, you must specify exactly this number of variables,
using dummy variables if necessary.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

USAGE

This is actually a description of three separate DOMAIN system calls:
VFMT _ $ENCODE2, VFMT _ $ENCODE5, and VFMT _ $ENCODEIO. The number
immediately following VFMT _ $ENCODE indicates the maximum number of variables the
call can handle. The number must follow immediately, with no embedded sp_aces.

VFMT-5 VFMT

VFMT $READ

VFMT $READ

Reads character data from standard input and decodes them into variables.

FORMAT

VFMT_$READ{215Ii0} (control-string, count, status, ai, a2, ... ai0)

INPUT PARAMETERS

control-string
A character string giving instructions for decoding the input data. See the VFMT chapter
of the Programming With General System Calls manual for details about how to construct
control strings.

OUTPUT PARAMETERS

count
Number of fields successfully decoded. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the VFMT
Data Types section for more information.

ai, a2, ••• aiD
Up to ten variables containing decoded data. The number required depends on the number
immediately following VFMT _ $READ. The number of variables can not exceed this
number. In Pascal programs, you must specify exactly this number of variables, using
dummy variables if necessary.

If you are decoding ASOII text strings, you must provide two variables for each text string:
a character string to contain the decoded string, and a 2-byte integer variable to contain the
length of the decoded string, which is returned by VFMT.

The returned length of the output string depends on what you specify in the control string.
VFMT determines the output string length using the M directive or, if M is omitted, using
the previous value of the string length variable. In the latter way you may use this integer
variable to input a maximum string length.

If you specify a maximum string length with the M directive, and the length of the string
decodes is less than the maximum, VFMT returns the actual length (the lesser value) in the
string-length variable.

USAGE

VFMT

This is actually a description of three separate DOMAIN system calls: VFMT _ $READ2,
VFMT _ $READ5, and VFMT _ $READIO. The number immediately following
VFMT _ $READ indicates the maximum number of variables the call can handle. The
number must follow immediately, with no embedded spaces.

VFMT-6

(
'

c

o

o

o

o

o

VFMT $RS

VFMT $RS

Reads charactt!r data from a stream and decodes them into variables.

FORMAT

VFMT_$RS{215110} (stream-id. control-string. count. status. al. a2 alO)

INPUT PARAMETERS

stream-id
Number of the stream from which data are read, in STREAM_ $ID _ T format. This is a
2-byte integer.

control-string
A character string giving instructions for decoding the input data. See the VFMT chapter
of the Programming With General SY8tem Ca1l8 manual for details about how to construct
control strings.

OUTPUT PARAMETERS

count
Number of fields successfully decoded. This is a 2-byte integer.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the VFMT
Data Types section for more information.

aI, a2, •.• alO
Up to ten variables containing decoded data. The number required depends on the number
immediately following VFMT _ $RS. The number of variables can not exceed this number.
In Pascal programs, you must specify exactly this number of variables, using dummy
variables if necessary.

If you are decoding ASCII text strings, you must provide two variables for each text string:
a character string to contain the decoded string, and a 2-byte integer variable to contain the
length of the decoded string, which is returned by VFMT.

The returned length of the output string depends on what you specify in the control string.
VFMT determines the output string length using the M directive or, if M is omitted, using
the previous value of the string length variable. In the latter way you may use this integer
variable to input a maximum string length.

If you specify a maximum string length with the M directive, and the length of the string
decoded is less than the maximum, VFMT returns the actual length (the lesser value) in the
string-length variable.

USAGE

This is actually a description of three separate DOMAIN system calls: VFMT _ $RS2,
VFMT _ $RS5, and VFMT _ $RSIO. The number immediately following VFMT _ $RS
indicates the maximum number of variables the call can handle. The number must follow
immediately, with no embedded spaces.

VFMT-7 VFMT

VFMT $WRITE

VFMT $WRITE

Encodes data and writes them to standard output.

FORMAT

VFMT_$WRlTE{215110} (control-string. al. a2 alO)

INPUT PARAMETERS

control-string
A character string containing the control information for encoding. See the VFMT chapter
of the Programming With General SY8tem Ga1l8 manual for details about how to construct
control strings.

aI, a2 , ••• aID
Up to ten variables containing data for encoding. The number required depends on the
number immediately following VFMT _ $ENCODE. The number of variables can not
exceed this number. In Pascal programs, you must specify exactly this number of variables,
using dummy variables if necessary.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

USAGE

VFMT

This is actually a description of three separate DOMAIN system calls: VFMT _ $WRITE2,
VFMT _ $WRITE5, and VFMT _ $WRITE10. The number immediately following
VFMT _ $WRITE indicates the maximum number of variables the call can handle. The
number must follow immediately, with no embedded spaces.

Any individual VFMT _ $WRITE[215110] call can write out a maximum of 512 bytes per
call.

VFMT-8

c

c

c

o

o

o

o

o

VFMT $WS

VFMT $WS

Encodes data and writes them to a stream.

FORMAT

VFMT_$WS{215110} (stream-id, control-string, ai, a2 , ... alO)

INPUT PARAMETERS

stream-id
The number of the stream to which data are written, in STREAM_ $ID _ T format. This
is a 2-byte integer.

control-string
A character string containing the control information for encoding. See the VFMT chapter
of the Programming With General System Calls manual for details about how to construct
control strings.

aI, a2 , ••• a10
Up to ten variables containing data for encoding. The number required depends on the
number immediately following VFMT _ $ENCODE. The number of variables can not
exceed this number. In Pascal programs, you must specify exactly this number of variables,
using dummy variables if necessary.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

USAGE

This is actually a description of three separate DOMAIN system calls: VFMT _ $WS2,
VFMT _ $WS5, and VFMT _ $WSI0. The number immediately following VFMT _ $WS
indicates the maximum number of variables the call can handle. The number must follow
immediately, with no embedded spaces.

Any individual VFMT _ $WS[215110] call can write out a maximum of 512 bytes per call.

VFMT-9 VFMT

VFMT ERRORS

ERRORS

VFMT $UNTERMINATED CTL STRING
Unterminated control string.

VFMT $INV ALED CTL STRING
Invalid control string.

VFMT $TOO FEW ARGS
Too few arguments supplied for readl decode.

VFMT _ $FW _REQUIRED
Field width missing on 11(" designator.

VFMT $EOS
Encountered end of string where more text was expected.

VFMT $NULL TOKEN
Encountered null token where numeric token was expected.

VFMT $NONNUMERIC CHAR
Non-numeric character found where numeric was expected.

VFMT $SIGN NOT _ALLOWED
Sign encountered in unsigned field.

VFMT $VALUE TOO LARGE
Value out of range in text string.

VFMT $NONMATCHING CHAR
Character in text string does not match control string.

VFMT $NONMATCHING DELIMITER
Terminator in text string does not match specified terminator.

STATUS $OK
Successful completion.

VFMT VFMT-IO

(

('

